Enrico Franconi
Michael Kifer

Wolfgang May (Eds.)

The Semantic Web:
Research
and Applications

4th European Semantic Web Conference, ESWC 2007
Innsbruck, Austria, June 2007
Proceedings

LNCS 4519

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4519

Enrico Franconi Michael Kifer
Wolfgang May (Eds.)

The Semantic Web:
Research
and Applications

4th European Semantic Web Conference, ESWC 2007
Innsbruck, Austria, June 3-7, 2007
Proceedings

@ Springer

Volume Editors

Enrico Franconi

Free University of Bozen—Bolzano

Faculty of Computer Science

Piazza Domenicani 3, 39100 Bozen-Bolzano (BZ), Italy
E-mail: franconi @inf.unibz.it

Michael Kifer

State University of New York at Stony Brook
Department of Computer Science

Stony Brook, New York, NY 11794-4400, USA
E-mail: kifer@cs.sunysb.edu

Wolfgang May

Georg-August-Universitidt Gottingen

Institut fiir Informatik

Lotzestrasse 16-18, 37083 Gottingen, Germany
E-mail: may @informatik.uni-goettingen.de

Library of Congress Control Number: 2007927308

CR Subject Classification (1998): H.4, H.3, C.2, H.5,1.2, K.4,D.2

LNCS Sublibrary: SL 3 — Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-72666-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72666-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12066971 06/3180 543210

Preface

The papers in this volume represent the technical program of the 4th Euro-
pean Semantic Web Conference, ESWC 2007, that took place June 3-7, 2007 in
Innsbruck, the capital of the Tyrol region of Austria.

The ESWC series of conferences is an annual, international forum for dis-
semination and discussion of the latest research and applications of Semantic
Web technologies. It has become a major meeting ground for researchers and
practitioners in the field. ESWC is part of the European Semantic Systems Ini-
tiative (ESSI), a cluster of major European research projects aiming to improve
world-wide research and standardization in the area of the Semantic Web. The
ESWC 2007 topics of interest included: ontology management, ontology align-
ment, ontology learning and metadata generation, multimedia and Semantic
Web, semantic annotation of data, Semantic Web trust, privacy, security and in-
tellectual property rights, Semantic Web rules and query languages, logics for the
Semantic Web, reasoning on the Semantic Web, behavior in the Semantic Web,
searching, querying, visualizing, navigating and browsing the Semantic Web,
personalization and user modelling, user interfaces and Semantic Web, Semantic
Grid and middleware, Semantic Web Services, Semantic Web-based knowledge
management, Semantic Web for e-business, e-culture, e-government, e-health, e-
learning, e-science, database technologies for the Semantic Web, data semantics
and Web semantics, semantic interoperability, semantic workflows, and Semantic
Web mining.

The ESWC 2007 call for papers attracted 278 submissions of research papers,
a 54% growth with respect to the previous year. Amongst these, the Program
Committee selected 46 papers to be presented at the conference. The quality of
the competing papers was high, and we decided to nominate two papers for the
Best Paper Award:

— Minimal Deductive Systems for RDF (by Sergio Mufioz, Jorge Pérez and
Claudio Gutierrez)

— Empowering Software Maintainers with Semantic Web Technologies (by René
Witte, Yonggang Zhang and Jiirgen Rilling).

Additionally, 10 submissions were accepted as system descriptions and 37 as
posters.

Besides the presentation of the 46 technical articles in 13 sessions, one evening
session with reception was devoted to the presentation and demonstration of
systems and posters.

Four keynote addresses were given by distinguished scientists: Ron Brach-
man (VP of Worldwide Research Operations at Yahoo!, Santa Clara CA, USA),
Stefano Ceri (Technical University of Milan, Italy), Georg Gottlob (Oxford
University, UK), and Ning Zhong (Maebashi Institute of Technology, Japan).
As with previous ESWC conferences, metadata describing the conference were

VI Preface

published, and during the conference developers had an opportunity to showcase
their tools using these and other semantic data.

The conference also included a program of seven tutorials (selected out of ten
submissions) and eight associated workshops (selected out of 13 submissions).
In addition, a PhD symposium took place immediately after the conference,
bringing together doctoral students within the Semantic Web community to
showcase their work in a major European forum and to obtain valuable feedback
from leading scientists in the field. Furthermore, the OWL-ED 2007 and DL 2007
workshops and the RR 2007 conference were co-located.

The success of this year’s conference was due to the hard, voluntary work of
many people. The Chairpersons who selected the tutorials, workshops, demon-
strations and the PhD symposium as well as the local Organization Committee
and several other central tasks are listed on the next page. Last but not least,
we would like to thank the authors of all papers that were submitted to ESWC
2007, the members of the Program Committee, and the additional experts who
helped with the reviewing process for contributing and ensuring the high scien-
tific quality of ESWC 2007.

ESWC 2007 was sponsored by ESSI (European Semantic Systems Initiative, a
group of European Projects known as: Knowledge Web, SUPER, and Tripcom),
that collectively work together to strengthen European research and industry
through world-wide standardization), STI2 (Semantic Technology Institutes In-
ternational), the EU Project X-Media, CEFRIEL (ICT Center of Excellence
for Research, Innovation, Education and Industrial Labs Partnership, Milan,
Italy), CTIC Foundation (Center for the Development of Information and Com-
munication Technologies in Asturias), the local host DERI Innsbruck, the BIT
(Bolzano — Innsbruck — Trento) Joint School for Information Technology, and
the companies Asemantics, Empolis, Ontoprise, Ontotext, and Hanival (who also
contributed IT services for the local organization of ESWC 2007).

We thank Springer for professional support and guidance during the prepa-
ration of these proceedings. We would also like to thank the developers of
the EasyChair conference management system (http://www.easychair.org/).
EasyChair assisted us in the whole process of collecting and reviewing papers,
in interacting with authors and Program Committee members, and also in as-
sembling this volume.

March 2007 Enrico Franconi
Michael Kifer
Wolfgang May

Conference Organization

General Chair
Enrico Franconi (Free University of Bozen-Bolzano, Italy)
Program Chairs

Michael Kifer (State Univ. of New York at Stony Brook, USA)
Wolfgang May (Universitiat Gottingen, Germany)

Workshops Chair

Diana Maynard (University of Sheffield, UK)

Tutorial Chair

Jorg Diederich (Forschungszentrum L3S, Hannover, Germany)
PhD Symposium Chair

Elena Simperl (Freie Universitit Berlin, Germany)

Demo Chair

Andy Seaborne (HP Labs, Bristol, UK)

Semantic Technologies Coordinator

Sean Bechhofer (University of Manchester, UK)
Publicity Chair

Stijn Heymans (DERI and Universitidt Innsbruck, Austria)
Sponsor Chair

Axel Polleres (Universidad Rey Juan Carlos, Madrid, Spain)
Local Organization

Tlona Zaremba (DERI and Universitat Innsbruck, Austria)
Conference Administrator

Melanie Plattner (DERI and Universitat Innsbruck, Austria)
Christen Ensor (DERI Galway, Ireland)

Treasurer

Birgit Leiter (DERI and Universitét Innsbruck, Austria)
Webmaster

Damian Dadswell (The Open University, UK)

VIII Organization

Program Committee

Karl Aberer

José Julio Alferes
Jirgen Angele
Grigoris Antoniou
Alessandro Artale
Franz Baader
Chitta Baral
Cristina Baroglio
Catriel Beeri
Sonia Bergamaschi
Abraham Bernstein
Leopoldo Bertossi
Harold Boley
Piero Bonatti
Alex Borgida

Jeen Broekstra
Jos de Bruijn
Francois Bry
Andrea Cali
Silvana Castano
Isabel Cruz
Bernardo Cuenca Grau
John Dayvies
Stefan Decker
Jorg Diederich
Witodek Drabent
Thomas Eiter
Jérome Euzenat
Norbert Fuchs
Fabien Gandon
Aldo Gangemi
Fausto Giunchiglia
Carole Goble
Asuncién Gémez-Pérez
Guido Governatori
Marko Grobelnik
Nicola Guarino
Volker Haarslev
Manfred Hauswirth
Jeff Heflin

Nicola Henze

Martin Hepp

Stijn Heymans
Pascal Hitzler
Ralph Hodgson

Tan Horrocks
Herman ter Horst
Andreas Hotho
Carlos Hurtado
Mustafa Jarrar
Subbarao Kambhampati
Atanas Kiryakov
Riidiger Klein
Matthias Klusch
Mieczyslaw Kokar
Manolis Koubarakis
Rubén Lara

Ora Lassila

Georg Lausen
Alain Léger

Nicola Leone
Francesca Alessandra Lisi
Alexander Loser
Bertram Ludéascher
Jan Maluszynski
Massimo Marchiori
David Martin

Ralf Moller

Boris Motik

Saikat Mukherjee
John Mylopoulos
Natasha Noy
Daniel Olmedilla
Jeff Z. Pan

Bijan Parsia

Terry Payne

Sofia Pinto

Axel Polleres

Chris Preist

1.V. Ramakrishnan
Riccardo Rosati
Marie-Christine Rousset

Marta Sabou
Kai-Uwe Sattler
Ulrike Sattler
Sebastian Schaffert
Stefan Schlobach
Luciano Serafini
Nigel Shadbolt
Elena Simperl
Munindar P. Singh
Michael Sintek
Derek Sleeman
Umberto Straccia

Additional Reviewers

Pinar Alper

Alia Abdelmoty

Harith Alani

Ahmed Alasoud
Ricardo Amador
Stanislaw Ambroszkiewicz
Alia Amin

Mathieu d’Aquin

Rudi Aratjo

Uwe Afimann

Robert Baumgartner
Pieter Bellekens
Massimo Benerecetti
Domenico Beneventano
Raffaella Bernardi

Ian Blacoe

Sebastian Blohm

Joel Booth

Yevgen Borordin
Shawn Bowers
Adriana Budura
Tobias Biirger
Johannes Busse
Francesco Calimeri
Amit Chopra

Stijn Christiaens
Oscar Corcho

Philippe Cudré-Mauroux
Vasilios Darlagiannis
Hasan Davulcu

Organization

York Sure

Vojtéch Svatek
Terrance Swift
Hideaki Takeda
Valentina Tamma
Sergio Tessaris
Bernhard Thalheim
Paolo Traverso
Raphaél Troncy
Gerd Wagner
Michael Wooldridge
Guizhen Yang

Juri Luca De Coi
Xi Deng

Alistair Duke
Ludger van Elst
Michael Erdmann
Sofia Espinosa
Nicola Fanizzi
Cristina Feier
Alfio Ferrara
Gunar Fiedler
Michael Fink
Giorgos Flouris
David Fowler
Rosella Gennari
Michael Gertz
Nick Gibbins
Adrian Giurca
Rigel Gjomemo
Birte Glimm
Antoon Goderis
Gunnar Grimnes
Tudor Groza
Andrea Gualtieri
Francesco Guerra
Yuanbo Guo
Parisa Haghani
Guillermo Hess
Michiel Hildebrand
Aidan Hogan
Thomas Hornung

IX

X Organization

Bo Hu
Zhisheng Huang
Gearoid Hynes

Giovambattista Ianni

Luigi Tannone
Antoine Isaac
Kaarel Kaljurand
Alissa Kaplunova
Martin Kavalec
Atila Kaya
Yevgeny Kazakov
Marijke Keet
Mick Kerrigan
Christoph Kiefer
Malte Kiesel
Nick Kings
Roman Korf
Ludwig Krippahl
Markus Krotzsch
Tobias Kuhn
Samir Kumar
Martin Labsky
Joey Lam
Freddy Lécué
Jens Lehmann
Jos Lehmann
Katja Lehmann
Domenico Lembo
Sergey Lukichev
Yue Ma

Jalal Mahmud
Marco Manna

Francisco Martin-Recuerda
Davide Martinenghi

Yutaka Matsuo
Michele Melchiori
Sylvia Melzer
Thomas Meyer
Paolo Missier
Shamima Mithun
Malgorzata Mochol
Stefano Montanelli
Matthew Moran
Igor Mozetic

Ullas Nambiar

Jan Nemrava,

Davy van Nieuwenborgh
Malvina Nissim

René Noack
Jean-Pierre Norguet
Hans Jiirgen Ohlbach
Ikki Ohmukai

Mirko Orsini
Magdalena Ortiz
Jacco van Ossenbruggen
Ignazio Palmisano
Zhengxiang Pan
Charles Penwill
Jorge Pérez

Laura Po

Antonella Poggi
Valentina Presutti
Abir Qasem

Guilin Qi

Domenico Redavid
Gerald Reif

Quentin Reul
Francesco Ricca
Sebastian Rudolph
Massimo Ruffolo
Marco Ruzzi

Antonio Sala
Brahmananda Sapkota
Luigi Sauro

Peyman Sazedj
Roman Schindlauer
Florian Schmedding
Peggy Schmidt
Roman Schmidt
James Scicluna
Arash Shaban-Nejad
Rob Shearer

Mantas Simkus

Kai Simon

Gleb Skobeltsyn
Kees van der Sluijs
Pavel Smrz

Lucia Specia

Ruud Stegers
Markus Stocker
Heiner Stuckenschmidt
William Sunna

David Thau
Edward Thomas
Tan Thurlow

Hans Tompits
Alessandra Toninelli
Dmitry Tsarkov
Anni-Yasmin Turhan
Miroslav Vacura
Maurizio Vincini
Max Volkel
Johanna Volker
Denny Vrandeci¢
Le-Hung Vu
Richard Waldinger

Organization

Hui Wan
Kewen Wang
Xia Wang
David Warren
Paul Warren
Martin Weber
Fang Wei
Moritz Weiten
Garrett Wolf
Huiyong Xiao
Chang Zhao
Antoine Zimmermann
Daniel Zinn

XI

XII Organization

Sponsors:

®
(BjoLzano
9@. \I] INNSBRUCK "
lm@.m B IT ENTO -
0009 BIT Joint School for Information Technology

(:)(\ FUNDACION
K SCTIC

Centro Tecnolégico

de la Informacién y la Comunicacion
FORGING INNOVATION -NiENNS

Ji
[}

DERI INNSBRUCK

STI2 (‘

European Semantic
Systems Initiative

A :
-aontoprise

know how to use Know-How

258 COR

knowledgeweb

realizing the semantic web

ontotext

Semantic Technology Lab

Table of Contents

Invited Talks

Emerging Sciences of the Internet: Some New Opportunities
(Extended AbStract)oo i
Ron Brachman

Design Abstractions for Innovative Web Applications: The Case of the
SOA Augmented with Semantics............
Stefano Ceri, Marco Brambilla, and Emanuele Della Valle

The Lixto Systems Applications in Business Intelligence and Semantic

Robert Baumgartner, Oliver Frélich, and Georg Gottlob

Ways to Develop Human-Level Web Intelligence: A Brain Informatics
Perspective.
Ning Zhong

Best Papers

Empowering Software Maintainers with Semantic Web Technologies
René Witte, Yonggang Zhang, and Jirgen Rilling

Minimal Deductive Systems for RDF
Sergio Munioz, Jorge Pérez, and Claudio Gutierrez

Semantic Web Services

Web Service Contracting: Specification and Reasoning with SCIFF
Marco Alberti, Federico Chesani, Marco Gavanelli, Fvelina Lamma,
Paola Mello, Marco Montali, and Paolo Torroni

Dynamic Service Discovery Through Meta-interactions with Service
Providers
Tomas Vitvar, Maciej Zaremba, and Matthew Moran

Two-Phase Web Service Discovery Based on Rich Functional
Descriptions.
Michael Stollberg, Uwe Keller, Holger Lausen, and Stijn Heymans

A Reasoning Framework for Rule-Based WSML
Stephan Grimm, Uwe Keller, Holger Lausen, and Gdbor Nagypdl

16

27

37

53

68

84

99

XIV Table of Contents

Ontology Learning, Inference and Mapping 1

GenTax: A Generic Methodology for Deriving OWL and RDF-S

Ontologies from Hierarchical Classifications, Thesauri, and Inconsistent

TaXONOMIES . . .ot
Martin Hepp and Jos de Bruijn

SPARQLeR: Extended Sparqgl for Semantic Association Discovery
Krys J. Kochut and Maciej Janik

Simple Algorithms for Predicate Suggestions Using Similarity and
COmOCCUITEIICE . v vttt et e e e e e e e e e et e e e
Eyal Oren, Sebastian Gerke, and Stefan Decker

Learning Disjointnessot
Johanna Volker, Denny Vrandeci¢, York Sure, and Andreas Hotho

Case Studies

Developing Ontologies for Collaborative Engineering in Mechatronics . . .
Violeta Damgjanovi¢, Wernher Behrendt, Manuela Pléfinig, and
Merlin Holzapfel

Media, Politics and the Semantic Web
Wouter van Atteveldt, Stefan Schlobach, and Frank van Harmelen

SEEMP: An Semantic Interoperability Infrastructure for e-Government
Services in the Employment Sector
E. Della Valle, D. Cerizza, 1. Celino, J. Estublier, G. Vega,
M. Kerrigan, J. Ramirez, B. Villazon, P. Guarrera, G. Zhao, and
G. Monteleone

Combining RDF Vocabularies for Expert Finding
Boanerges Aleman-Meza, Uldis Bojars, Harold Boley,
John G. Breslin, Malgorzata Mochol, Lyndon JB Nizon,
Azel Polleres, and Anna V. Zhdanova

Social Semantic Web

Extracting Social Networks Among Various Entities on the Web
YingZi Jin, Yutaka Matsuo, and Mitsuru Ishizuka

Towards Semantic Social Networks o ...
Jason J. Jung and Jérome Fuzenat

Knowledge Sharing on the Semantic Web
Nicholas J. Kings, Caroline Gale, and John Davies

190

Table of Contents

Ontologies: Requirements and Analysis

Real-World Reasoning with OWL o .o ...
Timo Weithoner, Thorsten Liebig, Marko Luther, Sebastian Bohm,
Friedrich von Henke, and Olaf Noppens

How to Design Better Ontology Metrics.co i, ..
Denny Vrandeci¢ and York Sure

Measuring Inconsistencies in Ontologies............
Xi Deng, Volker Haarslev, and Nematollaah Shiri

Personalization 1

Squirrel: An Advanced Semantic Search and Browse Facility...........
Alistair Duke, Tim Glover, and John Davies

User-Centric Faceted Search for Semantic Portals
Osma Suominen, Kim Viljanen, and Eero Hyvinen

An Approach for Identification of User’s Intentions During the
Navigation in Semantic Websites........o ...
Rafael Liberato Roberto and Sérgio Roberto P. da Silva

Foundations of the Semantic Web

A Novel Combination of Answer Set Programming with Description
Logics for the Semantic Web
Thomas Lukasiewicz

Algorithms for Paraconsistent Reasoning with OWL
Yue Ma, Pascal Hitzler, and Zuoquan Lin

Vague Knowledge Bases for Matchmaking in P2P E-Marketplaces.
Azzurra Ragone, Umberto Straccia, Tommaso Di Noia,
Eugenio Di Sciascio, and Francesco M. Donini

Symbol Grounding for the Semantic Web
Anne M. Cregan

Natural Languages and Ontologies

Ontology-Driven Semantic Ranking for Natural Language
Disambiguation in the OntoNL Framework
Anastasia Karanastasi and Stavros Christodoulakis

Web-Annotations for Humans and Machines.
Norbert E. Fuchs and Rolf Schwitter

XV

XVI Table of Contents

PANTO: A Portable Natural Language Interface to Ontologies
Chong Wang, Miao Xiong, Qi Zhou, and Yong Yu

Mining the Web Through Verbs: A Case Study
Peyman Sazedj and H. Sofia Pinto

Applications

What Have Innsbruck and Leipzig in Common? Extracting Semantics
from Wiki Content
Soren Auer and Jens Lehmann

SALT - Semantically Annotated IMTEX for Scientific Publications
Tudor Groza, Siegfried Handschuh, Knud Méller, and Stefan Decker

Annotating Relationships Between Multiple Mixed-Media Digital
Objects by Extending Annoteacoiiiiiiiiiiii....
Ronald Schroeter, Jane Hunter, and Andrew Newman

Describing Ontology Applications i ..
Thomas Albertsen and Eva Blomquist

Querying and Web Data Models

The SPARQL Query Graph Model for Query Optimization............
Olaf Hartig and Ralf Heese

A Unified Approach to Retrieving Web Documents and Semantic Web
Data .
Trivikram Immaneni and Krishnaprasad Thirunarayan

Distributed Knowledge Representation on the Social Semantic Desktop:
Named Graphs, Views and Rolesin NRL
Michael Sintek, Ludger van Elst, Simon Scerri, and
Siegfried Handschuh

Semantic Process Retrieval with iSPARQL

Christoph Kiefer, Abraham Bernstein, Hong Joo Lee,
Mark Klein, and Markus Stocker

Ontology Learning, Inference and Mapping 11

Integrating Folksonomies with the Semantic Web
Lucia Specia and Enrico Motta

Table of Contents XVII

IdentityRank: Named Entity Disambiguation in the Context of the

NEWS Project 640
Norberto Ferndndez, José M. Blazquez, Luis Sdnchez, and
Ansgar Bernardi

A Study in Empirical and ‘Casuistic’ Analysis of Ontology Mapping
Results . .. R R 655
Ondrej Svdb, Vojtéch Svatek, and Heiner Stuckenschmidt

Acquisition of OWL DL Axioms from Lexical Resources 670
Johanna Volker, Pascal Hitzler, and Philipp Cimiano

Personalization 11

On Enriching Ajax with Semantics: The Web Personalization Use

S« ottt 686
Kay-Uwe Schmidt, Ljiljana Stojanovic, Nenad Stojanovic, and
Susan Thomas

A Semantic Web Service Oriented Framework for Adaptive Learning
Environments 701
Stefan Dietze, Alessio Gugliotta, and John Domingue

Semantic Composition of Lecture Subparts for a Personalized
e-Learning 716
Naouel Karam, Serge Linckels, and Christoph Meinel

System Descriptions

Caravela: Semantic Content Management with Automatic Information
Integration and Categorization 729
David Aumdiiller and Erhard Rahm

The NExT System: Towards True Dynamic Adaptations of Semantic
Web Service Compositionsco.uuiiinni ... 739
Abraham Bernstein and Michael Ddanzer

WSMO Studio — A Semantic Web Services Modelling Environment for

WM . 749
Marin Dimitrov, Alex Simov, Vassil Momitchev, and
Mihail Konstantinov

An Annotation Tool for Semantic Documents. 759
Henrik Eriksson

SWHi System Description: A Case Study in Information Retrieval,
Inference, and Visualization in the Semantic Web 769
Ismail Fahmi, Junte Zhang, Henk Ellermann, and Gosse Bouma

XVIII Table of Contents

Semantic Turkey: A Semantic Bookmarking Tool
Donato Griesi, Maria Teresa Pazienza, and Armando Stellato

The Web Service Modeling Toolkit - An Integrated Development
Environment for Semantic Web Services,
Mick Kerrigan, Adrian Mocan, Martin Tanler, and Dieter Fensel

Understanding Large Volumes of Interconnected Individuals by Visual
Exploration
Olaf Noppens and Thorsten Liebig

System Description: An Orienteering Strategy to Browse
Semantically-Enhanced Educational Wiki Pages
Luciano T.E. Pansanato and Renata P.M. Fortes

Efficient Content Creation on the Semantic Web Using Metadata
Schemas with Domain Ontology
Onni Valkeapdd, Olli Alm, and Fero Hyvonen

Author Index

Emerging Sciences of the Internet:
Some New Opportunities
(Extended Abstract)

Ron Brachman

Yahoo! Research, New York, NY 10011, USA
rjb@yahoo-inc.com

Semantic Web technologies have started to make a difference in enterprise set-
tings and have begun to creep into use in limited parts of the World Wide Web.
As is common in overview articles, it is easy to imagine scenarios in which the
Semantic Web could provide important infrastructure for activities across the
broader Internet. Many of these seem to be focused on improvements to what
is essentially a search function (e.g., “list the prices of flat screen HDTVs larger
than 40 inches with 1080p resolution at shops in the nearest town that are open
until 8pm on Tuesday evenings” |[http://en.wikipedia.org/wiki/Semantic_
Web]), and such capabilities will surely be of use to future Internet users. How-
ever, if one looks closely at the research agendas of some of the largest Internet
companies, it is not clear that the staples of SW thinking will intersect the most
important paths of the major broad-spectrum service providers. Some of the
emerging trends in the research labs of key industry players indicate that SW
goals generally taken for granted may be less central than envisioned and that
the biggest opportunities may come from some less obvious directions. Given the
level of investment and the global reach of big players like Yahoo! and Google, it
would pay us to look more closely at some of their fundamental investigations.

While not all companies see the future in the same way, there are some trends
and priorities that are instructive to contemplate. While Web search will continue
to play a large role, and services composed from piece-parts offered by multiple
vendors will be important, some relatively novel ideas may come to dominate. In
one view, there will emerge a set of new sciences that are fundamental to future
generations of Internet businesses. By understanding the imperatives of those
new areas of thought, we may be able to get a better assessment of the true
ultimate impact of SW technologies on the broader Internet. At the very least,
framing future Semantic Web directions and examples in terms more aligned
with some of these ideas may encourage more attention from some of the major
Internet companies, which to date have shown only lukewarm interest.

Search will continue to play a significant role for users of the Internet. While
from a user’s perspective the most essential thing is the ability to find a website
or document or element of data relevant to a task at hand, it is critical to
the service provider that, in addition to producing relevant results, it be able to
expose the user to advertisements well-suited to his or her immediate and longer-
term needs and interests. While not restricted to search settings, high-quality
matching of ads is critical to the continued success and growth of the major

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 1 2007.
© Springer-Verlag Berlin Heidelberg 2007

rjb@yahoo-inc.com
http://en.wikipedia.org/wiki/Semantic_
Web

2 R. Brachman

Internet search and content providers. In the long run, a better understanding
of users in general and customers in specific is essential to providing a better
experience and providing better opportunities through advertising. This is an
area where a huge amount of investment is being made. Does it provide any
interesting opportunities for SW technology?

One interesting element here is that with the scale of the Web, companies are
increasing their use of machine learning technologies to improve the performance
of their search engines and other computing systems, since it is simply impossi-
ble to process information at the scale and speed of the Web manually. Machine
learning technology, based ultimately on richer knowledge representation tech-
nologies, will play an extremely prominent role in the infrastructure that makes
the Web successful in the future. Will this development provide interesting op-
portunities for the Semantic Web community? Can it avoid the relative lack of
mutual interest that has plagued the KR and ML communities in the recent
past?

Another emerging element in what we might call a new Science of Search is
a social one. Products like Yahoo! Answers add the human element back into
the process of finding relevant information. A similar human element pervades
tagging-based services like Flickr. It’s not clear what the success of large-scale
popular web services based on ad hoc human tagging says about the future
of the Semantic Web - are the two incompatible? Will ontologies matter or
do folksonomies rule? Others have begun to address the substantial differences
between the social Web world and the Semantic Web world. While sometimes
portrayed as diametrically opposed, the sides may benefit from each other if we
look more deeply. My intuition is that there is room for synergy, and it would
behoove us to investigate.

The social element is evident in many areas other than Search. Community-
oriented services are already extremely popular (witness the scale of MySpace
and FaceBook, and even older services like Yahoo! Groups). On the face of it, this
direction would seem not to hold much promise for SW thinking. But if one looks
at some of the underlying infrastructure needed to make new community systems
succeed, one sees opportunities for robust search and information extraction and
organization technologies, among others.

Another exciting and somewhat unexpected set of developments in new In-
ternet science involves collaboration between Economics and Computer Science.
Driven in part by underlying elements of advertising auctions that account for
extraordinary revenue streams at Google, Yahoo!, and other companies, technical
approaches to constructing novel market mechanisms, deploying them, and un-
derstanding their practical ramifications are becoming critical. Prediction mar-
kets and other novel mechanisms based on large-scale interactions among masses
of people are creating never before seen opportunities because of the Internet,
and substantial resources are going into the understanding of fundamental princi-
ples governing such interactions. This whole line of thinking is not yet prominent
in the worldview of the Web community, but it is likely to grow in importance,
and it may provide some novel opportunities for SW research.

Emerging Sciences of the Internet: Some New Opportunities 3

Finally, as has been pointed out by many others, text-based documents are
not the only media available on the Web, and there has clearly been astronomical
growth in user-generated non-textual content over the last few years. Podcast-
ing, Flickr, YouTube, Yahoo! Video, and other media-sharing opportunities have
shown that there is extraordinary latent interest in the creation and spread of
audio, image, video and other complex content. While not yet receiving as much
attention, the study and understanding of how users experience media, both
individually and in social settings, is likely to lead to an explosion of novel tech-
nologies and perhaps even devices for consuming and sharing media. How these
new scientific directions will relate to the SW world is anyone’s guess, but it
makes sense to take a close look to see what opportunities they present.

It is clear that some very large players on the Internet are making substan-
tial - in some cases huge - investments in novel forms of search and information
navigation, social and community systems, economic mechanisms for auctions
and advertising, and media experiences. With the scale of public interest and
the level of economic investment we are now seeing, it is probable that these
directions will have a dramatic impact on the evolution of the Internet. While
many of the arenas traditionally targeted by the Semantic Web community will
continue to matter in the next generation of the Web, it is conceivable that
the really big interest, including the majority of investment and opportunity for
broad influence on the world, will go elsewhere. It would be nice if the Seman-
tic Web were not left behind. A quick look indicates that there could be some
interesting opportunities, and it would appear to be very much worth the com-
munity’s while to stop to consider the emerging sciences and their implications
for future generations of the Internet.

Design Abstractions for Innovative Web Applications:
The Case of the SOA Augmented with Semantics

Stefano Ceril, Marco Brambillal, and Emanuele Della Valle?

! Dipartimento di Elettronica e Informazione, Politecnico di Milano
Piazza L. Da Vinci, 32. 120133 Milano, Italy
{ceri,mbrambil}@elet.polimi.it

2 CEFRIEL, via Fucini 2, 20133 Milano, Italy
dellavalle@cefriel.it

Abstract. This work presents a retrospective analysis of how we have addressed
new challenges in Web technologies and applications. WebML, which was first
defined about 10 years ago, has been an incubator for research concerning
abstractions, methods, tools, and technologies, acting as a glue within a group of
people spread among universities, technology transfer centres, and a spin-off. In
this paper, we first illustrate the common approach to innovation, and then show
such approach at work in two contexts. One of them, dealing with “Service-
Oriented Architectures” (SOA), has reached a mature state; the other one,
“Semantic Web Services” (SWS), is at its infancy, but promises to deliver very
interesting results in the forthcoming years.

1 Introduction and Motivation

Data-intensive Web applications, i.e. applications whose main purpose is to give
access to well-organized content, represented the first industrial application of the
Web, and still constitute the most important Web application in terms of volumes and
commercial value. All companies have an institutional site showing their business and
describing their offers, and many companies address their customers either electively
or exclusively via the Web. Therefore, these applications have been most covered by
methods and tools, which have been available for a long time.

Among them, Web Modelling Language (WebML) [1] was defined, about 8 years
ago, as a conceptual model for data-intensive Web applications. Early deployment
technologies were very unstable and immature; as a reaction, WebML was thought as
a high level, implementation-independent conceptual model, and the associated
design support environment, called WebRatio [9], has always been platform-
independent, so as to adapt to frequent technological changes.

WebML can be considered, in MDA terms, as a Domain Specific Language in the
area of Web application development. It is based upon orthogonal separation of
concerns: content, interface logics, and presentation logics are defined as separate
components. The main innovation in WebML comes from the interface logics
(patented in 2003) that enables the computation of Web pages made up of logical
components (units) interconnected by logical links (i.e., not only the units but also the

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 4 2007.
© Springer-Verlag Berlin Heidelberg 2007

Design Abstractions for Innovative Web Applications 5

links have a formal semantics); the computation is associated with powerful defaults
S0 as to associate to simple diagrams all the required semantics for a full deployment,
through code generators. WebML anticipated the concepts and methods formally
proposed by the MDA framework, introducing the idea of model transformation and
code generation.

While the Web has gone through waves of innovation, new application sectors
have developed, and revolutionary concepts — such as enabling the interaction of
software artefacts rather than only humans — are opening up. While the foundations of
the WebML model and method are still the same, the pragmatics of its interpretation
and use has dramatically changed through the last years. Several new challenges have
been addressed within the WebML context, including:

Web services and service-oriented architectures [3];
Integration with business processes [4];
Personalization and adaptation;

Context awareness and mobility [5];

Rich client-side applications;

Embedded Web applications;

Semantic Web and Semantic Web Services [6,7].

A retrospective consideration of our work shows that, in all the above situations,
we have addressed every new challenge by using a common approach, which indeed
has become evident to us during the course of time, and now is well understood and
consolidated. For every new research directions, we had to address four different
kinds of extensions, respectively addressing the development process, the content
model, the hypertext meta-model, and the tool framework.

e Extensions of the development process capture the new steps of the design that
are needed to address the new functionalities, providing as well the
methodological guidelines and best practices for helping designers.

e Extensions of the content model capture state information associated with
providing the new functionalities, in the format of standard model, e.g. a
collection of entities and relationship that is common to all applications; this
standard model is intertwined with the application model, so as to enable a
unified use of all available content'.

e Extension of the hypertext meta-model capture the new abstractions that are
required for addressing the new functionalities within the design of WebML
specifications, through new kinds of units and links which constitute a
functionality-specific “library”, which adds to the “previous” ones;

e Extensions of the tool framework introduce new tools in order to extend those
modelling capability falling outside of standard WebRatio components (content,
interface logics, presentation logics), or to empower users with new interfaces
and wizards to express the semantics of new units and links in terms of existing
ones, or to provided direct execution support for new units and links (e.g. sending
an email).

! Note that any WebML application includes the standard entities User and Group.

6 S. Ceri, M. Brambilla, and E. Della Valle

This paper demonstrates how this four-step development occurred in the case of
Service Oriented Architectures and how we are naturally extending that approach to
deal with Semantic Web Services. The treatment of each extension is necessarily
concise and visual, for more details we refer readers to published papers and reports.

2 Support of Service-Oriented Architectures

The specification of a Web application according to WebML [2] consists of a set of
orthogonal models: the application data model (i.e., an extended Entity-Relationship
model), one or more hypertext models (i.e., different site views for different types of
users), expressing the navigation paths and the page composition of the Web
application; and the presentation model, describing the visual aspects of the pages. A
hypertext site view is a graph of pages; pages are composed of units, which are used
for publishing atomic pieces of information, and operations, for modifying data or
performing arbitrary business actions (e.g., sending e-mails). Units and operations are
connected by links, to allow navigation, passing of parameters between the
components, and computation of the hypertext. The need for incorporating external
logic was felt relatively early, and the initial solution consisted of “custom units”
which allow modelling user-defined computations.

The first WebML extension discussed in this paper is towards the Service Oriented
Architectures. The requirement addressed in this case is to provide adequate design
tools for Web Services and Service-oriented applications. The outcomes of our work
included:

e The extension to the development process and the definition of some
methodological guidelines for SOA design;

e Two standard models for representing the services and the business processes to
be performed;

e New design primitives (namely, WebML units and links) for covering Web
service specification and invocation, together with primitives for enforcing
business process constraints;

e The support of the specified solutions through a process modeller, a translator of
processes into sketches of hypertexts, and an XML2XML mapping tool.

2.1 Process Extensions

The original design process, explained in chapter 6 of [2], included the classic phases
of requirement analysis, data design, hypertext design, and presentation design,
followed by architecture design and implementation. The 4-step procedure, going
from requirements to data to hypertext to presentation, is iterated multiple times
through the use of WebRatio, which can be considered as a rapid prototyping
environment; and indeed a lot of the advantage of using the approach comes exactly
from the ability to generate a prototype whenever required by the need of interaction
with stakeholders.

The extension of the original design process to SOA requires adding a phase for
modeling the business process and separating application from service design, as
shown in Fig. 1. For each addition, new guidelines and best practices were defined.

Design Abstractions for Innovative Web Applications

Business Requirements

Requirements Specification

Business process modeling

Data Design I .
Hypertext / Service Design

Presentation Design

- Architecture Design

{ Testing and Evaluation H

Implementation ‘

Maintenance and Evolution

Fig. 1. Development process extensions for SOA

User Metadata

Process Metadata

Group 0:N O:N ActivityType Process
Assigned To ! Y
Name 9 Name PartOf Name
Description
O:N O:N 0:N O:N
Default InstanceOf InstanceOf
1:N 1:1 11 i
User O 11 | Activity Instance Case
Assigned To 1:1 1:N
Username Status Status
p. O:N 1:1 y PartOf Name
assword StartTimeStamp .
Executed By EndTimeStamp StartTimeStamp
EndTimeStamp
0O:N /0N O:N
Related To Related To, Related To
O:N 0:N O0:N
Entity X Entity Y Entity Z

Application Data Model

Fig. 2. Standard model for the specification of the business process status

2.2 Content Model Extensions

The standard model for supporting SOA deals with two aspects: a description of Web
services and the specification of the workflow state. The first standard model
represents Web services according to WSDL, and is omitted here (see [3]); the second
standard model represents the information about the implemented business process,
shown in Fig. 2 (see [4] for details). In the model, entity Process represents processes
and is associated with entity ActivityType, representing the kinds of activities that can
be executed in a process. Entity Case denotes an instance of a process and is related to
its Process (relationship InstanceOf) and to its activities (via relationship PartOf);

entity Activitylnstance denotes the actual occurrences of activities within cases.

8 S. Ceri, M. Brambilla, and E. Della Valle

2.3 Hypertext Meta-model Extensions

Two groups of new design primitives have been added to WebML, describing Web
services and workflow-based applications.

Supply Area
SupplySearch Products
SeanchProducts RemoteSearsh Products ProductDetails
4) = b o
&
Product Product
(@) L

P roductshManagement Port

Seachsolicit Productlist <ML Out SearchResponse
I = b I
-] =

Fig. 3. Example of WebML hypertext model with invocation of a remote service

(d)

A new library of Web service units [3] has been defined, corresponding to the
WSDL classes of Web service operations. These primitives consist in:

e Web service publishing concepts, including Service view (a new view supported
in WebML specifically dedicated to publishing a service), Port (corresponding to
the WSDL port concept), Solicit unit (representing the end-point of a Web
service), and Response unit (providing the response at the end of a Web service
implementation);

e Web service invocation primitives, namely Request-response and Request units,
to be used within the application for invoking remote services.

For instance, Fig. 3 shows a hypertext that includes the model of a Web service
call and of the called Web service. In Supply Area of Fig. 3a, the user can browse the
SupplySearch page, in which the SearchProducts entry unit permits the input of
search criteria. From this information, a request message is composed and sent to the
RemoteSearch operation of a Web service. The user then waits for the response
message, containing a list of products satisfying the search criteria. From this list, a
set of instances of Product are created, and displayed to the user by means of the
Products index unit in the Products page; the user may continue browsing, e.g., by
choosing one of the displayed products and looking at its details. Fig. 3b represents
the model of the RemoteSearch service invoked by the previously described
hypertext. The interaction starts with the solicit SearchSolicit unit, which denotes the
reception of the message. Upon the arrival of the message, an XML-out operation
extracts from the local data source the list of desired products and formats the

Design Abstractions for Innovative Web Applications 9

resulting XML document. The SearchResponse unit produces the response message
for the invoker”.

To cover the development of B2B Web applications implementing business
processes, new primitives have been defined for specification of activity boundaries
(namely Activity areas within the hypertext) and business process-dependent
navigation (namely workflow links). Fig. 4 shows some of these primitives: site areas
marked as “Activity Areas” (A); special incoming links for checking the correctness
of the status and starting an activity (i.e., Start and Resume links); special outgoing
links for closing an activity (Complete and Suspend links).

Distributed processes and SOA can be obtained by combining the workflow
primitives with Web services primitives [4].

Activity Areai Activity Area2

—A®f= ... @O® e G
(4] (4]

Fig. 4. Two activity areas and corresponding Start and End links

2.4 Tool Framework Extensions

For supporting the design of the new classes of applications, some facilities have been
prototyped and are currently being ported to commercial versions of WebRatio:

e A workflow modeling editor that allows to specify business processes according
to the BPMN notation.

e A set of model transformations that translate a business process model into a
skeleton of WebML hypertext model.

e A visual editor for XML2XML mapping for helping the design of XML
transformations to better support messages exchange between Web services.

3 Support of Semantic Web Services

Traditionally, the service requestor and service provider are designed together and then
tightly bound together when an application is created. The emerging field of Semantic
Web Services (SWS) [10] provides paradigms for semantically enriching the existing
syntactic descriptions of Web services; then, the service requestor can search, either at
design or at run time, among a variety of Web-enabled service providers, by choosing
the service that best fits the requestor’s requirement. Such a flexible binding of
requestor and providers allows for dynamic and evolving applications to be created
utilizing automatic resource discovery, selection, mediation and invocation.

2 Service ports are an example of software component that is modelled by using WebML and
yet has no interaction with users (hence, no “presentation logics”), and shows that the original
motivation of the model has shifted to adapt to new requirements. Even more radical shifts
will be needed to deal with semantic web services, as illustrated in the sequel.

10 S. Ceri, M. Brambilla, and E. Della Valle

Our purpose in approaching the SWS is obviously not to design new methods for
performing the above tasks: a community of researchers is working on them. Instead,
we aim at extending WebML and WebRatio so as to generate, on top of conventional
models (of: processes, data, services, and interfaces), a large portion of the semantic
descriptions required by the SWS in a semi-automatic manner; this possibility
descends from the fact that WebML is a very rich model, with a lot of embedded
semantics - to the point that code can be completely generated from the model with no
user intervention. In the same way, some SWS annotations can be automatically
generated, conveying a large fraction of the semantics that is typically carried by
manual SWS annotations.

In the rest of the section we highlight the following extensions to WebML to cope
with SWS? requirements:

e Extension of the development process by adding phases for ontology import and
for semantic annotation of services;

e Extensions of the standard model, together with a discussion of the relationships
between meta models and ontologies;

e Definition of the new primitives in order to manipulate semantic contents;

e Implementation of new tools integrating Semantic Web Service editors and
execution environment.

Business Requirements

Requirements Specification

.I Ontology Importing I .

Business process modeling

o]
T
e
H

Architecture Design

{ Testing and Evaluation)q—{ Implementation ‘
Maintenance and Evolution

Fig. 5. Development process extensions for SWS

3.1 Process Extensions

To address the new SWS requirements, we extended the process defined for SOA in
Fig. 1 with two additional tasks, shown in Fig. 5:

¢ Ontology Importing, for importing existing domain ontologies that may be
exploited for describing the domain of the Web application under development.

? In our approach we considered WSMO, but being, WSMO the most comprehensive approach
to SWS, our experience can be easily extended to OWL-S and WSLD-S approaches.

Design Abstractions for Innovative Web Applications 11

The imported ontologies should be integrated, at the model level, with the
application-specific E-R model, so as to offer an integrated view to the designer.

e Semantic Annotation, for specifying (either manually or automatically) how the
hypertext pages or services will be annotated using existing ontological
knowledge.

3.2 Content Model Extensions

The management of content in Semantic Web applications, thus also in SWS
applications, needs to address two main concerns: (i) the possibility of importing and
integrating existing third-party ontologies and (ii) the capability of combining
relational data sources with ontological contents.

="
Ontalogy
gL, I

HasTopElement

Cntalogy Top Elerment

Internal Concept

Basic Concept

Concept Instance
]

MemberOf

OMH 0N 0N i

HasvalueRange
HasAttribute

Algribvalue

asRange HasRange asvalueRange

HasAttribytevaiue HasParamefervalue

111 1TH 11

| 1:1 1
Aftribute Yalue Adtribute :12
101 H. " InverseOf FParameter | ., | Parameter Value
01 o111
I otmributey, L] T —

ParameterValue

Fig. 6. Standard model of the WSMO ontology structure

We address these two issues by defining a E-R standard model representing
ontological concepts, thus allowing to associate in a seamless way semantic content to
conventional content defined for the application; Fig. 6 shows a piece of E-R model
representing WSMO ontological language. Imported ontological data can be either
copied into an application-specific implementation of the E-R model (typically a
relational database) or queried directly on a remote ontology. Different
implementations of ontology query primitives must be developed in the two cases
(see Section 3.3).

3.3 Hypertext Meta-model Extensions

The basic WebML primitives for data retrieval have been used up to now for querying
implementations of E-R models, but their generality makes them perfectly fitting in
the role of query and navigation of ontologies. The additional expressive power of

12 S. Ceri, M. Brambilla, and E. Della Valle

ontological languages, however, requires some extensions. We have therefore intro-
duced a new set of primitives (inspired by SPARQL and RDF-S syntax) to describe
advanced queries over ontological data. These units (see Fig. 7) allow queries on
classes, instances, properties, and values; checking the existence of specific concepts;
and verifying whether a relationship holds between two resources. Other units import
content from an ontology or return the RDF description of a given portion of the
standard ontological model for exporting. Operations such as lifting and lowering
have renamed specific XML2XML mappings used in the context of SOAs.

SubclassOf InstanceOf HasProperty Subproperty

O O O O @)
[ClassName1=?] [ClassName="?] [ClassName=7?] [Property=?] [Property1=?]
[ClassName2=?] [Instance=7?] [Property=?] [Value=?] [Property2=7?]

Fig. 7. Ontological query units

These primitives may have different implementations: when invoking a remote
semantic repository, the implementation can exploit ontological query languages;
when querying ontological data stored internally, hence already integrated within a
relational source, the implementation is directly mapped to such source.

Pip3flPurchase OrderRequest Lifting Store Pip: Order” Send Receipt fcknouledgment
Iiz =) = iy I
L] C =

SetProcess Status Store Customer 10

)
Partner

Partnsr Partrer

Store Line 1D Lifting Send Line fem n Lowering More Llines To Be Sent? Select $5em Lnes
s -} < a a3 o
= » ¥ < I1
&

)
OrderLine Orderline

[Status = To Be Processed]
[Pip2APurchass Order 2 Ling]

Fig. 8. WebML model of a mediator

These units, together with the standard WebML primitives and the solutions
introduced for the SOA, allow specifying completely new kinds of applications with

Design Abstractions for Innovative Web Applications 13

respect to the ones for which WebML was originally conceived. For instance, Fig.
shows the WebML model of a WSMO mediator [7] in the context of a B2B purchase
interaction for the SWS Challenge 2006 [19]. The logics of the mediator is that of
receiving a single purchase order request, containing multiple lines bundled together,
and then dispatch each order line to a service which exposes multiple ports, including
one for accepting the general information about new orders and one accepting each
line separately. We do not expect that the mediator specification can be appreciated in
detail, but the reader should notice that the specification is fully graphic, that it
embodies a complex workflow, and in particular it incorporates several request-
responses for the SWS orchestration. Clearly, no user interaction is involved.

3.4 Tool Framework Extensions

The framework has been extended by providing automatic generators of WSMO-
compliant descriptions (goals, choreographies, capabilities, and mediators) from the
models already available in WebML, i.e., business processes, content models, and
application logics models. Annotations that are automatically generated cannot
express the full semantics of SWS services and applications’, but they give initial
descriptions, that can later be integrated manually. In particular, in the contest of the
SWS Challenge 2006, we used WSMT [13] as ontology and SWS editor. As a result
of the annotation process, applications and services can be deployed on a SWS
runtime environment which provides generic services (e.g., service discovery engines,
goal matchers, mediators). Again, in the SWS Challenge we have used the Glue
discovery engine [18] as reasoner specialized for Web service discovery.

4 Related Work

Our approach has several elements which are common to a number of research
centres and companies working towards improving Web Engineering methods and
tools; here we list only a few of them. Traditional Web design methodologies (like
OOHDM [15]) and new approaches (like Hera [16]) are now focusing on Semantic
Web applications. MIDAS is a framework based on MDA for Semantic Web
applications [14]. Research efforts are converging on the proposal of combining
Semantic Web Services (SWS) and Business Process Management (BPM) to create
one consolidated technology, called Semantic Business Process Management
(SBPM) [17].

Our approach largely benefits from the WSMO [10] initiative, which provides a
comprehensive framework for handling Semantic Web Services; specifically, we
benefit from the WSMO conceptual model [10], the WSML language [11], the
WSMX execution environment [12], and WSMT design environment [13].

* For instance, the process description yields to deriving a specific orchestration of the services,
but in a full SWS specification we need to define choreographies, i.e., rules that indicate all
the legal sequences of SWS invocations. Such rules must be derived by extending the initial
annotations.

14 S. Ceri, M. Brambilla, and E. Della Valle

5 Conclusions

The “WebML approach” has acted as a framework for continuous innovation and
exploration of new research directions. This is made possible by a unique
combination of features:

Availability of well-defined conceptual models;

Extensibility of the model thanks to a plug-in based structure;

Formally defined development process for Web applications;

Availability of a CASE tool for fast prototyping of application and easy

integration of new features and components;

e Strong link between the research (mostly performed in university) and the
application development (performed within a spin-off);

e Interactions with real world requirements, enabled by interaction with customers.

e Participation to the international research community, through experience and

people exchange and several EU-funded projects.

This mix of ingredients has allowed us to follow our peculiar pathway to innovation.

Acknowledgements

We wish to thank all the people who work in the WebML framework: the WebML
group at Politecnico di Milano (and particularly Piero Fraternali), the CEFRIEL
Semantic Web Activities group, and the WebRatio staff (and particularly Aldo
Bongio). Work on the SOA was performed together with Piero Fraternali, Ioana
Manolescu, and Sara Comai; work on SWS was performed together with Federico
Facca, Christina Tziviskou, Dario Cerizza, Irene Celino and Andrea Turati.

References - WebML

[1] S. Ceri, P. Fraternali, A. Bongio. Web Modeling Language (WebML): a modeling
language for designing Web sites. WWW9 / Computer Networks 33, 2000.

[2] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, M. Matera. Designing Data-
Intensive Web Applications. Morgan Kaufmann, 2002.

[3] I. Manolescu, M. Brambilla, S. Ceri, S. Comai, P. Fraternali. Model-Driven Design and
Deployment of Service-Enabled Web Applications. ACM TOIT, 5:3, 2005.

[4] M. Brambilla, S. Ceri, P. Fraternali, I. Manolescu. Process Modeling in Web
Applications. ACM TOSEM, 15:4, 2006.

[5]1 S. Ceri, F. Daniel, M. Matera, F. Facca. Model-driven Development of Context-Aware
Web Applications, ACM TOIT, 7:1, 2007.

[6] M. Brambilla, 1. Celino, S. Ceri, D. Cerizza, E. Della Valle, F. Facca. A Software
Engineering Approach to Design and Development of Semantic Web Service
Applications. International Semantic Web Conference (ISWC2006), Athens, USA,
November 2006, Springer LNCS 4273.

[7]

(8]
[9]

Design Abstractions for Innovative Web Applications 15

M. Brambilla, S. Ceri, D. Cerizza, E. Della Valle, F. Facca, P. Fraternali, C. Tziviskou.
Coping with Requirements Changes: SWS-challenge phase II. SWS Challenge 2006,
Phase II, Budva, Montenegro, June 2006.

WebML.: http://www.webml.org.

WebRatio: http://www.webratio.com/.

References — Related Work

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., Domingue,
J.: Enabling Semantic Web Services — The Web Service Modeling Ontology. Springer
(2006)

de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The web service modeling language:
An overview. In: Proceedings of the 3rd European SemanticWeb Conference
(ESWC2006), Budva, Montenegro, Springer-Verlag (2006)

Haller, A. , Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - A Semantic Service-
Oriented Architecture. In Proceedings of the 2005 IEEE International Conference on Web
Services (ICWS 2005), Orlando, FL, USA, 321-328, 2005.

Kerrigan, M.: The WSML Editor Plug-in to the Web Services Modeling Toolkit. In
Proceedings of 2nd WSMO Implementation Workshop (WIW2005), Innsbruck, Austria,
2005.

Acuiia, C. J., Marcos, E.: Modeling semantic web services: a case study. In Proceedings
of the 6th International Conference on Web Engineering (ICWE 2006), Palo Alto,
California, USA, 32-39.

Schwabe, D., Rossi, G. The Object-Oriented Hypermedia Design Model. In
Communications of the ACM, 38 (8), 45-46.

Vdovjak, R., Frasincar, F., Houben, G. J., Barna, P.: Engineering semantic web
information systems in Hera. Journal of Web Engineering, Rinton Press, 2(1-2), 3 -26,
2003.

Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic Business Process
Management: A Vision Towards Using Semantic Web Services for Business Process
Management. In Proceedings of the IEEE ICEBE 2005, October 18-20, Beijing, China,
535-540.

Della Valle, E., Cerizza, D.: The mediators centric approach to automatic webservice
discovery of Glue. First Intl. Workshop on Mediation in Semantic Web Services
(MEDIATE 2005), Amsterdam, The Netherlands, December 2005.

Semantic Web Service Challenge 2006: http://www.sws-challenge.org/.

The Lixto Systems Applications in Business Intelligence
and Semantic Web

Robert Baumgartnerl, Oliver Frblichl, and Georg Gottlob?

'"DBAITU Wien Favoritenstr. 9
1040 Vienna Austria
{froelich,baumgart}@dbai.tuwien.ac.at
% Oxford University Computing Laboratory
Wolfson Building
Parks Road Oxford, OX1 3QD United Kingdom
georg.gottlob@comlab.ox.ac.uk

Abstract. This paper shows how technologies for Web data extraction,
syndication and integration allow for new applications and services in the
Business Intelligence and the Semantic Web domain. First, we demonstrate
how knowledge about market developments and competitor activities on the
market can be extracted dynamically and automatically from semi-structured
information sources on the Web. Then, we show how the data can be integrated
in Business Intelligence Systems and how data can be classified, re-assigned
and transformed with the aid of Semantic Web ontological domain knowledge.
Existing Semantic Web and Business Intelligence applications and scenarios
using our technology illustrate the whole process.

1 Introduction

1.1 Motivation

Data available on the Web is a crucial asset in the enterprise world today, such as for
making decisions on product prices, collecting opinions and getting an overview in
fast-changing markets. To make use of Web data, methodologies and software
components for harvesting structured facts from the Web are needed. Semantic Web
Ontologies can be populated with Web data and sophisticated rule systems can help to
leverage data analysis in Business Intelligence scenarios to a new level. In this paper
we address the advantages of Web data extraction for Business Intelligence scenarios.
Additionally, we consider how Semantic Web technologies can provide helpful means
in such a setting.

1.2 Competitive Intelligence and Business Intelligence

Today, the time available for making operative decisions in a business environment is
decreasing: decisions must be made within days or even hours. Just two decades,
similar decisions still took weeks or months [Ti95]. Therefore, business management
is interested both in increasing the internal data retrieval speed and in broadening the

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 16 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Lixto Systems Applications in Business Intelligence and Semantic Web 17

external data sources considered to improve information quality. Fortunately, new
technologies like the internet and Business Intelligence systems are available to
supply this data. Based on the described competitive pressure, a systematic
observation of competitor activities becomes a critical success factor for business to
early identify chances in the market, anticipate competitor activities, recognize new
and potential competitors, and to validate and enhance own strategic goals, processes
and products.

This process of collecting and analyzing information about competitors on the
market is called “competitive intelligence” (CI) or “competitive analysis” [SCIP04].
Nowadays, much information about competitors can be retrieved legally from public
domain information sources, such as Web sites, press releases or public data bases
[Ka98]. The Lixto Suite software provides tools to access, extract, transform, and
deliver information from various semi-structured sources like Web pages to various
customer systems.

CI can be seen as a part of “Business Intelligence” (BI). The term BI is often used
as a method box for collecting, representing and analyzing enterprise data to support
the decision-making process within a company’s management. More generally, BI
can be understood as a process providing better insight in a company and its chains of
actions.

Reporting (=] oLAP <% Data Mining %
Data Usage Dg%
7 o 5 O
Marts
Data Warehouse

Data Storage —<

f

Data Integation <

Y

Staging
Area

i Extraction
e \

Internal Sources

R S
Data Sources < DEMS

Fig. 1. The Business Intelligence reference process [BFGO05]

Web-ETL

External Sources:

webfiles portals

Web information systems

18 R. Baumgartner, O. Frolich, and G. Gottlob

Technically, the Business Intelligence process covers three main process steps:
data integration, data storage and data usage (see fig.1). The most important step
concerning our research is Data integration, which covers methods to extract data
from internal or external data sources. Traditionally, the data is derived for example
from database systems in a so-called ETL process (extract, transform, load). We
propose using Integrated Wrapper Technologies [Fr06] for Web data extraction and
integration in a process we call Web-ETL [BFGOS5]. This step will be more closely
described in the further course of this paper and may also contain data transformations
like data “cleaning” and data normalization. A load process with a scheduler regularly
uploads (e.g. daily, weekly, or monthly) the processed data into the final data base
storage of the BI system, the data warehouse. This data storage holds the relevant
data for decision makers in a dedicated, homogeneous database. An important
characteristic of the data warehouse is the physical storage of data in a single,
centralized data pool. It also covers the subject-oriented clustering of data organized
by business processes, such as sales, production, or finance. With the information
being well-organized in the data warehouse, Data usage now can support decision
making with predefined reporting for occasional users, ad-hoc data analysis for
knowledge workers, or data mining for data analysts.

1.3 Semantic Web

Today, the realization of the Semantic Web idea of “an extension of the current web
in which information is given in well-defined meaning, better enabling computers and
people to work together” [BHLO1] is technically still in an early stage: W3C
recommendations exist for machine-readable semantics, appropriate markup and
description languages, and sharable knowledge representation techniques, but the
logical definition and technical implementation of the upper layers of the so-called
Semantic Web tower [Be02], e.g. the rule and reasoning layer, or the layers of proof
and trust, are still to be explored.

The semi-structured Web of today consists of billions of documents in different
formats which are not query-able as a database and heavily mix layout, structure and
the intended information to be presented. There is a huge gap between Web
information and the well-structured data usually required in corporate IT systems or
as envisioned by the Semantic Web.

Until this vision is realized, “translation components” between the Web and
corporate IT systems that (semi-)automatically translate Web content (e.g. in HTML)
into a structured format (e.g. XML) are necessary. Once transformed, data can be
used by applications, stored into databases or populated into ontologies.

1.4 Integrated Wrapper Technologies

A Wrapper is a program that automatically accesses source data (e.g. from the Web in
HTML) and then extracts and transforms the data into another format (e.g. XML). A
number of classification taxonomies for wrapper development languages and
environments have been introduced in various survey papers. A to our knowledge
complete overview of the different approaches and systems is given in [Fr06].

The Lixto Systems Applications in Business Intelligence and Semantic Web 19

Integrated Wrapper Technology (IWT) systems combine the capabilities of
wrapping components with Information Integration (II) components [Fr06]. The latter
generally transform the extracted data and integrate it in other (business) IT systems.
IWT systems are suitable for implementing advanced information systems for the
Semantic Web: Partially, they can bridge the gap between the Web existing today and
the today not yet existing Semantic Web that might be used as the largest database on
earth where data exists in machine-readable formats and can be integrated easily in
other IT systems. IWT systems can extract data from semi-structured Web pages,
transform it to a semantically useful structure, and integrate it e.g. with a Web ETL-
process into a Business Intelligence system. A solution proposition to this problem
will be illustrated in the next chapter.

2 The Lixto Solution

The Lixto Suite software is an IWT system which provides tools to access, extract,
transform, and deliver information from various semi-structured sources like Web
pages to many different customer systems. The Lixto software is based on Java
technology and standards such as XML schema, XSLT, SOAP and J2EE.
Technically, the main distinguishing criteria to many other approaches are that Lixto
embeds the Mozilla browser and is based on Eclipse. This allows Lixto to be always
at the cutting edge of Web browser technology and access and extract data from all
Web pages even using the newest techniques like Web 2.0, e.g. Ajax. Internally, the
software uses the logic-based data extraction language Elog [GKO02].

The Lixto Suite is comprised of three products: The Visual Developer for Wrapper
generation, the Metasearch for real-time Wrapper queries and the Transformation
Server as runtime environment for scheduled Wrappers queries and as Information
Integration component. In this chapter, we successively describe the process steps for
creating and delivering structured data from semi-structured sources.

2.1 Wrapper Generation with Visual Developer

Wrappers generated with Visual Developer extract and translate all relevant
information from HTML Web pages to a structured XML format. The underlying
extraction language Elog is derived from datalog and is especially designed for
wrapper generation. The Elog language operates on Web objects, which are (lists of)
HTML elements, and strings. Elog rules can be specified visually in a graphical user
interface by a few mouse clicks without knowing the Elog language. Thus, no special
programming knowledge is needed, and wrappers can be generated by non-technical
personnel, typically by employees with the relevant business expertise for the project,
e.g. from a company’s marketing department.

Creating a wrapper with the Visual Developer comprises two steps: First, the data
model creation. In this phase an XML-schema based model in which extracted data is
inserted either is imported (e.g. in case of news extraction typically RSS) or generated
from scratch. In the second phase navigation and extraction steps are configured.
Such extraction rules are semi-automatically and visually defined by a wrapper
designer in an iterative process. Extracted data can subsequently populate an ontology

20 R. Baumgartner, O. Frolich, and G. Gottlob

with instance data. The whole wrapper generation process starts by generating a deep
Web navigation sequence (such as navigation through forms) and subsequently
highlighting the relevant information with two mouse clicks in the integrated standard
Mozilla browser window. The software then marks the data in a different colour.
Conditions can be defined, allowing the program to identify the desired data even if
the structure of the Web page slightly changes. Fig. 2 shows an example where
information is extracted from different trip booking websites like expedia.com and
opodo.com.

For a wrapper, an internet page is an HTML tree structure. A wrapper does not
extract just the text from a specified HTML tree node, but uses “intelligent” conditions,
so-called logical patterns. For the wrapper of fig. 2, such conditions could be ,,the
relevant area should contain the Dollar-symbol(“$”) in each line” or “some specified
company’s names should occur” (these names are stored in a system database). For the
logical pattern comprised of the conditions, the software searches for the best match
within the HTML tree using heuristic methods. So a very high robustness to changes
within Web pages over time can be achieved for the wrapper agents.

EnLixto - enpedializnay (Wrapping) - Lixto Yisual Developer 2006

(ol %/
Fle Edt Mavigate Search Project Run Recording Wrapping Window Help
Ici-Ho & -& 3-8 | #8882 -|gwaseo it | mlio
5. Navigator 52 = B[. linay @ *expediaimnay (Wrapping) 52 3 opodo.lxnay | =0
& = p—
les|Z @a@-mp QT pedia.comipubfagent dirascr=h Frat=18locr—hl Fadatz1=11/16/20056da ~| ©
D Travel = A
- [%] .project 'H T % Show hotels in this area: &, N ;|
) 0 & : Y
-, B 2] [Wew vork Ciy Gana vty il eves) v [<o), flOtet amenities: Hartore vourszarch
& I lixnay J
@ opodo.fxnay Hotel class: Nat what you're laoking for? Chonse s ditferent destination
Show all hd
Hatel type: Page10f 15

Previous | Hext
Show &l =l Sorthy: (% ExpediaPicks Price (" Hotel Name

Cgity ¢ Hotel Class

b Plaza New Yorker Lowest avg rate $236.14
Change Travelers TEVeYe Newr Yirk, NY Area: didtown (Times Souare Broadway) 3 virtual Tour Available
2 Adutts :
1Room

This 42-stary Art Deco hotel is across from Madison Square Garden and Penn Station,
{ one block from the Garment District, and three blocks from the Jacob ...
Mare loing info

E Art Deco hotel across from Madison Square Garden
|

Chance travelers

More search options: CF Exclusive Limited Time Offer for Expedia Customers
Iuear an airport.

Near an afiradtion Availebiliy request: 1 room Expedia Special Rate Wed Nov-16-2005 to Wied Nov-23-2005

hlear an address (G Avg rate
Room type Wed Thu Fri Sat Sun Mon Tue (pernight)
g Erm el stz o Standard - 1 Queen $259 §250 $329 §329 $150 159 $159 §236.14
85 outine 2 %71 == friend One-Bedroom Plara Suite - Guesn Bed | = e | o | g | g o -
=0 po Includes:Continental breakfast
‘6 achons
. Cne-Besroom Plara Suite - 2 Dousle Beds
w[3) wew.expedie, com (@ W are Expete prefeqmonPlrasule-sDubieBels gass gass g2 % B8 B3 X M
2 Mouse Action Standard Double X X X % #1539 ¥59 $159 NA
*) Mouse Action
Key Action
*) Mouse Action 4 1E
=% Wrapper
& 5 5
g 18 Lodging in New York City (and wmmty)l

& Fiter m”wwg‘?egeswr:el Grop ¥ 20
Selection Filter —

Content
Output bype: @ HTML O Text Selected node: |mah‘e
Rangs
T Fine tuning: Apply Selection Hode attributes: [1ame Tvaie I
» Advanced

Fig. 2. Visual Developer User Interface

The Lixto Systems Applications in Business Intelligence and Semantic Web 21

In addition, navigation to further documents during the wrapping process is
possible: For example, starting from a Google result list overview page, it is possible
to extract defined information from all result sub-pages and, by clicking on the
“next”-button on each result list overview page (this action has to be defined only
once) to extract all relevant information from all overview pages and their sub pages.
The Visual Developer is capable of action-based recording and replaying, i.e.
recording actions of a user based on mouse clicks and key actions. This is highly
advantageous compared to a plain request-based macro, as it allows the system to deal
with dynamically changing HTML pages.

Visual Developer wrapper agents also support automatic logon to password-
protected pages, filling in form pages and processing the extraction from
corresponding result pages (i.e. for Web interfaces of data bases), dynamic handling
of session IDs, and automatic handling of cookies and SSL. Detailed information on
further wrapping capabilities can be found in [BFGO1].

2.2 The Transformation Server

In a second step, XML data generated by wrappers is processed in the Lixto
Transformation Server [GHOl]. A wrapper in the run-time environment of the
Transformation Server retrieves the Web data automatically, with no developer
interaction, based on events. Events can be for example a defined schedule, such as
Web data retrieval every hour or every 5 minutes. The usual setting for the creation of
services based on Web wrappers is that information is obtained from multiple
wrapped sources and has to be integrated. Often source sites have to be monitored for
changes, and changed content has to be automatically extracted and processed.

The Lixto Transformation Server allows for Information Integration by combining,
transforming and re-formatting data from different wrappers. Results of this process
can be delivered in various formats and channels to other IT systems, e.g. Business
Intelligence systems such as SAP Business Information Warehouse or Microsoft
Analysis Server. Transformation Server can interactively communicate with these
systems using various interfaces, such as special database formats, XML messaging,
and Web services.

The whole process of modelling the workflow and dataflow is done in the graphical
user interface of the Lixto Transformation Server. Graphical objects symbolize compo-
nents, such as an integrator for the aggregation of data or a deliverer for the trans-
mission of information to other software applications. By drawing connecting arrows
between these objects, the flow of data and the workflow are graphically defined (see
also fig. 3). A more detailed description of the components is given in [BFGOS5].

3 Application Business Cases

The following business cases show and illustrate the capabilities of the IWT software
Lixto Suite in real-world scenarios. The first scenario concentrates more on a BI
solution, whereas the second scenario describes an application for the Semantic Web.

22 R. Baumgartner, O. Frolich, and G. Gottlob

3.1 CI Solution for Pirelli

Pirelli is one of the world market leaders in tire production, but also active in other
sectors such as cables (energy and telecommunication cables). With headquarters in
Milan/Italy, the company runs 21 factories all over the world and has more than
thirty-five thousand employees.' On account of the growing amount and relevance of
Web sites selling tires on the internet (both B2B and B2C), Pirelli analyzed the
possibilities of monitoring retail and wholesale tire prices from competitors for their
major markets. This external data should be automatically uploaded to their existing
BI solution. After an extensive market research concerning available tools for Web
data extraction and transformation, Pirelli selected the Lixto software because of its
high scalability for back office use, its high robustness concerning data extraction
quality and its straightforward administration.

The Lixto Software was integrated in the Pirelli BI infrastructure within a
timeframe of two months. Tire pricing information of more than 50 brands and many
dozens of tires selling Web sites are now constantly monitored with Lixto (Pirelli
prices and competitor prices). A simplified screenshot of the Pirelli service shows the
data flow as it is defined in the Lixto Transformation Server (see fig. 3).

’E///»ﬁ|

General General

LIk Tireg\‘

Site A

Intearator Transfarmer
Spanish Tires Cracle 4
Site A DB

Fig. 3. Modelling the data flow in the Transformation Server [BFGOS5]

The data is normalized in Transformation Server and then delivered to an Oracle 9
database. From here, the Pirelli BI solution fetches the data and generates i.e. reports
in PDF format and HTML format. These reports are automatically distributed to the
Pirelli intranet for marketing and sales departments (see fig. 4).

The success of the project can be measured by the more than 1.000 self-registered
Pirelli users receiving the Lixto PDF reports regularly by email. Since its introduction,
the Lixto reports are in the top 5 list of all most accessed files from the Pirelli intranet. A
more detailed description of the Pirelli BI integration project can be found in [BFGO5].

3.2 The Personal Publication Reader

The Personal Publication Reader is an advanced personalized information systems
using Semantic Web technologies [BHMOS5] that has been created by the Learning

! See http://uk.biz.yahoo.com/p/p/peci.mi.html and [Pi03].

The Lixto Systems Applications in Business Intelligence and Semantic Web

File Edit ¥iew Favorites Toolks Help

icing - Microsoft Internet Explorer provided by ePirelli foundation

Qreck 2) - %] 2] ;\]|/-\‘Seavch S Faveres (@A vedn (67)

L

Lirks (& Marketing and Sales] Group Catalng & Custorize Links & Interet Projects LoginBzB & Login RT & Tiscall Mall &) telszmail &) AltaVista Translations

| Gocgle ~ |

~|| & cercarel et - @ cercainttalia | g5 | PeRenk |] opeioni

| adress 2]

I IRELLI Pricing

Bl Marketing and sales
f Marketing and Sales Event ~El Pricing iCurrent folder; /Marketing/Documents /Pricing/BU Car/lixto Reports
Market Analysis o Subscriba | Renama | Delete | Add sub-falder | Add dacument
Products BU Moto
Pricing B eu car Hide Descriptions Iterns: 1 - 5|
Advertizing and Prametians wiorldwide Action Report | [Sort by: Author | Title | Date = Previous Hext
Sales Planning and Reporting = il)
Trade and SalesForce Support ~B policies ILJX?’ - :—_55: I;nlll‘lng 'IQUE":E" = Dot 11/11/2004
Demand Planning and Forecasting | | e e e (P i
& & é‘;*f Reports B S becribe | Show Adtions |
Country Monthly Reports | [€]lixto - Last Rolling Month
B A Wonty Ropote | (@ g L alns Henear puee s sa/astanes
&7 Lixto - Exacutive Summary
Lixta - Executive Summary. p Date : 11/11/2004
® df f11f,
Subsaribe | $how Actions
bscrib, h
&1 Lixto - Current Rolling Mont
li th
Lixto - Gurrent Rolling Date : 11/11/2004
& 11l f11f
Manth, pdf
ubscribe | Show Actions
| Subscribe | Show Act |
&7 Lixto - 6 Rolling Month
@ bixte - & Rolling Month,pdf Date : 11/11/2004
Subsaribe | $how Actions
bscrib, h
The Mew Apis Pricing 6 software offers a
standard tool to analyze Pirelli and Comnpatitars
prices positioning at gross level as at nst level.
This application is dient-based and can be
shtained through software distribution sfter
obtaining the proper authorization from the
pricing department,
& [T [@ Trusted stes

Fig. 4. Lixto Reports within the Pirelli intranet [BFGO0S5]

Lab Hannover. It provides a syndicated and personalized view on non-uniform,
distributed Web data. The Personal Publication Reader has been designed and
implemented in the context of the Network of Excellence “REWERSE — Reasoning
on the Web” and syndicates and personalizes information about the REWERSE
project structure, people, objectives, and information about research papers in the
context of the project.

The Personal Reader Framework was used for the design and implementation of
personalized Web Content Readers. Such readers have been realized for e-Learning
and for publication browsing. Web services allow for the development of flexible
information systems by encapsulating specific functionality and communication
capabilities with other Web services. The aim of the Personal Reader Framework was
to develop a toolset for designing, implementing and maintaining Personal Web
Content Readers. These Personal Readers allow the user to browse information (the
“Reader” part), and to access personal recommendations and contextual information
on the currently viewed Web resource (the “Personal” part). The framework features a
distributed open architecture designed to be easily extensible. It uses standards such
as XML and RDF, and technologies like JSP and XML-based-RPC. The
communication between all of these components is syntactically based on RDF
descriptions, providing a high level of flexibility for the whole framework.

Content syndication and personalization is achieved by reasoning about ontological
knowledge and extracted Web data. The Lixto Software is used for the implementation

R. Baumgartner, O. Frolich, and G. Gottlob

ixto Transformation Server - Mozilla

. Fle Edt View Go Bookmarks Tools Window Help
| Q Q Q Q hktp:/flocalhost jtsfserviet/Dispat cher;jsessionid=43D 3BCDS3DCFEDAFBCCACHASTEE 39037 com. lixt 0.ip.eid=system | 3Selldl
. 4 Home | EJBookmarks
Logoff Preferences Pipe Repository Help About fccount (eierse) . coverrardl 1 X T 18]
Pipe. REWERSE Publications Reports | Propertes | upoate |
~
@ REWERSE Publications =2 % 5‘
Publics of SetOrigl
Munich Munich
Publics of Setorigin’
Eindhoven indhoven
Publics of SetOrigin
Gottingen Gottingen
? eliver
Publics of Set Origin ML
Hannover Hannove.
. P
» Integrate Set D Deliver
Publics of Set Origin Publics RDF
Heraklion Heraklio
Publics of SetOrigin
Linkaing Linkd v
< ¥
Applet ready!

Do pe

Fig. 5. Personal Publication Reader data flow in the Transformation Server [BHMO05]

i Pubiication Browsar- Meriiln

_ webscerpt Fle EOF Ve Go Bockmerks Iook Yincon Heip

QD O D[S e i 000y i et T o e s (Esmwn] | S

o @ rome| ZJookmarks Google < Google Schol.. < Wemer T DAX Sy AEUGHS Nt & VLWDM O S WWDMONL. % VLSW cifine . VLSW onine & LEO < NETGEAR & AEWERSEAS S PR < [pHproje<t g PR - Admin

=

Aotk snows,
om0

SEPUTY £02RD.

%/ pUELICATION EROWSER v0.3 LOGOUT

ceren - University of Munich
Towards generic query, update, an‘t_!L event
languages for the Semantic Web. a 2004

“This paper outlines aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query
ing updates and ion of updates between autonomous

and update languages in course of the Rewerse project. When
saurces, reactive behavior plays an important role such that an event language is required. This article provides a systematic outline of the

intended research steps towards handling reactivity and evolution on the Web."

José Julio Alferes, Wolfgang May, Francois Bry

151 Prof. Frangois Bry = = a1
“o. Ludwig-Maximilians-Universitt Miinchen
+49-89-2180 9310

WG A3 - Personalised Information Systems =
Dr. Nicola Henze
Alberto Martelli

1= Prof. Dr. rer. nat. Wolfgang May ® o o
“%K Universitat Géttingen - Institut fir Informatik
- Arbeitsgruppe Datenbanken und
Informationssysteme
ek PIIE 448 (551) 39-1 46 96

WG 15 - Evolution and Reactivity o
José Jdlio Alves Alferes

Prof. Dr, rer. nat. Wolfgang May

1=t José Jilio Alves Alferes © o o1
#% - Universidade Nova de Lisboa
4K PHNE. 4351 212 948 533

WG 14 - Reasoning-Aware Querying o
Prof. Frangois Bry
Massimo Marchiori

WG ET - University Education and Training = |
)

Do ¥ [

Fig. 6. Screenshot of the Personal Publication Reader [BHMO05]

of the information provision part. The process of gathering Web data for the Personal
Publication Reader using Lixto is described in the following.

The Lixto Systems Applications in Business Intelligence and Semantic Web 25

In a first step, wrappers are created for the websites of the REWERSE project
participant organizations. Then, these wrappers are loaded to a new service within the
Lixto Transformation Server. Here the XML data derived from the various wrappers
has to be combined, cleaned, and syndicated into the Framework’s ontology. The
output format of the Transformation Server is an RDF representation. This process is
scheduled regularly and hands over the data to the Personal Publication Reader. Fig. 5
shows the data flow from the wrapper to the RDF output as it is defined in the
Transformation Server.

In addition to the extracted information on research papers described above, a
“REWERSE-Ontology” has been built in OWL extending the Sementic Web
Research Community Ontology (SWRC) [SWRCOI1]. Here information about
research members of the REWERSE project is kept.

Finally, fig. 6 shows the syndicated view on publications in REWERSE together
with the corresponding links, and information about the authors of the publications
like homepage, phone number, etc. The Personal Publication Reader is available
online via the URL www.personal-reader.de.

Acknowledgements

This research has been partially supported by REWERSE - Reasoning on the Web
(rewerse.net), Network of Excellence, 6th European Framework Program.

The authors would like to thank Giacomo del Felice from Pirelli Pneumatici S.p.A.
for his continuous and reliable project support.

References

[BFGO1] Baumgartner, R.; Flesca, S.; Gottlob, G.: Visual web information extraction with
Lixto. In: Proc. of VLDB, 2001, pp. 119-128.

[BFGOS] Baumgartner, R.; Frolich, O.; Gottlob, G.; Harz, P.; Herzog, M.; Lehmann, P.:
Web Data Extraction for Business Intelligence: the Lixto Approach, in:
Datenbanksysteme in Business, Technologie und Web (BTW), LNI, Series of the
Gesellschaft fiir Informatik, P-65 (2005), pp. 48-65.

[BHLO1] Berners-Lee, T.; Hendler, J.; Lassila, O.: The semantic web. Scientific American,
May 2001.

[Be02] Berners-Lee, T.: The semantic web - mit/lcs seminar, 2002.. http://www.w3c.org/
2002/Talks/09-1cs-sweb-tbl/.

[BHMOS] Baumgartner, R.; Henze, N.; Herzog, M.: The Personal Publication Reader:
Ilustrating Web Data Extraction, Personalization and Reasoning for the Semantic
Web, in: European Semantic Web Conference ESWC 2005, LNCS 3532, Springer,
Berlin Heidelberg, 2005, pp. 515-530.

[Fr06] Frolich, O.: Erstellung und Optimierung von Geschiftsprozessen durch Integrierte
Wrapper-Technologien mit Anwendungsbeispielen aus den Branchen Mobile
Services, Competitive Intelligence und dem Verlagswesen. Dissertation, DBAI,
TU Vienna, Vienna, 2006.

[GHO1] Gottlob, G.; Herzog, M.: Infopipes: A Flexible Framework for M-Commerce
Applications, in: Proc. of TES workshop at VLDB, 2001, pp. 175-186.

26 R.

[GKO2]

[Ka98]

[Pi03]

[SCIPO4]
[SWRCO1]

[Ti95]

Baumgartner, O. Frolich, and G. Gottlob

Gottlob, G.; Koch, C.: Monadic datalog and the expressive power of languages for
Web Information Extraction, in: Proc. of PODS, 2002, pp. 17-28. Full version:
Journal of the ACM 51(1), 2004, pp. 74 — 113.

Kahaner, L.: Competitive Intelligence: How to Gather, Analyse Information to
Move your Business to the Top. Touchstone, New York, 1998.

Pirelli & C. SpA: Annual Report 2003.
http://www.pirelli.com//investor_relation/bilanciocompl2003.pdf, accessed on
2004-09-28, p. 7.

Society of Competitive Intelligence Professionals (SCIP): What is CI?
http://www.scip.org/ci/index.asp, accessed on 2004-09-28.

SWRC - Semantic Web Research Community Ontology, 2001.
http://ontobroker.semanticweb.org/ontos/swrc.html.

Tiemeyer, E.; Zsitkovitis, H.E.: Information als Fiihrungsmittel: Executive
Information Systems. Konzeption, Technologie, Produkte, Einfiihrung; 1st edition;
Munich, 1995, p. 95.

Ways to Develop Human-Level Web Intelligence:
A Brain Informatics Perspective

Ning Zhong

Department of Life Science and Informatics
Maebashi Institute of Technology, Japan &
The International WIC Institute/BJUT, China
zhong@maebashi-it.ac. jp

Abstract. In this paper, we briefly investigate several ways to develop
human-level Web intelligence (WI) from a brain informatics (BI) per-
spective. Bl can be regarded as brain sciences in WI centric IT age
and emphasizes on a systematic approach for investigating human in-
formation processing mechanism. The recently designed instrumentation
(fIMRI etc.) and advanced IT are causing an impending revolution in
both WI and BI, making it possible for us to understand intelligence in
depth and develop human-level Web intelligence.

1 Introduction

The concept of Web intelligence (WI) was first introduced in our papers and
books [13,24,27,29,31]. Broadly speaking, WI is a new direction for scientific
research and development that explores the fundamental roles as well as practical
impacts of artificial intelligence (AI and advanced information technology (IT)
on the next generation of Web-empowered systems, services, and environments.
The WI technologies revolutionize the way in which information is gathered,
stored, processed, presented, shared, and used by virtualization, globalization,
standardization, personalization, and portals.

As more detailed blueprints and issues of WI are being evolved and spec-
ified [13,29,[37,[36], it has been recognized that one of the fundamental goals
of WI research is to understand intelligence in depth and develop wisdom Web
based intelligent systems that integrate all the human-level capabilities such as
real-time response, robustness, autonomous interaction with their environment,
communication with natural language, commonsense reasoning, planning, prob-
lem solving, decision making, learning, discovery and creativity.

Turing gave the first scientific discussion of human-level machine intelligence
[23]. Newell and Simon made a start on programming computers for general
intelligence and investigated human problem solving in a behavior based ap-
proach [I6]. McCarthy argued that reaching human-level AT requires programs
that deal with the commonsense informative situation, in which the phenomena

! Here the term of AT includes classical AI, computational intelligence, and soft com-
puting etc.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 27 2007.
© Springer-Verlag Berlin Heidelberg 2007

28 N. Zhong

to be taken into account in achieving a goal are not fixed in advance [15]. Laird
and Lent proposed using interactive computer games that are the killer appli-
cation for human-level AT research, because they can provide the environments
for research on the right kinds of problem that lead to the type of incremental
and integrative research needed to achieve human-level AT [10].

The new generation of WI research and development needs to understand
multiple natures of intelligence in depth, by studying integrately the three in-
telligence related research areas: machine intelligence, human intelligence, and
social intelligence, as shown in Figure [Tl towards developing truly human-level
Web intelligence. Machine intelligence (also called AT) has been mainly studied as
computer based technologies for the development of intelligent knowledge based
systems; Human intelligence (also called brain sciences) studies the nature of
intelligence towards our understanding of intelligence; Social intelligence needs
a combination of machine intelligence and human intelligence for establishing
social networks that contain communities of people, organizations, or other so-
cial entities [29]. Furthermore, the Web can be regarded as a social network in
which the Web connects a set of people (or organizations or other social enti-
ties). People are connected by a set of social relationships, such as friendship,
co-working or information exchange with common interests. In other words, it is
a Web-supported social network or called virtual community. In this sense, the
study of WI is of social network intelligence (social intelligence for short).

Web Intelligence (WTI)

Combining three Understanding
intelligence related areas intelligence in depth

. Brain
*, Sciences

AL S
! Hi“}{nan Intelligence“"‘.‘

Machine Intellige

Social-Ingélligence

nce

Fig. 1. The relationship between WI and other three intelligence related research areas

In the rest of the paper, we briefly investigate three ways to develop human-
level Web intelligence from a brain informatics (BI) perspective. BI can be re-
garded as brain sciences in WI centric IT age [34,[35]. Although brain sciences
have been studied from different disciplines such as cognitive science and neuro-
science, BI represents a potentially revolutionary shift in the way that research is
undertaken. Bl is proposing to study human brain from the viewpoint of informat-
ics (i.e. human brain is an information processing system) and use informatics (i.e.
WI centric information technology) to support brain science study, in particular,
WI provides urgent research needs.

Ways to Develop Human-Level WI: A BI Perspective 29

2 Web Based Problem Solving with Human Level
Capabilities

A more concrete issue of WI is the development and application of a Web-
based problem-solving system for portal-centralized, adaptable Web services
RI32229)51].

Problem-solving is one of main capabilities of human intelligence and has
been studied in both cognitive science and Al [16], where it is addressed in con-
junction with reasoning centric cognitive functions such as attention, control,
memory, language, reasoning, learning, and so on, using a logic based symbolic
and/or connectionist approach. Although logic based problem-solving is “per-
fect”, mathematical systems with no real time and memory constraints, Web-
based problem-solving systems need real-time and dealing with global, multiple,
huge, distributed information sources.

The core of such a system rests on the Problem Solver Markup Language
(PSML) and PSML-based distributed Web inference engines for network rea-
soning, in which the following essential support functions should be provided:

— The expressive power and functional support in PSML for complex adaptive,
distributed problem solving;

— Performing automatic reasoning on the Web by incorporating globally dis-
tributed contents and meta-knowledge, automatically collected and trans-
formed from the semantic Web and social networks, with locally operational
knowledge-data bases;

— Representing and organizing multiple, large-scale knowledge-data sources for
distributed network reasoning;

— Combining multiple reasoning methods in PSML representation and distrib-
uted inference engines, efficiently and effectively;

— Modeling user behavior and representing/managing it as a personalized
model dynamically;

— Including an emotional factor in developing the Web based reasoning and
problem solving system.

A possible way as an immediate step to implement certain distributed reason-
ing capabilities of the future PSML is to make use of an existing logic language
coupled with agent technologies. We have demonstrated one possible implemen-
tation of such capabilities. In particular, our proposed implementation, called
B-PSML, is based on the combination of OWL with Horn clauses, and able to
couple global semantic Web/social networks with local information sources for
solving problems in a large-scale distributed Web environment [211[22].

Furthermore, in order to develop a Web based problem-solving system with
human level capabilities, we need to better understand how human being does
complex adaptive, distributed problem solving and reasoning, as well as how
intelligence evolves for individuals and societies, over time and place [20,26[35].
In other words, ignoring what goes on in human brain and focusing instead on
behavior has been a large impediment to understand how human being does
complex adaptive, distributed problem solving and reasoning.

30 N. Zhong

In the light of BI, we need to investigate specifically the following issues:

— What are the existing thinking/reasoning models in Al, cognitive science,
and neuroscience?

— How to design fMRI/EEG experiments and analyze such fMRI/EEG data to
understand the principle of human reasoning and problem solving in depth?

— How to build the cognitive model to understand and predict user profile and
behavior?

— How to implement human-level reasoning and problem solving on the Web
based portals that can serve users wisely?

As aresult, the relationships between classical problem solving and reasoning and
biologically plausible problem solving and reasoning need to be defined and/or
elaborated.

3 Reasoning Centric Thinking Oriented Studies in
Human Information Processing System

Human intelligence related research studies the nature of intelligence towards
our understanding of intelligence. The capabilities of human intelligence can be
broadly divided into two main aspects: perception and thinking. So far, the main
disciplines with respect to human intelligence are cognitive science that mainly
focuses on studying mind and behavior based cognitive models of intelligence,
as well as neuroscience that mainly focuses on studying brain and biological
models of intelligence. In cognitive neuroscience, although many advanced results
with respect to “perception oriented” study have been obtained, only a few of
preliminary, separated studies with respect to “thinking oriented” and/or a more
whole information process have been reported [6]. Figure 2l gives a global picture
on reasoning centric thinking oriented functions and their relationships in human
information processing system.

Our purpose is to understand activities of human information processing sys-
tem by investigations in the following two levels:

— investigating the spatiotemporal features and flow of human information
processing system, based on functional relationships between activated areas
of human brain for each given task;

— investigating neural structures and neurobiological processes related to the
activated areas [19].

More specifically, at the current stage, we want to understand:

— how a peculiar part (one or more areas) of the brain operates in a specific
time;

— how the operated part changes along with time;

— how the activated areas work cooperatively to implement a whole informa-
tion processing;

Ways to Develop Human-Level WI: A BI Perspective 31

Problem-Solving

Decision-Making memor Planning
— 4 ~—
emotion GrC

ded ‘l,\l‘ction

uncertainty R,Eésoml]g Commonsense/nonMR

Learning | induction” " abduction Computation
stability AOC
. T attenton——__
Discovery Language
Creativity

Fig. 2. Reasoning centric thinking oriented functions and their relationships (GrC:
Granular Computing [25]; AOC: Autonomy Oriented Computing [14]; nonMR: non-
monotonous reasoning)

— how the activated areas are linked, indexed, navigated functionally, and what
are individual differences in performance;
— how a cognitive process is supported by neurobiological processes.

We need to study experimental cognitive neuroscience, data mining, intelli-
gent agents, data and knowledge grids, the semantic Web and wisdom Web in
a unified way [11123,4L 11,12, 28,34]. We have been developing a full process
from designing fMRI/EEG experiments based on WI needs for discovering new
cognitive WI models. Such a full process means a systematic approach for mea-
suring, collecting, modeling, transforming, managing, and mining multiple hu-
man brain data obtained from various cognitive experiments by using fMRI and
EEG [33[34].

As a step in this direction, we observe that fMRI brain imaging data and EEG
brain wave data extracted from human information processing mechanism are
peculiar ones with respect to a specific state or the related part of a stimulus.
Based on this point of view, we propose a way of peculiarity oriented mining
(POM) for knowledge discovery in multiple human brain data, without using
conventional imaging processing to fMRI brain images and frequency analysis
to EEG brain waves [T7,[32,[33,[34]. The proposed approach provides a new way
for automatic analysis and understanding of fMRI brain images and EEG brain
waves to replace human-expert centric visualization. The mining process is a
multi-step one, in which various psychological experiments, physiological mea-
surements, data cleaning, modeling, transforming, managing, and mining tech-
niques are cooperatively employed to investigate human information processing
mechanism.

Figure B gives the global picture of an example about how to investigate the
spatiotemporal features and flow of human information processing system. In
the cognitive process from perception to reasoning, data are collected in several
event-related time points, and transformed into various forms in which POM

32 N. Zhong

Thinking <----- - Perception

Reasoning - Language — Memory — Attention — Vision

tk 1/ ti t
1 transformation 1transformation 1transf0rmation 1

‘ POM/MDA ‘ ‘ POM/MDA ‘ ‘ POM/MDA ‘ ‘ POM/MDA ‘
! l
Explanation/Synthesis

Fig. 3. Investigating the spatiotemporal features and flow of human information
processing system

centric multi-aspect data analysis (MDA) can be carried out efficiently and ef-
fectively. Furthermore, the results of separate analysis can be explained and
combined into a whole flow.

4 A Data-Brain Model and Its Construction

The Data-Brain is a brain database with all of data related to all major aspects
and capabilities of human information processing mechanism for systematic in-
vestigation and understanding of human intelligence. The Data-Brain provides
a holistic view at a long-term, global field of vision to understand the principle,
models and mechanisms of human information processing system [91134,[35].

The key questions are how to obtain such data by systematic fMRI/EEG
experiments, how to manage such huge multimedia data for systematic investi-
gation and understanding of human intelligence, as well as how to analyse such
data from multi-aspect and multi-level for discovering new cognitive models. A
new conceptual model is needed to represent complex relationships among mul-
tiple human brain data sources, which are obtained by systematic fMRI/EEG
experiments. Furthermore, the following supporting capabilities are requested to
build such a Data Brain:

— It is a grid-based, simulation and analysis oriented, dynamic, spatial and
multimedia database;

— It deals with multiple data sources, multiple data forms, multiple levels of
data granulation;

— It provides multiple views and organizations;

— It includes various methods for data analysis, simulation, visualization, as
well as corresponding knowledge and models.

At first, agents for data collecting, storing and retrieving are deployed on the
Grid platform, like Globus, as a standard Grid service. OGSA-DALI is used to

Ways to Develop Human-Level WI: A BI Perspective 33

build database access applications [BI37]. The aim of OGSA-DAT is to provide the
middleware glue to interface existing databases, other data resources and tools
to each other in a common way based on the Open Grid Services Architecture
(OGSA). This middleware is based on the GGF-defined OGSI specification and
layered on top of the Globus toolkit 3 OGSI implementation (GT3 Core).
Multiple data sources are collected by various cognitive fMRI/EEG experi-
ments, modeling and transformation, and they are recorded to the corresponding
databases through the Grid service on the distributed sites. Furthermore, the
data-flow is a collection of descriptions for the dynamic relationship among mul-
tiple data sources on the data-grid. In the current study, data sources from
cognitive fMRI/EEG experiments, to be collected on the data-grid, include:

— human multi-perception mechanism for studying the relevance between au-
ditory and visual information processing;

— human deductive/inductive reasoning mechanism for understanding the
principle of human reasoning and problem solving in depth;

— human computation mechanism as an example of human problem solving
system;

— human decision-making mechanism from developing Web based decision-
making support system with an emotional factor;

— human learning mechanism for acquiring personalized student models in an
interactive learning process dynamically and naturally.

In order to build a Data Brain, a systematic methodology of cognitive ex-
perimental design needs to be developed, so that multiple human brain data
sources obtained by fMRI/EEG experiments are interrelated and can be utilized
for multi-purpose, not only a specific one. Event-related experimental designs
have become an important methodology in EEG/fMRI research to evaluate the
high level characteristics of human information processing in the central ner-
vous system [I8]. There are, at present, two main methods called event-related
potential (ERP) and event-related fIMRI for event-related experimental designs.
ERP is a tiny signal embedded in the ongoing EEG. By averaging the traces,
investigators can extract this signal, which reflects neural activity that is specif-
ically related cognitive events [7]. ERPs are best suited for addressing questions
about the time course of cognition rather than elucidating the brain structures
that produce the electrical events. ERPs also provide physiological indices of
when a person decides to response, or when an error is detected. On the other
hand, event-related fMRI follows the same logic as used in ERP/EEG studies
and provides the spatial resolution. Thus, event-related fMRI will further allow
fMRI and EEG to be combined in paradigms that are identical across methods.
By using such techniques, it is now becoming possible to study the precise spa-
tiotemporal orchestration of neuronal activity associated with perceptual and
cognitive events [I8], as well as systematic collection of human brain data for
building a Data Brain.

34 N. Zhong
5 Conclusion

BI emphasizes on a systematic approach for investigating human information
processing mechanism, including measuring, collecting, modeling, transforming,
managing, and mining multiple human brain data obtained from various cogni-
tive experiments by using fMRI and EEG. The proposed methodology attempts
to change the perspective of cognitive/brain scientists from a single type of ex-
perimental data analysis towards a holistic view at a long-term, global field
of vision to understand the principle, models and mechanisms of human infor-
mation processing. New generations of WI research and development need to
understand multi-nature of intelligence in depth. The recently designed instru-
mentation (fMRI etc.) and advanced IT are causing an impending revolution in
both WI and BI, making it possible for us to understand intelligence in depth
and develop human-level Web intelligence.

Acknowledgments

I would like to express my gratitude to Enrico Franconi, Michael Kifer, Wolfgang
May, Dieter Fensel and other organizers of ESWC 2007 for the kind invitation
and the excellent organization. I am grateful to all my research collaborators, as-
sistants, and students who have, over the years, together contributed to the de-
velopment of Web Intelligence (WI) and Brain Informatics (BI). Special thanks
to Jiming Liu, Yiyu Yao, Jinglong Wu, Benjamin Wah, and Shengfu Lu for our
joint projects and discussions. I am very grateful to people who have joined or sup-
ported the WI and BI communities, members of the WIC advisory board, WIC
technical committee, and WIC research centres, as well as keynote/invited speak-
ers of IEEE/WIC/ACM WI-IAT conferences. This work is partially supported by
the grant-in-aid for scientific research (No. 18300053) from the Japanese Ministry
of Education, Culture, Sports, Science and Technology.

References

1. T. Berners-Lee, J. Hendler, O. Lassila, “The Semantic Web”, Scientific American,
284, 34-43 (2001).

2. M. Cannataro and D. Talia, “The Knowledge Grid”, Communications of the ACM,
46 (2003) 89-93.

3. D. Fensel, Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce, Springer (2001).

4. D. Fensel, “Unifying Reasoning and Search to Web Scale”, IEEE Internet Com-
puting, 11(2) (2007) 94-96.

5. I. Foster and C. Kesselman (eds.) The Grid: Blueprint for a New Computing In-
frastructure, Morgan Kaufmann (1999).

6. M.S. Gazzaniga (ed.) The Cognitive Neurosciences I1I, The MIT Press (2004).

7. T.C. Handy, FEvent-Related Potentials, A Methods Handbook, The MIT Press
(2004).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Ways to Develop Human-Level WI: A BI Perspective 35

J. Hu and N. Zhong, “Organizing Multiple Data Sources for Developing Intelligent
e-Business Portals”, Data Mining and Knowledge Discovery, Vol. 12, Nos. 2-3,
Springer (2006) 127-150.

S.H. Koslow and S. Subramaniam (eds.) Databasing the Brain: From Data to
Knowledge, Wiley (2005).

J.E. Laird and M. van Lent, “Human-Level AI’s Killer Application Interactive
Computer Games”, AI Magazine (Summer 2001) 15-25.

Y. Li and N. Zhong, “Mining Ontology for Automatically Acquiring Web User
Information Needs”, IFEE Transactions on Knowledge and Data Engineering,
Vol. 18, No. 4 (2006) 554-568.

J. Liu, N. Zhong, Y.Y. Yao, and Z.W. Ras, “The Wisdom Web: New Challenges for
Web Intelligence (WI)”, Journal of Intelligent Information Systems, 20(1) Kluwer
(2003) 5-9.

J. Liu, “Web Intelligence (WI): What Makes Wisdom Web?”, Proc. FEighteenth
International Joint Conference on Artificial Intelligence (IJCAI’03) (2003) 1596-
1601.

J. Liu, X. Jin, and K.C. Tsui, Autonomy Oriented Computing: From Problem Solv-
ing to Complex Systems Modeling, Springer (2005).

J. McCarthy, “Roads to Human Level AI?”, Keynote Talk at Beijing University of
Technology, Beijing, China (September 2004).

A. Newell and H.A. Simon, Human Problem Solving, Prentice-Hall (1972).

M. Ohshima, N. Zhong, Y.Y. Yao, and C. Liu, “Relational Peculiarity Oriented
Mining”, Data Mining and Knowledge Discovery, Springer (in press).

B.R. Rosen, R.L. Buckner, and A.M. Dale, “Event-related functional MRI: Past,
Present, and Future”, Proceedings of National Academy of Sciences, USA, Vol. 95,
Issue 3 (1998) 773-780.

R.G. Shulman and D.L. Rothman, “Interpreting Functional Imaging Studies in
Terms of Neurotransmitter Cycling”, Proceedings of National Academy of Sciences,
USA, Vol. 95, Issue 20 (1998) 11993-11998. [

R.J. Sternberg, J. Lautrey, and T.I. Lubart, Models of Intelligence, American Psy-
chological Association (2003).

Y. Su, L. Zheng, N. Zhong, C. Liu, and J. Liu, “Distributed Reasoning Based on
Problem Solver Markup Language (PSML): A Demonstration through Extended
OWL”, Proc. 2005 IEEE International Conference on e-Technology, e-Commerce
and e-Service (EEE’05), IEEE Press (2005) 208-213.

Y. Su, J. Liu, N. Zhong, L. Zheng, and C. Liu, “A Method of Distributed Problem
Solving on the Web”, Proc. 2005 IEEE/WIC/ACM International Conference on
Web Intelligence (WI’05), IEEE Press (2005) 42-45.

A. Turing, “Computing Machinery and Intelligence”, Mind LIX(236) (1950)
433-460.

Y.Y. Yao, N. Zhong, J. Liu, and S. Ohsuga, “Web Intelligence (WTI): Research
Challenges and Trends in the New Information Age”, N. Zhong, Y.Y. Yao, J.
Liu, S. Ohsuga (eds.) Web Intelligence: Research and Development, LNAI 2198,
Springer (2001) 1-17.

Y.Y. Yao and N. Zhong, Granular Computing Using Information Tables. In T.Y.
Lin, Y.Y. Yao, L.A. Zadeh (eds.) Data Mining, Rough Sets and Granular Comput-
ing, Physica-Verlag (2002) 102-124.

L.A. Zadeh, “Precisiated Natural Language (PNL)”, AI Magazine, 25(3) (Fall
2004) 74-91.

36

27

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

N. Zhong

N. Zhong, J. Liu, Y.Y. Yao, and S. Ohsuga, “Web Intelligence (WI)”, Proc. 2/th
IEEE Computer Society International Computer Software and Applications Con-
ference (COMPSAC 2000), IEEE Press (2000) 469-470.

N. Zhong, C. Liu, and S. Ohsuga, “Dynamically Organizing KDD Process”, Inter-
national Journal of Pattern Recognition and Artificial Intelligence, Vol. 15, No. 3,
World Scientific (2001) 451-473.

N. Zhong, J. Liu, and Y.Y. Yao, “In Search of the Wisdom Web”, IEEE Computer,
35(11) (2002) 27-31.

N. Zhong, “Representation and Construction of Ontologies for Web Intelligence”,
International Journal of Foundations of Computer Science, World Scientific,
Vol. 13, No. 4 (2002) 555-570.

N. Zhong, J. Liu, and Y.Y. Yao (eds.) Web Intelligence, Springer, 2003.

N. Zhong, Y.Y. Yao, and M. Ohshima, “Peculiarity Oriented Multi-Database Min-
ing”, IEEE Transaction on Knowlegde and Data Engineering, Vol. 15, No. 4 (2003)
952-960.

N. Zhong, J.L. Wu, A. Nakamaru, M. Ohshima, and H. Mizuhara, “Peculiarity
Oriented fMRI Brain Data Analysis for Studying Human Multi-Perception Mech-
anism”, Cognitive Systems Research, 5(3), Elsevier (2004) 241-256.

N. Zhong, J. Hu, S. Motomura, J.L.. Wu, and C. Liu, “Building a Data Mining
Grid for Multiple Human Brain Data Analysis”, Computational Intelligence, 21(2),
Blackwell Publishing (2005) 177-196.

N. Zhong, “Impending Brain Informatics (BI) Research from Web Intelligence (WTI)
Perspective”, International Journal of Information Technology and Decision Mak-
ing, World Scientific, Vol. 5, No. 4 (2006) 713-727.

N. Zhong, J. Liu, and Y.Y. Yao, “Envisioning Intelligent Information Technologies
(iIT) from the Stand-Point of Web Intelligence (WI)”, Communications of the
ACM, 50(3) (2007) 89-94.

The OGSA-DALI project: hitp://www.ogsadai.org.uk/.

Empowering Software Maintainers
with Semantic Web Technologies

René Witte', Yonggang Zhang?, and Jiirgen Rilling®

!Institute for Progam Structures and
Data Organisation (IPD), Faculty of Informatics

University of Karlsruhe, Germany

witte@ipd.uka.de
? Department of Computer Science
and Software Engineering
Concordia University, Montreal, Canada
{rilling,yongg_zh}@cse.concordia.ca

Abstract. Software maintainers routinely have to deal with a multitude of arti-
facts, like source code or documents, which often end up disconnected, due to
their different representations and the size and complexity of legacy systems.
One of the main challenges in software maintenance is to establish and maintain
the semantic connections among all the different artifacts. In this paper, we
show how Semantic Web technologies can deliver a unified representation to
explore, query and reason about a multitude of software artifacts. A novel fea-
ture is the automatic integration of two important types of software mainte-
nance artifacts, source code and documents, by populating their corresponding
sub-ontologies through code analysis and text mining. We demonstrate how the
resulting “Software Semantic Web” can support typical maintenance tasks
through ontology queries and Description Logic reasoning, such as security
analysis, architectural evolution, and traceability recovery between code and
documents.

Keywords: Software Maintenance, Ontology Population, Text Mining.

1 Introduction and Motivation

As software ages, the task of maintaining it becomes more complex and more expen-
sive. Software maintenance, often also referred to as software evolution, constitutes a
majority of the total cost occurring during the life span of a software system [15, 16].
Software maintenance is a multi-dimensional problem space that creates an ongoing
challenge for both the research community and tool developers [8,14]. These mainte-
nance challenges are caused by the different representations and interrelationships
that exist among software artifacts and knowledge resources [17,18]. From a main-
tainer’s perspective, exploring [11] and linking these artifacts and knowledge re-
sources becomes a key challenge [1]. What is needed is a unified representation that
allows a maintainer to explore, query and reason about these artifacts, while perform-
ing their maintenance tasks [13].

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 37 2007.
© Springer-Verlag Berlin Heidelberg 2007

38 R. Witte, Y. Zhang, and J. Rilling

In this research, we introduce a novel formal ontological representation that inte-
grates two of the major software artifacts, source code and software documentation,
thereby reducing the conceptual gap between these artifacts. Discovered concepts and
concept instances from both source code and documents are used to explore and estab-
lish the links between these artifacts, providing maintainers with support during typical
software maintenance tasks [2].

Source Code

Ontology
(non-populated)

Documents

A general overview of our approach is shown in Fig. 1. In a first step, the existing
ontology is automatically populated from both the source code and documentation
artifacts. In a second step, the resulting knowledge base is explored, queried and rea-
soned upon by utilizing various Semantic Web-enabled clients.

Our research is significant for several reasons: (/) The fact that we provide a novel
approach to unify different software artifacts using a Semantic Web approach. (2) We
developed fully automatic ontology population that allows us to take advantage of the
large body of existing software artifacts, namely software documents and source code
and the knowledge they contain. (3) We present concrete application examples, illus-
trating how our ontological representation can benefit software developers during
typical maintenance tasks.

In Section 2, we discuss both challenges and requirements for a Semantic Web ap-
proach to software maintenance. Section 3 provides a general overview of our system.
The design for our software and source code ontologies is discussed in Section 4. In
Section 5, we describe in detail the fully automatic population of the ontologies, fol-
lowed by concrete examples illustrating how our approach can benefit software engi-
neers during typical maintenance tasks in Section 6.

Automatic
Population

Semantic
Web clients

Maintainers

Fig. 1. Ontology-Based Software Maintenance Overview

2 Semantic Web and Software Maintenance

In a complex application domain like software maintenance, knowledge needs to be
continually integrated from different sources (like source code repositories, documen-
tation, test case results), different levels of scope (from single variables to complete
system architectures), and across different relations (static, dynamic, etc.) [7, 9]. No
single system is currently capable of supporting a complete domain like software en-
gineering by itself. This makes it necessary to develop focused applications that can

Empowering Software Maintainers with Semantic Web Technologies 39

deal with individual aspects in a reliable manner, while still being able to integrate
their results into a common knowledge base. Ontologies offer this capability: a large
body of work exists that deals with ontology alignment and the development of upper
level ontologies, while Description Logic (DL) reasoners can check the internal con-
sistency of a knowledge base, ensuring at least some level of semantic integrity.
However, before we can design Semantic Web support for software maintenance, we
have to analyze the requirements particular to that domain.

2.1 Software Maintenance Challenges

With the ever increasing number of computers and their support for business proc-
esses, an estimated 250 billion lines of source code were being maintained in 2000,
with that number rapidly increasing [16]. The relative cost of maintaining and manag-
ing the evolution of this large software base represents now more than 90% of the
total cost [15] associated with a software product. One of the major challenges for the
maintainers while performing a maintenance task is the need to comprehend a multi-
tude of often disconnected artifacts created originally as part of the software devel-
opment process [9]. These artifacts include, among others, source code and software
documents (e.g., requirements, design documentation). From a maintainer’s perspec-
tive, it becomes essential to establish and maintain the semantic connections among
these artifacts.

In what follows, we introduce three typical use cases, which we will later revisit to
illustrate the applicability of our approach in supporting software maintainers during
these typical maintenance tasks.

Use case #1: Identify security concerns in source code. As discussed in [11], source
code searching and browsing are two of the most common activities during the main-
tenance of existing software. With applications that become exposed to volatile envi-
ronments with increased security risks (e.g., distributed environments, web-centric
applications), identifying these security flaws in existing software systems becomes
one of the major activities in the software maintenance phase.

Use case #2: Concept location and traceability across different software artifacts.
From a maintainer’s perspective, software documentation contains valuable informa-
tion of both functional and non-functional requirements, as well as information re-
lated to the application domain. This knowledge often is difficult or impossible to
extract only from source code [12]. It is a well known fact that even in organizations
and projects with mature software development processes, software artifacts created
as part of these processes end up to be disconnected from each other [1]. As a result,
maintainers have to spend a large amount of time on synthesizing and integrating in-
formation from various information sources in order to re-establish the traceability
links among these artifacts.

Use case #3: Architectural recovery and restructuring. With their increasing size and
complexity, maintaining the overall structure of software systems becomes an
emerging challenge of software maintenance. Maintainers need to comprehend the
overall structure of a software system by identifying major components and their
properties, as well as linking identified components with their lower-level
implementation [14].

40 R. Witte, Y. Zhang, and J. Rilling

2.2 Identified Requirements

Based on the stated use cases, we can now derive requirements for Semantic Web
support of software maintenance.

As a prerequisite, a sufficiently large part of the domain must be modeled in form
of an ontology, including the structure and semantics of source code and documents
to a level of detail that allows relevant queries and reasoning on the properties of ex-
isting artifacts (e.g., for security analysis).

Software maintenance intrinsically needs to deal with a large number of artifacts
from legacy systems. It is not feasible to manually create instance information for
existing source code or documents due to the large number of concept instances that
exist in these artifacts. Thus, automatic ontology population methods must be pro-
vided for extracting semantic information from those artifacts.

The semantic information must be accessible through a software maintainer's desk-
top. Knowledge obtained through querying and reasoning should be integrated with
existing development tools (e.g., Eclipse).

Finally, the acceptance of Semantic Web technologies by software maintainers is
directly dependent on delivering added benefits, specifically improving on typical
tasks, such as the ones described by the use cases above.

3 System Architecture and Implementation

In order to utilize the structural and semantic information in various software artifacts,
we have developed an ontology-based program comprehension environment, which
can automatically extract concept instances and their relations from source code and
documents (Fig. 2).

Eclipse IDE

Software Software
Artifact SOUND Plug-in Ontology Browser Ontology
[Ontology } [Query Interface } Document Navigator
Management nRQL/JavaScript -
Source
Source
Code
Code i
Ontology Population Ontology
Source Code Analysis Text Mining
System System —
Document Document
Semantic Web Infrastructure Ontology
— { Racer J { Protege } { RDF/OWL APIs } ann —

Fig. 2. Semantic Web-enabled Software Maintenance Architecture

An important part of our architecture is a software ontology that captures major
concepts and relations in the software maintenance domain [6]. This ontology consists
of two sub-ontologies: a source code and document ontology, which represent

Empowering Software Maintainers with Semantic Web Technologies 41

information extracted from source code and documents, respectively. The ontologies
are modeled in OWL-DL' and were created using the Protégé-OWL extension of
Protégé,” a free ontology editor.

Racer [5], an ontology inference engine, is adopted to provide reasoning services.
The Racer system is a highly optimized DL system that supports reasoning about
instances, which is particularly useful for the software maintance domain, where a
large amount of instances needs to be handled efficiently.

Automatic ontology population is handled by two subsystems: The source code
analysis, which is based on the JDT Java parser’ provided by Eclipse*; and the
document analysis, which is a text mining system based on the GATE (General
Architecture for Text Engineering) framework [3].

The query interface of our system is a plug-in that provides OWL integration for
Eclipse, a widely used software development platform. The expressive query
language nRQL provided by Racer can be used to query and reason over the
populated ontology. Additionally, we integrated a scripting language, which provides
a set of built-in functions and classes using the JavaScript interpreter Rhino”. This
language simplifies querying the ontology for software engineers not familiar with
DL-based formalisms.

4 Ontology Design for Software Maintenance

Software artifacts, such as source code or documentation, typically contain knowledge
that is rich in both structural and semantic information. Providing a uniform ontological
representation for various software artifacts enables us to utilize semantic information
conveyed by these artifacts and to establish their traceability links at the semantic level.
In what follows, we discuss design issues for both the documentation and source code
ontology used in our approach.

4.1 Source Code Ontology

The source code ontology has been designed to formally specify major concepts of ob-
ject-oriented programming languages. In our implementation, this ontology is further
extended with additional concepts and properties needed for some specific languages
(in our case, Java). Examples for classes in the source code ontology are Package, Class,
Method, or Variable. Our source code ontology is described in more detail in [20].

Within this sub-ontology, various ObjectProperties are defined to characterize the
relationships among concepts. For example, two instances of SourceObject may have a
definedin relation indicating one is defined in the other; or an instance of method may
read an instance of Field indicating the method may read the field in the body of the
method.

' OWL Web Ontology Language Guide, W3C, http://www.w3.org/TR/owl-guide/
2 Protégé ontology editor, http:/protege.stanford.edu/

? Eclipse Java Development Tools (JDT), http://www.eclipse.org/jdt/

* Eclipse, http://www.eclipse.org

3 Rhino JavaScript interpreter, http://www.mozilla.org/rhino/

42 R. Witte, Y. Zhang, and J. Rilling

Concepts in the source code ontology typically have a direct mapping to source
code entities and can therefore be automatically populated through source code analy-
sis (see Section 5.1).

4.2 Documentation Ontology

The documentation ontology consists of a large body of concepts that are expected to be
discovered in software documents. These concepts are based on various programming
domains, including programming languages, algorithms, data structures, and design
decisions such as design patterns and software architectures.

Additionally, the software documentation sub-ontology has been specifically
designed for automatic population through a text mining system by adapting the
ontology design requirements outlined in [19] for the software engineering domain.
Specifically, we included:

A Text Model to represent the structure of documents, e.g., classes for sentences,
paragraphs, and text positions, as well as NLP-related concepts that are discovered
during the analysis process, like noun phrases (NPs) and coreference chains. These
are required for anchoring detected entities (populated instances) in their originating
documents.

Lexical Information facilitating the detection of entities in documents, like the
names of common design patterns, programming language-specific keywords, or ar-
chitectural styles; and lexical normalization rules for entity normalization.

Relations between the classes, which include the ones modeled in the source code
ontology. These allow us to automatically restrict NLP-detected relations to semanti-
cally valid ones (e.g., a relation like <variable> implements <interface>, which
can result from parsing a grammatically ambiguous sentence, can be filtered out since
it is not supported by the ontology).

Finally, Source Code Entities that have been automatically populated through
source code analysis (cf. Section 5.1) can also be utilized for detecting corresponding
entities in documents, as we describe in more detail in Sections 5.2.

S Automatic Ontology Population

One of the major challenges for software maintainers is the large amount of informa-
tion that has to be explored and analyzed as part of typical maintenance activities.
Therefore, support for automatic ontology population is essential for the successful
adoption of Semantic Web technology in software maintenance. In this section, we
describe in detail the automatic population of our ontologies from existing artifacts:
source code (Section 5.1) and documents (Section 5.2).

5.1 Populating the Source Code Ontology

The source code ontology population subsystem is based on JDT, which is a Java parser
provided by Eclipse. JDT reads the source code and performs common tokenization and
syntax analysis to produce an Abstract Syntax Tree (AST). Our population subsystem

Empowering Software Maintainers with Semantic Web Technologies 43

traverses the AST created by the JDT compiler to identify concept instances and their
relations, which are then passed to an OWL generator for ontology population (Figure 3).

As an example, consider a single line of Java source code: public int sort(){, which
declares a method called sort. A simplified AST corresponding to this line of source
code is shown in Fig. 3. We traverse this tree by first visiting the root node Method
Declaration. At this step, the system understands that a Method instance shall be cre-
ated. Next, the Name Node is visited to create the instance of the Method class, in this
case sort. Then the Modifier Node and Type Node are also visited, in order to establish
the relations with the identified instance. As a result, two relations, sort hasModifier
public and sort hasType int, are detected.

(Source Code) public int sort () {
Parser (JDT) ‘ ‘
’ ' CMethod Declaration Node)
CAbstract Syntax Tree (AST))
Modifier Node Name Node
(public) (sort)
‘ Population system ‘ B!
’ Type Node
(int)

C Instances & Relations) ‘

Instance:

’ OWL Generator ‘ Method : sort
’ Relation:
sort hasModifier public
(OWL Files) sort hasType int

Fig. 3. Populating the source code ontology

The numbers of instances and relations identified by our system depend on the
complexity of the ontology and the size of the source code to be analyzed. At the cur-
rent stage of our research, the source code ontology contains 38 concepts (classes) and
41 types of relations (ObjectProperties). We have performed several case studies on
different open source systems to evaluate the size of the populated ontology. Table 1
summaries the results of our case studies, with the size of the software system being
measured by lines of code (LOC) and the process time reflecting both AST traversal
and ontology population.

Table 1. Source code Ontology size for different open source projects

LOC Proc. Time Instances | Relations | Inst./LOC Rel./LOC
java.util 24k 13.62s 10140 47009 0.42 1.96
InfoGlue® 40k 27.61s 15942 77417 0.40 1.94
Debrief’ 140k 67.12s 52406 244403 0.37 1.75
uDig® 177k 82.26s 69627 284692 0.39 1.61

® Infoglue, http://www.infoglue.org
7 Debrief, http://www.debrief.info
8 uDig, http://udig.refractions.net

44 R. Witte, Y. Zhang, and J. Rilling

5.2 Populating the Documentation Ontology

We developed a custom text mining system to extract knowledge from software
documents and populate the corresponding sub-ontology. The processing pipeline and
its connection with the software documentation sub-ontology is shown in Fig. 4. Note
that, in addition to the software documentation ontology, the text mining system can
also import the instantiated source code ontology corresponding to the document(s)
under analysis.

‘ NLP preprocessing: Tokenisation, Noun Phrase detection etc. ‘

1 R

Instantiated Source Code Ontology ‘

‘ Gazetteer: assign ontology classes ‘ —————— e

assign ontology classes to document eitities s .
initial population

‘ Grammar: Named Entity recognition

l consider ontological hierarchies in grammar rules

‘ Coreference Resolution: determine identical individuals } .

l look up synonym relations 1o find- synonyms :
) -~
‘ Normalization: get representational individuals in canonical form f--------------------------4 Complete Instantiated Software Ontology
l look up ontology properties with rules for establishing the canonicalrferi{ 3

‘ Morphological analysis, Deep Syntactic Analysis: SUPPLE ‘
l populated subset of,

as well as document—
specific NLP results

‘ Relation detection: establish relations with syntactical rules

‘ OWL Ontology Export }—’ Populated Ontology for Processed Documents

Fig. 4. Workflow of the Ontology-Driven Text Mining Subsystem

considering ontology relations and properties

The system first performs a number of standard preprocessing steps, such as
tokenisation, sentence splitting, part-of-speech tagging and noun phrase chunking.’
Then, named entities (NEs) modeled in the software ontology are detected in a two-
step process: Firstly, an OntoGazetteer is used to annotate tokens with the
corresponding class or classes in the software ontology (e.g., the word "architecture"
would be labeled with the architecture class in the ontology). Complex named entities
are then detected in the second step using a cascade of finite-state transducers
implementing custom grammar rules written in the JAPE language, which is part of
GATE. These rules refer back to the annotations generated by the OntoGazetteer, and
also evaluate the ontology. For example, in a comparison like
class=="Keyword", the ontological hierarchy is taken into account so that a
JavaKeyword also matches, since a Java keyword is-a keyword in the ontology.
This significantly reduces the overhead for grammar development and testing.

? For more details, please refer to the GATE documentation: http://gate.ac.uk/documentation/

Empowering Software Maintainers with Semantic Web Technologies 45

The next major steps are the normalization of the detected entities and the resolution
of co-references. Normalization computes a canonical name for each detected entity,
which is important for automatic ontology population. In natural language texts, an
entity like a method is typically referred to with a phrase like "the myTestMethod
provides...". Here, only the entity myTestMethod should become an instance of the
Method class in the ontology. This is automatically achieved through lexical
normalization rules, which are stored in the software ontology as well, together with
their respective classes. Moreover, throughout a document a single entity is usually
referred to with different textual descriptors, including pronominal references (like "this
method"). In order to find these references and export only a single instance into the
ontology that references all these occurrances, we perform an additional co-reference
resolution step to detect both nominal and pronomial coreferences.

The next step is the detection of relations between the identified entities in order to
compute predicate-argument structures, like implements(class, interface). Here, we
combine two different and largely complementary approaches: A deep syntactic
analysis using the SUPPLE bottom-up parser and a number of pre-defined JAPE
grammar rules, which are again stored in the ontology together with the relation
concepts.

Finally, the text mining results are exported by populating the software
documentation sub-ontology using a custom GATE component, the OwlExporter. The
exported, populated ontology also contains document-specific information; for
example, for each class instance the sentence it was found in is recorded. Figures 5
and 6 show excerpts of ontologies populated by our text mining system.

6 Application of Semantic Web-Enabled Software Maintenance

In what follows, we describe concrete application scenarios that correspond to the
three use cases introduced earlier in Section 2.1.

6.1 Source Code Security Analysis

Existing techniques on detecting and correcting software security vulnerabilities at the
source code level include human code reviews, testing, and static analysis. In the fol-
lowing example, we illustrate how our Semantic Web-based approach can facilitate
security experts or programmers in identifying potential vulnerabilities caused by
unexpected object accessibility.

In this scenario, a maintainer may consider allowing public and non-final fields in
Java source code a security risk that may cause the value of the field being modified
outside of the class where it was defined. In order to detect this, he can search the
ontology through a query'® that retrieves all Field instances that have a PublicModifier but
no FinalModifier:

var SecurityConcern1 = new Query(); // define a new query
SecurityConcern1.declare("F", "MP", "MF"); // declare three query variables
SecurityConcern1.restrict("F", "Field"); // variable F must be a Field instance
SecurityConcern1.restrict("MP", "PublicModifier"); // variable MP must be a PublicModifier instance

1% In this and the following examples, we present ontology queries using our JavaScript-based
query interface discussed in Section 3.

46 R. Witte, Y. Zhang, and J. Rilling

// variable MF must be a FinalModifier instance
// F and MP have a hasModifier relation

// F and MF have NO hasModifier relation

// this query only retrieve F

// perform the query

SecurityConcern1.restrict("MF", "FinalModifier");
SecurityConcern1.restrict("F", "hasModifier", "MP");
SecurityConcern1.no_relation("F", "hasModifier", "MF");
SecurityConcern1.retrieve("F");

var result = ontology.query(SecurityConcern1);

In order to extend the query for more specific tasks, such as: Retrieve all public
data of Java package “user.pkgl” that may potentially be (read or write) accessed by
a package “user.pkg2”, the previous query can be further refined by adding:

"o

SecurityConcern1.restrict("F", "definedIn", "user.pkg1");
SecurityConcern1.restrict("M", "Method");
SecurityConcern1.restrict("M", "definedIn", "user.pkg2");
SecurityConcern1.restrict("M", "access", "F");

// F must be definedin user.pkg1

// variable M must be a Method instance
// M must be definedin user.pkg2

// M and F have an access relation

It should be noted that fields or methods in Java are defined in classes, and classes
are defined in packages. The ontology reasoner will automatically determine the tran-
sitive relation definedin between the concepts Field/Method and Package. In addition, read
and write relations between method and field are modeled in our ontology by the read-
Field and writeField ObjectProperties, which are a subPropertyOf access.

Many security flaws are preventable through security enforcement. Common vul-
nerabilities such as buffer overflows, accessing un-initialized variables, or leaving
temporary files in the disk could be avoided by programmers with strong awareness
of security concerns. In order to deliver more secure software, many development
teams have guidelines for coding practice to enforce security. In our approach, we
support maintainers and security experts during enforcement or validation, by check-
ing whether these programming guidelines are followed. For example, to prevent
access to un-initialized variables, a general guideline could be: all fields must be ini-
tialized in the constructors. The following query retrieves all classes that did not fol-
low this specific constructor initialization guideline:

var SecurityConcern2 = new Query();
SecurityConcern2.declare("F", "I", "C");
SecurityConcern2.restrict("F", "Field");
SecurityConcern2.restrict("l", "Constructor");
SecurityConcern2.restrict("C", "Class");
SecurityConcern2.restrict("F", "definedin”, "C");

// define a new query

// declare three query variables

// variable F must be a Field instance

// variable | must be a Constructor instance
// variable C must be a Class instance

// F must be definedin C

SecurityConcern2.restrict("l", "definedin”, "C");
SecurityConcern2.no_relation("l", "writeField", "F");
SecurityConcern2.retrieve("C", 'I");

var result = ontology.query(SecurityConcern2);

// | must be also definedin C

// I and F have NO writeField relation
// this query only retrieve C and |

// perform the query

These two examples illustrate the power of our Semantic Web-enabled software
maintenance approach: Complex queries can be performed on the populated ontology
to identify specific patterns in the source code. Such types of queries utilize both the
structural (e.g., definedin) and semantic (e.g., writeField) knowledge of programming
languages, which is ty?ically ignored by traditional search tools based on string-
matching, such as grep’

6.2 Establishing Traceability Links Between Source Code and Documentation

After instantiating both the source code and documentation sub-ontologies from their
respective artifacts, it is now possible to automatically cross-link instances between

' Grep tool, http://www.gnu.org/software/grep/

Empowering Software Maintainers with Semantic Web Technologies 47

these sub-ontologies. This allows maintainers to establish traceability links among the
sub-ontologies through queries and reasoning, in order to find, for example, documen-
tation corresponding to a source code entity, or to detect inconsistencies between in-
formation contained in natural language texts vs. the actual code.

For example, our source code analysis tool may identify c¢; and c; as classes; and
this information can be used by the text mining system to identify named entities — ¢’;
and ¢’ — and their associated information in the documents (Fig. 5). As a result,
source code entities ¢; and ¢, can now be linked to their occurrences in the documents
(c'; and c'y). After source code and documentation ontology are linked, users can per-
form ontological queries on either documents or source code regarding properties of
¢, or ¢,. For example, in order to retrieve document passages that describe both ¢, and
c, or to retrieve design pattern descriptions referring to a pattern that contains the
class currently being analyzed by a maintainer. Furthermore, it is also possible to
identify inconsistencies — the documentation might list a method as belonging to a
different class than it is actually implemented, for example — which are detected
through the linking process and registered for further review by the user.

We performed an initial evaluation on a large open source Geographic Information
System (GIS), uDig'?, which is implemented as a set of plug-ins on top of the Eclipse
platform. The uDig documents used in the study consist of a set of JavaDoc files and
a requirement analysis document. "

Links between the uDig implementation and its documentation are recovered by first
performing source code analysis to populate the source code ontology. The resulted
ontology contains instances of Class, Method, Field, etc., and their relations, such as inheri-
tance and invocation. Our text mining system takes these identified class names, method
names, and field names as an additional resource to populate the documentation ontol-
ogy (cf. Fig. 4). Through this text mining process, a large number of Java language con-
cept instances are discovered in the documents, as well as design-level concept
instances such as design patterns or architecture styles. Ontology linking rules are then
applied to link the populated documentation and source code ontologies.

Documentation Ontology Source Code Ontology

DesignP attem

BehavioralP atterns

Wisitor _a100_IGeoResource
T = /f
i ~
718 _visitor_pattern ~ A[netiefractions udig catalog IGecResource |

~ »[crg geotools data FeatureStore

—————— »[netrefractions.udig.catalog utilAST |

sentence

Fig. 5. Linked Source Code and Documentation Ontology

2 uDIG open source GIS, http://udig.refractions.net/confluence/display/UDIG/Home
13 uDig documentation, http://udig.refractions.net/docs/

48 R. Witte, Y. Zhang, and J. Rilling

A partial view of a linked ontology is shown in Figure 5; the corresponding sen-
tences are:

Sentence_2544: “For example if the class FeatureStore is the target class and the
object that is clicked on is a IGeoResource that can resolve to a FeatureStore then a
FeatureStore instance is passed to the operation, not the IGeoResource”.

Sentence_712: “Use the visitor pattern to traverse the AST”

Figure 5 shows that our text mining system was able to discover that sentence_2544
contains both class instances _4098_FeatureStore and _4100_IGeoResource. Both
of these classes can be linked to the instances in source code ontology,
org.geotools.data.FeatureStore and net.refractions.udig.catalog.IGeoResource, respec-
tively. Additionally, in sentence_712, a class instance (_719_AST) and a design pattern
instance (_718_visitor_pattern) are also identified. Instance _719_AST is linked in a
similar manner to the net.refractions.udig.catalog.util. AST interface in the source code
ontology. Therefore, the recovery of traceability links between source code and docu-
mentation is feasible and implicit relations in the linked ontologies can be inferred.

6.3 Architectural Analysis

The populated ontology can also assist maintainers in performing more challenging
tasks, such as analyzing the overall structure of a software system, i.e., architectural
analysis. In this case study, we analyzed the architecture of the open source web site
content management system, InfoGlue'’. The first step of an architectural analysis is
wtypically to identify potential architectural styles [7] and candidate components in
the system. By browsing the documentation ontology populated through text mining,
we observe that a large number of instances of concept Layer are discovered. This in-
formation provides us with significant clues that the InfoGlue system might be im-
plemented using a typical Layered Architecture [7]. Additionally, the text mining
discovered that the application layer contains a set of action classes, as shown in
Fig. 6. This information provides important references for our further analysis of the
documents and source code.

sentence_12910

Application_layers

layerContainsClass_String

layerContainsClass

The action o...

[—The_action_sclassas | [_asticn_classes_design_details|

Fig. 6. Architecture information discovered by text mining

We later determined that the action classes refer to classes that implement
webwork.action.Action interface. Before conducting the analysis, we hypothesized

' InfoGlue Open Source Content Management Platform, http://www.infoglue.org/

Empowering Software Maintainers with Semantic Web Technologies 49

that the InfoGlue system implements a common layered architecture, in which each
layer only communicates with its upper or lower layer. In order to validate our
hypothesis, we performed a number of queries on the populated source code ontology
to retrieve method calls between layers.

The script first retrieves all layer instances in the ontology, and then iteratively
queries method call relations between layers. A similar query is performed to retrieve
the number of methods being called.

var layers = ontology.retrieve_instance(“Layer’);

for(var i = 0; i < layers.size(); i++){
var layer1 = layers.get(“Layer”, i);
for(var j= 0; j < layers.size(); j++){ Application Layer
var layer2 = layers.get(“Layer”, j);

if(layer1.equals(layer2)) continue; 535 Calls 3Calls

var query = new Query(); i

query.declare("M1”, “M2’); 235 Call 1 Galleg
Layer

query.restrict("M1”, “Method”); 0 775 Calls
query.restrict("M2”, “Method”); Coirdl 269 Called
query.restrict("M1”, “definedIn”, layer1);

query.restrict("M2”, “definedln’, layer2); MZ&II;L 1‘ 0

query.restrict(‘M1”, “call’, “‘M2’); 383 Call

query.retrieve("M1”, “‘M2’);

var result = ontology.query(query); Dorain Layer

out.printin(layer1 + “calls “+ layer2 + “ “+ result.size() + “ times.”);

}

Fig. 7. Example script to detect method calls between layers (left) and results obtained from
executing the query on the populated ontology (right)

Fig. 7 summarizes the results of these two queries, by showing both the number of
method calls and the number of methods being called. From the analysis of the result
one can refute the original hypothesis about the implementation of the common lay-
ered architecture. This is due to the fact that one can observe in the InfolGlue system
a significant amount of communications from the application layer to domain layer —
skipping the control layer. This information is valuable for software maintainers, be-
cause it indicates that any changes made in the domain layer may also directly affect
the application layer, a situation which one would not expect based on the architec-
tural description found in the InfoGlue system documentation.

In addition, we observed that there is no communication from the domain layer to
the control and application layer, i.e., the domain layer can be substituted by other
components matching the same interface. This observation also reveals an important
property of the domain layer in the InfoGlue system — the domain layer is a self-
contained component that can be reused by other applications. Our observation is also
supported by the architecture document itself, which clearly states that “the domain
business logic should reside in the domain objects themselves making them self
contained and reusable”.

Moreover, by analyzing these results, one would expect that a lower layer should not
communicate with its upper layer. The three method calls from the control layer to the
application layer can therefore be considered as either implementation defects or as the
result of a special design intention not documented. Our further inspection showed that

50 R. Witte, Y. Zhang, and J. Rilling

the method being called is a utility method that is used to format HTML content. We
consider this to be an implementation defect since the method can be re-implemented in
the control layer to maintain the integrity of a common layered architecture style.

7 Related Work and Discussions

Existing research on applying Semantic Web techniques in software maintenance
mainly focuses on providing ontological representation for particular software arti-
facts or supporting specific maintenance task [10]. In [21], Ankolekar et al. provide
an ontology to model software, developers, and bugs. This ontology is semi-
automatically populated from existing artifacts, such as software interface, emails,
etc. Their approach assists the communication between software developers for bug
resolution. In [22], Happle et al. present an approach addressing the component reuse
issue of software development by storing descriptions of components in a Semantic
Web repository, which can then be queried for existing components.

Comparing with the existing approaches, like the LaSSIE system [4], our work dif-
fers in two important aspects: (/) the automatic population from existing software arti-
facts, especially source code and its documentation, which are both very different in
structure and semantics; and (2) the application of queries on the populated ontologies,
including DL reasoning, to enhance concrete tasks performed by software maintainers.
The first aspect is an important prerequisite to bring a large amount of existing data
into the “Software Semantic Web”. The inclusion of semantically different and com-
plementary artifacts, in the form of machine-readable code and natural language, pro-
vides for real improvement in software maintenance, enabling for the first time an
automatic connection between code and its documentation. The second aspect shows
the power of DL-based reasoning when applied to the software domain, significantly
enhancing the power of conventional software development tools.

8 Conclusions and Future Work

In this paper, we presented a novel approach that provides formal ontological repre-
sentations of the software domain for both source code and document artifacts. The
ontologies capture structural and semantic information conveyed in these artifacts,
and therefore allow us to link, query and reason across different software artifacts on
a semantic level.

In this research, we address important issues for both the Semantic Web and the
software maintenance communities. For the Semantic Web community, we illustrate
how the use of the semantic technologies can be extended to the software mainte-
nance domain. Furthermore, we demonstrate how the large body of existing knowl-
edge found in source code and software documentation can be made available through
automatic ontology population on the Semantic Web.

From a software maintenance perspective, we illustrate through three concrete use
cases how the Semantic Web and its underlying technologies can benefit and support
maintainers during typical maintenance tasks.

Empowering Software Maintainers with Semantic Web Technologies 51

In future versions, more work is needed on enhancing existing software development

tools with Semantic Web capabilities, some of which is addressed in the Semantic Desk-
top community. Many of the ideas presented here obviously also apply to other areas in
software engineering besides maintenance; we have also been investigating ontology-
enabled software comprehension processes [13], which will complement and further
enhance the utility of our “Software Semantic Web” approach.

References

1.

®

10.

11.

12.

13.

14.

15.

16.
17.

18.

G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia, “Information Retrieval Models for
Recovering Traceability Links between Code and Documentation”. In Proc. of IEEE In-
ternational Conference on Software Maintenance, San Jose, CA, 2000.

R. Brooks, “Towards a Theory of the Comprehension of Computer Programs”. Interna-
tional Journal of Man-Machine Studies, pp. 543-554, 1963.

H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan. “GATE: A Framework and
Graphical Development Environment for Robust NLP Tools and Applications.” In Proc. of
the 40th Anniversary Meeting of the ACL. Philadelphia, July 2002.

P. Devanbu, R.J. Brachman, P.G. Selfridge, and B.W. Ballard, “LaSSIE - a Knowledge-
based Software Information System”, Comm. of the ACM, 34(5), pp. 36—49, 1991.

. V. Haarslev and R. Moller, “RACER System Description”, In Proc. of International Joint

Conference on Automated Reasoning, Siena, Italy, 2002.
P. N. Johnson-Laird, “Mental Models: Towards a Cognitive Science of Language, Infer-
ence and Consciousness”. Harvard University, Cambridge, MI, 1983.

. A. V. Mayhauser, A. M. Vans, “Program Comprehension during Software Maintenance

and Evolution”. IEEE Computer, 28(8), pp. 44-55, August, 1995.

IEEE Standard for Software Maintenance, IEEE 1219-1998.

D. Jin and J. Cordy. "Ontology-Based Software Analysis and Reengineering Tool Integra-
tion: The OASIS Service-Sharing Methodology". In Proc. of the 21st IEEE International
Conference on Software Maintenance, Budapest, Hungary, 2005.

H.-J. Happel, S. Seedorf, "Applications of Ontologies in Software Engineering", In Proc.
of International Workshop on Semantic Web Enabled Software Engineering, 2006.

T.C. Lethbridge and A. Nicholas, "Architecture of a Source Code Exploration Tool: A
Software Engineering Case Study", Department of Computer Science, University of Ot-
tawa, Technical Report, TR-97-07, 1997.

M. Lindvall and K. Sandahl, “How well do experienced software developers predict soft-
ware change?” Journal of Systems and Software, 43(1), pp. 19-27, 1998.

W. Meng, J. Rilling, Y. Zhang, R. Witte, P. Charland, “An Ontological Software Compre-
hension Process Model”, In Proc. of the 3rd International Workshop on Metamodels,
Schemas, Grammars, and Ontologies for Reverse Engineering, Italy, 2006.

C. Riva, "Reverse Architecting: An Industrial Experience Report", In Proc. of the 7th
IEEE Working Conference on Reverse Engineering, Australia, 2000.

R. Seacord, D. Plakosh, and G. Lewis, “Modernizing Legacy Systems: Software Tech-
nologies, Engineering Processes, and Business Practices”, Addison-Wesley, 2003.

I. Sommerville, “Software Engineering (6th Edition)”, Addison-Wesley, 2003.

M.A. Storey, S.E. Sim, and K. Wong, “A Collaborative Demonstration of Reverse Engi-
neering tools”, ACM SIGAPP Applied Computing Review, Vol. 10(1), pp18-25, 2002.

C. Welty, “Augmenting Abstract Syntax Trees for Program Understanding”, In Proc. of
International Conference on Automated Software Engineering, 1997.

52

20.

21.

22.

R. Witte, Y. Zhang, and J. Rilling

. R. Witte, T. Kappler, C. Baker, “Ontology Design for Biomedical Text Mining”, Chapter

13 in Semantic Web: Revolutionizing Knowledge Discovery in the Life Sciences, Springer
Verlag, 2006.

Y. Zhang, R. Witte, J. Rilling, V. Haarslev, “An Ontology-based Approach for Traceabil-
ity Recovery”, In Proc. of International Workshop on Metamodels, Schemas, Grammars,
and Ontologies for Reverse Engineering, Genoa, Italy, 2006.

A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, C. Welty, “Supporting Online Problem-
solving Communities With the Semantic Web”, In Proc. of the 15th International Confer-
ence on World Wide Web, 2006.

H.-J. Happel, A. Korthaus, S. Seedorf, P. Tomczyk, “KontoR: An Ontology-enabled Ap-
proach to Software Reuse”, In Proc. of the 18th International Conference on Software En-
gineering and Knowledge Engineering, 2006.

Minimal Deductive Systems for RDF

Sergio Munoz', Jorge Pérez?3, and Claudio Gutierrez*

! Universidad Catélica de la Santisima Concepcién, Chile
2 Pontificia Universidad Catélica de Chile
3 Universidad de Talca, Chile
4 Universidad de Chile

Abstract. This paper presents a minimalist program for RDF, by show-
ing how one can do without several predicates and keywords of the RDF
Schema vocabulary, obtaining a simpler language which preserves the
original semantics. This approach is beneficial in at least two directions:
(a) To have a simple abstract fragment of RDFS easy to formalize and
to reason about, which captures the essence of RDFS; (b) To obtain al-
gorithmic properties of deduction and optimizations that are relevant for
particular fragments. Among our results are: the identification of a sim-
ple fragment of RDFS; the proof that it encompasses the main features
of RDFS; a formal semantics and a deductive system for it; sound and
complete deductive systems for their sub-fragments; and an O(nlogn)
complexity bound for ground entailment in this fragment.

1 Introduction

The Resource Description Framework (RDF) is the W3C standard for represent-
ing information in the Web [I7]. The motivation behind the development of RDF
by the W3C was, as Tim Berners-Lee pointed out for the Semantic Web, to have
a common and minimal language to enable to map large quantities of existing
data onto it so that the data can be analyzed in ways never dreamed of by its
creators [2]. If one would like to bring to reality this vision, the processing of
RDF data at big scale must be viable. The very future of RDF data deployment
and their use will depend critically on the complexity of processing it.

Efficient processing of any kind of data relies on a compromise between two
parameters, namely, the size of the data and the expressiveness of the language
describing it. As we already pointed out, in the RDF case the size of the data
to be processed will be enormous, as examples like Wordnet [12], FOAF [3] and
Gene Ontology [19] show. Hence, a program to make RDF processing scalable
has to consider necessarily the issue of the expressiveness of RDF. Due to the
well known fact that the complexity of entailment using RDF data in its full
expressiveness is an untractable problem [7J84], such a program amounts es-
sentially to look for fragments of RDF with good behavior w.r.t. complexity of
processing. This is the broad goal of the present paper.

The full specification of RDF (that is, including RDFS vocabulary) and their
fragments has not yet been studied in detail. Its description is given in [16] and its

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 53-67 2007.
© Springer-Verlag Berlin Heidelberg 2007

54 S. Munoz, J. Pérez, and C. Gutierrez

semantics is defined in [I5]. The first observation that arises when dealing with
RDFS vocabulary is the difficulty to work with it. An example of this fact is that
even the rules of deduction presented in the official RDF Semantics specification
are not complete [TOJ8]. A second empirical observation is that several parts of
the RDFS vocabulary have been depreciated, and practice shows that there are
others that are hardly used or not being used at all. This makes it very hard for
developers to build and optimize sound implementations and algorithms, and
for theoreticians to work on this specification.

In order to illustrate the above issues, let us consider two well known RDFS
specifications: WordNet [12] and Friend of a Friend (FOAF) [3]. Both schemas
use only a proper subset of the RDFS vocabulary. FOAF schema has no blank
nodes. Additionally, there is a point about the real need of explicitly declaring
classes via rdfs:Class: In both specifications the triples where rdfs:Class
occurs are redundant (i.e. can be deduced from the rest of the data). Something
similar happens with terms defined as properties (rdf:Property). Why use all
the weight of the full RDFS specification in these cases? Another example where
these type of issues will arise, is the SPARQL query language specification [IT],
which currently does not support RDFS entailment. There is wide agreement
that more expressive vocabularies must be treated orthogonally to the rest of
the SPARQL features. In practice, each query will use just a small fragment
of the RDFS vocabulary. For reasoning and optimization purposes, it would
be useful to have a sound and complete theory of each such fragment which
preserves the semantics of RDFS.

Among the most important directions of a program to develop solutions to
the above mentioned problems are:

— To identify a fragment which encompasses the essential features of RDF,
which preserves the original semantics, be easy to formalize and can serve
to prove results about its properties.

— To study in detail the semantics of different fragments of RDF, and give
sound and complete deductive system for each of them.

— To study the complexity of entailment for the vocabulary in general and
in these fragments in particular, and to develop algorithms for testing
entailment.

As for the first point, in this paper we identify a fragment of RDFS that
covers the crucial vocabulary of RDFS, prove that it preserves the original RDF
semantics, and avoids vocabulary and axiomatic information that only serves
to reason about the structure of the language itself and not about the data it
describes. We lift this structural information into the semantics of the language,
hiding them from developers and users.

Regarding the second point, we study thoroughly all fragments of the core
fragment showing that they retain the original RDFS semantics. We then study
the lattice of the theories induced by these fragments, developing minimal sound
and complete proof systems for them. We also calculate what are the min-
imal sub-theories that should be considered when reasoning with restricted
vocabulary.

Minimal Deductive Systems for RDF 55

Finally, regarding the point of complexity of entailment, there are two main
aspects of RDF to consider: the built-in vocabulary and the notion of blank
nodes. For the complexity of entailment considering blank nodes, good (polyno-
mial) cases can be derived from well known databases and constraint—satisfaction
results [4[905]. These cases consider special forms of interaction between blank
nodes that are very common in practice. On this regard, we prove that there is
a notion of normalized proof for RDFS entailment which permits to treat the
issue of blank nodes entailment in a way orthogonal to the treatment of RDFS
vocabulary. Using this notion, results for blank nodes can be composed modu-
larly with particular results for ground RDFS fragments, that is, not considering
blank nodes semantics.

For the the ground case, from a database point of view, even current known
bounds seems totally impractical. For example, the naive approach would use
closure, and estimates for the size of the closure are high: we show that in the
fragment presented, it is quadratic. Nevertheless, this bound is still impractical
from a database point of view. On these lines, we prove that entailment can be
done in time O(nlogn) in the worst case, where n is the size of the source data.

The paper is organized as follows. Section 2 presents standard RDF and its
semantics and discusses the vocabulary design to conclude with a proposal of
core fragment, called pdf. Section 3 studies the pdf fragment. Section 4 presents
the lattice of minimal fragments of pdf and their deductive systems. Section 5
studies complexity of entailment in the pdf fragment. Finally, Section 6 presents
the conclusion.

2 RDF Semantics

Assume there are pairwise disjoint infinite sets U (RDF URI references), B
(Blank nodes), and L (Literals). Through the paper we assume U, B, and L fixed,
and for simplicity we will denote unions of these sets simply concatenating their
names. A tuple (s,p,0) € UBLxU x UBL is called an RDF triple. In this tuple,
s is the subject, p the predicate, and o the object. Note that —following recent
developments [0UTI]- we are omitting the old restriction stating that literals
cannot be in subject position.

Definition 1. An RDF graph (or simply a graph) is a set of RDF triples. A sub-
graph is a subset of a graph. The universe of a graph G, denoted by universe(G)
is the set of elements in UBL that occur in the triples of G. The vocabulary of
G, denoted by voc(G) is the set universe(G) N UL. A graph is ground if it has
no blank nodes. In general we will use uppercase letters N, X, Y, ... to denote
blank nodes.

In what follows we will need some technical notions. A map is a function p :
UBL — UBL preserving URIs and literals, i.e., u(u) = wu for all v € UL.
Given a graph G, we define p(G) as the set of all (u(s), u(p), (o)) such that
(s,p,0) € G. We will overload the meaning of map and speak of a map u from
Gy to Go, and write p : G1 — Ga, if the map p is such that p(G1) is a subgraph
of GQ.

56 S. Munoz, J. Pérez, and C. Gutierrez

2.1 Interpretations

The normative semantics for RDF graphs given in [I5], and the mathematical
formalization in [I0] follows standard classical treatment in logic with the no-
tions of model, interpretation, entailment, and so on. In those works the RDFS
theory is built incrementally from Simple, to RDF, to RDFS interpretations (or
structures) and models for graphs. We present here a single notion of interpre-
tation which summarizes Simple, RDF, and RDFS interpretations in one step,
and which will be used later to define the semantics of our fragment.

Definition 2. An interpretation over a vocabulary V is a tuple
Z = (Res, Prop,Class, Ext, CExt, Lit, Int)

such that: (1) Res is a nonempty set of resources, called the domain or universe
of I; (2) Prop is a set of property names (not necessarily disjoint from Res); (3)
Class C Res is a distinguished subset of Res identifying if a resource denotes
a class of resources; (4) Ext : Prop — 2Fes>Xfes =g mapping that assigns an
extension to each property name; (5) CExt : Class — 28 a mapping that
assigns a set of resources to every resource denoting a class; (6) Lit C Res the
set of literal values, Lit contains all plain literals in LNV ; (7) Int : ULNV —
Res U Prop, the interpretation mapping, a mapping that assigns a resource or
a property name to each element of UL in V', and such that Int is the identity
for plain literals and assigns an element in Res to elements in L.

In [T5/10] the notion entailment is defined using the idea of satisfaction of a graph
under certain interpretation. Intuitively a ground triple (s, p, 0) in an RDF graph
G will be true under the interpretation Z if p is interpreted as a property name,
s and o are interpreted as resources, and the interpretation of the pair (s,0)
belongs to the extension of the property assigned to p.

In RDF, blank nodes work as existential variables. Intuitively the triple (X, p, 0)
with X € B would be true under 7 if there exists a resource s such that (s, p, o) is
true under Z. When interpreting blank nodes, an arbitrary resource can be chosen,
taking into account that the same blank node must always be interpreted as the
same resource. To formally deal with blank nodes, extensions of the interpretation
map Int are used in the following way. Let A : B — Res be a function from blank
nodes to resources; we denote Int 4 the extension of Int to domain B defined by
Inty(X) = A(X) when X € B. The function A captures the idea of existentiality.

The formal definition of model and entailment for RDFS in [I5/I0] relies on
a set of semantics restrictions imposed to interpretations in order to model the
vocabulary, and the a priori satisfaction of a set of aziomatic triples. We refer
the reader to Appendix [A] for a complete formal definition of the semantics of
RDFS using the notion of interpretation defined here.

2.2 RDFS Vocabulary

The RDF specification includes a set of reserved words, the RDFS vocabulary
(RDF Schema [16]) designed to describe relationships between resources as well

Minimal Deductive Systems for RDF 57

as to describe properties like attributes of resources (traditional attribute-value
pairs). Table [l (Appendix [A]) shows the full RDFS vocabulary as it appears
in [I5], and (in brackets) the shortcuts that we will use in this paper. This
vocabulary has a special interpretation (see Definition [G in Appendix [A]).

Roughly speaking, this vocabulary can be divided conceptually in the follow-
ing groups:

(a) a set of properties rdfs:subPropertyOf [sp], rdfs:subClassOf [sc], rdfs:domain
[dom], rdfs:range [range] and rdf:type [type].

(b) a set of classes, rdfs: Resource, rdfs:Class, rdf:Property, rdf:XMLLiteral,
rdfs:Literal, rdfs:Datatype.

(¢) Other functionalities, like a system of classes and properties to describe lists:
rdfs:Container, rdfs:ContainerMembershipProperty, rdfs:member, rdf:List, rdf:Alt,
rdf:Bag, rdf:Seq, rdf:first, rdfirest, rdfmil, rdf: 1, rdf: 2, ..., and a systems for
doing reification: a class rdf:Statement together with properties rdf:subject,
rdf:predicate, rdf:object.

(d) Utility vocabulary, like rdfs:seeAlso, rdfs:isDefinedBy, rdfs:comment, rdfivalue,
rdfs:label.

The groups in (b), (c) and (d) have a very light semantics, essentially de-
scribing its internal function in the ontological design of the system of classes
of RDFS. Their semantics is defined by “axiomatic triples” [I5]which are rela-
tionships among these reserved words. Note that all axiomatic triples are “struc-
tural”, in the sense that do not refer to external data, but talk about themselves.
Much of this semantics correspond to what in standard languages is captured
via typing. From a theoretical and practical point of view it is inconvenient to
expose it to users of the language because it makes the language more difficult
to understand and use, and for the criteria of simplicity in the design of the
language.

On the contrary, the group (a) is formed by predicates whose intended mean-
ing is non-trivial and is designed to relate individual pieces of data external to
the vocabulary of the language. Their semantics is defined by rules which involve
variables (to be instantiated by real data). For example, rdfs:subClassOf[sc] is
a binary property reflexive and transitive; when combined with rdf:type[type]
specify that the type of an individual (a class) can be lifted to that of a su-
perclass. This group (a) forms the core of the RDF language developers use, as
practice is showing.

For all the above considerations, it is that group (a) forms a natural fragment
of RDFS to be studied in depth. Section 3 is devoted to study this fragment,
and our results will show that there are theoretical reasons that support the
convenience of this choice.

3 The pdf Fragment of RDFS

Define pdf (read rho-df, the p from restricted rdf) to be the following subset of
the RDFS vocabulary:

pdf = {sp, sc, type, dom, range}.

58 S. Munoz, J. Pérez, and C. Gutierrez

Definition 3. Let G be a graph over pdf. An interpretation T is a model of G
under pdf, denoted T \=,as G, iff T is an interpretation over pdf U universe(G)
that satisfies the following conditions:

1. Simple:

(a) there exists a function A : B — Res such that for each (s,p,0) € G, Int(p) €
Prop and (Inta(s),Inta(o)) € Ext(Int(p)), where Inta is the extension of
Int using A.

2. Subproperty:

(a) Ext(Int(sp)) is transitive and reflexive over Prop
(b) if (z,y) € Ext(Int(sp)) then x,y € Prop and Ext(x) C Ext(y)

3. Subclass:

(a) Ext(Int(sc)) is transitive and reflevive over Class

(b) if (z,y) € Ext(Int(sc)) then z,y € Class and CExt(x) C CExt(y)
4. Typing I:

(a) v € CEzt(y) & (x,y) € Ext(Int(type))

(b) if (z,y) € Ext(Int(dom)) and (u,v) € Ext(z) then u € CExt(y)

(c¢) if (z,y) € Ext(Int(range)) and (u,v) € Ext(x) then v € CExt(y)
5. Typing I1I:

(a) For each e € pdf, Int(e) € Prop.

(b) if (z,y) € Ext(Int(dom)) then = € Prop and y € Class.

(c¢) if (z,y) € Ext(Int(range)) then x € Prop and y € Class.

(d) if (z,y) € Ext(Int(type)) then y € Class.

We define G entails H under pdf, denoted G |=,4¢ H, iff every model under pdf
of G is also a model under pdf of H.

Note that in pdf-models we do not impose the a priori satisfaction of any ax-
iomatic triple. Indeed, pdf-models does not satisfy any of the RDF/S axiomatic
triples in [I5JI0], because all of them mention RDF'S vocabulary outside pdf. This
is also the reason for the inclusion of conditions 5 in pdf models that capture
the semantics restrictions imposed syntactically by the RDF/S axiomatic triples
(dom, dom, prop), (dom, range, class), (range, dom, prop), (range, range, class),
and (type, range, class), and the fact that every element in pdf must be inter-
preted as a property.

The next theorem shows that this definition retains the original semantics for
the pdf vocabulary:

Theorem 1. Let |= be the RDFS entailment defined in [TH[I0], and let G and
H be RDF graphs that do not mention RDFS vocabulary outside pdf. Then

G):H iﬁG':pde-

Minimal Deductive Systems for RDF 59

The issue of reflexivity. There are still some details to be refined in the the-
ory of pdf. Note that, although in pdf-models we do not impose the a priori
satisfaction of any triple, there are triples that are entailed by all graphs, for ex-
ample the triples (sp, sp, sp), (sc, sp, sc), (type, sp, type), (dom, sp,dom), and
(range, sp, range). These triples are true under every pdf model due to the fact
that sp must be interpreted as a reflexive relation. Also, because blank nodes
work as existential variables, the triples above with the subject or the object
replaced by any blank node, are also true in every pdf-model. The good news
is that these are the only triples in the pdf fragment that are satisfied by every
model:

Proposition 1. Let t be an RDF triple such that =par t. Then, either t €
{(sp. sp,5p). (sc,5p,5¢), (type, sp, type), (dom, sp,dom), (range, sp, range)},
or t is obtained from these triples replacing the subject or object by a blank
node.

This is part of a more general phenomena, namely the presence of reflexivity for
sp and sc. We will show that reflexivity for sp and sc is orthogonal with the
rest of the semantics.

Definition 4 (Semantics without reflexivity of sp and sc). An interpre-
tation T is a reflexive—relaxed model under pdf of a graph G, written T }:23}‘ ,
iff T is a pdf model that does not necessarily satisfy the restrictions stating that
Ext(Int(sp)) and Ext(Int(sc)) are reflexive relations over Prop and Class re-
spectively.

Theorem 2. Let G and H be pdf graphs. Assume that H does not contain
triples of the form (x,sp,x) nor (x,sc,x) for x,y € UL, nor triples of the form
(X,sp,Y) nor (X,sc,Y) for X € B orY € B. Then,

G Fpar H iff G =it H.

Essentially the above theorem states that the only use of reflexive restrictions
in RDFS models is the entailment of triples of the form (z, sp, x), (x,sc,z), or
their existential versions replacing the subject or object by blank nodes. Another

nrx

property of =4t is that it does not entail axiomatic triples:

Corollary 1. There is no triple t such that)5 t.

3.1 Deductive System for pdf Vocabulary

In what follows, we present a sound and complete deductive system for the
fragment of RDF presented in the previous section. The system is arranged in
groups of rules that captures the semantic conditions of models. In every rule,
A, B,C, X, and Y are meta-variables representing elements in UBL.

60 S. Munoz, J. Pérez, and C. Gutierrez

1. Simple:
(a) & foramapp:G — G b) & forG'C@

2. Subproperty:

 “ag g v g
3. Subclass:

(a) gA,sc(,j,)scgygssc,C) (b) gA,sc(i?t;;igpe,A)
4. Typing:

o e v s

5. Implicit Typing:

(Adon,B) (C,sp,A) (X.C.Y) (Arange.B) (C.sp.A) (X.C.))
(a) = X oype B) (b) ERRVETTY

6. Subproperty Reflexivity:

A,
(a) ((j»srn,i)) (c) o) for p € pdf
A,S ,B A, ,X
(b) (A,sp(,A) p(B,)sp,B) (d) ﬁ for p € {dom, range}
7. Subclass Reflexivity:
A,sc,B A
(a) —(A,sc(,A) (B,)sc,zs) (b) ((Jflfcx) forp € {dom, range, type}

Note 1 (On rules (5a) and (5b)). As noted in [I0/8], the set of rules presented
in [I5] is not complete for RDFS entailment. The problem is produced when
a blank node X is implicitly used as standing for a property in triples like
(a,sp, X), (X,dom,b), or (X, range, c). Here we solve the problem following the
elegant solution proposed by Marin [I0] adding just two new rules of implicit
typing (rules 5 above).

An instantiation of a rule is a uniform replacement of the metavariables oc-
curring in the triples of the rule by elements of UBL, such that all the triples
obtained after the replacement are well formed RDF triples.

Definition 5 (Proof). Let G and H be graphs. Define G \-par H iff there exists
a sequence of graphs Py, Py, ..., Py, with P, = G and P, = H, and for each j
(2 < j < k) one of the following cases hold:

— there exists a map p: P; — Pj_1 (rule (1a)),
— P; C Pj_y (rule (1b)),

Minimal Deductive Systems for RDF 61

— there is an instantiation & of one of the rules (2)-(7), such that R C Pj_;
and Pj = Pj_1 UR.

The sequence of rules used at each step (plus its instantiation or map), is called
a proof of H from G.

Theorem 3 (Soundness and completeness). The proof system b a5 is sound
and complete for |=,q¢, that is, given graphs G and H we have

G Fpar H iff G ’:pdf H.

Corollary 2. Define the proof system =35% as b=par by droping rules of reflezivity
(rules (6) and (7)). Then for graphs G and H,

G toar H iff G =gt H.

4 Deductive Systems for Minimal Fragments of pdf

We will assume in the rest of the paper that the user does not redefine or enrich
the semantics of the pdf-vocabulary. In syntactical terms this means that there
is no triple where this vocabulary occurs in subject or object positions. This
assumption is light and can be found on almost all published RDF specifications.

To begin with, the following theorem shows that for several purposes blank
nodes can be treated in an orthogonal form to pdf vocabulary.

Theorem 4 (Normal form for proofs). Assume G tpar H. Then there is a
proof of H from G where the rule (1) is used at most once and at the end.

Consider the lattice of fragments of pdf in Figure [l Given one of the fragments
X, by an X-graph we will understand a graph that mention pdf vocabulary only
from X. Similarly, an X-rule is one rule (2-7) that mention pdf vocabulary only
from X.

Theorem 5. Let X be one of the fragments of pdf in Figured, and let G and
H be X-graphs. Assume that G ,q¢ H, then there exists a proof of H from G
which only uses X -rules and rule (1).

The above result is based in the observation that in a proof of H from G we can
avoid the following fact: a sequence of graphs P;, P;y1, ..., Piy; produced in the
proof may present vocabulary outside X, but with P; and P;;; X-graphs. This
fact may impose new rules obtained from the rules of F,qr by a concatenation
that result in a sound derivation between X-graphs. It can be shown that the
only rules obtained in this way coincide actually with X-rules. A second point
is that triples with vocabulary outside X, produced by the application of non
X-rules are not needed and can be left out of the proof of H from G.

Theorem [Bl implies that X -rules are sound and complete for |=,q¢ in fragment
X. As a direct consequence we also obtain that X-rules without considering
reflexivity rules, are sound and complete for pdf 1D fragment X.

In what follows G|y means the subgraph induced by vocabulary V', i.e. those
triples having subject, or predicate, or object in V.

62 S. Munoz, J. Pérez, and C. Gutierrez

Fig. 1. The lattice of fragments of pdf

Interpolation Lemmas for RDF. Interpolation lemmas refer to lemmas express-
ing the role of vocabularies in deduction. They follow from the previous results
in this section.

Lemma 1. Let G and H be graphs. If (a,b,c) € G and a,b,c do not appear in
voc(H) nor in pdf, then G f=par H iff G — {(a,b,¢)} =par H.

Lemma 2. Leta,b,c be ground terms with b not belonging to pdf. Then: G |=par
(a7 ba C) Zﬁ G‘{sp,a,b,c} ’:pdf (a7 ba C)'
Lemma 3. Let a,b € UBL, then

1. G =pat (a,dom, b) iff Glaom Fpar (a,dom, b).
2. G E=paf (a,range,b) iff Glrange Fpar (@, Tange,b).

Moreover, if a,b are ground, |=,4r reduces to membership in G.

Note 2. Although (a,dom, b) refers to a property a and a class b, inferring a dom
statement in the RDFS system does not depend on statements about classes or
properties. For example, from the previous lemma follows the non-intuitive fact
that {(c1, sc,¢2), (c2,8¢,¢1), (a,dom, ¢1)} does not entail (a,dom, ¢3).

Lemma 4. Let a # b, then

1. G =par (a,sc,b) iff Glsc F=pat (a,s¢,Db).
2. G =par (a,sp,b) iff Glsp F=par (a,sp,b).

It turns out that type is the most entangled keyword in the vocabulary and

deducing G |=,4t (a, type, b) can involve all of G (except those triples mentioned
in Lemma [I]).

Minimal Deductive Systems for RDF 63
5 The Complexity of pdf Ground Entailment

Let us introduce some notation. For a graph G and a predicate p, define G}, as
the subgraph of G consisting of the triples of the form (x,p,y) of G, and define
Gy as the subgraph consisting of triples without pdf vocabulary. Let G(sp) be
the directed graph whose vertices are all the elements v which appear as subject
or objects in the triples of G, and in which (u,v) is an edge if and only if
(u, sp,v) € G. Similar definition for G(sc).

The naive approach to test the entailment G = H in the ground case would
be to consider the closure of G and check if H is included in it. Recall that for
ground G, the closure is the graph obtained by adding to G all ground triples
that are derivable from G. The following result shows that this procedure would
take time proportional to |H| - |G]? in the worst case, which is too expensive
from a database point of view.

Theorem 6. The size of the closure of G is O(|G|?), and this bound is tight.

For the upper bound, the result follows by an analysis of the rules. The most
important point is the propagation —when applicable— of the triples of the form
(z,a,y) through the transitive closure of the G(sp) graph by the usage of rule
2(b): it can be shown that this gives at most |G| x |Ggp| triples. For triples having
a fixed predicate in pdf the quadratic bound is trivial. For the tightness, consider
the graph {(a1, sp, az2),..., (an,sp,an+1)} U{(21,a1,Yn),- .., (@n,an,yn)}. The
number of triples of the closure of this graph is 2n+1+ ZZ=1 k that is quadratic
in n.

The following algorithm presents a much better procedure to check ground
entailment in this fragment.

Algorithm (Ground Entailment)
Input: G, triple (a,p, b)

. IF p € {dom, range} THEN check if (a,p,b) € G.
. IF p = sp, a # b, THEN check if there is a path from a to b in G(sp).
IF p = sc, a # b, THEN check if there is a path from a to b in G(sc).
. IF p € {sp, sc} and a = b, THEN check if (a,p,a) € G else check all patterns
of triples in the upper part of rules 6 (for sp) and rule 7 (for sc).
5. IF p ¢ pdf THEN check (a,p,b) € Gy, if it is not
LET G(sp)* be the graph G(sp) with the following marks:
For each (a,v,b) € Gy, if v € G(sp) then mark it green.
IN Check in G(sp)* if there is a path from a vertex marked green to p
6. IF p = type THEN
LET G(sp)’ be the graph G(sp) with the following marks:
- For each triple (u,dom, v) € Gyon, if u € G(sp) mark the
vertex u with d(v).
- For each triple (a,e,y) € Gy, if e € G(sp), mark the
vertex e with a.

=~ W N

64 S. Munoz, J. Pérez, and C. Gutierrez

LET G(sc)’ be the graph G(sc) with the following marks:
- For vertex u marked d(v) reachable from a vertex marked a in G(sp)’,
if v € G(sc) mark it blue.
- For each (a,type,w) € G, if w € G(sc) mark it blue.
IN Check in G(sc)’ if there is a path from a blue node to b.
Repeat this point for range instead of dom.

Fig. 2. Point 6 of the Ground Entailment Algorithm

Theorem 7. Let (a,b,c) be a ground triple. The algorithm above can be used to
test the entailment G |=pqa¢ (a,b,) in time O(|G|log|G|).

Correctness and completeness of the algorithm follows from an inspection of
the rules. The algorithm uses the rules in a bottom-up fashion. There are some
subtleties in points 5 and 6. Point 5 follows from Lemma [2l and rule 2(a). The
construction of G(sp)* can be done in |G| log |G| steps: order Gy and then while
traversing G(sp) do binary search on Gy. For point 6 (see Figure 2 the crucial
observation is that in G(sp)’, if there is a path from a vertex marked a to a
vertex u marked d(v), then G = (a, u,y) for some y, and hence G = (a, type,v)
using rule 4(a). Note that this checking takes time at most linear in |G|. From
here, it is easy to see that the checking in G(sc)’ will do the job.

Corollary 3. Let H be a ground graph. Deciding if G |=,a¢ H can be done in
time O(|H| - |G|log|Gl).

The following result shows that the above algorithm cannot be essentially im-
proved, in the sense that, any other algorithm for testing the ground entailment
G [=par H will take time proportional to |H| - |G|log |G| in the worst case.

Theorem 8. The problem of testing G |=,ar t takes time 2(|G|log|G|).

The bound is obtained by coding the problem of determining whether two sets
are disjoint, which is a well known problem that needs (2(nlogn) comparisons in
the worst case [I]. The codification is as follows: Given the sets A = {a1,...,a,}
and B = {by,...,b,}, construct the RDF graph G = {(a;—1,sp,a;)}2<i<n U
{(z,b;,y)}1<j<n. Then, we have that G |= (z,a,,y) iff AN B # 0.

Minimal Deductive Systems for RDF 65

6 Conclusions

We presented a streamlined fragment of RDFS which includes all the vocabu-
lary that is relevant for describing data, avoiding vocabulary and semantics that
theoretically corresponds to the definition of the structure of the language. We
concentrated in studying the semantics, entailment, minimal proof systems, and
algorithmic properties of this relevant fragment of RDFS. Our results show a vi-
able proposal to lower the complexity of RDF data processing by using fragments
of RDFS.

In this paper we have concentrated primarily on the ground dimension of RDF.
Future work includes the refinement of our current results about the interplay
between blank nodes semantics and the ground part. We are also working in the
applications of our results to practical cases, as well as developing best practices
for logical design of RDF specification based on the previous considerations.

Acknowledgments. Pérez was supported by Direccién de Investigacion — Uni-
versidad de Talca, Gutierrez by Proyecto Enlace DI 2006, ENL 06/13, Univer-
sidad de Chile, and the three authors by Millennium Nucleus Center for Web
Research, P04-067-F, Mideplan, Chile.

References

1. M. Ben-Or. Lower bounds for algebraic computation trees. Proc. 15th Annual Sym-
posium on Theory of Computing, pp 80-86, 1983.

2. T. Berners-Lee. Principles of Design. Personal Notes, http://www.w3.org/
DesignIssues/Principles.html.

3. Dan Brickley, Libby Miller. FOAF Vocabulary Specification. July 2005.
http://xmlns.com/foaf/0.1/

4. J. de Bruijn, E. Franconi, S. Tessaris. Logical Reconstruction of normative RDF.
In OWLED 2005, Galway, Ireland, November 2005

5. Victor Dalmau, P. G. Kolaitis, M. Vardi. Constraint Satisfaction, Bounded
Treewidth, and Finite—Variable Logics Proc. 8th Int. Conf. on Principles and Prac-
tice of Constraint Programming, September, 2002.

6. Jeremy J. Carroll, Christian Bizer, Pat Hayes, Patrick Stickler, Named graphs,
Journal of Web Semantics vol. 3, 2005, pp. 247 - 267

7. C. Gutierrez, C. Hurtado, A. O. Mendelzon, Foundations of Semantic Web Data-
bases, Proceedings ACM Symposium on Principles of Database Systems (PODS),
Paris, France, June 2004, pp. 95 - 106.

8. H. ter Horst. Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. Journal of Web
Semantics, vol. 3, 2005.

9. Jean—Francois Baget, RDF Entailment as a Graph Homomorphism, In ISWC 2005.

10. Draltan Marin, A Formalization of RDF (Applications de la Logique d la
sémantique du web), Ecole Polytechnique — Universidad de Chile, 2004. Techni-
cal Report Dept. Computer Science, Universidad de Chile, TR/DCC-2006-8.
http://www.dcc.uchile.cl/cgutierr/ftp/draltan.pdf

11. E. Prud’hommeaux, A. Seaborne. SPARQL Query Language for RDF. W3C
Working Draft, October 2006. http://www.w3.org/TR/rdf-sparql-query/.

66

12.

13.

14.

15.
16.

17.

18.
19.

A

S. Munoz, J. Pérez, and C. Gutierrez

RDF/OWL Representation of WordNet. Edit. Mark van As-
sem, Aldo Gangemi, Guus Schreiber. Working Draft, April 2006.
http://www.w3.0org/2001/sw/BestPractices/WNET/wn-conversion.

Resource Description Framework (RDF) Model and Syntaz Specification, Edit. O.
Lassila, R. Swick, Working draft, W3C, 1998.

RDF/XML Syntax Specification (Revised) W3C Recommendation 10 February
2004, Edit. D. Beckett

RDF Semantics, W3C' Recommendation 10 February 2004 Edit. P. Hayes

RDF Vocabulary Description Language 1.0: RDF Schema, W3C Recommendation
10 February 2004, Edit. D. Brickley, R.V. Guha.

RDF Concepts and Abstract Syntax, W3C Recommendation 10 February 2004,
Edit. G. Klyne, J. J. Carroll.

RDF Primer, W3C Recommendation 10 February 2004, Edit. F. Manola, E. Miller,
Gene Ontology. http://www.geneontology.org/

Appendix: RDFS Semantics

To easy the job of the reader, we reproduce here the definitions and axioms of
the normative semantics of RDF [I5] consisting of a model theory and axiomatic
triples. The set rdfsV stands for the RDFS vocabulary.

Definition 6 (cf. [I5{10]). The interpretation Z is an RDFS model for an
RDF graph G, denoted by T = G, iff T is an iterpretation over vocabulary
rdfsV U universe(G) that satisfies the RDF/S axiomatic triples [TH[T10] and the
following semantic conditions:

1.

Stmple:

(a) there exists a function A : B — Res such that for each (s,p,0) € G, Int(p) €
Prop and (Inta(s),Inta(o)) € Ext(Int(p)), where Inta is the extension of
Int using A.

RDF:

(a) © € Prop < (z, Int(prop)) € Ext(Int(type))

(b) If I € universe(G) is a typed XML literal with lezical form w, then Int(l)
is the XML literal value of w, Int(l) € Lit, and (Int(l),Int(xmlLit)) €
Ext(Int(type)).

RDFS Classes:

(a) © € Res & x € CExt(Int(res))

(b) x € Class & x € CExt(Int(class))

(c) x € Lit & « € CExt(Int(literal))

RDFS Subproperty:

(a) Ext(Int(sp)) is transitive and reflexive over Prop

(b) if (z,y) € Ext(Int(sp)) then x,y € Prop and Ext(xz) C Ext(y)

RDFS Subclass:

(a) Ext(Int(sc)) is transitive and reflezive over Class

(b) if (z,y) € Ext(Int(sc)) then z,y € Class and CExt(x) C CExt(y)

RDFS Typing:

(a) © € CExt(y) & (x,y) € Ext(Int(type))

(b) if (z,y) € Ext(Int(dom)) and (u,v) € Ext(z) then u € CExt(y)

(c¢) if (z,y) € Ext(Int(range)) and (u,v) € Ext(x) then v € CExt(y)

Minimal Deductive Systems for RDF 67

7. RDFS Additionals:
(a) if x € Class then (z,Int(res)) € Ext(Int(sc)).
(b) if x € CExzt(Int(datatype)) then (z, Int(literal)) € Ext(Int(sc))
(¢) if x € CExt(Int(contMP)) then (z, Int(member)) € Ext(Int(sp))

Now, given two graphs G and H we say that G RDFS entails H and write
G = H, iff every RDFS model of G is also an RDFS model of H.

Table 1. RDF/S vocabulary [I5I10] with shortcuts in brackets. The first column shows
built-in classes, second and third show built-in properties.

rdfs:Resource [res] rdf:type [type] rdfs:isDefinedBy [isDefined]
rdf:Property [prop] rdfs:domain [dom| rdfs:comment [comment]
rdfs:Class [class] rdfs:range [range] rdfs:label [label]
rdfs:Literal [literal] rdfs:subClassOf [sc] rdf:value [value]
rdfs:Datatype [datatype] rdfs:subPropertyOf [sp] rdfinil [nil]
rdf:XMLLiteral [xm1Lit] rdf:subject [subj] rdf: 1 [1]
rdfs:Container [cont] rdf:predicate [pred] rdf: 2 [2]
rdf:Statement [stat] rdf:object [obj] ..

rdf:List [1ist] rdfs:member [member] rdf: i[i]

rdf:Alt [alt] rdf:first [first] ..

rdf:Bag [bag] rdfirest [rest]

rdf:Seq [seq] rdfs:seeAlso [seeAlso]

rdfs:ContainerMembershipProperty [contMP]

Web Service Contracting: Specification and
Reasoning with SCIFF

Marco Alberti', Federico Chesani?, Marco Gavanelli', Evelina Lamma',

Paola Mello?, Marco Montali?, and Paolo Torroni?

! ENDIF, University of Ferrara
Via Saragat 1, 44100 Ferrara, Italy
Name.Surname@unife.it
2 DEIS, University of Bologna
V.le Risorgimento 2, 40136 Bologna, Italy
Name.Surname@unibo.it

Abstract. The semantic web vision will facilitate automation of many
tasks, including the location and dynamic reconfiguration of web services.
In this article, we are concerned with a specific stage of web service loca-
tion, called, by some authors, contracting. We address contracting both
at the operational level and at the semantic level. We present a frame-
work encompassing communication and reasoning, in which web services
exchange and evaluate goals and policies. Policies represent behavioural
interfaces. The reasoning procedure at the core of the framework is based
on the abductive logic programming SCIFF proof-procedure. We de-
scribe the framework, show by examples how to formalise policies in the
declarative language of SCIFF, and give the framework a model-theoretic
and a sound proof-theoretic semantics.

1 Introduction

The Service Oriented Computing (SOC) paradigm, and its practical implemen-
tation based on Web Services, are rapidly emerging as standard architectures
for distributed application development. Different service providers, heteroge-
nous in terms of hardware and software settings, can easily inter-operate by
means of communication standards and well-known network protocols. In such
a scenario, the use of off-the-shelf solutions and dynamic reconfiguration be-
comes attractive, both at design level, as well as at execution (run-time) level.
However, dynamic reconfiguration of services is possible only if supported by a
suitable technology. The Semantic Web vision, based on the idea that adding
machine-understandable semantic information to Web resources will facilitate
automation of many tasks [I820], including the location of Web Services, is a
promising way to address this issue.

Drawing from [I8], we consider a process of searching the right service to
match a request as consisting of two stages. During the first one, called discov-
ery, the requester states only the things that are desired, thus, using an ontology
or other KR formalisms, it seeks for all the services that can potentially satisfy

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 68 2007.
© Springer-Verlag Berlin Heidelberg 2007

Web Service Contracting: Specification and Reasoning with SCIFF 69

a request of such a kind. During the second stage, called contracting, the re-
quester provides in input specific information for an already requested service.
The purpose of this second stage is to verify that the input provided will lead
to a desired state that satisfies the requester’s goal.

Many relevant papers are written about web service discovery; some of them
use Logic Programming (LP) techniques. They mostly focus on the discovery
stage. In this article, we are concerned with the contracting stage, which we
address both at the operational level, and at the semantic level. We present a
framework, called SCIFF Reasoning Engine (SRE) encompassing reasoning and
communication in a networked architecture inspired to the model of discovery
engines. We discuss the problem of communicating policies between web ser-
vices, and of determining whether the policies of a provider and a requester are
compatible with each other. We use a mixture of Abductive Logic Programming
(ALP, [1I7]), and Constraint Logic Programming (CLP, [16]). ALP is used to con-
struct sets of input and output messages, along with assumed data, while CLP
is used to maintain a partial temporal order among them. We chose to adopt a
hypothetical reasoning framework such as ALP because reasoning is made before
execution. A component such as SRE which reasons on possible developments
of the interaction among web services has to come up with hypotheses about
which messages are to be expected in the future. In fact, a similar approach,
also based on hypothetical reasoning, though not on LP, has been followed by
others, notably [18].

In this work we assume that a previous discovery stage has already produced
multiple candidate services. The intended user of SRE will typically be a web
service, although for the sake of presentation we will name the users alice and
eShop. The user query is given in terms of goals and policies. Policies describe
the observable behaviour of users, i.e., their behavioural interface, in terms of
relationships among externally observable events regarding the service. We for-
malise web services’ policies in a declarative language derived from the SCIFF
language, born in the context of the EU SOCS project [1]. SCIFF was conceived
to specify and verify social-level agent interaction. In this work, a simplified ver-
sion of the SCIFF language is adopted for defining policies, by means of social
integrity constraints: a sort of reactive rules used to generate and reason about
possible evolutions of a given interaction instance. Distinguishing features of SRE
are its declarative and operational approaches combined together into a working
framework. Users specify their goals as well as their own policies (related to the
goals) by means of rules; in their turn, service providers publish their service
descriptions, together with their policies about the usage of the services, again
by means of rules. The use of ALP reconciles forward and backward reasoning
in a unified reasoning engine: two aspects that frequently, in the context of web
services, are treated separately from each other. Moreover, while ALP and CLP
have been used to address planning problems before, in this work we want to
show how a mixture of known, but little-used techniques can be used to solve a
real-world problem with a real implementation.

70 M. Alberti et al.

Policies caching
- publish policies
- \

service

- query policies
8 provide policies

service

SCIFF
— Discovery Engine|

/
5 publish policies Tnform
service possible
partners:

Querying and Discoverying

Fig. 1. The architecture of SRE

In the next section, we show the SRE architecture and introduce informally a
walk through scenario. In Sect. Blwe explain the notation used to write policies in
SRE and in Sect. [d] we present its underlying logic. Sect. Bl develops the scenario
in more detail and shows the reasoning in SRE by example, and Sect.[dl concludes
by discussing related approaches and future work.

2 Architecture

The SRE architecture, shown in Figure [is a client-server architecture aug-
mented with a “smart” discovery engine (which incorporates the SRE itself).
We assume that SRE has information available about web services, either gath-
ered in a previous discovery phase from the Internet (in the style of web spiders),
or because explicitly published to it by web services. So we can safely assume
that the data collected has already been filtered and, if providers refer to different
ontologies, equivalences between concepts have already been established.

At the logical level, the retrieved information consists of triplets in the form
(s,ws, (KKBys, Puws)), where s identifies a service, ws is the name of a web service
that provides s, and (KBys, Pws) are the knowledge base and policies that ws
associates to s. In particular, for a given provider ws providing s, a set of policies
(rules) describes ws’s behaviour with respect to s, and a knowledge base, in
the form of a logic program, contains information that ws wants to disclose to
potential customers, together with its policies. A sample policy could state that
the service delivers goods only to certain countries, or zones. The list of such
zones could be made available through the knowledge base.

SRE reasons based on a client’s query (also called goal, in the LP sense) which
it matches to a service. Such a query will contain the name of the service that
the client (¢) needs, a (possibly empty) set of policies P, and a (possibly empty)
knowledge base KB.. The goal is an expression consisting of a conjunction of
elements, which can represent, for example, events and constraints, like partial
orders among events. The output of SRE is a number of triplets (ws, £, A), each
one containing the name of a web application which provides the service, plus

Web Service Contracting: Specification and Reasoning with SCIFF 71

some additional information: £, which encodes a possible future interaction, i.e.,
a partially ordered sequence of events, occurring between ws and ¢ and regarding
s, and a set A containing a number of additional validity conditions for £. For
example, ws could be the name of a service that provides a device, £ could be
“first ws shows evidence of membership to Better Business Bureau (BBB), then
¢ pays by credit card”, and A could be “delivery in Europe”. These concepts are
better instantiated in the following scenario.

2.1 The alice and eShop Scenario

The scenario we use in this paper is inspired from [1112]. eShop is a web service
that sells devices, while alice is another web service, which wants to get a device.
alice and eShop describe their behaviour concerning sales/payment/.. . of items
through policies (rules), which they publish using some Rules Interchange For-
mat. These two actors find each other via SRE: in particular, alice submits a
query to the discovery engine, by specifying her policies and the service she is
looking for (e.g., getting device). Once suitable services (e.g., eShop) have been
found, SRE, by checking the satisfiability of alice’s goal and the compatibility
of the rules describing alice’s and eShop’s behaviour, provides back to alice the
list of web services that could satisfy her specific need. SRE also defines the
conditions that must be fulfilled by each web service, in order to reach the goal.
Let eShop’s policies regarding device be as follows:

(shopl) if a customer wants to get an item, then, (i) if the customer can be
accepted, eShop will request him/her to pay using an acceptable method,
otherwise (4i) eShop will inform the customer of a failure;

(shop2) if an acceptable customer paid the item, using an acceptable method,
then eShop will deliver the item;

(shop3) if a customer requests a certificate about eShop’s membership to the
BBB, then the shop will send it.

eShop publishes a knowledge base KBeshop, Which specifies that a customer
is accepted if it is resident in some zone; it also specifies the accepted payment
methods. SRE retrieves information about eShop in the triplet: (sell(device),
eShop, (KBeshops Peshop)), indicating that eShop offers service sell(device), with
a set Pesnop of policies defined as Pesnop = {(shopl), (shop2), (shop3)} and a
knowledge base KBcshop.- We consider three different scenaria for alice:

Scenario 1. alice’s goal is to obtain device. Her policies are as follows:

(alicel) if a shop requires that alice pays by credit card, alice expects that
the shop provides a certificate to guarantee that it is a BBB member;

(alice2) if a shop requires that alice pays by credit card, and it has proven
its membership to the BBB, then alice will pay by credit card;

(alice3) if a shop requires alice to pay with any other method than credit
card, then alice will pay without any further request;

Besides, alice is based in Europe. However, for privacy reason, alice does not

make this information public. KBgjice is an an empty knowledge base.

72 M. Alberti et al.

Scenario 2. Policies are the same as above. However, alice will not agree to pay
cash, as she specifies in her query to SRE. Moreover, ICBgjic. is not empty,
but instead it contains information about her place of residence and age;

Scenario 3. alice has no policies to express in relation to the query she submits
to SRE. We can imagine here that alice is a human user, and she queries
SRE, using a suitable interface, simply because she wishes to know what
her options are regarding the purchase of device. Later, alice may evaluate
SRE’s answer and possibly re-submit a refined query.

3 Notation

In SRE, policies describe a web service’s observable behaviour in terms of events
(e.g., messages). SRE considers two types of events: those that one can directly
control (e.g., if we consider the policies of a web service ws, a message generated
by ws itself) and those that one cannot (e.g., messages that ws receives, or does
not want to receive). Atoms denoted by H denote “controllable” events, those
denoted by E and EN denote “passive” events, also named expectations. Since
SRE reasons about possible future courses of events, both controllable events
and expectations represent hypotheses on possible events. We restrict ourselves
to the case of events being messages exchanged between the two parties in play.
The notation is:

— H(ws,ws’, M,T) denotes a message with sender ws, recipient ws’, and con-
tent M, which ws expects to be sending to ws’ at a time T

— E(ws’,ws, M, T) denotes a message with sender ws’, recipient ws, and con-
tent M, which ws expects ws’ to be sending at a time T

— EN(ws’,ws, M, T) denotes a message with sender ws’, recipient ws, and
content M, which ws expects ws’ not to be sending at a time T

Web service specifications in SRE are relations among expected events, ex-
pressed by an abductive logic program. This is in general a triplet (KB, A, ZC),
where ICB is a logic program, A (sometimes left implicit) is a set of literals named
abducibles, and ZC is a set of integrity constraints. Intuitively, in ALP the role of
ICB is to define predicates, the role of A is to fill-in the parts of B which are un-
known, and the role of ZC is to control the ways elements of A are hypothesised,
or “abduced.” Reasoning in ALP is usually goal-directed. It starts from a “goal”
g, i.e., an expression which we want to obtain as a logical consequence of the
abductive logic program, and it amounts to finding a set of abduced hypotheses
A built from atoms in A such that KB U A = Gand KB U A | ZC. Symbol
= represents logical entailment, which can be associated with one among sev-
eral semantics. In literature one finds different readings of abduction in LP. A
can be considered as an “answer” to a query or goal G. In other contexts, one
can interpret G as an observation and A as its explanation. This is for example
the reading of an abductive anwer in abductive reasoning-based diagnosis. In the

Web Service Contracting: Specification and Reasoning with SCIFF 73

domain of web services, we will use ALP as a reasoning paradigm that combines
backward, goal-oriented reasoning with forward, reactive reasoning [19]: two as-
pects that frequently, in the context of web services, are treated separately from
each other.

Definition 1 (Web Service Behavioural Interface Specification). Given
a web service ws, its web service behavioural interface specification Sy, is an
abductive logic program, represented by the triplet Sys = (KByws, A, ZCys), where
KBys is ws’s Knowledge Base, A is the set of abducible literals, and ZC,s is
ws’s set of Integrity Constraints (ICs).

KB.s, which corresponds to KB, of Sect. 2 is a set of clauses which declar-
atively specifies pieces of knowledge of the web service. Note that the body of
KB,s’s clauses may contain E/EN expectations about the behaviour of the web
services. A is the set of abducible literals. It includes all possible E/EN expecta-
tions, H events, and predicates left undefined by ICB,,s. It is the set of all possible
unknowns. Note that &, and A of Sect. Pl are subsets of A. In the following
sometimes we leave A implicit, as we did in Sect. Bl ZC,,s, which corresponds to
Pus of Sect. 2 contains ws’s policies. In particular, each IC in ZC, is a rule in
the form Body — Head. Intuitively, the Body of an IC is a conjunction of events,
literals and CLP constraints; the Head is either a disjunction of conjunctions of
events, literals and CLP constraints, or false. The operational behaviour of ICs
is similar to that of forward rules: whenever the body becomes true, the head
is also made true. The syntax of KB, and ZC, s is given in Equations () and
@), respectively, where Constr indicates a CLP constraint [16].

KBys::= [Clause |*
Clause::= Atom — Cond
Cond::= ExtLiteral [N ExtLiteral |* (1)
ExtLiteral:= [-]Atom | true | Expect | Constr
Expect::= E(Atom, Atom, Atom, Atom)|
EN(Atom, Atom, Atom, Atom)

ICwsu=[IC]"
IC::= Body — Head
Body::= (Event | Expect) [NBodyLit]*
BodyLit::= Event | Expect | Atom | Constr
Head::= Disjunct [V Disjunct |* | false
Disjunct::= (Exzpect | Event | Constr)
[A (Ezpect | Event | Constr)]*
Expect::= E(Atom, Atom, Atom, Atom) |
EN(Atom, Atom, Atom, Atom)
Event::= H(Atom, Atom, Atom, Atom)

(2)

Let us see how we can implement the walk through scenario in SRE. Note that,
following the LP notation, variables (in italics) start with upper-case letters.
Ty, Ta, ... indicate the (expected) time of events.

74 M. Alberti et al.
The first IC in ZCeshop, corresponding to , is the following;:

H(Customer, eShop, request(Item),T;)
—accepted customer(Customer)

A accepted payment(How)

A H(eShop, Customer, ask(pay(Item, How)), Tq)

A E(Customer, eShop, pay(Item, How),T})

ATy >Ta ATy > T,

(shopl)

Vrejected customer(Customer)
A H(eShop, Customer,inform(fail), T;) NT; > T;.

All accepted payment modalities are listed in eShop’s knowledge base, KBcshop,
shown in (kB) below. In our example, Customer may pay either by credit card
or cash. The concepts of “accepted” and “rejected” customer are defined in
the K Besnop too: a C'ustomer is accepted if the Zone she resides in is a valid
destination for eShop; Customer is rejected otherwise. Both payment modalities
and accepted destinations are listed as facts. In this example, eShop can only
send items to Europe. The next element of eShop’s policies (shop2) states that
if an accepted Customer pays for an Item using one of the supported payment
modalities, then eShop will deliver the Item to Customer:

H(Customer, eShop, pay(Item, How),Ty)

A accepted customer(Customer)

A accepted payment(How) (shop2)
—H(eShop, Customer, deliver (Item), Ty)

ANTyq > Tp.

Finally, (shop3) states that if a Customer asks it to provide a guarantee (i.e.,
a certificate about its membership to BBB), eShop will send such a guarantee:

H(Customer, eShop, request guar(BBB),Tyq)
—H(eShop, Customer, give guar(BBB),T,) (shop3)
ATy > Try.

accepted customer(Customer) —resident in(Customer, Zone)
A accepted dest(Zone).
rejected customer(Customer) «—resident in(Customer, Zone)
A not(accepted dest(Zone)). (kb)
accepted payment(cc).
accepted payment(cash).

accepted dest(europe).

Web Service Contracting: Specification and Reasoning with SCIFF 75

When a (generic) Shop asks alice to pay an Item with credit card, then alice
will request the Shop to provide a guarantee, and she will expect to receive it:

H(Shop, alice, ask(pay(Item,cc)), Ta)
—H(alice, Shop, req guar(BBB),Tyq)

o (alicel)
A E(Shop, alice, give guar(BBB),Ty)
ATy > Trg ATpg > T
If Shop provides a guarantee, alice will pay for the requested Item:
H(Shop, alice, ask(pay(Item,cc)), Ta)
A H(Shop, alice, give guar(BBB),T,))
(alice2)

—H(alice, Shop, pay(Item,cc), Tp)
ATy >Ta ATy > Ty

When the Shop asks to use a payment modality other than credit card, alice
satisfies eShop’s request:

H(Shop, alice, ask(pay(Item, How)),Tq)
A How # cc (alice3)
—H(alice, Shop, pay(Item, How),T,) ATy > Ta.

4 Declarative Semantics and Reasoning

In SRE, a client ¢ specifies a goal G, related to a requested service. G will often
be an expectation, but in general it can be any goal, defined as a conjunction of
expectations, CLP constraints, and any other literals. ¢ also publishes a (possibly
empty) knowledge base B, and a (possibly empty) set of policies ZC,.. The idea
is to obtain, through abductive reasoning made by SRE, a set of expectations £
and validity conditions A about a possible course of events that, together with
KB. and KB, satisfies ZC. UZC,,s and G. Note that we do not assume that all
of ws’s knowledge base is available to SRE, as it need not be entirely a part of
ws’s public specifications. KB, s can even be the empty set. However, in general,
ICs can involve predicates defined in the KB: such as “delivery in FEurope.”
If the behavioural interface provided by ws involves predicates that have not
been made public through K£B,,s, SRE makes assumptions about such unknown
predicates, and considers unknowns that are neither H nor E/EN expectations
as literals that can be abduced. These are kept then in the set A, of a returned
triplet (ws, £, A) (see Sect.), and can be regarded as conditions which must be
met to insure the validity of £ as a possible set of expectations achieving a goal.

4.1 Declarative Semantics

We define declaratively the set of abductive answers (ws, £, A) representing pos-
sible ways ¢ and ws can interact to achieve G (we assume that KB, and KB,
are consistent) via the two following equations:
KB:UKBws UEUA EG (3)
KB UKBuws UEUA EZCe UZCops. (4)

76 M. Alberti et al.

where £ is a conjunction of H and E, EN atoms, A is a conjunction of ab-
ducible literals, and the notion of entailment is grounded on the possible models
semantics defined for abductive disjunctive logic programs [23]. In the possible
models semantics, a disjunctive program generates several (non-disjunctive) split
programs, obtained by separating the disjuncts in the head of rules. Given a dis-
junctive logic program P, a split program is defined as a (ground) logic program
obtained from P by replacing every (ground) rule

r:LyV---VL T
from P with the rules in a non-empty subset of Split,, where
Split, ={L; — I |i=1,...,l}.

By definition, P has in general multiple split programs. A possible model for a
disjunctive logic program P is then defined as an answer set of a split program
of P.

Note that in [23] the possible models semantics was also applied to provide a
model theoretic semantics for Abductive Extended Disjunctive Logic Programs
(AEDP), which is our case. Semantics is given to AEDP in terms of possible
belief sets. Given an AEDP IT = (P, A), where P is a disjunctive logic program
and A is the set of abducible literals, a possible belief set S of IT is a possible
model of the disjunctive program P U E, where P is extended with a set E of
abducible literals (E C A).

Definition 2 (Answer to a goal G). An answer E to a (ground) goal G is a
set E of abducible literals constituting the abductive portion of a possible belief
set S (i.e., E=SNA) that entails G.

We rely upon possible belief set semantics, but we adopt a new notion for min-
imality with respect to abducible literals. In [23], a possible belief set S is A-
minimal if there is no possible belief set 1" such that TN.A C SN .A. We restate,
then, the notion of A-minimality as follows:

Definition 3 (A-minimal possible belief set). A possible belief set S is A-
minimal iff there is no possible belief set T for the same split program such that

TNACSNA.

More intuitively, the notion of minimality with respect to hypotheses that we
introduce is checked by considering the same split program, and by checking
whether with a smaller set of abducible literals the same consequences can be
made true, but in the same split program. Finally, we provide a model-theoretic
notion of explanation to an observation, in terms of answer to a goal, as follows.

Definition 4 (A-minimal answer to a goal). E is an A-minimal answer to
a goal G iff E =SNA for some possible A-minimal belief set S that entails G.

Definition 5 (Possible Interaction about G). A possible interaction about
a goal G between a client ¢ and a web service ws is an A-minimal set EU A such
that Equations[3d and [hold.

Web Service Contracting: Specification and Reasoning with SCIFF 7

Among possible interactions, we identify those which are coherent{Y

Definition 6 (Coherent Possible Interaction about G). A possible inter-
action €U A about a goal G is coherent iff:

& E E(X,Y, Action, T), EN(X,Y, Action,T) — false (5)

Possible interactions about a goal G generally contain (minimal) sets of events
and expectations about messages raised either by ¢ and ws. Moreover, further
abducible literals in A represent assumptions about unknown predicates (for ¢
and ws).

SRE selects among coherent possible interactions only those where the course
of events expected by ¢ about ws’s messages is fulfilled by ws’s messages, and
vice-versa, i.e., the course of events expected by ws about ¢’s messages is fulfilled
by ¢’s messages:

Definition 7 (Possible Interaction Achieving G). Given a client ¢, a web
service ws, and a goal G, a possible interaction achieving G is a coherent possible
interaction € U A satisfying the following equations:

& E E(X,Y, Action, T) — H(X,Y, Action,T) (6)

£ E EN(X,Y, Action, T),H(X, Y, Action, T) — false (7)

In practice, Definition [[requires that any positive expectation raised by ¢ or
ws on the behaviour of the other party is fulfilled by an event hypothetically
performed by the other party (Equation [f]), and that any negative expectation
raised by ¢ or ws on the behaviour of the other party does not match any event
hypothetically performed by the other party (Equation [1).

4.2 Operational Semantics

The operational semantics of SRE is a modification of the SCIFF proof-procedure
[8], that combines forward, reactive reasoning with backward, goal-oriented rea-
soning, and was originally developed to check compliance of the agent behaviour to
interaction protocols in multi-agent systems. Like the IFF proof procedure [13],
which inspired it, SCIFF is a rewriting system, defined in terms of transitions
which turn a state of the computation into another. Since some of the transitions
open choice points, a computation can be represented as a tree, whose root node
is the initial state and whose leaves can be either the special node fail, or a termi-
nation node (i.e., a node to which no transition is applicable), that is considered
as a success node (and, in the original SCIFF setting, represents a response of
compliance of the agent behaviour to the interaction protocols)

SCIFF is sound and complete, under reasonable assumptions [8]; it has been
implemented in SICStus Prolog and Constraint Handling Rules [12] and inte-
grated in the SOCS-SI software component, in order to interface it to several

! This notion is introduced because of EN expectations in the SRE framework, and
therefore the necessity of stating explicitly the incompatibility between E and EN.

78 M. Alberti et al.

multi-agent systems [7], and with web services via a RuleML encoding of ICs.
The SCIFF version that acts as the core reasoning engine in SRE is designed to
reason, off-line, about the web service behaviour: a successful leaf node represents
an interaction which achieves the desired goal while respecting the specified poli-
cies. SRE is a conservative modification of the SCIFF proof-procedure, in which
the happened events are abducibles. The proofs of soundness and completeness
can be trivially extended to such a case.

5 The alice and eShop Scenario Revisited

We provide here a sketched demonstration of the operational behaviour of the
SRE engine, by showing how the answers to alice’s query are generated. Let us
suppose that alice sends a query to SRE containing policies (@licedl), (alice?]) and
(Elicedl), an empty knowledge base and the following goal G:

G = H(alice, Shop, request(device), T;)

. . . (goall)
N E(Shop, alice, deliver(device), Tq) N Ty > Tr.

which states that alice will send a request to some Shop in order to obtain device
and she expects that Shop will deliver it. SRE starts from alice’s goal:

&y = {H(alice, eShop, request(device), T;),
E(eShop, alice, deliver(device), Tq), Tq > T} }
Ag=10

According to (shopl)), eShop may react to this expectation in different ways,
depending on whether alice is an accepted customer or not. SRE tries initially
to resolve predicate accepted customer(alice). By unfolding it, SRE finds atom
resident in(alice, Zone), which is not known to SRE and, therefore, is abduced.
Afterwards, based on KBcshop, the eShop public knowledge base, SRE grounds
Zone to europe: the only destination accepted by eShop. As a consequence, hy-
pothesising that alice is resident in europe, eShop would ask alice to pay with
one of the accepted modalities, and it would expect to receive the payment in
response. Moreover, eShop specifies in KBcsnop that credit card is an accepted
payment modality.

&1 = {H(alice, eShop, request(device), T;),
H(eShop, alice, ask(pay(device, cc), T,),
E(alice, eShop, pay(device, cc), Tp),
E(eShop, alice, deliver(device), Ty),
T,>T,T,>T.,Tqg > T, }

Ay = {resident in(alice, europe)}

alice has specified that, in order to perform credit card payments, she requests
a guarantee from the shop (@alice?)); eShop volunteers to provide such a document,

Web Service Contracting: Specification and Reasoning with SCIFF 79

by (shop3)), and alice’s expectation about the guarantee is then satisfied (SRE
hypothesises that the document is indeed sent):

&> = {H(alice, eShop, request(device), T;),

H(eShop, alice, ask(pay(device, cc), T,),

H{alice, eShop, req guar(BBB),Try),

H(eShop, alice, give guar(BBB),Ty),

E(alice, eShop, pay(device, cc), T)),

E(eShop, alice, deliver(device), Ty),

Ty >TrgTrg>To,Tp >To,To >T0,Tqg > T, }
Ay = {resident in(alice, europe)}

Upon receipt of the guarantee, alice would proceed with the payment (alice2)),
and eShop would deliver the device (shop3). Therefore, the following, (possibly)
fruitful, interaction is found by SRE:

Er = {H(alice, eShop, request(device), T;),
H(eShop, alice, ask(pay(device, cc), Ty,),
H{alice, eShop, req guar(BBB),Try),
H(eShop, alice, give guar(BBB),Ty),
H(alice, eShop, pay(device, cc), T,),
H(eShop, alice, deliver(device), Ty),
Ta>Tp, Ty >Tg, Ty >Trg, Trg >To, Tq > Ty }
Ap = {resident in(alice, europe)}

SRE provides in output also a simpler possible interaction, where instead
of selecting “credit card” as payment method, “cash” is now preferred. Policy
(liced)) tells us that, in such a case, alice would proceed straightforward with
the payment, and SRE is indeed able to propose a second fruitful interaction as
answer to alice’s initial query.

In order to compute these two possibly fruitful interactions, resident in(alice,
europe) has been abduced. This means that if such interactions are really possible
or not, it depends on whether alice resides in europe, and in fact it may well
turn out that such interaction is not possible at all. SRE looks also for other
solutions where this hypothesis is not assumed, but all other interactions do not
satisfy alice’s goal, and hence they are discarded.

5.1 Refined Query
In the second scenario, alice submits a different goal, and the KB below:
G = H(alice, Shop, request(device), T).)
N E(Shop, alice, deliver(device), Ty) ATy > T (goal2)
A EN(alice, Shop, pay(device, cash), T,).
resident in(alice, europe). age(alice,24). (kb2)

This time, alice explicitly prohibits to pay cash (this is expressed using the EN
notation). Thanks to the piece of knowledge (Kb2) that alice provides through her

80 M. Alberti et al.

KB, SRE knows that alice does indeed resides in the EU, hence this information
does not need to be abduced anymore, but it is simply verified. SRE finds a
solution which is similar to the one above (Scenario 1). However, since this time
the set A is empty, this interaction will surely lead to success, provided that
both alice and eShop behave coherently with respect to their own policies.

5.2 Unconstrained Query

As we have pointed out, alice is able to query SRE without specifying any
policy. In this case, alice only wishes to obtain a list of services that are able to
accommodate her goal. In such a situation, alice only sends the following general
policy:

E(alice, Shop, DoSomething, T')

.) (r1)
— H (alice, Shop, DoSomething, T)

which specifies that alice will perform every action that she is expected to do. If
alice queries SRE by using (fIl) and (goall)), the response of SRE will be:

&p={H
H

alice, eShop, request(device), T).),

eShop, alice, ask(pay(device, How), T,),
H(alice, eShop, pay(device, How), T}),
H(eShop, alice, deliver(device), Ty),
Ty > Ty, Ty >T,, Ty > T, How :: [cc, cash] }

Ap = {resident in(alice, europe)}

A~ N S

6 Discussion

We described a reasoning engine, SRE, which considers the policies of two web
services and a goal of one of them. SRE tries to match such policies and find
possible ways the two web services could interact, and eventually achieve the
goal. The output of SRE is a sequence of events, which could be messages to
be exchanged between the web services and lead to a state in which the goal
is achieved. This can be regarded as a possible plan of action. SRE is based
on a mixture of ALP and CLP. ALP is used to construct sets of input and
output messages, along with assumed data, while CLP is used to maintain a
partial temporal order among the plans. In this work we did not address the
issue of efficiency of the reasoning process of SRE, but we are aware that this
may be a drawback, as it is the case with many expressive logics proposed for the
Semantic Web. We intend to evaluate SRE, both as it concerns its complexity
and its efficiency, through an empirical analysis based on case studies.

Another aspect we did not look into in detail is the problem of reasoning
about equivalences of concepts or ontologies, as much related work instead does.
Also our notions of action, such as it could be the delivery of goods, are pretty
much left at the abstract level. Our proposal could be regarded as a functionality
complementary to many proposals, which could further improve the discovery

Web Service Contracting: Specification and Reasoning with SCIFF 81

process. To cite some, [BI22] propose ontology languages to define web services. In
[4], besides proposing a general language for representing semantic web service
specification using logic, a discovery scenario is depicted and an architectural
solution is proposed (we draw inspiration for our scenario from the Discovery
Engine example). A notion of “mediator” is introduced to overcome differences
between different ontologies, and then a reasoning process is performed over the
user inputs and the hypothetical effects caused by the service execution.

Our work makes explicit reference to [I§], in which the authors present a
framework for automated web service discovery which uses the Web Service
Modeling Ontology (WSMO) as the conceptual model for describing web ser-
vices, requester goals and related aspects. Whereas [I8] tackles both (mainly)
discovery and contracting stage, in our work we are only concerned with the
contracting stage. In [I8] the authors use F-logic and transaction logic as the
underlying formalisms, we rely on extended logic programming. In both the ap-
proaches, however, hypothetical reasoning is used for service contracting. Com-
pare to work by Kifer et al. [T8/4], in which only the client’s goal is considered,
in our framework the client can specify its policies. In this way, the client could
be considered a web service as well. Therefore, we hope to be able to smoothly
extend SRE to dealing with the problem of inter-operability. A proposal in this
direction is presented in [6].

The outcome of the reasoning process performed by SRE, which we called a
possible plan, could in fact be regarded as a sort of “contract agreement” between
the client and the discovered service, provided that each party is tightly bounded
to its previously published policies/knowledge bases. For example, the dynamic
agreement about contracts (e-contracting) is addressed in SweetDeal [I5JI0],
where Situated Courteous Logic (SCL) is adopted for reasoning about rules that
define business provisions policies. The formalism used supports contradicting
rules (by imposing a prioritisation and mutual exclusion between rules), different
ontologies, and effectors as procedures with side effects. However, SweetDeal is
more focussed on establishing the characteristics of a business deal, while our aim
is to address the problem of evaluating the feasibility of an interaction. To this
end, we perform hypothetical reasoning on the possible actions and consequences;
moreover, we hypothesise which condition must hold, in order to inter-operate.
This technique in literature is also known as “constructive” abduction.

Other authors propose to rules to reason about established contracts: in [14],
for example, Defeasible Deontic Logic of Violation is used to monitor the execu-
tion of a previously agreed contract. We have addressed this issue in a companion
paper [9], where integrity constraints have been exploited and conciliated with
the deontic concepts. Among other work in the area of policy specifications and
matching we find PeerTrust [21I5]. Similarly to our work and to SCL, PeerTrust
builds upon an LP foundation to represent policy rules and iterative trust declar-
atively. In PeerTrust, trust is established gradually by disclosing credentials and
requests for credentials by using a process of trust negation. An important dif-
ference is in the language used in PeerTrust for specifying policies, which can
be considered as orthogonal to the one described in this paper. While PeerTrust

82 M. Alberti et al.

represents policies and credentials as guarded distributed logic programs, and
the trust negotiation process consists of evaluating an initial LP query over a
physically distributed logic program, in this work we use ALP, integrity con-
straints and CLP constraints for expressing policies, perform a local proof and
we use abductive reasoning to formulate hypotheses about unknown external
behaviour. Moreover, while in our current approach reasoning is done in a single
step using SCIFF, an iterative version could be introduced in order to support
trust negotiation.

Acknowledgments

We wish to thank the anonymous reviewers for their comments, constructive
criticisms and valuable suggestions. This work has been partially supported by
the National FIRB project TOCALit and by the PRIN projects Nos. 2005-
011293 and 2005-015491.

References

1. http://lia.deis.unibo.it/research/socs/.

2. http://www.w3.org/TR/rif-ucr/.

3. http://www.daml.org/services/owl-s/.

4. http://www.w3.org/Submission/SWSF-SWSL/.

5. http://www.13s.de/peertrust/.

6. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and M. Montali. An

abductive framework for a-priori verification of web services. In Proc. PPDP,
pp- 39-50. ACM Press, 2006.

7. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Com-
pliance verification of agent interaction: a logic-based tool. Applied Artificial In-
telligence, 20(2-4):133-157, 2006.

8. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Veri-
fiable agent interaction in Abductive Logic Programming: the SCIFF framework.
ACM Transactions on Computational Logic, 8, 2007.

9. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, G. Sartor, and P. Torroni. Mapping
deontic operators to abductive expectations. Computational and Mathematical
Organization Theory, 12(2-3):205-225, 2006.

10. S. Bhansali and N. Grosof. Extending the sweetdeal approach for e-procurement
using sweetrules and RuleML. In Proc. RuleML, LNAI 3791:113-129, 2005.

11. F. Bry and M. Eckert. Twelve theses on reactive rules for the web. In Proc. Work-
shop on Reactivity on the Web, Munich, Germany, March 2006.

12. T. Frithwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, 37(1-3):95-138, 1998.

13. T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic
programming. Journal of Logic Programming, 33(2):151-165, 1997.

14. G. Governatori and D. P. Hoang. A semantic web based architecture for e-contracts
in defeasible logic. In Proc. RuleML, LNAI 3791:145-159, 2005.

15. B. N. Grosof and T. C. Poon. SweetDeal: representing agent contracts with excep-
tions using XML rules, ontologies, and process descriptions. In Proc. 12th WWW,
pp- 340-349. ACM Press, 2003.

http://lia.deis.unibo.it/research/socs/
http://www.w3.org/TR/rif-ucr/
http://www.daml.org/services/owl-s/
http://www.w3.org/Submission/SWSF-SWSL/
http://www.l3s.de/peertrust/

16

17.

18.

19.

20.

21.

22.

23.

Web Service Contracting: Specification and Reasoning with SCIFF 83

J. Jaffar and M. Maher. Constraint logic programming: a survey. Journal of Logic
Programming, 19-20:503-582, 1994.

A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic Programming. Journal
of Logic and Computation, 2(6):719-770, 1993.

M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel. A
logical framework for web service discovery. In Semantic Web Services: Preparing
to Meet the World of Business Applications. CEUR Workshop Proc. 119, 2004.
R. A. Kowalski and F. Sadri. From logic programming towards multi-agent systems.
Annals of Mathematics and Artificial Intelligence, 25(3/4):391-419, 1999.

S. A. Mcllraith, T. C. Son, and H. Zeng. Semantic web services. IEFEE Intelligent
Systems, 16(2):46-53, 2001.

W. Nejdl, D. Olmedilla, and M. Winslett. PeerTrust: Automated trust negotiation
for peers on the semantic web. In Proc. Secure Data Management (SMD 2004),
LNAI 3178:118-132. Springer-Verlag, 2004.

D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres,
C. Feier, C. Bussler, and D. Fensel. Web service modeling ontology. Applied
Ontology, 1(1):77 — 106, 2005.

C. Sakama and K. Inoue. Abductive logic programming and disjunctive logic
programming: their relationship and transferability. JLP, 44(1-3):75-100, 2000.

Dynamic Service Discovery Through

Meta-interactions with Service Providers*

Tomas Vitvar, Maciej Zaremba, and Matthew Moran

Digital Enterprise Research Institute (DERI),
National University of Ireland, Galway
{tomas.vitvar,maciej.zaremba,matthew.moran}@deri.org

Abstract. Dynamic discovery based on semantic description of services
is an essential aspect of the Semantic Web services integration process.
Since not all data required for service discovery can always be included
in service descriptions, some data needs to be obtained during run-time.
In this paper we define a model for service interface allowing required
data to be fetched from the service provider during discovery process. We
also provide a specification of such interface for WSMO and demonstrate
the model on a case scenario from the SWS Challenge implemented us-
ing WSMX — a middleware platform built specifically to enact semantic
service oriented architectures.

1 Introduction

The Web has a volatile nature where there can only be a limited guarantee of
being able to access any specific service at a given time. This leads to a strong
motivation for discoverying and binding to services at run-time (late binding).
Existing XML-based WSDL descriptions of data, messages, or interfaces are
insufficient or provide limited expressivity for machines to understand. Service
discovery operating on semantic descriptions offer the potential of flexible match-
ing that is more adaptive to changes over services’ lifetime. In general, discovery
matches definitions of user requests (goals) with those of offered services. Dif-
ferent levels of match are possible e.g. subsumption match, plug-in match, exact
match ete. [I34]. Semantic discovery works on the abstract definitions of services
and goals (containing no instance data). This needs to be further elaborated to
achieve more accurate results. For example, a request to “buy a Harry Pot-
ter book” involves first searching for descriptions of services that sell books, but
which then determining if the service sells Harry Potter books and if those books
are in stock. Taking Amazon as an example, it is clearly unfeasible to include
data for the entire catalogue and its availability directly in the service descrip-
tion. Such information has a dynamic character and therefore should only be
fetched from the service at discovery-time.

* This work is supported by the Science Foundation Ireland Grant No. SFI/02/CE1/
1131, and the EU projects Knowledge Web (FP6-507482), DIP (FP6-507483) and
SUPER (FP6-026850).

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 84-38] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dynamic Service Discovery 85

For this purpose, we propose a general mechanism enabling the definition
of an interface on the service to allow the fetching of required data from the
service during the late binding phase (e.g during service discovery, contract-
ing /negotiation, selection etc.). These tasks are performed in a semantic service
environment in a (semi) automated fashion by means of the “intelligence” of
intermediary (middleware) services. We define a model for the service interface
which provides a mechanism to fetch data from the service provider during the
discovery process. Choosing the Web Service Modeling Ontology (WSMO) as
our conceptual model, we define an extension for this interface and demonstrate
this work through a case scenario of the SWS ChallengeEl implemented using
WSMX — a middleware platform built specifically to enact semantic service ori-
ented architectures.

In section 2] we introduce the underlying specifications for our work, namely
WSMO, WSML and WSMX providing a conceptual framework, ontology lan-
guage and execution environment for Semantic Web services. In section B we
define a model for a service interface and algorithm to fetch data for service dis-
covery and further show how this model can be specified using WSMO service
model. In section] we illustrate the model on the case scenario implemented in
the WSMX environment and describe the evaluation for the implementation. In
section Bl we describe related work and in section [6] we conclude the paper and
indicate our future work.

2 Semantic Web Services and WSMO

A general aim of Semantic Web Services is to define a semantic mark-up for Web
services providing the higher expressivity then traditional XML-based descrip-
tions. One of the initiatives in the area is the Web Service Modeling Ontology
(WSMO)[1I]. WSMO provides a conceptual model describing all relevant as-
pects of Web services in order to facilitate the automation of service discovery,
composition and invocation. The description of WSMO elements is represented
using the Web Service Modeling Language (WSML)[II] — a family of ontology
languages — which consists of a number of variants based on different logical
formalisms and different levels of logical expressiveness. WSMO also defines the
conceptual model for WSMX[9], a Semantic Web Services execution environ-
ment. Thus, WSMO, WSML and WSMX form a coherent framework for mod-
eling, describing and executing Semantic Web Services. The WSMO top-level
conceptual model consists of Ontologies, Web Services, Goals, and Mediators.

— Ontologies provide the formal definition of the information model for all
aspects of WSMO. Two key distinguishing features of ontologies are, the
principle of a shared conceptualization and, a formal semantics (defined by
WSML in this case). A shared conceptualization is one means of enabling
information interoperability across independent Goal and Web service de-
scriptions.

! http://sws-challenge.org

86 T. Vitvar, M. Zaremba, and M. Moran

— Web Services are defined by the functional capability they offer and one
or more interfaces that enable a client of the service to access that capa-
bility. The Capability is modeled using preconditions and assumptions, to
define the state of the information space and the world outside that space
before execution, and postconditions and effects, defining those states after
execution. Interfaces are divided into choreography and orchestration. The
choreography defines how to interact with the service while the orchestration
defines the decomposition of its capability in terms of other services.

— Goals provide the description of objectives a service requester (user) wants
to achieve. WSMO goals are described in terms of desired information as
well as “state of the world” which must result from the execution of a given
service. The WSMO goal is characterized by a requested capability and a
requested interface.

— Mediators describe elements that aim to overcome structural, semantic or
conceptual mismatches that appear between different components within a
WSMO environment. Although WSMO Mediators are essential for address-
ing the requirement of loosely coupled and heterogeneous services, they are
out of the scope of our work at this point.

In this paper, we will elaborate on WSMO service definition and in particular
on its service interface. The service interface defines choreography as a formal
description of a communication pattern the service offers. Two types of such
choreography interfaces are defined: (1) execution choreography used during the
execution phase where the functionality of the service is consumed by a service
requester and (2) meta-choreography used during late binding to get additional
information necessary for communication with the service. Since the WSMO
model is open, such definitions may be extended to be used for the particular
tasks of the late binding phase. We focus on the definition of one such extension
for use for the service discovery phase.

3 Data Fetching for Discovery

A Web service capability can be described in terms of results potentially delivered
by the service. A goal describes its capability as the information the user wants
to achieve as a result of service provision. We denote the description of the Web
service and the goal as W and G respectively. For the YW and G we also introduce
the data of these descriptions which we denote Dyy and Dg respectively and
which is provided directly as part of their respective descriptions.

For purposes of our work and based on grounds of [4/13], we define the fol-
lowing three basic steps when the matching of a goal G and a Web service W
needs to be performed: (1) Abstract-level match, (2) Instance-level Match, (3)
Data Fetching. Abstract-level Match operates on abstract descriptions of G and
W without their data being taken into account. The matching is defined by
the following set-theoretic relationships between objects of G and W: (1) exact
match, (2) subsumption match, (3) plug-in match, (4) intersection match and

Dynamic Service Discovery 87

(5) disjointness. If the goal and the Web service match (relationships 1-4), it is
further checked if the service can provide a concrete service by consulting the
data of the goal and the service (Instance-level Match). If all data is not avail-
able for step 2, the data needs to be obtained from the service (Data Fetching).
Later in this section we further formalize these steps and define the algorithm.
For step 1 and step 2, we define a matching function as follows:

s «— matching(G, W, Bgw), (1)

where G and W is a goal and a service description respectively and By, is a
common knowledge base for the goal and the service. The knowledge base con-
tains data which must be directly (through descriptions G and W) or indirectly
(through data fetching) available so that the matching function can be evalu-
ated. The result s of this function can be: (1) match when the match was found
at both abstract and instance levels (in this case all required data in Bg,, is
available), (2) nomatch when the match was not found either at abstract level
or at instance level (in this case all required data in By, is available), or (3)
nodata when some required data in By, is not available and thus the matching
function cannot be evaluated.

We further assume that all data for the goal is directly available in the de-
scription G. The data fetching step is then performed for the service when the
matching function cannot be evaluated (the result of this function is nodata).
We then define the knowledge base as:

Bgw = Dg UDw U{y1,Y2, s Ym}, (2)

where {y;} is all additional data that needs to be fetched from the service in
order to evaluate the matching function.

Based on the representation of service interface using abstract state machines
[12], we define the data fetch interface for service W as

Iw = (ZH(W), OUt(W)a L)v (3)
where in(W) and out(VV) denotes input and output vocabularies which corre-
spond to input and output data of the interface in(Zyy) and out(Zyy) respectively,
and L is a set of transition rules. The matching function can be then evaluated
if

Yy; € out(Zyy) : 3x € By A x € in(Lyy) 1=1,2,....,m. (4)

According to[l, data {y;} can be fetched from the service through the data fetch
interface if input data in(Zyy) is either initially available in the knowledge base
Bgw (data directly available from the goal or web service descriptions) or the
input data becomes available during the processing of the interface. For a rule
r € L we denote r.ant and r.con as the rule antecedent and the rule consequent
respectively. The antecedent r.ant defines an expression which if holds during
run-time in the memor@,ﬁ, the memory is modified according to the definition

2 We use the term memory to denote a processing memory through which states of
an abstract state machine are maintained during its processing.

88 T. Vitvar, M. Zaremba, and M. Moran

of an action in r.con (i.e. specified data is added, updated or removed from the
memory) (see the algorithm in section B.l). Please note that each concept of
the vocabulary in(WW) and out(W) has defined grounding to respective message
in WSDL. Through this grounding definition it is possible to invoke WSDL
operation when instance data of the concept is to be added or updated in the
memory (and thus the data is fetched from the service). This definition of the
grounding is described in [6].

3.1 Algorithm

In algorithm [the matching function is integrated with data fetching. The
algorithm operates on inputs, produces outputs and uses internal structures as
follows:

Input

— Repository Q = {Wy, Wa, ..., W, }, where W € @ is the web service descrip-
tion. For each web service W we denote Dy, as data of the web service and
Iy as data fetching interface of the web service with rule base L. This in-
terface is defined according to definition [Bl and its description is optional for
the web service. In addition, for each rule » € L we denote action of the rule
consequence as 1.con.action and its corresponding data as r.con.data.

— Goal description G for which we denote D¢ as data of the goal.

Output

— List E = {Wy,Wa, ..., Wy, }, where W; € Q and W; matches G (the result of
the matching function for W; and G is match).

Uses

— Processing memory M containing data fetched during processing of the rules
of the data fetching interface.

— Knowledge base By, which contains data for processing of the matching
function.

— Boolean variable modi fied indicating whether the knowledge base has been
modified or not during the processing.

The algorithm performs the matching of the goal with each Web service in
the repository using the matching function (line 7). If the matching cannot
be evaluated (the result is nodata), the algorithm tries to fetch data from the
service by processing the service’s data fetch interface. Whenever the new data
is available from the service, the algorithm updates the knowledge base and
process the matching again. This cycle ends when no data can be fetched from
the interface or matching can be evaluated (the result is match or nomatch).
In case the matching is evaluated as match, the web service is added to the
list of matched services and the cycle is performed for the next service in the
repository.

Dynamic Service Discovery 89

Algorithm 1. Data Fetching for Discovery
1. E—10
2: for all W in @ do

3: ng «— Dc U Dw
4: M «— Bgw
5. repeat
6: modified «— false
7 s «— matching(G, W, Bgw)
8: if s = nodata and exists(l,,) then
9: while get r from L: holds(r.ant, M) and not modified do
10: if r.con.action = add then
11: add(r.con.data, M)
12: add(r.con.data, Bgw)
13: modi fied «— true
14: end if
15: if r.con.action = remove then
16: remove(r.con.data, M)
17: end if
18: if r.con.action = update then
19: update(r.con.data, M)
20: update(r.con.data, Bgw)
21: modified «— true
22: end if
23: end while
24: end if

25: until s # nodata or not modified
26: if s = match then

27: E—FEFUW
28: end if
29: end for

During the processing of the interface, the algorithm allows to hook in a match-
ing function which is called whenever the new data is available from the service.
The algorithm uses independent memory (memory M) from the knowledge base
(Bgw) for processing of the data fetching interface. This allows that already-
obtained data cannot be removed from the knowledge base while, at the same
time, correct processing of the interface is ensured. The memory M is used not
only for data but also for control of interface processing (in general, the content
of the memory does not need to always reflect the content of the knowledge base).
According to the particular interface definition, the data can be fetched step-wise
allowing minimizing of the interactions with the service during discovery. This
also follows the strong decoupling principle when services are described semanti-
cally and independently from users’ requests. For example, during service creation
phase a service provider (creator) does not know which particular data will be re-
quired for particular data fetching (in general, matching with a goal could require
some or all defined data which depends on the definition of the request). The in-
terface defined using rules allows to get only data which is needed for the matching

90 T. Vitvar, M. Zaremba, and M. Moran

(for example in some cases only price is needed, in some cases price and a location
of selling company could be needed if offered by the service).

3.2 WSMO Service Interface for Data Fetching

As stated in [T1], Web Service interface defines choreography and orchestration
allowing the modeling of external and internal behavior of the service respec-
tively. In this respect, the interface for data fetching follows the WSMO service
interface describing a meta-choreography which allows additional data to be
obtained from the service for the discovery process. WSMO service will thus
have additional interface defined (WSMO service allows multiple interface def-
initions). This interface will however only use the choreography describing a
meta-choreography for obtaining additional data for the discovery process. We
do not specify orchestration for this interface as the logic of how data fetch is
performed by the service (how data is obtained out of aggregation of other ser-
vices) is not of interest for discovery and we do not use it in our algorithm. In
order to distinguish between the interface used for data fetching and the inter-
face used for execution (defining how actual service is consumed by the service
requester), we use non-functional property. For purposes of our work we further
use non-functional property interfacePurpose with values execution and discov-
ery. Another possibilities for distinguishing both interfaces would be to define
data-fetch interface as specialization of WSMO service interface. The decision
on whichever approach will be used will be done in the context of the WSMO
WG.

4 Implementation and Evaluation

The model introduced in this paper has been implemented and evaluated through
the SWS Challenge discovery scenario. The scenario introduces five different ser-
vice providers offering various purchasing and shipment options. They provide
different availability and pricing for their services with constraints on package
destination, weight, dimension and shipment date. Service requesters with differ-
ent requirements search for the best offers with packages of different weight and
shape. Our model for data fetching for discovery fits well into this scenario since
not all information can be provided in service descriptions meaning they must be
dynamically obtained at discovery-time. In this section we base examples on the
Mueller service whose price information is not available in the service description
and needs to be fetched during the service discovery via data fetching interface.
In section [£.3] we further describe the evaluation of our implementation from the
broader context of the SWS Challenge requirements.

4.1 Scenario and Assumptions

In the scenario depicted in figure [l a user accesses the e-marketplace called
Moon where a number of companies such as Mueller or Racer have registered

Dynamic Service Discovery 91

their services. The Moon runs a (1) Web portal through which it provides services
to users and (2) the WSMX middleware system through which it facilitates the
integration process between users and service providers.

Moon e-marketplace Racer
Publish
((Mueller
l -~ Execution Semantics -4 é tiondescnptlon
; M " Sservice : o
H Ceal Repository Capability
I -
Request -~~~ H ta fetchirE i Data Fetch
=y select from L b Interface
1 . :
= Execution
g Interface
! 5
User ~ invakg G, S 2
. P
Response s, \
vocation
Portal WSMX middleware

Fig. 1. Architecture for the Scenario

For this scenario and the aims of this paper we make the following assumptions.

e Service providers and Moon use the WSMO formalism for Web service de-
scription. We assume that service requesters maintain their own adapters
to their back-end systems while at the same time providing lifting/lowering
functionality between their existing technology (e.g. WSDL, XML Schema)
and WSML.

e All service providers adopt a common ontology maintained by the Moon e-
marketplace. Handling data interoperability issues, where service providers
and Moon use different ontologies, is out of the scope of this paper.

e During execution, interactions between the user and the Moon are simplified
to a single request-response exchange. Either the user submits a goal (our
scenario) or a pre-selected service for invocation. Meta-interactions between
users and the middleware system are not of our interest in this work.

In our scenario, a user defines her requests through the Web portal’s user in-
terface. The Web portal generates a WSMO goal corresponding to the request,
sends it to WSMX, receives the response and presents the result back to the
user. The execution process, run in WSMX after the receipt of the goal, includes
discovery (with data-fetching from services), selection of the best service and
invocation. Although the whole process of this scenario is implemented, the con-
tribution of this paper lies in the integration of data fetching with discovery.
Other parts, i.e. selection and invocation are not described in detail here.

92 T. Vitvar, M. Zaremba, and M. Moran

4.2 Modeling Ontologies, Goals and Services

In order to implement the scenario, we first need to create semantic models for
ontologies, goals and services. We describe these models in the following sub-
sections. We present examples of ontologies, services and goals definitions in
WSML using the following prefixes to denote their respective namespaces: mo —
common ontology, gl — goal ontology.

Ontologies describe concepts used for the definition of goals and services. In
our scenario we use a common scenario ontology with additional ontologies to
define specific axioms or concepts used by the descriptions of services and/or
goals.

The common ontology defines shared concepts used in the description of the
goal and services, such as Address, ShipmentOrderReq, Package, etc. In ad-
dition, we use the common ontology to specify named relations for services and
goals. Specific ontologies for goals and services declare axioms that define the re-
lations to represent their conditions. An analogy for this approach are interfaces
in programming labguages like Java. The interface declares some functionality
but does not say how this should be implemented. Using this approach, we de-
fine a set of relations in the common ontology which represent the axioms that
a service may need to define. Listing [[LT] shows the simple definition for the
isShipped relation from the common ontology and its implementation in the
Mueller’s ontology.

r1 /* isShipped relation in the common ontology =/ relation A
2 isShipped(ofType mo#ShipmentOrderReq)
3
4 /% implementation of the isShipped relation in the Mueller's ontology */
5 axiom isShippedDef
6 definedBy
7 ?shipmentOrderReq[mo#to hasValue ?to, mo#package hasValue ?package] memberOf mo#
8 ShipmentOrderReq and
9 ?to[mo#city hasValue ?city] and
10 isShippedContinents(?city, mo#Europe, mo#Asia, mo#Africa) and
11 ((?package[mo#weightKg hasValue ?weightKg] memberOf mo#Package) and (?weightKg<50))
12 implies
13 mo#isShipped(?shipmentOrderReq).
\ J

Listing 1.1. ¢sShipped relation

The relation isShipped is true if the service provider can ship products according
to the shipment order request (ShipmentOrderReq). In the second part of the
listing [T}, 2sShipped is defined such that the destination city for the shipment
must be in Europe, Asia or Africa and the weight of the package is less then
50kg. This forms part of the Mueller service description.

Services. We focus on the description of the data-fetching interface of the
Mueller service showing how and which data can be fetched during discovery.

Dynamic Service Discovery 93

g 1 interface WSMullerDataFetchlInterface A
2 nfp
3 "interfacePurpose” hasValue "discovery”
4
5 endnfp
6
7 choreography WSMullerDataFetchChoreography
8

transitionRules WSMullerDataFetchTransitionRules
/* Rule 1: Request for product quote */
forall {?purchaseQuoteReq} with (
?purchaseRequest memberOf mo#PurchaseQuoteReq
) do
add(# memberOf mo#PurchaseQuoteResp)
endForall

e
N U W N R O ©

/* Rule 2: Request for shipment quote */
forall {?shimpmentQuoteReq} with (
?purchaseQuoteResp[mo#package hasValue ?package] memberOf mo#
PurchaseQuoteResp and

=
© 0w

20 ?shipmentQuoteReq[mo#to hasValue ?to] memberOf mo#ShipmentOuoteReq and
21 mo#isAvailable(?purchaseQuoteResp) and mo#isShipped(?to, ?package)

22) do

23 add(# memberOf mo#ShipmentQuoteResp)

24 endForall

\ J

Listing 1.2. Mueller data fetching interface

In listing [the first rule (line 6) describes how to get the price and the
product availability information (the quote request data is part of the goal
description). The second rule (line 13) describes how to get a quote for ship-
ment. This rule will be only used if requested product is available (determined
through relation isAvailable) and Mueller can ship to specified address (deter-
mined through relation isShipped). Here, shipment address (to variable) is taken
from the shipment quote request and packaging information (package variable)
is taken from purchase order response. According to this definition, the first rule
is used independently (and could be the only rule used where the user does not
request shipment) while for the second rule, the first rule need to be executed
first (the rule can be executed if the product is available and shippable which
is determined through results of the first rule). Concepts PurchaseQuoteReq,
ShipmentOuote Req and PurchaseQuoteResp, ShipmentQuote Resp are defined
as input and output vocabularies respectively (including grounding mechanism)
(for brevity, this is not shown in the listing).

Goals. The goal for the scenario describes the user’s aim to buy certain products
and ship them to a specific location. In addition, the goal specifies a preference
that price be used for selection of the best service where multiple matching
services are discovered. The goal as in listing is defined for our scenario
with respect to the implementation of the matching function from section
(we discuss this implementation in section [L3]). The goal defines the capability
postcondition specifying to get a quote for the product while at the same time the
product must be available and shippable to location specified by the shipment
order request.

94 T. Vitvar, M. Zaremba, and M. Moran

r N
1 Goal GoalPurchaseShip
2 nfp
3 " preference” hasValue " ?price”
4
5 endnfp
6
7 capability GoalPurchaseShipCapability
8 postcondition
9 definedBy
10 (?x[mo#price hasValue ?price] memberOf mo#PriceQuoteResp and
11 mo#isAvailable(go#purchaseOrderReq) and
12 mo#isShipped(go#shipmentOrderReq)).
13
- J

Listing 1.3. User Goal in WSMO

4.3 Implementation

The scenario is implemented as follows: when the goal is generated out of the
request specified by the user, it is sent to the WSMX system. The WSMX starts
a new operational thread (execution semantics) which first invokes the discovery
component which in turn returns a list of services matching the goal. This list
is passed to the selection component to select the service that best fits the user
request. Control passes to the choreography engine which uses the choreography
descriptions of the goal and service respectively, to drive the message exchange
with the discovered service. This section describes the implementation of the
algorithm from section [3] within the discovery component of WSMX. The de-
tails about other parts of the execution process can be found in our previous
work in [2].

Section [3] describes three steps for discovery. A prototype for the abstract-
level matching is under development in the WSMO working group. The imple-
mentation, described here, focuses on the steps of instance-level matching and
data-fetching. A match between the goal and Web services is determined on the
knowledge base created out of their descriptions, including instance data (both
available from the descriptions and fetched). The goal capability defines a query
(listing [L3)) which is used to query the knowledge base.

According to the algorithm [in sectionB] the knowledge base B, is created
for every goal and web service from the repository as shown in figure[2 Initially,
the knowledge base imports all concepts from the common ontology and data
from both goal and web service descriptions. In order to evaluate the matching
function, we simply query the knowledge base using the goal postcondition. If
the result of the evaluation is true, we add the web service to the list E of
web services to the position determined by the preference. If the result of the
evaluation is false, we first try to fetch new data by processing the fetching
interface. If new data is available we evaluate the matching function again. If
new data is available, the matching function is evaluated again. Otherwise, the
cycle ends and the next service from the repository is processed. We briefly
discuss this implementation in the next section 4]

Dynamic Service Discovery 95

Common
Ontology
Imports Imports
Imports
WSMO Goal (G) WSMO Service (W)
(B) Provides
e data
Provides Provides data
data
WSMO Ontology WSMO Ontology
Data of Request Description and constrains
over provided functionality

Fig. 2. Knowledge Base By

4.4 Evaluation

Our implementation has been evaluated according to the methodology defined
by the SWS Challenge. The SWS Challenge is an initiative led by a Seman-
tic Web Services community providing a standard set of increasingly difficult
problems, based on industrial specifications and requirements. Entrants to the
SWS Challenge are peer-evaluated to determine if semantically-enabled inte-
gration approaches reduce costs of establishing and maintaining the integration
between independent systems. In each SWS challenge workshop, the entrants
first address introduced initial scenario of particular problem (e.g. mediation,
discovery) in a testing environment prepared by the SWS Challenge organizers.
The organizers then introduce some changes to back-end systems of the testing
environment when the adaptivity of solutions is evaluated — solutions should han-
dle introduced changes by modification of declarative descriptions rather than
code changes. This evaluation is done by a methodology, developed by the SWS
Challenge organizers and participants, which identifies following so called success
levels. Success level 0 indicates a minimal satisfiability level, where messages be-
tween middleware and backend systems are properly exchanged in the initial sce-
nario. Success level 1 is assigned when changes introduced in the scenario require
code modifications and recompilation. Success level 2 indicates that introduced
changes did not entail any code modifications but only declarative parts had
to be modified. Success level 3 is assigned when changes did not require either
modifications to code or the declarative parts, and the system was able to auto-
matically adapt to the new conditions. Our implementation was evaluated to suc-
cessfully address the scenario based on the location, weight, dimensional weight
and price requirements, scoring success level 2. The implementation proved
to be generic where only modifications of the WSMO Goals were necessary

96 T. Vitvar, M. Zaremba, and M. Moran

in order to correctly handle introduced changes. Discovery based on the location
was successfully resolved using the common isShipped relation (see listing [[T]).
Additional criteria imposed on the service such as weight and price have also
been evaluated to level 2. No changes in WSMX code or in the descriptions of
the services were required — only the Goal requests had to be changed. With
respect to the fully-fledged discovery, there are however some limitations. It
does not distinguish between the result nodata and nomatch (as defined in the
algorithm) while it treats both results as nodata. This means that the whole
fetching interface needs to be always processed until new data can be fetched
or unless the match is found. This is a forced limitation of our implementation
while at the same time it is a temporary solution for our environment before the
fully-fledged discovery component will be available. The algorithm presented
here however allows to use various implementations of matching functions which
adhere to its defined interface. As a consequence, our solution currently offers a
limited scalability. It might generate a significant network overhead in large-scale
discovery scenarios when detailed interactions with every potential web service
needs to be performed. We plan to address the optimality of our algorithm with
respect to scalability in our future work. Our current solution also does not
directly address security. It is important to ensure that information retrieved
from service provider can be accessed after authorization and that data is fetched
in a secure way. Such security aspects should be however implemented between
the e-marketplace and service providers transparently to data fetching.

5 Related Work

There is no directly comparable work in the extension of the interface description
in Web services to allow the fetching of additional data to aid discovery at run-
time. However, there are two topics that are closely related. The first is service
discovery based on semantic matchmaking which is the research area in which
this paper is set and the second is service contracting and negotiation. Research
into Goal-based discovery for WSMO and WSMX takes a step-wise approach
with both theoretical and implementation concerns addressed at each stage.
Three strategies have been investigated in this manner. The first is keyword-
based discovery [4], which uses an algorithm that matches keywords, identified
from the Goal description, with words occurring in various locations within the
Web service description. The second strategy is for a lightweight Semantic Web
Services discovery component for the WSMX platform and is described in [I].
This approach models a service in terms of the objects it can deliver. The term
object, in this sense, means something of value the service delivers in its do-
main of interest. A third strategy is based around the use of quality-of-service
attributes as described in [3] and implemented by the authors as a WSMX
component. Upper level ontologies describing various domains for quality-of-
service attributes are provided and non-functional properties are introduced to
the service descriptions whose meanings are defined in these QoS ontologies. The
approach in this paper is compatible with each of the matching strategies as it

Dynamic Service Discovery 97

extends the matching power by requesting data from the service that is not di-
rectly available in its description. In [7], contracting is identified as an activity
that may take place between the requester and provider once the initial discov-
ery has identified candidate services. The discovery mechanisms in OWL-S rely
on subsumption reasoning to match a service profile of service requesters with
candidate service profiles published by service providers ad described in [I0].
As with the WSMO efforts, they acknowledge that a negotiation phase may be
necessary after discovery to allow requesters and providers agree on quality of
service issues. Automated negotiation of service provision is related to the topic
of this paper as, for negotiation to take place, it must be possible to determine
during discovery exactly the terms that are being offered by the service which
may be open to negotiation. A substantial body of work is devoted to the devel-
opment of negotiation systems ranging from the application of intelligent agents
for eCommerce in [§] through negotiation using Bayesian Learning [14] to using
Web services and BPEL for automated negotiations [5].

6 Conclusion and Future Work

Service discovery which operates on abstract descriptions of services needs to
be further elaborated in order to return results of concrete services satisfying
concrete goals. For this purpose, instance data needs to be used. Since all data
can not be included in service descriptions (usually for practical reasons) it
needs to be fetched from the service provider at discovery-time. In this paper we
presented an approach to model the service interface allowing such data to be
fetched from the service provider. We use the abstract state machine formalism
to model the interface allowing scalable interactions with a service provider for
specific discovery sessions. This approach allows the use of only the rules and
data required, by the service requester at discovery-time (and thus limit data
transmission or other costs) while at the same time it is possible to adapt the
interface for various purposes of the late binding phase, i.e. discovery, selection,
contracting/negotiation, etc. We also showed how, by extending WSMO service
interface, the WSMO service choreography definition can be used to implement
this interface. In a case scenario, we described the necessary semantic models and
presented the algorithm (including creation of the knowledge base, processing
the interface, and querying the knowledge base).

In our future work we plan to address the optimality for data fetching to
decide on preferences for those interactions which might lead to results without
processing all data fetching interface. In addition, we want to extend the data
fetching interface to support other parts of the late binding phase. For example,
negotiation building on data fetching might use interactions with specific mean-
ing, such as for bidding etc. Layering of specific late-binding interfaces on the
top of data fetching allows a modular approach to the definition of such inter-
actions. We also plan to improve the implementation of the matching function
for fully-fledged service discovery. In addition, we plan to incorporate run-time
data mediation aspects into the discovery process where service requester and
service providers use different ontologies.

98 T. Vitvar, M. Zaremba, and M. Moran
References
1. Andreas Friesen and Stephan Grimm. DIP WP4 Service Usage, D4.8 Discovery

10.

11.

12.

13.

14.

Specification, available at http://dip.semanticweb.org/documents/D4.8Final.pdf.
Technical report, 2005.

. Thomas Haselwanter, Paavo Kotinurmi, Matthew Moran, Tomas Vitvar, and Ma-

ciej Zaremba. Wsmx: A semantic service oriented middleware for b2b integration.
In ICSOC, pages 477-483, 2006.

Manfred Hauswirth, Fabio Porto, and Le-Hung Vu. P2P and QoS-enabled service
discovery specification available at http:/dip.semanticweb.org/documents/D4.17-
Revised.pdf. Technical report, 2006.

Uwe Keller, Ruben Lara, Holger Lausen, Axel Polleres, Livia Predoiu, and
Ioan Toma. WSMO D10.2 Sematic Web Service Discovery available at
http://www.wsmo.org/TR/d10/v0.2/d10.pdf. Technical report, 2005.

J.B. Kim, A.Segev, A.Patankar, and M.G.Cho. Web services and bpeldws for
dynamic ebusiness negotiation processes,. In International Conference on Web
Services, Las Vegas, Nevada, USA, 2003.

Jacek Kopecky, Dumitru Roman, Matthew Moran, and Dieter Fensel. Semantic
web services grounding. In AICT/ICIW, page 127, 2006.

Ruben Lara and Daniel Olmedilla. Discovery and Contracting of Semantic Web
Services. Technical report, 2005.

L.C. Lee. Progressive multi-agent negotiation. In International Conference on
Multi-Agent Systems. MIT Press, 1995.

Adrian Mocan, Matthew Moran, Emilia Cimpian, and Michal Zaremba. Filling the
gap - extending service oriented architectures with semantics. In ICEBE, pages
594-601. IEEE Computer Society, 2006.

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. In 1st International Semantic Web Conference (ISWC), page
333347, 2002.

Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubn Lara, Michael
Stollberg, Axel Polleres, Cristina Feier, Christoph Bussler, and Dieter Fensel. Web
Service Modeling Ontology. Applied Ontologies, 1(1):77 — 106, 2005.

Dumitru Roman, James Scicluna, Dieter Fensel, Axel Polleres, and Jos de Bruijn.
D14v0.3. Ontology-based Choreography of WSMO Services, available from
http://www.wsmo.org/TR/d14/v0.4/. Technical report, 2006.

A. Moormann Zaremski and J. M. Wing. Specification matching of software compo-
nents. ACM Transactions on Software Engineering and Methodology, 6(4):333-369,
1997.

D. Zeng and K. Sycara. Bayesian learning in negotiation. In Working Notes for
the AAAI Symposium on Adaptation, Co-evolution and Learning in Multiagent
Systems, pages 99 — 104, 1996.

Two-Phase Web Service Discovery Based on Rich
Functional Descriptions

Michael Stollberg, Uwe Keller, Holger Lausen, and Stijn Heymans

Digital Enterprise Research Institute Innsbruck (DERI Austria),
Institute for Computer Science, University of Innsbruck,
Technikerstrasse 21a, A-6020 Innsbruck, Austria
firstname.lastname@deri.org

Abstract. Discovery is a central reasoning task in service-oriented architectures,
concerned with detecting Web services that are usable for solving a given request.
This paper presents two extensions in continuation of previous works towards
goal-based Web service discovery with sophisticated semantic matchmaking. At
first, we distinguish goal templates as generic objective descriptions and goal in-
stances that denote concrete requests as an instantiation of a goal template. Sec-
ondly, we formally describe requested and provided functionalities on the level
of state transitions that denote executions of Web services, respectively solutions
for goals. Upon this, we specify a two-phase discovery procedure along with se-
mantic matchmaking techniques that allow to accurately determine the usability
of a Web service. The techniques are defined in the Abstract State Space model
that supports several languages for describing Web services.

1 Introduction

Discovery is concerned with detecting usable Web services for solving a given request.
This is the first central reasoning task in the context of Semantic Web services, followed
by contracting and behavioral conformance tests [[17]. Several research works present
discovery techniques by semantic matchmaking of requested and provided function-
alities, e.g. [T6IT3I2I7ITT]. However, due to deficiencies in the expressiveness and the
formal semantics of functional descriptions most existing approaches lack in the achiev-
able quality of the matchmaking results for Web service discovery.

In this respect, we present the advancements towards a goal-based approach for se-
mantically enabled Web service discovery with sophisticated matchmaking. Initially
presented in [9], the requester and the provider perspective are separated by formally
describing client objectives as goals; a Web service is understood to provide access to
several services by its invocation with concrete input values. We extend this approach
by differentiating two notions of goals. A goal template is a generic objective descrip-
tion that is defined at design time, and a goal instance denotes a concrete client request
that is created at runtime by instantiating a goal template with concrete input values.
Apart from better supporting goal formulation by clients, this allows to realize an ef-
ficient two-phase Web service discovery. Usable Web services for goal templates are
determined at design time and kept in the system. At runtime, the discovery for goal

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 991131 2007.
(© Springer-Verlag Berlin Heidelberg 2007

100 M. Stollberg et al.

instances only needs to investigate those Web services that are usable for the corre-
sponding goal template, so that the number of matchmaking operations necessary at
runtime can be reduced. This paper specifies the semantic matchmaking techniques for
this framework.

In order to properly describe provided and requested functionalities, we consider a
state-based model of the world. Therein, a particular execution of a Web service denotes
a sequence of state transitions; such a sequence is also a solution for a goal if the client
objective is solved in the end-state. The functionality provided by a Web service is a set
of all its possible executions, and a goal template as well as a goal instance describes a
set of possible solutions. We formally describe possible executions and solutions with
respect to the start- and end-states in Abstract State Spaces, a language independent
model that defines precise formal semantics for such functional descriptions [10].

On top of this, we specify semantic matchmaking techniques that allow to precisely
determine the usability of a Web service for solving a goal. In particular, we (1) revise
the definition of previously identified matching degrees and use these to differentiate the
usability of a Web service on the goal template level, (2) present a novel approach for
semantic matchmaking on the goal instance level, and (3) finally integrate the match-
making techniques for the goal template and the goal instance level. We specify the
techniques in a first-order logic framework and illustrate the definitions by a running
example throughout the paper: a goal specifies the objective of finding the best restau-
rant in a city, and a Web service provides a search facility for the best French restaurant
in a city. As we shall discuss, this Web service is only usable for specific goal instances
—namely those that specify a city wherein the best restaurant in French.

The paper is structured as follows. Section [2] introduces the concepts of our two-
phase discovery approach, and Section 3] defines the formal functional descriptions for
Web services and goals. Section] specifies the integrated semantic matchmaking tech-
niques for Web service discovery, and Section [3 demonstrates this in the running ex-
ample. Section [0l discusses related work and positions our approach therein. Finally,
Section [concludes the paper. A detailed report on this work is provided in [20].

2 Concepts and Approach

The specification of semantic matchmaking techniques for Web service discovery is
strongly dependent on the underlying conception and the formal description of Web
services and goals. This section introduces the relevant concepts and then outlines the
two-phase Web service discovery by discussing the meaning of a match.

2.1 Web Services and Goals

In accordance to the common understanding, we consider a Web service as a computa-
tional facility that is invocable over the Internet via an interface [1]]. As an abstraction
that is sufficient for our purpose, we define a Web service as a pair W = (IF, () such
that IF = (i1, ...,1,) is a finite set of names that denotes all inputs required for invok-
ing W, and ¢ is the implementation of W that is executed when W is invoked.

In the Abstract State Space model (ASS, [10]), a particular execution of W denotes
a finite sequence of state transitions 7 = (sg, ..., S;,), i.e. a change of the world from

Two-Phase Web Service Discovery Based on Rich Functional Descriptions 101

Abstract State Space N

Web Service W
{T}for B (@)
(@) ! , 1 S ot S
o NGTOT0T C o
O
© o
@] @]

Fig. 1. Web Service, Executions, Input Bindings

a start state so to an end state s,,. Such a 7 is triggered by invoking W with concrete
input values; we refer to this as an input binding 5 : {i1,...,i,} — U, i.e. a total
function that assigns objects of some universe U/ to the /F'-names. In dependence of the
start state, there can be different executions of W for the same input binding. Relevant
for the context of discovery, we understand the overall functionality provided by W
as the set of all its possible executions, denoted by {7}y . As illustrated in Figure[ll
this can be further differentiated into the distinct sets of possible executions of W for
each valid input binding, such that {7}y = [J{7}w gy with W () denoting the set of
possible executions of W when invoked with a particular input binding 3.!

Goals in our approach are formally described client objectives. In accordance to re-
lated Al research (e.g. [3I13]), we understand a goal as the formal description of the
desire of the client to get from the current state of the world into a state wherein the
objective is satisfied. This abstracts from technical details irrelevant to the client objec-
tive. As promoted by the WSMO framework [12]], the overall aim is to enable problem-
oriented Web service usage: the client merely specifies the objective to be achieved as
a goal, and the system detects and executes suitable Web services for solving this.

We have refined the initial WSMO goal model based on experiences in realizing
respective technologies [21]]. The extension relevant in the context of discovery is the
differentiation of goal templates as generic, reusable objective descriptions, and goal
instances that denote concrete client requests as instantiations of a goal template. In-
spired by related system implementations such as IRS [4] and SWF [22], this allows
to support goal formulation by client via graphical user interfaces. Instead of requiring
the client to specify potentially complex logical formulae for goal formulation, merely
pre-defined templates are instantiated with concrete inputs. Figure Plillustrates this.

While we shall specify their formal description in the next section, a goal template G
defines generic constraints on the initial state and the desired final state to be achieved.
In our restaurant search example, the goal template G defines that the best restaurant

!'We consider the functionalities provided by Web services to satisfy two properties: (1) deter-
ministic, i.e. all outputs and effects of an execution are completely dependent on the provided
inputs and the start state; non-deterministic functionalities violate the composability of Web
services [17]; (2) non-adaptive, meaning that in contrast to intelligent software agents a Web
service does not itself change the provided functionality [6].

102 M. Stollberg et al.

Goal Template service detection .
generic objective description [~ 4~ functional

(requested functionality) =
Client instantiates g (Web) SeI"VI-Ce
2 Implementation
defines =
seemmesasissiese P Goal Instance °)
% concrete input service usage a (not of interest here)

A A 4 A

(Ontology) (Ontology) Domain Knowledge (Ontology) (Ontology)

Fig. 2. Goal Templates, Goal Instances, and Web Services

shall be found in a city that is provided as an input by the client. Its meaning in the
ASS model is that G specifies a set of sequences of state transitions {7}¢ as its possible
solutions. For each 7 = (so, ..., sm) € {T}g, the start-state s satisfies the constraints
on the initial state, and the end-state s,,, satisfies the constraints on the desired state
of the world. At runtime, a client creates a goal instance GI(G) by defining concrete
values for the inputs specified in G. In the example, this is the concrete city in which
the best restaurant shall be found. We refer to this as an input binding 3 for G; this also
constitutes the input binding for invoking a Web service to solve GI(G) as discussed
above. Because of this instantiation, the possible solutions for GI(G) are a subset of
those for G, so that {7}¢rg) C {7}g.

2.2 The Meaning of a Match for Web Service Discovery

We now turn towards Web service discovery. With respect to the conception of Web
services and goals explained above, the aim is to find a Web service that can provide a
T that is a solution for the goal. Hence, we define the meaning of a match as follows.

Definition 1. Let W be a Web service, G a goal template, and GI(G) a goal instance
that instantiates G with an input binding (3. Let T = (sq,...,Sm) be a sequence of
states in an Abstract State Space A. We define the following sets:

{7}g := possible solutions for G

{T}w := possible executions of W

{7}crg) C {1}g := possible solutions for GI(G) that defines 3
{m}Yw s C {7}w := possible executions of W when invoked with 3

We define the usability of a Web service for solving a goal as:

(i) match(G, W) 3.t e {rgn{r}w)
(it) match(GI(G), W) : 3r. 7 € {T}arg) N {T}w)

This defines the basic matching conditions for Web Service discovery. Clause (i) states
that a Web service W is usable for solving a goal template G if there exists at least one
execution of W that is a possible solution for G. Clause (ii) defines that W is usable
for solving a goal instance GI(G) if there is at least one execution of W that is also a
solution for GI(G) when W is invoked with the inputs defined in GI(G).

Two-Phase Web Service Discovery Based on Rich Functional Descriptions 103

Because of {7}qr(g) C {7}g it holds that a Web service that is usable for solving
a goal instance is also usable for the corresponding goal template. If W can provide a
7 € {T}a1(g), then this 7 also is also an element of {7}g. Formally, we can express
this as match(GI(G), W) = match(G, W). As the logical complement, it also holds
that ~match(G, W) = —match(GI(G), W), i.e. that a Web service that is not usable
for a goal template is also not usable for any of its goal instances.

This constitutes the foundation of our two-phase discovery. Usable Web services for
goal templates G can be determined at design, i.e. when a new goal template is defined.
Web service discovery for concrete goal instances GI(G) is performed at runtime. Be-
cause of -match(G, W) = —match(GI(G), W), this merely needs to consider the
set of Web services that are usable for the corresponding goal template G. While the
achievable efficiency increase is discussed elsewhere [22]], this paper specifies the se-
mantic matchmaking techniques for evaluating the matching conditions on the basis of
formal descriptions. Without such techniques, we would need to perform test runs of
W in order to determine its usability for solving a goal.

3 Formal Functional Descriptions

The following defines functional descriptions for Web services and goals that serve as
the basis for semantic matchmaking techniques for Web service discovery. To prop-
erly describe requested and provided functionalities on the level of state transitions, we
apply functional descriptions as defined in the ASS model mentioned above. This sec-
tion specifies their structure and formal meaning in a first-order logic framework, and
illustrates the definitions in our running example.

3.1 Definition and Semantics

The ASS model describes functionalities in terms of preconditions and effects along
with explicitly defining in- and outputs. Focussing on the formal meaning of functional
descriptions, they are defined independent of the language used for specifying precon-
ditions and effects. The following recalls the definitions, referring to [10] for details.

An Abstract State Space A is defined over a signature X’ and some domain knowl-
edge £2. A functional description is described as a 5-tuple (X, £2, IF, ¢7"¢, $/). The
signature Y. differentiates static symbols X'g that are not changed, dynamic symbols X' p
that are changed by execution of a Web service, and X% that denote the interpretation
of a dynamic symbol in the start state. Preconditions ¢P"¢ and effects ¢ are defined
as statements in a logic £(X). IF = (iy,...,i,) is a set of variables that denote all
required inputs. To explicitly specify the deterministic dependency between the start-
and end-states with respect to input values, they can occur as the only free variables in
#P"¢ and ¢ . An input binding 3 : {41, ...,i,} — U is a total function that assigns
objects of the universe of A to each [F'-variable. Finally, the symbol out denotes the
computational outputs that are constrained by ¢ .

The meaning of a functional description is defined with respect to the start- and the
end-state of a sequence of state transitions. Formally, a 7 = (so, ..., $;) in A is con-
sidered to satisfy the described functionality if and only if it holds that if 5o |=,(5) ¢P™¢

104 M. Stollberg et al.

then s, F=r(xy @0 . Here, s [=¢ () ¢ expresses that the formula ¢ is satisfied by the
universe U 4 in a state s under the logic £(X). We refer to this as implication seman-
tics: if the precondition is satisfied in sg, then s, will satisfy the effect; otherwise, we
can not make any statement about the behavior of the described functionality. Because
the [F'-variables occur as free variables in both the precondition ¢”"¢ and the effect
¥, the end-state s,, is completely dependent on the start-state so. This reflects the
deterministic nature of functionalities provided by Web services.

While functional descriptions in the ASS model are defined independent of the spec-
ification language for preconditions and effects, we use classical first-order logic (FOL,
[19]) for illustration throughout this work. In order to ease the handling of functional
descriptions, we describe them as a first-order logic structure that maintains the formal
semantics as defined in the ASS model.

Definition 2. A functional description is a 4-tuple D = (X, 2, IF, $P) such that:

(i) X is a signature consisting of X's (static symbols), X'p (dynamic symbols),
and X%7¢ (pre-variants of dynamic symbols)
(ii) £2 C L(X) defines consistent domain knowledge
(iii) IF is a set of variables i1, . . . , i,, that denote all required input values;
an input binding (: {i1,...,in} — U is a total function that assigns
objects of the universe of A to each IF-variable
(iv) ¢ is a FOL formula of the form [P spre 5y, = & such that
- @P"¢ is the precondition with IF as the only free variables
- ¢ is the effect with IF as the only free variables and the
outputs are denoted by the predicate out
- [¢] swre 5, is the formula @' derived from ¢ by replacing every dynamic
symbol a € X'p by its corresponding pre-variant oy, € X7 °.

Essentially, ¢ defines a logical implication between the precondition and the effect
formulae. The rewriting function for the precondition handles dynamic symbols. For ex-
ample, consider a functionality for a bank account withdrawal with ¢p*"¢ : account(a) A
balance(a) > z, 37 : account(a) A balance(a) = balancepre(a) — x, and X¥p =
balance(a). We obtain ¢P = (account(a) A balancey c(a) > x) = (account(a) A
balance(a) = balancep,.(a) — x), so that the relationship between the start- and end-
state is specified explicitly. The following specifies the meaning of such a functional
description that formally describes the overall functionality provided by a Web service.

Definition 3. Let W be a Web service with {7}y as the set of its possible executions
in an Abstract State Space A. Let D = (X, 02, IF, $P) be a functional description. Let
Qu = QU [Q]grre_ 5, be the domain knowledge extended with are € ST)°.

W provides the functionality described by D, denoted by W = D, if and only if:

(i) every X-interpretation I with I = 24 and I, 3 = ¢P under every input
binding B : IF — U 4 represents a T € {7}w, and

(ii) every T € {7}y is represented by a X-interpretation I with I, 3 |= ¢* and
I = Q4 under every input binding (3 : IF — U 4.

This defines that a Web service W provides the functionality described by D if and
only if every X-interpretation I, 3 that is a model of ¢? describes a 7 = (0, ..., Sm)

Two-Phase Web Service Discovery Based on Rich Functional Descriptions 105

Web service W in A with W |=A D FOL Functional Description D

So l= (Z) T for B, S, |= (eff)

Ow" -1 . IZ,Q(geff — aFr)
for B,

{T}y €——> models of D

I Iy (@ — @Pre)
for B,

Fig. 3. Illustration of W =4 D

€ {7}w. Such a Y-interpretation describes the objects that exists in the end-state s,,
if W is executed for a particular input binding [in a specific start state sg. For the
implication semantics from clause (iv) in DefinitionP] it holds that I, 3 = ¢P if I, 3 |=
¢’ and 1,3 = o if I K& ¢PT¢, we can not make any statement about the end-
state of a 7. Hence, if a 7 € {7} can be described by a X-interpretation I with
I, = ¢P, then it satisfies the described functionality; if there is a 7 € {7}y that
cannot be described by such a Y-interpretation, then W does not provide the described
functionality. Figure Blillustrates this, while we refer to for the formal explanation
of this definition and its relationship to the ASS model.

The meaning of a functional description Dg of a goal template G is analogous. Here,
{7}g is the set of sequences of state transitions that are solutions for G such that every
7 € {7}¢ corresponds to a X-interpretation that is a model of Dg. To precisely evaluate
the usability of a Web service, in some cases we need to consider the concrete value
assignments for the /F'-variables. These are provided by the creation of a goal instance
GI(G) that defines an input binding 3 for the IF-variables in Dg of the corresponding
goal template G. Subsequently, this 3 constitutes the inputs for invoking a Web service
in order to solve GI(G). We shall discuss this in more detail in the context of discovery
on the goal instance level (Section [£.2).

3.2 Illustration in Running Example

In order to illustrate the above definitions, Table [T shows the formal functional descrip-
tions of the goal template G and the Web service W in our restaurant search example.

The goal describes the objective of finding the best restaurant in a city. The specific
city is an input required for instantiation. Hence, Dg specifies one [F'-variable that is
constrained in the precondition ¢P" to be a city. The effect 7 describes the desired
state of the world to be given if and only if the received output is a restaurant in the
city such that there does not exists any better restaurant in the city. Analogously, Dy,
describes the functionality provided by the Web service . The mere difference occurs
in the effect: the output of W is a French restaurant in the city that is provided as input
such that there does not exist any better French restaurant in the city.

We use classical first-order logic (FOL, [19]) as the specification language. The sig-
nature X for both Dg and Dyy defines the respective symbols. Here, ?(name) denotes

106 M. Stollberg et al.

a variable. The domain knowledge 2 is defined in the best restaurant ontology. This
contains axioms specifying that the predicate better(-,-) denotes a partial order, that
any restaurant has exactly one type and that the restaurant types italian and french
are distinct from each other, and that restaurants are located in cities. We omit the com-
plete ontology specification due to space limitations. The table shows the functional
descriptions with precondition and effects and the corresponding ¢” in accordance to
Definition 2

Table 1. Functional Descriptions Dg, Dw in Running Example

Goal Web Service
“find best restaurant in a city” “provide best French restaurant in a city”
(2: Dbest restaurant ontology (2: Dbest restaurant ontology
IF: {%x} IF: {%x}
@P e city(Tx) @P e city(Tx)
¢°F: Y2y, out(?y) & (¢°F: Y2y, out(?y) & (
restaurant(?y) restaurant(?y)
Ain(?y, 7x) A in(?y, 7x) Atype(?y, french)
A =37z (restaurant(?z) A =37z (restaurant(?z)
A in(?z, 7x) A in(?z,?7x) Atype(?z, french)
A better(?z,7y))). A better(?z,7y))).
#P9: city(?x) = (dPW: city(7x) = (
V7y. out(?y) < (V7?y. out(?y) < (
restaurant(?y) restaurant(?y)
Ain(?y, 7T) A in(?y, ?z) A type(?y, french)
A =37z (restaurant(?z) A =37z (restaurant(?z)
A in(?z, 7x) A in(?z,7z) Atype(?z, french)
A better(?z,7y)))). A better(?z,7y)))).

4 Semantic Matchmaking for Web Service Discovery

On the basis of the formal descriptions we now specify the semantic matchmaking tech-
niques for the two-phased Web service discovery introduced in Section 2.2l The aim is
to provide semantic means that allow to precisely determine the usability of a Web ser-
vice with respect to the matching conditions on the goal template and the goal instance
level from Definition [Il We therefore define matchmaking on functional descriptions
and input bindings as specified above. These provide sufficiently rich descriptions of
possible Web service executions and possible solution for goals. The following first
specifies semantic matchmaking on the goal template level, then on the goal instance
level, and finally integrates the techniques for both levels. We shall demonstrate the
techniques in our running example in Section[3

4.1 Goal Template Level

We express the usability of a Web service W for solving a goal template G in terms
of matching degrees. Adopting the concept and denotation of the degrees from several

Two-Phase Web Service Discovery Based on Rich Functional Descriptions 107

previous works on Web service discovery (e.g. [I6JI3I8]]), we define them over the
functional descriptions of goals and Web services as defined in Section [3.1]

The distinct degrees denote specific relationships between the possible executions
{7}w of W and possible solutions {7}¢ for G. Four degrees — exact, plugin, sub-
sume, intersect — denote different situations wherein the matching condition in clause
(i) of Definition [[is satisfied; the disjoint degree denotes that this is not given. In our
two-phase discovery, these matching degrees serve as a pre-filter for determining the
usability of a Web service W for solving a goal instance G1(G) that instantiates the
goal template G. We shall discuss this in more detail in Section[£3]

We define the criteria for each degree over Dg and Dy from Definition[2] along with
an explicit quantification of input bindings 3. As the condition for the exact degree,
24 = VB. ¢P9 & ¢Pw defines that every possible execution of W is a solution
for G and vice versa. We assume that all functional descriptions D are consistent, i.e.
that there exists a X-interpretation I under a 3 that is a model of ¢”. Representing a
refinement of the matching degree definitions from [§]], we therewith obtain a precise
means for differentiating the usability of a Web service on the goal template level.
Table Pl provides a concise compilation of the matchmaking degree definitions.

Table 2. Definition of Matching Degrees for Dg, Dw

. Definition .
Denotation B:IF — U Meaning
Dg = (X,0,IF,¢"9) ¢ = [P gpre_ 5 = ¢ for {7}g, {T}w with
Dw = (2,02, IF,¢PW) b oP W Ea Dw

Qa=102U [Q]E%TCHED

ifand only if 7 € {}¢

exact(Dg, Dw)

plugin(Dg, D)
subsume(Dg, Dyy)

intersect(Dg, Dyy)

Q4 E V. $79 & P

Q4 VB 6P = gD
Q4 V. 679 = gD

Q4 f=3B. P9 N oPW

then 7 € {7}w
ifr € {r}gthent € {T}w
ifr € {r}wthent € {7}g
there is a 7 such that
TE€{r}lgand T € {r}w

there is no 7 such that

disjoint(Dg, Dw) re{r}gand T € {T}w

2u | ~3B. §7% N §PV

4.2 Goal Instance Level

A goal instance GI(G) is created by defining an input binding 3 for the IF'-variables in
the functional description Dg of the corresponding goal template G. Recalling from Def-
inition[I a match on the goal instance level is given if there exists a 7 = (sg, - . -, Sm)
in A that is a solution for GI(G) and can be provided by a Web service W when it
is invoked with the concrete input values defined in GI(G). The following specifies a
general technique for determining this on the basis of the available descriptions, inde-
pendent of the matching degree between Dg and Dy .

Formally, an input binding 3 : {i1,...,i,} — U is a total function that defines a
variable assignment over the universe U/ 4 for the input variables IF' defined in a func-
tional description D (cf. Definition [2)). We therewith obtain an assignment of concrete

108 M. Stollberg et al.

values v for all inputs required in D, i.e. § = {i1|v1,...,in|v, }. Given such a 3, we
can instantiate D by substituting all /F'-variables that occur as free variables in ¢?"¢
and ¢ by the concrete values defined in 3. We obtain [D] g as the functional descrip-
tion that is instantiated for the context of [3; this can be evaluated because it does no
longer contain any free variables. By instantiating the functional descriptions Dg of the
corresponding goal template G and Dy of the Web service W with the input binding 3
defined in GI(G), we obtain [Dg]| g as the functionality requested by GI(G) and [Dyw |3
as the functionality that can be provided by W when it is invoked with .

For W to be usable for solving GI(G), there must be a 7 such that 7 € {7}c(g)
and 7 € {7}w(g) (cf clause (ii) from Definition [1). To determine this on the basis of
the given descriptions, it must hold that — with respect to the domain knowledge — there
exists a Y-interpretation I that is a common model for ¢P¢ and ¢P" when both func-
tional descriptions are instantiated with the input binding /3 defined in GI(G). Formally,
this means that the union of the formulae 24 U {[#79] 3, [¢P"]} must be satisfiable,
i.e. that there exists a X '-interpretation that is a model for the extended domain knowl-
edge (24 and for the instantiated goal description [¢P¢]3 and for the instantiated Web
service description [¢P%]5. In accordance to Definition[3] this I represents a 7 that is
a solution for GI(G) and can be provided by W if it is invoked with .

Definition 4. Let Dg = (X, §2, IF g, ¢P9) be a functional description of a goal tem-
plate G. Let GI(G) be a goal instance that instantiates G with the input binding (3 :
IFg — Uy Let Dy = (X, 0, IFyw,¢PW) be a functional description, and let
W = (IF, 1) be a Web service with W |= 4 Dy .

match(GI(G), W) is given if there exists a X-interpretation I such that:

[EQ4 and TF[67%)s and Ik [PV]s.

Another requirement for W to be usable for solving GI(G) is that the 5 defined in
GI(G) provides concrete values for all inputs that are required to invoke W. This is
given if there is a bijection 7 : IF'p, — IFp,, such that for every input variable in Dy
there is a corresponding input variable in Dg, and each ¢ € IFp, is assigned with the
concrete value from /3. Subsequently, if there is a second bijection 72 : I[F'p,, — IFw
such that for each input name required by W there is a corresponding input variable in
Dy, then there is a concrete value assignment for each input required by .2

4.3 Integration of Matchmaking Techniques

We complete this section with combing the semantic matchmaking techniques for the
goal template and the goal instance level in order to attain an integrated matchmaking

2 We are aware of that this is requirement is not trivial to realize in practice, as it requires a
semantic mapping between the input variables of functional descriptions and the Web service.
Moreover, this may require mediation between incompatible ontologies used by the requester
and provider [3]]. However, to invoke a Web service there must be concrete values for all
required inputs — the two bijections denote the basic requirement therefore. [20] discusses
ways to weaken the requirements for the necessary compatibility, e.g. by creating existentially
quantified ontology instances for input values that are not explicitly defined by the client.

Two-Phase Web Service Discovery Based on Rich Functional Descriptions 109

framework for our two-phase Web service discovery. We therefore extend matchmaking
degrees from Table 2] with the matchmaking condition for the goal instance level. Due
to their definition, we can simplify the matching condition from Definition] for the
distinct matchmaking degrees as follows.

Theorem 1. Let Dg describe the requested functionality in a goal template G. Let
GI(G) be a goal instance of G that defines an input binding 3. Let W be a Web service,
and let Dy, be a functional description such that W =4 Dyy.

W is usable for solving GI(G) if and only if:
(i) exact (Da, Dw) or
(ii) plugin (Dg, Dw) or
(iii) subsume (Dg,Dw) and)\ 24 A [pPW)5 is satisfiable, or
(iv) intersect (Dg, Dw) and \ 24 N [¢pP9)5 A [pPW] is satisfiable.

This specifies the minimal matchmaking conditions for determining the usability of a
Web service for solving a concrete client request that is described by a goal instance.
Under both the exact and the plugin degree, W can be used for solving any goal instance
GI(G) because {T}cr(g) C {7}g € {7}w and 7 € {T}q1(g) © T € {T}w(s). Under
the subsume degree it holds that {7} 2 {7}w, i.e. every execution of W can solve G
but there can be solutions of G that cannot be provided by . Hence, W is only usable
for solving GI(G) if the input binding (3 defined in GI(G) allows to invoke WW. This is
given if there is a X-interpretation that is a model for [¢”W] and the conjunction of
the axioms in {2 4. Under intersect as the weakest degree, the complete matchmaking
condition for the goal instance level must hold because there can be solutions for G that
can not be provided by W and vice versa. The disjoint degree denotes that W is not
usable for solving the goal template and thus neither for any of its instantiations. We
refer to [20] for the formal proof of this theorem.

5 Evaluation

In order to demonstrate the precision for Web service discovery that is achievable with
the presented matchmaking techniques, this section discusses them for our restaurant
search example. We have implemented and verified the matchmaking techniques in
VAMPIRE , a resolution-based theorem prover for classical first-order logic with
equality that allows to realize matchmaking exactly as we have specified above. Due
to space limitations, we here content ourselves with condensed explanations on the
matchmaking techniques for the goal and the Web service as introduced in Section[3.2]
A more detailed documentation as well as further examples for discovery under other
matchmaking degrees is provided in [20].3

The following discusses the matchmaking techniques for the goal of finding the best
restaurant in a city and a Web service that provides the best French restaurant in a city

> The VAMPIRE implementation along with installation instructions and the proof obli-
gations for the best restaurant search example are available at: http://members.
deri.at/ michaels/software/best-restaurant-example.zip

http://members.deri.at/~michaels/software/best-restaurant-example.zip
http://members.deri.at/~michaels/software/best-restaurant-example.zip

110 M. Stollberg et al.

(cf- functional descriptions in Table [T)). This is an example for the intersect degree and
hence requires the full range of the extended matchmaking for the goal instance level.

For illustration, it is sufficient to consider city A wherein the best restaurant is French
and city B wherein the best restaurant is not French. We define two input bindings,
01 = {?x|A} and By = {?x| B}, and examine the solutions for G and the executions
of W for each. Table Bl provides a concise overview of the information relevant for our
discussion. The first part shows the description of the three best restaurants in A and B
as background ontologies 21, {25 C (2. The second part shows the goal instances, i.e.
when Dy is instantiated with the concrete values defined in the distinct 3 as explained
in Section .2l Analogously, the third part shows the only possible instantiations for .
Finally, the fourth part identifies common X -interpretations that serve as a witness for
a semantic match between the goal instances and the described Web Services.

We can observe that for the input binding (31, there is a X-interpretation I; that is
consistent with the background ontology (2 and satisfies both the instantiation of the
goal template [¢P9]3, as well as the instantiation of the Web service [¢pPW]s,. The

Table 3. Relevant Information for Matchmaking Illustration

City A: £, C 2 CityB: (% C ?

21 = {city(A) 2y = {city(B)
restaurant(r1A) restaurant(r1B)

n(r1A, A), type(rlA, french) in(r1B, B), type(r1B,italian)
restaurant(r2A) restaurant(r2B)

in(r2A, A), type(r2A,italian) in(r2B, B), type(r2B, french)
restaurant(r3A) restaurant(r3B)

n(r3A, A), type(r3A, french) in(r3B, B), type(r3B, french)
better(r1A,r2A) better(r1B,r2B)
better(r2A,r3A)} better(r2B,r3B)}

[679], with 51 = {x]A} [679], with 3, = {x|B}

city(A) = (city(B) = (
V7y.(out(?y) < (V?y.(out(?y) < (
restaurant(?y) Ain(?y, A) restaurant(?y) Ain(?y, B)

A =3?z.(restaurant(?z) A —3?z.(restaurant(?z)

A in(?z, A) A in(?z, B)

A better(?z,7y)))) A better(?z,7y))))

[6P]s, with 81 = {x|A} [0], with 3, = {z| B}

city(A) = (city(B) = (
V7y.(out(?y) < (V?y.(out(?y) < (
restaurant(?y) restaurant(?y)

A in(?y, A) Atype(?y, french) A in(?y, B) Atype(?y, french)

A =37z (restaurant(?z) A =37z (restaurant(?z)

A in(?z, A) Atype(?z, french) A in(?z, B) Atype(?z, french)
A better(?z,7y)))) A better(?z,7y))))

I, with I; ': 20U {[¢DG]513 [(ZSDW],Bl} I> with I, ': 20U {[(ZSDG],Bzv [quW}ﬂz}

2, U 25 U{out(rlA),

ist!
better(r1A,r3A), better(r1B,r3B)} No such J; can exist!

Two-Phase Web Service Discovery Based on Rich Functional Descriptions 111

witnessing execution 7 corresponds to the pair (11, 31). Hence, the condition for the in-
tersect match is satisfied (cf. Table[2). Furthermore, we observe that for the input bind-
ing (o there can not exist such a common interpretation. Hence, neither the condition
for the subsumes nor for the plugin is satisfied; thus also not the one for the exact degree.
Assume that there would be such a common interpretation /o, i.e. a X-interpretation that
satisfies (2, [pP¢] 3, and [¢pPW] ,. From the second column of Table B we can conclude
that any object 7y that is the best restaurant in city B is a french restaurant. However,
this is not consistent with the background ontology {2 as described above, since then
restaurant 71 B must be at the same time an italian as well as a french restaurant.

Because of the intersect degree on the goal template level, clause (iv) of Theorem/[I]
must hold for W to be usable for solving a goal instance G1(G) that instantiates G. This
requires that there must be a X'-interpretation that is (a) consistent with the background
ontology {2 and (b) a common model for [¢P9]5 and [¢pPW]s (cf. Definition H). Let
us consider GI(G); as the goal instance that instantiates G with 8, and GI(G)z as
the goal instance that defines 2. Analyzing the possible solutions and executions in
TableBlreveals the intuitively expected discovery results: the X -interpretation I serves
as a witness fora 7 € {r}qr(g), and 7 € {7}w, . Hence, W is usable for solving
GI(G);1. On the other hand, as discussed above, there can not exist such a witness for
GI(G)2; therefore W can not be used to solve GI(G)a.

6 Related Work

Due to its relevance for service-oriented architectures, Web service discovery is subject
to several research efforts. We here discuss directly related works with respect to the
quality of matchmaking techniques and the modelling client objectives, referring to
more exhaustive overviews, e.g. in [QIT0120].

As early works, [16] presents matchmaking of in- and outputs in OWL-S, and
defines matchmaking of requested and provided results in a DL framework. Both define
the matching degrees in terms of concept subsumption, and work on OWL-S service ad-
vertisements and requests described by inputs, outputs, preconditions, and effects [14].
Although using OWL as an expressive specification language, this description neither
explicates the dependency pre- and post execution descriptions nor defines formal se-
mantics for functional descriptions. Hence, the matchmaking algorithms merely allow
to detect ontological relationships between corresponding description elements — but
not to determine whether the invocation of a Web service in a particular state of the
world will satisfy a client request. We can observe the same deficiencies in [2]].

In WSMO, provided and requested capabilities are described by preconditions, as-
sumptions, postconditions, and effects, along with shared variables to define depen-
dencies between the formulae [12]. However, no formal semantics are defined for these
complex functional descriptions — which hampers the specification of accurate match-
making mechanisms. Our functional descriptions overcome this by explicitly describ-
ing dependency of preconditions and effects and defining precise formal semantics. [[7]
presents a recent approach with a similar focus. Functionalities are described by inputs,
outputs, and the relationship between them; a match is given if the requester can provide
the input required by the Web service, and the Web service then can provide outputs that

112 M. Stollberg et al.

satisfy the ones requested. However, this approach is restricted to stateless Web services
and hence only covers a subset of the functionalities supported by our approach.
WSMO is the only framework that promotes a goal-based approach for Semantic
Web services; most other approaches model client requests as queries for specific Web
service descriptions. The differentiation of goal templates and goal instances is a refine-
ment of the WSMO goal model based on experiences in technology realization [21]]. A
similar two-phased discovery approach is presented in [11]]. However, therein goals are
described by the desired final state only; the input binding for invoking the discovered
Web service is created at runtime. In contrast, we describe the requested functionality
in goal templates by preconditions and effects. The reason is that in service-oriented ar-
chitectures usually the current state of the world is not explicated or is not accessible to
the interaction partners. Moreover, defining input bindings on the level of goal instances
allows to minimize the client-system interaction as it just needs to be done once.

7 Conclusions

This paper has presented the integrated semantic matchmaking for a two-phased Web
service discovery that distinguishes goal templates and goal instances. Continuing pre-
vious work, we have defined matchmaking techniques that work on sufficiently rich
functional descriptions and can precisely determine the usability of a Web service.

To formally describe client requests on the problem layer, we distinguish goal tem-
plates as generic objective descriptions and goal instances that denote a concrete client
request as the instantiation of a goal template. We use functional descriptions that pre-
cisely describe the start- and end-states of possible executions of Web services as well
as of possible solutions for goals. A match is given if a Web service can provide an
execution that is a solution for the goal. We have specified semantic matchmaking tech-
niques to evaluate this. On the goal template level, we define matching degrees that dif-
ferentiate the relationship between possible executions of a Web service and solutions.
For a goal instance, a Web service is usable if its execution triggered by the invocation
with the concrete inputs is a solution for the instantiated goal description. We therefore
have presented a novel matchmaking technique and formally integrated this with the
matching degrees on the goal template level. Finally, we have demonstrated that the
matchmaking techniques allow to precisely determine the usability of a Web service for
solving a concrete client request that is described as a goal instance.

The presented techniques denote the formal foundations for semantic matchmaking
in this two-phased discovery approach. We plan to extend this with techniques for effi-
cient management of discovery results, and to continue the integration into frameworks
and system implementations for Semantic Web services.

Acknowledgments. This material is based upon works supported by the EU under the
DIP project (FP6 - 507483) and by the Austrian Federal Ministry for Transport, Inno-
vation, and Technology under the project RW? (FFG 809250). The authors like to thank
Martin Hepp and Rubén Lara for constructive discussions on the presented work.

Two-Phase Web Service Discovery Based on Rich Functional Descriptions 113

References

1.

2.

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
. M. Stollberg and B. Norton. A Refined Goal Model for Semantic Web Services. Proc. of the

22.

G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architectures and
Applications. Data-Centric Systems and Applications. Springer, Berlin, Heidelberg, 2004.
B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani. On Automating Web Services
Discovery. VLDB Journal, 14(1):84-96, 2005.

. M. E. Bratman. [ntention, Plans and Practical Reason. Harvard University Press, Cam-

bridge, MA (USA), 1987.

. L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, B. Norton, V. Tanasescu, and C. Pedrinaci.

IRS-III — A Broker for Semantic Web Services based Applications. In Proc. of the 5Sth
International Semantic Web Conference (ISWC 2006), Athens(GA), USA, 2006.

. E. Cimpian, A. Mocan, and M. Stollberg. Mediation Enabled SemanticWeb Services Usage.

In Proc. of the 1st Asian Semantic Web Conference (ASWC 2006), Beijing, China, 2006.

. L. Dickinson and M. Wooldridge. Agents are not (just) Web Services: Considering BDI

Agents and Web Services. In Proc. of the 2005 Workshop on Service-Oriented Computing
and Agent-Based Engineering (SOCABE’2005), Utrecht, The Netherlands, 2005.

. D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens. Deciding Seman-

tic Matching of Stateless Services. In Proc. of the 21st National Conference on Artificial
Intelligence (AAAI’2006), 2006.

. U.Keller, R. Lara, H. Lausen, and D. Fensel. Semantic Web Service Discovery in the WSMO

Framework. In J. Cardoses, editor, Semantic Web: Theory, Tools and Applications. 1dea
Publishing Group, 2006.

. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic Location of Services.

In Proc. of the 2nd European Semantic Web Conference (ESWC 2005), Crete, Greece, 2005.
U. Keller, H. Lausen, and M. Stollberg. On the Semantics of Funtional Descriptions of Web
Services. In Proc. of the 3rd European Semantic Web Conference (ESWC 2006), Montenegro,
2006.

R. Lara. Two-phased Web Service Discovery. In Proc. of Al-Driven Technologies for
Services-Oriented Computing Workshop at AAAI-06, Boston, USA, 2006.

H. Lausen, A. Polleres, and D. Roman (eds.). Web Service Modeling Ontology (WSMO).
W3C Member Submission 3 June, 2005.

L. Li and I. Horrocks. A Software Framework for Matchmaking based on Semantic Web
Technology. In Proc. of the 12th World Wide Web Conference, Budapest, Hungary, 2003.
D. Martin. OWL-S: Semantic Markup for Web Services. W3C Member Submission 22
November, 2004. online: http://www.w3.org/Submission/OWL-S/.

A. Newell. Unified Theories of Cognition. Harvard University Press, Cambridge, MA (USA),
1990.

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Services
Capabilities. In Proc. of the First International Semantic Web Conference, Springer, 2002.
C. Preist. A Conceptual Architecture for Semantic Web Services. In Proc. of the 3rd Inter-
national Semantic Web Conference (ISWC 2004), Hiroshima, Japan, 2004.

A. Riazanov and A. Voronkov. The Design and Implementation of VAMPIRE. Al Commu-
nications, 15(2):91-110, 2002. Special Issue on CASC.

R. M. Smullyan. First Order Logic. Springer, 1968.

M. Stollberg and U. Keller. Semantic Web Service Discovery. Technical report, DERI, 2006.

2nd International Conference on Internet and Web Applications and Services (ICIW 2007),
Mauritius, 2007.

M. Stollberg, D. Roman, I. Toma, U. Keller, R. Herzog, P. Zugmann, and D. Fensel. Semantic
Web Fred — Automated Goal Resolution on the Semantic Web. In Proc. of the 38th Hawaii
International Conference on System Science (HICSS-38), 2005.

A Reasoning Framework for Rule-Based WSML

Stephan Grimm®, Uwe Keller?, Holger Lausen?, and Gdbor Nagypal®

1 FZI Research Center for Information Technologies at the University of Karlsruhe, Germany
{stephan.grimm, gabor.nagypal}@fzi.de
2 Digital Enterprise Research Institute (DERI), University of Innsbruck, Austria
{uwe.keller, holger.lausen}@deri.org

Abstract. WSML is an ontology language specifically tailored to annotate Web
Services, and part of its semantics adheres to the rule-based knowledge repre-
sentation paradigm of logic programming. We present a framework to support
reasoning with rule-based WSML language variants based on existing Datalog
inference engines. Therein, the WSML reasoning tasks of knowledge base sat-
isfiability and instance retrieval are implemented through a language mapping
to Datalog rules and Datalog querying. Part of the WSML semantics is realized
by a fixed set of rules that form meta-level axioms. Furthermore, the framework
exhibits some debugging functionality that allows for identifying violated con-
straints and for pointing out involved instances and problem types. Its highly
modular architecture facilitates easy extensibility towards other language variants
and additional features. The available implementation of the framework provides
the first reasoners for the WSML language.

1 Motivation

In the Semantic Web, recently Web Services are annotated by semantic descriptions of
their functionality in order to facilitate tasks like automated discovery or composition
of services. Such semantic annotation is formulated using ontology languages with log-
ical formalisms underlying them. The matching of semantic annotation for discovery or
the checking of type compatibility for composition requires reasoning support for these
languages. A relatively new ontology language specifically tailored for the description
of Web Services is WSML (Web Service Modeling Language) [6], which comes in
variants that follow the rule-based knowledge representation paradigm of logic pro-
gramming [[14]. WSML adds features of conceptual modelling and datatypes, known
from frame-base knowledge representation, on top of logic programming rules.

We present a framework for reasoning with rule-based WSML variants that builds on
existing infrastructure for inferencing in rule-based formalisms. The framework bases
on a semantics-preserving syntactic transformation of WSML ontologies to Datalog
programs, as described in the WSML specification [8]. The WSML reasoning tasks of
checking knowledge base satisfiability and of instance retrieval can then be performed
by means of Datalog querying applied on a transformed ontology. Thus, the framework
directly builds on top of existing Datalog inference engines. Besides these standard
reasoning tasks, the framework provides debugging features that support an ontology
engineer in the task of ontology development: the engineer is pointed out to violated

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 114-[128] 2007.
(© Springer-Verlag Berlin Heidelberg 2007

A Reasoning Framework for Rule-Based WSML 115

constraints together with some details on the ontological entities that cause the viola-
tion. Such a feature helps to improve the error reporting in situations of erroneous mod-
elling. Instead of directly mapping WSML entities, i.e. concepts, instances, attributes,
to Datalog predicates and constants, we use special meta-level predicates and axioms
which form a vocabulary on reified entities for reproducing the WSML language con-
structs in Datalog. This way of using Datalog as an underlying formalism facilitates the
metamodelling features of WSML. The framework is implemented and can be readily
used to reason about ontologies formulated in rule-based WSML. As such, it is the first
implementation of a reasoning tool for this language. In contrast to most of the avail-
able rule engines and Datalog implementations, this reasoning framework supports the
combination of typical rule-style representation with frame-style conceptual modelling,
as offered by WSML.

The WSML reasoning framework is jointly developed within, and funded by the Eu-
ropean project DIP (IST-FP6-507483) and the Austrian projects SEnSE (FFG 810807)
and RW? (FFG 809250) .

2 The WSML Language

The Web Service Modeling Language (WSML) [6] is a language for the specifica-
tion of various aspects of Semantic Web Services (SWS), such as what functionality
is provided by a SWS or how to interact with the SWS. It provides a formal language
for the Web Service Modeling Ontology (WSMdH) and is based on well-known
logic-based knowledge representation (KR) formalisms, namely Description Logics [2]]
and Logic Programming [[14]. In fact, WSML is a family of representation languages
that comes in several variants with different expressiveness. Besides various SWS-
specific language constructs, such as “goal”, “interface”, “choreography” or “capabil-
ity”, WSML particularly provides means to formulate the domain ontologies in terms
of which SWSs are semantically annotated. Since here we are interested in reasoning
with such semantic annotation with respect to the underlying ontology formalism, we
focus on the ontology-related part of WSML. Furthermore, we use the human-readable
syntax of the language in our presentation, while WSML also specifies XML and RDF
serialisations to be compatible with existing web standards.

2.1 Language Constructs

WSML makes a clear distinction between the modeling of different conceptual ele-
ments on the one hand and the specification of complex axiomatic information on the
other. To this end, the WSML syntax is split into two parts: the conceptual syntax, and
logical expression syntax, while elements from both can be combined in a WSML doc-
ument. We illustrate the interplay of conceptual modelling with logical expressions in
WSML by means of an example given in Listing[[Tl which specifies an ontology in the
domain of telecommunications taken from a project case study. For a complete account
of all WSML syntax elements, we refer to [[8]].

! http://www.wsmo.org

http://www.wsmo.org

116 S. Grimm et al.

Listing 1.1. WSML Example Ontology

concept Product
hasProvider inverseOf(Provider#provides) impliesType Provider
concept ITBundle subConceptOf Product
hasNetwork ofType (0 1) NetworkConnection
hasOnlineService ofType (0 1) OnlineService
hasProvider impliesType TelecomProvider
concept NetworkConnection subConceptOf BundlePart
providesBandwidth of Type (0 1) integer
concept DialupConnection subConceptOf NetworkConnection
concept DSLConnection subConceptOf NetworkConnection
axiom DialupConnection DSLConnection Disjoint definedBy
1— ?x memberOf DialupConnection and ?x memberOf DSLConnection.
concept OnlineService subConceptOf BundlePart concept
SharePriceFeed subConceptOf OnlineService axiom
SharePriceFeed requires bandwidth definedBy
I— ?b memberOf ITBundle and ?b[hasOnlineService hasValue ?0]
and ?0 memberOf SharePriceFeed and
?b[hasNetwork hasValue ?n] and
?n[providesBandwidth hasValue ?x] and ?x < 512.
concept BroadbandBundle subConceptOf ITBundle
hasNetwork ofType (1 1) DSLConnection
axiom BroadbandBundle sufficient condition definedBy
?b memberOf BroadbandBundle :— ?b memberOf ITBundle
and ?b[hasNetwork hasValue ?n] and ?n memberOf DSLConnection.
instance BritishTelekom memberOf TelecomProvider.
instance UbigBankSharelnfo memberOf SharePriceFeed.
instance MyBundle memberOf ITBundle
hasNetwork hasValue ArcorDSL
hasOnlineService hasValue UbigBankSharelnfo
hasProvider BritishTelekom.
instance MSNDialup memberOf DialupConnection
providesBandwidth hasValue 10.
instance ArcorDSL memberOf DSLConnection
providesBandwidth hasValue 1024.

Conceptual Modelling. The WSML conceptual syntax for ontologies essentially al-
lows for the modeling of concepts, instances and relations.

In ontologies, concepts form the basic elements for describing the terminology of the
domain of discourse by means of classes of objects. In the telecommunications domain,
a concept like NetworkConnection stands for the class of all network connections. Concepts
can be put in a subsumption hierarchy by means of the subConceptof-construct. For exam-
ple, NetworkConnection is a subconcept of BundlePart, meaning that any network connection
is part of some IT product bundle, and has itself the subconcepts DialupConnection and
DSLConnection, as can be seen from Listing [Tl

Attributes, i.e. binary relations, are used to relate concepts in a customary way, while
they can point to other concepts or datatypes. In our example, NetworkConnection has a
datatype attribute providesBandWidth, whereas concept ITBundle has attributes like hasNetwork
or hasOnlineService that point to concepts for the single parts which make up the bundle.
Attribute definitions can either be constraining (using ofType) or inferring (using impli-
esTypeﬁ Constraining attribute definitions define a type constraint on the values for an
attribute, similar to integrity constraints in databases; inferring attribute definitions al-
low that the type of the values for the attribute is inferred from the attribute definition,

% The distinction between inferring and constraining attribute definitions is explained in more
detail in [7, Section 2].

A Reasoning Framework for Rule-Based WSML 117

similar to range restrictions on properties in RDFS [3]] and OWL [9]. Furthermore, an
attribute can be marked as transitive, symmetric, OT reflexive, and can be constrained by a min-
imum and a maximum cardinality (using (7min 7maz)), as can be seen from Litsing[T.1]
Similar constructs are available to define n-ary relations in ontologies.

Instances represent concrete objects a the domain, such as MSNDialup as a particu-
lar dial-up connection in the telecommunications domain. By means of the memberOf-
construct, instances are associated with concepts, and using hasvalue they are linked to
other instances or data values, as can also be seen in Listing [Tl Notice, that WSML
supports metamodelling and allows an entity to be both a concept and an instance.

Logical Expressions. By means of the axiom-construct, arbitrarily complex logical ex-
pressions can be included in a WSML ontology, interfering with the conceptual defini-
tions. In our example, the axiom named BroadbandBundle sufficient condition specifies that any
IT bundle that has a DSL network connection is concluded to be a broadband bundle.

The general logical expression syntax for WSML has a first-order logic style, in the
sense that it has constants, function symbols, variables, predicates and the usual logical
connectives. Additionally, WSML provides extensions based on F-Logic as well
as logic programming rules and database-style integrity constraints.

Besides standard first-order atoms, WSML provides so-called molecules, inspired by
F-Logic, that can be used to capture information about concepts, instances, attributes
and attribute values. A molecule of the form I memberof C' denotes the membership of an
instance [in a concept C, while a molecule C'; subConceptof Co denotes the subconcept
relationship between concepts C; and C5. Further molecules have the form I[A hasvalue
V'] to denote attribute values of objects, C[A ofType T'] to denote a type-constraining at-
tribute signature, or C'[A impliesType '] to denote an inferring attribute signature. Some of
these molecule forms appear in Listing[I.1] e.g. in axiom BroadbandBundle sufficient condition.

WSML has the usual first-order connectives: the unary (classical) negation opera-
tor neg, and the binary operators for conjunction and, disjunction or, right implication
implies, left implication impliedBy, and bi-implication equivalent. Variables, preceeded by the
?-symbol may be universally quantified using forall or existentially quantified using ex-
ists. Apart from first-Order constructs, WSML supports logic programming rules of the
form H : — B with the typical restrictions on the head and body expressions H and B
(see [8]]), allowing the symbol naf for negation-as-failure on atoms in B. A constraint is a
special kind of rule with an empty head expression. While the aforementioned axiom is
expressed by a rule, the axiom named DialupConnection DSLConnection Disjoint comes in form
of a constraint, stating that no instance is allowed to be member of both the concepts
DialupConnection and DSLConnection at the same time.

Language Variants. WSML comes in different variants that map to semantically dif-
ferent target formalisms. Therefore, each variant also defines some restrictions on the
use of syntactical constructs: WSML-Core allows only first-order formulae which con-
form to DLP as the least common denominator of the description logics and logic
programming paradigms, by which its semantics is defined. It allows for most of con-
ceptual modelling but is rather restricted in the use of logical expressions. WSML-DL
allows first-order formulae which can be translated to the description logic SHZQ(D),
that defines its semantics. Thus, WSML-DL is very similar to OWL [9]. WSML-Flight

118 S. Grimm et al.

extends WSML-Core by allowing variables in place of instance, concept and attribute
identifiers and by allowing relations of arbitrary arity. In fact, any such formula is al-
lowed in the head of a WSML-Flight rule. The body of a WSML-Flight rule allows con-
junction, disjunction and default negation. WSML-Flight is based on the well-founded
semantics and additionally allows meta-modeling. WSML-Rule extends WSML-
Flight by function symbols and unsafe rules, i.e. variables occurring in the head or in
a negative body literal but not in a positive body literal. WSML-Full does not restrict
the use of syntax and allows the full expressiveness of all other WSML variants under
a first-order umbrella with nonmonotonic extensions.

In the following, we refer to the WSML-Core, WSML-Flight and WSML-Rule vari-
ants jointly as rule-based WSML and focus on reasoning in these variants.

2.2 Reasoning in Rule-Based WSML

Various reasoning tasks, such as consistency checking or entailment of implicit knowl-
edge, are considered useful in Semantic Web and SWS applications. Here, we sketch
the typical reasoning tasks for rule-based formalisms, and thus for rule-based WSML.

Let O denote a rule-based WSML ontology and 7. f..(O) denote the constraint-
free projection of O, i.e. the ontology which is obtained from O by removing all con-
straining description elements, such as attribute type constraints, cardinality constraints,
integrity constraints etc. (1) Consistency checking means to verify whether O is satisfi-
able, i.e. if m._ free(O) has a model in which no constraint in O is violated. (2) Ground
Entailment means, given some variable-free formula ¢, to check if ¢, is satisfied in
well-founded model of 7._ frc.(O) in which no constraint in O is violated. We denote
this by O |= ¢,. (3) Instance Retrieval means, given an ontology O and some formula
Q(Z) with free variables & = (z1,...,x,), to find all suitable terms £ = (t1,...,t,)
constructed from symbols in O only, such that O = Q(%).

3 Mapping WSML to Datalog

The semantics of rule-based WSML is defined via a mapping to Datalog with
(in)equality, default negation and integrity constraints, as described in [8]]. In the fol-
lowing, we refer to this language simply as Datalog. To make use of existing rule en-
gines, the reasoning framework performs various syntactical transformations to convert
an original ontology in WSML syntax into a semantically equivalent Datalog program.
WSML reasoning tasks are then realized by means of Datalog querying via calls to an
underlying Datalog inference engine fed with the rules contained in this program.

3.1 Ontology Transformations

The transformation of a WSML ontology to Datalog rules forms a pipeline of single
transformation steps that are subsequently applied, starting from the original ontology.

Axiomatization. In a first step, the transformation 7,y;,,s is applied as a mapping O —
2% from the set of all valid rule-based WSML ontologies to the powerset of all logical
expressions that conform to rule-based WSML. In this transformation step, all con-
ceptual syntax elements, such as concept and attribute definitions or cardinality and

A Reasoning Framework for Rule-Based WSML 119

Table 1. Examples for axiomatizing conceptual ontology modeling elements

Expression o in conceptual syntax Resulting logical expression(s): Taxioms(cx)

concept C1 subConceptOf C2 Cl subConceptOf CQ‘
concept C' A ofType (0,1) T' C[A oftype T'].

1- ?7X memberOf C' and ?X[A hasValue 7y, A hasValue ?Z] and ?y != 7z.
concept C' A1 inverseOf Ao impliesType 1" C'[A impliesType T'].

72X memberOf C' and ?vV memberOf 1" implies
(7x[A1 hasValue 7V] equivalent ?V[A5 hasValue 7X]).
relation 121/70 subRelationOf Ro R1 (Z) implies R2 (Z). where T = (X1,...,Xn)
instance / memberOf C' A hasValue V' I memberor C'. I[A hasValue V]

Table 2. Normalization of WSML logical expressions

original expression |normalized expression |||original expression |simplified rule(s)
m({E1, - En}) {mn(ED), - sm(BEn)} |[[Taiog (LB - En}) {Taiog(B1)s - - Taiog (En) }
n(Eg and B, .) Tn(Ey) and Ty (Ey) Td[og(1— B.) O :— le()g(B)
n(Eg or Ey.) n(Eg) or Tn(Ey) Td[og(H.) Td[og(H) .
Tn(Eg and (Ey or E2).) |Tn(mn(Ey) and T (Ey) or Td[()g(H :— B.) Td[()g(H) i— leug(B)
Tn(Ey) and n(E).) Td[()g(Ew and) Td[()g(Ew) A leog(E;U)
Tn((Eg or Ey) and E).) |Tn(mn(E) and T (E-) or Td[()g(naf E.) ~ leug(E)
n(Ey) and T (E>).) Td[()g(C$ subConceptOf C'y;.) [Psco (Cr, Cyy)
Tn(nat (B, and E)).) nat T (Ey) or nat 7 (Ey). ‘rd[()g(l memberof C'.) Pmo (I, C)
Tn(nat (Eg or Ey).) naf T (Ey) and nat 7o (Ey). ‘rd[()g(l[a hasValue V'].) Prval (1, a, V)
Tn(naf (naf E).) n(Es) -rd[()g(C[a impliesType 1'].) | pitype (C, @, T')
Tn(Ey implies E,.) (Ey) :— m(Ez). Td[()g(C[a ofType T]..) Potype (C a, T')
Tn(E impliedy F,.) (Ez) = m(Ey). Td[()g(r(X17...7X,”,)4) r(X1,...,Xn)
T(X[Y1, . Yal) | X[Yi]and o and XYoo |70 (X =) X=Y
Talog(X = Y2) X#Y
original expr. simplified rule(s) original expression simplified rule(s)
T[f({El7 ceey En}) {TII(E1)7 ey T[f(En)} Tlt(Hl and ... and Hn = B) Tlt(Hl s B.), Ly TII(H” = B)
my(Hy = Ho :— B)|7(Hy .~ Hyana B.) ||7,(H :— Bior,.. o Bn.) |7,(H : = B1.), ..., 7, (H : = By.)

type constraints, are converted into appropriate axioms specified by logical expressions.
Table[IIshows the details of some of the conversions performed by Tuyioms, based on [8].
The WSML conceptual syntax constructs on the left-hand side are converted to the re-
spective WSML logical expressions on the right-hand side. The meta variables C, C;
range over identifiers of WSML concepts, R;, A; over identifiers of WSML relations
and attributes, T" over identifiers of WSML concepts or datatypes and V' over identifiers
of WSML instances or data values.

Normalization. The transformation 7, is applied as a mapping 2 — 2% to normalize
WSML logical expressions. This normalization step reduces the complexity of formulae
according to [8, Section 8.2], to bring expressions closer to the simple syntactic form of
literals in Datalog rules. The reduction includes conversion to negation and disjunctive
normal forms as well as decomposition of complex WSML molecules. The left part of
Table 2] shows how the various logical expressions are normalized in detail. The meta
variables F; range over logical expressions in rule-based WSML, while X, Y; range
over parts of WSML molecules. After 7, has been applied, the resulting expressions
have the form of logic programming rules with no deep nesting of logical connectives.

120 S. Grimm et al.

Lloyd-Topor Transformation. The transformation 7, is applied as a mapping 26 — 2
to flatten the complex WSML logical expressions, producing simple rules according to
the Lloyd-Topor transformations [13], as shown in the lower part of Table 2l Again,
the meta variables F;, H;, B; range over WSML logical expressions, while H; and B;
match the form of valid rule head and body expressions, respectively, according to [8].
After this step, the resulting WSML expressions have the form of proper Datalog rules
with a single head and conjunctive (possibly negated) body literals.

Datalog Rule Generation. In a final step, the transformation 74, is applied as a mapping
2% — P from WSML logical expressions to the set of all Datalog programs, yield-
ing generic Datalog rules that represent the content of the original WSML ontology.
Rule-style language constructs, such as rules, facts, constraints, conjunction and (de-
fault) negation, are mapped to the respective Datalog elements. All remaining WSML-
specific language constructs, such as subConceptOf Or ofType, are replaced by special meta-
level predicates for which the semantics of the respective language construct is encoded
in meta-level axioms as described in Section[3.2] The right-hand part of Table 2] shows
the mapping from WSML logical expressions to Datalog including the meta-level pred-
icates Psco, Pmo> Phvals Pitype aNd Porype that represent their respective WSML language
constructs as can be seen from the mapping. The meta variables E, H, B range over
WSML logical expressions with a general, a head or a body form, while C, I, a denote
WSML concepts, instances and attributes. Variables 1" can either assume a concept or
a datatype, and V' stands for either an instance or a data value, accordingly.

The resulting Datalog rules are of the form H :— By A ... A By, where H and
B; are literals for the head and the body of the rule, respectively. Body literals can be
negated in the sense of negation-as-failure, which is denoted by ~ B;. As usual, rules
with an empty body represent facts, and rules with an empty head represent constraints.
The latter is denoted by the head being the empty clause symbol [].

Ultimately, we define the basid transformation 7 for converting a rule-based WSML
ontology into a Datalog program based on the single transformation steps introduced
before by T = Tyiog © s © Ty © Taxioms. As a mapping 7 : O — P, this composition of the
single steps is applied to a WSML ontology O € O to yield a semantically equivalent
Datalog program 7(O) = P € P when interpreted with respect to the meta-level
axioms discussed next.

3.2 WSML Semantics Through Meta-level Axioms

The mapping from WSML to Datalog in the reasoning framework works such that each
WSML-identifiable entity, i.e. concept, instance, attribute etc., is mapped to an instance
(or logical constant) in Datalog, as depicted in Figure[Il There, the concepts C1, Ca, C3
as well as the instances I, I and the attribute a are mapped to constants such as I¢,,
Iy, or I, in Datalog, representing the original WSML entities on the instance level.
Accordingly, the various special-purpose relations that hold between WSML entities,
such as subConceptOf, memberOf OF hasValue, are mapped to Datalog predicates that form a
meta-level vocabulary for the WSML language constructs. These are the meta-level
predicates that appear in Table[2lfor 7, and which are applied to the Datalog constants

3 Later on, the transformation pipeline is further extended to support datatypes and debugging.

A Reasoning Framework for Rule-Based WSML 121

WSML : Datalog Meta-Level Axioms
! Meta-Level Predicates (1) psco(Cr, C3) :— psco(Ch, C2)

! Meta-Level Axioms APsco(C2, C3)
I_ _ 2) pmo(I’CQ) i—pmo(I,C1)

ADsco (Cl 5 Co)

o
7 | Instances:
K
;@' ! 7]11"]12’ !CV sz’ ja’ ,]T (3) pmo(V, CQ) T pitype(cl7 a’ CQ)
5 g
O

APmo (I, 01)

I Facts:
_”__ - -—f —| Do e T Aphval(I,a,V)
/ & ! >Pocype(]cw a, Ir) (4) 0o .- potype(Ch a, CQ)
al L | P g, Ir) Apmo(I, Ch)
j{; A9 > - »Pro (111’]Cl) /\phval (Ia a, V)

" I thal (111’ 9 112) A ~ pmo(‘/, CQ)

Fig. 1. Usage of meta-level predicates Fig. 2. WSML semantics in Datalog

that represent the WSML entities. The facts listed in Figure [[lillustrate the use of the
meta-level predicates. For example, the predicate pn,, takes a Datalog constant that
represents a WSML instance and one that represents a WSML concept, to state that the
instance is in the extension of this concept.

In contrast to a direct mapping from WSML to Datalog with concepts, attributes and
instances mapping to unary predicates, binary predicates and constants, respectively,
this indirect mapping allows for the WSML metamodelling facilities. Metamodelling
allows an entity to be a concept and an instance at the same time. By representing a
WSML entity as a Datalog constant, it could, for example, fill both the first as well as
the second argument of e.g. the predicate ppmo.

A fixed set B, of Datalog rules, shown in Figure 2] forms the meta-level axioms
which assure that the original WSML semantics is properly maintained. Axiom (1)
realizes transitivity for the WSML subConceptOf construct, while axiom (2) ensures that an
instance of a subconcept is also an instance of its superconcepts. Axiom (3) realizes the
semantics for the implisType construct for attribute ranges: any attribute value is concluded
to be in the extension of the range type declared for the attribute. Finally, axiom (4)
realizes the semantics of the ofType construct by a constraint that is violated whenever an
attribute value cannot be concluded to be in the extension of the declared range type.

3.3 WSML Reasoning by Datalog Queries

To perform reasoning over the original WSML ontology O with an underlying Datalog
inference engine, a Datalog program Po = B, U 7(O) is built up that consists of
the meta-level axioms together with the transformed ontology. The different WSML
reasoning tasks are then realized by performing Datalog queries on Pp. Posing a query
Q(Z) to a Datalog program P € P is denoted by (P, ?— Q(Z)) and yields the set of all
tuples ¢ that instantiate the vector Z of variables in the query such that Q(f} is satisfied
in the well-founded model of P. If Q(Z) contains no variables, in fact a boolean query
@ is posed that instead evaluates either to {@Q} if @) is satisfied in the well-founded
model of P or () otherwise.

122 S. Grimm et al.

Ontology Consistency — The task of checking a WMSL ontology for consistency is
done by querying for the empty clause, as expressed by the following equivalence:
O issatisfiable < (Po, 7 — 0O) =) . If the resulting set is empty then the empty
clause could not be derived from the program and the original ontology is satisfiable,
otherwise it is not.

Entailment — The reasoning task of ground entailment by a WSML ontology is done
by using queries that contain no variables, as expressed in the following equivalence:
OE¢y & (Po, ?— 1'(¢g))) # 0. The WSML ground fact ¢, € LE is transformed
to Datalog with a transformation 7/ = 74, © 7j 0 7, similar to the one that is applied
to the ontology, and is evaluated together with the Datalog program Pp. If the resulting
set is non-empty then ¢, is entailed by the original ontology, otherwise it is not.

Retrieval — Similarly, instance retrieval can be performed by posing a WSML query
Q(Z) with free variables Z to the Datalog program Pp, which yields the following set:
{010 EQ(0)} = (Po, ?— 7(Q(Z))). The query Q(Z) is transformed to Datalog
by 7/ and evaluated together with the program Pg. The resulting set contains all object
tuples o' for which an instantiation of the query expression is entailed by the original
ontology, while the objects in &' can be identifiable WSML entities or data values. For
example, the query)(?x) = ?x memberOf BroadbandBundle posed to the ontology in Listing
[LTyields the set {(MyBundie)} that contains one unary tuple with the instance MyBundle,
which can be inferred to be a broadband bundle due to its high network bandwidth.

3.4 Realising Datatype Reasoning

Although most of the generic Datalog rules are understood by practically any Datalog
implementation, realizing datatype reasoning has some intricate challenges. The main
challenge is related to Axiom (4) in Figure 2l which checks attribute type constraints.
The crucial part of the axiom is the literal

~ pmo(‘/a 02)

because for datatype values no explicit membership facts are included in the ontology
that could instantiate this literal. Consider, for example, the instance MSNDialup from the
WSML ontology in Section 2] - there is no fact pmo(10, integer) for the value of the
providesBandwidth attribute. Whenever a value is defined for an attribute constrained by
ofType, Axiom (4) would cause a constraint violation.

To solve this problem, pnyo facts should be generated for all datatype constants that
appear as values of attributes having ofType constraints in the ontology. L.e., for each such
constant in the ontology, axioms of the following form should appear,

Pmo(V, D) = typeO(V, Dr)

where D denotes the WSML datatype, D1 denotes a datatype supported by the underly-
ing Datalog implementation, which is compatible with the WSML datatype, and typeOf
denotes a built-in predicate implemented by the Datalog tool, which checks whether a
constant value belongs to the specified datatype.

A Reasoning Framework for Rule-Based WSML 123

These additional meta-level axioms result in a new set of Datalog rules, denoted by
Pjaa, which are no longer in generic Datalog but use tool-specific built-in predicates of
the underlying inference engine. The program Fp is extended by these rules as follows.

Po = Pheta Y Piata UT(O)

In addition to datatypes, WSML also supports some predefined datatype predicates,
such as numeric comparison (see [8]] for a full list). The definition of the axiom SharePrice-
Feed requires bandwidth from the WSML ontology in Section[2] for example, uses a shortcut
of the WSML numericLessThan predicate (denoted by <). For translation of these special
predicates to the corresponding tool-specific built-in predicates supported by the under-
lying Datalog reasoner, we introduce a new tool-specific transformation step 7 .4 as a
mapping P — P. This affects the transformation pipeline 7 as follows.

T = Tdpred © Tdlog © Tit © Tn © Taxioms

In summary, the underlying Datalog implementation must fulfill the following re-
quirements to support WSML datatype reasoning: (i) It should provide built-in datatypes
that correspond to WSML datatypes. (ii) It should provide a predicate (or predicates)
for checking whether a datatype covers a constant and (iii) It should provide built-in
predicates that correspond to datatype-related predefined predicates in WSML.

4 Debugging Support

During the process of ontology development, an ontology engineer can easily construct
an erroneous model containing contradictory information. In order to produce consis-
tent ontologies, inconsistencies should be reported to engineers with some details about
the ontological elements that cause the inconsistency.

In rule-based WSML, the source for erroneous modelling are always constraints,
together with a violating situation of concrete instances related via attributes. The plain
Datalog mechanisms employed in the reasoning framework according to Section[3lonly
allow for checking whether some constraint is violated, i.e. whether the empty clause is
derived from Pp indicating that the original ontology O contains errors — more detailed
information about the problem is not reported. Experience shows that it is a very hard
task to identify and correct errors in the ontology without such background information.

In our framework, we support debugging features that provide information about
the ontology entities which are involved in a constraint violation. We achieve this by
replacing constraints with appropriate rules that derive debugging-relevant information.

4.1 Identifying Constraint Violations

In case of an inconsistent ontology due to a constraint violation, two things are of inter-
est to the ontology engineer: a) the type of constraint that is violated and b) the entities,
i.e. concepts, attributes, instances, etc., that are involved in the violation.

To give an example, consider the WSML ontology in Section 2l There, the attribute
hasOnlineService of the concept ITBundle is constrained to instances of type OnlineService. Sup-
pose we replace the current value of the attribute hasOnlineService for the instance MyBundle

124 S. Grimm et al.

by the instance MSNDialup. Then, this constraint would be violated because MSNDialup is
not an instance of the concept OnlineService. For an ontology engineer who needs to repair
this erroneous modelling, it is important to know the entities that cause the violation,
which in this case are the attribute hasOnlineService together with the range concept Online-
Service and the non-conforming instance MSNDialup.

For the various types of constraint violations, the information needed by the ontology
engineer to track down the problem successfully is different from case to case.

Attribute Type Violation — An attribute type constraint of the form Cla ofType T is
violated whenever an instance of the concept C' has value V' for the attribute a, and it
cannot be inferred that V' belongs to the type 7'. Here, T" can be either a concept or a
datatype, while V' is then an instance or a data value, accordingly. In such a situation,
an ontology engineer is particularly interested in the instance I, in the attribute value V/
that caused the constraint violation, together with the attribute a and the expected type
T which the value V' failed to adhere to.

Minimum Cardinality Violation — A minimum cardinality constraint of the form concept
C'a (n #), is violated whenever the number of distinguished values of the attribute a for
some instance I of the concept C is less than the specified cardinality n. In such a situ-
ation, an ontology engineer is particularly interested in the instance I that failed to have
a sufficient number of attribute values, together with the actual attribute a. (Information
about how many values were missing can be learned by separate querying).

Maximum Cardinality Violation — A maximum cardinality constraint of the form concept
C a (0 n), is violated whenever the number of distinguished values of the attribute a
for some instance I of the concept C' exceeds the specified cardinality n. Again, here
an ontology engineer is particularly interested in the instance I for which the number
of attribute values was exceeded, together with the actual attribute a.

User-Defined Constraint Violation — Not only built-in WSML constraints, but also
user-defined constraints, contained in an axiom definition of the form axiom Axp de-
finedBy I- I3, can be violated. In this case, the information which helps an ontology engi-
neer to repair an erroneous situation is dependent on the arbitrarily complex body B and
cannot be determined in advance. However, a generic framework can at least identify
the violated constraint by reporting the identifier Az p of the axiom.

To give an example, consider again the ontology from Section 2l Replacing the net-
work connection ArcorDSL of MyBundle by the slower MSNDialup one results in a violation of
the user-defined constraint specified by the axiom named SharePriceFeed requires bandwidth.
This constraint requires a certain bandwidth for connections in bundles with share price
feed online services, which is not met by MSNDialup, and thus the ontology engineer is
reported the axiom name that identifies the violated constraint.

4.2 Debugging by Meta-level Reasoning

In our framework, we realize the debugging features for reporting constraint violations
by replacing constraints with a special kind of rules. Instead of deriving the empty
clause, as constraints do, these rules derive information about occurrences of constraint

A Reasoning Framework for Rule-Based WSML 125

Table 3. Replacing constraints by rules

Constraint Rule
Tdebug({Elv R E’ﬂ}) {Tdebug(El)v) Tdebug(E’ﬂ)}
Tdebug(1— Bmincard~) Pv mincard (a, I) L= Bmincard-
Tdebug(- Bmazcard~) DPv maxcard (a7 I) . Bmazcard~
Tdebug(!~ Buser-) v user(AZ1D) : — Buser.
Tdebug(c[a of Type T]) Pv otype(a, T, I, V) L=
C [a of Type T] and / memberOf C' and
I [a hasValue V} and naf V' memberOf 1.

violations by instantiating debugging-specific meta-level predicates with the entities in-
volved in a violation. In this way, information about constraint violations can be queried
for by means of Datalog inferencing.

The replacement of constraints for debugging is included in the transformation

T = Tdpred © Tdlog © Tit © Tn © Tdebug © Taxioms

where the additional transformation step Tz is applied after the WSML conceptual
syntax has been resolved, replacing constraints on the level of WSML logical expres-
sions. Table [3] shows the detailed replacements performed by Taebug for the different
kinds of constraints.

Minimal cardinality constraints (with bodies B, incarqd) and maximal cardinality
constraints (with bodies B,,,qzcarq) are transformed to rules by keeping their respective
bodies and adding a head that instantiates one of the predicates py mincard and Dy maxcard
to indicate the respective cardinality violation. The variables for the involved attribute
a and instance [are the ones that occur in the respective constraint body B.

Similarly, a user-defined constraint is turned into a rule by keeping the predefined
body B, se and including a head that instantiates the predicate p, yser to indicate a user-
defined violation. The only argument for the predicate p, yser is the identifier Azjp of
the axiom, by which the constraint has been named.

Constraints on attribute types are handled differently because these constraints are
not expanded during the transformation 7,.;,ys; they are rather represented by WSML
ofType-molecules for which the semantics is encoded in the meta-level axioms P,,.,,. In
order to avoid the modification of P, in the reasoning framework, such molecules are
expanded by Tgepe, as shown in Table

To maintain the semantics of the replaced constraints, an additional set of meta-level
axioms Fyep,, C P is included for reasoning. The rules in Py, have the form O : —p,
and derive the empty clause for any type and occurrence of a constraint violation.

Including the debugging features, the Datalog program for reasoning about the orig-
inal ontology then turns to

Po = Peww Y Paara U Pdebug U T(O)

4 After this expansion of ofType molecules, the respective axiom (4) in Pierq for realising the
semantics of attribute type constraints does not apply anymore.

126 S. Grimm et al.

Occurrences of constraint violations can be recognized by querying Pp for instantiations
of the various debugging-specific meta-level predicates py otype, Pv mincard> Pv maxcard
and p, yser. For example, the set

(Po, ?7— Dv otype(a7T7 I, V))

contains tuples for all occurrences of attribute type violations in Pp, identifying the
respective attribute a, expected type 7T', involved instance I and violating value V' for
each violation. This set is empty no attribute types are violated.

5 Reasoning Framework Overview

The design goals of our framework are modularity for the transformation steps and
flexibility with respect to the underlying inference engine. The high modularity allows
to reuse transformation functionality across different WSML variants and reduces the
effort for accomplishing other reasoning tasks. By realizing WSML on top of a generic
Datalog layer, we have also reduced the effort of integrating other reasoners to a mini-
mum The presented framework has been fully implemented in Java and can be down-
loaded and tested online.

Architecture and Internal Layering. Figure [3| shows the internal architecture of the
framework as well as the data flow during a prototypical usage scenario. The outer box
outlines a WSML reasoner component that allows a user to register WSML ontolo-
gies and to pose queries on them. The inner box illustrates the transformation pipeline
introduced in Section[3]and shows its subsequent steps in a layering scheme.

Registered ontologies go through all the transformation steps, whereas user queries
are injected at a later stage, skipping the non-applicable axiomatization and constraint
replacement steps. Here, the internal layering scheme allows for an easy reorganization
and reuse of the transformation steps on demand, assuring high flexibility and mod-
ularity. A good example for this is the constraint replacement transformation 7gepg:
if included in the pipeline, it produces the rules that activate the debugging features
according to Section[} if excluded, the constraints remain in the resulting Datalog pro-
gram and are mapped to native constraints of the underlying reasoning engine.

The core component of the framework is an exchangeable Datalog inference engine
wrapped by a reasoner facade which embeds it in the framework infrastructure. This
facade mediates between the generic Datalog program produced in the transformations
and the external engine’s tool-specific Datalog implementation and built-in predicates.

Interface and Integration with Existing Technology. Our framework is based on the
wsMo4I fi project, which provides an API for the programmatic handling of WSML
documents. WSMOA4] performs the task of parsing and validating WSML ontologies
and provides the source object model for our translations. For a reasoner to be connected
to the Framework, a small adapter class needs to be written, that translates generic Dat-
alog elements to their equivalent constructs within the internal representation layer of

5 http://devl.deri.at/wsml2reasoner
6 http://wsmodj.sourceforge.net

http://dev1.deri.at/wsml2reasoner
http://wsmo4j.sourceforge.net

A Reasoning Framework for Rule-Based WSML 127

- WSML Reasonar

’ r Transformations

Topciom L‘m
Axiomatization ?%D -
_—
. BKBCUIBQUEW
Constraint

Replacement

T

Normalization

Lloyd-Topor
Transformation

=———-1
registerontalogy

Datalog Rule
Generation

I
¥

Meta.Level Axioms Reasoner Facade
He Bya. B, Inference | Datatype Axioms|

He By By i
Engine :

Fig. 3. Internal framework architecture

the underlying reasoner. Our framework currently comes with facades for two built-in
reasoners: KAON2] and MINSH. The initial development was done with the KAON2
inference engine that, with respect to the challenges for datatype reasoning, provides
a very flexible type system that allows for user-defined datatypes, together with predi-
cates on these datatypes, including type checking predicates. However, KAON2 cannot
be used for reasoning in WSML-Rule as it does not support function symbols and un-
safe rules. The second reasoner, MINS, can be used for the WSML-Rule variant but
has limited support for datatype reasoning. (For determining the WSML variant of an
ontology, one can use the validation facilities built into WSMO4J).

6 Conclusion and Outlook

We have presented a framework for reasoning in rule-based WSML that builds on a
mapping to Datalog and on querying a generic Datalog layer. The single well-defined
transformation steps can be reused across various adaptations for different scenarios in
a highly modular way. We have incorporated debugging features by replacing native
constraints with rules to derive debugging-relevant information that can be queried by
an ontology engineer. We have implemented our framework with two existing reasoner
tools, namely KAON2 and MINS, as alternative implementations of the generic Datalog
layer, by which we provide the first available reasoning system for the WSML language.

7 http://kaon2.semanticweb.org
8 http://devl.deri.at/mins

http://kaon2.semanticweb.org
http://dev1.deri.at/mins

128 S. Grimm et al.

While the current framework focuses on WSML-Core, -Flight and -Rule, efforts are
ongoing to extend the transformations to disjunctive Datalog and description logics.
The KAON?2 system natively supports disjunctive Datalog and DL reasoning, the latter
even extended by WSML-Flight-like rules. Also the DLV system [4] (implementing
disjunctive Datalog under the stable model semantics) can be used to realise a similar
reasoning. Furthermore, we plan to integrate the KRHyper system [[16], which allows
reasoning with disjunctive logic programs with stratified default negation. Transforma-
tions to DL additionally allow to incorporate description logic system APIs to support
efficient reasoning with WSML-DL.

Acknowledgements. We would like to thank our colleagues that wrote [8]], especially
Jos de Bruijn, for fruitful discussions and the contribution of mapping definitions.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

2. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook. Cambridge University Press, 2003.

3. D. Brickley and R. V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema.
Recommendation 10 February 2004, W3C, 2004.

4. S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and
F. Scarcello. The DLV System: Model Generator and Advanced Frontends. In Workshop LP,
1997.

5. M. Dahr. Deductive Databases: Theory and Applications. International Thomson Publishing,
December 1996.

6. J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel. The Web Service Modeling Language
WSML: An Overview. In Proc. of the 3rd Euro. Semantic Web Conference (ESWC), 2006.

7. J. de Bruijn, A. Polleres, R. Lara, and D. Fensel. OWL DL vs. OWL Flight: Conceptual
Modeling and Reasoning on the Semantic Web. In Proceedings of the 14th International
World Wide Web Conference (WWW2005), Chiba, Japan, 2005. ACM.

8. J. de Bruin. The Web Service Modeling Language (WSML) Specification. Tech. Report,
Digital Enterprise Research Institute (DERI), Feb. 2005. http://www.wsmo.org/TR/d16/.

9. M. Dean and G. Schreiber, editors. OWL Web Ontology Language Reference. 2004. W3C
Recommendation 10 February 2004.

10. A. V. Gelder, K. Ross, and J. S. Schlipf. The Well-Founded Semantics for General Logic
Programs. Journal of the ACM, 38(3):620-650, 1991.

11. B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logics. In Proceedings of WWW-2003, 2003.

12. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-Based
Languages. JACM, 42(4):741-843, 1995.

13. J. Lloyd and R. Topor. Making Prolog More Expressive. Journal of Logic Programming,
3:225-240, 1984.

14. J. W. Lloyd. Foundations of Logic Programming; (2nd extended ed.). Springer, New York,
NY, USA, 1987. ISBN 3-540-18199-7.

15. D. Roman, U. Keller, H. Lausen, R. L. Jos de Bruijn, M. Stollberg, A. Polleres, C. Feier,
C. Bussler, and D. Fensel. Web Service Modeling Ontology. Applied Ontology, 1(1):77—
106, 2005.

16. C. Wernhard. System Description: KRHyper. Technical report, Fachberichte Informatik
14-2003, Universitat Koblenz-Landau, Institut fur Informatik., 2003.

GenTax: A Generic Methodology for Deriving OWL
and RDF-S Ontologies from Hierarchical Classifications,
Thesauri, and Inconsistent Taxonomies

Martin Hepp and Jos de Bruijn

Digital Enterprise Research Institute (DERI), University of Innsbruck
mhepp@computer.org, jos.debruijn@deri.org

Abstract. Hierarchical classifications, thesauri, and informal taxonomies are
likely the most valuable input for creating, at reasonable cost, non-toy ontologies
in many domains. They contain, readily available, a wealth of category definitions
plus a hierarchy, and they reflect some degree of community consensus. However,
their transformation into useful ontologies is not as straightforward as it appears.
In this paper, we show that (1) it often depends on the context of usage whether an
informal hierarchical categorization schema is a classification, a thesaurus, or a
taxonomy, and (2) present a novel methodology for automatically deriving
consistent RDF-S and OWL ontologies from such schemas. Finally, we (3)
demonstrate the usefulness of this approach by transforming the two e-business
categorization standards eCl@ss and UNSPSC into ontologies that overcome the
limitations of earlier prototypes. Our approach allows for the script-based creation
of meaningful ontology classes for a particular context while preserving the
original hierarchy, even if the latter is not a real subsumption hierarchy in this
particular context. Human intervention in the transformation is limited to
checking some conceptual properties and identifying frequent anomalies, and the
only input required is an informal categorization plus a notion of the target
context. In particular, the approach does not require instance data, as ontology
learning approaches would usually do.

Keywords: Ontology engineering, ontology learning, OWL, RDF-S, reuse,
taxonomies, thesauri, classifications, UNSPSC, eCl@ss, e-business.

1 Introduction

Hierarchical classification standards, thesauri, and such taxonomies that were not
initially designed to be used as ontologies exist in many domains. They are likely the
most promising sources for the creation of domain ontologies at reasonable costs,
because they reflect some degree of community consensus and contain, readily
available, a wealth of category definitions plus a hierarchy. For instance, UNSPSC
[1], a standard categorization for products and services and often referred to as a
products and services ontology for e-business, contains 20,789 categories (in version
7,0901) and the similar but more expressive industrial standard eCl@ss [2] defines
25,658 categories plus 5,525 precisely specified object and datatype properties (in
version 5.1de). The products classification in eBay, as an additional example, includes

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 1291144, p007.
© Springer-Verlag Berlin Heidelberg 2007

130 M. Hepp and J. de Bruijn

more than 2,000 categories for computer and networking equipment alone. For a
quantitative analysis of the content and domain coverage of such standards in the
products and services domain, see [3].

While it is tempting to write simple scripts that mechanically create ontology
classes for the categories in the source standard and rdfs:subclassOf relations
for the edges constituting the hierarchy, as has been done by [4] and [5], this
straightforward approach often yields ontologies that are of limited practical use,
since it implies a particular interpretation of the categories so that the original
hierarchical order is a valid subsumption hierarchy. If, for example, “ice” is a
subcategory of “beverages” in the original hierarchy, this naive transformation forces
us to read the category “beverages” as something like “beverages and related stuff
from a purchasing manager’s perspective”, because only then holds that all instances
of the former class are also instances of the latter. While this choice is a valid
transformation, it does often not yield the most useful ontologies, as has been shown
in [6] and [7]. In particular, the ontology classes would not be sufficiently narrow to
describe actual products or services instances in an unambiguous way.

The main cause for this problem is that, due to the informal nature of the original
schemas, the meanings of (1) the categories, (2) the hierarchical relations between
them, and (3) the task of assigning an instance to a category are usually blurry, and the
meanings of the three components are not clearly separated from each other. This
means that such informal specifications entail multiple possible ontologies. For
example, we can interpret the categories in a way so that the original hierarchy forms a
consistent subsumption hierarchy and can be represented using rdfs: subClassOf,
or we can interpret the categories in another way but must then use another transitive,
binary relation of the kind “A is a subcategory of B in some context” in order to
capture the hierarchy [6, 7].

Since most categorizations were not created under rigorous knowledge engineering
methodologies, they often suffer from additional conceptual anomalies, e.g. local
names or a varying semantics of the hierarchy relation by depth of branching. Such
anomalies are sometimes found in only relatively small parts of the categorization
schema. They may thus not become apparent by a quick view on a part of the
specification.

Besides these difficulties in understanding the original semantics and selecting a
useful interpretation for a given application, we are additionally constrained by the
expressiveness of popular ontology formalisms. OWL DL, for example, does not
allow the definition of transitive relations between ontology classes, which may force
us to invent suitable ontology modeling patterns as workarounds.

Finally, it is highly desirable that the generation of derived ontologies is automated
as much as possible, because of the high number of categories.

1.1 Classification, Thesaurus, and Taxonomy

The terms thesaurus and taxonomy are well established in ontology research.
Basically, a thesaurus is a collection of concepts that are augmented by three types of
relations: “broader term” (BT) and “narrower term” (NT), which may be read as a
hierarchical order, and “related term” (RT), which is used to capture conceptual
proximity [cf. e.g. 8]. An important characteristic of the NT/BT relation is that it is
semantically less specific than a subclassOf relation used in ontology engineering for

GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 131

building a subsumption hierarchy, since an instance that fits one subcategory of a
thesaurus needs not to be an instance of a the respective parent category. For example,
“ice cubes” may be a narrower term to “beverages”, but instances of the category “ice
cube” are not instances of the category “beverage” if we read the categories literally.

A taxonomy is different from a thesaurus in that it contains a subsumption
hierarchy in the form of transitive subclassOf relations, i.e. each instance of a class
can be assumed to be also an instance of all parent categories. It should be noted that
hierarchical classifications are sometimes imprecisely referred to as taxonomies even
though they do not include a real subsumption hierarchy.

Classifications are sets of concepts and have been used for ages as a means of
grouping entities by similarity. It is important to stress that the initial purpose of
classification was not to capture the essence of things, i.e. modeling a part of the
world, as in ontology engineering, but aggregating entities for some arbitrary purpose.
Also, a hierarchical order is a frequent but not a mandatory property of classifications.
Sometimes, classifications are assumed to be limited to hierarchical classifications,
which are rooted trees where the semantics of the edges may vary widely depending
on the purpose and context of usage [cf. 9].

In this paper, we will subsume all three types, i.e. taxonomies, thesauri, and
hierarchical classifications under the term hierarchical categorization schema, which
all have in common that they include a set of categories and some form of a
hierarchical order. There are two main reasons for this unified view on the three
variants. First, it may depend of the context of usage whether a given collection is a
taxonomy, a thesaurus, or just a hierarchical classification. Second, we want to
provide an approach that can be directly applied to all three types, thus allowing us to
reuse the wealth of any such schemas for building domain ontologies, which are
urgently needed for making the Semantic Web a reality.

1.2 Our Contribution

In this paper, we (1) show that it often depends on the context of usage whether an
informal, hierarchical categorization schema is a classification, a thesaurus, or a
taxonomy, (2) develop a novel methodology for mechanically deriving consistent,
lightweight ontologies for a particular context from hierarchical classifications,
thesauri, or taxonomies, even if they contain typical conceptual anomalies, (3) present
suitable modeling patterns for RDF-S and OWL-DLP that require no reasoning
support beyond rdfs:subClassOf, which allows for the use of the resulting
ontologies with lightweight, scalable reasoners and repositories like OWLIM [10],
and (4) demonstrate the usefulness of our approach by transforming the e-business
categorization standards eCl@ss [2] and UNSPSC [1] into fully-fledged ontologies.

We also propose to use deductive statistics for the diagnosis of common anomalies
and for selecting modeling options when handling large categorization schemas. This
allows us to quantify the likelihood that the resulting ontology is consistent without
the need to evaluate the complete schema manually.

The structure of the paper is as follows: In section 2, we present a unified model
for hierarchical classifications schemas, thesauri, and taxonomies, which takes into
account the role of contexts. In section 3, we present our methodology for deriving
ontologies from hierarchical categorization schemas. In section 4, we show how our

132 M. Hepp and J. de Bruijn

approach can be successfully applied to the representation of eCl@ss and UNSPSC in
RDF-S and OWL. In section 5, we discuss our findings and compare them to related
works.

2 A Uniform Model of Classifications, Thesauri, and Taxonomies

In this section, we will present a unified formal model that fits any kind of
hierarchical categorization schema, be it a domain classification, a thesaurus, or a
taxonomy.

2.1 Overview

When taking the categories found in a hierarchical categorization schema as the basis
for the creation of an ontology, we face two fundamental problems: First, the meaning
of the categories may vary by context. With context we mean in here a domain of
usage over which a category label is interpreted. Second, unless there is a formal
definition of the semantics of the arcs constituting the hierarchy, the meaning of the
category concepts is not determined independently of the meaning of that hierarchy
relationship, i.e. both are tangled. For example, a category labeled “TV Set” can,
depending on the context of usage, mean very different things, e.g. (1) any entity that
is an actual TV set, (2) all TV sets and somewhat related items, (3) all invoices and
cost statements that are related to TV sets, or (4) anything that can in any context be
regarded as related to TV sets.

In the original fields of usage, this blurriness constitutes no serious problems, since
one usually never expresses that an entity is an instance of a particular category, but
rather assigns entities to categories in well-defined contexts. Thus, incompatible
meanings of the categories do usually not become apparent. Since a relation like
rdf: type is never used, it is no problem that in catalog data exchange contexts,
actual TV set makes and models are assigned to the UNSPSC category “TV Set”,
while for spend analysis, invoices reflecting TV set and TV cabling purchases are put
into the same category.

One could easily be tempted to trace back these problems to a lack of under-
standing of the original context and assume that there was one correct interpretation
of the semantics of the categories. However, this is not the case, since we can observe
that the very same categorization schemas are used in very different contexts with
varying interpretations. When we want to build useful ontologies, however, we need
to be clear about the semantics of the resulting ontology classes, i.e. what it means to
be an instance of this very class.

Two examples might further illustrate this fundamental problem: The hierarchies
of both UNSPSC and eCl@ss were created on the basis of practical aspects of
procurement, treating those commodities that “somehow” belong to a specific
category, as descendents of this closest category. This makes “ice” a subcategory of
“non-alcoholic beverages” in UNSPSC and “docking stations” a subcategory of
“computers” in eCl@ss. Now, there exists at least one context in which the hierarchy
relation can be read as a taxonomic relation in the sense of “rdfs:subClassOf”,
i.e. each instance of “ice” is also an instance of “non-alcoholic beverages” and each
instance of “docking station” is also an instance of “computers”. Then, however, the

GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 133

intension of the class “computers” is no longer any computer, but the concept
“computer” from e.g. the perspective of cost accounting or spend analysis, where an
incoming invoice for a docking station can be treated as an incoming invoice for a
computer. Similarly will “non-alcoholic beverages” no longer represent all non-
alcoholic beverages, but the union of non-alcoholic beverages and related
commodities.

The negative consequence of interpreting the hierarchy as being equivalent to
rdfs:subClassOf, is obvious: We can no longer use the resulting classes e.g. for
buying processes, because a search for all instances of “computers” will also return
docking stations, and ordering the cheapest available instance of non-alcoholic
beverages will very likely return just ice cubes. One could argue that exactly this
narrow definition of the classes is the original semantics of the categories. However,
this is not true, since the plain text descriptions for these classes in UNSPSC and
eCl@ss define the categories in the generic sense.

In a nutshell, most hierarchical categorization schemas are used with varying
semantics in multiple contexts, and depending on the respective context, the hierarchy
relations may constitute a subsumption hierarchy or just “narrower then/broader then”
relations. Our claim is that by restricting the interpretation of a categorization scheme
to a particular context, we can derive more useful ontologies, even if that means that
the hierarchical order of the original schema does not constitute a subsumption
hierarchy in this particular context.

2.2 Formal Definition

We view a hierarchical categorization schema as a directed graph where nodes
represent categories and edges represents the “narrower term” or “has subcategory”
relation. Depending on the context, a set is related to each category. This set
represents the items associated with the category in a particular context.

Formally, a hierarchical categorization schema § is a 6-tuple

S = <V,E,C,J,lv,lc>with:

e Vaset of categories,

e E a binary relation over V: E :V XV reflecting the original edges in the
hierarchy,
e (aset of contexts,

e J a partial function which assigns to every context ¢ € C a partial function which

assigns to every category V€ V a set of items such that J(c)(v) is the set of items
associated with category v in context c,

[V a function which associates labels with categories: JAIE VAN string , and
« € a function which associates labels with contexts: [: C — string .
We can see from the definition that a category is interpreted differently depending on

the context of usage. We say that the interpretation of a category V€'V in a context
ce C, denoted SC(V), is the set SC(V): J(C)(v). The interpretation of a

134 M. Hepp and J. de Bruijn

category V€ 'V, denoted S(v) is the union of the interpretations of v at every context
inc: SW)=ufsc()ice cl.

Using the formal model, we can specify a number of properties which a
categorization schema may have. First of all, it is not clear whether a particular
hierarchical classification is a consistent taxonomy or rather a thesaurus.

We would call a classification § a faxonomy, if the hierarchy is a valid
subsumption hierarchy, i.e., for all pairs of concepts v, v, holds that if v, is a
descendant of v, then v, is also a subclass of v,. Formally, S is a taxonomy if, and

only if, for all v,,v, €V holds:
if <vb,va>e E then S(v,)c S(v,).

We call S a taxonomy with respect to context c if the interpretations of all
categories in context ¢ form a valid subsumption hierarchy. Formally, S is a taxonomy

with respect to a context ¢ € C' if, and only if, for all v_,v, € V' holds:
if <vb,va>e Ethen S°(v,)c S°(v,)

Several of the hierarchical classification schemas we looked at are taxonomies only
for some contexts.

We say a categorization is cyclic if there isa v€ V' such that <v, v> € tr(E)with

tr(E) the transitive closure of E. For the remainder of this paper, we assume the input
categorization not to be cyclic.

3 Deriving OWL and RDF-S Ontologies from Hierarchical
Categorization Schemas

In this section, we describe a novel approach of deriving consistent OWL and RDF-S
ontologies from hierarchical categorization schemas. Our approach allows for the
semi-automatic creation of meaningful ontology classes for a particular context while
preserving the original hierarchy, even if the latter is not a consistent subsumption
hierarchy in this particular context. The basic idea of our GenTax methodology is to
derive two ontology classes from each category: one generic concept in a given
context and one broader taxonomic concept which allows preserving the original
hierarchy.

The input required is minimal and limited to (1) an informal specification of a
hierarchical categorization schema as defined in section 2.2 and (2) a notion of the
context in which the ontology should be used. In particular, we do not need instance
data or any additional information, as most ontology learning approaches usually
would. The transformation itself is semi-automatic in the sense that human
intervention is limited to checking some conceptual properties and identifying
frequent anomalies. In other words, the actual generation of the ontology can be done
by a script that only needs to be configured properly by a human.

The resulting ontologies can be either RDF-S or OWL DLP; in fact, they require
no reasoning support beyond rdfs:subClassOf, which allows for the use of

GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 135

lightweight, scalable reasoners, while still being able to merge an OWL DLP variant
with OWL DL data without leaving the boundaries of OWL DL (which would be the
case if e.g. RDF-S meta-modeling was used).

3.1 Overview
The basic idea of our approach is as follows:

e We derive meaningful, generic ontology classes from the categories in the original
classification by narrowing them down to their meaning in one particular context.

e We define taxonomic concepts for the categories of the original schema so that
they form a consistent taxonomy when the edges in the schema are interpreted as a
subsumption hierarchy.

Our algorithm depends on a number of external functions.

e The function genS takes as input a categorization hierarchy and returns a formal
specification, as defined in Section 2.2. This function takes care of all the pre-
processing, disambiguating labels of categories, etc.

e The function getContextInfo takes as input a formal categorization and returns a
formal categorization which includes an interpretation for every category at every
context, except for possibly Ccy.

e The function genURI takes as argument a context label and a category label and
returns a URI based on this information.

The input to the algorithm is some categorization and a set of contexts C. The
output of the algorithm is an RDF-S or OWL DLP ontology. There is a special
context c., with lc(cm,) = “Category”. If this context is included in C, then the
algorithm will create special category classes in the output ontology for each of the
categories in the categorization.

Step 1: Pre-processing and creating a formal representation of the model

The input to this step is an arbitrary hierarchical categorization schema H. The output

is S = <V, E, C,J,lc,lv> with V the set of categories, E such that <v1,v2>e E if

there is an arc <v 1va> in the original categorization, C the set of input contexts, and J

is not defined for any context. S is obtained as follows: S = genS(H).

Step 2: Deriving context information

This step defines the function J in § for each context c€ C with c# C.at . The
(external) algorithm finds an interpretation $°(v) for each category V€ V . The output
is S’ = genContextInfo(S), where J(c)(v) is defined for every c€ C,v€ V such that
ctc,, .

136 M. Hepp and J. de Bruijn

Step 3: Category context

If ¢, & C, proceed to the next step. Otherwise, choose “ as follows: (a) for any

cat

veV. S“()2Sv). &) for all vv,eV such that (vv,)eE,

S Cear (v1) c § Ceat (v2), and for every ve 'V , § Ceat (v) is the smallest set such that

the conditions (a) and (b) hold. Obviously there is such a .S Ceat

Step 4: Generating the ontology
Start with an empty set G.

Step 4.1: Generating ontology classes
For each category V€ V' and relevant context ¢ € C, add the triple

< genURI (l ¢ (C), 1Y (v)), rdf : type, rdfs : Class> (for an RDF-S ontology) or

< genURI (l “(c)1" (v)) rdf : type,owl : Class> (for an OWL DLP ontology)

to G.

Step 4.2: Generating subclassOf relations

Since many categorization schemas that are so large that it is infeasible to determine

individually ~whether 5 (Va) c S? (Vb) holds, we wuse the following

approximations for creating subclassOf relations:
If ¢, € C,thenforany v,,v, €V, <va7vb>e E , add the triple

< genURI (l (e N (v,)), rdfs : subClassOf, genURI (l (e 01 (v,))>

to G, and forany ce C,c #c,,, V€V , add the triple

cat ’

(genURI(1® (c),1" (v)) rdfs : subClassOf, genURI (1 (c,,, 1" (v)

If for allv, v, € V such that (v, v,)€ E ., c€ C, ¢ #c,,, holds
S°(v,) = $°(v,). add the triple
< genURI (l ¢ (c) (v,)) rdfs : subClassOf, genURI (l ()l (v,))>

for any v, v, € V such that <Va,vb> e E.

As a simplification, we may use a representative sample and statistic inferencing to
determine whether the hierarchy would be a valid subsumption hierarchy for the
categories in this particular context. In other words, instead of manually checking this
property for the whole input schema, we draw a representative sample from the
categories in the original schema and determine manually whether for this set of
categories, the above mentionend conditions hold.

GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 137

The output of step 4 is the ontology G (apart from the ontology header etc.). Figure 1
illustrates this for an ontology that contains classes for one context ¢ and the category
context C,. In this example, the original hierarchy would not be a valid subsumption
hierarchy in the context c. If this was the case, there would be an additional
rdfs:subClassOf relation from S°(v,) to S°(vy).

lassOf

Fig. 1. Example of the representation of two categories v, v, as four ontology classes

3.2 Implementation

Our algorithm depends, as said, on a number of external functions, which we explain
in this section.

3.2.1 Function Gens

This function takes as input a categorization hierarchy and returns a formal

specification, as defined in Section 2.2. In particular, it handles all pre-processing and

for disambiguating local labels. Local labels are such that are unique only in their

particular position in the hierarchy, e.g. “Portable” in the following example.
Computer Equipment

|- Laser Printers
!- Portable

One approach to handle such cases is by representing each node by a logical
formula that takes into account the label of the node and its position in the hierarchy,
as proposed by Giunchiglia, Marchese, and Zaihrayeu [9]. The simplest approach
(and often sufficient for our purpose) is to disambiguate local names by concatenating
the local name with the label of the path of parent nodes (with a suitable way of
escaping colons). This would turn the label “Portable” in our example into:

Computer Equipment: Laser Printers: Portable

Since most classifications that we found were very limited with regard to the depth
of branching, the growth in length created no problems.

A related anomaly is that of a varying semantics of the hierarchical relation by
depth of branching. In UNSPSC, for example, the last level of the hierarchy reflects
so called “Business Functions” for the next higher level:

Computer Equipment
|- Laser Printers
- Sales
!- Lease

138 M. Hepp and J. de Bruijn

We can handle this in the same way as local labels; however, this will usually
make it impossible to use the hierarchy as a subsumption hierarchy in this context,
since the lease of laser printers is not a subclass of laser printers etc.

3.2.2 Function getContextInfo

This function takes as input a formal categorization and returns a formal
categorization which includes an interpretation for every category at every context,
except for possibly c.,. Basically, this function returns what will be relevant instances
of the classes to be subsumed under the given label in the relevant contexts.

3.2.3 Function genURI
This function takes as arguments a context label and a category label and returns a
URI based on this information. It will usually use a given base URI for the resulting
ontology and concatenate the category and context labels, possibly separated by a
slash. If any of the labels contains extra characters, the function will also rewrite them
so that the result is a valid URI. Since we have disambiguated local labels, we can
assume that the category labels are unique. In practice, we can often also assume the
category labels to be unique.

As an example, the category “TV Set” in the two contexts “Product or Service”
and “Category” could be transformed into e.g.

http://www. foo.org/myontology/TV_Set_ProductOrService
http://www.foo.org/myontology/TV_Set_Category

3.3 Statistical Diagnosis of Conceptual Properties and Relevant Anomalies

Depending on the size of the schema and our knowledge of its properties, we may not
know a priori whether the categories in our selected context build a proper
subsumption hierarchy. Also, we might need to check for the anomalies outlined in
section 3.2, since they will require additional preprocessing.

We advocate the use of representative random samples and deductive statistics for
these diagnosis tasks.

When taking a random sample, we should include only such categories v that are
not top-level nodes. A nice property of this approach is that we can calibrate the test
depending on our needs and thus deal with the unavoidable trade-off decisions
between the value of an additional subsumption hierarchy vs. the risk of an
undetected inconsistency, which is naturally domain-dependent.

It should be stressed that it can be attractive to make such decisions for one context
as a whole, since only this allows for quick and cheap script-based creation of derived
ontologies without substantial human intervention and engineering effort.

3.4 Example

We want to built a products and services ontology based on a fictive hierarchical
schema for electronic-related categories, as shown in Fig. 2. In this case, the relevant
target context is “Products or Services”. We create two ontology classes for each
category, one reflecting the category concept (e.g. “Radio and TV (Category)”), and
one reflecting respective types of electronic equipment (e.g. “Radio and TV (Product

GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 139

or Service)”’). We see that the original hierarchy is not a consistent subsumption
hierarchy in the context of products or services, since “TV Maintenance”, read as the
actual type of services, is not a subclass of “TV Set”, and “Radio Antenna” is not a
subclass of “Radio”. Thus, we arrange the category concepts in a subsumption
hierarchy that represents the original edges, but do not arrange the products and
services classes in such a hierarchy. All products and services classes are just
subclasses of the respective category concepts. Fig. 3 shows the resulting ontology.
Elipses represent ontology classes (rdfs:Class or owl:Class) and arrows
represent rdfs : subclassOf relations.

If our target context was “cost accounting branch”, then we could additionally
arrange the context-specific ontology classes in a subsumption hierarchy, since
invoices accounting for radio antennas are usually also regarded as invoices
accounting for radios.

Radio and TV

er
Color TV

biw TV (Product
or Service)
t or Service)

Portable
Radio (Category)

Portable Radio
(Product or Service)

v
Maintenance

Fig. 2. Example of a hierarchical categoriza- Fig. 3. The resulting ontology for the context
tion for electronics "Pro-duct or Service"

Radio Antenna
(Category)

Radio Antenna
(Product or Service)

4 Evaluation: eClassOWL and unspscOWL

In order so evaluate our approach, we tried to derive useful e-business ontologies in
OWL-DLP from eCl@ss 5.1de [2] and UNSPSC [1]. Our goal was to generate, with
minimal human intervention, one eCl@ss ontology that can be used to annotate
products and services that unting purposes, i.e. aggregating incoming invoices by
spend categoriare available on the Web, and another UNSPSC ontology to be used for
cost accoes. This exercise is also practically relevant, since the existing prototypes of
UNSPSC and eCl@ss ontologies are not very useful in these application domains as
has been detailed in [6]. Both categorization schemas contain more than 20,000
categories, which renders manual steps in the transformation infeasible.

We have implemented preliminary tooling support for our methodology. Our
prototype consists of a Java program that expects the informal categorization schema
to be stored in a RDBMS. The program accesses the categories via an ODBC link.
The reason why we use an RDBMS is that we needed nested queries. Also, it proved
to be handy to import the various source formats into the RDBMS using standard
tooling instead of developing proprietary import interfaces.

140 M. Hepp and J. de Bruijn

4.1 eCl@ss as a Products and Services Ontology

The eCl@ss standard is available at http://www.eclass.de in the form of separate CSV
files containing categories, properties, values, class-property recommendations,
property-value recommendations, and keywords. For evaluating our methodology, it
was sufficient to import the categories.

The application of our methodology to eCl@ss creates only minor problems. First,
the original hierarchy does not constitute a correct subsumption hierarchy if the
categories are interpreted as products and services categories. Fig. 4 gives an example
of how services of repairing assembly and maintenance technology are subnodes of
machine. Thus, the structure of the resulting ontology is as in the example in Fig. 3.

E.-D 36 Machine, apparatus
ED 26-B5 Assembly- a. handling technolagy
ED 36-G5-99 Azzambly- a. handling tachnology (repain
26-65-00-90 Aszembly- a. handling technology (repair, unclassified)

Fig. 4. The eCl@ss hierarchy is no subsumption hierarchy in the context of products and
services

Second, the resulting ontology is very big: About 25,000 categories in the source
taxonomy result in more than 50,000 OWL classes. The size of the ontology imposes
unexpected problems when trying to use standard ontology editors (e.g. Protégé),
repositories/APIs (e.g. Jena 2), or validators (e.g. vowlidator). They all exit with error
messages when trying to process the full ontology. It was possible, though, to validate
and use a restricted version of the ontology that contains only a small subset of the
actual eCl@ss concepts. Also, we were able to load the full ontology into an OWLIM
[10] configuration.

As compared to our early approaches described in [6] and [7], our new approach
requires only two ontology classes instead of three per category, while the old
evaluation results still hold.

While we started our experiments with version 5.0 of eCl@ss, we were able to
generate new versions of our ontology based on new releases of eCl@ss in a fully
automated fashion. The only manual steps required were importing the new CSV files
into our RDBMS and updating the namespace for the new release. The total time for
creating the new ontology was less than two hours.

Generating ontologies in other ontology languages than OWL (e.g. WSML) was
also successful and just required expressing the OWL ontology patterns used in the
respective target ontology language.

4.2 UNSPSC as a Cost Accounting Ontology

UNSPSC [1] is similar to eCl@ss in its structure, but has more top-level categories
and is limited to the hierarchy of labels, while eCl@ss also includes properties and
other elements.

Same as eCl@ss, UNSPSC contains hierarchical relations that do not constitute a
correct subsumption hierarchy in some contexts, in particular when reading the labels

GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 141

in the literal sense. For example, we can find the following two candidate
inconsistencies:

a) Non-dairy creamers are neither coffee nor tea, and not even a true beverage.
-family-[50.20.00.00] Beverages
-class-[50.20.17.00] Coffee and tea
—-commodity-[50.20.17.14] Non-dairy creamers

b) Ice is not a beverage.
-family-[50.20.00.00] Beverages
-class-[50.20.23.00] Non-alcoholic beverages
—-commodity-[50.20.23.02] Ice

However, in this second example, the target context of our ontology is “Cost
Accounting Categories”. If we interpret the labels in this sense, then it is acceptable
for “Beverages” to subsume “Ice”, since anything spend on ice may be correctly
regarded as a beverage-related expenditure. Thus, other than in the example in section
4.1, the ontology classes in the target context “Cost Accounting Categories” can also
be arranged in a subsumption hierarchy, which reflects the original order. If we
wanted to create a products and services ontology from UNSPSC, the situation would
be the same as with eCl@ss, i.e. the classes in this context cannot be arranged in a
subsumption hierarchy.

We expect that running our script on other hierarchical categorization schemas, e.g.
eOTD or XBRL standard reporting taxonomies should require only slight modifica-
tions in the embedded SQL.

5 Discussion

There exists a substantial amount of publications on the analysis of the meaning of
taxonomic relationships, especially the fundamental work of [11]. This yielded the
insight that there are multiple types of taxonomic relationships, which should be
represented separately. In this paper, we have presented a generic methodology for
deriving consistent ontologies in a script-based fashion from hierarchical
categorization schemas, and successfully applied it to eCl@ss and UNSPSC. While
the resulting ontologies are rather lightweight, the cost/benefit ratio of our ontologies
seems very convincing, since the amount of human intervention is limited to
importing source data into an RDBMS and determining some parameters in a script.
Related work to ours can be classified into the following main groups:

e Methodologies for and experiences with the reuse of consensus in classifications,
thesauri, and taxonomies for the creation of ontologies. This is the most related
field of work. [12] discusses the transformation of tangled hierarchies, as e.g. such
derived from ambiguous “broader than / narrower than” taxonomies in library
science, into formal ontologies. [13] presents the experiences gained while
transforming the constructs of an existing semantic net in the medical domain into
an OWL ontology. [14] describe how machine learning approaches can be used to
integrate objects from taxonomies available on the Web into a consolidated master
taxonomy. [6] is a detailed description of creating products and services ontologies
based on UNSPSC and eCl@ss, but requires three classes per category and is also

142 M. Hepp and J. de Bruijn

not generically applicable. [15] shows the reuse and semantic enrichment of an
existing hierarchical standard, and demonstrates this for the Art and Architecture
Thesaurus (AAT). [16] and [8] are consequent works of this stream of research. An
important characteristic of [16] and [8] is that the authors leave the limits of OWL
DL in order to capture semantics contained in the original thesaurus, namely to be
able to treat classes as instances and vice versa. [9] presents a formal theory of
classifications; [17] is an extension of this work and proposes how lightweight
ontologies can be derived from such specifications.

e Prototypes of products and services ontologies in standard ontology languages
derived from UNSPSC. To our knowledge, there are currently two examples of
UNSPSC transformations into ontology representation languages: The
DAMLA+OIL and RDF-S variants created by [5] and the DAMLA+OIL variant from
the Knowledge Systems Laboratory at Stanford University [4]. For eCl@ss, there
exists one early prototype by Bizer and Wolk [18] and the official release of
eCl@ssOWL [19], which is based on our previous work [6].

e Ontology engineering methodologies, implicitly or explicitly focusing on the
manual creation of ontologies based on knowledge engineering principles. A
comprehensive discussion of all approaches in this field is beyond the scope of this
paper, for an overview see e.g. [20] and [21]. The main difference between our
work and traditional ontology engineering is that we advocate the script-based
transformation without involving an ontology engineer for revising the modeling in
every single case.

Our approach is different from previous work in that it allows for the script-based
creation of meaningful ontology classes (1) for a particular context while (2)
preserving the original hierarchy, even if the latter is not a real subsumption hierarchy
in this particular context. The resulting ontologies can be either RDF-S or OWL DLP;
in fact, they require no reasoning support beyond rdfs:subClassOf, which
allows for the use of lightweight, scalable reasoners, while still being able to merge an
OWL DLP variant with OWL DL data without leaving the boundaries of OWL DL
(which would be the case if e.g. RDF-S meta-modeling would be used).

Our proposal comes not without cost. First, the resulting ontology provides quite
limited reasoning support. Second, we create at least two ontology classes per each
category, which increases the size of the ontology. However, the unwanted ontology
growth has to be set in relation to the low costs of reasoning and to fact that the
ontology building process requires almost no human labor.

In general, we agree that a greater amount of e.g. axioms would be desirable. On
the other hand, we see no lightweight way of automatically adding more semantics
because it cannot be easily derived from the input schemas. Also, we will have to set
the resources necessary for the respective enrichment in relation to the gain in
automation and the resulting economies.

Acknowledgements. Parts of the work presented in this paper have been supported
by the European Commission under the projects DIP (FP6-507483), SUPER (FP6-
026850), and MUSING (FP6-027097), and by the Austrian BMVIT/FFG under the
FIT-IT project myOntology (grant no. 812515/9284).

GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 143

References

(1]

(2]

(3]

(4]
[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

United Nations Development Programme, "United Nations Standard Products and
Services Code (UNSPSC)," available at http://www.unspsc.org/, retrieved March 15,
2007.

eClass e.V., "eCl@ss: Standardized Material and Service Classification," available at
http://www. eclass-online.com/, retrieved March 15, 2007.

M. Hepp, J. Leukel, and V. Schmitz, "A Quantitative Analysis of Product Categorization
Standards: Content, Coverage, and Maintenance of eCl@ss, UNSPSC, eOTD, and the
RosettaNet Technical Dictionary," Knowledge and Information Systems, (forthcoming).
D. L. McGuinness, "UNSPSC Ontology in DAML+OIL," available at
http://www ksl.stanford.edu/projectssDAML/UNSPSC.daml, retrieved March 15, 2007.
M. Klein, "DAMLA+OIL and RDF Schema representation of UNSPSC," available at
http://www.cs.vu.nl/~mcaklein/unspsc/, retrieved March 15, 2007.

M. Hepp, "Products and Services Ontologies: A Methodology for Deriving OWL
Ontologies from Industrial Categorization Standards," Int'l Journal on Semantic Web &
Information Systems (IJSWIS), vol. 2, pp. 72-99, 2006.

M. Hepp, "Representing the Hierarchy of Industrial Taxonomies in OWL: The gen/tax
Approach," Proceedings of the ISWC Workshop Semantic Web Case Studies and Best
Practices for eBusiness (SWCASEOS5), Galway, Irland, 2005.

M. van Assem, M. R. Menken, G. Schreiber, J. Wielemaker, and B. J. Wielinga, "A
Method for Converting Thesauri to RDF/OWL," Proceedings of the ISWC'04, Hiroshima,
Japan, 2004.

F. Giunchiglia, M. Marchese, and I. Zaihrayeu, "Towards a Theory of Formal
Classification," Proceedings of the AAAI-05 Workshop on Contexts and Ontologies:
Theory, Practice and Applications (C&0O-2005), Pittsburgh, Pennsylvania, USA, 2005.

A. Kiryakov, D. Ognyanov, and D. Manov, "OWLIM - a Pragmatic Semantic Repository
for OWL," Proceedings of the International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS 2005), New York City, USA, 2005.

R. J. Brachman, "What IS-A Is and Isn't: An Analysis of Taxonomic Links in Semantic
Networks," IEEE Computer, vol. 16, pp. 30-36, 1983.

A. L. Rector, C. Wroe, J. Rogers, and A. Roberts, "Untangling Taxonomies and
Relationships: Personal and Practical Problems in Loosely Coupled Development of
Large Ontologies," Proceedings of the K-CAP'01, Victoria, British Columbia, Canada,
2001.

V. Kashyap and A. Borgida, "Representing the UMLS Semantic Network using OWL,"
Proceedings of the 2nd International Semantic Web Conference 2003 (ISWC 2003),
Sanibel Island, Florida, USA, 2003.

D. Zhang and W. S. Lee, "Learning to integrate web taxonomies," Journal of Web
Semantics, vol. 2, pp. 131-151, 2004.

B. J. Wielinga, A. T. Schreiber, and J. A. C. Sandberg, "From Thesaurus to Ontology,"
Proceedings of the First International Conference on Knowledge Capture (K-CAP 2001),
Victoria, British Columbia, Canada, 2001.

B. J. Wielinga, J. Wielemaker, G. Schreiber, and M. van Assem, "Methods for Porting
Resources to the Semantic Web," Proceedings of the First European Semantic Web
Symposium (ESWS'04), Heraklion, Greece, 2004.

F. Giunchiglia, M. Marchese, and I. Zaihrayeu, "Encoding Classifications into
Lightweight Ontologies," Proceedings of the 3rd European Semantic Web Conference
(ESWC 2006), Budva, Montenegro, 2006.

144

(18]

(19]
[20]

(21]

M. Hepp and J. de Bruijn

C. Bizer and J. Wolk, "RDF Version of the eClass 4.1 Product Classification Schema,"
available at http:////www.wiwiss.fu-berlin.de/suhl/bizer/ecommerce/eClass-4.1.rdf,
retrieved March 15, 2007.

M. Hepp, "eCl@ssOWL. The Products and Services Ontology," available at
http://www.heppnetz.de/eclassowl/, retrieved March 15, 2007.

M. Fernandez-Lépez and A. Gémez-Pérez, "Overview and analysis of methodologies for
building ontologies," The Knowledge Engineering Review, vol. 17, pp. 129-156, 2002.

J. de Bruijn, "Using Ontologies. Enabling Knowledge Sharing and Reuse on the Semantic
Web," DERI Technical Report DERI-2003-10-29, October 2003, pp. 1-49, 2003.

SPARQLeR: Extended Sparql for Semantic
Association Discovery*

Krys J. Kochut and Maciej Janik

Department of Computer Science, University of Georgia
415 Boyd Graduate Studies Research Center
Athens, GA 30602-7404

{kochut, janik}@cs.uga.edu

Abstract. Complex relationships, frequently referred to as semantic associa-
tions, are the essence of the Semantic Web. Query and retrieval of semantic
associations has been an important task in many analytical and scientific
activities, such as detecting money laundering and querying for metabolic
pathways in biochemistry. We believe that support for semantic path queries
should be an integral component of RDF query languages. In this paper, we
present SPARQLeR, a novel extension of the SPARQL query language which
adds the support for semantic path queries. The proposed extension fits
seamlessly within the overall syntax and semantics of SPARQL and allows easy
and natural formulation of queries involving a wide variety of regular path
patterns in RDF graphs. SPARQLeR's path patterns can capture many low-level
details of the queried associations. We also present an implementation of
SPARQLeR and its initial performance results. Our implementation is built
over BRAHMS, our own RDF storage system.

1 Introduction

The size of ontologies in the Semantic Web has grown significantly within the last
few years. The vision of ontologies containing millions of entities interconnected by
meaningful relationships presented in [22] has become reality. The current query
languages for RDF bases, such as SPARQL [24], RQL [14] and RDQL [21], support
defining graph patterns and expressing various restrictions on entities and
relationships participating in the defined patterns. However, all of them lack the
necessary constructs that directly support the discovery of semantic associations,
which cannot be explicitly defined by fully specified structure of a graph pattern.

We believe that querying for semantic associations is an important feature missing
in the current RDF query languages, most notably in SPARQL. This paper presents
SPARQLEeR, a novel extension of SPARQL that enables the discovery of semantic
associations among entities in RDF knowledge bases.

Semantic association is an undirected path that connects two entities in the
knowledge base using named relationships, which represent its meaning. Discovery of

" This research has been partially supported by the National Science Foundation Grant No. IIS-
0325464 entitled “SemDIS: Discovering Complex Relationships in the Semantic Web”.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 145 2007.
© Springer-Verlag Berlin Heidelberg 2007

146 K.J. Kochut and M. Janik

semantic associations is the process of finding paths of possibly unknown length that
connect the given entities and have a specific semantics. Therefore, the search for
paths must focus on the semantics of both the entities and the properties on the path.
Moreover, the order of the relationships in the path and their directionality is crucial
in expressing the semantics of the associations. To fulfill these requirements
SPARQLeR uses regular expressions over properties for specifying the required
semantics of the queried paths. The paths are treated as RDF meta-resources
represented as sequences. They can be used in other patters, specifying the required
properties of the individual path elements. This approach gives the user a detailed
control over each of the elements on the path, as well as its overall semantics.

The paper is organized as follows. In Sec. 2, we give a motivation for adding
semantic association discovery in RDF query languages. In Sec. 3, we discuss semantic
associations and different types of paths in RDF bases. Sec. 4 introduces the concept of
a path in SPARQLeR, shows the syntax and semantics of the language, and describes
its prototype implementation. In Sec. 5, we discuss the initial performance results of
our implementation.

2 Motivation

An important discovery in medicine made by Dr. D.R. Swanson of a dependency
between Magnesium and Migraine [25] is a clear example of finding meaningful
semantic associations. He manually searched through papers in PubMed [17] to
establish a sequence of facts, supported by co-occurrence of significant terms in
papers, that Magnesium may alleviate Migraine. With the suitable biomedical
knowledge base extracted from PubMed and stored in RDF, as proposed in [19],
finding such associations can be accomplished with the use of regular path queries.

Many interesting examples of semantic associations can be found in biological
sciences. Metabolic pathways, composed of sequences of chemical reactions occurring
within a cell, involve a gradual modification of the initial substance into the final
product with the desired chemical structure.

N-Glycan Biosynthesis pathway [12] is an example of a well known metabolic
pathway (presented later in Fig. 5). It starts from dolichol phosphate and ends with
the production of glyco peptide GO0O009. It contains 15 chemical reactions and, even
though this pathway may not be regarded as very long among the biochemical
pathways, it is considered long for a path in the area of the Semantic Web.

Locating and retrieving metabolic pathways is a difficult problem. Regular path
queries can be used searching for metabolic pathways. Using such queries, scientists
should be able to query for and retrieve ordered sequences of specific reactions that
lead from a given substance to a desired final product.

Additional interesting applications of semantic association discovery include
BioPatentMiner [16] and Insider Threat [1]. We believe that there is a clear need for
an RDF query language capable of semantic association retrieval.

Introduced in this paper SPARQLeR offers a variety of constructs for easy
formulation of regular path queries which are suitable for solving the above problems.

SPARQLeR: Extended Sparql for Semantic Association Discovery 147

3 Background

Path queries have been a focus of formal studies as well as practical applications. The
complexity of finding regular paths in graphs was investigated in [15] and [7]. The
authors showed that in general case finding all simple paths matching a given regular
expression is NP-Complete, whereas in special cases it can be tractable. The
complexity of various types of path queries, such as linear, regular and context-free
was also described in [27]. Another approach was proposed in [6]. Here, the authors
focused on finding paths in labeled graphs. In this case, a regular language is defined
beforehand and a special index is maintained for all edge inserts and deletes.

Some of the query languages created for semi-structured databases support
defining regular path queries. Among the well known languages are: G [10] and G+
[9], and Graphlog [8]. The relationship between the chain programs with recursive
predicates and regular path queries is described in [4]. For RDF data, partial support
for path queries, but not regular paths, can be found in SeRQL [5], TRIPLE [23], and
Versa [18]. Versa introduced the fraverse keyword which allowed querying for
variable-length paths using a set of specified transitive properties. In [2], the authors
present only the initial work on PSPARQL, a language supporting regular expressions
in SPARQL. However, the regular expressions were to be used in place of properties
in triple patterns, which limited the ability of testing individual path elements. It also
significantly altered the syntax of SPARQL.

3.1 Semantic Associations in RDF Description Bases

Paths in RDF description bases represent a variety of explicit and implied semantic
relationships among the participating resources (entities). This is based on the
assumption that entities are semantically related if there exists a path connecting
them. In [3], Anayawu and Sheth proposed a p-path (and related concepts) as a way of
expressing semantic associations between entities in RDF bases. A p-path has been
defined as a directed path connecting two entities.

While directed paths naturally capture semantic associations between entities, we
also believe that undirected paths also capture important semantic associations which
should not be ignored. Therefore, we view semantic associations as implied by the
presence of either directed, undirected paths, or undirected paths with specific
directionality of the included properties. A good illustration of this observation is an
RDF graph, shown in Fig. 1, describing a part of a well known Glycan biosynthesis
pathway (we discuss it further later in this paper). The shown fragment includes 3
reactions, represented by the entities R05972, R05973, and R06238 and 4 glycans
(G00002-G00005) as their reactants and products. For clarity of presentation, other
properties have not been included in the shown graph.

The glycan G00002 is a predecessor of GO000S5. Clearly, they are semantically
associated, even though there is no directed path connecting them. In fact, the whole
pathway links the starting substance, dolichol phosphate, and the final product,
peptide G00009, using a sequence of reactions similar to the ones above. Again,
a directed path connecting dolichol phosphate, and peptide GO0O009 does not exist, but
the two molecules are semantically related by this important pathway.

148 K.J. Kochut and M. Janik

R05972 RO5973 ROE238
o

G00ooo2 G00003 G00004 G00005

Fig. 1. An example of a chemical reaction graph

Below, we define semantic associations taking into account any type of connection
between two entities. In what follows, we will interchangeably use the terms triple
and RDF statement. We will assume that R is an RDF description base.

Def. 1. A directed path between resources rpand r, in R is a sequence ry p; ¥; pz 12,
cos Pl Tnei Pn T (n>0) if ropirry, rip2rz, .o Tn2Pni Vol Y'n-1Pn ¥ (I’l>0) are triples
in R. The length of the path is n. Moreover, we require that all of the resources r; (0 <
i < n) in the path be distinct (we will only consider simple paths). 0

Def. 2. An undirected path between the resources rpand r, in R is a sequence 1y p; r;

D22y oo Dug FugPn 1 (n>0) if for each property and the two neighboring resources
rip pi1; (0 <i<n)in the path, either r,; p;r;. or r; p;r;;.1is a triple in R. We will
consider only simple undirected paths. 0

Def. 3. Two resources r and s in R are semantically associated if there exists an
undirected path in R connecting the two resources. O

3.2 Defined Directionality Paths

While searching for semantic associations between two given entities we may be
interested in paths in which properties follow a specific defined directionality pattern,
according to the desired semantics of the connection between the entities. Creating
such patterns requires an inverse property operator, not present in SPARQL. In
SPARQLeR, we will use the ‘-’ (minus) character to denote the inverse of a property.

Spatial relationships, such as A is inside B, offer illustrative examples for defined
directionality paths. Let us consider the following three path queries with regular
patterns (SPARQLeR’s path patterns are defined later, in section 4.2):

1. spatial:inside* - when used in a search for directed paths, it locates semantic
associations illustrated by a diagram shown in Fig. 2a.

2. spatial:inside™* - when used in a search for undirected paths, it locates semantic
associations illustrated by diagrams shown in Fig. 2a, 2b and 2c.

3. (spatial:inside —spatial:inside)* [read as: concatenation of inside with inverse
of inside] - when used in a search for directed paths, it locates semantic
associations illustrated by a diagram shown in Fig. 2c, showing very specific,
a chain-like inclusion structure.

Following the above observation, we believe that semantic associations require more
than directed or undirected paths and should be treated as defined directionality paths.

SPARQLeR: Extended Sparql for Semantic Association Discovery 149

Fig. 2. Example results of spatial path queries

From a graph theoretical perspective, a path that matches a defined directionality
pattern is an undirected path, and its implied semantics is set by the specific
directionality of its member properties.

4 SPARQLeR

SPARQLeR (SPARQL extended with Regular paths) is an extension of SPARQL
designed for querying for semantic associations. Our intension was to introduce
minimal changes to SPARQL’s syntax and semantics. Querying in SPARQLeR
focuses on building path patterns involving undirected and directed paths as well as
paths with defined directionality of the participating properties. Note, that since all
properties have their inverses, the expressiveness of directed path queries is sufficient,
as it enables us to construct undirected path patterns with the use of properties and
their inverses. Nevertheless, to simplify the creation of path patterns, undirected path
patterns are also supported. Syntax of proposed extensions fit seamlessly into current
SPARQL language grammar. The new constructs in SPARQLeR are designed for the
discovery of the semantic associations and, in particular, allow the user to:

— search for undirected paths or for paths with specific directionality of properties,

— filter located paths with the use of regular expressions formed over properties
included in the path (use of inverse properties is also allowed),

— filter located paths by imposing constraints on the length of paths,

— filter located paths by requiring the presence of specific resources on the path,
possibly even at a specific position,

— specify if located paths can include instance entities, schema classes and/or literals,

— indicate if the hierarchy of sub-properties should be used in property matching.

4.1 Path as RDF Meta-resource and Path Patterns

We will treat paths in RDF description bases as RDF meta-resources. In order to
place these new meta-resources within the RDF vocabulary, we have created a new
class Path defined in the new vocabulary rdf-meta-schema. The class Path has been
defined as the sub-class of both rdf:Property and rdf:Seq as follows:

<rdf:Class rdf:about="http://meta.org/rdf-meta-schema#Path">
<rdfs:isDefinedBy rdf:resource="http://meta.org/rdf-meta-schema#"/>
<rdfs:subClassOf
rdf :resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property" />
<rdfs:subClassOf
rdf:resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Seq" />
<rdfs:label>Path</rdfs:label>
<rdfs:comment>The class of RDFMS paths.</rdfs:comment>
</rdf:Class>

150 K.J. Kochut and M. Janik

According to the above definition, a resource of type Path is a sequence of other
RDF resources. The sequence is composed of an ordered list of properties and
connecting resources, as defined in Def. 2, but without the starting and ending
resources, i.e. a path begins and ends with a property.

Having a path represented as a meta-resource of type rdfs:Seq, allows us to create
patterns for inspecting the path elements with the use of the properties rdf:Member,
and rdf:_N, which will be illustrated later in this paper.

A semantic association path between two resources r and s in an RDF graph forms
a natural extension of a regular RDF property connecting the two resources. As such,
the two resources and the path can be regarded as a meta-triple of the form r path s,
where path is a meta-resource of type Path.

4.2 Path Patterns

We have extended SPARQL’s triple patterns to include path patterns. Paths can be
matched only by path variables. A path variable is a name beginning with the %
character, for example %connection. A path pattern is a triple pattern created with the
use of a path variable in place of the property. A path query is any SPARQL query
involving at least one path pattern. Instead of formally defining SPARQLeR’s syntax,
we will present a number of examples illustrating path patterns.

The following SELECT path query, involving a two-source path pattern

SELECT $%$path WHERE {<r> %path <s>}

matches any path between the resources r and s. By default, the matched paths must
be directed. As expected, for every matched path, the variable %path is bound to the
located path, represented as a sequence (rdf:Seq) of properties and the connecting
resources (the first and last elements of the sequence are properties). Therefore, the
above query returns a list of blank nodes representing the matched paths (sequences).

In order to list the resources on each matched path, the list operator (applicable
only to the path variables) must be applied to the path variable, as shown below:

SELECT list (%path) WHERE {<r> %path <s>}

Path patterns allow for searching for any resources reachable from a given one. The
following single source SELECT query locates resources reachable from resource r:

SELECT %path, ?res WHERE {<r> %path ?res}

For every match, the reached resource is bound by the variable ?res, and both the
path leading to it and the resource are returned by the query. The analogous form of
the above query relies on the inverse path pattern of the form {?res %path <r>). This
pattern matches all resources (and paths) from which the resource r is reachable.

Since a matched path is a meta-resource of type Path, and therefore also of type
rdf:Seq, resources on the path may be examined with the use of patterns involving the
container membership properties. For example, the following query:

SELECT %path WHERE
{<r> %path <s> . $%$path rdfs:Member <e>}

SPARQLeR: Extended Sparql for Semantic Association Discovery 151

matches any semantic path between the resources r and s, provided the path includes
the resource e. Even though it involves a path variable, the second triple is not a path
triple, since the path variable is not used in place of the property. Similarly, we can
formulate queries examining resources at specific positions on the path. For example,
the following query:

SELECT %path WHERE {<r> %path <s> . $%path rdfs:_1 <p>}

matches any semantic path between the resources r and s, provided the path begins
with the property p (a SPARQLeR path always begins with a property). Similarly, the
property rdfs:_2 can be used to examine the first connecting resource on the path. In
addition, two meta-properties rdfins:entityResource and rdfms:propertyResource (not
described here) access the connecting resources and relationships, respectively (rdfins
is the namespace prefix of the meta-schema, discussed in Sec. 4.1).

Path patterns may be also used in construct, describe and ask queries. As expected,
a path variable used in a CONSTRUCT query returns all triples forming the paths
matched by the querie’s graph pattern. For example, the query

CONSTRUCT {<r> %path <s>} WHERE {<r> %path <s>}

returns all triples forming all paths between the resources r and s. The /list operator
cannot be used within the CONSTRUCT expression.

It is interesting to note that CONSTRUCT queries can be used to extract
interesting sub-graphs, satisfying certain specific semantic properties. Combination of
multiple path queries with use of CONSTRUCT, possibly with common intersecting
points, may lead to creating semantically highly informative sub-graphs [20].

The ASK query functionality for path patters is defined as testing for existence of
at least one specified path. The DESCRIBE query returns the description of all
resources included in the found paths. DESCRIBE and ASK queries have not been
included yet in presented implementation.

4.3 Testing Paths

Testing of the located paths can be performed with the use of special expressions used
within the FILTER clause. A path can be tested if it matches a given regular
expressions, or if its length is within certain bounds.

The regex operator in SPARQLeR has been extended to specify regular path
expression filters. Syntactically, it is identical to the usual regex operator, but the first
argument must be a path variable. The second argument must be a path expression,
while the optional third argument specifies the path matching flags:

regex(pathvar, pathexpr, pathflags)

The path expressions can be formed with the use of property names, their inverses,
classes of properties, and the usual collection of regular expression operators. They
are intended to specify the semantics of the path between a pair of resources.

Def. 4. SPARQLeR’s path expressions are defined recursively as follows (p, p,,
P2 ..., and p, denote property names, while x and y denote path expressions). We also
define paths between resources r and s which are matched by the defined path
expressions.

152 K.J. Kochut and M. Janik

e p matches a path between r and s of length 1 if a triple r p s exists;

e -p (the inverse of p) matches a path between r and s of length 1 if a triple s p r
exists;

e [p; P2 ... pul (class of properties) matches a path between r and s of length 1 if a
triple r p; s exists for some i (1<i<n);

e -[p; p: ... pn] matches a path between r and s of length 1 if a triple s p; r exists for
some i (/<i<n); inverse operator is not allowed for properties inside the set;

e [*p;p2 ... pn] matches a path between r and s of length 1 if a triple r p s exists and
p#p; (1<i<n);

e -[*p;p> ... pn] matches a path between r and s of length 1 if a triple s p r exists and
p # pi (1<i<n); inverse operator is not allowed for properties inside the set;

e . (wildcard) matches a path between r and s of length 1 if either triple rp sor sp r
exists for some property p;

e also supported: x| y (alternative); xy (concatenation); x* (Kleene star);
x+ (one or more repetition); (x) (match a path matched by x). 0

For example, the following query matches paths between resources r and s that use
only property foo:prop:

SELECT list (%path) WHERE
{<r> %path <s>
FILTER (regex (%path, "foo:prop+”) }

In order to keep the size of the path expressions manageable, only the prefix-
abbreviated names of properties are allowed. The type of the located path (directed or
undirected) can be requested as part of the regex expression and is indicated in the
(optional) path flags of the regex expression. For example, the query

SELECT list (%path) WHERE
{<r> %path <s>
FILTER (regex(%path, ” (foo:prop|foo:rel)+”,"u")}

allows the matched path to be undirected. When the path directionality is left
unspecified, the path is assumed to be directed (the flag “d” is assumed). Also, the
path expression may be omitted, as in regex(%path,,”u”). Here, each path bound to
variable %path may be undirected and be composed of arbitrary properties. A regex
with no path expression is equivalent to regex(%path,”.*”,”u”). Note, that
regex(%path,”.*”) matches only directed paths, even though the wildcard expression
(.) matches both a property and its inverse.

The other path flags include i, s, [, and h. The flags i, s, and / specify that the path is
restricted to resources which are instances (entities), schema classes, and literals,
respectively. The last flag, h (hierarchy), indicates that when matching
properties,additionally their ancestor properties (following the subPropertyOf property)
may be used. The path flags may be combined. For example,

regex (%path, ”.*foo:prop.*”, "uis”)

specifies that the path must involve property foo:prop, may be undirected, and can
only involve connecting resources which are instances or schema classes. The default
path flags string is "di”.

SPARQLeR: Extended Sparql for Semantic Association Discovery 153

The new length operator returns the length of the path and can be used as part of
a FILTER expression. For example,

SELECT list (%path) WHERE
{<r> %path <s>
FILTER (length (%path)<5) }

restricts the matched paths to be of length less than 5. Due to implementation
optimization, the length of a path may be compared only to constant values. Path
filtering expressions may be combined, and mixed with any other filter tests,
involving other variables and resources. As discussed in Sec. 0, the located paths may
not be required to be fully directed, but with a specified directionality of individual
properties. This may be requested by a suitable path expression, as in the following
select query:

SELECT list (%path) WHERE

{<r> %path <s>

FILTER (length (%path) <=6 && length (%$path)>=4 &&
regex (%$path, ” (foo:prop -foo:rel)+”)}

which requires that the matched paths be composed of sequences of pairs of
properties: foo:prop followed by the inverse of the property foo:rel.

4.4 Prototype Implementation of SPARQLeR

Our implementation of SPARQLeR uses BRAHMS, our own RDF storage system
[13]. The implementation relies on BRAHMS’s low level API to iterate over triples,
depending on whether the subject, property, object, or their combination has already
been fixed (by bound variables or explicit resources). The graph pattern included in a
SPARQL query is converted into a composition of such iterators, according to a
created query plan.

The path iterator, necessary for path pattern matching, has been implemented as a
hybrid of a bidirectional breadth-first search and a simulation of a deterministic
finite automaton (DFA) created for a given path expression. During our previous
experiments [13], a bidirectional breadth first search proved to be the most efficient
method in practice for finding all simple paths up to certain hop limit. For each
instance of the iterator created for a path pattern, two DFAs are constructed. The first
one accepts the regular language defined by the original path expression, while the
second one accepts the reversed language, which is also regular. The path search
uses the steps from the bidirectional BFS to grow the frontiers of entities used to
connect paths. Before an entity is placed on the frontier for the next expansion, a
check is performed if the partial path leading to it is not rejected by the appropriate
DFA. This guarantees that the partial results, which are not accepted by DFA, will
not be further expanded. Making this check for each node before adding it to a
frontier causes the frontiers to grow very slowly for some regular expressions. From

154 K.J. Kochut and M. Janik

the practical point of view, it significantly increases the possibility of finding longer
paths in an acceptable amount of time and of not exhausting the memory used by the
search.

Frontier Intersection Frontier
(forward search) entity (reverse search)

Forward sub-path Reverse sub-path

Fig. 3. Path finding and sub-paths in breadth-first search

A candidate path is located when an entity from the forward frontier matches an
entity from the reverse frontier. At this point, it is only known that the "forward" sub-
path has not been rejected by the forward DFA and that the "reverse" sub-path has not
been rejected by the DFA accepting the reverse language. Before the concatenated
path is returned, it must be accepted by the forward DFA, created from the original
path expression.

A similar solution is used for single source path patterns. In this case, only one
DFA in conjunction with a standard breadth first search is used to grow a single
frontier of entities.

S Experiment Design and Results

We have tested our implementation of SPARQLeR using a collection of path queries
against a modified DBLP dataset [11]. We also performed path queries locating
metabolic pathways in the Glycomics domain, using the GlycO ontology [26].

Tests were performed on machine with 2 Intel(R) Xeon(TM) 3.06GHz CPUs and
4Gb memory, running Red Hat 9.0 Enterprise Linux. C/C++ code was compiled using
gee (GCC) 3.2.3 20030502 (Red Hat Linux 3.2.3-56) with ‘~O6’ optimization flag.

5.1 Data Sets

In our searching for metabolic pathways, we used the GlycO ontology. It represents
information about glycans and includes a comprehensive schema as well as instances.
GlycO is still under development and many new instances representing theoretical as
well as experimental data are being added. Currently, the ontology has 362 classes
(mainly glycans classification taxonomy) and 84 specialized properties.

Our scalability experiments required a much bigger data set. For this purpose we
used a modified version of the DBLP ontology generated from the data available in
September, 2006. It contains information about authors, published papers, articles,
year of publication, etc. Unfortunately, the citations have been assigned to very few
documents, rendering this set unsuitable for scalability test purposes. To be able to
search for long, meaningful paths, we have replaced the current (few) citations with a

SPARQLeR: Extended Sparql for Semantic Association Discovery 155

list of randomly created citations (1 to 10 random citations to papers selected from all
of the previous years in the knowledge base, using a normal distribution). The total
number of randomly inserted citations in the full dataset reached almost 4.3 million.

The full DBLP dataset contains 790,635 publications with set publish year. For
scalability testing, we used a subset of publications published in or after 1981. It
contains 760,369 publications and has been subdivided it into 26 subsets, each one
including publications from an increasingly wider time range, starting with 2006 and
ending with 1981 (the smallest set included only 2006 publications and the largest one
included publications from years 1981-2006). The smallest test dataset contained
almost 300,000 instance statements, while the largest one had over 6.6M instance
statements. Fig. 4 presents numbers of publications in full DBLP (starting from year
1936) and sizes of used test datasets in statements.

Number of publications in DBLP since 1936 Number of Instance Statements in generated DBLP files
as of September 2006
,, 800 ¢ P) / 7,
©
2 700 e e S g
- o) = 3
E 5 600 / _— g 3
8 e / / ° 5
S F 500 7 . g
c Q
S 400 7 i 2
8 3 @
S 300
3 I / g
2w — 7 -
100 —— / 1 E
0 P T T
3338888656888 83 § % 8888833333388 3
FFFFFFFFFFFFF LRI 22222222 2
Years Publication year (data increasingly from 2006)

Fig. 4. Number of publications in DBLP from year 1936 and sizes of used test datasets

5.2 Functionality Test in the Biomedical Domain

We have tested the functionality of SPARLQeR on a wide selection of path queries,
executed against a number of RDF bases. Due to the space limitations here, we will

Dalichal
H(VWPP) @ Glucose @ Mannose I GIcNAC

Pathway END

Fig. 5. N-Glycan biosynthesis pathway with query start and end points (courtesy of Dr. Alison
Vandersall-Nairn, University of Georgia)

156 K.J. Kochut and M. Janik

only discuss a particularly representative query in the biochemistry domain, retrieving
a major part of the well known N-Glycan biosynthesis pathway [12]. The pathway is
shown in Fig. 5 on the next page, where each arrow represents one reaction. The
pathway is represented in GlycO, with the reactions represented as illustrated by the
RDF graph in Fig 1.

We chose this pathway for its high regularity and a significant length. It enabled us
to test if specifying paths using path expressions would help to find long, semantically
relevant paths within an acceptable time. For this test we used the GlycO ontology
and the SPARQLeR query used is presented below.

SELECT list(%path) WHERE {
glyco:dolichol_phosphate %path glyco:glyco_peptide_G00009
$path rdfs:member enzyo:R05969
FILTER (length(%path) <= 30 &&
regex (%path, " ((-glyco:has_acceptor_substrate|
-glyco:has_reactant) glyco:has_product)*")) }

This query located a pathway of length 30, consisting of 15 reactions. It starts with
dolichol phosphate, goes through the reaction R05969 (one of two possible at this
step) and ends at glyco peptide GO0009. Despite of the significant length, the result
was retuned almost instantly, due to the high selectivity of path expressions. This
proof of concept test demonstrated usefulness of the proposed SPARQL extension.

5.3 Scalability Tests on Modified DBLP Datasets

For the scalability tests, we randomly chose 14 papers published in 2006 and executed
single-source queries to find all paths leading to papers they cited, using the relation
cites_publication. A sample SPARQLEeR query in presented below:

PREFIX opus: <http://lsdis.cs.uga.edu/projects/semdis/opus#>
SELECT ?end_publication WHERE {
<http://dblp.uni-trier.de/rec/bibtex/journals/ai/Huber06>
%path ?end_publication
FILTER (length(%path)<=26 &&
regex (%path, " (opus:cites_publication)*")) }

The queries were performed on increasingly larger datasets, starting with articles
published only in 2006 and ending with articles published during 1981-2006. Each
query was executed 4 times against each dataset. The plots in Fig. 6 on the next page
present the execution time for all queries for each dataset and the number of located
paths plotted on a logarithmic scale.

In the performed tests, the number of paths increased exponentially as the
publications from the previous years were added. For the largest dataset, each query
returned approximately 660,000 on average. The execution time also followed the
exponential growth, but even for the longest query did not exceed 7 seconds.

Additionally, we performed tests for finding semantic associations between two
given entities. We identified 4 early publications that were reachable by a relatively
large number of paths from all previously chosen 14 starting publications. These 4

SPARQLeR: Extended Sparql for Semantic Association Discovery 157

Execution time of single source queries

Number of found paths by single source queries
7 + 1000000
6 1
/ T 100000
5 - %
T 10000 &
23 1000 &
= 3
2 100 2
©
o
1 N 10
0 + et ooy TS 1
2006 2001 1996 1991 1986 1981 1 + Average |

2006 2001 1996 1991 1986 1981
DBLP dataset for given year DBLP dataset for given year

Fig. 6. Query execution times and number of found paths for single-source path queries

entities become endpoints for path queries between two resources. A sample
SPARQLeR query is presented below:

SELECT list (%path) WHERE {

<http://dblp.uni-trier.de/rec/bibtex/journals/ai/Huber06>
$path

<http://dblp.uni-trier.de/rec/bibtex/conf/programm/BarbutiM80>
FILTER (length(%path)<=26 &&

regex (%path, " (opus:cites_publication)*")) }

The queries were performed on increasingly larger datasets, while the length limit
was increasing from 1 to 26, according to number of covered years in the datasets. For
each of the 14 start entities we ran the path query to the 4 previously selected publications
and averaged the results. The plots in Fig. 7 present the execution time and numbers of
located paths for 14 start entities (each queried with 4 endpoints) for each dataset.

Execution time of two endpoints path queries Number of found paths by two enpoint queries

25 120
20 + 100
> 1 80
315] 2
D
Z) i 3
© g0 O
E1o | B
i 40
5 !
M”? T
0 i ~ ' ! B NS o

2006 2001 1996 1991 1986 1981 2006 2001 1996 1991 1986 1981

DBLP dataset for given year DBLP dataset for given year + Average

Fig. 7. Query execution times and number of found paths for path queries with set endpoints

In these tests, due to specificity of the dataset, although the number of results is a
small fraction of previous ones, the search space became significantly larger than for
the single-source queries. Nevertheless, the execution time did not exceed 25 seconds,
which we think is a reasonable result for searching paths of length up to 26 hops. For
shorter paths, the execution time drops drastically to below 1 second. In both cases,

158 K.J. Kochut and M. Janik

such results for long queries can only mean that the given path expression was highly
selective. It also proves the usability of the proposed SPARQL extension.

Of course, the path problem remains exponential and our solution does not change
this fact. However, the results of our scalability experiments proved that in some
practical cases, path queries can be solved within a reasonable amount of time, even
for relatively long paths. This is possible with the use of path expressions which are
highly selective with respect to a given dataset.

6 Conclusions and Future Work

We have presented SPARQLeR, a novel extension of SPARQL designed for finding
semantic associations in RDF bases, and described its working implementation.
SPARQLeR’s path patterns have been seamlessly incorporated within SPARQL’s
graph patterns and allow for capturing both structural and semantic requirements of
semantic association queries. Our experiments with path pattern queries have
demonstrated the expressive power of SPARQLeR, effectiveness of its implementa-
tion, as well as its practical value in the presented examples.

Our future plans involve the optimization of regular path queries and incorporation
of regular context into SPARQLeR. Despite the presented good timing results, we
think that the optimization of path queries is very important for the practical use of the
proposed language. This line of research involves not only optimization of simple
queries, but of complex expressions and queries spanning multiple paths, as well.

We plan to base the notion of a context on our path patterns inducing RDF sub-
graphs that will allow us to semantically specify a sub-graph of interest within an
RDF description base. Consequently, this would support the idea that the same query
executed in different contexts should return different results.

References

1. Aleman-Meza, B., Burns, P., Eavenson, M., Palaniswami, D. and Sheth, A., An Ontological
Approach to the Document Access Problem of Insider Threat. in IEEE International
Conference on Intelligence and Security Informatics (ISI-2005), (Atlanta, Georgia, 2005).

2. Alkhateeb, F., Baget, J.-F. and Euzenat, J. Complex path queries for RDF Poster paper in
4th International Semantic Web Converence (ISWC2005), Galway, Ireland, 2005.

3. Anyanwu, K. and Sheth, A., r-Queries: Enabling Querying for Semantic Associations on the
Semantic Web. in 12" International World Wide Web Conf., (Budapest, Hungary, 2003).

4. Beeri, C., Kanellakis, P., Bancilhon, F. and Ramakrishnan, R., Bounds on the propagation
of selection into logic programs. in 6th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, (San Diego, California, United States, 1987), 214 - 226.

5. Broekstra, J. and Kampman, A. SeRQL: A Second Generation RDF Query Language
SWAD-Europe Workshop on Semantic Web Storage and Retrieval, Amsterdam,
Netherlands, 2003.

6. Buchsbaum, A.L., Kanellakis, P.C. and Vitter, J.S., A data structure for arc insertion and
regular path finding. in Ist annual ACM-SIAM symposium on Discrete algorithms, (San
Francisco, California, United States, 1990), 22-31.

7. Calvanese, D., Giacomo, G.D., Lenzerini, M. and Vardi, M.Y., Containment of
Conjunctive Regular Path Queries with Inverse. in 7th International Conference on the
Principles of Knowledge Representation and Reasoning (KR 2000), (2000), 176-185.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.
25.

26.

217.

SPARQLeR: Extended Sparql for Semantic Association Discovery 159

Consens, M. and Mendelzon, A.O., Graphlog: a visual formalism for real life recursion. in
ACM Symposium On Principles of Database Systems, (1990), 404-416.

Cruz, L.F., Mendelzon, A.O. and Wood, P.T., G+: Recursive queries without recursion. in
2nd International Conference on Expert Database Systems, (1988), 355-368.

Cruz, LF., Mendelzon, A.O. and Wood, P.T., A graphical query language supporting
recursion. in ACM SIGMOD International Conference on Management of Data, (San
Francisco, California, United States, 1987), ACM Press, 323-330.

Hassell, J., Aleman-Meza, B. and Arpinar, I.B. Ontology-Driven Automatic Entity
Disambiguation in Unstructured Text 5th International Semantic Web Conference (ISWC-
2006), Athens, GA, 2006.

Helenius, A. and Aebi, M. Roles of N-Linked Glycans in the Endoplasmic Reticulum.
Annual Review of Biochemistry, 2004, 73. 1019-1049.

Janik, M. and Kochut, K., BRAHMS: A WorkBench RDF Store And High Performance
Memory System for Semantic Association Discovery. in 4th International Semantic Web
Conference, (Galway, Ireland, 2005).

Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D. and Scholl, M., RQL:
A Declarative Query Language for RDF. in 11" International World Wide Web
Conference, (Honolulu, Hawaii, USA, 2002), ACM.

Mendelzon, A.O. and Wood, P.T., Finding Regular Simple Paths In Graph Databases. in
15th Conference on Very Large Databases, (Amsterdam, The Netherlands, 1989), Morgan
Kaufman pubs. (Los Altos CA).

Mukherjea, S. and Bamba, B., BioPatentMiner: An Information Retrieval System for
Biomedical Patents. in 13" International Conference on Very Large Data Bases (VLDB
2004), (Toronto, Canada, 2004), Morgan Kaufmann.

NLM. PubMed The National Library of Medicine, Bethesda MD.

Ogbuji, U. RDF Query using Versa Thinking XML: Basic XML and RDF techniques for
knowledge management, Part 6, 10 April 2002.

Ramakrishnan, C., Kochut, K. and Sheth, A., A Framework for Schema-Driven
Relationship Discovery from Unstructured text. in 5th International Semantic Web
Conference (ISWC 2006), (Athens, Georgia, USA, 2006).

Ramakrishnan, C., Milnor, W.H., Perry, M. and Sheth, A.P. Discovering Informative
Connection Subgraphs in Multi-relational Graphs. SIGKDD Explorations, 7 (2). 56-63.
Seaborne, A. RDQL - A Query Language for RDF, 2004.

Sheth, A., From Semantic Search & Integration to Analytics. in Dagstuhl Seminar
Proceedings 04391, (Dagstuhl, Germany, 2005).

Sintek, M. and Decker, S. TRIPLE - An RDF Query, Inference, and Transformation
Language Deductive Databases and Knowledge Management, Tokyo, Japan, 2001.
SPARQL. Query Language for RDF. Prud'hommeaux, E. and Seaborne, A. eds., 2005.
Swanson, R.D. Migraine and Magnesium: Eleven Neglected Connections. Perspectives in
Biology and Medicine, 31 (4). 526-557.

Thomas, C.J., Sheth, A.P. and York, W.S., Modular Ontology Design Using Canonical
Building Blocks in the Biochemistry Domain. in International Conference on Formal
Ontology in Information Systems (FOIS), (November 2006), IOS Press.

Yannakakis, M., Graph-theoretic methods in database theory. in 9th ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, (Nashville, Tennessee,
United States, 1990), ACM Press, 230-242.

Simple Algorithms for Predicate Suggestions
Using Similarity and Co-occurrence

Eyal Oren, Sebastian Gerke, and Stefan Decker

Digital Enterprise Research Institute
National University of Ireland, Galway
Galway, Ireland
firstname.lastname@deri.org

Abstract. When creating Semantic Web data, users have to make a
critical choice for a vocabulary: only through shared vocabularies can
meaning be established. A centralised policy prevents terminology diver-
gence but would restrict users needlessly. As seen in collaborative tagging
environments, suggestion mechanisms help terminology convergence wi-
thout forcing users. We introduce two domain-independent algorithms
for recommending predicates (RDF statements) about resources, based
on statistical dataset analysis. The first algorithm is based on similarity
between resources, the second one is based on co-occurrence of predicates.
Experimental evaluation shows very promising results: a high precision
with relatively high recall in linear runtime performance.

1 Introduction

The Semantic Web is decentralised in terms of autonomy, allowing everyone to
make any statement, but centralised in terms of vocabulary: others can only
understand statements that use familiar terminology. Given this situation, we
consider the following problem: how to ensure that individuals, free to use arbi-
trary terminology, converge towards shared vocabularies?

As a particular use case we consider authoring in Semantic Wikis @, ,]
These enhanced Wikis allow users to describe information both in free text and
through semantic descriptions. Allowing users to make arbitrary statements is
important, since it ensures domain-independence of the Wiki.

Without further considerations, the authoring freedom in Semantic Wikis
would result in statements with different vocabularies, defying the purpose of
the Semantic Wiki. A terminology policy could be enforced but that would highly
restrict users. A suggestion mechanism, recommending terminology based on the
dataset, would help converge terminology without forcing users, as demonstrated
in collaborative tagging ﬂQ,]

In collaborative data entry, participants construct a dataset by continuously
and independently adding further statements to existing data. Each participant
faces the question: when creating Semantic Web data, which vocabulary to use?
To ensure convergence, the answer is: use the most relevant and frequently oc-
curring vocabulary.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 160 2007.
© Springer-Verlag Berlin Heidelberg 2007

Simple Algorithms for Predicate Suggestions 161

Finding the most frequent vocabulary is straightforward: one can simply count
the occurrences. We therefore focus on finding the relevant vocabulary. Datasets
typically contain heterogeneous data. Finding the vocabulary that is relevant for
one resource therefore means: finding similar resources and use their vocabulary.

Problem statement. Our problem is thus to suggest relevant and frequent termi-
nology for extending a resource in an RDF dataset based on similarity with other
resources and our question is how well simple algorithms solve this problem?

We present two algorithms that address this problem, based on the follo-
wing hypotheses that simple algorithms do well enough: (a) computing resource
similarity based only on outgoing arcs yields good results; (b) approximating
resource similarity through pairwise predicate co-occurrence yields good results.

We will present the two algorithms in sections P and Bl and their imple-
mentation in section @l We verify our hypotheses and the performance of these
algorithms empirically in section Bl We conclude with a discussion of related
work in section

2 Classification-Based Algorithm

The task of the suggestion algorithm is to find, for a certain resource in focus,
predicates to further describe that resource. The general idea of the classification-
based algorithm is to divide the knowledge base in two groups, those similar
to the current resource and those not similar, and to suggest the frequently
occurring predicates from the similar group.

For example, figure [l shows a simple knowledge base with three resources:
the person “John”, with his name, some friends, and homepage, the book “The
Pelican Brief”, with its title and author, and the person “Stefan”, with his
name. We want to suggest relevant predicates for “Stefan” based only on the
given graph.

The algorithm consists of two steps, as shown in listing [Tl In the first step,
we divide all existing resources in the knowledge base into two sets, the similar

Q ' "John Grisham" |
[
homepage @ author
knows

pelican
brief
knows
name A, title name
v v
| "The Pelican Brief" | I "Stefan Decker"

Fig. 1. Example knowledge base

162 E. Oren, S. Gerke, and S. Decker

Listing 1.1. Classification-based algorithm

def suggest(r, resources)
select similar resources
similar resources = resources.select { |r'| similarity(r,r') > threshold }

then collect all predicates from similar resources
candidates = similar resources.collect { |r'| r'.predicates }

then rank all candidate predicates
return rank(candidates)

end
L J

and unsimilar ones. In the second step, we look at all predicates from the similar
group and rank them using a ranking function. In the remainder of this section,
we explore each step in more detail: how to define similarity between resources,
and how to rank the selected predicates.

2.1 Preliminaries

First we introduce some necessary definitions:

Definition 1 (RDF Graph). An RDF graph G is defined as G = (V, E, L,I)
where V' is the set of vertices (subjects and objects), E is the set of edges (pre-
dicates), L is the set of labels, | : E — L is the labelling function for predicates.
The projection source : E — V and target : E — V return the source and target
nodes of a given edge.

Definition 2 (Outgoing edges). The set of outgoing edges E,(v) of a vertex
is defined as: E,(v) = {e € E|source(e) = v} C E. The bag of labels L(E) of a
set of edges is defined as L(E) = [I(e)|e € E]. The bag of labels L,(v) of outgoing
edges of a vertex v is defined as Lo(v) = L(E,(v)). The set of outgoing edges of
v whose label is | is defined as E,(v,1) = {e € E,(v)|l(e) = 1}.

2.2 Classification Step

In the first step, we classify resources into those similar to the current one, and
those not similar. The main requirement for the similarity metric is domain-
independence: the algorithm should not rely on domain-specific knowledge. We
use two well-known, widely used generic similarity metrics E, E] the containment
of one resource in another and their mutual resemblance.

Since we are interested in suggesting new predicates, we use these metrics
to compare existing predicates of resources. Containment thus defines resource
similarity as the amount of predicates of the first resource that are also con-
tained in the second resource, as shown in equation (II). Resemblance measures
how many of all predicates used in at least one of the two resources are used
in both resources, as shown in equation (2]). For example, in figure[I], the resource

Simple Algorithms for Predicate Suggestions 163

“Stefan” uses the predicate “name” and the resource “John” uses “name”,
“knows” and “homepage”, resulting in a containment value (of “Stefan” in
“John”) of 1 and a resemblance of ;’

[O(v) NO(')]

SC(U ,”U) = |O(1})‘ (1)
o (o' — 001 NOW)

= 10() UOW)| @

Since predicates can have multiple values, when computing this containment
or resemblance metrics we need to decide whether to count multiple predicate
occurrences once or several times.

In the example, the resource “John” uses the “knows” predicate twice with
different values; we can either count these two occurrences only once, thus using
O(v) as a set, as shown in equation (B)). The resemblance between “Stefan” and
“John” would then be ;’ But we could also count each occurrences separately,
using O(v) as a bag as shown in equation (@), yielding a resemblance of }1.

Os(v) = {l(e)e € Eo(v)} 3)

Op(v) = [l(e)|e € E,(v)] (4)

If we generalise from these two choices, the result of the first phase is the set
of similar resources Vi (v), as defined in equation (), where s; is some similarity
threshold and s(v,v’) is either resemblance or containment measure. For exam-
ple, with a threshold of 0.9 the set of similar resources to “Stefan” would consist
only of the resource “John”.

Vi(v) ={v' €V :s(v,0) > s} (5)

2.3 Ranking Step

After classifying all resources into two groups we collect all predicates from the
set of similar resources Vi(v) and use them as candidates for the suggestion.
Since there might be many candidates, we need to rank these candidates and
suggest the more useful predicates first. The most straightforward ranking func-
tion is based on the occurrence frequency of these predicates in the set of similar
resources.

In this example, since only the resource “John” is similar to “Stefan”, the
candidates would be “knows” and “homepage”, ignoring the predicates that
“Stefan” uses already. Out of these two candidates, “knows” would be ranked
first since it appears most frequently.

But again, since predicates in RDF can be multi-valued, we can define the
(relative) occurrence frequency of a label [in the set of similar resources Vi (v) in
two ways. We can either count each predicate occurrence, as shown in equation
([@). Or we can count each occurrence only once, or stated differently, count the

164 E. Oren, S. Gerke, and S. Decker

set X of resources that use [in their outgoing edges and divide them by the total
number of resources, as shown in equations (). In the latter case, “knows” and
“homepage” would be ranked the same since they are both used by one resource.

ZU’GVS('U) [Eo(v',)] - w(v,v")

T‘U(e) = ff(v,l) = ZU/GVS('U) |Eo(’0/>| . w(’v,v/)

(6)

__ pr _ Zv’ X’LU(U,U/)
ro(e) = fl(v,1) = Zv’e\i(v) w(v, V')

X ={ve V)|l €O(v)} (7)

In both methods of counting, we could allow for a weighting factor w(v,v").
The reason for this is that even in the set of similar resources Vi(v), some are
more similar than other: in ranking the predicates, it would be natural to “pro-
mote” the predicates from similar resources over those from less similar resources.
If we choose to prefer predicates from resources more similar to v, the weight
factor could be given by the resource similarity, shown in equation (). A simp-
ler approach would not to weigh the predicates, as shown in equation (@). In
our example, these methods would yield the same ranking since both candidates
originate from the same resource “John”.

ws(v,v") = s(v,v") (8)
N1 o v eVi(v)
we(v,v') = {0 C e V"(v) 9)

2.4 Qualitative Results

To investigate our hypothesis, we have evaluated the performance and quality
of the algorithm using various different datasets. We are interested in the qua-
lity of the basic algorithm (using containment, counting multi-valued predicates
only once, and without weighting) and in whether the various parameters, while
reducing simplicity, improve the basic algorithm. We present and discuss these
results in section

2.5 Performance

Regarding the runtime performance of the algorithm, we can analyse the des-
cription in listing [Tl We see that, ignoring data access, the overall algorithm
should run linearly to the number of resources: The first phase, classifying the si-
milar resources, runs linear to the number of resources r and the average number
of predicates per resource p: comparing the similarity of each resource against
the one resource in focus by comparing all their predicates. The second phase,
ranking, is linear in the number of candidates ¢. The complete algorithm would

Simple Algorithms for Predicate Suggestions 165

therefore run in O(r - p 4 ¢), which is linear in r, since p will be constant on
average and c is presumably smaller than 7.

However, in practice we cannot ignore lookup performance on large datasets.
To compute similarity, we need to lookup all predicates of each resource. De-
pending on the lookup performance of the used datastore, this could cause the
whole algorithm to run logarithmic or even quadratic to the size of the dataset,
rendering the algorithm impractical for reasonably large datasets.

A simple solution would be to materialise the similarity between resources in
memory, obliterating the need for data lookup during suggestion time. Direct
materialisation however has two problems: the required memory space would be
quadratic in the size of the dataset, and updating one resource (prone to happen
often in a data entry scenario) would require recalculation of all similarity values
with respect to this resource.

The next algorithm remedies exactly this problem and allows materialisation
without large memory requirements.

3 Co-occurrence-Based Algorithm

The general idea of the co-occurrence-based algorithm is to approximate resource
similarity through the co-occurrence of predicates. Since usually datasets con-
tain far less predicates than resources, predicate co-occurrence requires far less
space than resource similarity. We then further reduce the required space by not
considering the complete power set over all predicates, but instead approximate
full co-occurrence through binary co-occurrences. We thus consider only pair-
wise occurrences of predicates, suggest predicate candidates for each pairwise
occurrence, and combine these candidates through intersection.

We therefore make two assumptions on the probabilistic model of the dataset:
(1) that predicate co-occurrence correlates with resource similarity, and (2) that
considering binary predicate co-occurrences to be independent events (which
they are not) yields acceptable predictions. The latter allows us to pairwise
consider binary co-occurrences instead of all permutations.

The algorithm is based on association rule mining ﬂ, ﬂ] used for recom-
mendations in e.g. online stores: when buying one book, other books that are
often bought together with this book are recommended. In our case, books are
replaced by predicates and shopping transactions by resources.

3.1 Pre-computation Step

To better show the details of the algorithm, we extend our earlier example,
adding the person “Sebastian” and some more statements about John, as shown
in figurel Again, we want to suggest further predicates to the resource “Stefan”.

In the first step we calculate usage statistics of predicates in the knowledge
base. We count for each predicate, the resources that use this predicate, defi-
ned in equation (I0). Secondly, we count for each pair of predicates, the number

166 E. Oren, S. Gerke, and S. Decker

o FF S g

author
type homepage /@ typ!
knows

g homepage homepage
S = &
brief sebastian
knows
firstname @ type
name

v name name
¢ "John" i ‘
Book
"John Doe" | "Sebastian Gerke" | l "Stefan Decker" |

Fig. 2. Extended Knowledge Base

[

of times they co-occur together in the same resource, as defined in equation (IT]).
The particular statistics for the example in figure [2] are given in table 2al and
table [

oce(p) = [{v € VIp € Lo(v)} | (10)

coocc(py,p2) = |{v € Vip1 € Lo(v) Ap2 € Lo(v)} | (11)

Table 1. Predicate occurrence and co-occurrence frequency

2 2
o Z g =8
LE S g 2=
predicate freq. 2EE 28 &R
type 3 type 321 2 11
name 2 name 221210
knows 1 knows 111110
homepage 2 homepage 2 2 1 2 1 0
firstname 1 firsthname 1 1 1 1 1 0
author 1 author 1000 00O
(a) occurrence (b) co-occurrence

3.2 Suggestion Step

In the second step, we compute suggestions for a given resource. We consider
all predicates in the knowledge base that occur more than once with each of the
predicates from “Stefan” as suggestion candidates, as defined in equation (I2I).
In our example, the predicates “type”, “knows”, and “firstname” are candidates
for the resource “Stefan”.

cooccurring(pr) = {pz : cooce(py,p2) > 1} (12)

Simple Algorithms for Predicate Suggestions 167

For each candidate we calculate our confidence in suggesting it. As shown in
equation ([I3]), the confidence for suggesting a predicate p for a selected resource
r, is formed by combining the confidence for p from each of r’s predicates p;. In
the earlier example, the total confidence for suggesting “type” is computed by
combining con fidence(name = type) and con fidence(homepage = type).

confidence(p,r) = H con fidence(p; = p) (13)

piEcooccurring(p)NLo(r)

Each constituent is computed as shown in equation (I4l): the confidence for
suggesting any po based on the existence of a p; is given as the co-occurrence
frequency of p; and ps relative to the occurrence frequency of p; by itself. In
our example, po, the candidate, would be “type”, “knows”, or “firstname”, and
p1, the existing predicates, would be “name” and “homepage”. Intuitively, we
consider a relatively frequent co-occurrence as evidence for predicting ps.

cooce(pr, p2)
oce(pr)

In our example, as shown in table Bl “type” co-occurs with both predicates
of “Stefan” 100% of the time, whereas the two other candidates (“knows” and
“firstname”) co-occur only 50% of the time with each of the predicates of “Ste-
fan”. We rank each candidate by the combined (unweighted) confidence: in this
example, “type” will be ranked first, with a combined confidence of 100%, and
the other two second, with a combined confidence of 25%.

con fidence(py = p2) = (14)

Table 2. Relative co-occurrence ratios for Stefan

candidate name homepage confidence

type 1.0 1.0 1.0
knows 0.5 0.5 0.25
firstname 0.5 0.5 0.25

4 Implementation

We have implemented both algorithms in Ruby. We use the ActiveRDF]
datastore abstraction layer which allows us to run this algorithm on various RDF
datastores. The implementations are distributed as part of the ActiveRDF. We
have also implemented the co-occurrence algorithm as a wrapper for an RDF
datastore, in particular for the rdflitd] RDF store.

Since rdflite uses a relational database with one table, triple(s,p,0), we
have implemented the (co)occurrence statistics as views on this database, com-
parable to ﬂ] Depending on the relational database, these views can be mate-
rialised or computed for each suggestion. The views, shown in listing [L2] are a
straightforward translation of the equations (I0) and (1)) given before.

!http://wiki.activerdf.org/rdflite/

http://wiki.activerdf.org/rdflite/

168 E. Oren, S. Gerke, and S. Decker

Listing 1.2. Co-occurrrence as database views

create view occurrence as
select p, count(distinct s) as count
from triple
group by p;

create view cooccurrence as
select t0.p as pl, tl.p as p2, count(distinct t0.s) as count
from triple as t0 join triple as t1 on t0.s = tl.s and t0.p !=tl.p
group by t0.p, tl.p

4.1 Example Suggestions

Figure Bl shows an example of our suggestion system, for a randomly chosen
resource from a dataset about the Mindswap research group. The resource (a
blank node representing Dan Connolly) and its predicates, such as name and
email address, are listed on the left-hand side. Our suggestions, based on the
other resources in this dataset, are listed in ranked order on the right-hand
side.

. foaf:workInfoHomepage

. foaf:homepage

. owlweb:personalHomepage
. owlweb:bachelorsFrom
owlweb:mastersFrom

. owlweb:homepage

. foafinick

. owlweb:phdFrom
“ J

:#1 foaf:name Dan Connolly .

:#1 owlweb:name Dan Connolly .

:#1 foaf:mbox mailto:connolly@w3.org .

:#1 owlweb:email mailto:connolly@w3.org .

:#1 owlweb:homepage
http://owl.mindswap.org/“danC/ .

:#1 rdf:itype owlweb:FamilyFriend .

Fig. 3. Suggested predicates (right) for example resource (left)

5 Evaluation

A predicate suggestion system is a kind of recommender system, using the opi-
nions of a community to help individuals decide between a potentially overwhel-
ming set of choices ﬂa, @] In our case, this “potentially overwhelming set of
choices” is formed by the terminology (ontologies or schemas) available.

Evaluations of recommender systems can be divided into two categories ﬂa,]:
when regarding recommendations as an information retrieval problem (selecting
the interesting predicates from all possible predicates), evaluation is usually per-
formed off-line, focused on accuracy, and measured using precision and recall.
When, on the other hand, recommendation is approached as a machine learning
regression problem (learning and predicting user’s annotation preferences), eva-
luation is commonly performed online, focused on utility and usefulness, and
measured using a training set and a test set.

2 http://www.cs.umd.edu/~hendler/2003/MindPeople4-30. rdf

http://www.cs.umd.edu/~hendler/2003/MindPeople4-30.rdf

Simple Algorithms for Predicate Suggestions 169

5.1 Evaluation Approach

Our evaluation combines both the information-retrieval and the machine-learning
approach: we show both precision and recall ratings and evaluate our approach
using training/testing datasets through a commonly applied technique of evalua-
ting prediction of deleted values from existing data ﬂa]

Because the distribution of data can alter the performance of the algorithms
quite severely, we evaluated on five existing RDF datasets: a webcrawll of ar-
bitrary RDF, the Mindswap research groulﬂ, a FOAF datasetﬁ, a terror da-
tasetd augmented with terrorist data, and the ontoworld.org Semantic Wikd].
These datasets have differing characteristics, as shown in Table [3 both large
and small, with homogeneous and heterogeneous data, and both highly structu-
red and highly unstructured distribution.

Table 3. Evaluation datasets

dataset classes resources triples
webcrawl 2 112 6766
mindpeople 14 273 1081
foaf 4 3123 10020
terror 25 1553 16632
ontoworld 42 4467 28593

Our primary evaluation technique is prediction of deleted values: we pick a
random resource from the dataset as a candidate for which further predicates
should be suggested. We then randomly remove one ore more statements about
this candidate and analyse if and at which rank position the removed predica-
tes are re-suggested. Repeated over n random resources this yields the average
resuggestion rate (how often was the deleted predicate resuggested), the empty
suggestion rate (how often were no suggestions given), and the average rank of
the resuggested predicate. Since in practice not all suggestions can be displayed
or will be considered by the user, we also show how many of the predicates were
resuggested within the top-k of suggestions.

Secondly, we measure suggestion precision (how many suggestions are valid)
and recall (how many valid suggestions have we missed) based on the schema
definition: we define “valid” predicates as those predicates that, according to the
schema, fall within the domain of the selected candidate. For recall computation,
we consider only predicates that are actually used in the dataset; since the
algorithm considers only instance data, unused predicates are unattainable.

3Thttp://www.activerdf .org/webcrawl_10k.nt
4http://www.cs.umd.edu/~hendler/2003/MindPeople4-30.rdf
® http://rdfweb.org/2003/02/28/cum- crawler-output .rdf
Shttp://reliant.teknowledge.com/DAML/TerroristActs.owl
" http://ontoworld.org/RDF/

http://www.activerdf.org/webcrawl_10k.nt
http://www.cs.umd.edu/~hendler/2003/MindPeople4-30.rdf
http://rdfweb.org/2003/02/28/cwm-crawler-output.rdf
http://reliant.teknowledge.com/DAML/TerroristActs.owl
http://ontoworld.org/RDF/

170 E. Oren, S. Gerke, and S. Decker

Table 4. Results per dataset for classification-based algorithm

dataset resugg. empty rank top-5 top-10 top-20 prec. recall Fy
webcrawl 0.95 0.04 1.06 094 094 0.94 0.96 0.730.83
mindpeople 0.80 0.19 1.30 0.79 0.80 0.80 0.81 0.830.83

foaf 092 0.06 1.30 092 093 093 094 0.800.87
terror 0.98 0.02 1.10 097 097 0.98 0.98 0.910.95
ontoworld 085 0.13 1.39 084 084 0.85 0.87 0.720.79
average 0.90 0.08 1.22 089 090 0.90 0.92 0.80 0.85

Table 5. Results per dataset for co-occurrence-based algorithm

dataset resugg. empty rank top-5 top-10 top-20 prec. recall Fy
webcrawl 1.00 0.00 1.18 0.99 0.99 1.00 1.00 0.74 0.85
mindpeople 1.00 0.00 1.23 1.00 1.00 1.00 1.00 0.76 0.87

foaf 1.00 0.00 1.51 0.95 1.00 1.00 1.00 0.59 0.74

terror 1.00 0.00 1.15 0.98 1.00 1.00 1.00 0.950.97

ontoworld 1.00 0.00 1.14 0.98 1.00 1.00 1.00 0.78 0.88

average 1.00 0.00 1.24 0.98 1.00 1.00 1.00 0.77 0.87
5.2 Results

All tests were run on an AMD Opteron 1993MHz machine with 2GB of RAM.
The similarity algorithm was run 300 times over five random samples (n=100,
n=150, n=200, n=250, n=300) since its performance prevented us from using the
full datasets; the co-occurrence algorithm was run 20.000 times over the complete
datasets. In each run, we randomly selected a resource and deleted between one
and ten of its existing predicates. We then let the algorithms suggest additional
predicates and compare these to the randomly deleted predicates.

We first show the results of the two primary algorithms for each dataset:
table @l shows the results of the classification-based algorithm, table [l the results
of the co-occurrence-based algorithm. The tables show, for each dataset and for
all datasets combined, the resuggestion rate, empty suggestion rate and average
rank. It also shows the resuggestion rate when only considering the top-k results,
and the precision, recall, and the Fj-measure for each algorithm.

We can see that in general the co-occurrence performs better than any of
the classification-based variants, especially when looking at the top-5 results.
We can see that the co-occurrence algorithm has very high precision (100%
on average). The co-occurrence algorithm has a slightly lower recall than the
classification-based ones, due to the intersection of candidates which results in
only high-confidence candidates. The Fj-measure (harmonic mean of precision
and recall) shows that co-occurrence has the highest quality over all datasets.

Table B shows (again) the results for the primary algorithms and then lists
the results for each classification variant, averaged over all five datasets. We see
that using resemblance instead of containment yields very low results, which is

Simple Algorithms for Predicate Suggestions 171

Table 6. Results of algorithm variants (averaged over all datasets)

algorithm

co-occurrence 1.00
similarity (default) 0.90
resemblance (s;) 0.10

similarity weigh (ws) 0.90
count predicates (fF) 0.91
threshold (s;=0.8) 0.93

resugg. empty rank

0.00
0.08
0.86
0.09
0.08
0.06

1.24 0.98
1.22 0.89
1.01 0.11
1.24 0.89
1.48 0.89
1.29 091

1.00
0.90
0.11
0.90
0.90
0.92

1.00
0.90
0.11
0.90
0.91
0.93

1.00
0.92
0.14
0.91
0.92
0.94

Table 7. Runtime performance with n resources

top-5 top-10 top-20 prec. recall Fy

0.77 0.87
0.80 0.85
0.99 0.24
0.80 0.85
0.80 0.85
0.79 0.86

algorithm n=100 n=150 n=200 n=250 n=300 n=1555 n=3123 n= 446’7
sim. (rdflite) 1.64s 4.02s 8.51s 15.10s 30.22s
sim. (Sesame) 0.71s 1.40s 2.74s 4.33s 7.88s - - -
co-occ. (view) 0.63s 0.0.78 1.46s 1.00s 0.93s 7.72s 9.65s 10.10s
co-occ. (constr.) 0.21s 0.27s 0.46s 0.47s 0.70s 2.73s 4.71s 6.34s
co-occ. (query) 0.01s 0.01s 0.01s 0.01s 0.01s 0.01 0.01 0.01
35 T T T T T T T T
cooc. con_str. —t
COO0C View —x—
similarity (rdflite) ———
30 L similarity (Sesame) —&— R | v |
\
25 | {1 b .
|
20 1 .

time (s)

15

10

resources

Fig. 4. Runtime performance

2000

3000

resources

4000 5000

most probably due to a too high threshold value. The other variations do not

seem to affect the results much.

Finally, Table [[shows the performance times for the algorithms (only one
classification variant is shown since runtime is similar for all). Figure @] shows

172 E. Oren, S. Gerke, and S. Decker

two graphs for these results; the left graph is zoomed for up-to 300 resources,
the right graph shows the full results.

Timing for the co-occurrence algorithm is divided in matrix construction and
query answering. We evaluated the classification on two different datastores,
rdflite and Sesameﬁ, to evaluate scaling independent of a particular datastore
implementation. We can see that the classification algorithm scales quadratic,
which is due to the linear lookup times of the used datastores, although the
Sesame datastore performs much better than rdflite.

Both variants of the co-occurrence algorithm perform well and scale linearly.
The materialised co-occurrence implementation performs better than the view-
based, which is due to the fact that the sqlite database does not support view
materialisation; as mentioned earlier, both approaches have their advantages.

The classification algorithm was too slow to include tests with more than 300
resources but that was again due to data lookups on the underlying datastore: the
algorithms themselves scale linearly when ignoring data-access. The materialised
co-occurrence implementation shows that we can circumvent data access, leading
to very good performance, without requiring large memory space.

6 Related Work

Annotation tools such as OntoMat M] support semi-automatic annotation of
documents; they suggest semantic annotation based on natural language ana-
lysis of the annotated resources, but do not take existing semantic descriptions
into account. Annotea B] supports collaborative annotations but annotations
are made manually without a suggestion mechanism. Semantic Wikis such as
Semper Wiki NEI] or Semantic MediaWiki @] allow arbitrary Semantic Web au-
thoring but do not guide users in selecting appropriate terminology.

Automatic schema mapping techniques [15] consider a similar problem (auto-
matically finding relations between elements of a schema) but typically operate
on class-level as opposed to instance level and use e.g. concept correlation to
unify schema elements ﬂﬂ] whereas we try to discover combined usage patterns
of predicates.

Our co-occurrence algorithm is based on association rule mining ﬂ] but our
techniques for memory conservation differ: Agrawal et al. @] focus on advanced
pruning techniques, whereas we approximate n-ary interdependencies using pair-
wise binary relations (resulting in a much simplified implementation). Further-
more, our technique allows online processing with incremental updates, whereas
their algorithms are iterative and need to run over the complete database.

7 Conclusion

We have discussed the problem of choosing vocabulary during Semantic Web
data entry; a crucial bottleneck, since only through shared vocabularies can

8 http://www.openrdf .org

http://www.openrdf.org

Simple Algorithms for Predicate Suggestions 173

meaning be established. We introduced two algorithms for suggesting possible
predicates based on statistical data analysis.

The first algorithm is based on a simple intuitive principle of resource classi-
fication: we suggest predicates from similar resources. We have discussed para-
metric variations that differ in the definition of similarity. We showed that the
quality is good (F7 : 85%) and that variations in similarity computation do not
lead to much better results.

The second algorithm approximates resource similarity through pairwise predi-
cate co-occurrence, treating predicate occurrences as independent events (which
they are not). This simplifies computation and allows for memory-efficient mate-
rialisation, while still resulting in high-quality suggestions (F; : 87%). Runtime
performance of the co-occurrence algorithm is good, scales linearly with the size
of the dataset, and is constant in the presence of materialisation.

We conclude that suggesting predicates based on resource similarity works well
and that, for this task, similarity based on outgoing arcs seems a “good-enough”
metric. Seeing that co-occurrence suggestion quality is even better than in the
classification algorithm, our second hypothesis on similarity approximation using
predicate co-occurrence seems to hold as well.

Acknowledgements. This material is based upon works supported by the Science
Foundation Ireland under Grants No. SF1/02/CE1/1131 and SFI/04/BR/CS0694.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets
of items in large databases. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 207-216. 1993.

[2] A.Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering
of the web. Computer Networks, 29(8-13):1157-1166, 1997.

[3] D. Dhyani, W. K. Ng, and S. S. Bhowmick. A survey of web metrics. ACM
Computer Surveys, 34(4):469-503, 2002.

[4] S. Handschuh. Creating Ontology-based Metadata by Annotation for the Semantic
Web. Ph.D. thesis, University of Karlsruhe, 2005.

[5] C. Hayes, P. Massa, P. Avesani, and P. Cunningham. An on-line evaluation fra-
mework for recommender systems. In Workshop on Personalization and Recom-
mendation in E-Commerce. 2002.

[6] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collabo-
rative filtering recommender systems. ACM Transactions on Information Systems,
22(1):5-53, 2004.

[7] M. Houtsma and A. Swami. Set-oriented data mining in relational databases.
Data and Knowledge Engineering, 17(3):245-262, 1995.

[8] J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick. Annotea: An open
RDF infrastructure for shared web annotations. In Proceedings of the International
World-Wide Web Conference, pp. 623—632. 2001.

[9] B. Lund, T. Hammond, M. Flack, and T. Hannay. A case study — Connotea.
D-Lib Magazine, 11(4), 2005.

174

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

E. Oren, S. Gerke, and S. Decker

C. Marlow, M. Naaman, D. Boyd, and M. Davis. HTO06, tagging paper, taxo-
nomy, Flickr, academic article, to read. In Proceedings of the ACM Conference on
HyperText and Hypermedia. 2006.

N. F. Noy and M. A. Musen. PROMPT: Algorithm and tool for automated
ontology merging and alignment. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), pp. 450-455. 2000.

E. Oren, J. G. Breslin, and S. Decker. How semantics make better wikis. In
Proceedings of the International World-Wide Web Conference. 2006.

E. Oren, R. Delbru, S. Gerke, A. Haller, et al. ActiveRDF: Object-oriented se-
mantic web programming. In Proceedings of the International World-Wide Web
Conference. 2007.

E. Oren, M. Vélkel, J. G. Breslin, and S. Decker. Semantic wikis for personal
knowledge management. In Proceedings of the International Conference on Data-
base and Expert Systems Applications (DEXA). 2006.

E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema
matching. The VLDB Journal, 10(4):334-350, 2001.

P. Resnick and H. R. Varian. Recommender systems. Communications of the
ACM, 40(3):56-58, 1997.

R. Srikant and R. Agrawal. Mining generalized association rules. In Proceedings
of the International Conference on Very Large Data Bases (VLDB), pp. 407-419.
1995.

M. Vélkel, M. Krotzsch, D. Vrandevic, H. Haller, et al. Semantic wikipedia. In
Proceedings of the International World-Wide Web Conference. 2006.

Learning Disjointness

Johanna Volker!, Denny Vrandeci¢!, York Sure!, and Andreas Hotho?

! Institute AIFB, University of Karlsruhe, Germany
2 University of Kassel, Germany
{voelker ,vrandecic, sure}@ai fb.uni-karlsruhe.de,
hotho@cs.uni-kassel.de

Abstract. An increasing number of applications benefits from light-weight on-
tologies, or to put it differently “a little semantics goes a long way”. However,
our experience indicates that more expressiveness can offer significant advan-
tages. Introducing disjointness axioms, for instance, greatly facilitates consis-
tency checking and the automatic evaluation of ontologies. In an extensive user
study we discovered that proper modeling of disjointness is a difficult and very
time-consuming task. We therefore developed an approach to automatically en-
rich learned or manually engineered ontologies with disjointness axioms. This
approach relies on several methods for obtaining syntactic and semantic evidence
from different sources which we believe to provide a solid base for learning dis-
jointness. After thoroughly evaluating the implementation of our approach we
think that in future ontology engineering environments the automatic discovery
of disjointness axioms may help to increase the richness, quality and usefulness
of any given ontology.

1 Introduction

An increasing number of applications benefits from light-weight ontologies, or, to put
it differently, “a little semantics goes a long way” (Jim Hendler). Our experience in
building ontology-based systems indicates, however, that adding more expressivity in a
controlled manner can reap further benefits. Introducing disjointness axioms, for exam-
ple, greatly facilitates consistency checking and the automatic evaluation of individuals
in a knowledge base with regards to a given ontology.

In description logics two classes are considered as disjoint iff their taxonomic over-
lap, i.e. the set of common individuals, must be empty. This does not include classes
with actual extensions that coincidentally do not have common individuals, for instance
Woman and US President, but only those where the common subset must be empty in
all possible worlds — like, for example, Woman and Car.

Disjointness allows for far more expressive and meaningful ontologies, as shown
exemplary in the following. An ontology language with the expressivity of RDFS does
not constrain the possible assertions in any way. Even after we set up an ontology defin-
ing terms like Book, Student and University, stating that John is both a Student and a
University is logically perfectly viable, and would not be recognized as an error by a
reasoner. Only if we define these classes as being disjoint, the reasoner will be able to
infer the error in the above ontology, guaranteeing that particular constraints are met by

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 175 2007.
(© Springer-Verlag Berlin Heidelberg 2007

176 J. Volker et al.

the knowledge base and a certain quality of facts is achieved — thus raising the quality
of the whole ontology-based system [[17].

Despite the obvious importance of stating disjointness among classes, many of to-
day’s ontologies do not contain any disjointness axioms. In fact, a survey of 1,275
ontologies [22]] recently found only 97 of them to include disjointness axioms. We can
only speculate about the reasons, but it is very likely that ontology engineers often for-
get to introduce disjointness axioms, simply because they are not aware of the fact that
classes which are not explicitly declared to be disjoint will be considered as overlap-
ping. Particularly, inexperienced users usually assume the semantics of partitions, or
even complete partitions, when they build a subsumption hierarchy (see [13]]). Also, as
the size of an ontology is a major cost driver for ontologies [2]], the manual engineering
and addition of the axioms actually costs more time, and thus money.

Therefore, we believe that an approach to automatically introduce disjointness ax-
ioms into an ontology would be a valuable addition to any ontology learning or engi-
neering framework. The principle feasibility of learning disjointness based on simple
lexical evidence has already been shown by [9]]. However, our experiments indicate that
a single heuristic is not suitable for detecting disjointness with sufficiently high preci-
sion, i.e. better than an average human could do.

For this paper, we performed an extensive survey in order to collect experience with
modeling disjoint classes, and identified several problems frequently encountered by
users who try to introduce disjointness axioms. Based on the results of our survey
we developed a variety of different methods in order to automatically extract lexical
and logical features which we believe to provide a solid basis for learning disjoint-
ness. These methods take into account the structure of the ontology, associated textual
resources, and other types of data sources in order to compute the likeliness of two
classes to be disjoint. The features obtained from these methods are used to build an
overall classification model which we evaluated against more than 10,000 disjointness
axioms provided by 30 human annotators. Due to the encouraging evaluation results
we are confident that our implementation can be used, for example, to extend state-of-
the-art ontology learning systems, to support ontology debugging [17], or to evaluate
manually added disjointness axioms.

The survey also showed that deciding if two classes are disjoint is far from trivial.
Although experts have a higher agreement on disjointness than non-expert users, their
agreement is still lower than we expected. Discussing these problematic formalizations,
we uncovered a number of problems humans have with formal disjointness.

In this paper, we will, in Section [2] first present the features we have used in order
to automatically learn disjointness axioms. Section[3ldescribes the set up and execution
of the experiments we conducted in order to train a classifier and evaluate the results of
our implementation (Section[). We close with an overview of related work in Section 3]
and a summary of the key contributions and remaining open questions in Section [@

2 Features for Learning Disjointness

Assuming that there is not the one and only approach to determine the disjointness
of two classes in an ontology, we developed a variety of different methods to obtain
evidence for or against disjointness from different sources. The features delivered by

Learning Disjointness 177

these methods will help us to train a classifier which is able to distinguish between
disjoint and non-disjoint classes.

Preliminaries: In this paper we adopt the OWL ontology model, although we do not
restrict our approach to OWL. Any ontology model that allows to state disjointness
between two classes can be used with all the methods described in this paper.

The methods are provided with an unsorted list of all the pairs previously tagged by
human annotators. In the following the set of pairs will be denoted by P = {p1,...p»}
for 0 < n < |C?, where C is the set of all classes in the ontology. Each pair pj, =
(Cky s Cky) consists of two classes ¢, , ¢k, € C and ¢, # ck,. The confidence of the
system in ¢g, and cg, being (not) disjoint is denoted by conf(py,+) or conf(py, —)
respectively.

All methods are allowed to look up these classes within their semantic context, i.e.
the domain ontology they have been extracted from (see Section B.I). And finally, as
additional sources of background knowledge, the methods may make use of a corpus
of textual resources associated with the ontology. We automatically selected a subset
of 957 documents from the Reuters corpusEl [16]. For efficiency reasons we only chose
those documents with at least 20 occurrences of any of the classes in the ontology.

It is important to mention, that we assume 'meaningful’ labels for all classes in
the ontology, i.e. labels which may be understood by humans even without knowing
the whole taxonomy. This assumption is particularly relevant for all methods which
make use of textual resources such as the pattern-based disjointness extraction (cf. Sec-
tion 2.4), the computation of extensional overlap with respect to Delicio.ud] and the
algorithms for learning taxonomic relationships (see Section 2.1)).

2.1 Taxonomic Overlap

In description logics two classes are disjoint iff their taxonomic overlap, i.e. the set of
common individuals, must be empty. Because of the open world assumption in OWL,
these individuals do not necessarily have to exist in the ontology. The taxonomic overlap
of two classes is considered not empty as long as there could be common individuals
within the domain of interest which is modeled by the ontology.

We developed three methods which determine the likeliness for two classes to be dis-
joint by considering their overlap with respect to (i) individuals and subclasses in the
ontology — or learned from a corpus of associated textual resources — and (ii) Del.icio.us
documents tagged with the corresponding class labels.

Ontology. Both, individuals and subclasses can be imported from an ontology (see Sec-
tion 3.1)) or from a given corpus of text documents. In the latter case, subclass-of
and instance-of relationships are extracted by different algorithms provided by the
Text2Ontd] ontology learning framework. A detailed description of these algorithms
can be found in [4]. All taxonomic relationships — learned and imported ones — are as-
sociated with rating annotations ' subclass—of (OF Tinstance—of respectively) indicating

! http://trec.nist.gov/data/reuters/reuters.html
’http://del.icio.us/
3 http://ontoware.org/projects/text2onto/

http://trec.nist.gov/data/reuters/reuters.html
http://del.icio.us/
http://ontoware.org/projects/text2onto/

178 J. Volker et al.

the certainty x > 0 of the underlying ontology learning framework in the correctness of
its results. For imported relationships the confidence is 1.0.

() X c¢1 subclass-of ¢y)
r _oflc1,co) =)
subclass—of\C1, C2 0 otherwise

The following formula defines the confidence con f(p, —) for a pair p = (c1, ¢2) to
be not disjoint based on the taxonomic overlap of ¢; and co with respect to common
subclasses (the same for instance):

Zcesublﬂsubg (Tsubclassfof (Ca Cl) * T'subclass—of (Ca C2))

@)
Zcésubl T'subclass—of (Ca Cl) + ZCESUbQ Tsubclass—of (Ca CZ)

conf(p, ~) =

where sub; denotes the set of subclasses of ¢;.

Del.icio.us. Del.icio.us is a server-based system with a simple-to-use interface that al-
lows users to organize and share bookmarks on the internet. It associates each URL with
a description, a note, and a set of tags (i.e. arbitrary class labels). For our experiments,
we collected |U| = 75,242 users, |T'| = 533, 191 tags and | R| = 3, 158, 297 resources,
related by in total |Y'| = 17,362, 212 triples. The idea underlying the use del.icio.us in
this case is that two labels which are frequently used to tag the same resource are likely
to be disjoint, because users tend to avoid redundant labeling of documents.

{d|c1 € t(d),co € t(d)}]
cec {dler € t(d), ¢ € t(d)} + X e H{dlez € t(d), ¢ € H(d)}]
3)
where t(d) is the set of del.icio.us tags associated with document d. The normal-
ized number of co-occurrences of ¢; and ¢y (their respective labels to be precise) as
del.icio.us tags aims at capturing the degree of association between the two classes.

conf(p, 7) = Z

2.2 Subsumption

If one class is a subclass of the other we assume the two classes of a pair p =
(c1, ¢2) to be not disjoint with a confidence equal to the likeliness associated with the
subclass-of relationship (cf. Section[2.T).

Conf(pa *) = max(rsubclassfof (Cla C2)a Tsubclass—of (CZa Cl)) (4)

2.3 Semantic Similarity

The assumption that a direct correspondence between the semantic similarity of two
classes indicates their likeliness to be disjoint led to the development of three further
methods: The first one implements the similarity measure described by [24]] to compute
the semantic similarity sim of two classes ¢; and ¢z with respect to WordNet [6]):

iy 2% depth(lcs(sy, 52))
Conf(p, _) - Szm(slaSQ) - depth(sl) + depth(sz) (5)

Learning Disjointness 179

where s; = first(c;) denotes the first sense of ¢;, ¢ € {1, 2} with respect to WordNet,
and lcs(s1, s2) is the least common subsumer of s; and s2. The depth of a node n
in WordNet is recursively defined as follows: depth(root) = 1, depth(child(n)) =
depth(n) + 1.

The second method measures the distance of ¢; and ¢y with respect to the given
background ontology (see Section[3.1) by computing the minimum length of a path ¢
of subclass-of relationships connecting ¢; and cs.

conf(p,+) = min length(q) (6)
pEpaths(cy,ca)

And finally, the third method computes the similarity of ¢; and ¢, based on their
lexical context. Along with the ideas described in [3] we exploit Harris’ distributional
hypothesis [10] which claims that two words are semantically similar to the extent to
which they share syntactic contexts.

For each occurrence of a class label in a corpus of textual documents (see prelimaries
of this section) we consider all the lemmatized tokens in the same sentence (except for
stop words) as potential features in the context vector of the corresponding class. After
the context vectors for both classes have been constructed, we assign weights to all
features using a modified version of the tf-idf formula:

Let v; = (fi...f}) be the context vector of class ¢; where each fi, n > 1
is the frequency of token j in the context of ¢;. Then we define TF(f;) =
Y dedoc(en) fTea(f},d) and N = |doc(c;)| and DF = |doc(c;) N doc(f})|, where
doc(t) is the set of documents containing term ¢ and freq(t, d) is the frequency of term
t in document d. And finally, we get TFIDF(f}) = TF(f}) - log(%)-

Given the weighted context vectors v} and v/, the confidence in ¢; and c2 being not
disjoint is defined as con f (p, —) = cos(v], v}).

2.4 Patterns

Since we found that disjointness of two classes is often reflected by human language,
we defined a number of lexico-syntactic patterns to obtain evidence for disjointness
relationships from a given corpus of textual resources. The first type of pattern is based
on enumerations as described in [9]]. The underlying assumption is similar to the idea
described in section[2.1] i.e. terms which are listed separately in an enumeration mostly
denote disjoint classes. Therefore, from the sentence

The pigs, cows, horses, ducks, hens and dogs all assemble in the big barn, thinking
that they are going to be told about a dream that Old Major had the previous night.

we would conclude that pig, cow, horse, duck, hen and dog are disjoint classes. This
is because we believe that — except for some idiomatic expressions it would be rather
unusual to enumerate overlapping classes such as dogs and sheep dogs separately which
would result in semantic redundancy. More formally:

Given an enumeration of noun phrases NPy, NP, ..., (and|or) NP, we con-
clude that the concepts c1, co, ..., cr denoted by these noun phrases are pairwise
disjoint, where the confidence for the disjointness of two concepts is obtained from
the number of evidences found for their disjointness in relation to the total number of
evidences for the disjointness of these concepts with other concepts.

180 J. Volker et al.

The second type of pattern is designed to capture more explicit expressions
of disjointness in natural language by phrases such as either NP, or NP, or
neither N P; nor N Ps. For both types of patterns we compute the confidence for
the disjointness of two classes ¢; and ¢z as follows:

freq(ci,ca)
Zj;él freq(er,c;) + Zi;,ez freq(ci, c2)

where freqg(c;, ¢;) is the number of patterns providing evidence for the disjointness of
¢;and ¢; with 0 < 4,5 < |C|* and i # j.

conf(p,+) =)

2.5 OntoClean

In [20] we introduced AEON, an approach to automatically evaluate ontologies accord-
ing to the OntoClean methodology [8]. The basic idea is to use a pattern-based approach
on top of the Web (and other textual data sources) for annotating classes of a given on-
tology with the OntoClean properties such as unity, identity and rigidity. Parts of the
approach can be reused for learning disjointness axioms.

Two classes are disjoint if they have incompatible unity or identity criteria. This im-
plies that a class carrying anti-unity (~U) must be disjoint of a class carrying unity (+U)
— and similarly for identity. Since we use the same subset of the PROTON ontology as
in our AEON experiments, we can rely on the manual OntoClean taggings we collected
earlier for the evaluation of AEON.

1 if ¢; tagged with ¢f2, co tagged with (2,
conf(p,+) = for 2 € {U,I}, ¢, € {~,+}, o # ¢ ®)

0 otherwise

2.6 Meta Algorithm

The meta algorithm considers superclasses known to be disjoint (from previously com-
puted confidence values) and propagates this information downwards in the taxonomic
hierarchyE. For p = (¢4, ¢2) the confidence for ¢; and ¢3 being disjoint is computed as
follows:

S, (conf(p*, +) — conf(p*, —))

|super(c1)| - |super(ca)|

conf(p,+) =)
where p* = (cf,c3) with ¢ € {c|subclass — of(¢;,c)} for i € {1,2} and
subclass — of (c;, ¢;) being the subclass-of relationship between ¢; and ¢;. More-
over, super(c) denotes the set of superclasses of c.

* This algorithm was not used in the final evaluation, since early experiments indicated that it
introduces too much noise. However, we report on it for reasons of completeness. And we still
believe that it constitutes a potentially interesting direction of future work, because it allows
for integrating subsumption information into any other algorithm.

Learning Disjointness 181

3 Experiment: Human Annotation of Disjointness

We thoroughly evaluated our approach by performing a comparison of learned dis-
jointness axioms against a large number of manually created ones to calculate (among
other things) the degree of overlap. This section describes the generation of the evalu-
ation dataset consisting of 2000 pairs of classes tagged by 30 annotators and discusses
methodological aspects related to the manual creation of disjointness axioms. The com-
plete dataset is available from http://www.aifb.uni-karlsruhe.de/WBS/
jvo/data/disjointness-111206.z1p.

3.1 Ontology

As a basis for the creation of the evaluation datasets and as background knowledge
for the ontology learning algorithms we took a subset (system, top and upper module)
of the freely available PROTON ontology (PROTo ONtologyﬁ In total our subset of
PROTON contains 266 classes, 77 object properties, 34 datatype properties and 1388
siblings.

PROTON is a basic upper-level ontology to facilitate the use of background or pre-
existing knowledge for automatic metadata generation. PROTON covers the general
concepts necessary for a wide range of tasks, including semantic annotation, indexing,
and retrieval of documents. The design principles can be summarized as follows (as
described in [19]) (i) domain-independence; (ii) light-weight logical definitions; (iii)
alignment with popular standards; (iv) good coverage of named entities and concrete
domains (i.e. people, organizations, locations, numbers, dates, addresses).

3.2 Evaluation Setting: Manual Taggings

To be able to compare the results of our trained model with the results generated by
manual annotation we created a dataset consisting of 2000 pairs of classes as follows:
First, we manually selected 200 (potentially) non-disjoint pairs from the ontology, since
we assumed the set of non-disjoint pairs to constitute a weak minority class (which
would have hampered the construction of a good model for our classifier). Then, we
randomly chose 500 siblings — which constitute a subset of the data, which is of partic-
ular interest from a practical and theoretical aspect. And finally, we added another 1300
pairs chosen randomly without any selection criteria.

Once the dataset was complete, each pair was randomly assigned to 6 different peo-
ple — 3 from each of two groups, the first one consisting of PhD students from our
institute (all of them professional “ontologists”), the second being composed of under-
graduate students without profound knowledge in ontological engineering. Each of the
annotators was given between 385 and 406 pairs along with natural language descrip-
tions of the classes whenever those were available. Possible taggings for each pair were
+ (disjoint), — (not disjoint) and 7 (unknown). The result were two datasets A and B
for “ontologists” and “students”. A third dataset C' was created by merging A and B
(cf. table[Th). Dataset D is a subset of C' consisting of all siblings, whereas E contains
all those pairs of classes which were randomly selected.

5 PROTON is available from/http: //proton. semanticweb.ord

http://www.aifb.uni-karlsruhe.de/WBS/
jvo/data/disjointness-111206.zip
http://proton.semanticweb.org

182 J. Volker et al.

Table 1.
a) Evaluation Datasets b) Tagged Pairs (Individual)

Dataset Individual Taggings
ID Dataset Annotators Tags per Pair Pairs + — 7 all —/4 avg. agree.
A Experts 15 3 2000 A 3849 2007 144 6000 0.521 0.869
B Students 15 3 2000 B 3881 2106 13 6000 0.543 0.858
C All 30 62000 qvg. 3865.0 2056.5 78.5 6000 0.532 0.864
D Siblings 30 6 541 C 7730 4113 157 12000 0.532 0.824
E Random 30 6 1300 D 1362 1822 62 3246 1.338 0.754

E 6166 1554 80 7800 0.252 0.853

In order to get cleaner and less ambiguous training data for our classification model
(see Section) we computed the majority votes for all the above mentioned datasets
by considering the individual taggings for each pair (3 in the case of A and B, and 6
for C). If at least 50% (or 100% respectively) of the human annotators agreed upon +
or — this decision was assumed to be the majority vote for that particular pair. In case
of equally many positive and negative taggings, the majority vote was defined as 7 or
unknown. These pairs were not used for training purposes. In this way we reduced the
noise the classifier had to deal with in the training phase, and obtained a better overall
model. Some statistical properties of the majority vote datasets are given by table 2

3.3 Analysis of Human Annotations

In order to determine how difficult it is for humans to tag pairs of classes as being dis-
joint or not we measured the human agreement within and across the different subsets
of the data. Table [Tb shows the average agreement among the individual taggers, i.e.
the average maximum ratio of annotators who agreed upon the same tag for a pair of
classes. By analysing the figures we find that the average agreement for D is signifi-
cantly lower than the agreement for any of the other datasets — which seems to imply
that pairs of siblings (classes with a common direct superclass) are much more difficult
to tag for human annotators than randomly chosen pairs of classes. This might be due
to the fact that it is comparably hard to determine the differences between the intension
and extension of classes which are semantically very close.

In addition to the computation of the agreement within each of the datasets, we also
tried to capture commonalities and differences between the taggings of people from the
two groups of annotators — ontologists (A) and students (B).

First, we measured the average agreement of the individual taggings of the experts
with the majority vote 100% of the students and vice versa. The figures — 0.852 for the
agreement between A and the majority vote of B, and a slightly lower value of 0.834
for the agreement between B and the majority vote of A — indicate that, maybe due
to the relatively higher disagreement among the students (see table [Ib), those tend to
agree mainly on very evident cases of disjointness.

The hypothesis that there is a considerable number of pairs which are comparably
easy to tag, thus provoking a high agreement, is supported by the figures we get for the
agreement among the majority votes 100% (0.964) and 50% (0.793) of A and B.

Learning Disjointness 183

Table 2. Tagged Pairs (Majority Vote)

Dataset Majority Vote 50% Majority Vote 100%

+ - 7 al —/+ + - ? o all —/+

A 1297 649 542000 0.500 931 330 7392000 0.354

B 1346 648 62000 0.481 846 307 847 2000 0.363

avg. 1321.5 648.5 30.0 2000 0.490 888.5 318.5 793.0 2000 0.359
C 1276 537 187 2000 0.421 616 194 1190 2000 0.315

D 188 274 79 5411457 28 96 417 541 3.429

E 1072 140 88 1300 0.131 588 35 677 1300 0.060

Table 3. Differences between Majority Votes 100% of A (Experts) and B (Students)

Vote Disjoint Classes ? Vote Disjoint Classes ?

A B A B

-+ RailroadFacility Pipeline + — Canal Harbor
-+ Order Abstract + — OfficialPoliticalMeeting Parliament
-+ Newspaper HomePage + — Week Month
-+ School MineSite + — Mountain Peninsula
-+ TelecomFacility Monument + — Island Valley
-+ ReligiousLocation Canal + — Government Parliament
— —+ InternationalOrganization StockExchange 4+ — Service Telecom
-+ WaterRegion PoliticalRegion + — Park Festival
-+ InternetDomain EntitySource + — OilField Province
— 4+ ReligiousOrganization Airline + — Patent AirplaneModel
-+ RecreationalFacility Capital + — Ministry Location
-+ City Archipelago + — Delta River
-+ Pipeline LaunchFacility + — TVCompany Movie
-+ AstronomicalObject Mountain

— + GovernmentOrganization AmusementPark

-+ AmusementPark Galaxy

-+ LaunchFacility Bridge

And finally, we completed our analysis of the annotation results by inspecting con-
crete examples of differently tagged pairs. Table 3] shows the listing of all pairs of
classes which were assigned different tags by the majority votes 100% (which means
that all 3 annotators of A or B agreed upon each tag) of experts and students. An ex-
tensive discussion of the differences which tries to explain some of the problems the
human annotators encountered can be found in the following section.

3.4 Discussion

During the creation of the human annotations, we had the chance to study the prob-
lems humans face when using disjointness. Even in the taggings of the experts group —
consisting of post-graduates all involved in Semantic Web research — the overlap of the
taggings was lower than expected (cf. Section[3.3). TableBlshows all pairs where all ex-
perts agreed on one tagging, and all students agreed on the other. Based on an analysis
of the taggings and subsequent discussions with the taggers, we identified several types
of problems regarding disjointness:

1. The label and comment of a class often do not provide an unambiguous idea of
what is meant with this class.

184 J. Volker et al.

2. Some disjointness axioms may depend on the context: whereas Dog and Livestock
may be disjoint in most parts of Europe, in the Chinese Wordnefd the latter is actu-
ally a hypernym of the former.

Classes can have abstract individuals, like Money, Message or Idea.

4. Often the extension of two classes are disjoint, although their intension is not, e.g.
US President and Woman. Annotators struggle with this difference.

5. Also, the extensions of two classes might be not disjoint, even though their inten-
sions are: although Weapon and Pitchfork are disjoint intensionally (in the literal
sense), their extensions do not need to be.

6. Roles and so called basic classes are often mixed, e.g. the role Professor and the
Person itself that plays the role, which may be defined disjoint (depending on how
roles are modeled [[L1]]).

7. Mereological and instantiation relations can be mixed: a Week is part of a Month,
so are these two classes disjoint? What about Delta and River?

8. Mixing other types of relations with instantiation relations may lead to misunder-
standings: see for example the pairs Movie/TVCompany, Government/Parliament,
or Patent/AirplaneModel, where the instances have close relations and thus seem
to confuse the annotators.

9. Instantiations can occur at different levels of abstraction. E.g., when describing
animals, Eagle may be the label of both an individual (e.g. of the class Species) and
of a class itself. Are then the two classes Species and Eagle disjoint? Note that the
individual Eagle is not the same as the class Eagle, but they may be connected via
an axiom like Class:Eagle = Jspecies.{Individual:Eagle}.

10. Sometimes, lexical information is mixed with ontological one. The PROTON ontol-
ogy contains concepts like Alias that form lexical information. Is a JobTitle disjoint
from a Job or the Person having the Job or JobTitle?

»

Note that this list does not speak about problems of disjointness with regards to its
definition in description logics, but rather with the problems our annotators had when
they had to decide if two classes are disjoint or not. Many of the above problem types
have a well-defined answer with regards to the formal semantics of disjointness, e.g.
#7, where Week and Month are disjoint as they don’t have common instances (since a
week consists of seven days, and months consist of around 28-31 days. Note that the
definition of week and month can change, but this basically means that we introduce
new concepts which may or may not have the same name).

Recognizing the problem type would allow an ontology development environment
to offer much more appropriate help than just a general description of the meaning of
the disjointness axiom, which can be hard to apply at times.

Often the decision, if two classes are disjoint or not, will uncover underspecified or
ambiguous classes, i.e. moot points in the description of one or both classes. Instead
of simply adding (or, which is far harder to tract, not adding) a disjointness axiom,
the rationale behind this decision should also be documented, following an ontology
lifecycle methodology like DILIGENT [21]] for the continuous evolution and refinement
of the ontology.

6 http://www.keenage.com/

http://www.keenage.com/

Learning Disjointness 185

4 Evaluation: Learning a Classifier

In this section we present the evaluation procedure and analyse the results of the com-
parison between the classifier which has been trained on the features described in
Section 2l and the sets of manual annotations (see Section [3)).

4.1 Experimental Settings

To train the classifier we skipped pairs of classes tagged with 7 since the definition of
disjointness only distinguishes between disjoint and not disjoint classes. For the rest
of the evaluation we will consider this two-class problem. We evaluate our learned
classifier against two baseline: the random and majority baseline.

Random Baseline: The idea of the random baseline is to randomly choose the tar-
get class of the classifier. As we have a two-class problem we will distribute the pairs
equally over the two classes. This will result in a 50% baseline for accuracy as 50% of
the + examples will be classified in + which means that these examples are classified
correctly. The same holds for the — class.

Majority Baseline: The majority baseline is determined by taking the largest class as
default classification. This way, we will get a high accuracy if the classes are unequally
distributed. In this case, of course, the majority baseline is much more difficult to beat
than the random baseline. Nevertheless, since in the experiments at hand we only have
to deal with two classes (4 or —) which are not equally distributed, the majority baseline
should be considered as more realistic than the random baseline.

Classifier settings: In order to be able to classify each pair of classes as being disjoint
(4) or not (—), we trained a classifier based on the manual taggings created by hu-
man annotators. The features for the classifier are the confidence values obtained from
various sources as described in section 2l

We tested a couple of different classifiers made available by the Weka packagfﬂ In
general, decision trees outperformed all other classifiers — maybe, because of the highly
selective character of our features — while the performance of different types of decision
trees was more the less comparable. Therefore, we finally chose the ADTree classifier
[7] with default settings for our experiments which shows very good performance while
at the same time providing interpretable results.

First, we performed a 10-fold cross-validation against the majority votes 100% and
50% of the datasets A (ontologists), B (students), C' (all) and E (random) (cf. table
[Th). The results for the random dataset are included to show the performance of our
approach for an unbiased dataset (= contains examples chosen randomly from the set
of all possible pairs without any selection criteria). To get the results for dataset D
(siblings), we split dataset C' into two independent parts - one for evaluation and one
for training. The training set for the evaluation with dataset D consists of all manually
tagged pairs except for the siblings.

7 http://www.cs.walikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

186 J. Volker et al.

4.2 Results

Table Bl and [list the results of our evaluation experiments by means of Precision (P),
Recall (R), F-Measure (F) and Accuracy (Acc) (for definitions cf. [23]]). From the
tables it becomes evident that we easily beat the baselines for the datasets A (experts),
B (students) and C' in both cases majority vote 50% and 100%. With an accuracy of
over 90% the performance of our system for dataset C' is remarkable, especially in
the case of the total majority vote. These results are comparable with the human inter-
annotator agreement for experts and students — and even better for dataset C' (90.9%) in
comparison to the human agreement of 86.4%.

Dataset D, which only contains pairs of siblings, is certainly the most difficult to
handle — for the classifier, but also for the human annotators — because, as explained in
Section[3.3] siblings are semantically close, so that differences between their intensions
and extensions may often be hard to grasp. As dataset D shows a relatively low average
agreement compared to the other datasets (cf. table[Ib) the classifier seems to have more
difficulties to learn it. This is also expressed by the very bad classification accuracy with
37% for majority vote 100%.

An investigation of the learned classifier revealed that the rather important taxonomic
feature (see Section is not well populated in the siblings part of the dataset. To
analyse the influence of this feature we constructed a dataset without this feature. As
expected the accuracy for the training dataset drops, whereas for the evaluation set it
is improved considerably from 37.9% to 74.2%. Moreover, the results for the majority
vote 50% rise to 76.6% which can be interpreted as an indication to the noise insert by
this feature.

Our approach seems to work very well also for the random dataset £ as we got a bet-
ter accuracy in both cases. The difference to the majority baseline is much smaller than
for A, B, and C but the baseline of around 90% is very difficult to beat. To conclude,
the results — not only for the random dataset — are very promising and allow us to setup
a competitive classifier to support ontology engineering.

In order to find out which classification features contributed most to the overall per-
formance of the classifier we performed an analysis of our initial feature set with respect
to the gain ratio measure [14]]. The ranking produced for data set C clearly indicates an
exceptionally good performance of the features taxonomic overlap (Section 2.1}, simi-
larity based on WordNet and lexical context (Section[2.3), and del.icio.us (Section Z.T)).
The contribution of other features such as the one presented in Section 2.4 relying on

Table 4. Evaluation against Majority Vote 50% (ADTree)

Dataset P R F Acc Accrandom ACCmajority
+ — avg. + — avg. + — avg.

A 0.815 0.638 0.727 0.823 0.626 0.725 0.819 0.632 0.726 0.757 0.500 0.666

B 0.807 0.642 0.725 0.844 0.580 0.712 0.825 0.609 0.717 0.758 0.500 0.675

avg. 0.811 0.640 0.726 0.834 0.603 0.719 0.822 0.621 0.722 0.758 0.500 0.671

C 0.854 0.682 0.768 0.874 0.644 0.759 0.864 0.663 0.764 0.806 0.500 0.704

D 0.558 0.628 0.593 0.255 0.861 0.558 0.350 0.726 0.538 0.615 0.500 0.593

£0.910 0.761 0.836 0.990 0.250 0.620 0.948 0.376 0.662 0.904 0.500 0.884

Learning Disjointness 187

Table 5. Evaluation against Majority Vote 100% (ADTree)

Dataset P R F Acc Acrandom ACCmajority
+ — avg. + — avg. + — avg.

A 0.896 0.720 0.808 0.903 0.703 0.803 0.899 0.712 0.806 0.851 0.500 0.738

B 0.866 0.790 0.828 0.942 0.599 0.771 0.903 0.681 0.792 0.851 0.500 0.734
avg. 0.881 0.755 0.818 0.923 0.651 0.787 0.901 0.697 0.799 0.851 0.500 0.736
C 0.934 0.823 0.879 0.946 0.789 0.868 0.940 0.805 0.873 0.909 0.500 0.760

D 0.237 0.806 0.522 0.786 0.260 0.523 0.364 0.394 0.379 0.379 0.500 0.774

E 0.977 0.955 0.966 0.998 0.600 0.799 0.987 0.737 0.862 0.976 0.500 0.944

lexico-syntactic patterns seems to be less substantial. However as the classification ac-
curacy tested on every single feature is always below the overall performance the com-
bination of all features is necessary to achieve a very good overall result.

5 Related Work

Several ontology learning frameworks have been designed and implemented in the last
decade. The Mo’K workbench [[]], for instance, basically relies on unsupervised ma-
chine learning methods to induce concept hierarchies from text collections. In particu-
lar, the framework focuses on agglomerative clustering techniques and allows ontology
engineers to easily experiment with different parameters. OntoLT is an ontology
learning plug-in for the Protégé ontology editor. It is targeted at end users and heavily
relies on linguistic analysis, i.e. it makes use of the internal structure of noun phrases to
derive ontological knowledge from texts. JATKHY is a Protégé based unified platform
for ontology learning which allows for inclusion of modules for ontology learning. The
OntoLearn framework mainly focuses on the problem of word sense disambigua-
tion, i.e. of finding the correct sense of a word with respect to a general ontology or
lexical database. TextToOnto [[12] is a framework implementing a variety of algorithms
for diverse ontology learning subtasks. In particular, it implements diverse relevance
measures for term extraction, different algorithms for taxonomy construction as well as
techniques for learning relations between concepts. The recent RelExt approach
focusses on the extraction of triples, i.e. classes connected by a relation. None of the
mentioned approaches deals with disjointness.

6 Conclusion and Future Work

Learning of disjointness axioms is an intuitive and useful extension of existing ontology
learning frameworks. We have motivated the need for richter ontologies which include
disjointness axioms and presented an approach consisting of a number methods to ex-
tract expressive feature for learning disjointness from different sources of evidence. In
a thorough evaluation our learning approach behaved competitive to human annotators.

8 http://jatke.opendfki.de/

http://jatke.opendfki.de/

188 J. Volker et al.

As a by-product we captured lessons learned from human annotators with respect to
their difficulties when modeling disjointness axioms.

Future work includes a combination with ontology evaluation approaches for richly
axiomatized ontologies such as [17]. Moreover, we want to integrate the novel methods
into the Text2Onto [4] framework for ontology learning from texts.

Acknowledgments. Research reported in this paper has been partially financed by the
EU in the IST project SEKT (IST-2003-506826) (http://www.sekt-project.
com). We would like to thank our colleagues, especially Peter Haase, for fruitful dis-
cussions, and all the students and colleagues at the AIFB and the University of Kassel
for providing us with more than 10,000 taggings.

References

1. G. Bisson, C. Nedellec, and L. Canamero. Designing clustering methods for ontology build-
ing - The Mo’K workbench. In Proc. of the ECAI Ontology Learning Workshop, pages
13-19, 2000.

2. E. P. Bontas, C. Tempich, and Y. Sure. ONTOCOM: A cost estimation model for ontology
engineering. In I. Cruz et al., editors, Proceedings of the 5th International Semantic Web
Conference (ISWC 2006), volume 4273 of LNCS, pages 625-639. Springer-Verlag Berlin
Heidelberg, 2006.

3. P. Buitelaar, D. Olejnik, and M. Sintek. OntoLT: A protégé plug-in for ontology extraction
from text. In Proc. of the 2nd Int. Semantic Web Conference (ISWC2003), 2003.

4. P. Cimiano and J. Volker. Text2onto — a framework for ontology learning and data-driven
change discovery. In Proc. of the 10th Int.l Conf. on Applications of Natural Language to
Information Systems (NLDB’05), June 2005.

5. P. Cimiano and J. Volker. Towards large-scale, open-domain and ontology-based named
entity classification. In G. Angelova, K. Bontcheva, R. Mitkov, and N. Nicolov, editors,
Proc. of the International Conference on Recent Advances in Natural Language Processing
(RANLP), pages 166—172, Borovets, Bulgaria, September 2005. INCOMA Ltd.

6. C. Fellbaum. WordNet, an electronic lexical database. MIT Press, 1998.

7. Y. Freund and L. Mason. The alternating decision tree learning algorithm. In /ICML, pages
124-133, 1999.

8. N. Guarino and C. A. Welty. A formal ontology of properties. In Knowledge Acquisition,
Modeling and Management, pages 97-112, 2000.

9. P. Haase and J. Volker. Ontology learning and reasoning - dealing with uncertainty and
inconsistency. In Proc. of the Workshop on Uncertainty Reasoning for the Semantic Web
(URSW), pages 45-55, 2005.

10. Z. Harris. Distributional structure. In J. Katz, editor, The Philosophy of Linguistics, pages
2647, New York, 1985. Oxford University Press.

11. K. Kozaki, E. Sunagawa, Y. Kitamura, and R. Mizoguchi. Fundamental considerations of role
concepts for ontology evaluation. In Proc. of the Workshop EON — Evaluation of Ontologies
for the Web, 2006.

12. A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE IS, 16(2), 2001.

13. R. Navigli, P. Velardi, A. Cucchiarelli, and F. Neri. Extending and enriching WordNet with
OntoLearn. In Proc. of the GWC 2004, pages 279-284, 2004.

14. J. R. Quinlan. C4.5 Programs for Machine Learning. Morgan Kaufmann, California, 1993.

http://www.sekt-project.
com

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

Learning Disjointness 189

A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens, H. Wang,
and C. Wroe. OWL pizzas: Practical experience of teaching OWL-DL — common errors &
common patterns. In Proc. of EKAW 2004, pages 63-81, 2004.

T. Rose, M. Stevenson, and M. Whitehead. The reuters corpus volume 1-from yesterdays
news to tomorrows language resources. Proc. of the Third International Conference on Lan-
guage Resources and Evaluation, pages 29-31, 2002.

S. Schlobach. Debugging and semantic clarification by pinpointing. In Proc. of the 2nd
European Semantic Web Conference (ESWC2005), volume 3532 of LNCS, pages 226-240.
Springer, 2005.

A. Schutz and P. Buitelaar. RelExt: A tool for relation extraction in ontology extension. In
Proc. of the 4th International Semantic Web Conference (ISWC2005), 2005.

L. Terziev, A. Kiryakov, and D. Manov. Base upper-level ontology (BULO) guidance. SEKT
deliverable 1.8.1, Ontotext Lab, Sirma Al EAD (Ltd.), 2004.

J. Volker, D. Vrandecic, and Y. Sure. Automatic evaluation of ontologies (AEON). In Proc.
of the 4th International Semantic Web Conference (ISWC2005), volume 3729 of LNCS, pages
716-731. Springer, 2005.

D. Vrandeci¢, H. S. Pinto, Y. Sure, and C. Tempich. The DILIGENT knowledge processes.
Journal of Knowledge Management, 9(5):85-96, 2005.

T. D. Wang. Gauging ontologies and schemas by numbers. In Proc. of the Workshop EON —
Evaluation of Ontologies for the Web, 2006.

I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann Series in Data Management Sys. Morgan Kaufmann, 2nd edition, June
2005.

Z. Wu and M. Palmer. Verb semantics and lexical selection. In 32nd. Annual Meeting of the
Ass. for Computational Linguistics, pages 133—138, New Mexico, 1994.

Developing Ontologies for Collaborative Engineering
in Mechatronics

Violeta Damjanovi¢, Wernher Behrendt, Manuela P168nig,
and Merlin Holzapfel

Salzburg Research, Jakob Haringer Strasse 5/11,
5020 Salzburg, Austria
{violeta.damjanovic, wernher.behrendt,
manuela.ploessnig, merlin.holzapfel}@salzburgresearch.at
http://www.salzburgresearch.at

Abstract. Creating a coherent set of ontologies to support a collaborative de-
sign process amongst different firms which develop mechatronic products is a
challenge due to the semantic heterogeneity of the underlying domain models
and the amount of domain knowledge that needs to be covered. We tackle the
problem of semantic heterogeneity by employing the DOLCE foundational on-
tology and by aligning our models to it. We approach the problem of scale, i.e.
the amount of knowledge modeled by keeping the models at a descriptive level
which is still granular enough to connect them with domain and task specific
engineering tools. In order to manage the complexity of the modeling task we
separate the models into the foundational layer, the mechatronic layer consist-
ing of three domain ontologies, one process model and one cross-domain
model, and the collaborative application layer. For the development process, we
employ a methodology for dynamic ontology creation, which moves from taxo-
nomical structures to formal models.

1 Introduction

The mechatronic engineering process covers an interdisciplinary combination of dif-
ferent domains comprising of mechanical engineering, electrical engineering, and
software engineering. For each of these engineering domains there exist diverse
knowledge models, mostly in the form of documents or glossaries, but hardly as com-
prehensive ontologies. Furthermore each domain covers a specific mechatronic field,
so that the intersection of knowledge models between these different engineering
domains remains relatively small.

The focus of the ImportNET' project lies in this intersection, specifically in the
collaboration of the three mainstream mechatronic domains, i.e. mechanical, electri-
cal, and software engineering. For this reason, the process of ontology modelling in
ImportNET is considered from two perspectives:

Firstly - in the research perspective - we employ a methodology for dynamic crea-
tion of ontologies (i.e. moving from less formalised models to more rigorous models).

' The ImportNET project is co-funded by the European Commission within the Sixth Frame-
work Programme under Contract 033610, in the area of ICT for Networked Businesses.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 190 2007.
© Springer-Verlag Berlin Heidelberg 2007

Developing Ontologies for Collaborative Engineering in Mechatronics 191

Using the DynamOnt methodology [1] we model the reference ontologies for mecha-
tronics on the basis of the DOLCE foundational ontology. This includes a generic
mechatronic process model which will also be used to describe the usage scenarios for
the modeling.

The second perspective concerns the actual use of ImportNET tools: there needs to
be a methodology to modify the reference ontologies in order to adapt them to the
requirements of concrete companies and their products. The reference ontologies must
be tailored to the requirements of the actual, planned collaboration. This will be done
by the Ontology Integration Tool (OIT) which allows to modify and to expand the
reference ontologies.

The paper describes the early stages of work in a European research project and
addresses collaborative design processes that are used for development of mecha-
tronic products as follows: The introduction section gives a brief overview of the state
of the art and existing research gaps in collaborative engineering, mechatronic engi-
neering and mechatronic domain modeling. Section 2 introduces the ImportNET ap-
proach to mechatronic domain modeling. This section firstly discusses the ontology
landscape in ImportNET, and then illustrates the alignment of the mechatronic ontol-
ogy with the DOLCE foundational ontology. Furthermore the DynamOnt methodol-
ogy, which is used for the evolutionary creation and development of the mechatronic
ontology, is explained in more detail. Section 3 discusses the main objectives of Im-
portNET, the possible system architectures, as well as usage and validation scenarios.
Preliminary conclusions are drawn in Section 4.

1.1 State of the Art and Research Gaps in Collaborative Engineering

In recent years, collaboration not only between engineers but also across organisa-
tional boundaries has become a key research issue for the development of flexible
engineering processes. Collaborative engineering aims at providing the main con-
cepts, solutions, as well as technologies for development of products by multiple
engineering teams. We found the following main research challenges and gaps in the
domain of collaborative engineering:

— technical aspects: Web-based electronic design environments; architectures and
technologies for knowledge sharing; standards for exchange formats/protocols; se-
curity aspects;

— social aspects: handling multi-cultural issues in collaborative design; knowledge
sharing; collaborative learning; collaborative engineering; distributed engineering
work; social aspects of collaboration teams;

— organizational and economic aspects: benefits of using collaboration approaches;
validation scenarios.

At the same time, there is a number of unsolved problems from the industrial per-
spective, including application integration e.g. how can Web Services contribute to
closing this gap?; knowledge integration e.g. how can Semantic Web technologies
contribute?; and process integration e.g. how can approaches like Enterprise Model-
ing answer to this challenge?

192 V. Damjanovic¢ et al.

1.2 State of the Art and Research Challenges in Mechatronic Engineering

Mechatronic engineering is one of the most recent branches of engineering and it has
increasing impact on many sectors of the economy and on society overall. The com-
petitive use of mechatronic engineering will soon require more model-driven devel-
opment using design repositories of mechatronic components. We have found two
notable metamodels which address this issue: Thramboulidis describes a four-layer
model of Integrated Mechatronics distinguishing mechanical, resource, application
and mechatronic layers [2]. The model is the basis for ”Archimedes, a system plat-
form that supports the engineering through a methodology, a framework and a set of
tools to automate the development process of agile mechatronic manufacturing sys-
tems** [2]. The problem of ontological modelling was addressed by Yoshioka [3] in a
layered knowledge structure for the Knowledge Intensive Engineering Framework
(KIEF). They also introduce the concept of plug-in models to specialise and refine the
metamodel into concrete models. Their paper indicates that there is at least a proof-of-
concept prototype in which some of the proposed concepts are validated. Unfortu-
nately, the actual implementation is not in the public domain. Each of the two
frameworks has a particular angle: Thramboulidis focuses on the mechatronic process
whereas Yoshioka emphasises the modelling of mechatronic artefacts. Both models
will have to be considered as frameworks for our collaboration-centered approach to
mechatronics.

1.3 State of the Art and Research Challenges in Mechatronic Domain Modeling

Ontological engineering covers a whole range of topics such as the basic philo
sophical and metaphysical issues as well as knowledge representation formalisms, me
thodology for ontology development, business process modelling, commonsense
knowledge, systematisation of domain knowledge, Internet information retrieval,
standardisation, evaluation, and many more [4].

If we put ontological engineering in the context of other disciplines, then many
similarities and analogies arise. They allow us to make connections between ontologi-
cal engineering and the other disciplines, to bridge potential comprehension gaps, and
to shed a different light on already known concepts and practices. For example, when
applying the Unified Modeling Language (UML) to a mechatronic system it turns out
that some additional concepts are needed to model the mechatronic system [5]. Such
concepts can be added by introducing stereotypes, €.g. a special stereotype called the
Function Block Adapter (FBA) is described in [5]. The FBA stereotype can be used to
specify the mapping from UML signals to the function block signals.

2 ImportNET Approach to Mechatronic Domain Modeling

A review of the literature about mechatronics rapidly results in a number of defini-
tions, each of which emphasises a slightly different aspect of the mechatronics con-
cept, ranging from design to precision engineering and from sensors to actuators [6].
Most of the definitions do manage to agree that mechatronics is concerned with the
integration of its core engineering themes to generate novel technological solutions in

Developing Ontologies for Collaborative Engineering in Mechatronics 193

the form of products and systems whose functionality is integrated across those core
technologies.

The design of an ontology for mechatronics can be approached using a variety of
scientific methods, such as the following paradigms [7]:

— empirically-based research (cognitive models),

— axiom-based research (computational models); and

— conjecture-based research (computational models):
— conjectures based on an analogy with cognitive processes; and
— conjectures based on an analogy with computational processes.

Empirically-based research involves the development of experimental studies of de-
signers that result in cognitive models of designing. Axiom-based research involves
the identification of a set of axioms and their consequences to derive a logic-based
computational model of designing. Conjecture-based research involves an analogy
between a cognitive or computational process that leads to a computational model
specific to designing.

The approach taken by ImportNET is to move from a cognitive model to a computa-
tional model, with the help of a foundational ontology which could be seen as a com-
promise between cognitive conjectures (the concepts of the ontology) and axiom-based
computational models (the axiomatic framework defined by the DOLCE foundational
ontology).

2.1 Ontology Landscape in ImportNET

Ontologies provide the vocabulary for referring to the terms in a subject area, as well
as the logical statements that describe what the terms mean, how they are related to
each other, as well as the rules for combining terms and relations to define extensions
to the vocabulary.

Figure 1 provides a landscape of reference ontologies employed in ImportNet. The
DOLCE ontology represents the foundational layer which gives us a useful structure
for building novel knowledge based architectures. Aligned to DOLCE, we place the
domain ontologies for mechanical, electronics and software engineering. The new
cross-domain engineering ontology is built as a result of the integration of these con-
tributing ontologies, while the mechatronic engineering lifecycle ontology has to be
linked ultimately, to distributed service execution and orchestration processes.

The ImportNET ontologies are created in support of a collaborative engineering
process for developing mechatronic products. The process for development of the
mechatronic products requires some ontology integration and configuration based on
the overall set of ontologies. The ontology landscape and its configuration via the
Ontology Integration Tool (OIT) is shown in Figure 1. The resulting Collaboration
Ontology is a meaningful subset of concepts from the ontology landscape. Any col-
laboration between organisations developing a specific product will be based on such
a specialised collaboration ontology. The design and detailed functionality of OIT are
outside the scope of this paper.

194 V. Damjanovic¢ et al.

Mechatronic Engineering Lifecycle
Ontology

Cross domain Engineering
Ontology

Ontology
Integration Too

Mechatronics

(OIT;

Mechanic
Engineering
Ontology
Software
Engineering
Ontoloay
Electronic
Engineering
Ontology

DOLCE
Foundational Ontology

Fig. 1. Ontology landscape and configuration of a collaboration ontology

The design of the cross-domain engineering ontology is considered to be an essen-
tial theme for mechatronics since it attempts to bring together concepts and ideas in
relation to a product or system [6]. Furthermore, the design of a flexible mechatronic
engineering lifecycle ontology to support the collaborative development of mecha-
tronic products amongst various communities of practice and virtual organizations is
the main challenge in ImportNET.

A partial taxonomy of mechatronic ontologies is represented in Tables 1-5.

Table 1. A partial taxonomy of the mechanical engineering ontology

Criteria Explanation

Spatial Spatial description of mechanical components
Composing Aggregation / assembly

Properties ~ Physical properties, e.g. liquid

Process - domain specific workflow - mechanical behaviour of com-
ponents, e.g. rotation or movement along a trajectory

Role Roles of agents in the domain of mechanical engineering, e.g.
material stress tester

Methods Methods of mechanical engineering

Table 2. A partial taxonomy of the electronic engineering ontology

Criteria Explanation

Spatial Spatial description of electronic components
Composing Aggregation / assembly

Properties ~ Physical properties

Process - Domain specific workflow
- Electro magnetic behaviour
Role Roles of agents in the domain of electronic engineering

Methods Methods of electronic engineering

Developing Ontologies for Collaborative Engineering in Mechatronics 195

Table 3. A partial taxonomy of the software engineering ontology

Criteria Explanation

Functions Architecture of the runtime environment, hardware drivers
Composing Aggregation / assembly

Properties Description of design, documentation, code, APIs...

Process - Software life cycle

- Behaviour of software components
Role Roles of agents in the domain of software engineering
Methods Methods of software engineering

Table 4. A partial taxonomy of the mechatronic engineering lifecycle (process) ontology

Criteria Explanation

Composing Sub-processes at different levels of granularity, requiring
input/output parameters to be modeled at corresponding levels
of detail

Properties Characterising different instantiations of a process model (e.g.
waterfall, V-model, etc), order of sub-processes, duration, pre-
and postconditions

Role Roles of agents in particular those engaged in coordinating
and resolving conflicts between the engineering domains
Methods E.g. conflict resolution between roles

Table 5. A partial taxonomy of the Cross-domain Ontology

Criteria Explanation

Spatial Runtime environment, hardware drivers

Composing Aggregation / assembly

Process Electro magnetic behaviour, software/ hardware execution...
Role Union of roles defined in the other domains

Methods E.g. conflict resolution between roles

Current work is addressing the relationship between the initial taxonomies and the
frameworks proposed by Thramboulidis [2] and Yoshioka [3]. One of the main issues
in combining the knowledge of these other models with ImportNET is that once we
have made a commitment to a foundational ontology we need to also align external
models to that foundation. For example, each mereological element of an external
ontology needs to be mapped into the corresponding primitives of the foundational
ontology. Whether or not there is a specific ontological bias in any of the external
models can only be determined once we have access to the full models.

2.2 Ontology Alignment to the DOLCE Foundational Ontology

The Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) was
originally developed in the EU WonderWeb project [8] and has been extended in a
number of other projects since then. The design philosophy of DOLCE is modularity
in order for ontology projects to be able to pick and choose thus making only as much
“ontological commitment* as needed. The typical process of developing an ontology

196 V. Damjanovic¢ et al.

is then to either “align® existing knowledge models to the DOLCE model or to de-
velop the ontology from scratch, by using the conceptual primitives defined by
DOLCE.

Despite the ambition to capture some “common sense* DOLCE constitutes a strictly
formal approach to ontology modeling, which is a necessary condition if we want com-
putational services or agents to make autonomous use of the ImportNET knowledge
models while remaining “accountable‘ for their activities. Such semantic accountability
is an important requirement for future work spaces where some of the decision making
in cross-organisational processes will be delegated to machines and where there will be
a need at least for boundary conditions to be defined explicitly in order to safeguard
against unwanted behaviour of partly autonomous systems. Furthermore, the axiomati-
sation is a prerequisite for any logic based inferencing done by such machines.

The fundamental difference between current ’semantic* terminologies as used in
annotations and “proper semantic models as envisaged for the ImportNET Semantic
Application Server (SAS) is that the latter will have to implement a partly autono-
mous inference module in order to manage the cross-organisational work processes,
which will be context-sensitive to the mechatronic design artefacts which will be
exchanged between the engineers (i.e. the users of the system).

Since ImportNET will focus on cross-organisational processes it will be necessary
to add the capability for modeling tasks to the basic model. The process of aligning
the set of mechatronic ontologies to DOLCE is shown in Figure 2. In the recent EU
METOKIS project, DOLCE was extended by an ontology called “Descriptions and
Situations (D&S), which includes a representation language for tasks or processes
[9]. D&S shows its practical value when applied to ontology design patterns for
(re)structuring application ontologies that require contextualization [10]. Figure 3
represents the process of aligning the mechatronic ontologies with respect to the basic
categories of DOLCE, as well as using of Semantic Web Services approach to support
the collaborative design process.

® Mechatronic Engineering Lifecycle Ontology = =
Q ° o
g S| |8 S
L2 %] S ¢
L . : : > 0O = ©
c Cross-domain Engineering Ontology %) SOl |~ |T &
S 0 s =| |l ® €3
8 e 2 o3 o
Q g C O = a L=
5 o o o O 9 o =
2 o o o = Hl= wo
2 = o £ > SE > oc| |2
© cCC D =oE B cCC D E & = O
2 989 S0 S¢S 33|l |5 =
8 tE2 % £2 s © 2 ©)
(o2} j=2] j=2}
= =c0 %) 1= (@) T = @) (=] o
i} fim} L

Fig. 2. The DOLCE foundational ontology is extended by the D&S module. Instead of directly
aligning OWL-S to D&S, a Core Ontology of Services (COS) is developed and OWL-S is
aligned to the COS ontology [10]. COS tries to fill the epistemological gap between the founda-
tional ontology and OWL-S, and also it can be reused to align other Web Service Description
Languages as well. Furthermore, COS ontology is used to align the set of mechatronic refer-
ence ontologies.

Developing Ontologies for Collaborative Engineering in Mechatronics 197

Aligning D&S to
DOLCE

‘ Situation ‘ ‘ Endurant ‘ ‘ ‘

Non-physical Endurant

S - Description

C - Description

Functional Course of
Role Events
Y-

‘ Parameter

NI Agentive Instrumentalit LEVEL 2:
Requirements g Y Task Aligning COS
L Functional Role Role
Description to D&S

Computational
Task

/
Service Offering Service Service Service
Description Input Output Task
AN AN x. A

‘ Servic?F’roﬁIe H Service ‘ ‘ Servic:ModeI H Ac;or H Input H Ou;put ‘ C:rrnO::::nt ﬁﬁ;ﬁtgséWL

to COS

| | [| LEVEL 4:
‘Composing‘ ‘ Role ‘ ‘ Methods ‘ ‘ Process ‘ Aligning Domain

ontology to OWL

Fig. 3. Indirectly aligning mechatronic ontologies to the DOLCE foundational ontology

To summarise, the extended DOLCE foundational ontology for which a full im-
plementation in OWL-DL exists has been chosen as the working hypothesis from
which the modeling of the ImportNET ontologies start. Achieving such a combined
representation in the area of mechatronics would be a significant result because to our
knowledge, no other foundational model has a comparable degree of coherence and
formalisation.

2.3 Methodology for the Development of the Mechatronic Ontology

Ontology development methodologies are intended to help with the complex process
of ontology building and managing. They help knowledge engineering projects to
successfully reach the main goals in time, especially when it comes to knowledge
sharing in dynamic environments due to frequent changes of user needs.

There are two general ontology engineering approaches, centralized and decentral-
ized methodologies. On-To-Knowledge (OTK) [11] and METHONTOLOGY [11],
[12] are mostly centralized, while DILIGENT [13] and the recently proposed Dyna-
mOnt [1] methodology can be seen as decentralized and distributed approaches for
ontology engineering where a community of ontology users and developers converges
towards a shared view.

For the development of the contributing ImportNET ontologies, we use the Dyna-
mOnt methodology. The DynamOnt methodology enables the dynamic creation of
ontologies based on communication and experience exchange amongst different
communities of practice - in our specific case those communities which are concerned
with the development of mechatronic products.

198 V. Damjanovic¢ et al.

The DynamOnt process model integrates elements of known knowledge and ontol-

ogy-engineering methods in order to produce an overall methodology for engineering
of knowledge-based systems. In detail the DynamOnt model comprises the following
phases [1]:

Identify the problem — domain experts (users) could describe the situation when
the problem occurs or they have ideas to solve the problem:;

Structure the problem — a broader discussion with domain experts (users) and the
description of user scenarios would help to structure the problem in order to get a
broader view of the topic;

Identify concrete purpose and scenarios — the focus is a mutual understanding of
the project goals. A guideline based on a three dimensional matrix is proposed to
classify ontologies along the properties scope (stability of knowledge models and
interoperability on semantic level), expressiveness (complexity and costs), and ac-
ceptance (market success and collaboration);

Identify main concepts of domain/subject matter — based on user scenarios,
existing documents and knowledge models a list of domain concepts, roles and
tasks will be created;

Create non-formal models — the already defined concepts, roles and tasks will be
interrelated through attributes and relations. This will be supported by guided
questions;

Create formal models (knowledge design) — the classification according to the
expressiveness dimension of the three dimensional matrix helps to decide which
parts of the ontologies has to be formalised to a certain degree. Based on the non-
formal model and maybe other available models, a conceptual (formal) model will
be defined and the output will be machine readable (e.g. OWL, RDFS, XML);
Create acceptance (community design) - the acceptance within the main user
communities (e.g. developers, the domain experts, external user communities of
the system) is an important factor for the success of the model and the system. The
acceptance can be raised by trainings (e.g. workshops) and by adapting existing
business processes according to inputs of the resulting formal model;

Create system (software design) — based on software engineering methods and
techniques the software will be specified and designed;

Implement Target System - the scope of this phase is to provide a fully developed
knowledge-driven application.

In the formalisation steps, DynamOnt uses the following ontological design pat-

terns (based on DOLCE) to guide domain experts in creating conceptualisations of
their domain knowledge [1]:

the Participation pattern;

the Description-Situation pattern;
the Role-Task pattern;

the Design-Artefact pattern;

the Agent-Activities pattern;

the Information-Object pattern.

Developing Ontologies for Collaborative Engineering in Mechatronics

199

od Role-Task-Pattern 7

+definesyf 1.7

1.7

Description

Concent
Role

Careept [0

Parameter L0 quisite

0.x

+defines

+modal-targetof 1.7

+playes | 1.7

Course

Task +defines

1.7 +modaktargat
“+1equisite-for

+requisite

o

+ralue-for

+ualued-by /1.7

Padicular|

Regicn

+played-by | /1.7

0.F

+setting-for

Faricalar
Endurart

+ sequenced-by

0.7

1.7 [[ssatisties

0.7 | +satisfied by

ftsequences

+setting

+:
Pemumnt

[

Situstion

Evert 1.5 +setting

4.5 +paticipantin
+participant 1

+spacial-location-of | 0.7

Space-Region

+spacial-location

+temporal-location-of | 0.7

Temporal-
Region

1.7

Fig. 4. Role-Task ontological design pattern defined in DynamOnt using DOLCE concepts

Each of these patterns acts as a modelling template to describe how agents in vari-
ous roles, participate in situations and use information objects for communication.
The use of these patterns is similar to the design patterns in object oriented program-
ming and it should lead to a more homogeneous way of modelling intelligent agents,
roles and activities in any environment. Figure 4 shows the Role-Task pattern, which
is defined in DynamOnt methodology by using the DOLCE concepts.

One of the early lessons of our ontology work is that a common set of knowledge
engineering methods would be desirable. Methontology appears to be the most
straightforward approach to semiformal modelling, but lacks the foundational rigour
of DOLCE which is better supported by the ontological patterns of DynamOnt.
Methontology on the other hand, offers good ways to express axioms and rules which
are absolutely necessary constructs for designing real-world semantic applications.

3 Objectives, ImportNET System Architecture, Usage and
Validation Scenario

The ImportNET project is addressing on the one hand, the issue of creating a support
environment for virtual enterprises in cross-domain engineering and on the other hand
the problem of cultural differences and misunderstandings which may lead to com-
munication failures between engineers who try to collaborate with each other.

3.1 Objectives and Initial Findings

The technical approach is to first create the collaboration environment by integrating
the knowledge models of the three engineering domains and by creating a layer of

200 V. Damjanovic¢ et al.

supporting middleware to integrate existing engineering tools (CAE, CAD/CAM,
CASE). In parallel, a knowledge base of intercultural communication problems is
being developed and the communication flow between engineers is analyzed, along
the mechatronic product life cycle. The communication will be modeled explicitly, in
the collaboration ontology which specialises the domain ontologies for a specific
collaboration between some firms developing some defined product. The intercultural
knowledge base will be indexed in such a way as to enable the triggering of “warn-
ings* when there is a likelihood of a misunderstanding occurring in a communication
act along the lifecycle.

For the integration of the engineering tools into a collaborative lifecycle support
environment it will be necessary to create ”wrappers‘ which translate the proprietary
or otherwise incompatible data formats into semantically comparable intermediate
representations. To automate some of this translation process an Intelligent Adapter
Generation Tool (IAGT) is envisaged. This tool will use compiler-compiler tech-
niques to specify the semantic relationships between a proprietary model and the
intermediate representation and to create from this specification, two-way translators
which can be integrated into the collaboration environment.

The integration of the three domains has already been described: we use DOLCE
as a foundational ontology and specialize the D&S module to the needs of modeling
processes in cross-domain engineering. In order to make it easier for organisations as
well as for technology integrators, to specify a workflow for a new collaboration, we
make use of the OIT. This tool will offer semantic templates (“ontological patterns*)
to the integrator, which can be specialised for the needs of a new collaborative engi-
neering project.

3.2 ImportNET System Architecture and Issues Around Semantic Modelling

The system comprises of a knowledge based back-end called SAS (Semantic Applica-
tion Server), and a client front-end application called MDET (Multi Domain
Engineering Tool). The MDET offers different engineers their preferred view of the
overall system and it mediates potential misunderstandings by being aware of the
communication acts between the participants of the collaboration. One of the roles of
MDET will be to mediate between mechanical engineering views (which are typically
3D) and electronic views (normally 2D). The challenge lies in merging the internal
representations of external engineering design tools (¢CAD and mCAD) into a com-
mon one with uniform semantics. This resolution will be done in the SAS with the
help of the tool adapters (i.e. semantic wrappers) constructed with the help of the
IAGT. The SAS plays the role of a semantics-based middleware which connects the
external tools to the ImportNET communication and collaboration processes. We
have identified three issues that such a system needs to address: a) the role of infer-
ence support; b) the need for semantic web services; c) the degree of interoperation
between current engineering tools.

Role of inference support: current CAD tools are based on object-oriented, often pro-
prietary database back-ends. Similarly, even most of the open research systems in the
field of engineering are based on object-oriented data models. Any semantic interop-
eration approach is faced with the dilemma that one has to either replicate the data in
a Semantic-Web enabled knowledge base in order to use inference engines or, to

Developing Ontologies for Collaborative Engineering in Mechatronics 201

reimplement some inferencing capability on top of the existing OO datastore. This is
a general problem facing Semantic Web applications when they need to interoperate
with software in the commercial domain.

The need for semantic web services in ImportNET: the implementation architecture of
ImportNET could be envisioned as an open, yet collaborative lifecycle support envi-
ronment in which different Semantic Web Services can find each other automatically.
This kind of ImportNET system architecture could be based on the Web Service Exe-
cution Environment (WSMX) core architecture, which enables discovery, selection,
mediation, invocation and interoperation of Semantic Web Services [14]. However, it
is not yet clear whether this kind of spontaneous semantic service integration is really
needed for ImportNET, because the philosophy behind the system is a planned col-
laboration between known organisations and systems.

Degree of interoperation between current engineering tools: we see a major hurdle
for the envisaged system still, in the complex yet proprietary solutions that are cur-
rently prevalent in engineering domains. This necessitates firstly, the approach of
building an external semantic application server with its associated problem of infer-
ence engines versus object-model. Secondly, it also bears the danger of "research at a
dead end" because we cannot research semantically interoperable models when the
actual target application software is designed to hinder or defeat, interoperation, for
reasons of market protection. One such example is that object structures are based on
OIDs which are generated afresh each time a design is loaded and there are only lim-
ited ways of exchanging typed structural (schematic) information between different
tools. This leads to a need for effectively reverse-engineering some of the functional-
ities of the target tools which is neither a worthwhile research question nor strictly
legal in some cases. There is, however, an interesting side effect to this issue: seman-
tic modelling points directly at methods by which commercial players are trying to
protect their intellectual property and market share. The legal system may one day
employ semantic modelling to determine what kinds of protection are fair and which
methods of protection are detrimental to a competitive market.

3.3 Usage and Validation Scenario for Collaborative Mechatronic Design

As described above mechatronic engineering deals with collaboration across different
domains. Each of these engineering domains is well supported by a range of engineer-
ing tools which cover at most the domain itself, but typically focus on a specific as-
pect e.g. the design of physical artefacts or the specification of automated tests for an
electronic device. The focus of ImportNET and consequently of the case studies in
ImportNET is on the design phases of the mechatronic lifecycle and the cross domain
cooperations. The mechatronic life cycle coordinates the different tasks of the mecha-
tronic engineering domains and the engineering tasks of one domain often influence
the engineering tasks of another domain. As a result, the precise hand-over points of
these tasks are sometimes not clear and coordination conflicts may occur. Against that
background several aspects have to be studied and validated through use cases:

— During design many documents (e.g. output of CAD tools) need to be exchanged
between the mechanic and the electronic engineering domains. Most of the docu-
ments are in a proprietary format and are therefore not easily imported by other

202 V. Damjanovic¢ et al.

tools. Based on known exchange formats such as DXF* and STEP® ImportNET
analyses where data can be automatically exchanged during cross-domain
collaboration.

— Designing a mechatronic product involves engineering experts from different do-
mains and conflicts can occur for several reasons. Often conflicts have simply a
factual basis where e.g. a mechanic and an electronic engineer have to clarify
technical issues. The mechatronic design process comprises in these cases the co-
ordination of cross-domain issues with respect to spatial, temporal or causal rela-
tionships. The coordination between mechanical and electronic engineering can be
very intricate because of interactions in space and in behaviour (e.g. thermal or
electromagnetic dependencies).

— Companies are often from different countries and conflicts can also be caused by
different cultural backgrounds (e.g. different time conceptualisations or communi-
cations habits). This may lead to misunderstandings when messages or behaviours
are being interpreted in different ways.

ImportNET is developing two use cases where engineering experts (mechanic, elec-
tronic, software, testing) from different companies and different countries are
involved. The basis for the description of the use cases is a general mechatronic life-
cycle model which will be tailored firstly to the needs of the participating companies
and secondly to requirements of the target mechatronic product which will be de-
signed between these companies.

4 Conclusions

Creating a cross-domain engineering environment requires - irrespective of whether
one uses a Semantic Web based approach or not - some understanding of the underly-
ing domains and also an understanding of the maturity of the field. In the case of
mechatronics, we found a mixed situation: each of the domains has relatively mature
software tools for the design of new artefacts and the domain of manufacturing over-
all, has relatively mature standards such as STEP for the description of products.
What is clearly missing is the integration of the design tools along the product life
cycle and in the case of cross-domain engineering, the ability to transform the repre-
sentations of one design tool into semantically equivalent representations for the per-
spective of a corresponding tool in the other engineering domain. Initial interviews
with senior engineers revealed that up to a third of the development cost originates in
the area of testing and that there is large scope for improvement in this phase of the
product life cycle.

A first analysis of candidate ontologies revealed a good number of conceptual
models not only at varying levels of generalisation but also with varying angles on the
purpose of the system and hence, the choice of concepts.

There are at least three challenges in the project: defining a coherent set of partial
ontologies, integrating a knowledge base of intercultural communication conflicts into
the workflow model and integrating a Semantic Web Service architecture with the

? Drawing Exchange Format.
? STandard for the Exchange of Product model data.

Developing Ontologies for Collaborative Engineering in Mechatronics 203

process model of the mechatronic domain to ensure interoperation during the mecha-
tronic design phase. In this paper, we have described our approach and methodologi-
cal choices with respect to the development of the ontologies and we have outlined
the implementation architecture for the case of Semantic Web Services. We have not
addressed the integration of the intercultural issues yet. Another issue which is still to
be addressed concerns the suitability of DOLCE as a foundational ontology for do-
mains such as mechanical engineering and electronics. The current view is that
DOLCE is a good choice as long as we do not need to engage in "deep modelling*“i.e.
the modeling of causes and effects or of constraints in physical systems. However,
this begs the question whether current Semantic Web modelling is capable of integrat-
ing well, with any models that offer ”analogue®, i.e. numerical or function-based
simulation of system behaviour.

Acknowledgments. This work has been supported by the ImportNET project (IST-
2006-033610). We would like to thank the referees for their helpful comments. We
also acknowledge fruitful discussions with our colleagues Miklds Sz6ts, Alexander
Mahl, Oliver Hornberg, Ron Jamieson and Rupert Westenthaler.

References

1. DynamOnt Deliverable 201: First specification of Methodology and Workbench for Dy-
namic Ontology Creation (2006)

2. Thramboulidis, K.: Model Integrated Mechatronics — Towards a new Paradigm in the De-
velopment of Manufacturing Systems. IEEE Transactions on Industrial Informatics, Vol.
1, No. 1 (2005) 54-61

3. Yoshioka M.: Physical Concept Ontology for the Knowledge Intensive Engineering
Framework. In Advanced Engineering Informatics, Vol. 18, No. 2 (2004) 95-113

4. Devedzi¢, V.: Understading Ontological Engineering. Communications of the ACM, Vol.
45, No. 4 (2002) 136-144

5. Heverhagen, T., Tracht, R.: Using Stereotypes of the Unified Modeling Language in
Mechatronic Systems. In Proceedings of the First International Conference on Information
Technology in Mechatronics, ITM'01, Istanbul, Turkey (2001) 333-338

6. Bradley, D.: What is Mechatronic and Why Teach It? International Journal of Engineering
Education (2004) Online: http://findarticles.com/p/articles/mi_qa3792/is_200410/ai_
n10298146/g_1 (Last access: 2007-03-13)

7. Gero, J.S., Maher, M.L.: A Framework for Research in Design Computing. In Martens, B.,
Linzer, H., and Voigt, A. (eds), ECAADE'97, Osterreichischer Kunst und Kulturverlag,
Vienna (1997) Online: http://people.arch.usyd.edu.au/~john/ publications/1997/ecaade/ in-
dex.html (Last Access: 2007-03-13)

8. Masolo, C., Borgo, S., Gangemi, A., Guarino, N.: Ontology Library. WonderWeb Deliver-
able D18 (2004) Online: http://wonderweb.semanticweb.org/deliverables/documents/
D18.pdf (Last access: 2006-10-23)

9. Gangemi, A., Borgo, S., Catenacci, C., Lehmann, J.: Task Taxonomies for Knowledge
Content, METOKIS Deliverable D07 (2004)

10. Mika, P., Oberle, D., Gangemi, A., Sabou, M.: Foundations for Service Ontologies: Align-
ing OWL-S to DOLCE, In Proceedings of the 13th International Conference on World
Wide Web 2004 (2004) 563-572

204

11.

12.

13.

14.

V. Damjanovic¢ et al.

Nagypil, G.: Methodology for Building SWS Ontologies in DIP. DIP Deliverable D3.11
(2005)

Fernandez M., Gémez-Pérez, A., Juristo, N.. METHONTOLOGY: From Ontological Art
towards Ontological Engineering. In Proceedings of the AAAI Spring Symp. Series,
AAAI Press, Menlo Park, California (1997) 33-40

Sofia Pinto, H., Staab, S., Tempich, C.: DILIGENT: Towards a Fine-Grained Methodol-
ogy for Distributed, Loosely-controlled and Evolving Engineering of Ontologies. In Pro-
ceedings of the ECAI 2004 (2004) 393-397

Zaremba, M., Moran, M., Haselwanter, T., Lee, H-K.: WSMX Architecture, WSMX De-
liverable D13.4 (2005)

Media, Politics and the Semantic Web
An Experience Report in Advanced RDF Usage*

Wouter van Atteveldt, Stefan Schlobach, and Frank van Harmelen

Department of Artificial Intelligence
Free University Amsterdam (The Netherlands)
De Boelelaan 1071, 1071 HV Amsterdam
{wva,Frank.van.Harmelen}@cs.vu.nl, schlobac@few.vu.nl

Abstract. The media play an important role in the functioning of our
society. This role is extensively studied by Communication Scientists,
requiring a systematic analysis of media content. The methods developed
in this field utilize complex data models and background knowledge.
This data is generally represented ad hoc, making it difficult to analyze,
combine and share data sets.

In this paper we present our work on formalizing this representation
using RDF(S). We discuss the requirements for a good representation,
highlighting a number of non-trivial modeling decisions. We conclude
with a description of the resulting system and the benefits for a recent
investigation of the 2006 Dutch parliamentary campaign. This case study
shows concrete improvements for annotating, querying, and analyzing
data, but also indicates a number of aspects that were more difficult to
model in RDF(S), contributing to the discussion on modeling with and
improving RDF(S) and associated tools.

1 Introduction

The media play an important role in our society. Citizen access to information
about world events is almost exclusively mediated, making the press a vital part
of our democracy. This underscores the need for the systematic study of the
media done by Communication Science [I]. Relational Content Analysis (RCA)
conducts this systematic analysis by representing news content as a graph linking
the relevant actors and issues, which can then be used as input for further
analysis [2]. This representation is currently mostly informal forcing answers
to complex queries to be composed in a procedural way. Moreover, there are
differences in the information captured by various RCA methods and in the
vocabulary used for existing data sets. These aspects make it difficult to combine
and reuse data.

In this paper we describe a recent case-study on how current Semantic Web
technology can help to overcome these limitations. Since 1994, Communication

* The authors would like to thank Mark van Assem for his insightful contributions to
the discussions leading to this paper and for his comments on the final version. We
also thank the reviewers for their thorough reading and useful suggestions.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 205 2007.
© Springer-Verlag Berlin Heidelberg 2007

206 W. van Atteveldt, S. Schlobach, and F. van Harmelen

= e Text
— Tabular
Text Collections L (partially)
(coded manually or Repositories Shared ontology Query Results

automatically) __and data model

Fig.1. A Framework for Querying Heterogeneous News Sources

Scientists at the Free University and the University of Amsterdam have con-
ducted an extensive study of the influence of the media coverage of Dutch elec-
toral campaigns on public opinion, most recently in Nov. 2006 [3]. These studies
were based on the NET method, an RCA framework introduced in [4].

As visualized in Fig.[Il in our framework relational content data is formalized
in a (partially) shared data model and vocabulary based on RDF and RDFS, and
stored in Sesame repositories. Standard RDF query languages (such as SeRQL
or SPARQL) can be used to express queries using the least common denominator
of the models and vocabularies of the used data sets. The results of these queries
can be used as input for quantitative analysis, to retrieve the original articles for
qualitative review, and visualized within the graphs that represent these articles.

This paper describes a use case, and provides a detailed experience report,
of an intricate data analysis in a highly complex domain, with many non-trivial
modeling decisions. It discusses the literature on a number of aspects where
the representational and inferential requirements stretch the possibilities of the
current standards. This case study serves both to underscore the use of Semantic
Web technology to practically formalize a complex domain and to point out a
number of issues on which there is still room for improvement.

In Sect. 2 we will briefly describe Relational Content Analysis and the NET
method, and give a list of desiderata for a respresentation and inference mech-
anism for this domain. Section [is the main section of this paper, containing
an overview of the existing options and work in progress on each point, and de-
scribes the modeling choices made to satisfy the requirements. Section] outlines
the system that was created and the benefits that it has brought. +

2 Content Analysis as the Domain of Formalization

One of the goals of this paper is to find a suitable framework for formalizing the
data produced by Relational Content Analysis (RCA). This section will outline
what Content Analysis and RCA are, and then describe a particular method, the
NET method, in more detail. Finally, a number of requirements for formalizing

Media, Politics and the Semantic Web 207

this method will be listed, which will serve to guide the discussion in the next
section.

2.1 (Relational) Content Analysis

Content Analysis is a social science method to analyze textual content by deter-
mining the occurrence of social scientific phenomena [I]. These phenomena are
generally complex and subjective in nature, making the extraction a difficult task
to automate (but see [5]). For this reason Content Analysis often uses human
coders to read the text and directly indicate the presence of these phenomena.

Relational Content Analysis works by identifying smaller concepts, such as
individual actors and issues, and coding the relations between these concepts
as a graph [2]. The social scientific concepts are subsequently extracted as pat-
terns or metrics defined over this graph. This two-step approach makes the data
less dependent on the specific research question, creating a greater potential for
sharing and reusing data.

Realizing this potential is difficult because we are dealing with data sets with
heterogeneous data models and vocabularies. A formal representation that allows
us to standardize both syntax and semantics of these data collections while
remaining flexible enough to allow for different methods would be of great value
in building the large data sets needed for statistically analyzing the complicated
interaction between media and politics.

2.2 Relational Content Analysis Using the NET Method

The NET method [4] is the Relational Content Analysis method used in our case
study. It has a fairly complex data model compared to other Relational Content
Analysis methods [6]. Moreover, it includes a set of rules to make inferences
about triples such as a form of transitivity. Furthermore, normal practice in
NET is to annotate using very detailed concepts (such as ‘Balkenende’) and
then aggregate to more general concepts (such as ‘Politician’) using a taxonomy.

In NET, sentences are coded as < subject, predicate, object > triples. The
subject and object are drawn from a predefined hierarchy of concepts. The pred-
icate is complex, consisting of a type, and quality. The type indicates the kind
of sentence code; possible types include ‘causative’, ‘action’, and ‘affinitive.’
Quality is a number that indicates the strength and direction of association
between subject and object and ranges from -1 to 1.

Additionally, each triple can be augmented with two pieces of information.
An angle can be specified for some statements, which captures the reason of a
disagreement or action in sentences such as “Blair and Brown disagreed about
Iraq. 7 Also, some sentences in a newspaper are quoted or paraphrased sources:
“Blair stated that it was certain Saddam had WMD”. In such sentences, the
optional quoted source argument captures the source of the statement.

As an example, consider the newspaper excerpt in Fig. The headline is
coded as a reciprocal negative relation between the political blocks Left and
Right. The first sentence of the lead is more complicated: The main message is
that incumbent prime minister Balkenende (CDA / Christian Democrats) and

208 W. van Atteveldt, S. Schlobach, and F. van Harmelen

K Hard confrontation Right and Left \
The champions for the premiership, Labor leader Bos and Christian Democrat leader Balkenende,

attacked each other over poverty and health care. Bos is needlessly scaring people, according to the
prime minister. [..] Bos: “Good health care costs money, so we should invest more.”
Source Subject Relation Object Angle
—1 affiniti .
Left «—— 2" Right
—.7 affinitive
Bos «——————— Balkenende Poverty
—.7 affiniti
Bos «—— =, Balkenende Healthcare
—.7 acti
Balkenende: Bos — - 2nE,
Bos: Invest in Health

Bos
Source: De Telegraaf, 22 November 2006 (tr.auth). Reading: sentence 3 means
\that according to Balkenende, Bos is acting against the good of the citizens J

Citizens
Healthcare
Invest in Health

+.5 causative
e e

=R W NN

+1 affinitive
—_—

Fig. 2. Example article with NET annotation

the challenger Wouter Bos (PvdA / Labor Party) are fighting, but it is also
stated what they are fighting about: the issues Poverty and Health Care. In
the next sentence, Balkenende states that Bos is scaring people, which is coded
as Bos acting against the Dutch citizens with Balkenende as source. The final
sentence expresses two relations: according to Bos, investing more money would
be good for the Health Care, and Bos wants to invest money in Health Care,
here coded as an affinity (issue position) relation between Bos and Health Care
Investments.

Currently, NET-encoding of sentences is performed manually; research is per-
formed to automate this but due to the complex nature of the information this
has yet to lead to satisfying accuracy [7]. Given the cost of manual annotation,
this difficulty in extraction only underscores the need to share and reuse existing
data.

2.3 Requirements

This section will list a number of aspects of NET that we need to be able to
capture in a formalization framework.

Representational Requirements. Relational Content Analysis methods use
triples as the main primitive, but these triples are enriched in various ways.
R1: Background Knowledge A central feature of the NET method is that
data is coded at a very detailed level, and aggregated to higher level theoretical
concepts. This aggregation requires background knowledge, for example party
memberships (Bos member-of Labor), political functions (Balkenende leads Cabinet),
and is-a relations (FreeHealthCare is-a Healthlssue). This needs to be encoded and
the concrete annotations need to be expressed in terms of this background knowl-
edge. Moreover, although the taxonomies currently used in NET are purely hi-
erarchical it would be useful if this could be relaxed. For example, Balkenende

Media, Politics and the Semantic Web 209

is both a member of the CDA and the prime minister, and depending on the
research question we want to use either fact for the aggregation.

R2: Statement types NET and other Relational Content Analysis methods use
qualitatively different relations. For example, the statement “Bos and Balkenende
attacked each other” is affinitive while “Good health care costs money” is causative.
In Social Networks terminology these are called multiplex networks [g].

R3: Quantitative value In addition to different statement types, Relational
Content Analysis often includes a quantitative indicator of the strength and
direction of a relation. The statement “.. we should invest more” from the example
is positive (+0.7) while the statement “Hard confrontation Left and Right” is strongly
negative (-1). In Social Networks terms, graphs labeled with values are called
signed and/or valued networks.

R4: Article Metadata To trace the evidence for an analysis and for time based
analyses it is necessary to attach metadata to annotations, including publisher
and publishing date, location in the newspaper, and a link to the original article.

R5: Extra Arguments Sometimes we need to code certain additional aspects
of a relation. For example, in the sentence “.. attacked each other over poverty”,
we want to capture the topic of the disgreement as well as the fact that they
disagree.

R6: Quoted Sources The example sentence “Bos: ‘good health care costs money,
so we should invest more” contains a positive causal relation between Investing and
Health Care, but this relation is not directly stated by the newspaper but rather
by a quoted source. In order to analyze such sentences correctly, it is necessary
that the contained triples are accessible for analysis, but they should be kept
separate from the main graph.

Usage Requirements. The requirements above all specify what kind of infor-
mation we need to be able to represent. Next to these requirements there are
also a number of things we need to be able to do, mainly while analyzing the
annotated media material. These ‘usage’ requirements are outlined below.

R7: Shareability One of the purposes for formalizing NET is to make it easier
to share and combine data sets. Therefore, it has to be possible to combine data
sets that differ both in exact data structure and in the used vocabulary.

R8: Time-bound roles In Content Analysis, the social and political roles played
by actors are generally considered background knowledge and remain static dur-
ing a project. However, social roles are dynamic and especially for longitudonal
analyses we need to be able to represent the temporal validity of political roles

R9: Disjoint Categorization Often, we want to aggregate the nodes in our media
data to higher-level categories. These categorizations generally have to be disjoint
and exhaustive. This is necessary to avoid counting one instance twice and is also
assumed by many statistical analyses. Therefore, we want to be able to express dis-
joint categorizations and to check or prove that a categorization scheme is disjoint
and exhaustive given the structure of the background knowledge.

R10: Extraction As stated above, it is often useful to categorize the nodes in the
relational network into higher level categories. Therefore, it is necessary to have a
formalization that allows extracting the network data using such categorizations.

210 W. van Atteveldt, S. Schlobach, and F. van Harmelen
3 Formalizing the NET Method

As described above, the NET method is a Relational Content Analysis (RCA)
method with a fairly complex data model and usages. The relational nature of
NET and the need to combine and share data sets with different structure and
vocabulary make Semantic Web technologies a logical choice for formalizing this
domain. This section will describe the modeling choices we made to meet the
requirements listed in the section above.

3.1 RI1-2, R7: Low Hanging Fruit

Due to their relational nature, Semantic Web technologies seem a natural match
for the formalization of RCA. This was confirmed by a number of requirements
that were fulfilled easily and elegantly.

Background Knowledge (R1) Background knowledge can be expressed elegantly
using RDF(S), using either rdfs:SubClassOf statements or custom vocabulary.
RDF(S) places no restriction on the types and amount of relations between
concepts, allowing for multiple inheritance and different relation types.

Statement types (R2) In RDF, the predicative part of triples consists of an RDF
resource that can be described in the same way as other resources. This means
that it is natural to express multiplex networks in RDF.

Shareability (R7) RDF(S) does not solve the conceptual and substantive prob-
lems of combining heterogeneous data sets. It does, however, remove a number
of technical difficulties. Globally unique names using URI’s minimize vocabu-
lary clashes while the subclass and subproperty mechanisms facilitate mapping
specific vocabulary onto more general terms.

3.2 R3-6: Enriching Triples with Extra Information

Requirements R3-6 boil down to a single wish: enriching triples by adding extra
information. This is difficult, as RDF is meant to describe resources, not triples:
triples do not have URIs and hence cannot be part of triples. We are not the first
to signal this difficulty: [9] cites the need for enriching triples to describe event
data, and a number of authors want to use RDF for describing RDF documents,
for example for reasoning about provenance and trust [10].

RDF(S) allows some form of adding information to existing triples. Trivially,
we can replace each of the nodes in a triple by a node carrying more information
and point to the original node. In RDF'S; it is possible to do so transparently by
making the new node a subclass or subproperty of the original node. Addition-
ally, the RDFS specification includes a reification mechanism [I1]. Essentially,
an anonymous instance is made to represent the statement, and standardized
vocabulary is used to define the subject, object, and predicate of the relation.
The anonymous instance, being a first class citizen, can then be used in further
statements. According to the definition, a reified statement does not necessarily
imply the original statement: it is describing a hypothetical event.

Media, Politics and the Semantic Web 211

Another solution is using the n-ary relation design patterns described in [12].
This is similar to reification in that a new node is created that represents the
relationship, but the reification vocabulary is eschewed since “in n-ary relations
[..] additional arguments in the relation do not usually characterize the statement
but rather provide additional information about the relation instance itself” [12].
This has the same disadvantage as reification (the original triple semantics are
lost) but additionally it has no formal meaning or standardized vocabulary.

To overcome these problems, a number of authors have suggested extending
the notion of a triple to include a fourth place, often seen as a context marker
[QTOIT3ITAITS]. For example, [14] propose a context mechanism that explicitly
assumes the context marker to indicate provenance and they include a compli-
cated system of lifting and aggregating mechanisms to combine RDF documents
from different sources. On the other extreme, [OI3] support replacing triples by
quadruples without restricting the interpretation of such triples.

A proposal that seems to be gaining ground is Named Graphs [I0]. This
proposal also adds a fourth places to the triple and defines the semantics of this
added element but does not prescribe the interpretation in the way [14] does.
Named Graphs semantics allow for nested graphs and they propose a predicate
for indicating nesting. The main disadvantage of this method is that it is not
standardized, leaving tool support and declarative semantics to be desired. Also,
as the intended meaning of the context is the containing graph, Named Graphs
add extra information to the whole statement rather than to the predicate much
like reification does.

The proposals for adding information to triples in the literature are diverse.
Part of the reason for this diversity is that the problem they are trying to solve is
diverse. We think that there are two main factors on which the proposed solutions
diverge: the meaning of the extra information with respect to the original triple;
and the opacity of the enrichment. In terms of meaning, we distinguish four
possible relations of the new information x to the existing triple Rab:

- R*ab: Adding information about the predicate of the triple;

- Ra®b: Adding information about the subject or object of the triple;
(Rab)®: Adding information about the whole triple; and

- Rabzx: Adding an extra argument to the triple on equal footing with the
subject and object.

In terms of opacity, we distinguish between transparent and opaque additions:

- Transparant additions preserve the original meaning of the triple in the
graph, meaning that applications that do not interpret the richer relation can
still see the original relation; while

- Opaque additions remove the original triple from the graph, meaning that
it will not be visible to an application that does not (or cannot) interpret the
enrichment technique.

Depending on the modeling requirements, we want to add certain information
to a triple in a certain way. For example, a quoted source in a newspaper

212 W. van Atteveldt, S. Schlobach, and F. van Harmelen

should be an opaque statement about the whole triple, while quality should
be a transparant addition to the predicate. Thus, rather than looking for a sin-
gle ‘correct’ solution we think that multiple options are needed to express these
differences in enrichment. Table [I] categorizes the discussed proposals in these
terms and serves as the basis for making the appropriate modeling choices. The
proposal by [14] is left out of this table because its purpose is strictly describing
graphs rather than enriching triples

Table 1. Suitability of discussed mechanisms for expressing different triple enrichments

Transparent Opaque
Enriching Enriching Enriching Enriching Enriching Enriching
an the the Extra an the the Extra

argument predicate triple argument argument predicate triple argument
Ra”b R”ab (Rab)” Rabx Ra”b R”ab (Rab)* Rabx

RDF +1 +

RDFS + +?! 41 +

N-ary +2 +
Reification + 42
Quadruples +3 +3

Named Graphs + +

'Adding a dicrete categorization is possible, but adding quantitative information is very difficult.
?N-ary patterns are explicitly intended to express an extra argument to a statement, while reification
is intended to express information about a statement, making other use of these solutions difficult
to interpret. 3Since there is no specified interpretation of the extra argument it is not possible to
distinguish between these two cases.

We will now reconsider the requirements from the previous section in terms of
Table Table[Il As listed in the previous sections, the basic unit of information is
a triple representing a media relation (eg. Bos dislikes Balkenende). To this triple
we add information to quantify (R3) the predicate, add extra arguments (R5) to
the relation, specify the source of a quoted statement (R6), and link the media
statement to metadata (R4) such as publisher and publishing date. As stated
above, quoted sources should be opaque as the quoted statement is not directly
asserted by the newspaper. The other additions should all be transparent: the
original triple is a valid part of the graph with or without the extra information.
The quantification is an enrichment of the predicate, but very difficult to repre-
sent using subproperties because of the quantitative and unrestricted nature of
the information. The extra arguments and quoted source both add extra argu-
ments that are subordinate to the main triple, falling somewhere between the
intended meaning of reification (statements about triples) and n-ary relations
(multiple arguments of equal weights). The metadata is adding information to
the whole triple, and fits in the use case of reification and named graphs.

Surveying the table above, there is no perfect method for adding information
to triples. Named graphs have the desired transparency but offer no solution for
distinguishing between extra arguments and metadata. Quadruples allow extra
arguments in a natural way but this comes at the expense of flexibility and se-
mantic clarity. Within the existing standards, reification covers adding metadata

Media, Politics and the Semantic Web 213

and a case could be made for using reification to represent additional arguments.
N-ary relations are better suited for the additional arguments but suffer from the
lack of a standard vocabulary. It is possible to mix and match mechanisms, but
this comes at the expense of increasing complexity and if multiple non-standard
mechanisms are mixed it will be difficult for third parties to understand what
we mean.

Solution. For the current application, we decided to stick to one representation
for all enrichments. Since tool support for the proposed extensions is still limited,
and the intended meaning of our enrichment is closer to meta-statements than
to adding arguments, we decided to use RDFS reification.

3.3 R&8: Dynamic Roles

Social Roles, such as being a party member or fulfilling a political function, are a
complex topic that has received extensive attention in the literature [16,17,18,19,
20]. As described by [16], two defining characteristics of roles are that they
are anti—rigicﬂ, and dynamicﬁ. In this definition, background knowledge such
as party membership and political office can be classified as knowledge on role
memberships of actors.

[I7] surveys a large body of literature and notes that there are three main
approaches to representing roles. The first approach is calling the places in a
predicate roles, i.e. in a predicate memberO f (member, group) the roles member
and group are implied. This corresponds to creating a simple RDF relation be-
tween the member and the group. Using this mechanism, it is impossible to
represent temporal constraints on roles, and such statements should be consid-
ered snapshots of a dynamic relation rather than descriptions.

The second approach is to make the role a subtype of the natural type corre-
sponding to it. This means that playing the role of being a PvdA member means
creating a subclass of politician, the PvdAMemberPolitican. As described in [17],
this leads to a number of complications and does not solve the representation
problem inherent in the first approach.

The third approach is creating an adjunct instance representing the relation,
which is an instance of the role type but unique for each instantiation. Since
this promotes the role membership to first class citizen, it allows for further
specification such as temporal aspects. In RDF this can be described as a (blank)
node representing the membership, with relations to the two role players and the
role type, which is also the approach taken by in [21]. Interestingly, if the RDF
reification vocabulary is used to denote the integral aspects of the role, this is
equivalent to reifying a simple statement expressing the relation directly.

Solution. In the terminology introduced in section [3.2], we want the enrichment
of the original memberO f predicate to be opaque since the roles are invalid
outside their (temporal) context. This makes creating adjunct instances by using
reification a natural choice for representing social roles.

! The role players do not depend on their playing the role for their existence.
2 Roles change over time and there is no 1-on-1 relation between roles and players.

214 W. van Atteveldt, S. Schlobach, and F. van Harmelen

3.4 R9: Disjoint Categorization

As described above, adding background knowledge and using this knowledge to
link ‘data level concepts’ to ‘theory level concepts’ can be done elegantly using
RDF. A frequent use case in Content Analysis is to define a set of categories
on the media data, for example statements with an opposition politician as
subject, with a coalition politician as subject, and statements with a societal
actor as subject. Counts of such statements per period are then used either in
statistical analysis or presented in a table. Both uses require the categories to be
disjoint and exhaustive with respect to the higher category, in this case ‘actor
statements’. In other words, the higher category should be partitioned by the
proposed categories.

Using model checking (e.g. SPARQL queries), it is trivial to check whether
a categorization, expressed as a set of requirements, is a partitioning given a
concrete data set. By pair-wisely conjoining the requirements disjointness can be
checked, and by negating the whole conjunction exhaustiveness can be checked.

In some cases, such as presenting data real-time on a web page, we would like
to be able to prove that such a categorization will always be a partitioning. In
RDF this is impossible due to the fact that cardinality, disjointness, and negation
cannot be asserted, so it is impossible to express the constraint that a politician
is a member of exactly one party or that societal actors are all non-political ac-
tors. In OWL these restrictions can be expressed, and proving disjointness boils
down to proving that each pairwise conjunction of the categories is unsatisfiable.
Exhaustiveness can be shown by proving that the higher category implies mem-
bership of one of the lower categories. More formally, proving that the categories
{A; ... A,} partition B in the ontology O means proving O = A; M A; =L for
alli#j,1,j<nand O = BC A, U...UA,.

Solution. For the current application, we decided to stay within RDF and only
use query-based model checking of the disjointness.

3.5 RI10: Categorizing and Extracting Data

As described above, it is useful to define categorization schemes and aggregate
the media data to a higher level using such schemes. A scheme will generally
consist of a high level category and all its instances and parts and members of
these instances. However, as described in Sect. [3.3] these part-of and member-of
relations will often be dynamic and represented using adjunct instances. There-
fore, we need to check whether a role is actually valid at the publishing date of
the article. Moreover, as described in Sect. B4, it is often necessary to include
negations in the definition of categorization to prevent actors with multiple roles
from being counted twice.

This leads to a complex definition for these categories. Since they will often
include negation, they cannot be represented in RDF(S). It would be possible to
represent them in OWL, but this requires complex concrete domain reasoning for
the date comparisons. Practically, it is possible to conduct such categorizations
using closed-world model checking in RDF, for example using a SeRQL query.

Media, Politics and the Semantic Web 215

(Select PublishDate, Subject, SCat FROM\
net:Annotation From [< Date] To1 [> Date] {} rdf:type {net:Annotation};
ritiype_g T D2] rafe:subject (Subject):
) . net:to dc:subject {} dc:date {Date},
de:Subject ; netfro rdfs:object {} rdf:type {net:partOf};
| rdfs:subject dc:Subject rdfs:Subject {Subject};
de:Date rdfs:predicate net:from {Froml}; net:to {Tol};
‘ Date ‘ ‘ Subject / sergl:directType rdfs:Object {SCat}

netpartof serql:directType {net:Issue}
(netpartel) [0 rdtitypa {netipaseof);

rdfs:Subject {Subject};

(optional path) | net: from (From2}; net:to {To2};
[From2 [< Date]] 4 . .oy [To2[>Date] | rdfs:Object (X}
w_ +SUbS A serql:directType {net:Actor}
etfrom et A XOSNULLT L o(_netactor) WHERE From2 < Date
b rdf:type AND To2 > Date]
Tdfs:object WHERE Froml < Date
| rdfs:predicate(__netpart of | AND Tol > Date
\ AND X IS NULL)

Fig. 3. The (partial) extraction query, represented visually and in SeRQL

This results in a query such as shown in Fig. Bl where the Subject of a statement
is categorized as an issue but only if it is not categorizable as an Actor. To create
the real query, this has to be duplicated for subject and object and a UNION
query has to be created joining all category definitions.

Solution. For the applications described below we used SeRQL queries to ex-
tract data, using query rewriting to hide some of the query complexity from
the user. If we describe the categorizations in OWL it should be possible to
automatically rewrite the OWL definitions into RDF queries (assuming a closed
world), or cache the categorization results from the DL reasoner.

4 Implementation

The sections above outlined the challenges encountered while modeling the Re-
lational Content Analysis domain and the possible solution for these challenges.
This section will briefly describe the actual systems that were built around the
RDF representation, especially the annotation tool, the browser /visualizer and
the extractor.

4.1 Data Model and Ontology

This section will describe the data model that resulted from the choices described
in Sect. Bl Fig. [visualizes this model. The main element of the data model,
the original triple of the relational method, is now a reified triple, making the
annotation (a subclass of rdf : Statement) the central element. Annotations have
a subject, predicate and object as required for reification, and also have the
quantitative value ‘connection’ and an angle. On the left hand side, annotations
are connected to textual units (sentences) from an article using the dc:subject,
and metadata about this article are recorded. Additionally, the coder, the creator
of the annotation, is recorded.

On the right hand side the subject, object, and predicate are all drawn from
the ontology, having net : entity as its base. This ontology contains an IS-A hier-
archy of (political) actors and issues together with role information such as party

216 W. van Atteveldt, S. Schlobach, and F. van Harmelen

(" Article Metadata Media Data Object Metadata)

- sublssicOr ont:Health rdftypem(ont:theme
Telegraph -+1 onj:sublssue!
rspeciene or t'sublssueofrdf:wpe‘ ontdrection
2006-11-22 net:quality ont:HealthCare rdfs:subClassOf
dc:publisher

k. ont:Politician
dc:date rdfs:object ont:Actor

rdftype (net:partyMemberOf rdfs‘sub*CIassO'
Article1 :
dc:sub, rdfs:subject rdfs:Predicate ont:Party
A1Sentencel

il

e go:cpator

rdfs:Subject: rdf:type

Hester ont:| de net:from™— nétto rdfs:Object\‘ ontCDA
2020-01-01 2020-01-01)

Fig. 4. The data model used

membership. As described in Sect. B3] these roles are made dynamic by reifying
the role membership statement, creating an adjunct instance, and adding from
and to dates. The ontology is a formalization of an existing taxonomy, containing
478 actors in 32 (nested) categories and an issue hierarchy of 103 issues.

4.2 The iNET Annotation Tool

A new version of the existing iINET tool was created in Java Eclipse for annotat-
ing newspaper articles in this framework. As can be seen in Fig. Bl iNET shows

miNet 2.0 (version[Z,0,0, 27])
File - Window Help

88| articlesview &2 & N0
Date Mediom Head.. Drel.. Com... A
o Alge.. oo 4+ b i Van onze parlementaire redactie i
NRC... Eeni.. - +
Ce Vo, Huur,, - + DEN HAAG, woensdag
. DeTe.. Kene.. - o b »
ﬁ Ontologyview 52 ! |
[l annotatig 'Kleine fracties schreeuwen om aandacht' (De Telegraal 28-sep-2006)
[bal I Irrelevant (]
|| Comments [
[3.0] actar ~
= [1.0] regering

unit Source Subject Predi.. Arao.. Qualty Object Angle e, ..

g [1"42] prestale) 1.1 bal B schre... AFF Lo politie. ..
=-[1.26] a2 4.1
24,204] bal Ltk
[1.01] balker 4.2 L] balemans

i : [24.204] balemans, tk
= [1.33] min van ju [1.43] balkenende 1
[1.09] hirsh £ [1.43] balkenende 1
[1.43] balkenende 1 o [1.44] balkenende 2 =
visualizer £9 ' (m|
[1.44] bakenende 2 [1.44] bakenende 2)
= [20 b M [1.01] balkenende, jan-peter, cda minister-president
= [rﬂ g;'?; f:;emgsparme [1.01] balkenends, jan-peter, cda minister-president
= [23.0] cda
i [1.01] balker
[1.08] hirsh b i i
= [24.0]wvd R
= [24.2] wed tk D10 schwerwwen comsmelachl 10 willen
[24.204]
o] | Ed

4z

ki) 0 seillen asmicacht

Fig. 5. iNET: RDF-based annotation with Autocomplete and Visualization

Media, Politics and the Semantic Web 217

@ NeBro: The ANOKO NET-Browser

All Type in frame:
2003 {Politicalictor) (UNTS) CAU (}
Qctober
Flonrben Subrmit Guery
2004 [ariclelst |
December
m Date Headline Hits
2005 17072420 2005-01-29 "No UMTS until risks