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Abstract. An increasing number of applications benefits from light-weight on-
tologies, or to put it differently “a little semantics goes a long way”. However,
our experience indicates that more expressiveness can offer significant advan-
tages. Introducing disjointness axioms, for instance, greatly facilitates consis-
tency checking and the automatic evaluation of ontologies. In an extensive user
study we discovered that proper modeling of disjointness is a difficult and very
time-consuming task. We therefore developed an approach to automatically en-
rich learned or manually engineered ontologies with disjointness axioms. This
approach relies on several methods for obtaining syntactic and semantic evidence
from different sources which we believe to provide a solid base for learning dis-
jointness. After thoroughly evaluating the implementation of our approach we
think that in future ontology engineering environments the automatic discovery
of disjointness axioms may help to increase the richness, quality and usefulness
of any given ontology.

1 Introduction

An increasing number of applications benefits from light-weight ontologies, or, to put
it differently, “a little semantics goes a long way” (Jim Hendler). Our experience in
building ontology-based systems indicates, however, that adding more expressivity in a
controlled manner can reap further benefits. Introducing disjointness axioms, for exam-
ple, greatly facilitates consistency checking and the automatic evaluation of individuals
in a knowledge base with regards to a given ontology.

In description logics two classes are considered as disjoint iff their taxonomic over-
lap, i.e. the set of common individuals, must be empty. This does not include classes
with actual extensions that coincidentally do not have common individuals, for instance
Woman and US President, but only those where the common subset must be empty in
all possible worlds – like, for example, Woman and Car.

Disjointness allows for far more expressive and meaningful ontologies, as shown
exemplary in the following. An ontology language with the expressivity of RDFS does
not constrain the possible assertions in any way. Even after we set up an ontology defin-
ing terms like Book, Student and University, stating that John is both a Student and a
University is logically perfectly viable, and would not be recognized as an error by a
reasoner. Only if we define these classes as being disjoint, the reasoner will be able to
infer the error in the above ontology, guaranteeing that particular constraints are met by
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the knowledge base and a certain quality of facts is achieved – thus raising the quality
of the whole ontology-based system [17].

Despite the obvious importance of stating disjointness among classes, many of to-
day’s ontologies do not contain any disjointness axioms. In fact, a survey of 1,275
ontologies [22] recently found only 97 of them to include disjointness axioms. We can
only speculate about the reasons, but it is very likely that ontology engineers often for-
get to introduce disjointness axioms, simply because they are not aware of the fact that
classes which are not explicitly declared to be disjoint will be considered as overlap-
ping. Particularly, inexperienced users usually assume the semantics of partitions, or
even complete partitions, when they build a subsumption hierarchy (see [15]). Also, as
the size of an ontology is a major cost driver for ontologies [2], the manual engineering
and addition of the axioms actually costs more time, and thus money.

Therefore, we believe that an approach to automatically introduce disjointness ax-
ioms into an ontology would be a valuable addition to any ontology learning or engi-
neering framework. The principle feasibility of learning disjointness based on simple
lexical evidence has already been shown by [9]. However, our experiments indicate that
a single heuristic is not suitable for detecting disjointness with sufficiently high preci-
sion, i.e. better than an average human could do.

For this paper, we performed an extensive survey in order to collect experience with
modeling disjoint classes, and identified several problems frequently encountered by
users who try to introduce disjointness axioms. Based on the results of our survey
we developed a variety of different methods in order to automatically extract lexical
and logical features which we believe to provide a solid basis for learning disjoint-
ness. These methods take into account the structure of the ontology, associated textual
resources, and other types of data sources in order to compute the likeliness of two
classes to be disjoint. The features obtained from these methods are used to build an
overall classification model which we evaluated against more than 10,000 disjointness
axioms provided by 30 human annotators. Due to the encouraging evaluation results
we are confident that our implementation can be used, for example, to extend state-of-
the-art ontology learning systems, to support ontology debugging [17], or to evaluate
manually added disjointness axioms.

The survey also showed that deciding if two classes are disjoint is far from trivial.
Although experts have a higher agreement on disjointness than non-expert users, their
agreement is still lower than we expected. Discussing these problematic formalizations,
we uncovered a number of problems humans have with formal disjointness.

In this paper, we will, in Section 2, first present the features we have used in order
to automatically learn disjointness axioms. Section 3 describes the set up and execution
of the experiments we conducted in order to train a classifier and evaluate the results of
our implementation (Section 4). We close with an overview of related work in Section 5
and a summary of the key contributions and remaining open questions in Section 6.

2 Features for Learning Disjointness

Assuming that there is not the one and only approach to determine the disjointness
of two classes in an ontology, we developed a variety of different methods to obtain
evidence for or against disjointness from different sources. The features delivered by
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these methods will help us to train a classifier which is able to distinguish between
disjoint and non-disjoint classes.

Preliminaries: In this paper we adopt the OWL ontology model, although we do not
restrict our approach to OWL. Any ontology model that allows to state disjointness
between two classes can be used with all the methods described in this paper.

The methods are provided with an unsorted list of all the pairs previously tagged by
human annotators. In the following the set of pairs will be denoted by P = {p1, ...pn}
for 0 ≤ n ≤ |C|2, where C is the set of all classes in the ontology. Each pair pk =
(ck1 , ck2) consists of two classes ck1 , ck2 ∈ C and ck1 �= ck2 . The confidence of the
system in ck1 and ck2 being (not) disjoint is denoted by conf(pk, +) or conf(pk, −)
respectively.

All methods are allowed to look up these classes within their semantic context, i.e.
the domain ontology they have been extracted from (see Section 3.1). And finally, as
additional sources of background knowledge, the methods may make use of a corpus
of textual resources associated with the ontology. We automatically selected a subset
of 957 documents from the Reuters corpus1 [16]. For efficiency reasons we only chose
those documents with at least 20 occurrences of any of the classes in the ontology.

It is important to mention, that we assume ’meaningful’ labels for all classes in
the ontology, i.e. labels which may be understood by humans even without knowing
the whole taxonomy. This assumption is particularly relevant for all methods which
make use of textual resources such as the pattern-based disjointness extraction (cf. Sec-
tion 2.4), the computation of extensional overlap with respect to Del.icio.us2 and the
algorithms for learning taxonomic relationships (see Section 2.1).

2.1 Taxonomic Overlap

In description logics two classes are disjoint iff their taxonomic overlap, i.e. the set of
common individuals, must be empty. Because of the open world assumption in OWL,
these individuals do not necessarily have to exist in the ontology. The taxonomic overlap
of two classes is considered not empty as long as there could be common individuals
within the domain of interest which is modeled by the ontology.

We developed three methods which determine the likeliness for two classes to be dis-
joint by considering their overlap with respect to (i) individuals and subclasses in the
ontology – or learned from a corpus of associated textual resources – and (ii) Del.icio.us
documents tagged with the corresponding class labels.

Ontology. Both, individuals and subclasses can be imported from an ontology (see Sec-
tion 3.1) or from a given corpus of text documents. In the latter case, subclass-of
and instance-of relationships are extracted by different algorithms provided by the
Text2Onto3 ontology learning framework. A detailed description of these algorithms
can be found in [4]. All taxonomic relationships – learned and imported ones – are as-
sociated with rating annotations rsubclass−of (or rinstance−of respectively) indicating

1 http://trec.nist.gov/data/reuters/reuters.html
2 http://del.icio.us/
3 http://ontoware.org/projects/text2onto/

http://trec.nist.gov/data/reuters/reuters.html
http://del.icio.us/
http://ontoware.org/projects/text2onto/
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the certainty x > 0 of the underlying ontology learning framework in the correctness of
its results. For imported relationships the confidence is 1.0.

rsubclass−of (c1, c2) =

{
x c1 subclass-of c2

0 otherwise
(1)

The following formula defines the confidence conf(p, −) for a pair p = (c1, c2) to
be not disjoint based on the taxonomic overlap of c1 and c2 with respect to common
subclasses (the same for instance):

conf(p, −) =

∑
c∈sub1∩sub2

(rsubclass−of (c, c1) · rsubclass−of (c, c2))∑
c∈sub1

rsubclass−of (c, c1) +
∑

c∈sub2
rsubclass−of (c, c2)

(2)

where subi denotes the set of subclasses of ci.

Del.icio.us. Del.icio.us is a server-based system with a simple-to-use interface that al-
lows users to organize and share bookmarks on the internet. It associates each URL with
a description, a note, and a set of tags (i.e. arbitrary class labels). For our experiments,
we collected |U | = 75, 242 users, |T | = 533, 191 tags and |R| = 3, 158, 297 resources,
related by in total |Y | = 17, 362, 212 triples. The idea underlying the use del.icio.us in
this case is that two labels which are frequently used to tag the same resource are likely
to be disjoint, because users tend to avoid redundant labeling of documents.

conf(p, −) =
|{d|c1 ∈ t(d), c2 ∈ t(d)}|∑

c∈C |{d|c1 ∈ t(d), c ∈ t(d)}| +
∑

c∈C |{d|c2 ∈ t(d), c ∈ t(d)}|
(3)

where t(d) is the set of del.icio.us tags associated with document d. The normal-
ized number of co-occurrences of c1 and c2 (their respective labels to be precise) as
del.icio.us tags aims at capturing the degree of association between the two classes.

2.2 Subsumption

If one class is a subclass of the other we assume the two classes of a pair p =
(c1, c2) to be not disjoint with a confidence equal to the likeliness associated with the
subclass-of relationship (cf. Section 2.1).

conf(p, −) = max(rsubclass−of (c1, c2), rsubclass−of (c2, c1)) (4)

2.3 Semantic Similarity

The assumption that a direct correspondence between the semantic similarity of two
classes indicates their likeliness to be disjoint led to the development of three further
methods: The first one implements the similarity measure described by [24] to compute
the semantic similarity sim of two classes c1 and c2 with respect to WordNet [6]:

conf(p, −) = sim(s1, s2) =
2 ∗ depth(lcs(s1, s2))
depth(s1) + depth(s2)

(5)
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where si = first(ci) denotes the first sense of ci, i ∈ {1, 2} with respect to WordNet,
and lcs(s1, s2) is the least common subsumer of s1 and s2. The depth of a node n
in WordNet is recursively defined as follows: depth(root) = 1, depth(child(n)) =
depth(n) + 1.

The second method measures the distance of c1 and c2 with respect to the given
background ontology (see Section 3.1) by computing the minimum length of a path q
of subclass-of relationships connecting c1 and c2.

conf(p, +) = min
p∈paths(c1,c2)

length(q) (6)

And finally, the third method computes the similarity of c1 and c2 based on their
lexical context. Along with the ideas described in [5] we exploit Harris’ distributional
hypothesis [10] which claims that two words are semantically similar to the extent to
which they share syntactic contexts.

For each occurrence of a class label in a corpus of textual documents (see prelimaries
of this section) we consider all the lemmatized tokens in the same sentence (except for
stop words) as potential features in the context vector of the corresponding class. After
the context vectors for both classes have been constructed, we assign weights to all
features using a modified version of the tf-idf formula:

Let vi = (f i
1...f

i
n) be the context vector of class ci where each f i

j , n ≥ 1
is the frequency of token j in the context of ci. Then we define TF (f i

j) =∑
d∈doc(ci) freq(f i

j , d) and N = |doc(ci)| and DF = |doc(ci) ∩ doc(f i
j)|, where

doc(t) is the set of documents containing term t and freq(t, d) is the frequency of term
t in document d. And finally, we get TFIDF (f i

j) = TF (f i
j) · log( N

DF ).
Given the weighted context vectors v′1 and v′2 the confidence in c1 and c2 being not

disjoint is defined as conf(p, −) = cos(v′1, v
′
2).

2.4 Patterns

Since we found that disjointness of two classes is often reflected by human language,
we defined a number of lexico-syntactic patterns to obtain evidence for disjointness
relationships from a given corpus of textual resources. The first type of pattern is based
on enumerations as described in [9]. The underlying assumption is similar to the idea
described in section 2.1, i.e. terms which are listed separately in an enumeration mostly
denote disjoint classes. Therefore, from the sentence

The pigs, cows, horses, ducks, hens and dogs all assemble in the big barn, thinking
that they are going to be told about a dream that Old Major had the previous night.

we would conclude that pig, cow, horse, duck, hen and dog are disjoint classes. This
is because we believe that – except for some idiomatic expressions it would be rather
unusual to enumerate overlapping classes such as dogs and sheep dogs separately which
would result in semantic redundancy. More formally:

Given an enumeration of noun phrases NP1, NP2, . . . , (and|or) NPn we con-
clude that the concepts c1, c2, . . . , ck denoted by these noun phrases are pairwise
disjoint, where the confidence for the disjointness of two concepts is obtained from
the number of evidences found for their disjointness in relation to the total number of
evidences for the disjointness of these concepts with other concepts.
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The second type of pattern is designed to capture more explicit expressions
of disjointness in natural language by phrases such as either NP1 or NP2 or
neither NP1 nor NP2. For both types of patterns we compute the confidence for
the disjointness of two classes c1 and c2 as follows:

conf(p, +) =
freq(c1, c2)∑

j �=1 freq(c1, cj) +
∑

i�=2 freq(ci, c2)
(7)

where freq(ci, cj) is the number of patterns providing evidence for the disjointness of
ci and cj with 0 ≤ i, j ≤ |C|2 and i �= j.

2.5 OntoClean

In [20] we introduced AEON, an approach to automatically evaluate ontologies accord-
ing to the OntoClean methodology [8]. The basic idea is to use a pattern-based approach
on top of the Web (and other textual data sources) for annotating classes of a given on-
tology with the OntoClean properties such as unity, identity and rigidity. Parts of the
approach can be reused for learning disjointness axioms.

Two classes are disjoint if they have incompatible unity or identity criteria. This im-
plies that a class carrying anti-unity (∼U) must be disjoint of a class carrying unity (+U)
– and similarly for identity. Since we use the same subset of the PROTON ontology as
in our AEON experiments, we can rely on the manual OntoClean taggings we collected
earlier for the evaluation of AEON.

conf(p, +) =

⎧⎪⎨
⎪⎩

1 if c1 tagged with φΩ, c2 tagged with ψΩ,

for Ω ∈ {U, I}, φ, ψ ∈ {∼, +}, φ �= ψ

0 otherwise

(8)

2.6 Meta Algorithm

The meta algorithm considers superclasses known to be disjoint (from previously com-
puted confidence values) and propagates this information downwards in the taxonomic
hierarchy4. For p = (c1, c2) the confidence for c1 and c2 being disjoint is computed as
follows:

conf(p, +) =

∑
ps(conf(ps, +) − conf(ps, −))

|super(c1)| · |super(c2)|
(9)

where ps = (cs
1, c

s
2) with cs

i ∈ {c|subclass − of(ci, c)} for i ∈ {1, 2} and
subclass− of(ci, cj) being the subclass-of relationship between ci and cj . More-
over, super(c) denotes the set of superclasses of c.

4 This algorithm was not used in the final evaluation, since early experiments indicated that it
introduces too much noise. However, we report on it for reasons of completeness. And we still
believe that it constitutes a potentially interesting direction of future work, because it allows
for integrating subsumption information into any other algorithm.
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3 Experiment: Human Annotation of Disjointness

We thoroughly evaluated our approach by performing a comparison of learned dis-
jointness axioms against a large number of manually created ones to calculate (among
other things) the degree of overlap. This section describes the generation of the evalu-
ation dataset consisting of 2000 pairs of classes tagged by 30 annotators and discusses
methodological aspects related to the manual creation of disjointness axioms. The com-
plete dataset is available from http://www.aifb.uni-karlsruhe.de/WBS/
jvo/data/disjointness-111206.zip.

3.1 Ontology

As a basis for the creation of the evaluation datasets and as background knowledge
for the ontology learning algorithms we took a subset (system, top and upper module)
of the freely available PROTON ontology (PROTo ONtology)5. In total our subset of
PROTON contains 266 classes, 77 object properties, 34 datatype properties and 1388
siblings.

PROTON is a basic upper-level ontology to facilitate the use of background or pre-
existing knowledge for automatic metadata generation. PROTON covers the general
concepts necessary for a wide range of tasks, including semantic annotation, indexing,
and retrieval of documents. The design principles can be summarized as follows (as
described in [19]) (i) domain-independence; (ii) light-weight logical definitions; (iii)
alignment with popular standards; (iv) good coverage of named entities and concrete
domains (i.e. people, organizations, locations, numbers, dates, addresses).

3.2 Evaluation Setting: Manual Taggings

To be able to compare the results of our trained model with the results generated by
manual annotation we created a dataset consisting of 2000 pairs of classes as follows:
First, we manually selected 200 (potentially) non-disjoint pairs from the ontology, since
we assumed the set of non-disjoint pairs to constitute a weak minority class (which
would have hampered the construction of a good model for our classifier). Then, we
randomly chose 500 siblings – which constitute a subset of the data, which is of partic-
ular interest from a practical and theoretical aspect. And finally, we added another 1300
pairs chosen randomly without any selection criteria.

Once the dataset was complete, each pair was randomly assigned to 6 different peo-
ple – 3 from each of two groups, the first one consisting of PhD students from our
institute (all of them professional ”ontologists”), the second being composed of under-
graduate students without profound knowledge in ontological engineering. Each of the
annotators was given between 385 and 406 pairs along with natural language descrip-
tions of the classes whenever those were available. Possible taggings for each pair were
+ (disjoint), − (not disjoint) and ? (unknown). The result were two datasets A and B
for ”ontologists” and ”students”. A third dataset C was created by merging A and B
(cf. table 1a). Dataset D is a subset of C consisting of all siblings, whereas E contains
all those pairs of classes which were randomly selected.

5 PROTON is available from http://proton.semanticweb.org.

http://www.aifb.uni-karlsruhe.de/WBS/
jvo/data/disjointness-111206.zip
http://proton.semanticweb.org
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Table 1.

a) Evaluation Datasets b) Tagged Pairs (Individual)

ID Dataset Annotators Tags per Pair Pairs

A Experts 15 3 2000
B Students 15 3 2000
C All 30 6 2000
D Siblings 30 6 541
E Random 30 6 1300

Dataset Individual Taggings
+ − ? all −/+ avg. agree.

A 3849 2007 144 6000 0.521 0.869
B 3881 2106 13 6000 0.543 0.858

avg. 3865.0 2056.5 78.5 6000 0.532 0.864
C 7730 4113 157 12000 0.532 0.824
D 1362 1822 62 3246 1.338 0.754
E 6166 1554 80 7800 0.252 0.853

In order to get cleaner and less ambiguous training data for our classification model
(see Section 4) we computed the majority votes for all the above mentioned datasets
by considering the individual taggings for each pair (3 in the case of A and B, and 6
for C). If at least 50% (or 100% respectively) of the human annotators agreed upon +
or − this decision was assumed to be the majority vote for that particular pair. In case
of equally many positive and negative taggings, the majority vote was defined as ? or
unknown. These pairs were not used for training purposes. In this way we reduced the
noise the classifier had to deal with in the training phase, and obtained a better overall
model. Some statistical properties of the majority vote datasets are given by table 2.

3.3 Analysis of Human Annotations

In order to determine how difficult it is for humans to tag pairs of classes as being dis-
joint or not we measured the human agreement within and across the different subsets
of the data. Table 1b shows the average agreement among the individual taggers, i.e.
the average maximum ratio of annotators who agreed upon the same tag for a pair of
classes. By analysing the figures we find that the average agreement for D is signifi-
cantly lower than the agreement for any of the other datasets – which seems to imply
that pairs of siblings (classes with a common direct superclass) are much more difficult
to tag for human annotators than randomly chosen pairs of classes. This might be due
to the fact that it is comparably hard to determine the differences between the intension
and extension of classes which are semantically very close.

In addition to the computation of the agreement within each of the datasets, we also
tried to capture commonalities and differences between the taggings of people from the
two groups of annotators – ontologists (A) and students (B).

First, we measured the average agreement of the individual taggings of the experts
with the majority vote 100% of the students and vice versa. The figures – 0.852 for the
agreement between A and the majority vote of B, and a slightly lower value of 0.834
for the agreement between B and the majority vote of A – indicate that, maybe due
to the relatively higher disagreement among the students (see table 1b), those tend to
agree mainly on very evident cases of disjointness.

The hypothesis that there is a considerable number of pairs which are comparably
easy to tag, thus provoking a high agreement, is supported by the figures we get for the
agreement among the majority votes 100% (0.964) and 50% (0.793) of A and B.
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Table 2. Tagged Pairs (Majority Vote)

Dataset Majority Vote 50% Majority Vote 100%
+ − ? all −/+ + − ? all −/+

A 1297 649 54 2000 0.500 931 330 739 2000 0.354
B 1346 648 6 2000 0.481 846 307 847 2000 0.363

avg. 1321.5 648.5 30.0 2000 0.490 888.5 318.5 793.0 2000 0.359
C 1276 537 187 2000 0.421 616 194 1190 2000 0.315
D 188 274 79 541 1.457 28 96 417 541 3.429
E 1072 140 88 1300 0.131 588 35 677 1300 0.060

Table 3. Differences between Majority Votes 100% of A (Experts) and B (Students)

Vote Disjoint Classes ? Vote Disjoint Classes ?
A B A B

− + RailroadFacility Pipeline + − Canal Harbor
− + Order Abstract + − OfficialPoliticalMeeting Parliament
− + Newspaper HomePage + − Week Month
− + School MineSite + − Mountain Peninsula
− + TelecomFacility Monument + − Island Valley
− + ReligiousLocation Canal + − Government Parliament
− + InternationalOrganization StockExchange + − Service Telecom
− + WaterRegion PoliticalRegion + − Park Festival
− + InternetDomain EntitySource + − OilField Province
− + ReligiousOrganization Airline + − Patent AirplaneModel
− + RecreationalFacility Capital + − Ministry Location
− + City Archipelago + − Delta River
− + Pipeline LaunchFacility + − TVCompany Movie
− + AstronomicalObject Mountain
− + GovernmentOrganization AmusementPark
− + AmusementPark Galaxy
− + LaunchFacility Bridge

And finally, we completed our analysis of the annotation results by inspecting con-
crete examples of differently tagged pairs. Table 3 shows the listing of all pairs of
classes which were assigned different tags by the majority votes 100% (which means
that all 3 annotators of A or B agreed upon each tag) of experts and students. An ex-
tensive discussion of the differences which tries to explain some of the problems the
human annotators encountered can be found in the following section.

3.4 Discussion

During the creation of the human annotations, we had the chance to study the prob-
lems humans face when using disjointness. Even in the taggings of the experts group –
consisting of post-graduates all involved in Semantic Web research – the overlap of the
taggings was lower than expected (cf. Section 3.3). Table 3 shows all pairs where all ex-
perts agreed on one tagging, and all students agreed on the other. Based on an analysis
of the taggings and subsequent discussions with the taggers, we identified several types
of problems regarding disjointness:

1. The label and comment of a class often do not provide an unambiguous idea of
what is meant with this class.
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2. Some disjointness axioms may depend on the context: whereas Dog and Livestock
may be disjoint in most parts of Europe, in the Chinese Wordnet6 the latter is actu-
ally a hypernym of the former.

3. Classes can have abstract individuals, like Money, Message or Idea.
4. Often the extension of two classes are disjoint, although their intension is not, e.g.

US President and Woman. Annotators struggle with this difference.
5. Also, the extensions of two classes might be not disjoint, even though their inten-

sions are: although Weapon and Pitchfork are disjoint intensionally (in the literal
sense), their extensions do not need to be.

6. Roles and so called basic classes are often mixed, e.g. the role Professor and the
Person itself that plays the role, which may be defined disjoint (depending on how
roles are modeled [11]).

7. Mereological and instantiation relations can be mixed: a Week is part of a Month,
so are these two classes disjoint? What about Delta and River?

8. Mixing other types of relations with instantiation relations may lead to misunder-
standings: see for example the pairs Movie/TVCompany, Government/Parliament,
or Patent/AirplaneModel, where the instances have close relations and thus seem
to confuse the annotators.

9. Instantiations can occur at different levels of abstraction. E.g., when describing
animals, Eagle may be the label of both an individual (e.g. of the class Species) and
of a class itself. Are then the two classes Species and Eagle disjoint? Note that the
individual Eagle is not the same as the class Eagle, but they may be connected via
an axiom like Class:Eagle ≡ ∃species.{Individual:Eagle}.

10. Sometimes, lexical information is mixed with ontological one. The PROTON ontol-
ogy contains concepts like Alias that form lexical information. Is a JobTitle disjoint
from a Job or the Person having the Job or JobTitle?

Note that this list does not speak about problems of disjointness with regards to its
definition in description logics, but rather with the problems our annotators had when
they had to decide if two classes are disjoint or not. Many of the above problem types
have a well-defined answer with regards to the formal semantics of disjointness, e.g.
#7, where Week and Month are disjoint as they don’t have common instances (since a
week consists of seven days, and months consist of around 28-31 days. Note that the
definition of week and month can change, but this basically means that we introduce
new concepts which may or may not have the same name).

Recognizing the problem type would allow an ontology development environment
to offer much more appropriate help than just a general description of the meaning of
the disjointness axiom, which can be hard to apply at times.

Often the decision, if two classes are disjoint or not, will uncover underspecified or
ambiguous classes, i.e. moot points in the description of one or both classes. Instead
of simply adding (or, which is far harder to tract, not adding) a disjointness axiom,
the rationale behind this decision should also be documented, following an ontology
lifecycle methodology like DILIGENT [21] for the continuous evolution and refinement
of the ontology.

6 http://www.keenage.com/

http://www.keenage.com/
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4 Evaluation: Learning a Classifier

In this section we present the evaluation procedure and analyse the results of the com-
parison between the classifier which has been trained on the features described in
Section 2 and the sets of manual annotations (see Section 3).

4.1 Experimental Settings

To train the classifier we skipped pairs of classes tagged with ? since the definition of
disjointness only distinguishes between disjoint and not disjoint classes. For the rest
of the evaluation we will consider this two-class problem. We evaluate our learned
classifier against two baseline: the random and majority baseline.

Random Baseline: The idea of the random baseline is to randomly choose the tar-
get class of the classifier. As we have a two-class problem we will distribute the pairs
equally over the two classes. This will result in a 50% baseline for accuracy as 50% of
the + examples will be classified in + which means that these examples are classified
correctly. The same holds for the − class.

Majority Baseline: The majority baseline is determined by taking the largest class as
default classification. This way, we will get a high accuracy if the classes are unequally
distributed. In this case, of course, the majority baseline is much more difficult to beat
than the random baseline. Nevertheless, since in the experiments at hand we only have
to deal with two classes (+ or −) which are not equally distributed, the majority baseline
should be considered as more realistic than the random baseline.

Classifier settings: In order to be able to classify each pair of classes as being disjoint
(+) or not (−), we trained a classifier based on the manual taggings created by hu-
man annotators. The features for the classifier are the confidence values obtained from
various sources as described in section 2.

We tested a couple of different classifiers made available by the Weka package7. In
general, decision trees outperformed all other classifiers – maybe, because of the highly
selective character of our features – while the performance of different types of decision
trees was more the less comparable. Therefore, we finally chose the ADTree classifier
[7] with default settings for our experiments which shows very good performance while
at the same time providing interpretable results.

First, we performed a 10-fold cross-validation against the majority votes 100% and
50% of the datasets A (ontologists), B (students), C (all) and E (random) (cf. table
1a). The results for the random dataset are included to show the performance of our
approach for an unbiased dataset (E contains examples chosen randomly from the set
of all possible pairs without any selection criteria). To get the results for dataset D
(siblings), we split dataset C into two independent parts - one for evaluation and one
for training. The training set for the evaluation with dataset D consists of all manually
tagged pairs except for the siblings.

7 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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4.2 Results

Table 5 and 4 list the results of our evaluation experiments by means of Precision (P ),
Recall (R), F-Measure (F ) and Accuracy (Acc) (for definitions cf. [23]). From the
tables it becomes evident that we easily beat the baselines for the datasets A (experts),
B (students) and C in both cases majority vote 50% and 100%. With an accuracy of
over 90% the performance of our system for dataset C is remarkable, especially in
the case of the total majority vote. These results are comparable with the human inter-
annotator agreement for experts and students – and even better for dataset C (90.9%) in
comparison to the human agreement of 86.4%.

Dataset D, which only contains pairs of siblings, is certainly the most difficult to
handle – for the classifier, but also for the human annotators – because, as explained in
Section 3.3, siblings are semantically close, so that differences between their intensions
and extensions may often be hard to grasp. As dataset D shows a relatively low average
agreement compared to the other datasets (cf. table 1b) the classifier seems to have more
difficulties to learn it. This is also expressed by the very bad classification accuracy with
37% for majority vote 100%.

An investigation of the learned classifier revealed that the rather important taxonomic
feature (see Section 2.2) is not well populated in the siblings part of the dataset. To
analyse the influence of this feature we constructed a dataset without this feature. As
expected the accuracy for the training dataset drops, whereas for the evaluation set it
is improved considerably from 37.9% to 74.2%. Moreover, the results for the majority
vote 50% rise to 76.6% which can be interpreted as an indication to the noise insert by
this feature.

Our approach seems to work very well also for the random dataset E as we got a bet-
ter accuracy in both cases. The difference to the majority baseline is much smaller than
for A, B, and C but the baseline of around 90% is very difficult to beat. To conclude,
the results – not only for the random dataset – are very promising and allow us to setup
a competitive classifier to support ontology engineering.

In order to find out which classification features contributed most to the overall per-
formance of the classifier we performed an analysis of our initial feature set with respect
to the gain ratio measure [14]. The ranking produced for data set C clearly indicates an
exceptionally good performance of the features taxonomic overlap (Section 2.1), simi-
larity based on WordNet and lexical context (Section 2.3), and del.icio.us (Section 2.1).
The contribution of other features such as the one presented in Section 2.4 relying on

Table 4. Evaluation against Majority Vote 50% (ADTree)

Dataset P R F Acc Accrandom Accmajority

+ − avg. + − avg. + − avg.

A 0.815 0.638 0.727 0.823 0.626 0.725 0.819 0.632 0.726 0.757 0.500 0.666
B 0.807 0.642 0.725 0.844 0.580 0.712 0.825 0.609 0.717 0.758 0.500 0.675

avg. 0.811 0.640 0.726 0.834 0.603 0.719 0.822 0.621 0.722 0.758 0.500 0.671
C 0.854 0.682 0.768 0.874 0.644 0.759 0.864 0.663 0.764 0.806 0.500 0.704
D 0.558 0.628 0.593 0.255 0.861 0.558 0.350 0.726 0.538 0.615 0.500 0.593
E 0.910 0.761 0.836 0.990 0.250 0.620 0.948 0.376 0.662 0.904 0.500 0.884
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Table 5. Evaluation against Majority Vote 100% (ADTree)

Dataset P R F Acc Accrandom Accmajority

+ − avg. + − avg. + − avg.

A 0.896 0.720 0.808 0.903 0.703 0.803 0.899 0.712 0.806 0.851 0.500 0.738
B 0.866 0.790 0.828 0.942 0.599 0.771 0.903 0.681 0.792 0.851 0.500 0.734

avg. 0.881 0.755 0.818 0.923 0.651 0.787 0.901 0.697 0.799 0.851 0.500 0.736
C 0.934 0.823 0.879 0.946 0.789 0.868 0.940 0.805 0.873 0.909 0.500 0.760
D 0.237 0.806 0.522 0.786 0.260 0.523 0.364 0.394 0.379 0.379 0.500 0.774
E 0.977 0.955 0.966 0.998 0.600 0.799 0.987 0.737 0.862 0.976 0.500 0.944

lexico-syntactic patterns seems to be less substantial. However as the classification ac-
curacy tested on every single feature is always below the overall performance the com-
bination of all features is necessary to achieve a very good overall result.

5 Related Work

Several ontology learning frameworks have been designed and implemented in the last
decade. The Mo’K workbench [1], for instance, basically relies on unsupervised ma-
chine learning methods to induce concept hierarchies from text collections. In particu-
lar, the framework focuses on agglomerative clustering techniques and allows ontology
engineers to easily experiment with different parameters. OntoLT [3] is an ontology
learning plug-in for the Protégé ontology editor. It is targeted at end users and heavily
relies on linguistic analysis, i.e. it makes use of the internal structure of noun phrases to
derive ontological knowledge from texts. JATKE8 is a Protégé based unified platform
for ontology learning which allows for inclusion of modules for ontology learning. The
OntoLearn framework [13] mainly focuses on the problem of word sense disambigua-
tion, i.e. of finding the correct sense of a word with respect to a general ontology or
lexical database. TextToOnto [12] is a framework implementing a variety of algorithms
for diverse ontology learning subtasks. In particular, it implements diverse relevance
measures for term extraction, different algorithms for taxonomy construction as well as
techniques for learning relations between concepts. The recent RelExt approach [18]
focusses on the extraction of triples, i.e. classes connected by a relation. None of the
mentioned approaches deals with disjointness.

6 Conclusion and Future Work

Learning of disjointness axioms is an intuitive and useful extension of existing ontology
learning frameworks. We have motivated the need for richter ontologies which include
disjointness axioms and presented an approach consisting of a number methods to ex-
tract expressive feature for learning disjointness from different sources of evidence. In
a thorough evaluation our learning approach behaved competitive to human annotators.

8 http://jatke.opendfki.de/

http://jatke.opendfki.de/


188 J. Völker et al.

As a by-product we captured lessons learned from human annotators with respect to
their difficulties when modeling disjointness axioms.

Future work includes a combination with ontology evaluation approaches for richly
axiomatized ontologies such as [17]. Moreover, we want to integrate the novel methods
into the Text2Onto [4] framework for ontology learning from texts.
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