

Lecture Notes in Computer Science 4519
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Enrico Franconi Michael Kifer
Wolfgang May (Eds.)

The Semantic Web:
Research
and Applications

4th European Semantic Web Conference, ESWC 2007
Innsbruck, Austria, June 3-7, 2007
Proceedings

13

Volume Editors

Enrico Franconi
Free University of Bozen–Bolzano
Faculty of Computer Science
Piazza Domenicani 3, 39100 Bozen-Bolzano (BZ), Italy
E-mail: franconi@inf.unibz.it

Michael Kifer
State University of New York at Stony Brook
Department of Computer Science
Stony Brook, New York, NY 11794-4400, USA
E-mail: kifer@cs.sunysb.edu

Wolfgang May
Georg-August-Universität Göttingen
Institut für Informatik
Lotzestrasse 16-18, 37083 Göttingen, Germany
E-mail: may@informatik.uni-goettingen.de

Library of Congress Control Number: 2007927308

CR Subject Classification (1998): H.4, H.3, C.2, H.5, I.2, K.4, D.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-72666-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72666-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12066971 06/3180 5 4 3 2 1 0

Preface

The papers in this volume represent the technical program of the 4th Euro-
pean Semantic Web Conference, ESWC 2007, that took place June 3–7, 2007 in
Innsbruck, the capital of the Tyrol region of Austria.

The ESWC series of conferences is an annual, international forum for dis-
semination and discussion of the latest research and applications of Semantic
Web technologies. It has become a major meeting ground for researchers and
practitioners in the field. ESWC is part of the European Semantic Systems Ini-
tiative (ESSI), a cluster of major European research projects aiming to improve
world-wide research and standardization in the area of the Semantic Web. The
ESWC 2007 topics of interest included: ontology management, ontology align-
ment, ontology learning and metadata generation, multimedia and Semantic
Web, semantic annotation of data, Semantic Web trust, privacy, security and in-
tellectual property rights, Semantic Web rules and query languages, logics for the
Semantic Web, reasoning on the Semantic Web, behavior in the Semantic Web,
searching, querying, visualizing, navigating and browsing the Semantic Web,
personalization and user modelling, user interfaces and Semantic Web, Semantic
Grid and middleware, Semantic Web Services, Semantic Web-based knowledge
management, Semantic Web for e-business, e-culture, e-government, e-health, e-
learning, e-science, database technologies for the Semantic Web, data semantics
and Web semantics, semantic interoperability, semantic workflows, and Semantic
Web mining.

The ESWC 2007 call for papers attracted 278 submissions of research papers,
a 54% growth with respect to the previous year. Amongst these, the Program
Committee selected 46 papers to be presented at the conference. The quality of
the competing papers was high, and we decided to nominate two papers for the
Best Paper Award:

– Minimal Deductive Systems for RDF (by Sergio Muñoz, Jorge Pérez and
Claudio Gutierrez)

– Empowering Software Maintainers with Semantic Web Technologies (by René
Witte, Yonggang Zhang and Jürgen Rilling).

Additionally, 10 submissions were accepted as system descriptions and 37 as
posters.

Besides the presentation of the 46 technical articles in 13 sessions, one evening
session with reception was devoted to the presentation and demonstration of
systems and posters.

Four keynote addresses were given by distinguished scientists: Ron Brach-
man (VP of Worldwide Research Operations at Yahoo!, Santa Clara CA, USA),
Stefano Ceri (Technical University of Milan, Italy), Georg Gottlob (Oxford
University, UK), and Ning Zhong (Maebashi Institute of Technology, Japan).
As with previous ESWC conferences, metadata describing the conference were

VI Preface

published, and during the conference developers had an opportunity to showcase
their tools using these and other semantic data.

The conference also included a program of seven tutorials (selected out of ten
submissions) and eight associated workshops (selected out of 13 submissions).
In addition, a PhD symposium took place immediately after the conference,
bringing together doctoral students within the Semantic Web community to
showcase their work in a major European forum and to obtain valuable feedback
from leading scientists in the field. Furthermore, the OWL-ED 2007 and DL 2007
workshops and the RR 2007 conference were co-located.

The success of this year’s conference was due to the hard, voluntary work of
many people. The Chairpersons who selected the tutorials, workshops, demon-
strations and the PhD symposium as well as the local Organization Committee
and several other central tasks are listed on the next page. Last but not least,
we would like to thank the authors of all papers that were submitted to ESWC
2007, the members of the Program Committee, and the additional experts who
helped with the reviewing process for contributing and ensuring the high scien-
tific quality of ESWC 2007.

ESWC 2007 was sponsored by ESSI (European Semantic Systems Initiative, a
group of European Projects known as: Knowledge Web, SUPER and Tripcom),
that collectively work together to strengthen European research and industry
through world-wide standardization), STI2 (Semantic Technology Institutes In-
ternational), the EU Project X-Media, CEFRIEL (ICT Center of Excellence
for Research, Innovation, Education and Industrial Labs Partnership, Milan,
Italy), CTIC Foundation (Center for the Development of Information and Com-
munication Technologies in Asturias), the local host DERI Innsbruck, the BIT
(Bolzano – Innsbruck – Trento) Joint School for Information Technology, and
the companies Asemantics, Empolis, Ontoprise, Ontotext, and Hanival (who also
contributed IT services for the local organization of ESWC 2007).

We thank Springer for professional support and guidance during the prepa-
ration of these proceedings. We would also like to thank the developers of
the EasyChair conference management system (http://www.easychair.org/).
EasyChair assisted us in the whole process of collecting and reviewing papers,
in interacting with authors and Program Committee members, and also in as-
sembling this volume.

March 2007 Enrico Franconi
Michael Kifer

Wolfgang May

Conference Organization

General Chair

Enrico Franconi (Free University of Bozen-Bolzano, Italy)

Program Chairs

Michael Kifer (State Univ. of New York at Stony Brook, USA)
Wolfgang May (Universität Göttingen, Germany)

Workshops Chair

Diana Maynard (University of Sheffield, UK)

Tutorial Chair

Jörg Diederich (Forschungszentrum L3S, Hannover, Germany)

PhD Symposium Chair

Elena Simperl (Freie Universität Berlin, Germany)

Demo Chair

Andy Seaborne (HP Labs, Bristol, UK)

Semantic Technologies Coordinator

Sean Bechhofer (University of Manchester, UK)

Publicity Chair

Stijn Heymans (DERI and Universität Innsbruck, Austria)

Sponsor Chair

Axel Polleres (Universidad Rey Juan Carlos, Madrid, Spain)

Local Organization

Ilona Zaremba (DERI and Universität Innsbruck, Austria)

Conference Administrator

Melanie Plattner (DERI and Universität Innsbruck, Austria)
Christen Ensor (DERI Galway, Ireland)

Treasurer

Birgit Leiter (DERI and Universität Innsbruck, Austria)

Webmaster

Damian Dadswell (The Open University, UK)

VIII Organization

Program Committee

Karl Aberer
José Júlio Alferes
Jürgen Angele
Grigoris Antoniou
Alessandro Artale
Franz Baader
Chitta Baral
Cristina Baroglio
Catriel Beeri
Sonia Bergamaschi
Abraham Bernstein
Leopoldo Bertossi
Harold Boley
Piero Bonatti
Alex Borgida
Jeen Broekstra
Jos de Bruijn
François Bry
Andrea Cali
Silvana Castano
Isabel Cruz
Bernardo Cuenca Grau
John Davies
Stefan Decker
Jörg Diederich
W�lodek Drabent
Thomas Eiter
Jérôme Euzenat
Norbert Fuchs
Fabien Gandon
Aldo Gangemi
Fausto Giunchiglia
Carole Goble
Asunción Gómez-Pérez
Guido Governatori
Marko Grobelnik
Nicola Guarino
Volker Haarslev
Manfred Hauswirth
Jeff Heflin
Nicola Henze

Martin Hepp
Stijn Heymans
Pascal Hitzler
Ralph Hodgson
Ian Horrocks
Herman ter Horst
Andreas Hotho
Carlos Hurtado
Mustafa Jarrar
Subbarao Kambhampati
Atanas Kiryakov
Rüdiger Klein
Matthias Klusch
Mieczyslaw Kokar
Manolis Koubarakis
Rubén Lara
Ora Lassila
Georg Lausen
Alain Léger
Nicola Leone
Francesca Alessandra Lisi
Alexander Löser
Bertram Ludäscher
Jan Ma�luszyński
Massimo Marchiori
David Martin
Ralf Möller
Boris Motik
Saikat Mukherjee
John Mylopoulos
Natasha Noy
Daniel Olmedilla
Jeff Z. Pan
Bijan Parsia
Terry Payne
Sofia Pinto
Axel Polleres
Chris Preist
I.V. Ramakrishnan
Riccardo Rosati
Marie-Christine Rousset

Organization IX

Marta Sabou
Kai-Uwe Sattler
Ulrike Sattler
Sebastian Schaffert
Stefan Schlobach
Luciano Serafini
Nigel Shadbolt
Elena Simperl
Munindar P. Singh
Michael Sintek
Derek Sleeman
Umberto Straccia

York Sure
Vojtěch Svátek
Terrance Swift
Hideaki Takeda
Valentina Tamma
Sergio Tessaris
Bernhard Thalheim
Paolo Traverso
Raphaël Troncy
Gerd Wagner
Michael Wooldridge
Guizhen Yang

Additional Reviewers

Pinar Alper
Alia Abdelmoty
Harith Alani
Ahmed Alasoud
Ricardo Amador
Stanislaw Ambroszkiewicz
Alia Amin
Mathieu d’Aquin
Rudi Araújo
Uwe Aßmann
Robert Baumgartner
Pieter Bellekens
Massimo Benerecetti
Domenico Beneventano
Raffaella Bernardi
Ian Blacoe
Sebastian Blohm
Joel Booth
Yevgen Borordin
Shawn Bowers
Adriana Budura
Tobias Bürger
Johannes Busse
Francesco Calimeri
Amit Chopra
Stijn Christiaens
Oscar Corcho
Philippe Cudré-Mauroux
Vasilios Darlagiannis
Hasan Davulcu

Juri Luca De Coi
Xi Deng
Alistair Duke
Ludger van Elst
Michael Erdmann
Sofia Espinosa
Nicola Fanizzi
Cristina Feier
Alfio Ferrara
Gunar Fiedler
Michael Fink
Giorgos Flouris
David Fowler
Rosella Gennari
Michael Gertz
Nick Gibbins
Adrian Giurca
Rigel Gjomemo
Birte Glimm
Antoon Goderis
Gunnar Grimnes
Tudor Groza
Andrea Gualtieri
Francesco Guerra
Yuanbo Guo
Parisa Haghani
Guillermo Hess
Michiel Hildebrand
Aidan Hogan
Thomas Hornung

X Organization

Bo Hu
Zhisheng Huang
Gearoid Hynes
Giovambattista Ianni
Luigi Iannone
Antoine Isaac
Kaarel Kaljurand
Alissa Kaplunova
Martin Kavalec
Atila Kaya
Yevgeny Kazakov
Marijke Keet
Mick Kerrigan
Christoph Kiefer
Malte Kiesel
Nick Kings
Roman Korf
Ludwig Krippahl
Markus Krötzsch
Tobias Kuhn
Samir Kumar
Martin Labsky
Joey Lam
Freddy Lécué
Jens Lehmann
Jos Lehmann
Katja Lehmann
Domenico Lembo
Sergey Lukichev
Yue Ma
Jalal Mahmud
Marco Manna
Francisco Martin-Recuerda
Davide Martinenghi
Yutaka Matsuo
Michele Melchiori
Sylvia Melzer
Thomas Meyer
Paolo Missier
Shamima Mithun
Malgorzata Mochol
Stefano Montanelli
Matthew Moran
Igor Mozetic
Ullas Nambiar
Jan Nemrava

Davy van Nieuwenborgh
Malvina Nissim
René Noack
Jean-Pierre Norguet
Hans Jürgen Ohlbach
Ikki Ohmukai
Mirko Orsini
Magdalena Ortiz
Jacco van Ossenbruggen
Ignazio Palmisano
Zhengxiang Pan
Charles Penwill
Jorge Pérez
Laura Po
Antonella Poggi
Valentina Presutti
Abir Qasem
Guilin Qi
Domenico Redavid
Gerald Reif
Quentin Reul
Francesco Ricca
Sebastian Rudolph
Massimo Ruffolo
Marco Ruzzi
Antonio Sala
Brahmananda Sapkota
Luigi Sauro
Peyman Sazedj
Roman Schindlauer
Florian Schmedding
Peggy Schmidt
Roman Schmidt
James Scicluna
Arash Shaban-Nejad
Rob Shearer
Mantas Simkus
Kai Simon
Gleb Skobeltsyn
Kees van der Sluijs
Pavel Smrž
Lucia Specia
Ruud Stegers
Markus Stocker
Heiner Stuckenschmidt
William Sunna

Organization XI

David Thau
Edward Thomas
Ian Thurlow
Hans Tompits
Alessandra Toninelli
Dmitry Tsarkov
Anni-Yasmin Turhan
Miroslav Vacura
Maurizio Vincini
Max Völkel
Johanna Völker
Denny Vrandečić
Le-Hung Vu
Richard Waldinger

Hui Wan
Kewen Wang
Xia Wang
David Warren
Paul Warren
Martin Weber
Fang Wei
Moritz Weiten
Garrett Wolf
Huiyong Xiao
Chang Zhao
Antoine Zimmermann
Daniel Zinn

XII Organization

Sponsors:

ontotext
Semantic Technology Lab

Table of Contents

Invited Talks

Emerging Sciences of the Internet: Some New Opportunities
(Extended Abstract) . 1

Ron Brachman

Design Abstractions for Innovative Web Applications: The Case of the
SOA Augmented with Semantics . 4

Stefano Ceri, Marco Brambilla, and Emanuele Della Valle

The Lixto Systems Applications in Business Intelligence and Semantic
Web . 16

Robert Baumgartner, Oliver Frölich, and Georg Gottlob

Ways to Develop Human-Level Web Intelligence: A Brain Informatics
Perspective . 27

Ning Zhong

Best Papers

Empowering Software Maintainers with Semantic Web Technologies 37
René Witte, Yonggang Zhang, and Jürgen Rilling

Minimal Deductive Systems for RDF . 53
Sergio Muñoz, Jorge Pérez, and Claudio Gutierrez

Semantic Web Services

Web Service Contracting: Specification and Reasoning with SCIFF 68
Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,
Paola Mello, Marco Montali, and Paolo Torroni

Dynamic Service Discovery Through Meta-interactions with Service
Providers . 84

Tomas Vitvar, Maciej Zaremba, and Matthew Moran

Two-Phase Web Service Discovery Based on Rich Functional
Descriptions . 99

Michael Stollberg, Uwe Keller, Holger Lausen, and Stijn Heymans

A Reasoning Framework for Rule-Based WSML . 114
Stephan Grimm, Uwe Keller, Holger Lausen, and Gábor Nagypál

XIV Table of Contents

Ontology Learning, Inference and Mapping I

GenTax: A Generic Methodology for Deriving OWL and RDF-S
Ontologies from Hierarchical Classifications, Thesauri, and Inconsistent
Taxonomies . 129

Martin Hepp and Jos de Bruijn

SPARQLeR: Extended Sparql for Semantic Association Discovery 145
Krys J. Kochut and Maciej Janik

Simple Algorithms for Predicate Suggestions Using Similarity and
Co-occurrence . 160

Eyal Oren, Sebastian Gerke, and Stefan Decker

Learning Disjointness . 175
Johanna Völker, Denny Vrandečić, York Sure, and Andreas Hotho

Case Studies

Developing Ontologies for Collaborative Engineering in Mechatronics . . . 190
Violeta Damjanović, Wernher Behrendt, Manuela Plößnig, and
Merlin Holzapfel

Media, Politics and the Semantic Web . 205
Wouter van Atteveldt, Stefan Schlobach, and Frank van Harmelen

SEEMP: An Semantic Interoperability Infrastructure for e-Government
Services in the Employment Sector . 220

E. Della Valle, D. Cerizza, I. Celino, J. Estublier, G. Vega,
M. Kerrigan, J. Ramı́rez, B. Villazon, P. Guarrera, G. Zhao, and
G. Monteleone

Combining RDF Vocabularies for Expert Finding . 235
Boanerges Aleman-Meza, Uldis Bojārs, Harold Boley,
John G. Breslin, Malgorzata Mochol, Lyndon JB Nixon,
Axel Polleres, and Anna V. Zhdanova

Social Semantic Web

Extracting Social Networks Among Various Entities on the Web 251
YingZi Jin, Yutaka Matsuo, and Mitsuru Ishizuka

Towards Semantic Social Networks . 267
Jason J. Jung and Jérôme Euzenat

Knowledge Sharing on the Semantic Web . 281
Nicholas J. Kings, Caroline Gale, and John Davies

Table of Contents XV

Ontologies: Requirements and Analysis

Real-World Reasoning with OWL . 296
Timo Weithöner, Thorsten Liebig, Marko Luther, Sebastian Böhm,
Friedrich von Henke, and Olaf Noppens

How to Design Better Ontology Metrics . 311
Denny Vrandečić and York Sure

Measuring Inconsistencies in Ontologies . 326
Xi Deng, Volker Haarslev, and Nematollaah Shiri

Personalization I

Squirrel: An Advanced Semantic Search and Browse Facility 341
Alistair Duke, Tim Glover, and John Davies

User-Centric Faceted Search for Semantic Portals . 356
Osma Suominen, Kim Viljanen, and Eero Hyvönen

An Approach for Identification of User’s Intentions During the
Navigation in Semantic Websites . 371

Rafael Liberato Roberto and Sérgio Roberto P. da Silva

Foundations of the Semantic Web

A Novel Combination of Answer Set Programming with Description
Logics for the Semantic Web . 384

Thomas Lukasiewicz

Algorithms for Paraconsistent Reasoning with OWL 399
Yue Ma, Pascal Hitzler, and Zuoquan Lin

Vague Knowledge Bases for Matchmaking in P2P E-Marketplaces 414
Azzurra Ragone, Umberto Straccia, Tommaso Di Noia,
Eugenio Di Sciascio, and Francesco M. Donini

Symbol Grounding for the Semantic Web . 429
Anne M. Cregan

Natural Languages and Ontologies

Ontology-Driven Semantic Ranking for Natural Language
Disambiguation in the OntoNL Framework . 443

Anastasia Karanastasi and Stavros Christodoulakis

Web-Annotations for Humans and Machines . 458
Norbert E. Fuchs and Rolf Schwitter

XVI Table of Contents

PANTO: A Portable Natural Language Interface to Ontologies 473
Chong Wang, Miao Xiong, Qi Zhou, and Yong Yu

Mining the Web Through Verbs: A Case Study . 488
Peyman Sazedj and H. Sofia Pinto

Applications

What Have Innsbruck and Leipzig in Common? Extracting Semantics
from Wiki Content . 503

Sören Auer and Jens Lehmann

SALT - Semantically Annotated LATEX for Scientific Publications 518
Tudor Groza, Siegfried Handschuh, Knud Möller, and Stefan Decker

Annotating Relationships Between Multiple Mixed-Media Digital
Objects by Extending Annotea . 533

Ronald Schroeter, Jane Hunter, and Andrew Newman

Describing Ontology Applications . 549
Thomas Albertsen and Eva Blomqvist

Querying and Web Data Models

The SPARQL Query Graph Model for Query Optimization 564
Olaf Hartig and Ralf Heese

A Unified Approach to Retrieving Web Documents and Semantic Web
Data . 579

Trivikram Immaneni and Krishnaprasad Thirunarayan

Distributed Knowledge Representation on the Social Semantic Desktop:
Named Graphs, Views and Roles in NRL . 594

Michael Sintek, Ludger van Elst, Simon Scerri, and
Siegfried Handschuh

Semantic Process Retrieval with iSPARQL . 609
Christoph Kiefer, Abraham Bernstein, Hong Joo Lee,
Mark Klein, and Markus Stocker

Ontology Learning, Inference and Mapping II

Integrating Folksonomies with the Semantic Web . 624
Lucia Specia and Enrico Motta

Table of Contents XVII

IdentityRank: Named Entity Disambiguation in the Context of the
NEWS Project . 640

Norberto Fernández, José M. Blázquez, Luis Sánchez, and
Ansgar Bernardi

A Study in Empirical and ‘Casuistic’ Analysis of Ontology Mapping
Results . 655

Ondřej Šváb, Vojtěch Svátek, and Heiner Stuckenschmidt

Acquisition of OWL DL Axioms from Lexical Resources 670
Johanna Völker, Pascal Hitzler, and Philipp Cimiano

Personalization II

On Enriching Ajax with Semantics: The Web Personalization Use
Case . 686

Kay-Uwe Schmidt, Ljiljana Stojanovic, Nenad Stojanovic, and
Susan Thomas

A Semantic Web Service Oriented Framework for Adaptive Learning
Environments . 701

Stefan Dietze, Alessio Gugliotta, and John Domingue

Semantic Composition of Lecture Subparts for a Personalized
e-Learning . 716

Naouel Karam, Serge Linckels, and Christoph Meinel

System Descriptions

Caravela: Semantic Content Management with Automatic Information
Integration and Categorization . 729

David Aumüller and Erhard Rahm

The NExT System: Towards True Dynamic Adaptations of Semantic
Web Service Compositions . 739

Abraham Bernstein and Michael Dänzer

WSMO Studio – A Semantic Web Services Modelling Environment for
WSMO . 749

Marin Dimitrov, Alex Simov, Vassil Momtchev, and
Mihail Konstantinov

An Annotation Tool for Semantic Documents . 759
Henrik Eriksson

SWHi System Description: A Case Study in Information Retrieval,
Inference, and Visualization in the Semantic Web . 769

Ismail Fahmi, Junte Zhang, Henk Ellermann, and Gosse Bouma

XVIII Table of Contents

Semantic Turkey: A Semantic Bookmarking Tool . 779
Donato Griesi, Maria Teresa Pazienza, and Armando Stellato

The Web Service Modeling Toolkit - An Integrated Development
Environment for Semantic Web Services . 789

Mick Kerrigan, Adrian Mocan, Martin Tanler, and Dieter Fensel

Understanding Large Volumes of Interconnected Individuals by Visual
Exploration . 799

Olaf Noppens and Thorsten Liebig

System Description: An Orienteering Strategy to Browse
Semantically-Enhanced Educational Wiki Pages . 809

Luciano T.E. Pansanato and Renata P.M. Fortes

Efficient Content Creation on the Semantic Web Using Metadata
Schemas with Domain Ontology . 819

Onni Valkeapää, Olli Alm, and Eero Hyvönen

Author Index . 829

Emerging Sciences of the Internet:

Some New Opportunities

(Extended Abstract)

Ron Brachman

Yahoo! Research, New York, NY 10011, USA
rjb@yahoo-inc.com

Semantic Web technologies have started to make a difference in enterprise set-
tings and have begun to creep into use in limited parts of the World Wide Web.
As is common in overview articles, it is easy to imagine scenarios in which the
Semantic Web could provide important infrastructure for activities across the
broader Internet. Many of these seem to be focused on improvements to what
is essentially a search function (e.g., “list the prices of flat screen HDTVs larger
than 40 inches with 1080p resolution at shops in the nearest town that are open
until 8pm on Tuesday evenings” [http://en.wikipedia.org/wiki/Semantic_
Web]), and such capabilities will surely be of use to future Internet users. How-
ever, if one looks closely at the research agendas of some of the largest Internet
companies, it is not clear that the staples of SW thinking will intersect the most
important paths of the major broad-spectrum service providers. Some of the
emerging trends in the research labs of key industry players indicate that SW
goals generally taken for granted may be less central than envisioned and that
the biggest opportunities may come from some less obvious directions. Given the
level of investment and the global reach of big players like Yahoo! and Google, it
would pay us to look more closely at some of their fundamental investigations.

While not all companies see the future in the same way, there are some trends
and priorities that are instructive to contemplate. While Web search will continue
to play a large role, and services composed from piece-parts offered by multiple
vendors will be important, some relatively novel ideas may come to dominate. In
one view, there will emerge a set of new sciences that are fundamental to future
generations of Internet businesses. By understanding the imperatives of those
new areas of thought, we may be able to get a better assessment of the true
ultimate impact of SW technologies on the broader Internet. At the very least,
framing future Semantic Web directions and examples in terms more aligned
with some of these ideas may encourage more attention from some of the major
Internet companies, which to date have shown only lukewarm interest.

Search will continue to play a significant role for users of the Internet. While
from a user’s perspective the most essential thing is the ability to find a website
or document or element of data relevant to a task at hand, it is critical to
the service provider that, in addition to producing relevant results, it be able to
expose the user to advertisements well-suited to his or her immediate and longer-
term needs and interests. While not restricted to search settings, high-quality
matching of ads is critical to the continued success and growth of the major

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 1–3, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

rjb@yahoo-inc.com
http://en.wikipedia.org/wiki/Semantic_
Web

2 R. Brachman

Internet search and content providers. In the long run, a better understanding
of users in general and customers in specific is essential to providing a better
experience and providing better opportunities through advertising. This is an
area where a huge amount of investment is being made. Does it provide any
interesting opportunities for SW technology?

One interesting element here is that with the scale of the Web, companies are
increasing their use of machine learning technologies to improve the performance
of their search engines and other computing systems, since it is simply impossi-
ble to process information at the scale and speed of the Web manually. Machine
learning technology, based ultimately on richer knowledge representation tech-
nologies, will play an extremely prominent role in the infrastructure that makes
the Web successful in the future. Will this development provide interesting op-
portunities for the Semantic Web community? Can it avoid the relative lack of
mutual interest that has plagued the KR and ML communities in the recent
past?

Another emerging element in what we might call a new Science of Search is
a social one. Products like Yahoo! Answers add the human element back into
the process of finding relevant information. A similar human element pervades
tagging-based services like Flickr. It’s not clear what the success of large-scale
popular web services based on ad hoc human tagging says about the future
of the Semantic Web - are the two incompatible? Will ontologies matter or
do folksonomies rule? Others have begun to address the substantial differences
between the social Web world and the Semantic Web world. While sometimes
portrayed as diametrically opposed, the sides may benefit from each other if we
look more deeply. My intuition is that there is room for synergy, and it would
behoove us to investigate.

The social element is evident in many areas other than Search. Community-
oriented services are already extremely popular (witness the scale of MySpace
and FaceBook, and even older services like Yahoo! Groups). On the face of it, this
direction would seem not to hold much promise for SW thinking. But if one looks
at some of the underlying infrastructure needed to make new community systems
succeed, one sees opportunities for robust search and information extraction and
organization technologies, among others.

Another exciting and somewhat unexpected set of developments in new In-
ternet science involves collaboration between Economics and Computer Science.
Driven in part by underlying elements of advertising auctions that account for
extraordinary revenue streams at Google, Yahoo!, and other companies, technical
approaches to constructing novel market mechanisms, deploying them, and un-
derstanding their practical ramifications are becoming critical. Prediction mar-
kets and other novel mechanisms based on large-scale interactions among masses
of people are creating never before seen opportunities because of the Internet,
and substantial resources are going into the understanding of fundamental princi-
ples governing such interactions. This whole line of thinking is not yet prominent
in the worldview of the Web community, but it is likely to grow in importance,
and it may provide some novel opportunities for SW research.

Emerging Sciences of the Internet: Some New Opportunities 3

Finally, as has been pointed out by many others, text-based documents are
not the only media available on the Web, and there has clearly been astronomical
growth in user-generated non-textual content over the last few years. Podcast-
ing, Flickr, YouTube, Yahoo! Video, and other media-sharing opportunities have
shown that there is extraordinary latent interest in the creation and spread of
audio, image, video and other complex content. While not yet receiving as much
attention, the study and understanding of how users experience media, both
individually and in social settings, is likely to lead to an explosion of novel tech-
nologies and perhaps even devices for consuming and sharing media. How these
new scientific directions will relate to the SW world is anyone’s guess, but it
makes sense to take a close look to see what opportunities they present.

It is clear that some very large players on the Internet are making substan-
tial - in some cases huge - investments in novel forms of search and information
navigation, social and community systems, economic mechanisms for auctions
and advertising, and media experiences. With the scale of public interest and
the level of economic investment we are now seeing, it is probable that these
directions will have a dramatic impact on the evolution of the Internet. While
many of the arenas traditionally targeted by the Semantic Web community will
continue to matter in the next generation of the Web, it is conceivable that
the really big interest, including the majority of investment and opportunity for
broad influence on the world, will go elsewhere. It would be nice if the Seman-
tic Web were not left behind. A quick look indicates that there could be some
interesting opportunities, and it would appear to be very much worth the com-
munity’s while to stop to consider the emerging sciences and their implications
for future generations of the Internet.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 4–15, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Design Abstractions for Innovative Web Applications:
The Case of the SOA Augmented with Semantics

Stefano Ceri1, Marco Brambilla1, and Emanuele Della Valle2

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano
Piazza L. Da Vinci, 32. I20133 Milano, Italy
{ceri,mbrambil}@elet.polimi.it

2 CEFRIEL, via Fucini 2, 20133 Milano, Italy
dellavalle@cefriel.it

Abstract. This work presents a retrospective analysis of how we have addressed
new challenges in Web technologies and applications. WebML, which was first
defined about 10 years ago, has been an incubator for research concerning
abstractions, methods, tools, and technologies, acting as a glue within a group of
people spread among universities, technology transfer centres, and a spin-off. In
this paper, we first illustrate the common approach to innovation, and then show
such approach at work in two contexts. One of them, dealing with “Service-
Oriented Architectures” (SOA), has reached a mature state; the other one,
“Semantic Web Services” (SWS), is at its infancy, but promises to deliver very
interesting results in the forthcoming years.

1 Introduction and Motivation

Data-intensive Web applications, i.e. applications whose main purpose is to give
access to well-organized content, represented the first industrial application of the
Web, and still constitute the most important Web application in terms of volumes and
commercial value. All companies have an institutional site showing their business and
describing their offers, and many companies address their customers either electively
or exclusively via the Web. Therefore, these applications have been most covered by
methods and tools, which have been available for a long time.

Among them, Web Modelling Language (WebML) [1] was defined, about 8 years
ago, as a conceptual model for data-intensive Web applications. Early deployment
technologies were very unstable and immature; as a reaction, WebML was thought as
a high level, implementation-independent conceptual model, and the associated
design support environment, called WebRatio [9], has always been platform-
independent, so as to adapt to frequent technological changes.

WebML can be considered, in MDA terms, as a Domain Specific Language in the
area of Web application development. It is based upon orthogonal separation of
concerns: content, interface logics, and presentation logics are defined as separate
components. The main innovation in WebML comes from the interface logics
(patented in 2003) that enables the computation of Web pages made up of logical
components (units) interconnected by logical links (i.e., not only the units but also the

 Design Abstractions for Innovative Web Applications 5

links have a formal semantics); the computation is associated with powerful defaults
so as to associate to simple diagrams all the required semantics for a full deployment,
through code generators. WebML anticipated the concepts and methods formally
proposed by the MDA framework, introducing the idea of model transformation and
code generation.

While the Web has gone through waves of innovation, new application sectors
have developed, and revolutionary concepts – such as enabling the interaction of
software artefacts rather than only humans – are opening up. While the foundations of
the WebML model and method are still the same, the pragmatics of its interpretation
and use has dramatically changed through the last years. Several new challenges have
been addressed within the WebML context, including:

• Web services and service-oriented architectures [3];
• Integration with business processes [4];
• Personalization and adaptation;
• Context awareness and mobility [5];
• Rich client-side applications;
• Embedded Web applications;
• Semantic Web and Semantic Web Services [6,7].

A retrospective consideration of our work shows that, in all the above situations,
we have addressed every new challenge by using a common approach, which indeed
has become evident to us during the course of time, and now is well understood and
consolidated. For every new research directions, we had to address four different
kinds of extensions, respectively addressing the development process, the content
model, the hypertext meta-model, and the tool framework.

• Extensions of the development process capture the new steps of the design that
are needed to address the new functionalities, providing as well the
methodological guidelines and best practices for helping designers.

• Extensions of the content model capture state information associated with
providing the new functionalities, in the format of standard model, e.g. a
collection of entities and relationship that is common to all applications; this
standard model is intertwined with the application model, so as to enable a
unified use of all available content1.

• Extension of the hypertext meta-model capture the new abstractions that are
required for addressing the new functionalities within the design of WebML
specifications, through new kinds of units and links which constitute a
functionality-specific “library”, which adds to the “previous” ones;

• Extensions of the tool framework introduce new tools in order to extend those
modelling capability falling outside of standard WebRatio components (content,
interface logics, presentation logics), or to empower users with new interfaces
and wizards to express the semantics of new units and links in terms of existing
ones, or to provided direct execution support for new units and links (e.g. sending
an email).

1 Note that any WebML application includes the standard entities User and Group.

6 S. Ceri, M. Brambilla, and E. Della Valle

This paper demonstrates how this four-step development occurred in the case of
Service Oriented Architectures and how we are naturally extending that approach to
deal with Semantic Web Services. The treatment of each extension is necessarily
concise and visual, for more details we refer readers to published papers and reports.

2 Support of Service-Oriented Architectures

The specification of a Web application according to WebML [2] consists of a set of
orthogonal models: the application data model (i.e., an extended Entity-Relationship
model), one or more hypertext models (i.e., different site views for different types of
users), expressing the navigation paths and the page composition of the Web
application; and the presentation model, describing the visual aspects of the pages. A
hypertext site view is a graph of pages; pages are composed of units, which are used
for publishing atomic pieces of information, and operations, for modifying data or
performing arbitrary business actions (e.g., sending e-mails). Units and operations are
connected by links, to allow navigation, passing of parameters between the
components, and computation of the hypertext. The need for incorporating external
logic was felt relatively early, and the initial solution consisted of “custom units”
which allow modelling user-defined computations.

The first WebML extension discussed in this paper is towards the Service Oriented
Architectures. The requirement addressed in this case is to provide adequate design
tools for Web Services and Service-oriented applications. The outcomes of our work
included:

• The extension to the development process and the definition of some
methodological guidelines for SOA design;

• Two standard models for representing the services and the business processes to
be performed;

• New design primitives (namely, WebML units and links) for covering Web
service specification and invocation, together with primitives for enforcing
business process constraints;

• The support of the specified solutions through a process modeller, a translator of
processes into sketches of hypertexts, and an XML2XML mapping tool.

2.1 Process Extensions

The original design process, explained in chapter 6 of [2], included the classic phases
of requirement analysis, data design, hypertext design, and presentation design,
followed by architecture design and implementation. The 4-step procedure, going
from requirements to data to hypertext to presentation, is iterated multiple times
through the use of WebRatio, which can be considered as a rapid prototyping
environment; and indeed a lot of the advantage of using the approach comes exactly
from the ability to generate a prototype whenever required by the need of interaction
with stakeholders.

The extension of the original design process to SOA requires adding a phase for
modeling the business process and separating application from service design, as
shown in Fig. 1. For each addition, new guidelines and best practices were defined.

 Design Abstractions for Innovative Web Applications 7

Fig. 1. Development process extensions for SOA

Fig. 2. Standard model for the specification of the business process status

2.2 Content Model Extensions

The standard model for supporting SOA deals with two aspects: a description of Web
services and the specification of the workflow state. The first standard model
represents Web services according to WSDL, and is omitted here (see [3]); the second
standard model represents the information about the implemented business process,
shown in Fig. 2 (see [4] for details). In the model, entity Process represents processes
and is associated with entity ActivityType, representing the kinds of activities that can
be executed in a process. Entity Case denotes an instance of a process and is related to
its Process (relationship InstanceOf) and to its activities (via relationship PartOf);
entity ActivityInstance denotes the actual occurrences of activities within cases.

8 S. Ceri, M. Brambilla, and E. Della Valle

2.3 Hypertext Meta-model Extensions

Two groups of new design primitives have been added to WebML, describing Web
services and workflow-based applications.

(a)

(b)

Fig. 3. Example of WebML hypertext model with invocation of a remote service

A new library of Web service units [3] has been defined, corresponding to the
WSDL classes of Web service operations. These primitives consist in:

• Web service publishing concepts, including Service view (a new view supported
in WebML specifically dedicated to publishing a service), Port (corresponding to
the WSDL port concept), Solicit unit (representing the end-point of a Web
service), and Response unit (providing the response at the end of a Web service
implementation);

• Web service invocation primitives, namely Request-response and Request units,
to be used within the application for invoking remote services.

For instance, Fig. 3 shows a hypertext that includes the model of a Web service
call and of the called Web service. In Supply Area of Fig. 3a, the user can browse the
SupplySearch page, in which the SearchProducts entry unit permits the input of
search criteria. From this information, a request message is composed and sent to the
RemoteSearch operation of a Web service. The user then waits for the response
message, containing a list of products satisfying the search criteria. From this list, a
set of instances of Product are created, and displayed to the user by means of the
Products index unit in the Products page; the user may continue browsing, e.g., by
choosing one of the displayed products and looking at its details. Fig. 3b represents
the model of the RemoteSearch service invoked by the previously described
hypertext. The interaction starts with the solicit SearchSolicit unit, which denotes the
reception of the message. Upon the arrival of the message, an XML-out operation
extracts from the local data source the list of desired products and formats the

 Design Abstractions for Innovative Web Applications 9

resulting XML document. The SearchResponse unit produces the response message
for the invoker2.

To cover the development of B2B Web applications implementing business
processes, new primitives have been defined for specification of activity boundaries
(namely Activity areas within the hypertext) and business process-dependent
navigation (namely workflow links). Fig. 4 shows some of these primitives: site areas
marked as “Activity Areas” (A); special incoming links for checking the correctness
of the status and starting an activity (i.e., Start and Resume links); special outgoing
links for closing an activity (Complete and Suspend links).

Distributed processes and SOA can be obtained by combining the workflow
primitives with Web services primitives [4].

 Activity Area2

A

 Activity Area1

A

... ...

Fig. 4. Two activity areas and corresponding Start and End links

2.4 Tool Framework Extensions

For supporting the design of the new classes of applications, some facilities have been
prototyped and are currently being ported to commercial versions of WebRatio:

• A workflow modeling editor that allows to specify business processes according
to the BPMN notation.

• A set of model transformations that translate a business process model into a
skeleton of WebML hypertext model.

• A visual editor for XML2XML mapping for helping the design of XML
transformations to better support messages exchange between Web services.

3 Support of Semantic Web Services

Traditionally, the service requestor and service provider are designed together and then
tightly bound together when an application is created. The emerging field of Semantic
Web Services (SWS) [10] provides paradigms for semantically enriching the existing
syntactic descriptions of Web services; then, the service requestor can search, either at
design or at run time, among a variety of Web-enabled service providers, by choosing
the service that best fits the requestor’s requirement. Such a flexible binding of
requestor and providers allows for dynamic and evolving applications to be created
utilizing automatic resource discovery, selection, mediation and invocation.

2 Service ports are an example of software component that is modelled by using WebML and

yet has no interaction with users (hence, no “presentation logics”), and shows that the original
motivation of the model has shifted to adapt to new requirements. Even more radical shifts
will be needed to deal with semantic web services, as illustrated in the sequel.

10 S. Ceri, M. Brambilla, and E. Della Valle

Our purpose in approaching the SWS is obviously not to design new methods for
performing the above tasks: a community of researchers is working on them. Instead,
we aim at extending WebML and WebRatio so as to generate, on top of conventional
models (of: processes, data, services, and interfaces), a large portion of the semantic
descriptions required by the SWS in a semi-automatic manner; this possibility
descends from the fact that WebML is a very rich model, with a lot of embedded
semantics - to the point that code can be completely generated from the model with no
user intervention. In the same way, some SWS annotations can be automatically
generated, conveying a large fraction of the semantics that is typically carried by
manual SWS annotations.

In the rest of the section we highlight the following extensions to WebML to cope
with SWS3 requirements:

• Extension of the development process by adding phases for ontology import and
for semantic annotation of services;

• Extensions of the standard model, together with a discussion of the relationships
between meta models and ontologies;

• Definition of the new primitives in order to manipulate semantic contents;
• Implementation of new tools integrating Semantic Web Service editors and

execution environment.

Fig. 5. Development process extensions for SWS

3.1 Process Extensions

To address the new SWS requirements, we extended the process defined for SOA in
Fig. 1 with two additional tasks, shown in Fig. 5:

• Ontology Importing, for importing existing domain ontologies that may be
exploited for describing the domain of the Web application under development.

3 In our approach we considered WSMO, but being, WSMO the most comprehensive approach

to SWS, our experience can be easily extended to OWL-S and WSLD-S approaches.

 Design Abstractions for Innovative Web Applications 11

The imported ontologies should be integrated, at the model level, with the
application-specific E-R model, so as to offer an integrated view to the designer.

• Semantic Annotation, for specifying (either manually or automatically) how the
hypertext pages or services will be annotated using existing ontological
knowledge.

3.2 Content Model Extensions

The management of content in Semantic Web applications, thus also in SWS
applications, needs to address two main concerns: (i) the possibility of importing and
integrating existing third-party ontologies and (ii) the capability of combining
relational data sources with ontological contents.

Fig. 6. Standard model of the WSMO ontology structure

We address these two issues by defining a E-R standard model representing
ontological concepts, thus allowing to associate in a seamless way semantic content to
conventional content defined for the application; Fig. 6 shows a piece of E-R model
representing WSMO ontological language. Imported ontological data can be either
copied into an application-specific implementation of the E-R model (typically a
relational database) or queried directly on a remote ontology. Different
implementations of ontology query primitives must be developed in the two cases
(see Section 3.3).

3.3 Hypertext Meta-model Extensions

The basic WebML primitives for data retrieval have been used up to now for querying
implementations of E-R models, but their generality makes them perfectly fitting in
the role of query and navigation of ontologies. The additional expressive power of

12 S. Ceri, M. Brambilla, and E. Della Valle

ontological languages, however, requires some extensions. We have therefore intro-
duced a new set of primitives (inspired by SPARQL and RDF-S syntax) to describe
advanced queries over ontological data. These units (see Fig. 7) allow queries on
classes, instances, properties, and values; checking the existence of specific concepts;
and verifying whether a relationship holds between two resources. Other units import
content from an ontology or return the RDF description of a given portion of the
standard ontological model for exporting. Operations such as lifting and lowering
have renamed specific XML2XML mappings used in the context of SOAs.

[ClassName1=?]

[ClassName2=?]

SubclassOf

[ClassName=?]

[Instance=?]

InstanceOf

[ClassName=?]

[Property=?]

HasProperty

[Property=?]

[Value=?]

Has

PropertyValue

[Property1=?]

[Property2=?]

Subproperty

Fig. 7. Ontological query units

These primitives may have different implementations: when invoking a remote
semantic repository, the implementation can exploit ontological query languages;
when querying ontological data stored internally, hence already integrated within a
relational source, the implementation is directly mapped to such source.

Fig. 8. WebML model of a mediator

These units, together with the standard WebML primitives and the solutions
introduced for the SOA, allow specifying completely new kinds of applications with

 Design Abstractions for Innovative Web Applications 13

respect to the ones for which WebML was originally conceived. For instance, Fig.
shows the WebML model of a WSMO mediator [7] in the context of a B2B purchase
interaction for the SWS Challenge 2006 [19]. The logics of the mediator is that of
receiving a single purchase order request, containing multiple lines bundled together,
and then dispatch each order line to a service which exposes multiple ports, including
one for accepting the general information about new orders and one accepting each
line separately. We do not expect that the mediator specification can be appreciated in
detail, but the reader should notice that the specification is fully graphic, that it
embodies a complex workflow, and in particular it incorporates several request-
responses for the SWS orchestration. Clearly, no user interaction is involved.

3.4 Tool Framework Extensions

The framework has been extended by providing automatic generators of WSMO-
compliant descriptions (goals, choreographies, capabilities, and mediators) from the
models already available in WebML, i.e., business processes, content models, and
application logics models. Annotations that are automatically generated cannot
express the full semantics of SWS services and applications4, but they give initial
descriptions, that can later be integrated manually. In particular, in the contest of the
SWS Challenge 2006, we used WSMT [13] as ontology and SWS editor. As a result
of the annotation process, applications and services can be deployed on a SWS
runtime environment which provides generic services (e.g., service discovery engines,
goal matchers, mediators). Again, in the SWS Challenge we have used the Glue
discovery engine [18] as reasoner specialized for Web service discovery.

4 Related Work

Our approach has several elements which are common to a number of research
centres and companies working towards improving Web Engineering methods and
tools; here we list only a few of them. Traditional Web design methodologies (like
OOHDM [15]) and new approaches (like Hera [16]) are now focusing on Semantic
Web applications. MIDAS is a framework based on MDA for Semantic Web
applications [14]. Research efforts are converging on the proposal of combining
Semantic Web Services (SWS) and Business Process Management (BPM) to create
one consolidated technology, called Semantic Business Process Management
(SBPM) [17].

Our approach largely benefits from the WSMO [10] initiative, which provides a
comprehensive framework for handling Semantic Web Services; specifically, we
benefit from the WSMO conceptual model [10], the WSML language [11], the
WSMX execution environment [12], and WSMT design environment [13].

4 For instance, the process description yields to deriving a specific orchestration of the services,

but in a full SWS specification we need to define choreographies, i.e., rules that indicate all
the legal sequences of SWS invocations. Such rules must be derived by extending the initial
annotations.

14 S. Ceri, M. Brambilla, and E. Della Valle

5 Conclusions

The “WebML approach” has acted as a framework for continuous innovation and
exploration of new research directions. This is made possible by a unique
combination of features:

• Availability of well-defined conceptual models;
• Extensibility of the model thanks to a plug-in based structure;
• Formally defined development process for Web applications;
• Availability of a CASE tool for fast prototyping of application and easy

integration of new features and components;
• Strong link between the research (mostly performed in university) and the

application development (performed within a spin-off);
• Interactions with real world requirements, enabled by interaction with customers.
• Participation to the international research community, through experience and

people exchange and several EU-funded projects.

This mix of ingredients has allowed us to follow our peculiar pathway to innovation.

Acknowledgements

We wish to thank all the people who work in the WebML framework: the WebML
group at Politecnico di Milano (and particularly Piero Fraternali), the CEFRIEL
Semantic Web Activities group, and the WebRatio staff (and particularly Aldo
Bongio). Work on the SOA was performed together with Piero Fraternali, Ioana
Manolescu, and Sara Comai; work on SWS was performed together with Federico
Facca, Christina Tziviskou, Dario Cerizza, Irene Celino and Andrea Turati.

References – WebML

[1] S. Ceri, P. Fraternali, A. Bongio. Web Modeling Language (WebML): a modeling
language for designing Web sites. WWW9 / Computer Networks 33, 2000.

[2] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, M. Matera. Designing Data-
Intensive Web Applications. Morgan Kaufmann, 2002.

[3] I. Manolescu, M. Brambilla, S. Ceri, S. Comai, P. Fraternali. Model-Driven Design and
Deployment of Service-Enabled Web Applications. ACM TOIT, 5:3, 2005.

[4] M. Brambilla, S. Ceri, P. Fraternali, I. Manolescu. Process Modeling in Web
Applications. ACM TOSEM, 15:4, 2006.

[5] S. Ceri, F. Daniel, M. Matera, F. Facca. Model-driven Development of Context-Aware
Web Applications, ACM TOIT, 7:1, 2007.

[6] M. Brambilla, I. Celino, S. Ceri, D. Cerizza, E. Della Valle, F. Facca. A Software
Engineering Approach to Design and Development of Semantic Web Service
Applications. International Semantic Web Conference (ISWC2006), Athens, USA,
November 2006, Springer LNCS 4273.

 Design Abstractions for Innovative Web Applications 15

[7] M. Brambilla, S. Ceri, D. Cerizza, E. Della Valle, F. Facca, P. Fraternali, C. Tziviskou.
Coping with Requirements Changes: SWS-challenge phase II. SWS Challenge 2006,
Phase II, Budva, Montenegro, June 2006.

[8] WebML: http://www.webml.org.
[9] WebRatio: http://www.webratio.com/.

References – Related Work

[10] Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., Domingue,
J.: Enabling Semantic Web Services – The Web Service Modeling Ontology. Springer
(2006)

[11] de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The web service modeling language:
An overview. In: Proceedings of the 3rd European SemanticWeb Conference
(ESWC2006), Budva, Montenegro, Springer-Verlag (2006)

[12] Haller, A. , Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - A Semantic Service-
Oriented Architecture. In Proceedings of the 2005 IEEE International Conference on Web
Services (ICWS 2005), Orlando, FL, USA, 321–328, 2005.

[13] Kerrigan, M.: The WSML Editor Plug-in to the Web Services Modeling Toolkit. In
Proceedings of 2nd WSMO Implementation Workshop (WIW2005), Innsbruck, Austria,
2005.

[14] Acuña, C. J., Marcos, E.: Modeling semantic web services: a case study. In Proceedings
of the 6th International Conference on Web Engineering (ICWE 2006), Palo Alto,
California, USA, 32-39.

[15] Schwabe, D., Rossi, G. The Object-Oriented Hypermedia Design Model. In
Communications of the ACM, 38 (8), 45-46.

[16] Vdovjak, R., Frasincar, F., Houben, G. J., Barna, P.: Engineering semantic web
information systems in Hera. Journal of Web Engineering, Rinton Press, 2(1-2), 3 -26,
2003.

[17] Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic Business Process
Management: A Vision Towards Using Semantic Web Services for Business Process
Management. In Proceedings of the IEEE ICEBE 2005, October 18-20, Beijing, China,
535-540.

[18] Della Valle, E., Cerizza, D.: The mediators centric approach to automatic webservice
discovery of Glue. First Intl. Workshop on Mediation in Semantic Web Services
(MEDIATE 2005), Amsterdam, The Netherlands, December 2005.

[19] Semantic Web Service Challenge 2006: http://www.sws-challenge.org/.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 16–26, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Lixto Systems Applications in Business Intelligence
and Semantic Web

Robert Baumgartner1, Oliver Frölich1, and Georg Gottlob2

1 DBAITU Wien Favoritenstr. 9
1040 Vienna Austria

{froelich,baumgart}@dbai.tuwien.ac.at
2 Oxford University Computing Laboratory

Wolfson Building
Parks Road Oxford, OX1 3QD United Kingdom
georg.gottlob@comlab.ox.ac.uk

Abstract. This paper shows how technologies for Web data extraction,
syndication and integration allow for new applications and services in the
Business Intelligence and the Semantic Web domain. First, we demonstrate
how knowledge about market developments and competitor activities on the
market can be extracted dynamically and automatically from semi-structured
information sources on the Web. Then, we show how the data can be integrated
in Business Intelligence Systems and how data can be classified, re-assigned
and transformed with the aid of Semantic Web ontological domain knowledge.
Existing Semantic Web and Business Intelligence applications and scenarios
using our technology illustrate the whole process.

1 Introduction

1.1 Motivation

Data available on the Web is a crucial asset in the enterprise world today, such as for
making decisions on product prices, collecting opinions and getting an overview in
fast-changing markets. To make use of Web data, methodologies and software
components for harvesting structured facts from the Web are needed. Semantic Web
Ontologies can be populated with Web data and sophisticated rule systems can help to
leverage data analysis in Business Intelligence scenarios to a new level. In this paper
we address the advantages of Web data extraction for Business Intelligence scenarios.
Additionally, we consider how Semantic Web technologies can provide helpful means
in such a setting.

1.2 Competitive Intelligence and Business Intelligence

Today, the time available for making operative decisions in a business environment is
decreasing: decisions must be made within days or even hours. Just two decades,
similar decisions still took weeks or months [Ti95]. Therefore, business management
is interested both in increasing the internal data retrieval speed and in broadening the

 The Lixto Systems Applications in Business Intelligence and Semantic Web 17

external data sources considered to improve information quality. Fortunately, new
technologies like the internet and Business Intelligence systems are available to
supply this data. Based on the described competitive pressure, a systematic
observation of competitor activities becomes a critical success factor for business to
early identify chances in the market, anticipate competitor activities, recognize new
and potential competitors, and to validate and enhance own strategic goals, processes
and products.

This process of collecting and analyzing information about competitors on the
market is called “competitive intelligence” (CI) or “competitive analysis” [SCIP04].
Nowadays, much information about competitors can be retrieved legally from public
domain information sources, such as Web sites, press releases or public data bases
[Ka98]. The Lixto Suite software provides tools to access, extract, transform, and
deliver information from various semi-structured sources like Web pages to various
customer systems.

CI can be seen as a part of “Business Intelligence” (BI). The term BI is often used
as a method box for collecting, representing and analyzing enterprise data to support
the decision-making process within a company’s management. More generally, BI
can be understood as a process providing better insight in a company and its chains of
actions.

Fig. 1. The Business Intelligence reference process [BFG05]

18 R. Baumgartner, O. Frölich, and G. Gottlob

Technically, the Business Intelligence process covers three main process steps:
data integration, data storage and data usage (see fig.1). The most important step
concerning our research is Data integration, which covers methods to extract data
from internal or external data sources. Traditionally, the data is derived for example
from database systems in a so-called ETL process (extract, transform, load). We
propose using Integrated Wrapper Technologies [Fr06] for Web data extraction and
integration in a process we call Web-ETL [BFG05]. This step will be more closely
described in the further course of this paper and may also contain data transformations
like data “cleaning” and data normalization. A load process with a scheduler regularly
uploads (e.g. daily, weekly, or monthly) the processed data into the final data base
storage of the BI system, the data warehouse. This data storage holds the relevant
data for decision makers in a dedicated, homogeneous database. An important
characteristic of the data warehouse is the physical storage of data in a single,
centralized data pool. It also covers the subject-oriented clustering of data organized
by business processes, such as sales, production, or finance. With the information
being well-organized in the data warehouse, Data usage now can support decision
making with predefined reporting for occasional users, ad-hoc data analysis for
knowledge workers, or data mining for data analysts.

1.3 Semantic Web

Today, the realization of the Semantic Web idea of “an extension of the current web
in which information is given in well-defined meaning, better enabling computers and
people to work together” [BHL01] is technically still in an early stage: W3C
recommendations exist for machine-readable semantics, appropriate markup and
description languages, and sharable knowledge representation techniques, but the
logical definition and technical implementation of the upper layers of the so-called
Semantic Web tower [Be02], e.g. the rule and reasoning layer, or the layers of proof
and trust, are still to be explored.

The semi-structured Web of today consists of billions of documents in different
formats which are not query-able as a database and heavily mix layout, structure and
the intended information to be presented. There is a huge gap between Web
information and the well-structured data usually required in corporate IT systems or
as envisioned by the Semantic Web.

Until this vision is realized, “translation components” between the Web and
corporate IT systems that (semi-)automatically translate Web content (e.g. in HTML)
into a structured format (e.g. XML) are necessary. Once transformed, data can be
used by applications, stored into databases or populated into ontologies.

1.4 Integrated Wrapper Technologies

A Wrapper is a program that automatically accesses source data (e.g. from the Web in
HTML) and then extracts and transforms the data into another format (e.g. XML). A
number of classification taxonomies for wrapper development languages and
environments have been introduced in various survey papers. A to our knowledge
complete overview of the different approaches and systems is given in [Fr06].

 The Lixto Systems Applications in Business Intelligence and Semantic Web 19

Integrated Wrapper Technology (IWT) systems combine the capabilities of
wrapping components with Information Integration (II) components [Fr06]. The latter
generally transform the extracted data and integrate it in other (business) IT systems.
IWT systems are suitable for implementing advanced information systems for the
Semantic Web: Partially, they can bridge the gap between the Web existing today and
the today not yet existing Semantic Web that might be used as the largest database on
earth where data exists in machine-readable formats and can be integrated easily in
other IT systems. IWT systems can extract data from semi-structured Web pages,
transform it to a semantically useful structure, and integrate it e.g. with a Web ETL-
process into a Business Intelligence system. A solution proposition to this problem
will be illustrated in the next chapter.

2 The Lixto Solution

The Lixto Suite software is an IWT system which provides tools to access, extract,
transform, and deliver information from various semi-structured sources like Web
pages to many different customer systems. The Lixto software is based on Java
technology and standards such as XML schema, XSLT, SOAP and J2EE.
Technically, the main distinguishing criteria to many other approaches are that Lixto
embeds the Mozilla browser and is based on Eclipse. This allows Lixto to be always
at the cutting edge of Web browser technology and access and extract data from all
Web pages even using the newest techniques like Web 2.0, e.g. Ajax. Internally, the
software uses the logic-based data extraction language Elog [GK02].

The Lixto Suite is comprised of three products: The Visual Developer for Wrapper
generation, the Metasearch for real-time Wrapper queries and the Transformation
Server as runtime environment for scheduled Wrappers queries and as Information
Integration component. In this chapter, we successively describe the process steps for
creating and delivering structured data from semi-structured sources.

2.1 Wrapper Generation with Visual Developer

Wrappers generated with Visual Developer extract and translate all relevant
information from HTML Web pages to a structured XML format. The underlying
extraction language Elog is derived from datalog and is especially designed for
wrapper generation. The Elog language operates on Web objects, which are (lists of)
HTML elements, and strings. Elog rules can be specified visually in a graphical user
interface by a few mouse clicks without knowing the Elog language. Thus, no special
programming knowledge is needed, and wrappers can be generated by non-technical
personnel, typically by employees with the relevant business expertise for the project,
e.g. from a company’s marketing department.

Creating a wrapper with the Visual Developer comprises two steps: First, the data
model creation. In this phase an XML-schema based model in which extracted data is
inserted either is imported (e.g. in case of news extraction typically RSS) or generated
from scratch. In the second phase navigation and extraction steps are configured.
Such extraction rules are semi-automatically and visually defined by a wrapper
designer in an iterative process. Extracted data can subsequently populate an ontology

20 R. Baumgartner, O. Frölich, and G. Gottlob

with instance data. The whole wrapper generation process starts by generating a deep
Web navigation sequence (such as navigation through forms) and subsequently
highlighting the relevant information with two mouse clicks in the integrated standard
Mozilla browser window. The software then marks the data in a different colour.
Conditions can be defined, allowing the program to identify the desired data even if
the structure of the Web page slightly changes. Fig. 2 shows an example where
information is extracted from different trip booking websites like expedia.com and
opodo.com.

For a wrapper, an internet page is an HTML tree structure. A wrapper does not
extract just the text from a specified HTML tree node, but uses “intelligent” conditions,
so-called logical patterns. For the wrapper of fig. 2, such conditions could be „the
relevant area should contain the Dollar-symbol(“$”) in each line” or “some specified
company’s names should occur” (these names are stored in a system database). For the
logical pattern comprised of the conditions, the software searches for the best match
within the HTML tree using heuristic methods. So a very high robustness to changes
within Web pages over time can be achieved for the wrapper agents.

Fig. 2. Visual Developer User Interface

 The Lixto Systems Applications in Business Intelligence and Semantic Web 21

In addition, navigation to further documents during the wrapping process is
possible: For example, starting from a Google result list overview page, it is possible
to extract defined information from all result sub-pages and, by clicking on the
“next”-button on each result list overview page (this action has to be defined only
once) to extract all relevant information from all overview pages and their sub pages.
The Visual Developer is capable of action-based recording and replaying, i.e.
recording actions of a user based on mouse clicks and key actions. This is highly
advantageous compared to a plain request-based macro, as it allows the system to deal
with dynamically changing HTML pages.

Visual Developer wrapper agents also support automatic logon to password-
protected pages, filling in form pages and processing the extraction from
corresponding result pages (i.e. for Web interfaces of data bases), dynamic handling
of session IDs, and automatic handling of cookies and SSL. Detailed information on
further wrapping capabilities can be found in [BFG01].

2.2 The Transformation Server

In a second step, XML data generated by wrappers is processed in the Lixto
Transformation Server [GH01]. A wrapper in the run-time environment of the
Transformation Server retrieves the Web data automatically, with no developer
interaction, based on events. Events can be for example a defined schedule, such as
Web data retrieval every hour or every 5 minutes. The usual setting for the creation of
services based on Web wrappers is that information is obtained from multiple
wrapped sources and has to be integrated. Often source sites have to be monitored for
changes, and changed content has to be automatically extracted and processed.

The Lixto Transformation Server allows for Information Integration by combining,
transforming and re-formatting data from different wrappers. Results of this process
can be delivered in various formats and channels to other IT systems, e.g. Business
Intelligence systems such as SAP Business Information Warehouse or Microsoft
Analysis Server. Transformation Server can interactively communicate with these
systems using various interfaces, such as special database formats, XML messaging,
and Web services.

The whole process of modelling the workflow and dataflow is done in the graphical
user interface of the Lixto Transformation Server. Graphical objects symbolize compo-
nents, such as an integrator for the aggregation of data or a deliverer for the trans-
mission of information to other software applications. By drawing connecting arrows
between these objects, the flow of data and the workflow are graphically defined (see
also fig. 3). A more detailed description of the components is given in [BFG05].

3 Application Business Cases

The following business cases show and illustrate the capabilities of the IWT software
Lixto Suite in real-world scenarios. The first scenario concentrates more on a BI
solution, whereas the second scenario describes an application for the Semantic Web.

22 R. Baumgartner, O. Frölich, and G. Gottlob

3.1 CI Solution for Pirelli

Pirelli is one of the world market leaders in tire production, but also active in other
sectors such as cables (energy and telecommunication cables). With headquarters in
Milan/Italy, the company runs 21 factories all over the world and has more than
thirty-five thousand employees.1 On account of the growing amount and relevance of
Web sites selling tires on the internet (both B2B and B2C), Pirelli analyzed the
possibilities of monitoring retail and wholesale tire prices from competitors for their
major markets. This external data should be automatically uploaded to their existing
BI solution. After an extensive market research concerning available tools for Web
data extraction and transformation, Pirelli selected the Lixto software because of its
high scalability for back office use, its high robustness concerning data extraction
quality and its straightforward administration.

The Lixto Software was integrated in the Pirelli BI infrastructure within a
timeframe of two months. Tire pricing information of more than 50 brands and many
dozens of tires selling Web sites are now constantly monitored with Lixto (Pirelli
prices and competitor prices). A simplified screenshot of the Pirelli service shows the
data flow as it is defined in the Lixto Transformation Server (see fig. 3).

Fig. 3. Modelling the data flow in the Transformation Server [BFG05]

The data is normalized in Transformation Server and then delivered to an Oracle 9
database. From here, the Pirelli BI solution fetches the data and generates i.e. reports
in PDF format and HTML format. These reports are automatically distributed to the
Pirelli intranet for marketing and sales departments (see fig. 4).

The success of the project can be measured by the more than 1.000 self-registered
Pirelli users receiving the Lixto PDF reports regularly by email. Since its introduction,
the Lixto reports are in the top 5 list of all most accessed files from the Pirelli intranet. A
more detailed description of the Pirelli BI integration project can be found in [BFG05].

3.2 The Personal Publication Reader

The Personal Publication Reader is an advanced personalized information systems
using Semantic Web technologies [BHM05] that has been created by the Learning

1 See http://uk.biz.yahoo.com/p/p/peci.mi.html and [Pi03].

 The Lixto Systems Applications in Business Intelligence and Semantic Web 23

Fig. 4. Lixto Reports within the Pirelli intranet [BFG05]

Lab Hannover. It provides a syndicated and personalized view on non-uniform,
distributed Web data. The Personal Publication Reader has been designed and
implemented in the context of the Network of Excellence “REWERSE – Reasoning
on the Web” and syndicates and personalizes information about the REWERSE
project structure, people, objectives, and information about research papers in the
context of the project.

The Personal Reader Framework was used for the design and implementation of
personalized Web Content Readers. Such readers have been realized for e-Learning
and for publication browsing. Web services allow for the development of flexible
information systems by encapsulating specific functionality and communication
capabilities with other Web services. The aim of the Personal Reader Framework was
to develop a toolset for designing, implementing and maintaining Personal Web
Content Readers. These Personal Readers allow the user to browse information (the
“Reader” part), and to access personal recommendations and contextual information
on the currently viewed Web resource (the “Personal” part). The framework features a
distributed open architecture designed to be easily extensible. It uses standards such
as XML and RDF, and technologies like JSP and XML-based-RPC. The
communication between all of these components is syntactically based on RDF
descriptions, providing a high level of flexibility for the whole framework.

Content syndication and personalization is achieved by reasoning about ontological
knowledge and extracted Web data. The Lixto Software is used for the implementation

24 R. Baumgartner, O. Frölich, and G. Gottlob

Fig. 5. Personal Publication Reader data flow in the Transformation Server [BHM05]

Fig. 6. Screenshot of the Personal Publication Reader [BHM05]

of the information provision part. The process of gathering Web data for the Personal
Publication Reader using Lixto is described in the following.

 The Lixto Systems Applications in Business Intelligence and Semantic Web 25

In a first step, wrappers are created for the websites of the REWERSE project
participant organizations. Then, these wrappers are loaded to a new service within the
Lixto Transformation Server. Here the XML data derived from the various wrappers
has to be combined, cleaned, and syndicated into the Framework’s ontology. The
output format of the Transformation Server is an RDF representation. This process is
scheduled regularly and hands over the data to the Personal Publication Reader. Fig. 5
shows the data flow from the wrapper to the RDF output as it is defined in the
Transformation Server.

In addition to the extracted information on research papers described above, a
“REWERSE-Ontology” has been built in OWL extending the Sementic Web
Research Community Ontology (SWRC) [SWRC01]. Here information about
research members of the REWERSE project is kept.

Finally, fig. 6 shows the syndicated view on publications in REWERSE together
with the corresponding links, and information about the authors of the publications
like homepage, phone number, etc. The Personal Publication Reader is available
online via the URL www.personal-reader.de.

Acknowledgements

This research has been partially supported by REWERSE - Reasoning on the Web
(rewerse.net), Network of Excellence, 6th European Framework Program.

The authors would like to thank Giacomo del Felice from Pirelli Pneumatici S.p.A.
for his continuous and reliable project support.

References

[BFG01] Baumgartner, R.; Flesca, S.; Gottlob, G.: Visual web information extraction with
Lixto. In: Proc. of VLDB, 2001, pp. 119–128.

[BFG05] Baumgartner, R.; Frölich, O.; Gottlob, G.; Harz, P.; Herzog, M.; Lehmann, P.:
Web Data Extraction for Business Intelligence: the Lixto Approach, in:
Datenbanksysteme in Business, Technologie und Web (BTW), LNI, Series of the
Gesellschaft für Informatik, P-65 (2005), pp. 48–65.

[BHL01] Berners-Lee, T.; Hendler, J.; Lassila, O.: The semantic web. Scientific American,
May 2001.

[Be02] Berners-Lee, T.: The semantic web - mit/lcs seminar, 2002.. http://www.w3c.org/
2002/Talks/09-lcs-sweb-tbl/.

[BHM05] Baumgartner, R.; Henze, N.; Herzog, M.: The Personal Publication Reader:
Illustrating Web Data Extraction, Personalization and Reasoning for the Semantic
Web, in: European Semantic Web Conference ESWC 2005, LNCS 3532, Springer,
Berlin Heidelberg, 2005, pp. 515–530.

[Fr06] Frölich, O.: Erstellung und Optimierung von Geschäftsprozessen durch Integrierte
Wrapper-Technologien mit Anwendungsbeispielen aus den Branchen Mobile
Services, Competitive Intelligence und dem Verlagswesen. Dissertation, DBAI,
TU Vienna, Vienna, 2006.

[GH01] Gottlob, G.; Herzog, M.: Infopipes: A Flexible Framework for M-Commerce
Applications, in: Proc. of TES workshop at VLDB, 2001, pp. 175–186.

26 R. Baumgartner, O. Frölich, and G. Gottlob

[GK02] Gottlob, G.; Koch, C.: Monadic datalog and the expressive power of languages for
Web Information Extraction, in: Proc. of PODS, 2002, pp. 17–28. Full version:
Journal of the ACM 51(1), 2004, pp. 74 – 113.

[Ka98] Kahaner, L.: Competitive Intelligence: How to Gather, Analyse Information to
Move your Business to the Top. Touchstone, New York, 1998.

[Pi03] Pirelli & C. SpA: Annual Report 2003.
http://www.pirelli.com//investor_relation/bilanciocompl2003.pdf, accessed on
2004-09-28, p. 7.

[SCIP04] Society of Competitive Intelligence Professionals (SCIP): What is CI?
http://www.scip.org/ci/index.asp, accessed on 2004-09-28.

[SWRC01] SWRC - Semantic Web Research Community Ontology, 2001.
http://ontobroker.semanticweb.org/ontos/swrc.html.

[Ti95] Tiemeyer, E.; Zsifkovitis, H.E.: Information als Führungsmittel: Executive
Information Systems. Konzeption, Technologie, Produkte, Einführung; 1st edition;
Munich, 1995, p. 95.

Ways to Develop Human-Level Web Intelligence:

A Brain Informatics Perspective

Ning Zhong

Department of Life Science and Informatics
Maebashi Institute of Technology, Japan &

The International WIC Institute/BJUT, China
zhong@maebashi-it.ac.jp

Abstract. In this paper, we briefly investigate several ways to develop
human-level Web intelligence (WI) from a brain informatics (BI) per-
spective. BI can be regarded as brain sciences in WI centric IT age
and emphasizes on a systematic approach for investigating human in-
formation processing mechanism. The recently designed instrumentation
(fMRI etc.) and advanced IT are causing an impending revolution in
both WI and BI, making it possible for us to understand intelligence in
depth and develop human-level Web intelligence.

1 Introduction

The concept of Web intelligence (WI) was first introduced in our papers and
books [13, 24, 27, 29, 31]. Broadly speaking, WI is a new direction for scientific
research and development that explores the fundamental roles as well as practical
impacts of artificial intelligence (AI)1 and advanced information technology (IT)
on the next generation of Web-empowered systems, services, and environments.
The WI technologies revolutionize the way in which information is gathered,
stored, processed, presented, shared, and used by virtualization, globalization,
standardization, personalization, and portals.

As more detailed blueprints and issues of WI are being evolved and spec-
ified [13, 29, 31, 36], it has been recognized that one of the fundamental goals
of WI research is to understand intelligence in depth and develop wisdom Web
based intelligent systems that integrate all the human-level capabilities such as
real-time response, robustness, autonomous interaction with their environment,
communication with natural language, commonsense reasoning, planning, prob-
lem solving, decision making, learning, discovery and creativity.

Turing gave the first scientific discussion of human-level machine intelligence
[23]. Newell and Simon made a start on programming computers for general
intelligence and investigated human problem solving in a behavior based ap-
proach [16]. McCarthy argued that reaching human-level AI requires programs
that deal with the commonsense informative situation, in which the phenomena
1 Here the term of AI includes classical AI, computational intelligence, and soft com-

puting etc.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 27–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

28 N. Zhong

to be taken into account in achieving a goal are not fixed in advance [15]. Laird
and Lent proposed using interactive computer games that are the killer appli-
cation for human-level AI research, because they can provide the environments
for research on the right kinds of problem that lead to the type of incremental
and integrative research needed to achieve human-level AI [10].

The new generation of WI research and development needs to understand
multiple natures of intelligence in depth, by studying integrately the three in-
telligence related research areas: machine intelligence, human intelligence, and
social intelligence, as shown in Figure 1, towards developing truly human-level
Web intelligence. Machine intelligence (also called AI) has been mainly studied as
computer based technologies for the development of intelligent knowledge based
systems; Human intelligence (also called brain sciences) studies the nature of
intelligence towards our understanding of intelligence; Social intelligence needs
a combination of machine intelligence and human intelligence for establishing
social networks that contain communities of people, organizations, or other so-
cial entities [29]. Furthermore, the Web can be regarded as a social network in
which the Web connects a set of people (or organizations or other social enti-
ties). People are connected by a set of social relationships, such as friendship,
co-working or information exchange with common interests. In other words, it is
a Web-supported social network or called virtual community. In this sense, the
study of WI is of social network intelligence (social intelligence for short).

Web Intelligence (WI)

AI
Brain
Sciences

Understanding
intelligence in depth

Combining three
intelligence related areas

Machine Intelligence
Human Intelligence

Social Intelligence

Fig. 1. The relationship between WI and other three intelligence related research areas

In the rest of the paper, we briefly investigate three ways to develop human-
level Web intelligence from a brain informatics (BI) perspective. BI can be re-
garded as brain sciences in WI centric IT age [34, 35]. Although brain sciences
have been studied from different disciplines such as cognitive science and neuro-
science, BI represents a potentially revolutionary shift in the way that research is
undertaken. BI is proposing to study human brain from the viewpoint of informat-
ics (i.e. human brain is an information processing system) and use informatics (i.e.
WI centric information technology) to support brain science study, in particular,
WI provides urgent research needs.

Ways to Develop Human-Level WI: A BI Perspective 29

2 Web Based Problem Solving with Human Level
Capabilities

A more concrete issue of WI is the development and application of a Web-
based problem-solving system for portal-centralized, adaptable Web services
[8, 13, 22, 29, 31].

Problem-solving is one of main capabilities of human intelligence and has
been studied in both cognitive science and AI [16], where it is addressed in con-
junction with reasoning centric cognitive functions such as attention, control,
memory, language, reasoning, learning, and so on, using a logic based symbolic
and/or connectionist approach. Although logic based problem-solving is “per-
fect”, mathematical systems with no real time and memory constraints, Web-
based problem-solving systems need real-time and dealing with global, multiple,
huge, distributed information sources.

The core of such a system rests on the Problem Solver Markup Language
(PSML) and PSML-based distributed Web inference engines for network rea-
soning, in which the following essential support functions should be provided:

– The expressive power and functional support in PSML for complex adaptive,
distributed problem solving;

– Performing automatic reasoning on the Web by incorporating globally dis-
tributed contents and meta-knowledge, automatically collected and trans-
formed from the semantic Web and social networks, with locally operational
knowledge-data bases;

– Representing and organizing multiple, large-scale knowledge-data sources for
distributed network reasoning;

– Combining multiple reasoning methods in PSML representation and distrib-
uted inference engines, efficiently and effectively;

– Modeling user behavior and representing/managing it as a personalized
model dynamically;

– Including an emotional factor in developing the Web based reasoning and
problem solving system.

A possible way as an immediate step to implement certain distributed reason-
ing capabilities of the future PSML is to make use of an existing logic language
coupled with agent technologies. We have demonstrated one possible implemen-
tation of such capabilities. In particular, our proposed implementation, called
β-PSML, is based on the combination of OWL with Horn clauses, and able to
couple global semantic Web/social networks with local information sources for
solving problems in a large-scale distributed Web environment [21, 22].

Furthermore, in order to develop a Web based problem-solving system with
human level capabilities, we need to better understand how human being does
complex adaptive, distributed problem solving and reasoning, as well as how
intelligence evolves for individuals and societies, over time and place [20,26,35].
In other words, ignoring what goes on in human brain and focusing instead on
behavior has been a large impediment to understand how human being does
complex adaptive, distributed problem solving and reasoning.

30 N. Zhong

In the light of BI, we need to investigate specifically the following issues:

– What are the existing thinking/reasoning models in AI, cognitive science,
and neuroscience?

– How to design fMRI/EEG experiments and analyze such fMRI/EEG data to
understand the principle of human reasoning and problem solving in depth?

– How to build the cognitive model to understand and predict user profile and
behavior?

– How to implement human-level reasoning and problem solving on the Web
based portals that can serve users wisely?

As a result, the relationships between classical problem solving and reasoning and
biologically plausible problem solving and reasoning need to be defined and/or
elaborated.

3 Reasoning Centric Thinking Oriented Studies in
Human Information Processing System

Human intelligence related research studies the nature of intelligence towards
our understanding of intelligence. The capabilities of human intelligence can be
broadly divided into two main aspects: perception and thinking. So far, the main
disciplines with respect to human intelligence are cognitive science that mainly
focuses on studying mind and behavior based cognitive models of intelligence,
as well as neuroscience that mainly focuses on studying brain and biological
models of intelligence. In cognitive neuroscience, although many advanced results
with respect to “perception oriented” study have been obtained, only a few of
preliminary, separated studies with respect to “thinking oriented” and/or a more
whole information process have been reported [6]. Figure 2 gives a global picture
on reasoning centric thinking oriented functions and their relationships in human
information processing system.

Our purpose is to understand activities of human information processing sys-
tem by investigations in the following two levels:

– investigating the spatiotemporal features and flow of human information
processing system, based on functional relationships between activated areas
of human brain for each given task;

– investigating neural structures and neurobiological processes related to the
activated areas [19].

More specifically, at the current stage, we want to understand:

– how a peculiar part (one or more areas) of the brain operates in a specific
time;

– how the operated part changes along with time;
– how the activated areas work cooperatively to implement a whole informa-

tion processing;

Ways to Develop Human-Level WI: A BI Perspective 31

Reasoning

Problem-Solving

Decision-Making Planning

Learning

Creativity

Computation

deduction

induction abduction

AOC

GrCemotion

uncertainty

stability

Commonsense/nonMR

Discovery Language

memory

attention

Fig. 2. Reasoning centric thinking oriented functions and their relationships (GrC:
Granular Computing [25]; AOC: Autonomy Oriented Computing [14]; nonMR: non-
monotonous reasoning)

– how the activated areas are linked, indexed, navigated functionally, and what
are individual differences in performance;

– how a cognitive process is supported by neurobiological processes.

We need to study experimental cognitive neuroscience, data mining, intelli-
gent agents, data and knowledge grids, the semantic Web and wisdom Web in
a unified way [1, 2, 3, 4, 11, 12, 28, 34]. We have been developing a full process
from designing fMRI/EEG experiments based on WI needs for discovering new
cognitive WI models. Such a full process means a systematic approach for mea-
suring, collecting, modeling, transforming, managing, and mining multiple hu-
man brain data obtained from various cognitive experiments by using fMRI and
EEG [33,34].

As a step in this direction, we observe that fMRI brain imaging data and EEG
brain wave data extracted from human information processing mechanism are
peculiar ones with respect to a specific state or the related part of a stimulus.
Based on this point of view, we propose a way of peculiarity oriented mining
(POM) for knowledge discovery in multiple human brain data, without using
conventional imaging processing to fMRI brain images and frequency analysis
to EEG brain waves [17, 32, 33, 34]. The proposed approach provides a new way
for automatic analysis and understanding of fMRI brain images and EEG brain
waves to replace human-expert centric visualization. The mining process is a
multi-step one, in which various psychological experiments, physiological mea-
surements, data cleaning, modeling, transforming, managing, and mining tech-
niques are cooperatively employed to investigate human information processing
mechanism.

Figure 3 gives the global picture of an example about how to investigate the
spatiotemporal features and flow of human information processing system. In
the cognitive process from perception to reasoning, data are collected in several
event-related time points, and transformed into various forms in which POM

32 N. Zhong

Thinking �-----� Perception

Reasoning – Language – Memory – Attention – Vision

T

t1titjtk

transformationtransformation transformationtransformationtransformationtransformation

POM/MDA POM/MDA POM/MDA POM/MDA

Explanation/Synthesis

Fig. 3. Investigating the spatiotemporal features and flow of human information
processing system

centric multi-aspect data analysis (MDA) can be carried out efficiently and ef-
fectively. Furthermore, the results of separate analysis can be explained and
combined into a whole flow.

4 A Data-Brain Model and Its Construction

The Data-Brain is a brain database with all of data related to all major aspects
and capabilities of human information processing mechanism for systematic in-
vestigation and understanding of human intelligence. The Data-Brain provides
a holistic view at a long-term, global field of vision to understand the principle,
models and mechanisms of human information processing system [9, 34, 35].

The key questions are how to obtain such data by systematic fMRI/EEG
experiments, how to manage such huge multimedia data for systematic investi-
gation and understanding of human intelligence, as well as how to analyse such
data from multi-aspect and multi-level for discovering new cognitive models. A
new conceptual model is needed to represent complex relationships among mul-
tiple human brain data sources, which are obtained by systematic fMRI/EEG
experiments. Furthermore, the following supporting capabilities are requested to
build such a Data Brain:

– It is a grid-based, simulation and analysis oriented, dynamic, spatial and
multimedia database;

– It deals with multiple data sources, multiple data forms, multiple levels of
data granulation;

– It provides multiple views and organizations;
– It includes various methods for data analysis, simulation, visualization, as

well as corresponding knowledge and models.

At first, agents for data collecting, storing and retrieving are deployed on the
Grid platform, like Globus, as a standard Grid service. OGSA-DAI is used to

Ways to Develop Human-Level WI: A BI Perspective 33

build database access applications [5,37]. The aim of OGSA-DAI is to provide the
middleware glue to interface existing databases, other data resources and tools
to each other in a common way based on the Open Grid Services Architecture
(OGSA). This middleware is based on the GGF-defined OGSI specification and
layered on top of the Globus toolkit 3 OGSI implementation (GT3 Core).

Multiple data sources are collected by various cognitive fMRI/EEG experi-
ments, modeling and transformation, and they are recorded to the corresponding
databases through the Grid service on the distributed sites. Furthermore, the
data-flow is a collection of descriptions for the dynamic relationship among mul-
tiple data sources on the data-grid. In the current study, data sources from
cognitive fMRI/EEG experiments, to be collected on the data-grid, include:

– human multi-perception mechanism for studying the relevance between au-
ditory and visual information processing;

– human deductive/inductive reasoning mechanism for understanding the
principle of human reasoning and problem solving in depth;

– human computation mechanism as an example of human problem solving
system;

– human decision-making mechanism from developing Web based decision-
making support system with an emotional factor;

– human learning mechanism for acquiring personalized student models in an
interactive learning process dynamically and naturally.

In order to build a Data Brain, a systematic methodology of cognitive ex-
perimental design needs to be developed, so that multiple human brain data
sources obtained by fMRI/EEG experiments are interrelated and can be utilized
for multi-purpose, not only a specific one. Event-related experimental designs
have become an important methodology in EEG/fMRI research to evaluate the
high level characteristics of human information processing in the central ner-
vous system [18]. There are, at present, two main methods called event-related
potential (ERP) and event-related fMRI for event-related experimental designs.
ERP is a tiny signal embedded in the ongoing EEG. By averaging the traces,
investigators can extract this signal, which reflects neural activity that is specif-
ically related cognitive events [7]. ERPs are best suited for addressing questions
about the time course of cognition rather than elucidating the brain structures
that produce the electrical events. ERPs also provide physiological indices of
when a person decides to response, or when an error is detected. On the other
hand, event-related fMRI follows the same logic as used in ERP/EEG studies
and provides the spatial resolution. Thus, event-related fMRI will further allow
fMRI and EEG to be combined in paradigms that are identical across methods.
By using such techniques, it is now becoming possible to study the precise spa-
tiotemporal orchestration of neuronal activity associated with perceptual and
cognitive events [18], as well as systematic collection of human brain data for
building a Data Brain.

34 N. Zhong

5 Conclusion

BI emphasizes on a systematic approach for investigating human information
processing mechanism, including measuring, collecting, modeling, transforming,
managing, and mining multiple human brain data obtained from various cogni-
tive experiments by using fMRI and EEG. The proposed methodology attempts
to change the perspective of cognitive/brain scientists from a single type of ex-
perimental data analysis towards a holistic view at a long-term, global field
of vision to understand the principle, models and mechanisms of human infor-
mation processing. New generations of WI research and development need to
understand multi-nature of intelligence in depth. The recently designed instru-
mentation (fMRI etc.) and advanced IT are causing an impending revolution in
both WI and BI, making it possible for us to understand intelligence in depth
and develop human-level Web intelligence.

Acknowledgments

I would like to express my gratitude to Enrico Franconi, Michael Kifer, Wolfgang
May, Dieter Fensel and other organizers of ESWC 2007 for the kind invitation
and the excellent organization. I am grateful to all my research collaborators, as-
sistants, and students who have, over the years, together contributed to the de-
velopment of Web Intelligence (WI) and Brain Informatics (BI). Special thanks
to Jiming Liu, Yiyu Yao, Jinglong Wu, Benjamin Wah, and Shengfu Lu for our
joint projects and discussions. I am very grateful to people who have joined or sup-
ported the WI and BI communities, members of the WIC advisory board, WIC
technical committee, and WIC research centres, as well as keynote/invited speak-
ers of IEEE/WIC/ACM WI-IAT conferences. This work is partially supported by
the grant-in-aid for scientific research (No. 18300053) from the Japanese Ministry
of Education, Culture, Sports, Science and Technology.

References

1. T. Berners-Lee, J. Hendler, O. Lassila, “The Semantic Web”, Scientific American,
284, 34-43 (2001).

2. M. Cannataro and D. Talia, “The Knowledge Grid”, Communications of the ACM,
46 (2003) 89-93.

3. D. Fensel, Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce, Springer (2001).

4. D. Fensel, “Unifying Reasoning and Search to Web Scale”, IEEE Internet Com-
puting, 11(2) (2007) 94-96.

5. I. Foster and C. Kesselman (eds.) The Grid: Blueprint for a New Computing In-
frastructure, Morgan Kaufmann (1999).

6. M.S. Gazzaniga (ed.) The Cognitive Neurosciences III, The MIT Press (2004).

7. T.C. Handy, Event-Related Potentials, A Methods Handbook, The MIT Press
(2004).

Ways to Develop Human-Level WI: A BI Perspective 35

8. J. Hu and N. Zhong, “Organizing Multiple Data Sources for Developing Intelligent
e-Business Portals”, Data Mining and Knowledge Discovery, Vol. 12, Nos. 2-3,
Springer (2006) 127-150.

9. S.H. Koslow and S. Subramaniam (eds.) Databasing the Brain: From Data to
Knowledge, Wiley (2005).

10. J.E. Laird and M. van Lent, “Human-Level AI’s Killer Application Interactive
Computer Games”, AI Magazine (Summer 2001) 15-25.

11. Y. Li and N. Zhong, “Mining Ontology for Automatically Acquiring Web User
Information Needs”, IEEE Transactions on Knowledge and Data Engineering,
Vol. 18, No. 4 (2006) 554-568.

12. J. Liu, N. Zhong, Y.Y. Yao, and Z.W. Ras, “The Wisdom Web: New Challenges for
Web Intelligence (WI)”, Journal of Intelligent Information Systems, 20(1) Kluwer
(2003) 5-9.

13. J. Liu, “Web Intelligence (WI): What Makes Wisdom Web?”, Proc. Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI’03) (2003) 1596-
1601.

14. J. Liu, X. Jin, and K.C. Tsui, Autonomy Oriented Computing: From Problem Solv-
ing to Complex Systems Modeling, Springer (2005).

15. J. McCarthy, “Roads to Human Level AI?”, Keynote Talk at Beijing University of
Technology, Beijing, China (September 2004).

16. A. Newell and H.A. Simon, Human Problem Solving, Prentice-Hall (1972).

17. M. Ohshima, N. Zhong, Y.Y. Yao, and C. Liu, “Relational Peculiarity Oriented
Mining”, Data Mining and Knowledge Discovery, Springer (in press).

18. B.R. Rosen, R.L. Buckner, and A.M. Dale, “Event-related functional MRI: Past,
Present, and Future”, Proceedings of National Academy of Sciences, USA, Vol. 95,
Issue 3 (1998) 773-780.

19. R.G. Shulman and D.L. Rothman, “Interpreting Functional Imaging Studies in
Terms of Neurotransmitter Cycling”, Proceedings of National Academy of Sciences,
USA, Vol. 95, Issue 20 (1998) 11993-11998. [

20. R.J. Sternberg, J. Lautrey, and T.I. Lubart, Models of Intelligence, American Psy-
chological Association (2003).

21. Y. Su, L. Zheng, N. Zhong, C. Liu, and J. Liu, “Distributed Reasoning Based on
Problem Solver Markup Language (PSML): A Demonstration through Extended
OWL”, Proc. 2005 IEEE International Conference on e-Technology, e-Commerce
and e-Service (EEE’05), IEEE Press (2005) 208-213.

22. Y. Su, J. Liu, N. Zhong, L. Zheng, and C. Liu, “A Method of Distributed Problem
Solving on the Web”, Proc. 2005 IEEE/WIC/ACM International Conference on
Web Intelligence (WI’05), IEEE Press (2005) 42-45.

23. A. Turing, “Computing Machinery and Intelligence”, Mind LIX(236) (1950)
433-460.

24. Y.Y. Yao, N. Zhong, J. Liu, and S. Ohsuga, “Web Intelligence (WI): Research
Challenges and Trends in the New Information Age”, N. Zhong, Y.Y. Yao, J.
Liu, S. Ohsuga (eds.) Web Intelligence: Research and Development, LNAI 2198,
Springer (2001) 1-17.

25. Y.Y. Yao and N. Zhong, Granular Computing Using Information Tables. In T.Y.
Lin, Y.Y. Yao, L.A. Zadeh (eds.) Data Mining, Rough Sets and Granular Comput-
ing, Physica-Verlag (2002) 102-124.

26. L.A. Zadeh, “Precisiated Natural Language (PNL)”, AI Magazine, 25(3) (Fall
2004) 74-91.

36 N. Zhong

27. N. Zhong, J. Liu, Y.Y. Yao, and S. Ohsuga, “Web Intelligence (WI)”, Proc. 24th
IEEE Computer Society International Computer Software and Applications Con-
ference (COMPSAC 2000), IEEE Press (2000) 469-470.

28. N. Zhong, C. Liu, and S. Ohsuga, “Dynamically Organizing KDD Process”, Inter-
national Journal of Pattern Recognition and Artificial Intelligence, Vol. 15, No. 3,
World Scientific (2001) 451-473.

29. N. Zhong, J. Liu, and Y.Y. Yao, “In Search of the Wisdom Web”, IEEE Computer,
35(11) (2002) 27-31.

30. N. Zhong, “Representation and Construction of Ontologies for Web Intelligence”,
International Journal of Foundations of Computer Science, World Scientific,
Vol. 13, No. 4 (2002) 555-570.

31. N. Zhong, J. Liu, and Y.Y. Yao (eds.) Web Intelligence, Springer, 2003.
32. N. Zhong, Y.Y. Yao, and M. Ohshima, “Peculiarity Oriented Multi-Database Min-

ing”, IEEE Transaction on Knowlegde and Data Engineering, Vol. 15, No. 4 (2003)
952-960.

33. N. Zhong, J.L. Wu, A. Nakamaru, M. Ohshima, and H. Mizuhara, “Peculiarity
Oriented fMRI Brain Data Analysis for Studying Human Multi-Perception Mech-
anism”, Cognitive Systems Research, 5(3), Elsevier (2004) 241-256.

34. N. Zhong, J. Hu, S. Motomura, J.L. Wu, and C. Liu, “Building a Data Mining
Grid for Multiple Human Brain Data Analysis”, Computational Intelligence, 21(2),
Blackwell Publishing (2005) 177-196.

35. N. Zhong, “Impending Brain Informatics (BI) Research from Web Intelligence (WI)
Perspective”, International Journal of Information Technology and Decision Mak-
ing, World Scientific, Vol. 5, No. 4 (2006) 713-727.

36. N. Zhong, J. Liu, and Y.Y. Yao, “Envisioning Intelligent Information Technologies
(iIT) from the Stand-Point of Web Intelligence (WI)”, Communications of the
ACM, 50(3) (2007) 89-94.

37. The OGSA-DAI project: http://www.ogsadai.org.uk/.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 37–52, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Empowering Software Maintainers
with Semantic Web Technologies

René Witte1, Yonggang Zhang2, and Jürgen Rilling2

1 Institute for Progam Structures and
Data Organisation (IPD), Faculty of Informatics

University of Karlsruhe, Germany
witte@ipd.uka.de

2 Department of Computer Science
and Software Engineering

Concordia University, Montreal, Canada
{rilling,yongg_zh}@cse.concordia.ca

Abstract. Software maintainers routinely have to deal with a multitude of arti-
facts, like source code or documents, which often end up disconnected, due to
their different representations and the size and complexity of legacy systems.
One of the main challenges in software maintenance is to establish and maintain
the semantic connections among all the different artifacts. In this paper, we
show how Semantic Web technologies can deliver a unified representation to
explore, query and reason about a multitude of software artifacts. A novel fea-
ture is the automatic integration of two important types of software mainte-
nance artifacts, source code and documents, by populating their corresponding
sub-ontologies through code analysis and text mining. We demonstrate how the
resulting “Software Semantic Web” can support typical maintenance tasks
through ontology queries and Description Logic reasoning, such as security
analysis, architectural evolution, and traceability recovery between code and
documents.

Keywords: Software Maintenance, Ontology Population, Text Mining.

1 Introduction and Motivation

As software ages, the task of maintaining it becomes more complex and more expen-
sive. Software maintenance, often also referred to as software evolution, constitutes a
majority of the total cost occurring during the life span of a software system [15, 16].
Software maintenance is a multi-dimensional problem space that creates an ongoing
challenge for both the research community and tool developers [8,14]. These mainte-
nance challenges are caused by the different representations and interrelationships
that exist among software artifacts and knowledge resources [17,18]. From a main-
tainer’s perspective, exploring [11] and linking these artifacts and knowledge re-
sources becomes a key challenge [1]. What is needed is a unified representation that
allows a maintainer to explore, query and reason about these artifacts, while perform-
ing their maintenance tasks [13].

38 R. Witte, Y. Zhang, and J. Rilling

In this research, we introduce a novel formal ontological representation that inte-
grates two of the major software artifacts, source code and software documentation,
thereby reducing the conceptual gap between these artifacts. Discovered concepts and
concept instances from both source code and documents are used to explore and estab-
lish the links between these artifacts, providing maintainers with support during typical
software maintenance tasks [2].

Source Code

Documents

Automatic
Population

Semantic
Web clients

Ontology
(non-populated)

Maintainers

Source Code

Documents

Automatic
Population

Semantic
Web clients

Ontology
(non-populated)

Maintainers

Fig. 1. Ontology-Based Software Maintenance Overview

A general overview of our approach is shown in Fig. 1. In a first step, the existing
ontology is automatically populated from both the source code and documentation
artifacts. In a second step, the resulting knowledge base is explored, queried and rea-
soned upon by utilizing various Semantic Web-enabled clients.

Our research is significant for several reasons: (1) The fact that we provide a novel
approach to unify different software artifacts using a Semantic Web approach. (2) We
developed fully automatic ontology population that allows us to take advantage of the
large body of existing software artifacts, namely software documents and source code
and the knowledge they contain. (3) We present concrete application examples, illus-
trating how our ontological representation can benefit software developers during
typical maintenance tasks.

In Section 2, we discuss both challenges and requirements for a Semantic Web ap-
proach to software maintenance. Section 3 provides a general overview of our system.
The design for our software and source code ontologies is discussed in Section 4. In
Section 5, we describe in detail the fully automatic population of the ontologies, fol-
lowed by concrete examples illustrating how our approach can benefit software engi-
neers during typical maintenance tasks in Section 6.

2 Semantic Web and Software Maintenance

In a complex application domain like software maintenance, knowledge needs to be
continually integrated from different sources (like source code repositories, documen-
tation, test case results), different levels of scope (from single variables to complete
system architectures), and across different relations (static, dynamic, etc.) [7, 9]. No
single system is currently capable of supporting a complete domain like software en-
gineering by itself. This makes it necessary to develop focused applications that can

 Empowering Software Maintainers with Semantic Web Technologies 39

deal with individual aspects in a reliable manner, while still being able to integrate
their results into a common knowledge base. Ontologies offer this capability: a large
body of work exists that deals with ontology alignment and the development of upper
level ontologies, while Description Logic (DL) reasoners can check the internal con-
sistency of a knowledge base, ensuring at least some level of semantic integrity.
However, before we can design Semantic Web support for software maintenance, we
have to analyze the requirements particular to that domain.

2.1 Software Maintenance Challenges

With the ever increasing number of computers and their support for business proc-
esses, an estimated 250 billion lines of source code were being maintained in 2000,
with that number rapidly increasing [16]. The relative cost of maintaining and manag-
ing the evolution of this large software base represents now more than 90% of the
total cost [15] associated with a software product. One of the major challenges for the
maintainers while performing a maintenance task is the need to comprehend a multi-
tude of often disconnected artifacts created originally as part of the software devel-
opment process [9]. These artifacts include, among others, source code and software
documents (e.g., requirements, design documentation). From a maintainer’s perspec-
tive, it becomes essential to establish and maintain the semantic connections among
these artifacts.

In what follows, we introduce three typical use cases, which we will later revisit to
illustrate the applicability of our approach in supporting software maintainers during
these typical maintenance tasks.

Use case #1: Identify security concerns in source code. As discussed in [11], source
code searching and browsing are two of the most common activities during the main-
tenance of existing software. With applications that become exposed to volatile envi-
ronments with increased security risks (e.g., distributed environments, web-centric
applications), identifying these security flaws in existing software systems becomes
one of the major activities in the software maintenance phase.

Use case #2: Concept location and traceability across different software artifacts.
From a maintainer’s perspective, software documentation contains valuable informa-
tion of both functional and non-functional requirements, as well as information re-
lated to the application domain. This knowledge often is difficult or impossible to
extract only from source code [12]. It is a well known fact that even in organizations
and projects with mature software development processes, software artifacts created
as part of these processes end up to be disconnected from each other [1]. As a result,
maintainers have to spend a large amount of time on synthesizing and integrating in-
formation from various information sources in order to re-establish the traceability
links among these artifacts.

Use case #3: Architectural recovery and restructuring. With their increasing size and
complexity, maintaining the overall structure of software systems becomes an
emerging challenge of software maintenance. Maintainers need to comprehend the
overall structure of a software system by identifying major components and their
properties, as well as linking identified components with their lower-level
implementation [14].

40 R. Witte, Y. Zhang, and J. Rilling

2.2 Identified Requirements

Based on the stated use cases, we can now derive requirements for Semantic Web
support of software maintenance.

As a prerequisite, a sufficiently large part of the domain must be modeled in form
of an ontology, including the structure and semantics of source code and documents
to a level of detail that allows relevant queries and reasoning on the properties of ex-
isting artifacts (e.g., for security analysis).

Software maintenance intrinsically needs to deal with a large number of artifacts
from legacy systems. It is not feasible to manually create instance information for
existing source code or documents due to the large number of concept instances that
exist in these artifacts. Thus, automatic ontology population methods must be pro-
vided for extracting semantic information from those artifacts.

The semantic information must be accessible through a software maintainer's desk-
top. Knowledge obtained through querying and reasoning should be integrated with
existing development tools (e.g., Eclipse).

Finally, the acceptance of Semantic Web technologies by software maintainers is
directly dependent on delivering added benefits, specifically improving on typical
tasks, such as the ones described by the use cases above.

3 System Architecture and Implementation

In order to utilize the structural and semantic information in various software artifacts,
we have developed an ontology-based program comprehension environment, which
can automatically extract concept instances and their relations from source code and
documents (Fig. 2).

Racer

Semantic Web Infrastructure

RDF/OWL APIsProtege

Eclipse IDE

Query Interface
nRQL/JavaScript

Ontology
Management

SOUND Plug-in Ontology Browser
Document Navigator

Software
Artifact

Source
Code

Document

…

Source Code Analysis
System

Text Mining
System

Ontology Population

Software
Ontology

Source
Code

Ontology

Document
Ontology

Fig. 2. Semantic Web-enabled Software Maintenance Architecture

An important part of our architecture is a software ontology that captures major
concepts and relations in the software maintenance domain [6]. This ontology consists
of two sub-ontologies: a source code and document ontology, which represent

 Empowering Software Maintainers with Semantic Web Technologies 41

information extracted from source code and documents, respectively. The ontologies
are modeled in OWL-DL1 and were created using the Protégé-OWL extension of
Protégé,2 a free ontology editor.

Racer [5], an ontology inference engine, is adopted to provide reasoning services.
The Racer system is a highly optimized DL system that supports reasoning about
instances, which is particularly useful for the software maintance domain, where a
large amount of instances needs to be handled efficiently.

Automatic ontology population is handled by two subsystems: The source code
analysis, which is based on the JDT Java parser3 provided by Eclipse4; and the
document analysis, which is a text mining system based on the GATE (General
Architecture for Text Engineering) framework [3].

The query interface of our system is a plug-in that provides OWL integration for
Eclipse, a widely used software development platform. The expressive query
language nRQL provided by Racer can be used to query and reason over the
populated ontology. Additionally, we integrated a scripting language, which provides
a set of built-in functions and classes using the JavaScript interpreter Rhino5. This
language simplifies querying the ontology for software engineers not familiar with
DL-based formalisms.

4 Ontology Design for Software Maintenance

Software artifacts, such as source code or documentation, typically contain knowledge
that is rich in both structural and semantic information. Providing a uniform ontological
representation for various software artifacts enables us to utilize semantic information
conveyed by these artifacts and to establish their traceability links at the semantic level.
In what follows, we discuss design issues for both the documentation and source code
ontology used in our approach.

4.1 Source Code Ontology

The source code ontology has been designed to formally specify major concepts of ob-
ject-oriented programming languages. In our implementation, this ontology is further
extended with additional concepts and properties needed for some specific languages
(in our case, Java). Examples for classes in the source code ontology are Package, Class,
Method, or Variable. Our source code ontology is described in more detail in [20].

Within this sub-ontology, various ObjectProperties are defined to characterize the
relationships among concepts. For example, two instances of SourceObject may have a
definedIn relation indicating one is defined in the other; or an instance of method may
read an instance of Field indicating the method may read the field in the body of the
method.

1 OWL Web Ontology Language Guide, W3C, http://www.w3.org/TR/owl-guide/
2 Protégé ontology editor, http://protege.stanford.edu/
3 Eclipse Java Development Tools (JDT), http://www.eclipse.org/jdt/
4 Eclipse, http://www.eclipse.org
5 Rhino JavaScript interpreter, http://www.mozilla.org/rhino/

42 R. Witte, Y. Zhang, and J. Rilling

Concepts in the source code ontology typically have a direct mapping to source
code entities and can therefore be automatically populated through source code analy-
sis (see Section 5.1).

4.2 Documentation Ontology

The documentation ontology consists of a large body of concepts that are expected to be
discovered in software documents. These concepts are based on various programming
domains, including programming languages, algorithms, data structures, and design
decisions such as design patterns and software architectures.

Additionally, the software documentation sub-ontology has been specifically
designed for automatic population through a text mining system by adapting the
ontology design requirements outlined in [19] for the software engineering domain.
Specifically, we included:

A Text Model to represent the structure of documents, e.g., classes for sentences,
paragraphs, and text positions, as well as NLP-related concepts that are discovered
during the analysis process, like noun phrases (NPs) and coreference chains. These
are required for anchoring detected entities (populated instances) in their originating
documents.

Lexical Information facilitating the detection of entities in documents, like the
names of common design patterns, programming language-specific keywords, or ar-
chitectural styles; and lexical normalization rules for entity normalization.

Relations between the classes, which include the ones modeled in the source code
ontology. These allow us to automatically restrict NLP-detected relations to semanti-
cally valid ones (e.g., a relation like <variable> implements <interface>, which
can result from parsing a grammatically ambiguous sentence, can be filtered out since
it is not supported by the ontology).

Finally, Source Code Entities that have been automatically populated through
source code analysis (cf. Section 5.1) can also be utilized for detecting corresponding
entities in documents, as we describe in more detail in Sections 5.2.

5 Automatic Ontology Population

One of the major challenges for software maintainers is the large amount of informa-
tion that has to be explored and analyzed as part of typical maintenance activities.
Therefore, support for automatic ontology population is essential for the successful
adoption of Semantic Web technology in software maintenance. In this section, we
describe in detail the automatic population of our ontologies from existing artifacts:
source code (Section 5.1) and documents (Section 5.2).

5.1 Populating the Source Code Ontology

The source code ontology population subsystem is based on JDT, which is a Java parser
provided by Eclipse. JDT reads the source code and performs common tokenization and
syntax analysis to produce an Abstract Syntax Tree (AST). Our population subsystem

 Empowering Software Maintainers with Semantic Web Technologies 43

traverses the AST created by the JDT compiler to identify concept instances and their
relations, which are then passed to an OWL generator for ontology population (Figure 3).

As an example, consider a single line of Java source code: public int sort(){, which
declares a method called sort. A simplified AST corresponding to this line of source
code is shown in Fig. 3. We traverse this tree by first visiting the root node Method
Declaration. At this step, the system understands that a Method instance shall be cre-
ated. Next, the Name Node is visited to create the instance of the Method class, in this
case sort. Then the Modifier Node and Type Node are also visited, in order to establish
the relations with the identified instance. As a result, two relations, sort hasModifier
public and sort hasType int, are detected.

Source Code

Parser (JDT)

Abstract Syntax Tree (AST)

Population system

Instances & Relations

OWL Generator

OWL Files

Method Declaration Node

Modifier Node
(public)

Name Node
(sort)

public int sort () {

Instance:
Method : sort

Relation:
sort hasModifier public
sort hasType int

Type Node
(int)

Fig. 3. Populating the source code ontology

The numbers of instances and relations identified by our system depend on the
complexity of the ontology and the size of the source code to be analyzed. At the cur-
rent stage of our research, the source code ontology contains 38 concepts (classes) and
41 types of relations (ObjectProperties). We have performed several case studies on
different open source systems to evaluate the size of the populated ontology. Table 1
summaries the results of our case studies, with the size of the software system being
measured by lines of code (LOC) and the process time reflecting both AST traversal
and ontology population.

Table 1. Source code Ontology size for different open source projects

 LOC Proc. Time Instances Relations Inst./LOC Rel./LOC
java.util 24k 13.62s 10140 47009 0.42 1.96
InfoGlue6 40k 27.61s 15942 77417 0.40 1.94
Debrief7 140k 67.12s 52406 244403 0.37 1.75
uDig8 177k 82.26s 69627 284692 0.39 1.61

6 Infoglue, http://www.infoglue.org
7 Debrief, http://www.debrief.info
8 uDig, http://udig.refractions.net

44 R. Witte, Y. Zhang, and J. Rilling

5.2 Populating the Documentation Ontology

We developed a custom text mining system to extract knowledge from software
documents and populate the corresponding sub-ontology. The processing pipeline and
its connection with the software documentation sub-ontology is shown in Fig. 4. Note
that, in addition to the software documentation ontology, the text mining system can
also import the instantiated source code ontology corresponding to the document(s)
under analysis.

considering ontology relations and properties

populated subset of,

specific NLP results
as well as document−

Gazetteer: assign ontology classes

OWL Ontology Export

Grammar: Named Entity recognition

NLP preprocessing: Tokenisation, Noun Phrase detection etc.

Coreference Resolution: determine identical individuals

Normalization: get representational individuals in canonical form

Relation detection: establish relations with syntactical rules

assign ontology classes to document entities

consider ontological hierarchies in grammar rules

look up synonym relations to find synonyms

look up ontology properties with rules for establishing the canonical form

Populated Ontology for Processed Documents

initial population

Morphological analysis, Deep Syntactic Analysis: SUPPLE

Instantiated Source Code Ontology

Complete Instantiated Software Ontology

Fig. 4. Workflow of the Ontology-Driven Text Mining Subsystem

The system first performs a number of standard preprocessing steps, such as
tokenisation, sentence splitting, part-of-speech tagging and noun phrase chunking.9
Then, named entities (NEs) modeled in the software ontology are detected in a two-
step process: Firstly, an OntoGazetteer is used to annotate tokens with the
corresponding class or classes in the software ontology (e.g., the word "architecture"
would be labeled with the architecture class in the ontology). Complex named entities
are then detected in the second step using a cascade of finite-state transducers
implementing custom grammar rules written in the JAPE language, which is part of
GATE. These rules refer back to the annotations generated by the OntoGazetteer, and
also evaluate the ontology. For example, in a comparison like
class=="Keyword", the ontological hierarchy is taken into account so that a
JavaKeyword also matches, since a Java keyword is-a keyword in the ontology.
This significantly reduces the overhead for grammar development and testing.

9 For more details, please refer to the GATE documentation: http://gate.ac.uk/documentation/

 Empowering Software Maintainers with Semantic Web Technologies 45

The next major steps are the normalization of the detected entities and the resolution
of co-references. Normalization computes a canonical name for each detected entity,
which is important for automatic ontology population. In natural language texts, an
entity like a method is typically referred to with a phrase like "the myTestMethod
provides...". Here, only the entity myTestMethod should become an instance of the
Method class in the ontology. This is automatically achieved through lexical
normalization rules, which are stored in the software ontology as well, together with
their respective classes. Moreover, throughout a document a single entity is usually
referred to with different textual descriptors, including pronominal references (like "this
method"). In order to find these references and export only a single instance into the
ontology that references all these occurrances, we perform an additional co-reference
resolution step to detect both nominal and pronomial coreferences.

The next step is the detection of relations between the identified entities in order to
compute predicate-argument structures, like implements(class, interface). Here, we
combine two different and largely complementary approaches: A deep syntactic
analysis using the SUPPLE bottom-up parser and a number of pre-defined JAPE
grammar rules, which are again stored in the ontology together with the relation
concepts.

Finally, the text mining results are exported by populating the software
documentation sub-ontology using a custom GATE component, the OwlExporter. The
exported, populated ontology also contains document-specific information; for
example, for each class instance the sentence it was found in is recorded. Figures 5
and 6 show excerpts of ontologies populated by our text mining system.

6 Application of Semantic Web-Enabled Software Maintenance

In what follows, we describe concrete application scenarios that correspond to the
three use cases introduced earlier in Section 2.1.

6.1 Source Code Security Analysis

Existing techniques on detecting and correcting software security vulnerabilities at the
source code level include human code reviews, testing, and static analysis. In the fol-
lowing example, we illustrate how our Semantic Web-based approach can facilitate
security experts or programmers in identifying potential vulnerabilities caused by
unexpected object accessibility.

In this scenario, a maintainer may consider allowing public and non-final fields in
Java source code a security risk that may cause the value of the field being modified
outside of the class where it was defined. In order to detect this, he can search the
ontology through a query10 that retrieves all Field instances that have a PublicModifier but
no FinalModifier:

var SecurityConcern1 = new Query(); // define a new query
SecurityConcern1.declare("F", "MP", "MF"); // declare three query variables
SecurityConcern1.restrict("F", "Field"); // variable F must be a Field instance
SecurityConcern1.restrict("MP", "PublicModifier"); // variable MP must be a PublicModifier instance

10 In this and the following examples, we present ontology queries using our JavaScript-based

query interface discussed in Section 3.

46 R. Witte, Y. Zhang, and J. Rilling

SecurityConcern1.restrict("MF", "FinalModifier"); // variable MF must be a FinalModifier instance
SecurityConcern1.restrict("F", "hasModifier", "MP"); // F and MP have a hasModifier relation
SecurityConcern1.no_relation("F", "hasModifier", "MF"); // F and MF have NO hasModifier relation
SecurityConcern1.retrieve("F"); // this query only retrieve F
var result = ontology.query(SecurityConcern1); // perform the query

In order to extend the query for more specific tasks, such as: Retrieve all public
data of Java package “user.pkg1” that may potentially be (read or write) accessed by
a package “user.pkg2”, the previous query can be further refined by adding:

SecurityConcern1.restrict("F", "definedIn", "user.pkg1"); // F must be definedIn user.pkg1
SecurityConcern1.restrict("M", "Method"); // variable M must be a Method instance
SecurityConcern1.restrict("M", "definedIn", "user.pkg2"); // M must be definedIn user.pkg2
SecurityConcern1.restrict("M", "access", "F"); // M and F have an access relation

It should be noted that fields or methods in Java are defined in classes, and classes
are defined in packages. The ontology reasoner will automatically determine the tran-
sitive relation definedIn between the concepts Field/Method and Package. In addition, read
and write relations between method and field are modeled in our ontology by the read-
Field and writeField ObjectProperties, which are a subPropertyOf access.

Many security flaws are preventable through security enforcement. Common vul-
nerabilities such as buffer overflows, accessing un-initialized variables, or leaving
temporary files in the disk could be avoided by programmers with strong awareness
of security concerns. In order to deliver more secure software, many development
teams have guidelines for coding practice to enforce security. In our approach, we
support maintainers and security experts during enforcement or validation, by check-
ing whether these programming guidelines are followed. For example, to prevent
access to un-initialized variables, a general guideline could be: all fields must be ini-
tialized in the constructors. The following query retrieves all classes that did not fol-
low this specific constructor initialization guideline:

var SecurityConcern2 = new Query(); // define a new query
SecurityConcern2.declare("F", "I", "C"); // declare three query variables
SecurityConcern2.restrict("F", "Field"); // variable F must be a Field instance
SecurityConcern2.restrict("I", "Constructor"); // variable I must be a Constructor instance
SecurityConcern2.restrict("C", "Class"); // variable C must be a Class instance
SecurityConcern2.restrict("F", "definedIn", "C"); // F must be definedIn C
SecurityConcern2.restrict("I", "definedIn", "C"); // I must be also definedIn C
SecurityConcern2.no_relation("I", "writeField", "F"); // I and F have NO writeField relation
SecurityConcern2.retrieve("C", "I"); // this query only retrieve C and I
var result = ontology.query(SecurityConcern2); // perform the query

These two examples illustrate the power of our Semantic Web-enabled software
maintenance approach: Complex queries can be performed on the populated ontology
to identify specific patterns in the source code. Such types of queries utilize both the
structural (e.g., definedIn) and semantic (e.g., writeField) knowledge of programming
languages, which is typically ignored by traditional search tools based on string-
matching, such as grep

11.

6.2 Establishing Traceability Links Between Source Code and Documentation

After instantiating both the source code and documentation sub-ontologies from their
respective artifacts, it is now possible to automatically cross-link instances between

11 Grep tool, http://www.gnu.org/software/grep/

 Empowering Software Maintainers with Semantic Web Technologies 47

these sub-ontologies. This allows maintainers to establish traceability links among the
sub-ontologies through queries and reasoning, in order to find, for example, documen-
tation corresponding to a source code entity, or to detect inconsistencies between in-
formation contained in natural language texts vs. the actual code.

For example, our source code analysis tool may identify c1 and c2 as classes; and
this information can be used by the text mining system to identify named entities – c'1
and c'2 – and their associated information in the documents (Fig. 5). As a result,
source code entities c1 and c2 can now be linked to their occurrences in the documents
(c'1 and c'2). After source code and documentation ontology are linked, users can per-
form ontological queries on either documents or source code regarding properties of
c1 or c2. For example, in order to retrieve document passages that describe both c1 and
c2 or to retrieve design pattern descriptions referring to a pattern that contains the
class currently being analyzed by a maintainer. Furthermore, it is also possible to
identify inconsistencies – the documentation might list a method as belonging to a
different class than it is actually implemented, for example – which are detected
through the linking process and registered for further review by the user.

We performed an initial evaluation on a large open source Geographic Information
System (GIS), uDig12, which is implemented as a set of plug-ins on top of the Eclipse
platform. The uDig documents used in the study consist of a set of JavaDoc files and
a requirement analysis document.13

Links between the uDig implementation and its documentation are recovered by first
performing source code analysis to populate the source code ontology. The resulted
ontology contains instances of Class, Method, Field, etc., and their relations, such as inheri-
tance and invocation. Our text mining system takes these identified class names, method
names, and field names as an additional resource to populate the documentation ontol-
ogy (cf. Fig. 4). Through this text mining process, a large number of Java language con-
cept instances are discovered in the documents, as well as design-level concept
instances such as design patterns or architecture styles. Ontology linking rules are then
applied to link the populated documentation and source code ontologies.

Documentation Ontology Source Code Ontology

Fig. 5. Linked Source Code and Documentation Ontology

12 uDIG open source GIS, http://udig.refractions.net/confluence/display/UDIG/Home
13 uDig documentation, http://udig.refractions.net/docs/

48 R. Witte, Y. Zhang, and J. Rilling

A partial view of a linked ontology is shown in Figure 5; the corresponding sen-
tences are:

Sentence_2544: “For example if the class FeatureStore is the target class and the
object that is clicked on is a IGeoResource that can resolve to a FeatureStore then a
FeatureStore instance is passed to the operation, not the IGeoResource”.

Sentence_712: “Use the visitor pattern to traverse the AST”

Figure 5 shows that our text mining system was able to discover that sentence_2544
contains both class instances _4098_FeatureStore and _4100_IGeoResource. Both
of these classes can be linked to the instances in source code ontology,
org.geotools.data.FeatureStore and net.refractions.udig.catalog.IGeoResource, respec-
tively. Additionally, in sentence_712, a class instance (_719_AST) and a design pattern
instance (_718_visitor_pattern) are also identified. Instance _719_AST is linked in a
similar manner to the net.refractions.udig.catalog.util.AST interface in the source code
ontology. Therefore, the recovery of traceability links between source code and docu-
mentation is feasible and implicit relations in the linked ontologies can be inferred.

6.3 Architectural Analysis

The populated ontology can also assist maintainers in performing more challenging
tasks, such as analyzing the overall structure of a software system, i.e., architectural
analysis. In this case study, we analyzed the architecture of the open source web site
content management system, InfoGlue14. The first step of an architectural analysis is
wtypically to identify potential architectural styles [7] and candidate components in
the system. By browsing the documentation ontology populated through text mining,
we observe that a large number of instances of concept Layer are discovered. This in-
formation provides us with significant clues that the InfoGlue system might be im-
plemented using a typical Layered Architecture [7]. Additionally, the text mining
discovered that the application layer contains a set of action classes, as shown in
Fig. 6. This information provides important references for our further analysis of the
documents and source code.

Fig. 6. Architecture information discovered by text mining

We later determined that the action classes refer to classes that implement
webwork.action.Action interface. Before conducting the analysis, we hypothesized

14 InfoGlue Open Source Content Management Platform, http://www.infoglue.org/

 Empowering Software Maintainers with Semantic Web Technologies 49

that the InfoGlue system implements a common layered architecture, in which each
layer only communicates with its upper or lower layer. In order to validate our
hypothesis, we performed a number of queries on the populated source code ontology
to retrieve method calls between layers.

The script first retrieves all layer instances in the ontology, and then iteratively
queries method call relations between layers. A similar query is performed to retrieve
the number of methods being called.

var layers = ontology.retrieve_instance(“Layer”);

for(var i = 0; i < layers.size(); i++){
var layer1 = layers.get(“Layer”, i);
for(var j = 0; j < layers.size(); j++){

 var layer2 = layers.get(“Layer”, j);
 if(layer1.equals(layer2)) continue;
 var query = new Query();
 query.declare(“M1”, “M2”);
 query.restrict(“M1”, “Method”);
 query.restrict(“M2”, “Method”);
 query.restrict(“M1”, “definedIn”, layer1);
 query.restrict(“M2”, “definedIn”, layer2);
 query.restrict(“M1”, “call”, “M2”);
 query.retrieve(“M1”, “M2”);
 var result = ontology.query(query);
 out.println(layer1 + “ calls “ + layer2 + “ “ + result.size() + “ times.”);

}
 }

Application LayerApplication Layer

Control LayerControl Layer

Domain LayerDomain Layer

535 Calls
285 Called

3 Calls
1 Called

842 Calls
383 Called

775 Calls
269 Called

0

0

Fig. 7. Example script to detect method calls between layers (left) and results obtained from
executing the query on the populated ontology (right)

Fig. 7 summarizes the results of these two queries, by showing both the number of
method calls and the number of methods being called. From the analysis of the result
one can refute the original hypothesis about the implementation of the common lay-
ered architecture. This is due to the fact that one can observe in the InfolGlue system
a significant amount of communications from the application layer to domain layer –
skipping the control layer. This information is valuable for software maintainers, be-
cause it indicates that any changes made in the domain layer may also directly affect
the application layer, a situation which one would not expect based on the architec-
tural description found in the InfoGlue system documentation.

In addition, we observed that there is no communication from the domain layer to
the control and application layer, i.e., the domain layer can be substituted by other
components matching the same interface. This observation also reveals an important
property of the domain layer in the InfoGlue system – the domain layer is a self-
contained component that can be reused by other applications. Our observation is also
supported by the architecture document itself, which clearly states that “the domain
business logic should reside in the domain objects themselves making them self
contained and reusable”.

Moreover, by analyzing these results, one would expect that a lower layer should not
communicate with its upper layer. The three method calls from the control layer to the
application layer can therefore be considered as either implementation defects or as the
result of a special design intention not documented. Our further inspection showed that

50 R. Witte, Y. Zhang, and J. Rilling

the method being called is a utility method that is used to format HTML content. We
consider this to be an implementation defect since the method can be re-implemented in
the control layer to maintain the integrity of a common layered architecture style.

7 Related Work and Discussions

Existing research on applying Semantic Web techniques in software maintenance
mainly focuses on providing ontological representation for particular software arti-
facts or supporting specific maintenance task [10]. In [21], Ankolekar et al. provide
an ontology to model software, developers, and bugs. This ontology is semi-
automatically populated from existing artifacts, such as software interface, emails,
etc. Their approach assists the communication between software developers for bug
resolution. In [22], Happle et al. present an approach addressing the component reuse
issue of software development by storing descriptions of components in a Semantic
Web repository, which can then be queried for existing components.

Comparing with the existing approaches, like the LaSSIE system [4], our work dif-
fers in two important aspects: (1) the automatic population from existing software arti-
facts, especially source code and its documentation, which are both very different in
structure and semantics; and (2) the application of queries on the populated ontologies,
including DL reasoning, to enhance concrete tasks performed by software maintainers.
The first aspect is an important prerequisite to bring a large amount of existing data
into the “Software Semantic Web”. The inclusion of semantically different and com-
plementary artifacts, in the form of machine-readable code and natural language, pro-
vides for real improvement in software maintenance, enabling for the first time an
automatic connection between code and its documentation. The second aspect shows
the power of DL-based reasoning when applied to the software domain, significantly
enhancing the power of conventional software development tools.

8 Conclusions and Future Work

In this paper, we presented a novel approach that provides formal ontological repre-
sentations of the software domain for both source code and document artifacts. The
ontologies capture structural and semantic information conveyed in these artifacts,
and therefore allow us to link, query and reason across different software artifacts on
a semantic level.

In this research, we address important issues for both the Semantic Web and the
software maintenance communities. For the Semantic Web community, we illustrate
how the use of the semantic technologies can be extended to the software mainte-
nance domain. Furthermore, we demonstrate how the large body of existing knowl-
edge found in source code and software documentation can be made available through
automatic ontology population on the Semantic Web.

From a software maintenance perspective, we illustrate through three concrete use
cases how the Semantic Web and its underlying technologies can benefit and support
maintainers during typical maintenance tasks.

 Empowering Software Maintainers with Semantic Web Technologies 51

In future versions, more work is needed on enhancing existing software development
tools with Semantic Web capabilities, some of which is addressed in the Semantic Desk-
top community. Many of the ideas presented here obviously also apply to other areas in
software engineering besides maintenance; we have also been investigating ontology-
enabled software comprehension processes [13], which will complement and further
enhance the utility of our “Software Semantic Web” approach.

References

1. G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia, “Information Retrieval Models for
Recovering Traceability Links between Code and Documentation”. In Proc. of IEEE In-
ternational Conference on Software Maintenance, San Jose, CA, 2000.

2. R. Brooks, “Towards a Theory of the Comprehension of Computer Programs”. Interna-
tional Journal of Man-Machine Studies, pp. 543-554, 1963.

3. H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan. “GATE: A Framework and
Graphical Development Environment for Robust NLP Tools and Applications.” In Proc. of
the 40th Anniversary Meeting of the ACL. Philadelphia, July 2002.

4. P. Devanbu, R.J. Brachman, P.G. Selfridge, and B.W. Ballard, “LaSSIE - a Knowledge-
based Software Information System”, Comm. of the ACM, 34(5), pp. 36–49, 1991.

5. V. Haarslev and R. Möller, “RACER System Description”, In Proc. of International Joint
Conference on Automated Reasoning, Siena, Italy, 2002.

6. P. N. Johnson-Laird, “Mental Models: Towards a Cognitive Science of Language, Infer-
ence and Consciousness”. Harvard University, Cambridge, MI, 1983.

7. A. V. Mayhauser, A. M. Vans, “Program Comprehension during Software Maintenance
and Evolution”. IEEE Computer, 28(8), pp. 44-55, August, 1995.

8. IEEE Standard for Software Maintenance, IEEE 1219-1998.
9. D. Jin and J. Cordy. "Ontology-Based Software Analysis and Reengineering Tool Integra-

tion: The OASIS Service-Sharing Methodology". In Proc. of the 21st IEEE International
Conference on Software Maintenance, Budapest, Hungary, 2005.

10. H.-J. Happel, S. Seedorf, "Applications of Ontologies in Software Engineering", In Proc.
of International Workshop on Semantic Web Enabled Software Engineering, 2006.

11. T.C. Lethbridge and A. Nicholas, "Architecture of a Source Code Exploration Tool: A
Software Engineering Case Study", Department of Computer Science, University of Ot-
tawa, Technical Report, TR-97-07, 1997.

12. M. Lindvall and K. Sandahl, “How well do experienced software developers predict soft-
ware change?” Journal of Systems and Software, 43(1), pp. 19-27, 1998.

13. W. Meng, J. Rilling, Y. Zhang, R. Witte, P. Charland, “An Ontological Software Compre-
hension Process Model”, In Proc. of the 3rd International Workshop on Metamodels,
Schemas, Grammars, and Ontologies for Reverse Engineering, Italy, 2006.

14. C. Riva, "Reverse Architecting: An Industrial Experience Report", In Proc. of the 7th
IEEE Working Conference on Reverse Engineering, Australia, 2000.

15. R. Seacord, D. Plakosh, and G. Lewis, “Modernizing Legacy Systems: Software Tech-
nologies, Engineering Processes, and Business Practices”, Addison-Wesley, 2003.

16. I. Sommerville, “Software Engineering (6th Edition)”, Addison-Wesley, 2003.
17. M.A. Storey, S.E. Sim, and K. Wong, “A Collaborative Demonstration of Reverse Engi-

neering tools”, ACM SIGAPP Applied Computing Review, Vol. 10(1), pp18-25, 2002.
18. C. Welty, “Augmenting Abstract Syntax Trees for Program Understanding”, In Proc. of

International Conference on Automated Software Engineering, 1997.

52 R. Witte, Y. Zhang, and J. Rilling

19. R. Witte, T. Kappler, C. Baker, “Ontology Design for Biomedical Text Mining”, Chapter
13 in Semantic Web: Revolutionizing Knowledge Discovery in the Life Sciences, Springer
Verlag, 2006.

20. Y. Zhang, R. Witte, J. Rilling, V. Haarslev, “An Ontology-based Approach for Traceabil-
ity Recovery”, In Proc. of International Workshop on Metamodels, Schemas, Grammars,
and Ontologies for Reverse Engineering, Genoa, Italy, 2006.

21. A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, C. Welty, “Supporting Online Problem-
solving Communities With the Semantic Web”, In Proc. of the 15th International Confer-
ence on World Wide Web, 2006.

22. H.-J. Happel, A. Korthaus, S. Seedorf, P. Tomczyk, “KontoR: An Ontology-enabled Ap-
proach to Software Reuse”, In Proc. of the 18th International Conference on Software En-
gineering and Knowledge Engineering, 2006.

Minimal Deductive Systems for RDF

Sergio Muñoz1, Jorge Pérez2,3, and Claudio Gutierrez4

1 Universidad Católica de la Sant́ısima Concepción, Chile
2 Pontificia Universidad Católica de Chile

3 Universidad de Talca, Chile
4 Universidad de Chile

Abstract. This paper presents a minimalist program for RDF, by show-
ing how one can do without several predicates and keywords of the RDF
Schema vocabulary, obtaining a simpler language which preserves the
original semantics. This approach is beneficial in at least two directions:
(a) To have a simple abstract fragment of RDFS easy to formalize and
to reason about, which captures the essence of RDFS; (b) To obtain al-
gorithmic properties of deduction and optimizations that are relevant for
particular fragments. Among our results are: the identification of a sim-
ple fragment of RDFS; the proof that it encompasses the main features
of RDFS; a formal semantics and a deductive system for it; sound and
complete deductive systems for their sub-fragments; and an O(n log n)
complexity bound for ground entailment in this fragment.

1 Introduction

The Resource Description Framework (RDF) is the W3C standard for represent-
ing information in the Web [17]. The motivation behind the development of RDF
by the W3C was, as Tim Berners-Lee pointed out for the Semantic Web, to have
a common and minimal language to enable to map large quantities of existing
data onto it so that the data can be analyzed in ways never dreamed of by its
creators [2]. If one would like to bring to reality this vision, the processing of
RDF data at big scale must be viable. The very future of RDF data deployment
and their use will depend critically on the complexity of processing it.

Efficient processing of any kind of data relies on a compromise between two
parameters, namely, the size of the data and the expressiveness of the language
describing it. As we already pointed out, in the RDF case the size of the data
to be processed will be enormous, as examples like Wordnet [12], FOAF [3] and
Gene Ontology [19] show. Hence, a program to make RDF processing scalable
has to consider necessarily the issue of the expressiveness of RDF. Due to the
well known fact that the complexity of entailment using RDF data in its full
expressiveness is an untractable problem [7,8,4], such a program amounts es-
sentially to look for fragments of RDF with good behavior w.r.t. complexity of
processing. This is the broad goal of the present paper.

The full specification of RDF (that is, including RDFS vocabulary) and their
fragments has not yet been studied in detail. Its description is given in [16] and its

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 53–67, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

54 S. Muñoz, J. Pérez, and C. Gutierrez

semantics is defined in [15]. The first observation that arises when dealing with
RDFS vocabulary is the difficulty to work with it. An example of this fact is that
even the rules of deduction presented in the official RDF Semantics specification
are not complete [10,8]. A second empirical observation is that several parts of
the RDFS vocabulary have been depreciated, and practice shows that there are
others that are hardly used or not being used at all. This makes it very hard for
developers to build and optimize sound implementations and algorithms, and
for theoreticians to work on this specification.

In order to illustrate the above issues, let us consider two well known RDFS
specifications: WordNet [12] and Friend of a Friend (FOAF) [3]. Both schemas
use only a proper subset of the RDFS vocabulary. FOAF schema has no blank
nodes. Additionally, there is a point about the real need of explicitly declaring
classes via rdfs:Class: In both specifications the triples where rdfs:Class
occurs are redundant (i.e. can be deduced from the rest of the data). Something
similar happens with terms defined as properties (rdf:Property). Why use all
the weight of the full RDFS specification in these cases? Another example where
these type of issues will arise, is the SPARQL query language specification [11],
which currently does not support RDFS entailment. There is wide agreement
that more expressive vocabularies must be treated orthogonally to the rest of
the SPARQL features. In practice, each query will use just a small fragment
of the RDFS vocabulary. For reasoning and optimization purposes, it would
be useful to have a sound and complete theory of each such fragment which
preserves the semantics of RDFS.

Among the most important directions of a program to develop solutions to
the above mentioned problems are:

– To identify a fragment which encompasses the essential features of RDF,
which preserves the original semantics, be easy to formalize and can serve
to prove results about its properties.

– To study in detail the semantics of different fragments of RDF, and give
sound and complete deductive system for each of them.

– To study the complexity of entailment for the vocabulary in general and
in these fragments in particular, and to develop algorithms for testing
entailment.

As for the first point, in this paper we identify a fragment of RDFS that
covers the crucial vocabulary of RDFS, prove that it preserves the original RDF
semantics, and avoids vocabulary and axiomatic information that only serves
to reason about the structure of the language itself and not about the data it
describes. We lift this structural information into the semantics of the language,
hiding them from developers and users.

Regarding the second point, we study thoroughly all fragments of the core
fragment showing that they retain the original RDFS semantics. We then study
the lattice of the theories induced by these fragments, developing minimal sound
and complete proof systems for them. We also calculate what are the min-
imal sub-theories that should be considered when reasoning with restricted
vocabulary.

Minimal Deductive Systems for RDF 55

Finally, regarding the point of complexity of entailment, there are two main
aspects of RDF to consider: the built-in vocabulary and the notion of blank
nodes. For the complexity of entailment considering blank nodes, good (polyno-
mial) cases can be derived from well known databases and constraint–satisfaction
results [4,9,5]. These cases consider special forms of interaction between blank
nodes that are very common in practice. On this regard, we prove that there is
a notion of normalized proof for RDFS entailment which permits to treat the
issue of blank nodes entailment in a way orthogonal to the treatment of RDFS
vocabulary. Using this notion, results for blank nodes can be composed modu-
larly with particular results for ground RDFS fragments, that is, not considering
blank nodes semantics.

For the the ground case, from a database point of view, even current known
bounds seems totally impractical. For example, the naive approach would use
closure, and estimates for the size of the closure are high: we show that in the
fragment presented, it is quadratic. Nevertheless, this bound is still impractical
from a database point of view. On these lines, we prove that entailment can be
done in time O(n log n) in the worst case, where n is the size of the source data.

The paper is organized as follows. Section 2 presents standard RDF and its
semantics and discusses the vocabulary design to conclude with a proposal of
core fragment, called ρdf. Section 3 studies the ρdf fragment. Section 4 presents
the lattice of minimal fragments of ρdf and their deductive systems. Section 5
studies complexity of entailment in the ρdf fragment. Finally, Section 6 presents
the conclusion.

2 RDF Semantics

Assume there are pairwise disjoint infinite sets U (RDF URI references), B
(Blank nodes), and L (Literals). Through the paper we assume U, B, and L fixed,
and for simplicity we will denote unions of these sets simply concatenating their
names. A tuple (s, p, o) ∈ UBL×U×UBL is called an RDF triple. In this tuple,
s is the subject, p the predicate, and o the object. Note that –following recent
developments [6,11]– we are omitting the old restriction stating that literals
cannot be in subject position.

Definition 1. An RDF graph (or simply a graph) is a set of RDF triples. A sub-
graph is a subset of a graph. The universe of a graph G, denoted by universe(G)
is the set of elements in UBL that occur in the triples of G. The vocabulary of
G, denoted by voc(G) is the set universe(G) ∩ UL. A graph is ground if it has
no blank nodes. In general we will use uppercase letters N, X, Y, . . . to denote
blank nodes.

In what follows we will need some technical notions. A map is a function μ :
UBL → UBL preserving URIs and literals, i.e., μ(u) = u for all u ∈ UL.
Given a graph G, we define μ(G) as the set of all (μ(s), μ(p), μ(o)) such that
(s, p, o) ∈ G. We will overload the meaning of map and speak of a map μ from
G1 to G2, and write μ : G1 → G2, if the map μ is such that μ(G1) is a subgraph
of G2.

56 S. Muñoz, J. Pérez, and C. Gutierrez

2.1 Interpretations

The normative semantics for RDF graphs given in [15], and the mathematical
formalization in [10] follows standard classical treatment in logic with the no-
tions of model, interpretation, entailment, and so on. In those works the RDFS
theory is built incrementally from Simple, to RDF, to RDFS interpretations (or
structures) and models for graphs. We present here a single notion of interpre-
tation which summarizes Simple, RDF, and RDFS interpretations in one step,
and which will be used later to define the semantics of our fragment.

Definition 2. An interpretation over a vocabulary V is a tuple

I = (Res, Prop, Class, Ext, CExt, Lit, Int)

such that: (1) Res is a nonempty set of resources, called the domain or universe
of I; (2) Prop is a set of property names (not necessarily disjoint from Res); (3)
Class ⊆ Res is a distinguished subset of Res identifying if a resource denotes
a class of resources; (4) Ext : Prop → 2Res×Res, a mapping that assigns an
extension to each property name; (5) CExt : Class → 2Res a mapping that
assigns a set of resources to every resource denoting a class; (6) Lit ⊆ Res the
set of literal values, Lit contains all plain literals in L ∩ V ; (7) Int : UL ∩ V →
Res ∪ Prop, the interpretation mapping, a mapping that assigns a resource or
a property name to each element of UL in V , and such that Int is the identity
for plain literals and assigns an element in Res to elements in L.

In [15,10] the notion entailment is defined using the idea of satisfaction of a graph
under certain interpretation. Intuitively a ground triple (s, p, o) in an RDF graph
G will be true under the interpretation I if p is interpreted as a property name,
s and o are interpreted as resources, and the interpretation of the pair (s, o)
belongs to the extension of the property assigned to p.

In RDF, blank nodes work as existential variables. Intuitively the triple (X, p, o)
with X ∈ B would be true under I if there exists a resource s such that (s, p, o) is
true under I. When interpreting blank nodes, an arbitrary resource can be chosen,
taking into account that the same blank node must always be interpreted as the
same resource. To formally deal with blank nodes, extensions of the interpretation
map Int are used in the following way. Let A : B → Res be a function from blank
nodes to resources; we denote IntA the extension of Int to domain B defined by
IntA(X) = A(X) when X ∈ B. The function A captures the idea of existentiality.

The formal definition of model and entailment for RDFS in [15,10] relies on
a set of semantics restrictions imposed to interpretations in order to model the
vocabulary, and the a priori satisfaction of a set of axiomatic triples. We refer
the reader to Appendix A for a complete formal definition of the semantics of
RDFS using the notion of interpretation defined here.

2.2 RDFS Vocabulary

The RDF specification includes a set of reserved words, the RDFS vocabulary
(RDF Schema [16]) designed to describe relationships between resources as well

Minimal Deductive Systems for RDF 57

as to describe properties like attributes of resources (traditional attribute-value
pairs). Table 1 (Appendix A) shows the full RDFS vocabulary as it appears
in [15], and (in brackets) the shortcuts that we will use in this paper. This
vocabulary has a special interpretation (see Definition 6 in Appendix A).

Roughly speaking, this vocabulary can be divided conceptually in the follow-
ing groups:

(a) a set of properties rdfs:subPropertyOf [sp], rdfs:subClassOf [sc], rdfs:domain

[dom], rdfs:range [range] and rdf:type [type].
(b) a set of classes, rdfs: Resource, rdfs:Class, rdf:Property, rdf:XMLLiteral,

rdfs:Literal, rdfs:Datatype.
(c) Other functionalities, like a system of classes and properties to describe lists:

rdfs:Container, rdfs:ContainerMembershipProperty, rdfs:member, rdf:List, rdf:Alt,

rdf:Bag, rdf:Seq, rdf:first, rdf:rest, rdf:nil, rdf: 1, rdf: 2, . . . , and a systems for
doing reification: a class rdf:Statement together with properties rdf:subject,

rdf:predicate, rdf:object.
(d) Utility vocabulary, like rdfs:seeAlso, rdfs:isDefinedBy, rdfs:comment, rdf:value,

rdfs:label.

The groups in (b), (c) and (d) have a very light semantics, essentially de-
scribing its internal function in the ontological design of the system of classes
of RDFS. Their semantics is defined by “axiomatic triples” [15]which are rela-
tionships among these reserved words. Note that all axiomatic triples are “struc-
tural”, in the sense that do not refer to external data, but talk about themselves.
Much of this semantics correspond to what in standard languages is captured
via typing. From a theoretical and practical point of view it is inconvenient to
expose it to users of the language because it makes the language more difficult
to understand and use, and for the criteria of simplicity in the design of the
language.

On the contrary, the group (a) is formed by predicates whose intended mean-
ing is non-trivial and is designed to relate individual pieces of data external to
the vocabulary of the language. Their semantics is defined by rules which involve
variables (to be instantiated by real data). For example, rdfs:subClassOf[sc] is
a binary property reflexive and transitive; when combined with rdf:type[type]
specify that the type of an individual (a class) can be lifted to that of a su-
perclass. This group (a) forms the core of the RDF language developers use, as
practice is showing.

For all the above considerations, it is that group (a) forms a natural fragment
of RDFS to be studied in depth. Section 3 is devoted to study this fragment,
and our results will show that there are theoretical reasons that support the
convenience of this choice.

3 The ρdf Fragment of RDFS

Define ρdf (read rho-df, the ρ from restricted rdf) to be the following subset of
the RDFS vocabulary:

ρdf = {sp, sc, type, dom, range}.

58 S. Muñoz, J. Pérez, and C. Gutierrez

Definition 3. Let G be a graph over ρdf. An interpretation I is a model of G
under ρdf, denoted I |=ρdf G, iff I is an interpretation over ρdf ∪ universe(G)
that satisfies the following conditions:

1. Simple:

(a) there exists a function A : B → Res such that for each (s, p, o) ∈ G, Int(p) ∈
Prop and (IntA(s), IntA(o)) ∈ Ext(Int(p)), where IntA is the extension of
Int using A.

2. Subproperty:

(a) Ext(Int(sp)) is transitive and reflexive over Prop

(b) if (x, y) ∈ Ext(Int(sp)) then x, y ∈ Prop and Ext(x) ⊆ Ext(y)

3. Subclass:

(a) Ext(Int(sc)) is transitive and reflexive over Class

(b) if (x, y) ∈ Ext(Int(sc)) then x, y ∈ Class and CExt(x) ⊆ CExt(y)

4. Typing I:

(a) x ∈ CExt(y) ⇔ (x, y) ∈ Ext(Int(type))

(b) if (x, y) ∈ Ext(Int(dom)) and (u, v) ∈ Ext(x) then u ∈ CExt(y)

(c) if (x, y) ∈ Ext(Int(range)) and (u, v) ∈ Ext(x) then v ∈ CExt(y)

5. Typing II:

(a) For each e ∈ ρdf, Int(e) ∈ Prop.

(b) if (x, y) ∈ Ext(Int(dom)) then x ∈ Prop and y ∈ Class.

(c) if (x, y) ∈ Ext(Int(range)) then x ∈ Prop and y ∈ Class.

(d) if (x, y) ∈ Ext(Int(type)) then y ∈ Class.

We define G entails H under ρdf, denoted G |=ρdf H, iff every model under ρdf
of G is also a model under ρdf of H.

Note that in ρdf–models we do not impose the a priori satisfaction of any ax-
iomatic triple. Indeed, ρdf–models does not satisfy any of the RDF/S axiomatic
triples in [15,10], because all of them mention RDFS vocabulary outside ρdf. This
is also the reason for the inclusion of conditions 5 in ρdf models that capture
the semantics restrictions imposed syntactically by the RDF/S axiomatic triples
(dom, dom, prop), (dom, range, class), (range, dom, prop), (range, range, class),
and (type, range, class), and the fact that every element in ρdf must be inter-
preted as a property.

The next theorem shows that this definition retains the original semantics for
the ρdf vocabulary:

Theorem 1. Let |= be the RDFS entailment defined in [15,10], and let G and
H be RDF graphs that do not mention RDFS vocabulary outside ρdf. Then

G |= H iff G |=ρdf H.

Minimal Deductive Systems for RDF 59

The issue of reflexivity. There are still some details to be refined in the the-
ory of ρdf. Note that, although in ρdf–models we do not impose the a priori
satisfaction of any triple, there are triples that are entailed by all graphs, for ex-
ample the triples (sp, sp, sp), (sc, sp, sc), (type, sp, type), (dom, sp, dom), and
(range, sp, range). These triples are true under every ρdf model due to the fact
that sp must be interpreted as a reflexive relation. Also, because blank nodes
work as existential variables, the triples above with the subject or the object
replaced by any blank node, are also true in every ρdf–model. The good news
is that these are the only triples in the ρdf fragment that are satisfied by every
model:

Proposition 1. Let t be an RDF triple such that |=ρdf t. Then, either t ∈
{(sp, sp, sp), (sc, sp, sc), (type, sp, type), (dom, sp, dom), (range, sp, range)},
or t is obtained from these triples replacing the subject or object by a blank
node.

This is part of a more general phenomena, namely the presence of reflexivity for
sp and sc. We will show that reflexivity for sp and sc is orthogonal with the
rest of the semantics.

Definition 4 (Semantics without reflexivity of sp and sc). An interpre-
tation I is a reflexive–relaxed model under ρdf of a graph G, written I |=nrx

ρdf G,
iff I is a ρdf model that does not necessarily satisfy the restrictions stating that
Ext(Int(sp)) and Ext(Int(sc)) are reflexive relations over Prop and Class re-
spectively.

Theorem 2. Let G and H be ρdf graphs. Assume that H does not contain
triples of the form (x, sp, x) nor (x, sc, x) for x, y ∈ UL, nor triples of the form
(X, sp, Y) nor (X, sc, Y) for X ∈ B or Y ∈ B. Then,

G |=ρdf H iff G |=nrx
ρdf H.

Essentially the above theorem states that the only use of reflexive restrictions
in RDFS models is the entailment of triples of the form (x, sp, x), (x, sc, x), or
their existential versions replacing the subject or object by blank nodes. Another
property of |=nrx

ρdf is that it does not entail axiomatic triples:

Corollary 1. There is no triple t such that |=nrx
ρdf t.

3.1 Deductive System for ρdf Vocabulary

In what follows, we present a sound and complete deductive system for the
fragment of RDF presented in the previous section. The system is arranged in
groups of rules that captures the semantic conditions of models. In every rule,
A, B, C, X , and Y are meta-variables representing elements in UBL.

60 S. Muñoz, J. Pérez, and C. Gutierrez

1. Simple:

(a) G
G′ for a map μ : G′ → G (b) G

G′ for G′ ⊆ G

2. Subproperty:

(a) (A,sp,B) (B,sp,C)
(A,sp,C) (b) (A,sp,B) (X ,A,Y)

(X ,B,Y)

3. Subclass:

(a) (A,sc,B) (B,sc,C)
(A,sc,C) (b) (A,sc,B) (X ,type,A)

(X ,type,B)

4. Typing:

(a) (A,dom,B) (X ,A,Y)
(X ,type,B) (b) (A,range,B) (X ,A,Y)

(Y,type,B)

5. Implicit Typing:

(a) (A,dom,B) (C,sp,A) (X ,C,Y)
(X ,type,B) (b) (A,range,B) (C,sp,A) (X ,C,Y)

(Y,type,B)

6. Subproperty Reflexivity:

(a) (X ,A,Y)
(A,sp,A)

(b) (A,sp,B)
(A,sp,A) (B,sp,B)

(c) (p,sp,p) for p ∈ ρdf

(d) (A,p,X)
(A,sp,A) for p ∈ {dom, range}

7. Subclass Reflexivity:

(a) (A,sc,B)
(A,sc,A) (B,sc,B) (b) (X ,p,A)

(A,sc,A) for p ∈ {dom, range, type}

Note 1 (On rules (5a) and (5b)). As noted in [10,8], the set of rules presented
in [15] is not complete for RDFS entailment. The problem is produced when
a blank node X is implicitly used as standing for a property in triples like
(a, sp, X), (X, dom, b), or (X, range, c). Here we solve the problem following the
elegant solution proposed by Marin [10] adding just two new rules of implicit
typing (rules 5 above).

An instantiation of a rule is a uniform replacement of the metavariables oc-
curring in the triples of the rule by elements of UBL, such that all the triples
obtained after the replacement are well formed RDF triples.

Definition 5 (Proof). Let G and H be graphs. Define G �ρdf H iff there exists
a sequence of graphs P1, P2, . . . , Pk, with P1 = G and Pk = H, and for each j
(2 ≤ j ≤ k) one of the following cases hold:

– there exists a map μ : Pj → Pj−1 (rule (1a)),
– Pj ⊆ Pj−1 (rule (1b)),

Minimal Deductive Systems for RDF 61

– there is an instantiation R
R′ of one of the rules (2)–(7), such that R ⊆ Pj−1

and Pj = Pj−1 ∪ R′.

The sequence of rules used at each step (plus its instantiation or map), is called
a proof of H from G.

Theorem 3 (Soundness and completeness). The proof system �ρdf is sound
and complete for |=ρdf, that is, given graphs G and H we have

G �ρdf H iff G |=ρdf H.

Corollary 2. Define the proof system �nrx
ρdf as �ρdf by droping rules of reflexivity

(rules (6) and (7)). Then for graphs G and H,

G �nrx
ρdf H iff G |=nrx

ρdf H.

4 Deductive Systems for Minimal Fragments of ρdf

We will assume in the rest of the paper that the user does not redefine or enrich
the semantics of the ρdf-vocabulary. In syntactical terms this means that there
is no triple where this vocabulary occurs in subject or object positions. This
assumption is light and can be found on almost all published RDF specifications.

To begin with, the following theorem shows that for several purposes blank
nodes can be treated in an orthogonal form to ρdf vocabulary.

Theorem 4 (Normal form for proofs). Assume G �ρdf H. Then there is a
proof of H from G where the rule (1) is used at most once and at the end.

Consider the lattice of fragments of ρdf in Figure 1. Given one of the fragments
X , by an X-graph we will understand a graph that mention ρdf vocabulary only
from X . Similarly, an X-rule is one rule (2-7) that mention ρdf vocabulary only
from X .

Theorem 5. Let X be one of the fragments of ρdf in Figure 1, and let G and
H be X-graphs. Assume that G �ρdf H, then there exists a proof of H from G
which only uses X-rules and rule (1).

The above result is based in the observation that in a proof of H from G we can
avoid the following fact: a sequence of graphs Pi, Pi+1, . . . , Pi+j produced in the
proof may present vocabulary outside X , but with Pi and Pi+j X-graphs. This
fact may impose new rules obtained from the rules of �ρdf by a concatenation
that result in a sound derivation between X-graphs. It can be shown that the
only rules obtained in this way coincide actually with X-rules. A second point
is that triples with vocabulary outside X , produced by the application of non
X-rules are not needed and can be left out of the proof of H from G.

Theorem 5 implies that X-rules are sound and complete for |=ρdf in fragment
X . As a direct consequence we also obtain that X-rules without considering
reflexivity rules, are sound and complete for |=nrx

ρdf in fragment X .
In what follows G|V means the subgraph induced by vocabulary V , i.e. those

triples having subject, or predicate, or object in V .

62 S. Muñoz, J. Pérez, and C. Gutierrez

dfρ

sc, type, d+rsc,sp,d+rsp, type, d+rsc, sp, type

sc, d+rsc, typesp, d+r type, d+rsp, typesp, sc

sp d+rtypesc

Fig. 1. The lattice of fragments of ρdf

Interpolation Lemmas for RDF. Interpolation lemmas refer to lemmas express-
ing the role of vocabularies in deduction. They follow from the previous results
in this section.

Lemma 1. Let G and H be graphs. If (a, b, c) ∈ G and a, b, c do not appear in
voc(H) nor in ρdf, then G |=ρdf H iff G − {(a, b, c)} |=ρdf H.

Lemma 2. Let a, b, c be ground terms with b not belonging to ρdf. Then: G |=ρdf

(a, b, c) iff G|{sp,a,b,c} |=ρdf (a, b, c).

Lemma 3. Let a, b ∈ UBL, then

1. G |=ρdf (a, dom, b) iff G|dom |=ρdf (a, dom, b).
2. G |=ρdf (a, range, b) iff G|range |=ρdf (a, range, b).

Moreover, if a, b are ground, |=ρdf reduces to membership in G.

Note 2. Although (a, dom, b) refers to a property a and a class b, inferring a dom
statement in the RDFS system does not depend on statements about classes or
properties. For example, from the previous lemma follows the non-intuitive fact
that {(c1, sc, c2), (c2, sc, c1), (a, dom, c1)} does not entail (a, dom, c2).

Lemma 4. Let a 	= b, then

1. G |=ρdf (a, sc, b) iff G|sc |=ρdf (a, sc, b).
2. G |=ρdf (a, sp, b) iff G|sp |=ρdf (a, sp, b).

It turns out that type is the most entangled keyword in the vocabulary and
deducing G |=ρdf (a, type, b) can involve all of G (except those triples mentioned
in Lemma 1).

Minimal Deductive Systems for RDF 63

5 The Complexity of ρdf Ground Entailment

Let us introduce some notation. For a graph G and a predicate p, define Gp as
the subgraph of G consisting of the triples of the form (x, p, y) of G, and define
G∅ as the subgraph consisting of triples without ρdf vocabulary. Let G(sp) be
the directed graph whose vertices are all the elements v which appear as subject
or objects in the triples of G, and in which (u, v) is an edge if and only if
(u, sp, v) ∈ G. Similar definition for G(sc).

The naive approach to test the entailment G |= H in the ground case would
be to consider the closure of G and check if H is included in it. Recall that for
ground G, the closure is the graph obtained by adding to G all ground triples
that are derivable from G. The following result shows that this procedure would
take time proportional to |H | · |G|2 in the worst case, which is too expensive
from a database point of view.

Theorem 6. The size of the closure of G is O(|G|2), and this bound is tight.

For the upper bound, the result follows by an analysis of the rules. The most
important point is the propagation –when applicable– of the triples of the form
(x, a, y) through the transitive closure of the G(sp) graph by the usage of rule
2(b): it can be shown that this gives at most |G∅|×|Gsp| triples. For triples having
a fixed predicate in ρdf the quadratic bound is trivial. For the tightness, consider
the graph {(a1, sp, a2), . . . , (an, sp, an+1)} ∪ {(x1, a1, yn), . . . , (xn, an, yn)}. The
number of triples of the closure of this graph is 2n+1+

∑n
k=1 k that is quadratic

in n.
The following algorithm presents a much better procedure to check ground

entailment in this fragment.

Algorithm (Ground Entailment)
Input: G, triple (a, p, b)

1. IF p ∈ {dom, range} THEN check if (a, p, b) ∈ G.
2. IF p = sp, a 	= b, THEN check if there is a path from a to b in G(sp).
3. IF p = sc, a 	= b, THEN check if there is a path from a to b in G(sc).
4. IF p ∈ {sp, sc} and a = b, THEN check if (a, p, a) ∈ G else check all patterns

of triples in the upper part of rules 6 (for sp) and rule 7 (for sc).
5. IF p /∈ ρdf THEN check (a, p, b) ∈ G∅, if it is not

LET G(sp)∗ be the graph G(sp) with the following marks:
For each (a, v, b) ∈ G∅, if v ∈ G(sp) then mark it green.

IN Check in G(sp)∗ if there is a path from a vertex marked green to p
6. IF p = type THEN

LET G(sp)′ be the graph G(sp) with the following marks:
- For each triple (u, dom, v) ∈ Gdom, if u ∈ G(sp) mark the
vertex u with d(v).

- For each triple (a, e, y) ∈ G∅, if e ∈ G(sp), mark the
vertex e with a.

64 S. Muñoz, J. Pérez, and C. Gutierrez

LET G(sc)′ be the graph G(sc) with the following marks:
- For vertex u marked d(v) reachable from a vertex marked a in G(sp)′,
if v ∈ G(sc) mark it blue.

- For each (a, type, w) ∈ G, if w ∈ G(sc) mark it blue.
IN Check in G(sc)′ if there is a path from a blue node to b.
Repeat this point for range instead of dom.

dom

u

a

y
e

sp

type

b
sc

sc

G(sp)′

G(sc)′
w

v

a

d(v)

Fig. 2. Point 6 of the Ground Entailment Algorithm

Theorem 7. Let (a, b, c) be a ground triple. The algorithm above can be used to
test the entailment G |=ρdf (a, b, c) in time O(|G| log |G|).

Correctness and completeness of the algorithm follows from an inspection of
the rules. The algorithm uses the rules in a bottom-up fashion. There are some
subtleties in points 5 and 6. Point 5 follows from Lemma 2 and rule 2(a). The
construction of G(sp)∗ can be done in |G| log |G| steps: order G∅ and then while
traversing G(sp) do binary search on G∅. For point 6 (see Figure 2) the crucial
observation is that in G(sp)′, if there is a path from a vertex marked a to a
vertex u marked d(v), then G |= (a, u, y) for some y, and hence G |= (a, type, v)
using rule 4(a). Note that this checking takes time at most linear in |G|. From
here, it is easy to see that the checking in G(sc)′ will do the job.

Corollary 3. Let H be a ground graph. Deciding if G |=ρdf H can be done in
time O(|H | · |G| log |G|).

The following result shows that the above algorithm cannot be essentially im-
proved, in the sense that, any other algorithm for testing the ground entailment
G |=ρdf H will take time proportional to |H | · |G| log |G| in the worst case.

Theorem 8. The problem of testing G |=ρdf t takes time Ω(|G| log |G|).

The bound is obtained by coding the problem of determining whether two sets
are disjoint, which is a well known problem that needs Ω(n log n) comparisons in
the worst case [1]. The codification is as follows: Given the sets A = {a1, . . . , an}
and B = {b1, . . . , bn}, construct the RDF graph G = {(ai−1, sp, ai)}2≤i≤n ∪
{(x, bj , y)}1≤j≤n. Then, we have that G |= (x, an, y) iff A ∩ B 	= ∅.

Minimal Deductive Systems for RDF 65

6 Conclusions

We presented a streamlined fragment of RDFS which includes all the vocabu-
lary that is relevant for describing data, avoiding vocabulary and semantics that
theoretically corresponds to the definition of the structure of the language. We
concentrated in studying the semantics, entailment, minimal proof systems, and
algorithmic properties of this relevant fragment of RDFS. Our results show a vi-
able proposal to lower the complexity of RDF data processing by using fragments
of RDFS.

In this paper we have concentrated primarily on the ground dimension of RDF.
Future work includes the refinement of our current results about the interplay
between blank nodes semantics and the ground part. We are also working in the
applications of our results to practical cases, as well as developing best practices
for logical design of RDF specification based on the previous considerations.

Acknowledgments. Pérez was supported by Dirección de Investigación – Uni-
versidad de Talca, Gutierrez by Proyecto Enlace DI 2006, ENL 06/13, Univer-
sidad de Chile, and the three authors by Millennium Nucleus Center for Web
Research, P04-067-F, Mideplan, Chile.

References

1. M. Ben-Or. Lower bounds for algebraic computation trees. Proc. 15th Annual Sym-
posium on Theory of Computing, pp 80-86, 1983.

2. T. Berners-Lee. Principles of Design. Personal Notes, http://www.w3.org/
DesignIssues/Principles.html.

3. Dan Brickley, Libby Miller. FOAF Vocabulary Specification. July 2005.
http://xmlns.com/foaf/0.1/

4. J. de Bruijn, E. Franconi, S. Tessaris. Logical Reconstruction of normative RDF.
In OWLED 2005, Galway, Ireland, November 2005

5. Victor Dalmau, P. G. Kolaitis, M. Vardi. Constraint Satisfaction, Bounded
Treewidth, and Finite–Variable Logics Proc. 8th Int. Conf. on Principles and Prac-
tice of Constraint Programming, September, 2002.

6. Jeremy J. Carroll, Christian Bizer, Pat Hayes, Patrick Stickler, Named graphs,
Journal of Web Semantics vol. 3, 2005, pp. 247 - 267

7. C. Gutierrez, C. Hurtado, A. O. Mendelzon, Foundations of Semantic Web Data-
bases, Proceedings ACM Symposium on Principles of Database Systems (PODS),
Paris, France, June 2004, pp. 95 - 106.

8. H. ter Horst. Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. Journal of Web
Semantics, vol. 3, 2005.

9. Jean–Francois Baget, RDF Entailment as a Graph Homomorphism, In ISWC 2005.
10. Draltan Marin, A Formalization of RDF (Applications de la Logique á la

sémantique du web), École Polytechnique – Universidad de Chile, 2004. Techni-
cal Report Dept. Computer Science, Universidad de Chile, TR/DCC-2006-8.
http://www.dcc.uchile.cl/cgutierr/ftp/draltan.pdf

11. E. Prud’hommeaux, A. Seaborne. SPARQL Query Language for RDF. W3C
Working Draft, October 2006. http://www.w3.org/TR/rdf-sparql-query/.

66 S. Muñoz, J. Pérez, and C. Gutierrez

12. RDF/OWL Representation of WordNet. Edit. Mark van As-
sem, Aldo Gangemi, Guus Schreiber. Working Draft, April 2006.
http://www.w3.org/2001/sw/BestPractices/WNET/wn-conversion.

13. Resource Description Framework (RDF) Model and Syntax Specification, Edit. O.
Lassila, R. Swick, Working draft, W3C, 1998.

14. RDF/XML Syntax Specification (Revised) W3C Recommendation 10 February
2004, Edit. D. Beckett

15. RDF Semantics, W3C Recommendation 10 February 2004 Edit. P. Hayes
16. RDF Vocabulary Description Language 1.0: RDF Schema, W3C Recommendation

10 February 2004, Edit. D. Brickley, R.V. Guha.
17. RDF Concepts and Abstract Syntax, W3C Recommendation 10 February 2004,

Edit. G. Klyne, J. J. Carroll.
18. RDF Primer, W3C Recommendation 10 February 2004, Edit. F. Manola, E. Miller,
19. Gene Ontology. http://www.geneontology.org/

A Appendix: RDFS Semantics

To easy the job of the reader, we reproduce here the definitions and axioms of
the normative semantics of RDF [15] consisting of a model theory and axiomatic
triples. The set rdfsV stands for the RDFS vocabulary.

Definition 6 (cf. [15,10]). The interpretation I is an RDFS model for an
RDF graph G, denoted by I |= G, iff I is an iterpretation over vocabulary
rdfsV ∪ universe(G) that satisfies the RDF/S axiomatic triples [15,10] and the
following semantic conditions:

1. Simple:
(a) there exists a function A : B → Res such that for each (s, p, o) ∈ G, Int(p) ∈

Prop and (IntA(s), IntA(o)) ∈ Ext(Int(p)), where IntA is the extension of
Int using A.

2. RDF:
(a) x ∈ Prop ⇔ (x, Int(prop)) ∈ Ext(Int(type))
(b) If l ∈ universe(G) is a typed XML literal with lexical form w, then Int(l)

is the XML literal value of w, Int(l) ∈ Lit, and (Int(l), Int(xmlLit)) ∈
Ext(Int(type)).

3. RDFS Classes:
(a) x ∈ Res ⇔ x ∈ CExt(Int(res))
(b) x ∈ Class ⇔ x ∈ CExt(Int(class))
(c) x ∈ Lit ⇔ x ∈ CExt(Int(literal))

4. RDFS Subproperty:
(a) Ext(Int(sp)) is transitive and reflexive over Prop
(b) if (x, y) ∈ Ext(Int(sp)) then x, y ∈ Prop and Ext(x) ⊆ Ext(y)

5. RDFS Subclass:
(a) Ext(Int(sc)) is transitive and reflexive over Class
(b) if (x, y) ∈ Ext(Int(sc)) then x, y ∈ Class and CExt(x) ⊆ CExt(y)

6. RDFS Typing:
(a) x ∈ CExt(y) ⇔ (x, y) ∈ Ext(Int(type))
(b) if (x, y) ∈ Ext(Int(dom)) and (u, v) ∈ Ext(x) then u ∈ CExt(y)
(c) if (x, y) ∈ Ext(Int(range)) and (u, v) ∈ Ext(x) then v ∈ CExt(y)

Minimal Deductive Systems for RDF 67

7. RDFS Additionals:
(a) if x ∈ Class then (x, Int(res)) ∈ Ext(Int(sc)).
(b) if x ∈ CExt(Int(datatype)) then (x, Int(literal)) ∈ Ext(Int(sc))
(c) if x ∈ CExt(Int(contMP)) then (x, Int(member)) ∈ Ext(Int(sp))

Now, given two graphs G and H we say that G RDFS entails H and write
G |= H, iff every RDFS model of G is also an RDFS model of H.

Table 1. RDF/S vocabulary [15,10] with shortcuts in brackets. The first column shows
built-in classes, second and third show built-in properties.

rdfs:Resource [res] rdf:type [type] rdfs:isDefinedBy [isDefined]
rdf:Property [prop] rdfs:domain [dom] rdfs:comment [comment]
rdfs:Class [class] rdfs:range [range] rdfs:label [label]
rdfs:Literal [literal] rdfs:subClassOf [sc] rdf:value [value]
rdfs:Datatype [datatype] rdfs:subPropertyOf [sp] rdf:nil [nil]
rdf:XMLLiteral [xmlLit] rdf:subject [subj] rdf: 1 [1]
rdfs:Container [cont] rdf:predicate [pred] rdf: 2 [2]
rdf:Statement [stat] rdf:object [obj] . . .
rdf:List [list] rdfs:member [member] rdf: i [i]
rdf:Alt [alt] rdf:first [first] . . .
rdf:Bag [bag] rdf:rest [rest]
rdf:Seq [seq] rdfs:seeAlso [seeAlso]
rdfs:ContainerMembershipProperty [contMP]

Web Service Contracting: Specification and

Reasoning with SCIFF

Marco Alberti1, Federico Chesani2, Marco Gavanelli1, Evelina Lamma1,
Paola Mello2, Marco Montali2, and Paolo Torroni2

1 ENDIF, University of Ferrara
Via Saragat 1, 44100 Ferrara, Italy

Name.Surname@unife.it
2 DEIS, University of Bologna

V.le Risorgimento 2, 40136 Bologna, Italy
Name.Surname@unibo.it

Abstract. The semantic web vision will facilitate automation of many
tasks, including the location and dynamic reconfiguration of web services.
In this article, we are concerned with a specific stage of web service loca-
tion, called, by some authors, contracting. We address contracting both
at the operational level and at the semantic level. We present a frame-
work encompassing communication and reasoning, in which web services
exchange and evaluate goals and policies. Policies represent behavioural
interfaces. The reasoning procedure at the core of the framework is based
on the abductive logic programming SCIFF proof-procedure. We de-
scribe the framework, show by examples how to formalise policies in the
declarative language of SCIFF, and give the framework a model-theoretic
and a sound proof-theoretic semantics.

1 Introduction

The Service Oriented Computing (SOC) paradigm, and its practical implemen-
tation based on Web Services, are rapidly emerging as standard architectures
for distributed application development. Different service providers, heteroge-
nous in terms of hardware and software settings, can easily inter-operate by
means of communication standards and well-known network protocols. In such
a scenario, the use of off-the-shelf solutions and dynamic reconfiguration be-
comes attractive, both at design level, as well as at execution (run-time) level.
However, dynamic reconfiguration of services is possible only if supported by a
suitable technology. The Semantic Web vision, based on the idea that adding
machine-understandable semantic information to Web resources will facilitate
automation of many tasks [18,20], including the location of Web Services, is a
promising way to address this issue.

Drawing from [18], we consider a process of searching the right service to
match a request as consisting of two stages. During the first one, called discov-
ery, the requester states only the things that are desired, thus, using an ontology
or other KR formalisms, it seeks for all the services that can potentially satisfy

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 68–83, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Web Service Contracting: Specification and Reasoning with SCIFF 69

a request of such a kind. During the second stage, called contracting, the re-
quester provides in input specific information for an already requested service.
The purpose of this second stage is to verify that the input provided will lead
to a desired state that satisfies the requester’s goal.

Many relevant papers are written about web service discovery; some of them
use Logic Programming (LP) techniques. They mostly focus on the discovery
stage. In this article, we are concerned with the contracting stage, which we
address both at the operational level, and at the semantic level. We present a
framework, called SCIFF Reasoning Engine (SRE) encompassing reasoning and
communication in a networked architecture inspired to the model of discovery
engines. We discuss the problem of communicating policies between web ser-
vices, and of determining whether the policies of a provider and a requester are
compatible with each other. We use a mixture of Abductive Logic Programming
(ALP, [17]), and Constraint Logic Programming (CLP, [16]). ALP is used to con-
struct sets of input and output messages, along with assumed data, while CLP
is used to maintain a partial temporal order among them. We chose to adopt a
hypothetical reasoning framework such as ALP because reasoning is made before
execution. A component such as SRE which reasons on possible developments
of the interaction among web services has to come up with hypotheses about
which messages are to be expected in the future. In fact, a similar approach,
also based on hypothetical reasoning, though not on LP, has been followed by
others, notably [18].

In this work we assume that a previous discovery stage has already produced
multiple candidate services. The intended user of SRE will typically be a web
service, although for the sake of presentation we will name the users alice and
eShop. The user query is given in terms of goals and policies. Policies describe
the observable behaviour of users, i.e., their behavioural interface, in terms of
relationships among externally observable events regarding the service. We for-
malise web services’ policies in a declarative language derived from the SCIFF
language, born in the context of the EU SOCS project [1]. SCIFF was conceived
to specify and verify social-level agent interaction. In this work, a simplified ver-
sion of the SCIFF language is adopted for defining policies, by means of social
integrity constraints: a sort of reactive rules used to generate and reason about
possible evolutions of a given interaction instance. Distinguishing features of SRE
are its declarative and operational approaches combined together into a working
framework. Users specify their goals as well as their own policies (related to the
goals) by means of rules; in their turn, service providers publish their service
descriptions, together with their policies about the usage of the services, again
by means of rules. The use of ALP reconciles forward and backward reasoning
in a unified reasoning engine: two aspects that frequently, in the context of web
services, are treated separately from each other. Moreover, while ALP and CLP
have been used to address planning problems before, in this work we want to
show how a mixture of known, but little-used techniques can be used to solve a
real-world problem with a real implementation.

70 M. Alberti et al.

service

service

service

publish policies

query policies

provide policies

publish policies

Policies caching

Querying and Discoverying

query

inform
possible
partners

SCIFF
Discovery Engine

Fig. 1. The architecture of SRE

In the next section, we show the SRE architecture and introduce informally a
walk through scenario. In Sect. 3 we explain the notation used to write policies in
SRE and in Sect. 4 we present its underlying logic. Sect. 5 develops the scenario
in more detail and shows the reasoning in SRE by example, and Sect. 6 concludes
by discussing related approaches and future work.

2 Architecture

The SRE architecture, shown in Figure 1, is a client-server architecture aug-
mented with a “smart” discovery engine (which incorporates the SRE itself).
We assume that SRE has information available about web services, either gath-
ered in a previous discovery phase from the Internet (in the style of web spiders),
or because explicitly published to it by web services. So we can safely assume
that the data collected has already been filtered and, if providers refer to different
ontologies, equivalences between concepts have already been established.

At the logical level, the retrieved information consists of triplets in the form
〈s, ws, (KBws, Pws)〉, where s identifies a service, ws is the name of a web service
that provides s, and (KBws, Pws) are the knowledge base and policies that ws
associates to s. In particular, for a given provider ws providing s, a set of policies
(rules) describes ws’s behaviour with respect to s, and a knowledge base, in
the form of a logic program, contains information that ws wants to disclose to
potential customers, together with its policies. A sample policy could state that
the service delivers goods only to certain countries, or zones. The list of such
zones could be made available through the knowledge base.

SRE reasons based on a client’s query (also called goal, in the LP sense) which
it matches to a service. Such a query will contain the name of the service that
the client (c) needs, a (possibly empty) set of policies Pc and a (possibly empty)
knowledge base KBc. The goal is an expression consisting of a conjunction of
elements, which can represent, for example, events and constraints, like partial
orders among events. The output of SRE is a number of triplets 〈ws, E , Δ〉, each
one containing the name of a web application which provides the service, plus

Web Service Contracting: Specification and Reasoning with SCIFF 71

some additional information: E , which encodes a possible future interaction, i.e.,
a partially ordered sequence of events, occurring between ws and c and regarding
s, and a set Δ containing a number of additional validity conditions for E . For
example, ws could be the name of a service that provides a device, E could be
“first ws shows evidence of membership to Better Business Bureau (BBB), then
c pays by credit card”, and Δ could be “delivery in Europe”. These concepts are
better instantiated in the following scenario.

2.1 The alice and eShop Scenario

The scenario we use in this paper is inspired from [11,2]. eShop is a web service
that sells devices, while alice is another web service, which wants to get a device.
alice and eShop describe their behaviour concerning sales/payment/. . . of items
through policies (rules), which they publish using some Rules Interchange For-
mat. These two actors find each other via SRE: in particular, alice submits a
query to the discovery engine, by specifying her policies and the service she is
looking for (e.g., getting device). Once suitable services (e.g., eShop) have been
found, SRE, by checking the satisfiability of alice’s goal and the compatibility
of the rules describing alice’s and eShop’s behaviour, provides back to alice the
list of web services that could satisfy her specific need. SRE also defines the
conditions that must be fulfilled by each web service, in order to reach the goal.

Let eShop’s policies regarding device be as follows:

(shop1) if a customer wants to get an item, then, (i) if the customer can be
accepted, eShop will request him/her to pay using an acceptable method,
otherwise (ii) eShop will inform the customer of a failure;

(shop2) if an acceptable customer paid the item, using an acceptable method,
then eShop will deliver the item;

(shop3) if a customer requests a certificate about eShop’s membership to the
BBB, then the shop will send it.

eShop publishes a knowledge base KBeShop, which specifies that a customer
is accepted if it is resident in some zone; it also specifies the accepted payment
methods. SRE retrieves information about eShop in the triplet: 〈sell(device),
eShop, (KBeShop, PeShop)〉, indicating that eShop offers service sell(device), with
a set PeShop of policies defined as PeShop ≡ {(shop1), (shop2), (shop3)} and a
knowledge base KBeShop. We consider three different scenaria for alice:

Scenario 1. alice’s goal is to obtain device. Her policies are as follows:
(alice1) if a shop requires that alice pays by credit card, alice expects that

the shop provides a certificate to guarantee that it is a BBB member;
(alice2) if a shop requires that alice pays by credit card, and it has proven

its membership to the BBB, then alice will pay by credit card;
(alice3) if a shop requires alice to pay with any other method than credit

card, then alice will pay without any further request;
Besides, alice is based in Europe. However, for privacy reason, alice does not
make this information public. KBalice is an an empty knowledge base.

72 M. Alberti et al.

Scenario 2. Policies are the same as above. However, alice will not agree to pay
cash, as she specifies in her query to SRE. Moreover, KBalice is not empty,
but instead it contains information about her place of residence and age;

Scenario 3. alice has no policies to express in relation to the query she submits
to SRE. We can imagine here that alice is a human user, and she queries
SRE, using a suitable interface, simply because she wishes to know what
her options are regarding the purchase of device. Later, alice may evaluate
SRE’s answer and possibly re-submit a refined query.

3 Notation

In SRE, policies describe a web service’s observable behaviour in terms of events
(e.g., messages). SRE considers two types of events: those that one can directly
control (e.g., if we consider the policies of a web service ws, a message generated
by ws itself) and those that one cannot (e.g., messages that ws receives, or does
not want to receive). Atoms denoted by H denote “controllable” events, those
denoted by E and EN denote “passive” events, also named expectations. Since
SRE reasons about possible future courses of events, both controllable events
and expectations represent hypotheses on possible events. We restrict ourselves
to the case of events being messages exchanged between the two parties in play.
The notation is:

– H(ws, ws′, M, T) denotes a message with sender ws, recipient ws′, and con-
tent M , which ws expects to be sending to ws′ at a time T ;

– E(ws′, ws, M, T) denotes a message with sender ws′, recipient ws, and con-
tent M , which ws expects ws′ to be sending at a time T ;

– EN(ws′, ws, M, T) denotes a message with sender ws′, recipient ws, and
content M , which ws expects ws′ not to be sending at a time T ;

Web service specifications in SRE are relations among expected events, ex-
pressed by an abductive logic program. This is in general a triplet 〈KB, A, IC〉,
where KB is a logic program, A (sometimes left implicit) is a set of literals named
abducibles, and IC is a set of integrity constraints. Intuitively, in ALP the role of
KB is to define predicates, the role of A is to fill-in the parts of KB which are un-
known, and the role of IC is to control the ways elements of A are hypothesised,
or “abduced.” Reasoning in ALP is usually goal-directed. It starts from a “goal”
G, i.e., an expression which we want to obtain as a logical consequence of the
abductive logic program, and it amounts to finding a set of abduced hypotheses
Δ built from atoms in A such that KB ∪ Δ |= G and KB ∪ Δ |= IC. Symbol
|= represents logical entailment, which can be associated with one among sev-
eral semantics. In literature one finds different readings of abduction in LP. Δ
can be considered as an “answer” to a query or goal G. In other contexts, one
can interpret G as an observation and Δ as its explanation. This is for example
the reading of an abductive anwer in abductive reasoning-based diagnosis. In the

Web Service Contracting: Specification and Reasoning with SCIFF 73

domain of web services, we will use ALP as a reasoning paradigm that combines
backward, goal-oriented reasoning with forward, reactive reasoning [19]: two as-
pects that frequently, in the context of web services, are treated separately from
each other.

Definition 1 (Web Service Behavioural Interface Specification). Given
a web service ws, its web service behavioural interface specification Sws is an
abductive logic program, represented by the triplet Sws ≡ 〈KBws, A, ICws〉, where
KBws is ws’s Knowledge Base, A is the set of abducible literals, and ICws is
ws’s set of Integrity Constraints (ICs).

KBws, which corresponds to KBws of Sect. 2, is a set of clauses which declar-
atively specifies pieces of knowledge of the web service. Note that the body of
KBws’s clauses may contain E/EN expectations about the behaviour of the web
services. A is the set of abducible literals. It includes all possible E/EN expecta-
tions, H events, and predicates left undefined by KBws. It is the set of all possible
unknowns. Note that Ews and Δ of Sect. 2 are subsets of A. In the following
sometimes we leave A implicit, as we did in Sect. 2. ICws, which corresponds to
Pws of Sect. 2, contains ws’s policies. In particular, each IC in ICws is a rule in
the form Body → Head. Intuitively, the Body of an IC is a conjunction of events,
literals and CLP constraints; the Head is either a disjunction of conjunctions of
events, literals and CLP constraints, or false. The operational behaviour of ICs
is similar to that of forward rules: whenever the body becomes true, the head
is also made true. The syntax of KBws and ICws is given in Equations (1) and
(2), respectively, where Constr indicates a CLP constraint [16].

KBws::= [Clause]�

Clause::= Atom ← Cond
Cond::= ExtLiteral [∧ ExtLiteral]�

ExtLiteral::= [¬]Atom | true | Expect | Constr
Expect::= E(Atom,Atom,Atom,Atom)|

EN(Atom,Atom,Atom, Atom)

(1)

ICws::= [IC]�

IC::= Body → Head
Body::= (Event | Expect) [∧BodyLit]�

BodyLit::= Event | Expect | Atom | Constr
Head::= Disjunct [∨ Disjunct]� | false

Disjunct::= (Expect | Event | Constr)
[∧ (Expect | Event | Constr)]�

Expect::= E(Atom,Atom, Atom,Atom) |
EN(Atom,Atom, Atom,Atom)

Event::= H(Atom,Atom, Atom,Atom)

(2)

Let us see how we can implement the walk through scenario in SRE. Note that,
following the LP notation, variables (in italics) start with upper-case letters.
Tr, Ta, . . . indicate the (expected) time of events.

74 M. Alberti et al.

The first IC in ICeShop, corresponding to (shop1), is the following:

H(Customer, eShop, request(Item), Tr)

→accepted customer(Customer)

∧ accepted payment(How)

∧ H(eShop, Customer, ask(pay(Item,How)), Ta)

∧ E(Customer, eShop, pay(Item,How), Tp)

∧ Tp > Ta ∧ Ta > Tr

∨rejected customer(Customer)

∧ H(eShop, Customer, inform(fail), Ti) ∧ Ti > Tr.

(shop1)

All accepted payment modalities are listed in eShop’s knowledge base, KBeShop,
shown in (kb) below. In our example, Customer may pay either by credit card
or cash. The concepts of “accepted” and “rejected” customer are defined in
the KBeShop too: a Customer is accepted if the Zone she resides in is a valid
destination for eShop; Customer is rejected otherwise. Both payment modalities
and accepted destinations are listed as facts. In this example, eShop can only
send items to Europe. The next element of eShop’s policies (shop2) states that
if an accepted Customer pays for an Item using one of the supported payment
modalities, then eShop will deliver the Item to Customer:

H(Customer, eShop, pay(Item,How), Tp)

∧ accepted customer(Customer)

∧ accepted payment(How)

→H(eShop, Customer, deliver(Item), Td)

∧ Td > Tp.

(shop2)

Finally, (shop3) states that if a Customer asks it to provide a guarantee (i.e.,
a certificate about its membership to BBB), eShop will send such a guarantee:

H(Customer, eShop, request guar(BBB), Trg)

→H(eShop, Customer, give guar(BBB), Tg)

∧ Tg > Trg.

(shop3)

accepted customer(Customer) ←resident in(Customer, Zone)

∧ accepted dest(Zone).

rejected customer(Customer) ←resident in(Customer, Zone)

∧ not(accepted dest(Zone)).

accepted payment(cc).

accepted payment(cash).

accepted dest(europe).

(kb)

Web Service Contracting: Specification and Reasoning with SCIFF 75

When a (generic) Shop asks alice to pay an Item with credit card, then alice
will request the Shop to provide a guarantee, and she will expect to receive it:

H(Shop, alice, ask(pay(Item,cc)), Ta)

→H(alice, Shop, req guar(BBB), Trg)

∧ E(Shop, alice, give guar(BBB), Tg)

∧ Tg > Trg ∧ Trg > Ta.

(alice1)

If Shop provides a guarantee, alice will pay for the requested Item:

H(Shop, alice, ask(pay(Item,cc)), Ta)

∧ H(Shop, alice, give guar(BBB), Tg)

→H(alice, Shop, pay(Item,cc), Tp)

∧ Tp > TA ∧ Tp > Tg.

(alice2)

When the Shop asks to use a payment modality other than credit card, alice
satisfies eShop’s request:

H(Shop, alice, ask(pay(Item,How)), Ta)

∧ How �= cc

→H(alice, Shop, pay(Item,How), Tp) ∧ Tp > TA.

(alice3)

4 Declarative Semantics and Reasoning

In SRE, a client c specifies a goal G, related to a requested service. G will often
be an expectation, but in general it can be any goal, defined as a conjunction of
expectations, CLP constraints, and any other literals. c also publishes a (possibly
empty) knowledge base KBc, and a (possibly empty) set of policies ICc. The idea
is to obtain, through abductive reasoning made by SRE, a set of expectations E
and validity conditions Δ about a possible course of events that, together with
KBc and KBws, satisfies ICc ∪ICws and G. Note that we do not assume that all
of ws’s knowledge base is available to SRE, as it need not be entirely a part of
ws’s public specifications. KBws can even be the empty set. However, in general,
ICs can involve predicates defined in the KB: such as “delivery in Europe.”
If the behavioural interface provided by ws involves predicates that have not
been made public through KBws, SRE makes assumptions about such unknown
predicates, and considers unknowns that are neither H nor E/EN expectations
as literals that can be abduced. These are kept then in the set Δ, of a returned
triplet 〈ws, E , Δ〉 (see Sect. 2), and can be regarded as conditions which must be
met to insure the validity of E as a possible set of expectations achieving a goal.

4.1 Declarative Semantics

We define declaratively the set of abductive answers 〈ws, E , Δ〉 representing pos-
sible ways c and ws can interact to achieve G (we assume that KBc and KBws

are consistent) via the two following equations:

KBc ∪ KBws ∪ E ∪ Δ |= G (3)

KBc ∪ KBws ∪ E ∪ Δ |= ICc ∪ ICws. (4)

76 M. Alberti et al.

where E is a conjunction of H and E, EN atoms, Δ is a conjunction of ab-
ducible literals, and the notion of entailment is grounded on the possible models
semantics defined for abductive disjunctive logic programs [23]. In the possible
models semantics, a disjunctive program generates several (non-disjunctive) split
programs, obtained by separating the disjuncts in the head of rules. Given a dis-
junctive logic program P , a split program is defined as a (ground) logic program
obtained from P by replacing every (ground) rule

r : L1 ∨ · · · ∨ Ll ← Γ

from P with the rules in a non-empty subset of Splitr, where

Splitr = {Li ← Γ | i = 1, . . . , l}.

By definition, P has in general multiple split programs. A possible model for a
disjunctive logic program P is then defined as an answer set of a split program
of P .

Note that in [23] the possible models semantics was also applied to provide a
model theoretic semantics for Abductive Extended Disjunctive Logic Programs
(AEDP), which is our case. Semantics is given to AEDP in terms of possible
belief sets. Given an AEDP Π = 〈P, A〉, where P is a disjunctive logic program
and A is the set of abducible literals, a possible belief set S of Π is a possible
model of the disjunctive program P ∪ E, where P is extended with a set E of
abducible literals (E ⊆ A).

Definition 2 (Answer to a goal G). An answer E to a (ground) goal G is a
set E of abducible literals constituting the abductive portion of a possible belief
set S (i.e., E = S ∩ A) that entails G.

We rely upon possible belief set semantics, but we adopt a new notion for min-
imality with respect to abducible literals. In [23], a possible belief set S is A-
minimal if there is no possible belief set T such that T ∩A ⊂ S ∩A. We restate,
then, the notion of A-minimality as follows:

Definition 3 (A-minimal possible belief set). A possible belief set S is A-
minimal iff there is no possible belief set T for the same split program such that
T ∩ A ⊂ S ∩ A.

More intuitively, the notion of minimality with respect to hypotheses that we
introduce is checked by considering the same split program, and by checking
whether with a smaller set of abducible literals the same consequences can be
made true, but in the same split program. Finally, we provide a model-theoretic
notion of explanation to an observation, in terms of answer to a goal, as follows.

Definition 4 (A-minimal answer to a goal). E is an A-minimal answer to
a goal G iff E = S ∩ A for some possible A-minimal belief set S that entails G.

Definition 5 (Possible Interaction about G). A possible interaction about
a goal G between a client c and a web service ws is an A-minimal set E ∪Δ such
that Equations 3 and 4 hold.

Web Service Contracting: Specification and Reasoning with SCIFF 77

Among possible interactions, we identify those which are coherent :1

Definition 6 (Coherent Possible Interaction about G). A possible inter-
action E ∪ Δ about a goal G is coherent iff:

E |= E(X, Y, Action, T),EN(X, Y, Action, T) → false (5)

Possible interactions about a goal G generally contain (minimal) sets of events
and expectations about messages raised either by c and ws. Moreover, further
abducible literals in Δ represent assumptions about unknown predicates (for c
and ws).

SRE selects among coherent possible interactions only those where the course
of events expected by c about ws’s messages is fulfilled by ws’s messages, and
vice-versa, i.e., the course of events expected by ws about c’s messages is fulfilled
by c’s messages:

Definition 7 (Possible Interaction Achieving G). Given a client c, a web
service ws, and a goal G, a possible interaction achieving G is a coherent possible
interaction E ∪ Δ satisfying the following equations:

E |= E(X, Y, Action, T) → H(X, Y, Action, T) (6)

E |= EN(X, Y, Action, T),H(X, Y, Action, T) → false (7)

In practice, Definition 7 requires that any positive expectation raised by c or
ws on the behaviour of the other party is fulfilled by an event hypothetically
performed by the other party (Equation 6), and that any negative expectation
raised by c or ws on the behaviour of the other party does not match any event
hypothetically performed by the other party (Equation 7).

4.2 Operational Semantics

The operational semantics of SRE is a modification of the SCIFF proof-procedure
[8], that combines forward, reactive reasoning with backward, goal-oriented rea-
soning, and was originally developed to check compliance of the agent behaviour to
interaction protocols in multi-agent systems. Like the IFF proof procedure [13],
which inspired it, SCIFF is a rewriting system, defined in terms of transitions
which turn a state of the computation into another. Since some of the transitions
open choice points, a computation can be represented as a tree, whose root node
is the initial state and whose leaves can be either the special node fail, or a termi-
nation node (i.e., a node to which no transition is applicable), that is considered
as a success node (and, in the original SCIFF setting, represents a response of
compliance of the agent behaviour to the interaction protocols)

SCIFF is sound and complete, under reasonable assumptions [8]; it has been
implemented in SICStus Prolog and Constraint Handling Rules [12] and inte-
grated in the SOCS-SI software component, in order to interface it to several
1 This notion is introduced because of EN expectations in the SRE framework, and

therefore the necessity of stating explicitly the incompatibility between E and EN.

78 M. Alberti et al.

multi-agent systems [7], and with web services via a RuleML encoding of ICs.
The SCIFF version that acts as the core reasoning engine in SRE is designed to
reason, off-line, about the web service behaviour: a successful leaf node represents
an interaction which achieves the desired goal while respecting the specified poli-
cies. SRE is a conservative modification of the SCIFF proof-procedure, in which
the happened events are abducibles. The proofs of soundness and completeness
can be trivially extended to such a case.

5 The alice and eShop Scenario Revisited

We provide here a sketched demonstration of the operational behaviour of the
SRE engine, by showing how the answers to alice’s query are generated. Let us
suppose that alice sends a query to SRE containing policies (alice1), (alice2) and
(alice3), an empty knowledge base and the following goal G:

G ≡ H(alice, Shop, request(device), Tr)

∧ E(Shop, alice, deliver(device), Td) ∧ Td > Tr.
(goal1)

which states that alice will send a request to some Shop in order to obtain device
and she expects that Shop will deliver it. SRE starts from alice’s goal:

E0 = {H(alice, eShop, request(device), Tr),
E(eShop, alice, deliver(device), Td), Td > Tr }

Δ0 = ∅
According to (shop1), eShop may react to this expectation in different ways,

depending on whether alice is an accepted customer or not. SRE tries initially
to resolve predicate accepted customer(alice). By unfolding it, SRE finds atom
resident in(alice, Zone), which is not known to SRE and, therefore, is abduced.
Afterwards, based on KBeShop, the eShop public knowledge base, SRE grounds
Zone to europe: the only destination accepted by eShop. As a consequence, hy-
pothesising that alice is resident in europe, eShop would ask alice to pay with
one of the accepted modalities, and it would expect to receive the payment in
response. Moreover, eShop specifies in KBeShop that credit card is an accepted
payment modality.

E1 = {H(alice, eShop, request(device), Tr),
H(eShop, alice, ask(pay(device, cc), Ta),
E(alice, eShop, pay(device, cc), Tp),
E(eShop, alice, deliver(device), Td),
Tp > Ta, Ta > Tr, Td > Tr }

Δ1 = {resident in(alice, europe)}
alice has specified that, in order to perform credit card payments, she requests

a guarantee from the shop (alice2); eShop volunteers to provide such a document,

Web Service Contracting: Specification and Reasoning with SCIFF 79

by (shop3), and alice’s expectation about the guarantee is then satisfied (SRE
hypothesises that the document is indeed sent):

E2 = {H(alice, eShop, request(device), Tr),
H(eShop, alice, ask(pay(device, cc), Ta),
H(alice, eShop, req guar(BBB), Trg),
H(eShop, alice, give guar(BBB), Tg),
E(alice, eShop, pay(device, cc), Tp),
E(eShop, alice, deliver(device), Td),
Tg > Trg, Trg > Ta, Tp > Ta, Ta > Tr, Td > Tr }

Δ2 = {resident in(alice, europe)}
Upon receipt of the guarantee, alice would proceed with the payment (alice2),

and eShop would deliver the device (shop3). Therefore, the following, (possibly)
fruitful, interaction is found by SRE:

EF = {H(alice, eShop, request(device), Tr),
H(eShop, alice, ask(pay(device, cc), Ta),
H(alice, eShop, req guar(BBB), Trg),
H(eShop, alice, give guar(BBB), Tg),
H(alice, eShop, pay(device, cc), Tp),
H(eShop, alice, deliver(device), Td),
Td > Tp, Tp > Tg, Tg > Trg, Trg > Ta, Ta > Tr }

ΔF = {resident in(alice, europe)}
SRE provides in output also a simpler possible interaction, where instead

of selecting “credit card” as payment method, “cash” is now preferred. Policy
(alice3) tells us that, in such a case, alice would proceed straightforward with
the payment, and SRE is indeed able to propose a second fruitful interaction as
answer to alice’s initial query.

In order to compute these two possibly fruitful interactions, resident in(alice,
europe) has been abduced. This means that if such interactions are really possible
or not, it depends on whether alice resides in europe, and in fact it may well
turn out that such interaction is not possible at all. SRE looks also for other
solutions where this hypothesis is not assumed, but all other interactions do not
satisfy alice’s goal, and hence they are discarded.

5.1 Refined Query

In the second scenario, alice submits a different goal, and the KB below:

G ≡ H(alice, Shop, request(device), Tr)
∧ E(Shop, alice, deliver(device), Td) ∧ Td > Tr

∧ EN(alice, Shop, pay(device, cash), Tp).
(goal2)

resident in(alice, europe). age(alice, 24). (kb2)

This time, alice explicitly prohibits to pay cash (this is expressed using the EN
notation). Thanks to the piece of knowledge (kb2) that alice provides through her

80 M. Alberti et al.

KB, SRE knows that alice does indeed resides in the EU, hence this information
does not need to be abduced anymore, but it is simply verified. SRE finds a
solution which is similar to the one above (Scenario 1). However, since this time
the set Δ is empty, this interaction will surely lead to success, provided that
both alice and eShop behave coherently with respect to their own policies.

5.2 Unconstrained Query

As we have pointed out, alice is able to query SRE without specifying any
policy. In this case, alice only wishes to obtain a list of services that are able to
accommodate her goal. In such a situation, alice only sends the following general
policy:

E(alice, Shop, DoSomething, T)
→H(alice, Shop, DoSomething, T)

(r1)

which specifies that alice will perform every action that she is expected to do. If
alice queries SRE by using (r1) and (goal1), the response of SRE will be:

EF = {H(alice, eShop, request(device), Tr),
H(eShop, alice, ask(pay(device, How), Ta),
H(alice, eShop, pay(device, How), Tp),
H(eShop, alice, deliver(device), Td),
Td > Tp, Tp > Ta, Ta > Tr, How :: [cc, cash] }

ΔF = {resident in(alice, europe)}

6 Discussion

We described a reasoning engine, SRE, which considers the policies of two web
services and a goal of one of them. SRE tries to match such policies and find
possible ways the two web services could interact, and eventually achieve the
goal. The output of SRE is a sequence of events, which could be messages to
be exchanged between the web services and lead to a state in which the goal
is achieved. This can be regarded as a possible plan of action. SRE is based
on a mixture of ALP and CLP. ALP is used to construct sets of input and
output messages, along with assumed data, while CLP is used to maintain a
partial temporal order among the plans. In this work we did not address the
issue of efficiency of the reasoning process of SRE, but we are aware that this
may be a drawback, as it is the case with many expressive logics proposed for the
Semantic Web. We intend to evaluate SRE, both as it concerns its complexity
and its efficiency, through an empirical analysis based on case studies.

Another aspect we did not look into in detail is the problem of reasoning
about equivalences of concepts or ontologies, as much related work instead does.
Also our notions of action, such as it could be the delivery of goods, are pretty
much left at the abstract level. Our proposal could be regarded as a functionality
complementary to many proposals, which could further improve the discovery

Web Service Contracting: Specification and Reasoning with SCIFF 81

process. To cite some, [3,22] propose ontology languages to define web services. In
[4], besides proposing a general language for representing semantic web service
specification using logic, a discovery scenario is depicted and an architectural
solution is proposed (we draw inspiration for our scenario from the Discovery
Engine example). A notion of “mediator” is introduced to overcome differences
between different ontologies, and then a reasoning process is performed over the
user inputs and the hypothetical effects caused by the service execution.

Our work makes explicit reference to [18], in which the authors present a
framework for automated web service discovery which uses the Web Service
Modeling Ontology (WSMO) as the conceptual model for describing web ser-
vices, requester goals and related aspects. Whereas [18] tackles both (mainly)
discovery and contracting stage, in our work we are only concerned with the
contracting stage. In [18] the authors use F-logic and transaction logic as the
underlying formalisms, we rely on extended logic programming. In both the ap-
proaches, however, hypothetical reasoning is used for service contracting. Com-
pare to work by Kifer et al. [18,4], in which only the client’s goal is considered,
in our framework the client can specify its policies. In this way, the client could
be considered a web service as well. Therefore, we hope to be able to smoothly
extend SRE to dealing with the problem of inter-operability. A proposal in this
direction is presented in [6].

The outcome of the reasoning process performed by SRE, which we called a
possible plan, could in fact be regarded as a sort of “contract agreement” between
the client and the discovered service, provided that each party is tightly bounded
to its previously published policies/knowledge bases. For example, the dynamic
agreement about contracts (e-contracting) is addressed in SweetDeal [15,10],
where Situated Courteous Logic (SCL) is adopted for reasoning about rules that
define business provisions policies. The formalism used supports contradicting
rules (by imposing a prioritisation and mutual exclusion between rules), different
ontologies, and effectors as procedures with side effects. However, SweetDeal is
more focussed on establishing the characteristics of a business deal, while our aim
is to address the problem of evaluating the feasibility of an interaction. To this
end, we perform hypothetical reasoning on the possible actions and consequences;
moreover, we hypothesise which condition must hold, in order to inter-operate.
This technique in literature is also known as “constructive” abduction.

Other authors propose to rules to reason about established contracts: in [14],
for example, Defeasible Deontic Logic of Violation is used to monitor the execu-
tion of a previously agreed contract. We have addressed this issue in a companion
paper [9], where integrity constraints have been exploited and conciliated with
the deontic concepts. Among other work in the area of policy specifications and
matching we find PeerTrust [21,5]. Similarly to our work and to SCL, PeerTrust
builds upon an LP foundation to represent policy rules and iterative trust declar-
atively. In PeerTrust, trust is established gradually by disclosing credentials and
requests for credentials by using a process of trust negation. An important dif-
ference is in the language used in PeerTrust for specifying policies, which can
be considered as orthogonal to the one described in this paper. While PeerTrust

82 M. Alberti et al.

represents policies and credentials as guarded distributed logic programs, and
the trust negotiation process consists of evaluating an initial LP query over a
physically distributed logic program, in this work we use ALP, integrity con-
straints and CLP constraints for expressing policies, perform a local proof and
we use abductive reasoning to formulate hypotheses about unknown external
behaviour. Moreover, while in our current approach reasoning is done in a single
step using SCIFF, an iterative version could be introduced in order to support
trust negotiation.

Acknowledgments

We wish to thank the anonymous reviewers for their comments, constructive
criticisms and valuable suggestions. This work has been partially supported by
the National FIRB project TOCAI.it and by the PRIN projects Nos. 2005-
011293 and 2005-015491.

References

1. http://lia.deis.unibo.it/research/socs/.
2. http://www.w3.org/TR/rif-ucr/.
3. http://www.daml.org/services/owl-s/ .
4. http://www.w3.org/Submission/SWSF-SWSL/.
5. http://www.l3s.de/peertrust/.
6. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and M. Montali. An

abductive framework for a-priori verification of web services. In Proc. PPDP,
pp. 39–50. ACM Press, 2006.

7. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Com-
pliance verification of agent interaction: a logic-based tool. Applied Artificial In-
telligence, 20(2-4):133–157, 2006.

8. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Veri-
fiable agent interaction in Abductive Logic Programming: the SCIFF framework.
ACM Transactions on Computational Logic, 8, 2007.

9. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, G. Sartor, and P. Torroni. Mapping
deontic operators to abductive expectations. Computational and Mathematical
Organization Theory, 12(2-3):205–225, 2006.

10. S. Bhansali and N. Grosof. Extending the sweetdeal approach for e-procurement
using sweetrules and RuleML. In Proc. RuleML, LNAI 3791:113–129, 2005.

11. F. Bry and M. Eckert. Twelve theses on reactive rules for the web. In Proc. Work-
shop on Reactivity on the Web, Munich, Germany, March 2006.

12. T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, 37(1-3):95–138, 1998.

13. T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic
programming. Journal of Logic Programming, 33(2):151–165, 1997.

14. G. Governatori and D. P. Hoang. A semantic web based architecture for e-contracts
in defeasible logic. In Proc. RuleML, LNAI 3791:145–159, 2005.

15. B. N. Grosof and T. C. Poon. SweetDeal: representing agent contracts with excep-
tions using XML rules, ontologies, and process descriptions. In Proc. 12th WWW,
pp. 340–349. ACM Press, 2003.

http://lia.deis.unibo.it/research/socs/
http://www.w3.org/TR/rif-ucr/
http://www.daml.org/services/owl-s/
http://www.w3.org/Submission/SWSF-SWSL/
http://www.l3s.de/peertrust/

Web Service Contracting: Specification and Reasoning with SCIFF 83

16. J. Jaffar and M. Maher. Constraint logic programming: a survey. Journal of Logic
Programming, 19-20:503–582, 1994.

17. A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic Programming. Journal
of Logic and Computation, 2(6):719–770, 1993.

18. M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel. A
logical framework for web service discovery. In Semantic Web Services: Preparing
to Meet the World of Business Applications. CEUR Workshop Proc. 119, 2004.

19. R. A. Kowalski and F. Sadri. From logic programming towards multi-agent systems.
Annals of Mathematics and Artificial Intelligence, 25(3/4):391–419, 1999.

20. S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services. IEEE Intelligent
Systems, 16(2):46–53, 2001.

21. W. Nejdl, D. Olmedilla, and M. Winslett. PeerTrust: Automated trust negotiation
for peers on the semantic web. In Proc. Secure Data Management (SMD 2004),
LNAI 3178:118–132. Springer-Verlag, 2004.

22. D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres,
C. Feier, C. Bussler, and D. Fensel. Web service modeling ontology. Applied
Ontology, 1(1):77 – 106, 2005.

23. C. Sakama and K. Inoue. Abductive logic programming and disjunctive logic
programming: their relationship and transferability. JLP, 44(1-3):75–100, 2000.

Dynamic Service Discovery Through

Meta-interactions with Service Providers�

Tomas Vitvar, Maciej Zaremba, and Matthew Moran

Digital Enterprise Research Institute (DERI),
National University of Ireland, Galway

{tomas.vitvar,maciej.zaremba,matthew.moran}@deri.org

Abstract. Dynamic discovery based on semantic description of services
is an essential aspect of the Semantic Web services integration process.
Since not all data required for service discovery can always be included
in service descriptions, some data needs to be obtained during run-time.
In this paper we define a model for service interface allowing required
data to be fetched from the service provider during discovery process. We
also provide a specification of such interface for WSMO and demonstrate
the model on a case scenario from the SWS Challenge implemented us-
ing WSMX – a middleware platform built specifically to enact semantic
service oriented architectures.

1 Introduction

The Web has a volatile nature where there can only be a limited guarantee of
being able to access any specific service at a given time. This leads to a strong
motivation for discoverying and binding to services at run-time (late binding).
Existing XML-based WSDL descriptions of data, messages, or interfaces are
insufficient or provide limited expressivity for machines to understand. Service
discovery operating on semantic descriptions offer the potential of flexible match-
ing that is more adaptive to changes over services’ lifetime. In general, discovery
matches definitions of user requests (goals) with those of offered services. Dif-
ferent levels of match are possible e.g. subsumption match, plug-in match, exact
match etc.[13,4]. Semantic discovery works on the abstract definitions of services
and goals (containing no instance data). This needs to be further elaborated to
achieve more accurate results. For example, a request to “buy a Harry Pot-
ter book” involves first searching for descriptions of services that sell books, but
which then determining if the service sells Harry Potter books and if those books
are in stock. Taking Amazon as an example, it is clearly unfeasible to include
data for the entire catalogue and its availability directly in the service descrip-
tion. Such information has a dynamic character and therefore should only be
fetched from the service at discovery-time.
� This work is supported by the Science Foundation Ireland Grant No. SFI/02/CE1/

I131, and the EU projects Knowledge Web (FP6-507482), DIP (FP6-507483) and
SUPER (FP6-026850).

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 84–98, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dynamic Service Discovery 85

For this purpose, we propose a general mechanism enabling the definition
of an interface on the service to allow the fetching of required data from the
service during the late binding phase (e.g during service discovery, contract-
ing/negotiation, selection etc.). These tasks are performed in a semantic service
environment in a (semi) automated fashion by means of the “intelligence” of
intermediary (middleware) services. We define a model for the service interface
which provides a mechanism to fetch data from the service provider during the
discovery process. Choosing the Web Service Modeling Ontology (WSMO) as
our conceptual model, we define an extension for this interface and demonstrate
this work through a case scenario of the SWS Challenge1 implemented using
WSMX – a middleware platform built specifically to enact semantic service ori-
ented architectures.

In section 2 we introduce the underlying specifications for our work, namely
WSMO, WSML and WSMX providing a conceptual framework, ontology lan-
guage and execution environment for Semantic Web services. In section 3 we
define a model for a service interface and algorithm to fetch data for service dis-
covery and further show how this model can be specified using WSMO service
model. In section 4 we illustrate the model on the case scenario implemented in
the WSMX environment and describe the evaluation for the implementation. In
section 5 we describe related work and in section 6 we conclude the paper and
indicate our future work.

2 Semantic Web Services and WSMO

A general aim of Semantic Web Services is to define a semantic mark-up for Web
services providing the higher expressivity then traditional XML-based descrip-
tions. One of the initiatives in the area is the Web Service Modeling Ontology
(WSMO)[11]. WSMO provides a conceptual model describing all relevant as-
pects of Web services in order to facilitate the automation of service discovery,
composition and invocation. The description of WSMO elements is represented
using the Web Service Modeling Language (WSML)[11] – a family of ontology
languages – which consists of a number of variants based on different logical
formalisms and different levels of logical expressiveness. WSMO also defines the
conceptual model for WSMX[9], a Semantic Web Services execution environ-
ment. Thus, WSMO, WSML and WSMX form a coherent framework for mod-
eling, describing and executing Semantic Web Services. The WSMO top-level
conceptual model consists of Ontologies, Web Services, Goals, and Mediators.

– Ontologies provide the formal definition of the information model for all
aspects of WSMO. Two key distinguishing features of ontologies are, the
principle of a shared conceptualization and, a formal semantics (defined by
WSML in this case). A shared conceptualization is one means of enabling
information interoperability across independent Goal and Web service de-
scriptions.

1 http://sws-challenge.org

86 T. Vitvar, M. Zaremba, and M. Moran

– Web Services are defined by the functional capability they offer and one
or more interfaces that enable a client of the service to access that capa-
bility. The Capability is modeled using preconditions and assumptions, to
define the state of the information space and the world outside that space
before execution, and postconditions and effects, defining those states after
execution. Interfaces are divided into choreography and orchestration. The
choreography defines how to interact with the service while the orchestration
defines the decomposition of its capability in terms of other services.

– Goals provide the description of objectives a service requester (user) wants
to achieve. WSMO goals are described in terms of desired information as
well as “state of the world” which must result from the execution of a given
service. The WSMO goal is characterized by a requested capability and a
requested interface.

– Mediators describe elements that aim to overcome structural, semantic or
conceptual mismatches that appear between different components within a
WSMO environment. Although WSMO Mediators are essential for address-
ing the requirement of loosely coupled and heterogeneous services, they are
out of the scope of our work at this point.

In this paper, we will elaborate on WSMO service definition and in particular
on its service interface. The service interface defines choreography as a formal
description of a communication pattern the service offers. Two types of such
choreography interfaces are defined: (1) execution choreography used during the
execution phase where the functionality of the service is consumed by a service
requester and (2) meta-choreography used during late binding to get additional
information necessary for communication with the service. Since the WSMO
model is open, such definitions may be extended to be used for the particular
tasks of the late binding phase. We focus on the definition of one such extension
for use for the service discovery phase.

3 Data Fetching for Discovery

A Web service capability can be described in terms of results potentially delivered
by the service. A goal describes its capability as the information the user wants
to achieve as a result of service provision. We denote the description of the Web
service and the goal as W and G respectively. For the W and G we also introduce
the data of these descriptions which we denote DW and DG respectively and
which is provided directly as part of their respective descriptions.

For purposes of our work and based on grounds of [4,13], we define the fol-
lowing three basic steps when the matching of a goal G and a Web service W
needs to be performed: (1) Abstract-level match, (2) Instance-level Match, (3)
Data Fetching. Abstract-level Match operates on abstract descriptions of G and
W without their data being taken into account. The matching is defined by
the following set-theoretic relationships between objects of G and W : (1) exact
match, (2) subsumption match, (3) plug-in match, (4) intersection match and

Dynamic Service Discovery 87

(5) disjointness. If the goal and the Web service match (relationships 1-4), it is
further checked if the service can provide a concrete service by consulting the
data of the goal and the service (Instance-level Match). If all data is not avail-
able for step 2, the data needs to be obtained from the service (Data Fetching).
Later in this section we further formalize these steps and define the algorithm.
For step 1 and step 2, we define a matching function as follows:

s ← matching(G, W , Bgw), (1)

where G and W is a goal and a service description respectively and Bgw is a
common knowledge base for the goal and the service. The knowledge base con-
tains data which must be directly (through descriptions G and W) or indirectly
(through data fetching) available so that the matching function can be evalu-
ated. The result s of this function can be: (1) match when the match was found
at both abstract and instance levels (in this case all required data in Bgw is
available), (2) nomatch when the match was not found either at abstract level
or at instance level (in this case all required data in Bgw is available), or (3)
nodata when some required data in Bgw is not available and thus the matching
function cannot be evaluated.

We further assume that all data for the goal is directly available in the de-
scription G. The data fetching step is then performed for the service when the
matching function cannot be evaluated (the result of this function is nodata).
We then define the knowledge base as:

Bgw = DG ∪ DW ∪ {y1, y2, ..., ym}, (2)

where {yi} is all additional data that needs to be fetched from the service in
order to evaluate the matching function.

Based on the representation of service interface using abstract state machines
[12], we define the data fetch interface for service W as

IW = (in(W), out(W), L), (3)

where in(W) and out(W) denotes input and output vocabularies which corre-
spond to input and output data of the interface in(IW) and out(IW) respectively,
and L is a set of transition rules. The matching function can be then evaluated
if

∀yi ∈ out(IW) : ∃x ∈ Bgw ∧ x ∈ in(IW) i = 1, 2, . . . , m. (4)

According to 4, data {yi} can be fetched from the service through the data fetch
interface if input data in(IW) is either initially available in the knowledge base
Bgw (data directly available from the goal or web service descriptions) or the
input data becomes available during the processing of the interface. For a rule
r ∈ L we denote r.ant and r.con as the rule antecedent and the rule consequent
respectively. The antecedent r.ant defines an expression which if holds during
run-time in the memory2, the memory is modified according to the definition
2 We use the term memory to denote a processing memory through which states of

an abstract state machine are maintained during its processing.

88 T. Vitvar, M. Zaremba, and M. Moran

of an action in r.con (i.e. specified data is added, updated or removed from the
memory) (see the algorithm in section 3.1). Please note that each concept of
the vocabulary in(W) and out(W) has defined grounding to respective message
in WSDL. Through this grounding definition it is possible to invoke WSDL
operation when instance data of the concept is to be added or updated in the
memory (and thus the data is fetched from the service). This definition of the
grounding is described in [6].

3.1 Algorithm

In algorithm 1, the matching function is integrated with data fetching. The
algorithm operates on inputs, produces outputs and uses internal structures as
follows:

Input
– Repository Q = {W1, W2, ..., Wn}, where W ∈ Q is the web service descrip-

tion. For each web service W we denote DW as data of the web service and
IW as data fetching interface of the web service with rule base L. This in-
terface is defined according to definition 3 and its description is optional for
the web service. In addition, for each rule r ∈ L we denote action of the rule
consequence as r.con.action and its corresponding data as r.con.data.

– Goal description G for which we denote DG as data of the goal.

Output
– List E = {W1, W2, ..., Wm}, where Wi ∈ Q and Wi matches G (the result of

the matching function for Wi and G is match).

Uses
– Processing memory M containing data fetched during processing of the rules

of the data fetching interface.
– Knowledge base Bgw which contains data for processing of the matching

function.
– Boolean variable modified indicating whether the knowledge base has been

modified or not during the processing.

The algorithm performs the matching of the goal with each Web service in
the repository using the matching function (line 7). If the matching cannot
be evaluated (the result is nodata), the algorithm tries to fetch data from the
service by processing the service’s data fetch interface. Whenever the new data
is available from the service, the algorithm updates the knowledge base and
process the matching again. This cycle ends when no data can be fetched from
the interface or matching can be evaluated (the result is match or nomatch).
In case the matching is evaluated as match, the web service is added to the
list of matched services and the cycle is performed for the next service in the
repository.

Dynamic Service Discovery 89

Algorithm 1. Data Fetching for Discovery
1: E ← ∅
2: for all W in Q do
3: Bgw ← DG ∪ DW

4: M ← Bgw

5: repeat
6: modified ← false
7: s ← matching(G, W,Bgw)
8: if s = nodata and exists(Iw) then
9: while get r from L: holds(r.ant, M) and not modified do

10: if r.con.action = add then
11: add(r.con.data,M)
12: add(r.con.data,Bgw)
13: modified ← true
14: end if
15: if r.con.action = remove then
16: remove(r.con.data,M)
17: end if
18: if r.con.action = update then
19: update(r.con.data,M)
20: update(r.con.data,Bgw)
21: modified ← true
22: end if
23: end while
24: end if
25: until s �= nodata or not modified
26: if s = match then
27: E ← E ∪ W
28: end if
29: end for

During the processing of the interface, the algorithm allows to hook in a match-
ing function which is called whenever the new data is available from the service.
The algorithm uses independent memory (memory M) from the knowledge base
(Bgw) for processing of the data fetching interface. This allows that already-
obtained data cannot be removed from the knowledge base while, at the same
time, correct processing of the interface is ensured. The memory M is used not
only for data but also for control of interface processing (in general, the content
of the memory does not need to always reflect the content of the knowledge base).
According to the particular interface definition, the data can be fetched step-wise
allowing minimizing of the interactions with the service during discovery. This
also follows the strong decoupling principle when services are described semanti-
cally and independently from users’ requests. For example, during service creation
phase a service provider (creator) does not know which particular data will be re-
quired for particular data fetching (in general, matching with a goal could require
some or all defined data which depends on the definition of the request). The in-
terface defined using rules allows to get only data which is needed for the matching

90 T. Vitvar, M. Zaremba, and M. Moran

(for example in some cases only price is needed, in some cases price and a location
of selling company could be needed if offered by the service).

3.2 WSMO Service Interface for Data Fetching

As stated in [11], Web Service interface defines choreography and orchestration
allowing the modeling of external and internal behavior of the service respec-
tively. In this respect, the interface for data fetching follows the WSMO service
interface describing a meta-choreography which allows additional data to be
obtained from the service for the discovery process. WSMO service will thus
have additional interface defined (WSMO service allows multiple interface def-
initions). This interface will however only use the choreography describing a
meta-choreography for obtaining additional data for the discovery process. We
do not specify orchestration for this interface as the logic of how data fetch is
performed by the service (how data is obtained out of aggregation of other ser-
vices) is not of interest for discovery and we do not use it in our algorithm. In
order to distinguish between the interface used for data fetching and the inter-
face used for execution (defining how actual service is consumed by the service
requester), we use non-functional property. For purposes of our work we further
use non-functional property interfacePurpose with values execution and discov-
ery. Another possibilities for distinguishing both interfaces would be to define
data-fetch interface as specialization of WSMO service interface. The decision
on whichever approach will be used will be done in the context of the WSMO
WG.

4 Implementation and Evaluation

The model introduced in this paper has been implemented and evaluated through
the SWS Challenge discovery scenario. The scenario introduces five different ser-
vice providers offering various purchasing and shipment options. They provide
different availability and pricing for their services with constraints on package
destination, weight, dimension and shipment date. Service requesters with differ-
ent requirements search for the best offers with packages of different weight and
shape. Our model for data fetching for discovery fits well into this scenario since
not all information can be provided in service descriptions meaning they must be
dynamically obtained at discovery-time. In this section we base examples on the
Mueller service whose price information is not available in the service description
and needs to be fetched during the service discovery via data fetching interface.
In section 4.3 we further describe the evaluation of our implementation from the
broader context of the SWS Challenge requirements.

4.1 Scenario and Assumptions

In the scenario depicted in figure 1, a user accesses the e-marketplace called
Moon where a number of companies such as Mueller or Racer have registered

Dynamic Service Discovery 91

their services. The Moon runs a (1) Web portal through which it provides services
to users and (2) the WSMX middleware system through which it facilitates the
integration process between users and service providers.

WSMX middleware

Execution Semantics

Discovery

Selection

Choreography
Engine

h

h

Service

Repository

select from L

Portal

WSMO

Goal

Execution
Interface

Data Fetch
Interface

Capability

User

h

h

invoke G, S

description

implementation

Publish

descriptions

data fetching

invocation

W
S

e
n
d
p
o

in
ts

Moon e-marketplace

Request

Response

Racer

Mueller

Fig. 1. Architecture for the Scenario

For this scenario and the aims of this paper we make the following assumptions.

• Service providers and Moon use the WSMO formalism for Web service de-
scription. We assume that service requesters maintain their own adapters
to their back-end systems while at the same time providing lifting/lowering
functionality between their existing technology (e.g. WSDL, XML Schema)
and WSML.

• All service providers adopt a common ontology maintained by the Moon e-
marketplace. Handling data interoperability issues, where service providers
and Moon use different ontologies, is out of the scope of this paper.

• During execution, interactions between the user and the Moon are simplified
to a single request-response exchange. Either the user submits a goal (our
scenario) or a pre-selected service for invocation. Meta-interactions between
users and the middleware system are not of our interest in this work.

In our scenario, a user defines her requests through the Web portal’s user in-
terface. The Web portal generates a WSMO goal corresponding to the request,
sends it to WSMX, receives the response and presents the result back to the
user. The execution process, run in WSMX after the receipt of the goal, includes
discovery (with data-fetching from services), selection of the best service and
invocation. Although the whole process of this scenario is implemented, the con-
tribution of this paper lies in the integration of data fetching with discovery.
Other parts, i.e. selection and invocation are not described in detail here.

92 T. Vitvar, M. Zaremba, and M. Moran

4.2 Modeling Ontologies, Goals and Services

In order to implement the scenario, we first need to create semantic models for
ontologies, goals and services. We describe these models in the following sub-
sections. We present examples of ontologies, services and goals definitions in
WSML using the following prefixes to denote their respective namespaces: mo –
common ontology, gl – goal ontology.

Ontologies describe concepts used for the definition of goals and services. In
our scenario we use a common scenario ontology with additional ontologies to
define specific axioms or concepts used by the descriptions of services and/or
goals.

The common ontology defines shared concepts used in the description of the
goal and services, such as Address, ShipmentOrderReq, Package, etc. In ad-
dition, we use the common ontology to specify named relations for services and
goals. Specific ontologies for goals and services declare axioms that define the re-
lations to represent their conditions. An analogy for this approach are interfaces
in programming labguages like Java. The interface declares some functionality
but does not say how this should be implemented. Using this approach, we de-
fine a set of relations in the common ontology which represent the axioms that
a service may need to define. Listing 1.1 shows the simple definition for the
isShipped relation from the common ontology and its implementation in the
Mueller’s ontology.

� �

1 /∗ isShipped relation in the common ontology ∗/ relation
2 isShipped(ofType mo#ShipmentOrderReq)
3

4 /∗ implementation of the isShipped relation in the Mueller’s ontology ∗/
5 axiom isShippedDef
6 definedBy
7 ?shipmentOrderReq[mo#to hasValue ?to, mo#package hasValue ?package] memberOf mo#
8 ShipmentOrderReq and
9 ?to[mo#city hasValue ?city] and

10 isShippedContinents(?city, mo#Europe, mo#Asia, mo#Africa) and
11 ((?package[mo#weightKg hasValue ?weightKg] memberOf mo#Package) and (?weightKg<50))
12 implies
13 mo#isShipped(?shipmentOrderReq).
� �

Listing 1.1. isShipped relation

The relation isShipped is true if the service provider can ship products according
to the shipment order request (ShipmentOrderReq). In the second part of the
listing 1.1, isShipped is defined such that the destination city for the shipment
must be in Europe, Asia or Africa and the weight of the package is less then
50kg. This forms part of the Mueller service description.

Services. We focus on the description of the data-fetching interface of the
Mueller service showing how and which data can be fetched during discovery.

Dynamic Service Discovery 93

� �

1 interface WSMullerDataFetchInterface
2 nfp
3 ”interfacePurpose” hasValue ”discovery”
4 ...
5 endnfp
6

7 choreography WSMullerDataFetchChoreography
8 ...
9 transitionRules WSMullerDataFetchTransitionRules

10 /∗ Rule 1: Request for product quote ∗/
11 forall {?purchaseQuoteReq} with (
12 ?purchaseRequest memberOf mo#PurchaseQuoteReq
13) do
14 add(# memberOf mo#PurchaseQuoteResp)
15 endForall
16

17 /∗ Rule 2: Request for shipment quote ∗/
18 forall {?shimpmentQuoteReq} with (
19 ?purchaseQuoteResp[mo#package hasValue ?package] memberOf mo#

PurchaseQuoteResp and
20 ?shipmentQuoteReq[mo#to hasValue ?to] memberOf mo#ShipmentOuoteReq and
21 mo#isAvailable(?purchaseQuoteResp) and mo#isShipped(?to, ?package)
22) do
23 add(# memberOf mo#ShipmentQuoteResp)
24 endForall
� �

Listing 1.2. Mueller data fetching interface

In listing 1.2, the first rule (line 6) describes how to get the price and the
product availability information (the quote request data is part of the goal
description). The second rule (line 13) describes how to get a quote for ship-
ment. This rule will be only used if requested product is available (determined
through relation isAvailable) and Mueller can ship to specified address (deter-
mined through relation isShipped). Here, shipment address (to variable) is taken
from the shipment quote request and packaging information (package variable)
is taken from purchase order response. According to this definition, the first rule
is used independently (and could be the only rule used where the user does not
request shipment) while for the second rule, the first rule need to be executed
first (the rule can be executed if the product is available and shippable which
is determined through results of the first rule). Concepts PurchaseQuoteReq,
ShipmentOuoteReq and PurchaseQuoteResp, ShipmentQuoteResp are defined
as input and output vocabularies respectively (including grounding mechanism)
(for brevity, this is not shown in the listing).

Goals. The goal for the scenario describes the user’s aim to buy certain products
and ship them to a specific location. In addition, the goal specifies a preference
that price be used for selection of the best service where multiple matching
services are discovered. The goal as in listing 1.3 is defined for our scenario
with respect to the implementation of the matching function from section 3
(we discuss this implementation in section 4.3). The goal defines the capability
postcondition specifying to get a quote for the product while at the same time the
product must be available and shippable to location specified by the shipment
order request.

94 T. Vitvar, M. Zaremba, and M. Moran

� �

1 Goal GoalPurchaseShip
2 nfp
3 ”preference” hasValue ”?price”
4 ...
5 endnfp
6 ...
7 capability GoalPurchaseShipCapability
8 postcondition
9 definedBy

10 (?x[mo#price hasValue ?price] memberOf mo#PriceQuoteResp and
11 mo#isAvailable(go#purchaseOrderReq) and
12 mo#isShipped(go#shipmentOrderReq)).
13 ...
� �

Listing 1.3. User Goal in WSMO

4.3 Implementation

The scenario is implemented as follows: when the goal is generated out of the
request specified by the user, it is sent to the WSMX system. The WSMX starts
a new operational thread (execution semantics) which first invokes the discovery
component which in turn returns a list of services matching the goal. This list
is passed to the selection component to select the service that best fits the user
request. Control passes to the choreography engine which uses the choreography
descriptions of the goal and service respectively, to drive the message exchange
with the discovered service. This section describes the implementation of the
algorithm from section 3 within the discovery component of WSMX. The de-
tails about other parts of the execution process can be found in our previous
work in [2].

Section 3 describes three steps for discovery. A prototype for the abstract-
level matching is under development in the WSMO working group. The imple-
mentation, described here, focuses on the steps of instance-level matching and
data-fetching. A match between the goal and Web services is determined on the
knowledge base created out of their descriptions, including instance data (both
available from the descriptions and fetched). The goal capability defines a query
(listing 1.3) which is used to query the knowledge base.

According to the algorithm 1 in section 3, the knowledge base Bgw is created
for every goal and web service from the repository as shown in figure 2. Initially,
the knowledge base imports all concepts from the common ontology and data
from both goal and web service descriptions. In order to evaluate the matching
function, we simply query the knowledge base using the goal postcondition. If
the result of the evaluation is true, we add the web service to the list E of
web services to the position determined by the preference. If the result of the
evaluation is false, we first try to fetch new data by processing the fetching
interface. If new data is available we evaluate the matching function again. If
new data is available, the matching function is evaluated again. Otherwise, the
cycle ends and the next service from the repository is processed. We briefly
discuss this implementation in the next section 4.4.

Dynamic Service Discovery 95

WSMO Goal (G)

Common
Ontology

Knowledge Base
(Bgw)

WSMO Service (W)

Execution
Interface

Capability

Data Fetching
interface

WSMO Ontology
Description and constrains

over provided functionality

Capability

Order Request
Interface

Queries

Provides

data

Imports

Provides data

WSMO Ontology
Data of Request

Imports Imports

Provides

data

Fig. 2. Knowledge Base Bgw

4.4 Evaluation

Our implementation has been evaluated according to the methodology defined
by the SWS Challenge. The SWS Challenge is an initiative led by a Seman-
tic Web Services community providing a standard set of increasingly difficult
problems, based on industrial specifications and requirements. Entrants to the
SWS Challenge are peer-evaluated to determine if semantically-enabled inte-
gration approaches reduce costs of establishing and maintaining the integration
between independent systems. In each SWS challenge workshop, the entrants
first address introduced initial scenario of particular problem (e.g. mediation,
discovery) in a testing environment prepared by the SWS Challenge organizers.
The organizers then introduce some changes to back-end systems of the testing
environment when the adaptivity of solutions is evaluated – solutions should han-
dle introduced changes by modification of declarative descriptions rather than
code changes. This evaluation is done by a methodology, developed by the SWS
Challenge organizers and participants, which identifies following so called success
levels. Success level 0 indicates a minimal satisfiability level, where messages be-
tween middleware and backend systems are properly exchanged in the initial sce-
nario. Success level 1 is assigned when changes introduced in the scenario require
code modifications and recompilation. Success level 2 indicates that introduced
changes did not entail any code modifications but only declarative parts had
to be modified. Success level 3 is assigned when changes did not require either
modifications to code or the declarative parts, and the system was able to auto-
matically adapt to the new conditions. Our implementation was evaluated to suc-
cessfully address the scenario based on the location, weight, dimensional weight
and price requirements, scoring success level 2. The implementation proved
to be generic where only modifications of the WSMO Goals were necessary

96 T. Vitvar, M. Zaremba, and M. Moran

in order to correctly handle introduced changes. Discovery based on the location
was successfully resolved using the common isShipped relation (see listing 1.1).
Additional criteria imposed on the service such as weight and price have also
been evaluated to level 2. No changes in WSMX code or in the descriptions of
the services were required – only the Goal requests had to be changed. With
respect to the fully-fledged discovery, there are however some limitations. It
does not distinguish between the result nodata and nomatch (as defined in the
algorithm) while it treats both results as nodata. This means that the whole
fetching interface needs to be always processed until new data can be fetched
or unless the match is found. This is a forced limitation of our implementation
while at the same time it is a temporary solution for our environment before the
fully-fledged discovery component will be available. The algorithm presented
here however allows to use various implementations of matching functions which
adhere to its defined interface. As a consequence, our solution currently offers a
limited scalability. It might generate a significant network overhead in large-scale
discovery scenarios when detailed interactions with every potential web service
needs to be performed. We plan to address the optimality of our algorithm with
respect to scalability in our future work. Our current solution also does not
directly address security. It is important to ensure that information retrieved
from service provider can be accessed after authorization and that data is fetched
in a secure way. Such security aspects should be however implemented between
the e-marketplace and service providers transparently to data fetching.

5 Related Work

There is no directly comparable work in the extension of the interface description
in Web services to allow the fetching of additional data to aid discovery at run-
time. However, there are two topics that are closely related. The first is service
discovery based on semantic matchmaking which is the research area in which
this paper is set and the second is service contracting and negotiation. Research
into Goal-based discovery for WSMO and WSMX takes a step-wise approach
with both theoretical and implementation concerns addressed at each stage.
Three strategies have been investigated in this manner. The first is keyword-
based discovery [4], which uses an algorithm that matches keywords, identified
from the Goal description, with words occurring in various locations within the
Web service description. The second strategy is for a lightweight Semantic Web
Services discovery component for the WSMX platform and is described in [1].
This approach models a service in terms of the objects it can deliver. The term
object, in this sense, means something of value the service delivers in its do-
main of interest. A third strategy is based around the use of quality-of-service
attributes as described in [3] and implemented by the authors as a WSMX
component. Upper level ontologies describing various domains for quality-of-
service attributes are provided and non-functional properties are introduced to
the service descriptions whose meanings are defined in these QoS ontologies. The
approach in this paper is compatible with each of the matching strategies as it

Dynamic Service Discovery 97

extends the matching power by requesting data from the service that is not di-
rectly available in its description. In [7], contracting is identified as an activity
that may take place between the requester and provider once the initial discov-
ery has identified candidate services. The discovery mechanisms in OWL-S rely
on subsumption reasoning to match a service profile of service requesters with
candidate service profiles published by service providers ad described in [10].
As with the WSMO efforts, they acknowledge that a negotiation phase may be
necessary after discovery to allow requesters and providers agree on quality of
service issues. Automated negotiation of service provision is related to the topic
of this paper as, for negotiation to take place, it must be possible to determine
during discovery exactly the terms that are being offered by the service which
may be open to negotiation. A substantial body of work is devoted to the devel-
opment of negotiation systems ranging from the application of intelligent agents
for eCommerce in [8] through negotiation using Bayesian Learning [14] to using
Web services and BPEL for automated negotiations [5].

6 Conclusion and Future Work

Service discovery which operates on abstract descriptions of services needs to
be further elaborated in order to return results of concrete services satisfying
concrete goals. For this purpose, instance data needs to be used. Since all data
can not be included in service descriptions (usually for practical reasons) it
needs to be fetched from the service provider at discovery-time. In this paper we
presented an approach to model the service interface allowing such data to be
fetched from the service provider. We use the abstract state machine formalism
to model the interface allowing scalable interactions with a service provider for
specific discovery sessions. This approach allows the use of only the rules and
data required, by the service requester at discovery-time (and thus limit data
transmission or other costs) while at the same time it is possible to adapt the
interface for various purposes of the late binding phase, i.e. discovery, selection,
contracting/negotiation, etc. We also showed how, by extending WSMO service
interface, the WSMO service choreography definition can be used to implement
this interface. In a case scenario, we described the necessary semantic models and
presented the algorithm (including creation of the knowledge base, processing
the interface, and querying the knowledge base).

In our future work we plan to address the optimality for data fetching to
decide on preferences for those interactions which might lead to results without
processing all data fetching interface. In addition, we want to extend the data
fetching interface to support other parts of the late binding phase. For example,
negotiation building on data fetching might use interactions with specific mean-
ing, such as for bidding etc. Layering of specific late-binding interfaces on the
top of data fetching allows a modular approach to the definition of such inter-
actions. We also plan to improve the implementation of the matching function
for fully-fledged service discovery. In addition, we plan to incorporate run-time
data mediation aspects into the discovery process where service requester and
service providers use different ontologies.

98 T. Vitvar, M. Zaremba, and M. Moran

References

1. Andreas Friesen and Stephan Grimm. DIP WP4 Service Usage, D4.8 Discovery
Specification, available at http://dip.semanticweb.org/documents/D4.8Final.pdf.
Technical report, 2005.

2. Thomas Haselwanter, Paavo Kotinurmi, Matthew Moran, Tomáš Vitvar, and Ma-
ciej Zaremba. Wsmx: A semantic service oriented middleware for b2b integration.
In ICSOC, pages 477–483, 2006.

3. Manfred Hauswirth, Fabio Porto, and Le-Hung Vu. P2P and QoS-enabled service
discovery specification available at http:/dip.semanticweb.org/documents/D4.17-
Revised.pdf. Technical report, 2006.

4. Uwe Keller, Ruben Lara, Holger Lausen, Axel Polleres, Livia Predoiu, and
Ioan Toma. WSMO D10.2 Sematic Web Service Discovery available at
http://www.wsmo.org/TR/d10/v0.2/d10.pdf. Technical report, 2005.

5. J.B. Kim, A.Segev, A.Patankar, and M.G.Cho. Web services and bpel4ws for
dynamic ebusiness negotiation processes,. In International Conference on Web
Services, Las Vegas, Nevada, USA, 2003.

6. Jacek Kopecký, Dumitru Roman, Matthew Moran, and Dieter Fensel. Semantic
web services grounding. In AICT/ICIW, page 127, 2006.

7. Ruben Lara and Daniel Olmedilla. Discovery and Contracting of Semantic Web
Services. Technical report, 2005.

8. L.C. Lee. Progressive multi-agent negotiation. In International Conference on
Multi–Agent Systems. MIT Press, 1995.

9. Adrian Mocan, Matthew Moran, Emilia Cimpian, and Michal Zaremba. Filling the
gap - extending service oriented architectures with semantics. In ICEBE, pages
594–601. IEEE Computer Society, 2006.

10. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. In 1st International Semantic Web Conference (ISWC), page
333347, 2002.

11. Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubn Lara, Michael
Stollberg, Axel Polleres, Cristina Feier, Christoph Bussler, and Dieter Fensel. Web
Service Modeling Ontology. Applied Ontologies, 1(1):77 – 106, 2005.

12. Dumitru Roman, James Scicluna, Dieter Fensel, Axel Polleres, and Jos de Bruijn.
D14v0.3. Ontology-based Choreography of WSMO Services, available from
http://www.wsmo.org/TR/d14/v0.4/. Technical report, 2006.

13. A. Moormann Zaremski and J. M. Wing. Specification matching of software compo-
nents. ACM Transactions on Software Engineering and Methodology, 6(4):333–369,
1997.

14. D. Zeng and K. Sycara. Bayesian learning in negotiation. In Working Notes for
the AAAI Symposium on Adaptation, Co-evolution and Learning in Multiagent
Systems, pages 99 – 104, 1996.

Two-Phase Web Service Discovery Based on Rich
Functional Descriptions

Michael Stollberg, Uwe Keller, Holger Lausen, and Stijn Heymans

Digital Enterprise Research Institute Innsbruck (DERI Austria),
Institute for Computer Science, University of Innsbruck,

Technikerstrasse 21a, A-6020 Innsbruck, Austria
firstname.lastname@deri.org

Abstract. Discovery is a central reasoning task in service-oriented architectures,
concerned with detecting Web services that are usable for solving a given request.
This paper presents two extensions in continuation of previous works towards
goal-based Web service discovery with sophisticated semantic matchmaking. At
first, we distinguish goal templates as generic objective descriptions and goal in-
stances that denote concrete requests as an instantiation of a goal template. Sec-
ondly, we formally describe requested and provided functionalities on the level
of state transitions that denote executions of Web services, respectively solutions
for goals. Upon this, we specify a two-phase discovery procedure along with se-
mantic matchmaking techniques that allow to accurately determine the usability
of a Web service. The techniques are defined in the Abstract State Space model
that supports several languages for describing Web services.

1 Introduction

Discovery is concerned with detecting usable Web services for solving a given request.
This is the first central reasoning task in the context of Semantic Web services, followed
by contracting and behavioral conformance tests [17]. Several research works present
discovery techniques by semantic matchmaking of requested and provided function-
alities, e.g. [16,13,2,7,11]. However, due to deficiencies in the expressiveness and the
formal semantics of functional descriptions most existing approaches lack in the achiev-
able quality of the matchmaking results for Web service discovery.

In this respect, we present the advancements towards a goal-based approach for se-
mantically enabled Web service discovery with sophisticated matchmaking. Initially
presented in [9], the requester and the provider perspective are separated by formally
describing client objectives as goals; a Web service is understood to provide access to
several services by its invocation with concrete input values. We extend this approach
by differentiating two notions of goals. A goal template is a generic objective descrip-
tion that is defined at design time, and a goal instance denotes a concrete client request
that is created at runtime by instantiating a goal template with concrete input values.
Apart from better supporting goal formulation by clients, this allows to realize an ef-
ficient two-phase Web service discovery. Usable Web services for goal templates are
determined at design time and kept in the system. At runtime, the discovery for goal

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 99–113, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

100 M. Stollberg et al.

instances only needs to investigate those Web services that are usable for the corre-
sponding goal template, so that the number of matchmaking operations necessary at
runtime can be reduced. This paper specifies the semantic matchmaking techniques for
this framework.

In order to properly describe provided and requested functionalities, we consider a
state-based model of the world. Therein, a particular execution of a Web service denotes
a sequence of state transitions; such a sequence is also a solution for a goal if the client
objective is solved in the end-state. The functionality provided by a Web service is a set
of all its possible executions, and a goal template as well as a goal instance describes a
set of possible solutions. We formally describe possible executions and solutions with
respect to the start- and end-states in Abstract State Spaces, a language independent
model that defines precise formal semantics for such functional descriptions [10].

On top of this, we specify semantic matchmaking techniques that allow to precisely
determine the usability of a Web service for solving a goal. In particular, we (1) revise
the definition of previously identified matching degrees and use these to differentiate the
usability of a Web service on the goal template level, (2) present a novel approach for
semantic matchmaking on the goal instance level, and (3) finally integrate the match-
making techniques for the goal template and the goal instance level. We specify the
techniques in a first-order logic framework and illustrate the definitions by a running
example throughout the paper: a goal specifies the objective of finding the best restau-
rant in a city, and a Web service provides a search facility for the best French restaurant
in a city. As we shall discuss, this Web service is only usable for specific goal instances
– namely those that specify a city wherein the best restaurant in French.

The paper is structured as follows. Section 2 introduces the concepts of our two-
phase discovery approach, and Section 3 defines the formal functional descriptions for
Web services and goals. Section 4 specifies the integrated semantic matchmaking tech-
niques for Web service discovery, and Section 5 demonstrates this in the running ex-
ample. Section 6 discusses related work and positions our approach therein. Finally,
Section 7 concludes the paper. A detailed report on this work is provided in [20].

2 Concepts and Approach

The specification of semantic matchmaking techniques for Web service discovery is
strongly dependent on the underlying conception and the formal description of Web
services and goals. This section introduces the relevant concepts and then outlines the
two-phase Web service discovery by discussing the meaning of a match.

2.1 Web Services and Goals

In accordance to the common understanding, we consider a Web service as a computa-
tional facility that is invocable over the Internet via an interface [1]. As an abstraction
that is sufficient for our purpose, we define a Web service as a pair W = (IF , ι) such
that IF = (i1, . . . , in) is a finite set of names that denotes all inputs required for invok-
ing W , and ι is the implementation of W that is executed when W is invoked.

In the Abstract State Space model (ASS, [10]), a particular execution of W denotes
a finite sequence of state transitions τ = (s0, . . . , sm), i.e. a change of the world from

Two-Phase Web Service Discovery Based on Rich Functional Descriptions 101

Fig. 1. Web Service, Executions, Input Bindings

a start state s0 to an end state sm. Such a τ is triggered by invoking W with concrete
input values; we refer to this as an input binding β : {i1, . . . , in} → U , i.e. a total
function that assigns objects of some universe U to the IF -names. In dependence of the
start state, there can be different executions of W for the same input binding. Relevant
for the context of discovery, we understand the overall functionality provided by W
as the set of all its possible executions, denoted by {τ}W . As illustrated in Figure 1,
this can be further differentiated into the distinct sets of possible executions of W for
each valid input binding, such that {τ}W =

⋃
{τ}W (β) with W (β) denoting the set of

possible executions of W when invoked with a particular input binding β.1

Goals in our approach are formally described client objectives. In accordance to re-
lated AI research (e.g. [3,15]), we understand a goal as the formal description of the
desire of the client to get from the current state of the world into a state wherein the
objective is satisfied. This abstracts from technical details irrelevant to the client objec-
tive. As promoted by the WSMO framework [12], the overall aim is to enable problem-
oriented Web service usage: the client merely specifies the objective to be achieved as
a goal, and the system detects and executes suitable Web services for solving this.

We have refined the initial WSMO goal model based on experiences in realizing
respective technologies [21]. The extension relevant in the context of discovery is the
differentiation of goal templates as generic, reusable objective descriptions, and goal
instances that denote concrete client requests as instantiations of a goal template. In-
spired by related system implementations such as IRS [4] and SWF [22], this allows
to support goal formulation by client via graphical user interfaces. Instead of requiring
the client to specify potentially complex logical formulae for goal formulation, merely
pre-defined templates are instantiated with concrete inputs. Figure 2 illustrates this.

While we shall specify their formal description in the next section, a goal template G
defines generic constraints on the initial state and the desired final state to be achieved.
In our restaurant search example, the goal template G defines that the best restaurant

1 We consider the functionalities provided by Web services to satisfy two properties: (1) deter-
ministic, i.e. all outputs and effects of an execution are completely dependent on the provided
inputs and the start state; non-deterministic functionalities violate the composability of Web
services [17]; (2) non-adaptive, meaning that in contrast to intelligent software agents a Web
service does not itself change the provided functionality [6].

102 M. Stollberg et al.

Fig. 2. Goal Templates, Goal Instances, and Web Services

shall be found in a city that is provided as an input by the client. Its meaning in the
ASS model is that G specifies a set of sequences of state transitions {τ}G as its possible
solutions. For each τ = (s0, . . . , sm) ∈ {τ}G , the start-state s0 satisfies the constraints
on the initial state, and the end-state sm satisfies the constraints on the desired state
of the world. At runtime, a client creates a goal instance GI(G) by defining concrete
values for the inputs specified in G. In the example, this is the concrete city in which
the best restaurant shall be found. We refer to this as an input binding β for G; this also
constitutes the input binding for invoking a Web service to solve GI(G) as discussed
above. Because of this instantiation, the possible solutions for GI(G) are a subset of
those for G, so that {τ}GI(G) ⊂ {τ}G .

2.2 The Meaning of a Match for Web Service Discovery

We now turn towards Web service discovery. With respect to the conception of Web
services and goals explained above, the aim is to find a Web service that can provide a
τ that is a solution for the goal. Hence, we define the meaning of a match as follows.

Definition 1. Let W be a Web service, G a goal template, and GI(G) a goal instance
that instantiates G with an input binding β. Let τ = (s0, . . . , sm) be a sequence of
states in an Abstract State Space A. We define the following sets:

{τ}G := possible solutions for G
{τ}W := possible executions of W
{τ}GI(G) ⊂ {τ}G := possible solutions for GI(G) that defines β
{τ}W (β) ⊂ {τ}W := possible executions of W when invoked with β

We define the usability of a Web service for solving a goal as:

(i) match(G, W) : ∃τ. τ ∈ ({τ}G ∩ {τ}W)
(ii) match(GI(G), W) : ∃τ. τ ∈ ({τ}GI(G) ∩ {τ}W (β))

This defines the basic matching conditions for Web Service discovery. Clause (i) states
that a Web service W is usable for solving a goal template G if there exists at least one
execution of W that is a possible solution for G. Clause (ii) defines that W is usable
for solving a goal instance GI(G) if there is at least one execution of W that is also a
solution for GI(G) when W is invoked with the inputs defined in GI(G).

Two-Phase Web Service Discovery Based on Rich Functional Descriptions 103

Because of {τ}GI(G) ⊂ {τ}G it holds that a Web service that is usable for solving
a goal instance is also usable for the corresponding goal template. If W can provide a
τ ∈ {τ}GI(G), then this τ also is also an element of {τ}G . Formally, we can express
this as match(GI(G), W) ⇒ match(G, W). As the logical complement, it also holds
that ¬match(G, W) ⇒ ¬match(GI(G), W), i.e. that a Web service that is not usable
for a goal template is also not usable for any of its goal instances.

This constitutes the foundation of our two-phase discovery. Usable Web services for
goal templates G can be determined at design, i.e. when a new goal template is defined.
Web service discovery for concrete goal instances GI(G) is performed at runtime. Be-
cause of ¬match(G, W) ⇒ ¬match(GI(G), W), this merely needs to consider the
set of Web services that are usable for the corresponding goal template G. While the
achievable efficiency increase is discussed elsewhere [22], this paper specifies the se-
mantic matchmaking techniques for evaluating the matching conditions on the basis of
formal descriptions. Without such techniques, we would need to perform test runs of
W in order to determine its usability for solving a goal.

3 Formal Functional Descriptions

The following defines functional descriptions for Web services and goals that serve as
the basis for semantic matchmaking techniques for Web service discovery. To prop-
erly describe requested and provided functionalities on the level of state transitions, we
apply functional descriptions as defined in the ASS model mentioned above. This sec-
tion specifies their structure and formal meaning in a first-order logic framework, and
illustrates the definitions in our running example.

3.1 Definition and Semantics

The ASS model describes functionalities in terms of preconditions and effects along
with explicitly defining in- and outputs. Focussing on the formal meaning of functional
descriptions, they are defined independent of the language used for specifying precon-
ditions and effects. The following recalls the definitions, referring to [10] for details.

An Abstract State Space A is defined over a signature Σ and some domain knowl-
edge Ω. A functional description is described as a 5-tuple (Σ, Ω, IF , φpre, φeff). The
signature Σ differentiates static symbols ΣS that are not changed, dynamic symbols ΣD

that are changed by execution of a Web service, and Σpre
D that denote the interpretation

of a dynamic symbol in the start state. Preconditions φpre and effects φeff are defined
as statements in a logic L(Σ). IF = (i1, . . . , in) is a set of variables that denote all
required inputs. To explicitly specify the deterministic dependency between the start-
and end-states with respect to input values, they can occur as the only free variables in
φpre and φeff . An input binding β : {i1, . . . , in} → UA is a total function that assigns
objects of the universe of A to each IF -variable. Finally, the symbol out denotes the
computational outputs that are constrained by φeff .

The meaning of a functional description is defined with respect to the start- and the
end-state of a sequence of state transitions. Formally, a τ = (s0, . . . , sm) in A is con-
sidered to satisfy the described functionality if and only if it holds that if s0 |=L(Σ) φpre

104 M. Stollberg et al.

then sm |=L(Σ) φeff . Here, s |=L(Σ) φ expresses that the formula φ is satisfied by the
universe UA in a state s under the logic L(Σ). We refer to this as implication seman-
tics: if the precondition is satisfied in s0, then sm will satisfy the effect; otherwise, we
can not make any statement about the behavior of the described functionality. Because
the IF -variables occur as free variables in both the precondition φpre and the effect
φeff , the end-state sm is completely dependent on the start-state s0. This reflects the
deterministic nature of functionalities provided by Web services.

While functional descriptions in the ASS model are defined independent of the spec-
ification language for preconditions and effects, we use classical first-order logic (FOL,
[19]) for illustration throughout this work. In order to ease the handling of functional
descriptions, we describe them as a first-order logic structure that maintains the formal
semantics as defined in the ASS model.

Definition 2. A functional description is a 4-tuple D = (Σ, Ω, IF , φD) such that:

(i) Σ is a signature consisting of ΣS (static symbols), ΣD (dynamic symbols),
and Σpre

D (pre-variants of dynamic symbols)
(ii) Ω ⊆ L(Σ) defines consistent domain knowledge
(iii) IF is a set of variables i1, . . . , in that denote all required input values;

an input binding β : {i1, . . . , in} → UA is a total function that assigns
objects of the universe of A to each IF -variable

(iv) φD is a FOL formula of the form [φpre]Σpre
D →ΣD

⇒ φeff such that
- φpre is the precondition with IF as the only free variables
- φeff is the effect with IF as the only free variables and the

outputs are denoted by the predicate out
- [φ]Σpre

D →ΣD
is the formula φ′ derived from φ by replacing every dynamic

symbol α ∈ ΣD by its corresponding pre-variant αpre ∈ Σpre
D .

Essentially, φD defines a logical implication between the precondition and the effect
formulae. The rewriting function for the precondition handles dynamic symbols. For ex-
ample, consider a functionality for a bank account withdrawal with φpre : account(a)∧
balance(a) ≥ x, φeff : account(a) ∧ balance(a) = balancepre(a) − x, and ΣD =
balance(a). We obtain φD = (account(a) ∧ balancepre(a) ≥ x) ⇒ (account(a) ∧
balance(a) = balancepre(a) − x), so that the relationship between the start- and end-
state is specified explicitly. The following specifies the meaning of such a functional
description that formally describes the overall functionality provided by a Web service.

Definition 3. Let W be a Web service with {τ}W as the set of its possible executions
in an Abstract State Space A. Let D = (Σ, Ω, IF , φD) be a functional description. Let
ΩA = Ω ∪ [Ω]Σpre

D →ΣD
be the domain knowledge extended with αpre ∈ Σpre

D .
W provides the functionality described by D, denoted by W |=A D, if and only if:

(i) every Σ-interpretation I with I |= ΩA and I, β |= φD under every input
binding β : IF → UA represents a τ ∈ {τ}W , and

(ii) every τ ∈ {τ}W is represented by a Σ-interpretation I with I, β |= φD and
I |= ΩA under every input binding β : IF → UA.

This defines that a Web service W provides the functionality described by D if and
only if every Σ-interpretation I, β that is a model of φD describes a τ = (s0, . . . , sm)

Two-Phase Web Service Discovery Based on Rich Functional Descriptions 105

Fig. 3. Illustration of W |=A D

∈ {τ}W . Such a Σ-interpretation describes the objects that exists in the end-state sm

if W is executed for a particular input binding β in a specific start state s0. For the
implication semantics from clause (iv) in Definition 2, it holds that I, β |= φD if I, β |=
φpre and I, β |= φeff ; if I �|= φpre, we can not make any statement about the end-
state of a τ . Hence, if a τ ∈ {τ}W can be described by a Σ-interpretation I with
I, β |= φD , then it satisfies the described functionality; if there is a τ ∈ {τ}W that
cannot be described by such a Σ-interpretation, then W does not provide the described
functionality. Figure 3 illustrates this, while we refer to [20] for the formal explanation
of this definition and its relationship to the ASS model.

The meaning of a functional description DG of a goal template G is analogous. Here,
{τ}G is the set of sequences of state transitions that are solutions for G such that every
τ ∈ {τ}G corresponds to a Σ-interpretation that is a model of DG . To precisely evaluate
the usability of a Web service, in some cases we need to consider the concrete value
assignments for the IF -variables. These are provided by the creation of a goal instance
GI(G) that defines an input binding β for the IF -variables in DG of the corresponding
goal template G. Subsequently, this β constitutes the inputs for invoking a Web service
in order to solve GI(G). We shall discuss this in more detail in the context of discovery
on the goal instance level (Section 4.2).

3.2 Illustration in Running Example

In order to illustrate the above definitions, Table 1 shows the formal functional descrip-
tions of the goal template G and the Web service W in our restaurant search example.

The goal describes the objective of finding the best restaurant in a city. The specific
city is an input required for instantiation. Hence, DG specifies one IF -variable that is
constrained in the precondition φpre to be a city. The effect φeff describes the desired
state of the world to be given if and only if the received output is a restaurant in the
city such that there does not exists any better restaurant in the city. Analogously, DW

describes the functionality provided by the Web service W . The mere difference occurs
in the effect: the output of W is a French restaurant in the city that is provided as input
such that there does not exist any better French restaurant in the city.

We use classical first-order logic (FOL, [19]) as the specification language. The sig-
nature Σ for both DG and DW defines the respective symbols. Here, ?〈name〉 denotes

106 M. Stollberg et al.

a variable. The domain knowledge Ω is defined in the best restaurant ontology. This
contains axioms specifying that the predicate better(·, ·) denotes a partial order, that
any restaurant has exactly one type and that the restaurant types italian and french
are distinct from each other, and that restaurants are located in cities. We omit the com-
plete ontology specification due to space limitations. The table shows the functional
descriptions with precondition and effects and the corresponding φD in accordance to
Definition 2.

Table 1. Functional Descriptions DG , DW in Running Example

Goal Web Service
“find best restaurant in a city” “provide best French restaurant in a city”
Ω: best restaurant ontology
IF : {?x}
φpre: city(?x)

φeff : ∀?y. out(?y) ⇔ (

restaurant(?y)

∧ in(?y, ?x)

∧ ¬∃?z.(restaurant(?z)

∧ in(?z, ?x)

∧ better(?z, ?y))).

Ω: best restaurant ontology
IF : {?x}
φpre: city(?x)

φeff : ∀?y. out(?y) ⇔ (

restaurant(?y)

∧ in(?y, ?x) ∧ type(?y, french)

∧ ¬∃?z.(restaurant(?z)

∧ in(?z, ?x) ∧ type(?z, french)

∧ better(?z, ?y))).

φDG : city(?x) ⇒ (

∀?y. out(?y) ⇔ (

restaurant(?y)

∧ in(?y, ?x)

∧ ¬∃?z.(restaurant(?z)

∧ in(?z, ?x)

∧ better(?z, ?y)))).

φDW : city(?x) ⇒ (

∀?y. out(?y) ⇔ (

restaurant(?y)

∧ in(?y, ?x) ∧ type(?y, french)

∧ ¬∃?z.(restaurant(?z)

∧ in(?z, ?x) ∧ type(?z, french)

∧ better(?z,?y)))).

4 Semantic Matchmaking for Web Service Discovery

On the basis of the formal descriptions we now specify the semantic matchmaking tech-
niques for the two-phased Web service discovery introduced in Section 2.2. The aim is
to provide semantic means that allow to precisely determine the usability of a Web ser-
vice with respect to the matching conditions on the goal template and the goal instance
level from Definition 1. We therefore define matchmaking on functional descriptions
and input bindings as specified above. These provide sufficiently rich descriptions of
possible Web service executions and possible solution for goals. The following first
specifies semantic matchmaking on the goal template level, then on the goal instance
level, and finally integrates the techniques for both levels. We shall demonstrate the
techniques in our running example in Section 5.

4.1 Goal Template Level

We express the usability of a Web service W for solving a goal template G in terms
of matching degrees. Adopting the concept and denotation of the degrees from several

Two-Phase Web Service Discovery Based on Rich Functional Descriptions 107

previous works on Web service discovery (e.g. [16,13,8]), we define them over the
functional descriptions of goals and Web services as defined in Section 3.1.

The distinct degrees denote specific relationships between the possible executions
{τ}W of W and possible solutions {τ}G for G. Four degrees – exact, plugin, sub-
sume, intersect – denote different situations wherein the matching condition in clause
(i) of Definition 1 is satisfied; the disjoint degree denotes that this is not given. In our
two-phase discovery, these matching degrees serve as a pre-filter for determining the
usability of a Web service W for solving a goal instance GI(G) that instantiates the
goal template G. We shall discuss this in more detail in Section 4.3.

We define the criteria for each degree over DG and DW from Definition 2, along with
an explicit quantification of input bindings β. As the condition for the exact degree,
ΩA |= ∀β. φDG ⇔ φDW defines that every possible execution of W is a solution
for G and vice versa. We assume that all functional descriptions D are consistent, i.e.
that there exists a Σ-interpretation I under a β that is a model of φD . Representing a
refinement of the matching degree definitions from [8], we therewith obtain a precise
means for differentiating the usability of a Web service on the goal template level.
Table 2 provides a concise compilation of the matchmaking degree definitions.

Table 2. Definition of Matching Degrees for DG , DW

Denotation
DG = (Σ, Ω, IF , φDG)

DW = (Σ, Ω, IF , φDW)

Definition
β : IF → UA

φD = [φpre]Σpre
D

→ΣD
⇒ φeff

ΩA = Ω ∪ [Ω]Σpre
D

→ΣD

Meaning
for {τ}G , {τ}W with

W |=A DW

exact(DG, DW) ΩA |= ∀β. φDG ⇔ φDW
if and only if τ ∈ {τ}G

then τ ∈ {τ}W

plugin(DG , DW) ΩA |= ∀β. φDG ⇒ φDW if τ ∈ {τ}G then τ ∈ {τ}W

subsume(DG , DW) ΩA |= ∀β. φDG ⇐ φDW if τ ∈ {τ}W then τ ∈ {τ}G

intersect(DG , DW) ΩA |= ∃β. φDG ∧ φDW
there is a τ such that

τ ∈ {τ}G and τ ∈ {τ}W

disjoint(DG, DW) ΩA |= ¬∃β. φDG ∧ φDW
there is no τ such that

τ ∈ {τ}G and τ ∈ {τ}W

4.2 Goal Instance Level

A goal instance GI(G) is created by defining an input binding β for the IF -variables in
the functional description DG of the corresponding goal template G. Recalling from Def-
inition 1, a match on the goal instance level is given if there exists a τ = (s0, . . . , sm)
in A that is a solution for GI(G) and can be provided by a Web service W when it
is invoked with the concrete input values defined in GI(G). The following specifies a
general technique for determining this on the basis of the available descriptions, inde-
pendent of the matching degree between DG and DW .

Formally, an input binding β : {i1, . . . , in} → UA is a total function that defines a
variable assignment over the universe UA for the input variables IF defined in a func-
tional description D (cf. Definition 2). We therewith obtain an assignment of concrete

108 M. Stollberg et al.

values v for all inputs required in D, i.e. β = {i1|v1, . . . , in|vn}. Given such a β, we
can instantiate D by substituting all IF -variables that occur as free variables in φpre

and φeff by the concrete values defined in β. We obtain [D]β as the functional descrip-
tion that is instantiated for the context of β; this can be evaluated because it does no
longer contain any free variables. By instantiating the functional descriptions DG of the
corresponding goal template G and DW of the Web service W with the input binding β
defined in GI(G), we obtain [DG]β as the functionality requested by GI(G) and [DW]β
as the functionality that can be provided by W when it is invoked with β.

For W to be usable for solving GI(G), there must be a τ such that τ ∈ {τ}GI(G)
and τ ∈ {τ}W (β) (cf. clause (ii) from Definition 1). To determine this on the basis of
the given descriptions, it must hold that – with respect to the domain knowledge – there
exists a Σ-interpretation I that is a common model for φDG and φDW when both func-
tional descriptions are instantiated with the input binding β defined in GI(G). Formally,
this means that the union of the formulae ΩA ∪ {[φDG]β , [φDW]β} must be satisfiable,
i.e. that there exists a Σ-interpretation that is a model for the extended domain knowl-
edge ΩA and for the instantiated goal description [φDG]β and for the instantiated Web
service description [φDW]β . In accordance to Definition 3, this I represents a τ that is
a solution for GI(G) and can be provided by W if it is invoked with β.

Definition 4. Let DG = (Σ, Ω, IFG , φDG) be a functional description of a goal tem-
plate G. Let GI(G) be a goal instance that instantiates G with the input binding β :
IFG → UA. Let DW = (Σ, Ω, IFW , φDW) be a functional description, and let
W = (IF , ι) be a Web service with W |=A DW .

match(GI(G), W) is given if there exists a Σ-interpretation I such that:

I |= ΩA and I |= [φDG]β and I |= [φDW]β .

Another requirement for W to be usable for solving GI(G) is that the β defined in
GI(G) provides concrete values for all inputs that are required to invoke W . This is
given if there is a bijection π : IFDG → IFDW such that for every input variable in DW

there is a corresponding input variable in DG , and each i ∈ IFDG is assigned with the
concrete value from β. Subsequently, if there is a second bijection π2 : IFDW → IFW

such that for each input name required by W there is a corresponding input variable in
DW , then there is a concrete value assignment for each input required by W .2

4.3 Integration of Matchmaking Techniques

We complete this section with combing the semantic matchmaking techniques for the
goal template and the goal instance level in order to attain an integrated matchmaking

2 We are aware of that this is requirement is not trivial to realize in practice, as it requires a
semantic mapping between the input variables of functional descriptions and the Web service.
Moreover, this may require mediation between incompatible ontologies used by the requester
and provider [5]. However, to invoke a Web service there must be concrete values for all
required inputs – the two bijections denote the basic requirement therefore. [20] discusses
ways to weaken the requirements for the necessary compatibility, e.g. by creating existentially
quantified ontology instances for input values that are not explicitly defined by the client.

Two-Phase Web Service Discovery Based on Rich Functional Descriptions 109

framework for our two-phase Web service discovery. We therefore extend matchmaking
degrees from Table 2 with the matchmaking condition for the goal instance level. Due
to their definition, we can simplify the matching condition from Definition 4 for the
distinct matchmaking degrees as follows.

Theorem 1. Let DG describe the requested functionality in a goal template G. Let
GI(G) be a goal instance of G that defines an input binding β. Let W be a Web service,
and let DW be a functional description such that W |=A DW .

W is usable for solving GI(G) if and only if:

(i) exact(DG, DW) or
(ii) plugin(DG, DW) or

(iii) subsume(DG, DW) and
∧

ΩA ∧ [φDW]β is satisfiable, or
(iv) intersect(DG, DW) and

∧
ΩA ∧ [φDG]β ∧ [φDW]β is satisfiable.

This specifies the minimal matchmaking conditions for determining the usability of a
Web service for solving a concrete client request that is described by a goal instance.
Under both the exact and the plugin degree, W can be used for solving any goal instance
GI(G) because {τ}GI(G) ⊂ {τ}G ⊆ {τ}W and τ ∈ {τ}GI(G) ⇔ τ ∈ {τ}W (β). Under
the subsume degree it holds that {τ}G ⊇ {τ}W , i.e. every execution of W can solve G
but there can be solutions of G that cannot be provided by W . Hence, W is only usable
for solving GI(G) if the input binding β defined in GI(G) allows to invoke W . This is
given if there is a Σ-interpretation that is a model for [φDW]β and the conjunction of
the axioms in ΩA. Under intersect as the weakest degree, the complete matchmaking
condition for the goal instance level must hold because there can be solutions for G that
can not be provided by W and vice versa. The disjoint degree denotes that W is not
usable for solving the goal template and thus neither for any of its instantiations. We
refer to [20] for the formal proof of this theorem.

5 Evaluation

In order to demonstrate the precision for Web service discovery that is achievable with
the presented matchmaking techniques, this section discusses them for our restaurant
search example. We have implemented and verified the matchmaking techniques in
VAMPIRE [18], a resolution-based theorem prover for classical first-order logic with
equality that allows to realize matchmaking exactly as we have specified above. Due
to space limitations, we here content ourselves with condensed explanations on the
matchmaking techniques for the goal and the Web service as introduced in Section 3.2.
A more detailed documentation as well as further examples for discovery under other
matchmaking degrees is provided in [20].3

The following discusses the matchmaking techniques for the goal of finding the best
restaurant in a city and a Web service that provides the best French restaurant in a city

3 The VAMPIRE implementation along with installation instructions and the proof obli-
gations for the best restaurant search example are available at: http://members.
deri.at/ michaels/software/best-restaurant-example.zip

http://members.deri.at/~michaels/software/best-restaurant-example.zip
http://members.deri.at/~michaels/software/best-restaurant-example.zip

110 M. Stollberg et al.

(cf. functional descriptions in Table 1). This is an example for the intersect degree and
hence requires the full range of the extended matchmaking for the goal instance level.

For illustration, it is sufficient to consider city A wherein the best restaurant is French
and city B wherein the best restaurant is not French. We define two input bindings,
β1 = {?x|A} and β2 = {?x|B}, and examine the solutions for G and the executions
of W for each. Table 3 provides a concise overview of the information relevant for our
discussion. The first part shows the description of the three best restaurants in A and B
as background ontologies Ω1, Ω2 ⊆ Ω. The second part shows the goal instances, i.e.
when DG is instantiated with the concrete values defined in the distinct β as explained
in Section 4.2. Analogously, the third part shows the only possible instantiations for W .
Finally, the fourth part identifies common Σ-interpretations that serve as a witness for
a semantic match between the goal instances and the described Web Services.

We can observe that for the input binding β1, there is a Σ-interpretation I1 that is
consistent with the background ontology Ω and satisfies both the instantiation of the
goal template [φDG]β1 as well as the instantiation of the Web service [φDW]β1 . The

Table 3. Relevant Information for Matchmaking Illustration

City A: Ω1 ⊆ Ω City B: Ω2 ⊆ Ω

Ω1 = {city(A)
restaurant(r1A)
in(r1A, A), type(r1A,french)
restaurant(r2A)
in(r2A, A), type(r2A, italian)
restaurant(r3A)
in(r3A, A), type(r3A,french)
better(r1A,r2A)
better(r2A,r3A)}

Ω2 = {city(B)
restaurant(r1B)
in(r1B, B), type(r1B, italian)
restaurant(r2B)
in(r2B, B), type(r2B,french)
restaurant(r3B)
in(r3B, B), type(r3B,french)
better(r1B,r2B)
better(r2B,r3B)}

[φDG]β1 with β1 = {x|A} [φDG]β2 with β2 = {x|B}
city(A) ⇒ (
∀?y.(out(?y) ⇔ (
restaurant(?y) ∧ in(?y, A)
∧ ¬∃?z.(restaurant(?z)
∧ in(?z, A)
∧ better(?z, ?y))))

city(B) ⇒ (
∀?y.(out(?y) ⇔ (
restaurant(?y) ∧ in(?y, B)
∧ ¬∃?z.(restaurant(?z)
∧ in(?z, B)
∧ better(?z, ?y))))

[φDW]β1 with β1 = {x|A} [φDW]β2 with β2 = {x|B}
city(A) ⇒ (
∀?y.(out(?y) ⇔ (
restaurant(?y)
∧ in(?y, A) ∧ type(?y, french)

∧ ¬∃?z.(restaurant(?z)
∧ in(?z, A) ∧ type(?z, french)
∧ better(?z,?y))))

city(B) ⇒ (
∀?y.(out(?y) ⇔ (
restaurant(?y)
∧ in(?y, B) ∧ type(?y, french)

∧ ¬∃?z.(restaurant(?z)
∧ in(?z, B) ∧ type(?z, french)
∧ better(?z, ?y))))

I1 with I1 |= Ω ∪ {[φDG]β1 , [φDW]β1} I2 with I2 |= Ω ∪ {[φDG]β2 , [φDW]β2}
Ω1 ∪ Ω2 ∪ {out(r1A),

better(r1A,r3A), better(r1B, r3B)} No such I2 can exist!

Two-Phase Web Service Discovery Based on Rich Functional Descriptions 111

witnessing execution τ corresponds to the pair (I1, β1). Hence, the condition for the in-
tersect match is satisfied (cf. Table 2). Furthermore, we observe that for the input bind-
ing β2 there can not exist such a common interpretation. Hence, neither the condition
for the subsumes nor for the plugin is satisfied; thus also not the one for the exact degree.
Assume that there would be such a common interpretation I2, i.e. a Σ-interpretation that
satisfies Ω, [φDG]β2 and [φDW]β2 . From the second column of Table 3 we can conclude
that any object ?y that is the best restaurant in city B is a french restaurant. However,
this is not consistent with the background ontology Ω as described above, since then
restaurant r1B must be at the same time an italian as well as a french restaurant.

Because of the intersect degree on the goal template level, clause (iv) of Theorem 1
must hold for W to be usable for solving a goal instance GI(G) that instantiates G. This
requires that there must be a Σ-interpretation that is (a) consistent with the background
ontology Ω and (b) a common model for [φDG]β and [φDW]β (cf. Definition 4). Let
us consider GI(G)1 as the goal instance that instantiates G with β1, and GI(G)2 as
the goal instance that defines β2. Analyzing the possible solutions and executions in
Table 3 reveals the intuitively expected discovery results: the Σ-interpretation I1 serves
as a witness for a τ ∈ {τ}GI(G)1 and τ ∈ {τ}Wβ1

. Hence, W is usable for solving
GI(G)1. On the other hand, as discussed above, there can not exist such a witness for
GI(G)2; therefore W can not be used to solve GI(G)2.

6 Related Work

Due to its relevance for service-oriented architectures, Web service discovery is subject
to several research efforts. We here discuss directly related works with respect to the
quality of matchmaking techniques and the modelling client objectives, referring to
more exhaustive overviews, e.g. in [9,10,20].

As early works, [16] presents matchmaking of in- and outputs in OWL-S, and [13]
defines matchmaking of requested and provided results in a DL framework. Both define
the matching degrees in terms of concept subsumption, and work on OWL-S service ad-
vertisements and requests described by inputs, outputs, preconditions, and effects [14].
Although using OWL as an expressive specification language, this description neither
explicates the dependency pre- and post execution descriptions nor defines formal se-
mantics for functional descriptions. Hence, the matchmaking algorithms merely allow
to detect ontological relationships between corresponding description elements – but
not to determine whether the invocation of a Web service in a particular state of the
world will satisfy a client request. We can observe the same deficiencies in [2].

In WSMO, provided and requested capabilities are described by preconditions, as-
sumptions, postconditions, and effects, along with shared variables to define depen-
dencies between the formulae [12]. However, no formal semantics are defined for these
complex functional descriptions – which hampers the specification of accurate match-
making mechanisms. Our functional descriptions overcome this by explicitly describ-
ing dependency of preconditions and effects and defining precise formal semantics. [7]
presents a recent approach with a similar focus. Functionalities are described by inputs,
outputs, and the relationship between them; a match is given if the requester can provide
the input required by the Web service, and the Web service then can provide outputs that

112 M. Stollberg et al.

satisfy the ones requested. However, this approach is restricted to stateless Web services
and hence only covers a subset of the functionalities supported by our approach.

WSMO is the only framework that promotes a goal-based approach for Semantic
Web services; most other approaches model client requests as queries for specific Web
service descriptions. The differentiation of goal templates and goal instances is a refine-
ment of the WSMO goal model based on experiences in technology realization [21]. A
similar two-phased discovery approach is presented in [11]. However, therein goals are
described by the desired final state only; the input binding for invoking the discovered
Web service is created at runtime. In contrast, we describe the requested functionality
in goal templates by preconditions and effects. The reason is that in service-oriented ar-
chitectures usually the current state of the world is not explicated or is not accessible to
the interaction partners. Moreover, defining input bindings on the level of goal instances
allows to minimize the client-system interaction as it just needs to be done once.

7 Conclusions

This paper has presented the integrated semantic matchmaking for a two-phased Web
service discovery that distinguishes goal templates and goal instances. Continuing pre-
vious work, we have defined matchmaking techniques that work on sufficiently rich
functional descriptions and can precisely determine the usability of a Web service.

To formally describe client requests on the problem layer, we distinguish goal tem-
plates as generic objective descriptions and goal instances that denote a concrete client
request as the instantiation of a goal template. We use functional descriptions that pre-
cisely describe the start- and end-states of possible executions of Web services as well
as of possible solutions for goals. A match is given if a Web service can provide an
execution that is a solution for the goal. We have specified semantic matchmaking tech-
niques to evaluate this. On the goal template level, we define matching degrees that dif-
ferentiate the relationship between possible executions of a Web service and solutions.
For a goal instance, a Web service is usable if its execution triggered by the invocation
with the concrete inputs is a solution for the instantiated goal description. We therefore
have presented a novel matchmaking technique and formally integrated this with the
matching degrees on the goal template level. Finally, we have demonstrated that the
matchmaking techniques allow to precisely determine the usability of a Web service for
solving a concrete client request that is described as a goal instance.

The presented techniques denote the formal foundations for semantic matchmaking
in this two-phased discovery approach. We plan to extend this with techniques for effi-
cient management of discovery results, and to continue the integration into frameworks
and system implementations for Semantic Web services.

Acknowledgments. This material is based upon works supported by the EU under the
DIP project (FP6 - 507483) and by the Austrian Federal Ministry for Transport, Inno-
vation, and Technology under the project RW2 (FFG 809250). The authors like to thank
Martin Hepp and Rubén Lara for constructive discussions on the presented work.

Two-Phase Web Service Discovery Based on Rich Functional Descriptions 113

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architectures and
Applications. Data-Centric Systems and Applications. Springer, Berlin, Heidelberg, 2004.

2. B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani. On Automating Web Services
Discovery. VLDB Journal, 14(1):84–96, 2005.

3. M. E. Bratman. Intention, Plans and Practical Reason. Harvard University Press, Cam-
bridge, MA (USA), 1987.

4. L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, B. Norton, V. Tanasescu, and C. Pedrinaci.
IRS-III – A Broker for Semantic Web Services based Applications. In Proc. of the 5th
International Semantic Web Conference (ISWC 2006), Athens(GA), USA, 2006.

5. E. Cimpian, A. Mocan, and M. Stollberg. Mediation Enabled SemanticWeb Services Usage.
In Proc. of the 1st Asian Semantic Web Conference (ASWC 2006), Beijing, China, 2006.

6. I. Dickinson and M. Wooldridge. Agents are not (just) Web Services: Considering BDI
Agents and Web Services. In Proc. of the 2005 Workshop on Service-Oriented Computing
and Agent-Based Engineering (SOCABE’2005), Utrecht, The Netherlands, 2005.

7. D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens. Deciding Seman-
tic Matching of Stateless Services. In Proc. of the 21st National Conference on Artificial
Intelligence (AAAI’2006), 2006.

8. U. Keller, R. Lara, H. Lausen, and D. Fensel. Semantic Web Service Discovery in the WSMO
Framework. In J. Cardoses, editor, Semantic Web: Theory, Tools and Applications. Idea
Publishing Group, 2006.

9. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic Location of Services.
In Proc. of the 2nd European Semantic Web Conference (ESWC 2005), Crete, Greece, 2005.

10. U. Keller, H. Lausen, and M. Stollberg. On the Semantics of Funtional Descriptions of Web
Services. In Proc. of the 3rd European Semantic Web Conference (ESWC 2006), Montenegro,
2006.

11. R. Lara. Two-phased Web Service Discovery. In Proc. of AI-Driven Technologies for
Services-Oriented Computing Workshop at AAAI-06, Boston, USA, 2006.

12. H. Lausen, A. Polleres, and D. Roman (eds.). Web Service Modeling Ontology (WSMO).
W3C Member Submission 3 June, 2005.

13. L. Li and I. Horrocks. A Software Framework for Matchmaking based on Semantic Web
Technology. In Proc. of the 12th World Wide Web Conference, Budapest, Hungary, 2003.

14. D. Martin. OWL-S: Semantic Markup for Web Services. W3C Member Submission 22
November, 2004. online: http://www.w3.org/Submission/OWL-S/.

15. A. Newell. Unified Theories of Cognition. Harvard University Press, Cambridge, MA (USA),
1990.

16. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Services
Capabilities. In Proc. of the First International Semantic Web Conference, Springer, 2002.

17. C. Preist. A Conceptual Architecture for Semantic Web Services. In Proc. of the 3rd Inter-
national Semantic Web Conference (ISWC 2004), Hiroshima, Japan, 2004.

18. A. Riazanov and A. Voronkov. The Design and Implementation of VAMPIRE. AI Commu-
nications, 15(2):91–110, 2002. Special Issue on CASC.

19. R. M. Smullyan. First Order Logic. Springer, 1968.
20. M. Stollberg and U. Keller. Semantic Web Service Discovery. Technical report, DERI, 2006.
21. M. Stollberg and B. Norton. A Refined Goal Model for Semantic Web Services. Proc. of the

2nd International Conference on Internet and Web Applications and Services (ICIW 2007),
Mauritius, 2007.

22. M. Stollberg, D. Roman, I. Toma, U. Keller, R. Herzog, P. Zugmann, and D. Fensel. Semantic
Web Fred – Automated Goal Resolution on the Semantic Web. In Proc. of the 38th Hawaii
International Conference on System Science (HICSS-38), 2005.

A Reasoning Framework for Rule-Based WSML

Stephan Grimm1, Uwe Keller2, Holger Lausen2, and Gábor Nagypál1

1 FZI Research Center for Information Technologies at the University of Karlsruhe, Germany
{stephan.grimm,gabor.nagypal}@fzi.de

2 Digital Enterprise Research Institute (DERI), University of Innsbruck, Austria
{uwe.keller,holger.lausen}@deri.org

Abstract. WSML is an ontology language specifically tailored to annotate Web
Services, and part of its semantics adheres to the rule-based knowledge repre-
sentation paradigm of logic programming. We present a framework to support
reasoning with rule-based WSML language variants based on existing Datalog
inference engines. Therein, the WSML reasoning tasks of knowledge base sat-
isfiability and instance retrieval are implemented through a language mapping
to Datalog rules and Datalog querying. Part of the WSML semantics is realized
by a fixed set of rules that form meta-level axioms. Furthermore, the framework
exhibits some debugging functionality that allows for identifying violated con-
straints and for pointing out involved instances and problem types. Its highly
modular architecture facilitates easy extensibility towards other language variants
and additional features. The available implementation of the framework provides
the first reasoners for the WSML language.

1 Motivation

In the Semantic Web, recently Web Services are annotated by semantic descriptions of
their functionality in order to facilitate tasks like automated discovery or composition
of services. Such semantic annotation is formulated using ontology languages with log-
ical formalisms underlying them. The matching of semantic annotation for discovery or
the checking of type compatibility for composition requires reasoning support for these
languages. A relatively new ontology language specifically tailored for the description
of Web Services is WSML (Web Service Modeling Language) [6], which comes in
variants that follow the rule-based knowledge representation paradigm of logic pro-
gramming [14]. WSML adds features of conceptual modelling and datatypes, known
from frame-base knowledge representation, on top of logic programming rules.

We present a framework for reasoning with rule-based WSML variants that builds on
existing infrastructure for inferencing in rule-based formalisms. The framework bases
on a semantics-preserving syntactic transformation of WSML ontologies to Datalog
programs, as described in the WSML specification [8]. The WSML reasoning tasks of
checking knowledge base satisfiability and of instance retrieval can then be performed
by means of Datalog querying applied on a transformed ontology. Thus, the framework
directly builds on top of existing Datalog inference engines. Besides these standard
reasoning tasks, the framework provides debugging features that support an ontology
engineer in the task of ontology development: the engineer is pointed out to violated

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 114–128, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Reasoning Framework for Rule-Based WSML 115

constraints together with some details on the ontological entities that cause the viola-
tion. Such a feature helps to improve the error reporting in situations of erroneous mod-
elling. Instead of directly mapping WSML entities, i.e. concepts, instances, attributes,
to Datalog predicates and constants, we use special meta-level predicates and axioms
which form a vocabulary on reified entities for reproducing the WSML language con-
structs in Datalog. This way of using Datalog as an underlying formalism facilitates the
metamodelling features of WSML. The framework is implemented and can be readily
used to reason about ontologies formulated in rule-based WSML. As such, it is the first
implementation of a reasoning tool for this language. In contrast to most of the avail-
able rule engines and Datalog implementations, this reasoning framework supports the
combination of typical rule-style representation with frame-style conceptual modelling,
as offered by WSML.

The WSML reasoning framework is jointly developed within, and funded by the Eu-
ropean project DIP (IST-FP6-507483) and the Austrian projects SEnSE (FFG 810807)
and RW2 (FFG 809250) .

2 The WSML Language

The Web Service Modeling Language (WSML) [6] is a language for the specifica-
tion of various aspects of Semantic Web Services (SWS), such as what functionality
is provided by a SWS or how to interact with the SWS. It provides a formal language
for the Web Service Modeling Ontology (WSMO1) [15] and is based on well-known
logic-based knowledge representation (KR) formalisms, namely Description Logics [2]
and Logic Programming [14]. In fact, WSML is a family of representation languages
that comes in several variants with different expressiveness. Besides various SWS-
specific language constructs, such as “goal”, “interface”, “choreography” or “capabil-
ity”, WSML particularly provides means to formulate the domain ontologies in terms
of which SWSs are semantically annotated. Since here we are interested in reasoning
with such semantic annotation with respect to the underlying ontology formalism, we
focus on the ontology-related part of WSML. Furthermore, we use the human-readable
syntax of the language in our presentation, while WSML also specifies XML and RDF
serialisations to be compatible with existing web standards.

2.1 Language Constructs

WSML makes a clear distinction between the modeling of different conceptual ele-
ments on the one hand and the specification of complex axiomatic information on the
other. To this end, the WSML syntax is split into two parts: the conceptual syntax, and
logical expression syntax, while elements from both can be combined in a WSML doc-
ument. We illustrate the interplay of conceptual modelling with logical expressions in
WSML by means of an example given in Listing 1.1, which specifies an ontology in the
domain of telecommunications taken from a project case study. For a complete account
of all WSML syntax elements, we refer to [8].

1 http://www.wsmo.org

http://www.wsmo.org

116 S. Grimm et al.

Listing 1.1. WSML Example Ontology

concept Product
hasProvider inverseOf(Provider#provides) impliesType Provider

concept ITBundle subConceptOf Product
hasNetwork ofType (0 1) NetworkConnection
hasOnlineService ofType (0 1) OnlineService
hasProvider impliesType TelecomProvider

concept NetworkConnection subConceptOf BundlePart
providesBandwidth ofType (0 1) integer

concept DialupConnection subConceptOf NetworkConnection
concept DSLConnection subConceptOf NetworkConnection
axiom DialupConnection DSLConnection Disjoint definedBy
!− ?x memberOf DialupConnection and ?x memberOf DSLConnection.

concept OnlineService subConceptOf BundlePart concept
SharePriceFeed subConceptOf OnlineService axiom
SharePriceFeed requires bandwidth definedBy
!− ?b memberOf ITBundle and ?b[hasOnlineService hasValue ?o]

and ?o memberOf SharePriceFeed and
?b[hasNetwork hasValue ?n] and
?n[providesBandwidth hasValue ?x] and ?x < 512.

concept BroadbandBundle subConceptOf ITBundle
hasNetwork ofType (1 1) DSLConnection

axiom BroadbandBundle sufficient condition definedBy
?b memberOf BroadbandBundle :− ?b memberOf ITBundle
and ?b[hasNetwork hasValue ?n] and ?n memberOf DSLConnection.

instance BritishTelekom memberOf TelecomProvider.
instance UbiqBankShareInfo memberOf SharePriceFeed.
instance MyBundle memberOf ITBundle

hasNetwork hasValue ArcorDSL
hasOnlineService hasValue UbiqBankShareInfo
hasProvider BritishTelekom.

instance MSNDialup memberOf DialupConnection
providesBandwidth hasValue 10.

instance ArcorDSL memberOf DSLConnection
providesBandwidth hasValue 1024.

Conceptual Modelling. The WSML conceptual syntax for ontologies essentially al-
lows for the modeling of concepts, instances and relations.

In ontologies, concepts form the basic elements for describing the terminology of the
domain of discourse by means of classes of objects. In the telecommunications domain,
a concept like NetworkConnection stands for the class of all network connections. Concepts
can be put in a subsumption hierarchy by means of the subConceptOf-construct. For exam-
ple, NetworkConnection is a subconcept of BundlePart, meaning that any network connection
is part of some IT product bundle, and has itself the subconcepts DialupConnection and
DSLConnection, as can be seen from Listing 1.1.

Attributes, i.e. binary relations, are used to relate concepts in a customary way, while
they can point to other concepts or datatypes. In our example, NetworkConnection has a
datatype attribute providesBandWidth, whereas concept ITBundle has attributes like hasNetwork

or hasOnlineService that point to concepts for the single parts which make up the bundle.
Attribute definitions can either be constraining (using ofType) or inferring (using impli-

esType)2. Constraining attribute definitions define a type constraint on the values for an
attribute, similar to integrity constraints in databases; inferring attribute definitions al-
low that the type of the values for the attribute is inferred from the attribute definition,

2 The distinction between inferring and constraining attribute definitions is explained in more
detail in [7, Section 2].

A Reasoning Framework for Rule-Based WSML 117

similar to range restrictions on properties in RDFS [3] and OWL [9]. Furthermore, an
attribute can be marked as transitive, symmetric, or reflexive, and can be constrained by a min-
imum and a maximum cardinality (using (nmin nmax)), as can be seen from Litsing 1.1.
Similar constructs are available to define n-ary relations in ontologies.

Instances represent concrete objects a the domain, such as MSNDialup as a particu-
lar dial-up connection in the telecommunications domain. By means of the memberOf-
construct, instances are associated with concepts, and using hasValue they are linked to
other instances or data values, as can also be seen in Listing 1.1. Notice, that WSML
supports metamodelling and allows an entity to be both a concept and an instance.

Logical Expressions. By means of the axiom-construct, arbitrarily complex logical ex-
pressions can be included in a WSML ontology, interfering with the conceptual defini-
tions. In our example, the axiom named BroadbandBundle sufficient condition specifies that any
IT bundle that has a DSL network connection is concluded to be a broadband bundle.

The general logical expression syntax for WSML has a first-order logic style, in the
sense that it has constants, function symbols, variables, predicates and the usual logical
connectives. Additionally, WSML provides extensions based on F-Logic [12] as well
as logic programming rules and database-style integrity constraints.

Besides standard first-order atoms, WSML provides so-called molecules, inspired by
F-Logic, that can be used to capture information about concepts, instances, attributes
and attribute values. A molecule of the form I memberOf C denotes the membership of an
instance I in a concept C, while a molecule C1 subConceptOf C2 denotes the subconcept
relationship between concepts C1 and C2. Further molecules have the form I[A hasValue

V] to denote attribute values of objects, C[A ofType T] to denote a type-constraining at-
tribute signature, or C[A impliesType T] to denote an inferring attribute signature. Some of
these molecule forms appear in Listing 1.1, e.g. in axiom BroadbandBundle sufficient condition.

WSML has the usual first-order connectives: the unary (classical) negation opera-
tor neg, and the binary operators for conjunction and, disjunction or, right implication
implies, left implication impliedBy, and bi-implication equivalent. Variables, preceeded by the
?-symbol may be universally quantified using forall or existentially quantified using ex-

ists. Apart from first-Order constructs, WSML supports logic programming rules of the
form H : −B with the typical restrictions on the head and body expressions H and B
(see [8]), allowing the symbol naf for negation-as-failure on atoms in B. A constraint is a
special kind of rule with an empty head expression. While the aforementioned axiom is
expressed by a rule, the axiom named DialupConnection DSLConnection Disjoint comes in form
of a constraint, stating that no instance is allowed to be member of both the concepts
DialupConnection and DSLConnection at the same time.

Language Variants. WSML comes in different variants that map to semantically dif-
ferent target formalisms. Therefore, each variant also defines some restrictions on the
use of syntactical constructs: WSML-Core allows only first-order formulae which con-
form to DLP [11] as the least common denominator of the description logics and logic
programming paradigms, by which its semantics is defined. It allows for most of con-
ceptual modelling but is rather restricted in the use of logical expressions. WSML-DL
allows first-order formulae which can be translated to the description logic SHIQ(D),
that defines its semantics. Thus, WSML-DL is very similar to OWL [9]. WSML-Flight

118 S. Grimm et al.

extends WSML-Core by allowing variables in place of instance, concept and attribute
identifiers and by allowing relations of arbitrary arity. In fact, any such formula is al-
lowed in the head of a WSML-Flight rule. The body of a WSML-Flight rule allows con-
junction, disjunction and default negation. WSML-Flight is based on the well-founded
semantics [10] and additionally allows meta-modeling. WSML-Rule extends WSML-
Flight by function symbols and unsafe rules, i.e. variables occurring in the head or in
a negative body literal but not in a positive body literal. WSML-Full does not restrict
the use of syntax and allows the full expressiveness of all other WSML variants under
a first-order umbrella with nonmonotonic extensions.

In the following, we refer to the WSML-Core, WSML-Flight and WSML-Rule vari-
ants jointly as rule-based WSML and focus on reasoning in these variants.

2.2 Reasoning in Rule-Based WSML

Various reasoning tasks, such as consistency checking or entailment of implicit knowl-
edge, are considered useful in Semantic Web and SWS applications. Here, we sketch
the typical reasoning tasks for rule-based formalisms, and thus for rule-based WSML.

Let O denote a rule-based WSML ontology and πc−free(O) denote the constraint-
free projection of O, i.e. the ontology which is obtained from O by removing all con-
straining description elements, such as attribute type constraints, cardinality constraints,
integrity constraints etc. (1) Consistency checking means to verify whether O is satisfi-
able, i.e. if πc−free(O) has a model in which no constraint in O is violated. (2) Ground
Entailment means, given some variable-free formula φg , to check if φg is satisfied in
well-founded model of πc−free(O) in which no constraint in O is violated. We denote
this by O |= φg . (3) Instance Retrieval means, given an ontology O and some formula
Q(�x) with free variables �x = (x1, . . . , xn), to find all suitable terms �t = (t1, . . . , tn)
constructed from symbols in O only, such that O |= Q(�t).

3 Mapping WSML to Datalog

The semantics of rule-based WSML is defined via a mapping to Datalog [5,1] with
(in)equality, default negation and integrity constraints, as described in [8]. In the fol-
lowing, we refer to this language simply as Datalog. To make use of existing rule en-
gines, the reasoning framework performs various syntactical transformations to convert
an original ontology in WSML syntax into a semantically equivalent Datalog program.
WSML reasoning tasks are then realized by means of Datalog querying via calls to an
underlying Datalog inference engine fed with the rules contained in this program.

3.1 Ontology Transformations

The transformation of a WSML ontology to Datalog rules forms a pipeline of single
transformation steps that are subsequently applied, starting from the original ontology.

Axiomatization. In a first step, the transformation τaxioms is applied as a mapping O →
2LE from the set of all valid rule-based WSML ontologies to the powerset of all logical
expressions that conform to rule-based WSML. In this transformation step, all con-
ceptual syntax elements, such as concept and attribute definitions or cardinality and

A Reasoning Framework for Rule-Based WSML 119

Table 1. Examples for axiomatizing conceptual ontology modeling elements

Expression α in conceptual syntax Resulting logical expression(s): τaxioms(α)
concept C1 subConceptOf C2 C1 subConceptOf C2.
concept C A ofType (0, 1) T C[A ofType T].

!- ?x memberOf C and ?x[A hasValue ?y, A hasValue ?z] and ?y != ?z.
concept C A1 inverseOf A2 impliesType T C[A impliesType T].

?x memberOf C and ?v memberOf T implies
(?x[A1 hasValue ?v] equivalent ?v[A2 hasValue ?x]).

relation R1/n subRelationOf R2 R1(�x) implies R2(�x). where �x = (x1 ,...,xn)
instance I memberOf C A hasValue V I memberOf C . I[A hasValue V].

Table 2. Normalization of WSML logical expressions

original expression normalized expression original expression simplified rule(s)
τn({E1, . . . , En}) {τn(E1), . . . , τn(En)} τdlog({E1, . . . , En}) {τdlog(E1), . . . , τdlog(En)}
τn(Ex and Ey.) τn(Ex) and τn(Ey) τdlog(!− B.) � :− τdlog(B)

τn(Ex or Ey.) τn(Ex) or τn(Ey) τdlog(H.) τdlog(H) .

τn(Ex and (Ey or Ez).) τn(τn(Ex) and τn(Ey) or τdlog(H :− B.) τdlog(H) :− τdlog(B)

τn(Ex) and τn(Ez).) τdlog(Ex and Ey.) τdlog(Ex) ∧ τdlog(Ey)

τn((Ex or Ey) and Ez).) τn(τn(Ex) and τn(Ez) or τdlog(naf E.) ∼ τdlog(E)

τn(Ey) and τn(Ez).) τdlog(Cx subConceptOf Cy.) psco(Cx, Cy)

τn(naf (Ex and Ey).) naf τn(Ex) or naf τn(Ey). τdlog(I memberOf C.) pmo(I, C)

τn(naf (Ex or Ey).) naf τn(Ex) and naf τn(Ey). τdlog(I[a hasValue V].) phval(I, a, V)

τn(naf (naf Ex).) τn(Ex) τdlog(C[a impliesType T].) pitype(C, a, T)

τn(Ex implies Ey.) τn(Ey) :− τn(Ex). τdlog(C[a ofType T].) potype(C, a, T)

τn(Ex impliedBy Ey.) τn(Ex) :− τn(Ey). τdlog(r(X1, . . . , Xn).) r(X1, . . . , Xn)

τn(X[Y1, . . . , Yn].) X[Y1] and . . . and X[Yn]. τdlog(X = Y.) X = Y

τdlog(X != Y.) X �= Y

original expr. simplified rule(s) original expression simplified rule(s)
τlt({E1, . . . , En}) {τlt(E1), . . . , τlt(En)} τlt(H1 and . . . and Hn :− B.) τlt(H1 :− B.), . . . , τlt(Hn :− B.)
τlt(H1 :− H2 :− B.) τlt(H1 :− H2 and B.) τlt(H :− B1 or , . . . , or Bn.) τlt(H :− B1.), . . . , τlt(H :− Bn.)

type constraints, are converted into appropriate axioms specified by logical expressions.
Table 1 shows the details of some of the conversions performed by τaxioms, based on [8].
The WSML conceptual syntax constructs on the left-hand side are converted to the re-
spective WSML logical expressions on the right-hand side. The meta variables C, Ci

range over identifiers of WSML concepts, Ri, Ai over identifiers of WSML relations
and attributes, T over identifiers of WSML concepts or datatypes and V over identifiers
of WSML instances or data values.

Normalization. The transformation τn is applied as a mapping 2LE → 2LE to normalize
WSML logical expressions. This normalization step reduces the complexity of formulae
according to [8, Section 8.2], to bring expressions closer to the simple syntactic form of
literals in Datalog rules. The reduction includes conversion to negation and disjunctive
normal forms as well as decomposition of complex WSML molecules. The left part of
Table 2 shows how the various logical expressions are normalized in detail. The meta
variables Ei range over logical expressions in rule-based WSML, while X, Yi range
over parts of WSML molecules. After τn has been applied, the resulting expressions
have the form of logic programming rules with no deep nesting of logical connectives.

120 S. Grimm et al.

Lloyd-Topor Transformation. The transformation τlt is applied as a mapping 2LE → 2LE

to flatten the complex WSML logical expressions, producing simple rules according to
the Lloyd-Topor transformations [13], as shown in the lower part of Table 2. Again,
the meta variables Ei, Hi, Bi range over WSML logical expressions, while Hi and Bi

match the form of valid rule head and body expressions, respectively, according to [8].
After this step, the resulting WSML expressions have the form of proper Datalog rules
with a single head and conjunctive (possibly negated) body literals.

Datalog Rule Generation. In a final step, the transformation τdlog is applied as a mapping
2LE → P from WSML logical expressions to the set of all Datalog programs, yield-
ing generic Datalog rules that represent the content of the original WSML ontology.
Rule-style language constructs, such as rules, facts, constraints, conjunction and (de-
fault) negation, are mapped to the respective Datalog elements. All remaining WSML-
specific language constructs, such as subConceptOf or ofType, are replaced by special meta-
level predicates for which the semantics of the respective language construct is encoded
in meta-level axioms as described in Section 3.2. The right-hand part of Table 2 shows
the mapping from WSML logical expressions to Datalog including the meta-level pred-
icates psco, pmo, phval, pitype and potype that represent their respective WSML language
constructs as can be seen from the mapping. The meta variables E, H, B range over
WSML logical expressions with a general, a head or a body form, while C, I, a denote
WSML concepts, instances and attributes. Variables T can either assume a concept or
a datatype, and V stands for either an instance or a data value, accordingly.

The resulting Datalog rules are of the form H : − B1 ∧ . . . ∧ Bn, where H and
Bi are literals for the head and the body of the rule, respectively. Body literals can be
negated in the sense of negation-as-failure, which is denoted by ∼ Bi. As usual, rules
with an empty body represent facts, and rules with an empty head represent constraints.
The latter is denoted by the head being the empty clause symbol �.

Ultimately, we define the basic3 transformation τ for converting a rule-based WSML
ontology into a Datalog program based on the single transformation steps introduced
before by τ = τdlog ◦ τlt ◦ τn ◦ τaxioms. As a mapping τ : O → P , this composition of the
single steps is applied to a WSML ontology O ∈ O to yield a semantically equivalent
Datalog program τ(O) = P ∈ P when interpreted with respect to the meta-level
axioms discussed next.

3.2 WSML Semantics Through Meta-level Axioms

The mapping from WSML to Datalog in the reasoning framework works such that each
WSML-identifiable entity, i.e. concept, instance, attribute etc., is mapped to an instance
(or logical constant) in Datalog, as depicted in Figure 1. There, the concepts C1, C2, C3

as well as the instances I1, I2 and the attribute a are mapped to constants such as IC1 ,
II1 or Ia in Datalog, representing the original WSML entities on the instance level.

Accordingly, the various special-purpose relations that hold between WSML entities,
such as subConceptOf, memberOf or hasValue, are mapped to Datalog predicates that form a
meta-level vocabulary for the WSML language constructs. These are the meta-level
predicates that appear in Table 2 for τdlog, and which are applied to the Datalog constants

3 Later on, the transformation pipeline is further extended to support datatypes and debugging.

A Reasoning Framework for Rule-Based WSML 121

Fig. 1. Usage of meta-level predicates

Meta-Level Axioms
(1) psco(C1, C3) :− psco(C1, C2)

∧psco(C2, C3)
(2) pmo(I,C2) :− pmo(I, C1)

∧psco(C1, C2)
(3) pmo(V, C2) :− pitype(C1, a,C2)

∧pmo(I,C1)
∧phval(I, a, V)

(4) � :− potype(C1, a, C2)
∧pmo(I, C1)
∧phval(I, a, V)
∧ ∼ pmo(V, C2)

Fig. 2. WSML semantics in Datalog

that represent the WSML entities. The facts listed in Figure 1 illustrate the use of the
meta-level predicates. For example, the predicate pmo takes a Datalog constant that
represents a WSML instance and one that represents a WSML concept, to state that the
instance is in the extension of this concept.

In contrast to a direct mapping from WSML to Datalog with concepts, attributes and
instances mapping to unary predicates, binary predicates and constants, respectively,
this indirect mapping allows for the WSML metamodelling facilities. Metamodelling
allows an entity to be a concept and an instance at the same time. By representing a
WSML entity as a Datalog constant, it could, for example, fill both the first as well as
the second argument of e.g. the predicate pmo.

A fixed set Pmeta of Datalog rules, shown in Figure 2, forms the meta-level axioms
which assure that the original WSML semantics is properly maintained. Axiom (1)
realizes transitivity for the WSML subConceptOf construct, while axiom (2) ensures that an
instance of a subconcept is also an instance of its superconcepts. Axiom (3) realizes the
semantics for the implisType construct for attribute ranges: any attribute value is concluded
to be in the extension of the range type declared for the attribute. Finally, axiom (4)
realizes the semantics of the ofType construct by a constraint that is violated whenever an
attribute value cannot be concluded to be in the extension of the declared range type.

3.3 WSML Reasoning by Datalog Queries

To perform reasoning over the original WSML ontology O with an underlying Datalog
inference engine, a Datalog program PO = Pmeta ∪ τ(O) is built up that consists of
the meta-level axioms together with the transformed ontology. The different WSML
reasoning tasks are then realized by performing Datalog queries on PO . Posing a query
Q(�x) to a Datalog program P ∈ P is denoted by (P, ?−Q(�x)) and yields the set of all
tuples �t that instantiate the vector �x of variables in the query such that Q(�t) is satisfied
in the well-founded model of P . If Q(�x) contains no variables, in fact a boolean query
Q is posed that instead evaluates either to {Q} if Q is satisfied in the well-founded
model of P or ∅ otherwise.

122 S. Grimm et al.

Ontology Consistency – The task of checking a WMSL ontology for consistency is
done by querying for the empty clause, as expressed by the following equivalence:
O is satisfiable ⇔ (PO, ? − �) = ∅ . If the resulting set is empty then the empty
clause could not be derived from the program and the original ontology is satisfiable,
otherwise it is not.

Entailment – The reasoning task of ground entailment by a WSML ontology is done
by using queries that contain no variables, as expressed in the following equivalence:
O |= φg ⇔ (PO, ? − τ ′(φg)))
= ∅. The WSML ground fact φg ∈ LE is transformed
to Datalog with a transformation τ ′ = τdlog ◦ τlt ◦ τn, similar to the one that is applied
to the ontology, and is evaluated together with the Datalog program PO . If the resulting
set is non-empty then φg is entailed by the original ontology, otherwise it is not.

Retrieval – Similarly, instance retrieval can be performed by posing a WSML query
Q(�x) with free variables �x to the Datalog program PO , which yields the following set:
{�o | O |= Q(�o)} = (PO, ? − τ ′(Q(�x))). The query Q(�x) is transformed to Datalog
by τ ′ and evaluated together with the program PO . The resulting set contains all object
tuples �o for which an instantiation of the query expression is entailed by the original
ontology, while the objects in �o can be identifiable WSML entities or data values. For
example, the query Q(?x) = ?x memberOf BroadbandBundle posed to the ontology in Listing
1.1 yields the set {(MyBundle)} that contains one unary tuple with the instance MyBundle,
which can be inferred to be a broadband bundle due to its high network bandwidth.

3.4 Realising Datatype Reasoning

Although most of the generic Datalog rules are understood by practically any Datalog
implementation, realizing datatype reasoning has some intricate challenges. The main
challenge is related to Axiom (4) in Figure 2, which checks attribute type constraints.
The crucial part of the axiom is the literal

∼ pmo(V, C2)

because for datatype values no explicit membership facts are included in the ontology
that could instantiate this literal. Consider, for example, the instance MSNDialup from the
WSML ontology in Section 2 – there is no fact pmo(10, integer) for the value of the
providesBandwidth attribute. Whenever a value is defined for an attribute constrained by
ofType, Axiom (4) would cause a constraint violation.

To solve this problem, pmo facts should be generated for all datatype constants that
appear as values of attributes having ofType constraints in the ontology. I.e., for each such
constant in the ontology, axioms of the following form should appear,

pmo(V, D) :− typeOf(V, DT)

where D denotes the WSML datatype, DT denotes a datatype supported by the underly-
ing Datalog implementation, which is compatible with the WSML datatype, and typeOf
denotes a built-in predicate implemented by the Datalog tool, which checks whether a
constant value belongs to the specified datatype.

A Reasoning Framework for Rule-Based WSML 123

These additional meta-level axioms result in a new set of Datalog rules, denoted by
Pdata, which are no longer in generic Datalog but use tool-specific built-in predicates of
the underlying inference engine. The program PO is extended by these rules as follows.

PO = Pmeta ∪ Pdata ∪ τ(O)

In addition to datatypes, WSML also supports some predefined datatype predicates,
such as numeric comparison (see [8] for a full list). The definition of the axiom SharePrice-

Feed requires bandwidth from the WSML ontology in Section 2, for example, uses a shortcut
of the WSML numericLessThan predicate (denoted by <). For translation of these special
predicates to the corresponding tool-specific built-in predicates supported by the under-
lying Datalog reasoner, we introduce a new tool-specific transformation step τdpred as a
mapping P → P . This affects the transformation pipeline τ as follows.

τ = τdpred ◦ τdlog ◦ τlt ◦ τn ◦ τaxioms

In summary, the underlying Datalog implementation must fulfill the following re-
quirements to support WSML datatype reasoning: (i) It should provide built-in datatypes
that correspond to WSML datatypes. (ii) It should provide a predicate (or predicates)
for checking whether a datatype covers a constant and (iii) It should provide built-in
predicates that correspond to datatype-related predefined predicates in WSML.

4 Debugging Support

During the process of ontology development, an ontology engineer can easily construct
an erroneous model containing contradictory information. In order to produce consis-
tent ontologies, inconsistencies should be reported to engineers with some details about
the ontological elements that cause the inconsistency.

In rule-based WSML, the source for erroneous modelling are always constraints,
together with a violating situation of concrete instances related via attributes. The plain
Datalog mechanisms employed in the reasoning framework according to Section 3 only
allow for checking whether some constraint is violated, i.e. whether the empty clause is
derived from PO indicating that the original ontology O contains errors – more detailed
information about the problem is not reported. Experience shows that it is a very hard
task to identify and correct errors in the ontology without such background information.

In our framework, we support debugging features that provide information about
the ontology entities which are involved in a constraint violation. We achieve this by
replacing constraints with appropriate rules that derive debugging-relevant information.

4.1 Identifying Constraint Violations

In case of an inconsistent ontology due to a constraint violation, two things are of inter-
est to the ontology engineer: a) the type of constraint that is violated and b) the entities,
i.e. concepts, attributes, instances, etc., that are involved in the violation.

To give an example, consider the WSML ontology in Section 2. There, the attribute
hasOnlineService of the concept ITBundle is constrained to instances of type OnlineService. Sup-
pose we replace the current value of the attribute hasOnlineService for the instance MyBundle

124 S. Grimm et al.

by the instance MSNDialup. Then, this constraint would be violated because MSNDialup is
not an instance of the concept OnlineService. For an ontology engineer who needs to repair
this erroneous modelling, it is important to know the entities that cause the violation,
which in this case are the attribute hasOnlineService together with the range concept Online-

Service and the non-conforming instance MSNDialup.
For the various types of constraint violations, the information needed by the ontology

engineer to track down the problem successfully is different from case to case.

Attribute Type Violation – An attribute type constraint of the form C[a ofType T] is
violated whenever an instance of the concept C has value V for the attribute a, and it
cannot be inferred that V belongs to the type T . Here, T can be either a concept or a
datatype, while V is then an instance or a data value, accordingly. In such a situation,
an ontology engineer is particularly interested in the instance I , in the attribute value V
that caused the constraint violation, together with the attribute a and the expected type
T which the value V failed to adhere to.

Minimum Cardinality Violation – A minimum cardinality constraint of the form concept

C a (n *), is violated whenever the number of distinguished values of the attribute a for
some instance I of the concept C is less than the specified cardinality n. In such a situ-
ation, an ontology engineer is particularly interested in the instance I that failed to have
a sufficient number of attribute values, together with the actual attribute a. (Information
about how many values were missing can be learned by separate querying).

Maximum Cardinality Violation – A maximum cardinality constraint of the form concept

C a (0 n), is violated whenever the number of distinguished values of the attribute a
for some instance I of the concept C exceeds the specified cardinality n. Again, here
an ontology engineer is particularly interested in the instance I for which the number
of attribute values was exceeded, together with the actual attribute a.

User-Defined Constraint Violation – Not only built-in WSML constraints, but also
user-defined constraints, contained in an axiom definition of the form axiom AxID de-

finedBy !- B, can be violated. In this case, the information which helps an ontology engi-
neer to repair an erroneous situation is dependent on the arbitrarily complex body B and
cannot be determined in advance. However, a generic framework can at least identify
the violated constraint by reporting the identifier AxID of the axiom.

To give an example, consider again the ontology from Section 2. Replacing the net-
work connection ArcorDSL of MyBundle by the slower MSNDialup one results in a violation of
the user-defined constraint specified by the axiom named SharePriceFeed requires bandwidth.
This constraint requires a certain bandwidth for connections in bundles with share price
feed online services, which is not met by MSNDialup, and thus the ontology engineer is
reported the axiom name that identifies the violated constraint.

4.2 Debugging by Meta-level Reasoning

In our framework, we realize the debugging features for reporting constraint violations
by replacing constraints with a special kind of rules. Instead of deriving the empty
clause, as constraints do, these rules derive information about occurrences of constraint

A Reasoning Framework for Rule-Based WSML 125

Table 3. Replacing constraints by rules

Constraint Rule
τdebug({E1, . . . , En}) {τdebug(E1), . . . , τdebug(En)}
τdebug(!−Bmincard.) pv mincard(a, I) :−Bmincard.
τdebug(!−Bmaxcard.) pv maxcard(a, I) :−Bmaxcard.
τdebug(!−Buser.) pv user(AxID) :−Buser.
τdebug(C[a ofType T].) pv otype(a, T, I, V) :−

C[a ofType T] and I memberOf C and

I [a hasValue V] and naf V memberOf T.

violations by instantiating debugging-specific meta-level predicates with the entities in-
volved in a violation. In this way, information about constraint violations can be queried
for by means of Datalog inferencing.

The replacement of constraints for debugging is included in the transformation

τ = τdpred ◦ τdlog ◦ τlt ◦ τn ◦ τdebug ◦ τaxioms

where the additional transformation step τdebug is applied after the WSML conceptual
syntax has been resolved, replacing constraints on the level of WSML logical expres-
sions. Table 3 shows the detailed replacements performed by τdebug for the different
kinds of constraints.

Minimal cardinality constraints (with bodies Bmincard) and maximal cardinality
constraints (with bodies Bmaxcard) are transformed to rules by keeping their respective
bodies and adding a head that instantiates one of the predicates pv mincard and pv maxcard

to indicate the respective cardinality violation. The variables for the involved attribute
a and instance I are the ones that occur in the respective constraint body B.

Similarly, a user-defined constraint is turned into a rule by keeping the predefined
body Buser and including a head that instantiates the predicate pv user to indicate a user-
defined violation. The only argument for the predicate pv user is the identifier AxID of
the axiom, by which the constraint has been named.

Constraints on attribute types are handled differently because these constraints are
not expanded during the transformation τaxioms; they are rather represented by WSML
ofType-molecules for which the semantics is encoded in the meta-level axioms Pmeta. In
order to avoid the modification of Pmeta in the reasoning framework, such molecules are
expanded by τdebug, as shown in Table 3.4

To maintain the semantics of the replaced constraints, an additional set of meta-level
axioms Pdebug ⊂ P is included for reasoning. The rules in Pdebug have the form � :−pv

and derive the empty clause for any type and occurrence of a constraint violation.
Including the debugging features, the Datalog program for reasoning about the orig-

inal ontology then turns to

PO = Pmeta ∪ Pdata ∪ Pdebug ∪ τ(O) .

4 After this expansion of ofType molecules, the respective axiom (4) in Pmeta for realising the
semantics of attribute type constraints does not apply anymore.

126 S. Grimm et al.

Occurrences of constraint violations can be recognized by queryingPO for instantiations
of the various debugging-specific meta-level predicates pv otype, pv mincard, pv maxcard

and pv user. For example, the set

(PO, ? − pv otype(a, T, I, V))

contains tuples for all occurrences of attribute type violations in PO , identifying the
respective attribute a, expected type T , involved instance I and violating value V for
each violation. This set is empty no attribute types are violated.

5 Reasoning Framework Overview

The design goals of our framework are modularity for the transformation steps and
flexibility with respect to the underlying inference engine. The high modularity allows
to reuse transformation functionality across different WSML variants and reduces the
effort for accomplishing other reasoning tasks. By realizing WSML on top of a generic
Datalog layer, we have also reduced the effort of integrating other reasoners to a mini-
mum The presented framework has been fully implemented in Java and can be down-
loaded and tested online5.

Architecture and Internal Layering. Figure 3 shows the internal architecture of the
framework as well as the data flow during a prototypical usage scenario. The outer box
outlines a WSML reasoner component that allows a user to register WSML ontolo-
gies and to pose queries on them. The inner box illustrates the transformation pipeline
introduced in Section 3 and shows its subsequent steps in a layering scheme.

Registered ontologies go through all the transformation steps, whereas user queries
are injected at a later stage, skipping the non-applicable axiomatization and constraint
replacement steps. Here, the internal layering scheme allows for an easy reorganization
and reuse of the transformation steps on demand, assuring high flexibility and mod-
ularity. A good example for this is the constraint replacement transformation τdebug:
if included in the pipeline, it produces the rules that activate the debugging features
according to Section 4; if excluded, the constraints remain in the resulting Datalog pro-
gram and are mapped to native constraints of the underlying reasoning engine.

The core component of the framework is an exchangeable Datalog inference engine
wrapped by a reasoner facade which embeds it in the framework infrastructure. This
facade mediates between the generic Datalog program produced in the transformations
and the external engine’s tool-specific Datalog implementation and built-in predicates.

Interface and Integration with Existing Technology. Our framework is based on the
WSMO4J 6 project, which provides an API for the programmatic handling of WSML
documents. WSMO4J performs the task of parsing and validating WSML ontologies
and provides the source object model for our translations. For a reasoner to be connected
to the Framework, a small adapter class needs to be written, that translates generic Dat-
alog elements to their equivalent constructs within the internal representation layer of

5 http://dev1.deri.at/wsml2reasoner
6 http://wsmo4j.sourceforge.net

http://dev1.deri.at/wsml2reasoner
http://wsmo4j.sourceforge.net

A Reasoning Framework for Rule-Based WSML 127

Fig. 3. Internal framework architecture

the underlying reasoner. Our framework currently comes with facades for two built-in
reasoners: KAON27 and MINS8. The initial development was done with the KAON2
inference engine that, with respect to the challenges for datatype reasoning, provides
a very flexible type system that allows for user-defined datatypes, together with predi-
cates on these datatypes, including type checking predicates. However, KAON2 cannot
be used for reasoning in WSML-Rule as it does not support function symbols and un-
safe rules. The second reasoner, MINS, can be used for the WSML-Rule variant but
has limited support for datatype reasoning. (For determining the WSML variant of an
ontology, one can use the validation facilities built into WSMO4J).

6 Conclusion and Outlook

We have presented a framework for reasoning in rule-based WSML that builds on a
mapping to Datalog and on querying a generic Datalog layer. The single well-defined
transformation steps can be reused across various adaptations for different scenarios in
a highly modular way. We have incorporated debugging features by replacing native
constraints with rules to derive debugging-relevant information that can be queried by
an ontology engineer. We have implemented our framework with two existing reasoner
tools, namely KAON2 and MINS, as alternative implementations of the generic Datalog
layer, by which we provide the first available reasoning system for the WSML language.

7 http://kaon2.semanticweb.org
8 http://dev1.deri.at/mins

http://kaon2.semanticweb.org
http://dev1.deri.at/mins

128 S. Grimm et al.

While the current framework focuses on WSML-Core, -Flight and -Rule, efforts are
ongoing to extend the transformations to disjunctive Datalog and description logics.
The KAON2 system natively supports disjunctive Datalog and DL reasoning, the latter
even extended by WSML-Flight-like rules. Also the DLV system [4] (implementing
disjunctive Datalog under the stable model semantics) can be used to realise a similar
reasoning. Furthermore, we plan to integrate the KRHyper system [16], which allows
reasoning with disjunctive logic programs with stratified default negation. Transforma-
tions to DL additionally allow to incorporate description logic system APIs to support
efficient reasoning with WSML-DL.

Acknowledgements. We would like to thank our colleagues that wrote [8], especially
Jos de Bruijn, for fruitful discussions and the contribution of mapping definitions.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The

Description Logic Handbook. Cambridge University Press, 2003.
3. D. Brickley and R. V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema.

Recommendation 10 February 2004, W3C, 2004.
4. S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and

F. Scarcello. The DLV System: Model Generator and Advanced Frontends. In Workshop LP,
1997.

5. M. Dahr. Deductive Databases: Theory and Applications. International Thomson Publishing,
December 1996.

6. J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel. The Web Service Modeling Language
WSML: An Overview. In Proc. of the 3rd Euro. Semantic Web Conference (ESWC), 2006.

7. J. de Bruijn, A. Polleres, R. Lara, and D. Fensel. OWL DL vs. OWL Flight: Conceptual
Modeling and Reasoning on the Semantic Web. In Proceedings of the 14th International
World Wide Web Conference (WWW2005), Chiba, Japan, 2005. ACM.

8. J. de Bruin. The Web Service Modeling Language (WSML) Specification. Tech. Report,
Digital Enterprise Research Institute (DERI), Feb. 2005. http://www.wsmo.org/TR/d16/.

9. M. Dean and G. Schreiber, editors. OWL Web Ontology Language Reference. 2004. W3C
Recommendation 10 February 2004.

10. A. V. Gelder, K. Ross, and J. S. Schlipf. The Well-Founded Semantics for General Logic
Programs. Journal of the ACM, 38(3):620–650, 1991.

11. B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logics. In Proceedings of WWW-2003, 2003.

12. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-Based
Languages. JACM, 42(4):741–843, 1995.

13. J. Lloyd and R. Topor. Making Prolog More Expressive. Journal of Logic Programming,
3:225–240, 1984.

14. J. W. Lloyd. Foundations of Logic Programming; (2nd extended ed.). Springer, New York,
NY, USA, 1987. ISBN 3-540-18199-7.

15. D. Roman, U. Keller, H. Lausen, R. L. Jos de Bruijn, M. Stollberg, A. Polleres, C. Feier,
C. Bussler, and D. Fensel. Web Service Modeling Ontology. Applied Ontology, 1(1):77–
106, 2005.

16. C. Wernhard. System Description: KRHyper. Technical report, Fachberichte Informatik
14–2003, Universitat Koblenz-Landau, Institut fur Informatik., 2003.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 129–144, 2007.
© Springer-Verlag Berlin Heidelberg 2007

GenTax: A Generic Methodology for Deriving OWL
and RDF-S Ontologies from Hierarchical Classifications,

Thesauri, and Inconsistent Taxonomies

Martin Hepp and Jos de Bruijn

Digital Enterprise Research Institute (DERI), University of Innsbruck
mhepp@computer.org, jos.debruijn@deri.org

Abstract. Hierarchical classifications, thesauri, and informal taxonomies are
likely the most valuable input for creating, at reasonable cost, non-toy ontologies
in many domains. They contain, readily available, a wealth of category definitions
plus a hierarchy, and they reflect some degree of community consensus. However,
their transformation into useful ontologies is not as straightforward as it appears.
In this paper, we show that (1) it often depends on the context of usage whether an
informal hierarchical categorization schema is a classification, a thesaurus, or a
taxonomy, and (2) present a novel methodology for automatically deriving
consistent RDF-S and OWL ontologies from such schemas. Finally, we (3)
demonstrate the usefulness of this approach by transforming the two e-business
categorization standards eCl@ss and UNSPSC into ontologies that overcome the
limitations of earlier prototypes. Our approach allows for the script-based creation
of meaningful ontology classes for a particular context while preserving the
original hierarchy, even if the latter is not a real subsumption hierarchy in this
particular context. Human intervention in the transformation is limited to
checking some conceptual properties and identifying frequent anomalies, and the
only input required is an informal categorization plus a notion of the target
context. In particular, the approach does not require instance data, as ontology
learning approaches would usually do.

Keywords: Ontology engineering, ontology learning, OWL, RDF-S, reuse,
taxonomies, thesauri, classifications, UNSPSC, eCl@ss, e-business.

1 Introduction

Hierarchical classification standards, thesauri, and such taxonomies that were not
initially designed to be used as ontologies exist in many domains. They are likely the
most promising sources for the creation of domain ontologies at reasonable costs,
because they reflect some degree of community consensus and contain, readily
available, a wealth of category definitions plus a hierarchy. For instance, UNSPSC
[1], a standard categorization for products and services and often referred to as a
products and services ontology for e-business, contains 20,789 categories (in version
7,0901) and the similar but more expressive industrial standard eCl@ss [2] defines
25,658 categories plus 5,525 precisely specified object and datatype properties (in
version 5.1de). The products classification in eBay, as an additional example, includes

130 M. Hepp and J. de Bruijn

more than 2,000 categories for computer and networking equipment alone. For a
quantitative analysis of the content and domain coverage of such standards in the
products and services domain, see [3].

While it is tempting to write simple scripts that mechanically create ontology
classes for the categories in the source standard and rdfs:subclassOf relations
for the edges constituting the hierarchy, as has been done by [4] and [5], this
straightforward approach often yields ontologies that are of limited practical use,
since it implies a particular interpretation of the categories so that the original
hierarchical order is a valid subsumption hierarchy. If, for example, “ice” is a
subcategory of “beverages” in the original hierarchy, this naïve transformation forces
us to read the category “beverages” as something like “beverages and related stuff
from a purchasing manager’s perspective”, because only then holds that all instances
of the former class are also instances of the latter. While this choice is a valid
transformation, it does often not yield the most useful ontologies, as has been shown
in [6] and [7]. In particular, the ontology classes would not be sufficiently narrow to
describe actual products or services instances in an unambiguous way.

The main cause for this problem is that, due to the informal nature of the original
schemas, the meanings of (1) the categories, (2) the hierarchical relations between
them, and (3) the task of assigning an instance to a category are usually blurry, and the
meanings of the three components are not clearly separated from each other. This
means that such informal specifications entail multiple possible ontologies. For
example, we can interpret the categories in a way so that the original hierarchy forms a
consistent subsumption hierarchy and can be represented using rdfs:subClassOf,
or we can interpret the categories in another way but must then use another transitive,
binary relation of the kind “A is a subcategory of B in some context” in order to
capture the hierarchy [6, 7].

Since most categorizations were not created under rigorous knowledge engineering
methodologies, they often suffer from additional conceptual anomalies, e.g. local
names or a varying semantics of the hierarchy relation by depth of branching. Such
anomalies are sometimes found in only relatively small parts of the categorization
schema. They may thus not become apparent by a quick view on a part of the
specification.

Besides these difficulties in understanding the original semantics and selecting a
useful interpretation for a given application, we are additionally constrained by the
expressiveness of popular ontology formalisms. OWL DL, for example, does not
allow the definition of transitive relations between ontology classes, which may force
us to invent suitable ontology modeling patterns as workarounds.

Finally, it is highly desirable that the generation of derived ontologies is automated
as much as possible, because of the high number of categories.

1.1 Classification, Thesaurus, and Taxonomy

The terms thesaurus and taxonomy are well established in ontology research.
Basically, a thesaurus is a collection of concepts that are augmented by three types of
relations: “broader term” (BT) and “narrower term” (NT), which may be read as a
hierarchical order, and “related term” (RT), which is used to capture conceptual
proximity [cf. e.g. 8]. An important characteristic of the NT/BT relation is that it is
semantically less specific than a subclassOf relation used in ontology engineering for

 GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 131

building a subsumption hierarchy, since an instance that fits one subcategory of a
thesaurus needs not to be an instance of a the respective parent category. For example,
“ice cubes” may be a narrower term to “beverages”, but instances of the category “ice
cube” are not instances of the category “beverage” if we read the categories literally.

A taxonomy is different from a thesaurus in that it contains a subsumption
hierarchy in the form of transitive subclassOf relations, i.e. each instance of a class
can be assumed to be also an instance of all parent categories. It should be noted that
hierarchical classifications are sometimes imprecisely referred to as taxonomies even
though they do not include a real subsumption hierarchy.

Classifications are sets of concepts and have been used for ages as a means of
grouping entities by similarity. It is important to stress that the initial purpose of
classification was not to capture the essence of things, i.e. modeling a part of the
world, as in ontology engineering, but aggregating entities for some arbitrary purpose.
Also, a hierarchical order is a frequent but not a mandatory property of classifications.
Sometimes, classifications are assumed to be limited to hierarchical classifications,
which are rooted trees where the semantics of the edges may vary widely depending
on the purpose and context of usage [cf. 9].

In this paper, we will subsume all three types, i.e. taxonomies, thesauri, and
hierarchical classifications under the term hierarchical categorization schema, which
all have in common that they include a set of categories and some form of a
hierarchical order. There are two main reasons for this unified view on the three
variants. First, it may depend of the context of usage whether a given collection is a
taxonomy, a thesaurus, or just a hierarchical classification. Second, we want to
provide an approach that can be directly applied to all three types, thus allowing us to
reuse the wealth of any such schemas for building domain ontologies, which are
urgently needed for making the Semantic Web a reality.

1.2 Our Contribution

In this paper, we (1) show that it often depends on the context of usage whether an
informal, hierarchical categorization schema is a classification, a thesaurus, or a
taxonomy, (2) develop a novel methodology for mechanically deriving consistent,
lightweight ontologies for a particular context from hierarchical classifications,
thesauri, or taxonomies, even if they contain typical conceptual anomalies, (3) present
suitable modeling patterns for RDF-S and OWL-DLP that require no reasoning
support beyond rdfs:subClassOf, which allows for the use of the resulting
ontologies with lightweight, scalable reasoners and repositories like OWLIM [10],
and (4) demonstrate the usefulness of our approach by transforming the e-business
categorization standards eCl@ss [2] and UNSPSC [1] into fully-fledged ontologies.

We also propose to use deductive statistics for the diagnosis of common anomalies
and for selecting modeling options when handling large categorization schemas. This
allows us to quantify the likelihood that the resulting ontology is consistent without
the need to evaluate the complete schema manually.

The structure of the paper is as follows: In section 2, we present a unified model
for hierarchical classifications schemas, thesauri, and taxonomies, which takes into
account the role of contexts. In section 3, we present our methodology for deriving
ontologies from hierarchical categorization schemas. In section 4, we show how our

132 M. Hepp and J. de Bruijn

approach can be successfully applied to the representation of eCl@ss and UNSPSC in
RDF-S and OWL. In section 5, we discuss our findings and compare them to related
works.

2 A Uniform Model of Classifications, Thesauri, and Taxonomies

In this section, we will present a unified formal model that fits any kind of
hierarchical categorization schema, be it a domain classification, a thesaurus, or a
taxonomy.

2.1 Overview

When taking the categories found in a hierarchical categorization schema as the basis
for the creation of an ontology, we face two fundamental problems: First, the meaning
of the categories may vary by context. With context we mean in here a domain of
usage over which a category label is interpreted. Second, unless there is a formal
definition of the semantics of the arcs constituting the hierarchy, the meaning of the
category concepts is not determined independently of the meaning of that hierarchy
relationship, i.e. both are tangled. For example, a category labeled “TV Set” can,
depending on the context of usage, mean very different things, e.g. (1) any entity that
is an actual TV set, (2) all TV sets and somewhat related items, (3) all invoices and
cost statements that are related to TV sets, or (4) anything that can in any context be
regarded as related to TV sets.

In the original fields of usage, this blurriness constitutes no serious problems, since
one usually never expresses that an entity is an instance of a particular category, but
rather assigns entities to categories in well-defined contexts. Thus, incompatible
meanings of the categories do usually not become apparent. Since a relation like
rdf:type is never used, it is no problem that in catalog data exchange contexts,
actual TV set makes and models are assigned to the UNSPSC category “TV Set”,
while for spend analysis, invoices reflecting TV set and TV cabling purchases are put
into the same category.

One could easily be tempted to trace back these problems to a lack of under-
standing of the original context and assume that there was one correct interpretation
of the semantics of the categories. However, this is not the case, since we can observe
that the very same categorization schemas are used in very different contexts with
varying interpretations. When we want to build useful ontologies, however, we need
to be clear about the semantics of the resulting ontology classes, i.e. what it means to
be an instance of this very class.

Two examples might further illustrate this fundamental problem: The hierarchies
of both UNSPSC and eCl@ss were created on the basis of practical aspects of
procurement, treating those commodities that “somehow” belong to a specific
category, as descendents of this closest category. This makes “ice” a subcategory of
“non-alcoholic beverages” in UNSPSC and “docking stations” a subcategory of
“computers” in eCl@ss. Now, there exists at least one context in which the hierarchy
relation can be read as a taxonomic relation in the sense of “rdfs:subClassOf”,
i.e. each instance of “ice” is also an instance of “non-alcoholic beverages” and each
instance of “docking station” is also an instance of “computers”. Then, however, the

 GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 133

intension of the class “computers” is no longer any computer, but the concept
“computer” from e.g. the perspective of cost accounting or spend analysis, where an
incoming invoice for a docking station can be treated as an incoming invoice for a
computer. Similarly will “non-alcoholic beverages” no longer represent all non-
alcoholic beverages, but the union of non-alcoholic beverages and related
commodities.

The negative consequence of interpreting the hierarchy as being equivalent to
rdfs:subClassOf, is obvious: We can no longer use the resulting classes e.g. for
buying processes, because a search for all instances of “computers” will also return
docking stations, and ordering the cheapest available instance of non-alcoholic
beverages will very likely return just ice cubes. One could argue that exactly this
narrow definition of the classes is the original semantics of the categories. However,
this is not true, since the plain text descriptions for these classes in UNSPSC and
eCl@ss define the categories in the generic sense.

In a nutshell, most hierarchical categorization schemas are used with varying
semantics in multiple contexts, and depending on the respective context, the hierarchy
relations may constitute a subsumption hierarchy or just “narrower then/broader then”
relations. Our claim is that by restricting the interpretation of a categorization scheme
to a particular context, we can derive more useful ontologies, even if that means that
the hierarchical order of the original schema does not constitute a subsumption
hierarchy in this particular context.

2.2 Formal Definition

We view a hierarchical categorization schema as a directed graph where nodes
represent categories and edges represents the “narrower term” or “has subcategory”
relation. Depending on the context, a set is related to each category. This set
represents the items associated with the category in a particular context.

Formally, a hierarchical categorization schema S is a 6-tuple
CV l,lJ,C,E,V,=S with:

• V a set of categories,

• E a binary relation over V: VV:E × reflecting the original edges in the
hierarchy,

• C a set of contexts,

• J a partial function which assigns to every context Cc ∈ a partial function which

assigns to every category Vv ∈ a set of items such that J(c)(v) is the set of items
associated with category v in context c,

• lV a function which associates labels with categories: stringV:lV → , and

• lC a function which associates labels with contexts: stringC:l C → .

We can see from the definition that a category is interpreted differently depending on

the context of usage. We say that the interpretation of a category Vv ∈ in a context

Cc ∈ , denoted ()vS c , is the set () ()()vcJ=vS c . The interpretation of a

134 M. Hepp and J. de Bruijn

category Vv ∈ , denoted S(v) is the union of the interpretations of v at every context

in C: () (){ }Cc|vS=vS c ∈∪ .

Using the formal model, we can specify a number of properties which a
categorization schema may have. First of all, it is not clear whether a particular
hierarchical classification is a consistent taxonomy or rather a thesaurus.

We would call a classification S a taxonomy, if the hierarchy is a valid
subsumption hierarchy, i.e., for all pairs of concepts va, vb holds that if va is a
descendant of vb then va is also a subclass of vb. Formally, S is a taxonomy if, and

only if, for all Vv,v ba ∈ holds:

() ()baab vSvSthenEv,vif ⊆∈ .

We call S a taxonomy with respect to context c if the interpretations of all
categories in context c form a valid subsumption hierarchy. Formally, S is a taxonomy

with respect to a context Cc∈ if, and only if, for all Vv,v ba ∈ holds:

() ()b
c

a
c

ab vSvSthenEv,vif ⊆∈

Several of the hierarchical classification schemas we looked at are taxonomies only
for some contexts.

We say a categorization is cyclic if there is a Vv∈ such that ()Etrvv, ∈ with

tr(E) the transitive closure of E. For the remainder of this paper, we assume the input
categorization not to be cyclic.

3 Deriving OWL and RDF-S Ontologies from Hierarchical
Categorization Schemas

In this section, we describe a novel approach of deriving consistent OWL and RDF-S
ontologies from hierarchical categorization schemas. Our approach allows for the
semi-automatic creation of meaningful ontology classes for a particular context while
preserving the original hierarchy, even if the latter is not a consistent subsumption
hierarchy in this particular context. The basic idea of our GenTax methodology is to
derive two ontology classes from each category: one generic concept in a given
context and one broader taxonomic concept which allows preserving the original
hierarchy.

The input required is minimal and limited to (1) an informal specification of a
hierarchical categorization schema as defined in section 2.2 and (2) a notion of the
context in which the ontology should be used. In particular, we do not need instance
data or any additional information, as most ontology learning approaches usually
would. The transformation itself is semi-automatic in the sense that human
intervention is limited to checking some conceptual properties and identifying
frequent anomalies. In other words, the actual generation of the ontology can be done
by a script that only needs to be configured properly by a human.

The resulting ontologies can be either RDF-S or OWL DLP; in fact, they require
no reasoning support beyond rdfs:subClassOf, which allows for the use of

 GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 135

lightweight, scalable reasoners, while still being able to merge an OWL DLP variant
with OWL DL data without leaving the boundaries of OWL DL (which would be the
case if e.g. RDF-S meta-modeling was used).

3.1 Overview

The basic idea of our approach is as follows:

• We derive meaningful, generic ontology classes from the categories in the original
classification by narrowing them down to their meaning in one particular context.

• We define taxonomic concepts for the categories of the original schema so that
they form a consistent taxonomy when the edges in the schema are interpreted as a
subsumption hierarchy.

Our algorithm depends on a number of external functions.

• The function genS takes as input a categorization hierarchy and returns a formal
specification, as defined in Section 2.2. This function takes care of all the pre-
processing, disambiguating labels of categories, etc.

• The function getContextInfo takes as input a formal categorization and returns a
formal categorization which includes an interpretation for every category at every
context, except for possibly ccat.

• The function genURI takes as argument a context label and a category label and
returns a URI based on this information.

The input to the algorithm is some categorization and a set of contexts C. The
output of the algorithm is an RDF-S or OWL DLP ontology. There is a special
context ccat with lC(ccat) = “Category”. If this context is included in C, then the
algorithm will create special category classes in the output ontology for each of the
categories in the categorization.

Step 1: Pre-processing and creating a formal representation of the model

The input to this step is an arbitrary hierarchical categorization schema H. The output

is VC l,lJ,C,E,V,=S with V the set of categories, E such that Evv1, ∈2 if

there is an arc 2vv1, in the original categorization, C the set of input contexts, and J

is not defined for any context. S is obtained as follows: S = genS(H).

Step 2: Deriving context information

This step defines the function J in S for each context Cc∈ with c≠ ccat . The

(external) algorithm finds an interpretation Sc(v) for each category Vv∈ . The output

is S' = genContextInfo(S), where J(c)(v) is defined for every VvC,c ∈∈ such that

c≠ ccat .

136 M. Hepp and J. de Bruijn

Step 3: Category context

If Cccat ∉ , proceed to the next step. Otherwise, choose S
ccat

 as follows: (a) for any

Vv∈ , () ()vSvS catc ⊇ , (b) for all Vvv ∈21, such that Evv ∈21, ,

() ()21 vSvS catccatc ⊆ , and for every Vv∈ , ()vS catc
 is the smallest set such that

the conditions (a) and (b) hold. Obviously there is such a catc
S .

Step 4: Generating the ontology
Start with an empty set G.

Step 4.1: Generating ontology classes

For each category Vv∈ and relevant context Cc∈ , add the triple

() ()() Class:rdfstype:rdf ,,vl,clgenURI VC (for an RDF-S ontology) or

() ()() Class:owltype:rdf ,,vl,clgenURI VC (for an OWL DLP ontology)

to G.

Step 4.2: Generating subclassOf relations
Since many categorization schemas that are so large that it is infeasible to determine

individually whether () ()b

c

a

c
vSvS 21 ⊆ holds, we use the following

approximations for creating subclassOf relations:

If Cccat ∈ , then for any Vv,v ba ∈ , Evv ∈ba, , add the triple

() ()() () ()()b
V

cat
C

a
V

cat
C vl,clgenURI,,vl,clgenURI subClassOf:rdfs

to G, and for any catccCc ≠∈ , , Vv∈ , add the triple

() ()() () ()()vl,clgenURI,,vl,clgenURI V
cat

CVC subClassOf:rdfs

If for all Vvv ∈ba, such that Evv ∈ba, , catccCc ≠∈ , holds

() ()b
c

a
c vSvS ⊆ , add the triple

() ()() () ()()b
VC

a
VC vl,clgenURI,,vl,clgenURI subClassOf:rdfs

for any Vvv ∈ba, such that Evv ∈ba, .

As a simplification, we may use a representative sample and statistic inferencing to
determine whether the hierarchy would be a valid subsumption hierarchy for the
categories in this particular context. In other words, instead of manually checking this
property for the whole input schema, we draw a representative sample from the
categories in the original schema and determine manually whether for this set of
categories, the above mentionend conditions hold.

 GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 137

The output of step 4 is the ontology G (apart from the ontology header etc.). Figure 1
illustrates this for an ontology that contains classes for one context c and the category
context ccat. In this example, the original hierarchy would not be a valid subsumption
hierarchy in the context c. If this was the case, there would be an additional
rdfs:subClassOf relation from Sc(v2) to Sc(v1).

rdfs:subClassOf

rdfs:subClassOfrdfs:subClassOf

rdf:type
instance 2

rdf:type
instance 1

()1vS catc

()2vS catc()1vS c

()2vS c

Fig. 1. Example of the representation of two categories v1, v2 as four ontology classes

3.2 Implementation

Our algorithm depends, as said, on a number of external functions, which we explain
in this section.

3.2.1 Function Gens
This function takes as input a categorization hierarchy and returns a formal
specification, as defined in Section 2.2. In particular, it handles all pre-processing and
for disambiguating local labels. Local labels are such that are unique only in their
particular position in the hierarchy, e.g. “Portable” in the following example.

Computer Equipment
 !- Laser Printers
 !- Portable

One approach to handle such cases is by representing each node by a logical
formula that takes into account the label of the node and its position in the hierarchy,
as proposed by Giunchiglia, Marchese, and Zaihrayeu [9]. The simplest approach
(and often sufficient for our purpose) is to disambiguate local names by concatenating
the local name with the label of the path of parent nodes (with a suitable way of
escaping colons). This would turn the label “Portable” in our example into:

Computer Equipment: Laser Printers: Portable

Since most classifications that we found were very limited with regard to the depth
of branching, the growth in length created no problems.

A related anomaly is that of a varying semantics of the hierarchical relation by
depth of branching. In UNSPSC, for example, the last level of the hierarchy reflects
so called “Business Functions” for the next higher level:

Computer Equipment
 !- Laser Printers
 !- Sales
 !- Lease

138 M. Hepp and J. de Bruijn

We can handle this in the same way as local labels; however, this will usually
make it impossible to use the hierarchy as a subsumption hierarchy in this context,
since the lease of laser printers is not a subclass of laser printers etc.

3.2.2 Function getContextInfo
This function takes as input a formal categorization and returns a formal
categorization which includes an interpretation for every category at every context,
except for possibly ccat. Basically, this function returns what will be relevant instances
of the classes to be subsumed under the given label in the relevant contexts.

3.2.3 Function genURI
This function takes as arguments a context label and a category label and returns a
URI based on this information. It will usually use a given base URI for the resulting
ontology and concatenate the category and context labels, possibly separated by a
slash. If any of the labels contains extra characters, the function will also rewrite them
so that the result is a valid URI. Since we have disambiguated local labels, we can
assume that the category labels are unique. In practice, we can often also assume the
category labels to be unique.
 As an example, the category “TV Set” in the two contexts “Product or Service”
and “Category” could be transformed into e.g.

http://www.foo.org/myontology/TV_Set_ProductOrService
http://www.foo.org/myontology/TV_Set_Category

3.3 Statistical Diagnosis of Conceptual Properties and Relevant Anomalies

Depending on the size of the schema and our knowledge of its properties, we may not
know a priori whether the categories in our selected context build a proper
subsumption hierarchy. Also, we might need to check for the anomalies outlined in
section 3.2, since they will require additional preprocessing.

We advocate the use of representative random samples and deductive statistics for
these diagnosis tasks.

When taking a random sample, we should include only such categories v that are
not top-level nodes. A nice property of this approach is that we can calibrate the test
depending on our needs and thus deal with the unavoidable trade-off decisions
between the value of an additional subsumption hierarchy vs. the risk of an
undetected inconsistency, which is naturally domain-dependent.

It should be stressed that it can be attractive to make such decisions for one context
as a whole, since only this allows for quick and cheap script-based creation of derived
ontologies without substantial human intervention and engineering effort.

3.4 Example

We want to built a products and services ontology based on a fictive hierarchical
schema for electronic-related categories, as shown in Fig. 2. In this case, the relevant
target context is “Products or Services”. We create two ontology classes for each
category, one reflecting the category concept (e.g. “Radio and TV (Category)”), and
one reflecting respective types of electronic equipment (e.g. “Radio and TV (Product

 GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 139

or Service)”). We see that the original hierarchy is not a consistent subsumption
hierarchy in the context of products or services, since “TV Maintenance”, read as the
actual type of services, is not a subclass of “TV Set”, and “Radio Antenna” is not a
subclass of “Radio”. Thus, we arrange the category concepts in a subsumption
hierarchy that represents the original edges, but do not arrange the products and
services classes in such a hierarchy. All products and services classes are just
subclasses of the respective category concepts. Fig. 3 shows the resulting ontology.
Elipses represent ontology classes (rdfs:Class or owl:Class) and arrows
represent rdfs:subclassOf relations.

If our target context was “cost accounting branch”, then we could additionally
arrange the context-specific ontology classes in a subsumption hierarchy, since
invoices accounting for radio antennas are usually also regarded as invoices
accounting for radios.

TV
Maintenance

Radio and TV

TV Set

Color TVb/w TV

Radio

Portable
Radio

Radio
Antenna

Fig. 2. Example of a hierarchical categoriza-
tion for electronics

TV Maintenance
(Product or Service)

Color TV
(Category)

b/w TV (Product
or Service)

Radio (Product
or Service)

Portable
Radio (Category)

Radio and TV
(Category)

Radio and TV
(Product or Service)

TV Set (Product
or Service)

TV Maintenance
(Category)

b/w TV
(Category)

Color TV
(Product or Service)

TV Set
(Category)

Radio
(Category)

Portable Radio
(Product or Service)

Radio Antenna
(Product or Service)

Radio Antenna
(Category)

Fig. 3. The resulting ontology for the context
"Pro-duct or Service"

4 Evaluation: eClassOWL and unspscOWL

In order so evaluate our approach, we tried to derive useful e-business ontologies in
OWL-DLP from eCl@ss 5.1de [2] and UNSPSC [1]. Our goal was to generate, with
minimal human intervention, one eCl@ss ontology that can be used to annotate
products and services that unting purposes, i.e. aggregating incoming invoices by
spend categoriare available on the Web, and another UNSPSC ontology to be used for
cost accoes. This exercise is also practically relevant, since the existing prototypes of
UNSPSC and eCl@ss ontologies are not very useful in these application domains as
has been detailed in [6]. Both categorization schemas contain more than 20,000
categories, which renders manual steps in the transformation infeasible.

We have implemented preliminary tooling support for our methodology. Our
prototype consists of a Java program that expects the informal categorization schema
to be stored in a RDBMS. The program accesses the categories via an ODBC link.
The reason why we use an RDBMS is that we needed nested queries. Also, it proved
to be handy to import the various source formats into the RDBMS using standard
tooling instead of developing proprietary import interfaces.

140 M. Hepp and J. de Bruijn

4.1 eCl@ss as a Products and Services Ontology

The eCl@ss standard is available at http://www.eclass.de in the form of separate CSV
files containing categories, properties, values, class-property recommendations,
property-value recommendations, and keywords. For evaluating our methodology, it
was sufficient to import the categories.

The application of our methodology to eCl@ss creates only minor problems. First,
the original hierarchy does not constitute a correct subsumption hierarchy if the
categories are interpreted as products and services categories. Fig. 4 gives an example
of how services of repairing assembly and maintenance technology are subnodes of
machine. Thus, the structure of the resulting ontology is as in the example in Fig. 3.

Fig. 4. The eCl@ss hierarchy is no subsumption hierarchy in the context of products and
services

Second, the resulting ontology is very big: About 25,000 categories in the source
taxonomy result in more than 50,000 OWL classes. The size of the ontology imposes
unexpected problems when trying to use standard ontology editors (e.g. Protégé),
repositories/APIs (e.g. Jena 2), or validators (e.g. vowlidator). They all exit with error
messages when trying to process the full ontology. It was possible, though, to validate
and use a restricted version of the ontology that contains only a small subset of the
actual eCl@ss concepts. Also, we were able to load the full ontology into an OWLIM
[10] configuration.

As compared to our early approaches described in [6] and [7], our new approach
requires only two ontology classes instead of three per category, while the old
evaluation results still hold.

While we started our experiments with version 5.0 of eCl@ss, we were able to
generate new versions of our ontology based on new releases of eCl@ss in a fully
automated fashion. The only manual steps required were importing the new CSV files
into our RDBMS and updating the namespace for the new release. The total time for
creating the new ontology was less than two hours.

Generating ontologies in other ontology languages than OWL (e.g. WSML) was
also successful and just required expressing the OWL ontology patterns used in the
respective target ontology language.

4.2 UNSPSC as a Cost Accounting Ontology

UNSPSC [1] is similar to eCl@ss in its structure, but has more top-level categories
and is limited to the hierarchy of labels, while eCl@ss also includes properties and
other elements.

Same as eCl@ss, UNSPSC contains hierarchical relations that do not constitute a
correct subsumption hierarchy in some contexts, in particular when reading the labels

 GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 141

in the literal sense. For example, we can find the following two candidate
inconsistencies:

a) Non-dairy creamers are neither coffee nor tea, and not even a true beverage.
-family-[50.20.00.00] Beverages
 -class-[50.20.17.00] Coffee and tea
 -commodity-[50.20.17.14] Non-dairy creamers

b) Ice is not a beverage.
-family-[50.20.00.00] Beverages
 -class-[50.20.23.00] Non-alcoholic beverages
 -commodity-[50.20.23.02] Ice

However, in this second example, the target context of our ontology is “Cost
Accounting Categories”. If we interpret the labels in this sense, then it is acceptable
for “Beverages” to subsume “Ice”, since anything spend on ice may be correctly
regarded as a beverage-related expenditure. Thus, other than in the example in section
4.1, the ontology classes in the target context “Cost Accounting Categories” can also
be arranged in a subsumption hierarchy, which reflects the original order. If we
wanted to create a products and services ontology from UNSPSC, the situation would
be the same as with eCl@ss, i.e. the classes in this context cannot be arranged in a
subsumption hierarchy.

We expect that running our script on other hierarchical categorization schemas, e.g.
eOTD or XBRL standard reporting taxonomies should require only slight modifica-
tions in the embedded SQL.

5 Discussion

There exists a substantial amount of publications on the analysis of the meaning of
taxonomic relationships, especially the fundamental work of [11]. This yielded the
insight that there are multiple types of taxonomic relationships, which should be
represented separately. In this paper, we have presented a generic methodology for
deriving consistent ontologies in a script-based fashion from hierarchical
categorization schemas, and successfully applied it to eCl@ss and UNSPSC. While
the resulting ontologies are rather lightweight, the cost/benefit ratio of our ontologies
seems very convincing, since the amount of human intervention is limited to
importing source data into an RDBMS and determining some parameters in a script.
Related work to ours can be classified into the following main groups:

• Methodologies for and experiences with the reuse of consensus in classifications,
thesauri, and taxonomies for the creation of ontologies. This is the most related
field of work. [12] discusses the transformation of tangled hierarchies, as e.g. such
derived from ambiguous “broader than / narrower than” taxonomies in library
science, into formal ontologies. [13] presents the experiences gained while
transforming the constructs of an existing semantic net in the medical domain into
an OWL ontology. [14] describe how machine learning approaches can be used to
integrate objects from taxonomies available on the Web into a consolidated master
taxonomy. [6] is a detailed description of creating products and services ontologies
based on UNSPSC and eCl@ss, but requires three classes per category and is also

142 M. Hepp and J. de Bruijn

not generically applicable. [15] shows the reuse and semantic enrichment of an
existing hierarchical standard, and demonstrates this for the Art and Architecture
Thesaurus (AAT). [16] and [8] are consequent works of this stream of research. An
important characteristic of [16] and [8] is that the authors leave the limits of OWL
DL in order to capture semantics contained in the original thesaurus, namely to be
able to treat classes as instances and vice versa. [9] presents a formal theory of
classifications; [17] is an extension of this work and proposes how lightweight
ontologies can be derived from such specifications.

• Prototypes of products and services ontologies in standard ontology languages
derived from UNSPSC. To our knowledge, there are currently two examples of
UNSPSC transformations into ontology representation languages: The
DAML+OIL and RDF-S variants created by [5] and the DAML+OIL variant from
the Knowledge Systems Laboratory at Stanford University [4]. For eCl@ss, there
exists one early prototype by Bizer and Wolk [18] and the official release of
eCl@ssOWL [19], which is based on our previous work [6].

• Ontology engineering methodologies, implicitly or explicitly focusing on the
manual creation of ontologies based on knowledge engineering principles. A
comprehensive discussion of all approaches in this field is beyond the scope of this
paper, for an overview see e.g. [20] and [21]. The main difference between our
work and traditional ontology engineering is that we advocate the script-based
transformation without involving an ontology engineer for revising the modeling in
every single case.

Our approach is different from previous work in that it allows for the script-based
creation of meaningful ontology classes (1) for a particular context while (2)
preserving the original hierarchy, even if the latter is not a real subsumption hierarchy
in this particular context. The resulting ontologies can be either RDF-S or OWL DLP;
in fact, they require no reasoning support beyond rdfs:subClassOf, which
allows for the use of lightweight, scalable reasoners, while still being able to merge an
OWL DLP variant with OWL DL data without leaving the boundaries of OWL DL
(which would be the case if e.g. RDF-S meta-modeling would be used).
 Our proposal comes not without cost. First, the resulting ontology provides quite
limited reasoning support. Second, we create at least two ontology classes per each
category, which increases the size of the ontology. However, the unwanted ontology
growth has to be set in relation to the low costs of reasoning and to fact that the
ontology building process requires almost no human labor.
 In general, we agree that a greater amount of e.g. axioms would be desirable. On
the other hand, we see no lightweight way of automatically adding more semantics
because it cannot be easily derived from the input schemas. Also, we will have to set
the resources necessary for the respective enrichment in relation to the gain in
automation and the resulting economies.

Acknowledgements. Parts of the work presented in this paper have been supported
by the European Commission under the projects DIP (FP6-507483), SUPER (FP6-
026850), and MUSING (FP6-027097), and by the Austrian BMVIT/FFG under the
FIT-IT project myOntology (grant no. 812515/9284).

 GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies 143

References

[1] United Nations Development Programme, "United Nations Standard Products and
Services Code (UNSPSC)," available at http://www.unspsc.org/, retrieved March 15,
2007.

[2] eClass e.V., "eCl@ss: Standardized Material and Service Classification," available at
http://www. eclass-online.com/, retrieved March 15, 2007.

[3] M. Hepp, J. Leukel, and V. Schmitz, "A Quantitative Analysis of Product Categorization
Standards: Content, Coverage, and Maintenance of eCl@ss, UNSPSC, eOTD, and the
RosettaNet Technical Dictionary," Knowledge and Information Systems, (forthcoming).

[4] D. L. McGuinness, "UNSPSC Ontology in DAML+OIL," available at
http://www.ksl.stanford.edu/projects/DAML/UNSPSC.daml, retrieved March 15, 2007.

[5] M. Klein, "DAML+OIL and RDF Schema representation of UNSPSC," available at
http://www.cs.vu.nl/~mcaklein/unspsc/, retrieved March 15, 2007.

[6] M. Hepp, "Products and Services Ontologies: A Methodology for Deriving OWL
Ontologies from Industrial Categorization Standards," Int'l Journal on Semantic Web &
Information Systems (IJSWIS), vol. 2, pp. 72-99, 2006.

[7] M. Hepp, "Representing the Hierarchy of Industrial Taxonomies in OWL: The gen/tax
Approach," Proceedings of the ISWC Workshop Semantic Web Case Studies and Best
Practices for eBusiness (SWCASE05), Galway, Irland, 2005.

[8] M. van Assem, M. R. Menken, G. Schreiber, J. Wielemaker, and B. J. Wielinga, "A
Method for Converting Thesauri to RDF/OWL," Proceedings of the ISWC'04, Hiroshima,
Japan, 2004.

[9] F. Giunchiglia, M. Marchese, and I. Zaihrayeu, "Towards a Theory of Formal
Classification," Proceedings of the AAAI-05 Workshop on Contexts and Ontologies:
Theory, Practice and Applications (C&O-2005), Pittsburgh, Pennsylvania, USA, 2005.

[10] A. Kiryakov, D. Ognyanov, and D. Manov, "OWLIM – a Pragmatic Semantic Repository
for OWL," Proceedings of the International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS 2005), New York City, USA, 2005.

[11] R. J. Brachman, "What IS-A Is and Isn't: An Analysis of Taxonomic Links in Semantic
Networks," IEEE Computer, vol. 16, pp. 30-36, 1983.

[12] A. L. Rector, C. Wroe, J. Rogers, and A. Roberts, "Untangling Taxonomies and
Relationships: Personal and Practical Problems in Loosely Coupled Development of
Large Ontologies," Proceedings of the K-CAP'01, Victoria, British Columbia, Canada,
2001.

[13] V. Kashyap and A. Borgida, "Representing the UMLS Semantic Network using OWL,"
Proceedings of the 2nd International Semantic Web Conference 2003 (ISWC 2003),
Sanibel Island, Florida, USA, 2003.

[14] D. Zhang and W. S. Lee, "Learning to integrate web taxonomies," Journal of Web
Semantics, vol. 2, pp. 131-151, 2004.

[15] B. J. Wielinga, A. T. Schreiber, and J. A. C. Sandberg, "From Thesaurus to Ontology,"
Proceedings of the First International Conference on Knowledge Capture (K-CAP 2001),
Victoria, British Columbia, Canada, 2001.

[16] B. J. Wielinga, J. Wielemaker, G. Schreiber, and M. van Assem, "Methods for Porting
Resources to the Semantic Web," Proceedings of the First European Semantic Web
Symposium (ESWS'04), Heraklion, Greece, 2004.

[17] F. Giunchiglia, M. Marchese, and I. Zaihrayeu, "Encoding Classifications into
Lightweight Ontologies," Proceedings of the 3rd European Semantic Web Conference
(ESWC 2006), Budva, Montenegro, 2006.

144 M. Hepp and J. de Bruijn

[18] C. Bizer and J. Wolk, "RDF Version of the eClass 4.1 Product Classification Schema,"
available at http:////www.wiwiss.fu-berlin.de/suhl/bizer/ecommerce/eClass-4.1.rdf,
retrieved March 15, 2007.

[19] M. Hepp, "eCl@ssOWL. The Products and Services Ontology," available at
http://www.heppnetz.de/eclassowl/, retrieved March 15, 2007.

[20] M. Fernández-López and A. Gómez-Pérez, "Overview and analysis of methodologies for
building ontologies," The Knowledge Engineering Review, vol. 17, pp. 129-156, 2002.

[21] J. de Bruijn, "Using Ontologies. Enabling Knowledge Sharing and Reuse on the Semantic
Web," DERI Technical Report DERI-2003-10-29, October 2003, pp. 1-49, 2003.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 145–159, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SPARQLeR: Extended Sparql for Semantic
Association Discovery*

Krys J. Kochut and Maciej Janik

Department of Computer Science, University of Georgia
415 Boyd Graduate Studies Research Center

Athens, GA 30602-7404
{kochut,janik}@cs.uga.edu

Abstract. Complex relationships, frequently referred to as semantic associa-
tions, are the essence of the Semantic Web. Query and retrieval of semantic
associations has been an important task in many analytical and scientific
activities, such as detecting money laundering and querying for metabolic
pathways in biochemistry. We believe that support for semantic path queries
should be an integral component of RDF query languages. In this paper, we
present SPARQLeR, a novel extension of the SPARQL query language which
adds the support for semantic path queries. The proposed extension fits
seamlessly within the overall syntax and semantics of SPARQL and allows easy
and natural formulation of queries involving a wide variety of regular path
patterns in RDF graphs. SPARQLeR's path patterns can capture many low-level
details of the queried associations. We also present an implementation of
SPARQLeR and its initial performance results. Our implementation is built
over BRAHMS, our own RDF storage system.

1 Introduction

The size of ontologies in the Semantic Web has grown significantly within the last
few years. The vision of ontologies containing millions of entities interconnected by
meaningful relationships presented in [22] has become reality. The current query
languages for RDF bases, such as SPARQL [24], RQL [14] and RDQL [21], support
defining graph patterns and expressing various restrictions on entities and
relationships participating in the defined patterns. However, all of them lack the
necessary constructs that directly support the discovery of semantic associations,
which cannot be explicitly defined by fully specified structure of a graph pattern.

We believe that querying for semantic associations is an important feature missing
in the current RDF query languages, most notably in SPARQL. This paper presents
SPARQLeR, a novel extension of SPARQL that enables the discovery of semantic
associations among entities in RDF knowledge bases.

Semantic association is an undirected path that connects two entities in the
knowledge base using named relationships, which represent its meaning. Discovery of

* This research has been partially supported by the National Science Foundation Grant No. IIS-

0325464 entitled “SemDIS: Discovering Complex Relationships in the Semantic Web”.

146 K.J. Kochut and M. Janik

semantic associations is the process of finding paths of possibly unknown length that
connect the given entities and have a specific semantics. Therefore, the search for
paths must focus on the semantics of both the entities and the properties on the path.
Moreover, the order of the relationships in the path and their directionality is crucial
in expressing the semantics of the associations. To fulfill these requirements
SPARQLeR uses regular expressions over properties for specifying the required
semantics of the queried paths. The paths are treated as RDF meta-resources
represented as sequences. They can be used in other patters, specifying the required
properties of the individual path elements. This approach gives the user a detailed
control over each of the elements on the path, as well as its overall semantics.

The paper is organized as follows. In Sec. 2, we give a motivation for adding
semantic association discovery in RDF query languages. In Sec. 3, we discuss semantic
associations and different types of paths in RDF bases. Sec. 4 introduces the concept of
a path in SPARQLeR, shows the syntax and semantics of the language, and describes
its prototype implementation. In Sec. 5, we discuss the initial performance results of
our implementation.

2 Motivation

An important discovery in medicine made by Dr. D.R. Swanson of a dependency
between Magnesium and Migraine [25] is a clear example of finding meaningful
semantic associations. He manually searched through papers in PubMed [17] to
establish a sequence of facts, supported by co-occurrence of significant terms in
papers, that Magnesium may alleviate Migraine. With the suitable biomedical
knowledge base extracted from PubMed and stored in RDF, as proposed in [19],
finding such associations can be accomplished with the use of regular path queries.

Many interesting examples of semantic associations can be found in biological
sciences. Metabolic pathways, composed of sequences of chemical reactions occurring
within a cell, involve a gradual modification of the initial substance into the final
product with the desired chemical structure.

N-Glycan Biosynthesis pathway [12] is an example of a well known metabolic
pathway (presented later in Fig. 5). It starts from dolichol phosphate and ends with
the production of glyco peptide G00009. It contains 15 chemical reactions and, even
though this pathway may not be regarded as very long among the biochemical
pathways, it is considered long for a path in the area of the Semantic Web.

Locating and retrieving metabolic pathways is a difficult problem. Regular path
queries can be used searching for metabolic pathways. Using such queries, scientists
should be able to query for and retrieve ordered sequences of specific reactions that
lead from a given substance to a desired final product.

Additional interesting applications of semantic association discovery include
BioPatentMiner [16] and Insider Threat [1]. We believe that there is a clear need for
an RDF query language capable of semantic association retrieval.

Introduced in this paper SPARQLeR offers a variety of constructs for easy
formulation of regular path queries which are suitable for solving the above problems.

 SPARQLeR: Extended Sparql for Semantic Association Discovery 147

3 Background

Path queries have been a focus of formal studies as well as practical applications. The
complexity of finding regular paths in graphs was investigated in [15] and [7]. The
authors showed that in general case finding all simple paths matching a given regular
expression is NP-Complete, whereas in special cases it can be tractable. The
complexity of various types of path queries, such as linear, regular and context-free
was also described in [27]. Another approach was proposed in [6]. Here, the authors
focused on finding paths in labeled graphs. In this case, a regular language is defined
beforehand and a special index is maintained for all edge inserts and deletes.

Some of the query languages created for semi-structured databases support
defining regular path queries. Among the well known languages are: G [10] and G+
[9], and Graphlog [8]. The relationship between the chain programs with recursive
predicates and regular path queries is described in [4]. For RDF data, partial support
for path queries, but not regular paths, can be found in SeRQL [5], TRIPLE [23], and
Versa [18]. Versa introduced the traverse keyword which allowed querying for
variable-length paths using a set of specified transitive properties. In [2], the authors
present only the initial work on PSPARQL, a language supporting regular expressions
in SPARQL. However, the regular expressions were to be used in place of properties
in triple patterns, which limited the ability of testing individual path elements. It also
significantly altered the syntax of SPARQL.

3.1 Semantic Associations in RDF Description Bases

Paths in RDF description bases represent a variety of explicit and implied semantic
relationships among the participating resources (entities). This is based on the
assumption that entities are semantically related if there exists a path connecting
them. In [3], Anayawu and Sheth proposed a ρ-path (and related concepts) as a way of
expressing semantic associations between entities in RDF bases. A ρ-path has been
defined as a directed path connecting two entities.

While directed paths naturally capture semantic associations between entities, we
also believe that undirected paths also capture important semantic associations which
should not be ignored. Therefore, we view semantic associations as implied by the
presence of either directed, undirected paths, or undirected paths with specific
directionality of the included properties. A good illustration of this observation is an
RDF graph, shown in Fig. 1, describing a part of a well known Glycan biosynthesis
pathway (we discuss it further later in this paper). The shown fragment includes 3
reactions, represented by the entities R05972, R05973, and R06238 and 4 glycans
(G00002-G00005) as their reactants and products. For clarity of presentation, other
properties have not been included in the shown graph.

The glycan G00002 is a predecessor of G00005. Clearly, they are semantically
associated, even though there is no directed path connecting them. In fact, the whole
pathway links the starting substance, dolichol phosphate, and the final product,
peptide G00009, using a sequence of reactions similar to the ones above. Again,
a directed path connecting dolichol phosphate, and peptide G00009 does not exist, but
the two molecules are semantically related by this important pathway.

148 K.J. Kochut and M. Janik

Fig. 1. An example of a chemical reaction graph

Below, we define semantic associations taking into account any type of connection
between two entities. In what follows, we will interchangeably use the terms triple
and RDF statement. We will assume that R is an RDF description base.

Def. 1. A directed path between resources r0 and rn in R is a sequence r0 p1 r1 p2 r2 ,
… pn-1 rn-1 pn rn (n>0) if r0 p1 r1, r1 p2 r2 , … rn-2 pn-1 rn-1, rn-1 pn rn (n>0) are triples
in R. The length of the path is n. Moreover, we require that all of the resources ri (0 ≤
i ≤ n) in the path be distinct (we will only consider simple paths).

Def. 2. An undirected path between the resources r0 and rn in R is a sequence r0 p1 r1
p2 r2 , … pn-1 rn-1 pn rn (n>0) if for each property and the two neighboring resources
ri-1 pi ri (0 < i ≤ n) in the path, either ri-1 pi ri . or ri pi ri-1 . is a triple in R. We will
consider only simple undirected paths.

Def. 3. Two resources r and s in R are semantically associated if there exists an
undirected path in R connecting the two resources.

3.2 Defined Directionality Paths

While searching for semantic associations between two given entities we may be
interested in paths in which properties follow a specific defined directionality pattern,
according to the desired semantics of the connection between the entities. Creating
such patterns requires an inverse property operator, not present in SPARQL. In
SPARQLeR, we will use the ‘−’ (minus) character to denote the inverse of a property.

Spatial relationships, such as A is inside B, offer illustrative examples for defined
directionality paths. Let us consider the following three path queries with regular
patterns (SPARQLeR’s path patterns are defined later, in section 4.2):

1. spatial:inside* - when used in a search for directed paths, it locates semantic
associations illustrated by a diagram shown in Fig. 2a.

2. spatial:inside* - when used in a search for undirected paths, it locates semantic
associations illustrated by diagrams shown in Fig. 2a, 2b and 2c.

3. (spatial:inside −spatial:inside)* [read as: concatenation of inside with inverse
of inside] - when used in a search for directed paths, it locates semantic
associations illustrated by a diagram shown in Fig. 2c, showing very specific,
a chain-like inclusion structure.

Following the above observation, we believe that semantic associations require more
than directed or undirected paths and should be treated as defined directionality paths.

 SPARQLeR: Extended Sparql for Semantic Association Discovery 149

Fig. 2. Example results of spatial path queries

From a graph theoretical perspective, a path that matches a defined directionality
pattern is an undirected path, and its implied semantics is set by the specific
directionality of its member properties.

4 SPARQLeR

SPARQLeR (SPARQL extended with Regular paths) is an extension of SPARQL
designed for querying for semantic associations. Our intension was to introduce
minimal changes to SPARQL’s syntax and semantics. Querying in SPARQLeR
focuses on building path patterns involving undirected and directed paths as well as
paths with defined directionality of the participating properties. Note, that since all
properties have their inverses, the expressiveness of directed path queries is sufficient,
as it enables us to construct undirected path patterns with the use of properties and
their inverses. Nevertheless, to simplify the creation of path patterns, undirected path
patterns are also supported. Syntax of proposed extensions fit seamlessly into current
SPARQL language grammar. The new constructs in SPARQLeR are designed for the
discovery of the semantic associations and, in particular, allow the user to:

− search for undirected paths or for paths with specific directionality of properties,
− filter located paths with the use of regular expressions formed over properties

included in the path (use of inverse properties is also allowed),
− filter located paths by imposing constraints on the length of paths,
− filter located paths by requiring the presence of specific resources on the path,

possibly even at a specific position,
− specify if located paths can include instance entities, schema classes and/or literals,
− indicate if the hierarchy of sub-properties should be used in property matching.

4.1 Path as RDF Meta-resource and Path Patterns

We will treat paths in RDF description bases as RDF meta-resources. In order to
place these new meta-resources within the RDF vocabulary, we have created a new
class Path defined in the new vocabulary rdf-meta-schema. The class Path has been
defined as the sub-class of both rdf:Property and rdf:Seq as follows:
<rdf:Class rdf:about="http://meta.org/rdf-meta-schema#Path">
 <rdfs:isDefinedBy rdf:resource="http://meta.org/rdf-meta-schema#"/>
 <rdfs:subClassOf
 rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
 <rdfs:subClassOf
 rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq"/>
 <rdfs:label>Path</rdfs:label>

<rdfs:comment>The class of RDFMS paths.</rdfs:comment>
</rdf:Class>

150 K.J. Kochut and M. Janik

According to the above definition, a resource of type Path is a sequence of other
RDF resources. The sequence is composed of an ordered list of properties and
connecting resources, as defined in Def. 2, but without the starting and ending
resources, i.e. a path begins and ends with a property.

Having a path represented as a meta-resource of type rdfs:Seq, allows us to create
patterns for inspecting the path elements with the use of the properties rdf:Member,
and rdf:_N, which will be illustrated later in this paper.

A semantic association path between two resources r and s in an RDF graph forms
a natural extension of a regular RDF property connecting the two resources. As such,
the two resources and the path can be regarded as a meta-triple of the form r path s,
where path is a meta-resource of type Path.

4.2 Path Patterns

We have extended SPARQL’s triple patterns to include path patterns. Paths can be
matched only by path variables. A path variable is a name beginning with the %
character, for example %connection. A path pattern is a triple pattern created with the
use of a path variable in place of the property. A path query is any SPARQL query
involving at least one path pattern. Instead of formally defining SPARQLeR’s syntax,
we will present a number of examples illustrating path patterns.

The following SELECT path query, involving a two-source path pattern

SELECT %path WHERE {<r> %path <s>}

matches any path between the resources r and s. By default, the matched paths must
be directed. As expected, for every matched path, the variable %path is bound to the
located path, represented as a sequence (rdf:Seq) of properties and the connecting
resources (the first and last elements of the sequence are properties). Therefore, the
above query returns a list of blank nodes representing the matched paths (sequences).

In order to list the resources on each matched path, the list operator (applicable
only to the path variables) must be applied to the path variable, as shown below:

SELECT list(%path) WHERE {<r> %path <s>}

Path patterns allow for searching for any resources reachable from a given one. The
following single source SELECT query locates resources reachable from resource r:

SELECT %path, ?res WHERE {<r> %path ?res}

For every match, the reached resource is bound by the variable ?res, and both the
path leading to it and the resource are returned by the query. The analogous form of
the above query relies on the inverse path pattern of the form {?res %path <r>}. This
pattern matches all resources (and paths) from which the resource r is reachable.

Since a matched path is a meta-resource of type Path, and therefore also of type
rdf:Seq, resources on the path may be examined with the use of patterns involving the
container membership properties. For example, the following query:

SELECT %path WHERE
{<r> %path <s> . %path rdfs:Member <e>}

 SPARQLeR: Extended Sparql for Semantic Association Discovery 151

matches any semantic path between the resources r and s, provided the path includes
the resource e. Even though it involves a path variable, the second triple is not a path
triple, since the path variable is not used in place of the property. Similarly, we can
formulate queries examining resources at specific positions on the path. For example,
the following query:

SELECT %path WHERE {<r> %path <s> . %path rdfs:_1 <p>}

matches any semantic path between the resources r and s, provided the path begins
with the property p (a SPARQLeR path always begins with a property). Similarly, the
property rdfs:_2 can be used to examine the first connecting resource on the path. In
addition, two meta-properties rdfms:entityResource and rdfms:propertyResource (not
described here) access the connecting resources and relationships, respectively (rdfms
is the namespace prefix of the meta-schema, discussed in Sec. 4.1).

Path patterns may be also used in construct, describe and ask queries. As expected,
a path variable used in a CONSTRUCT query returns all triples forming the paths
matched by the querie’s graph pattern. For example, the query

CONSTRUCT {<r> %path <s>} WHERE {<r> %path <s>}

returns all triples forming all paths between the resources r and s. The list operator
cannot be used within the CONSTRUCT expression.

It is interesting to note that CONSTRUCT queries can be used to extract
interesting sub-graphs, satisfying certain specific semantic properties. Combination of
multiple path queries with use of CONSTRUCT, possibly with common intersecting
points, may lead to creating semantically highly informative sub-graphs [20].

The ASK query functionality for path patters is defined as testing for existence of
at least one specified path. The DESCRIBE query returns the description of all
resources included in the found paths. DESCRIBE and ASK queries have not been
included yet in presented implementation.

4.3 Testing Paths

Testing of the located paths can be performed with the use of special expressions used
within the FILTER clause. A path can be tested if it matches a given regular
expressions, or if its length is within certain bounds.
The regex operator in SPARQLeR has been extended to specify regular path
expression filters. Syntactically, it is identical to the usual regex operator, but the first
argument must be a path variable. The second argument must be a path expression,
while the optional third argument specifies the path matching flags:

regex(pathvar, pathexpr, pathflags)

The path expressions can be formed with the use of property names, their inverses,
classes of properties, and the usual collection of regular expression operators. They
are intended to specify the semantics of the path between a pair of resources.

Def. 4. SPARQLeR’s path expressions are defined recursively as follows (p, p1,
p2,…, and pn denote property names, while x and y denote path expressions). We also
define paths between resources r and s which are matched by the defined path
expressions.

152 K.J. Kochut and M. Janik

• p matches a path between r and s of length 1 if a triple r p s exists;
• -p (the inverse of p) matches a path between r and s of length 1 if a triple s p r

exists;
• [p1 p2 … pn] (class of properties) matches a path between r and s of length 1 if a

triple r pi s exists for some i (1≤i≤n);
• -[p1 p2 … pn] matches a path between r and s of length 1 if a triple s pi r exists for

some i (1≤i≤n); inverse operator is not allowed for properties inside the set;
• [^p1 p2 … pn] matches a path between r and s of length 1 if a triple r p s exists and

p ≠ pi (1≤i≤n);
• -[^p1 p2 … pn] matches a path between r and s of length 1 if a triple s p r exists and

p ≠ pi (1≤i≤n); inverse operator is not allowed for properties inside the set;
• . (wildcard) matches a path between r and s of length 1 if either triple r p s or s p r

exists for some property p;
• also supported: x | y (alternative); xy (concatenation); x* (Kleene star);

 x+ (one or more repetition); (x) (match a path matched by x).

For example, the following query matches paths between resources r and s that use
only property foo:prop:

SELECT list(%path) WHERE
{<r> %path <s>
 FILTER(regex(%path,”foo:prop+”)}

In order to keep the size of the path expressions manageable, only the prefix-
abbreviated names of properties are allowed. The type of the located path (directed or
undirected) can be requested as part of the regex expression and is indicated in the
(optional) path flags of the regex expression. For example, the query

SELECT list(%path) WHERE
{<r> %path <s>
 FILTER(regex(%path,”(foo:prop|foo:rel)+”,”u”)}

allows the matched path to be undirected. When the path directionality is left
unspecified, the path is assumed to be directed (the flag “d” is assumed). Also, the
path expression may be omitted, as in regex(%path,,”u”). Here, each path bound to
variable %path may be undirected and be composed of arbitrary properties. A regex
with no path expression is equivalent to regex(%path,”.*”,”u”). Note, that
regex(%path,”.*”) matches only directed paths, even though the wildcard expression
(.) matches both a property and its inverse.

The other path flags include i, s, l, and h. The flags i, s, and l specify that the path is
restricted to resources which are instances (entities), schema classes, and literals,
respectively. The last flag, h (hierarchy), indicates that when matching
properties,additionally their ancestor properties (following the subPropertyOf property)
may be used. The path flags may be combined. For example,

regex(%path,”.*foo:prop.*”,”uis”)

specifies that the path must involve property foo:prop, may be undirected, and can
only involve connecting resources which are instances or schema classes. The default
path flags string is ”di”.

 SPARQLeR: Extended Sparql for Semantic Association Discovery 153

The new length operator returns the length of the path and can be used as part of
a FILTER expression. For example,

SELECT list(%path) WHERE
{<r> %path <s>
 FILTER(length(%path)<5)}

restricts the matched paths to be of length less than 5. Due to implementation
optimization, the length of a path may be compared only to constant values. Path
filtering expressions may be combined, and mixed with any other filter tests,
involving other variables and resources. As discussed in Sec. 0, the located paths may
not be required to be fully directed, but with a specified directionality of individual
properties. This may be requested by a suitable path expression, as in the following
select query:

SELECT list(%path) WHERE
{<r> %path <s>
 FILTER(length(%path)<=6 && length(%path)>=4 &&
 regex(%path,”(foo:prop -foo:rel)+”)}

which requires that the matched paths be composed of sequences of pairs of
properties: foo:prop followed by the inverse of the property foo:rel.

4.4 Prototype Implementation of SPARQLeR

Our implementation of SPARQLeR uses BRAHMS, our own RDF storage system
[13]. The implementation relies on BRAHMS’s low level API to iterate over triples,
depending on whether the subject, property, object, or their combination has already
been fixed (by bound variables or explicit resources). The graph pattern included in a
SPARQL query is converted into a composition of such iterators, according to a
created query plan.

The path iterator, necessary for path pattern matching, has been implemented as a
hybrid of a bidirectional breadth-first search and a simulation of a deterministic
finite automaton (DFA) created for a given path expression. During our previous
experiments [13], a bidirectional breadth first search proved to be the most efficient
method in practice for finding all simple paths up to certain hop limit. For each
instance of the iterator created for a path pattern, two DFAs are constructed. The first
one accepts the regular language defined by the original path expression, while the
second one accepts the reversed language, which is also regular. The path search
uses the steps from the bidirectional BFS to grow the frontiers of entities used to
connect paths. Before an entity is placed on the frontier for the next expansion, a
check is performed if the partial path leading to it is not rejected by the appropriate
DFA. This guarantees that the partial results, which are not accepted by DFA, will
not be further expanded. Making this check for each node before adding it to a
frontier causes the frontiers to grow very slowly for some regular expressions. From

154 K.J. Kochut and M. Janik

the practical point of view, it significantly increases the possibility of finding longer
paths in an acceptable amount of time and of not exhausting the memory used by the
search.

Fig. 3. Path finding and sub-paths in breadth-first search

A candidate path is located when an entity from the forward frontier matches an
entity from the reverse frontier. At this point, it is only known that the "forward" sub-
path has not been rejected by the forward DFA and that the "reverse" sub-path has not
been rejected by the DFA accepting the reverse language. Before the concatenated
path is returned, it must be accepted by the forward DFA, created from the original
path expression.

A similar solution is used for single source path patterns. In this case, only one
DFA in conjunction with a standard breadth first search is used to grow a single
frontier of entities.

5 Experiment Design and Results

We have tested our implementation of SPARQLeR using a collection of path queries
against a modified DBLP dataset [11]. We also performed path queries locating
metabolic pathways in the Glycomics domain, using the GlycO ontology [26].

Tests were performed on machine with 2 Intel(R) Xeon(TM) 3.06GHz CPUs and
4Gb memory, running Red Hat 9.0 Enterprise Linux. C/C++ code was compiled using
gcc (GCC) 3.2.3 20030502 (Red Hat Linux 3.2.3-56) with ‘–O6’ optimization flag.

5.1 Data Sets

In our searching for metabolic pathways, we used the GlycO ontology. It represents
information about glycans and includes a comprehensive schema as well as instances.
GlycO is still under development and many new instances representing theoretical as
well as experimental data are being added. Currently, the ontology has 362 classes
(mainly glycans classification taxonomy) and 84 specialized properties.

Our scalability experiments required a much bigger data set. For this purpose we
used a modified version of the DBLP ontology generated from the data available in
September, 2006. It contains information about authors, published papers, articles,
year of publication, etc. Unfortunately, the citations have been assigned to very few
documents, rendering this set unsuitable for scalability test purposes. To be able to
search for long, meaningful paths, we have replaced the current (few) citations with a

 SPARQLeR: Extended Sparql for Semantic Association Discovery 155

list of randomly created citations (1 to 10 random citations to papers selected from all
of the previous years in the knowledge base, using a normal distribution). The total
number of randomly inserted citations in the full dataset reached almost 4.3 million.

The full DBLP dataset contains 790,635 publications with set publish year. For
scalability testing, we used a subset of publications published in or after 1981. It
contains 760,369 publications and has been subdivided it into 26 subsets, each one
including publications from an increasingly wider time range, starting with 2006 and
ending with 1981 (the smallest set included only 2006 publications and the largest one
included publications from years 1981-2006). The smallest test dataset contained
almost 300,000 instance statements, while the largest one had over 6.6M instance
statements. Fig. 4 presents numbers of publications in full DBLP (starting from year
1936) and sizes of used test datasets in statements.

Fig. 4. Number of publications in DBLP from year 1936 and sizes of used test datasets

5.2 Functionality Test in the Biomedical Domain

We have tested the functionality of SPARLQeR on a wide selection of path queries,
executed against a number of RDF bases. Due to the space limitations here, we will

Fig. 5. N-Glycan biosynthesis pathway with query start and end points (courtesy of Dr. Alison
Vandersall-Nairn, University of Georgia)

156 K.J. Kochut and M. Janik

only discuss a particularly representative query in the biochemistry domain, retrieving
a major part of the well known N-Glycan biosynthesis pathway [12]. The pathway is
shown in Fig. 5 on the next page, where each arrow represents one reaction. The
pathway is represented in GlycO, with the reactions represented as illustrated by the
RDF graph in Fig 1.

We chose this pathway for its high regularity and a significant length. It enabled us
to test if specifying paths using path expressions would help to find long, semantically
relevant paths within an acceptable time. For this test we used the GlycO ontology
and the SPARQLeR query used is presented below.

SELECT list(%path) WHERE {
 glyco:dolichol_phosphate %path glyco:glyco_peptide_G00009 .
 %path rdfs:member enzyo:R05969
 FILTER (length(%path) <= 30 &&
 regex(%path, "((-glyco:has_acceptor_substrate|
 -glyco:has_reactant) glyco:has_product)*")) }

This query located a pathway of length 30, consisting of 15 reactions. It starts with
dolichol phosphate, goes through the reaction R05969 (one of two possible at this
step) and ends at glyco peptide G00009. Despite of the significant length, the result
was retuned almost instantly, due to the high selectivity of path expressions. This
proof of concept test demonstrated usefulness of the proposed SPARQL extension.

5.3 Scalability Tests on Modified DBLP Datasets

For the scalability tests, we randomly chose 14 papers published in 2006 and executed
single-source queries to find all paths leading to papers they cited, using the relation
cites_publication. A sample SPARQLeR query in presented below:

PREFIX opus: <http://lsdis.cs.uga.edu/projects/semdis/opus#>
SELECT ?end_publication WHERE {
 <http://dblp.uni-trier.de/rec/bibtex/journals/ai/Huber06>
 %path ?end_publication
 FILTER (length(%path)<=26 &&
 regex(%path, "(opus:cites_publication)*")) }

The queries were performed on increasingly larger datasets, starting with articles
published only in 2006 and ending with articles published during 1981-2006. Each
query was executed 4 times against each dataset. The plots in Fig. 6 on the next page
present the execution time for all queries for each dataset and the number of located
paths plotted on a logarithmic scale.

In the performed tests, the number of paths increased exponentially as the
publications from the previous years were added. For the largest dataset, each query
returned approximately 660,000 on average. The execution time also followed the
exponential growth, but even for the longest query did not exceed 7 seconds.

Additionally, we performed tests for finding semantic associations between two
given entities. We identified 4 early publications that were reachable by a relatively
large number of paths from all previously chosen 14 starting publications. These 4

 SPARQLeR: Extended Sparql for Semantic Association Discovery 157

Fig. 6. Query execution times and number of found paths for single-source path queries

entities become endpoints for path queries between two resources. A sample
SPARQLeR query is presented below:

SELECT list(%path) WHERE {
 <http://dblp.uni-trier.de/rec/bibtex/journals/ai/Huber06>
 %path
 <http://dblp.uni-trier.de/rec/bibtex/conf/programm/BarbutiM80>
 FILTER (length(%path)<=26 &&
 regex(%path, "(opus:cites_publication)*")) }

The queries were performed on increasingly larger datasets, while the length limit
was increasing from 1 to 26, according to number of covered years in the datasets. For
each of the 14 start entities we ran the path query to the 4 previously selected publications
and averaged the results. The plots in Fig. 7 present the execution time and numbers of
located paths for 14 start entities (each queried with 4 endpoints) for each dataset.

Fig. 7. Query execution times and number of found paths for path queries with set endpoints

In these tests, due to specificity of the dataset, although the number of results is a
small fraction of previous ones, the search space became significantly larger than for
the single-source queries. Nevertheless, the execution time did not exceed 25 seconds,
which we think is a reasonable result for searching paths of length up to 26 hops. For
shorter paths, the execution time drops drastically to below 1 second. In both cases,

158 K.J. Kochut and M. Janik

such results for long queries can only mean that the given path expression was highly
selective. It also proves the usability of the proposed SPARQL extension.

Of course, the path problem remains exponential and our solution does not change
this fact. However, the results of our scalability experiments proved that in some
practical cases, path queries can be solved within a reasonable amount of time, even
for relatively long paths. This is possible with the use of path expressions which are
highly selective with respect to a given dataset.

6 Conclusions and Future Work

We have presented SPARQLeR, a novel extension of SPARQL designed for finding
semantic associations in RDF bases, and described its working implementation.
SPARQLeR’s path patterns have been seamlessly incorporated within SPARQL’s
graph patterns and allow for capturing both structural and semantic requirements of
semantic association queries. Our experiments with path pattern queries have
demonstrated the expressive power of SPARQLeR, effectiveness of its implementa-
tion, as well as its practical value in the presented examples.

Our future plans involve the optimization of regular path queries and incorporation
of regular context into SPARQLeR. Despite the presented good timing results, we
think that the optimization of path queries is very important for the practical use of the
proposed language. This line of research involves not only optimization of simple
queries, but of complex expressions and queries spanning multiple paths, as well.

We plan to base the notion of a context on our path patterns inducing RDF sub-
graphs that will allow us to semantically specify a sub-graph of interest within an
RDF description base. Consequently, this would support the idea that the same query
executed in different contexts should return different results.

References

1. Aleman-Meza, B., Burns, P., Eavenson, M., Palaniswami, D. and Sheth, A., An Ontological
Approach to the Document Access Problem of Insider Threat. in IEEE International
Conference on Intelligence and Security Informatics (ISI-2005), (Atlanta, Georgia, 2005).

2. Alkhateeb, F., Baget, J.-F. and Euzenat, J. Complex path queries for RDF Poster paper in
4th International Semantic Web Converence (ISWC2005), Galway, Ireland, 2005.

3. Anyanwu, K. and Sheth, A., r-Queries: Enabling Querying for Semantic Associations on the
Semantic Web. in 12th International World Wide Web Conf., (Budapest, Hungary, 2003).

4. Beeri, C., Kanellakis, P., Bancilhon, F. and Ramakrishnan, R., Bounds on the propagation
of selection into logic programs. in 6th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, (San Diego, California, United States, 1987), 214 - 226.

5. Broekstra, J. and Kampman, A. SeRQL: A Second Generation RDF Query Language
SWAD-Europe Workshop on Semantic Web Storage and Retrieval, Amsterdam,
Netherlands, 2003.

6. Buchsbaum, A.L., Kanellakis, P.C. and Vitter, J.S., A data structure for arc insertion and
regular path finding. in 1st annual ACM-SIAM symposium on Discrete algorithms, (San
Francisco, California, United States, 1990), 22-31.

7. Calvanese, D., Giacomo, G.D., Lenzerini, M. and Vardi, M.Y., Containment of
Conjunctive Regular Path Queries with Inverse. in 7th International Conference on the
Principles of Knowledge Representation and Reasoning (KR 2000), (2000), 176-185.

 SPARQLeR: Extended Sparql for Semantic Association Discovery 159

8. Consens, M. and Mendelzon, A.O., Graphlog: a visual formalism for real life recursion. in
ACM Symposium On Principles of Database Systems, (1990), 404-416.

9. Cruz, I.F., Mendelzon, A.O. and Wood, P.T., G+: Recursive queries without recursion. in
2nd International Conference on Expert Database Systems, (1988), 355-368.

10. Cruz, I.F., Mendelzon, A.O. and Wood, P.T., A graphical query language supporting
recursion. in ACM SIGMOD International Conference on Management of Data, (San
Francisco, California, United States, 1987), ACM Press, 323-330.

11. Hassell, J., Aleman-Meza, B. and Arpinar, I.B. Ontology-Driven Automatic Entity
Disambiguation in Unstructured Text 5th International Semantic Web Conference (ISWC-
2006), Athens, GA, 2006.

12. Helenius, A. and Aebi, M. Roles of N-Linked Glycans in the Endoplasmic Reticulum.
Annual Review of Biochemistry, 2004, 73. 1019-1049.

13. Janik, M. and Kochut, K., BRAHMS: A WorkBench RDF Store And High Performance
Memory System for Semantic Association Discovery. in 4th International Semantic Web
Conference, (Galway, Ireland, 2005).

14. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D. and Scholl, M., RQL:
A Declarative Query Language for RDF. in 11th International World Wide Web
Conference, (Honolulu, Hawaii, USA, 2002), ACM.

15. Mendelzon, A.O. and Wood, P.T., Finding Regular Simple Paths In Graph Databases. in
15th Conference on Very Large Databases, (Amsterdam, The Netherlands, 1989), Morgan
Kaufman pubs. (Los Altos CA).

16. Mukherjea, S. and Bamba, B., BioPatentMiner: An Information Retrieval System for
Biomedical Patents. in 13th International Conference on Very Large Data Bases (VLDB
2004), (Toronto, Canada, 2004), Morgan Kaufmann.

17. NLM. PubMed The National Library of Medicine, Bethesda MD.
18. Ogbuji, U. RDF Query using Versa Thinking XML: Basic XML and RDF techniques for

knowledge management, Part 6, 10 April 2002.
19. Ramakrishnan, C., Kochut, K. and Sheth, A., A Framework for Schema-Driven

Relationship Discovery from Unstructured text. in 5th International Semantic Web
Conference (ISWC 2006), (Athens, Georgia, USA, 2006).

20. Ramakrishnan, C., Milnor, W.H., Perry, M. and Sheth, A.P. Discovering Informative
Connection Subgraphs in Multi-relational Graphs. SIGKDD Explorations, 7 (2). 56-63.

21. Seaborne, A. RDQL - A Query Language for RDF, 2004.
22. Sheth, A., From Semantic Search & Integration to Analytics. in Dagstuhl Seminar

Proceedings 04391, (Dagstuhl, Germany, 2005).
23. Sintek, M. and Decker, S. TRIPLE - An RDF Query, Inference, and Transformation

Language Deductive Databases and Knowledge Management, Tokyo, Japan, 2001.
24. SPARQL. Query Language for RDF. Prud'hommeaux, E. and Seaborne, A. eds., 2005.
25. Swanson, R.D. Migraine and Magnesium: Eleven Neglected Connections. Perspectives in

Biology and Medicine, 31 (4). 526-557.
26. Thomas, C.J., Sheth, A.P. and York, W.S., Modular Ontology Design Using Canonical

Building Blocks in the Biochemistry Domain. in International Conference on Formal
Ontology in Information Systems (FOIS), (November 2006), IOS Press.

27. Yannakakis, M., Graph-theoretic methods in database theory. in 9th ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, (Nashville, Tennessee,
United States, 1990), ACM Press, 230-242.

Simple Algorithms for Predicate Suggestions

Using Similarity and Co-occurrence

Eyal Oren, Sebastian Gerke, and Stefan Decker

Digital Enterprise Research Institute
National University of Ireland, Galway

Galway, Ireland
firstname.lastname@deri.org

Abstract. When creating Semantic Web data, users have to make a
critical choice for a vocabulary: only through shared vocabularies can
meaning be established. A centralised policy prevents terminology diver-
gence but would restrict users needlessly. As seen in collaborative tagging
environments, suggestion mechanisms help terminology convergence wi-
thout forcing users. We introduce two domain-independent algorithms
for recommending predicates (RDF statements) about resources, based
on statistical dataset analysis. The first algorithm is based on similarity
between resources, the second one is based on co-occurrence of predicates.
Experimental evaluation shows very promising results: a high precision
with relatively high recall in linear runtime performance.

1 Introduction

The Semantic Web is decentralised in terms of autonomy, allowing everyone to
make any statement, but centralised in terms of vocabulary: others can only
understand statements that use familiar terminology. Given this situation, we
consider the following problem: how to ensure that individuals, free to use arbi-
trary terminology, converge towards shared vocabularies?

As a particular use case we consider authoring in Semantic Wikis [12, 14, 18].
These enhanced Wikis allow users to describe information both in free text and
through semantic descriptions. Allowing users to make arbitrary statements is
important, since it ensures domain-independence of the Wiki.

Without further considerations, the authoring freedom in Semantic Wikis
would result in statements with different vocabularies, defying the purpose of
the Semantic Wiki. A terminology policy could be enforced but that would highly
restrict users. A suggestion mechanism, recommending terminology based on the
dataset, would help converge terminology without forcing users, as demonstrated
in collaborative tagging [9, 10].

In collaborative data entry, participants construct a dataset by continuously
and independently adding further statements to existing data. Each participant
faces the question: when creating Semantic Web data, which vocabulary to use?
To ensure convergence, the answer is: use the most relevant and frequently oc-
curring vocabulary.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 160–174, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Simple Algorithms for Predicate Suggestions 161

Finding the most frequent vocabulary is straightforward: one can simply count
the occurrences. We therefore focus on finding the relevant vocabulary. Datasets
typically contain heterogeneous data. Finding the vocabulary that is relevant for
one resource therefore means: finding similar resources and use their vocabulary.

Problem statement. Our problem is thus to suggest relevant and frequent termi-
nology for extending a resource in an RDF dataset based on similarity with other
resources and our question is how well simple algorithms solve this problem?

We present two algorithms that address this problem, based on the follo-
wing hypotheses that simple algorithms do well enough: (a) computing resource
similarity based only on outgoing arcs yields good results; (b) approximating
resource similarity through pairwise predicate co-occurrence yields good results.

We will present the two algorithms in sections 2 and 3, and their imple-
mentation in section 4. We verify our hypotheses and the performance of these
algorithms empirically in section 5. We conclude with a discussion of related
work in section 6.

2 Classification-Based Algorithm

The task of the suggestion algorithm is to find, for a certain resource in focus,
predicates to further describe that resource. The general idea of the classification-
based algorithm is to divide the knowledge base in two groups, those similar
to the current resource and those not similar, and to suggest the frequently
occurring predicates from the similar group.

For example, figure 1 shows a simple knowledge base with three resources:
the person “John”, with his name, some friends, and homepage, the book “The
Pelican Brief”, with its title and author, and the person “Stefan”, with his
name. We want to suggest relevant predicates for “Stefan” based only on the
given graph.

The algorithm consists of two steps, as shown in listing 1.1. In the first step,
we divide all existing resources in the knowledge base into two sets, the similar

Fig. 1. Example knowledge base

162 E. Oren, S. Gerke, and S. Decker

Listing 1.1. Classification-based algorithm

� �

def suggest(r, resources)
select similar resources
similar resources = resources.select { |r’| similarity(r,r’) > threshold }

then collect all predicates from similar resources
candidates = similar resources.collect { |r’| r’.predicates }

then rank all candidate predicates
return rank(candidates)

end
� �

and unsimilar ones. In the second step, we look at all predicates from the similar
group and rank them using a ranking function. In the remainder of this section,
we explore each step in more detail: how to define similarity between resources,
and how to rank the selected predicates.

2.1 Preliminaries

First we introduce some necessary definitions:

Definition 1 (RDF Graph). An RDF graph G is defined as G = (V, E, L, l)
where V is the set of vertices (subjects and objects), E is the set of edges (pre-
dicates), L is the set of labels, l : E → L is the labelling function for predicates.
The projection source : E → V and target : E → V return the source and target
nodes of a given edge.

Definition 2 (Outgoing edges). The set of outgoing edges Eo(v) of a vertex
is defined as: Eo(v) = {e ∈ E|source(e) = v} ⊆ E. The bag of labels L(E) of a
set of edges is defined as L(E) = [l(e)|e ∈ E]. The bag of labels Lo(v) of outgoing
edges of a vertex v is defined as Lo(v) = L(Eo(v)). The set of outgoing edges of
v whose label is l is defined as Eo(v, l) = {e ∈ Eo(v)|l(e) = l}.

2.2 Classification Step

In the first step, we classify resources into those similar to the current one, and
those not similar. The main requirement for the similarity metric is domain-
independence: the algorithm should not rely on domain-specific knowledge. We
use two well-known, widely used generic similarity metrics [2, 3]: the containment
of one resource in another and their mutual resemblance.

Since we are interested in suggesting new predicates, we use these metrics
to compare existing predicates of resources. Containment thus defines resource
similarity as the amount of predicates of the first resource that are also con-
tained in the second resource, as shown in equation (1). Resemblance measures
how many of all predicates used in at least one of the two resources are used
in both resources, as shown in equation (2). For example, in figure 1, the resource

Simple Algorithms for Predicate Suggestions 163

“Stefan” uses the predicate “name” and the resource “John” uses “name”,
“knows” and “homepage”, resulting in a containment value (of “Stefan” in
“John”) of 1 and a resemblance of 1

3 .

sc(v′, v) =
|O(v) ∩ O(v′)|

|O(v)| (1)

sr(v′, v) =
|O(v) ∩ O(v′)|
|O(v) ∪ O(v′)| . (2)

Since predicates can have multiple values, when computing this containment
or resemblance metrics we need to decide whether to count multiple predicate
occurrences once or several times.

In the example, the resource “John” uses the “knows” predicate twice with
different values; we can either count these two occurrences only once, thus using
O(v) as a set, as shown in equation (3). The resemblance between “Stefan” and
“John” would then be 1

3 . But we could also count each occurrences separately,
using O(v) as a bag as shown in equation (4), yielding a resemblance of 1

4 .

Os(v) = {l(e)|e ∈ Eo(v)} (3)

Ob(v) = [l(e)|e ∈ Eo(v)] (4)

If we generalise from these two choices, the result of the first phase is the set
of similar resources Vs(v), as defined in equation (5), where st is some similarity
threshold and s(v, v′) is either resemblance or containment measure. For exam-
ple, with a threshold of 0.9 the set of similar resources to “Stefan” would consist
only of the resource “John”.

Vs(v) = {v′ ∈ V : s(v, v′) ≥ st} (5)

2.3 Ranking Step

After classifying all resources into two groups we collect all predicates from the
set of similar resources Vs(v) and use them as candidates for the suggestion.
Since there might be many candidates, we need to rank these candidates and
suggest the more useful predicates first. The most straightforward ranking func-
tion is based on the occurrence frequency of these predicates in the set of similar
resources.

In this example, since only the resource “John” is similar to “Stefan”, the
candidates would be “knows” and “homepage”, ignoring the predicates that
“Stefan” uses already. Out of these two candidates, “knows” would be ranked
first since it appears most frequently.

But again, since predicates in RDF can be multi-valued, we can define the
(relative) occurrence frequency of a label l in the set of similar resources Vs(v) in
two ways. We can either count each predicate occurrence, as shown in equation
(6). Or we can count each occurrence only once, or stated differently, count the

164 E. Oren, S. Gerke, and S. Decker

set X of resources that use l in their outgoing edges and divide them by the total
number of resources, as shown in equations (7). In the latter case, “knows” and
“homepage” would be ranked the same since they are both used by one resource.

rv(e) = fp
s (v, l) =

∑
v′∈Vs(v) |Eo(v′, l)| · w(v, v′)

∑
v′∈Vs(v) |Eo(v′)| · w(v, v′)

(6)

rv(e) = f r
s (v, l) =

∑
v′∈X w(v, v′)

∑
v′∈Vs(v) w(v, v′)

X = {v ∈ Vs(v)|l ∈ O(v)} (7)

In both methods of counting, we could allow for a weighting factor w(v, v′).
The reason for this is that even in the set of similar resources Vs(v), some are
more similar than other: in ranking the predicates, it would be natural to “pro-
mote” the predicates from similar resources over those from less similar resources.
If we choose to prefer predicates from resources more similar to v, the weight
factor could be given by the resource similarity, shown in equation (8). A simp-
ler approach would not to weigh the predicates, as shown in equation (9). In
our example, these methods would yield the same ranking since both candidates
originate from the same resource “John”.

ws(v, v′) = s(v, v′) (8)

wc(v, v′) =
{

1 : v′ ∈ Vs(v)
0 : v′ ∈ Vn(v) (9)

2.4 Qualitative Results

To investigate our hypothesis, we have evaluated the performance and quality
of the algorithm using various different datasets. We are interested in the qua-
lity of the basic algorithm (using containment, counting multi-valued predicates
only once, and without weighting) and in whether the various parameters, while
reducing simplicity, improve the basic algorithm. We present and discuss these
results in section 5.

2.5 Performance

Regarding the runtime performance of the algorithm, we can analyse the des-
cription in listing 1.1. We see that, ignoring data access, the overall algorithm
should run linearly to the number of resources: The first phase, classifying the si-
milar resources, runs linear to the number of resources r and the average number
of predicates per resource p: comparing the similarity of each resource against
the one resource in focus by comparing all their predicates. The second phase,
ranking, is linear in the number of candidates c. The complete algorithm would

Simple Algorithms for Predicate Suggestions 165

therefore run in O(r · p + c), which is linear in r, since p will be constant on
average and c is presumably smaller than r.

However, in practice we cannot ignore lookup performance on large datasets.
To compute similarity, we need to lookup all predicates of each resource. De-
pending on the lookup performance of the used datastore, this could cause the
whole algorithm to run logarithmic or even quadratic to the size of the dataset,
rendering the algorithm impractical for reasonably large datasets.

A simple solution would be to materialise the similarity between resources in
memory, obliterating the need for data lookup during suggestion time. Direct
materialisation however has two problems: the required memory space would be
quadratic in the size of the dataset, and updating one resource (prone to happen
often in a data entry scenario) would require recalculation of all similarity values
with respect to this resource.

The next algorithm remedies exactly this problem and allows materialisation
without large memory requirements.

3 Co-occurrence-Based Algorithm

The general idea of the co-occurrence-based algorithm is to approximate resource
similarity through the co-occurrence of predicates. Since usually datasets con-
tain far less predicates than resources, predicate co-occurrence requires far less
space than resource similarity. We then further reduce the required space by not
considering the complete power set over all predicates, but instead approximate
full co-occurrence through binary co-occurrences. We thus consider only pair-
wise occurrences of predicates, suggest predicate candidates for each pairwise
occurrence, and combine these candidates through intersection.

We therefore make two assumptions on the probabilistic model of the dataset:
(1) that predicate co-occurrence correlates with resource similarity, and (2) that
considering binary predicate co-occurrences to be independent events (which
they are not) yields acceptable predictions. The latter allows us to pairwise
consider binary co-occurrences instead of all permutations.

The algorithm is based on association rule mining [1, 17] used for recom-
mendations in e.g. online stores: when buying one book, other books that are
often bought together with this book are recommended. In our case, books are
replaced by predicates and shopping transactions by resources.

3.1 Pre-computation Step

To better show the details of the algorithm, we extend our earlier example,
adding the person “Sebastian” and some more statements about John, as shown
in figure 2. Again, we want to suggest further predicates to the resource “Stefan”.

In the first step we calculate usage statistics of predicates in the knowledge
base. We count for each predicate, the resources that use this predicate, defi-
ned in equation (10). Secondly, we count for each pair of predicates, the number

166 E. Oren, S. Gerke, and S. Decker

Fig. 2. Extended Knowledge Base

of times they co-occur together in the same resource, as defined in equation (11).
The particular statistics for the example in figure 2 are given in table 2a and
table 1.

occ(p) = | {v ∈ V |p ∈ Lo(v)} | (10)

coocc(p1, p2) = | {v ∈ V |p1 ∈ Lo(v) ∧ p2 ∈ Lo(v)} | (11)

Table 1. Predicate occurrence and co-occurrence frequency

predicate freq.

type 3
name 2
knows 1
homepage 2
firstname 1
author 1

(a) occurrence

ty
p
e

n
a
m

e

k
n
ow

s

h
o
m

ep
a
g
e

fi
rs

tn
a
m

e

a
u
th

o
r

type 3 2 1 2 1 1
name 2 2 1 2 1 0
knows 1 1 1 1 1 0
homepage 2 2 1 2 1 0
firstname 1 1 1 1 1 0
author 1 0 0 0 0 0

(b) co-occurrence

3.2 Suggestion Step

In the second step, we compute suggestions for a given resource. We consider
all predicates in the knowledge base that occur more than once with each of the
predicates from “Stefan” as suggestion candidates, as defined in equation (12).
In our example, the predicates “type”, “knows”, and “firstname” are candidates
for the resource “Stefan”.

cooccurring(p1) = {p2 : coocc(p1, p2) > 1} (12)

Simple Algorithms for Predicate Suggestions 167

For each candidate we calculate our confidence in suggesting it. As shown in
equation (13), the confidence for suggesting a predicate p for a selected resource
r, is formed by combining the confidence for p from each of r’s predicates pi. In
the earlier example, the total confidence for suggesting “type” is computed by
combining confidence(name ⇒ type) and confidence(homepage ⇒ type).

confidence(p, r) =
∏

pi∈cooccurring(p)∩Lo(r)

confidence(pi ⇒ p) (13)

Each constituent is computed as shown in equation (14): the confidence for
suggesting any p2 based on the existence of a p1 is given as the co-occurrence
frequency of p1 and p2 relative to the occurrence frequency of p1 by itself. In
our example, p2, the candidate, would be “type”, “knows”, or “firstname”, and
p1, the existing predicates, would be “name” and “homepage”. Intuitively, we
consider a relatively frequent co-occurrence as evidence for predicting p2.

confidence(p1 ⇒ p2) =
coocc(p1, p2)

occ(p1)
(14)

In our example, as shown in table 2, “type” co-occurs with both predicates
of “Stefan” 100% of the time, whereas the two other candidates (“knows” and
“firstname”) co-occur only 50% of the time with each of the predicates of “Ste-
fan”. We rank each candidate by the combined (unweighted) confidence: in this
example, “type” will be ranked first, with a combined confidence of 100%, and
the other two second, with a combined confidence of 25%.

Table 2. Relative co-occurrence ratios for Stefan

candidate name homepage confidence

type 1.0 1.0 1.0
knows 0.5 0.5 0.25
firstname 0.5 0.5 0.25

4 Implementation

We have implemented both algorithms in Ruby. We use the ActiveRDF [13]
datastore abstraction layer which allows us to run this algorithm on various RDF
datastores. The implementations are distributed as part of the ActiveRDF. We
have also implemented the co-occurrence algorithm as a wrapper for an RDF
datastore, in particular for the rdflite1 RDF store.

Since rdflite uses a relational database with one table, triple(s,p,o), we
have implemented the (co)occurrence statistics as views on this database, com-
parable to [7]. Depending on the relational database, these views can be mate-
rialised or computed for each suggestion. The views, shown in listing 1.2, are a
straightforward translation of the equations (10) and (11) given before.
1 http://wiki.activerdf.org/rdflite/

http://wiki.activerdf.org/rdflite/

168 E. Oren, S. Gerke, and S. Decker

Listing 1.2. Co-occurrrence as database views

� �

create view occurrence as
select p, count(distinct s) as count
from triple
group by p;

create view cooccurrence as
select t0.p as p1, t1.p as p2, count(distinct t0.s) as count
from triple as t0 join triple as t1 on t0.s = t1.s and t0.p != t1.p
group by t0.p, t1.p

� �

4.1 Example Suggestions

Figure 3 shows an example of our suggestion system, for a randomly chosen
resource from a dataset2 about the Mindswap research group. The resource (a
blank node representing Dan Connolly) and its predicates, such as name and
email address, are listed on the left-hand side. Our suggestions, based on the
other resources in this dataset, are listed in ranked order on the right-hand
side.

� �

:#1 foaf:name Dan Connolly .
:#1 owlweb:name Dan Connolly .
:#1 foaf:mbox mailto:connolly@w3.org .
:#1 owlweb:email mailto:connolly@w3.org .
:#1 owlweb:homepage

http://owl.mindswap.org/˜danC/ .
:#1 rdf:type owlweb:FamilyFriend .

� �

� �

1. foaf:workInfoHomepage
2. foaf:homepage
3. owlweb:personalHomepage
4. owlweb:bachelorsFrom
5. owlweb:mastersFrom
6. owlweb:homepage
7. foaf:nick
8. owlweb:phdFrom

� �

Fig. 3. Suggested predicates (right) for example resource (left)

5 Evaluation

A predicate suggestion system is a kind of recommender system, using the opi-
nions of a community to help individuals decide between a potentially overwhel-
ming set of choices [6, 16]. In our case, this “potentially overwhelming set of
choices” is formed by the terminology (ontologies or schemas) available.

Evaluations of recommender systems can be divided into two categories [5, 6]:
when regarding recommendations as an information retrieval problem (selecting
the interesting predicates from all possible predicates), evaluation is usually per-
formed off-line, focused on accuracy, and measured using precision and recall.
When, on the other hand, recommendation is approached as a machine learning
regression problem (learning and predicting user’s annotation preferences), eva-
luation is commonly performed online, focused on utility and usefulness, and
measured using a training set and a test set.

2 http://www.cs.umd.edu/~hendler/2003/MindPeople4-30.rdf

http://www.cs.umd.edu/~hendler/2003/MindPeople4-30.rdf

Simple Algorithms for Predicate Suggestions 169

5.1 Evaluation Approach

Our evaluation combines both the information-retrieval and the machine-learning
approach: we show both precision and recall ratings and evaluate our approach
using training/testing datasets through a commonly applied technique of evalua-
ting prediction of deleted values from existing data [6].

Because the distribution of data can alter the performance of the algorithms
quite severely, we evaluated on five existing RDF datasets: a webcrawl3 of ar-
bitrary RDF, the Mindswap research group4, a FOAF dataset5, a terror da-
taset6 augmented with terrorist data, and the ontoworld.org Semantic Wiki7.
These datasets have differing characteristics, as shown in Table 3: both large
and small, with homogeneous and heterogeneous data, and both highly structu-
red and highly unstructured distribution.

Table 3. Evaluation datasets

dataset classes resources triples

webcrawl 2 112 6766
mindpeople 14 273 1081
foaf 4 3123 10020
terror 25 1553 16632
ontoworld 42 4467 28593

Our primary evaluation technique is prediction of deleted values: we pick a
random resource from the dataset as a candidate for which further predicates
should be suggested. We then randomly remove one ore more statements about
this candidate and analyse if and at which rank position the removed predica-
tes are re-suggested. Repeated over n random resources this yields the average
resuggestion rate (how often was the deleted predicate resuggested), the empty
suggestion rate (how often were no suggestions given), and the average rank of
the resuggested predicate. Since in practice not all suggestions can be displayed
or will be considered by the user, we also show how many of the predicates were
resuggested within the top-k of suggestions.

Secondly, we measure suggestion precision (how many suggestions are valid)
and recall (how many valid suggestions have we missed) based on the schema
definition: we define “valid” predicates as those predicates that, according to the
schema, fall within the domain of the selected candidate. For recall computation,
we consider only predicates that are actually used in the dataset; since the
algorithm considers only instance data, unused predicates are unattainable.
3 http://www.activerdf.org/webcrawl_10k.nt
4 http://www.cs.umd.edu/~hendler/2003/MindPeople4-30.rdf
5 http://rdfweb.org/2003/02/28/cwm-crawler-output.rdf
6 http://reliant.teknowledge.com/DAML/TerroristActs.owl
7 http://ontoworld.org/RDF/

http://www.activerdf.org/webcrawl_10k.nt
http://www.cs.umd.edu/~hendler/2003/MindPeople4-30.rdf
http://rdfweb.org/2003/02/28/cwm-crawler-output.rdf
http://reliant.teknowledge.com/DAML/TerroristActs.owl
http://ontoworld.org/RDF/

170 E. Oren, S. Gerke, and S. Decker

Table 4. Results per dataset for classification-based algorithm

dataset resugg. empty rank top-5 top-10 top-20 prec. recall F1

webcrawl 0.95 0.04 1.06 0.94 0.94 0.94 0.96 0.73 0.83
mindpeople 0.80 0.19 1.30 0.79 0.80 0.80 0.81 0.83 0.83
foaf 0.92 0.06 1.30 0.92 0.93 0.93 0.94 0.80 0.87
terror 0.98 0.02 1.10 0.97 0.97 0.98 0.98 0.91 0.95
ontoworld 0.85 0.13 1.39 0.84 0.84 0.85 0.87 0.72 0.79

average 0.90 0.08 1.22 0.89 0.90 0.90 0.92 0.80 0.85

Table 5. Results per dataset for co-occurrence-based algorithm

dataset resugg. empty rank top-5 top-10 top-20 prec. recall F1

webcrawl 1.00 0.00 1.18 0.99 0.99 1.00 1.00 0.74 0.85
mindpeople 1.00 0.00 1.23 1.00 1.00 1.00 1.00 0.76 0.87
foaf 1.00 0.00 1.51 0.95 1.00 1.00 1.00 0.59 0.74
terror 1.00 0.00 1.15 0.98 1.00 1.00 1.00 0.95 0.97
ontoworld 1.00 0.00 1.14 0.98 1.00 1.00 1.00 0.78 0.88

average 1.00 0.00 1.24 0.98 1.00 1.00 1.00 0.77 0.87

5.2 Results

All tests were run on an AMD Opteron 1993MHz machine with 2GB of RAM.
The similarity algorithm was run 300 times over five random samples (n=100,
n=150, n=200, n=250, n=300) since its performance prevented us from using the
full datasets; the co-occurrence algorithm was run 20.000 times over the complete
datasets. In each run, we randomly selected a resource and deleted between one
and ten of its existing predicates. We then let the algorithms suggest additional
predicates and compare these to the randomly deleted predicates.

We first show the results of the two primary algorithms for each dataset:
table 4 shows the results of the classification-based algorithm, table 5 the results
of the co-occurrence-based algorithm. The tables show, for each dataset and for
all datasets combined, the resuggestion rate, empty suggestion rate and average
rank. It also shows the resuggestion rate when only considering the top-k results,
and the precision, recall, and the F1-measure for each algorithm.

We can see that in general the co-occurrence performs better than any of
the classification-based variants, especially when looking at the top-5 results.
We can see that the co-occurrence algorithm has very high precision (100%
on average). The co-occurrence algorithm has a slightly lower recall than the
classification-based ones, due to the intersection of candidates which results in
only high-confidence candidates. The F1-measure (harmonic mean of precision
and recall) shows that co-occurrence has the highest quality over all datasets.

Table 6 shows (again) the results for the primary algorithms and then lists
the results for each classification variant, averaged over all five datasets. We see
that using resemblance instead of containment yields very low results, which is

Simple Algorithms for Predicate Suggestions 171

Table 6. Results of algorithm variants (averaged over all datasets)

algorithm resugg. empty rank top-5 top-10 top-20 prec. recall F1

co-occurrence 1.00 0.00 1.24 0.98 1.00 1.00 1.00 0.77 0.87
similarity (default) 0.90 0.08 1.22 0.89 0.90 0.90 0.92 0.80 0.85

resemblance (sr) 0.10 0.86 1.01 0.11 0.11 0.11 0.14 0.99 0.24
similarity weigh (ws) 0.90 0.09 1.24 0.89 0.90 0.90 0.91 0.80 0.85
count predicates (fp

s) 0.91 0.08 1.48 0.89 0.90 0.91 0.92 0.80 0.85
threshold (st=0.8) 0.93 0.06 1.29 0.91 0.92 0.93 0.94 0.79 0.86

Table 7. Runtime performance with n resources

algorithm n=100 n=150 n=200 n=250 n=300 n=1555 n=3123 n=4467

sim. (rdflite) 1.64s 4.02s 8.51s 15.10s 30.22s – – –
sim. (Sesame) 0.71s 1.40s 2.74s 4.33s 7.88s – – –
co-occ. (view) 0.63s 0.0.78s 1.46s 1.00s 0.93s 7.72s 9.65s 10.10s
co-occ. (constr.) 0.21s 0.27s 0.46s 0.47s 0.70s 2.73s 4.71s 6.34s
co-occ. (query) 0.01s 0.01s 0.01s 0.01s 0.01s 0.01 0.01 0.01

 0

 5

 10

 15

 20

 25

 30

 35

 100 150 200 250 300

tim
e

(s
)

resources

cooc. constr.
cooc view

similarity (rdflite)
similarity (Sesame)

 0 1000 2000 3000 4000 5000

resources

Fig. 4. Runtime performance

most probably due to a too high threshold value. The other variations do not
seem to affect the results much.

Finally, Table 7 shows the performance times for the algorithms (only one
classification variant is shown since runtime is similar for all). Figure 4 shows

172 E. Oren, S. Gerke, and S. Decker

two graphs for these results; the left graph is zoomed for up-to 300 resources,
the right graph shows the full results.

Timing for the co-occurrence algorithm is divided in matrix construction and
query answering. We evaluated the classification on two different datastores,
rdflite and Sesame8, to evaluate scaling independent of a particular datastore
implementation. We can see that the classification algorithm scales quadratic,
which is due to the linear lookup times of the used datastores, although the
Sesame datastore performs much better than rdflite.

Both variants of the co-occurrence algorithm perform well and scale linearly.
The materialised co-occurrence implementation performs better than the view-
based, which is due to the fact that the sqlite database does not support view
materialisation; as mentioned earlier, both approaches have their advantages.

The classification algorithm was too slow to include tests with more than 300
resources but that was again due to data lookups on the underlying datastore: the
algorithms themselves scale linearly when ignoring data-access. The materialised
co-occurrence implementation shows that we can circumvent data access, leading
to very good performance, without requiring large memory space.

6 Related Work

Annotation tools such as OntoMat [4] support semi-automatic annotation of
documents; they suggest semantic annotation based on natural language ana-
lysis of the annotated resources, but do not take existing semantic descriptions
into account. Annotea [8] supports collaborative annotations but annotations
are made manually without a suggestion mechanism. Semantic Wikis such as
SemperWiki [14] or Semantic MediaWiki [18] allow arbitrary Semantic Web au-
thoring but do not guide users in selecting appropriate terminology.

Automatic schema mapping techniques [15] consider a similar problem (auto-
matically finding relations between elements of a schema) but typically operate
on class-level as opposed to instance level and use e.g. concept correlation to
unify schema elements [11] whereas we try to discover combined usage patterns
of predicates.

Our co-occurrence algorithm is based on association rule mining [1] but our
techniques for memory conservation differ: Agrawal et al. [1] focus on advanced
pruning techniques, whereas we approximate n-ary interdependencies using pair-
wise binary relations (resulting in a much simplified implementation). Further-
more, our technique allows online processing with incremental updates, whereas
their algorithms are iterative and need to run over the complete database.

7 Conclusion

We have discussed the problem of choosing vocabulary during Semantic Web
data entry; a crucial bottleneck, since only through shared vocabularies can
8 http://www.openrdf.org

http://www.openrdf.org

Simple Algorithms for Predicate Suggestions 173

meaning be established. We introduced two algorithms for suggesting possible
predicates based on statistical data analysis.

The first algorithm is based on a simple intuitive principle of resource classi-
fication: we suggest predicates from similar resources. We have discussed para-
metric variations that differ in the definition of similarity. We showed that the
quality is good (F1 : 85%) and that variations in similarity computation do not
lead to much better results.

The second algorithm approximates resource similarity through pairwise predi-
cate co-occurrence, treating predicate occurrences as independent events (which
they are not). This simplifies computation and allows for memory-efficient mate-
rialisation, while still resulting in high-quality suggestions (F1 : 87%). Runtime
performance of the co-occurrence algorithm is good, scales linearly with the size
of the dataset, and is constant in the presence of materialisation.

We conclude that suggesting predicates based on resource similarity works well
and that, for this task, similarity based on outgoing arcs seems a “good-enough”
metric. Seeing that co-occurrence suggestion quality is even better than in the
classification algorithm, our second hypothesis on similarity approximation using
predicate co-occurrence seems to hold as well.

Acknowledgements. This material is based upon works supported by the Science
Foundation IrelandunderGrantsNo. SFI/02/CE1/I131 andSFI/04/BR/CS0694.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets
of items in large databases. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 207–216. 1993.

[2] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering
of the web. Computer Networks, 29(8-13):1157–1166, 1997.

[3] D. Dhyani, W. K. Ng, and S. S. Bhowmick. A survey of web metrics. ACM
Computer Surveys, 34(4):469–503, 2002.

[4] S. Handschuh. Creating Ontology-based Metadata by Annotation for the Semantic
Web. Ph.D. thesis, University of Karlsruhe, 2005.

[5] C. Hayes, P. Massa, P. Avesani, and P. Cunningham. An on-line evaluation fra-
mework for recommender systems. In Workshop on Personalization and Recom-
mendation in E-Commerce. 2002.

[6] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collabo-
rative filtering recommender systems. ACM Transactions on Information Systems,
22(1):5–53, 2004.

[7] M. Houtsma and A. Swami. Set-oriented data mining in relational databases.
Data and Knowledge Engineering, 17(3):245–262, 1995.

[8] J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick. Annotea: An open
RDF infrastructure for shared web annotations. In Proceedings of the International
World-Wide Web Conference, pp. 623–632. 2001.

[9] B. Lund, T. Hammond, M. Flack, and T. Hannay. A case study – Connotea.
D-Lib Magazine, 11(4), 2005.

174 E. Oren, S. Gerke, and S. Decker

[10] C. Marlow, M. Naaman, D. Boyd, and M. Davis. HT06, tagging paper, taxo-
nomy, Flickr, academic article, to read. In Proceedings of the ACM Conference on
HyperText and Hypermedia. 2006.

[11] N. F. Noy and M. A. Musen. PROMPT: Algorithm and tool for automated
ontology merging and alignment. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), pp. 450–455. 2000.

[12] E. Oren, J. G. Breslin, and S. Decker. How semantics make better wikis. In
Proceedings of the International World-Wide Web Conference. 2006.

[13] E. Oren, R. Delbru, S. Gerke, A. Haller, et al. ActiveRDF: Object-oriented se-
mantic web programming. In Proceedings of the International World-Wide Web
Conference. 2007.

[14] E. Oren, M. Völkel, J. G. Breslin, and S. Decker. Semantic wikis for personal
knowledge management. In Proceedings of the International Conference on Data-
base and Expert Systems Applications (DEXA). 2006.

[15] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema
matching. The VLDB Journal, 10(4):334–350, 2001.

[16] P. Resnick and H. R. Varian. Recommender systems. Communications of the
ACM, 40(3):56–58, 1997.

[17] R. Srikant and R. Agrawal. Mining generalized association rules. In Proceedings
of the International Conference on Very Large Data Bases (VLDB), pp. 407–419.
1995.

[18] M. Völkel, M. Krötzsch, D. Vrandevic, H. Haller, et al. Semantic wikipedia. In
Proceedings of the International World-Wide Web Conference. 2006.

Learning Disjointness

Johanna Völker1, Denny Vrandečić1, York Sure1, and Andreas Hotho2

1 Institute AIFB, University of Karlsruhe, Germany
2 University of Kassel, Germany

{voelker,vrandecic,sure}@aifb.uni-karlsruhe.de,
hotho@cs.uni-kassel.de

Abstract. An increasing number of applications benefits from light-weight on-
tologies, or to put it differently “a little semantics goes a long way”. However,
our experience indicates that more expressiveness can offer significant advan-
tages. Introducing disjointness axioms, for instance, greatly facilitates consis-
tency checking and the automatic evaluation of ontologies. In an extensive user
study we discovered that proper modeling of disjointness is a difficult and very
time-consuming task. We therefore developed an approach to automatically en-
rich learned or manually engineered ontologies with disjointness axioms. This
approach relies on several methods for obtaining syntactic and semantic evidence
from different sources which we believe to provide a solid base for learning dis-
jointness. After thoroughly evaluating the implementation of our approach we
think that in future ontology engineering environments the automatic discovery
of disjointness axioms may help to increase the richness, quality and usefulness
of any given ontology.

1 Introduction

An increasing number of applications benefits from light-weight ontologies, or, to put
it differently, “a little semantics goes a long way” (Jim Hendler). Our experience in
building ontology-based systems indicates, however, that adding more expressivity in a
controlled manner can reap further benefits. Introducing disjointness axioms, for exam-
ple, greatly facilitates consistency checking and the automatic evaluation of individuals
in a knowledge base with regards to a given ontology.

In description logics two classes are considered as disjoint iff their taxonomic over-
lap, i.e. the set of common individuals, must be empty. This does not include classes
with actual extensions that coincidentally do not have common individuals, for instance
Woman and US President, but only those where the common subset must be empty in
all possible worlds – like, for example, Woman and Car.

Disjointness allows for far more expressive and meaningful ontologies, as shown
exemplary in the following. An ontology language with the expressivity of RDFS does
not constrain the possible assertions in any way. Even after we set up an ontology defin-
ing terms like Book, Student and University, stating that John is both a Student and a
University is logically perfectly viable, and would not be recognized as an error by a
reasoner. Only if we define these classes as being disjoint, the reasoner will be able to
infer the error in the above ontology, guaranteeing that particular constraints are met by

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 175–189, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

176 J. Völker et al.

the knowledge base and a certain quality of facts is achieved – thus raising the quality
of the whole ontology-based system [17].

Despite the obvious importance of stating disjointness among classes, many of to-
day’s ontologies do not contain any disjointness axioms. In fact, a survey of 1,275
ontologies [22] recently found only 97 of them to include disjointness axioms. We can
only speculate about the reasons, but it is very likely that ontology engineers often for-
get to introduce disjointness axioms, simply because they are not aware of the fact that
classes which are not explicitly declared to be disjoint will be considered as overlap-
ping. Particularly, inexperienced users usually assume the semantics of partitions, or
even complete partitions, when they build a subsumption hierarchy (see [15]). Also, as
the size of an ontology is a major cost driver for ontologies [2], the manual engineering
and addition of the axioms actually costs more time, and thus money.

Therefore, we believe that an approach to automatically introduce disjointness ax-
ioms into an ontology would be a valuable addition to any ontology learning or engi-
neering framework. The principle feasibility of learning disjointness based on simple
lexical evidence has already been shown by [9]. However, our experiments indicate that
a single heuristic is not suitable for detecting disjointness with sufficiently high preci-
sion, i.e. better than an average human could do.

For this paper, we performed an extensive survey in order to collect experience with
modeling disjoint classes, and identified several problems frequently encountered by
users who try to introduce disjointness axioms. Based on the results of our survey
we developed a variety of different methods in order to automatically extract lexical
and logical features which we believe to provide a solid basis for learning disjoint-
ness. These methods take into account the structure of the ontology, associated textual
resources, and other types of data sources in order to compute the likeliness of two
classes to be disjoint. The features obtained from these methods are used to build an
overall classification model which we evaluated against more than 10,000 disjointness
axioms provided by 30 human annotators. Due to the encouraging evaluation results
we are confident that our implementation can be used, for example, to extend state-of-
the-art ontology learning systems, to support ontology debugging [17], or to evaluate
manually added disjointness axioms.

The survey also showed that deciding if two classes are disjoint is far from trivial.
Although experts have a higher agreement on disjointness than non-expert users, their
agreement is still lower than we expected. Discussing these problematic formalizations,
we uncovered a number of problems humans have with formal disjointness.

In this paper, we will, in Section 2, first present the features we have used in order
to automatically learn disjointness axioms. Section 3 describes the set up and execution
of the experiments we conducted in order to train a classifier and evaluate the results of
our implementation (Section 4). We close with an overview of related work in Section 5
and a summary of the key contributions and remaining open questions in Section 6.

2 Features for Learning Disjointness

Assuming that there is not the one and only approach to determine the disjointness
of two classes in an ontology, we developed a variety of different methods to obtain
evidence for or against disjointness from different sources. The features delivered by

Learning Disjointness 177

these methods will help us to train a classifier which is able to distinguish between
disjoint and non-disjoint classes.

Preliminaries: In this paper we adopt the OWL ontology model, although we do not
restrict our approach to OWL. Any ontology model that allows to state disjointness
between two classes can be used with all the methods described in this paper.

The methods are provided with an unsorted list of all the pairs previously tagged by
human annotators. In the following the set of pairs will be denoted by P = {p1, ...pn}
for 0 ≤ n ≤ |C|2, where C is the set of all classes in the ontology. Each pair pk =
(ck1 , ck2) consists of two classes ck1 , ck2 ∈ C and ck1 �= ck2 . The confidence of the
system in ck1 and ck2 being (not) disjoint is denoted by conf(pk, +) or conf(pk, −)
respectively.

All methods are allowed to look up these classes within their semantic context, i.e.
the domain ontology they have been extracted from (see Section 3.1). And finally, as
additional sources of background knowledge, the methods may make use of a corpus
of textual resources associated with the ontology. We automatically selected a subset
of 957 documents from the Reuters corpus1 [16]. For efficiency reasons we only chose
those documents with at least 20 occurrences of any of the classes in the ontology.

It is important to mention, that we assume ’meaningful’ labels for all classes in
the ontology, i.e. labels which may be understood by humans even without knowing
the whole taxonomy. This assumption is particularly relevant for all methods which
make use of textual resources such as the pattern-based disjointness extraction (cf. Sec-
tion 2.4), the computation of extensional overlap with respect to Del.icio.us2 and the
algorithms for learning taxonomic relationships (see Section 2.1).

2.1 Taxonomic Overlap

In description logics two classes are disjoint iff their taxonomic overlap, i.e. the set of
common individuals, must be empty. Because of the open world assumption in OWL,
these individuals do not necessarily have to exist in the ontology. The taxonomic overlap
of two classes is considered not empty as long as there could be common individuals
within the domain of interest which is modeled by the ontology.

We developed three methods which determine the likeliness for two classes to be dis-
joint by considering their overlap with respect to (i) individuals and subclasses in the
ontology – or learned from a corpus of associated textual resources – and (ii) Del.icio.us
documents tagged with the corresponding class labels.

Ontology. Both, individuals and subclasses can be imported from an ontology (see Sec-
tion 3.1) or from a given corpus of text documents. In the latter case, subclass-of
and instance-of relationships are extracted by different algorithms provided by the
Text2Onto3 ontology learning framework. A detailed description of these algorithms
can be found in [4]. All taxonomic relationships – learned and imported ones – are as-
sociated with rating annotations rsubclass−of (or rinstance−of respectively) indicating

1 http://trec.nist.gov/data/reuters/reuters.html
2 http://del.icio.us/
3 http://ontoware.org/projects/text2onto/

http://trec.nist.gov/data/reuters/reuters.html
http://del.icio.us/
http://ontoware.org/projects/text2onto/

178 J. Völker et al.

the certainty x > 0 of the underlying ontology learning framework in the correctness of
its results. For imported relationships the confidence is 1.0.

rsubclass−of (c1, c2) =

{
x c1 subclass-of c2

0 otherwise
(1)

The following formula defines the confidence conf(p, −) for a pair p = (c1, c2) to
be not disjoint based on the taxonomic overlap of c1 and c2 with respect to common
subclasses (the same for instance):

conf(p, −) =

∑
c∈sub1∩sub2

(rsubclass−of (c, c1) · rsubclass−of (c, c2))
∑

c∈sub1
rsubclass−of (c, c1) +

∑
c∈sub2

rsubclass−of (c, c2)
(2)

where subi denotes the set of subclasses of ci.

Del.icio.us. Del.icio.us is a server-based system with a simple-to-use interface that al-
lows users to organize and share bookmarks on the internet. It associates each URL with
a description, a note, and a set of tags (i.e. arbitrary class labels). For our experiments,
we collected |U | = 75, 242 users, |T | = 533, 191 tags and |R| = 3, 158, 297 resources,
related by in total |Y | = 17, 362, 212 triples. The idea underlying the use del.icio.us in
this case is that two labels which are frequently used to tag the same resource are likely
to be disjoint, because users tend to avoid redundant labeling of documents.

conf(p, −) =
|{d|c1 ∈ t(d), c2 ∈ t(d)}|

∑
c∈C |{d|c1 ∈ t(d), c ∈ t(d)}| +

∑
c∈C |{d|c2 ∈ t(d), c ∈ t(d)}|

(3)
where t(d) is the set of del.icio.us tags associated with document d. The normal-
ized number of co-occurrences of c1 and c2 (their respective labels to be precise) as
del.icio.us tags aims at capturing the degree of association between the two classes.

2.2 Subsumption

If one class is a subclass of the other we assume the two classes of a pair p =
(c1, c2) to be not disjoint with a confidence equal to the likeliness associated with the
subclass-of relationship (cf. Section 2.1).

conf(p, −) = max(rsubclass−of (c1, c2), rsubclass−of (c2, c1)) (4)

2.3 Semantic Similarity

The assumption that a direct correspondence between the semantic similarity of two
classes indicates their likeliness to be disjoint led to the development of three further
methods: The first one implements the similarity measure described by [24] to compute
the semantic similarity sim of two classes c1 and c2 with respect to WordNet [6]:

conf(p, −) = sim(s1, s2) =
2 ∗ depth(lcs(s1, s2))
depth(s1) + depth(s2)

(5)

Learning Disjointness 179

where si = first(ci) denotes the first sense of ci, i ∈ {1, 2} with respect to WordNet,
and lcs(s1, s2) is the least common subsumer of s1 and s2. The depth of a node n
in WordNet is recursively defined as follows: depth(root) = 1, depth(child(n)) =
depth(n) + 1.

The second method measures the distance of c1 and c2 with respect to the given
background ontology (see Section 3.1) by computing the minimum length of a path q
of subclass-of relationships connecting c1 and c2.

conf(p, +) = min
p∈paths(c1,c2)

length(q) (6)

And finally, the third method computes the similarity of c1 and c2 based on their
lexical context. Along with the ideas described in [5] we exploit Harris’ distributional
hypothesis [10] which claims that two words are semantically similar to the extent to
which they share syntactic contexts.

For each occurrence of a class label in a corpus of textual documents (see prelimaries
of this section) we consider all the lemmatized tokens in the same sentence (except for
stop words) as potential features in the context vector of the corresponding class. After
the context vectors for both classes have been constructed, we assign weights to all
features using a modified version of the tf-idf formula:

Let vi = (f i
1...f

i
n) be the context vector of class ci where each f i

j , n ≥ 1
is the frequency of token j in the context of ci. Then we define TF (f i

j) =
∑

d∈doc(ci)
freq(f i

j , d) and N = |doc(ci)| and DF = |doc(ci) ∩ doc(f i
j)|, where

doc(t) is the set of documents containing term t and freq(t, d) is the frequency of term
t in document d. And finally, we get TFIDF (f i

j) = TF (f i
j) · log(N

DF).
Given the weighted context vectors v′1 and v′2 the confidence in c1 and c2 being not

disjoint is defined as conf(p, −) = cos(v′1, v
′
2).

2.4 Patterns

Since we found that disjointness of two classes is often reflected by human language,
we defined a number of lexico-syntactic patterns to obtain evidence for disjointness
relationships from a given corpus of textual resources. The first type of pattern is based
on enumerations as described in [9]. The underlying assumption is similar to the idea
described in section 2.1, i.e. terms which are listed separately in an enumeration mostly
denote disjoint classes. Therefore, from the sentence

The pigs, cows, horses, ducks, hens and dogs all assemble in the big barn, thinking
that they are going to be told about a dream that Old Major had the previous night.

we would conclude that pig, cow, horse, duck, hen and dog are disjoint classes. This
is because we believe that – except for some idiomatic expressions it would be rather
unusual to enumerate overlapping classes such as dogs and sheep dogs separately which
would result in semantic redundancy. More formally:

Given an enumeration of noun phrases NP1, NP2, . . . , (and|or) NPn we con-
clude that the concepts c1, c2, . . . , ck denoted by these noun phrases are pairwise
disjoint, where the confidence for the disjointness of two concepts is obtained from
the number of evidences found for their disjointness in relation to the total number of
evidences for the disjointness of these concepts with other concepts.

180 J. Völker et al.

The second type of pattern is designed to capture more explicit expressions
of disjointness in natural language by phrases such as either NP1 or NP2 or
neither NP1 nor NP2. For both types of patterns we compute the confidence for
the disjointness of two classes c1 and c2 as follows:

conf(p, +) =
freq(c1, c2)∑

j �=1 freq(c1, cj) +
∑

i�=2 freq(ci, c2)
(7)

where freq(ci, cj) is the number of patterns providing evidence for the disjointness of
ci and cj with 0 ≤ i, j ≤ |C|2 and i �= j.

2.5 OntoClean

In [20] we introduced AEON, an approach to automatically evaluate ontologies accord-
ing to the OntoClean methodology [8]. The basic idea is to use a pattern-based approach
on top of the Web (and other textual data sources) for annotating classes of a given on-
tology with the OntoClean properties such as unity, identity and rigidity. Parts of the
approach can be reused for learning disjointness axioms.

Two classes are disjoint if they have incompatible unity or identity criteria. This im-
plies that a class carrying anti-unity (∼U) must be disjoint of a class carrying unity (+U)
– and similarly for identity. Since we use the same subset of the PROTON ontology as
in our AEON experiments, we can rely on the manual OntoClean taggings we collected
earlier for the evaluation of AEON.

conf(p, +) =

⎧
⎪⎨

⎪⎩

1 if c1 tagged with φΩ, c2 tagged with ψΩ,

for Ω ∈ {U, I}, φ, ψ ∈ {∼, +}, φ �= ψ

0 otherwise

(8)

2.6 Meta Algorithm

The meta algorithm considers superclasses known to be disjoint (from previously com-
puted confidence values) and propagates this information downwards in the taxonomic
hierarchy4. For p = (c1, c2) the confidence for c1 and c2 being disjoint is computed as
follows:

conf(p, +) =

∑
ps(conf(ps, +) − conf(ps, −))

|super(c1)| · |super(c2)|
(9)

where ps = (cs
1, c

s
2) with cs

i ∈ {c|subclass − of(ci, c)} for i ∈ {1, 2} and
subclass− of(ci, cj) being the subclass-of relationship between ci and cj . More-
over, super(c) denotes the set of superclasses of c.

4 This algorithm was not used in the final evaluation, since early experiments indicated that it
introduces too much noise. However, we report on it for reasons of completeness. And we still
believe that it constitutes a potentially interesting direction of future work, because it allows
for integrating subsumption information into any other algorithm.

Learning Disjointness 181

3 Experiment: Human Annotation of Disjointness

We thoroughly evaluated our approach by performing a comparison of learned dis-
jointness axioms against a large number of manually created ones to calculate (among
other things) the degree of overlap. This section describes the generation of the evalu-
ation dataset consisting of 2000 pairs of classes tagged by 30 annotators and discusses
methodological aspects related to the manual creation of disjointness axioms. The com-
plete dataset is available from http://www.aifb.uni-karlsruhe.de/WBS/
jvo/data/disjointness-111206.zip.

3.1 Ontology

As a basis for the creation of the evaluation datasets and as background knowledge
for the ontology learning algorithms we took a subset (system, top and upper module)
of the freely available PROTON ontology (PROTo ONtology)5. In total our subset of
PROTON contains 266 classes, 77 object properties, 34 datatype properties and 1388
siblings.

PROTON is a basic upper-level ontology to facilitate the use of background or pre-
existing knowledge for automatic metadata generation. PROTON covers the general
concepts necessary for a wide range of tasks, including semantic annotation, indexing,
and retrieval of documents. The design principles can be summarized as follows (as
described in [19]) (i) domain-independence; (ii) light-weight logical definitions; (iii)
alignment with popular standards; (iv) good coverage of named entities and concrete
domains (i.e. people, organizations, locations, numbers, dates, addresses).

3.2 Evaluation Setting: Manual Taggings

To be able to compare the results of our trained model with the results generated by
manual annotation we created a dataset consisting of 2000 pairs of classes as follows:
First, we manually selected 200 (potentially) non-disjoint pairs from the ontology, since
we assumed the set of non-disjoint pairs to constitute a weak minority class (which
would have hampered the construction of a good model for our classifier). Then, we
randomly chose 500 siblings – which constitute a subset of the data, which is of partic-
ular interest from a practical and theoretical aspect. And finally, we added another 1300
pairs chosen randomly without any selection criteria.

Once the dataset was complete, each pair was randomly assigned to 6 different peo-
ple – 3 from each of two groups, the first one consisting of PhD students from our
institute (all of them professional ”ontologists”), the second being composed of under-
graduate students without profound knowledge in ontological engineering. Each of the
annotators was given between 385 and 406 pairs along with natural language descrip-
tions of the classes whenever those were available. Possible taggings for each pair were
+ (disjoint), − (not disjoint) and ? (unknown). The result were two datasets A and B
for ”ontologists” and ”students”. A third dataset C was created by merging A and B
(cf. table 1a). Dataset D is a subset of C consisting of all siblings, whereas E contains
all those pairs of classes which were randomly selected.

5 PROTON is available from http://proton.semanticweb.org.

http://www.aifb.uni-karlsruhe.de/WBS/
jvo/data/disjointness-111206.zip
http://proton.semanticweb.org

182 J. Völker et al.

Table 1.

a) Evaluation Datasets b) Tagged Pairs (Individual)

ID Dataset Annotators Tags per Pair Pairs

A Experts 15 3 2000
B Students 15 3 2000
C All 30 6 2000
D Siblings 30 6 541
E Random 30 6 1300

Dataset Individual Taggings
+ − ? all −/+ avg. agree.

A 3849 2007 144 6000 0.521 0.869
B 3881 2106 13 6000 0.543 0.858

avg. 3865.0 2056.5 78.5 6000 0.532 0.864
C 7730 4113 157 12000 0.532 0.824
D 1362 1822 62 3246 1.338 0.754
E 6166 1554 80 7800 0.252 0.853

In order to get cleaner and less ambiguous training data for our classification model
(see Section 4) we computed the majority votes for all the above mentioned datasets
by considering the individual taggings for each pair (3 in the case of A and B, and 6
for C). If at least 50% (or 100% respectively) of the human annotators agreed upon +
or − this decision was assumed to be the majority vote for that particular pair. In case
of equally many positive and negative taggings, the majority vote was defined as ? or
unknown. These pairs were not used for training purposes. In this way we reduced the
noise the classifier had to deal with in the training phase, and obtained a better overall
model. Some statistical properties of the majority vote datasets are given by table 2.

3.3 Analysis of Human Annotations

In order to determine how difficult it is for humans to tag pairs of classes as being dis-
joint or not we measured the human agreement within and across the different subsets
of the data. Table 1b shows the average agreement among the individual taggers, i.e.
the average maximum ratio of annotators who agreed upon the same tag for a pair of
classes. By analysing the figures we find that the average agreement for D is signifi-
cantly lower than the agreement for any of the other datasets – which seems to imply
that pairs of siblings (classes with a common direct superclass) are much more difficult
to tag for human annotators than randomly chosen pairs of classes. This might be due
to the fact that it is comparably hard to determine the differences between the intension
and extension of classes which are semantically very close.

In addition to the computation of the agreement within each of the datasets, we also
tried to capture commonalities and differences between the taggings of people from the
two groups of annotators – ontologists (A) and students (B).

First, we measured the average agreement of the individual taggings of the experts
with the majority vote 100% of the students and vice versa. The figures – 0.852 for the
agreement between A and the majority vote of B, and a slightly lower value of 0.834
for the agreement between B and the majority vote of A – indicate that, maybe due
to the relatively higher disagreement among the students (see table 1b), those tend to
agree mainly on very evident cases of disjointness.

The hypothesis that there is a considerable number of pairs which are comparably
easy to tag, thus provoking a high agreement, is supported by the figures we get for the
agreement among the majority votes 100% (0.964) and 50% (0.793) of A and B.

Learning Disjointness 183

Table 2. Tagged Pairs (Majority Vote)

Dataset Majority Vote 50% Majority Vote 100%

+ − ? all −/+ + − ? all −/+

A 1297 649 54 2000 0.500 931 330 739 2000 0.354
B 1346 648 6 2000 0.481 846 307 847 2000 0.363

avg. 1321.5 648.5 30.0 2000 0.490 888.5 318.5 793.0 2000 0.359
C 1276 537 187 2000 0.421 616 194 1190 2000 0.315
D 188 274 79 541 1.457 28 96 417 541 3.429
E 1072 140 88 1300 0.131 588 35 677 1300 0.060

Table 3. Differences between Majority Votes 100% of A (Experts) and B (Students)

Vote Disjoint Classes ? Vote Disjoint Classes ?
A B A B

− + RailroadFacility Pipeline + − Canal Harbor
− + Order Abstract + − OfficialPoliticalMeeting Parliament
− + Newspaper HomePage + − Week Month
− + School MineSite + − Mountain Peninsula
− + TelecomFacility Monument + − Island Valley
− + ReligiousLocation Canal + − Government Parliament
− + InternationalOrganization StockExchange + − Service Telecom
− + WaterRegion PoliticalRegion + − Park Festival
− + InternetDomain EntitySource + − OilField Province
− + ReligiousOrganization Airline + − Patent AirplaneModel
− + RecreationalFacility Capital + − Ministry Location
− + City Archipelago + − Delta River
− + Pipeline LaunchFacility + − TVCompany Movie
− + AstronomicalObject Mountain
− + GovernmentOrganization AmusementPark
− + AmusementPark Galaxy
− + LaunchFacility Bridge

And finally, we completed our analysis of the annotation results by inspecting con-
crete examples of differently tagged pairs. Table 3 shows the listing of all pairs of
classes which were assigned different tags by the majority votes 100% (which means
that all 3 annotators of A or B agreed upon each tag) of experts and students. An ex-
tensive discussion of the differences which tries to explain some of the problems the
human annotators encountered can be found in the following section.

3.4 Discussion

During the creation of the human annotations, we had the chance to study the prob-
lems humans face when using disjointness. Even in the taggings of the experts group –
consisting of post-graduates all involved in Semantic Web research – the overlap of the
taggings was lower than expected (cf. Section 3.3). Table 3 shows all pairs where all ex-
perts agreed on one tagging, and all students agreed on the other. Based on an analysis
of the taggings and subsequent discussions with the taggers, we identified several types
of problems regarding disjointness:

1. The label and comment of a class often do not provide an unambiguous idea of
what is meant with this class.

184 J. Völker et al.

2. Some disjointness axioms may depend on the context: whereas Dog and Livestock
may be disjoint in most parts of Europe, in the Chinese Wordnet6 the latter is actu-
ally a hypernym of the former.

3. Classes can have abstract individuals, like Money, Message or Idea.
4. Often the extension of two classes are disjoint, although their intension is not, e.g.

US President and Woman. Annotators struggle with this difference.
5. Also, the extensions of two classes might be not disjoint, even though their inten-

sions are: although Weapon and Pitchfork are disjoint intensionally (in the literal
sense), their extensions do not need to be.

6. Roles and so called basic classes are often mixed, e.g. the role Professor and the
Person itself that plays the role, which may be defined disjoint (depending on how
roles are modeled [11]).

7. Mereological and instantiation relations can be mixed: a Week is part of a Month,
so are these two classes disjoint? What about Delta and River?

8. Mixing other types of relations with instantiation relations may lead to misunder-
standings: see for example the pairs Movie/TVCompany, Government/Parliament,
or Patent/AirplaneModel, where the instances have close relations and thus seem
to confuse the annotators.

9. Instantiations can occur at different levels of abstraction. E.g., when describing
animals, Eagle may be the label of both an individual (e.g. of the class Species) and
of a class itself. Are then the two classes Species and Eagle disjoint? Note that the
individual Eagle is not the same as the class Eagle, but they may be connected via
an axiom like Class:Eagle ≡ ∃species.{Individual:Eagle}.

10. Sometimes, lexical information is mixed with ontological one. The PROTON ontol-
ogy contains concepts like Alias that form lexical information. Is a JobTitle disjoint
from a Job or the Person having the Job or JobTitle?

Note that this list does not speak about problems of disjointness with regards to its
definition in description logics, but rather with the problems our annotators had when
they had to decide if two classes are disjoint or not. Many of the above problem types
have a well-defined answer with regards to the formal semantics of disjointness, e.g.
#7, where Week and Month are disjoint as they don’t have common instances (since a
week consists of seven days, and months consist of around 28-31 days. Note that the
definition of week and month can change, but this basically means that we introduce
new concepts which may or may not have the same name).

Recognizing the problem type would allow an ontology development environment
to offer much more appropriate help than just a general description of the meaning of
the disjointness axiom, which can be hard to apply at times.

Often the decision, if two classes are disjoint or not, will uncover underspecified or
ambiguous classes, i.e. moot points in the description of one or both classes. Instead
of simply adding (or, which is far harder to tract, not adding) a disjointness axiom,
the rationale behind this decision should also be documented, following an ontology
lifecycle methodology like DILIGENT [21] for the continuous evolution and refinement
of the ontology.

6 http://www.keenage.com/

http://www.keenage.com/

Learning Disjointness 185

4 Evaluation: Learning a Classifier

In this section we present the evaluation procedure and analyse the results of the com-
parison between the classifier which has been trained on the features described in
Section 2 and the sets of manual annotations (see Section 3).

4.1 Experimental Settings

To train the classifier we skipped pairs of classes tagged with ? since the definition of
disjointness only distinguishes between disjoint and not disjoint classes. For the rest
of the evaluation we will consider this two-class problem. We evaluate our learned
classifier against two baseline: the random and majority baseline.

Random Baseline: The idea of the random baseline is to randomly choose the tar-
get class of the classifier. As we have a two-class problem we will distribute the pairs
equally over the two classes. This will result in a 50% baseline for accuracy as 50% of
the + examples will be classified in + which means that these examples are classified
correctly. The same holds for the − class.

Majority Baseline: The majority baseline is determined by taking the largest class as
default classification. This way, we will get a high accuracy if the classes are unequally
distributed. In this case, of course, the majority baseline is much more difficult to beat
than the random baseline. Nevertheless, since in the experiments at hand we only have
to deal with two classes (+ or −) which are not equally distributed, the majority baseline
should be considered as more realistic than the random baseline.

Classifier settings: In order to be able to classify each pair of classes as being disjoint
(+) or not (−), we trained a classifier based on the manual taggings created by hu-
man annotators. The features for the classifier are the confidence values obtained from
various sources as described in section 2.

We tested a couple of different classifiers made available by the Weka package7. In
general, decision trees outperformed all other classifiers – maybe, because of the highly
selective character of our features – while the performance of different types of decision
trees was more the less comparable. Therefore, we finally chose the ADTree classifier
[7] with default settings for our experiments which shows very good performance while
at the same time providing interpretable results.

First, we performed a 10-fold cross-validation against the majority votes 100% and
50% of the datasets A (ontologists), B (students), C (all) and E (random) (cf. table
1a). The results for the random dataset are included to show the performance of our
approach for an unbiased dataset (E contains examples chosen randomly from the set
of all possible pairs without any selection criteria). To get the results for dataset D
(siblings), we split dataset C into two independent parts - one for evaluation and one
for training. The training set for the evaluation with dataset D consists of all manually
tagged pairs except for the siblings.

7 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

186 J. Völker et al.

4.2 Results

Table 5 and 4 list the results of our evaluation experiments by means of Precision (P),
Recall (R), F-Measure (F) and Accuracy (Acc) (for definitions cf. [23]). From the
tables it becomes evident that we easily beat the baselines for the datasets A (experts),
B (students) and C in both cases majority vote 50% and 100%. With an accuracy of
over 90% the performance of our system for dataset C is remarkable, especially in
the case of the total majority vote. These results are comparable with the human inter-
annotator agreement for experts and students – and even better for dataset C (90.9%) in
comparison to the human agreement of 86.4%.

Dataset D, which only contains pairs of siblings, is certainly the most difficult to
handle – for the classifier, but also for the human annotators – because, as explained in
Section 3.3, siblings are semantically close, so that differences between their intensions
and extensions may often be hard to grasp. As dataset D shows a relatively low average
agreement compared to the other datasets (cf. table 1b) the classifier seems to have more
difficulties to learn it. This is also expressed by the very bad classification accuracy with
37% for majority vote 100%.

An investigation of the learned classifier revealed that the rather important taxonomic
feature (see Section 2.2) is not well populated in the siblings part of the dataset. To
analyse the influence of this feature we constructed a dataset without this feature. As
expected the accuracy for the training dataset drops, whereas for the evaluation set it
is improved considerably from 37.9% to 74.2%. Moreover, the results for the majority
vote 50% rise to 76.6% which can be interpreted as an indication to the noise insert by
this feature.

Our approach seems to work very well also for the random dataset E as we got a bet-
ter accuracy in both cases. The difference to the majority baseline is much smaller than
for A, B, and C but the baseline of around 90% is very difficult to beat. To conclude,
the results – not only for the random dataset – are very promising and allow us to setup
a competitive classifier to support ontology engineering.

In order to find out which classification features contributed most to the overall per-
formance of the classifier we performed an analysis of our initial feature set with respect
to the gain ratio measure [14]. The ranking produced for data set C clearly indicates an
exceptionally good performance of the features taxonomic overlap (Section 2.1), simi-
larity based on WordNet and lexical context (Section 2.3), and del.icio.us (Section 2.1).
The contribution of other features such as the one presented in Section 2.4 relying on

Table 4. Evaluation against Majority Vote 50% (ADTree)

Dataset P R F Acc Accrandom Accmajority

+ − avg. + − avg. + − avg.

A 0.815 0.638 0.727 0.823 0.626 0.725 0.819 0.632 0.726 0.757 0.500 0.666
B 0.807 0.642 0.725 0.844 0.580 0.712 0.825 0.609 0.717 0.758 0.500 0.675

avg. 0.811 0.640 0.726 0.834 0.603 0.719 0.822 0.621 0.722 0.758 0.500 0.671
C 0.854 0.682 0.768 0.874 0.644 0.759 0.864 0.663 0.764 0.806 0.500 0.704
D 0.558 0.628 0.593 0.255 0.861 0.558 0.350 0.726 0.538 0.615 0.500 0.593
E 0.910 0.761 0.836 0.990 0.250 0.620 0.948 0.376 0.662 0.904 0.500 0.884

Learning Disjointness 187

Table 5. Evaluation against Majority Vote 100% (ADTree)

Dataset P R F Acc Accrandom Accmajority

+ − avg. + − avg. + − avg.

A 0.896 0.720 0.808 0.903 0.703 0.803 0.899 0.712 0.806 0.851 0.500 0.738
B 0.866 0.790 0.828 0.942 0.599 0.771 0.903 0.681 0.792 0.851 0.500 0.734

avg. 0.881 0.755 0.818 0.923 0.651 0.787 0.901 0.697 0.799 0.851 0.500 0.736
C 0.934 0.823 0.879 0.946 0.789 0.868 0.940 0.805 0.873 0.909 0.500 0.760
D 0.237 0.806 0.522 0.786 0.260 0.523 0.364 0.394 0.379 0.379 0.500 0.774
E 0.977 0.955 0.966 0.998 0.600 0.799 0.987 0.737 0.862 0.976 0.500 0.944

lexico-syntactic patterns seems to be less substantial. However as the classification ac-
curacy tested on every single feature is always below the overall performance the com-
bination of all features is necessary to achieve a very good overall result.

5 Related Work

Several ontology learning frameworks have been designed and implemented in the last
decade. The Mo’K workbench [1], for instance, basically relies on unsupervised ma-
chine learning methods to induce concept hierarchies from text collections. In particu-
lar, the framework focuses on agglomerative clustering techniques and allows ontology
engineers to easily experiment with different parameters. OntoLT [3] is an ontology
learning plug-in for the Protégé ontology editor. It is targeted at end users and heavily
relies on linguistic analysis, i.e. it makes use of the internal structure of noun phrases to
derive ontological knowledge from texts. JATKE8 is a Protégé based unified platform
for ontology learning which allows for inclusion of modules for ontology learning. The
OntoLearn framework [13] mainly focuses on the problem of word sense disambigua-
tion, i.e. of finding the correct sense of a word with respect to a general ontology or
lexical database. TextToOnto [12] is a framework implementing a variety of algorithms
for diverse ontology learning subtasks. In particular, it implements diverse relevance
measures for term extraction, different algorithms for taxonomy construction as well as
techniques for learning relations between concepts. The recent RelExt approach [18]
focusses on the extraction of triples, i.e. classes connected by a relation. None of the
mentioned approaches deals with disjointness.

6 Conclusion and Future Work

Learning of disjointness axioms is an intuitive and useful extension of existing ontology
learning frameworks. We have motivated the need for richter ontologies which include
disjointness axioms and presented an approach consisting of a number methods to ex-
tract expressive feature for learning disjointness from different sources of evidence. In
a thorough evaluation our learning approach behaved competitive to human annotators.

8 http://jatke.opendfki.de/

http://jatke.opendfki.de/

188 J. Völker et al.

As a by-product we captured lessons learned from human annotators with respect to
their difficulties when modeling disjointness axioms.

Future work includes a combination with ontology evaluation approaches for richly
axiomatized ontologies such as [17]. Moreover, we want to integrate the novel methods
into the Text2Onto [4] framework for ontology learning from texts.

Acknowledgments. Research reported in this paper has been partially financed by the
EU in the IST project SEKT (IST-2003-506826) (http://www.sekt-project.
com). We would like to thank our colleagues, especially Peter Haase, for fruitful dis-
cussions, and all the students and colleagues at the AIFB and the University of Kassel
for providing us with more than 10,000 taggings.

References

1. G. Bisson, C. Nedellec, and L. Canamero. Designing clustering methods for ontology build-
ing - The Mo’K workbench. In Proc. of the ECAI Ontology Learning Workshop, pages
13–19, 2000.

2. E. P. Bontas, C. Tempich, and Y. Sure. ONTOCOM: A cost estimation model for ontology
engineering. In I. Cruz et al., editors, Proceedings of the 5th International Semantic Web
Conference (ISWC 2006), volume 4273 of LNCS, pages 625–639. Springer-Verlag Berlin
Heidelberg, 2006.

3. P. Buitelaar, D. Olejnik, and M. Sintek. OntoLT: A protégé plug-in for ontology extraction
from text. In Proc. of the 2nd Int. Semantic Web Conference (ISWC2003), 2003.

4. P. Cimiano and J. Völker. Text2onto – a framework for ontology learning and data-driven
change discovery. In Proc. of the 10th Int.l Conf. on Applications of Natural Language to
Information Systems (NLDB’05), June 2005.

5. P. Cimiano and J. Völker. Towards large-scale, open-domain and ontology-based named
entity classification. In G. Angelova, K. Bontcheva, R. Mitkov, and N. Nicolov, editors,
Proc. of the International Conference on Recent Advances in Natural Language Processing
(RANLP), pages 166–172, Borovets, Bulgaria, September 2005. INCOMA Ltd.

6. C. Fellbaum. WordNet, an electronic lexical database. MIT Press, 1998.
7. Y. Freund and L. Mason. The alternating decision tree learning algorithm. In ICML, pages

124–133, 1999.
8. N. Guarino and C. A. Welty. A formal ontology of properties. In Knowledge Acquisition,

Modeling and Management, pages 97–112, 2000.
9. P. Haase and J. Völker. Ontology learning and reasoning - dealing with uncertainty and

inconsistency. In Proc. of the Workshop on Uncertainty Reasoning for the Semantic Web
(URSW), pages 45–55, 2005.

10. Z. Harris. Distributional structure. In J. Katz, editor, The Philosophy of Linguistics, pages
26–47, New York, 1985. Oxford University Press.

11. K. Kozaki, E. Sunagawa, Y. Kitamura, and R. Mizoguchi. Fundamental considerations of role
concepts for ontology evaluation. In Proc. of the Workshop EON – Evaluation of Ontologies
for the Web, 2006.

12. A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE IS, 16(2), 2001.
13. R. Navigli, P. Velardi, A. Cucchiarelli, and F. Neri. Extending and enriching WordNet with

OntoLearn. In Proc. of the GWC 2004, pages 279–284, 2004.
14. J. R. Quinlan. C4.5 Programs for Machine Learning. Morgan Kaufmann, California, 1993.

http://www.sekt-project.
com

Learning Disjointness 189

15. A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens, H. Wang,
and C. Wroe. OWL pizzas: Practical experience of teaching OWL-DL – common errors &
common patterns. In Proc. of EKAW 2004, pages 63–81, 2004.

16. T. Rose, M. Stevenson, and M. Whitehead. The reuters corpus volume 1-from yesterdays
news to tomorrows language resources. Proc. of the Third International Conference on Lan-
guage Resources and Evaluation, pages 29–31, 2002.

17. S. Schlobach. Debugging and semantic clarification by pinpointing. In Proc. of the 2nd
European Semantic Web Conference (ESWC2005), volume 3532 of LNCS, pages 226–240.
Springer, 2005.

18. A. Schutz and P. Buitelaar. RelExt: A tool for relation extraction in ontology extension. In
Proc. of the 4th International Semantic Web Conference (ISWC2005), 2005.

19. I. Terziev, A. Kiryakov, and D. Manov. Base upper-level ontology (BULO) guidance. SEKT
deliverable 1.8.1, Ontotext Lab, Sirma AI EAD (Ltd.), 2004.

20. J. Völker, D. Vrandecic, and Y. Sure. Automatic evaluation of ontologies (AEON). In Proc.
of the 4th International Semantic Web Conference (ISWC2005), volume 3729 of LNCS, pages
716–731. Springer, 2005.

21. D. Vrandečić, H. S. Pinto, Y. Sure, and C. Tempich. The DILIGENT knowledge processes.
Journal of Knowledge Management, 9(5):85–96, 2005.

22. T. D. Wang. Gauging ontologies and schemas by numbers. In Proc. of the Workshop EON –
Evaluation of Ontologies for the Web, 2006.

23. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann Series in Data Management Sys. Morgan Kaufmann, 2nd edition, June
2005.

24. Z. Wu and M. Palmer. Verb semantics and lexical selection. In 32nd. Annual Meeting of the
Ass. for Computational Linguistics, pages 133–138, New Mexico, 1994.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 190–204, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Developing Ontologies for Collaborative Engineering
in Mechatronics

Violeta Damjanović, Wernher Behrendt, Manuela Plößnig,
and Merlin Holzapfel

Salzburg Research, Jakob Haringer Strasse 5/II,
5020 Salzburg, Austria

{violeta.damjanovic, wernher.behrendt,
manuela.ploessnig, merlin.holzapfel}@salzburgresearch.at

http://www.salzburgresearch.at

Abstract. Creating a coherent set of ontologies to support a collaborative de-
sign process amongst different firms which develop mechatronic products is a
challenge due to the semantic heterogeneity of the underlying domain models
and the amount of domain knowledge that needs to be covered. We tackle the
problem of semantic heterogeneity by employing the DOLCE foundational on-
tology and by aligning our models to it. We approach the problem of scale, i.e.
the amount of knowledge modeled by keeping the models at a descriptive level
which is still granular enough to connect them with domain and task specific
engineering tools. In order to manage the complexity of the modeling task we
separate the models into the foundational layer, the mechatronic layer consist-
ing of three domain ontologies, one process model and one cross-domain
model, and the collaborative application layer. For the development process, we
employ a methodology for dynamic ontology creation, which moves from taxo-
nomical structures to formal models.

1 Introduction

The mechatronic engineering process covers an interdisciplinary combination of dif-
ferent domains comprising of mechanical engineering, electrical engineering, and
software engineering. For each of these engineering domains there exist diverse
knowledge models, mostly in the form of documents or glossaries, but hardly as com-
prehensive ontologies. Furthermore each domain covers a specific mechatronic field,
so that the intersection of knowledge models between these different engineering
domains remains relatively small.

The focus of the ImportNET1 project lies in this intersection, specifically in the
collaboration of the three mainstream mechatronic domains, i.e. mechanical, electri-
cal, and software engineering. For this reason, the process of ontology modelling in
ImportNET is considered from two perspectives:

Firstly - in the research perspective - we employ a methodology for dynamic crea-
tion of ontologies (i.e. moving from less formalised models to more rigorous models).

1 The ImportNET project is co-funded by the European Commission within the Sixth Frame-

work Programme under Contract 033610, in the area of ICT for Networked Businesses.

 Developing Ontologies for Collaborative Engineering in Mechatronics 191

Using the DynamOnt methodology [1] we model the reference ontologies for mecha-
tronics on the basis of the DOLCE foundational ontology. This includes a generic
mechatronic process model which will also be used to describe the usage scenarios for
the modeling.

The second perspective concerns the actual use of ImportNET tools: there needs to
be a methodology to modify the reference ontologies in order to adapt them to the
requirements of concrete companies and their products. The reference ontologies must
be tailored to the requirements of the actual, planned collaboration. This will be done
by the Ontology Integration Tool (OIT) which allows to modify and to expand the
reference ontologies.

The paper describes the early stages of work in a European research project and
addresses collaborative design processes that are used for development of mecha-
tronic products as follows: The introduction section gives a brief overview of the state
of the art and existing research gaps in collaborative engineering, mechatronic engi-
neering and mechatronic domain modeling. Section 2 introduces the ImportNET ap-
proach to mechatronic domain modeling. This section firstly discusses the ontology
landscape in ImportNET, and then illustrates the alignment of the mechatronic ontol-
ogy with the DOLCE foundational ontology. Furthermore the DynamOnt methodol-
ogy, which is used for the evolutionary creation and development of the mechatronic
ontology, is explained in more detail. Section 3 discusses the main objectives of Im-
portNET, the possible system architectures, as well as usage and validation scenarios.
Preliminary conclusions are drawn in Section 4.

1.1 State of the Art and Research Gaps in Collaborative Engineering

In recent years, collaboration not only between engineers but also across organisa-
tional boundaries has become a key research issue for the development of flexible
engineering processes. Collaborative engineering aims at providing the main con-
cepts, solutions, as well as technologies for development of products by multiple
engineering teams. We found the following main research challenges and gaps in the
domain of collaborative engineering:

− technical aspects: Web-based electronic design environments; architectures and
technologies for knowledge sharing; standards for exchange formats/protocols; se-
curity aspects;

− social aspects: handling multi-cultural issues in collaborative design; knowledge
sharing; collaborative learning; collaborative engineering; distributed engineering
work; social aspects of collaboration teams;

− organizational and economic aspects: benefits of using collaboration approaches;
validation scenarios.

At the same time, there is a number of unsolved problems from the industrial per-
spective, including application integration e.g. how can Web Services contribute to
closing this gap?; knowledge integration e.g. how can Semantic Web technologies
contribute?; and process integration e.g. how can approaches like Enterprise Model-
ing answer to this challenge?

192 V. Damjanović et al.

1.2 State of the Art and Research Challenges in Mechatronic Engineering

Mechatronic engineering is one of the most recent branches of engineering and it has
increasing impact on many sectors of the economy and on society overall. The com-
petitive use of mechatronic engineering will soon require more model-driven devel-
opment using design repositories of mechatronic components. We have found two
notable metamodels which address this issue: Thramboulidis describes a four-layer
model of Integrated Mechatronics distinguishing mechanical, resource, application
and mechatronic layers [2]. The model is the basis for ”Archimedes, a system plat-
form that supports the engineering through a methodology, a framework and a set of
tools to automate the development process of agile mechatronic manufacturing sys-
tems“ [2]. The problem of ontological modelling was addressed by Yoshioka [3] in a
layered knowledge structure for the Knowledge Intensive Engineering Framework
(KIEF). They also introduce the concept of plug-in models to specialise and refine the
metamodel into concrete models. Their paper indicates that there is at least a proof-of-
concept prototype in which some of the proposed concepts are validated. Unfortu-
nately, the actual implementation is not in the public domain. Each of the two
frameworks has a particular angle: Thramboulidis focuses on the mechatronic process
whereas Yoshioka emphasises the modelling of mechatronic artefacts. Both models
will have to be considered as frameworks for our collaboration-centered approach to
mechatronics.

1.3 State of the Art and Research Challenges in Mechatronic Domain Modeling

Ontological engineering covers a whole range of topics such as the basic philo
sophical and metaphysical issues as well as knowledge representation formalisms, me
thodology for ontology development, business process modelling, commonsense
knowledge, systematisation of domain knowledge, Internet information retrieval,
standardisation, evaluation, and many more [4].

If we put ontological engineering in the context of other disciplines, then many
similarities and analogies arise. They allow us to make connections between ontologi-
cal engineering and the other disciplines, to bridge potential comprehension gaps, and
to shed a different light on already known concepts and practices. For example, when
applying the Unified Modeling Language (UML) to a mechatronic system it turns out
that some additional concepts are needed to model the mechatronic system [5]. Such
concepts can be added by introducing stereotypes, e.g. a special stereotype called the
Function Block Adapter (FBA) is described in [5]. The FBA stereotype can be used to
specify the mapping from UML signals to the function block signals.

2 ImportNET Approach to Mechatronic Domain Modeling

A review of the literature about mechatronics rapidly results in a number of defini-
tions, each of which emphasises a slightly different aspect of the mechatronics con-
cept, ranging from design to precision engineering and from sensors to actuators [6].
Most of the definitions do manage to agree that mechatronics is concerned with the
integration of its core engineering themes to generate novel technological solutions in

 Developing Ontologies for Collaborative Engineering in Mechatronics 193

the form of products and systems whose functionality is integrated across those core
technologies.

The design of an ontology for mechatronics can be approached using a variety of
scientific methods, such as the following paradigms [7]:

− empirically-based research (cognitive models),
− axiom-based research (computational models); and
− conjecture-based research (computational models):

− conjectures based on an analogy with cognitive processes; and
− conjectures based on an analogy with computational processes.

Empirically-based research involves the development of experimental studies of de-
signers that result in cognitive models of designing. Axiom-based research involves
the identification of a set of axioms and their consequences to derive a logic-based
computational model of designing. Conjecture-based research involves an analogy
between a cognitive or computational process that leads to a computational model
specific to designing.

The approach taken by ImportNET is to move from a cognitive model to a computa-
tional model, with the help of a foundational ontology which could be seen as a com-
promise between cognitive conjectures (the concepts of the ontology) and axiom-based
computational models (the axiomatic framework defined by the DOLCE foundational
ontology).

2.1 Ontology Landscape in ImportNET

Ontologies provide the vocabulary for referring to the terms in a subject area, as well
as the logical statements that describe what the terms mean, how they are related to
each other, as well as the rules for combining terms and relations to define extensions
to the vocabulary.

Figure 1 provides a landscape of reference ontologies employed in ImportNet. The
DOLCE ontology represents the foundational layer which gives us a useful structure
for building novel knowledge based architectures. Aligned to DOLCE, we place the
domain ontologies for mechanical, electronics and software engineering. The new
cross-domain engineering ontology is built as a result of the integration of these con-
tributing ontologies, while the mechatronic engineering lifecycle ontology has to be
linked ultimately, to distributed service execution and orchestration processes.

The ImportNET ontologies are created in support of a collaborative engineering
process for developing mechatronic products. The process for development of the
mechatronic products requires some ontology integration and configuration based on
the overall set of ontologies. The ontology landscape and its configuration via the
Ontology Integration Tool (OIT) is shown in Figure 1. The resulting Collaboration
Ontology is a meaningful subset of concepts from the ontology landscape. Any col-
laboration between organisations developing a specific product will be based on such
a specialised collaboration ontology. The design and detailed functionality of OIT are
outside the scope of this paper.

194 V. Damjanović et al.

C
ol

la
bo

ra
tio

n
O

nt
ol

og
y

Fig. 1. Ontology landscape and configuration of a collaboration ontology

The design of the cross-domain engineering ontology is considered to be an essen-
tial theme for mechatronics since it attempts to bring together concepts and ideas in
relation to a product or system [6]. Furthermore, the design of a flexible mechatronic
engineering lifecycle ontology to support the collaborative development of mecha-
tronic products amongst various communities of practice and virtual organizations is
the main challenge in ImportNET.

A partial taxonomy of mechatronic ontologies is represented in Tables 1-5.

Table 1. A partial taxonomy of the mechanical engineering ontology

Criteria Explanation
Spatial Spatial description of mechanical components
Composing Aggregation / assembly
Properties Physical properties, e.g. liquid
Process - domain specific workflow - mechanical behaviour of com-

ponents, e.g. rotation or movement along a trajectory
Role Roles of agents in the domain of mechanical engineering, e.g.

material stress tester
Methods Methods of mechanical engineering

Table 2. A partial taxonomy of the electronic engineering ontology

Criteria Explanation
Spatial Spatial description of electronic components
Composing Aggregation / assembly
Properties Physical properties
Process - Domain specific workflow

- Electro magnetic behaviour
Role Roles of agents in the domain of electronic engineering
Methods Methods of electronic engineering

 Developing Ontologies for Collaborative Engineering in Mechatronics 195

Table 3. A partial taxonomy of the software engineering ontology

Criteria Explanation
Functions Architecture of the runtime environment, hardware drivers
Composing Aggregation / assembly
Properties Description of design, documentation, code, APIs…
Process - Software life cycle

- Behaviour of software components
Role Roles of agents in the domain of software engineering
Methods Methods of software engineering

Table 4. A partial taxonomy of the mechatronic engineering lifecycle (process) ontology

Criteria Explanation
Composing Sub-processes at different levels of granularity, requiring

input/output parameters to be modeled at corresponding levels
of detail

Properties Characterising different instantiations of a process model (e.g.
waterfall, V-model, etc), order of sub-processes, duration, pre-
and postconditions

Role Roles of agents in particular those engaged in coordinating
and resolving conflicts between the engineering domains

Methods E.g. conflict resolution between roles

Table 5. A partial taxonomy of the Cross-domain Ontology

Criteria Explanation
Spatial Runtime environment, hardware drivers
Composing Aggregation / assembly
Process Electro magnetic behaviour, software/ hardware execution…
Role Union of roles defined in the other domains
Methods E.g. conflict resolution between roles

Current work is addressing the relationship between the initial taxonomies and the
frameworks proposed by Thramboulidis [2] and Yoshioka [3]. One of the main issues
in combining the knowledge of these other models with ImportNET is that once we
have made a commitment to a foundational ontology we need to also align external
models to that foundation. For example, each mereological element of an external
ontology needs to be mapped into the corresponding primitives of the foundational
ontology. Whether or not there is a specific ontological bias in any of the external
models can only be determined once we have access to the full models.

2.2 Ontology Alignment to the DOLCE Foundational Ontology

The Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) was
originally developed in the EU WonderWeb project [8] and has been extended in a
number of other projects since then. The design philosophy of DOLCE is modularity
in order for ontology projects to be able to pick and choose thus making only as much
”ontological commitment“ as needed. The typical process of developing an ontology

196 V. Damjanović et al.

is then to either ”align“ existing knowledge models to the DOLCE model or to de-
velop the ontology from scratch, by using the conceptual primitives defined by
DOLCE.

Despite the ambition to capture some ”common sense“ DOLCE constitutes a strictly
formal approach to ontology modeling, which is a necessary condition if we want com-
putational services or agents to make autonomous use of the ImportNET knowledge
models while remaining ”accountable“ for their activities. Such semantic accountability
is an important requirement for future work spaces where some of the decision making
in cross-organisational processes will be delegated to machines and where there will be
a need at least for boundary conditions to be defined explicitly in order to safeguard
against unwanted behaviour of partly autonomous systems. Furthermore, the axiomati-
sation is a prerequisite for any logic based inferencing done by such machines.

The fundamental difference between current ”semantic“ terminologies as used in
annotations and ”proper“ semantic models as envisaged for the ImportNET Semantic
Application Server (SAS) is that the latter will have to implement a partly autono-
mous inference module in order to manage the cross-organisational work processes,
which will be context-sensitive to the mechatronic design artefacts which will be
exchanged between the engineers (i.e. the users of the system).

Since ImportNET will focus on cross-organisational processes it will be necessary
to add the capability for modeling tasks to the basic model. The process of aligning
the set of mechatronic ontologies to DOLCE is shown in Figure 2. In the recent EU
METOKIS project, DOLCE was extended by an ontology called ”Descriptions and
Situations“ (D&S), which includes a representation language for tasks or processes
[9]. D&S shows its practical value when applied to ontology design patterns for
(re)structuring application ontologies that require contextualization [10]. Figure 3
represents the process of aligning the mechatronic ontologies with respect to the basic
categories of DOLCE, as well as using of Semantic Web Services approach to support
the collaborative design process.

M
ec

ha
ni

c
E

ng
in

ee
rin

g
O

nt
ol

og
y

S
of

tw
ar

e
E

ng
in

ee
rin

g
O

nt
ol

og
y

El
ec

tro
ni

c
E

ng
in

ee
rin

g
O

nt
ol

og
y

M
ec

ha
tro

ni
cs

 o
nt

ol
og

ie
s

D
O

LC
E

 F
ou

nd
at

io
na

l
O

nt
ol

og
y

D
es

cr
ip

tio
n

&
 S

itu
at

io
n

(D
&

S
)

C
or

e
O

nt
ol

og
y

of

Se
rv

ic
es

 (C
O

S)

O
W

L-
S

Fig. 2. The DOLCE foundational ontology is extended by the D&S module. Instead of directly
aligning OWL-S to D&S, a Core Ontology of Services (COS) is developed and OWL-S is
aligned to the COS ontology [10]. COS tries to fill the epistemological gap between the founda-
tional ontology and OWL-S, and also it can be reused to align other Web Service Description
Languages as well. Furthermore, COS ontology is used to align the set of mechatronic refer-
ence ontologies.

 Developing Ontologies for Collaborative Engineering in Mechatronics 197

Entity

Endurant

Non-physical Endurant

Parameter

Description

Situation

S - Description C - Description

LEVEL 1:
Aligning D&S to
DOLCE

...

Functional
Role

Course of
Events

Service
Requirements

Description

Agentive
Functional Role

Instrumentality
Role Task

Computational
Task

Service
Task

Service
Input

Service
Output...Service Offering

Description

OutputInputService Service ModelService Profile

Properties Composing Role Methods Process

Actor Process
Component

...
LEVEL 2:
Aligning COS
to D&S

LEVEL 3:
Aligning OWL
to COS
LEVEL 4:
Aligning Domain
ontology to OWL

Fig. 3. Indirectly aligning mechatronic ontologies to the DOLCE foundational ontology

To summarise, the extended DOLCE foundational ontology for which a full im-
plementation in OWL-DL exists has been chosen as the working hypothesis from
which the modeling of the ImportNET ontologies start. Achieving such a combined
representation in the area of mechatronics would be a significant result because to our
knowledge, no other foundational model has a comparable degree of coherence and
formalisation.

2.3 Methodology for the Development of the Mechatronic Ontology

Ontology development methodologies are intended to help with the complex process
of ontology building and managing. They help knowledge engineering projects to
successfully reach the main goals in time, especially when it comes to knowledge
sharing in dynamic environments due to frequent changes of user needs.

There are two general ontology engineering approaches, centralized and decentral-
ized methodologies. On-To-Knowledge (OTK) [11] and METHONTOLOGY [11],
[12] are mostly centralized, while DILIGENT [13] and the recently proposed Dyna-
mOnt [1] methodology can be seen as decentralized and distributed approaches for
ontology engineering where a community of ontology users and developers converges
towards a shared view.

For the development of the contributing ImportNET ontologies, we use the Dyna-
mOnt methodology. The DynamOnt methodology enables the dynamic creation of
ontologies based on communication and experience exchange amongst different
communities of practice - in our specific case those communities which are concerned
with the development of mechatronic products.

198 V. Damjanović et al.

The DynamOnt process model integrates elements of known knowledge and ontol-
ogy-engineering methods in order to produce an overall methodology for engineering
of knowledge-based systems. In detail the DynamOnt model comprises the following
phases [1]:

− Identify the problem – domain experts (users) could describe the situation when
the problem occurs or they have ideas to solve the problem;

− Structure the problem – a broader discussion with domain experts (users) and the
description of user scenarios would help to structure the problem in order to get a
broader view of the topic;

− Identify concrete purpose and scenarios – the focus is a mutual understanding of
the project goals. A guideline based on a three dimensional matrix is proposed to
classify ontologies along the properties scope (stability of knowledge models and
interoperability on semantic level), expressiveness (complexity and costs), and ac-
ceptance (market success and collaboration);

− Identify main concepts of domain/subject matter – based on user scenarios,
existing documents and knowledge models a list of domain concepts, roles and
tasks will be created;

− Create non-formal models – the already defined concepts, roles and tasks will be
interrelated through attributes and relations. This will be supported by guided
questions;

− Create formal models (knowledge design) – the classification according to the
expressiveness dimension of the three dimensional matrix helps to decide which
parts of the ontologies has to be formalised to a certain degree. Based on the non-
formal model and maybe other available models, a conceptual (formal) model will
be defined and the output will be machine readable (e.g. OWL, RDFS, XML);

− Create acceptance (community design) - the acceptance within the main user
communities (e.g. developers, the domain experts, external user communities of
the system) is an important factor for the success of the model and the system. The
acceptance can be raised by trainings (e.g. workshops) and by adapting existing
business processes according to inputs of the resulting formal model;

− Create system (software design) – based on software engineering methods and
techniques the software will be specified and designed;

− Implement Target System - the scope of this phase is to provide a fully developed
knowledge-driven application.

In the formalisation steps, DynamOnt uses the following ontological design pat-
terns (based on DOLCE) to guide domain experts in creating conceptualisations of
their domain knowledge [1]:

− the Participation pattern;
− the Description-Situation pattern;
− the Role-Task pattern;
− the Design-Artefact pattern;
− the Agent-Activities pattern;
− the Information-Object pattern.

 Developing Ontologies for Collaborative Engineering in Mechatronics 199

Fig. 4. Role-Task ontological design pattern defined in DynamOnt using DOLCE concepts

Each of these patterns acts as a modelling template to describe how agents in vari-
ous roles, participate in situations and use information objects for communication.
The use of these patterns is similar to the design patterns in object oriented program-
ming and it should lead to a more homogeneous way of modelling intelligent agents,
roles and activities in any environment. Figure 4 shows the Role-Task pattern, which
is defined in DynamOnt methodology by using the DOLCE concepts.

One of the early lessons of our ontology work is that a common set of knowledge
engineering methods would be desirable. Methontology appears to be the most
straightforward approach to semiformal modelling, but lacks the foundational rigour
of DOLCE which is better supported by the ontological patterns of DynamOnt.
Methontology on the other hand, offers good ways to express axioms and rules which
are absolutely necessary constructs for designing real-world semantic applications.

3 Objectives, ImportNET System Architecture, Usage and
Validation Scenario

The ImportNET project is addressing on the one hand, the issue of creating a support
environment for virtual enterprises in cross-domain engineering and on the other hand
the problem of cultural differences and misunderstandings which may lead to com-
munication failures between engineers who try to collaborate with each other.

3.1 Objectives and Initial Findings

The technical approach is to first create the collaboration environment by integrating
the knowledge models of the three engineering domains and by creating a layer of

200 V. Damjanović et al.

supporting middleware to integrate existing engineering tools (CAE, CAD/CAM,
CASE). In parallel, a knowledge base of intercultural communication problems is
being developed and the communication flow between engineers is analyzed, along
the mechatronic product life cycle. The communication will be modeled explicitly, in
the collaboration ontology which specialises the domain ontologies for a specific
collaboration between some firms developing some defined product. The intercultural
knowledge base will be indexed in such a way as to enable the triggering of ”warn-
ings“ when there is a likelihood of a misunderstanding occurring in a communication
act along the lifecycle.

For the integration of the engineering tools into a collaborative lifecycle support
environment it will be necessary to create ”wrappers“ which translate the proprietary
or otherwise incompatible data formats into semantically comparable intermediate
representations. To automate some of this translation process an Intelligent Adapter
Generation Tool (IAGT) is envisaged. This tool will use compiler-compiler tech-
niques to specify the semantic relationships between a proprietary model and the
intermediate representation and to create from this specification, two-way translators
which can be integrated into the collaboration environment.

The integration of the three domains has already been described: we use DOLCE
as a foundational ontology and specialize the D&S module to the needs of modeling
processes in cross-domain engineering. In order to make it easier for organisations as
well as for technology integrators, to specify a workflow for a new collaboration, we
make use of the OIT. This tool will offer semantic templates (“ontological patterns“)
to the integrator, which can be specialised for the needs of a new collaborative engi-
neering project.

3.2 ImportNET System Architecture and Issues Around Semantic Modelling

The system comprises of a knowledge based back-end called SAS (Semantic Applica-
tion Server), and a client front-end application called MDET (Multi Domain
Engineering Tool). The MDET offers different engineers their preferred view of the
overall system and it mediates potential misunderstandings by being aware of the
communication acts between the participants of the collaboration. One of the roles of
MDET will be to mediate between mechanical engineering views (which are typically
3D) and electronic views (normally 2D). The challenge lies in merging the internal
representations of external engineering design tools (eCAD and mCAD) into a com-
mon one with uniform semantics. This resolution will be done in the SAS with the
help of the tool adapters (i.e. semantic wrappers) constructed with the help of the
IAGT. The SAS plays the role of a semantics-based middleware which connects the
external tools to the ImportNET communication and collaboration processes. We
have identified three issues that such a system needs to address: a) the role of infer-
ence support; b) the need for semantic web services; c) the degree of interoperation
between current engineering tools.

Role of inference support: current CAD tools are based on object-oriented, often pro-
prietary database back-ends. Similarly, even most of the open research systems in the
field of engineering are based on object-oriented data models. Any semantic interop-
eration approach is faced with the dilemma that one has to either replicate the data in
a Semantic-Web enabled knowledge base in order to use inference engines or, to

 Developing Ontologies for Collaborative Engineering in Mechatronics 201

reimplement some inferencing capability on top of the existing OO datastore. This is
a general problem facing Semantic Web applications when they need to interoperate
with software in the commercial domain.

The need for semantic web services in ImportNET: the implementation architecture of
ImportNET could be envisioned as an open, yet collaborative lifecycle support envi-
ronment in which different Semantic Web Services can find each other automatically.
This kind of ImportNET system architecture could be based on the Web Service Exe-
cution Environment (WSMX) core architecture, which enables discovery, selection,
mediation, invocation and interoperation of Semantic Web Services [14]. However, it
is not yet clear whether this kind of spontaneous semantic service integration is really
needed for ImportNET, because the philosophy behind the system is a planned col-
laboration between known organisations and systems.

Degree of interoperation between current engineering tools: we see a major hurdle
for the envisaged system still, in the complex yet proprietary solutions that are cur-
rently prevalent in engineering domains. This necessitates firstly, the approach of
building an external semantic application server with its associated problem of infer-
ence engines versus object-model. Secondly, it also bears the danger of "research at a
dead end" because we cannot research semantically interoperable models when the
actual target application software is designed to hinder or defeat, interoperation, for
reasons of market protection. One such example is that object structures are based on
OIDs which are generated afresh each time a design is loaded and there are only lim-
ited ways of exchanging typed structural (schematic) information between different
tools. This leads to a need for effectively reverse-engineering some of the functional-
ities of the target tools which is neither a worthwhile research question nor strictly
legal in some cases. There is, however, an interesting side effect to this issue: seman-
tic modelling points directly at methods by which commercial players are trying to
protect their intellectual property and market share. The legal system may one day
employ semantic modelling to determine what kinds of protection are fair and which
methods of protection are detrimental to a competitive market.

3.3 Usage and Validation Scenario for Collaborative Mechatronic Design

As described above mechatronic engineering deals with collaboration across different
domains. Each of these engineering domains is well supported by a range of engineer-
ing tools which cover at most the domain itself, but typically focus on a specific as-
pect e.g. the design of physical artefacts or the specification of automated tests for an
electronic device. The focus of ImportNET and consequently of the case studies in
ImportNET is on the design phases of the mechatronic lifecycle and the cross domain
cooperations. The mechatronic life cycle coordinates the different tasks of the mecha-
tronic engineering domains and the engineering tasks of one domain often influence
the engineering tasks of another domain. As a result, the precise hand-over points of
these tasks are sometimes not clear and coordination conflicts may occur. Against that
background several aspects have to be studied and validated through use cases:

− During design many documents (e.g. output of CAD tools) need to be exchanged
between the mechanic and the electronic engineering domains. Most of the docu-
ments are in a proprietary format and are therefore not easily imported by other

202 V. Damjanović et al.

tools. Based on known exchange formats such as DXF2 and STEP3 ImportNET
analyses where data can be automatically exchanged during cross-domain
collaboration.

− Designing a mechatronic product involves engineering experts from different do-
mains and conflicts can occur for several reasons. Often conflicts have simply a
factual basis where e.g. a mechanic and an electronic engineer have to clarify
technical issues. The mechatronic design process comprises in these cases the co-
ordination of cross-domain issues with respect to spatial, temporal or causal rela-
tionships. The coordination between mechanical and electronic engineering can be
very intricate because of interactions in space and in behaviour (e.g. thermal or
electromagnetic dependencies).

− Companies are often from different countries and conflicts can also be caused by
different cultural backgrounds (e.g. different time conceptualisations or communi-
cations habits). This may lead to misunderstandings when messages or behaviours
are being interpreted in different ways.

ImportNET is developing two use cases where engineering experts (mechanic, elec-
tronic, software, testing) from different companies and different countries are
involved. The basis for the description of the use cases is a general mechatronic life-
cycle model which will be tailored firstly to the needs of the participating companies
and secondly to requirements of the target mechatronic product which will be de-
signed between these companies.

4 Conclusions

Creating a cross-domain engineering environment requires - irrespective of whether
one uses a Semantic Web based approach or not - some understanding of the underly-
ing domains and also an understanding of the maturity of the field. In the case of
mechatronics, we found a mixed situation: each of the domains has relatively mature
software tools for the design of new artefacts and the domain of manufacturing over-
all, has relatively mature standards such as STEP for the description of products.
What is clearly missing is the integration of the design tools along the product life
cycle and in the case of cross-domain engineering, the ability to transform the repre-
sentations of one design tool into semantically equivalent representations for the per-
spective of a corresponding tool in the other engineering domain. Initial interviews
with senior engineers revealed that up to a third of the development cost originates in
the area of testing and that there is large scope for improvement in this phase of the
product life cycle.

A first analysis of candidate ontologies revealed a good number of conceptual
models not only at varying levels of generalisation but also with varying angles on the
purpose of the system and hence, the choice of concepts.

There are at least three challenges in the project: defining a coherent set of partial
ontologies, integrating a knowledge base of intercultural communication conflicts into
the workflow model and integrating a Semantic Web Service architecture with the

2 Drawing Exchange Format.
3 STandard for the Exchange of Product model data.

 Developing Ontologies for Collaborative Engineering in Mechatronics 203

process model of the mechatronic domain to ensure interoperation during the mecha-
tronic design phase. In this paper, we have described our approach and methodologi-
cal choices with respect to the development of the ontologies and we have outlined
the implementation architecture for the case of Semantic Web Services. We have not
addressed the integration of the intercultural issues yet. Another issue which is still to
be addressed concerns the suitability of DOLCE as a foundational ontology for do-
mains such as mechanical engineering and electronics. The current view is that
DOLCE is a good choice as long as we do not need to engage in ”deep modelling“ i.e.
the modeling of causes and effects or of constraints in physical systems. However,
this begs the question whether current Semantic Web modelling is capable of integrat-
ing well, with any models that offer ”analogue“, i.e. numerical or function-based
simulation of system behaviour.

Acknowledgments. This work has been supported by the ImportNET project (IST-
2006-033610). We would like to thank the referees for their helpful comments. We
also acknowledge fruitful discussions with our colleagues Miklós Szőts, Alexander
Mahl, Oliver Hornberg, Ron Jamieson and Rupert Westenthaler.

References

1. DynamOnt Deliverable 201: First specification of Methodology and Workbench for Dy-
namic Ontology Creation (2006)

2. Thramboulidis, K.: Model Integrated Mechatronics – Towards a new Paradigm in the De-
velopment of Manufacturing Systems. IEEE Transactions on Industrial Informatics, Vol.
1, No. 1 (2005) 54-61

3. Yoshioka M.: Physical Concept Ontology for the Knowledge Intensive Engineering
Framework. In Advanced Engineering Informatics, Vol. 18, No. 2 (2004) 95-113

4. Devedzić, V.: Understading Ontological Engineering. Communications of the ACM, Vol.
45, No. 4 (2002) 136–144

5. Heverhagen, T., Tracht, R.: Using Stereotypes of the Unified Modeling Language in
Mechatronic Systems. In Proceedings of the First International Conference on Information
Technology in Mechatronics, ITM'01, Istanbul, Turkey (2001) 333–338

6. Bradley, D.: What is Mechatronic and Why Teach It? International Journal of Engineering
Education (2004) Online: http://findarticles.com/p/articles/mi_qa3792/is_200410/ai_
n10298146/g_1 (Last access: 2007-03-13)

7. Gero, J.S., Maher, M.L.: A Framework for Research in Design Computing. In Martens, B.,
Linzer, H., and Voigt, A. (eds), ECAADE'97, Osterreichischer Kunst und Kulturverlag,
Vienna (1997) Online: http://people.arch.usyd.edu.au/~john/ publications/1997/ecaade/ in-
dex.html (Last Access: 2007-03-13)

8. Masolo, C., Borgo, S., Gangemi, A., Guarino, N.: Ontology Library. WonderWeb Deliver-
able D18 (2004) Online: http://wonderweb.semanticweb.org/deliverables/documents/
D18.pdf (Last access: 2006-10-23)

9. Gangemi, A., Borgo, S., Catenacci, C., Lehmann, J.: Task Taxonomies for Knowledge
Content, METOKIS Deliverable D07 (2004)

10. Mika, P., Oberle, D., Gangemi, A., Sabou, M.: Foundations for Service Ontologies: Align-
ing OWL-S to DOLCE, In Proceedings of the 13th International Conference on World
Wide Web 2004 (2004) 563-572

204 V. Damjanović et al.

11. Nagypál, G.: Methodology for Building SWS Ontologies in DIP. DIP Deliverable D3.11
(2005)

12. Fernández M., Gómez-Pérez, A., Juristo, N.: METHONTOLOGY: From Ontological Art
towards Ontological Engineering. In Proceedings of the AAAI Spring Symp. Series,
AAAI Press, Menlo Park, California (1997) 33-40

13. Sofia Pinto, H., Staab, S., Tempich, C.: DILIGENT: Towards a Fine-Grained Methodol-
ogy for Distributed, Loosely-controlled and Evolving Engineering of Ontologies. In Pro-
ceedings of the ECAI 2004 (2004) 393-397

14. Zaremba, M., Moran, M., Haselwanter, T., Lee, H-K.: WSMX Architecture, WSMX De-
liverable D13.4 (2005)

Media, Politics and the Semantic Web

An Experience Report in Advanced RDF Usage�

Wouter van Atteveldt, Stefan Schlobach, and Frank van Harmelen

Department of Artificial Intelligence
Free University Amsterdam (The Netherlands)

De Boelelaan 1071, 1071 HV Amsterdam
{wva,Frank.van.Harmelen}@cs.vu.nl, schlobac@few.vu.nl

Abstract. The media play an important role in the functioning of our
society. This role is extensively studied by Communication Scientists,
requiring a systematic analysis of media content. The methods developed
in this field utilize complex data models and background knowledge.
This data is generally represented ad hoc, making it difficult to analyze,
combine and share data sets.

In this paper we present our work on formalizing this representation
using RDF(S). We discuss the requirements for a good representation,
highlighting a number of non-trivial modeling decisions. We conclude
with a description of the resulting system and the benefits for a recent
investigation of the 2006 Dutch parliamentary campaign. This case study
shows concrete improvements for annotating, querying, and analyzing
data, but also indicates a number of aspects that were more difficult to
model in RDF(S), contributing to the discussion on modeling with and
improving RDF(S) and associated tools.

1 Introduction

The media play an important role in our society. Citizen access to information
about world events is almost exclusively mediated, making the press a vital part
of our democracy. This underscores the need for the systematic study of the
media done by Communication Science [1]. Relational Content Analysis (RCA)
conducts this systematic analysis by representing news content as a graph linking
the relevant actors and issues, which can then be used as input for further
analysis [2]. This representation is currently mostly informal forcing answers
to complex queries to be composed in a procedural way. Moreover, there are
differences in the information captured by various RCA methods and in the
vocabulary used for existing data sets. These aspects make it difficult to combine
and reuse data.

In this paper we describe a recent case-study on how current Semantic Web
technology can help to overcome these limitations. Since 1994, Communication
� The authors would like to thank Mark van Assem for his insightful contributions to

the discussions leading to this paper and for his comments on the final version. We
also thank the reviewers for their thorough reading and useful suggestions.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 205–219, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

206 W. van Atteveldt, S. Schlobach, and F. van Harmelen

nytimes.com

Text Collections
(coded manually or

automatically)

(partially)
Shared ontology
and data model

Repositories Query

?

Results

Tabular

Text

Pattern

Fig. 1. A Framework for Querying Heterogeneous News Sources

Scientists at the Free University and the University of Amsterdam have con-
ducted an extensive study of the influence of the media coverage of Dutch elec-
toral campaigns on public opinion, most recently in Nov. 2006 [3]. These studies
were based on the NET method, an RCA framework introduced in [4].

As visualized in Fig. 1, in our framework relational content data is formalized
in a (partially) shared data model and vocabulary based on RDF and RDFS, and
stored in Sesame repositories. Standard RDF query languages (such as SeRQL
or SPARQL) can be used to express queries using the least common denominator
of the models and vocabularies of the used data sets. The results of these queries
can be used as input for quantitative analysis, to retrieve the original articles for
qualitative review, and visualized within the graphs that represent these articles.

This paper describes a use case, and provides a detailed experience report,
of an intricate data analysis in a highly complex domain, with many non-trivial
modeling decisions. It discusses the literature on a number of aspects where
the representational and inferential requirements stretch the possibilities of the
current standards. This case study serves both to underscore the use of Semantic
Web technology to practically formalize a complex domain and to point out a
number of issues on which there is still room for improvement.

In Sect. 2, we will briefly describe Relational Content Analysis and the NET
method, and give a list of desiderata for a respresentation and inference mech-
anism for this domain. Section 3 is the main section of this paper, containing
an overview of the existing options and work in progress on each point, and de-
scribes the modeling choices made to satisfy the requirements. Section 4 outlines
the system that was created and the benefits that it has brought. +

2 Content Analysis as the Domain of Formalization

One of the goals of this paper is to find a suitable framework for formalizing the
data produced by Relational Content Analysis (RCA). This section will outline
what Content Analysis and RCA are, and then describe a particular method, the
NET method, in more detail. Finally, a number of requirements for formalizing

Media, Politics and the Semantic Web 207

this method will be listed, which will serve to guide the discussion in the next
section.

2.1 (Relational) Content Analysis

Content Analysis is a social science method to analyze textual content by deter-
mining the occurrence of social scientific phenomena [1]. These phenomena are
generally complex and subjective in nature, making the extraction a difficult task
to automate (but see [5]). For this reason Content Analysis often uses human
coders to read the text and directly indicate the presence of these phenomena.

Relational Content Analysis works by identifying smaller concepts, such as
individual actors and issues, and coding the relations between these concepts
as a graph [2]. The social scientific concepts are subsequently extracted as pat-
terns or metrics defined over this graph. This two-step approach makes the data
less dependent on the specific research question, creating a greater potential for
sharing and reusing data.

Realizing this potential is difficult because we are dealing with data sets with
heterogeneous data models and vocabularies. A formal representation that allows
us to standardize both syntax and semantics of these data collections while
remaining flexible enough to allow for different methods would be of great value
in building the large data sets needed for statistically analyzing the complicated
interaction between media and politics.

2.2 Relational Content Analysis Using the NET Method

The NET method [4] is the Relational Content Analysis method used in our case
study. It has a fairly complex data model compared to other Relational Content
Analysis methods [6]. Moreover, it includes a set of rules to make inferences
about triples such as a form of transitivity. Furthermore, normal practice in
NET is to annotate using very detailed concepts (such as ‘Balkenende’) and
then aggregate to more general concepts (such as ‘Politician’) using a taxonomy.

In NET, sentences are coded as <subject, predicate, object> triples. The
subject and object are drawn from a predefined hierarchy of concepts. The pred-
icate is complex, consisting of a type, and quality. The type indicates the kind
of sentence code; possible types include ‘causative’, ‘action’, and ‘affinitive.’
Quality is a number that indicates the strength and direction of association
between subject and object and ranges from -1 to 1.

Additionally, each triple can be augmented with two pieces of information.
An angle can be specified for some statements, which captures the reason of a
disagreement or action in sentences such as “Blair and Brown disagreed about
Iraq. ” Also, some sentences in a newspaper are quoted or paraphrased sources:
“Blair stated that it was certain Saddam had WMD”. In such sentences, the
optional quoted source argument captures the source of the statement.

As an example, consider the newspaper excerpt in Fig. 2. The headline is
coded as a reciprocal negative relation between the political blocks Left and
Right. The first sentence of the lead is more complicated: The main message is
that incumbent prime minister Balkenende (CDA / Christian Democrats) and

208 W. van Atteveldt, S. Schlobach, and F. van Harmelen

�

�

�

�

Hard confrontation Right and Left
The champions for the premiership, Labor leader Bos and Christian Democrat leader Balkenende,

attacked each other over poverty and health care. Bos is needlessly scaring people, according to the

prime minister. [..] Bos: “Good health care costs money, so we should invest more.”

Source Subject Relation Object Angle

1 Left
−1 affinitive←−−−−−−−→ Right

2 Bos
−.7 affinitive←−−−−−−−→ Balkenende Poverty

2 Bos
−.7 affinitive←−−−−−−−→ Balkenende Healthcare

3 Balkenende: Bos
−.7 acting−−−−−−→ Citizens

4 Bos: Invest in Health
+.5 causative−−−−−−−−→ Healthcare

4 Bos
+1 affinitive−−−−−−−−→ Invest in Health

Source: De Telegraaf, 22 November 2006 (tr.auth). Reading: sentence 3 means
that according to Balkenende, Bos is acting against the good of the citizens

Fig. 2. Example article with NET annotation

the challenger Wouter Bos (PvdA / Labor Party) are fighting, but it is also
stated what they are fighting about: the issues Poverty and Health Care. In
the next sentence, Balkenende states that Bos is scaring people, which is coded
as Bos acting against the Dutch citizens with Balkenende as source. The final
sentence expresses two relations: according to Bos, investing more money would
be good for the Health Care, and Bos wants to invest money in Health Care,
here coded as an affinity (issue position) relation between Bos and Health Care
Investments.

Currently, NET-encoding of sentences is performed manually; research is per-
formed to automate this but due to the complex nature of the information this
has yet to lead to satisfying accuracy [7]. Given the cost of manual annotation,
this difficulty in extraction only underscores the need to share and reuse existing
data.

2.3 Requirements

This section will list a number of aspects of NET that we need to be able to
capture in a formalization framework.

Representational Requirements. Relational Content Analysis methods use
triples as the main primitive, but these triples are enriched in various ways.

R1: Background Knowledge A central feature of the NET method is that
data is coded at a very detailed level, and aggregated to higher level theoretical
concepts. This aggregation requires background knowledge, for example party
memberships (Bos member-of Labor), political functions (Balkenende leads Cabinet),
and is-a relations (FreeHealthCare is-a HealthIssue). This needs to be encoded and
the concrete annotations need to be expressed in terms of this background knowl-
edge. Moreover, although the taxonomies currently used in NET are purely hi-
erarchical it would be useful if this could be relaxed. For example, Balkenende

Media, Politics and the Semantic Web 209

is both a member of the CDA and the prime minister, and depending on the
research question we want to use either fact for the aggregation.

R2: Statement types NET and other Relational Content Analysis methods use
qualitatively different relations. For example, the statement “Bos and Balkenende
attacked each other” is affinitive while “Good health care costs money” is causative.
In Social Networks terminology these are called multiplex networks [8].

R3: Quantitative value In addition to different statement types, Relational
Content Analysis often includes a quantitative indicator of the strength and
direction of a relation. The statement “.. we should invest more” from the example
is positive (+0.7) while the statement “Hard confrontation Left and Right” is strongly
negative (-1). In Social Networks terms, graphs labeled with values are called
signed and/or valued networks.

R4: Article Metadata To trace the evidence for an analysis and for time based
analyses it is necessary to attach metadata to annotations, including publisher
and publishing date, location in the newspaper, and a link to the original article.

R5: Extra Arguments Sometimes we need to code certain additional aspects
of a relation. For example, in the sentence “.. attacked each other over poverty”,
we want to capture the topic of the disgreement as well as the fact that they
disagree.

R6: Quoted Sources The example sentence “Bos: ‘good health care costs money,
so we should invest more” contains a positive causal relation between Investing and
Health Care, but this relation is not directly stated by the newspaper but rather
by a quoted source. In order to analyze such sentences correctly, it is necessary
that the contained triples are accessible for analysis, but they should be kept
separate from the main graph.

Usage Requirements. The requirements above all specify what kind of infor-
mation we need to be able to represent. Next to these requirements there are
also a number of things we need to be able to do, mainly while analyzing the
annotated media material. These ‘usage’ requirements are outlined below.

R7: Shareability One of the purposes for formalizing NET is to make it easier
to share and combine data sets. Therefore, it has to be possible to combine data
sets that differ both in exact data structure and in the used vocabulary.

R8: Time-bound roles In Content Analysis, the social and political roles played
by actors are generally considered background knowledge and remain static dur-
ing a project. However, social roles are dynamic and especially for longitudonal
analyses we need to be able to represent the temporal validity of political roles

R9: Disjoint Categorization Often, we want to aggregate the nodes in our media
data to higher-level categories. These categorizations generally have to be disjoint
and exhaustive. This is necessary to avoid counting one instance twice and is also
assumed by many statistical analyses. Therefore, we want to be able to express dis-
joint categorizations and to check or prove that a categorization scheme is disjoint
and exhaustive given the structure of the background knowledge.

R10: Extraction As stated above, it is often useful to categorize the nodes in the
relational network into higher level categories. Therefore, it is necessary to have a
formalization that allows extracting the network data using such categorizations.

210 W. van Atteveldt, S. Schlobach, and F. van Harmelen

3 Formalizing the NET Method

As described above, the NET method is a Relational Content Analysis (RCA)
method with a fairly complex data model and usages. The relational nature of
NET and the need to combine and share data sets with different structure and
vocabulary make Semantic Web technologies a logical choice for formalizing this
domain. This section will describe the modeling choices we made to meet the
requirements listed in the section above.

3.1 R1-2, R7: Low Hanging Fruit

Due to their relational nature, Semantic Web technologies seem a natural match
for the formalization of RCA. This was confirmed by a number of requirements
that were fulfilled easily and elegantly.

Background Knowledge (R1) Background knowledge can be expressed elegantly
using RDF(S), using either rdfs:SubClassOf statements or custom vocabulary.
RDF(S) places no restriction on the types and amount of relations between
concepts, allowing for multiple inheritance and different relation types.

Statement types (R2) In RDF, the predicative part of triples consists of an RDF
resource that can be described in the same way as other resources. This means
that it is natural to express multiplex networks in RDF.

Shareability (R7) RDF(S) does not solve the conceptual and substantive prob-
lems of combining heterogeneous data sets. It does, however, remove a number
of technical difficulties. Globally unique names using URI’s minimize vocabu-
lary clashes while the subclass and subproperty mechanisms facilitate mapping
specific vocabulary onto more general terms.

3.2 R3-6: Enriching Triples with Extra Information

Requirements R3-6 boil down to a single wish: enriching triples by adding extra
information. This is difficult, as RDF is meant to describe resources, not triples:
triples do not have URIs and hence cannot be part of triples. We are not the first
to signal this difficulty: [9] cites the need for enriching triples to describe event
data, and a number of authors want to use RDF for describing RDF documents,
for example for reasoning about provenance and trust [10].

RDF(S) allows some form of adding information to existing triples. Trivially,
we can replace each of the nodes in a triple by a node carrying more information
and point to the original node. In RDFS, it is possible to do so transparently by
making the new node a subclass or subproperty of the original node. Addition-
ally, the RDFS specification includes a reification mechanism [11]. Essentially,
an anonymous instance is made to represent the statement, and standardized
vocabulary is used to define the subject, object, and predicate of the relation.
The anonymous instance, being a first class citizen, can then be used in further
statements. According to the definition, a reified statement does not necessarily
imply the original statement: it is describing a hypothetical event.

Media, Politics and the Semantic Web 211

Another solution is using the n-ary relation design patterns described in [12].
This is similar to reification in that a new node is created that represents the
relationship, but the reification vocabulary is eschewed since “in n-ary relations
[..] additional arguments in the relation do not usually characterize the statement
but rather provide additional information about the relation instance itself” [12].
This has the same disadvantage as reification (the original triple semantics are
lost) but additionally it has no formal meaning or standardized vocabulary.

To overcome these problems, a number of authors have suggested extending
the notion of a triple to include a fourth place, often seen as a context marker
[9,10,13,14,15]. For example, [14] propose a context mechanism that explicitly
assumes the context marker to indicate provenance and they include a compli-
cated system of lifting and aggregating mechanisms to combine RDF documents
from different sources. On the other extreme, [9,13] support replacing triples by
quadruples without restricting the interpretation of such triples.

A proposal that seems to be gaining ground is Named Graphs [10]. This
proposal also adds a fourth places to the triple and defines the semantics of this
added element but does not prescribe the interpretation in the way [14] does.
Named Graphs semantics allow for nested graphs and they propose a predicate
for indicating nesting. The main disadvantage of this method is that it is not
standardized, leaving tool support and declarative semantics to be desired. Also,
as the intended meaning of the context is the containing graph, Named Graphs
add extra information to the whole statement rather than to the predicate much
like reification does.

The proposals for adding information to triples in the literature are diverse.
Part of the reason for this diversity is that the problem they are trying to solve is
diverse. We think that there are two main factors on which the proposed solutions
diverge: the meaning of the extra information with respect to the original triple;
and the opacity of the enrichment. In terms of meaning, we distinguish four
possible relations of the new information x to the existing triple Rab:

- Rxab: Adding information about the predicate of the triple;
- Raxb: Adding information about the subject or object of the triple;
- (Rab)x: Adding information about the whole triple; and
- Rabx: Adding an extra argument to the triple on equal footing with the
subject and object.

In terms of opacity, we distinguish between transparent and opaque additions:

- Transparant additions preserve the original meaning of the triple in the
graph, meaning that applications that do not interpret the richer relation can
still see the original relation; while
- Opaque additions remove the original triple from the graph, meaning that
it will not be visible to an application that does not (or cannot) interpret the
enrichment technique.

Depending on the modeling requirements, we want to add certain information
to a triple in a certain way. For example, a quoted source in a newspaper

212 W. van Atteveldt, S. Schlobach, and F. van Harmelen

should be an opaque statement about the whole triple, while quality should
be a transparant addition to the predicate. Thus, rather than looking for a sin-
gle ‘correct’ solution we think that multiple options are needed to express these
differences in enrichment. Table 1 categorizes the discussed proposals in these
terms and serves as the basis for making the appropriate modeling choices. The
proposal by [14] is left out of this table because its purpose is strictly describing
graphs rather than enriching triples

Table 1. Suitability of discussed mechanisms for expressing different triple enrichments

Transparent Opaque
Enriching Enriching Enriching Enriching Enriching Enriching

an the the Extra an the the Extra
argument predicate triple argument argument predicate triple argument

Raxb Rxab (Rab)x Rabx Raxb Rxab (Rab)x Rabx

RDF ±1 +
RDFS + ±1 ±1 +
N-ary ±2 +
Reification + ±2

Quadruples ±3 ±3

Named Graphs + +

1Adding a dicrete categorization is possible, but adding quantitative information is very difficult.
2N-ary patterns are explicitly intended to express an extra argument to a statement, while reification
is intended to express information about a statement, making other use of these solutions difficult
to interpret. 3Since there is no specified interpretation of the extra argument it is not possible to
distinguish between these two cases.

We will now reconsider the requirements from the previous section in terms of
Table Table 1. As listed in the previous sections, the basic unit of information is
a triple representing a media relation (eg. Bos dislikes Balkenende). To this triple
we add information to quantify (R3) the predicate, add extra arguments (R5) to
the relation, specify the source of a quoted statement (R6), and link the media
statement to metadata (R4) such as publisher and publishing date. As stated
above, quoted sources should be opaque as the quoted statement is not directly
asserted by the newspaper. The other additions should all be transparent: the
original triple is a valid part of the graph with or without the extra information.
The quantification is an enrichment of the predicate, but very difficult to repre-
sent using subproperties because of the quantitative and unrestricted nature of
the information. The extra arguments and quoted source both add extra argu-
ments that are subordinate to the main triple, falling somewhere between the
intended meaning of reification (statements about triples) and n-ary relations
(multiple arguments of equal weights). The metadata is adding information to
the whole triple, and fits in the use case of reification and named graphs.

Surveying the table above, there is no perfect method for adding information
to triples. Named graphs have the desired transparency but offer no solution for
distinguishing between extra arguments and metadata. Quadruples allow extra
arguments in a natural way but this comes at the expense of flexibility and se-
mantic clarity. Within the existing standards, reification covers adding metadata

Media, Politics and the Semantic Web 213

and a case could be made for using reification to represent additional arguments.
N-ary relations are better suited for the additional arguments but suffer from the
lack of a standard vocabulary. It is possible to mix and match mechanisms, but
this comes at the expense of increasing complexity and if multiple non-standard
mechanisms are mixed it will be difficult for third parties to understand what
we mean.

Solution. For the current application, we decided to stick to one representation
for all enrichments. Since tool support for the proposed extensions is still limited,
and the intended meaning of our enrichment is closer to meta-statements than
to adding arguments, we decided to use RDFS reification.

3.3 R8: Dynamic Roles

Social Roles, such as being a party member or fulfilling a political function, are a
complex topic that has received extensive attention in the literature [16,17,18,19,
20]. As described by [16], two defining characteristics of roles are that they
are anti-rigid1, and dynamic2. In this definition, background knowledge such
as party membership and political office can be classified as knowledge on role
memberships of actors.

[17] surveys a large body of literature and notes that there are three main
approaches to representing roles. The first approach is calling the places in a
predicate roles, i.e. in a predicate memberOf(member, group) the roles member
and group are implied. This corresponds to creating a simple RDF relation be-
tween the member and the group. Using this mechanism, it is impossible to
represent temporal constraints on roles, and such statements should be consid-
ered snapshots of a dynamic relation rather than descriptions.

The second approach is to make the role a subtype of the natural type corre-
sponding to it. This means that playing the role of being a PvdA member means
creating a subclass of politician, the PvdAMemberPolitican. As described in [17],
this leads to a number of complications and does not solve the representation
problem inherent in the first approach.

The third approach is creating an adjunct instance representing the relation,
which is an instance of the role type but unique for each instantiation. Since
this promotes the role membership to first class citizen, it allows for further
specification such as temporal aspects. In RDF, this can be described as a (blank)
node representing the membership, with relations to the two role players and the
role type, which is also the approach taken by in [21]. Interestingly, if the RDF
reification vocabulary is used to denote the integral aspects of the role, this is
equivalent to reifying a simple statement expressing the relation directly.

Solution. In the terminology introduced in section 3.2, we want the enrichment
of the original memberOf predicate to be opaque since the roles are invalid
outside their (temporal) context. This makes creating adjunct instances by using
reification a natural choice for representing social roles.
1 The role players do not depend on their playing the role for their existence.
2 Roles change over time and there is no 1-on-1 relation between roles and players.

214 W. van Atteveldt, S. Schlobach, and F. van Harmelen

3.4 R9: Disjoint Categorization

As described above, adding background knowledge and using this knowledge to
link ‘data level concepts’ to ‘theory level concepts’ can be done elegantly using
RDF. A frequent use case in Content Analysis is to define a set of categories
on the media data, for example statements with an opposition politician as
subject, with a coalition politician as subject, and statements with a societal
actor as subject. Counts of such statements per period are then used either in
statistical analysis or presented in a table. Both uses require the categories to be
disjoint and exhaustive with respect to the higher category, in this case ‘actor
statements’. In other words, the higher category should be partitioned by the
proposed categories.

Using model checking (e.g. SPARQL queries), it is trivial to check whether
a categorization, expressed as a set of requirements, is a partitioning given a
concrete data set. By pair-wisely conjoining the requirements disjointness can be
checked, and by negating the whole conjunction exhaustiveness can be checked.

In some cases, such as presenting data real-time on a web page, we would like
to be able to prove that such a categorization will always be a partitioning. In
RDF this is impossible due to the fact that cardinality, disjointness, and negation
cannot be asserted, so it is impossible to express the constraint that a politician
is a member of exactly one party or that societal actors are all non-political ac-
tors. In OWL these restrictions can be expressed, and proving disjointness boils
down to proving that each pairwise conjunction of the categories is unsatisfiable.
Exhaustiveness can be shown by proving that the higher category implies mem-
bership of one of the lower categories. More formally, proving that the categories
{A1 . . . An} partition B in the ontology O means proving O |= Ai � Aj =⊥ for
all i �= j, i, j≤n and O |= B � A1 � . . . � An.

Solution. For the current application, we decided to stay within RDF and only
use query-based model checking of the disjointness.

3.5 R10: Categorizing and Extracting Data

As described above, it is useful to define categorization schemes and aggregate
the media data to a higher level using such schemes. A scheme will generally
consist of a high level category and all its instances and parts and members of
these instances. However, as described in Sect. 3.3, these part-of and member-of
relations will often be dynamic and represented using adjunct instances. There-
fore, we need to check whether a role is actually valid at the publishing date of
the article. Moreover, as described in Sect. 3.4, it is often necessary to include
negations in the definition of categorization to prevent actors with multiple roles
from being counted twice.

This leads to a complex definition for these categories. Since they will often
include negation, they cannot be represented in RDF(S). It would be possible to
represent them in OWL, but this requires complex concrete domain reasoning for
the date comparisons. Practically, it is possible to conduct such categorizations
using closed-world model checking in RDF, for example using a SeRQL query.

Media, Politics and the Semantic Web 215

net:Annotation
rdf:type

rdfs:subject

Subject

dc:Subject

dc:Date

Date

dc:Subject

From1 [< Date]

net:from net:to

To1 [> Date]

SCat

rdfs:object

net:part of

rdfs:predicate

net:Issue

serql:directType

dc:Subject

net:from net:to

To2 [> Date]

X [IS NULL]

rdfs:object
net:part ofrdfs:predicate

net:actor
rdf:type

From2 [< Date]

Select PublishDate, Subject, SCat FROM
{} rdf:type {net:Annotation};
 rdfs:Subject {Subject};
 dc:subject {} dc:date {Date},
{} rdf:type {net:partOf};
 rdfs:Subject {Subject};
 net:from {From1}; net:to {To1};
 rdfs:Object {SCat}
 serql:directType {net:Issue}
[{} rdf:type {net:partOf};
 rdfs:Subject {Subject};
 net:from {From2}; net:to {To2};
 rdfs:Object {X}
 serql:directType {net:Actor}
 WHERE From2 < Date
 AND To2 > Date]
WHERE From1 < Date
 AND To1 > Date
 AND X IS NULL

(optional path)

Fig. 3. The (partial) extraction query, represented visually and in SeRQL

This results in a query such as shown in Fig. 3, where the Subject of a statement
is categorized as an issue but only if it is not categorizable as an Actor. To create
the real query, this has to be duplicated for subject and object and a UNION
query has to be created joining all category definitions.

Solution. For the applications described below we used SeRQL queries to ex-
tract data, using query rewriting to hide some of the query complexity from
the user. If we describe the categorizations in OWL it should be possible to
automatically rewrite the OWL definitions into RDF queries (assuming a closed
world), or cache the categorization results from the DL reasoner.

4 Implementation

The sections above outlined the challenges encountered while modeling the Re-
lational Content Analysis domain and the possible solution for these challenges.
This section will briefly describe the actual systems that were built around the
RDF representation, especially the annotation tool, the browser/visualizer and
the extractor.

4.1 Data Model and Ontology

This section will describe the data model that resulted from the choices described
in Sect. 3. Fig. 4 visualizes this model. The main element of the data model,
the original triple of the relational method, is now a reified triple, making the
annotation (a subclass of rdf:Statement) the central element. Annotations have
a subject, predicate and object as required for reification, and also have the
quantitative value ‘connection’ and an angle. On the left hand side, annotations
are connected to textual units (sentences) from an article using the dc:subject,
and metadata about this article are recorded. Additionally, the coder, the creator
of the annotation, is recorded.

On the right hand side the subject, object, and predicate are all drawn from
the ontology, having net:entity as its base. This ontology contains an IS-A hier-
archy of (political) actors and issues together with role information such as party

216 W. van Atteveldt, S. Schlobach, and F. van Harmelen

Annotation

ont:Balkenende

ont:HealthCare

ont:CDA

rdfs:subject

rdfs:object

+1

net:quality

ont:Party

ont:Actor

ont:Health

ont:socialist ont:direction

ont:theme

rdfs:Subject

rdfs:subClassOf

A1Sentence1

Article1

Telegraph
rdf:type

rdf:type

dc:subject

dc:publisher
dc:date

2006-11-22

ont:Politician

rdf:type

rdfs:subClassOf

Hester

dc:creator

rdfs:Object

net:partyMemberOf

rdfs:Predicate

2020-01-01 2020-01-01

net:from net:to

ont:subIssueOf

ont:subIssueOf

rdf:type

Article Metadata Media Data Object Metadata

net:Affinity

rdfs:predicate

Fig. 4. The data model used

membership. As described in Sect. 3.3, these roles are made dynamic by reifying
the role membership statement, creating an adjunct instance, and adding from
and to dates. The ontology is a formalization of an existing taxonomy, containing
478 actors in 32 (nested) categories and an issue hierarchy of 103 issues.

4.2 The iNET Annotation Tool

A new version of the existing iNET tool was created in Java Eclipse for annotat-
ing newspaper articles in this framework. As can be seen in Fig. 5, iNET shows

Fig. 5. iNET: RDF-based annotation with Autocomplete and Visualization

Media, Politics and the Semantic Web 217

Fig. 6. NeBro: Browsing, Querying, and Visualizing the RDF repository

the content of the current article and the ontology, and assists annotators by
offering autocomplete functionality and by allowing search through the ontol-
ogy. A coder logs into a (relational) article database, which gives him or her a
list of jobs, consisting of the to-be-annotated articles and the annotation scheme
and a pointer to the ontology in the Sesame repository. After coding an article,
results are immediately posted to that repository. To help coders check their
annotations, a visual representation of their coding is also presented. Using this
tool, a group of 14 coders annotated over 13,000 articles and tv news broadcasts,
resulting in 30,000 triples.

4.3 The NeBro Browser / Visualizer

To browse through these results, a web application was created that allows a
user to browse through articles and view a visualization of the annotation. As
shown in Fig. 6, a user is able to enter queries to look for specific relations. Since
the internal representation became quite complex, these queries can be posted
in terms of the original NET relations and are translated to SeRQL queries on
the Sesame Repository. In the visualization of the retrieved article, the relations
matching the query are highlighted.

5 Conclusions

In this paper we reported our experiences in designing a formal representation
for Relational Content Analysis, a method used in Communication Science to

218 W. van Atteveldt, S. Schlobach, and F. van Harmelen

conduct quantitative media analysis. This domain, and particularly the NET
methodology used in a recent use-case on the Dutch election campaign in 2006,
highlighted a number of different requirements on representation and querying
which could only partly be implemented seamlessly using current Semantic Web
technology.

The main contribution of this paper is threefold:

1. The paper describes a real world, large size case-study where Semantic Web
technology was used for representing and querying highly complex data on
media coverage on the Dutch election campaign 2006, and thus exemplifies a
state of matureness of the technology. Based on a detailed requirement anal-
ysis we designed workable and flexible data models to code the Relational
Content Analysis data. On some aspects we identified conceptual problems
that require more general solutions which should lead to extensions of exist-
ing standards in the future.

2. The paper identifies a number of such requirements to a formal representa-
tion framework, which are domain and application specific at first instance.
Nevertheless, we expect the majority of these requirements to be recurrent
in many other practical applications, and although we do not claim exhaus-
tiveness the collection of items in Sect. 2.3 will be indicative for problems
faced in similar applications.

3. For each of the requirements, this paper provides an overview of the state of
the art in practical Semantic Web research. We surveyed the literature on
extending RDF triples with additional information, and presented a catego-
rization of existing and proposed mechanisms in terms of the meaning of the
extra information and the transparency of the original triple. We hope that
such a study (from an application perspective) can pinpoint relevant open
research questions for the Semantic Web community.

The general conclusion is that Semantic Web technology offers a useful set of
standards and tools for formalizing this background knowledge and storing and
inferencing with the combination of background knowledge, metadata about the
annotated articles, and the annotations themselves. Having all this data within
one representation enabled us to develop the set of tools presented in this paper
for efficiently annotating, visualizing, querying, and extracting from the data
set.

References

1. Krippendorff, K.: Content Analysis: An Introduction to Its Methodology (second
edition). Sage Publications (2004)

2. Carley, K.: Network text analysis: The network position of concepts. In Roberts,
C., ed.: Text Analysis for the Social Sciences. Lawerence Erlbaum Associates,
Mahwah, NJ (1997) 79–100

3. Kleinnijenhuis, J., Scholten, O., van Atteveldt, W., van Hoof, A., Krouwel, A.,
Oegema, D., de Ridder, J.A., Ruigrok, N., Takens, J.: Nederland vijfstromen-
land: De rol van media en stemwijzers bij de verkiezingen van 2006. Bert Bakker,
Amsterdam (2006)

Media, Politics and the Semantic Web 219

4. Van Cuilenburg, J.J., Kleinnijenhuis, J., De Ridder, J.A.: Towards a graph theory
of journalistic texts. European Journal of Communication 1 (1986) 65–96

5. Wiebe, J.M., Wilson, T., Bruce, R.F., Bell, M., Martin, M.: Learning subjective
language. Computational Linguistics 30(3) (2004) 277–308

6. Van Atteveldt, W., Kleinnijenhuis, J., Carley, K.: Rcadf: Towards a relational
content analysis standard. In: Presentated at the International Communication
Association (ICA), Dresden (2006)

7. Van Atteveldt, W., Oegema, D., van Zijl, E., Vermeulen, I., Kleinnijenhuis, J.:
Extraction of semantic information: New models and old thesauri. In: Proceedings
of the RC33 Conference on Social Science Methodology, Amsterdam (2004)

8. Wasserman, S., Faust, K.: Social Network Analysis. CUP, Cambridge (1994)
9. MacGregor, R., Ko, I.Y.: Representing contextualized data using semantic web

tools. In: Practical and Scalable Semantic Web Systems (workshop at second
ISWC). (2003)

10. Carroll, J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and
trust. In: Proceedings of the Fourteenth International World Wide Web Conference
(WWW2005), Chiba, Japan. Volume 14. (2005) 613–622

11. Brickley, D., Guha, R.: Rdf vocabulary description language 1.0: Rdf schema. W3C
Recommendation (http://www.w3.org/TR/rdf-schema/) (2004)

12. Noy, N., Rector, A.: Defining n-ary relations on the semantic web. Working Draft
for the W3C Semantic Web best practices group (2005)

13. Dumbill, E.: Tracking provenance of rdf data. Technical report, ISO/IEC (2003)
14. Guha, R., McCool, R., Fikes, R.: Contexts for the semantic web. In: Proceedings

of the Third International Conference on the Semantic Web (ISWC’04). (2004)
15. Sintek, M., Decker, S.: Triple - a query, inference, and transformation language for

the semantic web. In: Proceedings of ISWC02. (2002)
16. Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., Guar-

ino, N.: Social roles and their descriptions. In Dubois, D., Welty, C., Williams, M.,
eds.: Proceedings of the Ninth International Conference on the Principles of Knowl-
edge Representation and Reasoning (KR2004), Whistler, Canada (2004) 267–277

17. Steimann, F.: On the representation of roles in object-oriented and conceptual
modelling. Data and Knowledge Engineering 35 (2000) 83–106

18. Sowa, J.: Using a lexicon of canonical graphs in a semantic interpreter. In Evens,
M., ed.: Relational models of the lexicon. Cambridge University Press, Cambridge
UK (1988)

19. Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks/Cole, Pacific Grove, CA (2000)

20. Guarino, N.: Concepts, attributes and arbitrary relations: Some linguistic and on-
tological criteria for structuring knowledge bases. Data and Knowledge Engineering
8 (1992) 249–261

21. Mika, P., Gangemi, A.: Descriptions of Social Relations. In: Proceedings of the
1st Workshop on Friend of a Friend, Social Networking and the (Semantic) Web.
(2004)

SEEMP: An Semantic Interoperability

Infrastructure for e-Government Services in the
Employment Sector

E. Della Valle1, D. Cerizza1, I. Celino1, J. Estublier2, G. Vega2, M. Kerrigan3,
J. Ramı́rez4, B. Villazon4, P. Guarrera5, G. Zhao5, and G. Monteleone6

1 CEFRIEL – Politecnico of Milano, Via Fucini 2, 20133 Milano, Italy
2 Equipe Adele, LSR, Université Joseph Fourier,F-38041 Grenoble Cedex 9, France

3 DERI, University of Innsbruck, Technikerstraße 21a, 6020 Innsbruck, Austria
4 Universidad Politecnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain

5 Le Forem, Boulevard Tirou 104, 6000 Charleroi, Belgium
6 TXT e-solutions, via Frigia 27, 21126 Milano, Italy

Abstract. This paper presents SEEMP, a marketplace to coordinate
and integrate public and private employment services (ESs) around the
EU Member States. The need for flexible collaboration in the market-
place gives rise to the issue of interoperability in both data exchange and
share of services. SEEMP proposes a mixed approach that relies on the
concepts of services and semantics. SEEMP approach combines Software
Engineering and Semantic Web methodologies/tools in an infrastructure
that allows for a meaningful service-based communication among ESs.

1 Introduction

SEEMP project1 aims at designing and implementing in a prototype an Interop-
erability infrastructure for e-government. More specifically, SEEMP is developing
an EIF-compliant [1] to allow interoperability among the hundreds of public and
private Employment services (ESs) that exist in Europe. The resulting European
Employment Marketplace will overcome the national barriers complying, at the
same time, with the local policies of each Member States.

Thanks to SEEMP, which promotes increased partnership between labour
market actors and the development of closer relations between private and public
employment services, job-seekers and employers will have better services that
operate at European scale. For instance, the matching process between job offers
and CVs across all Europe will become possible increasing, eventually, labour
hiring and workforce mobility. In order to fulfil such an ambitious goal several
problems must be solved at organizational and technical level.

At an organizational level, the business model of SEEMP has to be catchy for
all ESs. The main reason for a ES to buying in is creating added value for its
local users (both job seekers and employers) by offering interconnections with

1 SEEMP is funded by EU (IST-4-027347); please visit http://www.seemp.org/.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 220–234, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

SEEMP: An Semantic Interoperability Infrastructure 221

other ESs. Today it is normal for all users to insert CV and Job Offers in many
ESs and collect, laboriously, the results personally. When SEEMP will be in
place each ES will be able to collaborate with other ESs. From the perspective
of the end user, the add-value is the outreach to other niches of the job market
without ’being stretched out”. End users could insert the CV and Job Offers
once and collect pan-European results. From ESs perspective it will results in
increase both the number of users and their faithfulness to each ES, thus an
increase in transaction volume.

The need for such flexible collaboration between ESs, gives rise to the issue
of interoperability in both data exchange and share of services. The technical
approach of SEEMP relies on the concepts of Web Services and semantics. Web
Services, exploited in a Software Engineering manner, enable an easier mainte-
nance of the integration. Semantics, encoded in the systems by the means of
ontologies and mediators, allows for reconciliation of the hundreds local profes-
sional profiles and taxonomies.

SEEMP solution will expose, following the well established Software Engi-
neering approach of Mélusine [2], a single consistent set of abstract services each
ES can invoke. Such abstract services will provide a multilateral interoperability
solution that delegates the execution of the services to the local ESs (in accor-
dance with the subsidiarity principle) and aggregates the results before sending
the response back to the invoker. Moreover, following the innovative Web Service
Modeling Ontology [3] approach, we will capture the semantics shared among
ESs in a single consistent model. Such model includes a reference ontology in
which and from which the local semantics is mapped as well as semantic descrip-
tion of the local Web Services for their automatic use. A set tools will be provided
to each ES for modeling its local ontology and for aligning the local ontology
with the reference one. As a technical result SEEMP will enable a meaningful
service-based communication among ESs.

The paper is structured as follows: Section 2 presents a running example that
will be discussed throughout the paper; Section 3 explains the interoperability
issue that arises in SEEMP project; Section 4 presents the SEEMP approach
to support meaningful service-based communication among ESs; Sections 5 and
6 outline SEEMP solution architecture and components rooting them to the
related work in Web Services and Semantic Web community; Section 7 briefly
discusses the approach of SEEMP comparing it with already implemented ap-
proaches; and finally Section 8 presents future work.

2 A e-Employment Running Example

European Member States have introduced major reforms to make the labour
market more flexible, transparent and efficient. Such major reforms include de-
centralization, liberalization of the mediation market (competition between pub-
lic and private), and quality monitoring of ES staff and services. As an effect ESs
understood the need for making available on-line a one-stop shop for the employ-
ment. This results in an increased used of ICT and in a boost in differentiating

222 E. Della Valle et al.

and personalizing the services they offer (e.g., Borsa Lavoro Lombardia, Le
FOREM2). For the discussion of this paper we will consider a running example
derived by the user requirements of the SEEMP project (for a more detailed
description of the socio-economic constrains please refer to [4]):

Job seekers (companies) put their CVs (Job Offers) on a local ES and
ask to match them with the Job Offers (CVs) other users put in different
ESs through SEEMP.

Local
Matching
algorithm

Local
Matching
algorithm

Local
Matching
algorithm

Belgian
PES

Polish
PES

French
PES

Italian
PES

y
PES

d
PES

z
PES

x
PES

a
PES

c
PES e

PES

t
PES

v
PES

w
PES

Local
Matching
algorithm

Requester PES

Responding PES

PES not involved

Job Seeker’s CV

Employer Offer

LEGENDA

Spain
PES

Fig. 1. The running example of distributed matching of CVs and job offers

It may look like a fairly simple example, but to reach its potential EU-wide
audience, this e-Employment running example (see figure 1) needs to fulfill a
wider set of requirements than the respective local ES services. A local matching
service is designed for national/regional requirements only (i.e., central database,
single professional taxonomy, single user language, etc.). SEEMP has to be able
to send the request, which an end-user submits to the local ES (the Italian ES
on left in the figure), to all the other ESs in the marketplace. In order to avoid
asking “all” ESs, SEEMP has to select those ESs that most likely will be able to
provide an answer and send the request only to them (the four ES on the right in
the figure). Moreover, the answers should be merged and ranked homogeneously
by SEEMP before they are sent back.

2 Respectively http://www.borsalavorolombardia.net/ and http://www.leforem.be/

SEEMP: An Semantic Interoperability Infrastructure 223

3 Interoperability Issues

The running example presented in section 2 highlights the need for a system that
covers the whole EU and subsumes hundreds of real heterogeneous systems
existing in EU countries and regions. It implies by-passing:

– language heterogeneity, e.g., an Italian Java Analyst Programmer may be
looking for job offers written in all the different European languages;

– CVs and Job Offers structural heterogeneity, i.e., the use of standards like
HR-XML3 is not wide spread and a multitude of local formats exists;

– CVs and Job Offers content heterogeneity, i.e., European level occupation
classifications like ISCO-884 exist, but they do not reflect legitimate differ-
ences and perspectives of economic, cultural and political environments;

– heterogeneity of service interface and behavior, i.e., no standard exists for
e-employment services thus each ES implemented them differently.

All those are typical interoperability issues. The need for interoperability at
European Level among e-Government services has been perceived since 1999 [5]
with the adoption of a series of actions and measures for electronic interchange
of data between administrations, businesses and citizens (IDABC) [6].

The main results of IDABC is the European Interoperability Framework (EIF)
[1]. EIF follows the principle of subsidiarity5 in addressing the interoperability
problem at all levels: organizational, semantic and technical. One crucial aspect,
deriving from the principle of subsidiarity, is to keep responsibility decentralized;
in other words each partner should be able to keep its own business process
almost unchanged6 and to provide externally point of exchange for its processes.
EIF names these points ”business interoperability interfaces” (BII).

EIF does not prescribe any solution, but it rather recommends the principles
to be considered for any e-Government service to be set up at a pan-European
level: accessibility, multilingualism, security, privacy, use of open standards and
of open source software and use of multilateral solutions. SEEMP proposes itself
as an implementation of EIF in the domain of e-employment.

4 The SEEMP Approach

SEEMP relies on the concept of Service. Following the EIF, each ES
locally must expose its BII as Web Services. All these Web Services differ but
they are fairly similar. SEEMP, as marketplace, models a single consistent set of

3 http://www.hr-xml.org/
4 http://www.warwick.ac.uk/ier/isco/isco88.html
5 The principle of subsidiarity recommends not to interfere with the internal workings

of administrations and EU Institutions.
6 Quoting from IDABC: ”it is unrealistic to believe that administrations from different

Member States will be able to harmonize their business processes because of pan-
European requirements”.

224 E. Della Valle et al.

Web Service out of those exposed by the ESs. Therefore the services exposed by
SEEMP become the standard for the distributed independent service providers.

For instance, for the running example provided in section 2 each ES should
expose two Web Services: match an external CV against the job offers stored
locally and match an external job offer against the CVs stored locally. Therefore a
service that subsume all the local heterogeneous ones can be modeled in SEEMP
for each of the two families of similar Web Service. These two abstract service
are those that SEEMP, as a marketplace, offers to the ESs.

SEEMP uses Mélusine [2] as tool for modeling those abstract services and
orchestrating the process of delegating the execution to the distributed indepen-
dent service providers.

SEEMP relies on the concept Semantics (both ontologies and media-
tors. As for the service, each local ES has its own local ontology for describing
at a semantic level the Web Services it exposes, and the structure/content of
the messages it exchanges. All these ontologies differ but they are fairly simi-
lar, because a common knowledge about employment exists as well as the needs
for exchange (i.e., you don’t exchange on things with no equivalence calculus).
So, SEEMP, as marketplace, models a single consistent ontology out of those
exposed by the ESs. Therefore the reference ontology of SEEMP becomes the
actual standard for the ESs that should provide the mediators for translating
from the local ontologies to the reference one and vice versa.

For instance, for the running example each ES should model in a local ontol-
ogy the structure/content of its CV/job offers and the way they are exchanged
via Web Services. A reference ontology that subsumes all the local heteroge-
neous ones can be modeled in SEEMP and it becomes the source of shared
understanding. Each ES has to provide its mediator for local-reference semantic
mapping.

SEEMP adopts WSMO [3] a way to semantically describe Web Service, ontolo-
gies and mediators, WSML [7] as concrete syntax for encoding those descriptions
and METHONTOLOGY [8] as methodology for developing and maintaining
those semantic descriptions.

Minimal shared commitment. In implementing SEEMP approach particular
attention is paid in keeping a “win-win” situation among all ESs. The commit-
ment (both at services and semantics level) of each ES should be minimal. ESs
care about being able to share while maintaining all the necessary and unneces-
sary disagreements. It may appear counter-intuitive, but the most suitable set
of services and ontologies is the one that enables ESs to “agree while disagree-
ing”. Both the reference set of services and the reference ontology must cover
the various aspects of the employment market with an acceptable level of details
that leaves leeways of disagreement.

Considering the running example of section 2, the minimal shared commit-
ment the SEEMP consortium agreed upon consists in sharing a subset of the CV
named candidacy and a subset of job offer named vacancy. Candidacy (vacancy)
enables matching without reveling how to contact the job seeker (employer) that

SEEMP: An Semantic Interoperability Infrastructure 225

SEEMP Connector
configured for

Italian ES

SEEMP Connector
configured for

Belgian ES

Italian
ES

Belgian
ES

Reference
Level

Connector
Level

ES Level

[…]

[…]

EMPAMEMPAM

Fig. 2. An overview of the SEEMP solution

is, instead, in the CV (job offer) stored in the ESs and that can be contacted
by invoking a service of the ES responsible for the CV (job offer). In this way
SEEMP approach also takes into consideration privacy issues of collaborative
network, which is a technical issue as well as a business constraint.

5 The SEEMP Solution Architecture

SEEMP solution is composed of a reference part (all the dark components in
figure 2), which reflects the “minimal shared commitment” both in terms of
services and semantics, and by the connectors toward the various local actors
(the components in shading colors in figure 2).

5.1 Structural Overview

The reference part of SEEMP solution. is made up of the central abstract
machine, named EMPAM (Employment Market Place Abstract Machine) and a
set of SEEMP services.

The EMPAM is an “abstract machine”, in that it does not perform directly
any operation, but rather offers abstract services that are made concrete by
delegation: when the abstract service is invoked, the EMPAM delegates its ex-
ecution to the appropriate ES by invoking the correspondent concrete services.
It acts as a multilateral solution (as request by EIF), in which all the services
connected to the EMPAM are made available to all other ESs, i.e. they ensure
a pan-European level of services without interfering with the Business processes
of each ES.

The SEEMP services are meant to support EMPAM execution. The running
example requires two SEEMP services: discovery and ranking. The discovery
service is offered by Glue [9]. The EMPAM invokes Glue Discovery Engine be-
fore delegating the execution to the concrete services exposed by the ESs. Glue
analyzes the CV sent by the invoking ES and it selects among all ESs those
that most likely would be able to return relevant job offers. The ranking service
is invoked by the EMPAM after all the concrete services have answered and it

226 E. Della Valle et al.

merges the results providing an homogeneous ranking of the returned job of-
fers. It also delete possible duplicated job offers, which different ESs may have
returned.

The SEEMP connectors. enables all communication that occurs between the
EMPAM and a given ES. A SEEMP connector will exist for each of the ESs that
are connected to the EMPAM and has two main responsibilities:

– Lifting and Lowering : when communicating with the ES any outgoing (or
incoming) data which is exchanged by the means of Web Services must be
lifted form XML to WSML in terms of the local ontologies of the ES (or
lowered back to the XML level from WSML).

– Resolving Heterogeneity: each ES has its own local ontology that represents
its view on the employment domain. The SEEMP connector is responsible for
resolving these heterogeneity issues by converting all the ontologized content
(the content lifted from the XML received from the ES) into content in terms
of the reference ontology shared by all partners and vice versa.

5.2 Functional Overview

By combining the EMPAM and the connectors SEEMP solution enables a mean-
ingful service-based communication among ESs. Figure 3 illustrates how such
meaning communication takes place in running the example of section 2:

1. the user inserts a CV into the Italian ES and requests job offers,
2. the Italian ES invokes the marketplace matching service passing the CV

encoded in the Italian ontology,
3. the SEEMP connector translates the CV from the Italian ontology to the

reference one,
4. the discovery SEEMP service analyzes the CV and selects the ESs to be

contacted,
5. the EMPAM invokes in parallel the local matching service of selected ESs,
6. the SEEMP connectors of the selected ESs translate the CV from the ref-

erence ontology to the local ontology (i.e., the Belgian and the French ESs)
and invoke the ES’s Web service,

7. the Belgian and the French ES compute the matching locally and returns a
set of job offers,

8. each of the connector translates the job offers from each local ontology to
the reference one,

9. the ranking SEEMP service merges the responses and ranks the job offers,
10. the job offers are sent back in the reference ontology to the Italian connector

that translates them in the Italian ontology,
11. the connector responds to the Italian ES, and
12. finally the Italian ES displays the job offers to the user.

SEEMP: An Semantic Interoperability Infrastructure 227

Fig. 3. How SEEMP solution enables meaningful service-based communication

6 The SEEMP Solution Components

6.1 Reference and Local Ontology for e-Employment

The Reference Ontology is a core component of the system. It acts as a com-
mon “language” in the form of a set of controlled vocabularies to describe the
details the employment sector. The Reference Ontology has to be rich enough to
support the semantic needs of all the ES (Local Ontologies) involved currently
and in the future. The Reference Ontology also has to be a scalable, adaptable
and maintainable ontology. For all those reason SEEMP follows the METHON-
TOLOGY [8] approach:

1. specifying competency questions and identified necessities;
2. selecting the standards that cover most of them;
3. semantic enrichment of the chosen standard; and
4. evaluating the Ontology content.

In order to build the Reference Ontology, the standards identified are: ISO 4217
for currencies, the 12 levels of driving license recognized by the European leg-
islation, NACE Rev. 1.1 for economic activities, ISCO-88 (COM) and ONET
taxonomy of occupations, FOET and ISCED97 for education, ISO 3166 country
codes, LE FOREM classifications of contract types and work rule types, ISO
6392 for languages, and EDS classification for skills.

Local Ontologies. Based on the proposed SEEMP architecture, the possible
options for building the local ontologies in SEEMP ranges between to extreme

228 E. Della Valle et al.

options: building local ontologies taking as a seed the reference ontology and
building local ontologies as a reverse engineering process from ES schema sources.

In building local ontologies taken as a seed the reference ontology, the concepts
in the local ontology are extension in depth of the concepts already present in
the reference ontology. By extension we mean including application dependent
concepts that appear in each ES schema source.

The exchange of job offers and CV (once ontologized), required by the running
example of section 2, is easy because all local ontologies extends the same ref-
erence vocabulary. On the contrary mappings complexity are on local ontology
and schema mappings (cf. section 6.3 for more details).

Building local ontologies as a reverse engineering process from ES schema
sources, is the easiest way for ontologizing ESs. Each concept in the local ontol-
ogy is the semantic expression of a relevant concept in the ES. In this way ESs
becomes ontology-based applications that are more efficient because mappings
between local ontologies and schema sources should not be complex, but com-
plex mappings appear between the local and reference ontology. Therefore data
exchange will require more time, in comparison to the previous option, due to
the execution of two complex mappings.

The SEEMP way is keeping close to the first option in the beginning,
when few ESs are in the marketplace and the union of ES semantics is the most
straight forward solution. Then while more and more ESs would be added to the
marketplace, the solution would move toward the second option. The equilibrium
between the two extreme solutions is related to the need for a “minimal shared
commitment” explained in section 4.

6.2 An Employment Market Place Abstract Machine

The EMPAM machine is implemented as a Mélusine application, which means
it is structured following the Mélusine approach in three layers (cf. Figure 4).

Layer 1: The abstract machine. The higher EMPAM machine layer is a
java abstrct program where abstract classes represent the concepts present in
SEEMP Employment Marketplace Platform (EMP). EMP acts as a ES covering
completely EU, i.e. it acts as if all the CV and vacancies were present in its
repositories. However the EMP is abstract since it does not have any information
locally, but delegates to real ESs the duty to process part of the job. The EMP
program defines functions like matching CV and job offers that are, indeed, not
implemented at all, or only sketching what they are supposed to do.

Layer 2: The adapters. The second layer duty is to do in such a way that empty
or dummy methods, found in the abstract layer, really perform what they are sup-
posed to perform. To that end this layer is itself structured in three layers:

– The injection machine, whose duty is to capture those methods that need
to be implemented, and to transfer the call to the following layer.

– The mediation and orchestration layer which is in charge of transforming a
single abstract method call into a potentially complex orchestration of real
lower level services that together will perform the required function.

SEEMP: An Semantic Interoperability Infrastructure 229

Fig. 4. The levels that made up the EMPAM as a Mélusine application

– The Service machine, whose duty is to transparently find and load the re-
quired SEEMP service and to call them. In SEEMP, this service machine is
the core Mélusine service machine (an implementation of OSGi7).

Layer 3: The SEEMP services, which are OSGi services, and are called
accordingly by Mélusine. This solution ensures optimal performance to the EM-
PAM, while allowing large facilities to future extensions (new SEEMP service)
and even dynamic changes (dynamic loading/unloading of services).

Two classes of services have been identified:

– those dedicated to calling a Web Service exposed by a ES through the Ser-
vice Abstract Machine (SAM). Most of the issues raised by EMP are related
to discovering, selecting, parsing, and finally invoking a remote service; more
exactly the SEEMP connector of each ES. SAM is itself a Mélusine application
and therefore contains itself an abstract layer in which are defined the funda-
mental concepts and functions of a service machine. This layer is captured and
delegated to an orchestration layer that calls local services which, in the scope
of SEEMP, are WSMX components [10] wrapped as OSGi services.

– the other service; currently these services, in SEEMP, include the cleansing,
ranking and statistic functions, and will include, in the future, the imple-
mentation of the specific functions and repositories of the EMPAM machine
i.e. those functions and information not available in the ESs. Functions and
information available in ESs are available calling the SAM service.

7 http://www.osgi.org/

http://www.osgi.org/

230 E. Della Valle et al.

6.3 SEEMP Connectors

The SEEMP connectors behave as the mechanism through which all communica-
tion occurs between the EMPAM and a given ES. A SEEMP connector will exist
for each ES that is connected to the EMPAM and has two main responsibilities:
Lifting/Lowering and Resolving Heterogeneity.

Lifting and Lowering: The ESs involved in the SEEMP marketplace only
deal in terms of structured XML content and do not deal in terms of ontologies.
Within the SEEMP marketplace it is important that all content is ontologized so
that it can be reasoned about, thus the SEEMP connector must lift all messages
received from a given ES to the ontology level. This is done by converting the
XML content received to WSML in terms of the local ontologies of the ES.
When communicating with the ES any outgoing data must be lowered back to
the XML level so that the ES can understand the content.

Since WSMO elements can be serialized in a RDF format, this task could
be done by converting XML content to RDF first, and then converting RDF to
WSML. In SEEMP this task is achieved by the means of an extension to R2O
language [11], which enables to describe mappings between XML schemas and
ontologies, and to its related processor ODEMapster [12].

Resolving Heterogeneity: Each ES talks in its own language, essentially hav-
ing its own local ontology that represents its view on the employment domain.
The SEEMP connector is responsible for resolving these heterogeneity issues
by converting all the ontologized content (the content lifted from the XML re-
ceived from the ES) into content in terms of the SEEMP reference ontology. By
doing this all the ESs in the marketplace talk in the same language, and thus
heterogeneity issues are resolved. Similar to the lowering back to XML, when
communicating with a given ES the SEEMP connector is also responsible for
converting back from the reference ontology to the local ontology of the given
ES.

As described in section 6.1 the reference ontology represents the bridge, or
common vocabulary, that the ESs will communicate through. Rather than man-
aging mappings between every possible ontology pair, which essentially becomes
unmanageable once a number of ESs have joined the marketplace, each ES need
only maintain mappings to and from the reference ontology. These mappings
represent a set of instructions (or rules) on how to convert an instance from the
local ontology to an instance of the reference ontology (and vice versa).

Technologically this is achieved using the WSMX Data Mediation [13]. This
work is made up of two components, the first being the design time component,
within which the ES will describe the mappings between their local ontology and
the reference ontology, and the second being the run time component, which is
responsible for executing the mappings at run time to transform the messages
between ontologies.

A reusable SEEMP connector is built by bringing together the functional-
ity described above. The architecture of the SEEMP Connector outlined in the

SEEMP: An Semantic Interoperability Infrastructure 231

Fig. 5. The SEEMP Connector Architecture

figure 5 shows the ES communicating with the connector using XML via the
exposed web services. This XML is then lifted to the local ontology using the
R2O mappings stored in the repository and furthermore converted to the ref-
erence ontology using the data mediation mappings. Ultimately the EMPAM is
invoked using messages in the reference ontology via its exposed web services.
Communication also occurs in the opposite direction.

Each of the ESs joining the marketplace will require its own SEEMP con-
nector, however the only difference between any two connectors is the code for
executing the ESs exposed Web Services as each ES will expose services in a
different way. The need for individual SEEMP connectors could be removed
through the use of WSMO Choreography [3] to describe the interfaces of the
ES services and the integration of the WSMX choreography engine [14] and in-
voker into the SEEMP Connector, however this was not considered for the first
prototype of the SEEMP solution.

7 Comparing SEEMP with Other Approaches

In order to draw a comparison between SEEMP and other approaches we se-
lected two case studies: private employment networks (e.g. Adecco) and hierar-
chical network (e.g. Borsa Lavoro Lombardia, EURES). Moreover we consider
the differences both from the point of view of CEO (the decision makers) and
CTO (the IT experts).

Compared to other approaches SEEMP solution offers CEO a way to enforce
subsidiarity principle, therefore valuing each ES contribution in the marketplace.

232 E. Della Valle et al.

In private networks the subsidiarity principle is not applicable, while in hierar-
chical networks most of the nodes are passive actors. Moreover the marketplace
creates added value by increasing the number of interconnections, hence result-
ing in more faithful users (more JO/CV accessible using the user language) and
in more transactions. Many job offers that today could be found only at the cost
of inserting the CV multiple times and merging manually the results of different
ESs, becomes available through the interface of each ES.

For CTO SEEMP solution enable an easier maintenance of the integration
with other ESs and minor integration costs. It was proved that Web Services used
in a Service Oriented Architecture easies integration and maintenance. More-
over semantics make mapping different terminology easier because tools (such
as WSMT [15]) can analyzed local and reference ontology (e.g., by comparing
sub-structures and by searching for synonymies) and can guide the IT Adminis-
trator in drawing the mappings. Thank to this support, the mapping definition
process requires less time or, eventually, it provides more precise mappings in the
same amount of time. That support comes out with a minor integration costs.

In order to achieve this benefit CEO has to develop “partnership”, i.e., the
ability to collaborate with other peers, ES or staffing industries. The partnerships
are different in the two case studies. In private network everything is agreed in
advance. In hierarchical network partnership are necessary, but no peer to peer
decision taking is possible. Decisions are institutionally imposed top-down. More-
over SEEMP supports CTO with comprehensive set of tools and methodologies
for service and semantic interoperability.

Concerning services CTO has to expose ES APIs as Local Web Services and
has to provide support for invoking EMPAM services. However, they don’t have
to understand interfaces and behavior of other ES (as in hierarchical solutions)
because the connector presents the market place as if the ES was invoking its
own services.

Concerning semantics, CTO has to model data structure and content and has
to defining mappings with the reference ontology, but, as discussed above, this
is easier and more precise than it is nowadays without ontologies and mediators.

What has to be built, and SEEMP alone won’t be able to do, is a com-
prehensive reference ontology and abstract service machine that encompasses
several employment domains. Developing and maintenance this reference part
of SEEMP more then a ICT problem; it is a matter of reaching agreement at
organizational level. As already discussed in section 4 the goal of SEEMP is
reaching a “minimal shared commitment” in which ESs agree on high-level as-
pects, allowing for collaboration among them, while disagreeing on minor details
that differentiate one ES from the others.

8 Conclusions and Future Work

This paper presented the SEEMP approach in supporting meaningful service-
based communication among public and private employment services. The fol-
lowing results have been shown:

SEEMP: An Semantic Interoperability Infrastructure 233

– services and semantics are the key concepts for abstracting from the hun-
dreds of heterogeneous systems already in place that are evolving separately.
They provide a straight forward way to implement the subsidiarity principle.

– the combination of an abstract service machine with a reference
ontology is a technically sound approach to multi-laterality for marketplace
implementation. Each actor in the marketplace has to care only about inte-
grating with the marketplace. The marketplace will offer services to support
the interaction with the other actors.

– a mix of Software Engineering and Semantic approach is required
to achieve flexibility. The two approaches nicely complement each other.
By means of “conventional” software engineering design SEEMP build an
abstract machine that can run on “conventional” technology and at the
same time embeds semantics both in the form of ontology/mediator and in
the form of semantic-aware components (i.e. ODE mapster, WSMX data
mediation, Glue Discovery Engine).

Currently SEEMP consortium is running a pilot that shows the integration
of EURES and Borsa Lavoro Lombardia. This integration has allowed for so far
testing the functional aspects of SEEMP approach. The next step is integrating
Le FOREM ES as a validation case. We expect, the reference ontology and the
abstract machine to be so well designed that Le FOREM introduction would
have no impact on them.

Future work includes extending the number of abstract services included in
the EMPAM and the respective concepts in the reference and local ontologies.
For instance, one essential service of SEEMP should be the possibility to have
regularly (monthly, weekly, daily,) a set of key indicators regarding labour mar-
ket in all participant regions (job seekers, job offers, training, etc.), in a common
and comparable language, both in terms of methods (definitions, calculation of
indicators, etc.) and in terms of technical requirements.

Acknowledgments

The research has been supported by the SEEMP (IST-4-027347-STREP) EU
funded project. We thank all the colleagues for the fruitful discussion we have
and in particular Flavio De Paoli, Mirko Cesarini and Maria Grazia Fugini.

References

1. European Communities: European interoperability framework for pan-european
egovernment services. Technical report, Office for Official Publications of the Eu-
ropean Communities (2004)

2. Estublier, J., Vega, G.: Reuse and variability in large software applications. In:
ESEC/SIGSOFT FSE. (2005) 316–325

3. Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D.,
Domingue, J.: Enabling Semantic Web Services – The Web Service Modeling
Ontology. Springer (2006)

234 E. Della Valle et al.

4. Della Valle, E., Cerizza, D., Celino, I., Estublier, J., Vega, G., Kerrigan, M.,
Ramı́rez J., Villazon, B., Guarrera, P., Zhao, G., Monteleone, G.: SEEMP: Mean-
ingful service-based collaboration among labour market actors. In: proceedings of
BIS 2007, LNCS 4439, Poznan, Poland, Springer-Verlag (2007)

5. 1720/1999/EC: Decision of the European Parliament and of the Council of 12 July
1999 (1999)

6. 2004/387/EC: Decision of the European Parliament and of the Council on Interop-
erable Delivery of pan-European Services to Public Administrations, 2004 (2004)

7. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The web service modeling lan-
guage: An overview. In: Proceedings of the 3rd European Semantic Web Conference
(ESWC2006), Budva, Montenegro, Springer-Verlag (2006)

8. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering.
Springer Verlag (2003)

9. Della Valle, E., Cerizza, D.: The mediators centric approach to automatic web
service discovery of glue. In: MEDIATE2005. Volume 168 of CEUR Workshop
Proceedings., CEUR-WS.org (2005) 35–50

10. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - A Semantic
Service-Oriented Architecture. In: ICWS. (2005) 321–328

11. Barrasa, J., Corcho, O., Gómez-Pérez, A.: R2O, an extensible and semantically
based database-toontology mapping language. In: Second International Workshop
on Semantic Web and Databases. (2004)

12. Rodriguez, J.B., Gómez-Pérez, A.: Upgrading relational legacy data to the seman-
tic web. In: WWW ’06: Proceedings of the 15th international conference on World
Wide Web, New York, NY, USA, ACM Press (2006) 1069–1070

13. Mocan, A., Cimpian, E., Kerrigan, M.: Formal model for ontology mapping cre-
ation. In: International Semantic Web Conference. (2006) 459–472

14. Cimpian, E., Mocan, A.: WSMX Process Mediation Based on Choreographies. In:
Business Process Management Workshops. (2005) 130–143

15. Mocan, A., Cimpian, E.: Mappings creation using a view based approach. In: ME-
DIATE2005. Volume 168 of CEUR Workshop Proceedings., CEUR-WS.org (2005)
97–112

Combining RDF Vocabularies for Expert Finding�

Boanerges Aleman-Meza1, Uldis Bojārs2, Harold Boley3, John G. Breslin2,
Malgorzata Mochol4, Lyndon JB Nixon4, Axel Polleres2,5, and Anna V. Zhdanova5

1 LSDIS Lab, University of Georgia, USA
2 DERI, National University of Ireland, Galway

3 University of New Brunswick and National Research Council, Canada
4 Free University of Berlin, Germany

5 Universidad Rey Juan Carlos, Madrid, Spain
6 University of Surrey, UK

Abstract. This paper presents a framework for the reuse and extension of ex-
isting, established vocabularies in the Semantic Web. Driven by the primary ap-
plication of expert finding, we will explore the reuse of vocabularies that have
attracted a considerable user community already (FOAF, SIOC, etc.) or are de-
rived from de facto standards used in tools or industrial practice (such as vCard,
iCal and Dublin Core). This focus guarantees direct applicability and low entry
barriers, unlike when devising a new ontology from scratch. The Web is already
populated with several vocabularies which complement each other (but also have
considerable overlap) in that they cover a wide range of necessary features to
adequately describe the expert finding domain. Little effort has been made so
far to identify and compare existing approaches, and to devise best practices on
how to use and extend various vocabularies conjointly. It is the goal of the re-
cently started ExpertFinder initiative to fill this gap. In this paper we present the
ExpertFinder framework for reuse and extension of existing vocabularies in the
Semantic Web. We provide a practical analysis of overlaps and options for com-
bined use and extensions of several existing vocabularies, as well as a proposal
for applying rules and other enabling technologies to the expert finding task.

1 Introduction

The Semantic Web has arrived! A growing number of people and institutions provide
metadata on their personal or institutional Webpages in vocabularies based on RDF.
Microformats provide another way to embed metadata directly within XHTML docu-
ments. The GRDDL working group 1, recently founded by the W3C, provides ways
to derive semantically richer RDF from the structured data such as that of microfor-
mats. Additionally, the Semantic Web Best Practices and Deployment Working Group2

provides guidelines on how to publish and syntactically combine RDF/XML or OWL

� This work has been partially supported by the EU NoE Knowledge Web (FP6-507482), the
Spanish MEC (projects TIC2003-9001, TIN2006-15455-CO3), the German BMBF funded
project Knowledge Nets and the Science Foundation Ireland (SFI/02/CE1/I131).

1 http://www.w3.org/2001/sw/grddl-wg/
2 http://www.w3.org/2001/sw/BestPractices/

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 235–250, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.w3.org/2001/sw/grddl-wg/
http://www.w3.org/2001/sw/BestPractices/

236 B. Aleman-Meza et al.

data and ontologies. Furthermore, browser extensions such as Semantic Radar3 allow
the detection of RDF data on web pages, and generic RDF browsers such as Tabulator4

make exploration of Semantic Web data easier. While the syntactical issues are being
solved by others, we take a closer look here at the actual vocabularies and ontologies
that can be used for capturing metadata about persons and organisations for publish-
ing on the Semantic Web. We propose a frequently-addressed, but still challenging, key
application for the take-up of Semantic Web technologies: automating the task of find-
ing experts (individuals, teams, and organisations), which is a daunting manual effort
at the moment. Our assumption is that when persons, institutions, projects, and events
are described in Web pages using agreed-upon machine readable formats, the automatic
location of experts/expertise in a particular area or for a particular task will become fea-
sible. To achieve this goal, and similarly for other applications of Semantic Web search,
we identify three critical success factors:

– Common machine readable formats (syntax and semantics) supported by a
– critical mass of users (low entry barrier, tool support, reuse) as well as
– enabling technologies in place to solve practical use cases.

To this end, the following contributions are made in the remainder of this paper: In
Sec. 2 we discuss each of these critical success factors. Sec. 3 describes the
ExpertFinder initiative and we identify specific use cases which shall be covered within
our chosen application domain. Sec. 4 contains the core of this paper, namely, we iden-
tify several quasi-standard ontologies relevant to expert finding, their relations to our
domain, and propose how to combine them in the ExpertFinder Vocabulary Framework.
We discuss related initiatives and approaches in Sec. 5 and conclude in Sec. 6.

2 Critical Success Factors

Common machine readable formats. As mentioned before, we will consider syntactical
issues to be solved for the moment and assume that people know how to publish seman-
tic annotations with their webpages and that there is proper tool support. We therefore
focus on semantic aspects, by which we mean common existing ontologies and RDF
vocabularies that can be used. The vocabularies that need to be considered comprise
areas such as descriptions of personal and institutional data (including curriculum vitae
and addresses), actual ontologies for modeling areas of knowledge/expertise, business
sectors and communities, events, and publications. In section 4 we provide an analysis
of existing vocabularies, ontologies and business standards for each of these fields.

Critical mass of users. Independent of whichever vocabulary we finally decide on, in
order to really enable expert finding on a (Semantic) Web scale we have to either (i)
convince a critical mass of users and content publishers to support the chosen vocabu-
lary, (ii) translate/import existing content automatically into the chosen vocabulary, or
(iii) provide mechanisms within the chosen vocabulary that can facilitate reuse of the
vocabularies already utilised on the Web (e.g. using owl:equivalentClass and

3 http://sioc-project.org/firefox/
4 http://www.w3.org/2005/ajar/tab

owl:equivalentClass
http://sioc-project.org/firefox/
http://www.w3.org/2005/ajar/tab

Combining RDF Vocabularies for Expert Finding 237

owl:equivalentProperty). As for (i), creating a new ontology from scratch and
disseminating it within a closed community is difficult. Within the wider Web commu-
nity we can expect that enforcing the take-up of a single vocabulary is not only unlikely,
but probably even impossible. Individual users and organisations will choose portions
of ontologies, add extensions for their own purposes and will use different URIs to
describe the same or similar concepts. In the context of (ii), text retrieval methods or
wrapper technologies facilitated by approaches like PiggyBank[14] have become more
stable and successful over the last few years. However, they still do not offer 100% pre-
cision or recall depending on how structured the underlying data source is, nor solve the
problem of the right ontology/vocabulary to use for the generated annotations. Hence,
there is nothing that can be called the right ontology for our domain and we will there-
fore focus on (iii) and try to reuse and effectively combine all existing and actually
used formats. For this purpose, we can analyse and formally define their overlaps, and
provide best practices on how to apply them together. This is the approach we focus on
in the ExpertFinder initiative. A practical side effect of reusing and extending existing
vocabularies is that we can rely on existing tools. For example, iCal[9], vCard[23], or
BibTeX[19] provide vocabularies that are supported by tools (such as calendars, address
book software) and online citation indexes, and are used already as de facto standards
for data exchange.

Enabling technologies. The previous two success factors were concerned with how to
get the necessary metadata on the Web. In order to solve practical use cases, such as
the ones listed in Sec. 3, we have to consider several additional technologies. For ex-
ample, recommendation algorithms, rules, strategies, collaborative filtering techniques,
statistical methods, etc. Such methods will help to rate the value of metadata, but also
allow support in annotation tools and search engines in order to find related ontological
terms. Moreover, security and trust mechanisms that allow restricting access to certain
metadata by encryption or authentication are gaining importance as the Web gets pop-
ulated with personal information which should not be public. As a final key enabling
technology, rules will play a crucial role in several respects. First, rules (together with
expressive ontology languages) allow us to formally define the exact relationships be-
tween the existing vocabularies. For example, some vocabularies (e.g., FOAF, SIOC)
already formalise their structure to some degree in OWL but usually do not incorporate
many more features beyond simple taxonomies expressible in RDFS alone. We expect
that expressive features beyond OWL[10] might be needed to define the exact relations
between overlapping vocabularies. As there is no standard yet for defining such map-
pings rules, one could imagine SPARQL CONSTRUCT5 along with built-in predicates.
For instance imagine a mapping from vCard:homeTel to foaf:phone where the
former is a datatype property and the latter an object property. Basically, a mapping
needs a conversion function, generating a URI from the source RDF literal value:

CONSTRUCT { ?X foaf:phone ?T . } WHERE { ?X vCard:tel ?T1 .
FILTER (fn:str(?T)=fn:concat("tel:",fn:encode-for-uri(?T1)))}

5 Lacking a standard language to define complex mappings as this one, we admittedly “abuse”
SPARQL FILTER expressions here for data conversion with XPath 2.0 Functions, which is
likely not (yet) supported by existing engines.

owl:equivalentProperty
vCard:homeTel
foaf:phone

238 B. Aleman-Meza et al.

Secondly, rules, published together with RDF metadata, can serve to “link” or define
implicit metadata[26]. This would enable us to link to metadata published elsewhere
involving (possibly negative) dependencies[20]. Sample rules could be for instance:
http://www.w3.org/People/Berners-Lee/card#i is an expert in http : //en.
wikipedia.org/wiki/SemanticWeb

6.

All persons listed at http://www.rdfweb.org/topic/ExpertFinder 2fMembers
but not those working for companies listed at http://www.myCompetitors/ are my
friends. http://www.w3.org/People/Berners-Lee/card#i is author of all publi-
cations listed athttp://dblp.uni-trier.de/Berners=Lee:Tim.html

Syntactically, one possibility is again to adopt CONSTRUCT queries from SPARQL as
a view/link definition language[21], but also here a dedicated standard is still missing.
We expect that W3C efforts like the RDF Data Access (DAWG)7 and Rule Interchange
Format (RIF)8 working groups will soon provide adequate solutions in this direction.

3 Practical Use Cases from the ExpertFinder Initiative

ExpertFinder9 is an international collaborative initiative with the aim of devising vo-
cabulary and rule extensions (e.g. FOAF and SIOC) and best practices and recom-
mendations towards standardisation in order to annotate personal homepages, pages of
institutions, conferences, publication indexes, etc. with adequate metadata to enable
computer agents to find experts on particular topics. The initiative was founded in 2006
with the goal to align related research efforts and to tackle precisely those critical factors
outlined in Sec. 2. Among others, the following use cases were identified as potential
early adopters of properly aligned Semantic Web data and vocabularies.

Automatic generation of institutional and personal webpages from metadata and rules.
RDF metadata itself is an excellent source for content management systems separat-
ing content from any layout related issues, but in a more flexible manner than current
solutions. Members of institutions could be allowed to provide their own metadata as
extended FOAF files, but, if missing, the institution itself could specify standard policies
for generating implicit metadata by means of default rules. Such rules could allow to
aggregate metadata from some 3rd party sources. For instance, imagine that your office
colleague is too lazy to generate his own homepage/metadata file. No problem: basic
data can be aggregated from metadata available at the university personnel database,
a default publication list can be generated by the metadata extracted from DBLP, and
so on, by means of rules such as the ones in Sec. 2 or other techniques. By relying
on common metadata formats natively, exporting, querying and combining information
aggregated from different sources into annotated pages becomes trivial. Preliminary
examples of this use of FOAF and other metadata are already proposed in[11].

Human Resource Management. People searching for a job could publish their CV and
profiles as metadata on the Web or employees in a company could make their skill set

6 Linking to Wikipedia terms is one of many possibilities to give areas of expertise an identifier.
7 http://www.w3.org/2001/sw/DataAccess/
8 http://www.w3.org/2005/rules/
9 http://www.rdfweb.org/topic/ExpertFinder

http://www.w3.org/People/Berners-Lee/card#i
http://www.rdfweb.org/topic/ExpertFinder_2fMembers
http://www.myCompetitors/
http://www.w3.org/People/Berners-Lee/card#i
http://dblp.uni-trier.de/Berners=Lee:Tim.html
http://www.w3.org/2001/sw/DataAccess/
http://www.w3.org/2005/rules/
http://www.rdfweb.org/topic/ExpertFinder

Combining RDF Vocabularies for Expert Finding 239

and experiences available on the intranet in agreed metadata formats. Job agencies can
deploy agents which they feed with their preferred profile crawling the web to identify
suitable candidates for a given vacancy, or vice versa job vacancies could be published
in the same formats. Team building within companies can be partly automated by select-
ing the right set of employees to successfully complete a given project through semantic
matching and rules. ExpertFinder shall enable such scenarios and decentralise the pro-
cess of expert and job finding, as opposed to current central recruitment or corporate
portals, just as FOAF itself was aimed to decentralise social networks.

Public Semantic Research Portals. The ExpertFinder idea is fruitfully applicable to
R&D community portals such as EU’s successful CORDIS 10 which enable institutions
to find and contact each other for joint research projects. Semantic enrichment of such
portals may enable refined search down to the level of individual researchers, or allow
decentralised publication by the institutions themselves. In the resulting scenario ad-
ditional requirements on assessing trustworthy information arise: Instead of providing
central portals, public bodies like the EU could assess/certify published content.

Semantic Reviewer Selection. In the academic realm, finding good reviewers remains
a daunting task. However, many publications already provide pre-classified keywords
such as ACM categories. Now, using citation indexes, committees of previous confer-
ences etc. published in the agreed metadata format, one could define in a declarative
rule language (possibly with priorities) some selection criteria to find appropriate ex-
pert reviewers, or adapt the selection criteria of previous workshops, if it is published
by the organisers. Using common agreed vocabularies for categories, publications etc.
mock-up examples using a combination of declarative rules and OWL such as presented
at[10] could become a practical reality.

Trust and security for privacy-relevant meta-data. In all of the above scenarios it is
desirable that (parts of) metadata can be protected, for instance by provision of time-
restricted keys for decryption during a process of rule based negotiation (cf.[6] for
pointers). Rules, similar to the ones mentioned above, can guide such negotiation. For
example, the person who wants my phone number needs to invoke a service to get my
phone number where all persons I know are registered. In the simplest case the service
could work per email and check the sha1-sum of people in my FOAF file and send
a mail back to that address with a (temporarily valid) decryption key for an encrypted
telephone number also provided in my FOAF file. For different versions of this scenario,
with different credentials, more involved negotiation processes are imaginable.

4 The ExpertFinder Vocabulary Framework

Instead of proposing a new ontology for tackling the challenges of semantic expert
finding we rather suggest a framework of existing vocabularies which shall be fruitfully
combined. As shown in Fig. 1 we identify the following “components” to describe
experts (persons, organisations or communities):

– general descriptions of persons, communities and organisations,
– relations between persons, communities and organisations,

10 http://cordis.europa.eu/en/home.html

240 B. Aleman-Meza et al.

– educational aspects,
– past and present activities and projects, and
– skills

Additional fields not uniquely connected to particular persons or organisations that we
want to cover are events and publications, opinions and ratings, endorsements as well
as recommendations and references. Our goal is to pick some of the most widely used
vocabularies in these areas check how far they are formalised, identify what overlaps
exist between these formats and how they can be reused and combined11.

Fig. 1. How to describe an expert?

4.1 Starting Points: FOAF, SIOC and SKOS

The Friend of a Friend (FOAF)[8] and Semantically-Interlinked Online Communities
(SIOC)[7] ontologies mark the starting points of our work as, on one hand, they already
cover the description of much of the ”components” mentioned above, and, on the other
hand, they are being adopted by a steadily increasing user community.

The FOAF ontology was developed to create machine readable information/metadata
for people, groups, organisations and other related concepts - basically, to describe peo-
ple, what they do and how they interact with each other. One of the most used properties
of the FOAF ontology is the “knows” property: a simple way to create social networks
through the addition of knows relationships for each individual that a person knows.
Aggregations of FOAF data from many individual homepages are creating distributed
social networks; this can in turn be connected to FOAF data from larger online social
networking sites such as LiveJournal12 or Tribe.

In terms of definitions of expertise the FOAF ontology has a number of relevant
properties, e.g. (i) the foaf:interest property defines topics of interest to a per-
son, and can be used directly to find those with an interest a particular domain (e.g.
foaf:interest has been used to match music preferences13), (ii) people can cre-
ate foaf:publications or other foaf:Documents (via foaf:made/maker)

11 We do not aim at providing an exhaustive list of all ontologies developed in all related areas.
12 http://rdfweb.org/topic/LiveJournal
13 http://foafing-the-music.iua.upf.edu/

foaf:interest
foaf:interest
foaf:publications
foaf:Documents
foaf:made/maker
http://rdfweb.org/topic/LiveJournal
http://foafing-the-music.iua.upf.edu/

Combining RDF Vocabularies for Expert Finding 241

which may have an associated foaf:topic or foaf:primaryTopic that can
again be used to determine a person’s domains of interest, and (iii) foaf : current
Project/pastProjectgives information on “some collaborative or individual under-
taking” that a person may be (or have been) involved in.

There have been a number of extensions or modules for the FOAF ontology that are
of interest to the expert finding scenarios previously mentioned. FOAFRealm[16] is a
user profile management system based on FOAF that provides authentication, access
control and social networking features such as “semantic social collaborative filtering”.
The system allows users to share and annotate their personal taxonomies across a so-
cial network using WordNet, DDC14 and DMoz15 as base classifications. When imple-
mented in document exchange systems such as JeromeDL16, a semantic digital library,
users can classify their documents or bookmarks and allow others to access these re-
sources using FOAFRealm’s social networking functionality. Each user’s collection is
assigned an expertise value that reflects the quality of the information that they provide;
this value is calculated based on a PageRank calculation of their social network. Users
are then also aware of the expertise level of others on given topics.

The SIOC project17, founded by one of the authors, aims to provide a framework
for the connection and interchange of information from internet-based discussions and
community portals. Such communities are primarily made up of users, the posts that
they create, and the discussion forums that they subscribe to across a multitude of sites
and discussion platforms. The basis for SIOC is the SIOC ontology, an RDF-based
schema which describes the main concepts found in online communities[7]. While there
are many classes and properties in SIOC, the main notion is that sioc:Users create
sioc:Posts that are contained in sioc:Forums that are hosted on sioc:Sites.
With respect to finding experts in a social network, the main SIOC property of interest
is sioc:topic defining a resource that a particular discussion post is related to; by
aggregating all the sioc:topics that are associated with a particular user’s posts
across a number of sites, a picture emerges as to where their topics of interest and related
expertises lie. sioc:Forums or sites may also have associated sioc:topics, and a
user with an interest in a particular topic may be a sioc:subscriber of a certain
discussion channel.

The Simple Knowledge Organisation System (SKOS)[17] completes the base we
want to build on. It allows to describe general terms and concepts and define many
useful properties of such terms such as declaring whether a concept is broader/narrower
than another, preferred and alternative labels in multiple languages for terms, as well
as related terms. SKOS facilitates sharing and representing terminologies that may not
extensively require the expressive power of other languages such as OWL and where a
strict hierarchy such as definable by rdfs:subClassOf cannot be imposed. In the
context of ExpertFinder, we can view SKOS as the basis to define and relate skills, areas
of expertise/interest (via the foaf:interest property) or topics people discuss in
online communities described by SIOC.

14 http://www.oclc.org/dewey/
15 http://dmoz.de/
16 http://www.jeromedl.org/
17 http://sioc-project.org/

foaf:topic
foaf:primaryTopic
sioc:User
sioc:Post
sioc:Forum
sioc:Site
sioc:topic
sioc:topic
sioc:Forum
sioc:topic
sioc:subscriber_of
rdfs:subClassOf
foaf:interest
http://www.oclc.org/dewey/
http://dmoz.de/
http://www.jeromedl.org/
http://sioc-project.org/

242 B. Aleman-Meza et al.

The SIOC ontology developers have worked with the authors of FOAF and SKOS
to align concepts and avoid any unnecessary duplication or term conflicts. The concept
of sioc:User has been defined to be a sub-type of foaf:onlineAccount, so
that existing properties from FOAF can be reused and so that new properties for users
can be defined in SIOC without directly impacting on the FOAF ontology. As shown in
Fig. 2, a foaf:Person can own many sioc:User profiles (via the foaf : holds
OnlineAccount relationship). Similarly, content that a sioc:User creates on a par-
ticular Forum (e.g., a Weblog, Mailing List, Bulletin Board) can be linked using sioc
: topic to a skos:Concept (e.g., in Fig. 2 one post is talking about clouds and an-
other post is referring to a narrower concept, that of rain clouds). Using SKOS to define
topics under discussion and of interest combined with additional rule extensions, which
we plan as a next step in the ExpertFinder framework, facilitates flexible definitions of
relationships between the various skills formalised using SKOS concepts.

Fig. 2. Connections between SIOC, FOAF and SKOS

4.2 ExpertFinder Framework Extensions for the Core Vocabularies

FOAF, SIOC and SKOS largely cover general descriptions of, as well as relations be-
tween persons, communities and organisations. However, still some pieces are missing
in order to obtain a complete picture of Fig. 1:

– FOAF misses detailed information about address data, but complementary stan-
dards such as vCard close this gap.

– The only relation between persons in FOAF is foaf:knows, but as we want to
support more fine-grained relations, we propose the RELATIONSHIP & XFN vo-
cabularies to close this gap.

sioc:User
foaf:onlineAccount
foaf:Person
sioc:User
sioc:User
skos:Concept
foaf:knows

Combining RDF Vocabularies for Expert Finding 243

– Projects can be linked to persons and groups by foaf:currentProject and
foaf:pastProject. However, this might again be too coarse-grained if e.g. we
want to know the exact timing of a project and we want to provide guidelines on
how to annotate projects. We propose the use of DOAP here.

– More detailed CV information can be provided by the DOAC vocabulary.
– In the scientific context, publications are an important measure of expertise. These

can be linked by the foaf:maker and foaf:publications properties to the
foaf:Document class, but details on how to describe publications are missing.
A de facto standard in the scientific community in this area is BibTeX.

– As for describing skills and topics of interest, SKOS defines a general framework,
but details of concrete classifications to use for annotation are missing.

– Finally, events and their participants are not yet describable in a sufficient manner.
iCal as a de facto standard for sharing events is a natural candidate to fill this gap.

A preliminary list of mappings for overlapping concepts and attributes in the mentioned
vocabularies is omitted here for lack of space, but available at http : //www.rdfweb.
org/topic/ExpertFinder2fmappings

Refining Personal Data: vCard vCard is a standard for representing personal data
such as business cards. Although there are various forms in which vCard data can be
written, our interest is on the RDF-based representation 18. Contact information, such
as phone numbers or email-addresses can be expressed more fine-grained in vCard
than in FOAF by means of distinguishing properties such as vCard:homeTel and
vCard:workTel. Note, however, that vCard phone numbers are not directly map-
pable to foaf:phone as a subclass, as vCard uses RDF literal values whereas foaf
uses URIs using the fully qualified tel: scheme. A workaround we propose is to adopt
FOAF’s representation in vCard/RDF and make the respective properties subproperties
of foaf:phone, or otherwise define straightforward mapping rules for conversion.
Such mappings can not necessarily be bidirectional, e.g., vCard:email may not be
simply mapped to foaf:mbox as a foaf:mbox is supposed to be unique for a per-
son, which is not necessarily the case for vCard. Affiliation information or role infor-
mation in vCard can indicate knowledge areas or particular expertise aspects, which
again should be linkable to SKOS concepts.

Refining Relations: RELATIONSHIP & XFN RELATIONSHIP19 and XFN20 (XHTML
Friends Network) are two vocabularies used for describing interpersonal relationships.
Since foaf:knows describes relationships between people rather sketchily, these vo-
cabularies are deployed to fill the gap and assert such relationships in more detail by
defining different subproperties.

Refining Project Descriptions: Description of a Project (DOAP) DOAP21 is an XML/
RDF vocabulary mainly conceived to describe open source projects. Its initial goals
include: (i) internationalisable description of a software project and its resources; (ii)
data exchange between software directories; (iii) automatic configuration for resources

18 http://www.w3.org/TR/vcard-rdf,http://www.w3.org/2006/vcard/ns
19 http://vocab.org/relationship/
20 http://gmpg.org/xfn/join
21 http://usefulinc.com/doap/

foaf:currentProject
foaf:pastProject
foaf:maker
foaf:publications
foaf:Document
vCard:homeTel
vCard:workTel
foaf:phone
tel:
foaf:phone
vCard:email
foaf:mbox
foaf:mbox
foaf:knows
http://www.w3.org/TR/vcard-rdf
http://www.w3.org/2006/vcard/ns
http://vocab.org/relationship/
http://gmpg.org/xfn/join
http://usefulinc.com/doap/

244 B. Aleman-Meza et al.

such as shared CVS repositories; (iv) interoperability with other popular Web metadata
projects (RSS, FOAF, DC) and (v) the ability to extend the vocabulary for specialist
purposes. DOAP describes the current state of a project but it does not highlight changes
and updates. However, to keep the repository up to date with releases, the CodeZoo with
an Atom22 feed containing embedded DOAP can be used. Nevertheless, even if a feed
to keep older versions can be used for DOAP a way to transform the information into
RDF and to distinguish between current release and past releases is still needed.

DOAP uses foaf:Person to describe the corresponding contributors of each
project part (e.g. project maintainer, developer). From the FOAF side, the use of foaf :
project, foaf:currentProject and foaf:pastProject properties do not
really allow to define the duration of participation in a certain project. Neither are
project durations definable properly in DOAP alone. We suggest to remedy this prob-
lem by either adding new attributes for start and end (possibly subclassing iCal events)
or using temporal RDF as mentioned below.

Refining CV information: Description of a Career (DOAC), Resume RDF Schema and
BIO Vocabulary: DOAC23 is a RDF metadata vocabulary to describe professional ca-
pabilities of workers gleaned for example from CVs or resumes. The metadata enhances
specific description and facilitate the search to locate suitable (regarding the given po-
sition requirements) job candidates. DOAC has been designed to be compatible with
the European CV (known as Europass), which can be generated from a FOAF+DOAC
file. It includes information about education, work experience, publications, spoken
languages and other skills that can be shared and processed by applications. As an
alternative, one of the authors[5] proposes the Resume RDF schema24 for extending
FOAF profiles with curriculum vitae information. This schema includes terms for work
and academic experience, skills, courses and certifications, publications, references, etc.
Again, we propose to link to SKOS concepts to describe the respective concepts. BIO25

describes biographical information about (living and dead) people and has been de-
signed to be compatible with both RDF and non-RDF XML formats.

DOAC uses the foaf:Person class to general descriptions of job seekers and
foaf : Organisation to define which schools and institutions the individual attended.
Furthermore, the foaf:pastProject concept could be added as a subclass to the
doac:Experience class. This would allow description of not only a job seeker’s
general experiences in a company but also their experiences in different projects. Next,
the doac:publication property which establishes a connection between the foaf:
Person and doac:Publication can be defined as a foaf:publications link-
ing foaf:Person with foaf:Document.

Refining Bibliographic Descriptions: BibTeX, DC and others BibTeX was designed
by Patashnik and Lamport in 1985 as the LaTeX bibliographic format[19] and has es-
tablished itself as a de facto standard format for publishing bibliographic information
in several online citation indices. Several RDF versions of BibTeX (e.g. bibtex2rdf,

22 http://www.codezoo.com/about/doap over atom.csp
23 http://ramonantonio.net/doac/
24 http://purl.org/captsolo/semweb
25 http://vocab.org/bio/0.1/

foaf:Person
foaf:currentProject
foaf:pastProject
foaf:Person
foaf:pastProject
doac:Experience
doac:publication
doac:Publication
foaf:publications
foaf:Person
foaf:Document
http://www.codezoo.com/about/doap_over_atom.csp
http://ramonantonio.net/doac/
http://purl.org/captsolo/semweb
http://vocab.org/bio/0.1/

Combining RDF Vocabularies for Expert Finding 245

bib2rdf, bibTeX 26) reuse existing formats in the same spirit as ExpertFinder. This
could be directly adopted or combined with more comprehensive ontologies for dig-
ital libraries such as MarcOnt27. As MarcOnt also allows to import/export BibTeX, we
currently suggest the RDF vocabulary supported by bibtex2rdf (cf.[11]). The Dublin
Core (DC) initiative, started 10 years ago by librarians in order to provide a metadata
standard for describing documents, may be viewed as a subset of bibtex, and is actually
reused by bibtex2rdf.

Classifications & Standards for Skills and Topics. In the following we describe a few
selected standards and classifications of occupations, competencies and economic activ-
ities as possible schemes which could be used for defining skills and topics of interest.
Some of these standards are used for example as an instrument for assembling and pre-
senting statistics of education/training on national as well as international level, some
others are developed for fostering international comparability of data in studying eco-
nomic phenomena. While the national and international types of classifications are used
for example by federal agencies for education and training statistics, the international
standards should also facilitate international communication.

The Occupational Classification (SOC)28 system is used by federal US statistical
agencies to classify workers into over 820 occupational categories, grouped into23 major
groups, 96 minor groups, and 449 broad occupations. Each broad occupation includes
detailed occupation(s) requiring similar job duties, skills, education, or experience. The
Profession Reference Number Classification (BKZ)29 is a German version SOC, detail-
ing 5597 occupations. The International Standard Classification of Occupations (ISCO-
88) is developed to facilitate international communication regarding occupations and
occupational groups. Persons are classified by occupation through their relationship to
a past, present or future job. The International Standard Industrial Classification of All
Economic Activities (ISIC) 30 is a standard classification of economic activities arranged
to classify entities according to the type of activity they carry out. North American Indus-
try Classification System (NAICS)31 provides common industry definitions for Canada,
Mexico, and the US to facilitate economic analyses. Further standards to classify prod-
ucts and services like eCl@ss, eOTD, or the RosettaNet Technical Dictionary, or UN-
SPSC could also partly serve to describe skills and topics. All these are however, with
few exceptions such as e.g. eCl@ssOWL[13], not (yet?) available in “ontologised” ver-
sions. Mappings of concepts into SKOS terms is an open issue on our agenda. A key
issue here is to assign proper URIs usable in RDF to these concepts:

However, apart from special suitable classification systems which yet need to be
“webised”, a simpler possibility to define topics which we already used in an example
of Sec. 2, was simply referring to an online encyclopedia such as Wikipedia. Recent
efforts towards semantically structuring wikis (cf.[15]) support such an approach. For

26 http://www.l3s.de/∼siberski/bibtex2rdf/, http : //www.cs.vu.
nl/ mcaklein/bib2rdf/, http://zeitkunst.org/bibtex/0.1/

27 http://www.marcont.org/
28 http://www.bls.gov/soc/
29 www.arbeitsamt.de/hst/markt/news/BKZ alpha.txt
30 http://unstats.un.org/unsd/cr/registry/regcst.asp?Cl=17&Lg=1
31 http://www.census.gov/epcd/www/naics.html

http://www.l3s.de/~siberski/bibtex2rdf/
http://zeitkunst.org/bibtex/0.1/
http://www.marcont.org/
http://www.bls.gov/soc/
www.arbeitsamt.de/hst/markt/ news/BKZ_alpha.txt
http://unstats.un.org/unsd/cr/registry/regcst.asp?Cl=17&Lg=1
http://www.census.gov/epcd/www/naics.html

246 B. Aleman-Meza et al.

some smaller domains such as computer science, ACM categories 32 or the WWW Con-
ference Archive areas 33 already provide URI-addressable categories of topics, usable
as SKOS terms, e.g. using the latter, we refine the example of Sec. 2 to:
http://www.w3.org/People/Berners-Lee/card#i is an expert in
http://wwwconf.ecs.soton.ac.uk/view/subjects/2004-C4.html

where we can further add:
http://wwwconf.ecs.soton.ac.uk/view/subjects/2004-C4.html is skos:
narrower than http://en.wikipedia.org/wiki/Semantic Web.

Events and termporal information iCal[9] as a de facto standard for calendar informa-
tion supported by many applications is a natural starting point for ExpertFinder to refer
to events. RDF formats and conversion tools for iCal are available34. Still, iCal alone
might not be sufficient to denote e.g. the validity duration of certain RDF information
such as participation duration in a project. Exploring the use of RDF extensions by tem-
poral information[12] to express the validity duration of triples would be an interesting
option, but standardisation of such extensions does not yet seem to be in sight.

5 Related Projects, Initiatives and Approaches

Many other projects and initiatives overlap with or are relevant to the ExpertFinder
initiative. As an umbrella initiative involving several organisations, some of these ef-
forts are continued among the ExpertFinder participants and results will be exchanged
both from these to ExpertFinder and vice versa, giving ExpertFinder the opportunity to
already impact through its work into present activities as well as being open to these
activities to impact upon the broader ExpertFinder efforts.

5.1 Related Projects

Several projects in the Semantic Web realm have already created their own ontologies
for describing persons, organisations and activities. For instance, the KnowledgeWeb
platform ontologies35, the AKT portal ontology36, the SWRC portal ontology37, and
the DERI Semantic Web Portal (SWP) working group’s ontology38 cover many aspects
of the expert finding domain, and could thus be arguably seen as equally valid starting
points. However, so far these approaches seem to have experienced little take-up outside
the projects where they have been developed and were developed from scratch rather
than being based in pre-existing vocabularies or de facto standards. Only the DERI SW-
portal ontology reuses FOAF, RSS and BibTeX to some extent, while such reuse is a
central rationale in our approach.

32 http://www.acm.org/class/1998/
33 http://wwwconf.ecs.soton.ac.uk/view/subjects/subjects.html
34 http://www.w3.org/2002/12/cal/, http://www.kanzaki.com/courier
/ical2rdf or http://torrez.us/ics2rdf/

35 http://knowledgeweb.semanticweb.org/semanticportal/OWL/
36 http://www.aktors.org/ontology/portal
37 http://swrc.ontoware.org/ontology
38 http://sw-portal.deri.org/ontologies/swportal

http://www.w3.org/People/Berners-Lee/card#i
http://wwwconf.ecs.soton.ac.uk/view/subjects/2004-C4.html
http://wwwconf.ecs.soton.ac.uk/view/subjects/2004-C4.html
skos:narrower
skos:narrower
http://en.wikipedia.org/wiki/Semantic_Web
http://www.acm.org/class/1998/
http://wwwconf.ecs.soton.ac.uk/view/subjects/subjects.html
http://www.w3.org/2002/12/cal/
http://www.kanzaki.com/courier/ical2rdf
http://www.kanzaki.com/courier/ical2rdf
http://torrez.us/ics2rdf/
http://knowledgeweb.semanticweb.org/semanticportal/OWL/
http://www.aktors.org/ontology/portal
http://swrc.ontoware.org/ontology
http://sw-portal.deri.org/ontologies/swportal

Combining RDF Vocabularies for Expert Finding 247

Some related projects conducted by ExpertFinder initiative members have already
followed this rationale, like Knowledge Nets, SemDis, FindXpRT and SIOC.

The Knowledge Nets39 project explores the potential of Semantic Web from a busi-
ness and a technical viewpoint by means of pre-selected use case scenarios. For this
purpose, a prototype for the e-Recruitment domain containing the online job seeking
and job procurement processes has been developed[2,18,22]. The requirements analy-
sis revealed the necessity of aligning with commonly used domain standards and clas-
sifications (SOC, BKZ, WZ2003, NAICS, HR-XML40 and Skill Ontology) in order to
integrate job seeker profiles and job postings as well as to support common practices
from industry. Reusing these standards, the HR-ontology contributes to the realisation
of more powerful and flexible e-Recruitment solutions which include advanced search
and presentation facilities based on knowledge about the application domain.

The SemDis project addresses development of query/discovery techniques for se-
mantic relationships. For example,dblp:co-authorship and foaf:knowswere
used to detect possible conflicts of interest between reviewers and authors in a peer-
review process[1]. An extension on such work aims at determining possible reviewers
by comparing their expertise to the topics of a paper. The expertise of a person on
different topics or areas is described using the SwetoDblp dataset41, a large populated
ontology of computer science publications based on the DBLP42 bibliography database.

The FindXpRT (Find an eXpert via Rules and Taxonomies)[26] focuses on the im-
portant aspect of rules by combining FOAF facts and RuleML[4] rules. This imple-
mented system43 allows users to derive FOAF data by deploying person-centric rules,
either before FOAF publication or, on demand, from published (RuleML FOAF) pages.

Finally, the SIOC initiative, which forms a central part of the ExpertFinder frame-
work is being developed by and in collaboration with initiative members with cross-
fertilizing effects between the two initiatives.

5.2 Community-Driven Approaches

In this paper we focused on the specific domain of expert finding and explored “estab-
lished” vocabularies in this domain. Other Web and Semantic Web application areas
show the dynamics and need for alignment even more drastically: A recent trend in
many popular non-academic portals is to allow communities to create their own vocab-
ularies and tag the items/information they want to share with others with arbitrary tags
from their vocabularies: The del.icio.us portal44 allows communities to tag and share
their bookmarks, and search others bookmarks on the basis of these tags. The 43Things
and 43Places community portals45 allow describing and sharing by community-created
tags information about the things people do and places they travel or want to travel.

39 http://wissensnetze.ag-nbi.de
40 Developed by the HR-XML Consortium, http://www.hr-xml.org
41 http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
42 http://www.informatik.uni-trier.de/∼ley/db/
43 http://www.ruleml.org/usecases/foaf/JieLiMCSThesis.pdf
44 http://del.icio.us
45 http://www.43things.com and http://www.43places.com

dblp:co-authorship
foaf:knows
http://wissensnetze.ag-nbi.de
http://www.hr-xml.org
http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
http://www.informatik.uni-trier.de/~ley/db/
http://www.ruleml.org/usecases/foaf/JieLiMCSThesis.pdf
http://del.icio.us
http://www.43things.com
http://www.43places.com

248 B. Aleman-Meza et al.

flickr46 allows members to share, search and tag photos, again with arbitrary tags.
GoogleBase47 is a community application which allows Web users to share and search
arbitrary items (pictures, text, ads, web-sites) and annotate these items using arbitrary
attribute-value pairs. Most popular/shared attributes and attribute values come up in the
upper level of Google search interfaces and are proposed to be used for searching and
browsing the available items. None of these sites is based directly on Semantic Web
technologies. However, the offered functionality is reminiscent significantly of earlier
academic proposals in the Semantic Web realm, e.g. the People’s Portal[24]. The exam-
ples reveal a trend of the Web becoming more structured and annotated in a community-
driven manner via social processes and contributions of Web users. Reuse and adoption
of already existing broadly used formats as we propose here could accelerate this pro-
cess on the one hand, and on the other hand extensions for existing vocabularies could
be developed in a community-driven process.

A common problem in completely unguided community-driven approaches is that
entities and tags are different, yet semantically similar. This tendency brings difficul-
ties for the community members in reuse of the community-contributed knowledge
contained in the system. Defining mappings and finding an agreement on a meta-level
upon which tags might become superfluous/deprecated by enforcing best practices are
crucial for applications in an open web environment. Existing community-driven pro-
posals ignore this problem to a large extent, or, in the most advanced cases, users are
proposed to create ad-hoc, non-reusable alignments to achieve a specific task. Minimal
support for reuse, such as auto-completion of tag names or suggestion of related search
terms in annotation tools and search engines is partly supported by the above-mentioned
platforms but mappings are not definable themselves in a community-driven process.

Community-driven ontology management and ontology matching extends conven-
tional ontology matching by involving end users, knowledge engineers, and developer
communities in the processes of establishing, describing and reusing vocabularies and
inter-ontology mappings[25]. We believe that easy to use mapping and rules languages
and tools as the next logical step. However, as we mentioned already in Sec. 2, a stan-
dard format for defining these mappings is still missing.

6 Conclusions and Outlook

We described the integration of efforts of members of the ExpertFinder initiative to-
wards a common goal: combining commonly-agreed vocabularies including but not
limited to describing information of people and their expertise, organisations, contact
information, social and collaborative networks, etc. As members of this initiative, we
have described various practical use cases for the task of expert finding which we iden-
tified as promising applications for actual take-up of Semantic Web technologies. We
described three key success factors for bringing agreement and facilitating the take off
of a joint vocabulary for expert finding. Based on this, we proposed the ExpertFinder vo-
cabulary framework which stresses reuse and cautious extension of existing and estab-
lished vocabularies in the Semantic Web. In this framework, we described how FOAF,

46 http://www.flickr.com
47 http://base.google.com

http://www.flickr.com
http://base.google.com

Combining RDF Vocabularies for Expert Finding 249

SIOC and SKOS mark the starting points. We also discussed how to use these together
extended with various existing vocabularies, pointing out the necessity for formal map-
pings between overlapping terms which we provide at the initiative’s Web page. Along
the way, we have given a survey and analysis of the related vocabularies and classifica-
tions which, although restricted to the particular domain of expert finding, we hope to
be useful as such also for other related Semantic Web applications. Although we deem
the core defined so far a useful start which can already be used to cover several of our
proposed use cases, we have to leave some extensions towards security, reputation and
trust mechanisms (e.g., referencing endorsements or trust ontologies), which we only
treated superficially so far, for future work.

References

1. B. Aleman-Meza, et al. Semantic Analytics on Social Networks: Experiences in Addressing
the Problem of Conflict of Interest Detection. 15th Intl. WWWW Conference 2006,, 2006.

2. C. Bizer, R. Heese, M. Mochol, R. Oldakowski, R. Tolksdorf, and R. Eckstein. The Impact
of Semantic Web Technologies on Job Recruitment Processes. 7th Internationale Tagung
Wirtschaftsinformatik 2005, 2005.

3. U. Bojars. Extending FOAF with Resume Information. In Proc. of the 1st Workshop on
FOAF, Social Networks and the Semantic Web, 2004.

4. H. Boley, S. Tabet, and G. Wagner. Design Rationale of RuleML: A Markup Language for
Semantic Web Rules. Semantic Web Working Symposium (SWWS’01), 2001.

5. U. Bojars. Extending FOAF with Resume Information. 1st Workshop on FOAF, Social
Networks and the Semantic Web, 2004.

6. P.A. Bonatti and D. Olmedilla. Semantic web policies: Where are we and what is still miss-
ing? Tutorial at 3rd European Semantic Web Conference (ESWC’06), 2006.

7. J.G. Breslin, A. Harth, U. Bojars, and S. Decker. Towards Semantically-Interlinked Online
Communities. 2nd European Semantic Web Conference (ESWC’05), 2005.

8. D. Brickley and L. Miller. Friend of a Friend Vocabulary Specification.
http://xmlns.com/foaf/0.1/, 2001.

9. F. Dawson and D. Stenerson. Internet Calendaring and Scheduling Core Object Specification
(iCalendar). http://www.ietf.org/rfc/rfc2445.txt, 1998.

10. T. Eiter, G. Ianni, A. Polleres, and R. Schindlauer. Answer set programming for the semantic
web. Tutorial at 3rd European Semantic Web Conference (ESWC’06), 2006.

11. G. AAstrand Grimnes, S. Schwarz, and L. Sauermann. RDFHomepage or “Finally, a use for
your FOAF file”. 2nd Workshop on Scripting for the Semantic Web (SFSW ’06), 2006.

12. C. Gutierrez, C. Hurtado, A. Vaisman. Temporal RDF. 2nd European Semantic Web Confer-
ence (ESWC’05) 2005.

13. M. Hepp. Products and Services Ontologies: A Methodology for Deriving OWL Ontolo-
gies from Industrial Categorization Standards, Intl. Journal on Semantic Web & Information
Systems, 2(1):72–99, 2006.

14. D. Huynh, S. Mazzocchi, and D. Karger. Piggy Bank: Experience the Semantic Web Inside
Your Web Browser. Intl. Semantic Web Conference 2005 (ISWC2005), 2005.

15. M. Krötzsch, Denny Vrandecić, and M. Völkel. Wikipedia and the Semantic Web - The
Missing Links. Proc. of WikiMania2005, 2005.

16. S.R. Kruk and S. Decker. Semantic Social Collaborative Filtering with FOAFRealm. Seman-
tic Desktop Workshop colocated with Intl. Semantic Web Conference (ISWC2005), 2005.

17. A. Miles and D. Brickley (eds.). SKOS Core Vocabulary Specification, 2 November 2005.
W3C Working Draft, http://www.w3.org/TR/swbp-skos-core-spec.

http://xmlns.com/foaf/0.1/
http://www.ietf.org/rfc/rfc2445.txt
http://www.w3.org/TR/swbp-skos-core-spec

250 B. Aleman-Meza et al.

18. M. Mochol, R. Oldakowski, and R. Heese. Ontology-based Recruitment Process. GI 2004.
19. O. Patashnik. BIBTeXing, 1998.
20. A. Polleres, C. Feier, and A. Harth. Rules with contextually scoped negation. 3rd European

Semantic Web Conference (ESWC’06), 2006.
21. A. Polleres. SPARQL Rules! Tech. Report,

http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf,
2006.

22. R. Tolksdorf, M. Mochol, R. Heese, R. Eckstein, R. Oldakowski, and C. Bizer.
Semantic-Web-Technologien im Arbeitsvermittlungsprozess. Wirtschatfsinformatik: Inter-
netoekonomie, 48(1):17–26, 2006.

23. A versit Consortium. vCard: The Electronic Business Card.
http://www.imc.org/pdi/vcardwhite.html, 1997.

24. A.V. Zhdanova. An Approach to Ontology Construction and its Application to Community
Portals, PhD thesis, 2006.

25. A.V. Zhdanova and P. Shvaiko. Community-Driven Ontology Matching. 3rd European
Semantic Web Conference (ESWC’06), 2006.

26. J. Li, H. Boley, V.C. Bhavsar, and J. Mei. Expert Finding for eCollaboration Using FOAF
with RuleML Rules. 2006 Conference on eTechnologies. Montreal, Canada, 2006. .

http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf
http://www.imc.org/pdi/vcardwhite.html

Extracting Social Networks Among Various Entities
on the Web

Yingzi Jin1, Yutaka Matsuo2, and Mitsuru Ishizuka1

1 University of Tokyo, Hongo 7–3–1, Tokyo 113-8656, Japan
�����������	
�	�	������	�
	��� ����������	������	�
	��

2 National Institute of Advanced Industrial Science and Technology
	�����������	��	��

Abstract. Social networks have recently attracted much attention for their im-
portance to the Semantic Web. Several methods exist to extract social networks
for people (particularly researchers) from the web using a search engine. Our goal
is to expand existing techniques to obtain social networks among various entities.
This paper proposes two improvements, i.e. relation identification and thresh-
old tuning, which enable us to deal with complex and inhomogeneous commu-
nities. Social networks among firms and artists (of contemporary) are extracted
as examples: Several evaluations emphasize the e�ectiveness of these methods.
Our system was used at the International Triennale of Contemporary Art (Yoko-
hama Triennale 2005) to facilitate navigation of artists’ information. This study
contributes to the Semantic Web in that we increase the applicability of social
network extraction for several studies.

1 Introduction

Social networks explicitly exhibit relationships (called ties in social sciences) among in-
dividuals and groups (called actors). They have been studied in social sciences since the
1930s. To date, vastly numerous studies using social network analysis have been con-
ducted [22]. In the context of the Semantic Web, social networks are crucial to realize
a web of trust that facilitates estimation of information’s credibility and its provider’s
trustworthiness [10]. Ontology construction is also related to social networks: P. Mika
discusses the relation between the community and emergent ontology from a social
network perspective [18]. Information sharing and recommendation [19,9] on social
networks are other applications that are served by the Semantic Web. Our lives are in-
fluenced strongly by social networks without our knowledge of their implications. For
that reason, many applications are relevant to social networks [23].

Social networks are obtained from various sources, such as e-mail archives, FOAF
documents, and DBLP. For example, T. Finin et al. extract a social network from the
web by collecting FOAF documents [7]. Particularly, several studies have been under-
taken to use a search engine to extract social networks from the entire web [11,16,17].
Co-occurrence of names on the web, which is basically obtained by posing a query in-
cluding two names to a search engine, is commonly used as proof of relational strength.
Using a search engine to recognize the relation of two entities (or two words) has in-
creasingly gained attention in the field of natural language processing [5,12,24].

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 251–266, 2007.
c� Springer-Verlag Berlin Heidelberg 2007

252 Y. Jin, Y. Matsuo, and M. Ishizuka

This study is intended to expand current social-network mining techniques using a
search engine to obtain a social network among various entities. Specifically in this
paper, two improvements are proposed in order to apply our method to complex and
inhomogeneous communities: relation identification and threshold tuning. We extract
two social networks as examples: artists of contemporary art, and famous firms in Japan.
We must identify the relation types such as alliances and lawsuits; consequently, we
can make elaborate queries and apply text processing to extract a social network among
firms. Our algorithm adds a relation keyword to the search query to emphasize a specific
relationship. Extracting a social network of artists, on the other hand, requires adaptive
tuning of thresholds because the appearance of each artist on the web is completely
di�erent. Optimal thresholds are sought to invent appropriate edges between entities.

Our contributions are summarized as follows: First, through the two improvements,
i.e. relation identification and threshold tuning, which respectively focus on complex
and inhomogeneous communities on the web, social network extraction becomes more
generally applicable to various entities. We argue the general social network extraction
in the last part of the paper, which can cultivate existing studies using social networks
in the Semantic Web. Second, because our method can extract relations from among
entities, it can output machine-processable knowledge about the relations automatically
from the information on the current web. Although some approaches exist to generate
RDF statements by web mining, our study provides an alternative; our intuition is that
extracting a social network might provide information that is only recognizable from
the network point of view. For example, the centrality of each firm is identified only
after generating a social network.

The next section introduces related studies. Section 3 describes the investigation of
di�erent appearance of entities on the web and addresses our ideas to obtain various so-
cial networks from the web. Sections 4 and 5 introduce our case studies, which specif-
ically investigate two types of networks: those of firms and artists. In Section 6, before
we conclude the paper, we propose a general architecture of social network extraction
and discuss applications of the extracted social networks to the Semantic Web.

2 Related Works

Numerous studies have obtained and analyzed social networks on the web: L. Adamic
collects relations among students from web link structure and text information, and
characterizes the social networks among Stanford students and MIT students [1]. T.
Finin describes a large collection of FOAF documents (over 1.5 million) from the web
and analyzes the structure of friendship networks in the Semantic Web [7]. Trust cal-
culation [10] is a major application of social networks. Some studies seek other appli-
cations: A. McCallum and his group present an end-to-end system that automatically
integrates both e-mail and web content to help users maintain large contact databases
[6]. Aleman-Meza et al. use relational data from both FOAF and DBLP to detect rela-
tionships among potential reviewers and authors of scientific papers [2].

Several studies have particularly addressed use of a search engine for social net-
work extraction. In the mid-1990s, H. Kautz and B. Selman developed a social network
extraction system called the Referral Web [11]. The system uses a search engine to re-
trieve web documents that include a given personal name. Recently, P. Mika developed

Extracting Social Networks Among Various Entities on the Web 253

Flink, a system for extraction, aggregation, and visualization of online social networks
for the Semantic Web community [17]. A social network of 608 researchers from both
academia and industry is extracted and analyzed. The web-mining component of Flink,
similarly to that used in Kautz’s work, employs co-occurrence analysis. The strength
of relevance of two persons, X and Y, is estimated by putting a query X AND Y to a
search engine: If X and Y share a strong relation, we can usually find much evidence
on the web such as links found on home pages, lists of co-authors in technical papers,
organizational charts, and so on. In Flink, the strength of relations among individuals is
calculated using the Jaccard coeÆcient nX�Y�nX�Y , where nX�Y represents the number
of hits yielded by the query X AND Y and nX�Y represents the number of hits by the
query X OR Y. The two researchers are considered to share a relation if the value is
greater than a certain threshold. The term “Semantic Web OR ontology” is added to the
query for name disambiguation.

Matsuo et al. developed a system called POLYPHONET, which also uses a search en-
gine to measure the co-occurrence of names [15,16]. In their study, several co-occurrence
measures [13] have been compared, including the matching coeÆcient (nX�Y), mutual
information, Dice coeÆcient, Jaccard coeÆcient, and overlap coeÆcient. The overlap
coeÆcient nX�Y�min(nX � nY) performs best according to the experiments. In addition,
POLYPHONET was operated at several AI conferences in Japan and a couple of inter-
national conferences to promote participants’ communication. For disambiguating per-
sonal names, key phrases such as aÆliations are added to queries.

We regard the two studies by Mika and Matsuo as relevant precedent studies, and
propose some improvements to increase the applicability of that approach.

3 Extraction of Social Networks

3.1 Problem of Existing Methods

The fundamental idea underlying the existing studies by Mika and Matsuo is that the
strength of a relation between two entities can be estimated by co-occurrence of their
names on the web. The criteria to recognize a relation, such as the measure of co-
occurrence and a threshold, are determined beforehand. An edge will be invented when
the relation strength by the co-occurrence measure is higher than the predefined thresh-
old. Although the approach is e�ective for extracting a social network of researchers, our
preliminary study indicates that it does not perform well for various entities on the web.

As the first reason, co-occurrence-based methods become ine�ective when two enti-
ties co-occur universally on numerous web pages. For example, when we want to infer
two firms’ relations from the web, we submit a query “Matsushita AND JustSystem”1

to a search engine. Consequently, we are referred to as many as 425,000 pages, for
which the Jaccard coeÆcient is 0.031. However, this figure is unreliable considering
the media e�ect on the web. In the domain of firms, many relations are published in
news reports and on news releases that are distributed on the web. Many web pages
describe and comment on the relation if the news is given attention by media services
or people. Conversely, if it were not attention given, only a small number of pages

1 Both are names of famous Japanese corporations.

254 Y. Jin, Y. Matsuo, and M. Ishizuka

would describe the relations. Considering that media e�ects influence the number of
web pages, co-occurrence of names on the web is not always available to represent the
relational strength of two entities.

For the second reason, co-occurrence-based methods function ine�ectively when ap-
plied to inhomogeneous communities. An inhomogeneous community means, in this
paper, a community that includes people in di�erent fields, di�erent nations, or di�erent
cultures, where a relation is diÆcult to obtain using a single criterion. The researchers’
communities (of the same research field) usually present a homogeneous character; for
that reason, using a single criterion to calculate the relation works well. In contrast,
the international artist community is more inhomogeneous. For example, two Japanese
artists, “Taisuke Abe” and “Jun Oenoki”, have no prior relationship, but their Jaccard
coeÆcient is high: 0.024. Two international artists “Beat Streuli” from Switzerland and
“Nari Ward” from Jamaica have co-participated in several exhibitions, but their coef-
ficient is low: 0.0009. This happens because the community consists of many people
from di�erent contexts. For that reason, it is diÆcult to precisely recognize the relation
using a single criterion.

We consider that the precedent studies on the research domain implicitly use the
following two assumptions:

Assumption 1. Generally, web pages are created according to results of two actors’
co-participation in events. Therefore, the number of web pages is assumed to show
a useful correlation to the strength of two actors.

Assumption 2. A community to be extracted as a social network is assumed to be
homogeneous.

In the following section, we will introduce our improvements, relation identification
(in Section 3.2) and threshold tuning (in Section 3.3), which respectively mitigate viola-
tions of these assumptions. Furthermore, to emphasize the e�ectiveness of our methods,
we apply each method to our case studies: Extracting social networks of firms (in Sec-
tion 4) and artists (in Section 5). A general extraction model bundling these di�erent
extraction methods will be described in Section 6.

3.2 Relation Identification

In social sciences, the definition of a weak or strong tie might vary among contexts
[14]. For example, the frequency or degree of relations a�ects that strength; multiple
relations between two actors also can imply a stronger tie. In the firm case, the types of
relations define the strength: For example, a capital alliance relation is stronger than a
business alliance relation. Consequently, to present a tie among firms, it is appropriate
that we identify the concrete relations of firms. As a solution, we add some word or
combination of words to a search query. Using this strategy, we can eÆciently identify
relations among firms. For example, when we wish to extract lawsuit relations, we add
a term “lawsuit”. We issue a query “Matsushita AND JustSystem AND lawsuit” so that
the search engine will return the lawsuit pages that are associated with the two firms.
Then we can conduct text processing to these pages to validate the relation’s existence.
This idea is similar to keyword spices [20], which extend queries for domain-specific
web searches. Question answering systems also construct elaborate queries for using
search engines [21].

Extracting Social Networks Among Various Entities on the Web 255

We call the keyword to be added a relation keyword. By adding relation keywords,
we can extract particular relations among entities, which can be a solution for validation
of Assumption 1. Below, we explain some issues about relation types and extraction of
relation keywords.

Relation Types. It is considered that a pair of entities has multiple relations. For ex-
ample, two firms share alliance and lawsuit relations. Each relation is typed in a more
detailed way. Alliance relations between firms include capital alliances and business al-
liances, where the former usually represents a stronger relation than the later. A lawsuit
relation has multiple stages: at some time, it will be settled by mutual accommodation
or by final judgement. Consequently, the relation can be typed into the claim phase and
the accommodation phase. For dynamic and complex relational networks, it is impor-
tant to distinguish such typical and temporal relations for detailed analyses of social
networks [14,22].

Relation Keyword Extraction. To extract particular types of relations between firms,
we need some relation keywords. The intuitive method for finding relation keywords is
to select terms that appear often in target pages (where the target relation is described)
and which do not appear in other pages. Therefore, as a training corpus, we must col-
lect annotated web pages that describe specific relations of the firms. Once we find
appropriate relation keywords, we can extract the relations among many firms.

Collecting and annotating the training corpus requires many hours of tedious work.
In our study, we also try to use a search engine to extract relation keywords. This method
is identical to that of Mori’s work [19], in which a specific word wc is assigned, which
can represent the relation most precisely. If we want to retrieve an alliance relation,
we add “alliance” (denoted as wc) to a search query; words that co-occur frequently
with it also become good clues to discern the relation. We use the Jaccard coeÆcient
nwc�w�nwc�w to measure relevance of word w to word wc. The words w with large Jaccard
coeÆcients are also used as relation keywords aside from wc. It would saves costs of
annotating training data with relevance or non-relevance manually.

3.3 Threshold Tuning

In studies of social network analysis, network questionnaires have traditionally been
conducted. Typically, participants are asked “Please name your four closest friends.”
The respondents would then list the relations that are personally important. In other
words, the relation is recognized by a subjective criterion for each participant. We pro-
pose to use this subjective criterion for the solution against Assumption 2. For example,
even if the relation between “Beat Streuli” and “Nari Ward” is weaker than the objective
standard, it is important to “Beat Streuli” if there are no other persons with a stronger
relation. Consequently, we might add an edge between them.

We employ two criteria that correspond to objective and subjective importance of re-
lations for actors. We first invent edges using objective criteria with a consistent thresh-
old T . Then we invent edges using subjective criteria for actors who have no certain
number M of edges. This procedure alleviates the problem of some nodes having too
many edges and some nodes being isolated. The combination of two criteria enables

256 Y. Jin, Y. Matsuo, and M. Ishizuka

Livedoor

Nifty

NEC

Rakuten

FujiElecom

SumitomoMituiCard

Ebank

Opera

Transware

NICOS

Matsushita
Toshiba

Hitachi

ANA

Fujitsu

TokyoElctric

KDDI

Justsystem

IBMJapan

Renesas

MatsushitaIndustrial

Victor

Samsung

LGElectronics

SeikoEPSON

IBM

Hynix

Cybird

SixApart

Sourcenext

JIMOS

UFJNicos

NipponBroadcasting

Zhongcai

ConnectTechnologies

Biomatics

TokyoBectron

CISCO

FujituoSoftware

Kyocera

Intel

Niws

Intersil

Broadcom
SCO

Nidec

Minebea

Maxtor

Nikon

ASML

Agere

CanonStaar Nidek

Kainos

Towa

SUN

LiveRevolution

JapanCeraTech

MihonCeratec

Capital Alliance

Alliance

Business Alliance

Claim

Lawsuit

Accommodation

Fig. 1. Social network of 60 firms in Japan

more exhaustive extraction for every node than the previous method, although it some-
times yields low precision. For that reason, we must find the appropriate parameters so
that the target network is extracted as precisely as possible.

Setting Parameters for Each Community. Parameters vary according to the domain
of a community. For example, T in the researcher community might be higher than that
in artist community, simply because researchers’ names are more likely appear on the
web than artists’ names. Therefore, some training data are necessary to learn the appro-
priate values for each target community. Simply, the parameters are tuned so that the
performance of relation identification is maximized: We maximize the F-value. More
e�ective ways to determine the parameters are bootstrapping or user interaction. For the
bootstrapping method, we can repeat the sampling and estimation process to determine
parameters; for the user interaction method, we can use the users’ feedback to reconstruct
the network dynamically using the best parameters that can maximize the F-value.

4 Social Network Extraction for Firms

We describe the extraction of a firm network as a case study of relation identifica-
tion (mentioned in Section 3.2). Many relationships among firms are published in news

Extracting Social Networks Among Various Entities on the Web 257

Table 1. Relation keywords extracted from the web using Jaccard coeÆcient

Alliance relation tw Capital alliance tw Business alliance tw

alliance AND corporate 1�000 operation AND capital 1�000 alliance AND business 1�000
alliance AND stock 0�878 capital AND manage 0�553 alliance AND company 0�475
alliance AND company 0�704 capital AND company 0�548 alliance AND operation 0�459
alliance AND system 0�565 capital 0�543 alliance AND develop 0�437
alliance AND business 0�534 capital AND manage 0�533 alliance AND company 0�432

Lawsuit relation tw Claim phase tw Accommodation phase tw

violate AND lawsuit 1.000 violate AND sue 1.000 lawsuit AND accommodate 1.000
violate AND claim 0.514 patent AND sue 0.533 accommodate AND company 0.648
violate AND judge 0.490 sue AND technology 0.486 accommodate AND announce 0.646
violate AND court 0.458 sue AND develop 0.483 accommodate AND develop 0.641
violate AND indemnify 0.444 sue AND relevance 0.469 accommodate AND product 0.640

articles and on news releases that are distributed on the web. In our work, we extract
alliance and lawsuit relations as respective representatives of positive and negative re-
lations among firms. We further distinguish these relations into two detailed relations:
capital and business alliance relations, and claims and accommodation of lawsuit rela-
tions. A social network of 60 firms in Japan is extracted; it includes IT, communication,
broadcasting, and electronics firms. We will describe details of our system and experi-
mental results.

4.1 System Flow

Our system has two major procedures: an online procedure and an o�ine procedure.
In the o�ine procedure, relation keywords for each relation are obtained beforehand

function RELAT ION EXTRACT ION (D, x, y, W)
scorexy � 0
S � GetSentences(D, x, y)
for each s � S do

if s contains “x” and s contains “y” then
scores �

�
wi(�W) contained in s twi

if scores � scorexy then
scorexy � scores

done
if scorexy � scorethre then

do set an edge between x and y in G
done

Fig. 2. A procedure to extract relations by text processing

using the methods introduced in
Section 3.2. We gathered 456
pages and 165 pages for al-
liance and lawsuit relations, re-
spectively, from Nikkei Net and
IP News site2. As preprocess-
ing, we first eliminate all html
tags and scripts; then we extract
the body text of pages and apply
a part-of-speech tagger Chasen3

to choose nouns and verbs
(except stop words). These
words are candidates of relation
keywords. We also use combi-
nations of two words as candi-
dates. We measure the score of

2 Nikkei Net (http://release.nikkei.co.jp/) is a famous online business newspaper. IP News
(http://news.braina.com/judge.html) is an online news archive on intellectual property issues.

3 http://chasen.naist.jp/hiki/ChaSen/

258 Y. Jin, Y. Matsuo, and M. Ishizuka

each candidate word � phrase by calculating the Jaccard coeÆcient with specific relation
keywords wc

4. Candidates with the highest scores are recognized as relation keywords.
Table 1 shows the top five relation keywords and their Jaccard scores denoted as tw5.

In the online procedure, a list of firms and specific relation types is given as input; the
output is a social network of firms. Three steps exist: making queries, Google search, and
network construction. First, we make queries by adding relation keywords to each pair of
firms. We use top nq relation keywords from Table 1. Then, we put these queries into the
Google search engine to collect top-np web pages. (In this experiment, we set nq � 2 and
np � 5.) Lastly, for each downloaded document D, we conduct text processing to judge
whether or not the relation actually exists. A simple pattern-based heuristic (as described
in Fig. 2) is useful in our experience: We first pick up all sentences S that include the
two firm names (x and y), and assign each sentence the sum of relation keyword scores
tw in the sentence. The score of firms x and y is the maximum of the sentence scores. If
scorexy is greater than a certain threshold (in other words, if the two firms seem to have
the target relation with high reliability), an edge is invented between the two firms.

4.2 Results and Evaluation

The obtained network for 60 firms in Japan is shown in Fig. 1. Black lines represent
alliances (bold ones are capital alliances and thin ones are business alliances) and red
lines represent lawsuits (bold ones are in the claim phase and thin ones are in the ac-
commodation phase).

Table 2. Precision and Recall of the System

Target relation Precision Recall
Alliance 60.9% (70�115) 62.0% (70�113)

capital alliance 75.0% (9�12) 42.9% (9�21)
business alliance 67.4% (60�89) 60.0% (60�100)

Lawsuit 61.5% (16�26) 100% (16�16)
claim phase 63.6% (14�22) 87.5% (14�16)
accommodation 72.7% (8�11) 88.9% (8�9)

The precision and recall of
our system are shown in Table
2. For 60C2 � 1770 pairs of
firms, 113 pairs actually show
alliance relations. Our system
extracted 70 pairs correctly.
There were actually 21 and 100
pairs of capital and business al-
liances; our system extracted
9 and 60, respectively. Com-
pared with alliances, the lawsuit relations have higher recall, probably because law-
suit relations are described in rather common formats using words such as judgment,
lawsuit, or accommodate.

Although they are not comparable technically, we obtained alliance and lawsuit rela-
tions from Nikkei Net and IP News, and compared the precision and recall to our results.
The precision values at these sites are 100%, but the recall of alliance and lawsuit re-
lations among 60 firms are low: 22�8% and 68�8%, respectively. This is true because
these sites deal little with information on small companies and corporations that are
capitalized with foreign capital (i.e. foreign companies).

4 We used alliance AND corporate as wc for alliance relations. Furthermore, we use the word
appearing in the first lines in Table 1 as wc for each relation: We determine these words through
preliminary experiments.

5 In our experiment, we mainly used web pages that had been composed in Japanese. For that
reason, relation keywords are translated from Japanese.

Extracting Social Networks Among Various Entities on the Web 259

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8 9 10
 0.5

 0.6

 0.7

 0.8

P
re

ci
si

on

Number of top pages (k)

noW
W1
W2

W1+W2
W1+W2+noW

(a) Precision of retrieved pages

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10
 0.6

 0.7

 0.8

 0.9

 1

R
ec

al
l

Number of top pages (k)

noW
W1
W2

W1+W2
W1+W2+noW

(b) Recall of relations

Fig. 3. Evaluation of relation keywords for lawsuit relations

Some detected relations are wrong: As one example, Hitachi and IBM are shown to
be embroiled in a lawsuit relation, but they actually are not. Our algorithm took the sen-
tence “Hitachi and HDD, a subsidiary of IBM have been sued a Chinese HDD maker
for patent violations” as spurious proof of a lawsuit relation. Some relations are de-
scribed using uncommon phrases (such as trouble and uproar) that do not appear often
in the training corpus. More sophisticated text processing might improve the results in
these cases.

4.3 E�ectiveness of Relation Keywords

The e�ectiveness of relation keywords is shown in this section. We compared the infor-
mation contained in retrieved pages merely by using a pair of names as a search query
to add relation keywords to the query. We compared the five methods described below:

noW: A firm pair (without relation keywords) is used as a query.
W1: A firm pair and the top-weighted relation keyword (w1) are used as a query.
W2: A firm pair and the second-weighted relation keyword (w2) are used as a query.
W1� W2: It generates two queries – W1 and W2.
W1�W2�noW: It generates three queries – W1, W2, and noW.

The noW is considered to be the existing method (i.e. Mika and Matsuo’s method).
The others are variations of the proposed method. In all cases, we downloaded the same
number of web pages. All other conditions are identical.

Figure 3 shows the results. Overall, the proposed methods perform better than the
existing method (noW) with respect to precision. The precision and recall are respec-
tively 65.7% and 95.0% if we do not use any relation keywords. Relation keywords
improve the precision using the same number of downloaded documents. By integrat-
ing multiple queries (as W1�W2�noW case), we can achieve the highest precision as
71.9% while retaining high recall (92.5%).

5 Social Network Extraction for Artists

In this section, we describe the algorithm of threshold tuning (described in Section 3.3)
for extracting a social network of artists of contemporary art.

260 Y. Jin, Y. Matsuo, and M. Ishizuka

�* First, we invent edges using two objective criteria: Tov and Tco. *�. (step 1)
for each x � L and y � L

if (overlap(x, y)� Tov AND cooc(x, y)� Tco)
do set an edge between x and y in G

�* Then, invent edges using two subjective criteria M1 and M2 (� M1). *� (step 2)
for each x � L

do Yx � ConnectedNodes(x), �* Yx are nodes set connected with x. *�
Ȳx � L � Yx, Ȳ �

x � L � Yx

while �Yx � � M1 and Ȳx � � �* �Yx � is the number of nodes in Yx. *�
y � argmax

y j�Ȳx

overlap(x, yj), Ȳx � Ȳx � �y�

if overlap(x, y)� Tov OR cooc(x, y)� Tco . (step 2a)
do set an edge between x and y in G, Yx � Yx � �y�

done
while �Yx � � M2 and Ȳ �

x � �

y � argmax
yk�Ȳ �

x

overlap(x, yk), Ȳ �

x � Ȳ �

x � �y�

if overlap(x, y)� 0 AND cooc(x, y)� 0 . (step 2b)
do set an edge between x and y in G, Yx � Yx � �y�

done
done

Fig. 4. Detailed Algorithm of threshold tuning used at the Yokohama Triennale 2005

5.1 System Flow

This system includes online and o�ine procedures. In the o�ine procedure, we tune
four parameters: Tov, Tco, M1, and M2. For them, Tov and Tco are thresholds to invent
edges by the overlap coeÆcient and matching coeÆcient, and M1 and M2 are the mini-
mum numbers of edges for each node. We sample 1000 pairs of artists as training data:
146 positive examples and 854 negative examples. We change the values of parameters,
classify every pair of artists into positive and negative using the parameters, and find
the optimal values where the F-value is maximized: Tov � 0�82, Tco � 20, M1 � 5 and
M2 � 1. We try di�erent settings for the four parameters; Tov is changed from 0 to 1 at
every 0�01, and Tco is changed from 0 to 60 in steps of 5, M1 and M2 are incremented
from 0 to 56.

For the online procedure, a list of artists’ names are given as input; the output is a
social network of artists. Three steps exist: making queries, Google search, and network
construction. First, we make queries for each pair of names. Then we put them into the
Google search engine to obtain the hit counts. Finally, we construct a social network
after tuning the parameters.

A detailed algorithm to generate a social network is shown in Fig. 4. Edges are
added using an objective criterion (in step 1): An edge is added between the nodes if

6 We might use more sophisticated algorithms such as hill-climbing searches. However, we do
not specifically examine the optimization method in this paper. For that reason, we employed
a simple (but reliable) approach.

Extracting Social Networks Among Various Entities on the Web 261

Table 3. Maximized precision, recall, and F-value using the precedent approach

Cases Tov Tco Precision Recall F-value Extracted number* Correct number*
case (a) 0.24 30 92.9% 26.7% 0.41 42 (42, 0, 0) 39 (39, 0, 0)
case (b) 0 0 14.6% 100% 0.25 1000 (1000, 0, 0) 146 (146, 0, 0)
case (c) 0.05 20 76.4% 37.7% 0.50 72 (72, 0, 0) 55 (55, 0, 0)
	: Numbers in brackets are numbers of edges invented in step 1, step 2a, and step 2b.

Table 4. Maximized precision, recall, and F-value using the proposed approach

Cases Tov Tco M1 M2 Precision Recall F-value Extracted number Correct number
case (a)’ 0.24 30 3 2 34.4% 65.1% 0.45 277 (42, 227, 8) 95 (39, 54, 2)
case (b)’ 0 0 0 0 14.6% 100% 0.25 1000 (1000, 0, 0) 146 (146, 0, 0)
case (c)’ 0.05 20 1 0 55.4% 49.3% 0.52 130 (72, 58, 0) 72 (55, 17, 0)
case (d) 0.82 20 5 1 43.4% 74.0% 0.55 249 (23, 212, 14) 108 (19, 84, 5)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

Threshold of Overlap coefficient Tov (Tco=20)

Precision
Recall

F-value

(a) Existing algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

Threshold of Overlap coefficient Tov (Tco=20,M1=5,M2=1)

Precision
Recall

F-value

(b) Proposed algorithm

Fig. 5. Precision, recall and F-value for di�erent Tov

the overlap coeÆcient and the matching coeÆcient are both over the thresholds. Then
subjective criteria are used to add edges (in step 2): If node x has less then M1 edges, we
choose nodes that have the strongest relations with node x. Node x is connected to the
other nodes until the number of edges reaches M1 (in step 2a). After that, if node x has
no M2 edges yet, we add edges in descending order of overlap coeÆcient (in step b).

Although the algorithm is highly customized for dealing with web information, the
concept is simple. We use the objective criteria (using Tov and Tco) first, and the subjec-
tive criteria (using M1 and M2) subsequently. It is important to combine multiple criteria
to infer the relations among artists correctly from the available web information.

5.2 Evaluation

The existing approach by Mika and Matsuo generates a social network based on an
objective criterion with a predefined threshold. It corresponds to the case where M1 � 0
and M2 � 0 in our algorithm. To compare the existing method with our method, we
tune Tov and Tco so that precision, recall, and F-value are maximized, respectively. The
results are shown in Table 3. The maximal recall is 100% by setting Tov and Tco as zero
(which means the algorithm recognizes all the pairs having a relation), which yields
precision as low as 14�6%. Conversely, the maximal precision is 92.9% when the recall
is as low as 26.7%. The precision is 76.4% and the recall is 37.7% when the F-value is
maximized.

262 Y. Jin, Y. Matsuo, and M. Ishizuka

(a) The whole network. (b) Centering artist Curatorman.

Fig. 6. System Interface for Yokohama Triennale 2005

Our algorithm can achieve better performance in either case. Table 4 shows results
of our algorithm using four parameters. Even if we set Tov and Tco as identical to those
in Table 3, we can achieve better results by adjusting M1 and M2. The most balanced
parameters achieve F-value of 0�55, which is more than 0.05 points better than the
proposed algorithm. Figure 5 shows a notable di�erence: the proposed algorithm pro-
duces high recall while maintaining modest precision. It is useful when the purpose is
to promote navigation and communication using a social network.

In this section, we emphasize detection of relationships using only the hit number
of search engine. This is treated as a first step in the Yokohama Triennale system. As
second step, we further identify concrete relation types from web pages retrieved by
names of artists who are considered as related; we also filter out noisy edges to improve
the precision. Details about the relation type identification are available from [16].

5.3 Navigation Site for Yokohama Triennale

Our system was put into operation on the oÆcial support site for Yokohama Triennale
2005 (http://mknet.polypho.net/tricosup/) to provide an overview of the artists (133
artists with 71 projects) along with informational navigation for users. At exhibitions,
it is usual for participants to enjoy and evaluate each work separately. However, our
supposition was that if participants knew the background and relations of the artists,
they might enjoy the event more. For that purpose, the system provided relations of
artists and evidential web pages for users.

The system interface is shown in Fig. 6. It was implemented using Flash display
software to facilitate interactive navigation. The system provides a retrieval function.
Information about the artist is shown on the left side if a user clicks a node. In addition,
the edges from the nodes are highlighted in the right-side network. The user can proceed
to view the neighboring artists’ information sequentially, and can also jump to the web
pages that show evidence of the relation.

Extracting Social Networks Among Various Entities on the Web 263

6 General Extraction of a Social Network Using a Search Engine

Based on the two case studies described in the preceding sections, this section presents
and explains an architecture to support general social network extraction from the web
using a search engine. The types of social networks depend on their purpose [22]. A
“good” social network should represent a target domain most appropriately.

We consider that social network extraction is generally written as

f (�r(X� Y)� �) � �0� 1� (1)

where �r(X� Y) is an m-dimensional vector space (S (1)
r (X� Y)� S (2)

r (X� Y)� � � � � S (m)
r (X� Y))

to represent various measures for X and Y in relation r. For example, S (i)
r (X� Y) can be

either nX�Y (matching coeÆcient), nX�Y�nX�Y (Jaccard coeÆcient), or nX�Y�min(nX� nY)
(overlap coeÆcient). It can possibly be a score function based on sentences including
both mentions of X and Y (as the algorithm in Section 4). The parameter � is an n-
dimensional vector space (�(1)� �(2)� � � � � �(n)). For example, � can be as a combination of
Tov, Tco, M1, and M2 as the algorithm in Section 5. The function f determines whether
an edge should be invented or not based on multiple measures and parameters.

A social network should represent the particular relations of entities depending on
purposes. Therefore, function f should not always be the same. We must have a method
to infer an appropriate function f , thus the algorithm inevitably consists of an o�ine
module and an online module. Function f is learned from the training examples and
provides good classification to other examples.

In the online phase, it is important to extract a social network from the web in an
eÆcient manner. We must consider how to use a search engine better and how to pro-
cess web documents eÆciently and correctly. Generally, the procedure consists of three
steps:

Making queries. Two entities are used to generate a query. Basically, we put a query
X AND Y to a search engine. In this paper, we add relation keywords to extract
a particular type of relation eÆciently. A combination of multiple queries might
improve the result, as explained in Section 4. Entity disambiguation is another im-
portant issue that has already been addressed in several studies [3,4].

Google search. We put the queries into a search engine. Sometimes the counts are
used to infer relational strength. In other cases, we download some documents (or
snippets) and investigate the mentions of X and Y. A good combination of Google
counts and text analysis would make the search more eÆcient and scalable, as dis-
cussed in [16].

Network construction. We use Google counts and downloaded text as evidence to
construct a social network. The value of function f is calculated and the existence
of an edge is determined. Usually, the obtained social network is visualized and
reviewed. Sometimes we must change settings of the algorithm (or increase the
training data) and repeat the entire process to improve the quality.

Previous studies have emphasized how to calculate the strength of two names on the
Web in the Google search step, simply using X AND Y as query and construct networks
based on objective criteria. Our method, i.e., relation identification and threshold tuning

264 Y. Jin, Y. Matsuo, and M. Ishizuka

Table 5. Centrality of firms in the extracted social network

(a) Eigenvector centrality.
Rank Name Value

1 Matsushita 0.366
2 Hitachi 0.351
3 NEC 0.289
4 Fujitsu 0.275
5 Toshiba 0.263
6 Rakuten 0.257
7 Just System 0.241
8 KDDI 0.208
9 Tokyo Electric 0.207

10 Seiko Epson 0.204

(b) Betweenness centrality.
Rank Name Value

1 Matsushita 168.981
2 IBM 149.192
3 NEC 144.675
4 Hitachi 136.978
5 Toshiba 113.239
6 Rakuten 109.887
7 Just System 77.175
8 Livedoor 74.141
9 CISCO 64.558

10 Fujitsu 56.081

are proposed for Making queries and Network construction steps respectively for
complex and inhomogeneous communities. All of these methods are combined into our
architecture of general extraction of social networks for various entities.

The obtained network is useful for Semantic Web studies in several ways. For exam-
ple (inspired by [2]), we can use a social network of artists for detecting COI among
artists when they make evaluations and comments on others’ work. We might find a
cluster of firms and characterize a firm by its cluster. Business experts often make such
inferences based on firm relations and firm groups, so the firm network might enhance
inferential abilities in the business domain. As a related work, F. Gandon et al. built
a Semantic Web server that maintains annotations about the industrial organization of
Telecom Valley to partnerships and collaboration [8].

We present a prototypical example of applications using a social network of firms.
We calculate the centrality, which is a measure of the structural importance of a node
in the network, for each firm on the extracted social network (on alliance relations).
Table 5(a) shows the top ten firms by eigenvector centrality. These firms have remained
large and reliable corporations in Japan for decades. Table 5(b) shows the top ten by
betweenness centrality. Interestingly, IBM, Livedoor, and Cisco are on the list. These
firms might bridge two or more clusters of firms: IBM and Cisco are United States firms
and form alliances with firms in multiple clusters; Livedoor is famous for its aggressive
M & A strategy in Japan. Such information can only be inferred after extracting a social
network. There seem to be many potential applications that can make use of social
networks in the Semantic Web.

7 Conclusion

This paper describes methods of extracting various social networks from the web. To
date, numerous studies have addressed the researcher domain to estimate extraction
methods. It is an important test-bed. Nevertheless, the next step must be taken to de-
part from the domain of researchers. This paper steps further to show that researcher
networks might be an easy domain for social network extraction from the web. Our
method, equipped with relation identification and threshold tuning that specifically

Extracting Social Networks Among Various Entities on the Web 265

focus on complex and inhomogeneous communities respectively, can extract other types
of social networks: those of firms and artists. We show various evaluations of the meth-
ods along with discussions of the application of social network in the context of the
Semantic Web. The proposed architecture toward general extraction of social networks,
which bundles these di�erent extraction methods, will enable us to extract various so-
cial networks from available information on the web.

In addition to some direct applications of social networks, we believe that a net-
work point of view is important for knowledge integration and articulation and for
(lightweight) ontology emergence. The combination of social networks and ontology
emergence might prepare a fertile ground for Semantic Web research.

Acknowledgements. This research was supported by the New Energy and Industrial
Technology Development Organization (NEDO) as project ID 04A11502a.

References

1. L. Adamic and E. Adar. Friends and neighbors on the web. Social Networks, 25(3):211–230,
2003.

2. B. Aleman-Meza, M. Nagarajan, C. Ramakrishnan, A. Sheth, I. Arpinar, L. Ding, P. Kolari,
A. Joshi, and Tim Finin. Semantic analytics on social networks: Experiences in addressing
the problem of conflict of interest detection. In Proc. WWW2006, 2006.

3. N. Aswani, K. Bontcheva, and H. Cunningham. Mining information for instance unification.
In Proc. ISWC2006, 2006.

4. R. Bekkerman and A. McCallum. Disambiguating web appearances of people in a social
network. In Proc. WWW2005, 2005.

5. H. Chen, M. Lin, and Y. Wei. Novel association measures using web search with double
checking. In Proc. COLING-ACL2006, pages 1009–1016, 2006.

6. A. Culotta, R. Bekkerman, and A. McCallum. Extracting social networks and contact infor-
mation from email and the web. In CEAS-1, 2004.

7. T. Finin, L. Ding, and L. Zou. Social networking on the semantic web. The Learning Orga-
nization, 2005.

8. F. Gandon, O. Corby, A. Giboin, N. Gronnier, and C. Guigard. Graph-based inferences in
a semantic web server for the cartography of competencies in a telecom valley. In Proc.
ISWC2005, 2005.

9. S. Ghita, W. Nejdl, and R. Paiu. Semantically rich recommendations in social networks for
sharing, exchanging and ranking semantic context. In Proc. ISWC2005, 2005.

10. J. Golbeck and B. Parsia. Trust network-based filtering of aggregated claims. International
Journal of Metadata, Semantics and Ontologies, 2006.

11. H. Kautz, B. Selman, and M. Shah. The hidden Web. AI magazine, 18(2):27–35, 1997.
12. F. Keller and M. Lapata. Using the web to obtain frequencies for unseen bigrams. Computa-

tional Linguistics, 29:459–484, 2003.
13. C. D. Manning and H. Schütze. Foundations of statistical natural language processing. The

MIT Press, London, 2002.
14. P. Marsden. Measuring tie strength. Social Forces, 63:482–501, 1984.
15. Y. Matsuo, M. Hamasaki, H. Takeda, J. Mori, D. Bollegala, Y. Nakamura, T. Nishimura,

K. Hasida, and M. Ishizuka. Spinning multiple social networks for semantic web. In Proc.
AAAI-06, 2006.

16. Y. Matsuo, J. Mori, M. Hamasaki, H. Takeda, T. Nishimura, K. Hasida, and M. Ishizuka.
POLYPHONET: An advanced social network extraction system. In Proc. WWW2006, 2006.

266 Y. Jin, Y. Matsuo, and M. Ishizuka

17. P. Mika. Flink: Semantic web technology for the extraction and analysis of social networks.
Journal of Web Semantics, 3(2), 2005.

18. P. Mika. Ontologies are us: A unified model of social networks and semantics. In Proc.
ISWC2005, 2005.

19. J. Mori, M. Ishizuka, T. Sugiyama, and Y. Matsuo. Real-world oriented information sharing
using social networks. In Proc. ACM GROUP2005, 2005.

20. S. Oyama, T. Kokubo, and T. Ishida. Domain-specific web search with keyword spices. IEEE
TKDE, 16(1):17–27, 2004.

21. G. Ramakrishnan, S. Chakrabarti, D. Paranjpe, and P. Bhattacharyya. Is question answering
an acquired skill? In Proc. WWW2004, 2004.

22. J. Scott. Social Network Analysis: A Handbook (2nd ed.). SAGE publications, 2000.
23. S. Staab, P. Domingos, P. Mika, J. Golbeck, L. Ding, T. Finin, A. Joshi, A. Nowak, and

R. Vallacher. Social networks applied. IEEE Intelligent Systems, pages 80–93, 2005.
24. P. Turney. Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In Proc.

ECML2001, pages 491–502, 2001.

Towards Semantic Social Networks

Jason J. Jung1 and Jérôme Euzenat2

1 Department of Computer and Information Engineering, Inha University
Incheon, Republic of Korea 402-751

2 INRIA Rhône-Alpes & LIG, Montbonnot, France
j2jung@intelligent.pe.kr, Jerome.Euzenat@inrialpes.fr

Abstract. Computer manipulated social networks are usually built from the ex-
plicit assertion by users that they have some relation with other users or by the
implicit evidence of such relations (e.g., co-authoring). However, since the goal
of social network analysis is to help users to take advantage of these networks, it
would be convenient to take more information into account. We introduce a three-
layered model which involves the network between people (social network), the
network between the ontologies they use (ontology network) and a network be-
tween concepts occurring in these ontologies. We explain how relationships in
one network can be extracted from relationships in another one based on analy-
sis techniques relying on this network specificity. For instance, similarity in the
ontology network can be extracted from a similarity measure on the concept net-
work. We illustrate the use of these tools for the emergence of consensus ontolo-
gies in the context of semantic peer-to-peer systems.

1 Introduction

Social networks, i.e., networks based on the relation between people is our common
environment. Many have realized that social networks are a key facilitator for collab-
orating. Social scientists have been analyzing the effectiveness of of these networks
by helping characterizing the key individuals that must be touched in order to achieve
some goals [1]. Recently, on the semantic web, social networks are very often described
through FOAF or FOAF-like schemata. They could as well be built upon shared address
books.

However, when communities are really different or when people do not want to de-
scribe explicitly their relationships, social networks have to be inferred from secondary
sources. These secondary sources are often documents: bibliometrics has for long made
a speciality of inferring social networks and many other clues from databases of co-
authoring and citations. The web is a rich source of documents that can be used as
secondary sources for inferring social networks from analyzing the hyperlinked struc-
ture on the web [2] (along the way used by google for inferring most authoritative
web pages) to exploiting the more intimate personal infospheres made of web pages,
weblogs, and so on.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 267–280, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

268 J.J. Jung and J. Euzenat

Most of these sources are based on explicit links that still need from document au-
thors (or web page designers) to know each others. In this paper, we investigate the dual
principles of:

– using the knowledge structure used by individuals in order to infer some of their
social relationships, and

– taking advantage of this inferred social structure in order to help people sharing
their knowledge.

For that purpose, we introduce a structure made of three superposed networks that
are assumed to be strongly linked:

Social network relating people on the basis of common interest;
Ontology network relating ontologies on the basis of explicit import relationships or

implicit similarity;
Concept network relating concepts on the basis of explicit ontological relationships

or implicit similarity.

We call this stack of interlinked networks a semantic social network.
The top-down links between these networks are obvious: people use ontologies that

defines or refer to concepts. The less obvious aspect that is illustrated here is bottom-
up inference of relationships from one network to another. These relationships can be
inferred by analyzing the structure of knowledge.

Once the structure of knowledge allows to infer “intellectual” relationships between
people, it is possible to use it for helping people managing their knowledge. For in-
stance, finding that similar people use similar ontologies or the same ontology makes
them candidates to be standardized. In addition, when starting some collaboration be-
tween partners in order to merge their knowledge or to define one common ontology, it
is better to start from the ontology used by considering social features such as centrality
and authority.

The remainder of the paper is organized as follows. Sect. 2 provides a description of a
target application which uses network analysis in order to help people sharing ontology
annotated resources. Sect. 3 provides the basic knowledge in social network analysis. As
the main contribution, Sect. 4 and 5 explain the three-layered semantic social network
structure. Sect. 4 considers each layer, the kind of relationships it expresses and the tools
that can be used for manipulating these networks. Sect. 5 investigates the relationships
between these layers and the opportunity this provides to lift network structure from
one layer to another. Sect. 6 presents an experiment we have conducted. Finally, in
Section 7, this work is compared with previous studies related to social networks on
semantic web.

2 Emerging Collaboration in Peer to Peer Networks

We apply semantic social networks in the context of peer-to-peer (P2P) sharing of an-
notations in which individuals can use ontologies for annotating resources (in our case,
photographs). Because, these individuals can have different needs and different stand-
points, they are not constrained to use the same ontology (contrary to BibSter [5], for

Towards Semantic Social Networks 269

instance). They can take advantage of standard ontologies on the web (like FOAF or
EXIF), but they can extend these ontologies to their needs.

However, when people want to query other peers, for benefiting from better anno-
tation or from other pictures, the network of heterogeneous ontologies must be dealt
with. This ontology mismatch is solved by offering an alignment infrastructure to the
peers that allows them to find some alignments between their ontologies and to process
queries through mediators [6].

Current work on ontology matching consists of either automatically matching two
ontologies without regard to its context or environment, or of interactively helping some
knowledge engineer to match two ontologies. Our goal is to take into account the social
networking context in order to improve the alignment results and, in turn, the social
networking expertise.

In this context, semantic social network analysis has two purposes:

– helping people to find other peers with similar interests, and
– helping peers to find the best company for starting designing consensus ontologies.

For the first purpose, there are two options. On the one hand, the peers can use social
network analysis (SNA) to find in their explicit personal network of peers with some the
same interests. Such people would certainly use ontologies that are not totally remote
and trying to match these ontologies promise to be easier and more rewarding. On the
other hand, if one peer has no relation with known peers sharing the same interest, but
is looking for some pictures, it will be more convenient that he looks for peers having
similar ontologies. The peers can use metrics on the ontology network in order to find
ontologies which are close to theirs. The underlying assumption is that these peers will
have similar interest to theirs even if they are not explicitly recorded as connected.
Moreover, if the metric is compatible with some matching algorithm, the matching will
be easier to perform. So, in this situation, the social network is used for satisfying
the need of some user (finding interesting annotated resources) and this action will
contribute strengthening the social network by exhibiting new links between peers. As
a simple example, Fig. 1 illustrates the potential connection between unknown users by
ontology alignment in a semantic social network.

Another contribution of SNA to this application is to identify the central (authori-
tative) ontologies at the ontology level such that aligning with these ontologies allows
to be connected with the maximum number of peers (and thus retrieve the maximum
number of answers).

Matching algorithms can take advantage of SNA in order to help find the closest
ontologies with regards to the connectivity of users and to identify which users are
more prone to the use of a pivotal ontology.

Beside matching ontologies in an ad-hoc manner, there is time when peers can
imagine benefiting from putting their experience together and building some consen-
sus ontologies. To that extent, they can also use SNA in order to identify the commu-
nity (cohesive subgroups on the social level), the best peer for proposing consensus
(centrality on the social network), or the ontologies which could be the seed for this
collaboration process (centrality on the ontology layer). Of course, when both coincide
(i.e., when the central individuals use a central ontology), the chances of success are
higher.

270 J.J. Jung and J. Euzenat

Social
Layer

Concept
Layer

Ontology
Layer

JeromeE

Jason Arun

k
n
o
w

s

knows

Sebastien

knows

foaf.rdf

exif.rdf

academia

university

import

import
company

import
sports.owl

travel.owl
d
e
fin

e
s

Antoine
knows

knows

defines

engage
Cricket

Sports

Ski

Alphine

researcher

foaf:person

d
e
fi
n
e
s

practise

businessman

Companies

Institutes
Agency

d
e
fin

e
s

study
R&D

Science

Academia

Education

k
n
o
w

s

knows knows
Faisal

JeromeP

Fig. 1. A three-layered social semantic network

3 Network Analysis

Network analysis is based on the analysis of the relationships within a population. We
here consider networks with several different relations between individuals. So, a net-
work is characterized as a set of objects (or nodes) and a set of relations.

Definition 1 (Network). A network 〈N, E1, . . . En〉 is made of a set N of nodes and
n sets of object pairs Ei ⊆ N × N the set of relations between these nodes.

We will below freely use the relations as functions (Ei(n) = {n′ ∈ N |〈n, n′〉 ∈ Ei}).
As usual, a path p between node e and e′ in the graph of Ei is a sequence of edges
〈e0, e1〉, 〈e1, e2〉, . . . , 〈ek−1, ek〉 from Ei in which e0 = e and ek = e′. The length of a
path is its number of edges (here k), spi(e, e′) is the set of shortest paths between e and
e′ and the shortest path distance spdi(e, e′) between two nodes e and e′ is the length of
the shortest paths between them, when it exists. By convention, spd(e, e) = 0. Thus,
spd(Arun, Sebastien) in Fig. 1 is three via Jason and JeromeE.

Social network analysis [1] has considered various measures on the networks be-
tween people (note that these measures apply only if the network is connected)1:

Closeness. The inverse of average length of the shortest path between a node e and any
other node in the network:

Closenessi(e) =
|N − 1|

∑
e′∈N spdi(e, e′)

(1)

1 These measures are often normalized (between 0 and 1) but we present their simplest form.

Towards Semantic Social Networks 271

Betweenness. [7] The proportion of shortest paths between two nodes which contains
a particular node (this measures the power of this node):

Betweennessi(e) =
∑

e′,e′′∈N

|{p ∈ spi(e′, e), p′ ∈ spi(e, e′′)|p · p′ ∈ spi(e′, e′′)}|
|spi(e′, e′′)|

(2)
Hub and authority. There are different but interrelated patterns of power: Authorities

that are referred to by many and hubs that refers to many. The highest authorities
are those which are referred to by the highest hubs and the highest hubs that those
which refers to the highest authorities. Kleinberg [2] proposes an iterative algorithm
to measure authority and hub degree of each node in interlinked environment. Given
initial authority and hub degrees of 1, the degrees are iteratively computed by

Hubi
t+1(e) =

∑

e′:〈e,e′〉∈Ei

Authi
t(e
′) and Authi

t+1(e) =
∑

e′:〈e′,e〉∈Ei

Hubi
t(e
′) (3)

Similarly to betweenness, the hub weight indicates the structural position of the
corresponding user. It is a measure of the influence that people have over the spread
of information through the network.

Our purpose being the identification of individual that are prone to collaborate with
each others, we would like to find these clusters of individuals in the network. There
are no standard method for extracting so-called cohesive subgroups in social network
analysis. Many different methods are proposed based on graph-theoretic terms (e.g.,
cliques [1]) or clustering methods (e.g., [8]).

Definition 2 (Distance network). A distance network 〈N , E1, . . . , En〉 is made of a
set N of nodes and n sets of distance functions Ei : N × N −→ [0 1] defining the dis-
tance between nodes (so satisfying symmetry, positiveness, minimality, and triangular
inequality).

Distance values can also be seen a weights or costs. It is clear that any network is a
distance network which attributes either 0 or 1 as a distance. The definitions of SNA
mentioned above can be adapted to distance networks if each time the cardinality of a
set of edges if used, it is replaced by the sum of its distances. The distance of a path is
obtained by summing the distances of its edges. One extension that must be made is to
use the distance between nodes to reduce their influence to others in the computation of
authority and hub degrees:

Hubi
t+1(e) =

∑

e′∈N

Authi
t(e
′)

Ei(e, e′)
and Authi

t+1(e) =
∑

e′∈N

Hubi
t(e
′)

Ei(e′, e)
(4)

4 Three-Layered Architecture for Semantic Social Networks

In order to uncover the links between people from those that can be found from their
knowledge, we propose the three-layered architecture for constructing the semantic so-
cial network. As shown in Figure 1, it consists of i) a social network (S), ii) an ontology
network (O), and iii) a concept network (C). The characteristics of each layer and the
relationships between layers are described below.

272 J.J. Jung and J. Euzenat

4.1 Social Layer

In the social layer (S), nodes are representing people, and relations are the connections
between peoples. A social network S is a directed graph 〈NS , Eknows

S 〉, where NS is
a set of person and Eknows

S ⊆ NS × NS the set of relations between these persons. In
most current applications, the relation used by SNA is the knows relation that can be
found in FOAF.

Table 1. Closeness, authoritative and hub weights in Fig. 1

Weights Arun(AS) Antoine(AZ) Faisal(FAK) JeromeE(JE) Jason(JJ) JeromeP (JP) Sebastien(SL)

Closeness 0.5 0.67 0.5 0.6 0.67 0.46 0.4

Authoritative 0.21 0.45 0.37 0.69 0.243 0.236 0.13

Hub 0.01 0.52 0.27 0.32 0.54 0.42 0.275

From the social network in Fig. 1, the authoritative and hub weights of three users
are shown in Table 1. Obviously, the highest hub weight is assigned to Jason because
he is an important and unavoidable role of bridging between the rest of users.

4.2 Ontology Layer

The ontology network O is a network 〈NO, Ei
O〉, in which NO is a set of ontologies and

Ei
O ⊆ NO × NO the relationships between these ontologies. There can be two main

kinds of relations at this stage:

import when some ontology explicitly import another ontology;
refer when some ontology uses some concept defined in another ontology.

The objective relationship from the S to the O is through the explicit usage of an ontol-
ogy by a user which can be expressed by a relation: Use ⊆ NS × NO .

We can easily interpret the hubs as being the ontologies that combine a large num-
ber of other ontologies. These would be an interesting starting point for any newcomer
willing to annotate a similar set of objects as his friend. Likewise, authorities will be on-
tologies that are extended and imported by many different actors (i.e., de facto standard
ontologies).

There is a difference between ontology networks and social networks though: while
in social networks it is normal to be connected to several authorities, an ontology will
only import one ontology on some topic. It would thus be useful to recognize those
hubs that connects authorities on the same topics, these “ontologies” are likely to be the
expression of an alignment between the two authorities.

4.3 Concept Layer

In the concept layer (C), nodes are concepts, and links are the numerous kinds of links
that can be found in ontologies. The concept network C is a network 〈NC , Ei

C〉, in
which NC is a set of entity of an ontology (classes, properties, individuals) and Ei

C ⊆

Towards Semantic Social Networks 273

NC × NC the relationships between these entities. These relationships are far more
numerous than in the other layers and depends on the kind of entity considered. If we
restrict our attention to classes, the:

subClass linking a class to its subclasses;
superClass (=subClass−1) linking a class to its super classes;
sibbling linking a class to its siblings;
disjoint linking a class to the classes it is explicitly disjoint with;
property (=domain−1) linking a class to its properties;
range−1 linking a class to the properties that refer to it.

The objective relationship from the O to the C is through the definition of concept in an
ontology which can be expressed by a relation: Defines ⊆ NO × NC . However, this
notion of definition is not easy to catch: it could be based on either the assertion of a
constraint on some ontology entity or the namespace in which entity belongs. We will
consider the namespace in the following.

We are here further away from social networking. As noted in [4], the notions of hub
and authority cannot be understood in the same way for all the relations expressed in C.

5 Inferring Relationships

This three-level semantic social network does not bring in itself new improvement for
our P2P sharing application. In order to provide new insight in the possible collabora-
tions it is necessary to analyze these networks and to propagate information from one
layer to another. We explain how, starting from the lower concept layer, it is possible to
enrich the upper ontology and social layers with new relations from which SNA helps
finding relevant peers.

5.1 Similarity on the Concept Layer

Beside the numerous relationships that can be found by construction of the concept
layer, new relationships can be inferred between the entities. One particular relation-
ship that will be interesting here is similarity. In order, to find relationship between
concepts from different ontologies, identifying the entities denoting the same concept
is a very important feature. As a matter of fact, most of the matching algorithms use
some similarity measure or distance in order to match entities.

Similarity on the concept layer can be obtained by various means [9]. Some distances
can be established from the local features of entities. For instance, the name of entities
can be the basis for matching them. Many techniques have been developed for com-
paring strings, based on their structures (like edit distance), their morphology (through
lemmatization), their entry in lexicons (using WordNet). Another kind of similarity can
be established based on set of shared instances like in [3].

Some other distances, more in the spirit of network analysis, can be defined from the
structure of the network. For instance, [10], defines possible similarities (e.g., SimC ,
SimR, SimA) between classes, relationships, attributes, and instances. Given a pair of

274 J.J. Jung and J. Euzenat

classes from two different ontologies, the similarity measure SimC is assigned in [0, 1].
The similarity (SimC) between c and c′ is defined as

SimC(c, c′) =
∑

E∈N (C)

πC
EMSimY (E(c), E(c′)) (5)

where N (C) ⊆ {E1 . . . En} is the set of all relationships in which classes participate
(for instance, subclass, instances, or attributes). The weights πC

E are normalized (i.e.,∑
E∈N (C) πC

E = 1).
If we consider class labels (L) and three relationships in N (C), which are superclass

(Esup), subclass (Esub) and sibling class (Esib), Equ. 5 is rewritten as:

SimC(c, c′) = πC
L simL(L(Ai), LF (Bj))

+ πC
supMSimC(Esup(c), Esup(c′))

+ πC
subMSimC(Esub(c), Esub(c′))

+ πC
sibMSimC(Esib(c), Esib(c′)) (6)

where the set function MSimC computes the similarity of two entity collections.
As a matter of fact, a distance between two set of classes can be established by

finding a maximal matching maximizing the summed similarity between the classes:

MSimC(S, S′) =
max

(∑
〈c,c′〉∈Pairing(S,S′) SimC(c, c′)

)

max (|S|, |S′|) (7)

in which Pairing provides a matching of the two set of classes. The OLA algorithm
is an iterative algorithm that compute this similarity [10]. This measure is normalized
because, if SimC is normalized, the divisor is always greater or equal to the dividend.

A normalized similarity measure can be turned into a distance measure by taking its
complement to 1 (Edist

C (x, y) = 1 − SimC(x, y)). Such a distance introduces a new
relation Edist

C in the concept network C. This relation indeed defines a distance network
as introduced above.

5.2 From Concept Similarity to Ontology Similarity

Once such a distance has been introduced at the concept level, it can be used for com-
puting a new distance at the ontology level. Again, a distance between two ontolo-
gies can be established by finding a maximal matching maximizing similarity between
the elements of this ontology and computing a global measure which can be further
normalized:

Definition 3 (Ontology distance). Given a set of ontologies NO, a set of entities NC

provided with a distance function Edist
C : NC ×NC −→ [0 1] and a relation Defines :

NO × NC , the distance function Edist
O : NO × NO −→ [0 1] is defined as:

Edist
O (o, o′) =

max(
∑
〈c,c′〉∈Pairing(Defines(o),Defines(o′)) Edist

C (c, c′))

max(|Defines(o)|, |Defines(o′)|)

Towards Semantic Social Networks 275

Of course, even with these heavy computations, ∀o ∈ NO, Edist
O (o, o) = 0.

This is the measure that is used in the OLA algorithm for deciding which alignment
is available between two ontologies [10]. However, other distances can be used such as
the well known single, average and multiple linkage distances.

This ontology distance introduces a new relation on the ontology layer. This measure
provides a good idea of the distances between ontologies. These distances, in turn,
provide hints of the difficulty to find an alignment between ontologies. It can be used
for choosing to match the closest ontologies with regard to this distance. This can help
a newcomer in a community to choose the best contact point: the one with who ease of
understanding will be maximized. This will be further developed in Section 5.4.

5.3 From Concept Similarity to Alignment

It can however happen that people have similar but different ontologies. In order for
them to exchange their annotations, they use alignments existing within the ontology
network. Alignments, in turn, are the results of applying matching algorithms based on
the correspondence between ontologies.

As a result, from concept similarity these algorithms will define a new relation
Ealign at the ontology level.

Definition 4 (Alignment relation). Given a set of ontologies NO, a set of entities NC

provided with a relation Edist
C : NC × NC , a matching algorithm Match based on

Edist
C and a relation Defines : NO ×NC , the alignment relation Ealign is defined as:

〈o, o′〉 ∈ Ealign iff Match(o, o′) �= ∅

If one has a measure of the difficulty to use an alignment or of its quality, this net-
work can also be turned into a distance network on which all these measures can be
performed.

This new relation in the ontology layer allows the agents to choose the ontology
that they will align with first. Indeed, the ontologies with maximal hub centrality and
closeness are those for which the benefit to align to will be the highest because they
are aligned with more ontologies at the ontology level. In the P2P sharing application,
choosing such an ontology will bring the maximum answers to queries. For example,
in the concept layer of Fig. 1, two alignments between i) poArun and poJason and ii)
poSebastien and poJason enable Arun and Sebastien to share information, even though
they are not explicitly linked with each other.

This is the occasion to note the difference between the relations in the same network:
in the ontology network, the hub ontologies for the import relation are rather complete
ontologies that cover many aspects of the domains, while hub ontologies for the Ealign

relation are those which will offer access to more answers.
Of course, when an alignment exists between all the ontologies used by two peers,

there is at least some chance that they can talk to each others. This can be further used
in the social network.

5.4 From Ontology Similarity to People Affinity

Once these measure on ontologies are obtained, this distance can be further used on the
social layer. As we proposed it is possible to think that people using the same ontologies

276 J.J. Jung and J. Euzenat

should be close to each other. We can consider measuring the affinity between people
from the similarity between the ontology they use.

Definition 5 (Affinity). Given a set of people NS , a set of ontologies NO provided with
a distance Edist

O : NO × NO −→ [0 1] and a relation Uses : NS × NO, the affinity is
the similarity measure defined as

Eaff (p, p′) =
max

(∑
〈o,o′〉∈Pairing(Use(p),Use(p′)) 1 − Edist

O (o, o′)
)

max(|Use(p)|, |Use(p′)|) (8)

Since this measure is normalized, it can be again converted to a distance measure
through complementation to 1.

Introducing the distance corresponding to affinity in the social network allows to
compute the affinity relationships between people with regard to their knowledge struc-
ture. Bottom-up inference from C allows to find out the semantic relationships between
users based on this space.

For completing the P2P application, the last step consists of identifying the sub-
groups of users, according to the various social characteristics, as follows:

1. The subgroup whose members are assigned very high semantic authoritative weight
(or semantic hub weight) can be identified by comparing the weights computed with
Equ. 4. These peers have the social power to control and select semantic informa-
tion to distribute.

2. The subgroups of people with very similar personal ontologies can be obtained by
computing the cohesive subgroup of the S network using affinity (Eaff).

3. The subgroup of people which are interested in the same topics extends the previous
subgroups, depending on a particular topic. Their members can efficiently share
information about that topic.

6 Experimental Results

As a first evaluation of our framework, we want to differentiate social affinity Eaff

(p, p′) from the previous measures for social features. Our experimentation scenario
follows these steps (i) building personal ontologies during photo annotation, (ii) align-
ing these personal ontologies for measuring social affinity between people, and (iii)
discovering the most powerful person for semantic interoperability.

For collecting data, we invited seven members of our team to select a set of pho-
tographs and annotate them by using a specific annotation tool (Picster2). Table 2 shows
the specification of personal ontologies.

From co-occurrence patterns between the annotated photos, Mika’s social centrality
CM [3] can be formulated by

CM (Ui) =

∑ ∩|U|
k=1,k �=i(RUk

,RUi
)

RUi

|U | − 1
(9)

where |U | is the total number of people in the social network. The results are shown in
Table 3. We found out that the number of annotated resources are barely related to the

2 http://gforge.inria.fr/projects/elster

Towards Semantic Social Networks 277

Table 2. Specification of personal ontologies as test bed

AS AZ FAK JE JJ JP SL

Number of annotated photographs (RUser) 47 47 37 49 47 30 25

Number of used ontologies (OUser) 3 5 2 6 1 1 2

Table 3. Experimental results of a) closeness and centrality by co-occurrence patterns b) people
affinity Eaff and centrality in the semantic social network

(a/b) AS AZ FAK JE JJ JP SL CM Caff

AS - 0.98/0.65 0.62/0.33 0.94/0.73 1.00/0.26 0.60/0.32 0.23/0.62 0.73 0.49

AZ 0.98 - 0.62/0.49 0.94/0.825 0.98/0.31 0.62/0.3 0.26/0.52 0.73 0.52

FAK 0.78 0.78 - 0.70/0.57 0.78/0.28 0.54/0.22 0.30/0.32 0.65 0.37

JE 0.90 0.90 0.53 - 0.90/0.46 0.57/0.49 0.16/0.75 0.66 0.64

JJ 1.00 0.98 0.62 0.94 - 0.60/0.72 0.23/0.39 0.73 0.40

JP 0.93 0.97 0.67 0.93 0.93 - 0.13/0.51 0.76 0.43

SL 0.44 0.48 0.44 0.32 0.44 0.16 - 0.38 0.52

social centrality. SL annotated the least number of resources, so that his centrality also
lowest among people. But, even though JE’s annotations were the largest one, JP has
shown the most powerful centrality.

We measured semantic affinity on the semantic social network (Eq. 8). For doing so,
the ontology distances Edist

O between personal ontologies are measured. We used string
edit distance between class labels. For instance, Edist

O between JE and AZ is shown in

Table 4. Then, we can measure Eaff (AZ, JE) =
max(

�
〈o,o′〉 1−Edist

O (o,o′))

max(5,6) = 4.95
6 =

0.82 where ontology distance between non aligned ontologies (‘-’) are regarded as 1.
We computed this for all pairs of people on the social network, as shown in Table 3. The
matrix for social affinity is symmetric. We found out that the number of ontologies are
playing an important role in social affinity. JE has shown the highest centrality in the
given social network, while JP annotated the most common resource with other peo-
ple. This means that collaborations can be effectively be provided with JE. Meanwhile,
Eaff (JJ, JP) was relatively high (0.72). We found that they were using the same large
ontology (i.e., SUMO). So the number of found correspondences where very high. To
deal with this problem, we have to consider preprocessing personal ontologies.

Table 4. Ontology distance Edist
O between JE and AZ; Mark ‘-’ means no alignments between

two ontologies

JE foaf.owl JE Meteo.owl JE Picster.owl JE space.owl JE UrbanLand.owl JE World.owl

az support-ontology.owl 0.03 - - 0.17 - -

az hasSupplyLineOnt.owl 0.46 - 0.09 0.05 0.04 0.49

az office.owl 0.47 - 0.04 0.05 0.06 0.04

az people+petsB.owl 0.06 - - 0.16 - -

az space-basic.owl 0.18 - - 0.5 - 0.01

278 J.J. Jung and J. Euzenat

Another issue is the discovery of potential collaborators (or like-minded people) by
comparing the social distances in Table 1. While the social distance between AS and
SL is 3 on the social layer of Figure 1 (i.e., 1. once normalized), their social affinity is
measured as 0.62 which is relatively high (the corresponding distance would be .38).
We can expect that they can share common interests.

7 Related Work

Many semantic systems on distributed environments like P2P networks have been intro-
duced to efficiently share information and knowledge between heterogeneous sources.
Some have studied the relevance of peers (or users) by analyzing topology and inter-
actions like message passing. In [11], for selecting the expert peers, semantic topology
analysis is exploited. But they make assumptions that every peers have to use the same
ontology for calculating semantic similarity. Practically, [12] applies the similar idea to
multi-agent architecture, and as an example of application, Jung has introduced a social
communication framework for collaborative web browsing [13]. Meanwhile, Alani and
colleagues introduced a system, called Ontocopi, for ontology-based network analysis
(ONA) [14]. This system can identify the communities by using informal data.

More closely related to this work, Mika proposes a three-layered space which is com-
posed of a social network and a knowledge network relying on concepts and instances
[15]. However, the knowledge network is simply based on sets for co-occurrence analy-
sis, and in this networks, the super/sub-relationships are retrieved based on statistical
overlapping. This approach does not deeply consider semantic relationships between
concepts and ontologies, so it is hard to use the structure of knowledge for structuring
the social network.

For measuring the relevance of ontologies, in [4], the AKTiveRank system ranks
the ontologies applying a number of classical metrics such as class match, central-
ity, density, and semantic similarity. In [16], network analysis methods (in particular,
Hermitian matrices-based eigensystem analysis) are used for analyzing ontologies as
concept graphs in the same way social network are analyzed. This is used for contrast-
ing the “style” of ontologies but not for social networking, though this last application
could be investigated.

8 Concluding Remarks and Future Work

We have focused on using the structure of knowledge used by people in order to extract
meaningful relations at the social level. Moreover, the extraction of these new relations
is used to further improve the collaborative sharing and exploitation of this knowledge.

We propose a three-layered architecture for constructing semantic social network,
which is composed of a social layer, an ontology layer, and a concept layer. This space
not only supports the relations within a layer, but also the propagation of relations be-
tween layers. We have provided the principles for extracting similarity between con-
cepts and propagating this similarity to a distance and an alignment relation between
ontologies. This distance relation can be used for discovering affinity in the social net-
work. In return, users can take advantage of these newly established relations to find

Towards Semantic Social Networks 279

people closer to them on the basis of the structure of their knowledge. For that purpose,
we have only used classical SNA measures (that we extended to distance networks).

The basic assumption of this work is that these newly discovered relations between
people will facilitate mutual understanding as well as ontology matching and resource
sharing. This remains to be demonstrated experimentally. To that extent we are devel-
oping and experimenting the presented P2P sharing system. We will make measure and
generate alignment and ask users to rate and correct the provided alignments.

There remains important issues to be investigated: all these networks are not equal
and their exploitation with classical SNA tools can be meaningless (in the same sense
that considering the “loves” and “hates” relations as the same would lead to problems).
It is thus important to characterize the various relations that were provided with re-
gard to the measures that can be used on them. We also plan to extend this work by
defining and extracting meaningful (and useful) clusters among people. We expect to
apply this information to build social and semantic grid environment [17]. Moreover,
the cost of computing these networks can become important. We have not considered
this issue here because most of the given measures are examples, but this can become
an important factor if the networks and measures have to be computed on-line.

References

1. Wasserman, S., Faust, K.: Social network analysis: methods and applications. Cambridge
University Press, Cambridge (UK) (1994)

2. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. of the ACM 46(5)
(1999) 604–632

3. Mika, P.: Ontologies are us: A unified model of social networks and semantics. In Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A., eds.: Proc. of the 4th Int. Semantic Web Conf.
Volume 3729 of Lecture Notes in Computer Science., Springer (2005) 522–536

4. Alani, H., Brewster, C.: Ontology ranking based on the analysis of concept structures. In:
Proc. of the 3rd Int. Conf. on Knowledge capture (K-CAP ’05), New York, NY, USA, ACM
Press (2005) 51–58

5. Broekstra, J., Ehrig, M., Haase, P., van Harmelen, F., Menken, M., Mika, P., Schnizler, B.,
Siebes, R.: Bibster - a semantics-based bibliographic peer-to-peer system. In: Proc. of the
2nd Work. on Semantics in Peer-to-Peer and Grid Computing (SemPGRID ’04), New York,
USA (2004) 3–22

6. Euzenat, J.: Alignment infrastructure for ontology mediation and other applications. In:
Proc. of the 1st Int. Work. on Mediation in Semantic Web Services, Amsterdam (NL). (2005)
81–95

7. Freeman, L.: Centrality in social networks: Conceptual clarification. Social Networks 1
(1979) 215–239

8. Fortunato, S., Latora, V., Marchiori, M.: Method to find community structures based on
information centrality. Physical review E. 70 (2004) 056104

9. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. J. on data seman-
tics 4 (2005) 146–171

10. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-Lite. In de Mántaras,
R.L., Saitta, L., eds.: Proc. of the 16th Euro. Conf. on Artificial Intelligence, IOS Press (2004)
333–337

280 J.J. Jung and J. Euzenat

11. Haase, P., Siebes, R., van Harmelen, F.: Peer selection in peer-to-peer networks with semantic
topologies. In Bouzeghoub, M., ed.: Proc. of the Int. Conf. on Semantics in a Networked
World (ICNSW’04). Volume 3226 of Lecture Notes in Computer Science., Springer-Verlag
(2004) 108–125

12. Valencia, E., Sansonnet, J.P.: Building semantic channels between heterogeneous agents with
topological tools. In: Proc. of the 2nd Euro. Work. on Multi-Agent Systems. (2004)

13. Jung, J.J.: Collaborative web browsing based on semantic extraction of user interests with
bookmarks. J. of Universal Computer Science 11(2) (2005) 213–228

14. Alani, H., Dasmahapatra, S., O’Hara, K., Shadbolt, N.: Identifying communities of practice
through ontology network analysis. IEEE Intelligent Systems 18(2) (2003) 18–25

15. Staab, S., Domingos, P., Mika, P., Golbeck, J., Ding, L., Finin, T., Joshi, A., Nowak, A.,
Vallacher, R.R.: Social networks applied. IEEE Intelligent Systems 20(1) (2005) 80–93

16. Hoser, B., Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Semantic network analysis of
ontologies. In: Proc. of the 3rd Euro. Semantic Web Conf. (ESWC). Volume 4011 of Lecture
Notes in Computer Science (2006) 514–529

17. Jung, J.J., Ha, I., Jo, G.: BlogGrid: Towards and efficient information pushing service on
blogspace. In Zhung, H., Fox, G., eds.: Proc. of the Int. Conf. Grid and Cooperative Com-
puting (GCC 2005). Volume 3795 of Lecture Notes in Computer Science., Springer-Verlag
(2005) 178–183

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 281–295, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Knowledge Sharing on the Semantic Web

Nicholas J. Kings1, Caroline Gale2, and John Davies1

1 Next Generation Web Research Group, BT Group, Adastral Park, Ipswich, UK
{nick.kings,john.nj.davies}@bt.com

2 Chimera – Institute for SocioTechnical Research and Innovation, Essex University, UK
cgale@essex.ac.uk

Abstract. This paper details the design, implementation and evaluation of an
ontology-based knowledge sharing tool. The system, “Squidz”, automatically
classifies browsed web pages against an ontology, and allows users to share
comments made about those pages to members of a community. As the user
browses web pages, recommendations of relevant documents which have al-
ready been shared are produced, based upon both the user’s social network as
well as the semantic content of the page currently in view. Key to the design of
the system has been the requirement, evidenced by earlier studies, that sharing
should be easily effected as a side-effect of browsing rather than comprising a
separate and distracting task. Another feature of the system is the linkage of a
formal ontology with user-provided tags of shared information, thus combining
the proven popularity of folksonomy-based systems with the shared and formal
domain model provided by an ontology.

Keywords: Semantic Web, Knowledge Sharing, Tagging, Social Software,
Communities of Practice.

1 Introduction

In general, knowledge sharing tools combine the functions of searching for and dis-
tributing information. As a user requires information to undertake a task, information
relevant to that task can be located. Underpinning knowledge sharing tools is the
premise that someone in the user’s wider community has already created or accessed
relevant information (explicit knowledge transfer) or someone is able to provide help
or advice (tacit knowledge transfer).

Knowledge management can be defined as the “systematic application of actions
to ensure that an organisation obtains greatest benefit from the information that is
available to it” [1]. Knowledge sharing software supports the activities of collating,
categorising and distributing information [2], which creates a group memory and im-
proves team awareness [3, 4].

The application of a knowledge sharing tool has a direct impact on the commu-
nity’s behaviour; any interactive digital technology has embedded implicit cultural as-
sumptions. Raybourn et al. [5] suggest that there is no recipe or standard format for
encouraging participation, nor should any one cultural perspective be forced on such a
community. However, functions to support the community may be just as important

282 N.J. Kings, C. Gale, and J. Davies

as other functions supported by a system [5-10]. Kings et al. [11, 12] further suggest
that a sense of history and a user’s reputation are prerequisites for the development of
a shared community purpose.

1.1 Models of Knowledge Sharing

The Semantic Web [13] can provide enhanced information access based on the ex-
ploitation of machine-processable meta data. Central to the vision of the Semantic
Web are ontologies, which are seen as facilitating knowledge sharing and re-use be-
tween agents, be they human or artificial [14]. They offer this capability by providing
a consensual and formal conceptualisation of a given domain. As such, the use of on-
tologies and supporting tools offer an opportunity to significantly improve knowledge
management capabilities on the intranets of organisations and on the wider web. Fur-
thermore, Mika [15] suggests that although the Semantic Web has been defined to fa-
cilitate machine understanding of the World Wide Web, the process of creating and
maintaining that shared ontology is a purely social activity. Each ontology is created
in a process that requires a group, or community, to build and share an agreed under-
standing of the important concepts and objects for that self same community. Mika
further proposes that the understanding of social presence is crucial in understanding
how an ontology evolves and gains acceptance.

Recently, we have seen the emergence of a number of very popular community-
based systems on the Web. Typically in systems such as flickr1 and delicious2, instead
of using a centralized form of classification, users are encouraged to assign freely
chosen keywords, called tags, to pieces of information or data, a process known as
tagging. As a community of users generate a series of tags for overlapping and com-
mon items, a “folksonomy” can been seen to emerge. Since folksonomies are incre-
mental and end user-generated and therefore inexpensive to implement, advocates of
folksonomy believe that it provides a useful low-cost alternative to more traditional
controlled vocabularies or classification schemes.

The combination of social networking systems such as FOAF3 and XFN4 with the
development of tag-based folksonomies, implemented as blogs and wikis initally were
seen as a basis for the semantic environment. This has been seen as part of a change
from accessing static web pages to the use of the web as an application platform [16]:

• The change from centralised information sources to an approach of creating and
distributing Web content itself, characterised by open communication, the willing-
ness to share and re-use information, and “the market as a conversation” [17].

• The change from using web sites as point sources of information, stored within
static Web pages, to sources of remotely accessible information, through the use of
network accessible APIs or services.

In contrast to defined, formal taxonomies, categories in a folksonomy may appear
to be arbitrary and idiosyncratic. However, a particular tag is chosen for a particular
Web page based upon an individual's own understanding of the content being tagged,

1 http://www.flickr.com/
2 http://del.icio.us/
3 http://xmlns.com/foaf/0.1/
4 http://gmpg.org/xfn/

 Knowledge Sharing on the Semantic Web 283

which combines the personal, social, and technical understanding of that content [15].
By publishing a tag and tagged content to a wider audience, other users are subtly en-
couraged to explore other tagged content and other users’ interests.

Pind [18] suggests that there is anecdotal evidence to show that the sets of tags
used within a community tend to converge upon a common set of agreed meanings
and usage. Pind further suggests, however, that tagging software could be improved
by the addition of the following five features: the software should suggest appropriate
tags; the software should display related tags and topics; suggest tags that others have
used to describe the same items; infer topic hierarchies from the way tags are used;
and, allow a user to quickly edit and change tags that have already been applied. The
Squidz tool addresses all of these issues.

In Section 2, we describe the Squidz tool. Two key features of the system are,
firstly, the requirement, as evidenced by earlier studies, that sharing should be easily
effected as a side-effect of browsing rather than comprising a separate and distracting
task [19-21]; and, secondly, the linkage of a formal ontology with user-provided tags
of shared information, thus combining the proven popularity of folksonomy-based
systems with the shared and formal domain model provided by an ontology. Section 3
describes the operation of the software in more detail. Section 4 details the evaluation
of Squidz.

2 Software Overview

The main function of Squidz is to share knowledge in the form of textual annotations
about web pages, within a community of business users. The secondary purpose of
Squidz is to allow a user to discover new social contacts or sources of information,
through discovery of shared interests. The important features to be implemented by
the software are:

• To improve software adoption, Squidz must be useful to an individual user without
relying on any other’s contributions. Squidz should be able to be used as an ad-
vanced book marking tool.

• All users can view and comment upon any other’s annotations.
• An annotation is made in a technical and a social context. The technical context is

represented by the topics associated with the annotation; the social context is repre-
sented by the community where the annotation is posted.

• The software filters and presents appropriate annotations, based upon each user’s
technical and social context. In effect, a relevant annotation is one made by a
closely related person within a topic area related to the current page.

• Squidz models a user’s social network in simple manner [2]: sharing pages to one-
self; sharing to close work or team colleagues; sharing to members of a community
of practise; or, sharing to all users of the system

Squidz is implemented as a browser plug-in, making use of a number of web ser-
vices to classify browsed web pages and to retrieve annotations made by other mem-
bers of the user community; Squidz is just one potential interface to the meta-data
generated within the community. Squidz is being developed for communities of inter-
est, or practice, within a corporate environment. In common with other tools being

284 N.J. Kings, C. Gale, and J. Davies

developed within the SEKT5 project, Squidz is utilising the PROTON ontology [22,
23]; PROTON6 is an ontology for knowledge management, modelling entities such as
Documents with associated Topics as well as Users with Interests and Communities
of Users.

As a user browses the internet or their intranet, the web page is classified against
the formal ontology, and that classification is used to retrieve related pages. By click-
ing on the icons and words in the plug-in, separate information windows are created,
rather than attempting to merge information within the browsed page.

Fig. 1. Pages classified during browsing

Figure 1 shows the main user interface to Squidz, after a user has been browsing:
web page’s main topic is “copyright” and that six related annotated pages have been
previously shared by other users; the main topic for a web page is either the highest
ranked topic returned by the classifier or, if this user has already annotated this page,
the main topic is taken from that annotation.

2.1 System Architecture

Squidz has been implemented as a number of server side components and the user in-
terface is supplied as an Internet Explorer Browser Helper Object (or plug-in). The
server side components write to a database which is mapped to an OWL ontology
(PROTON) held in KAON. Information generated by using Squidz is thus fully ac-
cessible to other semantic web applications. Thus, other applications developed
within SEKT, such as Semantic Search and Browse, are enable to share information
through a semantic repository [22, 24-26]. Squidz has been envisaged as being used
with a corporate setting, for use within communities of practise or communities of in-
terest. Squidz monitors and tracks a user’s browsing behaviour; privacy and secrecy
were seen as less relevant within an enterprise setting. For use of Squidz within a

5 http://www.sekt-project.com/
6 http://proton.semanticweb.org/

 Knowledge Sharing on the Semantic Web 285

community of users across the wider internet, further work would be required to sat-
isfy concerns about user security and privacy.

For use within British Telecom (BT), BT procures the Inspec and ABI biblio-
graphic record databases, giving access to over 4 million bibliographic records. The
format for each bibliographic record is based on ISO 2709 (which is based on the Li-
brary of Congress MARC format7).

A classifier has been developed, which assigns subject categories from the ABI and
Inspec controlled vocabularies to content retrieved from the Web [27]. The classifier
identifies the occurrence of controlled indexing terms in the text, and selects those
terms for classification that are deemed most significant. The significance of each con-
trolled indexing term is not only dependent on its frequency of occurrence in the text,
but also on its inter-dependencies with other controlled indexing terms. The classifier
web service returns the four highest ranking subject topics, for each web page, as well
as up to ten of the most significant words and phrases identified in the text.

An inspection of the classifications presented by the classifier for a number of web
pages suggests that it is capable of producing sensible classifications for previously
unseen Web content. However, a full evaluation of the classification technique is cur-
rently being undertaken.

2.2 Semantic Annotations

When sharing a web page in Squidz, the user has the opportunity to provide some
folksonomy-style tags which describe the content of the page, along with a comment
about the page. Squidz models an annotation as the following: the user’s comment; a
set of formal topics, generated by the page classifier; a set of informal user-supplied
tags; the target audience (individual, team, community or world as chosen by the
user); and, a set of keywords and phrases, also generated by the page classifier. For
each user tag, Squidz derives an associated set of keywords; each tag is semantically
characterised by that keyword vector rather that the character string the user chose to
represent the concept denoted by that particular tag.

As web pages are annotated with tags, the set of words for each tag is re-calculated
automatically based upon the keywords stored within the page annotation. The key-
words are associated with each tag in order to find related pages even if pages have
been tagged with different terms; the derived keywords allow pages to be tagged with
similar words, even though each user has their own understanding of that word. For
example, one user’s tag of “project” may represent the same concept as another user’s
tag of “SEKT”. Adding an annotation forces the system to recalculate the keywords
associated with the user’s tags and subsequently all pages that are now related to the
current page.

Though a folksonomy allows a community to evolve their own vocabulary, at a
low cost for each contributor, there are associated problems of synonomy and
polysemy [28], as there is no central defined meaning for each keyword or phrase
used. Using the approach proposed, the semantic annotation uses the information
available from the tagged pages themselves to provide a common basis for under-
standing the community’s concepts.

7 http://www.loc.gov/marc/

286 N.J. Kings, C. Gale, and J. Davies

Annotations are also made to a particular context, such as “Self”, “Team”, “Com-
munity” or “Everyone”. This is used as a recommendation as to whom the annotation
may be most relevant; by taking into account the suitability of an annotation, this may
reduce the “cost” of a user understanding the importance or relevance of that particu-
lar web page [2].

As pages are shared in Squidz, a number of OWL metadata elements are generated
and stored in the PROTON ontology: a Squidz annotation is represented as a
PROTON document with an associated set of ontology topics and informal user-
generated tags. Thus, the community generates relevant annotated content for its own
use and this content can be accessed via other Semantic Web applications, such as the
Semantic Search and Browse tool in BT’s Digital Library [22, 26].

3 Squidz in Action

Section 2 presented an overview of Squidz, whereas this section examines each of the
main software functions in more detail.

3.1 Fetching Related Pages

Squidz provides the user with “peripheral vision” of previously shared web pages and
annotations related to the current page. As a web page is viewed by a user, a request
for related pages and their associated annotations is made to the remote web service.
Related pages are determined in the following manner:

Initialise candidate topic and tag set, CTT

Add topics returned by classifier web service, for the
current page, to CTT

Add all topics from previous annotations made on cur-
rent page to CTT

Calculate similarity of page content to users’ tags,
using Dice coefficient

If similarity of tag exceeds threshold, add tag
to CTT

Initialise set of candidate annotations, CA

Add annotations to CA, for each annotation which has
been annotated with at least one topic in CTT

Rank each web page in CA, based on the number of anno-
tations stored for that page and who made the annota-
tion

The similarity of each tag in the system to the current page content is calculated
with the Dice coefficient, as shown in Equation 1 [29], where KWC and KWT are

 Knowledge Sharing on the Semantic Web 287

sets of keywords: KWC, the set of keywords derived for a viewed page; and, KWT,
the set of keyword associated with a particular user tag.

()KWTKWC

KWTKWC
KWTKWCDice

+

∩
=

2

1
),(

(1)

The similarity measure is taken between the currently viewed page’s content and a
tag’s keyword vector rather than between the current page contents and the keywords
associated with each previously stored page for two reasons. Firstly, this decision im-
proves the performance: as there are fewer user tags than annotations, fewer similarity
calculations need to be under taken. Secondly, by matching user tags, Squidz is return-
ing pages that are associated with a user’s concepts: one user may be interested another
user’s “project” pages, without actually knowing of that other person’s interest.

In effect, each annotation “votes” for a web page to be brought to the user’s atten-
tion; the weight associated to the vote varies based on who made the annotation.
Thus, there is a chance that annotations made by people outside of a user’s direct so-
cial network will be brought to a user’s attention. In this manner, the technical or
topical context of web page and well as a user’s social context is taken into account to
account to rank a related page.

Fig. 2. Topics related to current page

Figure 2 shows that eight topics have been identified that are related to the current
page: three topics from the defined topic ontology, and, five user created tags: user- gener-
ated tags are identified by placing the name of the user who generated the tag in parenthe-
ses. As described above, the defined topics have been identified by the classifier.

The list of related user tags, shown in Figure 2, is formed from the tags found
within the returned list of related pages. Each underlined topic or tag can be clicked to
cause all of the annotations made with that particular topic to be retrieved and dis-
played. Related topics are calculated in the following manner:

Initialise related topic set, RTL

Add all library topics, as calculated by page classi-
fier, to RTL

For each related page (as calculated above), RP

 For each annotation, stored for RP

 Add user tag, UT, to RTL

288 N.J. Kings, C. Gale, and J. Davies

Thus, the list of related topics contains ontology topics, user tags that are similar
to the current page and user tags that have been explicitly added to those related
pages. Only if an annotation has been created with a particular topic or tag, will the
name be clickable; Figure 2 shows no annotations have been made with the topic of
“Infringement”.

Fig. 3. Pages related to current page, ranked by social network

Figure 3 shows the scrollable list of annotated pages found to be related to the cur-
rently viewed web page. As in Figure 2, clicking an underlined topic will retrieve
annotations; clicking an underlined URL will cause the browser to load that particular
page. Implementing the user interface in this manner allows a user to explore across
web pages, rather than having to visit a particular website and then start exploring
tags and relations from that point onwards.

3.2 Sharing Annotations

By clicking on “Self”, “Team”, “Community” or “Everyone” (as shown Figure 1), a
user can choose to share an annotation about the currently viewed web page. This is
implemented via a less intrusive pop-up window, rather than by changing the contents
of the main browser widow. Figure 4 shows that comments about a particular web
page about to be shared to members of this user’s community.

Sharing to a particular set of people does not preclude that others outside of group
will not see the annotation, as having the ability to view every person’s contribution is
a crucial way of building an active set of users. However, the user-chosen target
group of the annotation is used in the ranking algorithm when calculating related
pages: a page shared to “Team” by one of my team members is ranked higher than a
page shared by the same person but shared to “Community”.

 Knowledge Sharing on the Semantic Web 289

Sharing to a target
audience of
“community”

Free text comment,
on why this page is
useful to community

members

Added user tags

Formal topics
returned by the

classifer

Fig. 4. Storing an annotation with the user choosing to add two tags and changing the main
topic

Figure 5 shows that after the annotation has been made, the web page is now re-
lated to nine pages, and the main formal topic for the page is shown as “technology”.

By making an annotation the topics related to this page have changed, as shown by
comparing Figures 2 and 6. As the added annotation explicitly mentions the user’s tag
of “PhD”, this tag would be expected to be shown for this page. However, by annotat-
ing, the algorithm has calculated that there is also a similarity between this page and the
user’s tags of “Tagging” and “Classification techniques”. Figure 6 also shows that “In-
fringement” can now be clicked, as there has been an annotation stored for that topic.

Fig. 5. Further related pages after adding an annotation

290 N.J. Kings, C. Gale, and J. Davies

Fig. 6. Recalculated related topics, after the annotation has been added

3.3 Exploring Annotations

Squidz can be used as a personal “book marking” tool as well as for information shar-
ing. Because of the problems that information sharing systems require a critical mass
of users [4], one of the requirements for Squidz was that the software should be useful
for a single user. However, in order to support longer term community spirit, it is im-
portant that all annotations should be visible to anyone using Squidz. By developing
Squidz in this manner, information sharing to the community is then a by-product of a
simple, well understood action of “book marking” a web page.

Fig. 7. Exploring my tags

Figures 7 and 8 show a user exploring the topics and tags to find web pages. The
user interface allows the annotations to be separated into annotations made by your
self, your team members, your community members and everyone. Figure 9 shows
the annotation made on a particular web page: the web page can be found by either
exploring the user’s tags or exploring the formal topic hierarchy; the web page can be
found through multiple routes, as it is associated with a number of different topics. A
user’ tags are displayed as yellow folders, and their own annotations are shown as yel-
low stars, while formal topics are shown as red folders.

 Knowledge Sharing on the Semantic Web 291

Fig. 8. Exploring another user’s annotations and tags

Figure 8 shows a user exploring all the annotations made by everyone. Here anno-
tations made by other people are denoted by blue globes, and their tags are denoted by
blue folders. Figure 8 also shows that four annotations have been made with the topic
of “technology”: three have been by made by the user himself, and a fourth has been
made by user “alsmeydh”. From this screen, it can be seen that there is a user tag of
“802.11”, and that tag can be subsequently explored.

4 Evaluation

4.1 Related Work

The design for Squidz has been influenced by lessons learnt from the Jasper [30] and
OntoShare [20, 21] knowledge sharing tools. In those tools, a profile of user interests
is built to filter information, based upon which web pages have been shared by vari-
ous users. Notifications, about pages being stored, were sent by email which caused,
however this caused a disconnect between sharing and commenting and there was lit-
tle dialogue encouraged between users. Sharing information should be easily effected
as a side-effect of browsing rather than comprising a separate and distracting task.

Piggy Bank [31] presents a tool integrated into a web browser, coupled with the
use of associated RDF collection utilities. Like Squidz, Piggy Bank allows a commu-
nity of users to share and collaborate over items of information found. The approach
taken by Piggy Bank, however, is to present the RDF metadata directly in the user in-
terface; Squidz simplifies the user interface and only exposes parts of the metadata as-
sociated with document sharing, such as topic and user.

Annotea [32, 33] is a framework to support collaboration and sharing of semanti-
cally marked objects. The toolset allows users to tag Web pages with concepts, and
allow the metadata to be repurposed through various XSLT style sheets. Annotea pro-
vides a flexible interface to explore bookmarks and topics. Squidz, however, is aimed

292 N.J. Kings, C. Gale, and J. Davies

at providing page recommendations, through the classification of the current web
page and retrieval of related items.

Onomi [34] is also a social bookmarking tool for use within a corporate environ-
ment. Onomi also builds a semantic description of the users’ tags, however, the tech-
nique used within Onomi relies on stemming user tags to provide the common basis
for understanding, rather than the more sophisticated use of keyword sets, as used
within Squidz.

4.2 Experimental Design

Squidz has been being subjected to a three-stage user-centred evaluation. For the first
stage, a heuristic evaluation [35] of the user interface was undertaken. A small group
of five researchers, acting as usability experts, judged whether the user interface ad-
hered to a list of established usability heuristics; a checklist was adapted from the
Xerox heuristic evaluation system checklist [36]. A number observations were made,
most of which were concerned with minor interface problems and system perform-
ance. The results of the evaluation were collated and discussed with the development
team. Squidz was then modified in accordance with these observations.

The second stage comprised a cognitive walkthrough evaluation [37]. Users were
asked to use Squidz in order to complete a number of knowledge sharing tasks, where
the user’s actions and behaviours will be recorded. Users were encouraged to talk
through their actions and their concerns as they undertake each task, as this provided
additional information about the usability of Squidz and the user’s thought processes
as they used the application. At the end of each task, users were also asked to com-
plete a short questionnaire. The findings were again discussed with the Squidz devel-
opment team. By the completion of this stage, all major interface issues had been
resolved.

At the time of submitting this paper, the third and final stage of evaluation is un-
derway: preliminary results are given in the next section. Squidz is being rolled out
for use within an intranet, to users with a range of technical experience. This stage
consists of a series of semi-structured interviews to find out how useful people have
found Squidz [38]. The purpose of the interviews is to validate the following hypothe-
ses: knowledge sharing requires both a technical and social context; sharing is more
likely to occur if the costs of sharing are reduced; and, sharing allows the knowledge
of the community to built and enhanced.

4.3 Results and Analysis

Currently, twenty users have registered and downloaded the software: nine of those
are regular users and a further eight users have made at least one annotation. All of
the users are familiar with information sharing with tools such as email and delicious.
Longer term user acceptance will be an important aspect to measure, since Squidz
constantly monitors web page access. As the current trial has only been running a
relatively short time at the time of writing, and further longitudinal data is required to
determine the users’ long term attitude to sharing information in this manner.

Nevertheless, data from the current valuation has validated the Squidz approach:
users have commented on the simplicity and ease of use for the tool. The user

 Knowledge Sharing on the Semantic Web 293

interviews have also identified a number of new functions that could be incorporated
into later versions of the software. For example, one requested function would be abil-
ity to “notify immediately” other people that a page has been annotated, as well still
having the ability to be made aware of that page while browsing.

The users found the Squidz ranking of pages taking into account the content of the
page and the original sharer of the page natural and intuitive. Annotations were typi-
cally tagged with only a few keywords or phrases. The characterization of tags with a
keyword vector, however, gives a richer semantic representation of tags than in typi-
cal user-tagging applications. Semantic tags allowed users to name topics closer to the
user’s own higher level concepts, rather than each user having to add explicitly the
complete set of keywords describing each web page.

5 Discussion and Conclusions

In this paper we have presented the design, implementation of a semantic tool for an-
notating and sharing information about web pages. Squidz is intended to test the hy-
pothesis that information sharing is more effective when the software is aware of both
the social and technical context of that information. The approach taken is to associate
a formal topic ontology alongside an informal folksonomy, through the ability to an-
notate web pages. Presenting information on related pages and topics, through the
toolbar, allows a user to browse and explore when convenient to the user, rather than
forcing a particular mode of usage; knowledge sharing occurs as a result of normal
user activity (browsing). Though further improvements to the tool are planned, Squidz
has already gained positive user feedback and acceptance.

Acknowledgements. The work described in this paper was developed as part of the
SEKT project, under EU funding (IST IP 2003506826). Further project details may be
found at http://www.sekt-project.com/.

References

1. Marwick, A.D., Knowledge management technology. IBM Systems Journal, (2001). 40(4):
p. 814-830.

2. Shneiderman, B., Leonardo's Laptop: Human Needs and the New Computing Technolo-
gies. (2003), London, England: MIT Press.

3. Udel, J., The New Social Enterprise. InfoWorld, (2004). Vol. 26(No. 13): p. 47,50-52.
4. Rafaeli, S. and D.R. Raban, Information sharing online: a research challenge. Interna-

tional Journal of Knowledge and Learning, (2005). 1(2): p. 62-79.
5. Raybourn, E.M., N. Kings, and J. Davies, Adding cultural signposts in adaptive commu-

nity-based virtual environments. Interacting with Computers, (2003). 15(1): p. 91-107.
6. Preece, J., Online Communities: Designing Usability, Supporting Sociability. (2000),

Chichester, England: John Wiley & Sons.
7. Merali, Y. and J. Davies. Knowledge capture and utilization in virtual communities. in

International Conference On Knowledge Capture. (2001). Victoria, British Columbia,
Canada.

8. Kim, A.J., Community Building on the Web. (2000), Berkeley, Ca: Peachpit Press.

294 N.J. Kings, C. Gale, and J. Davies

9. Crossley, M., N.J. Kings, and J.R. Scott, Profiles – Analysis and Behaviour, in Location
and Personalisation: Delivering Online and Mobility Services, D. Ralph and S. Searby,
Editors. (2004), IEE: London.

10. Sharratt, M. and A. Usoro, Understanding Knowledge-Sharing in Online Communities of
Practice. Electronic Journal of Knowledge Management, (2003). 1(2): p. 187-196.

11. Kings, N. Knowledge sharing using Semantic Web technologies. in 1st Workshop on
Friend of a Friend, Social Networking and the Semantic Web. (2004). Galway, Ireland.

12. Kings, N., D. Alsmeyer, and F. Owston, Libraries as Shared Spaces, in Universal Access
in HCI: Inclusive Design in the Information Society. Proceedings of HCI International,
2003, Volume 4. (2003), Lawrence Erlbaum Associates.

13. Berners-Lee, T., J. Hendler, and O. Lassila, The Semantic Web. Scientific American,
(2001). May, 2001.

14. Fensel, D., Ontologies: Silver Bullet for Knowledge Management and Electronic Com-
merce. (2001): Springer-Verlag, Berlin.

15. Mika, P. Ontologies Are Us: A Unified Model of Social Networks and Semantics. in The
Semantic Web - ISWC 2005. (2005). Galway, Ireland: Springer.

16. O'Rielly, T., What Is Web 2.0: Design Patterns and Business Models for the Next Genera-
tion of Software. (2005), O'Reilly Media, Inc.

17. Levine, R., et al., The Cluetrain Manefesto: The End of Business as Usual. (2000), Lon-
don: Pearson Education.

18. Pind, L., Folksonomies: How we can improve the tags. (2005), Pinds.com.
19. Davies, J., S. Stewart, and R. Weeks. Knowledge Sharing over WWW. in WebNet '98.

(1988).
20. Davies, J., A. Duke, and A. Stonkus, OntoShare: Evolving Ontologies in a Knowledge

Sharing System, in Towards The Semantic Web, J. Davies, D. Fensel, and F.v. Harmelen,
Editors. (2003), John Wiley & Sons, Ltd.: Chichester. p. 161-177.

21. Davies, J., A. Duke, and Y. Sure, OntoShare: a knowledge management environment for
virtual communities of practice, in Proceedings of the international conference on Knowl-
edge capture. (2003), ACM Press: Sanibel Island, FL, USA.

22. Bontcheva, K., et al., Semantic Information Access, in Semantic Web Technologies:
Trends and Research in Ontology-based Systems, J. Davies, R. Studer, and P. Warren,
Editors. (2006), John Wiley & Sons Ltd: Chichester, England.

23. Kirakov, A., Ontologies for Knowledge Management, in Semantic Web Technologies:
Trends and Research in Ontology-based Systems, J. Davies, R. Studer, and P. Warren,
Editors. (2006), John Wiley & Sons Ltd: Chichester, England.

24. Davies, J., et al., Next generation knowledge management. BT Technology Journal,
(2005). 23(3): p. 175-190.

25. Glover, T. and J. Davies, Integrating device independence and user profiles on the Web.
BT Technology Journal, (2005). 23(1): p. 239-248.

26. Warren, P., I. Thurlow, and D. Alsmeyer, Applying Sematic Technology to a Digital Li-
brary, in Semantic Web Technologies: Trends and Research in Ontology-based Systems, J.
Davies, R. Studer, and P. Warren, Editors. (2006), John Wiley & Sons Ltd: Chichester,
England.

27. Thurlow, I. Classifying Web content for a corporate digital library. in London Communi-
cations Symposium. (2006).

28. Golder, S. and B.A. Huberman, Usage Patterns of Collaborative Tagging Systems. Journal
of Information Science, (2006). Vol. 32(No. 2): p. pp198-208.

29. Grossman, D.A. and O. Frieder, Information Retrieval: Algorithms and Heuristics, ed.
T.I.R. Series. (2006): Springer.

 Knowledge Sharing on the Semantic Web 295

30. Davies, J., S. Stewart, and R. Weeks, Knowledge Sharing Agents over the WWW. BT
Technology Journal, (1998). Vol. 16(No. 3, July).

31. Huynh, D., S. Mazzocchi, and D. Karger. Piggy Bank: Experience the Semantic Web In-
side Your Web Browser. in International Semantic Web Conference 2005. (2005). Galway,
Ireland: Springer.

32. Koivunen, M.-R. Annotea and Semantic Web Supported Collaboration. in ESWC 2005,
UserSWeb workshop. (2005).

33. Koivunen, M.-R. Semantic Authoring By Tagging with Annotea Social Bookmarks and
Topics. in SAAW2006 - 1st Semantic Authoring and Annotation Workshop. (2006). Athens,
GA, USA.

34. Damianos, L., J. Griffith, and D. Cuomo. Onomi: Social Booking on a Corporate Intranet.
in Collaborative Web Tagging Workshop. (2006). WWW2006, Edinburgh, UK.

35. Neilsen, J. and R. Molich, Heuristic Evaluation of User Interfaces, in Proceedings of the
SIGCHI conference on Human factors in computing systems. (1992): Monterey, Califor-
nia, United States. p. 373 – 380.

36. Christiansson, P., Heuristic Evaluation - A System Checklist. (2000), Xerox Corporation.
37. Wharton, C., et al., Applying Cognitive Walkthroughs to more Complex User Interfaces:

Experiences, Issues, and Recommendations, in Proceedings of the SIGCHI conference
on Human factors in computing systems. (1992): Monterey, California, United States. p.
381-388.

38. Reynolds, T.J. and J. Gutman, LADDERING THEORY, METHOD, ANALYSIS, AND
INTERPRETATION. Journal of Advertising Research, (1988)(February/March).

Real-World Reasoning with OWL

Timo Weithöner1, Thorsten Liebig1, Marko Luther2, Sebastian Böhm2,
Friedrich von Henke1, and Olaf Noppens1

1 Inst. of AI, Ulm University, Ulm, Germany
firstname.lastname@uni-ulm.de

2 DoCoMo Communications Laboratory Europe GmbH, Munich, Germany
lastname@docomolab-euro.com

Abstract. This work is motivated by experiences in the course of de-
veloping an ontology-based application within a real-world setting. We
found out that current benchmarks are not well suited to provide help-
ful hints for users who seek for an appropriate reasoning system able to
deal with expressive terminological descriptions, large volumes of asser-
tional data, and frequent updates in a sound and complete way. This
paper tries to provide some insights into currently available reasoning
approaches and aims at identifying requirements to make future bench-
marks more useful for application developers.

1 On Benchmarking OWL Reasoners

Having sufficiently exhaustive knowledge about the influence of the underly-
ing reasoning approach on the practical tractability of a particular ontology is
of fundamental importance when selecting an inference engine for a real-world
application. By real-world we mean an ontology-based application with an ex-
pressivity at least beyond ALC, containing more than thousands of individuals,
and an inference response time of less than a second, even in a dynamical setting
of frequent ontology updates. For instance, context-aware applications want to
offer services to users based on their actual situation. Experiences in the course
of operating a context-aware application for mobile users [1] clearly have shown
that the quality of such an application hosted on a server significantly depends
on the availability of reliable and scalable reasoning systems able to deal with
constantly changing data. In order to meet real-world needs a reasoning system
also has to offer a sufficiently expressive query language as well as a flexible and
efficient communication interface.

Unfortunately, current benchmarks or system comparisons neither draw a
clear picture of the landscape of practically tractable language fragments with
respect to large amounts of instance data, give valuable insights into pros and
cons of different reasoning approaches, identify performance penalties caused by
certain language features, nor consider issues such as updates, incremental query
answering, or interfaces.

For instance, many benchmarks consist of synthetical generated and sparsely
interrelated data using inexpressive ontology languages such as the widely used

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 296–310, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Real-World Reasoning with OWL 297

Lehigh University Benchmark (LUBM) [2]. In case of the LUBM an incomplete
query answering procedure exploiting told information about the individuals
from a classified TBox is sufficient to answer the given queries correctly. The
published RacerPro results [3] heavily rely on this property of the LUBM. The
bottom line is that RacerPro shows an impressive performance for solving this
ABox benchmark by switching off ABox reasoning. Obviously, this cannot be
considered as a meaningful benchmark and it is not surprising that this test suite
has let to exceptional performance for almost all inherently incomplete reasoning
systems. On the other hand, the University Ontology Benchmark (UOBM) [4], a
direct extension of the LUBM in terms of expressiveness, turned out to be much
too difficult for most systems to answer correctly within reasonable time. This
well known trade-off between tractable and effectively un-tractable ontologies,
the so called computational cliff, is caused by an increase in language expressivity
[5]. A more fine-grained map of the border of effectively tractable ontologies still
needs to be practically explored in order to be helpful for developers.

The discussion of inherent drawbacks and advantages of different approaches
with respect to diverse application tasks has been largely neglected in recent
benchmarks or system comparisons. However, application developers need to be
aware of potential trade-offs and a serious benchmark should discuss its results
with respect to alternative reasoning approaches.

Another performance related issue deals with the way of feeding the systems
with large amounts of data. Our selective tests have shown that for some systems
not only the transmission format (RDF/XML or DIG [6]) is of importance, but
also the way data is encoded (e. g. deep vs. flat serialization).

A real-world requirement which has not been taken into account in any bench-
mark so far is concerned with dynamic data. The ABox is not only expected to
be the largest part of an ontology but is also subject to frequent changes. In
order to serve as an efficient reasoning component within a realistic setting it
is necessary to perform well under small ABox updates. First results in this
research direction, e. g. [7], need to be evaluated by appropriate benchmarks.

Finally, all benchmark results need to be weighted with respect to soundness
and completeness of the underlying inference procedure. Assuming that sound-
ness and completeness is an indispensable requirement for knowledge-based ap-
plications — of which we think it is — many of the existing benchmark results
are not helpful at all. Some of our randomly selected tests showed that even
systems assumed to implement a sound and complete calculus fail on a number
of OWL Lite test cases.

Our overall goal is to qualitatively analyze various benchmark suites and re-
sults in order to identify requirements for a comprehensive benchmark suite suit-
able to allow ontology-based application developers to pick the right system for
their individual task. In the following section, we compare alternative reasoning
approaches. We then (Section 3) analyze existing benchmark suites, discuss corre-
sponding results and compare them with our own tests. As a result we compiled a
collection of requirements (Section 4) to make future benchmarks more useful for
application developers. Section 5 summarizes our experiences and suggestions.

298 T. Weithöner et al.

2 System Analysis

Understanding and interpreting benchmarking results correctly requires to have
some insights into alternative processing methods of different system implemen-
tations. In the context of reasoning with OWL, or fractions thereof, one can
roughly distinguish between four different approaches.

Due to its historical origins the inference calculus implemented in tableaux-
based provers for DLs is an obvious choice and available via systems like Pellet
[8], RacerPro [9], or FaCT++ [10]. They implement a conceptually sound as well
as complete approach for which many optimizations are known so far. Unfor-
tunately, complete instance reasoning still requires expensive computations but
recent research on elaborated reduction methods [11] show enormous optimiza-
tion possibilities in this respect.

An alternative, equally sound and complete, approach is to transform an OWL
ontology into a disjunctive datalog program and to utilize a disjunctive dat-
alog engine for reasoning as implemented in KAON2 [12]. This allows for fast
query answering due to well-known optimization techniques from deductive data-
bases such as magic set transformation. A drawback is that this approach does
not support nominals and has some performance problems with cardinality re-
strictions in presence of certain other axioms.

Other systems like OWLIM [13] or OWLJessKB use a standard rule engine
to reason with OWL. This is fast and easily tunable to different language frag-
ments just by manipulation the rule set. However, this procedure is known to be
incomplete and resource consumptive when filled with large amounts of implicit
knowledge because of their materialization strategy.

A couple of more or less hybrid approaches such as QuOnto [14], Minerva
[15], Instance Store [16], or LAS [17] combine an external reasoner (often a
tableaux-based system) with a Database system. This enables to process large
data volumes due to secondary storage mechanisms. On the other hand, this
combination only allows for a very limited language expressivity.

3 Benchmarking Experiences

This section tries to roughly draw a picture of practically tractable OWL repos-
itories with current reasoning systems. This is done by gathering data from
different existing as well as own benchmarks. The collected results are reviewed
with respect to the system, i. e. the underlying approach, as well as the kind of
test ontologies.

A common benchmark for today’s DL reasoners is to measure the performance
in processing huge ontologies. Ontologies with relatively small and inexpressive
TBoxes and ABoxes containing hundreds of thousands or even millions of in-
dividuals and relations are predominantly used in benchmarking tests. It is as-
sumed that real world applications will also exhibit the described characteristics.

Real-World Reasoning with OWL 299

A selection of such “real world ontologies” (e.g. Gene Ontology1 or Airport Codes
Ontology2) which are used for benchmarking can be found in [18].

Nowadays, the Lehigh University Benchmark (LUBM) is the de facto standard
when it comes to reasoning with large ontologies [3,19,8,20,21]. But as mentioned
before, many reasoners that achieved excellent results when benchmarked with
LUBM, failed to reason about other ABox or TBox tests (cf. results for OWLIM
and KAON2 from Sections 3.1 and 3.2).

The University Ontology Benchmark (UOBM) [4], extends the LUBM by
adding extra TBox axioms making use of all of OWL Lite (UOBM Lite) and
OWL DL (UOBM DL). In addition, the ABox is enriched by interrelations be-
tween individuals of formerly separated units, which then requires ABox rea-
soning to answer the given UOBM queries. Not surprisingly, it turned out that
incomplete systems now can only answer a fraction even of the OWL Lite queries
completely. Only one theoretically sound and complete approach, namely Pel-
let [8], was able to handle about a tenth of the number of individuals compared
to the LUBM. The others failed either due to a timeout or the lack of memory.

These shortcomings motivated us to experiment with a set of tests of a dif-
ferent kind using both existing and newly created benchmarks. In the following,
we will present some of these measurements, whereas the aim of these tests was
not to simply nominate the fastest or most reliable reasoner. Also, instead of
overloading this report with a complete set of all of our measurements we will
highlight some results that demonstrate the necessity and requirements for a
comprehensive benchmark that goes beyond the LUBM.

In the following, we will present selected results for KAON2 (built 05-12-
2005), Pellet 1.3, OWLIM 2.8.3, and RacerPro 1.9.0 which were selected from
three out of four different reasoning approaches mentioned in Section 2. FaCT++
was dropped due to a missing query language and all hybrid systems were not
appropriate because of their limited language expressivity. We divided the whole
process of loading an ontology, any preprocessing as applicable and processing
of a query into two separate measurement stages:

Loading and preprocessing the ontology. This stage summarizes the mea-
surements for the process of feeding the ontology into the reasoner and any
parsing as required by the interface. Also any preprocessing that is either
done automatically or can be started manually is included into this mea-
sure. For most of the benchmarks presented in this report this measurement
is dominated by the time needed to load the ABox as TBoxes tend to be
very small and incomplex.

Query processing. This stage measures the time and resources needed to
process a given query and for some systems might also include preprocessing
efforts.

Loading of ontologies was repeated three times (discarding them after the first two
passes, keeping them after the third). Then the respective queries were repeated

1 http://archive.godatabase.org/
2 http://www.daml.ri.cmu.edu/ont/AirportCodes.daml

http://archive.godatabase.org/
http://www.daml.ri.cmu.edu/ont/AirportCodes.daml

300 T. Weithöner et al.

ten times each. For both stages time and memory consumption were measured
and maximum, minimum, as well as average measurements were recorded. Subse-
quently the machine was rebooted after each test case. All diagrams in this report
show the average of three measurement turns as described above.

The benchmarking tests were conducted on a Windows XP Workstation (3.0
GHz Intel Pentium 3 Processor, 1 GB physical RAM). KAON2, OWLIM, and
Pellet were run in the same Java virtual machine (JVM) as the benchmarking
application itself. RacerPro was running in a separate process and was connected
using JRacer3. For all systems the JVM was set to initial and maximum heap
size of 700 MB.

3.1 Starting Point: Existing ABox Benchmarks

Figure 1 shows the time needed to load different ontologies from LUBM. While
RacerPro shows the worst performance and Pellet not being able to load the
largest ontology, KAON2 turned out to be the fastest system directly followed
by OWLIM. These two systems show a linear relationship between ontology size
and load time.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000 1200

T
im

e
[s

]

Ontology Size [1000 Triples]

Size of Figure 2

KAON2
OWLIM

Pellet
Racer

Fig. 1. Comparing LUBM load times for KAON2, Pellet, OWLIM, and RacerPro

We compared these results with the Semintec Benchmark which is based on
a benchmark suggested by [20]4. The Semintec ontology5 consists of an even
simpler TBox that even does not contain existential quantifiers or disjunctions.
3 http://www.racer-systems.com/products/download/nativelibraries.phtml
4 We only used the second of the two queries suggested in [20] since the concept Person

(referenced in query one) is not present in the ontology.
5 The Semintec ontology was originally created by the Semintec project:
http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm

http://www.racer-systems.com/products/download/nativelibraries.phtml
http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm

Real-World Reasoning with OWL 301

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350

T
im

e
[s

]

Ontology Size [1000 Triples]

KAON2
OWLIM

Pellet
Racer

Fig. 2. Semintec Benchmark load times for KAON2, RacerPro, and OWLIM

Again we measured a somewhat linear relationship between the size of the
ontology and the loading time for the named systems (cf. Figure 2). But we
also noticed that RacerPro is only marginally slower than the other systems,
in contrast to the LUBM. It seems that the lower expressivity also reduces the
complexity of index creation during preprocessing.

3.2 Implicit Knowledge - A Stumbling Block?

The results from LUBM and the Semintec Benchmark were in general unspec-
tacular, even though the small difference between the benchmarks could not be
explained definitely. Thus we designed a Benchmark consisting of a very simple
TBox for the next tests.

The TBox of the so called “Exquant Benchmark” consists of a transitive
property and a concept defined as existential quantification upon this transitive
property (someValueFrom restriction). The ABox consists of a chain of individu-
als related via the transitive property. This individual chain is of different length
for every ontology in the benchmark, where 100.000 instances marks the maxi-
mum length. The query collects the extension of the restriction. The layout of
this benchmark reflects one aspect of the social network ontology (part of our
application scenario), which heavily uses transitive properties.

Suddenly, the picture changes. OWLIM, performing very well for LUBM and
Semintec, is unable to load an ontology consisting of a chain of 1.000 individ-
uals linked by a transitive property (all tests interrupted after 1 hour). In con-
trast RacerPro and KAON2 never needed longer than 3.5 seconds. Obviously
OWLIM’s total forward chaining and materialization approach to compute all

302 T. Weithöner et al.

implicit knowledge on loading the ontology causes this performance deficit6. In
the Exquant Benchmark the amount of implicit knowledge grows quadratic with
the size of the ontology.

This also influences KAON2. Even though the system performs slightly better
than RacerPro on loading the ontology, KAON2 was unable to answer the men-
tioned query, even for some of the smallest ontologies (a 500 element individual
chain) within the given time limit of 10 minutes.

3.3 Influence of Serialization

Our next benchmark (the List Benchmark) consists of head|tail lists modeled in
OWL. The biggest ontology contains a list of 100.000 elements. All ontologies in
this benchmark are present in two different OWL serializations. One serialization
follows a “flat” approach in the sense that all list elements are defined one after
the other, referencing their respective tail. In the alternative “deeply nested”
serialization, list elements are defined at the place where they are used.

An interesting result, when processing the list benchmark was that RacerPro
is sensitive to the OWL serialization of the ontology loaded. We found that Rac-
erPro easily loads the flat serialization of the List Benchmark, while the system
fails to load deeply nested serializations with more then 6.400 list elements.

This emphasizes that reasoners should not be reduced to the performance
of their core reasoning component when selecting a system for an application.
Weaknesses might appear at unexpected places.

3.4 TBox Complexity

We are convinced that an ABox benchmark can not be conducted without scaling
the TBox size, too. Inevitably this will also increase TBox reasoning complexity
which again might influence ABox reasoning performance. Thus as a first test set
we created the Unions Benchmark which checks the influence of TBox complexity
on ABox reasoning. The benchmark primarily consists of a set of ontologies with
gradually increasing TBox complexity. For every TBox, a set of ontologies with
a growing number of ABox individuals is created.

The different TBoxes all consist of a concept hierarchy tree, in which every
concept (except for leaf concepts) is defined as a union of further concepts mod-
eled the same way. The TBox size is controlled by the number of concepts per
union and the depth of the hierarchy tree. We then scale the size of the ABoxes
by instantiating different amounts of individuals per concept. The query col-
lects the extension of the root concept of the concept hierarchy, representing the
superset of all ABox individuals.

Once again different reasoning techniques show different performance charac-
teristics in this benchmark. While RacerPro’s performance when querying the
Unions Benchmark seems to solely depend on the size of the ABox, KAON2
mainly depends on the complexity of the TBox. Figures 3 and 4 depict these
findings (pls. observe the direction of the level curves on the base of the graphs).
6 Reportedly OWLIM v2.8.5 will feature optimized handling of transitive properties.

Real-World Reasoning with OWL 303

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5 0

 5
 10

 15
 20

 25
 30

 35

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Duration [s]

 8 s
 6 s
 4 s
 2 s

TBox Size [1000 Concepts]

ABox Sizes [1000 Instances]

Duration [s]

Fig. 3. RacerPro’s query times for Unions Benchmark

In an additional test we introduced TBox Axioms irrelevant for the actual
reasoning task. We suspected that some reasoners might switch off some op-
timizations in the presence of TBox axioms of higher complexity. Initial tests
suggest that we were too censoriously regarding this assumption as we could not
measure any differences.

3.5 Query Repetition and Query Specialization

We introduced the Query Specializing Benchmark to determine whether reason-
ers do profit from previously calculated results or not. If so, the executing of a
specialization of a previous query would perform better than the execution of
the specialized query alone.

We defined a set of five queries in selecting publications and their respective
authors from the LUBM ontologies. Thereby, we restricted the possible authors
from Person over Faculty, and Professor to FullProfessor. The last query
additionally restricted the possible authors to FullProfessors working for a
given department. The queries were processed against a “3 universities” ontology
from most specific to most general and vice versa.

Unfortunately, we were not able to measure any significant speed up in com-
parison to the independent execution of the queries. Curious enough we were
even unable to measure effects for RacerPro using its “query repository” [22]
which is designed to make use of previously calculated answers.

Even if the same query is repeated several times, the query times do not nec-
essarily decrease after the first execution. Considering all measurements we were
not able to detect a significant speed up for KAON2 and only minor improve-
ments (under 15%) for Pellet and RacerPro without query repository. OWLIM
saved approximately one third of the initial query time, while the biggest speed

304 T. Weithöner et al.

 0 1 2 3 4 5 6 7 8 0
 10

 20
 30

 40
 50

 60
 70

 80

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Duration [s]

 80 s
 60 s
 40 s
 20 s

TBox Size [1000 Concepts]

ABox Sizes [1000 Instances]

Duration [s]

Fig. 4. KAON2’s query times for Unions Benchmark

up was measured for RacerPro with activated query repository. Only in this
configuration, repeated query executions in average were seven times faster com-
pared to the first execution.

3.6 Dynamic Behavior

Existing performance results of DL reasoners are often limited to the classi-
fication of static ontologies. However, in the case of frequent updates (a KB
submission, discarding, and re-submission cycle) the communication overhead
introduced on loading the ontology can easily dominate the overall performance.
In this respect, the delay caused by ontology-based inferencing easily becomes
a major obstacle for its use in context-aware applications [23]. One approach to
realize high-level situational reasoning for this type of application is to apply
dynamic assertional classification of situation descriptions represented as con-
crete ABox individuals. Each situation individual is assembled of a set of ABox
entities representing qualitative context information such as the location (e.g.,
office), the time (e.g., afternoon) and the persons in proximity (e.g., friends).
Finally, the direct subsuming concepts of the situation individual determine the
user’s abstract situation. The whole process of determining the situation of a
user (including the gathering and transformation of the relevant context data)
is limited to about 2 seconds per classification. Retraction improves the perfor-
mance for this type of application drastically, since only a small fraction of the
ontology changes between two requests.

The standard DL interface DIG 1.1 [6] does not support the removal of specific
axioms, making it necessary to re-submit the complete ontology for each request.
As active members of the informal DIG 2.0 working group7 we therefore propose
7 http://dig.cs.manchester.ac.uk/

http://dig.cs.manchester.ac.uk/

Real-World Reasoning with OWL 305

a modular extension to the interface that supports incremental reasoning and
retraction [24]. Unfortunately, current reasoners only provide some kind of batch-
oriented reasoning procedure. A notable exception is RacerPro, which offers low-
level retraction support for most of its statements.

We compared different retraction strategies implemented in Racer. Reloading
of ontologies from a local Web server can be accelerated by either loading from
a image file (up to 3 times faster) or by cloning an ontology in memory (up
to 70 times faster). For small ABoxes, cloning the ontology outperformed even
the retraction of single axioms with forget statements (usually 80 times faster).
However, it turned out that the fastest strategy was to keep situation individuals
up to a certain number (about 20 in our case) within the ABox before cloning a
fresh pre-loaded ABox.8 Due to the lack of incremental classification algorithms,
RacerPro still initiates a complete reclassification after each change in the on-
tology. Initial empirical results from [7], performed with an experimental version
of Pellet, indicate that such algorithms for SHOIN (D) can be quite effective.

Without retraction support, the time needed to compute simple reasoning
problems, is easily dominated by the communication overhead caused by the
reasoner interface. For example, accessing RacerPro via its native API using
TCP is about 1,5 times faster then via HTTP/DIG and even 2 times faster
than the access realized with the triple-oriented framework Jena2 [25]. The best
performance can be achieved by using the Pellet reasoner running in the same
Java virtual machine as the application itself, this way without the need for any
external communication.

Another problematic issue we observed was that some reasoners tend to allo-
cate more and more memory over time. This leads to a considerable decrease in
performance and makes it necessary to restart the reasoning component after a
certain amount of transactions.

3.7 Completeness Versus Performance

Reasoning with OWL Lite as well as OWL DL is known to be of high worst-case
complexity. By using the “right” combination of costly expressions, one can in-
tentionally or incidentally create even a very small ontology whose complexity
will make practical reasoning impossible. Therefore, in case of taking the whole
vision of the Semantic Web literally as the domain for reasoning-aware applica-
tions, one obviously has to give up soundness and completeness [26]. However,
besides some preliminary empirical evaluation [27], there are currently no at-
tempts to reason with all ontologies found on the Web in parallel. Instead, when
assuming the currently more realistic application range in which applications
need to reason about information represented via distributed ontologies, sound-
ness and completeness typically do matter. It seems very unlikely that users of
large scale ontologies in the context of industrial or scientific research such as
SWEET or GO, or defense critical approaches such as the “Profiles in Terror”

8 Keeping individuals and axioms in the ABox is only possible if they do not influence
later classifications.

306 T. Weithöner et al.

ontology will accept incomplete reasoning results. Note that in the presence of
full negation, as in OWL, one can not really distinguish between completeness
and correctness anymore. Because the answers you miss due to incompleteness
will be your incorrect answers of the complementary problem.

As a consequence we tested our systems with help of an empirical evalua-
tion using spot tests which are intentionally designed to be hard to solve but
small in size. They try to meter the correctness of the reasoning engines with
respect to inference problems of selected language features.9 Surprisingly, only
RacerPro and KAON2 were able to solve those tests which lay within the lan-
guage fragment (above ALC) they claim to support. Others such as Pellet and
FaCT++ even failed on some OWL Lite test cases (not to mention OWLIM and
related systems). Besides this semantical errors we also found a couple of parsing
problems. For instance, all of the systems failed to parse either an empty inter-
section, union, or enumeration via XML/RDF or DIG 1.1. We also experienced
that there is an unpredictable scatter of runtime from case to case even within
one system implementation. Actually we discovered random runtime behavior
for Pellet for one test case ranging from less than a second up to effectively
non-termination. Finally, an expressive all-embracing test case with less than 50
classes and individuals overextended almost all systems.

The discovered failures have been communicated to the system developers and
a more detailed description of our test suite can be found at [29].

In addition, we found out that the given answer sets of UOBM are wrong in
the DL part of the benchmark suite. Their approach of importing all statements
into a RDBMS and manually build SQL queries for answer set computing failed
for query 11 with five universities for example. The presumably correct number of
answers is 6230 (as opposed to the official 6225) and was computed by Pellet. At
least the additional retrieved individuals from Pellet represent correct answers.
This can easily be seen by manually collecting the information which makes
them a legal candidate. As far as we see the official result set does not take into
account that isHeadOf is an inverse functional property.

4 Requirements for a Comprehensive ABox Benchmark

In the above sections we demonstrated the impact of some important influencing
factors neglected by today’s standard ABox benchmarks. This weakness renders
the named benchmarks useless when choosing a reasoner for a real-world ap-
plication. We thus suggest to build future benchmarks along the lines of the
following requirements.

R1 Separate measurements should be taken for each processing stage (loading
and querying) as described in Section 3.

R2 The benchmark should investigate query performance when processing a set
of ontologies with gradually growing ABoxes while size and complexity of

9 Very similar to the system evaluation of [28] and the system comparisons conducted
at various DL workshops.

Real-World Reasoning with OWL 307

the TBox remains constant. It must thereby be ensured that the ABox can’t
be split into disjoint and unconnected parts.

R3 The benchmark should also pinpoint the influence of TBox complexity on
ABox reasoning. Thus TBox complexity should gradually be increased. In
one setting this increase in complexity should influence the ABox reasoning
task while in a separate setting TBox axioms which are unrelated to the ac-
tual benchmark should be added. The second setting is to trick the reasoner
into switching off optimizations even if this would not have been necessary
for the actual reasoning task.

R4 Include benchmarks, that comprise TBoxes modeled in a way such that
adding explicit knowledge to the ABox also adds large quantities of implicit
knowledge (e.g. transitive properties). This is to reveal the possibly negative
influences of materialization approaches or maintenance of index structures.

R5 OWL allows for different serializations of the same ontology. The benchmark
should check the influence of different serializations on the process of loading
these ontologies. A well implemented reasoner should be agnostic to such
differences.

R6 A reasoner with well implemented query caching should answer a repetition,
a specialization, or a sub query of a previous query almost instantly. Thus
tests should be included which disclose the reasoners capabilities with respect
to query caching.

R7 Most reasoners support different interfaces, like a proprietary API and a
DIG interface. Since these interfaces might exhibit different performance the
benchmark should compare loading and processing of ontologies through the
varying interfaces. Clearly results from this benchmark can be disregarded
if only very time consuming reasoning tasks are triggered. In such cases the
communication overhead is negligible.

R8 Real world applications will be subject of constant change. These changes
will appear most frequently in the ABox. Thus additional benchmarks should
be available measuring the performance of ABox modifications like addition
or retraction of axioms and the time required for subsequent reasoning tasks.

A future comprehensive ABox benchmark should consist of a set of special-
ized benchmarks tackling a variety of different requirements. Though, we won’t
suggest to define a procedure to reduce the various results of the different bench-
marks to a single metric (as done in [2]). Because, we do not believe that a single
score would be of any help when selecting a reasoner for a particular application
scenario. For instance, consider the case where two reasoners claim to support
the same expressivity but one of them is not sound/incomplete. Then, strictly
speaking, they are not comparable at all. Therefore, as a kind of meta require-
ment, comparisons should carefully interpret all measured results with respect
to the different underlying approaches and their theoretical properties.

From a practical point of view, it is advisable to analyze the specific require-
ment of the planned application and then choose the relevant benchmarks for
comparison of potential reasoners. In this respect a set of special purpose bench-
marks will be of great help. As a starting point we compiled Table 1, that lists

308 T. Weithöner et al.

Table 1. Requirements covered by the benchmarks presented in this paper

Benchmark Description Meets
Requirements

LUBM The original Lehigh University benchmark R2

UOBM Extended LUBM which introduces an OWL Lite
and an OWL DL Version of the benchmark

R2,
R3 partially

Semintec Based on a real-word TBox, modeling the finan-
cial domain. ABox size is increased in five steps.

R2

List Synthetic ontology modeling a head|tail list in
OWL. Amount of implicit knowledge rises expo-
nentially with the number of list elements.

R2, R4, R5

Exquant Another synthetic ontology heavily using transi-
tive property instances.

R2, R4

Unions Benchmark that increases ABox size as well as
TBox complexity

R2, R4, R5,
R3 partially

Query
Specializing

Based on LUBM. Consists of increasingly special-
ized queries. Checks for query caching capabilities.

R2, R6

the benchmarks presented in this paper together with the covered requirements
(requirements R0 and R1 are not mentioned there as they are independent of
the concrete benchmark).

5 Summary

We showed that today’s ABox benchmarks fall short on providing comprehensive
and meaningful information in order to support users in selecting a reasoner
for real world applications. We highlighted and discussed some benchmarking
results gained from well known as well as newly created benchmarks. These
benchmarks cover traditional aspects like ABox size but also measure influences
due to ontology serialization, TBox complexity, query caching, and dynamic
ontology changes. The results clearly show that there is still no single benchmark
suite which covers all of the issues above and that there is no reasoner able to
deal with large and complex ABoxes in a robust manner. As a consequence we
suggest a set of general benchmarking requirements which will be helpful when
designing future OWL reasoner benchmarking suites.

References

1. Luther, M., Böhm, S., Wagner, M., Koolwaaij, J.: Enhanced Presence Tracking for
Mobile Applications. In: Proc. of 4th Int. Semantic Web Conference (ISWC’05),
Galway, Ireland. Volume 3729., Galway, Ireland, Springer (2005)

2. Guo, Y., Pan, Z., Heflin, J.: An Evaluation of Knowledge Base Systems for Large
OWL Datasets. In: Proc. of the 3rd Int. Semantic Web Conference (ISWC’04),
Hiroshima, Japan (2004) 274–288

Real-World Reasoning with OWL 309

3. Möller, R., Haarslev, V., Wessel, M.: On the Scalability of Description Logic
Instance Retrieval. In: Proc. of the 29th German Conf. on Artificial Intelligence.
LNAI, Bremen, Germany, Springer (2006) 171–184

4. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a Complete OWL
Ontology Benchmark. In: Proc. of the 3rd European Semantic Web Conference
(ESWC’06). Volume 4011 of LNCS., Budva, Montenegro, Springer (2006) 125–139

5. Brachman, R., Levesque, H.: The Tractability of Subsumption in Frame-based De-
scription Languages. In: Proc. of the 4th Nat. Conference on Artificial Intelligence
(AAAI’84). (1984) 34–37

6. Bechhofer, S., Möller, R., Crowther, P.: The DIG Description Logic Interface. In:
Proc. of the Int. Workshop on Description Logics (DL’03). Volume 81 of CEUR.,
Rome, Italy (2003)

7. Halaschek-Wiener, C., Parsia, B., Sirin, E., Kalyanpur, A.: Description Logic Rea-
soning for Dynamic ABoxes. In: Proc. of the Int. Workshop on Description Logics
(DL’05), Edinburgh, Scotland. Volume 147 of CEUR. (2006)

8. Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A Practical OWL
DL Reasoner. Journal of Web Semantics (2006) To Appear.

9. Haarslev, V., Möller, R.: Racer: A core inference engine for the Semantic Web
Ontology Language (OWL). In: Proc. of the 2nd Int. Workshop on Evaluation of
Ontology-based Tools. (2003) 27–36

10. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Descrip-
tion. In: Proc. of the Int. Joint Conference on Automated Reasoning (IJCAR’06).
(2006) To Appear.

11. Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas, K.: The Summary
Abox: Cutting Ontologies Down to Size. In: Proc. of the 5th Int. Semantic Web
Conference (ISWC’06), Athens, GA, USA, Springer Verlag (2006) 343–356

12. Motik, B., Studer, R.: KAON2 – A Scalable Reasoning Tool for the Semantic
Web. In: Proceedings of the 2nd European Semantic Web Conference (ESWC’05),
Heraklion, Greece (2005)

13. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM — a Pragmatic Semantic Reposi-
tory for OWL. In: Proc. of the Int. Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS’05), New York City, USA, Springer (2005) 182–192

14. Acciarri, A., Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Palmieri,
M., Rosati, R.: QuOnto: Querying ontologies. In: Proc. of the 20th Nat. Conf.
on Artificial Intelligence (AAAI 2005), Pittsburgh, USA, The MIT Press (2005)
1670–1671

15. Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y., Pan, Y.: Minerva: A Scalable OWL
Ontology Storage and Inference System. In: Proc. of 1st Asian Semantic Web
Conference (ASWC 2006), Beijing, China, Springer Verlag (2006) 429–443

16. Bechhofer, S., Horrocks, I., Turi, D.: The OWL Instance Store: System Description.
In: Proc. of the 20th International Conference on Automated Deduction (CADE
2005), Tallinn, Estonia, Springer Verlag (2005) 177–181

17. Chen, C., Haarslev, V., Wang, J.: LAS: Extending Racer by a Large Abox Store.
In: Proc. of the Int. Workshop on Description Logics (DL’05), Edinburgh, Scotland,
UK (2005) 200–2007

18. Gardiner, T., Horrocks, I., Tsarkov, D.: Automated Benchmarking of Description
Logic Reasoners. In: Proc. of the Int. Workshop on Description Logics (DL’06),
Lake District, UK. Volume 189 of CEUR., Lake District, UK (2006) 167–174

19. Haarslev, V., Möller, R., Wessel, M.: Querying the Semantic Web with Racer +
nRQL. In: Proc. of the 3rd Int. Workshop on Applications of Description Logics
(ADL’04). CEUR, Ulm, Germany (2004)

310 T. Weithöner et al.

20. Motik, B., Sattler, U.: A Comparison of Techniques for Querying Large Descrip-
tion Logic ABoxes. In: Proc. of the 13th Int. Conf. on Logic Programming Artifi-
cial Intelligence and Reasoning (LPAR’06). Volume 4246 of LNCS., Phnom Penh,
Cambodia, Springer (2006)

21. Fokoue, A., Kershenbaum, A., L., M., Schonberg, E., Srinivas, K.: The Summary
Abox: Cutting Ontologies Down to Size. Technical Report TR-404, IBM Research –
Intelligent Application Analysis, Hawthornem, NY (2006)

22. Wessel, M., Möller, R.: A High Performance Semantic Web Query Answering
Engine. In: Proc. of the Int. Workshop on Description Logics (DL’05), Edinburgh,
Scotland, UK (2005) 84–95

23. Luther, M., Fukazawa, Y., Souville, B., Fujii, K., Naganuma, T., Wagner, M.,
Kurakake, S.: Classification-based Situational Reasoning for Task-oriented Mobile
Service Recommendation. In: Proc. of the ECAI’06 Workshop on Contexts and
Ontologies. (2006)

24. Bechhofer, S., Liebig, T., Luther, M., Noppens, O., Patel-Schneider, P., Suntisri-
varaporn, B., Turhan, A., Weithöner, T.: DIG 2.0 – Towards a Flexible Interface
for Description Logic Reasoners. In: Proc. of the OWL Experiences and Directions
Workshop (OWLED’06) at the ISWC’06. (2006)

25. Carroll, J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: Implementing the Semantic Web Recommendations. Technical Report HPL-
2003-146, HP Labs (2004)

26. van Harmelen, F.: How the Semantic Web will change KR: challenges and oppor-
tunities for a new research agenda. The Knowledge Engineering Review 17 (2002)
93–96

27. Guo, Y., Qasem, A., Heflin, J.: Large Scale Knowledge Base Systems: An Em-
pirical Evaluation Perspective. In: Proc. of the 21st National Conf. on Artificial
Intelligence (AAAI 2006), Boston, USA (2006) to appear.

28. Heinsohn, J., Kudenko, D., Nebel, B., Profitlich, H.J.: An Empirical Analysis
of Terminological Representation Systems. Technical Report RR-92-16, German
Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany (1992)

29. Liebig, T.: Reasoning with OWL – System Support and Insights –. Technical
Report TR-2006-04, Ulm University, Ulm, Germany (2006)

How to Design Better Ontology Metrics

Denny Vrandečić and York Sure

Institut AIFB, Universität Karlsruhe (TH), Germany
{vrandecic,sure}@aifb.uni-karlsruhe.de

Abstract. You can only control what you can measure. Measuring ontologies is
necessary to evaluate ontologies both during engineering and application. Metrics
allow the fast and simple assessment of an ontology and also to track their sub-
sequent evolution. In the last few years, a growing number of ontology metrics
and measures have been suggested and defined. But many of them suffer from a
recurring set of problems, most importantly they do not take the semantics of the
ontology language properly into account. The work presented here is a principal
approach to facilitate the creation of ontology metrics with the clear goal to go
beyond structural metrics to proper semantic-aware ontology metrics. We have
developed guidelines and a set of methodological tools based on the notions of
“normalization” and “stable metrics” for creating ontology metrics. These guide-
lines allow the metric author to decide which properties metrics need to fulfil and
to appropriately design the desired metric. A discussion of an exemplary metric
(taken from literature) illustrates and motivates the issues and suggested solutions.

1 Introduction

Did you ever dare to raise the issue of ontology quality assurance? How did you control
the process of improvement? As in many other related fields, you can only control what
you can measure [4]. Measuring ontologies is necessary to evaluate ontologies both
during engineering and application and is a necessary precondition to perform quality
assurance and control the process of improvement. Metrics allow the fast and simple
assessment of an ontology and also to track their subsequent evolution. In the last years,
many ontology metrics and measures have been suggested and some principal work has
been done to study the nature of metrics and measures for ontologies in general. We are
extending this work.

There is a recurring set of problems with existing ontology metrics and measures,
whereby we focus on the W3C standardized ontology language OWL [12]. We argue
that most metrics are based on structural notions without taking into account the seman-
tics which leads to incomparable measurement results. First, most ontology metrics are
defined over the RDF graph that represents an OWL DL ontology and thus are basically
graph metrics which take only structural notions into account. Second, only a very small
number of metrics is taking the semantics of OWL DL into account (subsumption etc.).
Third, almost no metric is taking the open world assumption into account. We believe
that foundational work addressing these issues will substantially facilitate the definition
of proper ontology metrics in the future.

In this paper we will study these issues, describe how they can be avoided, and
under what circumstances they have to be avoided, and under which they are acceptable,

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 311–325, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

312 D. Vrandečić and Y. Sure

will outline the foundations for a novel set of metrics and measures, and discuss the
advantages and problems of the given solutions. Our approach is based on two notions,
first “normalization” of an ontology, and second “stable metric”.

Normalization consists of the five steps (i) name anonymous classes, (ii) name
anonymous individuals, (iii) materialize the subsumption hierarchy and unify names,
(iv) propagate instances to deepest possible class or property within the hierarchy, and
(v) normalize property instances. We argue that such a normalization is useful as a kind
of pre-processing in order to apply known structural metrics in a semantics-aware way.
For instance, a known structural metric is the depth of of the class-hierarchy. However,
the current measures of ontology depth depend on a number of structural parameters
such as whether subsumption reasoning has been performed and whether the results
have been materialized before measurement. Performing the normalization steps before
measuring ensures that the value for the maximum depth of an ontology is comparable
to the maximum depth of another ontology.

Stable metrics are metrics that take the open world assumption properly into account,
that means that they are stable with regards to possible additions of further axioms to
the ontology. Stable metrics allow us to make statements about the behaviour of an on-
tology in the context of a dynamic and changing world wide web, where ontologies may
frequently be merged together in order to answer questions over integrated knowledge.
We give an exemplary extension of the depth metric towards a stable metric in order to
demonstrate how a classic metric can be turned into a stable one.

In this paper we assume the term to include both axioms and facts (as well as anno-
tations and ontology properties, although those are not taken into regard for normaliza-
tion), i.e. the TBox and the ABox. Here, ontology does not mean only the axioms (as it
is assumed in many other works), but also a knowledge base, and any of them could be
empty. Thus we follow the definition of ontology in the OWL standard [12].

The paper is structured as follows. In Section 2 we will examine existing metrics and
measures, and thus survey related work. Section 3 contrasts the underlying notions of
semantic metrics with structural metrics, and discusses which scenario will require what
kind of metric. Section 4 introduces the notion of “normalization” of an ontology which
forms the heart of our approach. In Section 5 we illustrate the practical application of
normalization on examples. Section 6 addresses the issue of stable metrics with regards
to the open world assumption. We conclude in Section 7, where we also discuss future
work.

2 Current Metrics and Measures

In this paper we will concentrate on some foundational aspects that form the base for
automatically acquirable measures. Therefore we will not define a number of metrics
and measures, but rather take a step back and discuss conditions that measures have
to adhere to in order to be regarded as semantically aware ontology metrics. This also
helps to understand clearly what it means for a metric to remain on a a structural level.

Thus the scope of this work compares best to other metric frameworks, like the
QOOD (quality oriented ontology description) framework [7] and the O2 and oQual
models [6]. The authors created semiotic models for ontology evaluation and validation,

How to Design Better Ontology Metrics 313

and thus describe how measures should be built in order to actually assess quality. They
also describe the relation between the ontology description, the ontology graph, and the
conceptualization that is expressed within the graph, and they define measures for the
structural, functional, and usability dimension. In [5] they introduce further measures
that can be applied within that framework. We will take one of the measures intro-
duced in [5] as an example in Section 5, and show some shortcomings of the actual
descriptions of such a measure (not of the framework as a whole!). We think that the
work described here fits well into the QOOD framework by making the assumptions
underlying such measures explicit.

A framework for metrics in the wider area of ontology engineering is provided by
OntoMetric [11]. The authors name and sort a long list of metrics into several different
areas, like tools, languages, methodologies, costs, and content. They define the relations
between the different metrics, their attributes, and the quality attributes they capture.
Within the OntoMetric framework, the work presented in this paper is based solely in
the area of content metrics. It extends the discussions around content metrics, and elab-
orates properties of such metrics in more detail. Whereas OntoMetric regards all kind of
metrics, we gear the results described here towards automatically measurable metrics.

OntoQA is a tool that implements a number of metrics [14], and thus it allows for the
automatic measurement of ontologies. They define metrics like richness, population,
or cohesion. Whereas all these metrics are interesting, they fail to define if they are
structurally or semantically defined – which is a common lapse. Most of the metrics
in OntoQA actually can be applied both before and after normalization (as described
in the following section). We suppose that comparing these two measures will yield
further interesting results.

Often metrics are defined purely structural. An example is given by [1], where the
authors describe metrics for ranking ontologies, like the class match or the density mea-
sure. Interestingly even the so called semantic similarity measure is not a semantic mea-
sure in the sense described here, since they apply all these measures on the graph that
describes the ontology, not on the ontological model.

OntoClean [9], currently the most well-known ontology evaluation approach, is a
philosophically inspired approach for the evaluation of formal properties of a taxon-
omy. Some tools offer support for the manual tagging with OntoClean properties (On-
toEdit [13] and WebODE [2]), a recent work deals with the automation of OntoClean
[15]. From a practical perspective OntoClean provides means to derive measurable mis-
matches of a taxonomy with respect to an ideal structure which takes into account the
semantics of the “is-a” relationship. Such mismatches have a structural nature, e.g. one
is able to derive that a certain concept should not be the subconcept of another con-
cept. OntoClean provides an explanation of why mismatches occur which subsequently
might help to improve the taxonomical structure. For many people the philosophical
notions of OntoClean are subject of long discussions, however, strictly speaking, this is
not part of the evaluation but of the ontology engineering because deciding the proper
nature of a class forces the ontology to commit itself to a more specified meaning, which
in turn allows for a more object evaluation technique.

Measures applied to ontologies from the Semantic Web are usually still in a very
simple state [17] (unsurprising due to the overall bad quality of ontologies in the wild,

314 D. Vrandečić and Y. Sure

and the high costs on resources for providing reasoning on a big number of ontologies).
We think that the most prevalent hurdle towards applying more semantic measures on
ontologies on the web is an actual lack of some foundational work towards defining
such measures, and a subsequent lack of implementation. The work presented here is a
step towards such an implementation, that will allow to measure the web in several new
dimensions.

3 Ontological Metrics

As shown in the previous section, current metrics often measure structural properties of
the ontology. In the case of OWL DL, this often means that they measure the structure
of the RDF graph that describes the ontology with well-known graph measures. An-
other approach is to measure the explicitly stated facts and axioms. Within these paper,
we regard both approaches as structural. Structural metrics are often useful, and this
paper does not suggest to replace them. It rather offers a way to extend the possibilities
available to the ontology engineer with truly ontological metrics.

We define ontological, or semantic, metrics to be those who do not measure the
structure of the ontology, but rather the models that are described by that structure. In
a naı̈ve way, we could state that we base our metrics not on the explicit statements, but
on every statement that is entailed by the ontology.

But measuring the entailments is much harder than measuring the structure, and we
definitively need a reasoner to do that. We also need to make a difference between a
statement X that is entailed by an ontology O to be true (O |= X), a statement that
is not entailed by an ontology (O �|= X), and a statement that is entailed not to be
true (O |= ¬X). To properly regard this difference leads us to so called stable metrics
that can deal with the open world assumption of OWL DL. We will return to them in
Section 6.

Note that measuring the entailments is more an intuitive description of how to de-
scribe ontological metrics than the actual approach. In many cases – for example for
a measure that simply counts the number of statements in an ontology – measuring all
entailed statements instead of measuring all explicit statements often leads to an infinite
number of statements. Just to give one example, the ontology ∃R.� � C also entails
the statements ∃R.∃R.� � C, ∃R.∃R.∃R.� � C, and so on, an endless chain of
existentials. But only terminating measures are of practical interest, and thus we need
approaches that allow us to capture ontological metrics in a terminating way.

In order to gain the advantage of the simple and cheap measurement of structural
features, we can transform the structure of the ontology. These transformation need to
preserve the semantics of the ontology, that is, they need to describe the same models.
But they also need to make certain semantic features of the ontology explicit in their
structure – thus we can take structural measures of the transformed ontology and inter-
pret them as ontological measures of the original ontology. We call this kind of trans-
formations normalization. The following section describes five steps of normalization.

With these tools we will be enabled to define ontological metrics in a simpler and
less error prone way than in current practice. We will show this on an exemplary metric
in Section 5.

How to Design Better Ontology Metrics 315

4 Normalization of an Ontology

This section describes several steps of normalization. Their goal is to explicate some
features of the semantics of an ontology within its structure, so that the structural met-
rics actually capture the semantics they are supposed to capture.

The following normalization steps are defined here:

1. name all relevant classes, so no anonymous complex class descriptions are left
2. name anonymous individuals
3. materialize the subsumption hierarchy and normalize names
4. instantiate the deepest possible class or property
5. normalize property instances

Notice that if we speak of names, we mean, in the context of OWL DL, the URI of the
class, property, or individual, not the human readable label.

In the first normalization our aim is to get rid of anonymous complex class descrip-
tions. After the first normalization, the TBox will contain two kind of axioms: class
definitions of the form A ≡ C, where A is a class name and C a class description (or
class name), and subsumption axioms of the form A � B, where both A and B are
class names. The ABox will consist of property instantiations of the form R(i, j), and
of facts of the form A(i), with A being a class name.

The first normalization can be done as follows:

1. in all axioms of the form C � D where C (or D) is a complex class description,
add a new axiom A ≡ C (B ≡ D) with A (B) being a new class name. Replace
the axiom C � D with A � D (C � B, or even A � B)

2. in all axioms of the form C ≡ D where both C and D are complex class descrip-
tions, replace that axiom with the two axioms A ≡ C and A ≡ D, with A being a
new class name

3. in all axioms of the form C ≡ A where C is a complex class descriptions and A an
atomic class name, replace that axiom with A ≡ C

4. in all axioms of the form C(i) where C is a complex class description, replace that
axiom with the axioms A(i) and A ≡ C with A being a new class name

None of these structural changes change the possible models, that means, that they are
semantically equivalent. They do introduce new class names to the ontology, which
may not be desirable in all cases (for example for presentation purposes, for counting
the classes, and so on).

Note that it is possible to introduce named classes that are unsatisfiable. This does
not mean that the ontology becomes unsatisfiable, but solely these newly introduced
classes. Instead of introducing new names for unsatisfiable classes though, we could
simply use the name ⊥.

The second normalization gets rid of anonymous individuals. This means that every
blank node that is of the (asserted or inferred) type individual needs to be replaced with
an URI reference. Especially in FOAF [3] files this occurs regularly since, for some
time, it was regarded as good practice not to define URIs for persons. Integration of
data was not done via the URI, but with inverse functional properties. This practice is

316 D. Vrandečić and Y. Sure

problematic, since the semantics of blank nodes in RDF are rather often not fully under-
stood, and should thus be avoided. The second normalization as defined here captures
the semantics most users wanted to express anyway.

It is possible that these newly introduced individual names give a further name to
already existing (or other newly introduced) individuals. But since OWL DL does not
adhere to a unique name assumptions, this is no problem. Furthermore, the next step of
normalization will take care to resolve such synonyms.

The third normalization will materialize the subsumption hierarchy and normalize
the names. The first step requires a reasoner.

1. for all pairs of simple class names (A, B) in the ontology, add the axiom A � B
if the ontology entails that axiom (that is, materialize all subsumptions between
simple named classes).

2. detect all cycles in the subsumption structure. For each set of classes A1. . . An that
participate in a cycle, remove all subsumption axioms from the ontology where
both classes are members of this set. In subsumption axioms where only one class
is a member of this set, replace the class with B in the axioms. Add the axioms
B ≡ A1. . . B ≡ An to the ontology. B is a new class name for each cycle. If B is
unsatisfiable, take ⊥ instead of B. If B is equal to �, take �.

3. regarding solely the subontology H3 that consists of all subsumption axioms of an
ontology O, remove all redundant ones (that is, remove all subsumption axioms
that are redundant due to the transitivity of the subsumption relation alone).

The subsumption structure now forms a directed acyclic graph that represents the com-
plete subsumption hierarchy of the original ontology. We define a set of normal classes
of an ontology as follows: every class that participates in an subsumption axiom after
the third normalization of an ontology is a normal class of that ontology.

Since we got rid of facts with complex class descriptions in the first normalization,
we do not need a reasoner in order to take care of fact normalization. We still have to
replace every class name that is not normal with its normal equivalent within the facts.

Note that instead of creating a new class name for each detected cycle, often it will
make more sense to choose a name from the set of classes involved in that cycle, based
on some criteria (like the class name belonging to a certain namespace, the popularity
of the class name on the web, etc.). For many ontology metrics, this does not make any
difference, so we disregard it for now, but we expect the normalizations to have bene-
ficial effects in other scenarios as well, in which case some steps of the normalization
need to be revisited in more detail. We will further discuss this in Section 7.

Since in OWL DL it is not possible to make complex property descriptions be-
sides inverse properties, property subsumption, and transitivity, (extensions towards
enabling more complex property descriptions are suggested in the OWL 1.1 proposal
[8]) no heavy reasoning is involved for property normalization in most cases. In case
a property has more than one name, we choose one (or introduce a new name and
state the equality). All normal property names have to be stated explicitly to be equiv-
alent to all other property names they are equal to (that is, we materialize the equality

How to Design Better Ontology Metrics 317

relations between the normal property names and the non-normal ones). All occurrences
of non-normal property names (besides within the axiom stating equality with the nor-
mal property name, and besides within annotation property instances) are replaced with
the normal property name.

The same holds true for individuals. In case an individual has more than one name,
we decide on or introduce a normal one and state explicitly equality to the normal name,
and then replace all occurrences of the non-normal individual names with the normal
one (besides within the axiom stating equality with the normal individual name, and
besides within annotation property instances).

We disregard annotation property instances since they may be used to state annota-
tions about the URI, and not about the actual concept, property, or individual. There
could be annotations that describe when a certain URI was introduced, who created
it, its deprecation state, or that point to a discussion related to the introduction of the
URI. Some annotations on the other hand may be useful for the normal name as well
– especially labels, or sometimes comments. Since annotations do not have impact on
the DL semantics of the ontology anyway, they may be dropped for the purpose of
measuring semantic metrics. Nevertheless, if the normalization is done for some other
purpose, and it is planned to further use the normalized version of the ontology in some
scenario, than the possible replacement of names within annotation property instances
depends both on the scenario and the instantiated annotation property (for example, it
may be useful to normalize the label when the ontology will be displayed on the user
interface, but it may be bad to normalize versioning information that is captured within
annotations).

The fourth normalization aims towards moving the instantiations to the deepest
possible level, as this conveys the most information explicitly (and deriving instantia-
tions of higher levels is very cheap because of the asserted explicitness of the hierarchy
due to third normalization). This does not mean that every instance will belong to only
one class, multiple instantiations will still be necessary in general.

Here is a possible (though not efficient) algorithm to perform the fourth normaliza-
tion of an ontology O.

1. for each normal class C and each normal individual i in O, add C(i) to O if it is
entailed by the ontology.

2. for each normal object property instance R(i, j) and each object property S so that
S � R is an explicit axiom in O, add S(i, j) if it is entailed by the ontology. Check
this also for the property instances added this way (this step will terminate since
the subsumption hierarchy is finite).

3. for each normal data property instance T (i, d) and each data property U , proceed
as in the previous step.

4. create a subontology H4 out of O including only the facts (that is, the ABox), and
the explicitly stated subsumption hierarchy of the classes and properties (after third
normalization)

5. remove all facts from O that are redundant in H4.

318 D. Vrandečić and Y. Sure

We do not want to remove all redundant facts from the ontology at this step, since there
may be some facts that are redundant due to an interplay of different other axioms in
the TBox. For example, in the following ontology:

Person(Adam).
likes(Adam ,Eve).
Person � ∃likes .�

the first statement is actually redundant, but would not be removed by the above
algorithm (the third statement states that the domain of likes is Person). This is because
we only remove axioms that are redundant within the subontology H4, and the axiom
stating the domain of Person would not be part of it. This is due to the fact that after
first normalization, the ontology would look like this:

Person(Adam).
likes(Adam ,Eve).
Person � A
A ≡ ∃likes .�

So H4 would not include the last axiom, and thus the first axiom would not be re-
dundant within H4.

The fifth normalization finally normalizes the properties: we materialize property
instances of symmetric and inverse properties, and we clean the transitivity relation-
ship. This can be done similar to the creation of the subsumption hierarchy in the third
normalization: after materializing all property instances, we remove all that are redun-
dant in the subontology H5, which contains only the property instances of all transitive
properties, and the axioms stating the transitivity of these properties.

It is important to mention that normalization does not lead to a canonic normalized
version. This means that there may be many different ontologies that result from the
normalization of an ontology. Often normalizations do not result in canonical, unique
results (think about conjunctive normal forms). The normalization as described here
can be extended in order to result in canonic normalized forms, but the benefit of such
an extension is not clear. Considering that common serializations, like the RDF/XML
serialization of OWL ontologies [12], lack a canonic translation anyway, and thus on-
tologies cannot be compared on a character by character base, for example as some
version control systems like CVS or SVN would require.

Also, normalization is not an applicable solution for every metric. For example, if we
want to know the number of atomic classes in an ontology, first normalizing it and then
calculating the number actually will return the wrong result in the general case. The
goal of normalization is to actually provide the metric designer some tools in order to
simplify the description of his metric. In the following section we describe an example
of how to apply the normalization for the description of a metric.

5 Examples of Normalization

The metric we will regard in this example is the depth of the ontology. What we want
to measure is intuitively described as the length of the subsumption hierarchy, or else

How to Design Better Ontology Metrics 319

the number of levels the class hierarchy has. In [5], this is the measure (M3), called
Maximal depth, and the definition is given as follows:

m = Nj∈P

∀i∃j(Nj∈P ≥ Ni∈P)

where Nj∈P is the set of all nodes in the path j from the set of all paths through the
digraph g that represents the ontology, that is, the definition is the length of the longest
succession of explicitly stated subsumption relations.

Let us regard the following ontology:

C ≡≥ 1R.�
D ≡≥ 2R.�
E ≡≥ 3R.�

By the definition of (M3), the depth of the ontology is 1 (since there are no explic-
itly stated subsumption axioms, every path has one node). But after normalization the
ontology gets transformed to this:

C ≡≥ 1R.�
D ≡≥ 2R.�
E ≡≥ 3R.�
D � C
E � D

Now the very same metric, applied to the normalized ontology, actually captures the
intuition of the depth of the ontology and returns 3.

As discussed earlier, this example also shows us that some metrics will not work
with normalization. In [5], metric (M30) is the axiom/class ratio. On the original ontol-
ogy it is 1, but raises to 5/3 in the normalized version. In case the original ontology is
being distributed and shared, (M30) – if stated as metadata of the ontology, for exam-
ple in some kind of ontology repository [10] – should be 1, and not calculated on the
normalized version.

Let us regard another example. In the following ontology

D � C
E � D
D � E
F � E

(M3) will be ∞ due to the subsumption cycle between D and E. The cycle can be
resolved by rewriting the axioms in the following way:

D � C
D ≡ E
F � E

But due to the definition, (M3) would yield 2 here – there are two explicit sub-
sumption paths, C, D and E, F , both having two nodes, and thus the longest path is 2.

320 D. Vrandečić and Y. Sure

The structural measure again does not bring the expected result. After normalization,
though, the ontology will look like this:

A � C
A ≡ D
A ≡ E
F � A

We have introduced a new class name A that replaces the members of the cycle, D, E.
Now the depth of the ontology is 3, as we would have expected from the start, since the
cycle is treated appropriately.

Existing structural metrics, as discussed in Section 2, often fail to capture what they
are meant for. Normalization is a tool that is easy to apply and that can easily repair a
number of such metrics. Even seemingly simple metrics, as demonstrated here with the
ontology depth, are defined in a way that makes too many assumption with regards to
the structure of the measured ontologies.

As we can see in this section, simple structural measures on the ontology do yield
values, and often these values may be highly interesting. If we know that (M3) resolves
to ∞, then this tells us that we have a cycle in the subsumption hierarchy. Also a high
number of classes and complex axioms, but a low (M3) may indicate an expensive to
reason about ontology, since the major part of the taxonomy seems to be implicitly
stated (but such claims need to be evaluated appropriately). But both results do not
capture what the measure was meant to express, that is, the depth of the class hierarchy.

But this leads us to the possibility of creating measures by combining structural met-
rics on the original ontology and on its normalized version, for example to calculate ratios
like M3(O)/M3(N(O)) (with M3(O) returning measure (M3) as described above, and
N(O) being a function that returns the normalized version of the ontology O). This could
describe the explicitness of the subsumption hierarchy. Further work needs to investigate
and evaluate such measures, and to assess their usefulness for evaluating ontologies.

6 Stability of Metrics

Often metrics intend to capture features of the ontology that are independent of the ac-
tual representation of the ontology. But as we have seen, structural transformations of
the ontology description often lead to differences in the metrics even though the se-
mantics remained untouched. Normalization offers a way to overcome these problems
in many cases.

One aspect of metrics, that are not touched upon by normalization, is the issue of
how stable the metrics are with regards to the open world assumption of OWL DL
ontologies. In order to illustrate this issue let’s take a look at a simple example. Imagine
an ontology with the following three facts:

author (paper ,York).
author (paper ,Denny).
author (paper ,Zdenko).

Now let us ask the simple question: how many authors does the paper have? It seems
that the answer should be 3. But now, if you knew that Zdenko is just another name for

How to Design Better Ontology Metrics 321

Denny , and thus state Zdenko ≈ Denny , then you suddenly would change your answer
to 2, or even, becoming more careful, giving an answer like “I am not sure, it is either
1 or 2”. So finally we can state that York �≈ Denny and thus arrive at the answer that
the paper indeed has 2 authors (and even that is possibly wrong if we consider that we
could add statements any time in an open world that add further authors to the paper –
all we know as of now is that the paper has at least two authors).

When creating a metric, we have to ask ourselves the following, similar question:
how does the metric behave when additions to the ontology happen? Since ontologies
are meant to be smushed and integrated constantly and dynamically, can we predict how
certain properties of the ontology will behave, that is, if M(O1) and M(O2) for a metric
M and two ontologies O1 and O2 are known, what can we state about M(O1 ∪O2)? Or
even, can we give a function fM so that fM (M(O1), M(O2)) = M(O1 ∪ O2) without
having to calculate M(O1 ∪ O2) (which may be much more expensive)?

In the previous section we have discussed the simple example of ontology depth. Let
us return to this example again. We define the function M3(O) that returns the measure
(M3) as described in [5], and already described above. If we have an ontology O1:

D � C
E � D

And a second ontology O2:

C � D
E � D

In this case, M3(O1) = 3, M3(O2) = 2. We would expect M3(O1 ∪ O2) to be 3,
since M(3) is defined as the maximal depth, but since the union of both ontologies actu-
ally creates a cycle in the subsumption hierarchy, (M3) is ∞ – or, after normalization,
just 2, and thus even smaller than the maximal depth before the union.

We can avoid such behaviour of the metrics by carefully taking the open world as-
sumption into account when defining the metric. But this leads us to three possibilities
for defining metrics,

1. to base the value on the ontology as it is,
2. to measure an upper bound, or
3. to measure a lower bound.

We need a more complicated example to fully demonstrate these metrics:

C ≡ D E
D � E � ⊥
F � E
G ≡ ¬C
H � C
F (i).
D(j).
G(k).

This ontology says that D and E form a complete partition of C (the first two ax-
ioms), that E has the subclass F , that there are elements that are not in C, and it states
the existence of three individuals, i, j and k, and the classes they belong to.

322 D. Vrandečić and Y. Sure

The normalized version of this ontology looks like this (shortened slightly for
readability):

C ≡ D E
⊥ ≡ D � E
D � C
E � C
F � E
G ≡ ¬C
H � C
F (i).
D(j).
G(k).

(M3) of this ontology is 3 (C, E, F). But besides the actual depth, we can also cal-
culate the minimal depth of this ontology, that is, no matter what axioms are added,
what is the smallest number of levels the ontology will have (under the condition that
the ontology remains satisfiable)?

In the given example, if we add the axiom F ≡ E, (M3) will decrease to 2. But on the
other hand, no matter what axiom we further add, there is no way to let C collapse with
D and E, therefore C is a proper superset of both (that is, it contains more individuals
than D or E alone). And because C cannot become � (due to k being outside of C),
the minimum depth of the ontology is 2.

The maximum depth of an ontology is usually ∞ (since we can always add axioms
about an arbitrarily long class hierarchy). Only in the case of an ontology with a closed
domain, that is, if we have an axiom like � ≡ {a, b, c}, then the maximum depth is set
(to |�|−1, since there may be a class C with one element, a class D with two elements
that subsumes C, and then � with three elements, but since � is not counted, the longest
path would be (C, D), and every further class in this path would become equivalent to
an already existing class or be empty). But we expect such axioms to usually appear
only in theoretical musings and hardly be of any practical relevance.

Therefore we need to define a maximum depth in a slightly different way in order to
be of practical value. In the following, we will discuss two possible definitions.

Instead of allowing for arbitrary axioms that may be added, we only allow to add
axioms of the form A � B with A and B being normal class names of the normalized
ontology. In the above example, we may add the axiom H � F to the ontology in
order to increase (M3) from 3 to 4. No longer subsumption path is possible, since all
the other named classes would become unsatisfiable when added to an existing path. So
this metric will provide with a maximum depth of the ontology, assuming no new class
names are added.

Another possibility to constrain the axioms to be added, is to allow only for axioms
that do not relate to the existing ontology, that is, the intersection of the signatures of
the two ontologies is empty. The signature of an ontology is the set of all names used in
the ontology (besides the names from the OWL, RDF, RDFS, and XSD namespaces).
In this case, (M3) of the merged ontology is the maximal (M3) of the single ontologies,
since no interaction between the axioms happen that may increase or reduce (M3). We

How to Design Better Ontology Metrics 323

can thus define fM3(M3(O1), M3(O2)) = max(M3(O1), M3(O2)), which is much
cheaper to calculate than M3(O1 ∪ O2).

Stable metrics are metrics that take the open world assumption into account. Sta-
ble metrics will help us to evaluate ontologies for the wide wild web. Since we expect
ontologies to be merged on the web dynamically, stable metrics allow us to state con-
ditions that the ontology will fulfil in any situation. The depth of an ontology may be a
too simple example to demonstrate the advantages of stable metrics, but imagine a dy-
namic, ontology-based graphical user interface. Having certain guarantees with regards
to the future development of the properties of the ontology may help the designer of
the user interface tremendously, even if it is such a seemingly trivial statement like “the
depth of the ontology is never less than 3”.

There is no simple recipe to follow in order to turn a metric into a stable metric, but
the question outlined at the beginning of this section, and then discussed throughout
the rest – how does the ontology behave when axioms are added? – can be used as a
guideline in achieving a stable metric.

We expect that the ready availability of metrics that take the open world assumption
into account will lead to more robust ontologies. Since ontology engineers will have
these numbers available at engineering and maintenance time, they will learn easier how
to achieve their actual goals. For example, ontology engineers that want to create a class
hierarchy that will not collapse to less levels can always check if the minimum depth
as described above corresponds to the asserted depth. Tools could guide the ontology
engineer towards achieving such goals. Ontology engineers get more aware of such
problems, and at the same time get tools to measure, and thus potentially control them.

7 Conclusion and Future Work

We have discussed the properties of ontology metrics. Sometimes simple structural met-
rics are sufficient for the task at hand, and many structural metrics exist today. Our goal
in this paper was to raise the awareness for the difference between structural and onto-
logical metrics, and to provide principle means for the simple definition of metrics that
take the semantics of the ontology appropriately into account.

Ontology normalization was introduced as a preprocessing step in order to align
structural measures with intended semantic measures. Further properties, like the stabil-
ity of a metric towards ontology extension and merges, and the non-dichotomous nature
of ontologies were discussed, and an approach towards encapsulating these problems
was suggested by introducing stable metrics.

In addition to offering the theoretical tool of normalization, we are planning to im-
plement it as an extension to the OWL tools1. This will allow to access these metrics
both from the command line as well as from a Java API. Besides making normalization
available to tools and metric suites, this will also allows us to evaluate if there are fur-
ther benefits to normalized ontologies. We assume such benefits with regards to query
answering performance, usability, and ontology maintenance. Some properties of nor-
malization suggest advantages in these and other areas, but we expect some parts of

1 http://owltools.ontoware.org/

http://owltools.ontoware.org/

324 D. Vrandečić and Y. Sure

the normalization process to be adapted based on differing requirements by these other
use cases.

Based on the foundational work provided in this paper, we plan to adapt, extend,
and implement several metrics already known in literature. We hope that a thorough
evaluation of these metrics will allow to correlate quality attributes to these metrics,
and thus to finally lead to viable sets of metrics and measures for the whole ontology
life cycle. We don’t think that there is one single such set, but the ideas presented here
make several design decision when creating metrics more explicit and point to common
problems and pitfalls when creating metrics and measures in this field. This will help in
deciding which metrics to choose for a given scenario.

We expect that future work will continue on this basis in order to create a bigger
tool set for everybody dealing with ontologies to allow them to evaluate ontologies
during every step of the ontology life cycle. This will lead to an overall higher quality
of ontologies, and thus to a stronger foundation on which the Semantic Web is being
built.

Acknowledgments. Research reported in this paper has been partially financed by
the EU in the IST project Knowledge Web (FP6-507482,http://knowledgeweb.
semanticweb.org). We want to thank our colleagues for the fruitful and interesting
discussions about the ideas presented in this paper, especially Aldo Gangemi, Marta
Sabou, Markus Krötzsch, Jos Lehmann, and Malvina Nissim.

References

1. H. Alani and C. Brewster. Metrics for ranking ontologies. In Vrandečić et al. [16].
2. J. C. Arpı́rez, O. Corcho, M. Fernández-López, and A. Gómez-Pérez. WebODE: a scalable

workbench for ontological engineering. In Proceedings of the First International Conference
on Knowledge Capture (K-CAP) Oct. 21-23, 2001, Victoria, B.C., Canada, 2001.

3. D. Brickley and L. Miller. The friend of a friend (FOAF) vocabulary specification, July 2005.
Namespace Document 27 July 2005 (’Pages about Things’ Edition).

4. T. DeMarco. Controlling Software Projects: Management, Measurement & Estimation.
Yourdon Press, New York, 1982.

5. A. Gangemi, C. Catenacci, M. Ciaramita, and J. Lehmann. Ontology evaluation and vali-
dation: an integrated formal model for the quality diagnostic task. Technical report, Lab-
oratory of Applied Ontologies – CNR, Rome, Italy, 2005. available at http://www.loa-
cnr.it/Publications.html.

6. A. Gangemi, C. Catenaccia, M. Ciaramita, and J. Lehmann. Modelling ontology evalua-
tion and validation. In Y. Sure and J. Domingue, editors, Proceedings of the 3rd European
Semantic Web Conference (ESWC2006), number 4011 in LNCS, Budva, Montenegro, June
2006. Springer-Verlag.

7. A. Gangemi, C. Catenaccia, M. Ciaramita, and J. Lehmann. Qood grid: A metaontology-
based framework for ontology evaluation and selection. In Vrandečić et al. [16].

8. B. C. Grau(ed.). OWL 1.1 web ontology language, November 2006. Available at
http://owl1 1.cs.manchester.ac.uk/.

9. N. Guarino and C. Welty. Evaluating ontological decisions with OntoClean. Communications
of the ACM, 45(2):61–65, February 2002.

http://knowledgeweb.semanticweb.org/
http://knowledgeweb.semanticweb.org/

How to Design Better Ontology Metrics 325

10. J. Hartmann, Y. Sure, P. Haase, R. Palma, and M. del Carmen Suarez-Figueroa. OMV – on-
tology metadata vocabulary. In C. Welty and A. Gangemi, editors, ISWC 2005 - In Ontology
Patterns for the Semantic Web, Galway, Ireland, November 2005.

11. A. Lozano-Tello and A. Gómez-Pérez. OntoMetric: A method to choose the appropriate on-
tology. Journal of Database Management, Special Issue on Ontological analysis, Evaluation,
and Engineering of Business Systems Analysis Methods, 15(2), April-June 2004.

12. M. K. Smith, C. Welty, and D. McGuinness. OWL Web Ontology Language Guide, 2004.
W3C Recommendation 10 February 2004.

13. Y. Sure, J. Angele, and S. Staab. OntoEdit: Multifaceted inferencing for ontology engineer-
ing. Journal on Data Semantics, 1(1):128–152, NOV 2003. LNCS 2800.

14. S. Tartir, I. B. Arpinar, M. Moore, A. P. Sheth, and B. Aleman-Meza. OntoQA: Metric-based
ontology quality analysis. In Proceedings of IEEE Workshop on Knowledge Acquisition from
Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources, 2005.

15. J. Völker, D. Vrandečić, and Y. Sure. Automatic evaluation of ontologies (AEON). In Y. Gil,
E. Motta, V. R. Benjamins, and M. A. Musen, editors, Proceedings of the 4th International
Semantic Web Conference (ISWC2005), volume 3729 of LNCS, pages 716–731. Springer
Verlag Berlin-Heidelberg, NOV 2005.

16. D. Vrandečić, M. del Carmen Surez-Figueroa, A. Gangemi, and Y. Sure, editors. Proceedings
of the 4th International Workshop on Evaluation of Ontologies for the Web (EON2006) at
the 15th International World Wide Web Conference (WWW 2006), Edinburgh, Scotland, May
2006.

17. T. D. Wang. Gauging ontologies and schemas by numbers. In Vrandečić et al. [16].

Measuring Inconsistencies in Ontologies

Xi Deng, Volker Haarslev, and Nematollaah Shiri

Department of Computer Science and Software Engineering
Concordia University, Montreal, Canada

{xi deng,haarslev,shiri}@encs.concordia.ca

Abstract. In this paper, we propose a novel approach to measure in-
consistencies in ontologies based on Shapley values, which are originally
proposed for game theory. This measure can be used to identify which
axioms in an input ontology or which parts of these axioms need to
be removed or modified in order to make the input consistent. We also
propose optimization techniques to improve the efficiency of computing
Shapley values. The proposed approach is independent of a particular
ontology language or a particular reasoning system used. Application of
this approach can improve the quality of ontology diagnosis and repair
in general.

1 Introduction

Ontologies play an important role in the Semantic Web as they provide a com-
mon shared model to represent a domain and to reason about the objects in the
domain. As the size of the ontologies grows and applications developed become
more complex, inconsistency becomes inevitable in the design and development
of ontologies. According to the classical ex contradictione quodlibet (ECQ) prin-
ciple, anything follows from an inconsistent ontology is useless. In order to help
users to resolve the inconsistencies in ontologies, several approaches to identify
and explain the cause of these inconsistencies have been proposed [1,2,3]. An as-
sumption often made in these approaches is that all inconsistencies are equally
“bad”. However, as shown in real world applications, it is possible for an ontology
to contain two or more sources of inconsistencies and they may have different
impact towards the inconsistencies. They may not necessarily contain the same
contradiction and the same information, and may have overlapping content. The
following are just two possible scenarios.

– Non-overlapping: there are more than one set of axioms that are needed to
produce an inconsistency in an ontology and they are independent of one
another.

Suppose K ′ and K ′′ are two inconsistent subsets of ontology O. When we
say O has non-overlapping sources of inconsistencies, it means that K ′∩K ′′ =
∅. Note that inconsistency might occur at different levels: in the level of
a single axiom, and in the level of sets of axioms. For example, consider
K ′ = {C � ¬C � C � ¬C} and K ′′ = {� � ∃R.B, � � ∀R.¬B}.1 The

1 Please refer to Section 2 for the definition of the notations.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 326–340, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Measuring Inconsistencies in Ontologies 327

axiom in K ′ is inherently inconsistent, while both of the two axioms in K ′′

are responsible to produce a contradiction.
– Overlapping: there are more than one set of axioms that are needed to pro-

duce an inconsistency in an ontology and they are interweaved with one
another.

O having overlapping sources of inconsistencies means that K ′ ∩ K ′′
= ∅.
When two sets of inconsistent axioms are overlapping, it indicates that cer-
tain axioms contribute more to the inconsistencies and these axioms are
possibly more problematic than others. It is most likely the case that remov-
ing one of these axioms from O will result in resolving other inconsistencies
as well.

In this paper we propose a quantitative measure of inconsistencies in ontolo-
gies which gives users guidelines on priorities of the axioms to be removed and
their consequences. Our approach borrows some ideas from [4], which presents
an approach of using the Shapley value to obtain an inconsistency measure for
propositional logic. It can be applied to clauses instead of axioms. Since clauses
are more fine-grained than axioms, it allows us to take a deeper look inside the
axioms and find out which proportion of the axiom contributes to the inconsis-
tency. We also discuss the relationship between the inconsistency measure and
the minimal inconsistent subsets of ontologies. The computational complexity
of calculating the Shapley value is at least Exp-time, which shows that it does
not scale well in general [5]. Therefore we propose to optimize the calculation
based on the structural relevance of the axioms and properties of the defined
inconsistency measure.

The main contribution of this paper is twofold: we combine previously known
game theory strategies into ontology reasoning and present a measure to system-
atically evaluate the inconsistencies in ontologies. To the best of our knowledge,
this is the first work in Description Logics towards providing a quantitative mea-
sure of inconsistencies. This approach is independent of a particular species of
ontology languages or a particular reasoning system used. Moreover, we illus-
trate how the application of this method can improve the quality of ontology
diagnosis and repair.

The remainder of the paper is organized as follows: Section 2 presents a brief
introduction of Description Logics, the underlying logics of the Web Ontology
Language OWL. Section 3 introduces the basic concepts used in our approach.
Section 4 describes the algorithms. The paper closes with a summary and also
a discussion of future work.

2 Preliminaries

In this section, we first review some basic concepts and terms related to the
ontology languages in the Semantic Web, and their relationships to Description
Logics (DLs). We also define the notion of inconsistency in an ontology.

328 X. Deng, V. Haarslev, and N. Shiri

2.1 Ontologies in the Semantic Web

The Web Ontology Language (OWL) has been recommended as the standard
web ontology language by the World Wide Web Consortium (W3C) [6]. It is a
machine-readable language for sharing and reasoning information on the Inter-
net. OWL is an extension of the Resource Description Framework (RDF) and a
revision of the DAML+OIL Web Ontology Language.

OWL represents the domain of interest by defining hierarchies of classes and
properties. An OWL ontology consists of axioms and facts. Axioms define inten-
sional knowledge by building relationships between classes and properties. Facts
describe the extensional knowledge about individuals. OWL currently has three
flavors: OWL Lite, OWL DL, and OWL Full. OWL Full contains OWL DL,
which in turn contains OWL Lite. OWL DL and OWL Lite correspond semanti-
cally with certain Description Logic languages. Reasoning tasks are undecidable
in OWL Full and currently there is no reasoner that supports reasoning of every
feature of OWL Full.

2.2 Description Logics

We shall not give a detailed introduction of Description Logics here, but re-
fer the interested reader to [7]. Description logics are a family of concept-based
knowledge representation formalisms. It represents the knowledge of a domain
by first defining the relevant concepts of the domain. These concepts are used
to specify properties of the objects in the domain. Typically a DL language
has two parts: terminology (TBox) and assertion (ABox). The TBox includes
intensional knowledge in the form of axioms whereas the ABox contains the
extensional knowledge that is specific to elements in the domain, called individ-
uals. The TBox together with the ABox is called a knowledge base in DL. In
the TBox, basic descriptions are atomic concepts, designated by unary predi-
cates, and atomic roles, designated by binary predicates to express relationships
between individuals. Concept descriptions can be built on atomic concepts by
iteratively applying constructors such as intersection, union, negation, value re-
striction and existential quantification. Axioms express how concepts and roles
are related to each other. Generally, it is a statement of the form C � D, read as
“concept C is subsumed by concept D”, or C ≡ D, indicating that C � D and
D � C, where C and D are concept descriptions. An ABox is a set of assertions
that of the form C(a) and R(a, b), where R is a role, and a, b are individuals.

An interpretation I defines the formal semantics of concepts, roles, and indi-
viduals. It consists of a non-empty set ΔI , called the domain. The interpretation
function I maps every atomic concept A to a subset AI of ΔI , and maps every
atomic role R to a binary relation RI ⊆ ΔI × ΔI . In addition, I maps each
individual name a to an element aI ∈ ΔI . An interpretation I satisfies C � D
if CI ⊆ DI . It satisfies C ≡ D if CI = DI . It satisfies C(a) if aI ∈ CI and it
satisfies R(a, b) if (aI , bI) ∈ RI .

The basic inference services in TBoxes include satisfiability, subsumption,
equivalence, and disjointness. A concept C in a TBox T is said to be satisfiable

Measuring Inconsistencies in Ontologies 329

w.r.t T if there exists a model of T (that is an interpretation I that satisfies the
axioms of T), such that CI is nonempty. The other three inference services can
be reduced to (un)satisfiability. Another important reasoning service in TBoxes
is to check whether a TBox T is consistent, i.e., whether there exists a model for
T . The basic reasoning tasks in ABoxes include instance checking, realization,
and retrieval. The instance check verifies if a given individual is an instance
of a specified concept. The realization finds the most specific concept that an
individual is an instance of. The retrieval finds the individuals in the knowledge
base that are instances of a given concept. An ABox A is consistent w.r.t a
TBox T , if there is an interpretation that is a model of both A and T (that is
an interpretation I that both satisfies the axioms of T and the assertions of A).
Similar to the inference services in TBoxes, the other three inference services
in ABoxes can also be reduced to the consistency problem of ABoxes. In this
paper, we use the term “consistency” to refer to consistency problems in both
TBoxes and ABoxes. We will also discuss the measure regarding unsatisfiable
concepts.

Roughly speaking, a concept in DL is referred to as a class in OWL. A role
in DL is a property in OWL. The terms axioms and individuals have the same
meaning in DL and OWL. OWL DL is based in part on the DL SHOIN (D),
which includes special constructors such as oneOf, transitive properties, inverse
properties and datatype properties, and its subset OWL Lite which is based on
the less expressive DL SHIF(D), is SHOIN (D) without the oneOf constructor
and with the number restriction constructors limited to 0 and 1. Due to the close
connection between OWL and DLs, in this paper, we will make no distinction
between ontologies and knowledge bases in DL, and the examples are given
mainly in DL syntax. The DL languages that we work on are those for which
consistency checking is decidable.

3 Inconsistency Measures

In this section, we study methods of measuring inconsistencies in DL knowledge
bases. The idea is to first define an inconsistency value, and then take it as the
characteristic function to compute the Shapley value.

3.1 Motivating Example

The following example is adapted from [3], which we modified to be inconsis-
tent. In the example, A, B, C, D, A1 to A6 denote concepts, and a and b are
individuals.

1. A1 � A2 � ¬A � A3 2. A2 � A � A4
3. A3 � A5 � A4 4. A4 � C � ∀S.B
5. A5 � ∃S.¬B 6. D � ¬D � D � ¬D
7. A1(a) 8. A3(b)
9. A6 ≡ D

330 X. Deng, V. Haarslev, and N. Shiri

A complete DL reasoner, such as FaCT++ [8], RACER [9] or Pellet [10],
reports this knowledge base to be inconsistent. However, they can not provide
crucial information, e.g., that there are four inconsistent subsets (3, 4, 5 and
8; 1, 2, and 7; 1, 3, 4, 5 and 7; 6) in this knowledge base, and that one axiom
(axiom 6) is inherently inconsistent. We will use this as our running example
throughout the paper to show how the hidden information can be unraveled
using our method.

3.2 Definitions

In this section we review some definitions of the Shapley value in game theory
[4], which we tailor for use in DL in this work.

Definition 1. Given a set of axioms and assertions in a knowledge base K, a
characteristic function v : 2K → R assigns a value to each coalition K ′, where
K ′ ⊆ K.

An example of the characteristic function is the drastic inconsistency value,
which assigns 1 to a set of axioms if it is inconsistent, and 0 to the set if it is
consistent.

Definition 2. For a set of axioms and assertions K ′ ⊆ K, the drastic incon-
sistency value of K ′ is defined as:

Id(K ′) =

{
0 if K ′ is consistent or K ′ is empty
1 otherwise

(1)

Example 1. Some drastic inconsistency values of the running example are as
follows, where we only show some of those with the inconsistency value 1, as
well as some consistent ones (with this value being 0).2

Id({1}) = 0 Id({2}) = 0 Id({3}) = 0
Id({1, 2}) = 0 Id({3, 4, 5}) = 0 Id({1, 2, 6}) = 1
Id({3, 4, 5, 8}) = 1 Id({3, 4, 5, 6}) = 1
Id({1, 3, 4, 5, 7}) = 1

As shown above, the coalition {1, 2, 6} has the inconsistency value 1. Axiom 6
is often of a great value for a coalition it joins. For example, it can bring 1 to
{2, 6} for making the coalition {1, 2, 6}. And it can also bring 1 to the coalition
{3, 4, 5, 6}.

Similarly, we can define another characteristic function which assigns 0 to a
set of axioms if a concept A is satisfiable and 1 otherwise.

Definition 3. The concept-related inconsistency value of a set of axioms K ′

w.r.t. a concept A (A occurs in K) is defined as:

IA(K) =

{
0 if A is satisfiable w.r.t. K’
1 otherwise

(2)

2 For the sake of simplicity, we refer to the axioms and assertions by their numbers.

Measuring Inconsistencies in Ontologies 331

Example 2. Some of the concept-related inconsistency values of the working ex-
ample are:

IA1({1, 2}) = 1 IA1({1, 3, 4, 5}) = 1
IA3({3, 4, 5}) = 1 IA3({3, 4, 9}) = 0

An inconsistent measure is to quantify the contribution of each axiom or asser-
tion in the knowledge base to the overall inconsistencies. The higher the measure
is, the more weight an axiom carries in contributing to the inconsistencies. Shap-
ley [11] proposed such a measure, known as Shapley values, in the context of
game theory in 1953, which describes a fair allocation of gains obtained by the
cooperation among several agents.

The Shapley value is defined for a game that has n agents. In the game, the
agents can form coalitions, which is a subset of the n agents. Each coalition
has a gain when all its members work together as a team. A question which
may arise here is “which agent contributes the most to different coalitions?”
A solution to this problem can help determine which agent values more to the
game than the others. The Shapley value is proposed to tackle this problem. The
basic idea is as follows. Suppose the agents join a coalition according to a certain
order, and the payoff of an agent in this coalition is its marginal contribution to
the gain of the coalition. The Shapley value takes all the possible orders of the
coalition formation into account and averages the agent’s marginal contribution
over them.

As the inconsistency checking can be deemed as a game, each axiom (or
assertion) in the knowledge base can be deemed as an agent. Analogously, the
contribution of each axiom (or assertion) to the inconsistencies can be measured
using the Shapley value.

Let K be a knowledge base, σK be the set of all permutations on K, and
n = |K| be the cardinality of K. Given an order σ ∈ σK , we use pα

σ to denote
the set of all the axioms and assertions in σ that appear before an axiom (or an
assertion) α.

Definition 4. The Shapley value for an axiom (or an assertion) α in an knowl-
edge base K is defined as:

Sα(K) =
1
n!

∑

σ∈σK

v(pα
σ ∪ {α}) − v(pα

σ)

The Shapley value can be directly computed from the possible coalitions without
considering the permutations, with the following expression:

Sα(K) =
∑

C⊆K

(c − 1)!(n − c)!
n!

(v(C) − v(C\{α}))

where C is any coalition of the axioms and assertions K, n = |K|, and c = |C|.

332 X. Deng, V. Haarslev, and N. Shiri

3.3 Inconsistency Measure Based on the Shapley Value

We can take the drastic inconsistency measure defined in Definition 2 (the same
computation can be applied to the concept-related measure defined in Defini-
tion 3) as the characteristic function, and then use the Shapley value to compute
to what extent an axiom or an assertion is concerned with the inconsistency.

For example, suppose K is a knowledge base and α is an axiom (or an asser-
tion) in K, then the Shapley value of α based on the drastic inconsistency value
Id is defined as:

Sα(K) =
∑

C⊆K

(c − 1)!(n − c)!
n!

(Id(C) − Id(C\{α})) (3)

where n = |K| and c = |C|.
The Shapley value of a knowledge base K is a vector with each element

denoting the Shapley value of each axiom (or assertion) in K.

Example 3. The Shapley value of the knowledge base K = {C � ¬C � C �
¬C, � � ∃R.B, � � ∀R.¬B, A � D} is (4

6 , 1
6 , 1

6 , 0).

This shows that {C � ¬C � C � ¬C} is the most problematic.

Example 4. The Shapley value of the working example is (268
7! , 250

7! , 120
7! , 120

7! ,
120
7! , 3774

7! , 268
7! , 120

7! , 0).

This shows that axiom 6 is the one that causes the most problems. 3, 4, 5 and
8 are equally responsible for the inconsistencies, so are 1 and 7. Axiom 9 has a
value of 0, which means it does not contribute to the inconsistency. Axiom 2 has
a higher value than 3, 4 or 5, which shows that the inconsistency is more equally
distributed among 3, 4 and 5.

3.4 Properties of the Inconsistency Measures

We make a few observations and remarks regarding the inconsistency measures.

Definition 5. The characteristic function v is increasing if X ⊆ Y, v(X) ≤
v(Y).

An increasing function indicates that adding more agents to the coalition will
never decrease the value. In the worst case, they contribute nothing to the coali-
tion. Due to the monotonic nature of DL reasoning, we can prove the following.

Proposition 1. The drastic (concept-related) inconsistency value (see Defini-
tion 2 and 3) is increasing.

A set of axioms and assertions is called convergent if its inconsistency value is
convergent, i.e., it is the same as the inconsistency values of its super sets, and
adding any other axioms or assertions does not change its inconsistency value.

Measuring Inconsistencies in Ontologies 333

Definition 6. The convergent subset K ′ of a knowledge base K is defined as a
set of axioms and assertions that satisfies the following two properties:

1. Id(K ′) = 1 (or IA(K ′) = 1), and
2. Id(K ′′) = 0 (or IA(K ′′) = 0), for all K ′′ ⊂ K ′.

Intuitively, K ′ is a convergent point, in which the inconsistency value flips from
0 to 1. There is a direct relation between the convergent subsets and minimally
inconsistent subsets of a knowledge base, defined as follows.

Definition 7 (MIS). We say that T ′ is the minimally inconsistent subset (MIS)
of a knowledge base T if the following two conditions hold:

1. T ′ is inconsistent, and
2. T ′′ is consistent, for every T ′′ such that T ′′ ⊂ T ′.

Proposition 2. K ′ defined in Definition 6 is a minimally inconsistent subset.

Another inconsistency measure of a coalition K ′ that can be defined is based
on the number of minimally inconsistent subsets that would be removed if we
remove K ′ from the knowledge base. In other words, this measures the impact
of K ′ on the knowledge base, formalized as follows.

Definition 8. The impact inconsistency measure of a subset K ′ in a knowledge
base K can be defined as follows:

Ii(K ′) = |MIS (K)| − |MIS (K − K ′)|
where |MIS(K ′)| denotes the number of minimally inconsistent subsets of K ′.

Example 5. There are four convergent subsets, i.e., four MISs in the working
example.

MIS1 = {1, 2, 7}, MIS2 = {3, 4, 5, 8}, MIS3 = {1, 3, 4, 5, 7}, MIS4 = {6}
Ii({1}) = Ii({7}) = Ii({3}) = Ii({4}) = Ii({5}) = 2
Ii({2}) = Ii({6}) = Ii({8}) = 1
Ii({9}) = 0

Obviously, the removal of 1, 7, 3, 4, or 5 will remove the most number of incon-
sistencies. The removal of axiom 9 will not affect the inconsistencies at all.

3.5 Apply the Inconsistency Measures to Clauses

The inconsistency measures discussed in this paper so far are applied to axioms
in ontologies. It excludes the possibility of a more fine-grained inspection of the
content of the axioms. In particular, if the inconsistency is in the level of a
single axiom, then only two values can be obtained: consistent or inconsistent.
In our previous work [1,12], we have developed a resolution based technique
to explain inconsistency in ontologies. We found that clauses work on a more

334 X. Deng, V. Haarslev, and N. Shiri

fine-grained level than DL axioms, so an approach based on clauses can identify
specific parts of axioms that are responsible for an inconsistency. Consequently,
the inconsistency measures can also be applied to clauses and this allows us to
look inside the axiom and identify which proportion of the axiom is contributing
to the inconsistency.

4 Computational Complexity Concerns

The most important source of computational complexity in calculating the Shap-
ley value is the difficulty to obtain the inconsistency value of an axiom. It is
directly dependent on the complexity of consistency checking in DL reason-
ings. One of the possible optimizations is to reduce the number of consistency
checks. Besides, the complexity is also related to the computation process it-
self. The computation of the Shapley value considers all the subsets of the ax-
ioms/assertions in the knowledge base, and hence it results in Exp-time. How-
ever, we do not really need to compute the inconsistency values of all the subsets.
In the following sections we will discuss such optimizations.

4.1 Partition Based on Structural Relevance

In DLs, axioms3 can be related to each other through structure relevance. For
example, the axiom A � B is structurally related to ¬B � � but not to ¬C � D.
It is clear that adding a structurally unrelated axiom to a coalition will not
change the relative inconsistency value. Structural relevance is an equivalence
relation, hence it can be exploited to induce a partitioning of the axioms, which
as shown below, can be used as an optimization to speed up the computation of
the Shapley inconsistency value.

Definition 9. We say an axiom is directly structurally related to another axiom
if the intersection of their signature (the set of all (negated) concept names and
role names occurring in the axiom) is not empty. The structural relevance is the
transitive closure of direct structural relevance.

Example 6. In the motivating example, A1 � A2�¬A�A3 is directly structurally
related to A2 � A � A4. It is structurally related to A4 � C � ∀S.B (because
A3 � A5 � A4), but it is not related to D � ¬D � D � ¬D.

Example 7. There are two partitions in the motivating example:{A1 � A2�¬A�
A3, A2 � A � A4, A3 � A5 � A4, A4 � C � ∀S.B, A5 � ∃S.¬B, A1(a), A3(b)},
{D � ¬D � D � ¬D, A6 ≡ D}.

The following result suggests that partitioning according to structural relevance
can be used to reduce the computational complexity of the Shapley value in our
context.
3 For the sake of simplicity, we only refer to the axioms, assertions can be considered

in the same way.

Measuring Inconsistencies in Ontologies 335

Lemma 1. If K =
∑T

i=1 Ki is a partitioning of a knowledge base, and all Ki

have the same inconsistency value function I, then for any axiom (or assertion)
α ∈ Ki,

Sα(Ki) =
∑

C⊆Ki

(c − 1)!(n − c)!
n!

(I(C) − I(C\{α}))

where n = |Ki| and c = |C|.
After the partitioning, the Shapley value of an axiom (or an assertion) can be

computed in O(
∑T

i=1 2|Ki|).

The partitioning based on structural relevance preserves the total ordering on
the Shapley values of the axioms (and assertions) inside the same partition. In
other words, if an axiom has a higher Shapley value than another axiom in the
partition, then it will also have a higher Shapley value in the knowledge base.

Theorem 1. If K =
∑T

i=1 Ki is a partitioning of a knowledge base, and all
Ki have the same inconsistency value function I, then for any α, β ∈ Ki, if
Sα(Ki) > Sβ(Ki), then Sα(K) > Sβ(K).

Proof. For each partition Ki ⊆ K and α, β ∈ Ki, if Sα(Ki) > Sβ(Ki), then
∑

C⊆Ki

(c−1)!(n−c)!
n! (I(C) − I(C\{α})) >

∑
C⊆Ki

(c−1)!(n−c)!
n! (I(C) − I(C\{β})).

Let us prove Sα(K) > Sβ(K) by cases: for any Ci ⊆ K, if Ci ⊆ C, as previously
indicated,

∑
Ci⊆K

(c−1)!(n−c)!
n! (I(Ci)−I(Ci\{α})) >

∑
Ci⊆K

(c−1)!(n−c)!
n! (I(Ci)−

I(Ci\{β})). Otherwise, if I(Ci − C) = 1, then I(Ci) − I(Ci\{α}) = I(Ci) −
I(Ci\{β}), if I(Ci − C) = 0, then I(Ci) − I(Ci\{α}) > I(Ci) − I(Ci\{β}).
So

∑
Ci⊆K

(c−1)!(n−c)!
n! (I(Ci) − I(Ci\{α})) ≥

∑
Ci⊆K

(c−1)!(n−c)!
n! (I(Ci) − I(Ci

\{β})). So
∑

C⊆K
(c−1)!(n−c)!

n! (I(C) − I(C\{α})) >
∑

C⊆K
(c−1)!(n−c)!

n! (I(C) −
I(C\{β})), considering all the possible cases. Hence Sα(K) > Sβ(K).

4.2 Optimization Based on Properties of the Inconsistency Measure

Partitioning the knowledge base according to structural relevance can work very
well when the sizes |Ki| are small, especially when the |Ki| are bounded by a
constant. This, however, is largely dependent on the particular knowledge base
considered. In what follows, we propose an algorithm to calculate the Shapley
value based on the properties of the inconsistency measure, especially the con-
vergent property. This method aims to reduce the number of consistency checks.
The basic idea is quite simple: according to Definition 6 in Section 3.4, a conver-
gent subset of a knowledge base is the maximal subset whose inconsistency value
has to be calculated. Any superset of a convergent knowledge base can have its
inconsistency value derived to be 1 due to the monotonicity of DLs. Hence once a
subset is convergent, there is no necessity to compute its supersets. The detailed
algorithm is shown in Figure 1.

Example 8. To see how this algorithm works, we can apply the optimization
to one of the partitions in the motivating example: {A1 � A2 � ¬A � A3, A2 �

336 X. Deng, V. Haarslev, and N. Shiri

Input: an axiom (or assertion) α in K
Output: the Shapley value of α

for all the subsets K′ ⊆ K, sorted by the cardinality of K′

while I(K′ ∪ α) = 0
move to the next unvisited K′

for all supersets K′′ of K′

I(K′′) = 1
tag K′′ as visited

move to the next unvisited K′

Compute the Shapley value of α

Fig. 1. Computing Shapley values

A�A4, A3 � A5�A4, A4 � C�∀S.B, A5 � ∃S.¬B, A1(a), A3(b)}. The algorithm
will first compute the inconsistency value of A1(a), and then the coalition of
A1(a) and any one of the other axioms, and then the coalition of A1(a) and
any two of the other axioms, since the coalition of A1 � A2 � ¬A � A3, A2 �
A � A4 and A1(a) has an inconsistency value of 1, we will skip computing the
inconsistency value of its supersets. It is the same case with the coalition of
A1 � A2 � ¬A � A3, A3 � A5 � A4, A4 � C � ∀S.B, A5 � ∃S.¬B and A1(a).

We can either compute the convergent sub-terminologies on the fly during the
computation of the Shapley value, or use algorithms for MIS in [13] to compute
them in advance.

5 Experimental Results

To evaluate whether our proposed method is useful for ontologies, we have imple-
mented the algorithm with the suggested optimizations in the previous section,
and have performed some preliminary experiments. It was run on two ontologies:
the University ontology with 32 concepts and 24 axioms, the Koala ontology with
14 concepts and 19 axioms.4 Tests were performed on a Windows XP system
with a 3.0GHz Intel Pentium 4 processor, and 2GB memory. The implementation
was developed in Java (JDK 1.5.0). The original University and Koala ontologies
are consistent and they have 15 and 3 unsatisfiable concepts respectively. They
are provided as sample ontologies to test the repair service of the OWL ontology
editor SWOOP 2.3 beta 3, which uses Pellet as the default DL reasoner. In our
experiments, we asserted fresh individuals for these unsatisfiable concepts in or-
der to make the ontologies inconsistent. After the modification, repair plans can
no longer be generated for these inconsistent ontologies in SWOOP.

There were four sources of inconsistencies in the University ontology. Calcu-
lating the measure took about 35 seconds. In the Koala ontology, there were
4 The University and Koala ontologies were obtained from the website of SWOOP:

http://www.mindswap.org/2005/debugging/ontologies/.

Measuring Inconsistencies in Ontologies 337

three sources of inconsistencies, and it took 12 seconds to calculate the incon-
sistency measure. If optimization techniques discussed in Section 4 are adopted,
then the running time are 1.6 seconds and 467 ms, respectively.

Let’s look at part of the Koala ontology as follows:

1.Koala � Marsupials
2.Quokka � Marsupials
3.P erson � ¬Marsupials
4.Koala � ∃isHardworking{false}
5.KoalaWithPhD � ∃hasDegree{PhD} � Koala
6.Quokka � ∃isHardworking{true}
7.∃isHardworking.� � Person
8.∃hasDegree.� � Person
9.Koala(Suzy)
10.KoalaWithPhD(Lizzy)
11.Quokka(Pan)

There are three sources of inconsistencies in this ontology. A koala named Suzy
is forced be to a member of the disjoint classes marsupial and person. She is a
marsupial because koala is a subclass of marsupial and she is a person because
person is the domain of isHardWorking and every koala must have at least one
isHardWorking property. A koala with a PhD named Lizzy is also forced to a
member of the disjoint classes marsupial and person. She is a person because
person is the domain of hasDegree and every koala with a PhD must have at
least one hasDegree property. Similarly, a Quokka named Pan is also causing
inconsistency problems.

After the computation, axiom 3 gets the highest Shapley value, followed by
axiom 7 and 1. In addition, axiom 3 has an impact inconsistency measure of
3. For the naive user of these ontologies, this information can be very helpful.
Removing Axiom 3 will render the ontology consistent, and therefore enables
most of the reasoning services that users have expected from their ontology
development tools.

For the purpose of this paper, the implementation uses Racer as a black box
to check the satisfiability. This black box approach comes with the advantage
of independence of any particular reasoner or DL language. However, even with
the optimization techniques, the worst case computational complexity is still
exponential time. If the convergent ontologies are computed in a preprocessing
step using algorithms presented in [14], the computational time can be further
reduced.

6 Related Work

Measures of inconsistency haven been studied in [15,16,4]. These proposals for
measuring inconsistency can be classified in two approaches. The first involves

338 X. Deng, V. Haarslev, and N. Shiri

counting the minimal number of formulae needed to produce the inconsistency.
The more formulae needed to produce the inconsistency, the less inconsistent the
set [16]. The second approach involves inspecting the proportion of the language
that is affected by the inconsistency. [4] is the closest to our work. Our work is
inspired by their proposal to use the Shapley value to obtain an inconsistency
measure for propositional logic. However, our work differs from theirs in two as-
pects: our approach works for a much more expressive logic and we also consider
the optimizations of this method from a practical point of view.

In the DL community, several approaches have been proposed to deal with
diagnosis of a knowledge base. [17] provides a general theory for diagnosis of De-
scription Logics knowledge bases, based on Reiter’s diagnosis theory from first
principles. [13] uses a modified tableau algorithm for ALC to first find a mini-
mally inconsistent subset of a knowledge base, and then use Reiter’s hitting set
algorithm to find the maximally consistent subsets. They also propose to choose
and eliminate axioms that most frequently participate in the underlying logical
contradictions. [14] modifies the tableau rules and extends the DL language to
SHOIN . These approaches focus on the incoherence problem, i.e., if there exists
an unsatisfiable concept in the ontology and they cannot render a repair plan
if the ontology contains more than one inconsistency. Our approach also differs
from these proposals in that they assume that all inconsistencies are equally bad,
while we present a quantitative way to differentiate these inconsistencies.

7 Conclusion and Future Work

With the development of more expressive ontologies in the Semantic Web com-
munity, inconsistency has become an increasing problem that can seriously ham-
per the construction and application of web ontologies. In this paper, we have
presented a technique for measuring inconsistencies which uses the Shapley value
in game theory. Since the Shapley value aims to distribute the gains from co-
operation in a fair manner, it can be used to impute the inconsistency to each
axioms in the problematic ontology. The idea is to first define an inconsistency
value, and then take it as the characteristic function, using the Shapley value
to compute the contribution of each axiom or assertion to the inconsistencies in
the ontology. This technique is conceptually flexible in the sense that although
we focus on inconsistency problems in this paper, by choosing different incon-
sistency value functions, we can also address incoherence problems. It should be
an easy extension to adopt other consistency values in the future. The measure
associated with an axiom shows the degree of its responsibility for the inconsis-
tency, therefore it can give guidelines for repairing the ontologies. We have also
proposed and implemented some optimization techniques based on the structural
relevance of the axioms and properties of the defined inconsistency measure, in
order to reduce the computational complexity. An implementation of the pro-
posed algorithm to be applied to clauses is underway to be incorporated as part
of our explanation module developed earlier for DL reasoning.

Measuring Inconsistencies in Ontologies 339

Acknowledgements

This work was supported in part by Natural Sciences and Engineering Research
Council (NSERC) of Canada, by Genome Quebec, and by Faculty of ENCS,
Concordia University. We also thank anonymous reviewers for their valuable
comments.

References

1. Deng, X., Haarslev, V., Shiri, N.: A framework for explaining reasoning in descrip-
tion logics. In: Proceedings of the AAAI Fall Symposium on Explanation-aware
Computing, Washington, DC, USA, AAAI Press (2005) 189–204

2. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging owl ontologies. In: Proceedings of
the 14th International World Wide Web Conference (WWW 2005), Chiba, Japan,
ACM Press (2005) 633–640

3. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Proceedings of the eighteenth International
Joint Conference on Artificial Intelligence (IJCAI’03), Acapulco, Mexico, Morgan
Kaufmann (2003) 355–362

4. Hunter, A., Konieczny, S.: Shapley inconsistency values. In: Proceedings of the
International Conference on Knowledge Representation (KR’06), Windermere, UK,
AAAI Press (2006) 249–259

5. Conitzer, V., Sandholm, T.: Computing shapley values, manipulating value division
schemes, and checking core membership in multi-issue domains. In McGuinness,
D.L., Ferguson, G., eds.: Proceedings of the Nineteenth National Conference on
Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial
Intelligence (AAAI 2004), San Jose, California, USA, AAAI Press/The MIT Press
(2004) 219–225

6. In: OWL Web Ontology Language Overview. (2004) http://www.w3.org/TR/owl-
features/.

7. Baader, F., Nutt, W.: Basic description logic. In Baader, F., Calvanese, D.,
McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.: The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge University
Press (2003) 5–44

8. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Proceedings of the International Joint Conference on Automated Reasoning
(IJCAR 2006). Volume 4130 of Lecture Notes in Artificial Intelligence., Seatle,
Washingtion, USA, Springer (2006) 292–297

9. Haarslev, V., Möller, R.: Racer system description. In R. Gori, A. Leitsch, T.N.,
ed.: Proceedings of International Joint Conference on Automated Reasoning (IJ-
CAR 2001), Siena, Italy, Springer-Verlag (2001) 701–705

10. Sirin, E., Parsia, B.: Pellet: An owl dl reasoner. In: Proceedings of the 2004 Inter-
national Workshop on Description Logics (DL2004), Whistler, British Columbia,
Canada (2004)

11. Shapley, L.: A value for n-person games. In Kuhn, H., Tucker, A., eds.: Contri-
butions to the Theory of Games. Volume 2. Princeton University Press (1953)
307–317

12. Deng, X., Haarslev, V., Shiri, N.: Resolution based explanations for reasoning in
the description logic ALC. In: Proceedings of the Canadian Semantic Web Working
Symposium, Quebec City, Canada, Springer (2006) 55–61

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/

340 X. Deng, V. Haarslev, and N. Shiri

13. Schlobach, S.: Diagnosing terminologies. In: Proceedings, The Twentieth National
Conference on Artificial Intelligence and the Seventeenth Innovative Applications
of Artificial Intelligence Conference (AAAI 2005), Pittsburgh, Pennsylvania, USA,
AAAI Press (2005) 670–675

14. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C.: Repairing unsatisfiable concepts
in owl ontologies. In Sure, Y., Domingue, J., eds.: Proceedings of the 3rd Euro-
pean Semantic Web Conference (ESWC 2006). Volume 4011 of Lecture Notes in
Computer Science., Budva, Montenegro, Springer (2006) 170–184

15. Grant, J.: Classifications for inconsistent theories. Notre Dame Journal of Formal
Logic 19(3) (1978) 435–444

16. Knight, K.: Measuring inconsistency. Journal of Philosophical Logic 31(2) (2002)
77–98

17. Friedrich, G., Shchekotykhin, K.M.: A general diagnosis method for ontologies.
In Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A., eds.: Proceedings of 4th
International Semantic Web Conference (ISWC 2005). Volume 3729 of Lecture
Notes in Computer Science., Galway, Ireland, Springer (2005) 232–246

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 341–355, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Squirrel: An Advanced Semantic Search and Browse
Facility

Alistair Duke, Tim Glover, and John Davies

Next Generation Web Research Group, BT Group, Adastral Park, Ipswich, UK
{alistair.duke,tim.glover,john.nj.davies}@bt.com

Abstract. Search is seen as a key application that can benefit from semantic
technology with improvements to recall and precision over conventional
Information Retrieval techniques. This paper describes Squirrel, a search and
browse tool that provides access to semantically annotated data. Squirrel
provides combined keyword based and semantic searching. The intention is to
provide a balance between the speed and ease of use of simple free text search
and the power of semantic search. In addition, the ontological approach
provides the user with a much richer browsing experience. Squirrel builds on
and integrates a number of semantic technology components. These include
machine learning and information extraction components which generate,
extract and manage semantic metadata contained within and about textual
documents at index time. A number of run-time components have also been
integrated to deliver an enhanced user experience which goes beyond merely
presenting a list of documents as a query response. The tool has been trialled
and evaluated in two case studies and we report early results from this exercise,
revealing promising results.

1 Introduction

Search engines based on conventional IR techniques (employing keyword and phrase
matching between the query and index) alone tend to offer high recall and low
precision. The user is faced with too many results and many results that are irrelevant.
A major reason for this is the failure to handle polysemy and synonymy, or more
generally, the view of a document purely as a bag of words upon which no semantic
analysis is carried out. Although it is possible to disambiguate queries by adding more
terms and by making use of more sophisticated functions (e.g. Boolean operators)
there is evidence to suggest that the majority of users do not do this [8]. Algorithms
such as Google’s PageRank offer significant improvement over previous approaches,
however, the approach tends to attribute a low rank to new pages about popular topics
and the rank stays low if people cannot find the site and then link to it. Also, the result
set continues to be too large and context is not considered which means results from
queries about unpopular topics are still hard to pick out. Moreover, there are doubts
about the suitability of the algorithm for ranking pages on corporate intranets due to
their more regular structure [15]. A further point is that people require information
rather than just a list of links where they might find what they are looking for.

342 A. Duke, T. Glover, and J. Davies

This paper describes Squirrel, a search and browse tool based on semantic
technology. Squirrel aims to address the issues stated above through combined
keyword based and semantic searching by allowing the user to initially enter free text
terms and see results immediately but following this to allow them to refine their
queries with the use of ontological support e.g. by selecting from a set of returned
topics or matching entities. The intention is to provide a balance between the speed
and ease of use of simple free text search and the power of semantic search. In
addition, the ontological approach provides the user with a much richer browsing
experience.

Squirrel has been developed in the EU SEKT project1. One of the main aims of
SEKT has been to address the metadata bottleneck by providing semi-automatic
semantic annotation and ontology generation tools. Squirrel builds upon the efforts of
SEKT in this area to allow users to more easily find relevant knowledge with the
support of semi-automatically derived semantic metadata about unstructured textual
documents. The metadata describes both documents themselves and their content.
Squirrel is targeted a large enterprises where it aims to offer a single search interface
over the heterogeneous data sources that are common in that setting.

Squirrel provides a number of novel features to enhance the search and browse
experience. These include natural language generation which provides natural
language summaries of knowledge held in formal (ontological) structures; device
independence which allows the tool to be run on multiple devices; and result
consolidation which presents the most relevant textual content of result documents
rather than a simple list of results.

The paper is structured as follows. The next section introduces a scenario which
illustrates both the requirements and benefits of enhanced search and browse. Section
3 describes the salient features of the supporting components that comprise Squirrel
and presents an architecture for the system. In Section 4 further detail is provided
about the user experience with a description of the important features of the interface.
Early results from an evaluation exercise are described in Section 5. Section 6
discusses related work and outstanding issues whilst we conclude in Section 7 with a
view of the way forward.

2 Scenario

Squirrel has been trialled within the SEKT project in a case study which is developing
an improved Digital Library. The following scenario describes a Digital Library user
carrying out a knowledge seeking task, making use of the features provided by
Squirrel and its supporting components.

The user has an initial high level goal to seek information about the field of Home
Health Care and has little idea about what is contained in the library which might be
of use. They first enter ‘Home Health Care’ into the search box and hit the ‘Go!’
button. The first result screen includes a summary of the sorts of resources that have
been found that might be able to meet their needs. These include the textual resources
from the library i.e. that there are a number of journal articles, conference papers,

1 http://www.sekt-project.com

 Squirrel: An Advanced Semantic Search and Browse Facility 343

periodicals and web pages (that have been shared by library users and indexed as
library resources) that match their query. In addition, there are a number of library
topics (subject areas against which relevant documents are classified) that also match
their query including one which is itself called ‘Home Health Care’. Further matches
include a number of organizations from a domain knowledge base whose description
includes the search term.

In addition to this summary, the user is also presented with the top ranked textual
resources (in typical search engine style). This simple list of documents is augmented
with the ability to refine the search based on the properties of the documents in the
result set, including a hierarchical display of the topics of the results documents, date
of publish, author name, etc.

Our user decides that they are interested in current affairs related to their topic
rather than scientific papers. They choose to refine the search to the periodicals
section of the library. The topic hierarchy is rebuilt to accommodate the documents in
the refined results set. Furthermore, our user is interested in the financial aspects of
home health care and notices that a topic called ‘Economic Conditions’ has been
presented. They then choose this topic to further refine their results set.

A short taster of each result together with its title and other metadata is presented.
This is enhanced by highlighting the named entities that have been recognized in the
text such as people, organization, locations, etc. Our user places their mouse of one
such highlighted term, ‘United Health Products’ and is shown a popup which tells
them that this is a company. Intrigued about the company, they click on the term and
are taken to a screen giving further information about the company including a natural
language summary about the company as well as related entities such as the people
who work for it. There is also a link to all of the documents where this company
(including any of its aliases such as UHP, etc.) is mentioned. Our user clicks on this
link but then decides they’d rather view the results as a consolidated summary rather
than a list of discrete results. In this view the most relevant portions of the result
documents are shown to the user meaning they can quickly view the available
material rather than having to navigate to several different pages. The user again
refines the contents of the summary by selecting one of more of the topics that have
been assigned to the presented material.

3 Architecture

Squirrel integrates a number of components developed in the SEKT project. This
section briefly describes the features of the components and then presents an
architecture illustrating how they have been integrated.

3.1 PROTON

PROTON is a lightweight general purpose ontology developed in SEKT which
includes a module specific to the knowledge management domain. PROTON is used
by SEKT components for metadata generation and as a basis for knowledge
modelling and integration.

344 A. Duke, T. Glover, and J. Davies

A world knowledge base (originally developed as part of the KIM platform [11])
has been expressed in PROTON. The knowledge base is comprised of more than
200,000 entities. These are gathered semi-automatically from a range of high quality
public data sources. It includes around 36,000 locations, 140,000 companies and
other organisations and the world’s pre-eminent politicians, businesspeople and
technologists

3.2 Full-Text Index

The Lucene full-text indexing facility is used to provide an index over the various
forms of textual resource but also over the labels and literal properties of the
ontological instances and classes. This allows metadata e.g. authors’ names, topic
names, knowledge base entities to be discovered and presented to the user as a way to
refine their search or as an alternative way to find documents, since the metadata is
always related to a set of documents in some way. The index of ontological instance
will, given a search term, provide a set of matching URIs which can then be used to
query the ontology repository to extract further details of the concept they refer to.

3.3 KAON2

The KAON2 [7] ontology management and inference engine provides an API for the
management of OWL-DL and an inference engine for answering conjunctive queries
expressed using the SPARQL2 syntax. KAON2 also includes a module for extracting
ontology instances from relational databases via a mapping facility. This greatly
increases the number of instances that can be held in the ontology as compared to a
file based version.

 KAON2 also supports the Description Logic-safe subset of the Semantic Web
Rule Language3 (SWRL). This allows knowledge to be presented against concepts
that goes beyond that provided by the structure of the ontology. For example, one of
the attributes displayed in the document presentation is ‘Organisation’. This is not an
attribute of a document in the PROTON ontology; however, affiliation is an attribute
of the Author concept and has the range ‘Organisation’. As a result, a rule was
introduced into the ontology to infer that the organisation responsible for a document
is the affiliation of its lead author.

3.4 Natural Language Generation

Natural Language Generation (NLG) takes structured data in a knowledge base as
input and produces natural language text, tailored to the presentational context and the
target reader [12]. In the context of the semantic web and knowledge management,
NLG is required to provide automated documentation of ontologies and knowledge
bases and to present structured information in a user-friendly way [1].

When a Squirrel search is carried out and certain people, organisations or other
entities occur in the result set, the user is presented with a natural language summary
of information regarding those entities. In addition, document results can be enhanced

2 http://www.w3.org/TR/rdf-sparql-query/
3 http://www.w3.org/Submission/SWRL/

 Squirrel: An Advanced Semantic Search and Browse Facility 345

with brief descriptions of key entities that occur in the text. For example, the
knowledge base contains company related metadata, which can be presented to the
user as natural language. Squirrel uses the ONTOSUM component described in [1].
An example is shown in Figure 3.

3.5 DIWAF

The SEKT Device Independence Web Application Framework is a server side
application, which provides a framework for presenting structured data to the user [5].
The framework does not use a mark-up language to annotate the data. Instead, it
makes use of templates, which are “filled” with data, rather like a mail merge in a
word processor. These templates allow the selection, repetition and rearrangement of
data, interspersed with static text. The framework can select different templates
according to the target device, which present the same data in different ways.

Squirrel has been built as a DIWAF application. This enables the applications to be
easily adapted to alternative device or context requirements (such as different
languages). Currently, templates are available to deliver the application to users via a
WAP-enabled mobile device, via a PALM PDA and via a standard web browser.

3.6 Ontology Generation

The Ontology Generation (OG) component can automatically identify an ontology
from the content of the documents and then classify the documents according to the
ontology [4]. In SEKT this process is generally carried out at index-time which allows
the knowledge engineer to modify the generated ontology if required. The process
results in hierarchical topic ontology and a set of document classifications into that
ontology (in accordance with PROTON). These results are used by Squirrel to present
the topic hierarchy thus allowing the user to refine their search by topic. The OG
component can also be used by Squirrel to generate clusters of documents at query-
time. This could be used in the general case where some or all of the documents being
searched have not been classified at index-time.

3.7 User Profile Construction and Usage

The PROTON ontology includes concepts allowing the interests of users to be stored
and modelled as a profile. Such a profile is an important step in providing relevant
knowledge to people and is used within Search and Browse to personalise the search
experience. The profile allows the search tool to predict what the user is interested in
based upon their observed interests. Profiles can be manually or automatically
created. An automatic approach places less burden on the user than a manual one but
relies on the assumption that the techniques used to collect the profile are accurate
(which is why a combination of automatic and manual approaches is often adopted).
The approach adopted in SEKT has been to observe the web browsing habits of the
individual users and to extract the topics associated with the pages that have been
accessed. A level of interest for each of the topics is also determined.

In PROTON, the profile consists of an expression of both long-term and short-term
interest in topics from a PROTON topic ontology. The Squirrel search tool makes use
of these profiles to modify the way the results are presented to the user i.e. providing

346 A. Duke, T. Glover, and J. Davies

context to the user’s search query. When ranking documents, the topics of the
documents in the result set can be considered against the level of interest in topics in
the user’s profile. Thus documents with a topic recorded in the profile with a strong
short-term interest would be presented first. Topics are related to other topics (either
by a sub or super topic or some other weaker relation) so these relationships can also
be considered to support the application of profiles.

3.8 Massive Semantic Annotation

Squirrel makes use of the results of the Massive Semantic Annotation process, carried
out at index time. The function uses KIM [11], which employs GATE’s ontology-
based information extraction module to identify named entities in texts. For each of
these it carries out instance disambiguation i.e. it either identifies an existing
PROTON instance of which the entity is an occurrence or creates a new instance. An
annotation (which consists of the instance URI, the document it occurs in and its
location within the text) is stored using KIM’s highly scalable (due to the very large
number of annotations) knowledge store.

In order to support user responsive entity presentation and browsing, Squirrel
makes use of the OWLIM semantic repository [9]. OWLIM is considered to be the
fastest OWL repository available. The dual repository approach adopted by Squirrel is
justified by the benefits that each repository provides. KAON2 offers relational
database mapping and rule support whilst the scalability and speed of OWLIM are
suited to handling the volume of data resultant from the semantic annotation process.

3.9 Segmentation

During the indexing process, documents are segmented at topical boundaries in order
to support the presentation of consolidated results to the user. The segmenter used is a
C99 segmenter [2] which is enhanced to consider the distribution of named entities
and key phrases identified in the text in addition to the distribution of words.
Following segmentation the subdocuments are classified using the OG classifier
described above. These classifications are used in two ways by Squirrel. Firstly, to
allow the user to refine their summaries based upon topics of interest and secondly to
reorder the presentation of the summary based upon the topics in the user’s profile.

3.10 Integration

The components described above have been integrated as a complete end-to-end
architecture for indexing and querying

The sources of textual data are stored together with their associated metadata in a
database. These sources may be e.g. records of bibliographic data (as is the case in the
SEKT Digital Library case study), webpages identified by a crawler, or legal
judgements (as is the case in the SEKT Legal case study). At this stage, the metadata
can be augmented by one or more entity extraction or classification components.

Once these steps have been carried out, the contents of the database can then be
indexed by Lucene which indexes all the textual fields in the database, allowing
subsequent keyword based retrieval. Entities within the PROTON world knowledge
base are described by one or more aliases. These aliases are also added to the index
allowing the entities to which they refer to be retrieved at query time.

 Squirrel: An Advanced Semantic Search and Browse Facility 347

A parallel activity to free-text indexing is to load the contents of the database into
KAON2. KAON2 provides a facility to map database schema to an ontological
representation. This allows KAON2 to represent the contents of the database as a
PROTON ontology. In addition to the database, KAON2 also reads in the PROTON
ontology, its world knowledge base and user profiles.

User queries are first passed to Lucene in order to retrieve a set of matching
documents and entities by their URI. Squirrel then queries KAON2 to extract further
details about these concepts as described in Section 3.2

Following this, Squirrel is able to present an initial result to the user. The user
interface and the various options provided by Squirrel for refining and presenting
results are described in Section 4.

4 Interface Description

4.1 Initial Search

Users are permitted to enter terms into a text box to commence their search. This
initially simplistic approach was chosen based on the fact that users are likely to be
comfortable with it due to experience with traditional search engines. If they wish, the
user can specify which type of resource (from a configurable list) they are looking for
e.g. publications, web articles, people, organisations, etc. although the default is to
search in all of these.

The first task Squirrel carries out after the user submits a search is to call the
Lucene index and then use KAON2 to look up further details about the results, be
they textual resources or ontological entities. In addition to instance data, the labels of
ontological classes are also indexed. This allows users to discover classes and then
discover the corresponding instances and the documents associated with them without
knowing the names of any of the instances e.g. a search for ‘Airline Industry’ would
match the ‘Airline’ class in PROTON. Selecting this would then allow the user to
browse to instances of the class where they can then navigate to the documents where
those instances are mentioned. This is an important feature since with no prior
knowledge of the domain it would be impossible to find these documents using a
traditional search engine.

Textual content items can by separated by their type e.g. Web Article, Conference
Paper, Book, etc. Squirrel is then able to build the meta-result page based upon the
textual content items and ontological instances that have been returned.

4.2 Meta-result

The meta-result page is intended to allow the user to quickly focus their search as
required and to disambiguate their query if appropriate. The page presents the
different types of result that have been found and how many of each type. In order not
to introduce unnecessary overhead on the user, the meta-result page also lists a default
set of results allowing the user to immediately see those results deemed most relevant
to their query by purely statistical means.

348 A. Duke, T. Glover, and J. Davies

Fig. 1. Meta-result

The meta-result for the ‘home health care’ query is shown in Figure 1 under the
sub-heading ‘Matches for your query’. The first items in the list are the document
classes. Following this is a set of matching topics from the topic ontology. In each
case, the number in brackets is the number of documents attributed to each class or
topic. Following the topics, a list of other matching entities is shown. The first 5
matching entities are also shown allowing the user to click the link to go straight to
the entity display page for these. Alternatively they can choose to view the complete
list of items. Squirrel can be configured to separate out particular entity types (as is
the case with topics and organisations as shown in Figure 1) and display them on their
own line in the meta-result.

The returned documents can be ranked according to the user’s profile if one has
been specified. The algorithm to perform this ranking checks to see which documents
are attributed to topics that exist in the profile and then adjusts the ranking using the
degree of interest for those topics. For each document, the degree of relevance
provided by Lucene is added to the cumulative degree of interest from the topics in
the profile that are also attributed to the document. The documents are then re-ranked
based upon these new relevance figures and displayed to the user. The algorithm can
be formulised as shown in Equation 1.

Ut

Uttw
rR

i

i

ki

i

∉
∈

⎩
⎨
⎧

+= ∑ = ...1 0

)(
 (1)

Where R is the degree of relevance for a document and r is the (statistical) degree of
relevance provided by Lucene. A topic attributed to the document is denoted by ti
where i is the index of a topic in the set of attributed topics. w(ti) denotes the level of
interest in the topic ti if it is a member of the set of topics in the user’s profile, U. If
the topic is not in the profile then no adjustment is made.

The algorithm attempts to maintain a balance between results with a high relevance
ranking mainly due to the Lucene result and those that are principally deemed to be of
interest according to the profile. Thus, if the user has just switched their focus, the
results should not skew too far in favour of the profile which might be slightly biased
towards their previous focus.

 Squirrel: An Advanced Semantic Search and Browse Facility 349

4.3 Refining by Topic

Alongside the results, the user is presented with the topics associated with the
documents in the result set. Not all topics are shown here since in the worst case
where each document has many distinct topics the list of topics presented to the user
would be unwieldy. Instead an algorithm takes the list of topics that are associated
with the collection of documents in the result set, and generates a new list of topics
representing the narrowest “common ancestors” of the documents’ topics.

Having selected a topic and viewed the subset of documents from the result set, the
user can switch to an entity view for the topic. The user can also reach this view by
selecting a topic from the meta-result section. Instead of showing the documents of
the topic, the meta-data for the topic is shown, which includes the broader, narrower
and related topics. This allows the user to browse around the topic ontology. Each
topic is shown with the number of documents it contains in brackets after it. Two
links to document results are also shown. The first takes the user to a list of
documents that have been attributed to the topic itself. The second takes the user to a
list of documents that include all subtopics of the current topic. The layout of entity
views in Squirrel are defined by templates. This allows the administrator to determine
what meta-data is shown and what is not. The use of these templates is discussed
further in Section 4.6 where a ‘Company’ entity view is described.

4.4 Attribute-Based Refinement

Any document result list has a link, which opens a refiner window. This allows the
user to refine the results based upon the associated metadata. The metadata shown and
the manner in which it is displayed are configurable through the use of entity type
specific templates that are configured by an administrator or knowledge engineer.
Documents can be refined by the user based upon their authors, date of publication,
etc. The approach adopted has been to allow the user to enter free text into the
attribute boxes and to re-run the query with the additional constraints. An alternative
would be to list possible values in the result set. However, the potential size of this list
is large and is difficult to present to the user in a manageable way. The downside to
the free-text approach is that the user can reduce the result set to zero by introducing
an unsatisfiable constraint – which is obviously undesirable. Squirrel attempts to
address this by quickly showing the user the size of the result set once constraints
have been set. The user can then modify them before asking Squirrel to build the
result page.

4.5 Document View

The user selects a document from the reduced result set, which takes them to a view
of the document itself. This shows the meta-data and text associated with the
document and also a link to the source page if appropriate – as is the case with web-
pages. Since web-pages are published externally with specific formatting data, the
text of the page is extracted at index-time. Any semantic mark-up that is applied at
this stage can then be shown on the extracted text at query-time. However, the user
should always be given the option to navigate to the page in its original format. A
screenshot of the document view is shown in Figure 2.

350 A. Duke, T. Glover, and J. Davies

Fig. 2. Document View

The document view also shows the whole document abstract, marked-up with
entity annotations. ‘Mousing-over’ these entities provides the user with further
information about the entity extracted from the ontology. Clicking on the entity itself
takes the user to the entity view.

4.6 Entity View

The entity view for ‘Sun Microsystems’ is shown in Figure 3. It includes a summary
generated by the NLG Web Service described in Section 3.4. The summary displays
information related not only to the entity itself but also information about related

Fig. 3. Company Entity View

 Squirrel: An Advanced Semantic Search and Browse Facility 351

entities such as people who hold job roles with the company. This avoids users having

to browse around the various entities in the ontology that hold relevant information
about the entity in question. The relationship between people and companies is made
through a third concept called JobPosition. Users would have to browse through this
concept in order to find the name of the person in question.

4.7 Consolidated Results

Users can choose to view results as a consolidated summary of the most relevant parts
of documents rather than a discrete list of results. This view is appropriate when a
user is seeking to gain a wider view of the available material rather than looking for a
specific document. The view allows them to read or scan the material without having
to navigate to multiple results. Figure 4 shows a screenshot of a summary for a query
for ‘Hurricane Katrina’. For each subdocument in the summary the user is able to
view the title and source of the parent document, the topics into which the
subdocument text has been classified or navigate to the full text of the document. A
topic tree is built which includes a checkbox for each topic. These allow the user to
refine the summary content by checking or unchecking the appropriate checkboxes.

Fig. 4. Consolidated Results

5 Evaluation

Squirrel has been being subjected to a three-stage user-centred evaluation with users
of BT’s Digital Library. Firstly, a heuristic evaluation [10] of the user interface was
undertaken. A small group of researchers, acting as usability experts, judged whether
the user interface adhered to a list of usability heuristics; a checklist was adapted from
the Xerox heuristic evaluation system [3]. A number of observations were made, most
of which were concerned with minor interface problems and system performance. The
results of the evaluation were collated and discussed with the development team.
Squirrel was then modified in accordance with these observations.

352 A. Duke, T. Glover, and J. Davies

The second stage comprised a cognitive walkthrough evaluation [14]. Users were
asked to use Squirrel in order to complete a number of tasks, where the user’s actions
and behaviours were recorded. Users were encouraged to talk through their actions
and their concerns as they undertook each task, since this provided additional
information about usability and the user’s thought processes. At the end of each task,
users were also asked to complete a short questionnaire. The findings were again
discussed with the Squirrel development team in order to resolve interface issues.

The final stage involved a set of field tests. Subjects were provided with set of
information seeking tasks which they were invited to complete using both the existing
keyword based search system and Squirrel. They then provided feedback on the
perceived quality of results and progress in search. Qualitative feedback was sought
via rating forms and a Software Usability Measurement Inventory (SUMI)
questionnaire.

Initial results reveal promising results in the perceived information quality (PIQ) of
search results obtained by the subjects. From 20 subjects, using a 7 point scale the
average (PIQ) using the existing library system was 3.99 vs. an average of 4.47 using
Squirrel – an 12% increase. The SUMI assessment showed that users rate the
application positively and believe that it has attractive properties, but were concerned
about its performance and speed.

6 Discussion and Related Work

A number of emerging products and prototypes exist in the Search and Browse space.
This section will now briefly consider how the best of these relate to the work
described in this paper

The approach adopted by ISX Corporation’s Concept Object Web [13] is to gather
information from documents using automated and human extraction techniques and
then present this to users as answers to queries rather than leaving the user to read the
set of documents in the query response in order to gain the answer. The response to an
initial free-text query consists of summaries of documents together with a list of
instances that appear in them split into customisable categories. These instances can
be selected and added to the initial query to refine the results set. The user is also able
to find out more about the instances. They are shown a knowledge object, which is an
aggregation of the semantic information about the entity with links to the source
documents and how each fact was obtained. Users can navigate through the
knowledge base by selecting the relation values of the current object. The approach is
similar in many respects to that adopted by Squirrel. It provides better support for
refinements based upon entities but does not allow the user to refine their search
based on the topic of documents or browse a topic ontology in order to find related
documents. Additional facilities offered by Squirrel include NLG and tailoring results
according to a user profile.

/facet [6] adopts a navigational model or facet browsing approach where a user can
navigate to heterogeneous resources by making selections on the properties of other
semantically related types. This benefits users who do not have a clear idea of what
they are searching for or know how it is described. Only those attribute values that
will lead to at least one result being shown are made available. This ensures the user

 Squirrel: An Advanced Semantic Search and Browse Facility 353

does not take any ‘blind alleys’. They can also back-up by removing previously
chosen attributes from their search. One issue with facet browsing is that where there
are many possible selections the interface becomes unwieldy. /facet overcomes this
by allowing the user to enter terms in a textbox and by suggesting possible terms as
they type. Again, only keywords that produce actual results are suggested. An
impressive feature of /facet is its ability to build facet selection directly from the
metadata with no configuration and at query time. Whilst /facet does not contain
many of the features of Squirrel such as named entity recognition, result consolidation
or NLG, the navigation approach and its ability to cope with a large number of facets
with no configuration indicate how Squirrel could be extended in this fashion.

The Excalibur4 product from Convera provides a search interface that allows the
user to enter queries and then refine based on topics which tailors the results
indicating that documents have been attributed to topics at index time. Further topics
are offered to broaden or narrow the search which indicates that there is some sort of
topic hierarchy behind the system, however, it is not clear that this extends to a full
ontology akin to PROTON. The system highlights named entities in the text, but the
user is not able to select these and find out more about them, browse to related entities
or refine a search based on the values of properties that particular entities have.
Furthermore, the lack of an ontology behind the entities makes it harder to apply rules
of the nature described in Section 3.

7 Conclusion and Future Work

We have described Squirrel, a tool for searching and browsing semantically annotated
textual resources. The tool provides a hybrid approach to search allowing the user to
enter simple search terms and then refine their search or browse to related material
through the presentation of appropriate metadata. The tool integrates a number of
state-of-the-art components to provide ontology management, named entity
recognition on ontology generation and classification. It also includes a set of novel
features such as result consolidation, natural language generation, ontology based user
profiling and device independence.

The tool has been trialled in two case studies where evaluation shows promising
results in terms of Perceived Information Quality. Performance concerns were raised
by users and this certainly requires further attention with respect to the choice and use
of the reasoner. Whilst KAON2 is more flexible and includes relational database
support, OWLIM is faster and may prove more appropriate for this application were it
to be extended to provide similar database facilities.

A number of potential areas for further development include the ability to identify
the relationships between entities that are discovered in the query response. For
example, a query such as ‘Java Microsoft’ would match a number of different entities
including both a topic and a company. The appropriate entities could be chosen based
upon a combination of the popularity in the knowledge base i.e. how many documents
contain them as annotations, the user’s profile and lastly an order of precedence that is
specified for the domain e.g. in the digital library, if a topic is identified then this

4 http://www.convera.com

354 A. Duke, T. Glover, and J. Davies

might be chosen over an entity with the same name. In this case the topic Java and
the company entity Microsoft might be chosen and as such it might be appropriate to
initially show documents from the topic where annotations of the company have been
identified. Similarly a query for ‘Bill Gates Microsoft’ would identify the person and
company from the knowledge base. Here, as well as showing documents where
annotations of both occur, it might be appropriate to show how they are related, which
in this case is via the JobPosition instance relating the person to the company.

The display of entity results could also be improved with the use of user profiles.
Where a user searches using a term that closely matches two or more entities there is
a need for disambiguation i.e. predicting which of the entities the user is searching for
by matching the results against the profile. For example, if a user was searching for
documents written by an author called Davies (of which there are many different
separate instances) the correct author can be chosen by matching the topics of the
documents the individual authors have written against topics in the user’s profile.

A second area for development is concerned with adopting a reduced
configuration, faceted browsing approach such as that offered by /facet and described
in the previous section.

Finally, there is a need for better and optimised integration between ontology
management and full-text search. Currently the two are separate components and
must be queried separately either sequentially (as in Squirrel) or in parallel with a
subsequent intersection step. This has inherent performance issues which could be
addressed by a combined approach that is able to employ optimisation techniques.

Acknowledgements. The work described in this paper was developed as part of the
SEKT project, under EU funding (IST IP 2003506826). Further project details may be
found at http://www.sekt-project.com/.

References

1. Bontcheva, K. ‘Generating Tailored Textual Summaries from Ontologies’. Proceeding of
the 2nd European Semantic Web Conference, Crete, Greece, June (2005), p. 531-545

2. Choi, F. Y. Y., :‘Advances in domain independent linear text segmentation’. In
Proceedings of NAACL, Seattle, USA, April, (2000), p. 26-33.

3. Christiansson, P., Heuristic Evaluation - A System Checklist. (2000), Xerox Corporation.
4. Fortuna, B.., Grobelnik, M. & Mladenic, D. :‘Semi-automatic Construction of Topic

Ontology’, Semantics, Web and Mining, Joint International Workshop, EWMF 2005 and
KDO 2005, Porto, Portugal, October 3-7, (2005)

5. Glover, T. and Davies, J.: ‘Integrating Device Independence and User Profiles on the
Web’. BT Technology Journal Vol 23. No. 3 July (2005).

6. Hildebrand, M., van Ossenbruggen, J. & Hardman, L. :‘/facet: A Browser for
Heterogeneous Semantic Web Repositories’, Proceedings of the 5th International Semantic
Web Conference, Athens, USA, November (2006).

7. Hustadt, U., Motik, B., Sattler, U. : Reducing SHIQ Description Logic to Disjunctive
Datalog Programs. In Dubois, D., Welty, C., Williams, M.A., eds.: Proc. of the 9th Int.
Conf. on Knowledge Representation and Reasoning (KR2004), Menlo Park, California,
USA, AAAI Press (2004) 152–162

 Squirrel: An Advanced Semantic Search and Browse Facility 355

8. Jansen, B. J., Spink, A., and Saracevic, T. : ‘Real life, real users, and real needs: A study
and analysis of user queries on the web’, Information Processing and Management. 36(2),
(2000), 207-227.

9. Kiryakov, A., Ognyanov, D. & Manov, D. :‘OWLIM – a Pragmatic Semantic Repository
for OWL’, In Proc. of Int. Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS 2005), WISE 2005, 20 Nov, New York City, USA (2005).

10. Neilsen, J. and R. Molich, Heuristic Evaluation of User Interfaces, in Proceedings of the
SIGCHI conference on Human factors in computing systems. (1992): Monterey,
California, United States. p. 373 – 380.

11. 11.Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D. and Kirilov, A. : ‘KIM - a
semantic platform for information extaction and retrieval’, Journal of Natural Language
Engineering, Vol. 10, Issue 3-4, Sep 2004, pp. 375-392, Cambridge University Press.

12. Reiter, E. & Dale, R.: ‘Building Natural Language Generation Systems’. Cambridge
University Press, Cambridge, (2000).

13. Starz, J., Kettler, B., Haglich, P., Losco, J., Edwards, G. and Hoffman, . :‘The Concept
Object Web for Knowledge Management’ Proceedings of the 4th International Semantic
Web Conference, Galway, Ireland, November (2005).

14. Wharton, C., et al., Applying Cognitive Walkthroughs to more Complex User Interfaces:
Experiences, Issues, and Recommendations, in Proceedings of the SIGCHI conference on
Human factors in computing systems. (1992): Monterey, California, United States.

15. Xue, G., Zeng, H., Chan, Z., Ma, W., Zhang, H., and Lu, C. : ‘Implicit link analysis for
small Web search’, SIGIR’03, July 28-August 1, (2003), Toronto, Canada.

User-Centric Faceted Search for Semantic

Portals

Osma Suominen, Kim Viljanen, and Eero Hyvönen

Semantic Computing Research Group (SeCo),
Helsinki University of Technology (TKK), Laboratory of Media Technology

University of Helsinki, Department of Computer Science
firstname.lastname@tkk.fi
http://www.seco.tkk.fi/

Abstract. Many semantic portals use faceted browsing, where the facets
are based on the underlying indexing ontologies of the content.However, in
many cases, like in medical applications, the ontologies may be very large
and complex, and do not provide the end-user with intuitive facet hier-
archies for conceptualizing the content, for formulating queries, and for
classifying the search results. We argue that in such cases end-user facets
should be separated from the annotation ontologies, and show how to gen-
eralize the semantic view-based search paradigm to take into account this
fact. A user-centric card sorting method is proposed for designing intu-
itive views for the end-users and a method for mapping its facets onto the
indexing ontologies and search items is presented. The system has been
implemented in a prototype of the semantic portal TerveSuomi.fi, a na-
tional health promotion portal in Finland.

1 Introduction

Faceted search (i.e., faceted browsing and view-based search) [1,2,3], is a search
paradigm developed originally in the field of information retrieval. The idea
of the scheme is to analyze and index search items along multiple orthogonal
taxonomies that are called subject facets or views. From the end-users viewpoint
searching is then reduced to the selections of categories along the facets. This idea
has later been developed into semantic faceted search [3,4,5], where the facets
are based on ontological structures, such as subclass and part-of hierarchies. The
usefulness of faceted search has been demonstrated in many applications [5,6]
and the first commercial products are already on the market1.

A limitation of semantic faceted search is that facets based on indexing on-
tologies do not always provide the end-user with natural categorizations of the
content for formulating queries or for organizing search result lists. In many
domains, very large and complex ontologies are used for indexing by domain
professionals. The point of view of indexing may differ substantially from the
point of view of the end-user, who also may not be familiar with the professional
terminology. The ontologies may also be too general or too specific for her needs.
1 http://www.siderean.com/, http://www.express.ebay.com/, http://endeca.com/

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 356–370, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

User-Centric Faceted Search for Semantic Portals 357

The main hypotheses underlying this paper is that end-users, such as ordinary
citizens, often conceptualize the domain of discourse in terms of categories that
are different from the ontological representations used by the domain specialist
and content indexers. To bridge the semantic gap between end-users and pro-
fessionals, we need 1) a method for finding out the end-user facets and search
categorizations about the domain, and 2) a method for mapping the facet cat-
egories onto the content indexed along ontologies. To solve the facet creation
problem, we present a user-centric card sorting method [7,8,9] for creating intu-
itive search facets for the end-users, and present results of applying the method
in creating the facets for the prototype of the national semantic health promo-
tion portal TerveSuomi.fi [10,11] in Finland. To address the mapping problem,
we show how the user-centric facets can be mapped onto the ontologies used for
describing the content, and be used for answering queries.

The paper is organized as follows. We first present a general architecture and
a method for answering faceted queries based on user-centric facets and index-
ing ontologies. After this the method is applied to our case study by describing
ontological metadata and the indexing ontologies which are used to describe
the content. Based on this, card sorting methods for creating user-centric facets
are discussed and applied for the TerveSuomi.fi portal, and a prototype im-
plementation of the system is presented. Finally, contributions of the work are
summarized, related work discussed, and future research suggested.

2 Extending Faceted Search Architechure

In semantic faceted search the documents are annotated along different facets
that typically correspond to the elements (fields) of the metadata (annotation)
schema used. For example, in MuseumFinland [5] the collection artifact metadata
schema has nine resource-valued properties such as Artifact type and Material
whose values are taken from a set of seven orthogonal indexing ontologies. A
single ontology, such as “Places”, can be used for expressing values of several
different elements, such as “Place of Manufacture” and “Place of Usage”. When
the same place is selected in the “Place of Manufacture” or “Place of Usage”
facet for querying, different result sets are obtained. Although facets share hier-
archical structures of the indexing ontologies, the facet categories are different
from the corresponding ontology concepts and have different facet-wise URIs.
The resulting facet hierarchies will be called faceted ontologies.

By using a set of logical projection rules each facet-URI can be associates
with a set of related search items [12]. The extension ext(S) of a facet-URI S is
the set of all search items associated with it and any of its subcategories. The
faceted search query in semantic faceted search with n facets is a conjuctive
Boolean expression Q = S1 ∧ ... ∧ Sn where each Si is a Boolean expression of
the facet ontology category (URIs). The result set is obtained by interpreting
the logical operations of Q as set operations over the search item set E in the
following way: S ∧ T ≡ ext(S) ∩ ext(T), S ∨ T ≡ ext(S) ∪ ext(T), S − T ≡
S ∧ ¬T ≡ ext(S) − ext(T), and ¬S ≡ E − ext(S).

358 O. Suominen, K. Viljanen, and E. Hyvönen

Fig. 1. Components of an end-user-centric view-based semantic search framework

In MuseumFinland, faceted ontologies are used directly as querying facets
(with some filtering). In the case of TerveSuomi.fi this is not feasible but a set
of m user-centric facets is created for formulating the query QU = U1 ∧ ... ∧ Um,
where Ui is a category in a user-centric facet i. In order to map such queries
onto queries at the faceted ontology level, each user-centric facet category can
be defined as a Boolean expression of the faceted ontology categories. This means
that queries expressed in terms of end-user facet categories can be reduced into
faceted ontology queries that can be processed with a semantic faceted search
engine such as Ontogator [13].

Figure 1 depicts how the search documents can be found using user-centric
facets, indexing facets and indexing ontologies in our view-based semantic search
scheme. The documents are indexed with ontologies using resource-valued meta-
data fields dc:subject and dc:audiencewhose values are taken from the index-
ing ontology (e.g., MeSH). The document A tells about (dc:subject) aged people
(elderly people in layman terms) and is intended for children (dc:audience). Sim-
ilarly, the document B is about preschool children and is intended for adults. The
corresponding two faceted ontologies, projected from the indexing ontologies, are
seen in the middle left in different namespaces s (subject) and a (audience).
Some of the extension of the categories are: ext(s:Aged)=ext(s:Adult)={A},
ext(s:Child)={B}, ext(a:Child)={A} and ext(a:Adult)=ext(a:AgeGroup)={B}.
The extensions can be projected by simple logic rules based on the metadata.
If faceted ontologies were used for searching (like in MuseumFinland), then the

User-Centric Faceted Search for Semantic Portals 359

selection s:Adult would return the document A and a:Adult would return the
document B. By introducing end-user facets, the queries can be expressed in
terms of new facet categories. For example, the end-user facet category Adults is
defined as Adults ≡ ext(s : Adult) − ext(s : Aged), and the document A would
not be returned with the facet selection Adults, because the document is about
aged people which has been excluded from the end-user facet category Adults.

This model can be extended to deal with uncertainty and relevance by using
the “fuzzy view-based search” approach presented in [10] in the following way.
Fuzzy annotations can be used if exact classifications are not appropriate. For
example, the boundary between children and adults is fuzzy. Therefore we could
say that the dc:audience of the document B in figure 1 is not the crisp set {mesh :
Adult} but rather the fuzzy set {(mesh : Adult, 0.8), (mesh : Child, 0.2)} indi-
cating that the document is targeted to some degree also to children. In [11]
a method for determining such fuzzy annotations based on ontologies and the
tf-idf method is presented. In this way the extensions of the indexing facets can
be seen as fuzzy sets where the membership values are based on fuzzy anno-
tations and are interpreted as a measure of relevance. By defining the Boolean
operators used in faceted search as fuzzy Boolean operators, the relevance of
hits in the search results can be determined—an important feature missing in
the traditional faceted search paradigm. In the example above, the document
B would be less relevant when looking for material targeted to children than
to adults. It is also possible to generalize the mappings into fuzzy mappings by
attaching a membership function value to them, indicating only partial match
between an end-user category and its definition in terms of the facet ontology
categories, and by interpreting the mapping as a fuzzy inclusion.

3 Ontological Metadata for a Health Promotion Portal

When building a semantic portal, one key decision is to choose which ontolo-
gies are used for indexing the content and whether existing ontologies can be
used compared to building custom ontologies. Typically suitable ontologies exist,
which have been created for a similar domain but a different purpose. In such
cases the decision has to be made between using them as-is, modifying them to
suit the purposes of the portal, or creating a new ontology from scratch.

Using an existing, established ontology has several advantages. Creating a new
ontology requires substantial amounts of manual work, which can be avoided by
reusing an existing ontology. An existing and established, large ontology is also
more likely to have broad and deep coverage of concepts within its domain,
which will allow documents to be annotated to very specific concepts, whereas
a custom-made ontology might only cover the topic areas and concepts that are
relevant for the need of the semantic portal. Finally, reusing a shared ontology
furthers the vision of the Semantic Web [14] by allowing semantic interoperability
between different systems, as long as they use the same ontology (or a compatible
one, interlinked by semantic mappings). On the other hand, existing ontologies
may differ from the goals of the portal in their scope or the point of view. These

360 O. Suominen, K. Viljanen, and E. Hyvönen

and other problems, such as licensing and technical issues, involved in reusing
existing ontologies have to be balanced against the benefits.

In the case of the health promotion portal TerveSuomi.fi, the information items
of interest are web-accessible publications such as web pages and PDF documents,
and they are described using Dublin Core2 metadata such as dc:subject which
contains the subject topic(s) of the given document. We decided to use the
following ontologies3 as indexing ontologies for the subject field: the Finnish
General Upper Ontology (YSO)4 [15] which is based on the General Finnish
Thesaurus YSA5 that is widely used in Finland for indexing contents of vari-
ous kinds, Medical Subject Headings (MeSH)6 and the European Multilingual
Thesaurus on Health Promotion (HPMULTI)7. The reason for combining them
(see also Table 1) was that none of them was alone adequate for describing the
topics of the whole variety of content documents in the portal. YSO is broad
but too general with regard to medical content. On the other hand, MeSH is
too focused on clinical healthcare while HPMULTI has very narrow coverage,
focusing exclusively on health promotion terminology.

Table 1. Core subject ontologies of the TerveSuomi.fi portal

Name YSO MeSH HPMULTI

Publisher National Library of
Finland & FinnONTO

National Library of
Medicine, USA

European Commission

concepts 23 000 23 000 1 200

Languages Finnish; Swedish
and English under
construction

English; Finnish and
Swedish translations
available

Multilingual, including
Finnish, Swedish and
English

Intended
use

Cataloging of material
published in Finland

Cataloging of biomed-
ical documents

Cataloging of material
on health promotion

Intended
user group

Librarians Medical professionals;
librarians within the
field of medicine

Professionals involved
in health promotion

Examples
of concepts

Travellers
Water pipes
Cities
Vegetables

Metabolic Syndrome X
Endocrine Disruptors
Biopsy, Fine-Needle
DNA Damage

Traffic accidents
Behavioural change
Voluntary work
Sunburn

To prevent the creation of internal semantically incompatible islands within
the portal, corresponding concepts in each ontology had to be mapped to each
other. Mapping the ontologies was done using three complementary approaches:
2 http://dublincore.org
3 The term ontology is used in a broad sense, covering also thesauri in the sense that

they are formal, explicit classifications for describing the content of documents.
4 http://www.seco.tkk.fi/ontologies/yso/
5 http://vesa.lib.helsinki.fi
6 http://www.nlm.nih.gov/mesh/
7 http://www.hpmulti.net

User-Centric Faceted Search for Semantic Portals 361

a) using available, existing mappings between MeSH and HPMULTI; b) creating
automatic mappings between MeSH and YSO based on textual matching of
concept labels; and c) manually mapping HPMULTI to YSO. The result was a
interlinked combination ontology, where YSO provides the upper concepts and
MeSH and HPMULTI the more exact concepts.

When analysing the ontologies, we noticed that these ontologies were created
for use by professionals and their intended use is somewhat different from their
use within the portal. This disparity between the points of view of the ontologies
and the users of the portal manifests itself in many ways. First, the concept hi-
erarchies are often inappropriate for the portal. MeSH e.g. uses deep hierarchies
with complex subclassification criteria, and YSO contains many generic concepts
that would probably only be confusing as facet categories. Second, concepts in
professional classifications have typically been labelled using professional termi-
nology instead of layman terms used by the end-users. On the other hand, there
are many terms in everyday use that are not used by professionals due to their
ambiguity. A portal must also be able to deal with queries based on such termi-
nology even if it is not considered appropriate from a professional perspective.
As an example of the problems involved, consider the MeSH top-level categories
Anthropology, Education, Sociology and Social Phenomena, Biological Sciences
and Technology and Food and Beverages. Such categories in a facet would not
be very good starting points for a person looking for information about diet-
ing. Another user might not realize that information about breast cancer can be
found under the MeSH concept Breast Neoplasms.

4 Creating User-Centric Search Facets with Card Sorting

To solve the mismatch between the indexing ontologies and the expectations
of the end-users, we propose using user-centric design practices to construct
a custom classification system for the portal based on the users’ expectations
and their mental models, with the intent of later mapping it to the underlying
ontological concepts to provide semantically sound faceted browsing and other
functionalities.

A practical method for gathering information about the end-user’s mental
models of an information space, i.e., how users of a website tacitly group, sort
and label tasks and content, is the card sorthing method [7,8,9]. A card sorting
study is typically performed using index cards, with each card bearing the title
and possibly a short description of an individual document. The study is then
performed on volunteers that are asked to sort the cards into piles based on
intuitive feeling of similarity or relateness of the given cards, and to give the piles
descriptive names. This variation of card sorting where the categories (piles)
are not given beforehand but are created by the participants is called open
card sorting [9,16]. Card sorting doesn’t directly give the designer a finished
categorisation structure, but provides insight into the design choices for creating
such a structure.

362 O. Suominen, K. Viljanen, and E. Hyvönen

4.1 Selecting Card Contents

When using card sorting for creating user-centric facets for organizing ontolog-
ically indexed content, we propose using the ontological concepts as values of
the index cards. To avoid overwhelming the participants of the study, only the
most frequently used indexing concepts (based on a sample of indexed content)
excluding overly general concepts should be used in the cards.

In our case, we created a list of all the concepts that occurred in our annotated
content items (n=523). These 1722 concepts were then ranked by their frequency
of occurrence. Concepts with only a few documents were pruned, as well as overly
general concepts such as health and health promotion. Finally, concepts judged
to be uninteresting or unnecessary from the point of view of the study were
eliminated. These included, e.g., geographical locations, individual organizations,
abstract concepts such as Development and Promotion as well as concepts that
were considered very similar to others that were already on the list8. The pruning
brought down the number of concepts to 177, which was deemed acceptable for
the card sorting exercise. The labels of the concepts were printed on index cards
together with numeric identifiers for ease of analysis.

4.2 Performing the Card Sorting

The study participants should be representative of the expected users of the
system. Nielsen recommends using 15 participants [17] while Maurer & Warfel
recommends seven to ten individuals [16]. Each participant is advised to group
the cards into piles according to their meaning or topical similarity. Participants
are asked to think aloud, especially when facing difficult decisions. During the
exercise, the facilitator takes notes of important events and insightful comments
made by participants during the experiment. If a pile becomes very large, the
participants are instructed to split it into smaller parts. After sorting the cards
into piles, they are asked to write down a descriptive label for each pile.

In our case, the card sorting study was performed on volunteers that were
chosen to represent potential users of the system. A total of ten individuals of
varying ages and backgrounds participated, with three of them doing the exercise
as a group while the others performed the study alone. Thus, a total of eight
rounds were performed. The raw data obtained during the card sorting study is
a set of labeled piles of cards such as those shown in Figure 2.

4.3 Creating the Result Categories Based on the Card Piles

When analyzing card sort results, both qualitative and quantitative aspects need
to be considered [9]. When card sorting is used for getting input into the design
of website navigation, gaining insight from the data is of foremost importance;
whether that requires a rigorous statistical analysis depends on the situation
at hand. In many projects, simply “eyeballing” the data may provide enough

8 E.g., only a sample of the dozens of food items such as Meat and Cheese were kept.

User-Centric Faceted Search for Semantic Portals 363

Fig. 2. Examples of card piles created by study participants

insight to create a workable design [8]. In our case, we used a spreadsheet tem-
plate [18] to calculate some metrics such as card co-occurrence and the average
number of cards in each category, but did not perform a full-fledged statistical
cluster analysis. However, automatic tools have been created that perform clus-
ter analysis and create tree diagrams that might be used directly as a basis for
constructing web site navigation [19].

To create the result categories, we used the following processing steps: First,
the categories created by individual participants were manually clustered to cre-
ate a standardized set of categories for the purposes of analysis. As an example of
the clustering process, the category Body and its parts created by one participant
was considered the same as category Anatomy created by another participant,
and these were both mapped to the standard category Body part. The clus-
tering resulted in 29 standard categories and a mapping of each participant’s
categories to these. Sometimes similar categories created by a single participant
were mapped to the same standard category for the purposes of analysis (e.g.,
Body and its parts and Teeth were both mapped to Body part), and not all stan-
dard categories were present in all user categories (e.g., not all participants had
included a category for Weight control).

The second step of analysis was to enter the raw data about user-created
categories and their contents (individual concepts) into the spreadsheet, using
the above defined mappings.

The third step was to actually analyze the data, looking for patterns of in-
terest. The analysis spreadsheet revealed, for example, that there was a high
agreement about the existence of a category for body parts (all participants
had included such a category) as well as the contents of that category. E.g., all
participants had placed the concepts Stomach and Skeletal system in that cat-
egory. On the other hand, while three participants had included a category for
well-being, there was low agreement about the contents of that category. The
interpretation for these results was that participants (and, by extension, users of

364 O. Suominen, K. Viljanen, and E. Hyvönen

the portal) have a clear mental model of body parts as a category distinct from,
say, food and nutrition issues, while a category for lifestyle doesn’t invoke such
a clear notion of distinctness. Based on the analysis, we were able to pick good
candidates for top-level facets as well as construct part of their contents. The
analysis revealed that Body part, Group of people and Life event were popular
categories. Perhaps more importantly, they were at least somewhat orthogonal
towards each other and the rest of the categories, so they were chosen to be
presented as separate facets. The rest of the categories were then used to create
a fourth facet called Topic.

For each of the remaining categories, we had to decide whether to a) discard
the category altogether (in cases of low agreement), b) use it as a top-level cat-
egory or c) place it below a top-level category in the hierarchy. The hierarchical
relations between categories could not directly be seen from the card sorting
analysis. However, hints about these could be found in the notes made during
the card sorting sessions, e.g., situations where a participant had split a large
pile into smaller components.

Some of the discarded categories included Oversensitivities, Disease preven-
tion and self-help and Health problems. The resulting hierarchy is quite shallow;
additional levels may need to be added using other methods such as laddering
[20]. However, for the purposes of our portal we have expanded the hierarchy
simply by examining the underlying ontologies and building up the hierarchy
by mirroring their structure, while trying to make sure that the terminology
and groupings are suitable for end-users. We feel that while the design of lower
hierarchy levels could benefit from user-centric design methods, the issues here
are not as critical as the choice of facets and their topmost categories.

4.4 Finalizing and Evaluating the Categorisation

When an initial version of the facets is created using the card sorting method
described above, the result should be evaluated and possibly reviewed both by
additional user testing and by domain experts. One way for evaluating the result
categories with users is to do new rounds of card sorting using the closed card sort
method where the categories are given beforehand and the study participants are
asked to sort the cards into those piles. The intuitiveness of the categories can
be estimated based on how well the results of the closed card sorting matches
the initial facets.

In our case, the user testing of the Topic facet (see Figure 3) using the closed
card sorting method was done with two volunteers who were asked to sort the
ontological concepts into the suggested top-level categories. The results were
encouraging: participants placed nearly all concepts in the category that was
intended by the designer. More user evaluations would probably need to be done
to find subtler errors.

Additionally, an expert review of the initial facets was done by health pro-
motion experts, which revealed some problems. The category Catastrophes &
Epidemies was considered problematic: the two concepts are not very closely
related and lumping them together may send false signals to users of the portal.

User-Centric Faceted Search for Semantic Portals 365

Fig. 3. The finalized end-user facets with some examples of the concepts

A new look into the analysis process revealed that these two concepts had been
paired together during the clustering phase, and in fact only one user had created
a category where both aspects were present – a clear mistake in the clustering.
Thus, separating the two aspects into their own top-level categories was an easy
decision. Another problem discovered by domain experts was that there was no
category for issues related to occupational health, such as the hazards of danger-
ous chemicals used at work. Such concepts were not very well represented in the
set used for the card sort, possibly because the initial set of documents lacked
documents specific to occupational health. A new top-level category for occu-
pational health issues was created, with subcategories taken from ontologies as
well as classifications used on existing websites on the topic. The finalized facets
are presented in Figure 3.

More generally, the lesson learned was that skewed initial data and errors
during the analysis may cause subtle errors in the hierarchy. However, using user
evaluations and expert reviews helps alleviate at least some of the problems.

5 Mapping User-Centric Facets to Ontologies

When the initial user-centric facets have been created using the method above,
the facets should be logically mapped to the ontological facets as described in
section 2. Since the card sorting is done using a selection of typically used on-
tological concepts, and since the relations between the standard categories and
these concepts are known, these relations can be directly used as mappings be-
tween the facets and the facet ontologies. To make the mapping comprehensive,
additional concepts are needed, which must be added manually. E.g., if the con-
cept Food was used in the card sorting but the concept Nutrition was not, the
latter might be relevant also for a facet category of Nutrion and Food.

We have decided to represent the facet hierarchies described in the previ-
ous chapter in RDF using the SKOS Core vocabulary9 and their connections
to the underlying ontologies using the SKOS Mapping vocabulary10. Each facet
is described as a skos:ConceptScheme and each facet category is represented
as a skos:Concept with a human-understandable skos:prefLabel. The facet

9 http://www.w3.org/2004/02/skos/core/ (URI prefix skos)
10 http://www.w3.org/2004/02/skos/mapping/ (URI prefix skosmap)

366 O. Suominen, K. Viljanen, and E. Hyvönen

Fig. 4. Examples of mappings between facet and ontology concepts. The URI prefix
topic refers to the Topic facet and mesh to the indexing ontology MeSH.

hierarchies are represented using skos:broader and skos:narrower relation-
ships. Mappings to the underlying ontological concepts are represented using
skosmap:narrowMatch. This mapping is a subset of the mappings described in
Section 2; such more complex mappings can also be expressed using the SKOS
Mapping vocabulary and will likely be used in the future. An example of map-
pings between facet categories and ontological concepts is shown in Figure 4.

This representation implies, by the SKOS inference rules, that a category
within a facet contains (is the subject of) all documents that are annotated
with one of the ontological concepts that the category has been mapped to.
In addition, the category subsumes its child categories, and the ontology con-
cept is the subject of all its narrower concepts. Thus, in Figure 4, the cat-
egory topic:weight control will contain all documents indexed against any
of the MeSH concepts in the figure due to the skos:broader and skosmap:
narrowMatch relations present.

6 Prototype Implementation

As a proof of concept, the methods discussed have been implemented in the
prototype of TerveSuomi.fi11 where the faceted search functionality has been
created using the faceted search engine Ontogator [13]. Figure 5 shows the user
interface, where the user has selected the category Diet from the Topic facet
and the category Pregnancy from the Life event facet. The result of this faceted
search query is the list of links to web pages. The user could now either visit

11 http://www.seco.tkk.fi/applications/tervesuomi/

User-Centric Faceted Search for Semantic Portals 367

Fig. 5. TerveSuomi.fi portal user interface

some of the resulted web pages or modify the query by selecting, e.g., additional
facets or by clicking on context based semantical recommend links on the right.

7 Discussion

This paper argued that card-sorting combined with mappings provides a promis-
ing approach for designing and implementing semantic view-based search based
on user-centric facets.

7.1 Contributions

The main benefits of separating end-user facets from content indexing ontologies
are: First, more intuitive and useful user interfaces can be provided. Second, the
same ontologically annotated metadata can be re-used for different use cases and
interfaces without changing the metadata or the content by defining new alter-
native user-centric facets and mappings. This flexibility would not be achieved
if the metadata were described using application-specific or user-centric catego-
rizations directly. For example, the same metadata could be used to create both
a professional facet and a citizen’s facet to the same content, where the pro-
fessional facet is more directly based on the indexing ontologies and the citizen
facets more on the various information needs of ordinary life.

368 O. Suominen, K. Viljanen, and E. Hyvönen

The downside of using user-centric facets is the extra work needed in creating
them and in mapping search categories onto annotation ontologies. Also, if the
card sorting is based on non-representative example annotations, the resulting
user-centric facets might not be optimally designed when more content is added
to the portal. Therefore, readjustments to the user-centric facets might be needed
based on, e.g., feedback from the users.

7.2 Related Work

In earlier semantic portals based on the faceted browsing paradigm, the facets
have been automatically created from the underlying ontological hierarchies us-
ing projection rules (e.g. [12]). A distinction can be made between systems where
the ontologies are created to become facets in the user interface and systems
that use pre-existing general purpose ontologies. The former group includes Mu-
seumFinland [5] and SWED12, whereas /facet13 [6] is an example of the latter
approach. The problems of matching the hierarchical structure of the ontology
with user needs and expectations only become apparent in the latter case, as the
point of view of the original ontology may differ a lot from the end-users’ men-
tal models of the information space. In /facet, the automated facet generation
sometimes results in a user interface that is hard to use [6].

Another approach for creating a navigational hierarchy based on an ontology
is presented by Stoica & Hearst [21,22]. Their system uses the WordNet lexical
ontology as a basis for creating a hierarchical classification which can then be
used in faceted browsing. The Castanet algorithm simplifies the WordNet IS-A
hierarchy by eliminating branches that aren’t represented in the document col-
lection as well as unnecessary levels of the hierarchy. The resulting taxonomies
can be used either as-is or after some manual adjustments. However, the relation-
ship of Stoica & Hearst’s work with ontological metadata is weak: WordNet is
only used as a basis for creating the navigational hierarchies, and the document
metadata is later assumed to reference the newly created taxonomy directly.

Card sorting has been previously used in the construction of ontologies as a
means of knowledge elicitation. While card sorting is usually performed manually
outside the ontology engineering process, a computerized card sorting plugin has
been developed for the Protégé14 ontology editor [23]. However, the focus of this
work is on the ontology creation process itself; there is no direct intent of using
the resulting ontology in a search-oriented user interface.

7.3 Future Work

We are currently implementing a more finalized prototype of the semantic portal
TerveSuomi.fi. After this, user tests should be done to evaluate the prototype and
the underlying hypotheses such as the end-user-centric facets. We are currently
also investigating how ontologies could be used to model health care services
12 http://www.swed.org.uk
13 http://slashfacet.semanticweb.org
14 http://protege.stanford.edu

User-Centric Faceted Search for Semantic Portals 369

using methods presented in [24]. In the future, the portal may be extended to
incorporate access to personal medical records and health care services.

Acknowledgements

We thank Markus Holi and Petri Lindgren for their input to the work reported in
this paper. This work is part of the FinnONTO project15, funded mainly by the
National Funding Agency for Technology Innovation (Tekes) and the Ministry
of Social Affairs and Health. The TerveSuomi.fi project is co-ordinated by the
National Public Health Institute in Finland (Project Coordinator Eija Hukka).

References

1. Pollit, A.S.: The key role of classification and indexing in view-
based searching. Technical report, University of Huddersfield, UK (1998)
http://www.ifla.org/IV/ifla63/63polst.pdf.

2. Hearst, M., Elliott, A., English, J., Sinha, R., Swearingen, K., Lee, K.P.: Finding
the flow in web site search. CACM 45(9) (2002) 42–49

3. Hyvönen, E., Saarela, S., Viljanen, K.: Application of ontology techniques to view-
based semantic search and browsing. In: The Semantic Web: Research and Ap-
plications. Proc. of the 1st European Semantic Web Symposium (ESWS 2004).
(2004)

4. Mäkelä, E., Hyvönen, E., Sidoroff, T.: View-based user interfaces for information
retrieval on the semantic web. In: Proceedings of the ISWC-2005 Workshop End
User Semantic Web Interaction. (Nov 2005)

5. Hyvönen, E., Mäkelä, E., Salminen, M., Valo, A., Viljanen, K., Saarela, S., Junnila,
M., Kettula, S.: Museumfinland – finnish museums on the semantic web. Journal
of Web Semantics 3(2) (2005) 25

6. Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: A browser for hetero-
geneous semantic web repositories. In Cruz, I.F., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L., eds.: International Semantic
Web Conference. Volume 4273 of Lecture Notes in Computer Science., Springer
(2006) 272–285

7. Rugg, G., McGeorge, P.: The sorting techniques: a tutorial paper on card sorts,
picture sorts and item sorts. Expert Systems 14(2) (1997) 80–93

8. Nielsen, J., Sano, D.: Sunweb: User interface design for sun microsystem’s internal
web. In: Proceedings of the 2nd World Wide Web Conference, Chicago, IL. (Oct
17-20 1994) 547–557

9. Rosenfeld, L., Morville, P.: Information Architecture for the World Wide Web.
second edn. O’Reilly (2002)

10. Holi, M., Hyvönen, E.: Fuzzy view-based semantic search. In: Proceedings of the
1st Asian Semantic Web Conference (ASWC2006), Beijing, China, Springer-Verlag
(September 3-7 2006)

11. Holi, M., Hyvönen, E., Lindgren, P.: Integrating tf-idf weighting with fuzzy view-
based search. In: Proceedings of the ECAI Workshop on Text-Based Information
Retrieval (TIR-06). (Aug 2006)

15 http://www.seco.tkk.fi/projects/finnonto/

370 O. Suominen, K. Viljanen, and E. Hyvönen

12. Viljanen, K., Känsälä, T., Hyvönen, E., Mäkelä, E.: Ontodella - a projection
and linking service for semantic web applications. In: Proceedings of the 17th
International Conference on Database and Expert Systems Applications (DEXA
2006), Krakow, Poland, IEEE (September 4-8 2006) 370–376

13. Mäkelä, E., Hyvönen, E., Saarela, S.: Ontogator — a semantic view-based search
engine service for web applications. In: Proceedings of the 5th International Se-
mantic Web Conference (ISWC 2006). (Nov 2006)

14. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5) (May 2001) 34–43

15. Hyvönen, E., Valo, A., Komulainen, V., Seppälä, K., Kauppinen, T., Ruotsalo,
T., Salminen, M., Ylisalmi, A.: Finnish national ontologies for the semantic web
- towards a content and service infrastructure. In: Proceedings of International
Conference on Dublin Core and Metadata Applications (DC 2005). (Nov 2005)

16. Maurer, D., Warfel, T.: Card sorting: a definitive guide. Boxes and Arrows (Apr
7 2003) http://boxesandarrows.com/S1937.

17. Nielsen, J.: Card sorting: How many users to test (Jul 19 2004) Alertbox column,
http://www.useit.com/alertbox/20040719.html.

18. Lamantia, J.: Analyzing card sort results with a spreadsheet template. Boxes and
Arrows (Aug 26 2003) http://boxesandarrows.com/S1708.

19. Dong, J., Martin, S., Waldo, P.: A user input and analysis tool for information ar-
chitecture. In: CHI’01 extended abstracts on Human factors in computing systems.
(March 31 – Apr 05 2001)

20. Rugg, G., Malcolm, E., Mahmood, A., Rehman, N., Andrews, S., Davies, S.: Elicit-
ing information about organizational culture via laddering. Journal of Information
Systems 12(3) (2002) 215–230

21. Stoica, E., Hearst, M.: Nearly-automated metadata hierarchy creation. In: Pro-
ceedings of HLY-NAACL’04, Boston. (May 2004)

22. Stoica, E., Hearst, M.: Demonstration: Using wordnet to build hierarchical facet
categories. In: Proceedings of the International ACM SIGIR Workshop on Faceted
Search, Seattle, WA. (Aug 2006)

23. Wang, Y., Sure, Y., Stevens, R., Rector, A.: Knowledge elicitation plug-in for
Protégé: Card sorting and laddering. In: Proceedings of the 1st Asian Semantic
Web Conference, Beijing, China. (Sep 3-7 2006)

24. Laukkanen, M., Viljanen, K., Apiola, M., Lindgren, P., Hyvönen, E.: Towards
ontology-based yellow page services. In: Proceedings of WWW2004 Workshop,
Application Design, Development, and Implementation Issues. (May 2004)

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 371–383, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Approach for Identification of User’s Intentions
During the Navigation in Semantic Websites

Rafael Liberato Roberto and Sérgio Roberto P. da Silva

Universidade Estadual de Maringá, Av. Colombo 5790, zona 07,
Maringá – PR – Brasil

{liberato,srsilva}@din.uem.br

Abstract. The growing need for content customization in websites has fostered
the development of systems which try to identify the user’s navigation patterns.
These may be, normally, identified by means of log file analysis. However, this
solution does not identify the semantic intention behind user’s navigation. This
paper provides an approach to incorporating semantic knowledge to the process
of identifying the user’s intentions in the navigation of a website with semantic
support. The capture of the user’s intentions is achieved by the semantic
enrichment of the log files and the use of and approach that takes into account
the linguistic and cognitive aspects in the development of the user model.

Keywords: User Model, Semantic Web, Web Personalization.

1 Introduction

A user’s website navigation is strongly related to his interests and necessities.
However, most of today’s websites do not take this into account. A solution to this
problem would use of personalization mechanisms. A personalized website may
include new index pages, provide personalized search results, dynamically create
recommendations (such as new links), or even define new layouts for a webpage.
Several projects have come out aiming to improve the user’s interaction with the
website such as, for instance, Letizia [14], WebMate [5], PersonalWebWatcher [17]
and OBIWAM [11], which construct a user model analyzing the webpages visited by
the user and making adaptations on the pages he has visited.

Today’s personalization mechanisms, in general, utilize a navigational behavior
analyses to create a user model [4] [10] [13], extracting behavioral patterns by means
of machine learning techniques. These models can be represented in several different
ways. Letizia [14] produce a list of webpages, while QuickStep [16] creates a list of
concepts of interests, and Persona [21] creates ontologies. It is interesting to note that
these models are constructed by using a great variety of learning techniques such as,
vectorial space models [5], probabilistic models [17] or clustering [18]. However, as
seen in [17], the exclusive use of the navigation data can be problematic, because
there may be difficulties when there is not enough data to extract patterns related to
certain categories of the domain, or when new webpages, which have not been visited
already by the users yet, are added to the website.

372 R.L. Roberto and S.R.P. da Silva

The incorporation of information related to the content of the webpages or the
website’s structure, i.e., data concerning its semantic relations, provides a way of
overcoming the problems mentioned above, improving the personalization process [8]
[10]. A common approach in this context is the integration of the characteristics of the
webpages contents with a classification defined by the users [6] [19]. Generally, in
this approach, keywords are extracted from the website’s content and are used to
index or classify its webpages in several categories of content. Thus, these approaches
would permit the recommendation engines to indicate pages to a user based not only
in the similarity among the users’ navigation patterns, but (or alternatively) on the
similarity of the content of the webpages as well. Some projects have adopted the
integration of the similarity of the webpages’ content to enrich the process of user
model construction [6] [19] [9]. SEWeP [9], for example, has as main characteristic
the creation of C-logs (concept-logs), a semantically enriched log file based on the
extraction of keywords of the webpages. After they have been found, the keywords
are mapped to the concept of a taxonomy created to model the domain concepts. Each
register of log file is improved with the concepts representing the semantic of the
respective URI. However, even these systems may not be able to capture more
complex relations among the information as, for example, relations originating from a
deeper semantic level, which are based on attributes and properties of the concepts
involved. To do so, a richer model is necessary, one which is able to represent the
semantically richer relations as, for example, a domain ontology.

In the context of the semantic web [3], webpages must be understood not only by
people, but also by the machines, in the form of computational agents. One way of
making this idea viable is through the usage of ontologies associated to the websites
[12]. These ontologies would permit the software agents to reason about the relations
of the websites’ content and, by doing so, to make it possible to improve the attention
given to the necessities of the user.

This article suggests an approach to associate the benefits provided by the semantic
structuring offered by the semantic web proposal, by means of ontologies associated
to the websites, along with the analyses of the user’s navigational behaviors, creating
what is called a semantic log. In this way, it proposes a process of user model creation
based on the identification of possible interests of a user when s/he is navigating a
website with semantic support. This process is based on the analyses of a semantic
log, using the domain ontology available for the website. To do so, an algorithm was
developed in order to classify the user’s intentions. This algorithm is based on the
idea that all the concepts involved on the website are candidates to be the user’s
intentions. To determine the real relevancy of each concept, a set of parameters was
defined to ponders the influence of the linguistic control over the user’s power of
expression in the form of a segmentation of the domain ontology, and the influence of
a concept in the user’s interaction applying the idea of cognitive force, derived from
the theory of spreading activation [1] [2], and developed under the cognitive
psychology to explain how human memory works.

This article is organized as follows. In section 2 we describe the algorithm
responsible for identifying the possible user’s interests. In section 3 we discusses a
comparative analyses done by means of a simulation of the proposed algorithm with
algorithms based on the frequency and the classic algorithm of the Naïve Bayes
classifier. Finally, section 4 describes the results and our conclusions.

 An Approach for Identification of User’s Intentions 373

2 The User Modeling

The creation a user model is always a very complex task, for the set of parameters to
be considered is always large. The choice of these parameters along with the machine
learning techniques which are applied makes the difference in the quality of the
model.

To define which parameters should be used in our project we take into account the
linguistic and cognitive aspects which affect the users in the expression of their
interests. In this way, we are initially going to discuss the effect that the vocabulary
available to the user has on his form of expression. Then, we are going to discuss the
effect that the semantic relationship among the concepts has on the human memory
and how that can affect the user’s expression and the identification of his intention
when navigating a website.

2.1 The Linguistic Aspects That Affect the User Model

A domain ontology consists of a set of concepts and relationships that describe the
knowledge about a domain of interest. It can also be seen as a vocabulary definer for a
controlled language that permits the users to express themselves about the domain.

However, when developing a software application, be it for the desktop or for the
web, not all the concepts present in the ontology domain needs to be involved. This
partition of domain ontology, which we can call the application model, has indirect
influence on the expression of the user’s interests about the domain.

In the case of a website, the problem goes further, for each webpage uses only a
part of the knowledge contained in the application ontology, limiting even more the
user’s power of expression. To reflect this new reduction in the user’s vocabulary, we
use a presentation model, which represents the segmentation of the application
model, which is presented in each webpage. Thus, the partition of the knowledge for a
website is structured as illustrated on Fig. 1.

Fig. 1. Segmentation of knowledge in a web application

It is important to emphasize that, in this project, the presentation model is related,
mainly, to the information content present in the webpages. It does not take into
account the effect that the esthetic presentation has on the user’s attention and that can

374 R.L. Roberto and S.R.P. da Silva

also direct his intentions. The introduction of the presentation model tries to
contemplate the fact that a person can only express something for which he has a
vocabulary. This fact has an indirect influence on the creation of a model of the user’s
interests, but that should be considered. Thus, the presentation model is necessary to
model the limitations imposed by the language to the user’s power of expression.

Trying to consider, partially, the effect that the layout has on the presentation model,
we have defined a status (S) parameter, in which we isolate three main components in
a webpage, based on its level of prominence, which are: the “Main Menu”, the
“Secondary Menu” and the “Body” of the webpage, as illustrated in Fig. 2. As each
component possesses a level of importance in the webpage, drawing the user’s
attention in different forms, we attribute differentiated weights for the concepts
involved to each component.

Fig. 2. Parts of the page with different status

2.2 The Cognitive Aspects That Affect the User Model

One of the dominant theories to explain the semantic processing in the cognitive
psychology is known as spreading activation [1] [2] [20]. This theory tries to explain
how the information recovery of the human brain works [1] [20]. It considers that the
human memory is organized in a semantic network form, proposing that when a
concept becomes the focus of our attention all the concepts associated to it are also
activated. That is to say, the activation of a concept spreads itself to all the concepts
associated to it. This activation spreading helps to explain how the remembrance of a
topic can bring related topic to the mind.

According to Collins and Loftus [7], to better explain the cognitive process of
spreading activation it is also necessary to consider activation strength for each
existent association with the focus concept. In this way, it is possible to amplify or
reduce the cognitive force in the spreading process.

In this project, the domain ontology, used for the semantic log construction as well
as the models of application and presentation, is represented by a semantic network
expressed in the OWL language [15]. If we considerer that by choosing a link in a
semantic website page the user will be activating a concept (the focus concept) in the
semantic network which composes it, it is very reasonable to apply the concept of
cognitive strength and spreading activation to evaluate the real interest of the user.

 An Approach for Identification of User’s Intentions 375

2.3 Linking Navigational Patterns and Semantic Content

Aiming at aiding the user’s intentions modeling, in the development of semantic
website pages we have adopted a strategy to monitor in a transparent way, the user’s
interactions with the website, creating a proper log file. Thus, each website page
visited inserts a register in the log file storing the date and time of access, and its
address. However, in the context of websites personalization, as seen in [17], using
data originating from the user’s navigation can bring difficulties, especially when
there is not enough data to extract patterns related to certain domain categories, or
when new website pages are added which have not been visited by the user yet. In this
way, due to the fact that all information on the website pages we are interested are
based on the domain ontology, the concepts involved in the information of the pages
visited, also are inserted in the log file, creating what we call a semantic log. Thus,
the construction of the semantic log associates the semantic information of website’s
content with the user’s navigation behavior.

It is important to emphasize that, in the scope of this project; we will be limiting
our discussion to websites constituted of intranets portals which have been
constructed with technology for semantic support since the beginning. We know that
the treatment of the websites constructed with modern technology is very relevant, but
it will be the target of this project at the moment.

2.4 An Identification Algorithm of a User’s Interests

The algorithm proposed here takes into consideration the linguistics and cognitive
aspects that influence the process user model creation. Thus, it uses the presentation
model and the idea of spreading activation, considering the cognitive strength of each
concept, in order to select the concept that expresses the present user’s interest.

The algorithm has as entrance the semantic log and the presentation model of the
page that the user is in. The presentation model has two functions. The first is taking
into account the linguistic limitation imposed by the content presented on the
webpage. As the concepts present in it are more strongly activated in the user’s
memory, focusing its scope of expression, they are pondered more strongly than the
other concepts of application model, when determining the probability of a concept
expresses the user’s intention. The second is to take into account the cognitive aspect
of the spreading activation in the human memory. The cognitive strength increases or
decreases the strength of the activation of the concept in the spreading process. To
determine this cognitive strength for each concept is necessary to determine the
following parameters: R, which define the number of relations that the concept in
question possesses, and S, that defines the status of the concept in the presentation
model, as mentioned before in section 2.1. The relations that a concept possesses were
classified in two groups: #Raplic provides the number of relations with other concepts
in the application model (concepts that do not appear in the presentation model),
#Rapress provides the number of relations with other concepts of the presentation
model. Thus, the parameter R is defined by the formula R=Paplic #(Raplic).+ Papres
#(Rapres), were px is a specific weight for each type of relation, respecting the first
function of the presentation model. The parameter S is defined by the position in

376 R.L. Roberto and S.R.P. da Silva

which the concept occupies in the webpage layout, as seen in Fig. 2. The cognitive
strength of a concept is defined by the formula F = S * R.

Fig. 3 illustrates the parameters that must be determined for any concept of
presentation model during the process of spreading activation. Besides the cognitive
strength, differentiated weights were defined for three different types of concepts: the
focus concept – associated to the link chosen by the user and that, therefore, has a
high possibility of being his real interest, has a higher value; the directly connected
concepts to the focus concept – which have a good probability of being the user’s real
interest, have a value dependent on its cognitive strength, as previously defined; and
the disconnected concepts of the focus concept, which are not involved in the
spreading process and are considered noise (once they do not share the user’s
attention) have a residual value, since they must not be ignored, as it will be shown in
the Section 3.

Fig. 3. Parameters in the spreading process

Thus, at each user’s interaction, represented by a register of the semantic log, the
algorithm identifies the focus concept, the connected concept and the noises in the
presentation and application mode and attributes the weights correspondent to each of
them and defines the probabilities of interest of each concept. This probability is
defined by the formula:

∑
=

+=
j

k
kikiji FTcIICP

1
1)()()...|((1)

where:

• P = probability of user’s interest to a determined concept;
• C = the concept in question among all the domain ontology concepts;
• I = the present interaction in the semantic log;

 An Approach for Identification of User’s Intentions 377

• Tc = the value correspondent to the type of concept (Focus Concept, Directly
Connected Focus and Disconnected Concept);

• F = the cognitive strength of concept (F = 0, if the type of concept is a
Disconnected Concept).

To obtain the concept that represents the greater interest the following formula is
used:

))...|(max(arg 1 ji
i

IICP
(2)

where I varies for all the concepts and j is the total of interactions. In this way, the
algorithm keeps an updated list of the concepts with their respective probabilities of
interest.

3 An Evaluation of the Proposed Algorithm

In this section we present an experimental study based on simulated empiric tests, in
which navigations are defined with pre-defined interests. The objective of these tests
is to verify the validity of the approach of semantic knowledge integration to
navigation data in the identification process of the user’s interests, considering the
linguistics and cognitive aspects of the process of user model creation.

To compare our results, tests were also performed using classification algorithms
based on frequency and on a Bayesian approach. It is important to emphasize that the
parameters used on the proposed approach were defined in an empiric form.
However, as future work, we intended to develop a learning algorithm to identify their
ideal values.

Thus, in the Bayesian approach, we have used the Naïve Bayes Classifier
algorithm, using just positive learning examples, since it is not possible to obtain
negative examples in this case without an explicit intervention of the user. The
positive examples were extracted by means of the simulated semantic log, in which
each entrance was considered as a positive example. In the classification approach
based on frequency, just the frequency of visits to the webpage is considered.
However, as the frequency is obtained by means of semantic log, it will be considered
in fact the frequency of concepts involved on the webpage.

For the execution of the tests a semantic website was developed for the Computer
Department of the State University of Maringá, in which the navigations were
applied. For each navigation, one hundred interactions with their respective interest
concepts were defined. As the result of navigating in the semantic website, a semantic
log was generated and departing from it, and from the presentation model, the three
approach previously mentioned were applied.

In the tests, each navigation was defined to characterize a determined interest. As
an example, the objective of one of the pre-defined navigation was to search for
“publications” and “events” in which some “professors” are involved. To find the
desired professor it is necessary to access the research projects in which s/he takes
part. When the professor is found, her/his publications as well the events in which
s/he took part can be visualized. In this example, the greatest concentration of
accesses will be found in the process of searching the professor, that is to say, most of

378 R.L. Roberto and S.R.P. da Silva

Fig. 4. Interests Percentages progress in the navigation for the algorithm based on frequency

the accessed pages belong to the professors. In this way, the concepts pre-defined as
of greater navigation interest were “Professor”, “Publication” and “Event”.

The Bayesian classification approach and the frequency-based approach, presented
similar results. In the frequency-based classification, the concepts identified as of
greater interest are the concepts involved on the most accessed webpages. Thus,
initially we had a very high value (100%) for the concept “Research Project” and a
null value for the others, with a better convergence for the real value with the increase
of interactions number, as illustrated in Fig. 4. In the Bayesian classification, this total
preference for just one concept is corrected, as illustrated in Fig. 5, for the Naïve
Bayes Classifier considers a similar probability for all concepts in the beginning, but
with the increase in the interactions number its classification converge to the same
result.

Thus, both approach identified the same pre-defined concept for the navigation,
that is: “Professor”, “Publication” and “Event”, as being the ones of the user’s
greatest interests. The “Professor” concept becomes the user’s greatest interest. This
happens due to the high access to the professors’ pages. On the other hand, the
frequency-based classification do not take into account all the concepts involved in
the webpage, which were not accessed, attributing a null value to the percentage of
interest. The same happens in the Bayesian classification, however it attributes a very
small value to the percentage of interest, as illustrated in Fig. 6.

 An Approach for Identification of User’s Intentions 379

Fig. 5. Interest Percentage Progress in the navigation for the Bayesian algorithm

Fig. 6. Preferences resulted from the Bayesian, the Frequency-based and the Proposed
algorithm

One characteristic, which we consider negative in these two approaches, is that
they do not take into account the concepts involved on the webpages that were not
accessed yet. These concepts have a great semantic relation to the present user’s
interest concepts and, due to that semantic proximity, can be good candidates to
become the user’s interest focus in a posterior navigation.

Our algorithm also identified as main user’s interest the concepts that were pre-
defined for the navigation, as illustrated in Fig. 7, however we have found some
interesting differences.

380 R.L. Roberto and S.R.P. da Silva

Fig. 7. Progress in the percentage of interest in the navigation when applied to the proposed
algorithm

First, the “Publication” concept was identified as being of the user’s greater
interest, even having the less access number in the navigation. This fact is very
relevant, considering that during the navigation, the process of searching the professor
is secondary, for s/he is only the way to find the “Publications” and “Events” of the
desired professor. In this way, taking in to account the linguistics and cognitive
aspects of the process of user model creation, the proposed algorithm was able to
identify this semantic relation and ponder on the “Publication” concept (according to
its cognitive strength) each time that the “Professor” concept was accessed. As can be
seen in Fig. 6, the difference between the percentage of interest of the “Publication”
and “Professor” concepts became small which confirms an equivalent interest
between the concepts. The same do not happen in the other approaches, in which
there is a considerable difference between the “Publication” and “Professor” concepts.

Secondly, we can observe that the percentages graphic suffers a flattening. This
phenomenon can be explained by the fact that in our algorithm, the concepts involved
on the non-accessed pages were also considered, this occurs due to their semantic
relations with the concepts of greater interest and their cognitive strength. This
consideration of the concepts which do not appear directly on the pages raises the
percentage of interest for these concepts and permits a faster response to the changes
of the user’s future interests.

 An Approach for Identification of User’s Intentions 381

Finally, we can consider that the results of this experiment were satisfactory,
conforming our expectations that the use of the cognitive and linguistics aspects make
a great difference in determining the user’s intention

4 Conclusion and Future Projects

In this article, we present an approach to integrate semantic knowledge and navigation
data in the process of identification of possible user’s interests. For this, we have
created a semantic log associating navigational patterns to concepts defined in a
domain ontology. We have developed an algorithm using the linguistics and cognitive
aspects that affect the process of user models creation. We identified that the form
with which the concepts are disposed in the webpages, limit the user’s capacity of
choice, influencing indirectly the expression of her/his interests. In this way we
consider the effect that the segmentation of the application model, i.e., the
presentation model, has over the concepts presented in the webpages. The
presentation models along with the semantic log act as the basis for the proposed
algorithm. In order to take into account the way the concepts are organized in the
human memory, and how the remembrance of a certain concept can bring to the
memory the related concepts, we apply the idea of spreading activation and cognitive
strength, to consider the degree of relevance of the concepts in the knowledge model.

In our analysis of the proposed approach, our algorithm presented very positive
aspects in relation to other well known approaches (the Frequency-based
classification and the Bayesian classification and the). One of the relevant points was
to make it possible to identify a concept that has not had the largest number of access
as being it the concept of greatest interests by the user. This behavior shows that the
spreading activation considered with the different status of the accessed concepts,
defined by the presentation model, permits the compensating the deviation caused by
greater number of access resulted from a secondary path used to achieve the main
objective. This does not happen in the other approaches, in which these concepts have
a considerable difference of percentage of interest, in which the concept with greater
number of access prevails. Another important fact is the determination of greater
values for the probability of the non-visible concepts, which makes possible to obtain
a better answer in the change of the user’s interests possible.

This article also shows interesting research problems to be discussed and future
projects. Most urgent among them is the development of learning techniques to
identify ideal values of the parameters for the cognitive strength consideration and of
the individual values of the different types of concepts. We also envisage a great deal
of work to be done to consider the influence of the aesthetic aspects of the webpages.

Acknowledgements

Special thanks to CNPq – (Scientific and Technological Development National
Counsel for financial support to the Post Graduation in Computer Science Program of
the State University of Maringá - UEM).

382 R.L. Roberto and S.R.P. da Silva

References

1. Anderson, J. R. (1983a). A spreading activation theory of memory, Journal of Verbal
Learning and Verbal Behavior, 22.

2. Anderson, J. R. (1983b). The architecture of cognition. Cambridge, MA: Harvard
University Press.

3. Berners – Lee, t., Hendler, J., Lassila O.(2001). The Semantic Web. Scientifc American,
May 2001.

4. Brusilovsky, P., (2001). Adaptive Hypermedia, User Modeling and User-Adapted
Interaction, Kluwer Academic Publishers, Netherlands, pp. 87-110.

5. Chen L., Sycara K. (1998). Web Mate: A Personal Agent for Browsing and Searching. In
Proceedings of the 2nd International Conference on Autonomous Agents and Multi Agent
Systems, AGENTS '98, ACM, pp. 132 – 139.

6. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D. and Sartin, M.(1999).
Combining Content-based and Collaborative Filters in an Online Newspaper. In
Proceedings of the ACM SIGIR ’99 Workshop on Recommender Systems: Algorithms and
Evaluation. University of California, Berkeley, Aug.

7. Collins, A. M., & Loftus, E. F. (1975). A spreading activation theory of semantic priming.
Psychological Review, 82, 407-428.

8. Dai, H. and Mobasher, B. (2003). A Road map to More Effective Web Personalization:
Integrating Domain Knowledge with Web Usage Mining. Proc.of the International
Conference on Internet Computing 2003 (IC’03), Las Vegas, Nevada, June 2003.

9. Eirinaki, M.; Vazirgiannis, M., Varlamis, I. (2003) SEWeP: using site semantics and a
taxonomy to enhance the Web personalization process. KDD 2003: 99-108.

10. Eirinaki, M. and Vazirgiannis, M. (2003). Web Mining for Web Personalization, ACM
Transactions on Internet Technology (TOIT), February 2003/ Vol.3, No.1, 1-27.

11. Gauch S., Chaffee J., Pretschner A. Ontology Based Personalized Search. Web Intelligence
and Agent Systems (in press).

12. Hendler, J., Berners-Lee, T. and Miller, E. (2002). Integrating Applications on the
Semantic Web, Journal of the Institute of Electrical Engineers of Japan, Vol 122(10),
October, 2002, p. 676-680. http://www.w3.org/2002/07/swint.

13. Lei, Y., Motta, E. and Domingue, J. (2004). Modelling Data- Intensive Web Sites with
OntoWeaver, in International Workshop on Web Information Systems Modelling (WISM
2004), Riga, Latvia.

14. Lieberman, H. (1995). Letizia: An Agent That Assists Web Browsing. In Proceedings of
the International Joint Conference on Artificial Intelligence, Montreal, CA.

15. MCGUINNESS, D. L.; VAN HARMELEN, F.(2006). OWL Web Ontology Language
Overview. W3C Recommendation 10 February 2004. Available in:
http://www.w3.org/TR/2004/REC-owl-features-20040210/, Acess in: jan. 2006.

16. Middleton, S., De Roure, D., Shadbolt, N. (2001). Capturing knowledge of user
preferences: ontologies in recommender systems. In Proceedings of the 1st International
Conference on Knowledge Capture (K-Cap2001), Victoria, BC Canada.

17. Mladenic, D. (1999). Text-learning and related intelligent agents. Revised version In IEEE
Expert, special issue on Applications of Intelligent Information Retrieval.

18. Mobasher, B., Daí, H., Luo, T., Sung, Y. and Zhu, J. (2000). Integrating Web Usage and
Content Mining for More Effective Personalization, in Proc. of the International
Conference on E-Commerce and Web Technologies (ECWeb2000), Greenwich, UK,
September 2000.

 An Approach for Identification of User’s Intentions 383

19. Pazzani, M. A (1999). Framework for Collaborative, Content-Based and Demographic
Filtering. Artificial Intelligence Review, Dec. 1999, pp. 393-408.

20. Quillian, M. R. (1968). Semantic memory. In M. L. Minsky (Ed.), Semantic Information
Processing. Cambridge, MA: MIT Press.

21. Tanasa, D. and Trousse, B. (2004). Advanced data preprocessing for intersites web usage
mining. IEEE Intelligent Systems, 19(2):59-65, March-April 2004.

A Novel Combination of Answer Set Programming with
Description Logics for the Semantic Web

Thomas Lukasiewicz �

Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Rome, Italy

lukasiewicz@dis.uniroma1.it

Abstract. We present a novel combination of disjunctive logic programs under
the answer set semantics with description logics for the Semantic Web. The com-
bination is based on a well-balanced interface between disjunctive logic programs
and description logics, which guarantees the decidability of the resulting formal-
ism without assuming syntactic restrictions. We show that the new formalism has
very nice semantic properties. In particular, it faithfully extends both disjunctive
programs and description logics. Furthermore, we describe algorithms for rea-
soning in the new formalism, and we give a precise picture of its computational
complexity. We also provide a special case with polynomial data complexity.

1 Introduction

The Semantic Web [4,14] aims at an extension of the current World Wide Web by stan-
dards and technologies that help machines to understand the information on the Web so
that they can support richer discovery, data integration, navigation, and automation of
tasks. The main ideas behind it are to add a machine-readable meaning to Web pages, to
use ontologies for a precise definition of shared terms in Web resources, to use knowl-
edge representation technology for automated reasoning from Web resources, and to
apply cooperative agent technology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where the Ontology layer,
in form of the OWL Web Ontology Language [41,22], is currently the highest layer
of sufficient maturity. OWL consists of three increasingly expressive sublanguages,
namely OWL Lite, OWL DL, and OWL Full. OWL Lite and OWL DL are essentially
very expressive description logics with an RDF syntax [22]. As shown in [19], ontology
entailment in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability
in the description logic SHIF(D) (resp., SHOIN (D)). As a next important step in
the development of the Semantic Web, one aims at sophisticated representation and
reasoning capabilities for the Rules, Logic, and Proof layers of the Semantic Web.

In particular, there is a large body of work on integrating rules and ontologies, which
is a key requirement of the layered architecture of the Semantic Web. Significant re-
search efforts focus on hybrid integrations of rules and ontologies, called description
logic programs1 (or dl-programs), which are of the form KB =(L, P), where L is a
� Alternate address: Institut für Informationssysteme, Technische Universität Wien, Favoriten-

straße 9-11, A-1040 Vienna, Austria; e-mail: lukasiewicz@kr.tuwien.ac.at.
1 Note that we use the notion of “description logic programs” in a generic way, that is, to denote

a class of different formalisms, similarly to the notion of “description logics”.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 384–398, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Novel Combination of Answer Set Programming 385

description logic knowledge base and P is a finite set of rules involving either queries
to L in a loose integration (see especially [11,12,9,10]) or concepts and roles from L as
unary resp. binary predicates in a tight integration (see especially [36,37]).

However, especially the tight integration of rules and ontologies presents many se-
mantic and computational difficulties [37]. Since many expressive description logics
are very close to the decidability / undecidability frontier (such as SHOIN (D), which
is only decidable when number restrictions are limited to simple abstract roles [23]),
developing decidable extensions of them by rules turns out to be a naturally hard task,
and often comes along with strong syntactic restrictions on the resulting language (such
as syntactic safety conditions and/or syntactic partitionings of the vocabulary).

Nevertheless, in rule-based systems in the Semantic Web, we would like to use vo-
cabulary from formal ontologies, and we would like to do it without syntactic restric-
tions. In this paper, we show that the main difficulties with the above tight integrations
of rules and ontologies lies actually in the perspective of the integration. That is, they
all look from the perspective of description logics at the integration of rules and ontolo-
gies. However, for extending certain kinds of rule-based systems by vocabulary from
formal ontologies, we actually do not need the full power of a rule-based extension of
description logics. This is the main idea behind this paper. More precisely, we look at
the integration of rules and ontologies from the perspective of rule-based systems.

The main contributions of this paper can be summarized as follows:

– We present a new combination of disjunctive logic programs under the answer set
semantics with description logics. In detail, we present a new form of tightly inte-
grated disjunctive dl-programs KB = (L, P) under the answer set semantics, which
allows for decidable reasoning, without assuming any syntactic restrictions (see
Section 8 for a detailed comparison to previous approaches to dl-programs).

– Intuitively, the main idea behind the semantics of such dl-programs KB =(L, P)
is to interpret P relative to Herbrand interpretations that also satisfy L, while L
is interpreted relative to general interpretations over a first-order domain. That is,
we modularly combine the standard semantics of disjunctive programs P and of
description logics L, via a well-balanced interface between P and L.

– We show that the new approach to disjunctive dl-programs under the answer set
semantics has very nice semantic features. In particular, the cautious answer set
semantics faithfully extends both disjunctive programs and description logics, and
its closed-world property is limited to explicit default-negated atoms in rule bodies.
Furthermore, the new approach does not need the unique name assumption.

– We also analyze the computational aspects of the new formalism. We describe al-
gorithms for deciding answer set existence, brave consequences, and cautious con-
sequences. This shows in particular that these decision problems are all decidable.
We also draw a precise picture of the complexity of all these decision problems.

– Finally, we delineate a special case of stratified normal dl-programs where the
above decision problems all have a polynomial data complexity.

The rest of this paper is organized as follows. Sections 2 and 3 recall disjunctive
programs under the answer set semantics resp. the description logics SHIF(D) and
SHOIN (D). In Section 4, we introduce our novel approach to disjunctive dl-programs
under the answer set semantics, and in Section 5, we analyze its semantic properties.

386 T. Lukasiewicz

Sections 6 and 7 focus on the computational properties. In Section 8, we discuss related
work in the literature. Section 9 summarizes our main results and gives an outlook
on future research. Some selected proofs are given in the appendix. Note that detailed
proofs of all results are given in the extended report [31].

2 Disjunctive Programs Under the Answer Set Semantics

In this section, we recall disjunctive programs (with default negation) under the answer
set semantics; see especially [26] for further details and background.

Syntax. Let Φ be a first-order vocabulary with nonempty finite sets of constant and
predicate symbols, but no function symbols. Let X be a set of variables. A term is either
a variable from X or a constant symbol from Φ. An atom is of the form p(t1, . . . , tn),
where p is a predicate symbol of arity n � 0 from Φ, and t1, . . . , tn are terms. A literal l
is an atom p or a negated atom not p. A disjunctive rule (or simply rule) r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βn+m , (1)

where α1, . . . , αk, β1, . . . , βn+m are atoms and k, m, n � 0. We call α1 ∨ · · · ∨ αk the
head of r, while the conjunction β1, . . . , βn,not βn+1, . . . ,not βn+m is its body. We
define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪ B−(r), where B+(r) = {β1, . . . ,
βn} and B−(r) = {βn+1, . . . , βn+m}. A disjunctive program P is a finite set of dis-
junctive rules of the form (1). We say P is positive iff m =0 for all disjunctive rules (1)
in P . We say P is a normal program iff k � 1 for all disjunctive rules (1) in P .

Example 2.1. An online store (such as amazon.com) may use the subsequent set of
rules P to express that (1) pc1 and pc2 are personal computers, and obj3 is either a
personal computer or a laptop, (2) pc1 and obj3 are brand new, (3) dell is the vendor
of pc1 and pc2, (4) a customer avoids all cameras not on offer, (5) all electronic products
that are not brand new are on offer, (6) each vendor of a product is a provider, (7) each
entity providing a product is a provider, (8) all related products are similar, and (9) the
binary similarity relation on products is transitively closed.

(1) pc(pc1); pc(pc2); pc(obj3) ∨ laptop(obj3);
(2) brand new(pc1); brand new(obj3);
(3) vendor(dell, pc1); vendor(dell, pc2);
(4) avoid(X) ← camera(X),not offer(X);
(5) offer(X) ← electronics(X),not brand new(X);
(6) provider(V) ← vendor(V, X), product(X);
(7) provider(V) ← provides(V, X), product(X);
(8) similar(X, Y) ← related(X, Y);
(9) similar(X, Z) ← similar(X, Y), similar(Y, Z).

Semantics. The answer set semantics of disjunctive programs is defined in terms of fi-
nite sets of ground atoms, which represent Herbrand interpretations. Positive disjunctive
programs are associated with all their minimal satisfying sets of ground atoms, while the

A Novel Combination of Answer Set Programming 387

semantics of general disjunctive programs is defined by reduction to the minimal model
semantics of positive disjunctive programs via the Gelfond-Lifschitz reduct [15].

More concretely, the Herbrand universe of a disjunctive program P , denoted HU P ,
is the set of all constant symbols appearing in P . If there is no such constant symbol,
then HU P = {c}, where c is an arbitrary constant symbol from Φ. As usual, terms,
atoms, literals, rules, programs, etc. are ground iff they do not contain any variables. The
Herbrand base of a disjunctive program P , denoted HBP , is the set of all ground atoms
that can be constructed from the predicate symbols appearing in P and the constant
symbols in HU P . Hence, in the standard answer set semantics, the Herbrand base is
constructed from all constant and predicate symbols in a given disjunctive program,
and thus the Herbrand base is finite. A ground instance of a rule r ∈P is obtained
from r by replacing every variable that occurs in r by a constant symbol from HU P .
We denote by ground(P) the set of all ground instances of rules in P .

An interpretation I relative to a disjunctive program P is a subset of HBP . Infor-
mally, every such I represents the Herbrand interpretation in which all a ∈ I (resp.,
a ∈HBP − I) are true (resp., false). An interpretation I is a model of a ground atom
a ∈HBP , or I satisfies a, denoted I |= a, iff a ∈ I . We say I is a model of a ground
rule r, denoted I |= r, iff I |= α for some α ∈H(r) whenever I |= B(r), that is, I |=β
for all β ∈B+(r) and I �|= β for all β ∈B−(r). We say I is a model of a disjunctive
program P , denoted I |=P , iff I |= r for every r ∈ ground(P). An answer set of a
positive disjunctive program P is a minimal model of P relative to set inclusion. The
Gelfond-Lifschitz reduct of a disjunctive program P relative to I ⊆HBP , denoted P I ,
is the ground positive disjunctive program obtained from ground(P) by (i) deleting
every rule r such that B−(r)∩ I �= ∅, and (ii) deleting the negative body from each re-
maining rule. An answer set of a disjunctive program P is an interpretation I ⊆ HBP

such that I is an answer set of P I . A disjunctive program P is consistent iff P has an
answer set.

Hence, under the answer set semantics, every disjunctive program P is interpreted
as its grounding ground(P). Note that the answer sets of any disjunctive program P
are also minimal models of P . An equivalent definition of the answer set semantics is
based on the so-called FLP-reduct [13]: The FLP-reduct of a disjunctive program P
relative to I ⊆HBP , denoted P I , is the set of all r ∈ ground(P) such that I |= B(r).
An interpretation I ⊆HBP is an answer set of P iff I is a minimal model of P I .

We finally recall the notions of cautious (resp., brave) reasoning from disjunctive
programs under the answer set semantics. A ground atom a ∈HBP is a cautious (resp.,
brave) consequence of a disjunctive program P under the answer set semantics iff every
(resp., some) answer set of P satisfies a. Observe that for positive disjunctive pro-
grams P , since the set of all answer sets of P is given by the set of all minimal models
of P , it holds that a ∈HBP is a cautious consequence of P under the answer set se-
mantics iff a is a logical consequence of the propositional positive disjunctive program
ground(P). Note that, more generally, this result holds also when a is a ground for-
mula constructed from HBΦ using the Boolean operators ∧ and ∨. This means that
the closed-world property (that is, the derivation of negative facts from the absence of
derivations of positive facts) of the above notion of cautious reasoning under the an-
swer set semantics is actually limited to the occurrences of default negations in rule
bodies.

388 T. Lukasiewicz

3 Description Logics

In this section, we recall the description logics SHIF(D) and SHOIN (D), which
stand behind the web ontology languages OWL Lite and OWL DL [19], respectively.
Intuitively, description logics model a domain of interest in terms of concepts and roles,
which represent classes of individuals and binary relations between classes of individ-
uals, respectively. A description logic knowledge base encodes especially subset re-
lationships between concepts, subset relationships between roles, the membership of
individuals to concepts, and the membership of pairs of individuals to roles.

Syntax. We first describe the syntax of SHOIN (D). We assume a set of elementary
datatypes and a set of data values. A datatype is either an elementary datatype or a set
of data values (called datatype oneOf). A datatype theory D= (ΔD, ·D) consists of
a datatype domain ΔD and a mapping ·D that assigns to each elementary datatype a
subset of ΔD and to each data value an element of ΔD. The mapping ·D is extended
to all datatypes by {v1, . . .}D = {vD

1 , . . .}. Let A, RA, RD, and I be pairwise disjoint
(nonempty) denumerable sets of atomic concepts, abstract roles, datatype roles, and
individuals, respectively. We denote by R−A the set of inverses R− of all R ∈RA.

A role is an element of RA ∪R−A ∪RD. Concepts are inductively defined as fol-
lows. Every φ∈A is a concept, and if o1, . . . , on ∈ I, then {o1, . . . , on} is a concept
(called oneOf). If φ, φ1, and φ2 are concepts and if R ∈RA ∪R−A, then also (φ1 � φ2),
(φ1 � φ2), and ¬φ are concepts (called conjunction, disjunction, and negation, respec-
tively), as well as ∃R.φ, ∀R.φ, �nR, and �nR (called exists, value, atleast, and at-
most restriction, respectively) for an integer n � 0. If D is a datatype and U ∈RD, then
∃U.D, ∀U.D, �nU , and �nU are concepts (called datatype exists, value, atleast, and
atmost restriction, respectively) for an integer n � 0. We write � and ⊥ to abbreviate
the concepts φ � ¬φ and φ � ¬φ, respectively, and we eliminate parentheses as usual.

An axiom has one of the following forms: (1) φ� ψ (called concept inclusion axiom),
where φ and ψ are concepts; (2) R �S (called role inclusion axiom), where either
R, S ∈RA or R, S ∈RD; (3) Trans(R) (called transitivity axiom), where R ∈RA;
(4) φ(a) (called concept membership axiom), where φ is a concept and a ∈ I; (5) R(a, b)
(resp., U(a, v)) (called role membership axiom), where R ∈RA (resp., U ∈RD) and
a, b ∈ I (resp., a ∈ I and v is a data value); and (6) a = b (resp., a �= b) (equality (resp.,
inequality) axiom), where a, b ∈ I. A knowledge base L is a finite set of axioms. For
decidability, number restrictions in L are restricted to simple abstract roles [23].

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the
oneOf constructor and with the atleast and atmost constructors limited to 0 and 1.

Example 3.1. The subsequent description logic knowledge base L expresses that (1)
textbooks are books, (2) personal computers and laptops are mutually exclusive elec-
tronic products, (3) books and electronic products are mutually exclusive products, (4)
objects on offer are products, (5) every product has at least one related product, (6) only
products are related to each other, (7) the relatedness between products is symmetric,
(8) tb ai and tb lp are textbooks, (9) which are related to each other, (10) pc ibm and
pc hp are personal computers, (11) which are related to each other, and (12) ibm and hp
are providers for pc ibm and pc hp, respectively.

A Novel Combination of Answer Set Programming 389

(1) textbook � book; (2) pc � laptop � electronics; pc � ¬laptop;
(3) book � electronics � product; book �¬electronics; (4) offer � product;
(5) product � � 1 related; (6) � 1 related � � 1 related− � product;
(7) related � related−; related− � related;
(8) textbook(tb ai); textbook(tb lp); (9) related(tb ai, tb lp);
(10) pc(pc ibm); pc(pc hp); (11) related(pc ibm, pc hp);
(12) provides(ibm, pc ibm); provides(hp, pc hp).

Semantics. An interpretation I = (ΔI , ·I) w.r.t. a datatype theory D=(ΔD, ·D) con-
sists of a nonempty (abstract) domain ΔI disjoint from ΔD, and a mapping ·I that
assigns to each atomic concept φ∈A a subset of ΔI , to each individual o∈ I an ele-
ment of ΔI , to each abstract role R ∈RA a subset of ΔI ×ΔI , and to each datatype
role U ∈RD a subset of ΔI × ΔD. We extend ·I to all concepts and roles, and we
define the satisfaction of an axiom F in an interpretation I =(ΔI , ·I), denoted I |= F ,
as usual [19]. We say I satisfies the axiom F , or I is a model of F , iff I |=F . We
say I satisfies a knowledge base L, or I is a model of L, denoted I |= L, iff I |= F for
all F ∈L. We say L is satisfiable (resp., unsatisfiable) iff L has a (resp., no) model. An
axiom F is a logical consequence of L, denoted L |= F , iff each model of L satisfies F .

4 Disjunctive DL-Programs Under the Answer Set Semantics

In this section, we present a novel integration between disjunctive programs under the
answer set semantics and description logics. The basic idea behind this integration is as
follows. Suppose that we have a disjunctive program P . Under the answer set seman-
tics, P is equivalent to its grounding ground(P). Suppose now that some of the ground
atoms in ground(P) are additionally related to each other by a description logic knowl-
edge base L. That is, some of the ground atoms in ground(P) actually represent con-
cept and role memberships relative to L. Thus, when processing ground(P), we also
have to consider L. However, we only want to do it to the extent that we actually need it
for processing ground(P). Hence, when taking a Herbrand interpretation I ⊆ HBΦ, we
have to ensure that the ground atoms of I represent a valid constellation relative to L.

In other words, the main idea behind the semantics is to interpret P relative to
Herbrand interpretations that also satisfy L, while L is interpreted relative to general
interpretations over a first-order domain. Thus, we modularly combine the standard se-
mantics of disjunctive programs and of description logics as in [11,12,10], which allows
for building on the standard techniques and the results of both areas. However, our new
approach here allows for a much tighter integration of L and P .

Syntax. We assume a function-free first-order vocabulary Φ with nonempty finite sets
of constant and predicate symbols, as in Section 2. We use Φc to denote the set of all
constant symbols in Φ. We also assume pairwise disjoint (nonempty) denumerable sets
A, RA, RD, and I of atomic concepts, abstract roles, datatype roles, and individu-
als, respectively, as in Section 3. We assume that Φc is a subset of I. This assumption
guarantees that every ground atom constructed from atomic concepts, abstract roles,

390 T. Lukasiewicz

datatype roles, and constants in Φc can be interpreted in the description logic compo-
nent. We do not assume any other restriction on the vocabularies, that is, Φ and A (resp.,
RA ∪RD) may have unary (resp., binary) predicate symbols in common.

A disjunctive description logic program (or simply disjunctive dl-program) KB =
(L, P) consists of a description logic knowledge base L and a disjunctive program P .
It is positive iff P is positive. It is a normal dl-program iff P is a normal program.

Example 4.1. A disjunctive dl-program KB =(L, P) is given by the description logic
knowledge base L and the disjunctive program P of Examples 2.1 and 3.1, respectively.
Another disjunctive dl-program KB ′= (L′, P ′) is obtained from KB by adding to L the
axiom � 1 similar � � 1 similar− � product, which expresses that only products are
similar. Observe that the predicate symbol similar in P ′ is also a role in L′, and it freely
occurs in both rule bodies and rule heads in P ′ (which is not possible in [11]).

Semantics. We now define the answer set semantics of disjunctive dl-programs via a
generalization of the FLP-reduct of disjunctive programs (see Section 2).

In the sequel, let KB = (L, P) be a disjunctive dl-program. A ground instance of
a rule r ∈P is obtained from r by replacing every variable that occurs in r by a con-
stant symbol from Φc. We denote by ground(P) the set of all ground instances of
rules in P . The Herbrand base relative to Φ, denoted HBΦ, is the set of all ground
atoms constructed with constant and predicate symbols from Φ. Observe that we now
define the Herbrand base relative to Φ and not relative to P . This allows for reasoning
about ground atoms from the description logic component that do not necessarily occur
in P . Observe, however, that the extension from P to Φ is only a notational simpli-
fication, since we can always make constant and predicate symbols from Φ occur in
P by “dummy” rules such as constant(c)← and p(c)← p(c), respectively. We denote
by DLΦ the set of all ground atoms in HBΦ that are constructed from atomic concepts
in A, abstract roles in RA, concrete roles in RD, and constant symbols in Φc.

An interpretation I is any subset of HBΦ. We say I is a model of a description
logic knowledge base L, denoted I |=L, iff L ∪ I ∪{¬a |a ∈HBΦ − I} is satisfiable.
Note that the former defines the truth of description logic knowledge bases L in Her-
brand interpretations I ⊆HBΦ rather than first-order interpretations I. Note also that
a negative concept membership ¬C(a) can be encoded as the positive concept mem-
bership (¬C)(a). The following theorem shows that also negative role memberships
¬R(b, c) can be reduced to positive concept memberships and concept inclusions.

Theorem 4.1. Let L be a description logic knowledge base, and let R(b, c) be a role
membership axiom. Then, L∪{¬R(b, c)} is satisfiable iff L∪{B(b), C(c), ∃R.C �¬B}
is satisfiable, where B and C are two fresh atomic concepts.

An interpretation I ⊆HBΦ is a model of a disjunctive dl-program KB = (L, P), de-
noted I |= KB , iff I |= L and I |= P . We say KB is satisfiable iff it has a model.

Given a disjunctive dl-program KB = (L, P), the FLP-reduct of KB relative to
an interpretation I ⊆HBΦ, denoted KBI , is the disjunctive dl-program (L, P I), where
P I is the set of all r ∈ ground(P) such that I |=B(r). An interpretation I ⊆ HBΦ is
an answer set of KB iff I is a minimal model of KBI . A disjunctive dl-program KB is
consistent (resp., inconsistent) iff it has an (resp., no) answer set.

A Novel Combination of Answer Set Programming 391

We finally define the notions of cautious (resp., brave) reasoning from disjunctive
dl-programs under the answer set semantics as follows. A ground atom a ∈HBΦ is a
cautious (resp., brave) consequence of a disjunctive dl-program KB under the answer
set semantics iff every (resp., some) answer set of KB satisfies a.

5 Semantic Properties

In this section, we summarize some semantic properties (especially those relevant for
the Semantic Web) of disjunctive dl-programs under the above answer set semantics.

Minimal Models. The following theorem shows that, like in the ordinary case (see
Section 2), every answer set of a disjunctive dl-program KB is also a minimal model
of KB , and the answer sets of a positive KB are given by the minimal models of KB .

Theorem 5.1. Let KB =(L, P) be a disjunctive dl-program. Then, (a) every answer
set of KB is a minimal model of KB , and (b) if KB is positive, then the set of all
answer sets of KB is given by the set of all minimal models of KB .

Faithfulness. An important property of integrations of rules and ontologies is that they
are a faithful [33,34] extension of both rules and ontologies.

The following theorem shows that the answer set semantics of disjunctive dl-pro-
grams faithfully extends its ordinary counterpart. That is, the answer set semantics of
a disjunctive dl-program KB = (L, P) with empty description logic knowledge base L
coincides with the ordinary answer set semantics of its disjunctive program P .

Theorem 5.2. Let KB =(L, P) be a disjunctive dl-program such that L = ∅. Then, the
set of all answer sets of KB coincides with the set of all ordinary answer sets of P .

The next theorem shows that the answer set semantics of disjunctive dl-programs also
faithfully extends the first-order semantics of description logic knowledge bases, which
here means that a ground atom a ∈HBΦ is true in all answer sets of a positive disjunc-
tive dl-program KB = (L, P) iff a is true in all first-order models of L ∪ ground(P).
The theorem holds also when a is a ground formula constructed from HBΦ using ∧
and ∨. Observe that the theorem does not hold for all first-order formulas a, but we
actually also do not need this, looking from the perspective of answer set programming,
since we actually cannot refer to all general first-order formulas in P .

Theorem 5.3. Let KB =(L, P) be a positive disjunctive dl-program, and let a be a
ground atom from HBΦ. Then, a is true in all answer sets of KB iff a is true in all
first-order models of L ∪ ground(P).

As an immediate corollary, we obtain that a ∈HBΦ is true in all answer sets of a dis-
junctive dl-program KB =(L, ∅) iff a is true in all first-order models of L.

Corollary 5.1. Let KB = (L, P) be a disjunctive dl-program with P = ∅, and let a ∈
HBΦ. Then, a is true in all answer sets of KB iff a is true in all first-order models of L.

392 T. Lukasiewicz

Closed-World Assumption. It is often argued that the closed-world assumption is not
very desirable in the open environment of the Semantic Web [20]. The notion of cau-
tious reasoning from disjunctive dl-programs under the answer set semantics also has
some closed-world property. However, as also shown by Theorem 5.3, this closed-world
property is actually limited to the explicit use of default negations in rule bodies, and
thus we can actually control very easily its use in disjunctive dl-programs.

Unique Name Assumption. Another aspect that may not be very desirable in the Seman-
tic Web [20] is the unique name assumption (which says that any two distinct constant
symbols in Φc represent two distinct domain objects). It turns out that we actually do
not have to make this assumption, since the description logic knowledge base of a dis-
junctive dl-program may very well contain or imply equalities between individuals.

This result is included in the following theorem, which shows an alternative char-
acterization of the satisfaction of L in I ⊆HBΦ: Rather than being enlarged by a set
of axioms of exponential size, L is enlarged by a set of axioms of polynomial size.
This characterization essentially shows that the satisfaction of L in I corresponds to
checking that (i) the ground atoms in I ∩DLΦ satisfy L, and (ii) the ground atoms
in I ∩ (HBΦ − DLΦ) do not violate any equality axioms that follow from L. Here, an
equivalence relation ∼ on Φc is admissible with an interpretation I ⊆HBΦ iff p(c1, . . . ,
cn)∈ I ⇔ p(c′1, . . . , c

′
n)∈ I for all n-ary predicate symbols p, where n > 0, and con-

stant symbols c1, . . . , cn, c′1, . . . , c′n ∈Φc such that ci ∼ c′i for all i ∈{1, . . . , n}.

Theorem 5.4. Let L be a description logic knowledge base, and let I ⊆ HBΦ. Then,
L ∪ I ∪{¬b | b ∈HBΦ − I} is satisfiable iff L ∪ (I ∩DLΦ) ∪ {¬b | b ∈DLΦ − I} ∪
{c �= c′ | c �∼ c′} is satisfiable for some equivalence relation ∼ on Φc admissible with I .

Conjunctive Queries. It is often argued that the processing of conjunctive queries is
important for the Semantic Web [37]. As for this issue, observe that (Boolean unions of)
conjunctive queries in our approach can be reduced to atomic queries. A Boolean union
of conjunctive queries Q is of the form ∃x(γ1(x) ∨ · · · ∨ γn(x)), where x is a tuple of
variables, n � 1, and each γi(x) is a conjunction of atoms constructed from predicate
and constant symbols in Φ and variables in x. We call Q a conjunctive query when
n =1. If we assume that x ranges over all constant symbols in Φc (which is sufficient
for our needs, looking from the perspective of answer set programming, since in P we
can refer only through Φc to elements of a first-order domain), then Q can be expressed
by adding the rules q(x)← γi(x) with i ∈{1, . . . , n} to P and thereafter computing
the set of all entailed ground instances of q(x) relative to Φc (see also Section 6).

6 Algorithms and Complexity

In this section, we describe algorithms for deciding whether a disjunctive dl-program
has an answer set, and for deciding brave and cautious consequences from disjunctive
dl-programs under the answer set semantics. Furthermore, we also draw a precise pic-
ture of the complexity of all these decision problems.

A Novel Combination of Answer Set Programming 393

Algorithm consistency

Input: vocabulary Φ and disjunctive dl-program KB = (L, P).
Output: Yes, if KB has an answer set; No, otherwise.

1. if there exists I ⊆ HBΦ such that I is a minimal model of KBI = (L, P I)
2. then return Yes;
3. else return No.

Fig. 1. Algorithm consistency

Algorithms. The problem of deciding whether a disjunctive dl-program KB =(L, P)
has an answer set can be solved by a simple guess-and-check algorithm, which guesses
a subset I of the finite Herbrand base HBΦ, computes the FLP-reduct KBI =(L, P I),
and then checks that I is in fact a minimal model of KBI (see Fig. 1).

The problem of deciding brave and cautious consequences can be reduced to de-
ciding answer set existence (like in the ordinary case), since a ground atom a ∈HBΦ

is true in some (resp., every) answer set of a disjunctive dl-program KB =(L, P)
iff (L, P ∪ {← not a}) (resp., (L, P ∪{← a})) has an (resp., no) answer set.

Complexity. We now show that the problems of deciding consistency and brave / cau-
tious consequences have the same complexity in disjunctive dl-programs under the an-
swer set semantics as in ordinary disjunctive programs under the answer set semantics.

The following theorem shows that deciding the consistency of disjunctive dl-pro-
grams is complete for NEXPNP (combined complexity). The lower bound follows from
the NEXPNP-hardness of deciding the consistency of ordinary disjunctive programs
[6]. The upper bound follows from the result that deciding knowledge base satisfiability
in SHIF(D) (resp., SHOIN (D)) is complete for EXP (resp., NEXP) [40,19].

Theorem 6.1. Given Φ and a disjunctive dl-program KB=(L,P) with L in SHIF(D)
or SHOIN (D), deciding whether KB has an answer set is complete for NEXPNP.

The next theorem shows that deciding cautious (resp., brave) consequences from dis-
junctive dl-programs is complete for co-NEXPNP (resp., NEXPNP) in the combined
complexity. This result follows from Theorem 6.1, since the two problems of consis-
tency checking and cautious (resp., brave) reasoning can be reduced to each other.

Theorem 6.2. Given Φ, a disjunctive dl-program KB = (L, P) with L in SHIF(D)
or SHOIN (D), and a ground atom a ∈HBΦ, deciding whether a holds in every
(resp., some) answer set of KB is complete for co-NEXPNP (resp., NEXPNP).

7 Tractability Results

In this section, we describe a special class of disjunctive dl-programs for which the
problems of deciding consistency and of query processing have both a polynomial data
complexity. These programs are normal, stratified, and defined relative to DL-Lite [5],
which allows for deciding knowledge base satisfiability in polynomial time.

394 T. Lukasiewicz

We first recall DL-Lite. Let A, RA, and I be pairwise disjoint sets of atomic con-
cepts, abstract roles, and individuals, respectively. A basic concept in DL-Lite is either
an atomic concept from A or an exists restriction on roles ∃R.� (abbreviated as ∃R),
where R ∈RA ∪R−A. A literal in DL-Lite is either a basic concept b or the negation of a
basic concept ¬b. Concepts in DL-Lite are defined by induction as follows. Every basic
concept in DL-Lite is a concept in DL-Lite. If b is a basic concept in DL-Lite, and φ1 and
φ2 are concepts in DL-Lite, then ¬b and φ1 �φ2 are also concepts in DL-Lite. An axiom
in DL-Lite is either (1) a concept inclusion axiom b �ψ, where b is a basic concept in
DL-Lite and φ is a concept in DL-Lite, or (2) a functionality axiom (funct R), where
R ∈RA ∪R−A, or (3) a concept membership axiom b(a), where b is a basic concept in
DL-Lite and a ∈ I, or (4) a role membership axiom R(a, c), where R ∈RA and a, c ∈ I.
A knowledge base in DL-Lite L is a finite set of axioms in DL-Lite.

Every knowledge base in DL-Lite L can be transformed into an equivalent one in DL-
Lite trans(L) in which every concept inclusion axiom is of form b � 	, where b (resp.,
) is a basic concept (resp., literal) in DL-Lite [5]. We then define trans(P)= P ∪
{b′(X)← b(X) | b � b′ ∈ trans(L), b′ is a basic concept}∪ {∃R(X)←R(X, Y) | R ∈
RA ∩ Φ} ∪ {∃R−(Y)← R(X, Y) | R ∈RA ∩Φ}. Intuitively, we make explicit all the
rule-based relationships between the predicates in P that are implicitly encoded in L.
We define stratified normal dl-programs as follows. A normal dl-program KB =(L, P)
is stratified iff (i) L is defined in DL-Lite and (ii) trans(P) is (locally) stratified.

It can be shown that stratified normal dl-programs KB =(L, P) have either no or a
unique answer set, which can be computed by a finite sequence of fixpoint iterations
(relative to trans(P)), as usual. This implies immediately that for such programs con-
sistency checking and query processing have both a polynomial data complexity.

Theorem 7.1. Given Φ and a stratified normal dl-program KB , (a) deciding whether
KB has an answer set, and (b) deciding whether a given ground atom a ∈HBΦ is true
in the answer set of KB (if it exists) have both a polynomial data complexity.

8 Related Work

There is a large body of related works on combining rules and ontologies, which can
essentially be divided into the following three lines of research: (a) loose integration
of rules and ontologies, (b) tight integration of rules and ontologies, and (c) reductions
from description logics to logic programming formalisms. In this section, we discuss
only the works that are most closely related to the framework of this paper.

Representatives of the loose integration of rules and ontologies are in particular the
dl-programs in [11,12], their extension to HEX-programs [9,10], to probabilistic dl-pro-
grams [28,29], and to fuzzy dl-programs [30]. The combination of defeasible reasoning
with description logics in [3], the calls to description logic reasoners in TRIPLE [38],
and the hybrid MKNF knowledge bases in [33,34] are also close in spirit. More con-
cretely, compared to the present paper, the dl-programs KB = (L, P) in [11] also con-
sist of a description logic knowledge base L and a normal program P . However, P may
also contain classical negations, and rather than using concepts and roles from L as
predicates in P , rule bodies in P may only contain queries to L, which may also
contain facts as additional input to L. Like in this paper, P is interpreted relative to

A Novel Combination of Answer Set Programming 395

Herbrand interpretations under the answer set semantics, while L is interpreted relative
to first-order interpretations under the classical model-theoretic semantics. However,
differently from the concepts and roles in P here, the queries in P in [11] are eval-
uated independently from each other. HEX-programs [9,10] extend the approach to
dl-programs in [11] by multiple sources of external knowledge, with possibly different
semantics, while probabilistic dl-programs [28,29] and fuzzy dl-programs [30] are ex-
tensions by probabilistic uncertainty and fuzzy vagueness, respectively. Closely related
to the dl-programs in [11] are also the hybrid MKNF knowledge bases in [33,34]. They
essentially allow for querying a description logic knowledge base L via the operators K
and not, which can be used more flexibly than the queries in [11] (the operators can
also occur in rule heads, while the queries are restricted to rule bodies), but which do
not allow for passing facts to L in the form of query arguments. Note that closely related
to the hybrid MKNF knowledge bases in [33,34] is also the embedding of non-ground
logic programs into autoepistemic logic in [7]. The following example shows that our
novel dl-programs here generally do not have the same meaning as the dl-programs
in [11] (note that a similar example can be constructed for the approach in [33,34]).

Example 8.1. The normal dl-program KB =(L, P), where

L = {person(a), person � male � female} and

P = {client(X)← male(X), client(X)← female(X)}

implies client(a), while the normal dl-program KB ′ = (L′, P ′) as in [11]

L′ = {person(a), person � male � female} and

P ′ = {client(X)←DL[male](X), client(X)←DL[female](X)}

does not imply client(a), since the two queries are evaluated independently from each
other, and neither male(a) nor female(a) follows from L′. To obtain the conclusion
client(a) in [11], one has to directly use the rule client(X)←DL[male � female](X).

Some representatives of tight integrations of rules and ontologies are in particular the
works due to Donini et al. [8], Levy and Rousset [27], Grosof et al. [16], Motik et
al. [35], Heymans et al. [17], and Rosati [36,37]. SWRL [21] and WRL [2] also be-
long to this category. Closest in spirit to this paper among the above works is perhaps
Rosati’s approach [36,37]. Like here, Rosati’s hybrid knowledge bases also consist of
a description logic knowledge base L and a disjunctive program (with default nega-
tions) P , where concepts and roles in L may act as predicate symbols in P . However,
differently from this paper, Rosati partitions the predicates of L and P into description
logic predicates and logic program predicates, where the former are interpreted under
the classical model-theoretic semantics, while the latter are interpreted under the an-
swer set semantics (and thus in particular default negations of concepts and roles are
not allowed in P). Furthermore, differently from this paper, he also assumes a syn-
tactic restriction on rules (called weak safeness) to gain decidability, and he assumes
the standard names assumption, which includes the unique name assumption.

Finally, the works reducing description logics to logic programming are less closely
related to the framework of this paper. Some representatives are in particular the works
by Alsaç and Baral [1], Swift [39], Heymans and Vermeir [18], and Motik et al. [24].

396 T. Lukasiewicz

9 Summary and Outlook

We have presented a novel combination of disjunctive programs under the answer set
semantics with description logics for the Semantic Web. The combination is based on
a well-balanced interface between disjunctive programs and description logics, which
guarantees the decidability of the resulting formalism without assuming any syntactic
restrictions on the resulting language (such as syntactic safety conditions and/or syn-
tactic partitionings of the vocabulary). We have shown that the new formalism has very
nice semantic properties. In particular, it faithfully extends both disjunctive programs
and description logics. We have also provided algorithms and precise complexity results
for the new formalism, as well as a special case of polynomial data complexity.

The presented mechanism of integrating rules and ontologies is of general impor-
tance, since it can actually also be used for the decidable integration of other reason-
ing techniques (such as reasoning about defaults, probabilistic uncertainty, and fuzzy
vagueness) with description logics, since it applies to all reasoning techniques that are
based on interpretations over finite Herbrand bases (or also finite sets of propositional
symbols). It thus paves the way for decidable reasoning formalisms on top of descrip-
tion logics for the Semantic Web. Note that a companion paper [32] explores the use of
this novel integration mechanism in fuzzy description logic programs.

An interesting topic of future research is to develop more sophisticated algorithms
for reasoning from the new disjunctive dl-programs, and to implement the approach.
Another interesting issue is to extend disjunctive dl-programs by classical negation.

Acknowledgments. This work has been supported by a Heisenberg Professorship of
the German Research Foundation (DFG). I thank the reviewers for their constructive
comments, which helped to improve this work.

References

1. G. Alsaç and C. Baral. Reasoning in description logics using declarative logic programming.
Report, Department of Computer Science and Engineering, Arizona State University, 2001.

2. J. Angele, H. Boley, J. de Bruijn, D. Fensel, P. Hitzler, M. Kifer, R. Krummenacher,
H. Lausen, A. Polleres, and R. Studer. Web Rule Language (WRL), Sept. 2005. W3C
Member Submission. http://www.w3.org/Submission/WRL/.

3. G. Antoniou. Nonmonotonic rule systems on top of ontology layers. In Proc. ISWC-2002,
pp. 394–398, 2002.

4. T. Berners-Lee. Weaving the Web. Harper, San Francisco, CA, 1999.
5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable

description logics for ontologies. In Proc. AAAI-2005, pp. 602–607, 2005.
6. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic

programming. ACM Comput. Surv., 33(3):374–425, 2001.
7. J. de Bruijn, T. Eiter, A. Polleres, and H. Tompits. Embedding non-ground logic programs

into autoepistemic logic for knowledge-base combination. In Proc. IJCAI-2007, pp. 304–
309, 2007.

8. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating datalog and
description logics. J. Intell. Inf. Syst., 10(3):227–252, 1998.

A Novel Combination of Answer Set Programming 397

9. T. Eiter, G. Ianni, R. Schindlauer, H. Tompits. A uniform integration of higher-order reason-
ing and external evaluations in answer-set programming. In Proc. IJCAI-2005, pp. 90–96.

10. T. Eiter, G. Ianni, R. Schindlauer, H. Tompits. Effective integration of declarative rules with
external evaluations for semantic web reasoning. In Proc. ESWC-2006, pp. 273–287, 2006.

11. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set program-
ming with description logics for the Semantic Web. In Proc. KR-2004, pp. 141–151, 2004.

12. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-founded semantics for de-
scription logic programs in the Semantic Web. In Proc. RuleML-2004, pp. 81–97, 2004.

13. W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic programs:
Semantics and complexity. In Proc. JELIA-2004, pp. 200–212, 2004.

14. D. Fensel, W. Wahlster, H. Lieberman, and J. Hendler, editors. Spinning the Semantic Web:
Bringing the World Wide Web to Its Full Potential. MIT Press, 2002.

15. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Comput., 9(3/4):365–386, 1991.

16. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining
logic programs with description logics. In Proc. WWW-2003, pp. 48–57, 2003.

17. S. Heymans, D. V. Nieuwenborgh, D. Vermeir. Nonmonotonic ontological and rule-based
reasoning with extended conceptual logic programs. In Proc. ESWC-05, pp. 392–407, 2005.

18. S. Heymans and D. Vermeir. Integrating semantic web reasoning and answer set program-
ming. In Proc. ASP-2003, pp. 194–208, 2003.

19. I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description logic satisfi-
ability. In Proc. ISWC-2003, pp. 17–29, 2003.

20. I. Horrocks and P. F. Patel-Schneider. Position paper: A comparison of two modelling para-
digms in the Semantic Web. In Proc. WWW-2006, pp. 3–12, 2006.

21. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL:
A Semantic Web rule language combining OWL and RuleML, May 2004. W3C Member
Submission. Available at http://www.w3.org/Submission/SWRL/.

22. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL:
The making of a web ontology language. J. Web Sem., 1(1):7–26, 2003.

23. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics.
In Proc. LPAR-1999, pp. 161–180, 1999.

24. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ-description logic to disjunctive datalog
programs. In Proc. KR-2004, pp. 152–162, 2004.

25. L. Iocchi, T. Lukasiewicz, D. Nardi, and R. Rosati. Reasoning about actions with sensing
under qualitative and probabilistic uncertainty. In Proc. ECAI-2004, pp. 818–822, 2004.

26. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
system for knowledge representation and reasoning. ACM TOCL, 7(3):499–562, 2006.

27. A. Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in CARIN.
Artif. Intell., 104(1–2):165–209, 1998.

28. T. Lukasiewicz. Stratified probabilistic description logic programs. In Proc. URSW-2005,
pp. 87–97, 2005.

29. T. Lukasiewicz. Probabilistic description logic programs. In Proc. ECSQARU-2005, pp.
737–749, 2005. Extended version in Int. J. Approx. Reasoning, in press.

30. T. Lukasiewicz. Fuzzy description logic programs under the answer set semantics for the
Semantic Web. In Proc. RuleML-2006, pp. 89–96, 2006.

31. T. Lukasiewicz. A novel combination of answer set programming with description logics for
the Semantic Web. Report 1843-06-08, Institut für Informationssysteme, TU Wien, 2006.

32. T. Lukasiewicz and U. Straccia. Tightly integrated fuzzy description logic programs under
the answer semantics for the Semantic Web. In Proc. RR-2007, 2007. To appear.

33. B. Motik, I. Horrocks, R. Rosati, and U. Sattler. Can OWL and logic programming live
together happily ever after? In Proc. ISWC-2006, pp. 501–514, 2006.

398 T. Lukasiewicz

34. B. Motik and R. Rosati. A faithful integration of description logics with logic programming.
In Proc. IJCAI-2007, pp. 477–482, 2007.

35. B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules. J. Web Sem.,
3(1):41–60, 2005.

36. R. Rosati. On the decidability and complexity of integrating ontologies and rules. J. Web
Sem., 3(1):61–73, 2005.

37. R. Rosati. DL+log : Tight integration of description logics and disjunctive datalog. In Proc.
KR-2006, pp. 68–78, 2006.

38. M. Sintek and S. Decker. TRIPLE - A query, inference, and transformation language for the
Semantic Web. In Proc. ISWC-2002, pp. 364–378, 2002.

39. T. Swift. Deduction in ontologies via ASP. In Proc. LPNMR-2004, pp. 275–288, 2004.
40. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge Represen-

tation. PhD thesis, RWTH Aachen, Germany, 2001.
41. W3C. OWL web ontology language overview, 2004. W3C Recommendation (10 Feb. 2004).

Available at http://www.w3.org/TR/2004/REC-owl-features-20040210/.

Appendix: Selected Proofs

Proof of Theorem 5.2. Observe first that I ⊆HBΦ is a model of KBI = (L, P I) iff
(i) I |=L and (ii) I |= r for every r ∈P I . Since L = ∅, this is equivalent to I |= r for
every r ∈P I . Thus, I ⊆ HBΦ is a minimal model of KBI iff I is a minimal model
of P I . That is, I ⊆HBΦ is an answer set of KB iff I is an ordinary answer set of P . �

Proof of Theorem 5.3. Observe first that, by Theorem 5.1, since P is positive, the set
of all answer sets of KB is given by the set of all minimal models I ⊆HBΦ of KB .
Observe then that a ∈HBΦ is true in all minimal models I ⊆HBΦ of KB iff a is true in
all models I ⊆HBΦ of KB . It thus remains to show that a is true in all models I ⊆HBΦ

of KB iff a is true in all first-order models of L ∪ ground(P):

(⇒) Suppose that a is true in all models I ⊆HBΦ of KB . Let I be any first-order
model of L ∪ ground(P). Let I ⊆ HBΦ be defined by b ∈ I iff I |= b. Then, I is a
model of L� = L ∪ I ∪{¬b | b ∈HBΦ − I}, and thus L� is satisfiable. Hence, I is a
model of L. Since I is a model of ground(P), also I is a model of ground(P). In
summary, this shows that I is a model of KB . Hence, a is true in I , and thus a is true
in I. Overall, this shows that a is true in all first-order models of L ∪ ground(P).

(⇐) Suppose that a is true in all first-order models of L ∪ ground(P). Let I ⊆HBΦ

be any model of KB . Then, L� =L ∪ I ∪ {¬b | b ∈HBΦ − I} is satisfiable. Let I be
a first-order model of L�. Then, I is in particular a model of L. Furthermore, since I
is a model of ground(P), also I is a model of ground(P). In summary, I is a model
of L ∪ ground(P). It thus follows that a is true in I, and thus a is also true in I .
Overall, this shows that a is true in all models I ⊆HBΦ of KB . �

Algorithms for Paraconsistent Reasoning with OWL�

Yue Ma1,2, Pascal Hitzler2, and Zuoquan Lin1

1 Department of Information Science, Peking University, China
2 AIFB, Universität Karlsruhe, Germany

{mayue,lz}@is.pku.edu.cn, {yum,hitzler}@aifb.uni-karlsruhe.de

Abstract. In an open, constantly changing and collaborative environment like
the forthcoming Semantic Web, it is reasonable to expect that knowledge sources
will contain noise and inaccuracies. Practical reasoning techniques for ontolo-
gies therefore will have to be tolerant to this kind of data, including the ability to
handle inconsistencies in a meaningful way. For this purpose, we employ para-
consistent reasoning based on four-valued logic, which is a classical method for
dealing with inconsistencies in knowledge bases. Its transfer to OWL DL, how-
ever, necessitates the making of fundamental design choices in dealing with class
inclusion, which has resulted in differing proposals for paraconsistent descrip-
tion logics in the literature. In this paper, we build on one of the more general
approaches which due to its flexibility appears to be most promising for further
investigations. We present two algorithms suitable for implementation, one based
on a preprocessing before invoking a classical OWL reasoner, the other based on
a modification of the KAON2 transformation algorithms. We also report on our
implementation, called ParOWL.

1 Introduction

Real knowledge bases and data for Semantic Web applications will rarely be perfect.
They will be distributed and multi-authored. They will be assembled from different
sources and reused. It is unreasonable to expect such realistic knowledge bases to be
always logically consistent, and it is therefore important to study ways of dealing with
inconsistent knowledge. This is particularly important if the full power of logic-based
approaches like the Web Ontology Language OWL [1] shall be employed, as classical
logic breaks down in the presence of inconsistent knowledge.

The study of inconsistency handling in Artificial Intelligence has a long tradition, and
corresponding results are recently being transferred to description logics, which underly
OWL. Two fundamentally different approaches can be distinguished. The first is based
on the assumption that inconsistencies indicate erroneous data which is to be repaired in
order to obtain a consistent knowledge base, e.g. by selecting consistent subsets for the
reasoning process [2,3]. The other approach yields to the insight that inconsistencies

� We acknowledge support by the German Federal Ministry of Education and Research (BMBF)
under the SmartWeb project (grant 01 IMD01 B), by the EU under the IST project NeOn
(IST-2006-027595, http://www.neon-project.org/), by the Deutsche Forschungs-
gemeinschaft (DFG) in the ReaSem project, and by China Scholarship Council, and partially
by NSFC (grant numbers 60373002 and 60496322) and by NKBRPC (2004CB318000).

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 399–413, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

400 Y. Ma, P. Hitzler, and Z. Lin

are a natural phenomenon in realistic data which are to be handled by a logic which
tolerates it [4,5,6]. Such logics are called paraconsistent, and the most prominent of
them are based on the use of additional truth values standing for undefined (i.e. neither
true nor false) and overdefined (or contradictory, i.e. both true and false). Such logics
are appropriately called four-valued logics [7]. We believe that either of the approaches
is useful, depending on the application scenario.

In this paper, we contribute to the paraconsistency approach. We indeed extend on
the preliminary work in [6], which has the following features.

– It is grounded in prominent research results from Artificial Intelligence [8].
– It is very flexible in terms of design choices which can be made when developing a

paraconsistent description logic. This concerns the issues arising from the fact that
there are different ways of defining the notion of logical implication in four-valued
logics. The approach which we follow allows the full and simultaneous use of the
different notions of implication.

– It does not increase worst-case computational complexity of reasoning if compared
to standard reasoning methods for consistent knowledge bases.

In this paper, we present two algorithms for practical paraconsistent reasoning based
on this approach. The first one is based on a transformation from a paraconsistent ontol-
ogy O to a classical two-valued ontology O in such a way that paraconsistent reasoning
on O can be simulated by classical reasoning on O. The second algorithm is based on
an adaptation of the algorithms underlying the KAON2 OWL Reasoner1 [9] by realiz-
ing a resolution-based decision procedure for paraconsistent reasoning. We spell out the
details for the description logic ALC, which is considered to be the most foundational
one and comprises a large fragment of OWL DL.

The paper is structured as follows. We first review briefly preliminaries in Section 2.
In Section 3 we then describe the syntax and semantics of the paraconsistent descrip-
tion logic which we will use. Sections 4 and 5 describe the two reasoning procedures,
respectively based on a transformation for preprocessing and on an adaptation of the
KAON2 algorithms. In Section 6, we describe the prototype of our paraconsistent ap-
proach to reasoning with a possible inconsistent ontology, and discuss future work and
conclude in Section 7.

This paper is a substantial continuation of work presented as preliminary results in
[6]. Due to space limitations, proofs are omitted. They can be found in a technical report
available from http://www.aifb.uni-karlsruhe.de/WBS/phi/pub/parowltr.pdf.

2 Preliminaries

2.1 The Description Logic ALC

We briefly review notation and terminology of the description logic ALC, but we ba-
sically assume that the reader is familiar with description logics. For comprehensive
background reading, please refer to [10].

1 http://kaon2.semanticweb.org

Algorithms for Paraconsistent Reasoning with OWL 401

Table 1. Syntax and semantics of ALC

Constructor Name Syntax Semantics

atomic concept A A AI ⊆ ΔI

abstract role RA R RI ⊆ ΔI × ΔI

individuals I o oI ∈ ΔI

top concept � ΔI

bottom concept ⊥ ∅
conjunction C1 � C2 CI ∩ DI

disjunction C1 	 C2 CI ∪ DI

negation ¬C ΔI \ CI

exists restriction ∃R.C {x | ∃y, (x, y) ∈ RI and y ∈ CI}
value restriction ∀R.C {x | ∀y, (x, y) ∈ RI implies y ∈ CI}

Axiom Name Syntax Semantics

concept inclusion C1 C2 CI
1 ⊆ CI

2

concept assertion C(a) aI ∈ CI

role assertion R(a, b) (aI , bI) ∈ RI

We assume that we are given a set of atomic concepts (or concept names), a set of
roles (or role names), and a set of individuals. With the symbols � and ⊥ we further-
more denote the top concept and the bottom concept, respectively.

Complex concepts in ALC can be formed from these inductively as follows.

1. �, ⊥, and each atomic concept are concepts;
2. If C, D are concepts, then C � D, C � D, and ¬C are concepts;
3. If C is a concept and R is a role, then ∀R.C and ∃R.C are concepts.

An ALC ontology consists of a set of assertions, called the ABox of the ontology,
and a set of inclusion axioms, calld the TBox of the ontology. Assertions are of the
form C(a) or R(a, b), where a, b are individuals and C and R are concepts and roles,
respectively. Inclusion axioms are of the form C � D, where C and D are concepts.
Informally, an assertion C(a) means that the individual a is an instance of concept
C, and an assertion R(a, b) means that individual a is related with individual b via
the property R. The inclusion axiom C � D means that each individual of C is an
individual of D.

The formal definition of the (model-theoretic) semantics of ALC is given by means
of interpretations I = (ΔI , ·I) consisting of a non-empty domain ΔI and a mapping ·I
satisfying the conditions in Table 1, interpreting concepts as subsets of the domain and
roles as binary relations on the domain. An interpretation satisfies an ALC ontology
(i.e. is a model of the ontology) iff it satisfies each axiom in both the ABox and the
TBox. An ontology is called satisfiable (unsatisfiable) iff there exists (does not exist)
such a model. In ALC , reasoning tasks, i.e. the derivation of logical consequences, can
be reduced to satisfiability checking of ontologies [10,11].

402 Y. Ma, P. Hitzler, and Z. Lin

Table 2. Truth table for 4-valued connectives

α f f f f t t t t �̈ �̈ �̈ �̈ ⊥̈ ⊥̈ ⊥̈ ⊥̈
β f t �̈ ⊥̈ f t �̈ ⊥̈ f t �̈ ⊥̈ f t �̈ ⊥̈

¬α t t t t f f f f �̈ �̈ �̈ �̈ ⊥̈ ⊥̈ ⊥̈ ⊥̈
α ∧ β f f f f f t �̈ ⊥̈ f �̈ �̈ f f ⊥̈ f ⊥̈
α ∨ β f t �̈ ⊥̈ t t t t �̈ t �̈ t ⊥̈ t t ⊥̈
α �→ β t t t t f t �̈ ⊥̈ �̈ t �̈ t ⊥̈ t t ⊥̈
α ⊃ β t t t t f t �̈ ⊥̈ f t �̈ ⊥̈ t t t t

α → β t t t t f t f ⊥̈ f t �̈ ⊥̈ ⊥̈ t ⊥̈ t

2.2 Four-Valued Logic

The major studies of four-valued logics have been carried out in the setting of propo-
sitional logic. We will very briefly review the preliminaries which set the state for the
four-valued version of ALC which we will present later in Section 3.

The idea of four-valued logic is based on the idea of having four truth values, instead
of the classical two. The four truth values stand for true, false, unknown (or undefined)
and both (or overdefined, contradictory). We use the symbols t, f, ⊥̈, �̈, respectively,
for these truth values, and the set of these four truth values is denoted by FOUR. The
truth value �̈ stands for contradictory information, hence four-valued logic lends itself
to dealing with inconsistent knowledge. The value �̈ thus can be understood to stand
for true and false, while ⊥̈ stands for neither true nor false, i.e. for the absence of any
information about truth or falsity.

Syntactically, four-valued logic is very similar to classical logic. Care has to be taken,
however, in defining meaningful notions of implication, as there are several ways to do
this. Indeed, there are three major notions of implication in the literature, all of which
we will employ in our approach. The logical connectives we allow are thus negation
¬, disjunction ∨, conjunction ∧, material implication �→, internal implication ⊃, and
strong implication →. We will discuss them in detail later on as the presence of all
three implications is crucial for our approach.

Four-valued interpretations for formulae (i.e. 4-interpretations) are obviously map-
pings from formulae to (the set of four) truth values, respecting the truth tables for the
logical connectives, as detailed in Table 2.

Four-valued models (4-models) are defined in the obvious way, as follows, where t
and �̈ are the designated truth values.

Definition 1. Let I be a 4-interpretation, let Σ be a theory (i.e. set of formulae) and
let ϕ be a formula in four-valued logic. Then I is a 4-model of ϕ if and only if I(ϕ) ∈
{t, �̈}. I is a 4-model of Σ if and only if I is a 4-model of each formula in Σ. Σ
four-valued entails ϕ, written Σ |=4 ϕ, if and only if every 4-model of Σ is a 4-model
of ϕ.

Algorithms for Paraconsistent Reasoning with OWL 403

Proposition 1. We note the following general properties.

– The language L = {¬, ∨, ∧, ⊃, ⊥̈, �̈} is functional complete for the set FOUR of
truth values, i.e. every function from FOURn to FOUR is representable by some
formula in L [8, Theorem 12].

– Any formula containing only connectives from {¬, ∨, ∧, ⊃} always has a four-
valued model.

Some general remarks about the different notions of implication are in order. They are
the major notions of implication used in the literature, and are discussed in detail in
[8,12]. The basic rationales behind them are the following: Material implication can be
defined by means of negation and disjunction as known from classical logic. However,
it does not satisfy Modus Ponens or the deduction theorem, and is thus of limited use as
an implication in the intuitive sense. Internal implication satisfies Modus Ponens and the
deduction theorem, but cannot be defined by means of other connectives. Furthermore,
internal implication does not satisfy contraposition. Strong implication is stronger than
internal implication, in that it additionally satisfies contraposition. Indeed, an alternative
view on the truth tables for the implication connectives is as follows.

ϕ �→ ψ is definable as ¬ϕ ∨ ψ. (Material Implication)

ϕ ⊃ ψ evaluates to

{
ψ if ϕ ∈ {t, �̈}
t if ϕ ∈ {f, ⊥̈} (Internal Implication)

ϕ → ψ is definable as (ϕ ⊃ ψ) ∧ (¬ψ ⊃ ¬ϕ) (Strong Implication)

Further properties of the implication connectives are summarised in the following
proposition (as shown in [8, Corollary 9] and [12]).

Proposition 2. The following claims hold, where Γ is a theory and ψ, φ are formulae.

– Internal implication is not definable in terms of the connectives ¬, ∨, ∧.
– Γ, ψ |=4 φ iff Γ |=4 ψ ⊃ φ.
– If Γ |=4 ψ and Γ |=4 ψ ⊃ φ then Γ |=4 φ.
– ψ → φ implies that ¬φ → ¬ψ.

Apart from the formal properties of the different notions of implication, it is obviously
important to consider their intuitive meaning and their usefulness for knowledge base
modelling. We will discuss this in detail in the next section.

3 The Four-Valued Description Logic ALC4

We describe the syntax and semantics of our four-valued description logic ALC4. The
approach is fairly standard apart from the fact that we allow the simultaneous use of all
three notions of implication introduced in Section 2.2. We will thus devote significant
space to a detailed discussion of the intuitions behind these different implications.

Syntactically, ALC4 hardly differs from ALC. Complex concepts and assertions are
defined in exactly the same way. For class inclusion, however, the question arises how to
interpret the underlying implication connective in the four-valued setting. We thus allow

404 Y. Ma, P. Hitzler, and Z. Lin

Table 3. Semantics of ALC4 Concepts

Constructor Syntax Semantics

A AI = 〈P, N〉, where P, N ⊆ ΔI

R RI = 〈RP , RN〉, where RP , RN ⊆ ΔI × ΔI

o oI ∈ ΔI

� 〈ΔI , ∅〉
⊥ 〈∅, ΔI〉

C1 � C2 〈P1 ∩ P2, N1 ∪ N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

C1 	 C2 〈P1 ∪ P2, N1 ∩ N2〉, if CI
i = 〈Pi, Ni〉 for i = 1, 2

¬C (¬C)I = 〈N, P 〉, if CI = 〈P, N〉
∃R.C 〈{x | ∃y, (x, y) ∈ proj+(RI) and y ∈ proj+(CI)},

{x | ∀y, (x, y) ∈ proj+(RI) implies y ∈ proj−(CI)}〉
∀R.C 〈{x | ∀y, (x, y) ∈ proj+(RI) implies y ∈ proj+(CI)},

{x | ∃y, (x, y) ∈ proj+(RI) and y ∈ proj−(CI)}〉

three kinds of class inclusions, corresponding to the three implication connectives we
have discussed. They are as follows, C �→ D, C � D, and C → D, called material
inclusion axiom, internal inclusion axiom, and strong inclusion axiom, respectively.

Semantically, interpretations map individuals to elements of the domain of the inter-
pretation, as usual. For concepts, however, we need to make modifications to the notion
of interpretation in order to allow for reasoning with inconsistencies.

Intuitively, in four-valued logic we need to consider four situations which can occur
in terms of containment of an individual in a concept: (1) we know it is contained, (2)
we know it is not contained, (3) we have no knowledge whether or not the individual
is contained, (4) we have contradictory information, namely that the individual is both
contained in the concept and not contained in the concept. There are several equivalent
ways how this intuition can be formalised, one of which is described in the following.

For a given domain ΔI and a concept C, an interpretation over ΔI assigns to C a pair
〈P, N〉 of (not necessarily disjoint) subsets of ΔI . Intuitively, P is the set of elements
known to belong to the extension of C, while N is the set of elements known to be not
contained in the extension of C. For simplicity of notation, we define functions proj+(·)
and proj−(·) by proj+〈P, N〉 = P and proj−〈P, N〉 = N.

Formally, a four-valued interpretation is a pair I = (ΔI , ·I) with ΔI as domain,
where ·I is a function assigning elements of ΔI to individuals, and subsets of (ΔI)2

to concepts, such that the conditions in Table 3 are satisfied. Note that the conditions
in Table 3 for role restrictions are designed in such a way that the logical equivalences
¬(∀R.C) = ∃R.(¬C) and ¬(∃R.C) = ∀R.(¬C) are retained – this is the most con-
venient way for us for handling role restrictions, as it will allows for a straightforward
translation from ALC4 to classical ALC. Note also that for roles we actually require
only the positive part of the extension – we nevertheless require interpretations to as-
sign pairs of sets to roles, which is a technical formality to retain consistency of notation
with possible extensions to more expressive description logics (see [6]).

Obviously, under the constraints P ∩ N = ∅ and P ∪ N = Δ, four-valued interpre-
tations become just standard two-valued interpretations.

Algorithms for Paraconsistent Reasoning with OWL 405

Table 4. Semantics of inclusion axioms in ALC4

Axiom Name Syntax Semantics

material inclusion C1 �→ C2 ΔI \ proj−(CI
1) ⊆ proj+(CI

2)

internal inclusion C1 � C2 proj+(CI
1) ⊆ proj+(CI

2)
strong inclusion C1 → C2 proj+(CI

1) ⊆ proj+(CI
2) and

proj−(CI
2) ⊆ proj−(CI

1)

concept assertion C(a) aI ∈ proj+(CI)
role assertion R(a, b) (aI , bI) ∈ proj+(RI)

The correspondence between truth values from FOUR and concept extensions is the
obvious one: For instances a ∈ ΔI and concept name C we have

– CI(a) = t(�̈), iff aI ∈ proj+(CI) and aI �∈ (∈)proj−(CI),
– CI(a) = f(⊥̈), iff aI �∈ proj+(CI) and aI ∈ (�∈)proj−(CI),

When defining the semantics as we just did, we ensure that a number of useful equiv-
alences from classical logic hold, as follows.

Proposition 3. For any four-valued interpretation I and concepts C, D, the following
claims hold.

(C � �)I = CI , (C � �)I = �I , (C � ⊥)I = ⊥I , (C � ⊥)I = CI ,

(¬¬C)I = CI , (¬�)I = ⊥I , (¬⊥)I = �I , (¬(C � D))I = (¬C � ¬D)I ,

(¬(C � D))I = (¬C � ¬D)I , (¬(∀R.C))I = (∃R.¬C)I , (¬(∃R.C))I = (∀R.¬C)I .

We now come to the semantics of the three different types of inclusion axioms. It is
formally defined in Table 4 (together with the semantics of concept assertions). We say
that a four-valued interpretation I satisfies a four-valued ontology O (i.e. is a model
of it) iff it satisfies each assertion and each inclusion axiom in O. An ontology O is
satisfiable (unsatisfiable) iff there exists (does not exist) such a model.

With the formal definitions out of the way, it remains to address the intuitions under-
lying the different inclusion axioms. These intuitions are evidenced by the formal prop-
erties of the underlying implications as discussed in Section 2.2 as well as the behaviour
of the implications in practice. We actually foresee a possible workflow for handling
inconsistent ontologies, as follows. In a first step, inclusion axioms are classified into
the three types of four-valued inclusion axioms available. Then four-valued reasoning is
performed based on the classification, in order to arrive at a meaningful 4-valued con-
clusion. The question, how such a classification can be performed, will not be addressed
in this paper. It constitutes a seperate substantial piece of work which is under investiga-
tion by the authors. A combination of automated detection and a user-interaction process
may be the most workable solution, where the user-interaction process may be guided
by the intuitive explanations which we will now give for the three types of inclusion. An
example which displays the effects of the different inclusions is given in Section 6.

Strong inclusion respects the deduction theorem and contraposition reasoning. In a
paraconsistent context, it is thus the inclusion to be used for universal truth, such as
Square → FourEdged.

406 Y. Ma, P. Hitzler, and Z. Lin

Internal inclusion propagates contradictory information forward, but not backward as
it does not allow for contraposition reasoning. It can thus be characterized as a brave
way of handling inconsistency. It should be used whenever it is important to infer the
consequent even if the antecedent may be contradictory. To give an example, consider a
robot fault diagnosis system and an axiom stating that oil leakage is indicative of a robot
malfunction. Obviously, it is important to check on a possible malfunction even in case
there is contradictory information about an oil leakage. In a paraconsistent context,
the axiom is thus best modeled by means of internal inclusion, i.e. as OilLeakage �
RobotMalfunction.

Material inclusion is cautious in the sense that contradictory information is not propa-
gated. The intuition behind material inclusion becomes apparent by studying the truth
table for material implication: a �→ b indicates that the only way for b to be not true
(i.e. to be f or ⊥̈) is if there is information of falsity of a (i.e. it is f or �̈). This kind
of modeling becomes important if an inclusion has to be second-guessed e.g. after a
merging of knowledge bases. Consider, for example, an ontology about marathon runs
containing the axiom Healthy � eqMarathonParticipant which is supposed to say that
somebody (i.e. a person who has signed up for a run) participates in a marathon if he
checks out to be healthy. The axiom is reasonable if the domain is for the manage-
ment of marathon participants’ data only. Now imagine that this ontology is merged
with other sports knowledge bases, e.g. a boxing domain. It is wrong to infer that every
healthy boxer will participate in the marathon, so the original axiom will likely lead to
contradictions. We propose to handle this kind of information by modelling the axiom
as material inclusion, i.e. as Healthy �→ MarathonParticipant, which will indeed not
infer participation from a positive health status. However, the weak form of contrapo-
sition reasoning featured by material inclusion results in the following situation: If an
individual is not known to be contained in MarathonParticipant, then it is known to be
not Healthy, resulting in a possible contradiction on health status while avoiding con-
tradiction in terms of marathon participation, which may be preferred in the domain.
Material inclusion may thus propagate contradictory information backwards (to the an-
tecedent), while internal inclusion may propagate contradictory information forward (to
the consequent).

We remark here that different inclusion axioms provide ontology engineers with a
flexible way to define different ontologies according to the intuition explained above.
In case only one kind of inclusion shall be used, we recommend to use strong inclu-
sion, as it should serve the ontology engineer’s original intention most closely. To give
an example, consider the inconsistent subontology of BuggyPolicy2 (with additional
assertions) which says ”GeneralReliabilityUsernamePolicy (G for short) is a subset of
Reliable, G and Messaging are disjoint, Reliable is a subset of Messaging, p1 is an
individual of G and p2 is an individual of Reliable”. Using strong inclusion results
in the ontology {R → M, G → R, M → ¬G, G → ¬M, G(p1), R(p2)}, where we
use obvious abbreviations for the class names. Under the semantics of strong inclu-
sion, M(p1), R(p1), M(p2), ¬G(p1), and ¬M(p1) hold, but G(p2) does not hold. This
example shows that our four-valued semantics can give meaningful answers when an
ontology is inconsistent, while classical semantics fails to do so.

2 http://www.mindswap.org/2005/debugging/ontologies/

Algorithms for Paraconsistent Reasoning with OWL 407

4 Transforming ALC4 to ALC

It is a pleasing property of ALC4, that it can be translated easily into classical ALC,
such that paraconsistent reasoning can be simulated using standard ALC reasoning al-
gorithms. We briefly present the translation, a preliminary report has appeared in [6].3

For any given concept C, its transformation C is the concept obtained from C by the
following inductively defined transformation.

– If C = A for A an atomic concept, then C = A+, where A+ is a new concept;
– If C = ¬A for A an atomic concept, then C = A−, where A− is a new concept;
– If C = �, then C = �;
– If C = ⊥, then C = ⊥;
– If C = E � D for concepts D, E, then C = E � D;
– If C = E � D for concepts D, E, then C = E � D;
– If C = ∃R.D for D a concept and R is a role, then C = ∃R.D;
– If C = ∀R.D for D a concept and R is a role, then C = ∀R.D;
– If C = ¬¬D for a concept D, then C = D;
– If C = ¬(E � D) for concepts D, E, then C = ¬E � ¬D;
– If C = ¬(E � D) for concepts D, E, then C = ¬E � ¬D;
– If C = ¬(∃R.D) for D a concept and R is a role, then C = ∀R.¬D;
– If C = ¬(∀R.D) for D a concept and R is a role, then C = ∃R.¬D;

Based on this, axioms are transformed as follows, where C1, C2 are concepts.

– C1 �→ C2 = ¬¬C1 � C2

– C1 � C2 = C1 � C2;
– C1 → C2 = {C1 � C2, ¬C2 � ¬C1}.
– C(a) = C(a), R(a, b) = R(a, b), where a, b are individuals, C a concept, R a role.

The following theorem shows that paraconsistent reasoning can indeed be simulated
on standard reasoners by means of the transformation just given.

Theorem 1. For any ontology O we have O |=4 α if and only if O |=2 α, where |=2 is
the entailment in classical ALC.

We note that the transformation algorithm is linear in the size of the ontology. This im-
plies that paraconsistent reasoning in our paradigm is not more expensive than classical
reasoning.

5 Resolution-Based Reasoning with ALC4

There exist two fundamentally different approaches to reasoning with description log-
ics. The first, historic approach is based on an adaptation of the tableaux method from
first-order predicate logic (see [10]), and is implemented in most current reasoners.
The second approach is based on resolution and has been realised in the KAON2
reasoner [9]. While the first method invokes a classical reasoner as a black-box by a

3 In [6], it was actually spelled out for SHOIN .

408 Y. Ma, P. Hitzler, and Z. Lin

preprocessing spelled out in Section 4, the paraconsistent resolution given in this sec-
tion views the classical reasoner KAON2 as a glass-box, thus avoiding the preprocess-
ing step. We basically follow [9, Chapter 4], and indeed we have to assume that the
reader is familiar with the KAON2-approach because space restrictions do not allow us
to spell everything out in detail.

We first note that resolution relies heavily on the tertium non datur, and thus does
not lend itself easily to a paraconsistent setting. In particular, resolution cannot be based
on the negation present in paraconsistent logics, as in this case A∨B and ¬A∨C does
not imply B ∨ C. We thus start by introducing a second kind of negation, called the
total negation, denoted by ∼. In order to avoid confusion, we will refer to the standard
negation as paraconsist negation.

Definition 2. The total negation ∼ on {〈P, N〉 | P, N ⊆ Δ} is defined by

∼〈P, N〉 = 〈Δ \ P, Δ \ N〉.

The intuition behind total negation is to reverse both the information of being true and of
being false. Notice that we do not extend our four-valued DLs to have the total negation
as a concept constructor. We rather use it only to provide a resolution-based decision
procedure for four-valued DLs.

Proposition 4. For total negation, the following hold for all concepts C, D and roles
R. For any four-valued interpretation I ,

(∼∼C)I = CI , (∼�)I = ⊥I , (∼⊥)I = �I , (¬∼C)I = (∼¬C)I

(∼(C � D))I = (∼C � ∼D)I , (∼(C � D))I = (∼C � ∼D)I ,

(∼(∀R.C))I = (∃R.∼C)I , (∼(∃R.C))I = (∀R.∼C)I .

A second issue which we have to address when adjusting resolution to the paracon-
sistent setting, is to obtain a representation of internal implication (i.e. of internal in-
clusion) in terms of clauses. We have already remarked in Section 2.2 that internal
implication cannot be represented by means of the connectives conjunction, disjunction
and paraconsistent negation. However, with total negation a representation of C � D
as ∼C � D is possible. The representation is actually not logically equivalent, but it is
equisatisfiable, which suffices for setting up a resolution procedure. We indeed have the
following theorem.

Theorem 2. Let O be a four-valued ALC4 ontology, C, D be concepts, I be an inter-
pretation and ι be a new individual not occurring in O. Then the following hold.

1. (C � D)I ∈ {t, �̈} if and only if (∼C � D)I ∈ {t, �̈}.
2. O |=4 C(a) if and only if O ∪ {∼C(a)} is four-valued unsatisfiable.
3. O |=4 C �→ D if and only if O ∪ {∼(¬C � D)(ι)} is four-valued unsatisfiable.
4. O |=4 C � D if and only if O ∪ {(C � ∼D)(ι)} is four-valued unsatisfiable.
5. O |=4 C → D if and only if O ∪ {(C � ∼D)(ι), (¬D � ∼¬C)(ι)} is four-valued

unsatisfiable.

Algorithms for Paraconsistent Reasoning with OWL 409

5.1 Translating ALC4 into Clauses

Resolution-based calculi operates on sets of clauses in normal form, so we introduce
next clausal forms for ALC4 expressions. We were inspired by [13]. We first define a
negation normal form for ALC4 concepts, which we call quasi-NNF.

Definition 3. A concept C is a quasi-atom, if it is an atomic concept, or in form ¬A
where A is an atomic concept. A concept C is a quasi-literal, if it is a quasi-atomic
concept, or in form ∼L where L is a quasi-atomic concept. A concept C is in quasi-
NNF, if the total negation ∼ occurs only in front of quasi-literals.

To give an example, let A, B, and C be atomic concepts. Then (A∨∼¬B)�∀R.(∼C)
is in quasi-NNF. By propositions 3 and 4, the following is obvious.

Theorem 3. All ALC4 concepts can be transformed into equivalent expressions in
quasi-NNF.

We next define the Definitorial form of ALC4 concepts, which is a technicality to con-
trol the size of clauses (see to [9] for details). If C is a concept, then we set

Def(C) =
{

{C} if C is a literal concept,
{∼Q � C|p} ∪ Def(C[Q]|p) if p is eligible for replacement in C.

where C|p is the position p in concept C, as defined in [14,9].
As an example, we have Def(A � ∃R.(A � B)) = {A � ∃R.Q, ∼Q � (A � B)}.

Note that ∼Q � (A � B) can be interpreted as internal inclusion Q � (A � B), which
allows us to use Q as a new name for (A � B) in ∃R.(A � B)).

The following proposition is as expected.

Proposition 5. For an ALC4 concept C in quasi-NNF, C(x) has information to be
true for all individuals x if and only if all concepts Di(x) with Di ∈ Def(C) have the
information to be true. Formally, {� � C} is four-valued satisfiable iff {� � Def(Di) |
Di ∈ Def(C)} is.

We next translate the concepts into predicate logic. This is done by the standard trans-
lation as e.g. spelled out in [9] in terms of the function πy – we just have to provide for
the total negation. This is done by allowing the total negation to occur in the predicate
logic formulae as well, and by translating total negation in the same way as paracon-
sistent negation. We make one exception, namely for unversal restriction, where we set
πy(∀R.C, x) = ∀y.(∼R(x, y) � C(y)).

Following the above transformations step by step, any ALC4 concept can be trans-
lated into a set of first order predicate logic clauses (with total negation) in polynomial
size of the original concepts.

The obtained predicate logic formulae (with total negation) can now be translated
into clauses in the standard way, i.e. by first casting them into Skolem form, and then
into conjunctive normal form by exhaustive application of well-known logical equiva-
lences (see e.g. [14]), which are adjusted for total negation in the obvious straightfor-
ward way.

410 Y. Ma, P. Hitzler, and Z. Lin

Table 5. Clause Types

1
�

(∼)(¬)Ci(x) ∨ R(x, f(x))
2

�
(∼)(¬)Ci(x) ∨ (∼)(¬)D(f(x))

3
�

(∼)(¬)Ci(x)
4
�

(∼)(¬)Ci(x) ∨ R(x, y) ∨ (∼)(¬)D(y)
5 (∼)(¬)C(a)
6 (∼)(¬)R(a, b)

If C is a concept (where the additional use of total negation is allowed), then we
denote by Cls(C) the set of clauses which is obtained by the just mentioned transfor-
mation. These clauses are predicate logic formulae (with total negation).

We finally translate an ALC4 knowledge base KB into a set Ξ(KB) of predi-
cate logic clauses (with total negation), as follows. The knowledge base Ξ(KB) is
the smallest set satisfying the following conditions:

– For each ABox axiom α in ABox, Cls(α) ⊆ Ξ(KB)
– For each TBox axiom C �→ D in TBox, Cls(¬C � D) ⊆ Ξ(KB)
– For each TBox axiom C � D in TBox, Cls(∼C � D) ⊆ Ξ(KB)
– For each TBox axiom C → D in TBox, Cls(∼C � D, ∼¬D � ¬C) ⊆ Ξ(KB)

Theorem 4. Let KB be an ALC4 ontology. Then, the following hold.

– KB is satisfiable iff Ξ(KB) is satisfiable.
– Ξ(KB) can be computed in time polynomial in |KB|.
– Each clause in Ξ(KB) is of one of the syntactic forms listed in Table 5. We refer

to these clauses as 4-valued clauses.

5.2 Ordered Resolution with Selection Function O4DL for ALC4

The KAON2 approach for ALC is based on a modification of the original resolution
calculus, known as ordered resolution (see [9] for the necessary preliminaries). We
will now define the corresponding notions of clause ordering and of selection function,
which we require for this. We assume in the sequel that all 4-valued clauses are of the
form described in theorem 4.

Given any fixed ordering � on ground quasi-atoms which is total and well-founded,
we can obtain an ordering on sets of clauses as follows.

1. Extend � to an ordering �L on ground literals by setting ∼A �L A for any A, and
[∼]A �L [∼]B, if A � B.

2. Extend �L to an ordering �C on ground clauses by setting �C= (�L)mul to be
the multi-set extension of �L (see [9] for formal definition). The intuition is that
C1 �C C2 iff the maximal quasi-literal in clause C1 is greater then that in clause
C2 w.r.t. �L.

By a slight abuse of notation, we use � also for �L and �C where the meaning is clear
from the context.

Algorithms for Paraconsistent Reasoning with OWL 411

By a selection function we mean a mapping S that assigns to each clause C a (possi-
bly empty) multiset S(C) of literals with the prefix ∼ in C. For example, both {∼¬A}
and {∼¬A, ∼D} can be selected in clause ∼¬A ∨ ∼D ∨ B ∨ ¬C.

An ordered resolution step with selection function can now be described by the in-
ference rule

C ∨ A D ∨ ∼B

Cσ ∨ Dσ

where

– σ = MGU(A, B) is the most general unifier of the quasi-atoms A, B, and C, D
are quasi-clauses.

– Aσ is strictly maximal in Cσ ∨ Aσ, and no literal is selected in Cσ ∨ Aσ;
– ∼Bσ is either selected in Dσ ∨∼Bσ, or it is maximal in Dσ ∨∼Bσ and no literal

is selected in Dσ ∨ ∼Bσ.

The corresponding ordered factorization rule is

C ∨ A ∨ B

(C ∨ A)σ

where σ = MGU(A, B) and Aσ is maximal in Cσ ∨Aσ and nothing is selected in C.

Theorem 5. (Soundness and Completeness of O4DL) Let N be an ALC4 knowledge
base. Then Ξ(N) �O4DL � iff N is four-valued unsatisfiable.

We can now select suitable parameters in order to arrive at a decision procedure based
on O4DL. This can be done as follows.

– The literal ordering � is defined such that R(x, f(x)) � ∼C(x) and D(f(x)) �
∼C(x), for all function symbols f , and predicates R, C, and D.

– The selection function selects every binary literal which is preceeded by ∼.

Theorem 6. (Decidability) For an ALC4 knowledge base KB, saturating Ξ(KB) by
O4DL decides satisfiability of KB and runs in time exponential in |KB|.

6 Implementation

ParOWL4 is a prototype implementation of our paraconsistent reasoning approach. It re-
alises the algorithm from Section 4 by means of a command line tool based on KAON2.
In order to allow the use of standard OWL syntax, the tool expects four input files as
parameters, all of which are standard OWL documents. In the first file, class inclusion
is interpreted as material inclusion, in the second as internal inclusion, and in the third
as strong inclusion. The fourth file is expected to contain an ABox. ParOWL outputs an
OWL file which contains the translation.

To display the usage of the different inclusion axioms in ParOWL, consider the
following example ontology O, which consists of the axioms Bird � FlyAnimal,

4 http://logic.aifb.uni-karlsruhe.de/wiki/Paraconsistent reasoning

412 Y. Ma, P. Hitzler, and Z. Lin

Table 6. Paraconsistent reasoning examples

Ontology Bird FlyAnimal Penguin notBird notFlyAnimal notPenguin
O1 ∅ ∅ tweety ∅ ∅ ∅
O2 tweety tweety tweety ∅ tweety ∅
O3 tweety tweety tweety tweety tweety tweety
O4 tweety ∅ tweety ∅ tweety ∅

Penguin � Bird, Penguin � ¬FlyAnimal, and Penguin(tweety), which is obviously
inconsistent. We compare the following different four-valued ontologies which can be
derived from O: For O1 all inclusions are material, for O2 all inclusions are internal,
for O3 all inclusions are strong. For O4, the first inclusion is material, the second is
internal, and the third is strong. Table 6 shows the extensions of the concepts in these
ontologies as computed with ParOWL. The desired result may be O4, and indeed the
choice of inclusion axioms in this case follows the intuitions laid out in Section 3.

7 Conclusions and Further Work

We have motivated and formally described an approach for paraconsistent reasoning
with ontologies, which is based on the simultaneous use of different kinds of paracon-
sistent inclusion. We have provided guidelines for the use of these different inclusions.
We have provided algorithms for implementing our approach and presented a publicly
available tool which realises it.

Concerning the two algorithms provided in Sections 4 and 5, it is rather apparent
that all the benefits from the KAON2 system – like the ability to handle large ABoxes –
can also be achieved by invoking KAON2 after employing the transformation algorithm
from Section 4 in a preprocessing manner using ParOWL. However, although the trans-
formation algorithm is polynomial, it may be time consuming for large ontologies. This
can possibly be improved by the direct algorithm from Section 5. Most of the technical
details of the KAON2 implementation can indeed be carried over to our algorithm from
Section 5.

In the literature, there are basically two other approaches to four-valued description
logics, namely [4] and [5]. Our approach differes from theirs in two important aspects.
The first is that we allow for simultaneous usage of different inclusions. The second is
that we propose a translation from our logic into standard description logic such that
established reasoners can be used. We thus benefit directly from the highly optimised
systems currently available. The logics in [4,5] have neither of these features.

Obviously, much work remains to be done to make our approach fit for practice. Be-
sides the obvious task of providing a better implementation than just a prototype, we
also have to address in more detail the question, which kinds of paraconsistent inclu-
sion are to be chosen when translating paraconsistent ontologies to standard ontologies.
We envision a combination of system recommendations with user interactions. Alterna-
tively, inclusions could be weakened gradually from strong inclusion to weaker versions
– probably involving even further notions of inclusion – until a reasonable answer to a
query is found. These issues are currently under investigation by the authors.

Algorithms for Paraconsistent Reasoning with OWL 413

References

1. Hayes, P., Horrocks, I., Patel-Schneider, P.F.: OWL Web Ontology Language Semantics and
Abstract Syntax. W3C Recommendation 10 February 2004 (2004)

2. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of descrip-
tion logic terminologies. In Gottlob, G., Walsh, T., eds.: IJCAI, Morgan Kaufmann (2003)
355–362

3. Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for han-
dling inconsistency in changing ontologies. In Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A., eds.: International Semantic Web Conference. Volume 3729 of Lecture Notes in Com-
puter Science., Springer (2005) 353–367

4. Patel-Schneider, P.F.: A four-valued semantics for terminological logics. Artificial Intelli-
gence 38 (1989) 319–351

5. Straccia, U.: A sequent calculus for reasoning in four-valued description logics. In Galmiche,
D., ed.: TABLEAUX. Volume 1227 of Lecture Notes in Computer Science., Springer (1997)
343–357

6. Ma, Y., Lin, Z., Lin, Z.: Inferring with inconsistent OWL DL ontology: A multi-valued logic
approach. In Grust, T., et al., eds.: EDBT Workshops. Volume 4254 of Lecture Notes in
Computer Science., Springer (2006) 535–553

7. Belnap, N.D.: A useful four-valued logic. Modern uses of multiple-valued logics (1977)
7–73

8. Arieli, O., Avron, A.: The value of the four values. Artif. Intell. 102 (1998) 97–141
9. Motik, B.: Reasoning in description logics using resolution and deductive databases. PhD

theis, University Karlsruhe, Germany (2006)
10. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The Descrip-

tion Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press (2003)

11. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfia-
bility. J. Web Sem. 1 (2004) 345–357

12. Arieli, O., Avron, A.: Reasoning with logical bilattices. Journal of Logic, Language and
Information 5 (1996) 25–63

13. Kamide, N.: Foundations of paraconsistent resolution. Fundamenta Informaticae 71 (2006)
419–441

14. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd Edition. Texts in
Computer Science. Springer (1996)

Vague Knowledge Bases for Matchmaking in P2P
E-Marketplaces

Azzurra Ragone1, Umberto Straccia2, Tommaso Di Noia1,
Eugenio Di Sciascio1, and Francesco M. Donini3

1 SisInf Lab - Politecnico di Bari, Via Re David, 200, I-70125, Bari, Italy
{a.ragone,t.dinoia,disciascio}@poliba.it

2 ISTI - CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
straccia@isti.cnr.it

3 Università della Tuscia, via San Carlo, 32, I-01100, Viterbo, Italy
donini@unitus.it

Abstract. In this paper we propose an approach to semantic matchmaking that
exploits various knowledge representation technologies to find most promising
partners in peer-to-peer e-marketplaces. In particular we mix in a formal and prin-
cipled way the semantic expressiveness of DLR-lite Logic Programs, fuzzy logic
and utility theory. We adopt DLR-Lite Logic Programs to obtain a reasonable
compromise between expressiveness and complexity to ensure the scalability of
our approach to large e-marketplaces, and Fuzzy Logic to model logical specifica-
tions as soft constraints. Furthermore, fully exploiting the peer-to-peer paradigm,
we consider in the matchmaking process preferences and corresponding utilities
of both parties.

1 Introduction

The distinguishing characteristic of a peer-to-peer (P2P) e-marketplace is that basically
peer users – both buyers and sellers – can submit their advertisements, browse through
available ads, and be assisted in finding the best available counterparts to meet their
needs and initiate a commercial transaction. Furthermore, in such marketplaces, there
is often the need to negotiate not only on single numerical features such as price, quan-
tity, etc., but also on some good’s characteristics. Then there is the need to represent
advertisements in a machine understandable way, using languages able to model the
background domain knowledge. Also, descriptions could have logical implications, e.g.,
If a car has leather seats then it is also provided with air conditioning or bundles e.g.,
Sports car with optional package including both GPS system and alarm system, and
some kind of logical theory, able to let users express their needs/offers, could surely
help. Finally, while performing a matchmaking process between two peers advertise-
ments, we should take into account user preferences – soft constraints – and distinguish
them from mandatory – hard – ones.

In an e-commerce setting, matchmaking can be defined as the process of finding
“good” counterparts for a given entry in the marketplace. Of course, the evaluation of
how “good” a counterpart is constitutes most of the effectiveness of a matchmaking
system. Currently, many commercial sites force the buyer to enter her request browsing

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 414–428, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Vague Knowledge Bases for Matchmaking in P2P E-Marketplaces 415

a predefined classification that may be completely unsuitable for the characteristics
the buyer might have in mind e.g., they require to enter a brand first, then a model of
that brand, etc. while a buyer may be not interested in a specific brand, but only on
some limitations on price and color. In this respect, one may say that they provide no
matchmaking assistance: the matchmaker is the buyer herself. Even the use of textual
search engine (as in eBay) does not help a lot, since the result is a (sometimes very long
and tedious) list to browse.

To assist buyers and sellers in marketplaces, several research proposals on match-
making systems were issued. They either try to compute a score of possible counter-
parts, based on textual information [25], or to compare the logical representations of
supply and demand [10], or combine both scores and logic in some way [7,16]. Our pro-
posal falls in this last category, mixing in a formal way ontologies in DLR-Lite, Datalog
rules, Fuzzy sets, and Utility Theory. While all the above logic-based proposals suffer
on the scalability side, our resort on DLR-Lite and Datalog ensures the scalability of
our approach w.r.t. to large datasets.

Furthermore, following the economical approach to negotiation, the matchmaker
computes a score as the maximum value of the product of the weighted utility of the
buyer uβ times the weighted utility of the seller uσ over all possible agreements be-
tween the buyer and the seller. In this way both buyer’s and seller’s preferences are taken
into account ruling out of the match list those counteroffers that, although seemingly
appealing for the buyer, would probably lead to failure due to contrasting preferences
of the seller, that we take already into account.

The remaining of the paper is as follows: Section 2 introduces basics of languages
and technologies we adopt. In Section 3 requirements for matchmaking process, in-
cluding preferences, utility functions are illustrated and vague knowledge bases are
introduced. The description of the matchmaking process over vague knowledge bases
follows in Section 4. Next, in Section 5 rules for item classification in P2P marketplaces
are outlined. An illustrative example is presented in Section 6, discussion about relevant
related work and conclusions close the paper.

2 Basic Technologies

As our representation and query tool, we use a specific combination of Description
Logics [3] (DLs), Logic Programming [6] (LPs) and Fuzzy Theory [26].

A Knowledge Base is a triple K = 〈F , O, P〉, where F is a set of facts stored
into a relational database, O is the DL component and P is the rule component. The
DL component is used to model the application domain’s ontology (e.g., the inten-
tional knowledge). Specifically, we use a description logic of the family of DLs, DLR-
Lite [5]. Concerning the rule and query component, we use an extension of Datalog
(cf. [6] among others), in which we allow soft constraint predicates to appear in rules
and queries [22]. Basically, we allow vague/fuzzy predicates to occur in rule bodies,
which have the effect that each tuple in the answer set of a query has now a score in
[0,1]. The main problem to be addressed in the resulting language is the problem to
compute the top-k answers in case the set of facts is huge, without evaluating all the
tuples’ score. As matching a buyer’s request with a seller’s offer is a matter of degree,
our purpose is to find the top-k matches only, rather than all matches.

416 A. Ragone et al.

In the following, consider a knowledge base K = 〈F , O, P〉.
Facts component. Concerning the facts component, F is simply a finite set of formulae
of the form R(c1, . . . , cn), where R is an n-ary predicate and ci are constants. Facts,
representing extensional information, are stored in relational tables of an underlying
database. For instance,

CarTable(544, F iatPunto, 2004, 15000)

is a fact stating that item 544 is a Fiat Punto, built in 2004 and having 15000 kilometers.
An interpetation I = 〈Δ, ·I〉 consists of a fixed infinite domain Δ and an interpre-

tation function ·I that maps an n-ary predicate R into an n-ary relation RI over Δ and
maps constants into constants of Δ such that aI �= bI if a �= b (unique name assump-
tion). We assume to have one object for each constant, denoting exactly that object. In
other words, we have standard names, and we will not distinguish between the alphabet
of constants and the objects in Δ.

DL component. Concerning the DL component, O is a finite set of DLR-Lite ax-
ioms 1. A DLR-Lite axiom has the form C1 � C2 (concept inclusion) or has the form
(disjoint C1, . . . , Cn) (disjointness axiom), where Ci is a concept expression. Infor-
mally, C1 � C2 says that the set denoted by C1 is a subset of the set denoted by
C2, while (disjoint C1, . . . , Cn) declares that the concepts are pairwise disjoint. Con-
cepts expressions are constructed starting from a set of atomic concepts and relations
by applying suitable constructs. In DLR-Lite we distinguish between constructs that
are allowed in the left-hand side (Cl) and those in the right-hand side (Cr) of concept
inclusions, according the following syntax:

Cl −→ A | ∃i : R | Cl1 � Cl2

Cr −→ A | ∃i : R | Cr1 	 Cr2

where R is an n-ary predicate and i ∈ {1, . . . , n}.
An interpretation I = 〈Δ, ·I〉 maps a concept C into subsets CI of Δ. In the fol-

lowing, R denotes an n-ary predicate, and we use c to denote an n-tuple of constants,
and c[i] to denote the i-th component of c. Then ·I has to satisfy:

AI ⊆ Δ

(C1 	 C2)
I = C1

I ∩ C2
I

(C1 � C2)
I = C1

I ∪ C2
I

(∃i : R)I = {c[i] | c ∈ RI}

An interpretation satisfies (is a models of) C1 � C2 iff C1
I ⊆ C2

I , while an interpre-
tation satisfies (is a models of) (disjoint C1, . . . , Cn) iff ∀i �= j.Ci

I ∩ Cj
I = ∅.

1 Here we refer to DLR-Litecore but any DL of the DL-Lite or DLR-Lite family can be as well
considered.

Vague Knowledge Bases for Matchmaking in P2P E-Marketplaces 417

Example 1. The following set of axioms is an excerpt of the encoding for the web
directory behind the car selling site www.autos.com:

Cars � V ehicles
T rucks � V ehicles
V ans � V ehicles
LuxuryCars � Cars
PassengerCars � Cars
(disjoint Cars, T rucks, V ans)

CompactCars � PassengerCars
V ehicles � ∃1 : hasMaker � ∃1 : hasPrice
∃1 : hasPrice � ∃1 : hasMaker � V ehicles
∃2 : hasMaker � CarMaker
Cars � ∃1 : hasKmWarranty � ∃1 : hasFuel
∃2 : hasFuel � FuelType

Given a DLR-Lite ontology related to a relation model, in [5] it is shown how to rewrite
a conceptual query over the ontological model in a conjunctive query over the relational
model in the form

q(x) ← ∃ybody(x,y)

Here body is the conjunction of n-ary predicates representing the information modeled
by concepts and roles in the DLR-Lite ontology.

Notice that even apparently simple, DLR-Lite family languages are expressive
enough to represent RDFS2 ontologies (at least their DL subset).

LP component. Concerning the rule component of a knowledge base, P is a finite set
of vague Datalog rules[22], which are defined as follows.

A Datalog rule is a Horn clause of the form

P (t0) ← R1(t1), . . . , Rn(tn) ,

where P (t0) is the head of the rule, and R1(t1), . . . , Rn(tn) is the body of the rule.
P (t0) and all Ri(ti) are atoms, ti are arrays of terms. A term is either a variable or a
constant. Here we also provide a set of built-in predicates, like +, ∗, −, /, ≥, ≤, =, with
(obvious) fixed interpretation, which may appear in a rule body.

A Datalog query predicate q is a designated n-ary predicate symbol appearing in the
head of a Datalog rule in P . For instance,

q(x, p) ← Cars(x), hasPrice(x, p), p ≤ 15000

is a query asking for cars whose price is less or equal than 15000.
The interpretation of n-ary predicates, terms and the notions of satisfiability (is

model of) and logical consequence are as usual.
Vague Datalog rules are as Datalog rules except that we additionally allow fuzzy

predicates to occur in Datalog rule bodies (see [22]). Specifically, let r be an n-ary
predicate symbol. We add an additional position to r, making it n+1-ary. Then a vague
Datalog rule is of the form

r(x, s) ← ∃ybody(x,y), s = f(p1(z1), . . . , pn(zn))

where

1. x are the n distinguished variables;
2. s is the score variable, taking values in [0, 1], and r is functional on s;

2 http://www.w3.org/TR/rfs-schema/

www.autos.com

418 A. Ragone et al.

(a) (b) (c) (d)

Fig. 1. (a) Trapezoidal function; (b) Triangular function; (c) L-function; (d) R-function

3. y are so-called non-distinguished variables and are distinct from the variables in x;
4. body(x,y) is a conjunction of Datalog atoms;
5. zi are tuples of constants or variables in x or y;
6. pi is an ni-ary fuzzy predicate assigning to each ni-ary tuple ci as score pi(ci) ∈

[0, 1];
7. f is a scoring function f : [0, 1]n → [0, 1], which combines the scores of the n

fuzzy predicates pi into and overall query score to be assigned to the score variable
s. We assume that f is monotone, i.e., , for each v,v′ ∈ [0, 1]n such that v ≤ v′,
f(v) ≤ f(v′) holds, where (v1, . . . , vn) ≤ (v′1, . . . , v

′
n) iff vi ≤ v′i for all i; we

assume that the computational cost of f and all fuzzy predicates pi is bounded by a
constant.

We call s = f(p1(z1), . . . , pn(zn)) a scoring atom. For instance,

CheapCar(x, p, s) ← NewCar(x), hasPrice(x, p),
s = max(0, 1 − p/15000)

CheapCar(x, p, s) ← SecondHandCar(x), hasPrice(x, p),
s = max(0, 1 − p/7500)

are vague Datalog rules that can be used to look for cheap cars, assigning to each car
a score depending on its price. If the price of a new car is above 15,000e the car
is not considered as a cheap one, while the scoring function is increased as the price
lowers. Hence, it is quite natural that if we are looking for cheap cars one wants that
the retrieved cars are sorted in decreasing order with respect to its score, i.e., degree of
cheapness. Furthermore, as the database may contain thousands of tuples, one usually
wants to retrieve just the top-k ranked ones.

Concerning fuzzy predicates involved in scoring atoms, we recall that in fuzzy set
theory and practice there are many membership functions for fuzzy sets membership
specification. However, the trapezoidal trz(x; k1, k2, a, b, c, d), the triangular tri(x;
k1, k2, a, b, c), the L-function (left shoulder function) LS(x; k1, k2, a, b) and the R-
function (right shoulder function) RS(x; k1, k2, a, b) are simple, yet most frequently
used to specify membership degrees (see Figure 1) 3.

From a semantics point of view (see [22]), we have to take into account the additional
scoring atom s = f(p1(z1), . . . , pn(zn)).

Informally a vague Datalog rule is interpreted in an interpretation I as the set rI of
tuples 〈c, v〉, such that when we substitute the variables x and s with the constants c

3 k1, k2 is the domain of the functions.

Vague Knowledge Bases for Matchmaking in P2P E-Marketplaces 419

and the score value v ∈ [0, 1], the formula ∃ybody(x,y), s = f(p1(z1), . . . , pn(zn))
evaluates to true in I.

Due to the existential quantification ∃y, for a fixed c, there may be many substitu-
tions c′ for y and, thus, we may have many possible scores for the tuple c. Among all
these scores for c, we select the highest one, i.e., the sup.

In case that the atom r(x, s) is the head of multiple rules, for each tuple c there may
be a score vi computed by each of these rules. In that case, we assume that the overall
score for c is the maximum among the scores vi.

Now, let θcc′v
xys = {x/c,y/c′, s/v} be a substitution of the variables x,y and s

with the tuples c, c′ and score value v ∈ [0, 1]. Let ψ(x,y, s) be body(x,y), s =
f(p1(z1), . . . , pn(zn)). With ψ(x,y, s)θcc′v

xys we denote the ground formula obtained

by applying the substitution θcc′v
xys to ψ(x,y, s).

We say that an interpretation I is a model of ψ(x,y, s)θcc′v
xys iff ψ(x,y, s)θcc′v

xys eval-
uates to true in I, i.e., all ground atoms and the grounded scoring atom occurring in
ψ(x,y, s)θcc′v

xys are true. We will write I |= ψ(x,y, s)θcc′v
xys in this case.

Then, the interpretation rI of a set of rules with same head r = {r1, . . . , rn} in I is

rI = {〈c, v〉 | v = max(v1, . . . , vn), vi = supc′{v′ | I |= ψi(x,y, s)θcc′v′
xys }} , (1)

where each rule ri ∈ r is of the form r(x, s) ← ∃yψi(x,y, s), sup ∅ is undefined, and
max(v1, . . . , vn) is undefined iff all its arguments are undefined.

Note that some tuples c may not have a score in I and, thus, 〈c, v〉 �∈ rI for no
v ∈ [0, 1]. Alternatively we may define sup ∅ = 0 and, thus, all tuples c have a score in
I, i.e., 〈c, v〉 ∈ rI for some v ∈ [0, 1]. We use the former formulation to distinguish
the case where a tuple c is retrieved, though the score is 0, from the tuples which do not
satisfy the query and, thus, are not retrieved. Finally, for all c and for all v ∈ [0, 1], we
say that I is a model of r(c, v) (denoted I |= r(c, v)) iff 〈c, v〉 ∈ rI .

We say that a vague knowledge base K = 〈F , O, P〉 entails q(c, v), written K |=
q(c, v), iff for all models I of K, I |= q(c, v) holds.

Linking Facts component F , DL component O and LP component P with each
other in K we have that:
– Atoms, representing unary predicates, and predicates occurring in O may appear in
rules in P .
– Predicates occurring in F do not occur in the head of rules in P — essentially, we do
not allow that the fact predicates occurring in F can be redefined by P .

2.1 Top-k Retrieval

The basic inference services that concerns us is the top-k retrieval problem, where this
latter is defined as:

Top-k retrieval: Given a vague knowledge base K = 〈F , O, P〉, retrieve the top-k
ranked tuples 〈c, v〉 that instantiate the query q and rank them in decreasing order w.r.t.
the score v, i.e., find the top-k ranked tuples of the answer set of q, denoted

ansk(K, q) = Topk{〈c, v〉 | K |= q(c, v)} .

420 A. Ragone et al.

For instance,
q(x, p, s) ← CheapCar(x, p, s)

is a query asking for cheap cars. The top-k ranked cars, according to the score (that
depends on their price), is obtained by ansk(K, q).

From a reasoning point of view, [23] shows a that the top-k problem for DL-Lite
knowledge bases can be solved in LogSpace data complexity. The result holds also for
the top-k problem in DLR-Lite, using the results described in [5]. On the other hand,
[22] shows that the top-k problem for vague Datalog can also be solved in LogSpace
data complexity, if the set of vague Datalog rules is not recursive. Both solutions rely
on a query rewriting method which is conceptually based on the same idea as for [5]. In
fact, it can be shown that for a vague knowledge base K = 〈F , O, P〉, where P is not
recursive, the top-k problem can be solved in LogSpace data complexity. Essentially,
we combine [22] and [23] to rewrite a query into a set R of new queries and then we
apply relational top-k database technology (see, e.g., [14]) to solve the queries in R.

3 Matchmaking Scenario

In this section we outline the matchmaking scenario and show how to model it as a top-
k retrieval problem over a vague knowledge base K. Without loss of generality, in the
examples we refer to an automobile marketplace, and motivate our work in this domain.
In such domain features as look, comfort, optionals, type have to be modeled, as well as
numerical features as price, warranty or delivery time. In fact, based on these features
both the buyer is able to formulate her request and the seller to describe the good to
be sold i.e., a buyer can specify conditional preferences, such as “If it is a luxury car,
then it has to be provided with leather seats” or “I want a cheap car, yet if the car has
an alarm system I’m ready to pay up to 18,000 e”, conversely the seller can offer “a
compact car with 4 years warranty or 12,0000 km warranty”. Constraints can involve
only numerical features,or non numerical ones, as well as both of them.

Hard and Soft Constraints. In a typical e-marketplace scenario, the issues within both
the buyer’s request and the seller’s offer can be split into strict requirements and prefer-
ences. Strict requirements represent what the buyer and the seller want to be necessarily
satisfied in order to accept the final agreement – in our framework we call strict require-
ments hard constraints. Preferences denote issues they are willing to negotiate on – this
is what we call soft constraints. Hence, the matchmaker has to be able to handle both
hard and soft specifications of both the buyer and the seller. Let us now introduce an
example request, we will use to explain some aspects of our approach:

Example 2. Suppose to have a buyer’s request like “I want a passenger car black or
gray. Preferably I would like to pay less than 14,000 e furthermore I’m willing to pay
up to 17,000 e if warranty is greater or equal than 100000 km. ”. In this example we
identify:

Hard Constraints. Body Type: Passenger car; Color: Black or Grey.
Soft Constraints. Price: ≤ 14, 000; Warranty-Price: if Warranty ≥ 100,000 then

Price ≤ 17,000 e.

Vague Knowledge Bases for Matchmaking in P2P E-Marketplaces 421

Utility. Given a request and several supplies, in the final agreement, both buyer’s and
seller’s hard constraints have to be satisfied. Nevertheless, how should the matchmaker
find –and rank– the most suitable or promising agreements to be proposed to both par-
ties? In the ranking process, soft constraints are key information the matchmaker should
use to evaluate the match degree. The final agreement is computed in order to maximize
both buyer’s and seller’s preferences satisfaction. For instance, w.r.t. Example 2 suppose
to have three supplies4:

σ′ = Body Type: Compact car; Color: Grey; Price: 16,000 e; Warranty: 200,000 km.
σ′′ = Body Type: Passenger Car; Color: Black; Price: 13,000 e; Warranty: 50,000 km.
σ′′′ = Body Type: Van; Color: Brown; Price: 19,000 e.

Comparing these supplies with buyer’s request we note that σ′′′ will be discarded
because its hard constraints are in conflict with the buyer’s one. For σ′ and σ′′ we have
that: σ′ satisfies the preference β2 = {Warranty-Price: if Warranty ≥ 100,000 then
Price ≤ 17,000 e}; σ′′ the preference β1 = {Price: ≤ 14,000}. Now the question is:
how to evaluate the best one?

In order to provide an answer to such a question, we take into account utility val-
ues assigned by the buyer and representing the preference relevance to sub-parts of
soft constraints. In this case we assume utility values — u(β1) and u(β2) — both for
β1 and β2. 5 Notice that actually the same holds from the seller’s side. In a P2P e-
marketplace the seller may express his preferences — soft constraints e.g., on selling
price, warranty, delivery time — with corresponding utilities u(σj), as well as his hard
constraints (e.g., color, model, engine fuel, etc.). The only constraint on utility values is
that both seller’s and buyer’s ones are normalized to 1 to eliminate outliers, and make
them comparable [12].

∑
u(βi) = 1 ,

∑
u(σj) = 1 (2)

Since we assume utilities on preferences as additive, here we can write the global utility
of the buyer uβ and of the seller uσ as just a sum of the utilities of preferences satis-
fied in the agreement. Let si and sj be a score representing the degree of preference
satisfaction, then the global utility will be:

uβ =
∑

si ∗ u(βi) , uσ =
∑

sj ∗ u(σj) (3)

Matchmaking Steps. Now we can outline the steps of the matchmaking process:

1: Every time a seller enters the marketplace, he proposes his supply expressing both
hard and soft constraints (preferences). Eventually, for each preference σj (if any) he
expresses the corresponding utilities u(σj).
2: Similarly the buyer who enters the marketplace will express hard and soft constraints
as well as the utility u(βi).

4 Without loss of generality, for the sake of simplicity in this example we consider supplies
where only hard constraints have been set.

5 It is not in the scope of this paper to investigate on how to compute u(β1) and u(β2); we
might assume, without loss of generality, they are determined in advance by means of either
direct assignment methods (Ordering, Simple Assessing or Ratio Comparison) or pairwise
comparison methods (like AHP and Geometric Mean) [20].

422 A. Ragone et al.

3: Based on buyer’s and seller’s specifications, the matchmaker returns a ranked list of
agreements such that: [a] they satisfy both the hard constraints in the request and con-
versely their hard constraints are satisfied by the request; [b] the rank is evaluated taking
into account preferences and utility functions uβ and uσ as defined by equations (3).

In a P2P e-marketplace, the aim is to maximize both buyer’s and seller’s utilities in
the final agreement, so the matchmaker has to propose agreements mutually beneficial
for both of them. Such agreements are computed considering the higher values of uβ

and uσ utilities product [18].

4 Matchmaking with Vague Knowledge Bases

E-Marketplaces are typical systems where the notion of fuzziness is often involved.
It is usual to find, among others, concepts like Cheap or Expensive. Similarly, nu-
merical variables involved in a commercial transaction expose a fuzzy behavior. For
instance, suppose to have a buyer looking for a car provided with a warranty greater
than 100,000 kilometers and a supplier selling his car with a 80,000 kilometers war-
ranty. If the buyer’s warranty specification is modeled as preference, we can not say
they do not match at all. Instead we can say they match with a certain degree.

Also notice that in both cases — conceptual and numerical information — the fuzzi-
ness is: (1) strongly dependent from the user point of view. The idea of “cheapness”
changes moving from a user to another one; (2) allowed only in soft constraints. If the
user expresses the willingness of selling a car with 80,000 kilometers warranty within
hard constraints, it means that he does not want to negotiate on it at all.

A logical language able to allow the user to express also her fuzzy soft constraints
would be then a good choice to model matchmaking. Given a DLR-Lite ontology O
and a set of facts F we model a vague knowledge base Kmatch = 〈F , O, P〉 for match-
making in e-marketplaces where:

– P represents user’s (both buyer and seller) soft constraints. In P’s rules, also roles
and concepts form O can be used.

In this case, F represents the tuples of the relational database storing P2P advertise-
ments. Notice that since we model a P2P marketplace, then advertisements can be either
supplies or demands, depending on the “searcher” point of view. The former are used in
case a buyer enters the marketplace the latter in case a seller decides to find promising
requests.

To represent requester requirements in a vague knowledge base setting, we model
hard constraints as a conceptual query over O and soft constraints as a query over a
vague Datalog program P .

Hereafter we will use the following notation:

hard constraints =

�
β(x,y) , buyer′s strict requirements
σ(x,y) , seller′s strict requirements

soft constraints =

�
βi(x,y, s) or βi(x, s) , buyer′s preferences
σj(x,y, s) or σj(x, s) , seller′s preferences

x is a single variable. It is usually instantiated with the key value of a database tuple;

Vague Knowledge Bases for Matchmaking in P2P E-Marketplaces 423

y (if present) will be instantiated by numerical values. It is used whenever an agree-
ment on numerical variables (price, km/years warranty, etc.) has to be reached;

s is the score variable as defined in Section 2 [22]. It represents the score associated to
fuzzy predicates involved in the body of the rules;

Notice that since a score is associated to each fuzzy predicate, we can compute the
global utility based on the two utility functions in Section 3. Furthermore, the two
queries σ and β model the minimal requirements the buyer and the seller want to be
satisfied in order to accept the final agreement. Notice that, if seller and buyer set hard
constraints in conflict with each other, the corresponding supply will not be retrieved.
Soft constraints are modeled via Datalog predicates βi for the buyer and σj for the
seller, where each of them represents a sub-part of the buyer/seller preferences.

The use of x, y and s should be clearer looking at how buyer’s request in Example 2
is formalized:

βA(x) ← PassengerCars(x)

βB(x) ← hasColor(x, y), Gray(y)

βB(x) ← hasColor(x, y), Black(y)

β(x) ← βA(x), βB(x)

β1(x, p, s) ← hasPrice(x, p),

LS(0, 100000, 14000, 16000, p, s)

β2(x, p, kmw, s) ← KmWarranty(x, kmw), hasPrice(x, p)

RS(0, 400000, 80000, 100000, kmw, s1),

LS(0, 100000, 17000, 19000, p, s2),

s = max(1− s1, s2)

With respect to the previous encoding we notice that defining β1 and β2 here we can
use two different L-functions to specify membership degrees for the variable p.

5 Top-k Retrieval for Matchmaking in Vague Knowledge Bases

Given a DLR-Lite ontology O and a set of facts F in a relational database, we can detail
the matchmaking framework in a vague knowledge base Kmatch = 〈F , O, P〉. In order
to formulate a query and rank all the retrieved results, what is still missing is how to put
together both buyer’s and seller’s requirements. Then:

1. for each buyer’s preference βi, write the corresponding rule in vague Datalog where
the head contains the predicate βi(x,y, s) as shown in Section 4; add the rule to P ;
set the utility value u(βi) as shown in Section 3; The same is for the seller where the
head of each rule is the predicate σj(x,y, s) and for each of them utility values are
u(σj)

2. add to P the rules:

Buyer(x,y, uβ) ← β1(x,y1, s1), β2(x,y2, s2), . . . , uβ = u(β1) · s1 + u(β2) · s2 + . . .

Seller(x,y, uσ) ← σ1(x,y1, s1), σ2(x,y2, s2), . . . , uσ = u(σ1) · s1 + u(σ2) · s2 + . . .

where for each variable in y in the head of one of the two previous rules, the same
variable occurs in at least one of the arrays of the corresponding body: y1,y2, . . .;

424 A. Ragone et al.

3. encode buyer’s hard constraints requirements as a conceptual query over O. Rewrite
the query as a conjunctive query where the query is denoted with β(x,yβ). The same
is for the seller and his hard constraints σ(x,yσ);

4. solve the Top-k retrieval problem:

ansk(P , Match)=Topk{〈x,y, u〉 | 〈y, u〉 ∈ Top1{〈x,y′, u′〉 |P |= Match(x,y′, u′)}}.

where Match is the conjunctive query

Match(x,y, u) ← β(x,yβ), Buyer(x,yβ, uβ), σ(x,yσ), Seller(x,yσ, uσ), u = uβ ∗ uσ

and for each variable in the array y, the same variable occurs in yβ ,yβ ,yσ or yσ .

Basically, for each key value x of the database, we compute the best match 〈y, u〉 for it,
i.e., 〈y, u〉 ∈ Top1{〈x,y′, u′〉 | P |= Match(x,y′, u′)}, and then rank the top-k key
values.

Notice that the rank is computed considering the product of buyer’s and seller’s util-
ities as stated at the end of Section 3 in order to reach an agreement appealing both for
the buyer and for the seller.

6 An Illustrative Example

Let us better clarify the approach with the aid of a tiny example. In Table 1 two possible
offers stored in an e-marketplace database are presented. We call CarTable the relation
representing Table 1.

Table 1. The CarTable relation with a sample set of offers

ID MODEL TYPE PRICE DISCOUNT KM COLOR AIRBAG INTERIOR TYPE AIR COND ENGINE FUEL
34 ALFA 156 Sedan 12000 20% 25000 Black 1 LeatherSeats 0 Diesel

1812 FORD FOCUS StationVagon 13000 20% 20000 Gray 1 LeatherSeats 1 Gasoline

Based both on these information and some specific domain knowledge, we will write
the corresponding vague knowledge base Kmatch as explained is Section 4and Section 5.
In Figure 3 tuples related to the relation CarTable are represented together with a DLR-
Lite ontology O extending the one presented in Example 1. Auxiliary rules in Figure 2
are introduced and used only for the sake of clarity and conciseness.
Now, suppose to have the following buyer’s request:

[Hard Constraint] (β) I want a sedan or a station wagon.
[Soft Constraint] (β1) I would like air conditioning if the car has leather seats. (β2)
Preferably I would like to pay less than 11,000 e. (β3) The car should have less than
15,000 km.

Vague Knowledge Bases for Matchmaking in P2P E-Marketplaces 425

hasPrice(x, p) ← hasPossibleCarPrice(x, p)

Kilometers(x1, x6), ← CarTable(x1, . . . , x11)

CataloguePrice(x1, x4), ← CarTable(x1, . . . , x11)

MinimalPrice(x1 , y), ← CarTable(x1, . . . , x11), y = x4 − x4 · x5

LS(k1, k2, a, b, p, 1) ← k1 ≤ p ≤ a

LS(k1, k2, a, b, p, 0) ← b ≤ p ≤ k2

LS(k1, k2, a, b, p, s) ← a < p < b, s = (b− p)/(b − a)

RS(k1, k2, a, b, p, 0) ← k1 ≤ p ≤ a

RS(k1, k2, a, b, p, 1) ← b ≤ p ≤ k2

RS(k1, k2, a, b, p, s) ← a < p < b, s = (p− a)/(b− a)

Fig. 2. Auxiliary rules

CarTable(34, ALFA 156, 2002, 12,000, 20%, 25,000, Black, 1, LeatherSeats, 0, Diesel)

CarTable(1812, FORD FOCUS, 2001, 13,000, 20%, 20000, Gray, 1, LeatherSeats, 1, Gasoline)

hasPossiblePrice(34, p), p ∈ {12000, 11900, 11800, . . . , 9700, 9600}
hasPossiblePrice(1812, p), p ∈ {13000, 12900, 12800, . . . , 10500, 10400}

∃1 : CarTable � Cars
Sedan � StationWagon � Cars
∃9 : CarTable � Seats
Mazda � AlfaRomeo � Ford � CarMake
LeatherSeats � V elvetSeats � Seats

(disjoint Mazda, AlfaRomeo, Ford)
(disjoint Sedan, StationWagon)
(disjoint AirConditioning, NoAirConditioning)
(disjoint LeatherSeats, V elvetSeats)
. . .

Fig. 3. A part of the vague knowledge base Kmatch used in the example

[Preferences Utilities] u(β1) = 0.05; u(β2) = 0.5; u(β3) = 0.45

Then we add to the vague Datalog program P in Kmatch the rules:

βA(x) ← Sedan(x)

βA(x) ← StationWagon(x)

β(x) ← βA(x)

β1(x, 1) ← NoLeatherSeats(x)

β1(x, 1) ← LeatherSeats(x), AirConditioning(x)

β1(x, 0) ← LeatherSeats(x), NoAirConditioning(x)

β2(x, p, s) ← hasPrice(x, p),

LS(0, 100000, 11000, 13000, p, s)

β3(x, s) ← Kilometers(x, k),

LS(0, 400000, 15000, 20000, k, s)

Buyer(x, p, uβ) ← β1(x, s1), β2(x, p, s2), β3(x, s3),

uβ = 0.05 · s1 + 0.5 · s2 + 0.45 · s3

Since we are in a P2P e-marketplace, also the seller can express hard and soft con-
straints. Looking at the information modeled in Table 1 we see that a soft constraint is
expressed on price: the seller prefers to sell the car at the catalogue price, furthermore
he may apply a discount. In this case also a constraint on price is set; in fact, he does not
want to go down such defined discount (hard constraint). Without loss of generality, for
the sake of clarity in this example we consider the same hard and soft constraints for all

426 A. Ragone et al.

the sellers within the e-marketplace. Seller’s requirements are then encoded in Kmatch
as:

σ(x, p) ← hasPrice(x, p), CataloguePrice(x, catP),

MinimalPrice(x, minP), minP ≤ p ≤ catP

σ1(x, p, s) ← hasPrice(x, p), CataloguePrice(x, catP),

MinimalPrice(x, minP), minP ≤ p ≤ catP,

RS(0, 100000, minP, catP, p, s)

Seller(x, p, uσ) ← σ(x, p), σ1(x, p, s1), uσ = s1

Notice that, in this particular case, the specification of u(σ1) is not necessary because
of equation (3).

According to the encoding in Section 5 the query is:

Match(x, p, u) ← β(x), Buyer(x, p, uβ), σ(x, p), Seller(x, p, uσ), u = uβ · uσ

Solving ans2(Kmatch, Match) retrieval problem with respect to Kmatch defined in this
example, the ranked list of agreements is:

x p u
34 11300 0.3010
1812 11800 0.1885

Then, the agreement between ALFA 156 and the request is ranked better then
FORD FOCUS.

7 Related Work

Recently, the problem of matchmaking has been investigated under different perspec-
tives and many approaches have been proposed. An initial approach to matchmaking
can be dated back to vague query answering [17] where the need to go beyond pure
relational databases was addressed using weights attributed to several search variables.
More recently similar approaches have been proposed extending SQL with “preference”
clauses, in order to allow relaxed queries in structured databases [11] where only buyer’s
preferences are taken into account while retrieving promising supplies: no agreement is
proposed as a result of the query process. In our framework we model the matchmak-
ing process in a P2P marketplace, taking into account not only the buyer’s preferences,
but also the seller’s ones, finding the most promising agreements w.r.t. preferences of
them both. Classified-ads matchmaking, at a syntactic level, was proposed in [21] and
[25] to perform a matchmaking between semi-structured descriptions. Approaches to
matchmaking using LOOM as description language can be found, among others, in [2]
and [9]. Due to the growing interest in the Semantic Web initiative many approaches
to matchmaking have been proposed in the framework of DAML+OIL, OWL and their
grounding logical languages in particular Description Logics (DL). Matchmaking as
satisfiability of concept conjunction in DLs was first proposed in [10]. In the frame-
work of Retsina Multiagent infrastructure [24], a specific language was defined for

Vague Knowledge Bases for Matchmaking in P2P E-Marketplaces 427

agent advertisement, and matchmaking engine was developed [19], which carries out
the process on five possible match levels. The approach in [19] was later extended
in [15], where two new levels for matching classification were introduced. A simi-
lar classification was proposed — in the same venue — in [8], along with properties
that a matchmaker should have in a DL based framework, and algorithms to classify
and semantically rank matches within classes. An initial DL-based approach, adopting
penalty functions ranking, has been proposed in [4], in the framework of dating sys-
tems. An extended matchmaking approach, with negotiable and strict constraints in a
DL framework has been proposed in [7], using both concept contraction and concept
abduction. The need to work in someway with approximation and ranking in DL-based
approaches to matchmaking has also recently led to adopting fuzzy-DLs, as in sMART
[1] or hybrid approaches, as in the OWLS-MX matchmaker [13]. sMART is a semantic
matchmaking portal, based on fuzzy-DLs, able to deal with approximation in the re-
quests description handled by crisp DL-reasoners. Nevertheless in such approaches the
matchmaking process is defined according to buyer’s perspective. In [16] a language
able to express conditional preferences is proposed to perform a matchmaking in De-
scription Logics. Also in this case nothing is said on how to compute a agreement —
as needed in P2P scenarios. Furthermore, the notion of fuzzy/vague requirements is not
addressed.

8 Conclusion

In this work we propose a semantic matchmaking approach that mixes various knowl-
edge representation technologies to find the most promising agreements in a P2P e-
marketplace. In particular, by exploiting ontologies in DLR-Lite and fuzzy rules we
are able to model both hard constraints and soft constraints, while taking into account
both buyer’s and seller’s preferences and utilities to find matches mutually beneficial
for them both. The information needed for the P2P matchmaking process are modeled
as a vague knowledge base, taking into account domain knowledge, while keeping the
approach effective and scalable. A prototype is currently being implemented to further
validate the approach through large scale experiments.

References

1. S. Agarwal and S. Lamparter. smart - a semantic matchmaking portal for electronic markets.
In Proc. of 7th Int.IEEE Conference on E-Commerce Technology, 2005.

2. Y. Arens, C. A. Knoblock, and W. Shen. Query Reformulation for Dynamic Information
Integration. 6:99–130, 1996.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, 2003.

4. A. Calı̀, D. Calvanese, S. Colucci, T. Di Noia, and F. M. Donini. A description logic based
approach for matching user profiles. In Proc. of DL’04, volume 104 of CEUR Workshop
Proceedings, 2004.

5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable
description logics for ontologies. In Proc. of AAAI’05), 2005.

428 A. Ragone et al.

6. S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer Verlag,
1990.

7. S. Colucci, T. Di Noia, E. Di Sciascio, F. Donini, and M. Mongiello. Concept Abduction
and Contraction for Semantic-based Discovery of Matches and Negotiation Spaces in an
E-Marketplace. Electronic Commerce Research and Applications, 4(4):345–361, 2005.

8. T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello. A system for principled match-
making in an electronic marketplace. International Journal of Electronic Commerce, 8(4):9–
37, 2004.

9. Y. Gil and S. Ramachandran. PHOSPHORUS: a Task based Agent Matchmaker. In Proc.
International Conference on Autonomous Agents ’01, pages 110–111. ACM, 2001.

10. J. Gonzales-Castillo, D. Trastour, and C. Bartolini. Description Logics for Matchmaking of
Services. In Proc. of ADL-2001, volume 44. CEUR Workshop Proceedings, 2001.

11. B. Hafenrichter and W. Kießling. Optimization of relational preference queries. In In Proc.
of ADC’05, pages 175–184, Newcastle, Australia, Jan. 2005.

12. R. L. Keeney and H. Raiffa. Decisions with multiple objectives - preferences and value
trade-offs. Cambridge University Press, 1993.

13. M. Klusch, B. Fries, M. Khalid, and K. Sycara. Owls-mx: Hybrid owl-s service matchmak-
ing. In Proc. of 1st Int. AAAI Fall Symposium on Agents and the Semantic Web, 2005.

14. C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. RankSQL: query algebra and optimization
for relational top-k queries. In Proc. of SIGMOD-05, pages 131–142, New York, NY, USA,
2005. ACM Press.

15. L. Li and I. Horrocks. A Software Framework for Matchmaking Based on Semantic Web
Technology. In Proc. of WWW ’03, 2003.

16. T. Lukasiewicz and J. Schellhase. Variable-strength conditional preferences for matchmaking
in description logics. In Proc. of KR 2006, 2006.

17. A. Motro. VAGUE: A User Interface to Relational Databases that Permits Vague Queries.
ACM Trans. Office Inf. Syst., 6(3):187–214, 1988.

18. J. F. Nash. The bargaining problem. Econometrica, 18 (2):155–162, 1950.
19. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Services

Capabilities. In Proc. of ISWC’02. 2002.
20. J. Pomerol and S. Barba-Romero. Multicriterion Decision Making in Management. Kluwer

Series in Operation Research. Kluwer Academic, 2000.
21. R. Raman, M. Livny, and M. Solomon. Matchmaking: distributed resource management for

high throughput computing. In Proc. of IEEE High Performance Distributed Computing
Conf., 1998.

22. U. Straccia. Towards top-k query answering in deductive databases. In Proc. of SMC-06,
pages 4873–4879. IEEE, 2006.

23. U. Straccia. Towards top-k query answering in description logics: the case of DL-Lite. In
Proc. of JELIA-06, 2006.

24. K. Sycara, M. Paolucci, M. Van Velsen, and J. Giampapa. The RETSINA MAS infrastruc-
ture. Autonomous agents and multi-agent systems, 7:29–48, 2003.

25. D. Veit, J. Muller, M. Schneider, and B. Fiehn. Matchmaking for Autonomous Agents in
Electronic Marketplaces. In Proc. International Conference on Autonomous Agents ’01,
pages 65–66. ACM, 2001.

26. L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 429–442, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Symbol Grounding for the Semantic Web

Anne M. Cregan1,2

1 National ICT Australia (NICTA)
2 CSE, University of New South Wales, Australia

Anne.Cregan@nicta.com.au

Abstract. A true semantic web of data requires dynamic, real-time interopera-
bility between disparate data sources, developed by different organizations in
different ways, each for their own specific purposes. Ontology languages
provide a means to relate data items to each other in logically well-defined
ways, producing complex logical structures with an underlying formal
semantics. Whilst these structures have a logical formal semantics, they lack a
pragmatic semantics linking them in a systematic and unambiguous way to the
real world entities they represent. Thus they are intricate "castles in the air",
which may certainly have pathways built to link them together, but lack the
solid foundations required for robust real-time dynamic interoperability
between structures not mapped to each other in the design stage. Current
ontology interoperability strategies lack such a meaning-based arbitrator, and
depend instead on human mediation or heuristic approaches. This paper
introduces the symbol grounding problem, explains its relevance for the
Semantic Web, illustrates how inappropriate correspondence between symbol
and referent can result in logically valid but meaningless inferences, examines
some of the shortcomings of the current approach in dealing effectively at the
level of meaning, and concludes with some ideas for identifying effective
grounding strategies.

Keywords: Ontology Alignment, Semantic Interoperability, Semantic Web,
Symbol Grounding.

1 Introduction

The purpose of the World Wide Web is to share and leverage information. But
information is only ultimately useful if it produces some result in the real world,
either in the physical environment, or in someone’s state of understanding. Raw
unprocessed data is not very helpful in this regard, as it requires significant human
effort, and the application of implicit human knowledge to understand it and process
it appropriately to produce tangible benefits. It is generally agreed that machines
should be doing more of the work of turning data into knowledge in a way that
supports the production of results for human benefit. The purpose of the Semantic
Web is to address this; its stated objective being to make information more easily
shared and applied, by making its meaning explicit [1]. The implicit assumption is
that once meaning is represented explicitly, machines will be able to align and process
data according to its meaning, thus turning it into knowledge, and supporting web
services and intelligent agents to produce real-world results on our behalf.

430 A.M. Cregan

However, this implicit assumption has not yet been thoroughly investigated. To
date, information processing has been based on a symbolic processing paradigm, and
to process information at a semantic level requires a fundamental paradigm shift.
New methodologies, processes, and criteria for judging success are needed. Many of
the techniques for aligning or reconciling meaning are already known from
programming, but not at a mature level where meaning is made explicit and machine
processing does the rest: it requires a human being to analyze the meaning and devise
and implement appropriate code to do the necessary transformations.

How are we to start making inroads into this new semantic territory? As an initial
step, taking a good look at the really hard questions should help focus the effort, and
provide foundations for this new information processing paradigm.

These hard questions include but are not limited to the following:

1. What is meaning?
2. WhaZt do we need to do to make meaning explicit?
3. What is the appropriate way to process meaning?
4. How can we judge whether we have been successful in representing and

processing meaning at a semantic level?
5. Will the current Semantic Web approach, based on the Web Ontology Language

OWL [10], produce the right kind of representations, and support the right kinds
of processes, to achieve the results being sought, or is a key component of the
solution missing?

Spanning from the very philosophical to the very practical is necessary because the
issue of meaning is a fundamental philosophical issue, whilst the goals of the
Semantic Web are very practical. By their very nature as a “specification of a
conceptualization” [3], creating ontologies involves bridging between the realm of IT/
Engineering, and the realm of Cognitive Science/Philosophy. It is hoped that such as
investigation can uncover the foundations for such a bridge, providing a basis not
only for the Semantic Web but for the Pragmatic Web it will ultimately support.

Organization
The paper is organized as follows:

− Section 1 introduces the challenge being undertaken
− Section 2 relates meaning to both entailment and designation, looks at symbolize-

tion and introduces the symbol grounding problem
− Section 3 explains why symbol grounding is relevant for the Semantic Web in its

aim to achieve dynamic real time interoperability, and extensional approaches and
URIs are not sufficient in themselves to provide adequate symbol grounding.

− Section 4 considers next steps in identifying suitable symbol grounding strategies
for the Semantic Web and concludes.

2 Meaning and Symbol Grounding

What is meaning? The greatest philosophers and thinkers have considered this
question for the last several thousand years, but as yet there seems to be no definitive

 Symbol Grounding for the Semantic Web 431

answer. What are the implications for the Semantic Web, which is being built around
the keystone of making meaning explicit and machine-processable? Is it ever really
going to get off the ground, or perhaps do so initially but quickly collapse under its
own weight for lack of good foundations? It seems somewhat foolhardy to attempt to
devise explicit well-defined procedures for operating at the level of meaning, without
attempting to lay good foundations by stating what meaning is taken to be.

Whilst a conclusive answer to the question is unlikely (isn’t that what makes a
good philosophical question after all?) and Semantic Web researchers are, generally
speaking, practical people who want results in reasonable timeframes and certainly
don’t want to get bogged down in the vagaries of philosophy, I believe that as part of
the construction of Semantic Web technologies, for purely practical reasons, there
should be some attempt to state what we take meaning to be for the purposes of the
Semantic Web.

A clear conception of meaning for the purposes of the Semantic Web should, at the
very least, assist researchers in devising appropriate and precise procedures and
methods for making meaning explicit, which then has the flow-on effect of supporting
practitioners to build appropriate semantic models representing their respective
domains, and will make such models better suited for interoperability. It also
provides a theoretical basis for semantically processing the information captured by
such models.

Whilst many modeling errors have been identified and are well understood e.g. [8],
there is still quite a spectrum of “correct” models available for modeling any given
domain. The ontology builder has considerable discretion in make design choices.
Are some of the resulting models better than others? Intuitively the answer is yes,
and depends on the intended function of the ontology. However, we are still seeking
a more precise understanding of the nature of this dependence, and at the moment
there is no one clear guiding methodology for building domain models. Whilst there
are obviously several factors at play, the model’s effectiveness in making meaning
explicit should certainly be considered a key criterion.

Beyond this, an analysis of meaning also offers insights into the overall Semantic
Web approach and whether it will ultimately be able to deliver on its promises.
Capturing meaning is clearly a fundamental component, but are the current suite of
Semantic Web standards and technologies adequate to the task of capturing machine-
processable meaning to produce the outcomes being sought, or will they ultimately fall
short? If we want to ultimately build a “Pragmatic Web”, that delivers tangible real-
world benefits, we need to make sure the foundations are firm enough to support this.

2.1 What Is Meaning?

Without getting too bogged down in philosophy, let’s take a practical approach to
home in on what meaning is, by identifying what it is that we really want when we
ask the meaning of something. In everyday life, we generally don’t ask the meaning
of concrete things like a chair, or a train, or a person, or a pet. Such things have no
meaning: they just are. We ask the meaning of actions and events, policies and such
like, in which case we are generally trying to identify the relevant entailments, or we
ask the meaning of symbols, in which case we want to know what they designate, or
stand for. When we ask about meaning, we are usually asking for one of two things:
either for entailment, or for designation.

432 A.M. Cregan

2.2 Entailment and Designation

Entailment: What are the logical consequences of some action, event or state?
Examples:

− If I take this promotion does it mean I will be able to afford the house?
− If Serena wins this point, does that mean she wins the match?
− If my business is registered as a public company, does that mean we are required

to have annual audits conducted?

Designation: What is being referred to? What does the symbol symbolize?
Examples:

− What’s the meaning of “verisimility”?
− What does that sign mean?
− What do you mean by giving me that wink?
− What does the green line on the graph mean?

Designation gives the referent being represented by some kind of symbol: a word, a
street sign, a gesture, a line on a graph. It uses symbols to point to something; a
convenience originating from the need to identify and communicate something that
does not have a local physical existence, is abstract, or is an internal state and not
directly accessible. Designation is the back end of symbolization: it establishes the
referent, or what the symbols symbolize.

Symbolization
Note that there are (at least) two related senses of symbolization. In the first sense, a
recognizable concrete thing is used to stand for a more abstract intangible thing e.g. a
dove is used to symbolize peace. It is usually chosen as a symbol because it has some
kind of real-world historical or mythological relationship with the abstract thing, or
evokes it through some other kind mental or perceptual association, or it can simply
be a matter of convention. In this sense, a non-verbal meaning relation is pre-
established and the symbolization makes use of it to evoke the intended referent. This
should not be confused with symbolization as used in this setting, which is being
referred to as “designation” for the purposes of clarity within this paper.

In our setting, symbolization refers to the scenario where a mark, character, sound,
avatar or some such arbitrary thing is used to designate some physical or conceptual
thing. In this case, the symbol is an arbitrary physical token, designed by humans
specifically for the purpose of representation, and does not usually have a meaning in
and of itself (Although in the case of avatars, some recognizable topographical
resemblance may exist, and thus their form may be argued not to be completely
arbitrary). In this kind of symbolization (designation), the essential question is how
the relationship between an arbitrary symbol and its intended referent is to be
established. This question has been identified in Artificial Intelligence Research as the
“Symbol Grounding Problem”.

 Symbol Grounding for the Semantic Web 433

2.3 Denotation and Connotation

Designation itself has two aspects: denotation and connotation, a distinction
introduced by J.S. Mill [5]. To illustrate by example, the denotation of a term such as
‘woman’ refers to all the individuals to which may correctly be applied, whilst the
connotation consists of the attributes by which the term is defined e.g. being human,
adult and female. Connotation determines denotation, and in J.S. Mill, is taken to be
meaning, whereas terms like proper names e.g. ‘Mary’, which have denotation if there
is someone so called, are taken to lack meaning as they have no connotation, as no
attributes define ‘Mary’.

2.4 Relevance to the Semantic Web

Both entailment and designation have relevance for the Semantic Web: entailment
relating to what can be concluded from what is already known, and designation
relates to establishing the connection between symbols in a formal system and what
they represent. There is already a very significant body of work around entailment for
the Semantic Web [10], based on description logics providing an underlying formal
semantics for the various flavours of OWL.

However, designation has had less attention to date. OWL’s formal semantics
have a set-theoretic basis, where a set (‘concept’ or ‘class’ in DLs) is essentially
defined by its extension - clearly a denotational approach. However, meaning based
on denotation is less than adequate for the needs of the Semantic Web, as will be
explained below. The consequence is that the entailment parts of the Semantic Web
have no theoretical basis for anchoring to anything in the real world, and are thus
floating castles in the air.

To explain: an OWL ontology is made up of a set of logical axioms, themselves
composed of primitive objects, predicates and operators, combined via formation
rules into well-formed formulae. Unless some kind of faithful and appropriate
correspondence is established between the primitives and whatever they are intended
to represent outside the formal logical system, any entailment produced by the system
will not result in reliable conclusions that correspond to the actual state of affairs in
the real-world domain of interest. Establishing a correspondence between the
primitives (which are effectively just symbols or symbol strings once they are inside
the logical system), and the domain is an extra-logical consideration. The question of
how the relationship between the symbol and the referent is to be established has been
identified in Artificial Intelligence Research as the “Symbol Grounding Problem”.

2.5 The Symbol Grounding Problem

The Symbol Grounding Problem, as described, for instance, by Harnad [4] relates to
the inadequacy of defining symbols using only other symbols, as is commonly done
in a dictionary or a formal logical system. In his exposition, Harnad takes Searle’s
[9] famous Chinese Room scenario, originally used by Searle to illustrate the
difference between mechanical symbol manipulation, which merely simulates mind,
and a true understanding of intrinsic meaning, which necessarily involves processing
at the semantic level.

434 A.M. Cregan

The scenario involves a machine hidden inside a room, which is given a set of
Chinese language inputs and produces a set of Chinese language outputs. Searle
points out that a machine using only symbolic manipulation to match a list of pre-
defined inputs with a list of pre-defined outputs may be capable of simulating
conversation with a Chinese speaker well enough to pass the Turing test. However,
Searle argues, such a machine cannot be said to understand Chinese in any sense, any
more than a human who uses such a list to produce statements in Chinese can be said
to understand Chinese. Searle ultimately concludes that meaning is in the head, not in
the symbols, and furthermore that cognition cannot be just symbol manipulation, as it
clearly requires some activity to take place at the semantic level.

Harnad puts an alternate spin on Searle’s Chinese Room scenario, asking the
reader to imagine having to learn Chinese as a second language, where the only
source of information available is a Chinese/Chinese dictionary. He observes that
“The trip through the dictionary would amount to a merry-go-round, passing
endlessly from one meaningless symbol or symbol-string (the definientes) to another
(the definienda), never coming to a halt on what anything meant.” He then presents a
second variant, where one has to learn Chinese as a first language, and again the only
source of information available is a Chinese/Chinese dictionary. He argues that if the
first variant is difficult, then the second must be impossible, relating it to the task
faced by a purely symbolic model of the mind, and asking “How can you ever get off
the symbol/symbol merry-go-round? How is symbol meaning to be grounded in
something other than just more meaningless symbols? This is the symbol grounding
problem.”

 How indeed, are we to get off the Symbol/Symbol merry-go-round? Firstly
though, let us consider in detail how the symbol grounding problem is relevant for the
Semantic Web.

3 Why the Semantic Web Needs Symbol Grounding

The ultimate vision of the Semantic Web is a web of data connected by meaning
which is machine processable. The idea is to get meaning out of the technologists and
domain expert’s heads, and into some explicit, machine processable representation
which defines how to link it up appropriately, in real-time, without reference to
human mediators. But the current Semantic Web building blocks are a long way from
achieving this vision. Let’s take a look at why this is.

In building an ontology, the designer chooses terms for classes, instances and
properties, and builds axioms/structure linking them. The terms are usually chosen
for their meaning in some natural or domain-specific language. Additional
annotations may explain the meaning of the term, using more natural and/or domain
specific language. But natural language is notoriously ambiguous and slippery. Its
symbols/semantic units are imperfectly grounded, as we will explain in the following
section. And whilst domain specific-terminology may be unambiguous within the
domain, it is not necessarily unambiguous when linking across domains.

 Symbol Grounding for the Semantic Web 435

If the basic terms used for ontologies are ambiguous, then having a well-defined
structure that supports entailment is of dubious benefit. The structure by itself is not
the meaning: as discussed, meaning requires both logical structure for the purposes of
entailment, and grounding for the purpose of establishing correspondence between the
domain and the logical structure. Only then can entailments made by virtue of the
logical structure be guaranteed to be an accurate reflection of the real-world state.
Garbage in, garbage out, as the old saying goes.

3.1 Meaningfulness

As an example of this principle, there is a considerable body of work e.g. [6] in
Mathematical Psychology around determining which kinds of variables can be
subjected to which kinds of mathematical operations, in order to produce only
meaningful results and avoid meaningless conclusions. Considerable effort has gone
into investigating “meaningfulness” to avoid the inappropriate use of statistics. In a
classic example, the school football team are assigned numbers to wear on their
football jerseys. This numerical assignment is simply to give each football player a
unique label for the purpose of identification. However, this assignment does not
support taking the average of those numbers, and asserting that this average reflects
some meaningful property of the football team. This is because the numbers have no
numerical properties attached to them - they are just labels, and could equally well be
any other arbitrary symbol (letters of the alphabet, pictures of animals) - the only
important factor is that each player is designated by a unique symbol. The underlying
variable being represented (identity) is not a quantitative variable, so any
mathematical inferences derived from the football jersey numbers are simply
meaningless. This is not the case for a quantitative variable like the heights of the
football players, where it is perfectly appropriate to represent heights as real numbers
and calculate average and standard deviations in the height of this population.

Note that the “meaningfulness” criteria is not necessary because of any problem to
do with numbers themselves, or with mathematical reasoning. The problem is that the
real-world dimension being represented does not have the same properties as the
chosen representation. The representation is richer and more structured than what is
being represented, and thus permits reasoning and inferences which have no
correspondence with the real-world. Inferences which are perfectly valid inside the
representation symbol are thus meaningless when we attempt to map them back to the
domain of reference. As a formal logical system without appropriate grounding
strategies to connect it to the real-world, the Semantic Web faces a similar problem.

3.2 Semantic Interoperability Problems

Pollock and Hodgson’s analysis of types of semantic conflicts [7] identified eleven
kinds of semantic level clashes: DataType, Labeling, Aggregation, Generalization,
Value Representation, Impedance Mismatch, Naming, Scaling & Unit, Confounding,
Domain, and Integrity. This analysis has been adapted and re-organized to fit the
Semantic Web and the focus of the current investigation.

436 A.M. Cregan

Semantic
Conflict:

Manifests As: Example:

Terminology The same term is used to
mean different things
(homonyms) or
different terms are used to
mean the same thing
(synonyms).

- “mouse” as a hardware
peripheral vs a rodent

- “Holiday” vs “Vacation” :
different terms, same meaning

Representation:
Instance Level

The same information is
being referred to at the
meaning level but is being
represented differently.

- Fahrenheit vs Celsius
temperature scales.

Representation:
Concept Level

Concepts have been
abstracted differently

- StartTime and Duration vs
 StartTime and EndTime

Representation:
Structural Level

Different choices about the
division of the domain into
instances, classes and
properties, and/or different
choice of axioms

- Modeling a Person’s
educational institution as an
ObjectProperty connected to a
Class, or as a DataProperty
connected to string values.

Representation:
Superstructure
Level

Different modeling constructs
or paradigms used, based
on fundamentally different
representation
methodologies.

- Relational DB vs Object-
Oriented (Impedance Mismatch)
- Entity-Relationship model vs first
order logic model

Granularity

The same information is
represented at different
levels of granularity.

- Daily Sales vs Monthly Sales
- Temperature information: 39.3
degrees Celsius vs “hot”

Semantic
Conflict:

Manifests As: Example:

Perspective/
Context

The information may be from
the point of view of a
particular part of the supply
chain, a particular business
process or application and
does not apply universally.

- Whilst related, “Cost” from a
supplier’s point of view is the cost
of production, whilst to the
consumer it is the cost of
purchasing the finished product.

Underlying
conceptualization

The information may be
based on a different kind of
conceptualization, theory or
ideology

- Linnaeism vs Cladism: different
criteria for classification of
classes of animals
- A commonsense classification vs
a technical one (eg tomato as a
vegetable vs a fruit)

Origin

Whilst the information is
ostensibly the same, the
purpose the data was
collected for, or the way it
was collected is different,
creating bias.

- Information about income
collected for tax purposes vs
collected in a credit application.

 Symbol Grounding for the Semantic Web 437

As semantic conflicts, every one of these problems requires reference to the
meaning level of the information for its resolution. The following table looks at the
resolution method for each class of semantic conflict and indicates how Symbol
Grounding and Meaning is relevant in each case.

Semantic
Conflict:

Resolution Method:

How Symbol Grounding /
Meaning is relevant:

Terminology Merge or align the two if the
two terms have the same
meaning
Separate or treat separately
if the two terms have distinct
meanings.

Joining or separating based on
meaning is determined by the
identity or divergence of the
real-world entity the terminology
designates ie what the symbol is
symbolizing.

Representation Transformation of content or
structure, or mapping
relations based on meaning

Need to determine real-world
relationships between entities
being represented to identify
equivalences if any and
determine which transformations
would be valid.

Granularity

Identify how the two fit
together and create some
transformation and/or
mapping of values if
possible

Need to know what the
underlying real-world dimension
is? What is the base/lowest
level of granularity? If
aggregated, from what base and
by what criteria?

Semantic
Conflict:

Resolution Method:

How Symbol Grounding /
Meaning is relevant:

Perspective/
Context

Make perspective explicit
and align into a
superstructure

Meaning is relative to
perspective and context but how
does this affect it? How do we
specify the context and how it
affects the meaning?

Underlying
conceptualization

Make underlying assumptions
explicit and align into
superstructure that states
these explicitly

What are the underlying
assumptions and methodology?
How do we represent these?

Origin

Make underlying assumptions
explicit and align into
superstructure that states
these explicitly

What is the source and how does
it affect the data?
How do we represent this and
adjust for it?

3.3 Current Support for Semantic Interoperability Conflict Resolution

As the analysis of the previous section shows, symbol grounding and meaning is at
the heart of these interoperability problems. Resolving these kinds of problems are
common occurrences in mapping and aligning ontologies as they exist today. Whilst

438 A.M. Cregan

tools and heuristics are available to humans to assist the process, it is a problem
essentially being addressed by human beings, rather than machines. Somehow, the
underlying meaning needed to resolve these interoperability problems is not being
explicitly represented in the Semantic Web, and/or there are not sufficient tools and
techniques available for resolving it through automated processing. The remainder of
this section makes an initial pass at identifying where the shortcomings are, starting
with specifics of the OWL language and broadening out from there.

Mapping Constructs Provided by OWL

OWL provides only very limited constructs for mapping ontologies, and essentially
none for transformations. The OWL language has four constructs specifically for use
in mapping ontologies for the purposes of merging. These constructs are intended for
use when two or more ontologies have been built independently of each other and
later need to be merged or linked, i.e. they are being mapped after the initial design
phase has taken place. They are:

owl:equivalentClass

asserts that two or more classes have exactly the
same instances

owl:equivalentProperty

asserts that two or more properties are equivalent

owl:SameIndividual

asserts that two or more individuals are identical

owl:DifferentIndividuals asserts that two or more individuals are identical

Whilst these constructs provide the means to specify that two or more classes,
properties or individuals are equivalent / identical, or that two or more individuals are
different, they are only useful once the equivalence, identity or difference is
determined. This determination is outside of OWL, and the Semantic Web
technologies do not provide any formal basis for a machine to determine this without
human guidance (albeit supported by tools and heuristics). The use of class
extensions and URIs is insufficient, as explained below.

Extensive vs Intensive Class Definitions
Some may argue that if two classes contain the same set of individuals, they must be
the same, and machine processing can determine this. However, having the same
extension does not necessarily prove that two classes are the same: they may happen
to contain the same individuals, but have different intensive meanings: that is, the
criteria for membership of the class is different. Philosophically, this is the denotation
vs connotation distinction.

For example, the extension of the members of the school basketball team in a
Sports Ontology and the extension of the school’s Grade A students in an Academic
Ontology may conceivably, at some point in time, consist of exactly the same set of
individuals, and machine processing may determine on the basis of these equal
extensions that the two classes must be equivalent, and map them using
owl:equivalentClass.

 Symbol Grounding for the Semantic Web 439

The possible ramifications of such an ill-advised mapping are obvious: if a student
drops his grade, he will find he is no longer classified as a member of the basketball
team. If she drops out of the basketball team, she will no longer be classified as a
Grade A student. If a new student is added to the class of Grade A students, he will
find himself automatically in the basketball team. A new member of the basketball
team will find she is automatically classified as a Grade A student.

Clearly, the extensive approach to class definition and mapping is inadequate,
especially when changes in the variables used for classification occur, or new,
unclassified instances are encountered, simply because the classification criteria are
not adequately captured. A complete specification of meaning needs to support a
decision procedure which determines whether a previously unseen instance qualifies
for membership of the class or not, by making the membership criteria explicit. We
also note that it is the nature of some classes to have fuzzy boundaries [2] (e.g. the
colour red), and support may be needed for graded class membership in such cases.

Representing Mappable Differences/Transformations
OWL also lacks the means to specify semantic differences and the transformations
needed in a way that support interoperability. Programming code can get around this,
but has to be written for each specific situation, straying from the Semantic Web ideal
of explicit representation enabling automated processing at the meaning level.

As a simple example, a temperature in Fahrenheit and a temperature in Celsius can
easily be converted either way via a simple arithmetic equation. The underlying
measurement scales are interoperable, but there is no support for representing such a
relationship within an ontology. Assuming that both ontologies map temperature as a
DataProperty to a real number value, the numerical values of the respective properties
differ, but have a well-defined arithmetic conversion. However, OWL provides no
mechanism for specifying the scale, the properties of the scale or for doing such a
transformation. Meaning that is available to the designers, and could be made explicit
in building the respective ontologies, subsequently supporting interoperability via
machine processing, is currently not able to be represented within the ontology.

Independent and Dependent Ontologies
The mapping constructs in OWL for mapping independently designed ontologies
were considered above. However, because OWL ontologies are built from URIs, the
components can reside anywhere. The principle of composability in OWL means that
when an ontology is being built or revised, the designer can freely use any constructs
from any other available ontology. This results in one ontology having logical
dependence on another. Interoperability is an issue for both dependent and
independent ontologies, and some of the broader interoperability concerns are
addressed below.

Dependent Ontologies: If a base ontology changes, other dependent ontologies are
affected. This is potentially much more serious than just a “broken link” because it
can potentially change the inferences made. In the World Wide Web, broken links
and web page changes are not critical, they are simply a dead-end and one can always
look for information elsewhere. However, when an external URI is an essential part of

440 A.M. Cregan

a logical structure, a change or deletion can have serious real-world consequences,
such as an incorrect classification as an illegal alien for example.

Independent Ontologies: In the case where two independent ontologies need to be
aligned or mapped and have no common constructs other than the Ontology language
itself, currently the options for resolution are either heuristic approaches with varying
success rates, or the human designers of the respective ontologies can communicate
with each other or check other sources to establish the meanings of terms devise an
appropriate mapping. The problem here is not only that this mapping problem is
potentially in the order of N2 to achieve interoperability across the semantic web, but
the problem is an N2 human-to-human problem. The resulting reward to effort ratio
causes pause for reflection.

3.4 Why Using URIs Is Not a Sufficient Grounding Strategy

A commonly encountered argument is that Unique Resource Identifiers (URIs) can be
used for any disambiguation needed for the semantic web. This is Sir Tim Berners-
Lee’s own view (conversation with author, November 2006). After all, anything can
have a URI, why not simply use that as a unique identifier? If two concepts,
individuals or properties have the same URI, they must therefore be the same.
Problem solved!

Whilst this approach has its merits, it is not sufficient in itself to resolve all the
kinds of semantic interoperability problems. Granted, it can identify cases where two
ontologies are referring to the same thing, but it cannot identify what that same thing
is that they both refer to, or that either of them are representing or processing it
appropriately based on its meaning. This is because the URI does not have a
grounding mechanism to connect it to anything outside the information system: A
textual description residing at the URI or within the URI itself is natural language and
thus subject to ambiguity and vagueness.

The exception, of course, is when the thing being referred to is, exactly, the
information that resides at the URI. For instance, an identifier for a particular tax law
can be grounded to a URI that contains the exact text of the tax law, and thus there is
no need to go further. But if the URI is intended to reference a real world physical
thing, like a person or a building, or something else outside the information system
itself, it needs a symbol grounding strategy.

A further consideration when considering an information system on the intended
scale of the Semantic Web, is who is going to check that every URI maps to one and
only one real-world referent? No doubt many things will have more than one URI, in
which case we still have the human problem discussed earlier, of determining that the
URIs have the same referent and mapping them, which obviously cannot be resolved
using the URI itself. And on the flip side, there will no doubt be many real-world
things that have no corresponding URI, so the system is incomplete.

4 Next Steps and Conclusions

If Searle is right, cognition cannot be reduced to symbol manipulation. Semantic
processing therefore requires an understanding of cognition in regard to meaning.

 Symbol Grounding for the Semantic Web 441

The next steps underway in this line of research are the investigation of a wide range
of grounded symbol systems, such as Musical Notation, Cartography, Chess Notation,
Circuit Diagrams, Barcodes and even Knitting Patterns. These are being analyzed to
determine the grounding strategies used, and how and why they are effective or
ineffective. The analysis will identify the kinds of grounding strategies available, and
determine appropriate criteria for assessing them, and it is hoped it will provide a
theoretical basis for constructing Symbol Grounding strategies for the Semantic Web
will be identified. Following this, the question of devising appropriate processing and
procedures to produce meaningful results will be addressed.

In conclusion, this paper has put forward some of the hard questions the semantic
Web needs to answer, examined some of the pitfalls that may occur if they are not
addressed, and explained the relevance of the symbol grounding problem for the kinds
of semantic interoperability issues commonly encountered. Some insights from
measurement theory in Mathematical Psychology were briefly covered to illustrate
how inappropriate correspondence between symbol and referent can result in logically
valid but meaningless inference. Some of the shortcomings of the current Semantic
Web technologies in dealing effectively at the level of meaning level were
investigated. The arguments that set extensions and URIs can provide an appropriate
basis for grounding the Semantic Web were considered and found wanting. Finally,
next steps for identifying effective grounding strategies and doing meaning-level
processing were briefly discussed.

Acknowledgments. To my infant nephew, Gaelen Raphael Bonenfant, for providing
a beautiful example of how the grounding process gets started.

Research reported in this paper has been partially financed by NICTA
(http://www.nicta.com.au). NICTA is funded by the Australian Government's
Department of Communications, Information Technology and the Arts, and the
Australian Research Council through Backing Australia's Ability and the ICT Centre
of Excellence program. It is supported by its members the Australian National
University, University of NSW, ACT Government, NSW Government and affiliate
partner University of Sydney.

References

1. Berners-Lee, T., & Fischetti, M. (1999). Weaving the Web. SanFrancisco, Harper.
2. Gärdenfors, P. Conceptual Spaces. (2000) MIT Press, Cambridge MA.
3. Gruber, T. R. (1993) A translation approach to portable ontologies. Knowledge

Acquisition, 5(2), 199-220.
4. Harnad, S. (1990). The Symbol Grounding Problem. Physica D, 42: 335-346.
5. Mill, J.S. (1843) A System of Logic, London.
6. Narens, L.E (2002) All you ever wanted to know about meaningfulness. Volume in the

Scientific Psychology Series, Lawrence Erlbaum Associates, Mahwah, NJ.
7. Pollock, J.T. and Hodgson, R. (2004). Adaptive information: Improving business through

semantic interoperability, grid computing, and enterprise integration. Wiley Series in
Systems Engineering Management, John Wiley & Sons, Inc.

442 A.M. Cregan

8. Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublach, H, Stevens,R., Wang, H.
and Wroe, C (2004). OWL Pizzas: Practical Experience of Teaching OWL-DL: Common
Errors & Common Patterns. EKAW2006 Proceedings, (pp. 63-81). Available at www.co-
ode.org/resources/papers/ekaw2004.pdf

9. Searle, J. (1980). Minds, brains and programs. Behavioral and Brain Sciences, 3: 417-457.
10. Smith, M.K., Welty, C., & McGuinness, D.L (eds) (2004). OWL Web Ontology Language

Guide, W3C Recommendation, 10 February 2004. Available at http://www.w3.org/
TR/2004/REC-owl-guide-20040210/. Latest version available at http://www.w3.org/ TR/
owl-guide/

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 443–457, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Ontology-Driven Semantic Ranking for Natural
Language Disambiguation in the OntoNL Framework

Anastasia Karanastasi and Stavros Christodoulakis

Laboratory of Distributed Multimedia Information Systems / Technical University of Crete
(MUSIC/TUC)University Campus, Kounoupidiana, Chania, Greece

{allegra,stavros}@ced.tuc.gr

Abstract. The measurement of the semantic relatedness has many applications
in natural language processing, and many different measures have been
proposed. Most of these measures use WordNet as their central resource and not
domain ontologies of a particular context. We propose and evaluate a semantic
relatedness measure for OWL domain ontologies that concludes to the semantic
ranking of ontological, grammatically-related structures. This procedure is used
to disambiguate in a particular domain of context and represent in an ontology
query language, natural language expressions. The ontology query language
that we use is the SPARQL. The construction of the queries is automated and
also dependent on the semantic relatedness measurement of ontology concepts.
The methodology has been successfully integrated into the OntoNL
Framework, a natural language interface generator for knowledge repositories.
The experimentations show a good performance in a number of OWL
ontologies.

Keywords: natural language interfaces, ontologies, semantic relatedness, query
representation.

1 Introduction

The need to determine semantic relatedness between two lexically expressed concepts
is a problem that concerns natural language processing. Measures of relatedness or
distance are used in applications of natural language processing as word sense
disambiguation, determining the structure of texts, information extraction and
retrieval and automatic indexing.

It is also well known that a problem with the natural language interfaces to
information repositories is the ambiguities of the requests, which may lead to lengthy
clarification dialogues. Due to the complexity of natural language, reliable natural
language understanding is an unaccomplished goal in spite of years of work in fields
like Artificial Intelligence, Computational Linguistics and other. The natural language
understanding could be approached by applying methods for consulting knowledge
sources such as domain ontologies. Ontologies are usually expressed in a formal
knowledge representation language so that detailed, accurate, consistent, sound, and
meaningful distinctions can be made among the classes (general concepts), properties
(those concepts may have), and the relations that exist among these concepts. A

444 A. Karanastasi and S. Christodoulakis

module dealing with ontologies can perform automated reasoning using the
ontologies, and thus provide advanced services to intelligent applications such as:
conceptual/semantic search and retrieval, software agents, decision support, speech
and natural language understanding and knowledge management.

Knowing the context in which an ambiguity occurs is crucial for resolving it. This
observation leads us to try to exploit domain ontologies that describe the domain of
use of the natural language interface. The methodology that we have developed is
reusable, domain independent and works with input only from the OWL ontology that
was used as a reference schema for constructing a knowledge repository.

This methodology is integrated in the OntoNL Framework [3], a natural language
interface generator to knowledge repositories. In comparison with natural language
interfaces that focus either on developing methodologies only for syntactic analysis or
for a specific application, the OntoNL Framework is able to address uniformly a
range of problems in sentence analysis each of which traditionally had required a
separate computational mechanism. In particular a single architecture handles both
syntactic and semantic ambiguities, handles ambiguity at both a general and a domain
specific environment and uses semantic relatedness measures on the concepts of the
ontology to provide better ranked results. The communication is done through APIs.
Note that different domain ontologies may be just imported in the system, provided
that they are expressed in the same knowledge representation language (OWL). The
Framework is therefore reusable with different domain ontologies.

We examine how consulting domain ontologies can help to do semantic language
processing and disambiguation, not just syntactic. To this end, we have developed and
evaluated a semantic relatedness measure for domain ontologies that concludes to
semantic ranking. The semantic ranking is a methodology for ranking related
concepts based on their commonality, related senses, conceptual distance, specificity
and semantic relations. This procedure concludes to the natural language
representation for information retrieval using an ontology query language, the
SPARQL. The SPARQL queries are ranked based on the semantic relatedness
measure value that is also used for the automatic construction of the queries.

An application of the OntoNL Framework that addresses a semantic multimedia
repository with digital audiovisual content of soccer events and metadata concerning
soccer in general, has been developed and demonstrated in the 2nd and 3rd Annual
Review of the DELOS II EU Network of Excellence (IST 507618)
(http://www.delos.info/).

2 Related Work

The known methodologies for measuring semantic relatedness are based on lexical
resources or WordNet [2] and other semantic networks or computing taxonomic path
length. All approaches that we are aware of measuring semantic relatedness that use a
lexical resource construe the resource, in one way or another, as a network or directed
graph, and then base the measure of relatedness on properties of paths in this graph
[4], [5].

Most of the methods use the WordNet [1], a broad coverage lexical network of
English words, as a semantic network. Nouns, verbs, adjectives, and adverbs are

 Ontology-Driven Semantic Ranking for Natural Language Disambiguation 445

organized into synonym sets (synsets), each representing one underlying lexical
concept, that are interlinked with a variety of relations. A simple way to compute
semantic relatedness in a taxonomy such as WordNet is to view it as a graph and
identify relatedness with path length between the concepts [9]. This approach was
followed in other networks also, like the MeSH (Medical Subject Headings)
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=mesh), a semantic hierarchy of
terms used for indexing articles in the bibliographic retrieval system MEDLINE, by
Rada et al., [7], [8]. The principal assumption of Rada and colleagues was that “the
number of edges between two terms in the MeSH hierarchy is a measure of
conceptual distance between the terms”.

Despite its apparent simplicity, a widely acknowledged problem with the edge-
counting approach is that it typically “relies on the notion that links in the taxonomy
represent uniform distances”, which is typically not true. Sussna’s approach to scaling
[10], Wu and Palmer’s Conceptual Similarity [11] and Leacock and Chodorow’s
normalized path length [5] are efforts in WordNet to overcome the problem of the
edge-counting approach.

One last approach for measuring semantic relatedness attempts to counter problems
inherent in the structures of a general ontology by incorporating an additional, and
qualitatively different, knowledge source, namely information from a corpus [1], as
was first proposed in [9]. The key idea underlying Resnik’s approach [9] is the
intuition that one criterion of similarity between two concepts is “the extent to which
they share information in common”, which in an IS-A taxonomy can be determined
by inspecting the relative position of the most-specific concept that subsumes them
both. In order to overcome the information loss in Resnik’s method, Lin presented a
universal similarity measure [6]. Noticing that all of the similarity measures known to
him were tied to a particular application, domain, or resource, Lin attempted to define
a measure of similarity that would be both universal (applicable to arbitrary objects
and “not presuming any form of knowledge representation”) and theoretically
justified (“derived from a set of assumptions”, instead of “directly by a formula”, so
that “if the assumptions are deemed reasonable, the similarity measure necessarily
follows”). Lin’s measure also referred to similarities and he took into account only the
commonality and differences of two terms. The objective was to compute the
similarity of ordinal values and words.

All the research results presented in the literature so far [5], [6], [7], [9], [10], [11]
were tested in specific ontologies like the WordNet and the MeSH ontology, they are
not general and have not been tested in different domain ontologies that refer to
different contexts. The WordNet and MeSH ontologies are well formed hierarchies of
terms and the methodologies that have used them examined basically similarity
between terms and not relatedness between concepts.

In a framework like the OntoNL that needs to preserve its generality we could not
rely on a general hierarchy of terms like the WordNet to disambiguate user
expressions or the MeSH ontology a semantic hierarchy of terms used for indexing
articles in the medical domain. We propose a method that can be used for computing
semantic relatedness between concepts that constitute domains of context and are
described by OWL domain ontologies.

446 A. Karanastasi and S. Christodoulakis

The semantic ranking procedure proposed here is designed to clarify sense
ambiguities. The procedure uses information from the ontologies and the specific
clusters of context inside an ontology. Given an OWL ontology, weights are assigned
to links based on certain properties of the ontology, so that they measure the level of
relatedness between concepts. In this way we can identify related concepts in the
ontology that guide the semantic search procedure. The semantic relatedness is used
for the determination of the optimum, most related path that leads from the source
concept-subject part to the target concept-object part of a natural language expression.

An important issue that we also attack is the need of an asymmetric measure, since
all the previous approaches are based on symmetric measures. Asymmetric related-
ness denotes that the relatedness between A and B is not necessarily the same as the
relatedness between B and A. This is an important aspect for natural language
processing since relations that are described with natural language do not indicate
mathematical rules. Also, in a domain ontology we need to take into account the total
of information loss in an IS-A taxonomy between the nodes that we want to test their
similarity or relatedness and their common subsumer (common root node). The
semantic information each concept inherits from the root node may be the same but
its specialization defined by new properties that it carries is not the same for all the
concepts.

All these parameters modulated the proposed semantic relatedness measure
described in Section 4. We also need to point that this measure was developed to help
the natural language disambiguation process when the use of domain ontologies is not
enough to determine the sense words are used in an utterance for a specific domain of
context, as it is described in Section 3.

3 The OntoNL Semantic Disambiguation Algorithm

The purpose of semantic disambiguation in natural language processing, based on a
particular domain is to eliminate the possible senses that can be assigned to a word in
the discourse, and associate a sense which is distinguishable from other meanings
(WordNet gives only generic categories of senses and not domain specific. This
domain specific disambiguation is much more powerful).

In particular, the common types of ambiguity encountered in the OntoNL
Framework are:

1. The natural language expression contains general keywords that can be
resolved by using only the ontology repository (ontological structures and
semantics).

2. One of the subject or object part of the language model cannot be
disambiguated by using the ontology repository.

3. Neither the subject nor the object part contains terms disambiguated using the
ontological structures.

Next, we describe the entire semantic disambiguation algorithm based on the
different levels of ambiguities using a UML Activity Diagram (Fig. 1). It is a general
approach where the disambiguation is based on an OWL repository.

 Ontology-Driven Semantic Ranking for Natural Language Disambiguation 447

Query term extraction and synonyms
from language model

Search and match to
ontological structures

[complete disambiguation of
the OntoNL expression]

[not complete disambiguation of the Object Part]

Enhance the language model
with the domain ontology

information and the rel value

Search for n* most related
concepts to the

subject or object matched to
ontological structure

Assign the semantic
relatedness measurement

value (rel value)

Check for
Operators

[else]

[operator
exists]

[else]

Mark the concept
instances to be of

same concept

Mark the concept instances
to be of a different concept

11

11

Check the ambiguities
of the Object Part

* n specified by the application

[not complete disambiguation of the Subject Part]

Check the ambiguities of
the Subject Part

*

*

* *

[one word
ambiguity]

Fig. 1. The OntoNL Semantic Disambiguation procedure

-object : String

Object

-subject : String

Subject

-dirObject : String

Direct Object

-com plem ent : S tring

Object Com plem ent

1

1..*

-subjectPart : String

Subject Part

-objectPart : S tring
-attribute1

Object Part

1

1..*

-indObject : String

Indirect O bject

-operator : S tring = AND
-ObjectPart : S tring

Conjunctive Object Part

-operator : String = O R
-ObjectPart : S tring

Disjunctive Object Part

-verbPhrase : String

Verb

1
1..*

-subjPart : S tring
-VerbPhraseG roup : String

OntoNL Expressions1

1

-operator : S tring
-VerbPhraseGroup : String

Verb Phrase Group

1 1

-operator : String = AND
-VerbPhraseGroup : String

Conjunctive Verb Phrase Group

-operator : String = O R
-VerbPhraseGroup : S tring

Disjunctive Verb Phrase G roup

10..1

-complem ent : String

Sense

1

-Synonym

1..* 1

-Hyponym

1..*

*
1..*

1

-Hyponym

1..*

1

-Synonym

1..*

*

1..*

-class : String
-dataProp : String
-objProp : S tring
-value : Double

O ntology Structure

1

1

1

1

1

1
1

1
-object2 : String

Object2

1

1

1
1

1
1

1
1

-com plem ent : S tring

Subject Com plem ent

-sim pleSubj : String

Sim ple Subjec

*
1..*

1

1

1
1..*

1
1..*

Fig. 2. The OntoNL Language Model that derives from the syntactic and semantic analysis,
based on the OntoNL Natural Language Expressions

448 A. Karanastasi and S. Christodoulakis

The language model that is referred in the last activity of the semantic
disambiguation procedure of Fig. 1is described by the UML Class Diagram of Fig. 2.
In this model diagram there are classes representing the grammatical relations that are
connected with associations. There are lists of words that constitute the basic sentence
structures, like the subject and the object and there are complements and special cases
of objects that predicate them. The OntoNL Expressions is the general class that
summarizes the cases of possible grammatical dependencies inside an utterance. It
consists of a Subject Part and possibly of a Verb Phrase Group. The classes of the
OntoNL language model are enhanced with the parsed information from the OntoNL
syntactic disambiguation phase described in [3].

The input to the algorithm are instances of the language model, which include
terms extracted from the natural language input, their synonyms, and their tagging
according to the language model constructs. The algorithm searches to see if there is a
correspondence between the naming of the language model instance and the
ontological structures. If there is a complete match, a Relatedness Value measure is
assigned with value 1 to indicate the complete relevance of the sentence with the
specific domain. If the disambiguation is not complete (either in the Subject Part or
the Object Part) the algorithm checks for the number of the terms that show
ambiguity. If there is only one term with an ambiguity then the algorithm checks and
retrieve the output of the OntoNL Ontologies Processor for a number, specified by the
application, of the most related concepts to the concept that comprise the subject or
the object part (if the ambiguity is in the object or the subject part respectively) of the
expression. If in the Object Part are more than one terms with ambiguities the
algorithm checks for operators (or/and). In the existence of an operator the algorithm
considers the terms to be concept instances of the same concept of the domain
ontology. In the absence of an operator the algorithm considers the terms to be
concept instances of a different ontology concept. Then the algorithm searches for a
number, specified by the application, of the most related concepts to the concept that
found a correspondence to the ontological structures and assigns the relatedness
measure, already calculated by the OntoNL Ontologies Processor. The last activity of
the algorithm is to enhance the Ontology Structure class of the OntoNL Language
Model with the corresponding ontology concepts to natural language terms in the
class attribute and with the relatedness measurement value the value attribute.

4 The OntoNL Ontology-Driven Semantic Ranking

When a query cannot be disambiguated completely from the OntoNL Semantic
Disambiguation procedure, OntoNL returns all the possible results ranked according
to a value computed by the system that represents the possibility that the user has
requested them. To compute the ranking of possible results, OntoNL borrows ideas
and develops new ones from the research of Semantic Relatedness of concepts in a
semantic network.

The output of the measurement of the relatedness between concepts of domain
ontologies is a matrix containing a weight of relatedness between any two concepts. It
is crucial to identify more specific domains inside the domain, based on concepts and
relationships of those concepts. Consider an nth row in this matrix and a function Fn(i)

 Ontology-Driven Semantic Ranking for Natural Language Disambiguation 449

which takes the nth row and returns the set of the largest values. Then this function
defines a local association cluster around the concept Cn. The clustering has the effect
of reducing the size of a domain by creating groups of more specific information from
one or more ontologies to search for semantic information.

The relatedness is also a metric that depends on the semantic relations defined by
properties in OWL. Properties can be used to state relationships between individuals
(named ObjectProperties) or from individuals to data values (named
DatatypeProperties). Based on the semantic relations when we detect that a source
concept-class is related via an ObjectProperty with the target concept, the
relatedness value is 1 independently from their commonality or common senses or
conceptual distance.

The algorithm also takes into account the semantic relation of EquivalentClass.
The EquivalentClass of the source class has a similarity (not relatedness) value 1
with the source class in order to also consider the relatedness measurement value of
the equivalent class with the remaining classes of the Ontology.

The commonality depends on the amount of the common information two
concepts share. We cannot use commonality like it was used by Resnik [9] when we
consider domain ontologies other than WordNet because there are no senses to count
the frequency of a word. We can accept partly that the distance from the most specific
common subsumer of the two concepts is a criterion that must be taken into account
but we have also to consider the number of common relations. We do need to keep the
measure asymmetric so it will depend on the reference concept of which the
relatedness to another concept we calculate. The measure that we developed has two
factors: The position of the concepts relatively to the position of their most specific
common subsumer (how far is their common root node) and the relativity of their
properties (OWL ObjectProperties):

To measure the relativity of the properties of any two concepts we first count the
number of the common properties that the two concepts share.

1

12
1

1 2

1
1

(,)

n

i
i

C n

i
i

p
rel c c

p

=

=

=
∑

∑
.

(1)

The value pij represents the fact that concept c1 is related to concept ci. The value
pi12 represents the fact that both concepts c1 and c2 are related to concept ci. This
measure takes into account that concepts share more common properties with other
concepts that relate.

We then count the number of the common properties the two concepts share that
are inverseOf properties:

2

12
1

1 2

12
1

(,)

n

invi
i

C n

i
i

p
rel c c

p

=

=

=
∑

∑
.

(2)

where the 12invip represents the fact that both concepts are inversely related.

450 A. Karanastasi and S. Christodoulakis

The motivation to measure the common inverseOf properties is to release the
relatedness measure from the similarity dimension. If we only counted the common
ObjectProperties then we would assign a great value of relatedness between siblings
(subclasses with common superclass) which are similar but not semantically related as
the OntoNL Framework defines.

The measures relC1 and relC2 are combined with relative weights that show the
relative importance of these two factors (f values):

1 2 2 1 2

1 1
1 2 1 2

1 1

, 0, 1:

(,) () (),

n n

ijk invijk
i i

prop n n

ij ijk
i i

f f f f f

p p
rel c c f f

p p

= =

= =

∀ ≥ > + =

= × + ×
∑ ∑

∑ ∑

.

(3)

The factors f1 and f2 in general depend on the ontologies used, and we assume that
they are experimentally determined for a given ontology. A systematic algorithm for
the quantification of the factors is ongoing.

The conceptual distance measure is based on two factors; the path distance and
the specificity. The specificity of the concepts is based on their position in the
ontology (the leaf nodes are the most specific concepts in the hierarchy). The path
distance counts the edges in the minimal path of edges from a concept to another.
Within one conceptual domain, the relatedness of a concept (C1) to another concept
(C2) is defined by how closely they are related in the hierarchy, i.e., their structural
relations (IS-A relation). In the OntoNL, the IS-A relations are implemented through
the rdfs:subClassOf syntax of OWL. The parameter that differentiates our measure
from the classic measures of distance counting is the change of direction that is
combined with the specificity factor. We claim that when the change of direction
(from superclassing to subclassing) is close to the initial concept-c1 (that is the
subject of the natural language expression) of the pair we test the relatedness; the two
concepts are more related. When the direction of the path changes far from the first
concept then the semantics change quite as well (more specialization). Also we take
into account the place of the concepts in the hierarchy. The terms located higher in the
hierarchy have higher values of relatedness than located terms lower in the hierarchy.

The value of distance can be measured with the following measure

1 2
1 2(,) (0,1]

2
C Cd d

pathDist c c
D

+= ∈
∗

. (4)

where dC1 is the number of edges to go from the concept 1 to the closer common
superconcept (subsumer) and d2 the number of edges to go from the concept 2 to the
closer common superconcept (subsumer). With D we count the maximum depth of the
ontology. The OntoNL disambiguation algorithm uses the relatedness of concepts of
the domain ontologies and not the similarity, so the measure excludes the cases were
dC1 = 0 and dC1 + dC2 = 2. So, the path distance measure becomes

1 2
1 2 1 2 1 21, 1, 2 : (,) (0,1]

2
C C

C C C C

d d
d d d d pathDist c c

D

+∀ ≥ ≥ + > = ∈
∗

. (5)

 Ontology-Driven Semantic Ranking for Natural Language Disambiguation 451

We need a factor to determine the specificity of the concepts inside the ontology.
As we have already stated is the value of dC1 is close to the value of (dC1+dC2)/2 then
the relatedness must be decreased, because the initial concept c1 is specialized a lot in
comparison with the subsumer concept.

 1

1 2

2
log (0,1],

d

d d

×− ∈
+

if 1 2
1 2

d d
d

+<

1
1

Cspecw =

0, if 1 2
1 2

d d
d

+≥

.

(6)

We, also use a method of counting the specialization of the concept – c1 based on
the object properties of the subsumer (root OWL Class), by the factor:

1
1

#
[0,)

#
C S

C
S

ObjP ObjP
spec

ObjP

−= ∈ ∞ . (7)

were ObjPC1 is the number of Object Properties of the concept c1 and ObjPS is the
number of ObjectProperties of the subsumer concept. If the factor becomes 1 or
greater then the specialization is so big that we cannot count the relatedness based on
the specificity. The range of the specC1 is[0,)∞ . To limit the range in [0,1] we need

to restrict the number of ObjectProperties of the concept c1. We normalize the factor
and we subtract it from 1, with the restriction that the number of the ObjectProperties
of the concept – c1 is at most 10 times the number of the ObjectProperties of the
subsumer.

1

1
1

#
10 # : 2 1 log [0,1]

#C

C
C S spec

S

ObjP
ObjP ObjP w

ObjP
∀ ≤ × = − ∈ . (8)

The conceptual distance measure then becomes

1 1 1 2(1 2 1 (,)) / 3CD specC specCrel w w pathDist c c= + + − . (9)

The amount of related senses measure is a measure that concerns the domain
ontology and the WordNet Ontology. From the WordNet Ontology we exploit the
noun glosses. Glosses are descriptions of a word’s sense and it consists of a
descriptive part and an example of use case. From the domain ontologies we exploit
the concept descriptions that are expressed in the <owl:label> and <owl:comment>
constructs. The measure is based on sets of each concept that contain synonyms and
nouns extracted from the descriptive part of the glosses of each concept:

1 2
1 2

1 2 1 2

(,)
| | \RS

S S
rel c c

S S S S

∩
=

∩ +
. (10)

were S1 is the description set of senses for concept C1 and S2 the description set of
senses for concept C2.

452 A. Karanastasi and S. Christodoulakis

The overall relatedness measure is the following:

1 2 3 1 2 3

1 2 1 2 1 2

1, (, ,) 0,

(,), (,), (,) [0,1]:PROP CD RS

w w w w w w

rel c c rel c c rel c c

∀ + + = >
∈

1 2 3OntoNL PROP CD RSrel w rel w rel w rel= × + × + × .

(11)

The three factors 1w , 2w and 3w , can help of choosing which parameter can

better express the semantic relatedness. We test the values of the factors in the
evaluation section.

The measure is applied in all concepts of the ontology in the preprocessing phase
and constructs a NxN matrix, were N is the total number of concepts, with the
relatedness values of each concept with all the other concepts inside the
disambiguation ontology.

5 Representation of Natural Language Interactions

After the syntactic and semantic disambiguation, we have concluded to the subject of
the query, specialized by additional description that forms the object part or possible
object parts of the query. We need a formal way to represent the query, a standardized
query language that will meet the specification of the ontology language (OWL) and
will be easily mapped to various forms of repository constructions. Although we
could in principle use an internal representation of the preprocessed NL interactions,
we opted to use a representation that is near to the languages used in the Semantic
Web, so that when the repository is based on OWL or RDF to be able to directly use it
to access the repository. We choose SPARQL as the query language to represent the
natural language queries since SPARQL is defined in terms of the W3C's RDF data
model and will work for any data source that can be mapped into RDF.

To provide an automatic construction of SPARQL queries we need at any point to
define the path that leads from the subject part to the object part of the natural
language expression by taking into account the constraints that are declared from the
keywords and the relatedness value between the related classes of the ontology. The
path connecting the classes directed from the user expression is given by an algorithm
solving the problem:

Given a connected graph G = (V,E), a weight d:E->R+ and a fixed vertex s in V,
find a optimized path from s to each vertex v in V. The optimized path is determined
by the highest normalized sum value of the weights of the related concepts.

In the OntoNL Framework the edges linking the classes of the ontology graph are
the objectProperties of the OWL syntax and the weight values are specified by the
relatedness measure calculation described earlier in this chapter.

The general algorithm of the OntoNL query representation of domain-ontology
disambiguated natural language expression in SPARQL is shown in Fig. 3:

 Ontology-Driven Semantic Ranking for Natural Language Disambiguation 453

Program String SPARQLRepr (List, List, DoubleList)
 List subjOper, objOper, Values, OptPath;
 Double relVal;
 DoubleList SemRelMeas, ListNLStoOnto, ListNLOtoOnto;
String Query, QueryTemplate, OntoSubjTerm, OntoObjTerm, value, value1,
value2, val1, val2;

Begin
QueryTemplate=" PREFIX ins:<ontology_path> SELECT ?OntoSubjTermIDs WHERE
{?OntoSubjTermIDs rdf:type ?OntoSubjTerm ."
If ListNLOtoOnto.size()=0 && subjOper.size()=0
 OntoSubjTerm = ListNLStoOnto.get(term)
 Query = QueryTemplate + "}";
ElseIf ListNLOtoOnto.size()=0 && subjOper.size()!=0
 For all terms i of ListNLStoOnto
 OntoSubjTerm(i) = ListNLStoOnto.getTerm(i)
 Query = QueryTemplate + "}";
Else
 relVal = ListNLOtoOnto.get(relatedness value)
 value = Values.get(not_Disambiguated_Term)
 If objOper.size()=0 && relVal=1
 OntoObjTerm = ListNLOtoOnto.get(term)
 Query = QueryTemplate +
 "{{?OntoSubjTerm ins:hasObjPropTo ?OntoObjTerm . "
 "?OntoObjTerm ins:hasDataProp "value"}"
 ElseIf objOper.size()=0 && relVal!=1
 OntoObjTerm = ListNLOtoOnto.get(term)
 OptPath = findOptPath(OntoSubjTerm, OntoObjTerm)
 Query = QueryTemplate + "
 For all ObjProperties of OptPath

"{{?OntoSubjTerm ins:OptPath.get(hasObjProp) ?OntoObjTerm . "
 "?OntoObjTerm ins:hasDataProp "value"}"
 Else
 For all terms of OntoObjTerm
 OntoObjTerm = ListNLOtoOnto.get(term)
 If Values.size() = 1
 If relVal=1
 Query = QueryTemplate +
 "{{?OntoSubjTerm ins:hasObjPropTo ?OntoObjTerm1."
 "?OntoObjTerm1 ins:hasDataProp ?val1}UNION"
 "{{?OntoSubjTerm ins:hasObjPropo ?OntoObjTerm2."
 "?OntoObjTerm2 ins:hasDataProp ?val2}"
 "FILTER(?val1 = "value" || ?val2 = "value")"
 Else
 Query = QueryTemplate +
 For all ObjProperties of OptPath
 "{{?OntoSubjTerm ins:Opt.get(hasObjProp) ?First_Rel_Class ."
 "?First_Rel_Class ins:hasDataProp ?val1} UNION"
 "{{?OntoSubjTerm ins: OptPath.get(hasObjProp) ?Sec_Rel_Class."
 "?Sec_Rel_Class ins:hasDataProp ?val2}"
 "FILTER(?val1 = "value" || ?val2 = "value")"
 Else
 For all terms of Values
 If relVal=1
 Query = QueryTemplate +"
 "{{?OntoSubjTerm ins:hasObjPropTo ?First_Rel_Class."
 "?First_Rel_Class ins:hasDataProp "value1"}UNION"
 "{{?OntoSubjTerm ins:hasObjPropTo ?Sec_Rel_Class."
 "?Sec_Rel_Class ins:hasDataProp "value2"}"
 Else
 Query = QueryTemplate +"
 For all ObjProperties of OptiPath
 "{{?OntoSubjTerm ins: OptPath.get(hasObjProp) ?First_Rel_Class."
 "?First_Rel_Class ins:hasDataProp "value1"}UNION"
 "{{?OntoSubjTerm ins: OptPath.get(hasObjProp) ?Sec_Rel_Class."
 "?Sec_Rel_Class ins:hasDataProp "value2"}"
End

Fig. 3. The OntoNL query representation of domain-ontology disambiguated natural language
expression in SPARQL

454 A. Karanastasi and S. Christodoulakis

6 Evaluation

A complete evaluation framework has been designed. Such a framework takes into
account a large number of parameters regarding the characteristics of the ontologies
involved and the types of users.

Our objective so far was to integrate all the components involved, to test
interoperability, to integrate with a knowledge repository and to experiment with the
performance of the disambiguation component. The integration among the
components is complete and serves all the needs currently anticipated. A complete
scenario utilizing all the components of the system with semantic MPEG-7
descriptions of soccer games which utilize an extensive soccer ontology [10] was
tested successfully.

We have focused now our attention to the performance experimentation in a
generic way utilizing readily available ontologies in the web, not carefully
constructed by hand ontologies. Our objective was to analyze the semantic
disambiguation process, to see if it works satisfactorily, and which components can be
improved with different algorithms.

To assess our relatedness measure’s usefulness, we needed to evaluate it against a
“gold standard” of object relatedness. To that end we designed a detailed experiment
in which human subjects were asked to assess the relatedness between two objects. As
Budanitsky and Hirst [1] found in a study comparing WordNet similarity measures
human judgments give the best assessments of the “goodness” of a measure.

We have obtained relatedness judgments from 20 human subjects, 10 from the
computer science field that had knowledge of the domain ontologies and 10 from the
liberal arts field, that were used for the evaluation, for 25 pairs of concepts that we
meet in 3 OWL domain ontologies freely available on the web, for the domains of
soccer, wine and people with pets. The pairs ranged from “highly related” to
“semantically unrelated”, and the subjects were asked to rate them, on the scale of 0.0
to 1.0, according to their “relatedness of meaning”. After calculating the mean ratings
from the experiments on the concept pairs produced by the human ratings and the
ratings the equations 3, 4, 10 and 11 produced for the three ontologies, we present the
absolute values of the coefficients of correlation between the ratings in Table 1. We
also present in this table, the overall satisfaction of the users after presenting them the
results of the OntoNL Semantic Ranking procedure for the pairs of concepts used for
the experimentation. The users were showed the semantically related concepts to the
source-initial concept accompanied with the value of relatedness and the users could
evaluate if the ranking was correct to their sense of the domain.

We have observed that the ratings from human subjects that come from the liberal
arts field were closer to the ratings from the Properties sub-measure (relPROP) and the
Related Senses sub-measure (relRS). On the contrary, the human subjects that were
aware of the structures of the tested domain ontologies (from the Computer Science
field) came closer to the ratings from the Conceptual Distance sub-measure (relCD)
and to the ratings from the Properties sub-measure (relPROP). The impact of each of the
sub-measures expressed by the factors w1, w2 and w3 of the eq. 11 can generally be
tuned after experimentation of each specific application in a particular domain, that is
expressed by an OWL domain ontology.

 Ontology-Driven Semantic Ranking for Natural Language Disambiguation 455

The values of the factors f1 (for relC1), f2 (for relC2) of equation 3, w1(for relPROP),
w2 (for relRS) and w3 (for relCD) of equation 11 are shown in Table 2. The
experimentation pointed to some first conclusions that are the basis for the relative
weights value calculation algorithm extraction. The parameters that we take into
account are described next but are not limited to them since the evaluation tests and
the methodology for the relative weights values extraction are ongoing:

Table 1. The values of the coefficients of correlation between human ratings of relatedness and
four computational measures; the three submeasures that constitute the OntoNL Semantic
Relatedness Measure and the overall OntoNL measure with relative weights of Table 2

Measure
Humans

LibArts Field
Humans

CompSc Field
User Satisfaction over

Ranking (%)

Ontology Soccer Wine PP Soccer Wine PP Soccer Wine PP

relRS 0,938 0,967 0,953 0,908 0,925 0,917 80% 85% 83%

relCD 0,935 0,947 0,927 0,929 0,961 0,982 82% 90% 89%

relPROP 0,964 0,948 0,954 0,945 0,943 0,963 87% 85% 89%

relOntoNL 0,978 0,981 0,969 0,968 0,972 0,987 92% 95% 93%

Table 2. The values of the relative weights f1 and f2 of eq. 3 and w1 (for relPROP), w2 (for
relRS) and w3 (for relCD) of eq. 11 for each one of the ontologies used for the specific
experimentation

Ontology relPROP relOntoNL

 f1 f2 w1 w2 w3

Soccer 0,5 0,5 0,7 0,1 0,2

Wine 0,8 0,2 0,25 0,2 0,55

P ‘n’ P 0,8 0,2 0,45 0,2 0,35

The language the ontology uses for its terminology. When ontologies are used
directly from their source (web) a major factor of the relRS parameter’s performance is
the names that are used to describe the ontologies. If the names for the concepts and
the logical relationships among the concepts used are near the “natural language”
names the performance of the system is significantly better.

The number of the properties over the concepts. When the concepts of the
ontology have a number of properties that specialize them over other concepts (the
semantic network has a significantly greater number of edges over nodes) then the
parameter relPROP can participate with a great value of influence in the overall
OntoNL semantic relatedness measure calculation.

The depth of the domain ontology. When the ontology is of a great depth then the
conceptual distance needs to be assigned with a big relative weight because the
information loss is significant over the inheritance.

456 A. Karanastasi and S. Christodoulakis

To summarize the observations over the experimentations, the application of the
semantic relatedness measure on a number of OWL ontologies produced some first
conclusions. We have observed that when ontologies are used directly from their
source (web) a major factor in the performance of the natural language interaction
system is the names that are used to describe the ontologies. If the names for the
concepts and the logical relationships among the concepts used are near the “natural
language” names the performance of the system is significantly better. This may
imply that for ontologies that do not utilize “natural language” names for their
concepts and relationships we have to provide a mapping to more natural language
expressed ontologies. Alternatively, algorithms for automatic mappings should also
be investigated.

When the concepts of the ontology have a great number of properties that
specialize them over other concepts, like in the ‘Soccer’ Ontology then if the
parameter relPROP takes a great weight of influence in the overall OntoNL measure,
the user satisfaction over the OntoNL Semantic Ranking procedure increases up to
almost 10% of the average satisfaction using the three parameters of the measure
individually.

Also, the conceptual distance is a measure that has a great influence if the ontology
depth is big because this means that there are several paths that lead from the source
concept (that is the subject part of a natural language expression) to the target concept
(that is the object part of a natural language expression). This observation was applied
in the evaluation of the measure over the ‘Soccer’ and the ‘People with Pets’
Ontologies and produced very good results.

7 Conclusions

We have presented the OntoNL ontology-driven semantic ranking methodology for
ontology concepts used for natural language disambiguation. The methodology uses
domain specific ontologies for the semantic disambiguation. The ontologies are
processed offline to identify the strength of the relatedness between the concepts.
Strongly related concepts lead to higher ranked pairs of results during disambiguation.
The disambiguation procedure is automatic and quite promising, since it is
linguistically as complete as possible in an automatic environment [3] and it is
enhanced with information based on the domain that the request refers to. It is easily
reusable in many domains since the only restrictions are the used language (English)
and OWL as the standard language for representing ontologies of a specific domain.

The OntoNL semantic ranking methodology depends on the OntoNL semantic
relatedness measure for OWL domain ontologies. The measure is based on
commonality of two concepts, the related senses that may share, their conceptual
distance in the ontology, their specificity in comparison with their common root
concept and the semantic relations to other ontological concepts.

The motivation of this work came from the absence of a general, domain-
independent Natural Language Interface Generator with good results in the Natural
Language Disambiguation process. The disambiguation process depends on the
domain ontologies and when necessary, the OntoNL Semantic Relatedness Measure is
used to rank ontological, grammatically-related concepts. We have developed a

 Ontology-Driven Semantic Ranking for Natural Language Disambiguation 457

semantic relatedness measure over OWL ontologies that is general, domain
independent and covers the lack of a systematic way for calculating asymmetric
semantic relatedness of concepts.

Overall, we state that the semantic relatedness measure that leads to the ontology-
based semantic ranking of concepts for natural language disambiguation is quite
complete and shows very good results. For future improvements, we may need to
investigate the influence of more complex structures of OWL vocabulary to the
performance.

References

1. Budanitsky, A., Hirst, G. 2006. Evaluating WordNet-based Measures of Lexical Semantic
Relatedness. Computational Linguistics 32(1): 13-47

2. Fellbaum, C. editor. 1998. WordNet: An Electronic Lexical Database. The MIT Press,
Cambridge, MA.

3. Karanastasi, A., Zwtos, A., Christodoulakis, S. 2006. User Interactions with Multimedia
Repositories using Natural Language Interfaces - OntoNL: an Architectural Framework
and its Implementation, in Journal of Digital Information Management - JDIM, Volume 4,
Issue 4, December 2006

4. Kozima, H., Furugori, T. 1993. Similarity between words computed by spreading
activation on an English dictionary. In Proceedings of 6th Conference of the European
Chapter of the Association for Computational Linguistics (EACL-93), pages 232–239,
Utrecht.

5. Leacock, C., Chodorow, M. 1998. Combining local context and WordNet similarity for
word sense identification. In Christiane Fellbaum, editor, WordNet: An Electronic Lexical
Database, chapter 11, pages 265–283. The MIT Press, Cambridge, MA.

6. Lin, D. 1998. An information-theoretic definition of similarity. In Proceedings of the 15th
International Conference on Machine Learning.

7. Rada, R., Bicknell, E. 1989. Ranking documents with a thesaurus. JASIS, 40(5):304–310,
September.

8. Rada, R., Mili, H., Bicknell, E., Blettner, M. 1989. Development and application of a
metric on semantic nets. IEEE Transactions on Systems, Man, and Cybernetics, 19(1):17–
30, February.

9. Resnik, P. 1995. Using information content to evaluate semantic similarity. In Proceedings
of the 14th International Joint Conference on Artificial Intelligence, pages 448–453,
Montreal, Canada.

10. Sussna, M. 1993. Word sense disambiguation for free-text indexing using a massive
semantic network. In Proceedings of the Second International Conference on Information
and Knowledge Management (CIKM-93), pages 67–74, Arlington, Virginia.

11. Wu, Z., Palmer, M. 1994. Verb semantics and lexical selection. In Proceedings of the 32nd
Annual Meeting of the Association for Computational Linguistics, pages 133–138, Las
Cruces, New Mexico

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 458–472, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Web-Annotations for Humans and Machines

Norbert E. Fuchs1 and Rolf Schwitter2

1 Department of Informatics & Institute of Computational Linguistics
University of Zurich, Switzerland

fuchs@ifi.unizh.ch
2 Department of Computing & Centre for Language Technology

Macquarie University, Australia
rolfs@ics.mq.edu.au

Abstract. We propose to manually annotate web pages with computer-
processable controlled natural language. These annotations have well-defined
formal properties and can be used as query relevant summaries to automatically
answer questions expressed in controlled natural language, and as the basis for
other forms of automated reasoning. Last, but not least, the annotations can also
serve as human-readable summaries of the contents of the web pages. Arguably,
annotations written in controlled natural language can bridge the gap between
informal and formal notations and leverage true collaboration between humans
and machines. This is a position paper that proposes a solution combining exist-
ing methods and techniques to achieve a highly relevant practical goal, namely
how to effectively access information on the web. However, our solution intro-
duces a "chicken and egg" problem: a critical mass of web annotations will be
necessary that people perceive the value of these annotations and start annotat-
ing web pages themselves. Only the future will show whether this – basically
non-technical – problem can be solved.

Keywords: Annotations, Controlled Natural Languages, Semantic Web, Ques-
tion Answering, Automated Reasoning.

1 Getting Your Questions Answered – Or Perhaps Not

1.1 The Problem

When visiting restaurants in Sydney you notice that many dishes contain capers, and
you may ask yourself "Does this Mediterranean plant perhaps grow in Australia?"
Asking the service personnel remains inconclusive, and you eventually turn to Google
with the query

Are capers grown in Australia?

and get more than 74'000 references. Realising that Google gives you references to
all web pages that contain the keywords of your query in any order and any context,
you let Google search for the exact phrase

 Web-Annotations for Humans and Machines 459

"Are capers grown in Australia?"

and receive no answer at all. Recalling that Google orders its results according to
their rank you select the top result of the 74'000 references found for your first query.
This top result refers to an interview of the Landline1 program of the Australian
Broadcasting Corporation. Perusing the complete interview of 2000 words you find
that the text of the interview nowhere explicitly states

Capers are grown in Australia.

which would exactly answer your question. Instead there are text snippets contain-
ing variants of and references to the words "capers", "grow" and "Australia" like

• ... a young South Australian couple decided they could grow capers in this
country. …

• … So they sought out some plants and now boast Australia's first and only
commercial caper crop. …

• … "No-one grows capers in Australia" ...
• ... as Australia's first and only commercial growers of capers. …
• ... because they've never been grown in Australia before …
• ... that we can grow capers in Australia …
• ... Australia's first home-grown capers and caper-berries. …
• they could be grown in Australia ...

These text snippets do not readily help you to answer your question, are rather con-
fusing, perhaps even contradictory. Absorbing the complete contents of the interview,
and applying unspecified world-knowledge, you eventually infer that capers are ex-
perimentally grown in South Australia.

A little frustrated, you wished that a search engine would be able to automatically
find a satisfying answer to your query without you having to extract the answer from
lengthy documents.

So what can be done to automatically find an answer to your question on the web?
Note that a solution to this problem is intimately related to another problem. Which
answer do you actually expect? Which answer would you accept as satisfactory?

1.2 Question Answering

One approach to answer questions has been investigated by researchers of the language
engineering community. To this community question answering (QA) systems are of
great interest because they combine information retrieval (IR), natural language proc-
essing (NLP), and often machine learning (ML) within the same task. QA systems

• receive natural language queries as input – not keywords,
• process large unstructured document collections – usually not web pages,
• return precise answers as output – not (references to) documents.

Though the fields IR, NLP and ML have seen spectacular progress in recent years,
a sobering realisation must be made – there seems to be a ceiling of what can be
achieved. Here is a representative current result. The best values cited in the

1 www.abc.net.au/landline/content/2006/s1602940.htm

460 N.E. Fuchs and R. Schwitter

"Overview of the TREC 2005 Questions Answering Track"2 are 71% accuracy, 64%
precision and 53% recall for answering mainly simple factoid questions. Though new
methods may bring some improvements, we believe that no real breakthrough can be
expected, and that eventually automatic methods must be complemented by human
intervention to get better results. This echoes our experience that interpreting the
Landline interview required additional knowledge not found in the interview itself.

1.3 Automatic Summarisation

An alternative approach has been to automatically summarise documents, and –
among other things – to use summaries of documents instead of the documents them-
selves to answer questions. Summaries can be generated simply by extraction, i.e. by
copying relevant information of the document into the summary, or by abstraction,
i.e. by paraphrasing and condensing the contents of the document. Though there does
not seem to be a consensus on evaluation methods, the results of automatic summari-
sation are not more encouraging than those of question answering3, and again we have
to realise that human intervention would eventually be required to improve the results.
Interestingly, Hovy [1] writes in this context

… Since the result [of summarisation] is something new not explicitly contained in
the input this stage [of summarisation] requires that the system have access to
knowledge separate from the input. …

 Again, we encounter the situation that additional knowledge is required to under-
stand a text.

1.4 Semantic Web

Another approach – aimed directly at web pages – is taken by the semantic web4 that
states as its goals

The Semantic Web is about two things. It is about common formats for interchange
of data, where on the original Web we only had interchange of documents. Also it
is about language for recording how the data relates to real world objects. That al-
lows a person, or a machine, to start off in one database, and then move through
an unending set of databases which are connected not by wires but by being about
the same thing.

These goals are to be achieved by languages like RDF5 and OWL6

… the World Wide Web Consortium released the Resource Description Framework
(RDF) and the OWL Web Ontology Language (OWL) as W3C Recommendations.
RDF is used to represent information and to exchange knowledge in the Web. OWL
is used to publish and share sets of terms called ontologies, supporting advanced
Web search, software agents and knowledge management.

2 trec.nist.gov/pubs/trec14/papers/QA.OVERVIEW.pdf
3 acl.ldc.upenn.edu/E/E99/E99-1011.pdf
4 www.w3.org/2001/sw
5 www.w3.org/RDF
6 www.w3.org/2004/OWL

 Web-Annotations for Humans and Machines 461

Like Katz and Lin [2] we see two main problems of the semantic web. The first
problem is

... to transform existing sources (stored in HTML pages, in legacy databases etc.)
into a machine-understandable form (i.e. XML/RDF/OWL) ...

which is hard to do automatically since the transformation involves hurdles similar to
those encountered in automatic question answering and automatic summarisation.

The second problem is that this transformation

... is sometimes at odds with a human-based natural language view of the world.

concretely, that languages like RDF and OWL are intended for computers, not for
humans.

To solve the second problem natural language front-ends have been proposed.
Within the Metalog7 project of W3C, Marchiori and collaborators developed the lan-
guage PNL ("Pseudo Natural Language") that they describe as follows

The goal of the Metalog's PNL ("Pseudo Natural Language") is to define a tech-
nology that is very close to the people, even if this possibly means sacrificing part
of the expressive power of the underlying tower (in other words, to start filling up
the upper parts of the P axis). The PNL, as the name says, aims to use a very col-
loquial form of communication, that is very close to humans: natural language.

and give the example

JOHN and MARY OWN a "red house".

that – capitalising some constituents and putting others in quotes – can hardly be
called natural. Incidentally, the example is also ambiguous as to whether John and
Mary own together one house, or individually two houses.

Alternative approaches to bridge the gap between the languages of the semantic
web and natural language are offered within the Attempto project [3]. There is a bidi-
rectional translation between Attempto Controlled English (ACE) – a subset of stan-
dard English equivalent to full first-order logic – and OWL DL that allows users to
interface OWL ontologies in ACE without having to know the languages OWL, RDF
or XML.

A slightly different approach is proposed by Schwitter and Tilbrook [4] who use a
controlled natural language to directly describe knowledge of the semantic web with-
out taking recourse to RDF.

1.5 Augmenting RDF by Natural Language Annotations

To render RDF friendlier to humans and to facilitate question answering from web
pages and data bases, Katz and his collaborators [2] propose to augment RDF with
natural language annotations. Using these techniques they have developed the Natural
Language Question Answering System START8 that uses pattern matching to answer
natural language questions from a variety of sources.

7 www.w3.org/RDF/Metalog
8 start.csail.mit.edu/

462 N.E. Fuchs and R. Schwitter

Unlike information retrieval systems (e.g., search engines), START aims to supply
users with "just the right information," instead of merely providing a list of hits.
Currently, the system can answer millions of English questions about places (e.g.,
cities, countries, lakes, coordinates, weather, maps, demographics, political and
economic systems), movies (e.g., titles, actors, directors), people (e.g., birth dates,
biographies), dictionary definitions, and much, much more.

While the START system is rather impressive and answers questions from a wide
range of sources, we believe that the fixed patterns of the RDF annotations employed
by START are too rigid and too restrictive to anticipate the diversity of questions
users may ask.

1.6 Annotations in Controlled Natural Language

Realising that attempts to automatically answer questions from legacy texts and web
pages have encountered fundamental problems, we propose a radical solution, namely
to have humans annotate web pages in a way that facilitates question answering. Con-
cretely, we propose to augment web pages with annotations in a controlled natural
language [4]. This proposal offers the following advantages:

• annotations in computer-processable controlled languages permit formal reason-
ing, specifically question answering by deduction,

• question answering from annotations in controlled natural languages can easily
be supported by the necessary linguistic and domain-specific background
knowledge,

• annotations in controlled natural languages are readable by anybody, and thus
can also serve as a summary of the respective web page,

• annotations in controlled natural languages can be written according to standard
guidelines of good summary writing, for instance Wikipedia's guidelines for
lead sections9.

In a similar approach [5] propose to annotate scientific publications with summa-
ries in controlled natural languages, and point out that these annotations can be used
for question answering and a number of additional reasoning tasks.

Here is a possible annotation to the above-mentioned Landline interview on capers
that contains just a small amount of the factual knowledge of the interview.

A couple grows capers in Australia.

This annotation is written in a controlled natural language [6, 7] similar to ACE or
PENG10, and allows us to answer our question by deduction

Are capers grown in Australia?

provided that we take into account the linguistic knowledge relating the active and
the passive forms of the transitive verb grow.

So we are already done, are we?

9 en.wikipedia.org/wiki/Wikipedia:Lead_section

10 www.ics.mq.edu.au/~rolfs/peng/

 Web-Annotations for Humans and Machines 463

In fact, we are not done at all since we skillfully crafted the annotation in a way
that allowed us to more or less immediately deduce our question, and we carefully
sidestepped a number of serious problems of this approach.

Foremost, there is a "chicken and egg" problem [2] that similarly affects our ap-
proach, the semantic web and the START project, namely

… people will not spend extra time marking up their data unless they perceive a
value for their efforts, and metadata will not be useful until a "critical mass" has
been achieved.

Only the future will show whether this – basically non-technical – problem can be
solved, and we will not discuss it further here.

Furthermore, there are technical problems that are specific to our approach. We
will address these problems in the remainder of this paper. In section 2 we describe
controlled natural languages and in section 3 how these languages can be used to
annotate web pages. Section 4 discusses guidelines for writing good annotations. In
section 5 we outline how annotations can be added to web pages in a way that bene-
fits both humans and machines. Section 6 is dedicated to question answering on the
basis of annotations, to the need for linguistic and other background knowledge, and
to the problems that arise when annotations are inconsistent, incomplete, on different
levels of detail, using different conceptualisations, or are plainly not understandable.
Here we also discuss possible solutions to these problems. Section 7 suggests some
alternative uses of annotations. In section 8 we summarise the main ideas and the
advantages of our approach.

2 Controlled Natural Languages

Formal languages such as RDF and OWL have exclusively been designed for ma-
chines and are hard to write and understand for humans. There is an urgent need for
an expressive high-level interface language to the semantic web that allows humans to
write annotations in a familiar notation which is unambiguous and offers the same
precision as a formal language.

A promising candidate for such a high-level interface language is the use of a con-
trolled natural language. In general, a controlled natural language can be defined as a
subset of a natural language with explicit constraints on grammar, lexicon, and style.
These constraints usually have the form of writing rules and help to reduce both am-
biguity and complexity of a full natural language [6, 7].

The probably most successful controlled natural language is ASD Simplified
Technical English [8] that has been designed to improve the readability of aircraft
maintenance documentation for non-native readers. However, readability of the lan-
guage is only one important characteristic which needs to be combined with machine-
processability to make the language useful in the context of question answering.

There are some relatively new controlled natural languages such as Attempto Con-
trolled English [9], Common Logic Controlled English [10], and Processable English
[11] that combine and balance readability and processability in such a way that makes
it easier for humans and machines to work in cooperation. These highly expressive
controlled natural languages are equivalent to large – in fact undecidable – fragments

464 N.E. Fuchs and R. Schwitter

of first-order predicate logic, and have already been used as specification and knowl-
edge representation languages in various application domains.

With some instruction, or supported by an intelligent authoring tool [12], even non-
specialists can use these machine-oriented controlled natural languages to write anno-
tations in a familiar notation without the need to formally encode their knowledge,
and without a steep learning curve.

3 Controlled Natural Languages for Web Annotations

Traditionally, RDF-based languages and technologies have been promoted to semi-
automatically generate annotations for web pages with machine-processable informa-
tion. These annotations are usually not very expressive, and – once generated – are
difficult to read and modify by humans.

For example, in the Friend of a Friend (FOAF) project11, individual web pages are
linked to machine-readable RDF documents which describe people, the links between
them and the things these people create and are interested in. FOAF makes it easy to
share and transfer information and to automatically extend, merge and reuse this in-
formation online. In the Annotea project12, RDF-based annotation schemata are used
for describing annotations as metadata and XPointer for locating the annotations in
the annotated document. The annotations are stored locally, or in one or more an-
notation servers. When a document is browsed, a client such as Amaya13 queries each
of these servers, requesting the annotations related to that document.

RDF has been criticized as the formal underpinning for the semantic web [13, 14].
In particular the current RDF-based architecture for the semantic web has severe
problems when more expressive rule languages are incorporated. An alternative ap-
proach is to use first-order logic as the semantic underpinning [13]. First-order logic
is well-established and numerous state-of-the-art tools exist for processing first-order
axiomatisations. There are various subsets of first-order logic that offer different
tradeoffs with respect to expressivity, complexity and computability. Moreover, the
direct mapping of subsets of first-order logic languages – for example between Horn
logic and description logic – provides immediate semantic interoperability [15].

The controlled natural language we promote for annotating web pages is first-order
equivalent, but we have shown that subsets thereof can be translated automatically
into OWL DL [16, 17]. However, exclusively relying on description logic would
considerably reduce the expressive power of the controlled natural language [5].

4 How to Compose Web Annotations

To compose meaningful annotations for web pages let us have a brief look at what we
can learn from the field of news writing and from existing guidelines for well-
designed web pages.

11 www.foaf-project.org/
12 www.w3.org/2001/Annotea/
13 www.w3.org/Amaya/Amaya.html

 Web-Annotations for Humans and Machines 465

4.1 Inverted Pyramid Style

Information in news reports is usually presented in an inverted pyramid style which
begins with the conclusion, expressed as a single sentence. The subsequent para-
graphs will then convey the most important and interesting information, leaving de-
tails and background information to further paragraphs in an order of diminishing
importance. This format has the advantage that a reader can leave a report at any time
without missing the most important facts. It also allows less important information to
be more easily removed to fit a fixed size in a print medium.

Web usability experts recommend the inverted pyramid style for presenting textual
information on web pages14. Putting the most important information into a lead sec-
tion at the beginning of a web page better supports scanning of web pages by the
human eye, and additionally minimizes the need for scrolling. Usability studies show
that 79% of users scan a new web page and only 16% read it word-by-word15.

4.2 The Lead Section

The lead section is the most important structural element of a well-designed web page
and should convey the conclusion in a succinct form, usually in not more than 20-25
words. The importance of this lead section is also eminent in the manual of style of
Wikipedia. This manual recommends that a Wikipedia article should be introduced by
a lead section before the first headline and should summarize the most important
information16:

The lead section should briefly summarize the most important points covered in an
article in such a way that it could stand on its own as a concise version of the arti-
cle. It is even more important here than for the rest of the article that the text be
accessible, and consideration should be given to creating interest in reading the
whole article.

It is obvious that such a lead section needs to be easy to read and write by humans
and that machine-processability would add enormous benefits for various reasoning
tasks such as question answering, consistency checking and information fusion. Rep-
resenting this information in an RDF-based formal language is not very helpful, since
this language is probably not expressive enough, and its syntax is a slap in the face of
any human author (specialists or non-specialists alike). At first glance, writing a lead
section looks like a challenging optimization problem, but a machine-oriented con-
trolled natural language can bridge the gap here and the field of news writing can give
us some valuable guidelines how to do this in a clever and informative way.

4.3 The Five W’s (plus H)

The lead section not only encompasses specific constraints on sentence structure but
also promotes a particular way in which the content is presented. The basic idea is
that the lead section should attempt to answer all the fundamental questions about a

14 www.useit.com/alertbox/9606.html
15 www.useit.com/alertbox/9710a.html
16 en.wikipedia.org/wiki/Wikipedia:Lead_section

466 N.E. Fuchs and R. Schwitter

peculiar event and this can be memorised as: who did what when where and why, and
occasionally also how.

Let us illustrate how the most important information of the Landline web page17
can be represented in a lead section using these five W’s (plus H) as a guiding princi-
ple. For this purpose, we will use the following linguistic schema for sentences

subject + predicate + object + {modifiers}

where the subject answers the question about who is involved in a specific situa-
tion, the predicate states a particular event or state, the object answers a what ques-
tion, and optional modifiers answer a when, where, why or how question.

Of course, users can freely compose lead sections following this schema. Alterna-
tively, composing a lead section can be supported by an intelligent authoring tool that
displays predictive information while the lead section is being written (cf. [4]).

Here is the step-wise construction of a possible lead section of the Landline web
page with the help of a predictive authoring tool.

In our case, the transitive verb cultivates as predicate requires both a subject and an
object.

[subject: who]
A couple ... [predicate]
A couple cultivates ... [object: what]
A couple cultivates capers ... [modifiers: how | where | when | why]

The how, where, when, and why can all be expressed as a sequence of modifiers
terminated by a period.

A couple cultivates capers experimentally ... [modifiers: where | when | why]
A couple cultivates capers experimentally in South Australia ... [modifiers …]
…
A couple cultivates capers experimentally in South Australia since 1999 for eco-
nomical benefit.

Please note that the information expressed in each constituent can directly be que-
ried by questions in controlled natural language. For example:

Who cultivates capers? → a couple
Where does a couple cultivate capers? → in South Australia

but to answer our original question

Are capers grown in Australia?

we need additional linguistic background knowledge in the form of a lexical deri-
vation rule (if somebody cultivates something then somebody grows something), the
linguistic knowledge relating the active and passive forms of the transitive verb grow,
and domain specific knowledge that specifies that South Australia is part of Australia.

As we will see in section 6.2, in general much more background information will
be needed that has to be provided by external knowledge sources or explicitly by
statements in controlled natural language.

17 www.abc.net.au/landline/content/2006/s1602940.htm

 Web-Annotations for Humans and Machines 467

5 How to Attach Web Annotations to a Web Page

Under the proposed model annotations function as lead sections of web pages. There-
fore they need to be directly embedded into a web page by the author. Internally, the
lead section is marked up as a paragraph and labeled with the help of an XHTML
language attribute (“lang”) together with an experimental language tag18 ("x-cnl"). A
search engine supporting this tag could then recognise that a paragraph is written in
controlled natural language. In our case the result looks as follows:

<p lang="x-cnl">A couple cultivates capers experimentally in South
Australia since 1999 for economical benefit .</p>

In this example the lang attribute’s value cnl stands for an experimental language
tag and indicates that the following snippet is written in controlled natural language.
Figure 1 illustrates how the lead section can add value to a web page for both humans
and machines.

Fig. 1. Landline Article with Lead Section in Controlled Natural Language

The annotation being part of the web page, it will be indexed by search engines,
and will also be available for any ranking that the search engine performs.

6 Deductions from Web Annotations

Question answering on the basis of annotations is done by a two-step process that in
general needs linguistic and domain-specific background knowledge, and has to cope
with the problems arising from inconsistent, incomplete, or differently conceptualised
annotations.

Though the proposed annotations have a simple structure, background knowledge
is complex, and in general involves quantification, negation, and disjunction. Thus
question answering cannot be reduced to mere pattern matching, but requires first-
order theorem proving.

18 www.w3.org/TR/html4/struct/dirlang.html

468 N.E. Fuchs and R. Schwitter

6.1 A Two-Step Process to Answer Questions

Assuming that web pages are annotated by a lead section in controlled natural lan-
guage, we suggest a two-step process to concisely answer questions in controlled
natural language. This two-step process again reflects our decision to split the work
between humans and machines according to their abilities, and thus complements our
proposal to have web pages manually annotated.

In a first step, the question expressed in controlled natural language is automati-
cally split into keywords that are then submitted together with the XHTML language
attribute lang="x-cnl" to a ranking search engine that supports the language attribute.
Since annotations are part of the respective web pages, the search engine will only
return web pages containing the tag "x-cnl". Furthermore, the returned web pages are
ranked with respect to the keywords of the question.

In the second step, we select the N top-ranked web pages and then try to automati-
cally deduce the answer to our question separately from each of the N annotations.
Deduction is done by converting the question Q and the annotations A of the selected
web pages into their logical representations, Q' respectively A' and submitting A' ∪
¬Q' to a theorem prover – possibly extending A' by formalised background knowl-
edge (cf. section 6.2). Though we assume each annotation to be logically consistent,
we cannot expect the set of annotations to be consistent. We also cannot expect that
each of the N annotations will answer our question. If we get more than one answer,
we present all answers to the user without trying to consolidate them, and leave their
interpretation to the user. If available, we also provide information on the trustworthi-
ness of the source. Note that page ranking already provides an implicit level of
trustworthiness.

To support the outlined two-step process we propose a query tool that hides the
computational details from the users and that contains a predictive editor to formulate
questions in controlled natural language (cf. [4] for details).

6.2 Background Knowledge

No system can answer real world questions and make inferences without additional
knowledge, i.e. knowledge that is not contained in the input. This applies also to our
case: annotations written in controlled natural language require additional linguistic
and domain specific background knowledge to serve as a complete knowledge base.
However, an attractive feature of our approach is that much of the linguistic knowl-
edge and all of the domain knowledge can be expressed in controlled natural language
and is thus accessible for both man and machine.

Linguistic background knowledge is already needed in the first step of our ap-
proach when we split a question into keywords. If the annotation is

A couple cultivates capers experimentally in South Australia since 1999 for eco-
nomical benefit.

and the question is

Are capers grown in Australia?

 Web-Annotations for Humans and Machines 469

we cannot expect to get the question answered. However, we increase the probability
to find adequate answers if we do a query expansion by allowing for synonyms of the
content words of the question. For instance, linguistic resources like WordNet19 pro-
vide for the verb grow the synonyms cultivate, develop, increase, mature, originate,
change that we can add as alternatives to the keyword grow when we submit the key-
words to the search engine. This will allow us to retrieve the above annotation as the
basis for question answering.

More linguistic – and also domain-specific – background knowledge is required for
the second, deductive, step of our approach. Assuming that the word grown of the
question has been replaced by cultivated then we need linguistic knowledge to relate
the active somebody cultivates and the passive something is cultivated. This relation
can be expressed in controlled natural language, for example

If somebody cultivates something then something is cultivated by somebody.

Domain-specific knowledge needed for the second, deductive, step can conven-
iently be expressed in controlled natural language, for instance the geographic fact

South Australia is a part of Australia.

Now the question can be positively answered on the basis of the annotation. Other
questions, like

Who grows capers in Australia?

What grows in South Australia?

Where do capers grow?

Since when are capers cultivated in South Australia?

Why are capers cultivated in South Australia?

can similarly be answered provided the required background knowledge is made
available.

Where does the background knowledge come from, where is it stored, and how is it
applied?

Linguistic knowledge can be extracted from linguistic resources such as WordNet,
expressed in controlled natural language, and directly be converted to the logical
representation of the controlled natural language. Domain knowledge can be com-
posed by the user in controlled natural language, or (semi-) automatically extracted
from existing ontologies or knowledge bases such as Cyc20, and then converted into
controlled natural language.

Since writers of annotations cannot anticipate the variety of questions asked, it
seems natural to associate the background knowledge with the question, concretely to
incorporate it in a suitable representation into the query tool. Alternatively, it may
turn out to be more convenient to split the background knowledge into a user-
independent part that is associated with the annotation and stored on some server, and
a user-specific part that is associated with the question.

19 wordnet.princeton.edu/perl/webwn
20 www.cyc.com/

470 N.E. Fuchs and R. Schwitter

6.3 Missing and Inconsistent Answers

We cannot expect that each retrieved annotation will answer our question since anno-
tations can violate the principles of good writing presented in section 4. One should
rather assume that some annotations are incomplete, conceptualised differently to the
question, or expressed in a way that no satisfying answer can be deduced.

Another issue is inconsistency. Though each annotation is expected to be consis-
tent, the set of retrieved annotations is not necessarily consistent, and thus answers to
our question can be inconsistent. Some researchers [18] have suggested to replace
standard first-order logic by paraconsistent logic. Though this might be applicable in
some cases, we believe that the enormous range of information available on the web
simply does not allow for a coherent solution21. Instead, we leave it to the user to
interpret the validity and the trustworthiness of the answers.

7 Other Uses of Web Annotations

Since web annotations in computer-processable controlled natural language have a
logical foundation they can be used for many other purposes involving deduction, for
instance comparing annotations of different web pages or checking annotations for
compliance with respect to ontologies and knowledge bases.

If required by an application, annotations written in controlled natural language can
be exported in RuleML22, or in non-XML notations.

The annotations can also be exported as news feeds, for instance in our capers ex-
ample, to inform Australian exporters of fruit and vegetable of an opportunity to ex-
pand their business with a new product.

Last, but not least an annotation in controlled natural language is a human-readable
summary of the respective web page, and fulfills similar functions to the lead section
of Wikipedia articles.

8 Conclusions

We propose to manually augment web pages with annotations in a controlled natural
language. Our approach offers the following advantages:

• annotations in computer-processable controlled languages permit formal reason-
ing, specifically question answering by deduction,

• question answering from annotations in controlled natural languages can easily
be supported by the necessary linguistic and domain-specific background
knowledge,

• annotations in controlled natural languages are readable by anybody, and thus
can also serve as a summary of the respective web page,

• annotations in controlled natural languages can be written – preferably with the
support of an authoring tool – according to standard guidelines of good sum-
mary writing, for instance Wikipedia's guidelines for lead sections.

21 www.w3.org/DesignIssues/Inconsistent.html
22 www.ruleml.org

 Web-Annotations for Humans and Machines 471

Arguably, annotations written in controlled natural language can bridge the gap be-
tween informal and formal notations and leverage true collaboration between humans
and machines. However, our solution introduces a "chicken and egg" problem: a criti-
cal mass of web annotations will be necessary that people perceive the value of these
annotations and start annotating web pages themselves. Only the future will show
whether this – basically non-technical – problem can be solved.

Acknowledgements

The reported work was performed while N. E. Fuchs was visiting the Centre for Lan-
guage Technology at Macquarie University in Sydney, Australia. The authors are
grateful to Macquarie University’s Visiting Scholars Scheme 2006 that provided the
major part of the necessary funding. The authors would also like to thank their col-
leagues Mark Dras, Kaarel Kaljurand, Tobias Kuhn, Diego Mollá, Luiz Augusto Piz-
zato and three anonymous ESWC'07 reviewers for helpful hints and comments.

References

1. Hovy, E.: Text Summarization, in: R. Mitkov (ed.), The Oxford Handbook of Computa-
tional Linguistics, Oxford University Press (2003)

2. Katz, B., Lin, J.: Annotating the Semantic Web Using Natural Language, in: Proceedings
of the 2nd Workshop on NLP and XML at COLING 2002, Taipei, Taiwan (2002)

3. Attempto Project; www.ifi.unizh.ch/attempto and attempto.ifi.unizh.ch
4. Schwitter, R., Tilbrook, M.: Annotating Websites with Machine-processable Information

in Controlled Natural Language, in: M. A. Orgun and T. Meyer (eds.), Advances in On-
tologies 2006, Proc. of AOW 2006, Hobart, Australia, Australian Computer Society, Con-
ferences in Research and Practice in Information Technology, Vol. 72, (2006), 75-84

5. Kuhn, T., Royer, L., Fuchs, N. E., Schroeder, M.: Improving Text Mining with Controlled
Natural Language: A Case Study for Protein Interactions, in: U. Leser, B. Eckman, and F.
Naumann, editors, Proceedings of the 3rd International Workshop on Data Integration in
the Life Sciences 2006 (DILS'06), Lecture Notes in Bioinformatics, Springer (2006)

6. Huijsen, W. O.: Controlled Language - An Introduction, in: Proceedings of CLAW 1998,
Pittsburgh (1998) 1-15

7. O’Brien, S.: Controlling Controlled English – An Analysis of Several Controlled Lan-
guage Rule Sets, in: Proceedings of EAMT-CLAW 03, Controlled Language Translation,
Dublin City University (2003), 105-114

8. Simplified Technical English. Specification ASD-STE100, A Guide or the Preparation of
Aircraft Maintenance Documentation in the International Aerospace Maintenance Lan-
guage, Issue 3, January (2005)

9. Fuchs, N. E., Kaljurand, K., Schneider, G.: Attempto Controlled English Meets the Chal-
lenges of Knowledge Representation, Reasoning, Interoperability and User Interfaces, in:
FLAIRS'2006, 2006.

10. Sowa, J. F.: Common Logic Controlled English Draft, 24 February 2004, available at:
http://www.jfsowa.com/clce/specs.htm, (2004)

472 N.E. Fuchs and R. Schwitter

11. Schwitter, R.: English as a Formal Specification Language, in: Proceedings of the Thir-
teenth International Workshop on Database and Expert Systems Applications (DEXA
2002), W04: Third International Workshop on Natural Language and Information Systems
- NLIS, 2-6 September 2002, Aix-en-Provence, France, (2002) 228-232

12. Schwitter, R., Ljungberg, A., Hood, D.: ECOLE – A Look-ahead Editor for a Controlled
Language, in: Controlled Translation, Proceedings of EAMT-CLAW03, Joint Conference
combining the 8th International Workshop of the European Association for Machine
Translation and the 4th Controlled Language Application Workshop, May 15-17, Dublin
City University, Ireland, (2003) 141-150

13. Horrocks, I., Patel-Schneider, P. F.: Three Theses of Representation in the Semantic Web,
in: Proc. of WWW 2003, (2003) 39-47

14. Patel-Schneider, P. F.: A Revised Architecture for Semantic Web Reasoning, in: Proceed-
ings of Third Workshop on Principles and Practice of Semantic Web Reasoning
(PPSWR'05), Dagstuhl, Germany (11-16th September 2005), Organization: REWERSE,
LNCS 3703, (2005) 32-36

15. Grosof, B. N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining
Logic Programs with Description Logic, in: Proceedings of the 12th International Confer-
ence on the World Wide Web (2003) 48-57

16. Schwitter, R., Tilbrook, M.: Let’s Talk in Description Logic via Controlled Natural Lan-
guage, in: Proc. of the Third International Workshop on Logic and Engineering of Natural
Language Semantics (LENLS2006) in Conjunction with the 20th Annual Conference of
the Japanese Society for Artificial Intelligence, Tokyo, Japan, June 5-6, (2006) 193-207

17. Kaljurand, K., Fuchs, N. E.: Bidirectional mapping between OWL DL and Attempto Con-
trolled English, in: Fourth Workshop on Principles and Practice of Semantic Web Reason-
ing, Budva, Montenegro, (2006)

18. Schaffert, S., Bry, F., Besnard, P., Decker, H., Decker, S., Enguix, C., Herzig A.: Position
Paper: Paraconsistent Reasoning for the Semantic Web. Technical Report PMS-FB-2005-
42. Institut für Informatik der Ludwig-Maximilians-Universität München, (2005)

PANTO: A Portable Natural Language Interface

to Ontologies

Chong Wang, Miao Xiong, Qi Zhou, and Yong Yu

APEX Data and Knowledge Management Lab,
Department of Computer Science and Engineering,

Shanghai JiaoTong University, Shanghai, 200240, P.R. China
{wangchong,xiongmiao,jackson,yyu}@apex.sjtu.edu.cn

Abstract. Providing a natural language interface to ontologies will not
only offer ordinary users the convenience of acquiring needed informa-
tion from ontologies, but also expand the influence of ontologies and
the semantic web consequently. This paper presents PANTO, a Portable
nAtural laNguage inTerface to Ontologies, which accepts generic nat-
ural language queries and outputs SPARQL queries. Based on a special
consideration on nominal phrases, it adopts a triple-based data model to
interpret the parse trees output by an off-the-shelf parser. Complex mod-
ifications in natural language queries such as negations, superlative and
comparative are investigated. The experiments have shown that PANTO
provides state-of-the-art results.

1 Introduction

Ontology1, which both explicitly represents the taxonomy of a domain (classes
and properties) and stores a lot of knowledge (instances and instance relations),
plays a key role in the semantic web by enabling knowledge sharing and exchang-
ing [1]. However, in order to acquire the formal knowledge in ontologies, users
have to be familiar with:

– the ontology syntax, such as RDF and OWL;
– some formal query language, such as RDQL2 and SPARQL3;
– the schema (structure) and vocabulary of the target ontology.

Consequently, as Bernstein et al. stated in [2], there is a gap between the logic-
based semantic web and real-world users. In order to bridge the gap, this paper
presents PANTO, a Portable nAtural laNguage inTerface to Ontologies, which
offers users the convenience of acquiring needed information from formally de-
fined ontologies. Specifically, users can express their information needs in natural
language even without considering the syntax of RDF or OWL, the formal query
language, or the schema and vocabulary of ontologies.
1 In this paper, the term ontology refers to a knowledge base (KB) that includes

concepts, relations, instances and instance relations that together model a domain.
2 http://www.w3.org/Submission/RDQL/
3 http://www.w3.org/TR/rdf-sparql-query/

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 473–487, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

474 C. Wang et al.

1.1 Background

Although the first natural language interface system came out more than three
decades ago (LUNAR [3]), a fully portable and widely used system for formalized
knowledge bases is still unavailable. As mentioned in [4], two major obstacles lie
in the way:

Firstly, the ambiguity and complexity make it difficult for a machine to un-
derstand arbitrary natural language. The NLP community have been keeping on
paying efforts in this area. The state-of-the-art statistical parsers [5] can reach
about 90% in precision and recall. However, it is still well regarded as an “AI
Complete” problem and far from totally resolved.

Secondly, even with correctly parsed natural language queries, a lot of chal-
lenges remain in translating them to correct formal queries:

– Vocabularies of the knowledge bases are controlled and lean compared with
users’, so it is a challenge to correctly map users’ words to vocabularies of
the knowledge bases.

– Together with the lexical and syntactic information of the parsed queries,
semantic information in the knowledge bases can also be utilized to help for-
mulate the formal query, but how to accomplish this is still an open problem.

– Different knowledge representations require different techniques to interpret
the semantics of users’ queries. For example, how to deal with queries con-
taining negations in ontologies is different from that in databases. SPARQL
has been recommended as the standard query language for the semantic web
community, but few researches have been carried out to investigate the new
opportunities and challenges in translating natural language queries into it.

1.2 Features and Contributions

PANTO focuses on the second obstacle mentioned above. It utilizes an off-the-
shelf statistical parser StanfordParser [5] to deal with the first major obstacle.
Multiple existing techniques and tools are integrated to interpret parse trees of
natural language queries into SPARQL. The following are the major features
and contributions:

Firstly, PANTO is designed to be ontology portable and no assumption is
made about any specific knowledge domain. To help make sense of the words in
the NL queries and map them to the entities (concepts, instances or relations) in
the ontology, existing tools such as WordNet [6] and string metrics algorithms [7]
are integrated.

Secondly, nominal phrase constituents in the parse trees are specially consid-
ered. We extract nominal phrases in the parse trees as pairs to form an inter-
mediate representation called QueryTriples. Then, by utilizing knowledge in the
ontology, PANTO maps QueryTriples to OntoTriples which are represented with
entities in the ontology. Finally, together with targets and modifiers extracted
from the parse trees, OntoTriples are interpreted as SPARQL.

Thirdly, we investigate certain problems in the process of translating natural
language queries into SPARQL queries. The translation of advanced semantic fea-
tures such as negation, comparative and superlative modifications are supported.

PANTO: A Portable Natural Language Interface to Ontologies 475

The rest of this paper is organized as follows. Section 2 introduces the sys-
tem architecture. Section 3 describes how the ontologies and other resources are
wrapped to construct a lexicon. Section 4 presents the key process to interpret
parse trees into SPARQL queries. Section 5 elaborates on the experiments. Sec-
tion 6 discusses about limitations and directs the future work. Section 7 describes
related work and section 8 concludes this paper.

2 PANTO Architecture

Fig. 1 depicts the architecture of PANTO. It takes ontologies and natural lan-
guage queries as input, and finally returns SPARQL queries as output. When
an ontology is selected as the underlying knowledge base, the Lexicon Builder

Translator

Query Possessing

Ontology Processing

Natural

Language

Query
Parser Translator

Lexicon

Builder

Parse

Tree

Ontology

(OWL)

Query-

Triple

Extractor
SPARQL

Generator

Target &

Modifier

Extractor

Query

Triples

Ontology

Triples

Targets

&

Modifiers

Onto-Triple

Extractor

SPARQL

Queries

Lexicon

Fig. 1. Architecture of PANTO

automatically extracts entities out of the ontology to build the Lexicon. Word-
Net is utilized to find synonyms to enlarge the vocabulary of the ontology. Once
the user inputs a natural language query, PANTO first invokes the Parser to
produce the parse tree, which is then transfered to the Translator. The Trans-
lator is the core processing engine of PANTO. Upon receiving a parse tree, the
Translator processes it in two ways in parallel:

– The parse tree is first transformed into QueryTriples, which are less re-
stricted, for their predicates can be prepositions, verbs, phrases, or even
omitted. Then QueryTriples are mapped to OntoTriples with the help of
the Lexicon.

– The Target and Modifier Extractor extracts the potential words for targets
(variables after “SELECT”) and modifiers (information related to “FIL-
TER”, “UNION”, etc.) of the target SPARQL queries from the parse tree.

Finally the domain-compliant OntoTriples, targets and modifiers are sent to the
SPARQL Generator to produce SPARQL queries.

476 C. Wang et al.

3 The Lexicon

The Lexicon is mainly designed for making sense of words in natural language
queries and mapping them to entities in the ontology. It is composed of the fol-
lowing contents:

Ontology Entities. This is the most important part of the Lexicon. Entities in
the ontology, including classes (concepts), properties (relations), and instances
(individuals), are extracted and stored for fast access and matching. Since dif-
ferent ontology entities may have the same name (e.g. “Mississippi” river and
“Mississippi” state) and one ontology entity may have different names (e.g. “US”,
“United States”, and “USA” denote the same entity “United States of America”
in the ontology), ontology entities and their names are put into a special hash
table, in which a key maps to a set of ontology entities and an ontology entity can
be obtained by different keys. Given a word from the natural language query, the
Lexicon will acquire a set of possible entities. Proper nouns (e.g. “New Mexico”)
are also extracted from the ontology for fast access and matching.

General Dictionaries. In order to help bridge the gap between user vocabulary
and ontology vocabulary, general dictionary WordNet is utilized. The synsets in
the dictionary defined by linguists enable PANTO to match “work” in user’s
query to concept “Job” in the ontology. Also with the help of the dictionaries,
we are able to retrieve the property “length” when the user asks “how long ...”.
This module is open and other thesauri can also be adopted if available.

User-Defined Synonyms. Since users may use jargons and abbreviations to
denote entities, words from general dictionaries only may not be enough. There-
fore, the Lexicon allows users to define their own “synonymy words” (a set of
words that match the same entity in the ontology). This will be helpful when
PANTO is adopted to a certain domain.

Note that, the user-defined synonyms are not mandatory for the Lexicon, and
all the mandatory contents are extracted in a totally automatic way. Therefore,
the construction of the Lexicon is portable.

-hasName : string

-hasPopulation : long

City

Capital

-hasName : string

-hasArea : long

Lake

-hasName : string

-hasNumber : string

-hasAbbreviation : string

-hasArea : long

-hasPopulation : long

-hasHeighestPoint : string

-hasHeighestEvaluation : long

-hasLowestPoint : string

-hasLowestEvaluation : string

State
inState

inState

inState

runThrough

runThrough

border

subClassOf
hasCities

-hasNumber : long

Road

-hasHeight : int

-hasName : string

Mountain

-hasName : string

-hasLength : long

River

hasCapital

-hasName : string

-hasHeight : long

Fig. 2. The schema definition of geography ontology (the following examples are based
on this ontology)

PANTO: A Portable Natural Language Interface to Ontologies 477

4 Translator: Translating Parse Tree to SPARQL

The translator is the backbone of PANTO. Our basic idea for translating natural
language queries into formal ones is to specially consider nominal phrases. We
observe that a natural language query can usually be viewed as the combination
of multiple nominal-phrase pairs. From the parse trees by a deep parser, such
pairs are easily recognized. Inside each pair is a verb phrase, a preposition, a
conjunction or the like to represent the relationship between the two nominal
phrases. At the same time, nominal phrases or words also play an important
role in ontologies which store facts to model a domain. The facts are explicitly
or implicitly stated in the triple form <subject, predicate, object>. The subject
and the object may be classes, instances or literal values and usually should be
named with nominal words or phrases [8]. The predicate may be prepositions,
verbs, verb phrases and so on, and sometimes may also be nominal phrases.
Because a nominal-phrase pair represents some kind of semantic relationship
between the two nominal phrases, we expect it to be mapped to a triple in the
ontology. Fig. 2 presents the schema definition of an example ontology and Fig. 3
depicts the processing steps of an NL query to this ontology. In the following
subsections, we will detail the whole process of translating a parse tree of a
natural language query into SPARQL based on the above idea.

SBAR

WHNP S

WDT

VBZ NP

is SBAR

WHNP

WDT

Which

VP

NP

DT NNJJS

the riverlongest

that

S

VBZ

flows

PP

IN

through

S

NP

DT NNS

the states

VP

VBG NP

neighbouring NNP

Mississippi

1

2

3

1

2

2

2

2

3

1

1

BaseNP Pair :

Query-
Triples :

Onto-
Triples :

Non-BaseNP

BaseNP

[longest . river . | flows through | . states .]
[. states . | neighboring | . Mississippi .]

< :River , :runThrough , :State >
< :River , :hasLength , Long >

< :State , :border , :Mississippi_state>

BaseNP Pair :

1 2

2 3

lenth River states

: State

:inState

:River

:hasLength :Mississippi_river

:Mississippi_state

Mississippi

OntoEntity Matching
and linking

PREFIX : <http://apex.sjtu.edu.cn/nli/geo#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?river
WHERE {
 ?river rdf:type :River .
 ?river :hasLength ?length .
 ?state rdf:type :State .
 ?river :runThrough ?state .
 ?state :border :Mississippi_state .
}
ORDER BY DESC(?length)
LIMIT 1

SPARQL

Fig. 3. Parse tree of query “which is the longest river that flows through the states
neighboring Mississippi” by StanfordParser (with the default root node “ROOT” re-
moved for brevity). BaseNP, Head BaseNP propogation, BaseNP pairs, QueryTriples,
OntoEntity matching, linking OntoEntities as OntoTriples, OntoTriples and final
SPARQL query are illustrated.

478 C. Wang et al.

4.1 QueryTriple Extractor

In this part, we extract the nominal-phrase pairs out of the parse tree to form
the intermediate representation QueryTriples. This includes the following steps:

Identify and propagate Head BaseNP. In the parse tree, a nominal phrase
is tagged as NP4. Since NPs may be nested, we need to find those that can
be mapped to entities in the ontology. We introduce the notion BaseNP (Fig.
3). BaseNP is formally defined as NonrecursiveNP (and BaseNP is called for
short) in [9], where it refers to an NP that does not directly dominate an NP
itself, unless the dominated one is a possessive NP (i.e. it directly dominates a
POS-tag “POS”). Here we slightly extend the concept of BaseNP to also include
a constituent (some WHNP) if it contains nouns but does not dominate an NP.
We make this extension to capture all nominal words, which may not be parsed to
be contained in a BaseNP by a statistical parser. For example, StanfordParser
parses “how many rivers” in the query “how many rivers does alaska have”
as (WHNP(WHADJP((WRB how)(JJ many))(NNS rivers)). There is a noun
“rivers” inside WHNP, but there is no NP.

With this definition, we first identify all the BaseNPs from a parse tree. After
that, we prepare for identifying and linking those related NPs as pairs. We fol-
low the rules used by Michael Collins [9] for mapping from trees to dependency
structures (StanfordParser also uses these rules and this is one of the reasons
why it is utilized in PANTO). The difference is: Collins used those rules to find
head words (see [9] for details), and we use a subset of the rules to propagate
head BaseNPs. The only modification to the rules is: if there is a node con-
taining conjunctive children nodes, the head BaseNPs of all the children will be

SBARQ

WHNP SQ

WP NP

DT CCNN

the andpopulation

1

what

VBZ

is

NN

area

NP

IN NP

of

PP
VP

PP

IN

VB

CCVP

VB

traverse

NP

NN

VP

through

or

Alaska

2

1

1

1

2

2

2 3

3

3

2

Conjunctive Head BaseNPs

Conjunctive Head Nouns

NP

NNP

Modifier Indicators

SBARQ

WHNP

WDT

which

NP

NNS

1

1

rivers

SQ

run

Mississippi

1

2

Targets

NN

DT

the

NN

state

ADJP

RBS

most

JJ

populated

Fig. 4. Parse trees of the queries “what is the population and area of the most pop-
ulated state” and “which rivers run through Mississippi or traverse Alaska” by Stan-
fordParser (with default root node “ROOT” removed for brevity). Targets, modifier
indicators, conjunctive Head Nouns and conjunctive Head BaseNPs are illustrated.

4 NP, short for “Nominal Phrase”, is a syntactic tag in parse tree. In the following,
we will use such syntactic tags as well as POS tags without explanations.

PANTO: A Portable Natural Language Interface to Ontologies 479

propagated to it as its head BaseNPs (Fig. 4). All these operations can be done
via a bottom-up traversal along the parse tree.

LinkBaseNPPair to form QueryTriple. After the basic constituent BaseNPs
are identified and propagated on the parse tree, we link them one another where
there is modification relationship to form BaseNP pairs. The process is: for each
BaseNP, traverse up towards the root node and link it with the first different head
BaseNP(s) as BaseNP pair(s). The two BaseNPs in such a pair, together with the
words which syntactically connect them, form a QueryTriple (Fig. 3). A Query-
Triple is a triple in the form of [subject |predicate |object]. The subject and the
object are the two BaseNPs and the modifiers to them extracted from the origi-
nal query. The predicate is composed of the words (may be a preposition, a verb
phrase, etc) that connect the subject and the object together.

Specify internal structure for QueryTriple. A linked BaseNP pair is only
a raw QueryTriple. Since a BaseNP may contain more than nominal words, we
need to separate different contents. First of all, the head nouns for the BaseNPs
are identified. A Head Noun is a nominal word acting as head word [9] in a
BaseNP. The rules to find head noun again follows [9], with the exception that
when conjunction exists, treat all nominal words of conjunctive relations as head
nouns (Fig. 4). As the next step, the internal structure of QueryTriples are spec-
ified. For the subject and the object of each QueryTriple, the internal structure
is in the form of [pre-modifier . head noun . post-modifier]. Here, only the head
noun is mandatory and the pre/post-modifiers represent the words modifying
the head noun or the whole BaseNP.

4.2 OntoTriple Extractor

QueryTriples are only the intermediate forms of the user’s query. We need to
map them to the semantic content in the ontology. This is carried out as below.
First, the OntoTriple Extractor matches the words (especially nominal words)
with the OntoEntities (OntoEntity, short for Ontology Entity, represents con-
cepts, instances, relations/properties in the ontology). Then, it makes use of
lexical and syntactic information extracted with QueryTriples to find the se-
mantic relationships among OntoEntities, which will be explicitly represented
with OntoTriples. The detail is as follows:

Map user words to OntoEntities. The first is to find the corresponding
OntoEntities for each word in the query. For each QueryTriple, we retrieve the
matching OntoEntities for the head nouns of the subject and the object, by in-
voking the Lexicon. The Lexicon employs a number of matching methods, which
can be classified as two types: (1) semantic matching mainly uses general dictio-
naries like WordNet to find synonyms of words; (2) morphological matching uses
WordNet, string metrics or heuristic rules (e.g. algorithms to find abbreviations,
which may also be separately designed when PANTO is adopted to a particular
domain) to find morphologically similar matchings. Different matching methods
are sometimes combined to find matching entities for a word. For example, the
word “states” gets the matching list {State, inState} (Fig. 3). “State” is a class

480 C. Wang et al.

entity retrieved by morphological matching and “inState” is a property entity
matched by a heuristic rule based on naming conventions for ontology and string
metrics algorithms.

Map QueryTriples to OntoTriples. An OntoTriple (short for Ontology
Triple) is a triple that is compatible with some statements in the ontology, in
the form of <subject, predicate, object>, where the predicate can be a relation
(property) and the subject or the object can be a concept (class) or an instance.
When the predicate is a datatype property, the object must be a literal value or
the value type. A nominal word may also be mapped to the predicate, besides the
subject and the object. Therefore, the subject or the object in the QueryTriple
does not necessarily be mapped to that in the OntoTriple. In PANTO, 11 cases
are enumerated for OWL ontology to generate OntoTriple(s) from two OntoEn-
tities. For example, if one OntoEntity is a property and the other is a class which
is the domain of the property, one OntoTriple is generated; if both are properties
and can be related by a class, two OntoTriples are generated. With different
combinations of the matching OntoEntities of the head nouns in the subject and
the object of the QueryTriple, multiple OntoTriples will be generated. When
the predicate of a QueryTriple is not empty, we use it to verify the generated
OntoTriples. For example, from the QueryTriple [river | flows through | mis-
sissippi], we get two OntoTriples <:Mississippi, rdf:type, :River> and <:River,
:runThrough, :Mississippi>. Since “flows through” can be mapped to ontology
property “:runThrough”, we discard the first OntoTriple. On the other hand,
if the two OntoTriples are generated from QueryTriple [river | | mississippi],
we discard the second one. Because this pattern is usually used by people to
indicate an entity [10], in such a case we believe with high confidence that “mis-
sissippi” should be mapped to the entity “Mississippi river” rather than “Missis-
sippi state”. Thus we remove all the other matching OntoEntities for the word
“mississippi”, and finally also discard the triple <:Mississippi, rdf:type, :River>
and only hold that OntoEntity. Besides the OntoTriples generated above, this
module also generates OntoTriples from inside a BaseNP. Take the BaseNP “the
longest river” in Fig. 3 as an example, the OntoTriple Extractor, with the help of
WordNet, transforms “longest” to “long” and then to the nominal form “length”.
Now “length” is used to match OntoEntities. These matching OntoEntities are
then used to generate OntoTriples with those matching OntoEntities of “river”.
Finally, a valid OntoTriple <:River, hasLength, Long> is generated.

Link OntoTriples. A natural language query represents the semantic relation-
ships and constraints among different concepts and individuals in the domain.
When multiple BaseNP pairs are available, there are BaseNPs shared by two
or more QueryTriples. Therefore, a valid OntoTriple set should be linked one
another to form a tree (Fig. 3). Since one word may match multiple OntoEnties,
there may be different combinations and multiple valid OntoTriple result sets.

4.3 Target and Modifier Extractor

To translate a natural language query into a SPARQL query, we must find
the targets, i.e. the words that correspond to the variables after “SELECT” in

PANTO: A Portable Natural Language Interface to Ontologies 481

the resultant SPARQL query. This process is as follows: first find the allowed
wh-word [10] like “what”, “who” and “how” or an enumerated set of command
words like “list”, “give me” and “return”; then take the nouns in the same or the
directly followed constituent as targets (Fig. 4). Detailed rules vary for different
question/command words, and are usually common for different domains.

Filter is provided in SPARQL to enable the users to specify constraints on
relations and variables. Solution Modifier is provided for the users to carry out
operations (Order by, Limit, Offset) on the result. In natural language queries,
both of these are expressed through certain types of words, which we call modi-
fier indicators (Fig. 4). In the current version of PANTO, we mainly deal with
the following: (1)negation, including “not” and “no”; (2)superlative, superlative
words will be tagged as “JJS” (superlative adjective) or “RBS” (superlative ad-
verb); (3)comparative, comparative words will be tagged as “JJR” (comparative
adjective) or “RBR” (comparative adverb); (4)conjunctive/disjunctive, includ-
ing “and” and “or”.

The extractor records the positions and types of targets and modifier indica-
tors, and then send them as input to the SPARQL Generator.

4.4 SPARQL Generator

The targets and modifiers are extracted from the parse tree, and it is straightfor-
ward to relate them with corresponding OntoEntities and OntoTriples extracted
by the OntoTriple Extractor. After that, we interpret them into SPARQL:

SELECT. OntoEntities matched with target words are interpreted as variables
after “SELECT” according to the following rules: (1) If it is a class entity
“:SomeClass”, interpret it as the variable “?someclass”, and add a triple pat-
tern5 <?someclass, rdf:type, :SomeClass> to the “WHERE” clause. (2) If it is
an RDF Literal Type entity, such as “Long”, “String” or the like, directly inter-
pret it as a variable, e.g. “?long”, “?string”, etc.

WHERE. An ordinary OntoTriple is directly interpreted as a triple pattern
after “WHERE”. Instance and property entities are directly interpreted as their
URIs in the ontology. As for class entities or RDF Literal Type entities in each
OntoTriple (except those with the property “rdf:type”), interpret them as vari-
ables according to the above rules for targets. For some complex queries, there
may be multiple words mapped to the same class entity. For example, the two
“state” in the query “what state borders the state that has the largest popu-
lation?” are both mapped to the class entity “:State”. However, they should
obviously be interpreted as different variables. Our current solution is to always
interpret such entities as different variables. [11] mentioned a technique to check
whether such two words mean the same or not, by comparing their local contexts
in the query according to some heuristics, but it requires ad hoc rules. According
to the current experiments, our approach works fine. More investigations will be
carried out as future work. RDF Literal Type entities are treated similarly.

5 http://www.w3.org/TR/rdf-sparql-query/

482 C. Wang et al.

PREFIX : <http://apex.sjtu.edu.cn/nli/geo#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?population ?area

WHERE {

?state rdf:type :State .

?state :hasPopulation ?population .

?state :hasArea ?area .

}

ORDER BY DESC(?population)

LIMIT 1

PREFIX : <http://apex.sjtu.edu.cn/nli/geo#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?river

WHERE {

?river rdf:type :River .

{

 { ?river :runThrough :Mississippi_state . }

 UNION

 { ?river :runThrough :Alaska_state . }

}

}

Query: what is the population and area of the most populated

state?

Query: which rivers run through Mississippi or traverse

Alaska?

Fig. 5. SPARQL queries for the two example queries in Fig. 4

FILTER and Modifiers. Corresponding to the modifier indicators mentioned
above, this part currently includes the following: (1)negation. Negations are in-
terpreted by utilizing the operators “!” and “bound” of SPARQL. For example,
“not” in the query “which river’s length is not 5000” is interpreted as a FIL-
TER clause “(FILTER(?length != 5000))”. Negation on property (relation) are
interpreted by a combination of “OPTIONAL” and “FILTER”. Take the query
“which rivers do not run through Alaska” as an example, “do not” is interpreted
as “{OPTIONAL {{?river :runThrough ?state.} FILTER (?state = :Alaska)}
FILTER (!bound(?state))}”. However, some kinds of negations can not be in-
terpreted, e.g. queries like “which rivers do not run through states bordering
Alaska”. (2)superlative. Superlative modification on datatype can be interpreted
with Order By and Limit (Limit can be removed if there are multiple results)
of SPARQL (e.g. the NL query and its resultant SPARQL query shown in Fig.
3), but superlative modifications that require the functionality of count are not
supported (e.g. “most” in query “which river runs through the most states” can
not be expressed with the current version of SPARQL). (3)comparative. Simi-
lar as above, currently only comparative modification on datatype is supported.
(4)conjunctive/disjunctive. OntoTriples related to conjunctive constituents (con-
junctive BaseNPs or conjunctive head nouns) indicated by “and” are interpreted
as conjunctive triple patterns to the “WHERE” clause by default. Since “and”
may sometimes be used in disjunctive relation (e.g. in the query “list all the
cities in California and Maine”), we need to link their triple patterns with a
“UNION” in such a situation. Currently, when the two conjunctive words are
both mapped to the same class entity (or instances of the same class), multi-
ple SPARQL queries are produced for different interpretations of “and”. Those
OntoTriples related to “or” are always interpreted with a linking “UNION”.

As an example, Fig. 3 depicts the final SPARQL query. Fig. 5 depicts the final
SPARQL queries for the two example queries used in Fig. 4.

5 Experiments and Evaluation

The goal of the experiments is to quantitatively assess the performance and ef-
fectiveness of our approach in the current implementation.

PANTO: A Portable Natural Language Interface to Ontologies 483

Table 1. Performance of PANTO. Row 2 shows the number of original Mooney queries
and row 3 shows that of the selected testing queries (duplicated ones are removed).

Domain Geography Restaurant Job
Original Mooney Queries# 880 250 641
Selected Testing Queries# 877 238 517

Precision 88.05% 90.87% 86.12%
Recall 85.86% 96.64% 89.17%

5.1 System Implementation and Experiment Setup

PANTO was implemented as a stand-alone web application. In the current ver-
sion, it adopts Protégé API6 to access the underlying ontologies. The version
of WordNet used in the system is 2.1. The lexicalized StanfordParser7, version
1.5.1 without additional training, is adopted as the statistical parser. It produces
one parse tree for each input. The experiments were performed on a PC with
2.4GHz P4 CPU and 1G Memory.

Test Data. The test data are based on those provided by Mooney8 which have
been widely used to evaluate natural language interfaces [2,12,13]. There are
test data and queries on three domains: one about geography data in the United
States, one about restaurant information and the third about job announce-
ments. We translated the original three Prolog databases into OWL as the test-
ing ontologies. There are several hundreds of natural language queries for each
domain. We removed the duplicated ones in each query set, Table 1 presents the
numbers of queries for experiments.

5.2 Results and Discussion

Performance. With the initialization time (i.e. loading ontologies and parsers)
excluded, the total average processing time of a query was less than one second
(0.787s) and the running time is related with the scale of the ontology and the
complexity of the query (the length and the number of clauses).

Correctness. In order to assess the correct rate that how many of the translated
queries correctly represent the semantics of the original natural language queries,
we compare the output with the manually generated SPARQL queries. The
metrics we used are precision and recall. For each domain, precision means the
percentage of correctly translated queries in the queries that PANTO produced
an output; recall refers to the percentage of queries that PANTO produced an
output in the total testing query set. Since the queries are originally prepared for
evaluating natural language interface to database, some features in the queries
are not supported by the current version of SPARQL, but we also count them
as correct if they match the manually generated ones.
6 http://protege.stanford.edu/download/registered.html
7 http://nlp.stanford.edu/software/lex-parser.shtml
8 http://www.cs.utexas.edu/users/ml/nldata.html

484 C. Wang et al.

To the best of our knowledge, the only existing system that also translates
generic natural language queries into SPARQL is Querix [14], which provides
preliminary results on the geography dataset with 215 selected queries. Querix
claimed to achieve a precision of 86.08% and recall 87.11%. From Table 1 we can
see that PANTO provides comparable results.

Coverage. In this part we analyze the effectiveness of the approach to inter-
preting the queries in a triple-based model. The experiments on the Mooney
data and queries show that all the correctly parsed natural language queries can
be correctly translated into QueryTriples and then be mapped to OntoTriples
at a high accuracy. What’s more, we also parsed and analyzed the 170 sample
queries presented on the AquaLog web site9. AquaLog claims to be able to parse
these kinds of queries, and with PANTO, all of them can generate pretty good
QueryTriples. Hence we can expect that the PANTO approach can cover the
query scope supported by AquaLog.

6 Limitations and Future Work

The limitations with the current version of PANTO mainly include the following:

Restrictions on Query Scope. Though the triple-based analysis is effective
to cover a broad range of natural language queries, the supported query scope is
still limited. First, PANTO depends on an off-the-shelf parser to correctly parse
the NL queries and thus is limited by the NLP techniques. But we can continu-
ally utilize the new achievements in NLP community. Second, it can not totally
interpret semantics that is beyond the expressiveness of SPARQL (e.g. queries
involving count on instances). When more features are added to SPARQL, these
limitations are expected to be resolved.

Weakness in User Interaction. At present, PANTO is not a full-fledged sys-
tem. It focuses on the query processing step and is currently weak in supporting
complex user interactions. However, a well-designed interaction model can enable
users to paraphrase the query and guide them correctly express their informa-
tion need with system processable input. In future, we will investigate more on
user interaction to make PANTO more effective.

Scalability. The ontologies used for evaluation is relatively small and all process-
ing operations are carried out in memory. An investigation on the system per-
formance with larger ontologies will be part of the future work. Database and
indexing techniques will also be involved.

7 Related Work

Natural language interface to knowledge bases, which can help ordinary users ex-
press their information needs in natural language that they are familiar with and
9 http://kmi.open.ac.uk/technologies/aqualog/examples.html

PANTO: A Portable Natural Language Interface to Ontologies 485

can consequently populate the knowledge bases, has been studied for decades [15,
16]. According to the ability of processing the natural language input, such nat-
ural language interfaces can be classified into two categories, namely, full natural
language interface and restricted natural language interface.

Masque [17] is a typical natural langue interface to databases. It first trans-
forms the natural language query into an intermediate logic representation and
then translates the logic query into SQL. Systems which employ machine learning
methods for transforming natural language query into formal logic representa-
tion or formal query have been studied for many years too. With the training
on domain specific sentences, these systems [18,19,20] gain a good result (pre-
cision can be higher than 95% and recall can reach 80%). However, they need
a lot of domain specific training. In order to avoid the defects brought up by
NLP parsers, many systems only use the shallow parsing result of NLP tools,
e.g. POS tags, chunks, etc. Rodrigo et al. tried to break down the query into
words and form a formal query with words in their semantic search engine for
the international relation sector [21]. Kang et al. have also formed the SQL query
with keywords in [22]. As it is summarized by the authors in [21], “...the query
construction is at present the weakest link in the chain...”. Since PANTO com-
bines the OntoTriples and the modifiers generated from the parse tree and the
Lexicon, it can easily constructs the SPARQL query. NaLIX [4,11] is a generic
natural language interface to XML Database. It focuses on correct parse trees
output by a dependency parser and translated them into XQuery. Querix [14]
is a domain-independent natural language query interface to Ontologies based
on clarification dialogs. It is the only known system that also translates full
natural language queries into SPARQL. Similar to PANTO, Querix also adopts
an off-the-shelf parser (also StanfordParser), but it differs from PANTO in an-
alyzing the parse trees. Querix directly uses the POS tags and a set of heuristic
rules to extract skeletons (e.g. Q-V-N for “what are the population sizes”), while
PANTO identifies BaseNPs and utilizes structure information inside and among
the BaseNPs.

Because of the complexity and ambiguity of full natural language, many sys-
tems only accept queries which are in a subset of natural language. Controlled
natural language, which restricts the terminology and grammar and is equiv-
alent to First Order Logic [23], avoids the ambiguity of full natural language.
Bernstein et al. [2] have adopted Attempto Controlled English to query ontolo-
gies and Nelken et al. [24] have employed controlled language to query historical
databases. The queries are in the form of natural language, but users have to
first learn the syntactic restrictions to make sure they are in the “controlled” set.
PRECISE [13] defines a notion of “semantic tractable” questions on database
and can translate them into SQL queries. However, all tokens must be distinct
and questions with unknown words are not semantically tractable and cannot
be handled. In contract, with the Lexicon, PANTO can deal with questions even
some of them are not “semantic tractable”. Pattern based methods are also
widely used in natural language interfaces. Lopez et al. [25] have classified ques-
tions into 23 categories in AquaLog. If the input query is classified into some

486 C. Wang et al.

category, AquaLog will process it correctly. However, due to the limited cover-
age of the patterns, many queries will be left unresolved. Comparing to other
systems, AquaLog is more similar to PANTO. Its underlying knowledge base is
ontology, it also adopts a triple-based intermediate presentations and it is the
one that introduces the notion of query-triple and onto-triple. The difference is,
AquaLog is based on a shallow parser and depends on handcrafted grammars to
identify terms, relations for composing query-triples, while the parse tree by the
deep parser provides PANTO more modification information between nominal
phrases. What’s more, different from the query-triple of Aqualog, our Query-
Triple are always formed with two nominal phrases (the BaseNP pair). Bern-
stein et al. have also proposed a guided natural language search engine [12,26]
to help users form the query and avoid ambiguity, but the processing ability of
the system is also limited to the defined grammar.

8 Conclusion

This paper presents PANTO, a portable natural language interface to ontologies.
Based on the observation that nominal words or phrases play an important
role in both natural language query and ontology triples, PANTO adopts a
triple-based data model as the intermediate representation to translate natural
language queries into SPARQL. The experiments on three different ontologies
have shown that the PANTO approach produces promising results. Our approach
helps bridge the gap between the logic-based semantic web and real-world users.

Acknowledgments

This work is carried out as part of a university joint research project between
IBM China Research Lab and Department of Computer Science and Engineer-
ing, Shanghai JiaoTong University. The authors sincerely thank the anonymous
reviewers for their valuable comments. We also would like to thank Zhangmei
Yao for his participation in this research.

References

1. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: What Are Ontologies, and
Why Do We Need Them? IEEE Intelligent Systems 14(1) (1999) 20–26

2. Bernstein, A., Kaufmann, E., Göhring, A., Kiefer, C.: Querying Ontologies: A
Controlled English Interface for End-Users. In: International Semantic Web Con-
ference. (2005) 112–126

3. Woods, W., Kaplan, R., Webber, B.: The Lunar Sciences Natural Language Infor-
mation System: Final Report. Technical report, Bolt Beranek and Newman Inc.,
Cambridge, Massachusetts (1972)

4. Li, Y., Yang, H., Jagadish, H.V.: NaLIX: an interactive natural language interface
for querying XML. In: SIGMOD Conference. (2005) 900–902

PANTO: A Portable Natural Language Interface to Ontologies 487

5. Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: ACL. (2003)
423–430

6. Fellbaum, C. In: Wordnet: An Electronic Lexical Database. Cambridge: MIT Press
(1998)

7. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A Comparison of String Distance
Metrics for Name-Matching Tasks. In: IIWeb. (2003) 73–78

8. Noy, N.F., McGuinness, D.L.: Ontology Development 101: A Guide to Creating
Your First Ontology. Technical Report SMI-2001-0880, Stanford University School
of Medicine (2001)

9. Collins, M.: Head-driven Statistical Models for Natural Language Parsing. PhD
thesis, University of Pennsylvania (1999)

10. Quirk, R., et al. In: A Comphrehensive Grammar of the English Language. Long-
man, London (1985)

11. Li, Y., Yang, H., Jagadish, H.V.: Constructing a Generic Natural Language Inter-
face for an XML Database. In: EDBT. (2006) 737–754

12. Bernstein, A., Kaufmann, E., Kaiser, C.: Querying the Semantic Web with Gin-
seng: A Guided Input Natural Language Search Engine. In: 15th Workshop on
Information Technology and Systems (WITS 2005). (2005) 45–50

13. Popescu, A.M., Etzioni, O., Kautz, H.A.: Towards a Theory of Natural Language
Interfaces to Databases. In: Intelligent User Interfaces. (2003) 149–157

14. Kaufmann, E., Bernstein, A., Zumstein, R.: Querix: A Natural Language Interface
to Query Ontologies Based on Clarification Dialogs. In: 5th International Semantic
Web Conference (ISWC 2006), Springer (2006) 980–981

15. Androutsopoulos, I., Ritchie, G., Thanisch, P.: Natural Language Interfaces to
Databases - An Introduction. Natural Language Engineering 1(1) (1995) 29–81

16. Copestake, A., Jones, K.S.: Natural Language Interfaces to Databases. Knowledge
Engineering Review 5(4) (1990) 225–249

17. Androutsopoulos, I., Ritchie, G., Thanisch, P.: An Efficient and Portable Natural
Language Query Interface for Relational Databases. In: 6th International Con-
ference on Industrial and Engineering Applications of Artificial Intelligence and
Expert Systems. (1993) 327–330

18. Zelle, J.M., Mooney, R.J.: Learning to Parse Database Queries Using Inductive
Logic Programming. In: AAAI/IAAI, Vol. 2. (1996) 1050–1055

19. Thompson, C.A., Mooney, R.J.: Automatic Construction of Semantic Lexicons for
Learning Natural Language Interfaces. In: AAAI/IAAI. (1999) 487–493

20. Zhang, L., Yu, Y.: Learning to Generate CGs from Domain Specific Sentences. In:
ICCS. (2001) 44–57

21. Rodrigo, L., Benjamins, V.R., Contreras, J., Patón, D., Navarro, D., Salla, R.,
Blázquez, M., Tena, P., Martos, I.: A Semantic Search Engine for the International
Relation Sector. In: International Semantic Web Conference. (2005) 1002–1015

22. Kang, I.S., Na, S.H., Lee, J.H., Yang, G.: Lightweight Natural Language Database
Interfaces. In: NLDB. (2004) 76–88

23. Fuchs, N.E., Schwertel, U., Torge, S.: Controlled Natural Language Can Replace
First-Order Logic. In: ASE. (1999) 295–298

24. Nelken, R., Francez, N.: Querying Temporal Databases Using Controlled Natural
Language. In: COLING. (2000) 1076–1080

25. Lopez, V., Pasin, M., Motta, E.: AquaLog: An Ontology-Portable Question An-
swering System for the Semantic Web. In: ESWC. (2005) 546–562

26. Bernstein, A., Kaufmann, E., Kaiser, C., Kiefer, C.: Ginseng: A Guided Input
Natural Language Search Engine for Querying Ontologies. In: 2006 Jena User
Conference. (2006)

Mining the Web Through Verbs: A Case Study

Peyman Sazedj and H. Sofia Pinto

Inesc-ID
Rua Alves Redol 9, Apartado 13069 1000-029 Lisboa, Portugal

{psaz,sofia}@algos.inesc-id.pt

Abstract. Mining non-taxonomic relations is an important part of the
Semantic Web puzzle. Building on the work of the semantic annota-
tion community, we address the problem of extracting relation instances
among annotated entities. In particular, we analyze the problem of verb-
based relation instantiation in some detail and present a heuristic domain
independent approach, based on verb chunking and entity clustering,
which doesn’t require parsing. We also address the problem of mapping
linguistic tuples to relations from the ontology. A case study conducted
within the biography domain demonstrates the validity of our results in
contrast to related work, whilst examining the complexity of the extrac-
tion task and the feasibility of verb-based extraction in general.

1 Introduction

Unsupervised annotation tools have promoted a new perspective on harvest-
ing data from the web, whilst presenting a convenient solution for populating
knowledge bases with concept instances. Concept instances alone are not very
expressive, unless accompanied by relations, therefore a lot of effort is being
directed towards unsupervised extraction of non-taxonomic relations. There is
an enormous amount of data on the web, requiring efficient extraction meth-
ods. Moreover the data is error-prone, requiring fault tolerant systems. Shallow
extraction techniques are therefore clearly advantageous over more knowledge
intensive methods, specially when they produce similar or even better results.
Thus, the aim of this work is to present a shallow heuristic approach for min-
ing relation instances through verbs, which achieves satisfactory precision and
recall. The approach has been implemented within the FactBox framework [1],
specifically designed for prototyping relation extraction algorithms and requires
no parsing. Instead, it relies on verb-chunking and clustering to extract verb
and entity pairs. A novel algorithm is presented, to match extracted relation
candidates with relations from the ontology, whenever applicable. Being more
efficient than other approaches based on dependency or full syntactic parsing,
it is a more suitable candidate for mining large and error-prone data from the
web. It also improves over the algorithms presented in [1] and compares to other
state of the art algorithms which follow more knowledge intensive approaches.

Section 2 presents an overview of related work. Section 3 and 4 provide a generic
problem description and a formal analysis of the task at hand. Section 5 discusses

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 488–502, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Mining the Web Through Verbs: A Case Study 489

our algorithms. Section 6 presents the framework which served as a testbed for
their evaluation, followed by a specific case study in section 7, the results of which
are analyzed in section 8. Section 9 summarizes our main conclusions.

2 Related Work

Relation Instantiation falls within the category of Ontology Population, a newly
emerging field within the Semantic Web community. Nevertheless, underlying
techniques are often one and the same with those of the Information Extraction
[2] and Question Answering [3,4] communities. A sister field, Ontology Learning
[5,6], also has similar purpose and methods: to learn relations among concepts,
instead of extracting relation instances among concept instances. One of the dif-
ferences is that ontology learning puts a strong emphasis on statistical analysis,
whereas in relation instantiation the balance is more inclined towards the lin-
guistic component. In the following we discuss some relevant contributions for
mining non-taxonomic relation instances from text.

One class of extraction systems are pattern based systems, with varying de-
grees of linguistic analysis, where patterns may be hand-crafted or automatically
learned. A famous example of hand-crafted patterns are the Hearst patterns for
extracting is-a relations [7]. Instead of using lexical patterns which hardly gener-
alize over different domains, a popular alternative is to apply patterns to deeper
syntactic or semantic structures. Some recent approaches use hand-crafted pat-
terns to extract verb-based relations over dependency parse trees [8,9]. In [10] a
generalization of the Hearst patterns is presented, based on an automatic pat-
tern induction system. Similarly, and equally interesting, are pattern induction
systems over dependency trees [3]. Even though the approach in [3] is targeted
at question answering, it resembles relation instantiation, since the answer to
a question often consists in querying relations among entities. DIPRE [11] and
Snowball [12] are two relation extraction systems which learn patterns from seed
tuples. Similarly, Armadillo [13] applies adaptive information extraction to learn
extraction patterns.

Machine learning systems use a set of training examples, alike pattern induc-
tion systems, to train a classifier. A popular set of classifiers are based on kernel
methods, and in particular, support vector machines. Kernel methods for rela-
tion extraction have been presented in [14]; [15] defines dependency tree kernels
for learning relations from dependency parse trees. LEILA is a recent learning
system which trains a classifier on link grammar structures [16]. A mixed ap-
proach is followed in [17], where probabilistic parse trees are augmented with
entities and relations in order to train a classifier.

Yet another approach consists of transforming text into logical formula [18],
where deduction can be used to extract more complex relations.

3 Generic Problem Description

Our goal is to develop a shallow method for extracting relation instances from
web pages. Throughout the remainder of this paper, we assume that named

490 P. Sazedj and H.S. Pinto

entities of a text have been previously annotated with concepts from an ontology.
In practical terms, annotations are produced by a third-party tool and are then
read by the FactBox framework [1], whose main features will be reviewed in
section 6. Consequently, the challenge lies in extracting those relations among
entities, which have been modeled within the ontology. The problem is a very
complex one, since different relations materialize through an unnumbered variety
of linguistic expressions. Even a single relationship may often be expressed in so
many ways, that we know of no single method for extracting all relations of a
kind. Recent work [5,8] has shown that verbs are invaluable sources of evidence
for retrieving relationships among entities, and methods such as dependency
parsing have become popular for extracting verbs and their arguments. This
work further explores the trend of verb-based extraction methods and aims to
address the problem of relating verb arguments, without parsing, and selecting
those verb-entity pairs which match the semantics of the ontology.

3.1 Divide and Conquer

Ontology-based extraction of relation instances from verbs can be divided into
two sub-problems: (1) the selection of verb arguments (e.g. entity pairs in case
of binary relations) and (2) the mapping of verbs with appropriate relations
from the ontology. Both sub-problems are dependent parts of one whole, resem-
bling a constraint satisfaction problem, where the solution of one restricts the
solution space of the other. Nevertheless, they can be solved in any order, and
the choice is relevant as we will show. Before we analyze each of the problems
in greater detail, consider the example sentence “John works at IBM and likes
Jill”, where John and Jill are instances of person and IBM of company. Assume
that the ontology connects the classes person and company with two relations,
namely employee and investor. Problem (1) consists of selecting the correct
arguments of each verb and would result in the two potential relation candidates
works(John, IBM) and likes(John, Jill). Problem (2), on the other hand,
consists of mapping verbs to relations from the ontology, in this case, to map the
verb works to the relation employee. This two-step process would result in the
extraction of employee(John, IBM). If we start out by determining that John
and IBM are related, the problem is simplified to that of discovering whether any
of employee or investor relations hold. On the other hand, if we had started by
discovering that the verb works matches the employee relation, the argument
selection process would have become restricted to choosing whether John or Jill
work at IBM. In the following we analyze each of the problems in greater detail.

3.2 Selecting Verb Arguments

The most naive solution for this problem is to randomly map each verb with
all entities in some vicinity. If the vicinity is sufficiently large, at maximum
having the size of the whole text, it is guaranteed that all potential matches
will be found. This approach makes little sense of course, and yields factorial
complexity O(n!)1. To simplify argument selection, two restrictions are often
1 To simplify we assume there are no reflexive relations.

Mining the Web Through Verbs: A Case Study 491

implicitly adopted: a locality restriction, only considering arguments in a
local vicinity of the verb (e.g. a part of the sentence); an arity restriction,
focusing on binary relations (since n-ary relations can be decomposed into n
binary relations). The first restriction substantially reduces the search space of
potential entities, whereas the second restriction reduces the complexity of the
task to O(n2). In an ontology-based setup, as in many schema-based setups, a
third restriction applies: a type restriction where the arguments of a relation
must be of a specified type, in other words, only some entity types potentially
match to form relation candidates, filtering out incompatible entity pairs (those
which are not related within the ontology). Complexity is reduced to O(|i| |j|),
where the relation holds among instances of classes i and j. Nevertheless, the
worst case complexity is still of quadratic order.

3.3 Mapping Verbs to Relations

This problem is sometimes solved by using a lexicon which directly maps lexical
elements (such as verbs) to relations from the ontology. Although convenient in
situations where such a lexicon is available, it requires a large amount of work
to build one, specially when mining heterogeneous data from different domains.
We aim to develop a domain-independent strategy which tries to map verbs
to relations based on linguistic evidence. For that purpose, we may roughly
distinguish three degrees of linguistic analyses: (1) a lexical analysis which tries
to establish a lexical equivalence among the verb and the relation name; (2)
a shallow semantic analysis which aims to establish an intentional equivalence
among the verb and the relation name (e.g. by considering synonyms); and (3)
a deep semantic analysis, which tries to match the selectional restrictions of
the verb with the constraints of a relation. In this work we focus on the first
two degrees - a lexical and a shallow semantic approach implemented within
the FactBox framework. The approach consists of locating a verb and a relation
name within the WordNet hierarchy, and deciding whether they are sufficiently
related or not.

4 Formal Analysis

We define an ontology as a set of concepts C ordered by a subsumption relation
within a taxonomy.2 We consider a set of labeled non-taxonomic binary relations
R among concepts of C, denoted as r(c, d), r ∈ R ∧ c, d ∈ C. Entities in the text
are considered instances of concepts and denoted by a set I. For an entity pair
i, j ∈ I and two classes c, d ∈ C of which i and j are instances, let us consider
a relation selector Srel : C × C → R ∪ {⊥}, which, given two concepts c and
d, returns a subset of R, augmented with the empty relation ⊥, which can be
interpreted as the set of potential relations among c and d which are not modeled
within the ontology.
2 We have omitted the formal definition of the subsumption relation for the sake of

simplicity.

492 P. Sazedj and H.S. Pinto

As explained in section 3.2, the argument selection task, S, has a worst case
time complexity of OS(n2) for each verb. This translates into a total complexity
of OS(n2 |V |), considering V the set of all verb occurrences of a corpus. The map-
ping task, M , has a worst case complexity of OM (|V | |R|). In order to understand
how the two sub-problems affect each other and the total problem complexity,
let us consider both solutions SM and MS, depending on the order in which the
problems are solved. In SM (M is solved after S), only a limited subset of rela-
tions will have to be considered and final complexity is OSM (n2 |V | |Srel|). If the
tasks are solved in inverted order, we obtain a complexity of OMS(|V | |R| |i| |j|),
where |i| and |j| are the number of entities of type i and j, applicable to the
relations picked by M .

A few observations follow. The locality restriction of verbs (section 3.2) says
that only arguments within some local vicinity of a verb are plausible candidates.
Let E be the set of entities within the vicinity of a verb, then |E| < ε1, for some
constant ε1. Likewise, |Srel| < ε2 < |R| + 1. A particularity is that both ε1 and
ε2 are constants, whereas |V | grows with the size of the corpus. It follows that
|V | >> ε1, ε2, for a large enough corpus, therefore the time complexity can be
rewritten as O(mε21ε2), where m = |V |. Thus, in reality the problem is of linear
complexity. In a similar way it can be shown that the same holds for OMS .

The question remains which one of the two is more efficient. Since the num-
ber of entities within the vicinity of a verb is always less than a threshold ε1,
the answer lies within the complexity of the ontology. For a large ontology,
|R| / |Srel| > ε21, and SM is the preferred method. The more specific the rela-
tions of the ontology are, the smaller is |Srel| in contrast to |R|, and the better
the performance of SM .

5 Algorithms

Based on the division of the general problem into two sub-problems (section
3.1), we present distinct algorithms, for the selection of verb arguments and for
mapping verbs to relations.

5.1 Selecting Verb Arguments

Regarding the selection of verb arguments, we used a simple verb chunker to
identify verb groups. For each verb group, the challenge consists of discovering
the syntactic arguments of the verb, without parsing. As a first approach (S1)
we consider all entities of a sentence as potential arguments of a verb, thus every
possible entity pair of a sentence is matched with each verb of the sentence.
We are implicitly restricting the vicinity of a verb to the lexical elements of a
sentence, while ignoring verb anaphora, where the arguments of the same verb
instance can span several sentences. Since S1 yields a 100% recall in finding verb
arguments, it is a good baseline to compare with more complex approaches.

S1 : E → P(V) = Vs, Vs ⊆ V

Mining the Web Through Verbs: A Case Study 493

Vs denotes the set of verbs of a sentence and is an element of the powerset of
V . Since a sentence often contains several verbs, we developed a second approach
(S2) which further restricts the vicinity of verbs by dividing the sentence into
segments and centering each segment around a verb. In other words, we employ
clustering, where the number of clusters is equivalent to the number of verbs
within the sentence and each verb is the center of a cluster. For each entity
e ∈ E of the sentence, the challenge consists of assigning it to the correct verb
cluster v ∈ V . 3

S2 : E → V = arg min
v∈V

distance(e, v)

We define a distance function, distance : E × V → IN, which represents the
numerical distance between an entity and the center of a verb cluster. Several
metrics are possible for such a distance function, based on the linguistic evidence
that is considered. We experiment with two metrics (short d1 and d2): (1) the
distance between two words is given by the number of characters in between
them, and (2) the distance is given by the number of words in between them. For
the sentence “John works for IBM but loves Sisco.”, d1(IBM, works) = 5 and
d1(IBM, loves) = 11, whereas d2(IBM, works) = 1 and d2(IBM, loves) = 2.
Moreover d2 ≤ d1, because the number of words is always less than the number
of characters. The main characteristic of d2 over d1 is that it disregards the
length of words and is expected to have a more constant behavior in presence of
both short and lengthy words.

5.2 Mapping Verbs to Relations

Let us recall that the problem consists of mapping verbs to relations from an
ontology (for a more detailed description see section 3.3). We define a mapping
function as a function M which maps a verb v ∈ V to a relation r ∈ R from the
ontology.

M : V → R ∪ {⊥} =

⎧
⎨

⎩

arg maxr∈R similarity(v, r) ≥ θ, θ ∈ [0, 1]

⊥, otherwise.

M returns the relation that maximizes a normalized similarity function de-
fined as similarity : V ×R → [0, 1] and returns no mapping (⊥), if the maximum
similarity between a verb and a relation is below a threshold θ.

As a first approach (M1), we try to establish a mapping by means of string
matching, based on a normalized Smith-Waterman distance [19].

We also define a shallow semantic approach (M2), which queries WordNet in
order to detect whether lexically dissimilar verbs and relation names are similar
or equivalent in meaning, such as synonyms. For example, we may need to match
the compound verb “was born” with a relation from the ontology which may
3 Within a verb cluster, the semantic restrictions of the ontology allowed us to select

entities in the correct order, without the need for additional criteria.

494 P. Sazedj and H.S. Pinto

have been named “born”, “birthday” or “date of birth”. Likewise, suppose we
are mining death dates. It is desirable to match the verbs “deceased” or “passed
away” with a relation such as “date of death”. More concretely, we are looking
for a strategy to assess the similarity of verbs with verbs and verbs with nouns,
whether simple or compound. We start with simple verbs and nouns, then we
generalize for the compounds.

For matching two simple verbs, we simply check whether they belong to the
same synset. We don’t use a criterion based on the subsumption hierarchy of
verbs as commonly done with nouns, because the verb hierarchy is very shallow
and could potentially cause many false positives. For matching a simple verb with
a simple noun, we measure the similarity among the derivationally related nouns
of the verb with the noun. Thus, the task remains of measuring the relatedness
of simple nouns, a well studied problem which may be solved by calculating
the path from the root to the lowest common node that subsumes both nouns.
Finally, the compounds, namely compound verbs and nouns remain. The main
verb of a compound stands always in last position, therefore it is straightforward
to filter out the main verb.4 A compound noun, on the other hand, can be split
into a set of simple nouns. Then, we filter nouns which do not exist in the
WordNet hierarchy and those which characterize the domain of the relation and
not the relation itself. For example a relation named “death date” has a date as
its domain, therefore the noun “date” can be filtered out. We obtain a final set of
nouns, each of which is compared individually with its counterpart, whether verb
or noun. The efficiency of the previous method is not of great concern, because
relation names within the ontology only need to be processed once. This can be
done conveniently as a pre-processing step, before the extraction commences.

To summarize, consider V the set of simple verbs and N the set of simple
nouns within WordNet. Consider V ′ and N ′ the sets of all possible compound
verbs and nouns, respectively. A compound verb has a main verb v ∈ V , so that
∃v∈V , last(v′) = v, v′ ∈ V ′ returns the main verb. Further, consider the functions
synset(v), v ∈ V , which returns the synset of a verb and deriv(v), v ∈ V , which
returns the derivationally related nouns of a verb. Finally, consider the following
functions: sim(ni, nj) ∈ [0, 1], calculates the normalized similarity among two
nouns, split(n) = X, X ∩ N �= {}, splits a compound noun into its simple parts
and filter(X) = X ′, X ′ ⊆ X ∩ N , filters irrelevant nouns.

Our WordNet based similarity algorithm (SimWn) is hence defined as follows:

SimWn : x×y → [0, 1] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 x ∈ synset(y) ∧ x, y ∈ V
sim(x, y) x, y ∈ N
sim(last(x), y) x ∈ V ′

max∀n,n∈deriv(x) sim(n, y) x ∈ V ∧ y ∈ N
max∀n,n∈filter(split(y)) sim(x, n) y ∈ N ′

0 x, y /∈ V ∪ V ′ ∪ N ∪ N ′

4 This observation applies, at least, to the verb chunker we used.

Mining the Web Through Verbs: A Case Study 495

6 FactBox Framework

FactBox is a testbed for relation instantiation algorithms and supports ontology
population. It is composed of three plugin-based components: (1) an Extraction
Component, (2) a Relation Base and (3) a Similarity Matcher. The Extraction
Component is divided into an entity and a relation extraction component. An-
notations of named entities can be produced by a third-party tool, given that a
plugin is provided which reads the annotations and populates the Entity Base of
the system. Entities are then read by relation extraction algorithms which pop-
ulate the Relation Base with relation candidates. The Relation Base contains
a rule chain which is capable of adding, retracting and transforming relation
candidates by applying deductive rules (similar to implications of FOL). Finally,
the Similarity Matcher tries to match instances of the Relation Base with rela-
tions from an ontology and populates a knowledge base with relation instances.
Given a gold standard, the system performs automatic evaluation of the relation
extraction algorithms over a corpus.

Extraction Component Relation Base Similarity Matcher

E
n
ti
ty

E
x
tr
a

c
to

r

R
e

la
ti
o

n
E
x
tr
a

c
to

r

Entity Base Relation

Base

Rule Chain

A

C

B1
C2

B

John works for IBM

He is part of a

Major undertaking.

Bill also works for

IBM ...

A

C

B1
C2

B

Similarity Matcher

Fig. 1. The conceptual architecture of FactBox and its three main components

Figure 1 illustrates the architecture of the framework. The algorithms for
selection of verb arguments (section 5.1) have been implemented as relation
extraction plugins and the mapping algorithms (section 5.2) as plugins of the
Similarity Matcher. For additional information on the framework, see [1].

7 Case Study: Biographies from IMDb

One of the challenges of ontology based relation extraction is to find appro-
priate corpora and ontologies for testing systems. This limitation has led some
researchers to evaluate their systems on different domains, making comparison
of results difficult; it has led others to work on a very small set of relations of
a particular domain. In choosing a domain of interest, we attempted to pick a
domain which is generally interesting for the public and can be reused in other
experiments. We also tried to pick a domain which had already been tackled by
other researchers. As another requirement, it should present the researcher with
a wealth of possible relations. The last requirement was that the corpus should

496 P. Sazedj and H.S. Pinto

be as large as possible, preferably having been written by different people, in
order to cover as many forms of expressing a relation as possible. The aforemen-
tioned conditions led us to create a corpus of biographies.5 In this case study, we
aim to explore the practical complexity of the extraction task, the performance
of our approach, and the coverage of verbs with regard to other part of speech
that may indicate the same relationship. In the following, we present the corpus,
explain how it was acquired, describe the relations to be extracted and present
some useful statistics on the corpus.

7.1 The IMDb Biography Corpus

The Internet Movie Database (IMDb) is a popular site for looking up infor-
mation on movie reviews.6 The site also offers a wealth of information about
people involved with movies, including biographies of actors, directors and pro-
ducers. Information on IMDb is a result of social collective effort. Having been
written by thousands of people, it is reasonable to expect that biographies re-
flect different writing styles, rendering this corpus particularly interesting for
the proposed analysis. Additionally, the IMDb site also offers some informa-
tion in semi-structured form, such as date and place of birth or death. This
information is very useful for automatically mining a golden standard for those
relations. Crawling the IMDb site for biographies, we obtained a corpus of 2695
documents.7

7.2 Relations of Interest

From among the many possible relations of interest within the biography do-
main, we had to pick a few. Although our corpus is domain-specific, covering
biographies of the movie domain, we aim to extract relations which are general
enough to be applied to any biography. This choice is based on two reasons: (1)
to ease comparison with other works, (2) because the annotation tool we used for
marking-up named entities, by default, only recognizes people, organizations,
dates and locations, making it difficult to work with domain-specific relations.

Thus, we came up with the following relations of interest: birthday,
birthplace, death date, death place, spouse and study. Our ontology con-
taining the aforementioned concepts and relations is illustrated in figure 2. The
ontology was formalized in OWL. The birthday and death date relations were
designed as functional relations, to ensure that each person had unique birth and
death dates.

7.3 Statistics

Table 1 summarizes useful statistical estimates for the corpus, which were ex-
tracted from a random sample of 50 biographies. The first row summarizes the
5 http://www.inesc-id.pt/˜psaz/
6 http://www.imdb.com
7 At some point we ended the crawling process; 2695 is not the total number of

biographies available at IMDb.

Mining the Web Through Verbs: A Case Study 497

Person

Location

School

Organization

Date
death date

birthday

spouse

birthplace

death place
College

Academy

Learn

-ing institute

University

study

Fig. 2. The conceptual model of the biography ontology

number of instances of each relation without anaphora resolution, that is, dis-
regarding pronouns as possible verb arguments. The second row considers only
those relations where pronoun anaphora occurred, and row three sums up the
total number of verb instances for each kind of relation. The next row is an
estimate of the number of relation instances that occur per document, given in
percentages. Finally, we show how often a relation occurs in other part of speech,
apart from verbs, and calculate the coverage of verbs within the last row.

Table 1. Sample statistics and rough estimates for the corpus. VI stands for Verb
Instances.

birthday birthplace study spouse death date death place

VI 26 53 7 3 4 4

VI with anaphora 1 5 21 14 10 4

Total VI 27 58 28 17 14 8

VI p/ document 0.52 1.1 0.14 0.06 0.08 0.08

Non VI 0 0 0 16 1 0

VI coverage (%) 100 100 100 52 93 100

A number of conclusions follows from the data in table 1. Only the birthday
and birthplace relations exist abundantly, without considering anaphora. This
is justified by the fact that a person’s name is usually referred to in the beginning
of a biography, jointly with date and place of birth, whereas future references
to the person are made with pronouns. With anaphora resolution, the study,
spouse and death date relations also occur sufficiently often. Regarding dates
and places of death, they appear with low frequency, since most of the covered
actors are still alive.

A major point under study is the coverage of verbs with regard to other part
of speech. The data clearly shows the selected relations are mostly covered by
verbs, except for the spouse relationship. The estimates hint that verb-based
extraction methods promise to perform well on many domains such as the one
under evaluation.

498 P. Sazedj and H.S. Pinto

Table 2. Different modes of expressing the same relation

birthday study
<person> was born on <date> <person> was educated at <school>
Born on <date>, <person> <person> majored at <school>
<person> was born ... on <date> <person> attended <school>
birthplace <person> was transferred to <school>
<person> was born in <location> during ... at <school>, <person>
Born in <location>, <person> After graduation at <school>, <person>
<person> was born ... in <location> <person> graduated from <school>
<person> was born ... in <location>, <location> death date
spouse <person> died on <date>
After <person>’s divorce from <person> On <date>, <person> was killed by
<person> married <person> <person> was found dead ... <date>
<person> remarried <person> death place
his wife <person> <person> died in <location>
her husband <person> <person> passed away ... <location>

From among the different verbal expressions we encountered in the sample,
we selected a few to illustrate different ways of expressing each relation. The
patterns are summarized in table 2.

8 Evaluation

It is extremely difficult to evaluate extraction systems on large corpora. Either a
gold standard is somehow available for the entire corpus, or a sample has to be
selected for which a reference is manually created. The work in [12] follows an
interesting approach, automatically mining a reference standard from structured
data, whilst manually creating a reference standard for a smaller subset of their
corpus. They argue that both solutions are interesting. The former allows to
gain valuable insight into large-scale extraction, which is often the actual aim of
the work, while the latter allows to fine-tune results by detecting named-entity
tagging errors. For obvious reasons, the two approaches may differ considerably
in their results.

An overall important detail is to distinguish among a priori and a posteriori
evaluations [5,20]. In an apriori evaluation, the gold standard is created before
hand and the results of the system are measured against the reference. In an
a posteriori evaluation, results are presented to an evaluator, who then decides
which of them are correct and which are not. Comparing the strict a priori
method with the more relaxed a posteriori, the work in [5] reports a degradation
of about 10% in the precision of the former over the latter.

In our case, the FactBox framework is provided with a gold standard in digi-
tal format and the system automatically produces an a priori evaluation without
human intervention. Following the approach of [12], we attempted to create two
gold standards, one manually over a small subset of documents (section 8.1), and
the other automatically over a larger subset (section 8.2).8 Both experiments are
described in the following. It is important to note that we used an unsupervised
8 Structured information for automatically creating a gold standard was only available

for a subset of the corpus.

Mining the Web Through Verbs: A Case Study 499

named entity tagger and verb chunker, plugins of the Gate architecture [21], there-
fore a degradation of 10-20% is expected in all experiments due to tagging errors.

In both experiments, evaluation scores are presented separately for each re-
lation, in order to convey deeper insight on the performance of each. Standard
Precision, Recall and F1 metrics are defined as

P =
|Res ∩ G|

|Res|
, R =

|Res ∩ G|
|G| , F1 =

2PR

P + R

where Res is the result set (the set of instances that were mined) and G is the
gold standard set.

8.1 Experiment 1

We randomly selected a sample of 50 documents from the corpus and manually
created a gold standard for the sample. Recall that in section 5.1 we defined three
algorithms for selecting verb arguments, a baseline S1 and an improvement over
the baseline which was defined based on two different distance metrics, S2.d1 and
S2.d2. We compare the performance of the three algorithms with the birthday
and birthplace relations. Since these two relations are those which occur more
frequently, they are appropriate candidates. Additionally, both relations always
materialize through the verb “born”, meaning that the performance of the verb
mapping algorithm can be discarded and the results do accurately reflect the
performance of the verb argument selection algorithms. Table 3 summarizes our
results.

Table 3. Comparison of different verb selection algorithms defined in section 5.1

S1 S2.d1 S2.d2

Precision (%) 58.5 75.4 75.8

Recall (%) 77.5 69.0 70.4

F1 (%) 66.7 72.1 73.0

The results are quite interesting and a few conclusions follow. First, we re-
mark that the baseline which was supposed to obtain 100% recall, only obtains
77.5% recall. It is highly likely that the 22.5% decline in recall is due to name
entity and verb chunking tagging errors. Thus, we should bear in mind that all
results presented in the remainder of this paper may actually be improved up to
approximately 20% if better taggers are used. Moreover, both distance metrics
improve over the baseline and algorithm S2.d2, based on a word distance metric,
works best. In the remainder of our evaluations we use this algorithm.

In the following we inspect the performance of our approach for each kind of
relation. Evaluation scores are presented in table 4.

The birthday and birthplace relations obtain very high precision and re-
call, given that the values include up to 20% of tagging errors. Our results are
similar to those obtained by the machine learning approach in [16], who trained

500 P. Sazedj and H.S. Pinto

Table 4. Evaluation scores for each kind of relation

birthday birthplace study spouse death date death place study(2) marry

Precision (%) 77.3 75.0 0 0 50.0 21.4 66.7 25.0

Recall (%) 73.9 68.8 0 0 50.0 75.0 57.1 33.3

F1 (%) 75.6 71.7 0 0 50.0 33.3 61.5 28.6

a classifier on the birthday relation and obtained precision and recall in the
range of 70-80%. It is unclear whether their approach included tagging errors
or not.

Regarding the study and spouse relations, we found that both of them had
unhappy designations, since our mapping algorithm failed to match them with
corresponding verbs. In table 2 one can see that the study relation is not ex-
pressed in a consistent way; very loose semantic associations between people
and schools are sufficient to express this relation. Therefore, we implemented a
transformation rule within FactBox, which transformed relations between people
and schools into study relations. Regarding the spouse relation, we changed its
name to marry. The last two columns of table 4 reflect the improvements that
followed from these simple adaptations.

8.2 Experiment 2

In a second experiment, we evaluated the scalability of our approach by using
larger samples. For that purpose, we automatically created a gold standard by
mining structured data from the IMDb web site. This data is available for the
birthday, birthplace, death date, death place and spouse relations. The
mined data for each relation was only considered suitable, to be included in
the gold standard of a biography, if it actually occured within the biography.
This is so, because data available in structured form was often not mentioned
within the biographical text. Unfortunately, this approach has a pitfall, since it
does not exclude relations whose entities are referred to by pronouns. Since we
do not have an automatic anaphora resolution module yet, only the birthday

0

0,1

0,2

0,3

0,4

0,5

0,6

50 100 150 200 250

precision

recall

f1

Fig. 3. Precision, Recall and F1 curves for different sample sizes

Mining the Web Through Verbs: A Case Study 501

and birthplace relations are considered in this experiment, since they do not
frequently occur with pronouns. Results are shown in figure 3.

We started with a sample of 50 documents and gradually increased the sample
size. The recall values are very low in this experiment due to a faulty construction
of the gold standard. In particular, having automatically obtained the place of
birth of an actor, we check whether it is mentioned in the biography in order to
decide whether to include it in the gold standard or not. This seems to be an
unreliable approach, since the place of birth is often mentioned with some other
intention, not expressing the actual birthplace relationship. Nevertheless, the
experiment shows that the output of our approach remains stable over large
samples, indeed results improved with larger samples until they converged.

9 Concluding Remarks

This work is a contribution towards large scale relation extraction from the web.
We analyzed the problem of verb-based relation extraction and divided it into
two sub-problems, leading to two novel algorithms: an unsupervised heuristic
approach which performs verb-entity clustering, and an algorithm for mapping
verbs to relations from an ontology. In a first experiment we showed that verb-
based relation extraction is a feasible solution for mining relations from the
web, and that, our approach in particular, compares to other state of the art
algorithms that require more complex techniques. In a second experiment we
tested the scalability of our approach, showing that it converges over larger
samples. We also described the problems we encountered, namely, that verb
arguments are often referred to by pronouns, requiring anaphora resolution to
increase recall up to 5 times for of some relations. Future work includes the
development of an efficient anaphora resolution module to be integrated within
the FactBox framework and an improvement of current algorithms.

References

1. P. Sazedj and H. S. Pinto, FactBox - a Framework for Instantiating Ontological
Relations from Text, in Workshop on Web Content Mining with Human Language
Technologies at ISWC, 2006.

2. E. Marsh and D. Perzanowski, MUC-7 Evaluation of IE Technology: Overview of
Results, http://www.itl.nist.gov/iaui/894.02/related projects/muc/index.html.

3. D. Lin and P. Pantel, DIRT - Discovery of Inference Rules from Text, in Proceedings
of KDD, pp. 323–328, 2001.

4. D. Ravichandran and E. H. Hovy, Learning surface text patterns for a Question
Answering System, in ACL, pp. 41–47, 2002.

5. A. Schutz and P. Buitelaar, RelExt: A Tool for Relation Extraction from Text in
Ontology Extension, in Proceedings of ISWC, pp. 593–606, 2005.

6. A. Maedche and S. Staab, Discovering Conceptual Relations from Text, in Pro-
ceedings of ECAI, pp. 321–325, 2000.

7. M. A. Hearst, Automatic acquisition of hyponyms from large text corpora., in
COLING, pp. 539–545, 1992.

502 P. Sazedj and H.S. Pinto

8. M. Ciaramita, et al, Unsupervised Learning of Semantic Relations between Con-
cepts of a Molecular Biology Ontology, in Proceedings of IJCAI, pp. 659–664, 2005.

9. L. Specia and E. Motta, A Hybrid Approach for Relation Extraction Aimed at the
Semantic Web, in Proceedings of FQAS, pp. 564–576, 2006.

10. R. Snow, D. Jurafsky, and A. Y. Ng, Learning Syntactic Patterns for Automatic
Hypernym Discovery, in NIPS, 2004.

11. S. Brin, Extracting Patterns and Relations from the World Wide Web, in WebDB,
pp. 172–183, 1998.

12. E. Agichtein, Extracting Relations From Large Text Collections, Ph.D. thesis,
Columbia University, 2005.

13. F. Ciravegna, et al, Learning to Harvest Information for the Semantic Web, in
Proceedings of ESWS, pp. 312–326, 2004.

14. D. Zelenko, C. Aone, and A. Richardella, Kernel Methods for Relation Extraction.
Journal of Machine Learning Research, volume 3, pp. 1083–1106, 2003.

15. A. Culotta and J. S. Sorensen, Dependency tree kernels for relation extraction., in
ACL, pp. 423–429, 2004.

16. F. M. Suchanek, G. Ifrim, and G. Weikum, Combining linguistic and statistical
analysis to extract relations from web documents, in KDD, pp. 712–717, 2006.

17. S. Miller, et al, A Novel Use of Statistical Parsing to Extract Information from
Text, in ANLP, pp. 226–233, 2000.

18. D. I. Moldovan and V. Rus, Logic Form Transformation of WordNet and its Ap-
plicability to Question Answering, in ACL, pp. 394–401, 2001.

19. T. F. Smith and M. S. Waterman, Identification of common molecular subse-
quences. Journal of Molecular Biology, volume 147, pp. 195–197, 1981.

20. P. Cimiano, M. Hartung, and E. Ratsch, Finding the Appropriate Generalization
Level for Binary Relations Extracted from the Genia Corpus, in LREC, pp. pp.
161–169, 2006.

21. H. Cunningham, R. J. Gaizauskas, and Y. Wilks, A General Architecture for Lan-
guage Engineering (GATE) - a new approach to Language Engineering R&D, Tech-
nical Report, Dept. of Computer Science, University of Sheffield, 1996.

What Have Innsbruck and Leipzig in Common?

Extracting Semantics from Wiki Content

Sören Auer1,2 and Jens Lehmann1

1 Universität Leipzig, Department of Computer Science, Johannisgasse 26,
D-04103 Leipzig, Germany

{auer,lehmann}@informatik.uni-leipzig.de
2 University of Pennsylvania, Department of Computer and Information Science

Philadelphia, PA 19104, USA
auer@seas.upenn.edu

Abstract. Wikis are established means for the collaborative authoring,
versioning and publishing of textual articles. The Wikipedia project, for
example, succeeded in creating the by far largest encyclopedia just on
the basis of a wiki. Recently, several approaches have been proposed on
how to extend wikis to allow the creation of structured and semantically
enriched content. However, the means for creating semantically enriched
structured content are already available and are, although unconsciously,
even used by Wikipedia authors. In this article, we present a method for
revealing this structured content by extracting information from tem-
plate instances. We suggest ways to efficiently query the vast amount of
extracted information (e.g. more than 8 million RDF statements for the
English Wikipedia version alone), leading to astonishing query answer-
ing possibilities (such as for the title question). We analyze the quality of
the extracted content, and propose strategies for quality improvements
with just minor modifications of the wiki systems being currently used.

1 Introduction

Wikis are established means for the collaborative authoring, versioning and pub-
lishing of textual articles. Founded on Ward Cunninghams design principles1,
wikis dramatically simplify the process of creating and maintaining content by
a community of readers and at the same time authors.

A large variety of wiki systems for all possible technical environments and
application domains emerged, ranging from lightweight personal wikis focusing
on personal information management to full-fledged enterprise wiki systems with
integrated groupware functionality. Services based on wikis, such as the provi-
sion of wiki farms, support knowledge base wikis, or the maintenance of wikis as
intranet sites are provided and employed by startup companies and established
global players. Countless special interest wikis on the Web build enormous con-
tent collections from travel information for the global village (e.g. on Wikitravel)
to local news and gossip on city wikis (such as stadtwiki.net).
1 http://c2.com/cgi/wiki?WikiDesignPrinciples

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 503–517, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://c2.com/cgi/wiki?WikiDesignPrinciples

504 S. Auer and J. Lehmann

However, the most famous and successful wiki project probably is Wikipedia2.
It succeeded in creating the by far largest encyclopedia authored by a globally
distributed community just on the basis of a wiki. Wikipedia editions are avail-
able in over 100 languages with the English one accounting for more than 1.5
million articles.

To be able to ‘tap’ this knowledge by machines, recently, several approaches
have been proposed on how to extend wiki systems to allow the creation of
structured and semantically enhanced content. Modulo minor variations, all of
them suggest to enrich the textual wiki content with semantically interpretable
statements. The project Semantic Wikipedia [15,24] for example proposes to
integrate typed links and page attributes into Wiki articles in a special syntax.
It is a straightforward combination of existing wiki systems and the Semantic
Web knowledge representation paradigms.

Unfortunately, this approach has several drawbacks: Wikipedia authors have
to deal with another means of syntax within wiki texts (in addition to many
existing ones). Adding more and more syntactic possibilities counteracts ease of
use for editors, thus antagonizing the main advantage of wikis - their unbeatable
simplicity. In addition to that, existing (possibly already structured) content
in Wikipedia may have to be manually converted or even duplicated. Finally,
the approach requires fairly deep changes and additions to the MediaWiki soft-
ware with unknown effects on its scalability. Scalability is, due to persistently
enormous growth in access rates, presently the most pressing technical issue
Wikipedia has to face.

However, the means for creating semantically enhanced structured content
are already available and used (although unconsciously) by Wikipedia authors.
More precisely, MediaWiki, the wiki software behind Wikipedia, enables authors
to represent structured information in an attribute-value notation, which is ren-
dered inside a wiki page by means of an associated template. Many Wikipedia
pages contain templates, often for layout purposes, but still approximately a
quarter to one third of the Wikipedia pages already today contain valuable
structured information for querying and machine interpretation.

To be able to query, recombine and reason about this structured information,
we present in this paper methods (a) to separate valuable information from less
important one, (b) to extract this information from templates in wiki texts and
convert it into RDF under usage of unified data types, (c) to query and browse
this information even though its schema is very large and partly rudimentary
structured. Further, we analyze the quality of the extracted content, and propose
strategies for quality improvements with just minor modifications of the wiki
systems being currently used.

2 Knowledge Extraction from Wikipedia Templates

We are not aware of any general approaches for extracting information from all
templates in Wikipedia. We will first explain templates and then show how their
2 http://www.wikipedia.org

http://www.wikipedia.org

What Have Innsbruck and Leipzig in Common? 505

inherent structure can be used to extract meaningful information. In contrast to
the Semantic Wikipedia approach, this has the advantage that we can use already
existing information, i.e. we do not need to modify the MediaWiki software
(on which Wikipedia is based) to enrich it with support for expressing RDF
statements. Hence, our approach can be of immediate use and overcomes the
obstacles outlined in Section 1. Semantically enriching wiki templates has been
discussed in [15, Section 3.1]. However, we will show that even with the template
mechanisms currently available in many wikis, in particular Wikipedia, it is
possible to accurately extract useful information.

2.1 MediaWiki Templates

MediaWiki supports a sophisticated template mechanism to include predefined
content or display content in a determined way. A special type of templates are
infoboxes, aiming at generating consistently-formatted boxes for certain content
in articles describing instances of a specific type. An example of the application of
an infobox template for the city Innsbruck and the generated HTML table repre-
sentation on the resulting Wikipedia page is visualized in Figure 1. Such infobox
templates are used on pages describing similar content. Other examples include:

– Geographic entities: countries, cities, rivers, mountains, . . .
– Education: university, school, . . .
– Plants: trees, flowers, . . .
– Organizations: companies, sports teams, . . .
– People: politicians, scientists, presidents, athletes . . .

More information can be found in the Wikipedia infobox template article3.

2.2 Extraction Algorithm

To reveal the semantics encoded in templates we developed an extraction algo-
rithm operating in five stages:

Select all Wikipedia pages containing templates.Wikipedia pages are retrieved by
an SQL query searching for occurrences of the template delimiter ”{{” in the
text table of the MediaWiki database layout. The SQL query can be adopted
to select only pages for particular Wikipedia categories or containing specific
templates to generate fragments of the Wikipedia content for a certain domain.

Extract and select significant templates. All templates on a Wikipedia page are
extracted by means of a recursive regular expression. Since templates serve dif-
ferent needs, we extract those with a high probability of containing structured
information on the basis of the following heuristic: templates with just one or
two template attributes are ignored (since these are templates likely to function
as shortcuts for predefined boilerplates), as well as templates whose usage count
is below a certain threshold (which are likely to be erroneous). The extraction

3 http://en.wikipedia.org/wiki/Wikipedia:Infobox_templates

http://en.wikipedia.org/wiki/Wikipedia:Infobox_templates

506 S. Auer and J. Lehmann

1 {{Infobox Town AT |
2 name = Innsbruck |
3 image_coa = InnsbruckWappen.png |
4 image_map = Karte-tirol-I.png |
5 state = [[Tyrol]] |
6 regbzk = [[Statutory city]] |
7 population = 117,342 |
8 population_as_of = 2006 |
9 pop_dens = 1,119 |

10 area = 104.91 |
11 elevation = 574 |
12 lat_deg = 47 |
13 lat_min = 16 |
14 lat_hem = N |
15 lon_deg = 11 |
16 lon_min = 23 |
17 lon_hem = E |
18 postal_code = 6010-6080 |
19 area_code = 0512 |
20 licence = I |
21 mayor = Hilde Zach |
22 website = [http://innsbruck.at] |
23 }}

Fig. 1. Example of a Wikipedia template and rendered MediaWiki output for Austrian
towns applied for Innsbruck

algorithm can be further configured to ignore certain templates or groups of
templates, based on specific patterns.
Parse each template and generate appropriate triples. A URL derived from the
title of the Wikipedia page the template occurs in is used as subject for templates
which occur at most once on a page. For templates occurring more than once on a
page, we generate a new identifier being used as subject. Each template attribute
corresponds to the predicate of a triple and the corresponding attribute value is
converted into its object. MediaWiki templates can be nested, i.e. the attribute
value within a template can again be a template. In such a case, we generate a
blank node linking the attribute value with a newly generated instance for the
nested template.
Post-process object values to generate suitable URI references or literal values.
For MediaWiki links (e.g. ”[[Tyrol]]” in line 4 of Figure 1) suitable URI refer-
ences are generated referring to the linked Wikipedia article. (Currently, we ig-
nore the special case that the link denoting brackets could be part of the template
definition.) Typed literals are generated for strings and numeric values. Common
units (such as m for meter, kg for kilogram, s for seconds) are detected and en-
coded as special datatypes (cf. Table 1). However, a conversion between different
scales (e.g. between mm, cm, m, km) is not performed. Furthermore, comma
separated lists of the form [[Jürgen Prochnow]], [[HerbertGrönemeyer]],
[[Martin Semmelrogge]] are detected and, depending on configuration options,
converted into RDF lists or individual statements.

What Have Innsbruck and Leipzig in Common? 507

Table 1. Detection of literal datatypes (excerpt)

Attribute
type

Example Object data
type

Object value

Integer 7,058 xsd:integer 7058
Decimals 13.3 xsd:decimal 13.3
Images [[Image:Innsbruck.png|30px]] Resource c:Innsbruck.png
Links [[Tyrol]] Resource w:Tyrol
Ranks 11th u:rank 11
Dates [[January 20]] [[2001]] xsd:date 20010120
Money $30,579 u:Dollar 30579
Large numbers 1.13 [[million]] xsd:Integer 1130000
Big money $1.13 [[million]] u:Dollar 1130000
Percent values 1.8% u:Percent 1.8
Units 73 g u:Gramm 73

Determine class membership for the currently processed Wikipedia page. Wiki-
pedia pages are organized in categories. In some cases, these can be interpreted
as classes subsuming instances described by Wikipedia pages in the correspond-
ing category. Furthermore, the name of the template can be an indicator for a
certain class membership. The categories itself are Wikipedia pages and are of-
ten organized into super-categories. Unfortunately, here the sub-category super-
category relationship often refers more to being ”related-to” than constituting a
subsumption relation. We are currently working on improving class membership
detection.

2.3 Extraction Results

We tested the extraction algorithm with the English Wikipedia content (avail-
able from http://dumps.wikimedia.org/enwiki). The overall time needed to
extract template instances and convert them to RDF for the approx. 1.5 Mio
English Wikipedia articles (accounting for roughly 10GB raw data) was less than
one hour on a computer with Xeon 2.80GHz CPU and 1GB of main memory.
The raw extraction results as well as the source code of the extraction algorithm
are available from http://wikipedia.aksw.org/.

Table 2 shows some extraction statistics. The first column contains general
information about extracted quantities. Overall, more than 8 Mio triples were
obtained from the English Wikipedia. Each triple belongs to one of about 750,000
templates, which can be grouped in approx. 5,500 template types. This means
a template is used 137 times on average. In the extracted ontology, 650,000
individuals are connected by 8,000 properties and the class hierarchy consists of
111,500 classes (all numbers approximated).

The second column displays the most frequently used templates and how
much instances of them exist in Wikipedia. The third column shows similar
information for attributes. Table 3 exhibits the properties extracted from some
frequently used templates.

http://dumps.wikimedia.org/enwiki
http://wikipedia.aksw.org/

508 S. Auer and J. Lehmann

Table 2. Extraction results: overall statistics, most used templates, and most used
attributes

Statistics:
Template
types

5,499

Template in-
stances

754,358

Templates per
type

137.18

Attributes per
instance

8.84

Categories 106,049
Classes 111,548
Instances 647,348
Properties 8,091
Triples 8,415,531

Templates:
succession box 72262
election box 48206
infobox album 35190
taxobox 29116
fs player 25535
nat fs player 15312
imdb title 15042
infobox film 12733
imdb name 12449
fs squad2 player 10078
infobox cvg 7930
infobox single 7039
runway 6653

Attributes:
name 301020
title 143887
image 110939
years 89387
before 79960
after 78806
genre 77987
type 74670
released 74465
votes 59659
reviews 58891
starring 57112
producer 53370

2.4 Obstacles

Since there are not many restrictions on the design of Wikipedia templates, there
are a number of obstacles, which can lead to undesired extraction results in some
cases.

First of all, templates are not yet used everywhere in Wikipedia, where they
are appropriate. Sometimes tables or other means are used to display structured
information.

For certain content (e.g. planets) infobox templates are not used to separate
content from presentation, but for each content object a separate template con-
taining attributes is created. Similarly, layout information is sometimes encoded
directly in templates (e.g. color information) and templates for certain content
are made up of from many small element boxes (e.g. chemical elements), even
when this is not necessary.

Table 3. Extracted properties for specific templates

Template/
Class

No. of
Instances

Used properties

Music album 35190 name, artist, cover, released, recorded, genre, length, la-
bel, producer, reviews, last album, next album

Species 29116 binomial, genus, genus authority, classis, phylum, subfa-
milia, regnum, species, subdivision

Film 12733 starring, producer, writer, director, music, language, bud-
get, released, distributor, image, runtime

Cities 4872 population total, population as of, subdivision type,
area total, timezone, utc offset, population density,
leader name, leader title

Book 4576 author, genre, release date, language, publisher, country,
media type, isbn, image, pages, image caption

What Have Innsbruck and Leipzig in Common? 509

Attributes sometimes contain (from a knowledge representation viewpoint) re-
dundant information, whose purpose is more intuitive visual representation as for
example: [[Innsbruck]], [[Austria]]. In other cases, multiple values are en-
coded in one attribute instead of cleanly separating them in different attributes,
e.g. foundation = [[California]] ([[April 1]], [[1976]]). Furthermore,
duplicate information is sometimes present in attribute values, e.g. height =
5’11" (180cm). The last example also shows that different units are used as at-
tribute value, often depending on the locality of the intended audience of an article.

2.5 Guide for Designing Semantically Rich Templates

Despite all the obstacles described in the previous section, we were still surprised
by the enormous amount of meaningful and machine interpretable information
we were able to extract from Wikipedia templates. In order to improve extrac-
tion, we want to suggest some guidelines for defining templates in this section.
We mention them here to outline how the extraction results could be improved
further. Please note, that following these guidelines is not only good for semantic
extraction, but usually also improves the corresponding template in general, i.e.
it becomes more convenient to use by article authors.

– Do not define attributes in templates, which encode layout information.
Rather, let the template handle the representation. (This corresponds to
the well known principle of separating content and its presentation.) Along
the same line, HTML markup should be used in attribute values only when
necessary.

– Use only one template for a particular itemof interest, instead of using one tem-
plate for each attribute. Currently, the later version of templates is still present
in many Wikipedia articles, although the former is emerging as the standard.

– Each attribute should have exactly one value within an article template. This
value can be a list of values. However, one should not mix several statements
(from an RDF point of view) within one attribute value.

– Currently, images in the English Wikipedia are retrieved from two places,
depending on the definition of a template: Wikipedia Commons and the
media library for the English Wikipedia . Thus, it is not possible to determine
the location of an image without analyzing the definition of a template, which
is an unnecessary complication. However, Wikipedia Commons is emerging
as a standard, so the number of problematic cases is already decreasing.

– Do not use different templates for the same purpose, e.g. there are currently
template infoboxes for ”Infobox Film”, ”Infobox Film” and ”Infobox film”.
This problem is already tackled by the Wikipedia community4.

– Do not use different attribute names for the same kind of content and do
not use the same attribute name for different kinds of content. Support for
this can be added to the wiki software (see below).

– Use standard representations for units, such that they can be detected by
the extraction algorithm.

4 http://en.wikipedia.org/wiki/Wikipedia:Infobox_templates

http://en.wikipedia.org/wiki/Wikipedia:Infobox_templates

510 S. Auer and J. Lehmann

Furthermore, the following improvements could be made to the MediaWiki soft-
ware, which is used for Wikipedia, and other software to make the design of
clean templates easier:

– Offer the possibility to fix the data type of an attribute value, e.g. by at-
tribute templates as mentioned above. For instance, the template designer
could specify in the template definition that the attribute value of the at-
tribute budget has to be a number. Although this greatly improves the
extraction process, we are aware that sometimes verbal descriptions are nec-
essary to explain attribute values, e.g. a value for budget could be ”estimated
to be between 20 and 30 million dollars”.

– Offer the possibility of language and unit tags if one attribute value can be
given in different languages or units, i.e. the budget can be specified in Euro
and Dollar. A name of a French city can be given in English and French.

– If an attribute is defined in a template, the MediaWiki software could list
templates, where this attribute already exists and show other characteristics
of the attribute, to give the template designer the possibility to check whether
these attributes have the same intended meaning.

One of the aims of these proposals is to improve extraction without putting the
burden on the user (in this case the article author). In many cases, following the
guidelines makes it clearer for the article writer how to use templates and many of
these guidelines are common sense. They enable a clean extraction of information
without the need to recreate the content of Wikipedia or dramatically change
the way templates are currently defined.

3 Browsing and Querying Extracted Knowledge

Compared to most of the other Semantic Web knowledge bases currently avail-
able, for the RDF extracted from Wikipedia we have to deal with a different
type of knowledge structure – we have a very large information schema and a
considerable amount of data adhering to this schema. Existing tools unfortu-
nately mostly focus on either one of both parts of a knowledge base being large,
schema or data.

If we have a large data set and large data schema, elaborated RDF stores
with integrated query engines alone are not very helpful. Due to the large data
schema, users can hardly know which properties and identifiers are used in the
knowledge base and hence can be used for querying. Consequently, users have to
be guided when building queries and reasonable alternatives should be suggested.
In this section, we present with the facet-based browsing in OntoWiki and our
graph pattern builder two approaches to simplify navigation and querying of
knowledge bases possessing a large information schema.

3.1 OntoWiki

To allow browsing of the extracted information in an intuitive manner, we
adopted our tool for social semantic collaboration – OntoWiki [2]. It facilitates

What Have Innsbruck and Leipzig in Common? 511

the visual presentation of a knowledge base as an information map, with different
views on the instance data. It enables intuitive authoring of semantic content and
fosters social collaboration aspects (however these features are not of primary
interest for browsing the extracted Wikipedia content). Furthermore, OntoWiki
enhances the browsing and retrieval by offering semantically enhanced search
strategies. In particular the facet-based browsing implemented in OntoWiki al-
lows to intuitively explore the extracted Wikipedia content.

Taxonomic structures give users only limited ways to access the information.
Also, the development of appropriate taxonomic structures requires significant
initial efforts. Only a very restricted taxonomic structure can be extracted from
Wikipedia content by means of categories. As a pay-as-you-go strategy, facet-
based browsing allows to reduce the efforts for a knowledge structuring, while
still offering efficient means to retrieve information. To enable users to select ob-
jects according to certain facets, all property values (facets) of a set of selected
instances are analyzed. If for a certain property the instances have only a limited
set of values, those values are offered to restrict the instance selection further.
Hence, this way of navigating through data will never lead to empty results. The
analyzing of property values as well as the appropriate filtering and sorting of
instances though can be very resource demanding. Since the respective optimiza-
tions in OntoWiki are not yet finished we deployed just an excerpt of the ex-
traction for the film domain for demonstration at http://wikipedia.aksw.org.
However, we aim to adopt and optimize OntoWiki further to function as easy
to use browser for the complete semantic Wikipedia content.

3.2 Graph Pattern Builder

In addition to support browsing with OntoWiki we specifically developed a graph
pattern builder for querying the extracted Wikipedia content. Users query the
knowledge base by means of a graph pattern consisting of multiple triple pat-
terns. For each triple pattern three form fields capture variables, identifiers or
filters for subject, predicate and object of a triple. While users type identifier
names into one of the form fields, a look-ahead search proposes suitable options.
These are obtained not just by looking for matching identifiers but by execut-
ing the currently built query using a variable for the currently edited identifier
and filtering the results returned for this variable for matches starting with the
search string the user supplied. This method ensures, that the identifier pro-
posed is really used in conjunction with the graph pattern under construction
and that the query actually returns results. In addition, the identifier search
results are ordered by usage number, showing commonly used identifiers first.
All this is executed in the background, using the Web 2.0 AJAX technology and
hence completely transparent for the user. Figure 2 shows a screenshot of the
graph pattern builder.

3.3 Example Queries

In the previous sections, we have shown how to extract information from tem-
plates. We gave an impression about the sheer volume of knowledge we obtained

http://wikipedia.aksw.org

512 S. Auer and J. Lehmann

Fig. 2. Query interface of the Wikipedia Query Builder with AJAX based look-ahead
identifier search

and suggested ways to improve templates to ease the conversion to RDF triples.
The aim of this subsection is to present some example queries to justify our
claim that we can obtain a huge amount of semantically rich information from
Wikipedia – even in its current form.

Of course, reasonable queries can only involve a very small fraction of the
information we obtained. We invite the reader to browse the obtained knowledge
and pose example queries by visiting http://wikipedia.aksw.org.

The first query uses the film template. We ask for films starring an Oscar
winner (as best actor) with a budget of more than 10 million US dollars5.

1 SELECT ?film ?actor ?budget
2 WHERE {
3 ?film p:starring ?actor;
4 p:budget ?budget.
5 ?actor a c:Best_Actor_Academy_Award_winners.
6 FILTER regex(str(?budget),"1[0123456789]{6,}")
7 }

5 The examples make use of the namespace prefixes rdf for RDF, xsd for XML-
Schema data types, p for generated property identifiers, w for Wikipedia pages, c for
Wikipedia categories and u for units.

http://wikipedia.aksw.org

What Have Innsbruck and Leipzig in Common? 513

The following table summarizes the result:

film actor budget
w:The Da Vinci Code (film) w:Tom Hanks ”125000000”^^u:Dollar
w:Ghost Rider (film) w:Nicolas Cage ”120000000”^^u:Dollar
w:Apocalypse Now w:Robert Duvall ”31500000”^^u:Dollar
w:Jackie Brown (film) w:Robert De Niro ”12000000”^^u:Dollar
w:Bobby (2006 film) w:Anthony Hopkins ”10000000”^^u:Dollar
w:Confidence (film) w:Dustin Hoffman ”15000000”^^u:Dollar
w:Apocalypse Now w:Marlon Brando ”31500000”^^u:Dollar
w:The Mission (film) w:Robert De Niro ”17218000”^^u:Dollar
w:The Silence of the Lambs w:Anthony Hopkins ”19000000”^^u:Dollar

Note the automatic detection of the budget unit (all US dollars in this case).
The next query is more complex, involving different kinds of templates, namely
soccer players, soccer clubs, and countries. We ask for soccer players with number
11 (on their jersey), who play in a club whose stadium has a capacity of more than
40000 people and were born in a country with more than 10 million inhabitants.

1 SELECT ?player ?club ?country ?capacity
2 WHERE {
3 ?player p:currentclub ?club .
4 ?player p:clubnumber 11 .
5 ?player p:countryofbirth ?country .
6 ?club p:capacity ?capacity .
7 ?country p:population_estimate ?population .
8 FILTER (?capacity > 40000) .
9 FILTER (?population > 10000000)

10 }
11 ORDER BY DESC(?capacity) LIMIT 1000

The following table shows the result of the query:

player club country capacity
w:Mehrzad Madanchi w:Persepolis FC w:Iran 90000
w:Cicinho w:Real Madrid w:Brazil 80354
w:Ram%C3%B3n Morales w:Chivas de Guadalajara w:Mexico 72480
w:Lukas Podolski w:FC Bayern Munich w:Poland 69901
w:Gonzalo Fierro w:Colo-Colo w:Chile 62000
w:Robin van Persie w:Arsenal F.C. w:Netherlands 60432
w:Michael Thurk w:Eintracht Frankfurt w:Germany 52000
w:Stein Huysegems w:Feyenoord Rotterdam w:Belgium 51177
w:Mark Gonz%C3%A1lez w:Liverpool F.C. w:South Africa 45362

Both queries are interesting and realistic. In both cases the results are proba-
bly not complete, because templates are still not used everywhere where appro-
priate or are badly designed (see Section 2.5). You can find more queries and
build your own ones at http://wikipedia.aksw.org.

http://wikipedia.aksw.org

514 S. Auer and J. Lehmann

4 Related Work

The free encyclopedia Wikipedia has been tremendously successful due to the
ease of collaboration of its users over the Internet [16]. The Wikipedia wiki is
the representative of a new way of publishing [4] and currently contains millions
of articles.

It is a natural idea to exploit this source of knowledge. In the area of Machine
Learning [17] the Information Retrieval community has applied question answer-
ing [14], clustering, categorization and structure mapping to Wikipedia content.
An XML representation of (most of) the Wikipedia corpus has been extracted
[6] to support these tasks. Within the Semantic Web community this corpus has
been used to extract common sense knowledge from generic statements [22] by
mapping them to RDF.

In a different ongoing project the link structure and basic metadata of Wiki-
pedia articles are mapped to a constantly updated RDF dataset, which currently
consists of approximately 47 million triples [19]. Amongst other uses, the link
structure has been exploited to build semantic relationships between articles to
analyze their connectivity [5], which can improve the search capabilities within
Wikipedia.

In contrast to the information extraction approaches mentioned above, i.e.
full text extraction and link structure extraction, we focused on the extraction
of Wikipedia templates. The corresponding algorithm, presented in Section 2.2,
uses standard pattern matching techniques [1] to achieve this. We argued that
the resulting RDF statements are a rich source of information contributing to ex-
isting results of knowledge extraction from Wikipedia. The goal of a related, but
much more focused project is to extract personal data from the ”Personendaten”
template in the german Wikipedia6.

Our research also fits within the broader scope of integrating Semantic Web
standards with different sources of information like LDAP servers [7] and rela-
tional databases [3]. The integration of different data sources is considered an
important issue in Semantic Web research [8].

Additionally, there are strong links to knowledge extraction from table struc-
tures. A general overview of work on recognizing tables and drawing inferences
from them can be found in [27]. [21] is an approach for automatic generation
of F-Logic frames out of tables, which subsequently supports the automatic
population of ontologies from table-like structures. Different approaches for in-
terpreting tables [12,13,25], i.e. deriving knowledge from them, have been tested
for plain text files, images and HTML tables. Naturally, an additional difficulty
of these approaches compared to the template extraction we perform, is to prop-
erly recognize tables (see e.g. [9,11,18,26] for table recognition techniques) and
the relationships between entries in these tables using techniques like row label-
ing and cell classification [11,20]. Amongst other target formats for extraction,
there has also been work on ontology extraction from tables [23], in particular
for HTML tables [10]. Since templates in Wikipedia have a predefined structure,

6 http://de.wikipedia.org/wiki/Hilfe:Personendaten/Datenextraktion

http://de.wikipedia.org/wiki/Hilfe:Personendaten/Datenextraktion

What Have Innsbruck and Leipzig in Common? 515

our results are most likely more accurate than those one would obtain using more
general table extraction approaches. (We are working on measuring the quality
of the information we have extracted.) For this reason, we did not consider to
apply general-purpose extraction of HTML tables in Wikipedia, but focused on
the already structured templates.

5 Conclusions

As we outlined in the introduction, we created an approach for extracting in-
formation from Wikipedia and similar wiki systems, which is usable right now
without further modifications on the MediaWiki software or expensive updates
of Wikipedia content. We showed that we obtained a vast amount of useful
machine processable information. Obstacles of our approach were discussed and
suggestions for solving them have been given. They mostly involve common sense
rules for template authors and reasonably small modifications of existing wiki
software.

Further, we discussed the problem of querying and browsing the extracted
knowledge. A simple and easy-to-use query engine for our extraction was devel-
oped and some example queries were presented to give the reader an intuition
of the extracted knowledge. As with textual Wikipedia content the templates
might contain incomplete or even wrong information. This cannot be detected
by the extraction algorithm and prospective users should be aware of it. How-
ever, by providing a platform exhibiting the structured and interlinked con-
tent in Wikipedia, we were able to create one of the largest existing ontologies
and hopefully a useful contribution to the Semantic Web in general. The pre-
sented approach was implemented for MediaWiki and evaluated with Wikipedia
content. However, it can be similarly applied to different Wiki systems sup-
porting templates and other means for handling frequently occurring structured
content.

Finally, we want to solve the question from the title of this article for a
commonality between Innsbruck and Leipzig: A fairly simple query on our ex-
traction results reveals that both share Kraków as a twin town. However, this
information can not be found on either of the Wikipedia pages and we are not
aware of knowledge bases able to answer similar unspecific and domain-crossing
queries.

Acknowledgments

This research was supported in part by the following grants: BMBF (SE2006
#01ISF02B), NSF (SEIII #IIS-0513778). We are grateful to Jörg Schüppel,
who participated in the implementation of the extraction algorithm, and the
anonymous reviewers for their suggestions.

516 S. Auer and J. Lehmann

References

1. A. Apostolico and Z. Galil, editors. Pattern Matching Algorithms. OUP, 1997.
SEP.

2. Sören Auer, Sebastian Dietzold, and Thomas Riechert. Ontowiki - A tool for social,
semantic collaboration. In Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris
Preist, Daniel Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo, editors, In-
ternational Semantic Web Conference, volume 4273 of Lecture Notes in Computer
Science, pages 736–749. Springer, 2006.

3. Christian Bizer. D2R MAP - A database to RDF mapping language. In WWW
(Posters), 2003.

4. Bryant, Susan L., Andrea Forte, and Amy Bruckman. Becoming wikipedian: trans-
formation of participation in a collaborative online encyclopedia. In GROUP’05:
International Conference on Supporting Group Work, Net communities, pages 1–
10, 2005.

5. S. Chernov, T. Iofciu, W. Nejdl, and X. Zhuo. Extracting semantic relationships be-
tween wikipedia categories. In 1st International Workshop: ”SemWiki2006 - From
Wiki to Semantics” (SemWiki 2006), co-located with the ESWC2006 in Budva,
Montenegro, June 12, 2006, 2006.

6. L. Denoyer and P. Gallinari. The Wikipedia XML Corpus. SIGIR Forum, 2006.
7. S. Dietzold. Generating rdf models from ldap directories. In C. Bizer S. Auer

and L. Miller, editors, Proceedings of the SFSW 05 Workshop on Scripting for
the Semantic Web, Hersonissos, Crete, Greece, May 30, 2005. CEUR Workshop
Proceedings Vol. 135, 2005.

8. Dimitre A. Dimitrov, Jeff Heflin, Abir Qasem, and Nanbor Wang. Information
integration via an end-to-end distributed semantic web system. In Isabel F. Cruz,
Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter Mika, Michael
Uschold, and Lora Aroyo, editors, The Semantic Web - ISWC 2006, 5th Inter-
national Semantic Web Conference, ISWC 2006, Athens, GA, USA, November
5-9, 2006, Proceedings, volume 4273 of Lecture Notes in Computer Science, pages
764–777. Springer, 2006.

9. Shona Douglas and Matthew Hurst. Layout and language: lists and tables in
technical documents. In Proceedings of ACL SIGPARSE Workshop on Punctuation
in Computational Linguistics, pages 19–24, jul 1996.

10. David W. Embley, Cui Tao, and Stephen W. Liddle. Automatically extracting
ontologically specified data from HTML tables of unknown structure. In Stefano
Spaccapietra, Salvatore T. March, and Yahiko Kambayashi, editors, Conceptual
Modeling - ER 2002, 21st International Conference on Conceptual Modeling, Tam-
pere, Finland, October 7-11, 2002, Proceedings, volume 2503 of Lecture Notes in
Computer Science, pages 322–337. Springer, 2002.

11. J. Hu, R. S. Kashi, D. P. Lopresti, and G. T. Wilfong. Evaluating the performance
of table processing algorithms. International Journal on Document Analysis and
Recognition, 4(3):140–153, 2002.

12. M. Hurst. Layout and language: Beyond simple text for information interaction
– modelling the table. In Proceedings of the 2nd International Conference on
Multimodal Interfaces, Hong Kong, 1999.

13. M. Hurst. The Interpretation of Tables in Texts. PhD thesis, University of Edin-
burgh, 2000.

What Have Innsbruck and Leipzig in Common? 517

14. B. Katz, G. Marton, G. Borchardt, A. Brownell, S. Felshin, D. Loreto, J. Louis-
Rosenberg, B. Lu, F. Mora, S. Stiller, O. Uzuner, and A. Wilcox. External knowl-
edge sources for question answering. In Proceedings of the 14th Annual Text RE-
trieval Conference (TREC2005), November 2005, Gaithersburg, MD, 2005.

15. Markus Krötzsch, Denny Vrandecic, and Max Völkel. Wikipedia and the Semantic
Web - The Missing Links. In Jakob Voss and Andrew Lih, editors, Proceedings of
Wikimania 2005, Frankfurt, Germany, 2005.

16. Bo Leuf and Ward Cunningham. The Wiki Way: Collaboration and Sharing on
the Internet. Addison Wesley, Reading, Massachusetts, apr 2001.

17. Thomas Mitchell. Machine Learning. McGraw Hill, New York, 1997.
18. Hwee Tou Ng, Chung Yong Lim, and Jessica Li Teng Koo. Learning to recognize

tables in free text. In ACL, 1999.
19. System One. Wikipedia3. http://labs.systemone.at/wikipedia3, 2006.
20. David Pinto, Andrew McCallum, Xing Wei, Croft, and W. Bruce. Table extraction

using conditional random fields. In Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
IR theory, pages 235–242, 2003.

21. Aleksander Pivk, Philipp Cimiano, and York Sure. From tables to frames. Journal
of Web Semantics, 3(2-3):132–146, 2005.

22. S. Suh, H. Halpin, and E. Klein. Extracting common sense knowledge from
wikipedia. In Proceedings of the ISWC-06 Workshop on Web Content Mining
with Human Language Technologies, 2006.

23. Yuri A. Tijerino, David W. Embley, Deryle W. Lonsdale, and George Nagy. On-
tology generation from tables. In WISE, pages 242–252. IEEE Computer Society,
2003.

24. Max Völkel, Markus Krötzsch, Denny Vrandecic, Heiko Haller, and Rudi Studer.
Semantic wikipedia. In Les Carr, David De Roure, Arun Iyengar, Carole A. Goble,
and Michael Dahlin, editors, Proceedings of the 15th international conference on
World Wide Web, WWW 2006, pages 585–594. ACM, 2006.

25. Xinxin Wang. Tabular abstraction, editing, and formatting. PhD thesis, Waterloo,
Ont., Canada :University of Waterloo, Computer Science Dept.,, 1996.

26. Yalin Wang, Ihsin T. Phillips, and Robert M. Haralick. Table structure under-
standing and its performance evaluation. Pattern Recognition, 37(7):1479–1497,
2004.

27. R. Zanibbi, D. Blostein, and J. R. Cordy. A survey of table recognition: Models,
observations, transformations, and inferences. International Journal on Document
Analysis and Recognition, 7(1):1–16, mar 2004.

SALT - Semantically Annotated LATEX for

Scientific Publications

Tudor Groza, Siegfried Handschuh, Knud Möller, and Stefan Decker

DERI, National University of Ireland, Galway,
IDA Business Park, Lower Dangan, Galway, Ireland

{tudor.groza,siegfried.handschuh,knud.moeller,stefan.decker}@deri.org
http://www.deri.ie/

Abstract. Machine-understandable data constitutes the foundation for
the Semantic Web. This paper presents a viable way for authoring and
annotating Semantic Documents on the desktop. In our approach, the
PDF file format is the container for document semantics, being able
to store both the content and the related metadata in a single file. To
achieve this, we provide a framework (SALT - Semantically Annotated
LATEX), that extends the LATEX writing environment and supports the
creation of metadata for scientific publications. SALT allows the author
to create metadata concurrently, i.e. while in the process of writing a
document. We discuss some of the requirements which have to be met
when developing such a support for creating semantic documents. In
addition, we describe a usage scenario to show the feasability and benefit
of our approach.

1 Introduction

The vision of the Semantic Web, as well as the personal Semantic Desktop aims
at integrated personal information management, at information distribution and
collaboration. This will be enabled by the use of ontologies, semantic metadata
(machine-understandable data) and Semantic Web protocols. Hence, semantic
metadata constitutes the foundation for Semantic Web and Desktop. Authoring
and annotating semantic documents on the desktop is one of the possible means
to create semantic metadata.

This paper introduces a new way for authoring and annotating Semantic
Documents on the Desktop. In our approach, the PDF file format is used as the
container for document semantics, being able to store both the content and the
related metadata in a single file. To achieve this, we provide a framework (SALT
- Semantically Annotated LATEX1) together with an associated ontology, that
extends the LATEX writing environment and supports the creation of metadata
for scientific publications. SALT allows the author to create metadata while in
the process of writing the content of a research paper.

Previous work in the creation of semantic metadata and annotation of docu-
ments has been mainly focused on the annotation of HTML documents for the
1 Not to be confused with the SALT KA system by Marcus and McDermott.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 518–532, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

SALT - Semantically Annotated LATEX for Scientific Publications 519

Semantic Web. Most of these HTML annotation tools [1,2,3] are following an a
posteriori annotation approach. In order to provide metadata about the content
of a web page, the author must first create the content and then annotate it
as an additional, a posteriori step. This approach is reasonable, when the an-
notator is not the creator of the web document, as it is a common use case in
the web. However, if author and annotator are the same person, the possibility
arises to easily combine authoring of a document with the creation of the meta-
data describing its content. We will call this approach concurrent annotation.
First steps towards this approach for HTML documents in a web context are
described in Handschuh et al. [4], or for blogs in Möller et al. [5].

HTML is the document format for the web, and thus research on semantic
annotations is mainly centered around it. However, another important format
is PDF – the Portable Document Format. PDF can be seen at the moment as
the de facto standard in terms of electronic publishing, especially in the research
area. We observed that there exist a small number of solutions for creating se-
mantic annotations on PDF documents, most of them following the a posteriori
approach ([6]). In the case of concurrent annotations – to our knowledge – there
is no clear defined approach. Also, when it comes to embedding the seman-
tic annotations in the document itself, the existing support is poor and rarely
used.

Adobe has defined the Extensible Metadata Platform2 (XMP), a platform
(methodology, schemas, tools, ...) for embedding RDF metadata in data files.
XMP supports metadata in a broad variety of file formats, among them PDF.
However, even though it is possible to embed arbitrary metadata in a PDF’s
XMP field, in practice only shallow DublinCore3 descriptions are used. As a
result, neither the inherent structure nor the semantic content of a document
are reflected in the metadata.

Our approach proposes to extend the shallow metadata schemas currently
used with a set of three ontologies which are able to capture the structural
information of the document as well as the semantics of its content. The three
ontologies are (i) the Document ontology, (ii) the Rhetorical ontology and (iii) the
Annotation ontology. All three will be discussed in more detail in Sect. 3.1.

We support our proposal with a method for creating concurrent semantic an-
notations for PDF documents, by exploiting the rich environment provided by
LATEX. The annotation process takes place while writing and the actual integra-
tion is realized at syntax level by exploiting regular LATEX commands plus a series
of newly introduced special annotation commands. The final result is a seman-
tically enriched PDF document encapsulating instances of the afore-mentioned
ontologies together with associated visual annotations. We believe that the on-
tologies presented in our proposal can be used independently of the format used
for the scientific publications. Therefore, we intend to use the current approach
as a proof of concept and extend our investigations to other formats in the near
future.

2 Adobe Systems Incorporated - XMP. http://www.adobe.com/products/xmp/
3 DublinCore Metadata Initiative. http://dublincore.org/

http://www.adobe.com/products/xmp/
http://dublincore.org/

520 T. Groza et al.

In Sect. 2 we will present the automatic creation of online-proceedings as a
use case for our framework. Then, we describe a modularization of the used
ontologies and define the support for creating annotations, i.e. the annotation
syntax (Sect. 3). In Sect. 4 we give an overview of the annotation process and
revisit the proposed use case from the implementation point of view. Before
concluding, we present a discussion of the proposed solution in Sect. 5, give an
overview of the related work in Sect. 6 and discuss some aspects of our solution
in Sect. 7.

2 Use Case

An increasing number of applications make use of metadata contained in PDF
documents, or otherwise analyze the document’s content. The type of function-
ality offered by such applications is varying from Personal Information Manage-
ment (e.g. Gnowsis [7]) or searching (e.g. Beagle++ [8]) to digital libraries (e.g.
JeromeDL[9]). All these applications have in common: (i) that they either use
the limited metadata captured by the DublinCore elements present in the XMP
field – which offers only shallow information about the document, or (ii) they
perform full-text indexing in order to maximize the searching capabilities. Even
though richer semantic annotations are in theory possible (and also in practice,
as we show in this paper), they are currently not used. As a result, none of the
applications mentioned can make use of them.

We believe that by using semantic PDF documents (i.e. PDF documents en-
capsulating rich RDF, e.g. instances of our ontologies), all the afore-mentioned
applications would bring more value to the user: more accurate results, bet-
ter visualization, etc. In order to provide an example, we will describe how
such semantic documents enable an easy, low-effort information distribution,
collaboration and integration for the purpose of an innovative online workshop
proceedings. The goal is not only to ease the process of creation of the online
proceedings, but also provide added value to the reader of these proceedings.

The process for the online publication of accepted workshop papers is usu-
ally done manually. The editor typically creates a list containing the authors
and the titles and afterwards they link the corresponding PDF document to it.
However, additional information can easily be retrieved given that each author
would use our framework while writing the scientific publication. SALT enables
a combination of automatically retrieved annotations based on i) the analysis of
the used LATEX commands, ii) the rhetorical structure of the document and iii)
the arbitrary annotations included in the document.

For our use case, we took the following approach: we first create an individual
HTML page for each annotated paper (cf. Fig. 1). The rich annotations in each
paper can be visualized and exploited for navigation in many different ways. In
our example, we chose to present each paper in such a way that the focus is on
the linear structure, including information regarding the rhetorical structure. In
addition, the page also contains some simple metadata associated with the pub-
lication (such as title, authors, etc), the link to the PDF document and if desired
even the original instances of the ontologies associated with the publication.

SALT - Semantically Annotated LATEX for Scientific Publications 521

Fig. 1. HTML creation from annotated paper

The second phase of the process iterates over all the created pages and generates
an entry point in the form of an index page. The index page gives a short overview
of all papers, but more information — generated from the metadata — is available.
Readers can quickly glance through the contribution and skip to the section they
are interested in.

3 Ontological Foundation and Syntactical Support

There are two types of annotations that can be embedded in PDF documents:
(i) visual annotations in the form of notes, bookmarks or markups and (ii) ar-
bitrary metadata in the XMP field. Our proposal for the creation of Semantic
Documents is exploiting and extending both possibilities. In the following, we
will present both a semantic foundation — a set of three ontologies — and a
means to express those semantics in an extended LATEX syntax.

The semantic layer consists of three ontologies: document ontology, annotation
ontology and rhetorical ontology. Instances of these ontologies will be placed in
the XMP field, thus extending typical current use of PDF XMP, and providing
a much richer environment for capturing the document’s semantics.

The syntactical implementation proposes an enrichment of the LATEX syntax.
This is done by considering the existing commands and performing analysis and
metadata extraction on them, and by introducing a series of new commands.
These commands provide the support for creating rhetoric elements, creating

522 T. Groza et al.

implicit and explicit visual annotations and for inserting arbitrary annotations
in the document. In effect, the semantic layer creates a bridge between the actual
document and its metadata.

3.1 The Semantic Layer

The goal of the semantic layer (see Fig. 2) is to define a proper semantic frame-
work able to support the entire annotation process. As a result, we created a
federation of three ontologies, enumerated as follows:

Document ontology 4 – Capturing the internal structure of the document
(sections, paragraphs, sentences, etc).

Rhetorical ontology 5 – Modelling the document in terms of rhetorical ele-
ments and rhetorical structure (claims, evidence, etc).

Annotation ontology 6 – Creating the bridge between the rhetorical structure
and the ordinary structure. It also captures additional metadata about the
document.

Fig. 2. Ontology Layers

The Document Ontology. The document ontology, depicted in see Fig. 3,
captures the structural layout of the document and provides hooks to its an-
notated parts. The motivation behind the current level of decomposition is
given by the need of instantiating the annotated parts of the text. The sentence

4 http://salt.semanticauthoring.org/onto/2006/12/document-ontology.rdfs
5 http://salt.semanticauthoring.org/onto/2006/12/rhetoric-ontology.rdfs
6 http://salt.semanticauthoring.org/onto/2006/12/annotation-ontology.rdfs

SALT - Semantically Annotated LATEX for Scientific Publications 523

Fig. 3. The Document Ontology schema

currently represents the finest granularity of physical structure. However, they
are mapped to specific substrings of a document using the Annotation class,
which also allows to map arbitrary sub-phrases of a sentence.

The Rhetorical Ontology. The rhetorical structure ontology (see Fig. 4) rep-
resents a union of (i) the knowledge captured by the rhetorical relations within
the text, (ii) the rhetorical structure modeling the positioning of the contained
information chunks and (iii) the argumentative support providing the mean for
building a stable foundation for the rhetoric elements. In the following, we will
analyze the three parts of the ontology.

The first part of the ontology (Rhetorical Relations) deals with modeling
the information chunks present in the document as rhetoric elements. This ap-
proach has its roots in the Rhetoric Structure of the Text (RST) theory [10],
which describes the text in terms of the rhetoric relations existing between a
Nucleus (modeled by us as the Claim) and a Satellite (in our case, the Explana-
tion). Although the theory contains around 30 such relations, we currently only
consider those that seem most relevant when annotating scientific documents
(e.g. Antithesis, Concession or Means). The main role of these rhetoric relations
(modeled as concepts) is to provide a reason for the existence of claims and ex-
planations in the document. Furthermore, we considered their placement in the
frame created by the rhetorical structure (captured by the second part of the
ontology) as a natural integration and thus we introduced a relation between
the rhetorical relation concept and rhetorical structure concept.

The second part of the ontology (Rhetorical Structure) takes care of cap-
turing the rhetorical structure of the document. It represents an extension of
the ABCDE format for the annotation of scientific papers [11]. ABCDE stands
for: Annotation, Background, Contribution, Discussion, Entities. In SALT, we
build on ABCDE, but propose a more comprehensive and fine-grained set of con-
cepts. The simple metadata like title and authors is covered by the Annotation
concept in ABCDE. In SALT, this is covered elsewhere (see the next section),
which is why our A is the Abstract of the document. Furthermore, we extend
ABCDE with the concepts Motivation, Scenario and Conclusion. Finally, the

524 T. Groza et al.

Fig. 4. The Rhetorical Ontology schema

Argumentative part of the ontology allows the further modeling of scientific dis-
course in the form of Arguments and Counter Arguments.

The Annotation Ontology. The main role of the annotation ontology (see
Fig. 5) is to create the link between the document ontology and the rhetorical
ontology. Conceptually, the rhetorical structure represents an annotation of the
physical structure. Thus, one is able to enrich the document with rhetoric ele-
ments by attaching semantic annotations to it. In ontological terms, this would
translate to creating instances of the Annotation concept and attaching them to
the appropriate parts of the text.

A second role of the ontology is to provide metadata about the publication
as a whole. This part can be seen as an alignment to the DublinCore initiative
and to the SWRC ontology [12], as each of the concepts corresponds directly to
a DublinCore element or to a concept of the SWRC ontology.

3.2 Syntactical Support

Providing a syntactical implementation of the ontologies discussed above is done
in two ways: the extraction of metadata from existing LATEX commands and the
introduction of new commands. The new set of commands was kept small in order
to avoid a steep learning curve for new SALT users. Functionality is extended
in three directions:

Insertion of arbitrary annotations. This possibility was introduced in order
to allow the authors to freely insert arbitrary metadata about the publication

SALT - Semantically Annotated LATEX for Scientific Publications 525

Fig. 5. The Annotation Ontology schema

by using the N3 notation7. As body of the \N3 command, one can insert
valid N3 statements, for example by referring to a specific domain ontology.

Creation of rhetoric elements. We allocated a special command for each
type of rhetorical relation and a special environment for each type of rhetori-
cal structure. As a foundation for all these, there exist also the commands for
creating the basic rhetorical elements, i.e. the Claim and the Explanation.
Here are some command examples: \claim, \explanation; rhetorical rela-
tions: \antithesis, \concession; rhetorical environments: \begin{motivation}
. . . \end{motivation}.

Explicit creation of visual annotations. The author themselves can create
visual annotations by using the \note command, which has three parameters:
the subject, the author and the content of the visual annotation. These
annotations will e.g. show up as a little post-it in the PDF rendering.

A more detailed description of all the concepts present in the ontology, as
well as of the annotation syntax can be found on the SALT web page:
http://salt.semanticauthoring.org/

4 Annotation and Publishing

We implemented SALT and the workshop online proceedings publication sce-
nario as two independent applications. SALT itself can be used stand-alone from
the command line, or can be integrated in different LATEX editors. For example,
we integrated it in Kile8. However, one can integrate it in any editor which pro-
vides the flexibility of choosing a custom LATEX - PDF compiler, not the implicit
7 http://www.w3.org/DesignIssues/Notation3
8 http://kile.sourceforge.net/

526 T. Groza et al.

one. The second application, called SALT-WebPub, is a stand-alone application
with an easy to use graphical user interface. In the following we will detail both
applications separately.

4.1 The SALT Process

The SALT application is responsible for analyzing the annotations and embed-
ding the ontology instances into the resulting PDF document. In order to create
the final document, a series of processing steps need to be performed:

Syntactic analysis and annotation extraction. As a first step, the syntax
tree of the LATEX document is searched for elements which will add to the
document metadata (both ordinary commands and new commands defined
by SALT). The result are two separate metadata graphs representing both
the physical document structure (according to the document ontology) and
the rhetorical structure (according to the rhetorical ontology).

Annotation analysis and ontology population. In this step, both meta-
data graphs are joined. Also in this step the arbitrary RDF triples extracted
from the N3 command are added to the graph.

PDF document compilation. In the final step, the PDF document is created
using an ordinary PDFLatex compiler (the user can choose which compiler
to use). Afterwards, the complete metadata graph is added in the document’s
XMP field, and visual annotations (notes, etc) are added.

4.2 The Publishing Process

SALT-WebPub, the publishing application, takes as input a list of semantic PDF
documents and generates a set of corresponding HTML files, together with the
associated index. In order to provide flexibility to the format of the resulting
HTML files, we let the user specify a template for the page associated with
each publication and a template for the index file. This way, it is possible to
customize the presentation of the online proceedings without affecting the web
page content generation.

The process of generating generating the proceedings from the PDF docu-
ments is split into a series of steps. The first step is to extract the ontology
instances out of the document. The second step is to interpret the extracted
metadata and to prepare it for the final output format. The last step creates
the associated HTML page by taking the user’s template and filling it with the
output from the previous step. Finally, the index page is created, based on the
information extracted from each individual document.

5 First Experiences

To get a better idea of how SALT works “in real life”, we performed a test with
a group of six authors from this the SAAW2006 workshop9. Together with the
9 http://saaw2006.semanticweb.org

http://saaw2006.semanticweb.org

SALT - Semantically Annotated LATEX for Scientific Publications 527

authors, we annotated their LATEX source code and generated semantic PDF doc-
uments using our tools. Taking all documents, we produced a richly annotated
online proceedings10. Both the author’s feedback and our own observations are
summarized in the following discussion.

Ontological foundation – The three ontologies discussed in Sec. 3.1 did un-
dergo small modifications as a result of the evaluation. For a more com-
prehensive capturing of the shallow metadata about scientific publications
we felt the necessity of adding several concepts in the Annotation Ontology,
like PublicationType or PublicationEnvironment. Also, in order to build the
support for creating semantic network between the annotated documents,
we had to introduce the Reference concept in the same ontology and link
the rhetorical elements and the rhetorical structure to it. Regarding the
Rhetorical Ontology, the only necessary modification needed was to allow
the rhetorical relations to act as rhetorical elements in more complex rela-
tions. This modification provides a better degree of flexibility and allows the
creation of rhetorical structure of text trees (one of the possible views over a
Semantic Document – see Sect. 2). The ontology layer as a whole was seen as
comprehensive enough to capture both shallow metadata and the content’s
semantics.

Annotation syntax – The proposed LATEX syntax was very well received. The
number of newly introduced commands was small enough not to create any
significant extra workload on the authors. Based on this, we intend to leave
the syntax untouched. Some small modifications were necessary, in order to
reflect the actual status of the ontologies.

A general issue that we discovered was that we need to take more into consider-
ation the semantics of the existing LATEX commands and the overall structure of
the LATEX documents. Therefore, our framework will support automatic infor-
mation extraction from bibliographical items and from citing commands. In this
way it will automatically create possible relations between instances present in
the currently annotated scientific publication and the cited ones.

6 Related Work

As already mentioned, our ontologies have their roots in the Rhetorical Struc-
ture of Text (RST) Theory [10]. The paper provides the underlying semantics
of the concepts modelled by the theory together with their definitions. A second
publication by the same authors [13] provides a deep analysis of the application
domains in which RST was used until a certain point in time. It is interest-
ing to observe that the mentioned range of domains varies from computational
linguistics, cross-linguistic studies and dialogue to multimedia presentations.

A similar approach is presented by Tempich et. al in [14]. The DILIGENT
Argumentation Ontology was designed in line with the terminology proposed by

10 http://salt.semanticauthoring.org/experiment/saaw2006/

http://salt.semanticauthoring.org/experiment/saaw2006/

528 T. Groza et al.

the IBIS methodology [15] and captures the argumentative support for building
discussions in DILIGENT processes. In DILIGENT, the argumentative support
is equivalent to one of the three parts of our Rhetorical Ontology and so is less
expressive. Uren et. al [16] describe a framework for sensemaking tools in the
context of the Scholarly Ontologies Project. Their starting point is represented
by the requirements for a discourse ontology, which has its roots in the CCR
(Cognitive Coherence Relations) Theory and models the rhetorical links in terms
of similarity, causality and challenges. Although the ontological foundation is
very similar, the application approach is different (see below).

In terms of applications, we found the approach by Peter et al. [17] to be one
of the most interesting ones in terms of similarity with our research. Their goal
is to extract semantics from a LATEX document content based on the references
and index present in the document (for example see and see also references). We
have a similar approach when it comes to extracting the structural information,
but our focus is more oriented on the rhetorical structure of the text and the
semantic links between claims placed in different documents.

MMISS [18] fits into the category of using LATEX as a development environ-
ment. The project aims at building an internet-based, adaptive multimedia ed-
ucational system. Based on a series of custom LATEX commands they are able to
build ontologies and semantically link the resulting lecture slides (via a central
repository). SALT also uses custom LATEX commands to semantically annotate
the document, the difference being that we embed the annotations in their nat-
ural environment (i.e. the resulting PDF document) and not in a central storage
place. This is also one of the main differences when compared to the system
developed by Uren et. al [16]. Their goal is to create and visualize claim net-
works using scholarly documents (represented as HTML files) using a central
knowledge server. One of our goals is also to create such knowledge networks,
but using active reference embedded in the semantic document.

Another interesting system is described by Geurts et al. [19]. It models the
process of transforming semantic graphs into multimedia presentations, using
domain knowledge and discourse analysis. Their work is focussing more on using
parts of the text for presentation purposes. SALT on the other hand provides a
method for enriching the normal documents with semantic annotations, based
also on discourse analysis. However, in their approach it is not very clear how
the knowledge base is structured and how they chose the domain knowledge
effectively.

7 Discussion

In this section we will discuss a number of relevant issues that appeared while
researching the concepts presented before focussing on: i) annotation instance
generation and maintenance and ii) object identification and reference.

Annotation instance generation and maintenance refers to the mechanism
of generating and mapping the ontology instances which annotate information
chunks to the actual content present in the document. This issue is especially

SALT - Semantically Annotated LATEX for Scientific Publications 529

[...] The visual system resolves confusion by applying some tricks that reflect a
built-in knowledge of properties of the physical world. [...]

claim explanation

sentence

annotation_1 annotation_2

"The visual ... world."
0 37 37 94

base length base length

hasContent

annotates annotates

hasAnnotation hasAnnotation

Fig. 6. Metadata Graph for a Sentence

sensitive when it comes to the document structure objects. In order to have a
clear view over the subject, we will compare possible solutions for HTML and
PDF documents.

In the case of HTML, if we would like to create an annotation instance and
connect that instance to the piece of text being annotated, we could do this
directly by referencing an element within the documents DOM tree. Thus, a
simple pointer solves the problem, which is not the case for PDF documents.
Although the internal organization of the document is represented by a tree of
complex objects and streams, referencing inside this tree is not straightforward.
The reasons are mainly related to accessing rights, image analysis or text retrieval
algorithms’ accuracy. At the same time, we also have to consider the fact that
we’re dealing with concurrent annotations, which makes the situation even more
complex. Because the annotation process is interleaved with the writing process
in the LATEX environment, the targeted PDF document does not even exist yet.

Our current approach solves this issue by creating an instance for every anno-
tated information chunk, the finest granularity being part of sentence. To give
an example, consider the sentence in Fig. 6: The first part of the sentence is
annotated as a claim, and the second part as an explanation. SALT will now
(i) create a Sentence instance for the entire sentence, having the hasContent
property set to the sentence’s content, (ii) create a Claim instance, (iii) an Ex-
planation instance and (iv) two Annotation instances connecting the claim and
the explanation to the sentence. Finally (v) the base and length of the annotation
instances are set to reflect their position in the sentence.

Obviously this solution presents two disadvantages: on one side, it increases
the space of the document (linearly by the number of annotated sentences),
and on the other side, it generates redundancy. In order to correct this issue,
we intend to implement the XPointer Framework [20] applied for our case. The
result will replace the actual content of a sentence with pointers in the PDF
document to it, and thus the redundancy will be eliminated and the document
space decreased, but it will increase the complexity of the metadata analysis

530 T. Groza et al.

process, since it will introduce a pre-PDF-creation and a post-PDF-creation
analysis step.

The second discussion issue which we would like to raise is the object identifi-
cation and reference. One of our goals is to be able to create references between
different rhetorical elements placed in different semantic documents, and to be
able to provide arguments and counter-arguments based on the ontology support.
In order to achieve this, the first step that we took is to impose the definition
of a unique identifier for each rhetorical element present in the document. Thus,
the identification inside one document is solved. There are two problems that
appear now: (i) how can the actual reference between rhetorical elements be
realized and (ii) what happens if there are two versions of the same document
between which the element identification is different.

A possible solution for the first issue could be to impose the presence of a valid
URL pointing to the original document for each cited publication. Thus, when
referencing a rhetoric element in a particular publication, for example [Hand-
schuh2006]#claim1, it will be possible to create a valid reference by resolving
[Handschuh2006] to e.g. http://example.org/handschuh2006.pdf.

This solution brings us to the second problem. Usually a publication resides in
more than one place, and there are cases in which the version of the publication
differs from one place to another. The simplest solution to solve the issue would
be not to care about the version. When citing a document, the author would
provide a direct link to that document, and thus, all the references will be created
based on that document, and presuming that the author realizes the referencing
correctly. Of course, one could continue the discussion and raise another issue,
i.e. what happens with journal articles and copyright issues regarding them, but
we will tackle this point in future.

8 Conclusion and Future Work

In this paper we have described a solution for authoring and annotation of se-
mantic documents. SALT leaves the semantic data where it can be handled best:
within the document. Also, it provides a means to create Semantic Documents
in a simple and intuitive way for LATEX authors.

To attain this objective, we have defined the SALT process, the appropriate
ontologies and the architecture of the application. We have incorporated the
means for rhetorical markup of a document that allows the scientific authors to
explicitly markup their contribution, the claims they made and the support for
their claims. The framework brings added value to the applications using PDF
documents and to the users, as shown in our online proceedings scenario, where
we used it to automate the presentation and improve the navigation of scientific
publications. Used in this way, SALT could also be integrated in the workflow
of generating the semantic metadata for conferences such as ESWC or ISWC, a
process that can be long and tedious if performed manually.

For the future, there is a list of open issues concerning the authoring of se-
mantic PDF documents that we will consider: (i) PDF referencing or creation

SALT - Semantically Annotated LATEX for Scientific Publications 531

of semantic knowledge networks by means of PDF documents and using active
references, as we described it in Section 7, (ii) integrating the framework with
existing (semantic) digital libraries and semantically-interlinked online commu-
nities and (iii) automatic derivation of markup. We believe that these options
make SALT a good approach for the authoring of scientific semantic documents.

Our ultimate goal is to convince the community about the value that se-
mantic documents bring and to transform the ontological framework into a de
facto standard for annotating scientific publications. Thus, the next step that
we will take is to perform an intensive evaluation phase with researchers coming
from different backgrounds. This phase will provide us with both a better under-
standing of the weak points in our framework and with a perfect environment
for improvement.

Acknowledgements. This work has been funded by the European Commission
6th Framework Programme in the context of the NEPOMUK IP - The Social
Semantic Desktop, FP6-027705. We would like to thank Alexander Schutz for
the fruitful discussions.

References

1. Handschuh, S., Staab, S., Maedche, A.: CREAM — creating relational metadata
with a component-based, ontology-driven annotation framework. In: The First
International Conference on Knowledge Capture (K-Cap 2001), Victoria, B.C.,
Canada (2001) 76–83

2. Vargas-Vera, M., Motta, E., Domingue, J., Lanzoni, M., Stutt, A., Ciravegna, F.:
MnM: Ontology Driven Semi-Automatic and Automatic Support for Semantic
Markup. In: The 13th International Conference on Knowledge Engineering and
Knowledge Management, Sigüenza, Spain (2002) 379–391

3. Ciravegna, F., Dingli, A., Petrelli, D., Wilks, Y.: User-system cooperation in doc-
ument annotation based on information extraction. In: The 13th International
Conference on Knowledge Engineering and Knowledge Management. (2002) 122+

4. Handschuh, S., Staab, S.: Authoring and annotation of web pages in CREAM. In:
11th International World Wide Web Conference, WWW 2002, Honolulu, Hawaii,
ACM Press (2002) 462–473

5. Möller, K., Bojārs, U., Breslin, J.G.: Using semantics to enhance the blogging ex-
perience. In: The third European Semantic Web Conference (ESWC2006), Budva,
Montenegro (2006)

6. Eriksson, H.: A PDF storage backend for Protege. In: Proceedings of the 9th
Protege International Conference, Stanford, California, USA (2006)

7. Sauermann, L.: The Gnowsis Semantic Desktop for information integration. In:
The 1st Workshop on Intelligent Office Appliances: Knowledge-Appliances in the
Office of the Future (IOA 2005), at WM 2005, Kaiserslautern, Germany (2005)

8. Brunkhorst, I., Chirita, P.A., Costache, S., Gaugaz, J., Ioannou, E., Iofciu, T.,
Minack, E., Nejdl, W., Paiu, R.: The Beagle++ toolbox: Towards an extendable
desktop search architecture. Technical report, L3S Research Centre, Hannover,
Germany (2006)

9. Kruk, S.R., Decker, S., Zieborak, L.: JeromeDL - adding semantic web technologies
to digital libraries. In: DEXA 2005, Copenhagen, Denmark (2005)

532 T. Groza et al.

10. Taboada, M., Mann, W.C.: Rhetorical structure theory: looking back and moving
ahead. Discourse Studies 8, No. 3 (2006) 423–459

11. de Waard, A., Tel, G.: The ABCDE format - enabling semantic conference proceed-
ing. In: Proceedings of 1st Workshop: ”SemWiki2006 - From Wiki to Semantics”
at ESWC2006, Budva, Montenegro (2006)

12. Sure, Y., Bloehdorn, S., Haase, P., Hartmann, J., Oberle, D.: The SWRC ontology
- semantic web for research communities. In: Proceedings of the 12th Portuguese
Conference on Artificial Intelligence (EPIA 2005), Covilha, Portugal (2005)

13. Taboada, M., Mann, W.C.: Applications of rhetorical structure theory. Discourse
Studies 8, No. 4 (2006) 567–588

14. Tempich, C., Pinto, H.S., Sure, Y., Staab, S.: An Argumentation Ontology for
Distributed, Loosely-controlled and evolvInG Engineering processes of oNTologies
(DILIGENT). In: The Second European Semantic Web Conference, (ESWC 2005),
Heraklion, Crete, Greece (2005) 241–256

15. Kunz, W., Rittel, H.: Issues as elements of information system. Working paper
131, Institute of Urban and Regional Development, University of California (1970)

16. Uren, V., Shum, S.B., Li, G., Bachler, M.: Sensemaking tools for understanding
research literatures: Design, implementation and user evaluation. Int. Jnl. Human
Computer Studies 64, No.5 (2006) 420–445

17. Peter, H., Sack, H., Beckstein, C.: Document indexing - providing a basis for
semantic document annotation. In: XML-Tage 2006, Berlin (2006)

18. Krieg-Brückner, B., Lindow, A., Lüth, C., Mahnke, A., Russell, G.: Semantic
interrelation of documents via an ontology. In: Proceedings of DeLFI 2004: Die 2.
e-Learning Fachtagung Informatik, Paderborn, Germany (2004)

19. Geurts, J., Bocconi, S., van Ossenbruggern, J., Hardman, L.: Towards ontology-
driven discourse: From semantic graphs to multimedia presentations. Technical
report, Centrum voor Wiskunde en Informatica (INS-R0305) (May 31, 2003)

20. DeRose, S., Maler, E., Jr., R.D.: XPointer xpointer() scheme (2002)
http://www.w3.org/TR/xptr-xpointer/ .

http://www.w3.org/TR/xptr-xpointer/

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 533–548, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Annotating Relationships Between Multiple Mixed-Media
Digital Objects by Extending Annotea

Ronald Schroeter, Jane Hunter, and Andrew Newman

School of ITEE, The University Of Queensland
{ronalds,jane,anewman}@itee.uq.edu.au

Abstract. Annotea provides an annotation protocol to support collaborative
Semantic Web-based annotation of digital resources accessible through the
Web. It provides a model whereby a user may attach supplementary
information to a resource or part of a resource in the form of: either a simple
textual comment; a hyperlink to another web page; a local file; or a semantic
tag extracted from a formal ontology and controlled vocabulary. Hence,
annotations can be used to attach subjective notes, comments, rankings, queries
or tags to enable semantic reasoning across web resources. More recently,
tabbed browsers and specific annotation tools, allow users to view several
resources (e.g., images, video, audio, text, HTML, PDF) simultaneously in
order to carry out side-by-side comparisons. In such scenarios, users frequently
want to be able to create and annotate a link or relationship between two or
more objects or between segments within those objects. For example, a user
might want to create a link between a scene in an original film and the
corresponding scene in a remake and attach an annotation to that link. Based on
past experiences gained from implementing Annotea within different
communities in order to enable knowledge capture, this paper describes and
compares alternative ways in which the Annotea Schema may be extended for
the purpose of annotating links between multiple resources (or segments of
resources). It concludes by identifying and recommending an optimum
approach which will enhance the power, flexibility and applicability of Annotea
in many domains.

Keywords: Annotea, Annotation, Semantic Web, Relationships.

1 Introduction

Simple Web annotation tools for annotating individual web objects have existed for
over ten years [1, 2].

They began with annotation tools for attaching comments to web pages and textual
documents, but then expanded to images and video, audio and 3D objects as more
multimedia content was published on the Web. More recently, as many communities
have formed online collaborative groups, annotation tools have transformed from
asynchronous to synchronous - enabling real-time online discussions about resources.
Figure 1 illustrates the evolution of annotation tools over the past ten or so years.

534 R. Schroeter, J. Hunter, and A. Newman

In the past year, we have observed yet a new phase in the demands of users with
respect to annotation tools. Our observation is related to the establishment of more
online communities, who have established a consensus on exchangeable data
standards, terminologies (defined through mark-up languages and machine-
processable ontologies) and who want to be able to share and compare overlapping
and related resources of many types. These resources may be of many media types
(images, video, audio, multimedia, 3D), associated with specific disciplines (e.g.,
scientific models) or may comprise XML files used to represent shareable,
exchangeable objects (e.g., scientific workflows).

To summarize, communities have been voicing a demand for annotation tools that
enable a combination of the following:

1. The specification of links between whole objects or segments within objects
and annotation of these links [3];

2. Support for annotating links between objects of the following types: images,
video, audio, text, HTML, PDF, 3D objects and XML files;

3. Viewing of more than one object simultaneously to enable side-by-side
comparison and association;

4. Annotations that are based on domain-specific terms from either controlled
vocabularies or (OWL) ontologies. This enhances the ability for other
application programs to process the annotations;

5. The ability to share these comparative interpretations and associations amongst
communities of users through shared annotation servers, using a protocol such
as Annotea.

Some specific examples that we have seen through our eResearch collaborations
with different scientific communities include:

− In the humanities, film/media researchers want to link, compare and annotate
segments between books, screenplays and different films and film versions;

− In molecular biology, researchers want to be able to relate and compare 3D protein
structures – to discuss protein-protein docking interactions and protein function;

− In the geosciences, geologists want to be able to compare and annotate different
types of computational models with still photos and videos of earth quakes.

The remainder of this paper is structured as follows. Section 2 provides an
overview of previous related work and a description of the Vannotea tool developed
by the authors, which has been the driver for the work described in this paper. Section
3 describes the existing Annotea protocol and the advantages of extending this to
support new user demands. Section 4 describes extensions to Annotea to support
machine-processable annotations (based on ontologies). Section 5 describes different
possible approaches to extending Annotea to support the annotation of links between
multiple objects. Section 6 concludes with a recommendation for the optimum
approach and future work.

 Annotating Relationships Between Multiple Mixed-Media Digital Objects 535

2 Previous Work

Significant previous work has focussed on the development of annotation tools. Fig. 1
provides a 3D classification of existing annotation systems – classified according to:

− Annotation level (x-axis) – from simple free-text annotations and tagging, to the
attachment of local files and URLs, and more controlled annotations based on
simple vocabularies and ontologies.

− Content type (y-axis) – text, HTML, images, video, audio and 3D objects.
− Number of simultaneous resources (z-axis) - the ability to compare multiple files

and annotate links between them.

Fig. 1. Annotation tools

2.1 Free Annotation Tools

Examples of simple free-text annotation tools are depicted in the left column of Fig.
1. They include tools that are based on Annotea without extensions such as Annozilla1
and Amaya2. Flickr3 is an online photo management and sharing application. It allows
users to upload their photos and freely annotate them. ANVIL [4] is a stand-alone tool
which allows free-text annotations of audio and video files. Many more tools could be
mentioned here, but the focus of this paper is on annotation systems that support
ontology-based annotation of links between multiple web-accessible digital resources.

2.2 Semantic Annotation Tools

Systems that support controlled vocabulary-based and ontology-based annotations of
multimedia objects include the following:

PhotoStuff [5] is a tool that allows users to highlight regions within images, create
instances from any ontology through sophisticated forms and link the instance to the
region of the image. The users are able to perform the semantic annotation locally and
then upload the RDF instance to a central database, where the RDF file - and

1 http://annozilla.mozdev.org
2 http://www.w3.org/Amaya
3 http://www.flickr.com

536 R. Schroeter, J. Hunter, and A. Newman

therefore the whole graph including multiple instance statements - is then attributed to
the user through his/her user account and time stamped for provenance data.

The M-Ontomat-Annotizer [6] provides ontology-based image and video frame
(and region) annotation. This tool also supports initialization and linking of RDF/S
domain ontologies with low-level MPEG-7 visual descriptors.

Vannotea [3] is a collaborative tool that enables fine-grained annotation of objects
of any media type, where the annotations themselves can be free-text, files or URLs
or from a controlled vocabulary (e.g., WordNet) or ontology. As a result of user
demand, Vannotea was recently extended to enable the viewing of multiple related
objects simultaneously. Users in geographically distributed locations can share the
Vannotea application and simultaneously view two or more videos or 3D objects
through a user interface that allows side-by-side comparisons.

Hence the aim of this paper is to describe in detail the model we have chosen for
storing the different types of annotations so that they can be attributed to individual
users for provenance data. The model is based on Annotea [7] (described in Section 0)
and extending it in the following directions:

− to allow controlled annotations (Section 0) - see arrow along the x-axis in Fig. 1;
and

− the annotations of links between parts of multiple digital objects of any type
(Section 0) – see arrows along the y- and z-axis in Fig. 1.

3 Annotea

Through earlier work [8], we identified Annotea [7] as an ideal approach for
implementing an annotation server. Annotea, in its original sense, is a Web-based
annotation system that uses the Resource Description Framework (RDF) to model
free annotations as a set of statements or assertions made by the author about a
particular webpage. These annotations are then stored in a HTTP-enabled server,
which enables clients to query, update, post, delete and reply to annotations.

A key strength of the Annotea protocol is that it uses open W3C standards such as
RDF, XPointer, XLink and HTTP. The use of machine-processable RDF descriptions
enables easy search, retrieval and linking of the annotations to related resources and
services using Semantic Web technologies (e.g., OWL, SPARQL).

Fig. 2 illustrates the RDF Schema of Annotea and an RDF instance – an Annotea
object – separated by the dividing dotted line. The Annotea Schema introduces
properties that point to the annotated Web document (annotates) and to a specific
location within a structured Web document, thus describing the context of an
annotation, for which Annotea uses the XPointer technology. Furthermore, the
specification provides a related property, which relates the resource representing
the 'content' of an Annotation to the annotated resource.

Developers are encouraged to create new types of annotations by sub-classing from
the Annotation class and creating sub-properties of the related property. Fig. 2
shows such a new type: the Comment class and the body property. In essence, the

 Annotating Relationships Between Multiple Mixed-Media Digital Objects 537

Fig. 2. Annotea Schema and instance with access control and SVG extension

RDF instance of a simple Annotea object will carry information about “Who said
what about which resource?”

RDF/S allows easy addition of metadata properties from other schemas such as the
Dublin Core (title, date, creator) and FOAF (Friend-of-a-Friend)
namespaces, which are used to describe the provenance of an annotation.

We have also made our own, application-specific extensions. For example, we
have extended Vannotea [3] to allow annotations in the form of drawings on top of
media types such as images or videos, through the use of SVG.

Furthermore, we have added functionality to enable users to apply fine-grained
access control to their Annotations through XACML policies and implemented the
Annotation Server as a Shibboleth Service Provider [9]. A survey of current Web-
based annotation systems [10] reveals that they vary in the way in which annotations
may be attached, the way in which they are presented and in the access control
mechanisms. Some systems are designed for private use only, whilst others permit
sharing amongst groups and/or public access. None of the surveyed systems provide
the kinds of fine-grained access control mechanisms that are achieved by our
implementation and are required by collaborative teams of scientists engaging in
eResearch.

Koivunen [11] introduced new Bookmark and Topic objects to Annotea. These
social bookmarks and topics can be used for semantic authoring by allowing ordinary
users tag interesting web documents with their own personal concepts or
folksonomies.

538 R. Schroeter, J. Hunter, and A. Newman

Fig. 3. Bookmark and Topic Hierarchy

Currently, the Boomark class is a separate, new class within Annotea. In our view
however, bookmarks are just a special type of annotation. Rather than a user attaching
a free-text comment to a specific resource, the user can build their own folksonomy
using the topic hierarchies and attach those topics to the resource. Semantically we
are basically describing, “who used which topic about which resource?”, rather than
“who said what about which resource?” as mentioned in the previous section.

Therefore, we suggest to subclass the Bookmark class from the Annotation class
as shown in Fig. 3, which includes making the recall property a sub-property of the
annotates property, and hasTopic a sub-property of related.

As a result, we will be able to query the Annotation Server to return any
Annotation that is attached to a specific resource, whether it is of type Comment,
Bookmark, or any other types that will follow in this paper.

4 Ontology-Based Annotations Using Annotea

As mentioned earlier, various communities - especially within the field of eScience -
are creating their own domain-specific ontologies through group consensus. These
ontologies can be hierarchical, controlled vocabularies modelled in RDFS, or more
complex knowledge representations in OWL. This section illustrates how Annotea
can be extended to allow users to take advantage of these formal concepts in order to
create subjective semantic annotations. These formal annotations can aid in bridging
the semantic gap between automatic recognition techniques that extract different low-
level visual or audio features and highly subjective free-text annotations by humans.
The line between objectivity and subjectivity is not always clear. When does a

 Annotating Relationships Between Multiple Mixed-Media Digital Objects 539

subjective annotation become objective and in whose eyes? As the provenance data
for these controlled annotations is recorded, machines will be able to evaluate the
objectivity of the individuals’ semantic statements, based on trust relationships
between the users and statistical calculations.

4.1 Controlled Vocabularies

One extension to Annotea using controlled vocabularies is to allow users to attach
pre-defined ranking information to a specific web resource (e.g., the controlled terms
“strong accept”, “accept” and “reject” for a collaborative review process of scientific
papers). Another example is using terms from an ontology such as the WordNet
Ontology4.

In any case, the controlled vocabulary or ontology is modelled in RDFS or OWL
and publicly available over the web, so that an Annotea client can access and present
it to the user when he/she wants to attach a controlled term to the resource.

In Fig. 4, the user searched for the term “animal” and then browses through the
WordNet Ontology to navigate to a controlled vocabulary of a specific animal. The
controlled term can then be attached to the resource (or part of the resource) that the
user is currently viewing in his browser or Vannotea client.

Fig. 4. Screenshot of creating a link to a controlled term

4 http://xmlns.com/2001/08/wordnet

540 R. Schroeter, J. Hunter, and A. Newman

This is very similar to creating bookmarks (see Fig. 3), except that the topic is
being replaced by a predefined controlled vocabulary. The benefit of using these
controlled vocabularies is that we can perform searches using these terms, taking
advantage of the ontology to infer that a “fish”, for example, is a subclass of an
“animal”, and therefore returning all resources about a “fish” when querying for
resources about “animals”. Since we store provenance data about who created the
annotation, we envisage taking definitions of trust relationships inside a user’s FOAF
profile into consideration when querying the Annotation Server, e.g., “retrieve the
ranking information about a particular resource from all users that I trust and
calculate an average rating”.

4.2 Simple Formal Statements

Using the same interface depicted in Fig. 4, users can also attach formal triple
statements based on ontologies to a resource, i.e., relate a formal statement to the
annotated resource and context. A statement is a more complex instance of an
ontology compared to the controlled terms in the previous section. Fig. 5 illustrates
the schema of the FormalStatement. We introduce a states property which is a
sub-property of related and has a range of rdf:Statement. The statement itself
consists of a subject, predicate and object from an Ontology.

The example in Fig. 5 shows a statement that says “lion eats gazelle” from a
simple Wildlife Ontology which defines a lion being a subclass of a carnivore and a
gazelle a subclass of a herbivore. As above, we can now perform ontology based
searches to retrieve all video segments or images where a “carnivore eats a
herbivore”, which would include scenes that were formally labelled as a “lion eating
a gazelle”.

However, Fig. 5 also demonstrates the problem when using reification with
rdf:Statement: the amount of triples explode [12] as every statement carries the

Fig. 5. Formal Statement

 Annotating Relationships Between Multiple Mixed-Media Digital Objects 541

same metadata (as indicated by the greyed out statements). Therefore, we are
currently investigating the use of named graphs as a mechanism for reasoning about
provenance [13].

5 Comparisons and Associations Using Annotea

As mentioned earlier, tabbed browsers and tools like Vannotea allow users to view
several objects (images, video, audio, text, HTML, PDF) simultaneously and carry
out side-by-side comparisons. In such scenarios, users want to be able to annotate the
link between two or more objects or between segments of multiple objects. For
example, a user might want to annotate the link

− between a scene in an original film and the corresponding scene in a remake;
− between an image and a location (through Google maps URLs);
− between regions within several images; or,
− between structural components of two different 3D protein structures.

This section will investigate several approaches to model the annotation of such
comparisons and associations within Annotea, in a way that follows the best practices
described earlier. A comparison annotates multiple resources and describes their
similarities or dissimilarities, whereas an association describes a user’s mental
connection between the resources. Although comparisons and associations are
semantically different, they are both conceptually similar in the fact that they are
about multiple resources, where the order of the resources is irrelevant and the
description applies to the collection of resources.

As Annotea is based on RDF, it is very flexible with regards to adding/extending it
to other properties as we have demonstrated earlier. Furthermore, since there is no
cardinality defined for properties of an Annotea object, we can add multiple
properties of the same type to the object. Therefore, the most convenient way to relate
an Association (or Comparison) to multiple resources would be to use multiple
annotates properties.

However, if we want to create an Association object between two parts
(contexts) of two resources, we run into the following problem: According to the
Annotea Protocol [7], the context property is supposed to include an XPointer, e.g.:

<context>
http://mydomain.com/foo.html#xpointer(id("Main")/p[2])
</context>

As we have identified in our earlier work with Vannotea, XPointer does not suit
time-continuous media. Instead, temporal fragment identifiers, which have been
discussed for URIs5, could be used to refer to a time segment as follows:

<context>http://mydomain.com/foo.mpg#?t=15.2-
18.7</context>

5 http://www.annodex.net/TR/draft-pfeiffer-temporal-fragments-02.html

542 R. Schroeter, J. Hunter, and A. Newman

The two examples above show that the context includes information about the
resource it refers to. Unfortunately, we cannot always assume this to be the case. The
context for images might be a definition of regions in SVG or some other format:

<context><svg id="SvgGdi_output"><g id="root_group">
 <rect height="102" id="77" width="79" x="95" y="125" />
</g></svg></context>

The context within 3D models might be an application-specific string describing
the zoom factor, position, angle, selected polygons or even selected atoms and
molecules within JMOL6 models, e.g. using a JMOL script string:

<context>SAH 21.OXT number:46,moveto 1 58 -16 93 83.7 58
</context>

This leads to the problem illustrated in Fig. 6, where the literals denoting the
context information have no formal connection to the resource they refer to.

Fig. 6. The context property

The following sections will illustrate several attempts to bypass this problem - each
attempt with its own advantages and disadvantages - before providing a recommended
solution.

5.1 Attempt 1: The isLinkedTo Property

Attempt 1 is illustrated in Fig. 7, in which every resource that is part of an association
is annotated as a separate Association object, and all Association objects are
then linked together by a new isLinkedTo property, which has a domain
Association and a range Association.

The advantage of this approach is that it is easy to implement as the additions don’t
require any changes to the current Annotation Server implementation. A general
query such as “Give me all annotations that annotate this resource” (?Annotation
annotates “http://www.foo1.com/foo1.mpg”) will retrieve
AssociationItem_1 and its isLinkedTo property is automatically returned as part
of it. However, to retrieve the resource AssociationItem_2 annotates, we would
have to perform a nested query.

Another disadvantage is that the association as a whole cannot be addressed. In the
example above it would have several addresses. This has several implications, not

6 http://jmol.sourceforge.net/

 Annotating Relationships Between Multiple Mixed-Media Digital Objects 543

being able to delete or reply to the association are just a few. Furthermore, managing
an update (modification) of the association becomes very cumbersome to implement,
as there would be many linked statements to fix. This might not be apparent in the
above example, but an association might involve more than two resources, in which
case deleting one AssociationItem would involve cleaning up n-1 links. Finally,
the retrieval of all the links requires a recursive query, which is not supported by
SPARQL.

Fig. 7. The isLinkedTo property

5.2 Attempt 2: The AnnotationGroup Object

Fig. 8 illustrates Attempt 2, in which a newly introduced Group class (an rdf:Bag)
links to all the AssociationItems. This means that the association as a whole can
now be addressed through the AssociationGroup object. However, since the
Group class is not a subclass of the Annotation class, it is not very useful. The
query “Give me all annotations that annotate this resource” still returns an
AssociationItem and a fairly complex and expensive nested query will need to
retrieve the other AssociationItems through the AssociationGroup object.

Although this is likely to be supported by SPARQL using inferencing7, it should be
avoided if possible.

5.3 Attempt 3: The Target Object

Fig. 9 shows the third attempt, which unlike the previous two, views an Association
as a subclass of an Annotation, and tries to combine the context with the resource it

7 Question 3.3. of the SPARQL FAQ (http://thefigtrees.net/lee/sw/sparql-faq)

544 R. Schroeter, J. Hunter, and A. Newman

Fig. 8. Annotation Group

refers to by introducing a new Target object. The advantage is that the association as
a whole is addressable and there are also far less triples to manage.

On the other hand, it modifies the Annotea Schema, which renders this attempt
backwards incompatible with annotations based on the original schema. The query
“Give me all annotations that annotate this resource” no longer works, instead we
have to extend it to follow the graph through the Target object (a blank node), e.g.:

?Annotation annotates _targetObject,
_targetObject hasResource
“http://www.foo1.com/foo1.mpg”

Fig. 9. Target Class

 Annotating Relationships Between Multiple Mixed-Media Digital Objects 545

5.4 Recommended Solution: The Context Object

Finally, the recommended solution is illustrated in Fig. 10. The context property has
a range Context class, which is the domain of two new properties, hasResource
and contextDescription. Additionally, content-type specific Context classes and
contextDescription properties can be subclassed, e.g., VideoContext and
mediaTime for resources that are videos.

Fig. 10. Context Class

The RDF instance in Fig. 10 shows how the context property is pointing to a
Context object (a blank node) which links to the same resource (hasResource) as
the annotates property of the Association object. Additionally, it can contain any
formalized or standardized description to represent the context, e.g., using the XML-
Schema datatype MediaTimeType from the Multimedia Description Scheme8 (MDS)
of the MPEG-7 standard [14]:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:a="http://www.w3.org/2000/10/annotation-ns#"
xmlns:dc="http://purl.org/dc/elements/1.0/"
xmlns:foaf="http://xmlns.com/foaf/0.1/">
 <rdf:Description rdf:about="http://mydomain/Anno/10894">
 <rdf:type rdf:resource= "http://www.w3.org/2000/10/annotation-
ns#Association" />
 <dc:creator>ronalds</dc:creator>
 <foaf:maker rdf:resource="http://www.my/~ronalds#ron" />
 <dc:date>2006-11-09T14:28:27Z</dc:date>
 <a:body rdf:resource="http://mydomain/Anno/body/10894" />
 <a:annotates>http://foo1.org/foo1.mpg</a:annotates>
 <a:annotates>http://foo2.org/foo2.mpg</a:annotates>
 <a:context>
 <a:hasResource>http://foo1.org/foo1.mpg</a:hasResource>
 <a:mediaTime rdf:parseType="XmlLiteral"

8 http://m7itb.nist.gov/mds-2001.xsd

546 R. Schroeter, J. Hunter, and A. Newman

 xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001#">
 <mpeg7:MediaTime xsd:type="mpeg7:MediaTimeType">
 <mpeg7:MediaRelTimePoint mediaTimeUnit=”PT1S”>
10</Mpeg7:MediaRelTimePoint>
 <mpeg7:MediaIncrDuration mediaTimeUnit=”PT1S”>
5</Mpeg7:MediaIncrDuration>
 </mpeg7:MediaTime>
 </a:mediaTime>
 </a:context>
 <a:context>
 <a:hasResource>http://foo2.org/foo2.mpg</a:hasResource>
 <a:mediaTime rdf:parseType="XmlLiteral"
xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001#">
 <mpeg7:MediaTime xsd:type="mpeg7:MediaTimeType">
 <mpeg7:MediaRelTimePoint mediaTimeUnit=”PT1S”>
22</Mpeg7:MediaRelTimePoint>
 <mpeg7:MediaIncrDuration mediaTimeUnit=”PT1S”>
5</Mpeg7:MediaIncrDuration>
 </mpeg7:MediaTime>
 </a:mediaTime>
 </a:context>
 </rdf:Description>
</rdf:RDF>

This approach is backwards compatible in the sense that the general query “Give
me all annotations that annotate this resource” will return any Association object
that has one link to the resource. The modified range of the context property doesn’t
have to be defined within the Annotea Schema, but could be defined as a new sub-
property of the context property within the Context extension.

6 Conclusion

In this paper we have demonstrated various ways of extending the Annotea Schema to
enable annotation of links between segments of multiple objects. We have shown that
careful considerations need to be made as the flexibility of RDF and the ease to add
and extend new classes and properties might have wide-reaching implications if not
approached and considered cautiously.

When extending Annotea, we recommend the following best practices:

− Reuse existing Annotea classes and properties as well as RDF and XML Schema
(built-in) types where possible;

− A general query such as “Give me all Annotations that annotate this resource”
should always return all objects that are sub-classes of Annotation, e.g.
Comment, Bookmark, Ranking, FormalStatement, Association. It is then up
to the client to display the different objects accordingly;

− A general query such as the one above should return all the information needed to
enable clients to display an appropriate overview/list, i.e., avoiding nested queries
on the server-side to retrieve additional information where possible;

− Avoid unnecessary explosion of triples in the triple-store;
− Investigate SPARQL implications.

 Annotating Relationships Between Multiple Mixed-Media Digital Objects 547

7 Future Work

In the future, we will investigate the following:

− The use of named graphs instead of triple-hungry reification where possible to
avoid triple explosion in the RDF store.

− Consider definitions of trust relationships inside a user’s FOAF profile when
querying the Annotation Server, e.g. filter out annotations that are not trusted.

− Combine Comparisons/Associations with ontologies, which should be straight-
forward, based on the work presented in this paper.

− Add generic HTML-based ontology browsers and forms to create more complex
ontology instances and embed these into the user interface of our Annotea Sidebar
and Vannotea.

References

1. Roscheisen, M., Mogensen, C., and Winograd, T.: Shared Web Annotations as a Platform
for Third-Party Value-Added, Information Providers: Architecture, Protocols, and Usage
Example. Computer Science Dept., Stanford University. Technical Report CSDTR/DLTR
STAN-CS-TR-97-1582 (1994).

2. Davis, J. and Huttenlocher, D.: The CoNote System for Shared Annotations. (1995)
http://www.cs.cornell.edu/home/dph/annotation/annotations.html.

3. Schroeter, R., Hunter, J., Guerin, J., Khan, I., and Henderson, M.: A Synchronous
Multimedia Annotation System for Secure Collaboratories. In 2nd IEEE International
Conference on E-Science and Grid Computing (eScience 2006). Amsterdam, Netherlands
(2006)

4. Kipp, M.: Anvil - A Generic Annotation Tool for Multimodal Dialogue. In 7th European
Conference on Speech Communication and Technology (Eurospeech). Aalborg (2001)
1367-1370

5. Halaschek-Wiener, C., Golbeck, J., Schain, A., Grove, M., Parsia, B., and Hendler, J.:
Annotation and provenance tracking in semantic web photo libraries In International
provenance and annotation workshop. Chicago (2006)

6. Petridis, K., Kuehn, K., Handschuh, S., Bloehdorn, S., Saathoff, C., Avrithis, Y.,
Kompatsiaris, Y., and Staab, S.: Semantic Annotation of Images and Videos for
Multimedia Analysis and Retrieval. In Lecture Notes in Computer Science, vol. 3532:
Lecture Notes in Computer Science (2005) 592-607.

7. Koivunen, M.-R. and Kahan, J.: Annotea: an open RDF infrastructure for shared Web
annotations. In Proceedings of the 10th international conference on World Wide Web.
Hong Kong. ACM Press (2001)

8. Schroeter, R., Hunter, J., and Kosovic, D.: Vannotea - A Collaborative Video Indexing ,
Annotation and Discussion System For Broadband Networks. In Knowledge Markup and
Semantic Annotation Workshop, K-CAP 2003. Sanibel, Florida (2003)

9. Khan, I., Schroeter, R., and Hunter, J.: Implementing a Secure Annotation Service. In
International Provenance and Annotation Workshop (IPAW2006). Chicago (2006)

10. Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E., and Ciravegna,
F.: Semantic annotation for knowledge management: Requirements and a survey of the
state of the art. Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 4 (2006) 14-28

548 R. Schroeter, J. Hunter, and A. Newman

11. Koivunen, M.-R.: Semantic Authoring by Tagging with Annotea Social Bookmarks and
Topics In The 5th International Semantic Web Conference (ISWC2006) - 1st Semantic
Authoring and Annotation Workshop (SAAW2006). Athens, GA, USA (2006)

12. Carroll, J. J. and Stickler, P.: RDF triples in XML. In 13th international World Wide Web
conference. New York, NY, USA (2004) 412 - 413

13. Watkins, E. R. and Nicole, D. A.: Named Graphs as a Mechanism for Reasoning about
Provenance. In APWeb 2006: 8th Asia-Pacific Web Conference. Harbin, China (2006)
943-948

14. Salembier, P. and Smith, J. R.: MPEG-7 multimedia description schemes. IEEE
Transactions on Circuits and Systems for Video Technology, vol. 11 (2001) 748-759

Describing Ontology Applications

Thomas Albertsen and Eva Blomqvist

Jönköping University, Jönköping, Sweden
{alth|blev}@ing.hj.se

Abstract. Semantic Web technologies are finally, after a few years of
infancy, truly entering the business world to support the growing needs of
computer aided information selection and processing. There are already
quite well-defined development processes and methods in the software
engineering field to handle the construction of large scale and complex
enterprise systems, and to reuse knowledge in different software domains
patterns are considered to be common practise. Patterns can be described
on different levels of abstraction, but the patterns in the focus of this
paper are on the software architecture level. In this paper we present a
definition of the notion ”ontology application pattern”, as a special form
of software architecture patterns describing an ontology-based system.
We also show how such patterns, as well as the description of the pattern
instantiations, can be described using a modified architecture description
language.

1 Introduction

In recent years the area of semantic applications has grown from small web ap-
plications, to large scale enterprise systems showing real benefits in the business
applications domain. Technologies intended for the web are now also applied on
company intranets and in enterprise information systems etc. As the technol-
ogy development increases system capabilities, the systems keep getting larger
and more complex. Semantic applications are comparable to any other software
systems in terms of size and complexity, and thereby require the same rigorous
development process as any other system.

Complexity of a system to be built can be managed through established de-
velopment processes and knowledge reuse (through for example patterns), this
is common practise in software development. When constructing semantic ap-
plications ontologies are usually used as the core knowledge component of the
system. This paper addresses the issue of specifically incorporating ontologies
in the architecture design of a software system through a specialisation of soft-
ware architecture patterns, and extending an architecture description language
to better suit software architectures including ontologies.

The following section presents motivation and background of our approach,
including related work on patterns and architecture description languages. In
section 3 the term ontology application pattern is defined and described in more

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 549–563, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

550 T. Albertsen and E. Blomqvist

detail. A way of describing the specific kinds of software architectures are dis-
cussed in section 4. Finally, the paper is concluded with a discussion and some
future work possibilities.

2 Background

This section describes the general background, including definitions, and some
previous work on patterns.

2.1 Ontologies and Patterns

Ontology is a popular term today, used in many areas and defined in many dif-
ferent ways. In our research we adopt the definition from [1], stating that an
ontology is a formal explicit specification of a shared conceptualisation. In our
view this means that an ontology is a hierarchically structured set of concepts
describing a specific domain of knowledge, that can be used to create a knowl-
edge base. An ontology contains concepts, a subsumption hierarchy, arbitrary
relations between concepts, and possibly other axioms.

Even using this definition, ontologies can be used for many different purposes
and applications, and they can be constructed and structured in many differ-
ent ways. Our research focuses mainly on the abstraction level of domain and
application ontologies (as defined in [2]) within enterprises, so called enterprise
application ontologies, to be used in enterprise applications. When considering
the complexity of the ontologies, our research is mainly focused on terminological
ontologies, to structure and retrieve information.

In a previous paper [3] we have attempted to describe and classify different
kinds of patterns concerning ontologies. In general, patterns are here used in
the sense of a generalised solution to a recurring problem that can be reused
(instantiated and adapted) in the specific engineering task at hand. In [3] the
patterns concerning ontology engineering are divided into five intuitive levels
of abstraction. The four lowest levels deal with the internal structure of the
ontologies, so called ontology patterns, while the fifth level deals with complete
ontologies used within a system, thereby making the connection to software
engineering and software architectures. This level of abstraction is in [3] denoted
”ontology application patterns” and will be the focus of the rest of this paper.

2.2 Ontology Applications

There are a lot of applications that use ontologies today. In [4] a description of
four classical ontology application scenarios is made: Neutral authoring, common
access to information, ontology as specification and semantic search. Another de-
scription of ontology-based applications, more focused on the business domain, is
the classification in [5]. Four slightly different scenarios are described: Knowledge
management, information retrieval, portals and web communities and finally
e-commerce.

Describing Ontology Applications 551

The trend is now to move away from traditional heavily knowledge based
systems, using a single ontology, to more open semantic applications (as for ex-
ample stated in [6]) exploiting and handling the huge size of the web or company
intranets and the diversity of both ontologies and information sources. As stated
already in the introduction of this paper, these kinds of semantic applications are
entering also the business area, through for example intranets, company portals
and e-commerce. As technologies develop, more advanced applications become
possible, which also increases the complexity and size of the software systems
that use the ontologies.

To describe a whole ontology and its use in an application there is a need to
describe the characteristics of the ontology. A formulation of such characteris-
tics has been described in connection with the Ontology Definition Metamodel
presented by the Object Management Group (OMG) in [7], the dimensions de-
scribed there are:

– Level of Authoritativeness: This is a measure of how authoritative the ontol-
ogy is of the area it describes. If the author of the ontology is the organisation
that is responsible for specifying the conceptualisation then this is clearly a
highly authoritative ontology.

– Source of Structure: Either the ontology is developed separately from the
application that will use it or else the structure comes directly from the
intended application.

– Degree of Formality: Degree of formality refers to the level of formality of the
specification of the conceptualisation. This could range from highly informal
ontologies, via semantic networks, to highly formal ontologies that include
complex logical axioms.

– Model Dynamics: This concerns the rate of change in the ontology, from the
extreme where the ontology is stable and rarely or ever changes, to very
volatile ontologies that change continuously.

– Instance Dynamics: This dimension is closely related to Model Dynamics
but concerns the instances of the ontology.

– Control and Degree of Manageability: This dimension considers who decides
when and how to change an ontology. One extreme is that the author of the
ontology has the sole decision on changes, and the other extreme is of course
that the ontology changes are based on decisions of outside parties.

– Application Changeability: The applications that use the ontology might be
on one hand developed once and for all, and not frequently changed, and on
the other hand they might be changing dynamically during run time.

– Coupling: This dimension describes how closely coupled applications com-
mitted to shared ontologies are.

To further describe the ontology and what content it should have, competency
questions could be used. Competency questions, as described in [8], are used to
exactly define what information the ontology should provide, in terms of con-
straints on its content. A competency question can be expressed as a constraint,
but it also contains information on the content of the ontology. Competency

552 T. Albertsen and E. Blomqvist

questions can be expressed in formal logic or more informally, as requirements
on the ontology. In this paper we mainly consider informally expressed compe-
tency questions.

Other requirements that should be specified according to most common on-
tology development methodologies, as described in [9], concern:

– Purpose and Goal: The intended use of the ontology.
– Scope: Describing major subject areas that need to be covered in the ontol-

ogy, and possible boundaries to what is not to be included.
– Level of Detail: Specifying the lowest level of detail considered important

(the instance level).
– Representation Suggestions: Suggestions of naming conventions, representa-

tion language appropriateness etc.

Often a system could exploit not only one ontology but several, perhaps even
exchangeable during runtime. Then these ontologies might need a connection,
in order to for example translate information expressed in one ontology to the
other. This process of translation requires an ontology alignment to be present,
which can be obtained through an ontology matching process as defined in [10].

2.3 Software Architectures and Patterns

A description of a software architecture is the description of the high level struc-
ture of a software system. In [11] the term software architecture is defined as
”the description of elements from which systems are built, interactions among
those elements, patterns that guide their composition and constraints on these
patterns. [...] a particular system is defined in terms of a collection of components
and interactions among those components”.

This definition describes the overall design of the system that includes global
control structure, communication protocols, data access, and the system’s major
components and the behaviour of the components. The essential idea of archi-
tecture is abstraction, to hide some of the details of the system in order to make
it easier to understand the properties of the system, and to connect the func-
tionality in the requirements to elements of the high level design. If the system
is complex there can be several levels of abstraction, and the elements on each
level can be decomposed into new architectures.

The elements of an architecture can as noted above be divided into com-
ponents, connectors and their configuration. Both components and connectors
provide interfaces that act as connection points to that entity. Sometimes also
the data that is exchanged between components is included in the architectural
view (see for example [12]). The component is classically an abstract unit of
software instructions and internal state that provides a transformation of data.
This can be transformations as computation or as simply loading data to mem-
ory from secondary storage. The connectors are an abstract mechanism that
facilitates communication between the components. A connector may have a
subsystem inside it, in order to make this communication possible. Data is the
information that is transferred between the components through the connectors
of the architecture.

Describing Ontology Applications 553

An architecture style describes a generalised architectural organisation of soft-
ware systems, which means that it describes how components and connectors can
be configured into a certain kind of software system with certain properties. In
[11] the notion of architecture style is defined as follows: ”... an architectural
style defines a vocabulary of components and connector types, and a set of con-
straints on how they can be combined.” It is also stated that many styles might
in addition include a semantic model that defines how to determine the system’s
overall properties from its parts.

Examples of common architecture styles are ”Pipes and Filters” where the
components are filters while the connectors are the pipes. Another architecture
style is the ”Object Oriented” style. The components encapsulate the data and
the operations, as connectors, make it possible for the components, the objects,
to communicate. The connectors are usually procedure calls. If an architecture
style is more formally described it constitutes and architecture pattern, such as
the patterns in [13] and [14].

2.4 Architecture Description Languages

In order to support the description and communication of software architec-
tures the use of architecture description languages (ADLs) have been proposed.
An ADL is usually described as a language designed for describing high level
architectural notions, including components, connectors, and their interfaces,
and that treats connectors as first-class entities. ADLs were originally developed
when existing formal languages and programming languages were found to be
insufficient or inappropriate to describe a software architecture (see discussion
in [11]).

For software ADLs the components in the language are software processes
or modules and the ADL is used to define and model the software architecture.
There are numerous ADLs existing today, examples are Rapide, UniCon, Darwin
and xADL. In order to transfer an architecture description from one ADL to
another the ADL ACME has been constructed to facilitate mapping from one
ADL to another. For a survey and comparison of ADLs see [15].

xADL (see [16]) has been developed by the University of California Irvine
and is defined as a set of XML schemas. The language has a core model with
four elements: Components, connectors, interfaces and configurations. These are
mainly the same elements as discussed in section 2.3. The language has a modular
design that makes it easy to extend with new structures.

3 Ontology Application Patterns

In this section we attempt to define the notion of ontology application pat-
terns, as an extension of software architecture patterns. As software architecture
patterns are usually described using a special template, one such template is
described and detailed to better fit ontology applications.

554 T. Albertsen and E. Blomqvist

3.1 Definition

Ontology application patterns are very much related to software architecture
patterns, although ontology application patterns include ontologies as compo-
nents. Our definition of ontology application patterns therefore build on the
definition of software architecture patterns stated in section 2.3.

We define an ontology application pattern as ”a software architecture pattern
describing a software system that utilises ontologies to create some of its func-
tionality. The pattern also describes properties of the ontology or ontologies in
the system, and the connection between the ontology, other ontologies and the
rest of the system”.

3.2 Specific Characteristics

The difference between software architecture patterns and ontology application
patterns is that there always exist ontology components in the latter and that
the pattern should give insight in what capabilities these ontology components
should have. First we consider the topology of the complete architecture, to
address the nature of ontology components. How are the ontology components
used in the complete system? There can be several ways to view this, on sev-
eral levels of abstraction. If the abstraction of the system is high, the ontology
component might include a lot of ”intelligence” such as an inference engine and
additional software functionality. If on the other hand the abstraction level is
low, the component might represent only the ontology, as a data source. These
two views imply different interfaces and connectors of the ontology component,
but both views might be used for describing patterns as well as for describing a
specific software architecture.

To give a simple example, we use a scenario from a research project at
Jönköping University called MediaILOG. The project aims at introducing se-
mantic technologies to address information processing problems within compa-
nies of the media industry. Specifically a local newspaper of the Jönköping region
is used as an application case of the project. One part of a proposed framework
in the context of this project is the possibility to rank incoming documents
(whether they are e-mails, articles from a news agency or update reports from a
website) with respect to the company’s interests (as represented in their enter-
prise ontology) and the individual interests or job descriptions of the employees
of the company (also described in the enterprise ontology). This process should
be supported by a software system for evaluating and ranking incoming docu-
ments. A simplified version of such an architecture can be depicted as in figure
1, where part A illustrates the architecture on a high level of abstraction, the
enterprise ontology is an internal part of the profile matching component, and
part B illustrates the case when the ontology is viewed as a component in itself.

In both views described above the internal structure and content of the on-
tology itself needs to be considered. This leads to the question, what character-
istics should be described concerning an ontology in an architecture or even an
ontology application pattern? In section 2.2 a set of ontology characteristics are
given, along with the requirements usually used when constructing ontologies

Describing Ontology Applications 555

Fig. 1. Examples of architecture alternatives

(like scope, level of detail and a set of competency questions). Together this can
be viewed as a description characterising the ontology as well as requirements
for its construction. In the example architecture such information would include
the scope of the enterprise ontology, the required level of detail and a set of
competency questions describing the ontology capabilities.

There can be competency questions on several levels; general abstract ques-
tions stated for a pattern, and more specific ones developed when implementing
the pattern. An ontology pattern used for ontology construction might describe
the content and internal structure of a part of the ontology in general terms,
like the ontology design patterns of [17], and could be used as a way to describe
the content requirements of an ontology. If for example the ontology application
pattern would suggest the use of a structure similar to the DOLCE roles and
tasks pattern in [17] (describing how objects and events in a certain situation are
described by roles and tasks) it could also include suggestions for competency
questions, representing an abstract interface to the ontology. An example is to
be able to ”ask” the ontology ”what role has a certain object that participates
in this specific event”. When the pattern is instantiated such a question can
be specified into ”what role has this person participating in this meeting”. An
ontology application pattern might suggest ontology patterns for realising the
ontology component and competency questions for realising its interface.

In the example of figure 1 such description of the ontology interface (of al-
ternative B) could include competency questions like i) ”what are the related
topics of a topic t” or ii) ”what are the interests of employee e”. This should
be part of the component description of an ontology component in a software
architecture and thereby also, in more general terms, might be addressed in

556 T. Albertsen and E. Blomqvist

an ontology application pattern. Such a more general version of the competency
question ii could for example be ”what are the concepts considered relevant from
the perspective of instance i”. In addition, if the more general view (alternative
A) is adopted, including software structures in the ontology component, also the
functionality of the surrounding software and its interface should be described.

Another issue when considering interfaces to ontology components are the
possible and intended connections. The above discussed example component
interfaces support mainly the connection of an ontology component to a pure
software component. Another possibility is to connect an ontology component
directly to another ontology component. Then the interface might constitute
either only the competency questions (for dynamic connections) or the complete
internal structure of the ontology (for more static approaches). Interfaces can
be described both as general types, for ontology application patterns, and as
specific instances of those types for the instantiation of the patterns.

When connecting two ontology components directly the connector between
these probably contains an ontology alignment (see section 2.2). The interface
of the ontology components are in the case of a static alignment the complete
ontology, since the alignment can operate on any internal part of the ontologies.
In the case of a dynamically constructed alignment the interface is a set of com-
petency questions and the connector a set of queries to construct the alignment.
On a pattern level this can be described as an abstract alignment, an alignment
between components, but on the level of the specific pattern instantiation the
nature of the alignment might be further specified.

An example of this situation could also be illustrated through a simplified part
of the framework envisioned in the MediaILOG project previously mentioned.
When collecting relevant information from news agency services the enterprise
ontology of the newspaper can be aligned to ontologies describing the structure
and general content of the information provided by different news agencies, as
illustrated in figure 2. In this way when the newspaper wants to retrieve infor-
mation from a news agency a wrapper interpreting the alignment between the
enterprise ontology and the news agency ontology is used, to translate the infor-
mation need of the newspaper into a query to be sent to an appropriate news
agency. In this simplified example, there exists a static connection between the
enterprise ontology and several news agency ontologies. Each ontology acts as a
component of this architecture and the alignments act as the connector compo-
nent between ontology components. But in practise it may also be used by the
wrapper components, as illustrated in figure 2, which gives the wrappers access
to the aligned ontologies.

3.3 Pattern Template

In order to make it easier to create ontology application patterns a template, cor-
responding to the commonly used template in [18] is detailed to better fit ontology
application patterns. The suggested template in [18] has the following headings:

– Name of pattern
– Aliases: Aliases, if there are any.

Describing Ontology Applications 557

Fig. 2. Example of an architecture involving static alignments

– Problem: Gives a short description of the problem. This could be a statement
or a question.

– Context: The context in which the pattern is valid.
– Forces: Lists and describes each relevant force. A force is a factor or attribute

relevant to the problem, the solution is the result of the ”tension” between
the forces. Examples of forces can be factors such as efficiency or robustness.
Forces can be conflicting and the solution should balance the tension between
the forces present in the problem.

– Solution: Gives a statement of the solution to the problem, can include dia-
grams.

– Resulting Context: Describes the context after the solution is applied.
– Rationale: Explains the logic behind the solution. The user will understand

why this solution is a good solution.
– Known Uses: Gives examples on where the pattern have been used.
– Related Patterns: Lists any related patterns.
– Sketch: A sketch to describe the pattern and a description of the sketch, if

needed.
– Author(s): Names of the authors.
– Date: Date created.
– Contact Details: Authors’ emails
– Pattern Source: The source of the pattern, for example the affiliation of the

authors.
– References: A list of references cited in the pattern.
– Keywords: A string of comma delimited terms used for searching.
– Example: Referenced in the pattern. This could be pseudo code, skeleton for

classes etc.

To further detail this template for ontology application patterns, information
about the ontology components need to be specified in the template sections. In
the following list subheadings illustrate where new information should be added:

– Context
• Application Context

558 T. Albertsen and E. Blomqvist

• Knowledge Context: Describing the context, especially regarding level of
authoritativeness, model and instance dynamics, application changeabil-
ity and coupling, for the pattern to be applicable.

– Forces
• General Forces
• Ontology Forces: Describing forces related to the use of ontologies and

the requirements set by the pattern on the ontology.
– Solution

• Software Solution
• Ontology Solution: Describing the intention and general requirements

set on the ontology by the pattern, like purpose, scope, source of struc-
ture, level of detail, degree of formality, representation suggestions (and
reasoning capabilities) and a set of general competency questions.

– Resulting Context
• Application Context
• Knowledge Context: Describing the model and instance dynamics, ap-

plication changeability and control, and degree of manageability.
– Example: The examples might include parts of ontologies and references to

reusable ontologies.

4 Architecture Description

When using the above described template much of the information regarding an
ontology application pattern can be captured, but only in the ambiguous man-
ner of arbitrary textual descriptions, simple illustrations and examples. To more
formally describe a pattern, or a pattern instance implementation, a structured
language (such as an ADL) is needed. Existing ADLs focus on software compo-
nents and the interactions between them. We feel there is a need for focusing
more on knowledge components to be able to define an ontology application pat-
tern or an application architecture containing ontologies properly. Many of the
existing ADLs are possible to use for describing ontology components, but to
capture the above noted characteristics of ontology components and connectors
the languages have to be extended.

4.1 Suggested ADL

Architecture description languages usually contain the elements components and
connectors. If ontologies are treated as another component there are several
issues to be considered, as described in section 3. If the component description
in an ADL were to be extended by the characteristics of the ontology this could
be a way to show what the ontologies must be able to do within the component
and the complete system.

As described in section 2.4 there are several ADLs available. In order extend
an ADL to accommodate the use of ontologies an ADL with the property of
being easily extendible were chosen, namely xADL 2.0. xADL has a modular

Describing Ontology Applications 559

organisation, where new modules can be added to include more specific expres-
sions in the language. This is a good way to create a description of a system
using ontologies i.e. creating an ADL for ontology applications.

Ontologies can be seen as components in the system with some sort of infor-
mation inside and given interfaces. Other components within the system should
be able to access and manipulate the ontology. With this in mind, a component
with the additional properties of an ontology should be added to the language.
The characteristics mentioned in 2.2 are used as additional properties of the on-
tology component and thereby a new element called ontology is created in xADL.
The ontology element has a description element called the Ontology Description,
which has all the ontology characteristics as attributes. This is illustrated in
figure 3 through a graph based notation provided by xADL 2.0.

The interfaces are the connection points to the ontology component and
should describe what services the ontology can provide to the other components
through some connector. In section 3.2 examples of such services are given, and
those are examples of what can be considered ontology interfaces. Mainly there
are two kinds of interfaces; interfaces directly to another ontology component
and software interfaces (possibly constrained by some competency questions).
The interface between ontologies also has two variants, either constituting the
complete ontology or just the set of competency questions. These variants are
added as specialised interface description attributes as illustrated in figure 4.

Fig. 3. Ontology component

560 T. Albertsen and E. Blomqvist

Fig. 4. Ontology interface

The last of the added elements is the connector, that will make communica-
tion to and from the ontology components possible. Connectors can also be of
several kinds, but if the ontology is connected to a software component there is
no major difference to an ordinary software connector, only the possible addi-
tion of constraints (competency questions). If the ontology is on the other hand
connected to another ontology component directly, the connector might be a
set of queries or a set of competency questions, or both. These are added as a
specialised attribute in the ontology connector as illustrated in figure 5.

4.2 Architecture Example

When considering the simplified project scenarios discussed earlier in section 3.2,
the first architecture (version B of figure 1) could for example be described using
the suggested additions to xADL. Due to space limitation we can here only give
a brief idea of what this description could contain (using the added attributes
of ontology components, connectors and interfaces).

The ontology component is in this example architecture considered as a data
store with no software functionality of its own. The description of this enter-
prise ontology using the component template depicted in figure 3 should include
information of all the attributes of an ontology component. Level of authorita-
tiveness would in this case describe the level of authoritativeness required from
the ontology to support accurate ranking of incoming documents. The level of
authoritativeness should be high in order for the rankings to be useful, so the
ontology needs to be tailored to the media company at hand. Source of structure
would include information of the sources for ontology construction, in the case

Describing Ontology Applications 561

Fig. 5. Ontology connector

of a local newspaper this might be the paper sections and the actual work di-
vision structure between departments and individual employees. The structure
of the ontology needs to be tailored to the task it should perform. The degree
of formality states if informal definitions are acceptable or if each concept needs
a formal logical definition. In this application case a semantic net representa-
tion of the ontology is sufficient. Model dynamics describes how dynamic the
enterprise ontology will be, in this case a traditional newspaper with fixed topics
probably has a quite static enterprise ontology. On the other hand, the level of
detail needs to be high, which gives a higher level of instance dynamics. This
kind of reasoning can be performed for each of the attributes of the ontology
component, based on the application case requirements.

As an interface description the competency questions of the ontology should
be one part, in addition the representation language of the ontology needs to
be specified. For the example case the following two competency questions were
suggested in a previous section: ”what are the related topics of a topic t” and
”what are the interests of employee e”. The ontology representation is needed
to support the implementation of the connector interface. Finally, the connector
between the ontology component interface and the software component (in the
example denoted ”profile matching”) needs to be specified. This will be the
reasoning software used to query the ontology, for example using some ontology
query language, allowing queries corresponding to the competency questions of
the interface. This reasoner will then connect to the software interface of the
profile matching component, thereby letting that component use the services
corresponding to the competency of the ontology.

So far we have not generalised these example architectures into patterns, but
we envision that several architecture patterns can be created in each application
field (as discussed in section 2.2) simply by looking at existing systems. The
extended version of xADL presented above can equally well be used to describe

562 T. Albertsen and E. Blomqvist

those patterns. All attributes may not apply for every pattern, but generally the
attributes are still valid. The modified pattern template suggested in section 3.3
can be viewed as the natural language correspondence to the added component
templates in xADL.

5 Conclusions and Future Work

In this paper we have defined the notion of ontology application patterns, as
a specialisation of software architecture patterns. Then we have continued to
study the characteristics that differentiate these patterns from ordinary software
architecture patterns. Mainly we can see that engineering ontology applications
may benefit from descriptions and patterns more focused on ontologies and their
use in the system. Therefore we propose a more detailed template to guide the
future description and documentation of ontology application patterns. A next
step will be to construct a catalogue of ontology application patterns according
to our definition and defined using the extended template.

Both pattern descriptions and architecture descriptions in themselves can also
benefit from being described in a more formal manner. Therefore we have ex-
tended the general architecture description language xADL 2.0 with specific
ontology component templates, together with specialised connectors and inter-
faces. Future work will involve to evaluate the extended ADL through applying it
in a set of cases and determine the completeness of the attributes. It will also be
used to describe future system architectures of ontology applications developed
by our research group, in projects like MediaILOG.

Acknowledgements

Examples used in this paper were provided by the MediaILOG research project
at Jönköping University, financed by the Swedish Hamrin Foundation. Also
special thanks to the three anonymous reviewers for their valuable comments
on how to improve this paper.

References

1. Gruber, T.: A translation approach to portable ontology specifications. In: Knowl-
edge Acquisition. Volume 5. (1993) 199–220

2. Guarino, N.: Formal Ontology and Information Systems. In: Proceedings of
FOIS’98. (1998) 3–15

3. Blomqvist, E., Sandkuhl, K.: Patterns in Ontology Engineering: Classification of
Ontology Patterns. In: Proc. of ICEIS2005, Miami Beach (2005)

4. Jasper, R., Uschold, M.: A Framework for Understanding and Classifying Ontology
Applications. In: Proceedings of the Twelfth Workshop on Knowledge Acquisition
Modeling and Management KAW’99. (1999)

5. OntoWeb: D21 Successful Scenarios for Ontology-based Applications v1.0.
OntoWeb Deliverable, D2.1, Available at: http://www.ontoweb.org/About/
Deliverables/ (2002)

Describing Ontology Applications 563

6. Motta, E., Sabou, M.: Next Generation Semantic Web Applications. In: Proceed-
ings of the First Asian Semantic Web Conference - ASWC 2006, Springer (2006)

7. Object Management Group: Ontology definition metamodel. IBM and Sandpiper
Software Inc, Available at: http://www.omg.org/docs/ad/06-05-01.pdf (2006)

8. Gruninger, M., Fox, M.S.: The Role of Competency Questions in Enterprise En-
gineering. In: IFIP WG5.7 Workshop on Benchmarking - Theory and Practice,
Trondheim, Norway (1994)

9. Öhgren, A., Sandkuhl, K.: Towards a methodology for ontology development in
small and medium-sized enterprises. In: IADIS Conference on Applied Computing,
Algarve, Portugal (2005)

10. Shvaiko, P., Euzenat, J.: A Survey of Schema-based Matching Approaches. Journal
on Data Semantics (2005)

11. Shaw, M., Garlan, D.: Software Architecture - Perspectives on an Emerging Dis-
cipline. Prentice-Hall, Upper Saddle River (1996)

12. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, Irvine, California (2000)

13. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
oriented Software Architecture - A System of Patterns. John Wiley & Sons (1996)

14. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley
(2003)

15. Medvidovic, N., Taylor, R.: A Classification and Comparison Framework for Soft-
ware Architecture Description Languages. IEEE Transactions on Software Engi-
neering 26 (2000) 70–93

16. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: A Highly Extensible, XML-Based
Architecture Description Language. In: Proc. of WICSA 2001. (2001)

17. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: Proceedings
of ISWC2005, Springer (2005) 262–276

18. Meszaros, G., Doble, J.: Metapatterns: A pattern language for pattern writing. In:
The 3rd Pattern Languages of Programming conference, Monticello, Illinois (1996)

The SPARQL Query Graph Model for Query

Optimization

Olaf Hartig and Ralf Heese

Humboldt-Universität zu Berlin
Department of Computer Science

{hartig|rheese}@informatik.hu-berlin.de

Abstract. The Semantic Web community has proposed several query
languages for RDF before the World Wide Web Consortium started to
standardize SPARQL. Due to the declarative nature of the query lan-
guage, a query engine should be responsible to choose an efficient evalu-
ation strategy. Although all RDF repositories provide query capabilities,
some of them require manual interaction to reduce query execution time
by several orders of magnitude.

In this paper, we propose the SPARQL query graph model (SQGM)
supporting all phases of query processing. On top of the SQGM we de-
fined transformations rules to simplify and to rewrite a query. Based on
these rules we developed heuristics to achieve an efficient query execution
plan. Experiments illustrate the potential of our approach.

1 Introduction

With introducing the RDF data model researchers have investigated approaches
to manage RDF data efficiently. As a part of these efforts, researchers as well as
developers are looking for approaches to reduce query execution time. Current
RDF repositories often rely on existing database technologies, e.g., relational
databases [1,2,3] or Berkley-DB [4]. A main reason can be seen in the experience
with efficient query processing gained over the past decades.

However, a posting in a newsgroup1 illustrates that there is still room for
improvement. A user of the Jena Semantic Web Framework [3] asked in a posting
why his program containing only simple queries on a small RDF database runs
so slowly. The answer was quite surprising: the user should put the more specific
part of the query first, because it made a significant difference. Rearranging the
queries resulted in a reduction of the execution time by a factor of 220, i.e.,
33000ms → 150ms.

The development of RDF repositories came along with several proposals for
query languages. Combining concepts of these languages, the World Wide Web
Consortium currently standardizes a query language for RDF, namely SPARQL.
Although the specification is still in the status of a working draft, it has already
been adopted by recent implementations of RDF repositories. Due to its declar-
ative nature, a query engine has to choose an efficient way to evaluate a query.
1 http://groups.yahoo.com/group/jena-dev/message/21436 (posted on Mar 8, 2006)

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 564–578, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The SPARQL Query Graph Model for Query Optimization 565

As shown in the above example, the user has still to choose the right order of
triple patterns to minimize query execution time – contradicting to the nature
of a declarative query language.

Fig. 1. Phases of the query processing

In this paper, we make a first step
to consider all phases of query op-
timization in RDF repositories. We
adopted the well-known query graph
model developed for the Starburst
database management system [5] to
represent SPARQL queries and pro-
pose the SPARQL query graph model
(SQGM). In our approach, this model
forms the key data structure for all
phases of query processing and is used
to store information about the query being processed. Figure 1 depicts the main
phases of query processing in database systems. The small arrows depict the
information flow and the large arrows depict the control flow. See [6] for a de-
scription of the phases. We defined transformation rules on top of the SQGM to
provide means for rewriting and simplifying the query formulation.

1.1 Running Example

Throughout this paper we use the same SPARQL query (Figure 2) as a running
example. The query asks for the names of all graduate students taking some
course. Due to the optional clause in line 7, the result of this query may also
include students taking no courses at all.

1 PREFIX ub : <http ://www. l eh i gh . edu / . . . / univ−bench . owl#>
2 PREFIX r d f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
3 SELECT ?n ?c
4 FROM <http :// example . org / Un ive r s i ty0 . owl>
5 WHERE {
6 ? s rd f : type ub : GraduateStudent .
7 OPTIONAL { ? s ub : takesCourse ? c . }
8 ? s ub : name ?n .
9 }

Fig. 2. Example SPARQL query

Except for the prologue containing prefix declarations (lines 1–2), the struc-
ture of a SPARQL query is similar to the query language SQL for relational
database systems. A SPARQL query consists basically of three parts: (a) the
result specification part including solution modifiers (line 3), (b) the dataset de-
finition part (line 4), and (c) the restriction definition part (lines 5–9). We refer
to [7] for further explanation of the syntax .

566 O. Hartig and R. Heese

1.2 Structure and Goals of This Paper

In the next section, we define the SPARQL query graph model and its graphical
representation. Section 3 describes transformation rules based on this model
which rewrite a query into a semantically equivalent one. The goal of rewriting a
query is to achieve an efficient query execution plan. To evaluate our approach,
we implemented it on top of the Jena Semantic Web Framework. We present and
discuss some results of our experiments in Section 4. Section 5 discusses related
work; Section 6 concludes the paper.

2 SPARQL Query Graph Model

In [5] Pirahesh et al. developed the query graph model (QGM) which defines
a conceptually more manageable representation of an SQL query. We adapted
this model to represent SPARQL queries – the SPARQL query graph model
(SQGM). The basic elements of an SQGM are operators and dataflows – an
operator processes data and a dataflow connects the output and input of two
operators. In this section we describe the adaption of the query graph model to
represent SPARQL queries. We begin with the description of the basic elements
of the model and then explain the translation of SPARQL queries into the model.

2.1 Fundamentals

An SQGM can be interpreted as a directed labeled graph with vertices and edges
representing operators and dataflows, respectively. Figure 3 shows the graphical
representation of the SQGM for our example (cf. Figure 2). Operators are de-
picted as boxes consisting of a head, a body, and additional annotations. The
Definitions 1 and 2 give a basic definition of an operator and a dataflow. In ref-
erence to the SPARQL specification, we refine the first definition and introduce
operators having special properties and graphical representations below.

Definition 1. An operator performs operations on its input data to generate
output data. �

An edge symbolizes the dataflow between two operators indicating that an op-
erator consumes the output of another. Edges are directed and point to the data
consumer.

Definition 2. A dataflow connects two operators and transfers the data pro-
vided by one of them and consumed by the other. �

An operator processes and generates either an RDF graph (a set of RDF triples),
a set of variable bindings, or a Boolean value. Any operator has the properties
input and output. The property input specifies the dataflow(s) providing the
input data for an operator and output specifies the dataflow(s) pointing to an-
other operator consuming the output data. We call the operator providing the

The SPARQL Query Graph Model for Query Optimization 567

Fig. 3. Graphical representation of the SQGM for the SPARQL query in Figure 2

data of a dataflow the providing operator of this dataflow. The operator con-
suming the data of a dataflow is called the consuming operator. The mapping
UsingOp : DF → OP assigns the consuming operator to every dataflow and the
mapping ProvOp : DF → OP assigns the providing operator to every dataflow.2

The following expressions formally define these mappings; please note that we
use a dot notation to access a property.

UsingOp(d) := o ⇔ d ∈ o.input
ProvOp(d) := o ⇔ d ∈ o.output

According to the produced output of an operator we distinguish between V-
operator and G-operator. A V-operator creates a set of variable bindings. The
variables that are bound by an operator are specified in the property provVars.
In the graphical representation, their names are listed in the head of the operator
box. For example, in Figure 3 the right-most operator provides bindings for the
variables ?s and ?n. The output of a G-operator is an RDF graph, i.e., a set of
RDF triples. Since these operators do not bind any variables, they do not have
the property provVars and the head is omitted in their graphical representation.

Dataflows are also divided into two categories: V-dataflow and G-dataflow. We
denote with GF the set of all G-dataflows and with VF the set of all V-dataflows.
V-dataflows are dataflows that originate in a V-operator, i.e., variable bindings
are transferred. A V-dataflow has the property vars containing all variables
that are used by subsequent operators. In the graphical representation a V-
dataflow is annotated with the names of the variable contained in vars. It holds

2 We denote with OP the set of all operators of an SQGM and with DF the set of all
dataflows.

568 O. Hartig and R. Heese

∀d ∈ VF : d.vars ⊆ ProvOp(d).provVars because not every consuming operator
processes the bindings for all variables offered by the providing operator.

G-dataflows are dataflows that originate in a G-operator, i.e., an RDF graph
is transferred. That is why they do not have the property vars.

Operator Types. We defined a set of operator types to cover the language
structures of the SPARQL specification. Table 1 gives an overview of all defined
operator types, their meaning, and their specific properties. If it is not noted
otherwise, the values of the properties of an operator are listed in the body part
of its box in the graphical representation.

Table 1. Overview of all SQGM operator types

Operator Type Meaning and Properties

Graph Operator Accesses an RDF graph
iri : IRI of the RDF graph

Graph Merge Operator Merges a set of RDF graphs

Graph Selection Operator Accesses a set of named RDF graphs
var : a variable bound to the IRI of the selected RDF graph

Graph Pattern Operator See detailed description below

Join Operator Joins two sets of variable bindings

Union Operator Calculates the set union of two sets of variable bindings

Solution Modifier
Operator

Applies solution modifiers to a set of variable bindings
distinct : indicates duplicate elimination
orderBy : determines the order of the result set
limit : restricts the size of the provided set of variable bindings
offset : an offset within the provided set of variable bindings

Select Result Operator Returns only the bindings for the given variable names

Describe Result Operator Creates an RDF graph describing a set of IRIs and the re-
sources that are bound to given variable names
describedResources: IRIs and variable names to be considered

Construct Result
Operator

Creates an RDF graph by instantiating a template
template: template graph pattern for constructing the query
result

Ask Result Operator Returns TRUE if the input is not empty

Due to the limited space we cannot define all operators in this paper. Instead,
we selected one operator type, the graph pattern operator, which we describe
in detail. The graph pattern operator corresponds to the basic graph pattern
defined in the SPARQL specification. It is the main building block to specify the
part of RDF dataset that is of interest. In the SPARQL query graph model the
graph pattern operator is defined as follows:

Definition 3. A graph pattern operator is a V-operator which takes an RDF
graph as input and returns the variable bindings for a set of triple patterns and
value constraints as defined in [7].The property input of a graph pattern operator

The SPARQL Query Graph Model for Query Optimization 569

is restricted to G-dataflows. Furthermore, the following specific properties are
defined:

– triplePatterns: a list of triple patterns to be matched
– constraints: value constraints to be satisfied by the variable bindings
– contr: indicates a provable contradiction in the value constraints �

In the graphical representation of a graph pattern operator, the head of the
box lists the variable names bound by the operator and the body contains the
properties of the operator (see Figure 3).

SPARQL Query Graph Model. Before we describe the translation of a
SPARQL query into an SQGM in the following section, we present the definition
of SQGM.

Definition 4. A SPARQL query graph model (SQGM) represents a SPARQL
query. It is a tuple (OP, DF, r, dflt, NG) where

– OP denotes the set of all operators necessary to model the query,
– DF denotes the set of all dataflows necessary to model the query,
– r is an operator responsible for generating the result of the query (r ∈ OP),
– dflt is an operator providing the default RDF graph of the queried RDF

dataset (dflt ∈ OP),
– NG is the set of graph operators that provide the named graphs (NG ⊂ OP).

�

2.2 Translating a SPARQL Query to an SQGM

Our process for constructing an SQGM from a SPARQL query is described in
Algorithm 1. It takes a query as input and returns the corresponding SQGM.
The SPARQL query is given as a tuple (DS, GP, SM, R) where DS is the queried
RDF dataset, GP is a graph pattern, SM is a set of solution modifiers, and R
is the result form [7]. In the remainder of this section, we describe each step
separately.

Algorithm 1. Translating a SPARQL query q into an SQGM Q

INPUT: q := (DS, GP, SM, R) – a SPARQL query
OUTPUT: Q := (OP, DF, r, dflt, NG) – an SQGM representing q

1. Generate operators for the RDF dataset DS;
2. Generate operators for the graph pattern GP ;
3. Generate operators for the set of solution modifiers SM ;
4. Generate operators for the result form R;

570 O. Hartig and R. Heese

Generate Operators for the RDF dataset. In the first step of the algorithm,
the RDF dataset is modeled. An RDF dataset DS consists of a default RDF
graph G and a set of named graphs

(
〈uj〉, Gj

)
. We use graph operators and graph

merge operators to represent these parts. Although RDF graphs can be stored
differently, e.g., in secondary storage or main memory, they are modeled in the
same way. To model the RDF dataset the algorithm creates a graph operator
for the default graph and each named graph (cf. Table 1). The property iri is
set to the IRI of the respective RDF graph. The operators for the named graphs(
〈uj〉, Gj

)
are added to the sets OP and NG, the operator providing the default

graph G is added to OP and is assigned to the dflt element. In the case that
the default graph consists of a multiple RDF graphs, a graph merge operator is
additionally created which provides access to the merge of these RDF graphs.

In the graphical presentation, the operator providing the default graph is
additionally annotated with the keyword DEFAULT. In our running example (see
Figure 3), the box at the bottom models the access to the default RDF graph.

Generate Operators for the Graph Pattern. The second step of query
translation models the graph pattern GP of a SPARQL query. GP is either a
basic graph pattern, a group graph pattern, value constraints, an optional graph
pattern, an union graph pattern, or an RDF dataset graph pattern. Some of
them (group graph pattern, optional graph pattern, union graph pattern, and
RDF dataset graph pattern) contain other graph patterns. Thus, we use a tree
of connected operators to represent GP and the algorithm traverses the graph
pattern depth first to generate the operators. While traversing the graph pattern
GP the algorithm creates the corresponding SQGM operators and dataflows
bottom-up and adds them to the sets OP and DF , respectively. Furthermore,
the properties of the operators and dataflows such as input, output, provVars,
and vars are set accordingly.

In the following, we describe which operators are generated with respect to the
different graph pattern types. For each basic graph pattern and value constraint
a graph pattern operator is created and added to the set OP . Its properties
triplePatterns and constraints are initialized according to the graph pattern at
hand. Its property provVars contains all variables occurring in the basic graph
pattern and value constraint. While constructing the SQGM the algorithm keeps
track of the data source needed to set the input property of the new operators.

The example SQGM (Figure 3) contains three graph pattern operators – boxes
containing a triplePattern property – representing the three basic graph patterns
in our example query. The incoming edges represent G-dataflows indicating that
these operators process the default RDF graph.

A union graph pattern U(P1, · · · , Pn) operates on a set of graph patterns Pi. It
is modeled in two steps. First, the operators of all graph patterns Pi are created
recursively. The result is a set of operator trees, one for each Pi. Second, the root
operators of these trees are connected using union operators. Unions involving
three or more graph patterns are modeled as a binary tree of union operators.

A group graph pattern G(P1, · · · , Pn) containing multiple graph patterns Pi

is modeled similarly to a union graph pattern. The only difference is that the

The SPARQL Query Graph Model for Query Optimization 571

root operators of the trees are connected by join operators. The example query
in Figure 2 contains a group graph pattern consisting of two graph patterns: a
optional graph pattern (line 6–7) and a basic graph pattern (line 8). It translates
into a single join operators, i.e., the upper one. The second join operator is a
result of translating the optional graph pattern which we discuss next.

An optional graph patterns O(P1, P2) consists of two graph pattern P1 and
P2. It is basically modeled in the same way as a group graph pattern with two
patterns, except that the dataflow between the operator representing P2 and
the join operator is initialized with the property optional set to TRUE. In the
graphical representation this is reflected by the keyword optional (see Figure 3).

A RDF dataset graph pattern GRAPH(g,P) matches a pattern P on one or
more named graphs depending on whether g is an IRI or a variable. In case g is
an IRI, the data source of the operators representing P is the graph operator that
provides access to the RDF graph with the IRI g. Otherwise, if g is a variable, the
algorithm creates a graph selection operator providing access to all named RDF
graphs. Depending on its type the graph pattern P is modeled as described before.

Generate Operators for the Solution Modifiers. In the third step, the
algorithm generates the operators representing the solution modifier set SM of
the SPARQL query. Solution modifiers such as order by or limit manipulate
their input data to change the order of the result set or to select a subset of
it. If the set of solution modifiers SM of the SPARQL query is not empty, a
solution modifier operator is created and its specific properties are initialized
according to values in SM . The new operator is added to set OP of the SQGM
and connected to the root operator representing the graph pattern GP .

Generate Operators for the Result Form. The last step of Algorithm 1
generates the operators for the result form R. The authors of the SPARQL
specification [7] distinguish the four result forms SELECT, DESCRIBE, CONSTRUCT,
and ASK. According to the result form of the query, the algorithm creates the
appropriate operator and connects it to the SQGM generated so far, i.e., it
constructs a dataflow to either the solution modifier operator or the operator
representing the graph pattern. Furthermore, the operator specific properties
are set. For example, if the result form is CONSTRUCT, then the template graph
pattern is assigned to the property template of the construct result operator.

3 Query Rewriting Based on SQGMs

While our query graph model for SPARQL is intended to support all phases of
query processing (cf. Figure 1), we currently focus on query rewriting. In the
query rewriting phase, the generated SQGM is transformed into a semantically
equivalent one to achieve a better execution strategy when processed by the
plan optimizer. For instance, rules may aim at simplifying complexly formulated
queries by merging graph patterns, e.g., avoiding join operations, and eliminating
redundant or contradicting restrictions. In this section, we first define semantical
equivalence of two SQGMs and, thereafter, specify transformation rules. These

572 O. Hartig and R. Heese

rules are finally combined to heuristics which promise to result in efficient query
execution plans.

It is essential for query rewriting that applying transformation rules to a
query has no impact on the query result. We define semantical equivalence of
two SQGMs as follows:

Definition 5. Two SQGMs q and q′ are semantically equivalent, if the equation

ResultD(q) = ResultD(q′)

holds for any RDF dataset D, where ResultD(q) denotes the result set of evalu-
ating q on D. �

We distinguish two categories of rules for SQGM restructuring: transformation
rules and rewrite rules. While transformation rules change an SQGM only lo-
cally, i.e., an operator and its immediate neighbors are affected, rewrite rules are
more complex and affect the complete SQGM. Since transformation rules are
the building blocks of rewrite rules, we introduce them first.

Definition 6. A transformation rule is a tuple (n, D, P, I) where n is the name
of the rule, D is a set of operators for which the rule is applicable (domain),
P is an optional set of Boolean valued expressions being the preconditions for
applying the rule, and I is a non-empty list of instructions for changing the
SQGM. �

Given a transformation rule, if an operator is contained in D and all precondi-
tions P are fulfilled for this operator then the transformation rule can be applied
to the SQGM, e.g., the instructions in I are executed. In the context of query
rewriting, we are interested only in transformation rules which transform an
SQGM into an semantical equivalent one. In the following, we give an example
for the definition of a transformation rule.

Example 1. Figure 4(a) depicts a part of an SGQM. The two graph pattern op-
erators can be merged with the join operator without affecting the semantics of
the represented query. Merging would be beneficial in several cases, e.g., offering
more options for index application or potentially facilitating further simplifica-
tion. Therefore, we developed the transformation rule (MergeJoinedGPOs,
D, P , I). It merges the join of two graph pattern operators to a single operator.
The rule is applicable to join operators, i.e., D = JO, where JO denotes the set
of all join operators.

Let o ∈ D be a join operator, (iL, iR) := o.input be the left and right
input dataflows originating from the two operators oL := ProvOp(iL) and
oR := ProvOp(iR), and GPO be the set of all graph pattern operators in the
SQGM. Then the set of preconditions P contains the following expressions:

i) oL ∈ GPO
ii) oR ∈ GPO
iii) iL.optional = FALSE

The SPARQL Query Graph Model for Query Optimization 573

Fig. 4. Part of an SQGM before (a) and after (b) applying the transformation rule
MergeJoinedGPOs

iv) iR.optional = FALSE
v) |oL.output| = 1
vi) |oR.output| = 1
vii) ProvOp(oL.input) = ProvOp(oR.input)

Hence, the preconditions of MergeJoinedGPOs are the following: both oper-
ators are graph pattern operators (i and ii), none of them provides optional data
(iii and iv), they are not used in another context (v and vi), and the input of
both operators originates from the same RDF graph (vii).

The rule transforms q = (OP, DF, r, dflt, NG) to q′ = (OP ′, DF ′, r, dflt, NG)
using the following instructions in I:

i) oL.triplePatterns := oL.triplePatterns
 oR.triplePatterns
ii) oL.constraints := oL.constraints ∧ oR.constraints
iii) oL.contr := oL.contr ∨ oR.contr
iv) oL.output := o.output
v) o.output := ()
vi) DF ′ := DF \ {iL, iR, oR.input}
vii) OP ′ := OP \ {o, oR}

The operator
 used in the instructions i) denotes the merge of two triple pat-
terns. This merge of triple patterns is similar to the merge of RDF graphs except
that the triple patterns may contain variables. Especially, implementations of
this operation have to consider the scope of blank nodes.

The operators in Figure 4(a) satisfy the preconditions of the transformation
rule MergeJoinedGPOs. Thus, the rule can be applied to this part of the
SQGM. Figure 4(b) shows the part after executing the instructions of the trans-
formation rule. The three operators have been merged to a single graph pattern
operator containing all triple patterns of the original graph pattern operators. �

Rewrite rules are similar to transformation rules, but consider the complete
SQGM. Every rewrite rule follows a certain goal, e.g., merge as many graph
pattern operators as possible. To reach a goal it may be necessary to apply a
single or a sequence of transformation rules several times. A goal of a rewrite
rule is reached if no further steps are possible.

574 O. Hartig and R. Heese

Definition 7. A rewrite rule is a tuple (n, G, S, Acheck, Acompile) where n is the
name of the rule, G specifies a goal, S defines steps to reach the goal, Acheck

is an algorithm to determine if another step is executable, and Acompile is an
algorithm that compiles a sequence of transformation rules to actually execute
the next step. �

In the case that multiple rewrite rules are applied to an SQGM, it may happen
that the goal of a rewrite rule is contrary to the goal of another. Our current
approach to solve this problem is to choose manually the set of rewrite rules to
be applied.

Example 2. As mentioned in Example 1, merging joined graph pattern operators
is beneficial in some cases. Following this assumption, we developed the rewrite
rule MergeAllJoinedGPOs. Its goal is to merge as many graph pattern op-
erators as possible.
In every step, the rewrite engine selects two graph pattern operators and merges
them if possible. The algorithm Acheck searches for a pair of candidate oper-
ators and checks if another step is executable. This is not trivial. As already
mentioned, the translation algorithm constructs a join tree. Thus, graph pattern
operators that could be merged by the transformation rule MergeJoinedG-

POs, may occur at any place in the join tree. In order to merge these operators
nevertheless, the join tree has to be restructured, so that the candidates become
children of the same join operator. Due to the limited space, we do not discuss
the transformation rules to restructure a join tree in this paper. However, the
algorithm Acompile compiles a sequence of these additional rules being suitable
to restructure the join tree appropriate. After restructuring the transformation
rule MergeJoinedGPOs finally performs the merge.

Considering Figure 3 as an example, the compiled sequence contains trans-
formation rules to switch the places of the left-most and the right-most graph
pattern operators and ends with the rule MergeJoinedGPOs. �

Having rewrite rules defined, we are able to specify heuristics. A heuristic consists
of a set of preconditions and a set of rewrite rules. If the preconditions are fulfilled
and the rewrite rules are applied to an SQGM then the heuristic promises that in
most cases the resulting SQGM meets a certain efficiency criterion, e.g., reducing
query execution time. The following example illustrates the idea of one heuristic.

Example 3. We developed a heuristic that supports the fast path algorithm im-
plemented in the Jena Semantic Web Framework [3]. The fast path algorithm
detects triple patterns that can be executed as a single query within the underly-
ing relational database system, e.g., the database can optimize the joins. These
triple patterns have to be part of the same execution stage, e.g., contained in
the same basic graph pattern. We believe, that merging graph pattern operators
of an SQGM reduces the query execution time, because larger sets of triple pat-
terns are created and the fast path algorithm can push the evaluation of larger
sets of triple patterns into the relational database. The heuristic suggests to
apply rewrite rule MergeAllJoinedGPOs (cf. Example 2) if (a) the SQGM

The SPARQL Query Graph Model for Query Optimization 575

contains joined graph pattern operators, (b) the query RDF dataset is stored in
a database, and (c) query execution is performed by Jena. �

4 Implementation and Evaluation

We prototypically implemented the SPARQL query graph model on top of the
Jena Semantic Web Framework and the ARQ query processor (Version 1.3).
Afterwards, we run experiments to evaluate our approach. In this section, we
outline our implementation, describe the testing environment, and present some
results of our experiments.

The SPARQL query graph model is implemented as an extension to ARQ.
While our query engine is derived from the classes of ARQ, the query model has
been implemented from scratch. Additionally, we developed a rule engine being
responsible for transforming query graph models.

Fig. 5. Processing of a SPARQL query us-
ing the SQGM extension

Using our extension, a SPARQL
query is processed as shown in
Figure 5: First, the ARQ query
processor parses the query and gen-
erates a query model specific to
ARQ. We chose the indirection over
the ARQ query model to reuse the
SPARQL parser of ARQ. However,
this model has the disadvantage that
it is very close to the syntax of
the query. For example: in contrast
to ARQ, our model considers basic
graph patterns and filter expressions
as a single operation. Because the
dataflows are not explicitly defined in
the ARQ model, it is not possible to
distinguish between provided and actually used variables. After parsing the
query, the generated query model is translated to an SQGM and heuristics are
applied to provide a good basis for an efficient query execution plan. Then the re-
structured SQGM is translated back into an ARQ query model. ARQ generates
a query execution plan which is executed finally.

Based on the Lehigh University Benchmark [8], we generated three sets of RDF
data with increasing size using the scaling factors 1, 5, and 10, e.g., the sets con-
tained about 100k, 624k, and 1272k triples, respectively. The data was managed
by a relational database system and stored on secondary storage. Furthermore,
we developed 41 queries which combined basic graph patterns, OPTIONAL, FIL-
TER and UNION clauses in various ways. For each query we measured the query
execution time two times: with and without applying heuristics.

The diagram in Figure 6 illustrates the results of applying the heuristic pre-
sented in Example 3 to our example query. We see that the execution of the

576 O. Hartig and R. Heese

reformulated query is about 2.4 times faster than the original query. The reason
for the better performance of our approach is that Jena implements the fast path
algorithm. Considering our example, the algorithm can not facilitate combined
pattern matching, because the correlation between the lines 6 and 8 in Figure 2
is not detected by Jena. The previously presented heuristic (cf. Example 3)
transforms the query so that the fast path algorithm can facilitate to push down
the pattern evaluation into the database.

Fig. 6. Query execution time of our running example (Figure 2)

Further results of our experiments are the following. Parsing and transforming
the query took less than 1 ms. Thus, these operations have little impact on the
query execution time. The average savings were about 87%. Partly, this high
savings are caused by a query which contained a contradicting value constraint.
In contrast to our implementation, ARQ did not detect the contradiction. Instead
of immediately returning an empty result, ARQ executed the query nevertheless.

5 Related Work

Although many approaches have been investigated how to store and to query
RDF data, less attention has been paid to query optimization as a whole. How-
ever, some phases of query processing have already been considered. Cyganiak
[9] and Frasincar et al. [10] considered query rewriting and proposed algebras for
RDF. Derived from the relational algebra they allow to construct semantically
equivalent queries. Furthermore, Serfiotis et al. developed algorithms for con-
tainment and the minimization of RDF/S query patterns in [11]. This approach
examines only hierarchies of concepts and properties. All these approaches have
in common that they consider only a small part of the query processing, while
the proposed query graph model supports all phases of query processing.

Pérez et al. present an approach to formalize the semantics of the core of
SPARQL in [12]. They also define a set of equivalence expressions that allow to

The SPARQL Query Graph Model for Query Optimization 577

transform any SPARQL query into a simple normal form consisting of unions of
graph patterns. Currently, we investigate how their formal model can be used to
formulate transformation rules on top of SQGMs.

To improve the query execution time, several ways of storing RDF data have
been developed and evaluated, e.g., Jena [3], Sesame [2], Redland [4] and a path-
based relational RDF database [13]. But as the introductory example demon-
strated, we have reasons to believe that developers of current RDF repositories
have to re-engineer the query engines to declaratively deal with queries.

Christophides et al. focused on indexing RDF data, e.g., in [14] they developed
labeling schemes to access subsumption hierarchies efficiently. Again, developing
index algorithms is only a small part of query processing. It is also important to
enable the query processor to transform the query such that an effective index
can be invoked.

6 Conclusion and Future Work

Over the last years several approaches for storing and querying RDF data have
been developed and evaluated. Although some research has been undertaken to
provide means for query rewriting, we think that query optimization as a whole
has not been considered so far. In this paper, we proposed the SPARQL query
graph model (SQGM) supporting all phases of query processing. This model
forms the key data structure for storing information that is relevant for query
optimization and for transforming the query. We presented transformation rules
which enable the query processor to transform an SQGM. We combined sets of
transformation rules to rewrite rules as the base for heuristics. These heuristics
enabled the Jena-based query execution to exploit the fast path algorithm more
often. Our experiments demonstrated the potential of our approach to reduce
query execution time.

The SPARQL query graph model can easily be extended to represent new
concepts. This is important since the current SPARQL specification defines only
basic query structures. Widely used structures such as group by, subqueries,
and views are currently not supported, but will certainly be added in near
future.

In our future work, we will develop further heuristics and exploit additional
information to decide on the transformation rules being applied to the SQGM,
e.g., information about the RDF schema or statistical data about the RDF
datasets. Furthermore, we currently work on the problem of selecting indexes
to minimize the costs of query execution. In the future, we want to combine
the transformation of SQGMs with the selection of indexes. For example, apply
rules to an SQGM such that an index with a high selectivity becomes usable. As
a long-term goal, we will investigate extensions to the current SPARQL spec-
ification, e.g., subqueries and views, and develop appropriate transformation
rules.

578 O. Hartig and R. Heese

References

1. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The
RDFSuite: Managing Voluminous RDF Description Bases. In Decker, S., Fensel,
D., Sheth, A.P., Staab, S., eds.: Proceedings of the Second International Workshop
on the Semantic Web. (2001) 1–13

2. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for
storing and querying RDF and RDF schema. In Horrocks, I., Hendler, J.A., eds.:
Proceedings of the First International Semantic Web Conference. Volume 2342 of
Lecture Notes in Computer Science., Springer (2002)

3. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF Storage and
Retrieval in Jena2. In Cruz, I.F., Kashyap, V., Decker, S., Eckstein, R., eds.:
Proceedings of the First International Workshop on Semantic Web and Databases.
(2003)

4. Beckett, D.: The Design and Implementation of the Redland RDF Application
Framework. In: Proceedings of the Tenth International Conference on World Wide
Web, New York, NY, USA, ACM Press (2001)

5. Pirahesh, H., Hellerstein, J.M., Hasan, W.: Extensible/rule based query rewrite
optimization in Starburst. SIGMOD Records 21(2) (1992) 39–48

6. Heese, R.: Query graph model for sparql. In: International Workshop on Semantic
Web Applications: Theory and Practice. Proceedings of ER workshops. (2006)

7. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. http://
www.w3.org/TR/rdf-sparql-query/ (2006) W3C Candidate Recommendation.

8. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
Journal of Web Semantics 3(2) (2005) 158–182

9. Cyganiak, R.: A relational algebra for SPARQL. Technical Report HPL-2005-170,
HP Laboratories Bristol (2005)

10. Frasincar, F., Houben, G.J., Vdovjak, R., Barna, P.: RAL: an Algebra for Querying
RDF. In Feldman, S.I., Uretsky, M., Najork, M., Wills, C.E., eds.: Proceedings
of the 13th International conference on World Wide Web, New York, NY, USA,
ACM Press (2004)

11. Serfiotis, G., Koffina, I., Christophides, V., Tannen, V.: Containment and Mini-
mization of RDF/S Query Patterns. In: International Semantic Web Conference.
Lecture Notes in Computer Science, Springer (2005) 607–623

12. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L., eds.: Proceedings of the 5th International Semantic Web Conference.
Volume 4273 of Lecture Notes in Computer Science., Springer (2006)

13. Matono, A., Amagasa, T., Yoshikawa, M., Uemura, S.: A path-based relational
RDF database. In: CRPIT ’39: Proceedings of the sixteenth Australasian con-
ference on Database technologies, Darlinghurst, Australia, Australia, Australian
Computer Society, Inc. (2005) 95–103

14. Christophides, V., Karvounarakis, G., Scholl, D.P.M., Tourtounis, S.: Optimiz-
ing Taxonomic Semantic Web Queries Using Labeling Schemes. Web Semantics:
Science, Services and Agents on the World Wide Web 1(2) (2004) 207–228

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 579 – 593, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Unified Approach to Retrieving Web Documents and
Semantic Web Data

Trivikram Immaneni and Krishnaprasad Thirunarayan

Department of Computer Science and Engineering, Wright State University,
3640 Colonel Glenn Highway, Dayton, OH 45435, USA
{immaneni.2,t.k.prasad}@wright.edu

Abstract. The Semantic Web seems to be evolving into a property-linked web
of RDF data, conceptually divorced from (but physically housed in) the
hyperlinked web of HTML documents. We discuss the Unified Web model that
integrates the two webs and formalizes the structure and the semantics of
interconnections between them. We also discuss the Hybrid Query Language
which combines the Data and Information Retrieval techniques to provide a
convenient and uniform way to retrieve data and documents from the Unified
Web. We present the retrieval system SITAR and some preliminary results.

Keywords: Semantic Web, Information Retrieval, Data Retrieval, Hybrid
Retrieval, Unified Web, Hybrid Query Language.

1 Introduction

Semantic Web [1] is a term used to describe the family of description languages,
standards, and other technologies which aim at “extending” the current web by
making its content machine accessible. Since the Resource Description Framework
(RDF) forms the foundation of this “extension”, we can visualize the Semantic Web
(SW) as a labeled graph with resources as nodes and binary predicates as edges (web
of data). This is in contrast to the Hypertext Web (HW) which is a graph with
resources (usually documents) as nodes and hyperlinks as edges (web of documents).

An interesting question that arises is as to where the Web documents fit into the
SW and how they can be retrieved. Intuitively, since the Web documents are
resources that are identified by their URIs, we can view them as nodes in the SW
graph. The document content can be explicitly incorporated into the SW as literals.
We can then use RDF query languages such as SPARQL [2], which enable RDF
graph traversal and support regular expression matching of strings (literals), to
retrieve the documents based upon their neighborhood as well as their content. For
example, we can pose queries such as retrieve documents authored by Tragula and
contain the string “Spectrographic”. This is classic Data Retrieval (DR).

Arguably, for this method of retrieving Web documents to have any remote chance
of out-performing current Information Retrieval (IR) techniques, each and every Web
document should have highly useful semantic descriptions. Some technologies such
as RDFa [3] enable embedding of semantic markup in a HTML document. Even if
such technologies gain wide usage, unless we find a way to (automatically) create

580 T. Immaneni and K. Thirunarayan

semantic descriptions of all of the existing HW documents, there will always be a
large corpus of documents isolated from the SW. Another issue here is that query
languages such as SPARQL require the users to have intimate knowledge of the
underlying schema (exact URIs) to compose queries. The simple keyword-based
interfaces that systems such as Yahoo! and Google expose to their users is another
compelling reason to stick to IR techniques for retrieving Web documents. So, we
seem to be better off retrieving data from the SW using DR techniques and retrieving
documents from the HW using keyword-based IR techniques. In this sense, when
seen from (data or document) retrieval perspective, the Semantic Web is,
conceptually, a web of data that is estranged from the web of documents that is the
Hypertext Web.

Our high level goal is to view the Semantic Web and the Hypertext Web as a
unified whole and retrieve data and documents from this Unified Web (UW) [4]. This
way, we can utilize the available semantic descriptions to enhance Web document
retrieval and will also have the option of using the information from the (unstructured
documents of) HW to improve the SW data retrieval.

The web documents can be broadly divided into the following three categories –
those meant primarily for human consumption (HTML, plain text, jpg, etc.), those
meant primarily for machine consumption (RDF, OWL, RDFS, etc.) and hybrid
documents that are meant for both machine and human consumption (RDFa,
microformats and other such technologies that allow embedding of semantic markup
in HTML/XHTML documents [5]). Our goal is to facilitate the retrieval of all the
above three types of documents while fully exploiting semantic markup/descriptions
when available to increase retrieval effectiveness.

We want to enable lay users to retrieve human-consumable documents (first and
third types) using the traditional keyword-based query mechanism (with minimal
enhancements). We want to transparently use the available SW data to enhance the
retrieval process. For example, if the user knows that she is looking for Jaguar the car,
she should be able to communicate this disambiguating information to the system
using a query such as “car::jaguar”.

For more informed users, we want to provide a light-weight, keyword-based hybrid
query language, that does not require knowledge of the underlying schema (exact
URIs). These users should be able to use the query language to retrieve all three types
of documents. That is, they should be able to (i) retrieve human-consumable
documents by posing queries such as retrieve documents authored by Tragula (the
professor) and are about spectrography, or retrieve homepages of professors named
John, (ii) query for and retrieve SW documents (RDF, OWL, RDFS, etc.) by posing
queries such as retrieve documents that assert triples about the ventriloquist John
Smith, and (iii) retrieve hybrid documents (e.g., RDFa) by posing queries that
combine the features of the above two types of queries. In addition, the users should
be able to query and retrieve data by posing questions such as what is professor
Tragula’s phone number or list all the elements in group 1 of the periodic table, even
in the absence of schema information.

We first describe the Unified Web model in Section 2, followed by the description
of the Hybrid Query Language in Section 3. We discuss the implementation of our
system SITAR and present some results in Section 4. We discuss related research in
Section 5 and conclude with Section 6.

 A Unified Approach to Retrieving Web Documents and Semantic Web Data 581

2 The Unified Web Model

The Unified Web model aims to integrate the SW and the HW into a single unified
whole by encoding the two webs and the connections between them. The UW model
is a graph of nodes and edges (N, E). A node is an abstract entity that is uniquely
identified by its URI. There are two categories of nodes: (i) Natural nodes (NN) and
(ii) System defined nodes (SN). The natural nodes can be further classified as plain
(or non-document) nodes (PN) and document nodes (DN) based on whether or not a
node has an associated document. The system defined nodes can be further classified
as literal nodes (LN), triple nodes (TN) and blank nodes (BN). The system creates a
URI and assigns it to each blank node, triple and literal that it encounters on the Web.

There are two categories of edges: (i) User defined edges (UE) and (ii) System
defined edges (SE). The user defined edges come from the triples in the (Semantic
Web) documents while the system defined edges are defined to make explicit the
interconnections between the HW and the SW. The system defined edges are the
following. The asserts edge exists from a node (document) to each of the RDF
statements found in the associated document. The RDF statement itself has a subject,
a property and an object. There is no restriction as to how a triple is obtained from the
document. The hasDocument edge exists from a node to a literal. The literal is the
string representation of the document associated with the node. A hyperlinksTo edge
exists from a node A to another node B if there is a hyperlink from the document of
node A to the document of node B. The linksTo edge exists from node A to node B if
a hyperlinksTo relationship exists from node A to node B, or node B occurs in any of
the triples asserted by node A (see Figure 1).

Fig. 1. Relationships

More formally, they can be specified as functions/relations in terms of their
signatures (domains and ranges), and include:

hyperlinksTo ⊆ DN x NN
linksTo ⊆ DN x NN
asserts ⊆ DN x TN
hasDocument: DN LN

582 T. Immaneni and K. Thirunarayan

These relations are not independent and cannot be assigned arbitrarily. They must
satisfy at least the following constraints:

 ∀n ∈ DN, ∀m ∈ NN: if [n, hyperlinksTo, m] ∈ SE then [n, linksTo, m] ∈ SE

The Unified Web model is not a simple super-imposition of the SW graph over the
hypertext graph. The Semantic Web can be thought of as a global RDF graph
constructed by gathering all possible RDF triples from documents that reside on the
Hypertext Web. The UW reifies each of the SW triples by explicitly encoding the
asserts relationship between a document and the triple that is extracted from it. The
UW can be visualized as a meta – Semantic Web which in itself can be an RDF graph
(one that subsumes all RDF graphs found on the web). In addition, this RDF graph
also encodes the Hypertext Web (HTML documents and hypertext links between
them). The aim is to encode the HW (hyperlinksTo and hasDocument) and the SW
and the connections between the two (such as asserts which is not explicitly defined
by the user but is rather constructed by the system) while allowing easy mapping of
data retrieval queries meant for the “conventional” SW to those for the UW [4]. The
linksTo tries to define a generic “connection” between two nodes. It seeks to establish
a definite connection between a document node and a SW data node (which, of
course, can be a document node as well) and to deliberately blur the distinction
between such a connection and a hypertext connection. The linksTo edge is for the
Unified Web what the hyperlink is for the HW and the property-link is for the SW. In
our implementation, we use linksTo to view a document as being annotated by the
URIs that it linksTo and use this information while retrieving documents.

The UW model can be specified and implemented using RDF [4]. Since all the
“user triples” are present (in reified from) in the model, query languages like
SPARQL can be used to retrieve the data – all we need is a straight-forward mapping
of the SPARQL query for the SW to the SPARQL query for the UW.

3 Hybrid Query Language Specification

The Hybrid Query Language [4] enables convenient navigation and extraction of
information from the UW. It enables formulation of precise queries involving URIs,
and “approximate” word-based queries that capture context (e.g., wordset, wordset-
pairs queries) and/or content (e.g., keyword queries). In other words, it enables access
to both HW documents and SW data, incorporating indexing information from the
neighboring nodes. Specifically, the wordset queries can use anchor text in the HW to
retrieve SW nodes, and wordset pair queries can express disambiguation information
using the ISA edges encoded in the SW for semantic search of HW documents.

Before we go into the details of the query language, let us first define some more
utility functions/relations in addition to the four in the previous section:

homeURI: N Set(URI)
externalTexts: NN PowerSet(STRINGS)
indexWords : NN PowerSet(STRINGS)
parameters: DN PowerSet(STRINGS)
hasTriples: DN PowerSet(NN x NN x NN)
hasLiteral: LN STRINGS

 A Unified Approach to Retrieving Web Documents and Semantic Web Data 583

URI denotes a string that must satisfy the URI syntax requirement (RFC 3986),
while STRINGS denotes a set of words, phrases, and other fragments. PowerSet
operator yields a set of all subsets. The members of NN x NN x NN are referred to as
the triples (such as those found in RDF documents).

homeURI maps a node to its URI. The URI is what we use to refer to a node
explicitly. externalTexts maps a node to a set of strings, possibly from its neighborhood,
providing contextual information. indexWords maps a node to a set of strings that can
serve as an index to it. These can be composed from the URI and the anchor text from
the neighboring nodes among other things. hasDocument maps a document node to the
associated document text string. parameters maps a document node to a set of attribute-
value strings capturing OS/Server related book-keeping information on the document.
hyperlinksTo relates a document node to a node that appears in a hyperlink in
the corresponding document. linksTo relates a document node to a node that appears in
the corresponding document. This can be in the form of a hyperlink or embedded in a
triple. hasTriples maps a document node to the set of 3-tuples of nodes that appear in
the corresponding document. asserts relates a document node to a triple node that reifies
the triple that appears in the corresponding document. hasLiteral maps a literal node to
the string it is associated with. It is possible to have multiple literal nodes associated
with the same string. Note that a specific instantiation of the framework can be obtained
by defining how these functions/relations (such as externalText, IndexWords, etc) are
obtained from the node’s neighborhood.

These functions must satisfy at least the following constraints:

 ∀n ∈ NN, ∀[n1, n2, n3] ∈ NN x NN x NN:
 [n1, n2, n3] ∈ hasTriples (n) only if
 [n, linksTo, n1] ∈ SE ∧ [n, linksTo, n2] ∈ SE ∧ [n, linksTo, n3] ∈ SE

∀n ∈ N, ∀[n1, n2, n3] ∈ NN x NN x NN:

[n1, n2, n3] ∈ hasTriples (n) if and only if
∃ tn ∈ TN : [n, asserts, tn] ∧ [tn, rdf:subject, n1] ∈ SE
 ∧ [tn, rdf:predicate, n2] ∈ SE ∧ [tn, rdf:object, n3] ∈ SE

For convenience, we abuse the language and say that n1, n2, and n3 appear in tn in
the context of the reification constraint.

In what follows, we motivate and specify the abstract syntax of the queries using a
context-free grammar, and the semantics of the queries in terms of the Unified Web
model, in sufficient detail to enable prototyping. Our presentation focuses on queries
that yield a set of nodes. The “domain information bearing” strings such as the
document text, literal, etc. can be easily obtained from a URI by calling corresponding
system functions such as hasDocument, hasLiteral, etc. and from triples using
rdf:subject, rdf:predicate, and rdf:object, etc.

TopLevelQuery ::= Nodes-ref | Triples-ref | …

QUERY: Nodes-ref ::= u, where u ∈ Set(URI).
ANSWER: Result(u) = { n ∈ N | HomeURI(n) = u }

584 T. Immaneni and K. Thirunarayan

SEMANTICS: The URI-query returns the set containing the unique node whose
HomeURI matches the given URI. Otherwise, it returns an error.
EXAMPLE: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonenglish?id_db=20

QUERY: Nodes-ref::=ss, where ss ∈ PowerSet(STRINGS).
ANSWER: Result(ss) = { n in N | ss ⊆ IndexWords(n) }
SEMANTICS: The wordset query, ss, usually written as a set of strings delimited
using angular brackets, returns the set of nodes whose IndexWords contain ss.
EXAMPLE: <peter haase>

QUERY: Nodes-ref ::= pp::ss, where pp, ss ∈ PowerSet(STRINGS).
ANSWER: Result(pp::ss) = { n ∈ N | ss ⊆ IndexWords(n) ∧

 ∃m : n ISA m ∧ pp ⊆ IndexWords(m) }
SEMANTICS: The wordset-pair query, pp::ss, usually written as two wordsets
delimited using colon, returns the set of nodes such that each node has IndexWords
that contains ss and has an ISA ancestor whose IndexWords contains pp.
EXAMPLE: <student>::<peter>

QUERY: Triples-ref ::= u, where u ∈ Set(URI).
ANSWER: Result(u) = { n ∈ TN | HomeURI(n) = u }
SEMANTICS: The triple node URI-query returns the set containing the unique node
whose HomeURI matches the given triple node URI. Otherwise, it returns an error.
The triple nodes are system generated.
EXAMPLE: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonFOAF/foaf_80.rdf#tri52

QUERY: Triples -ref ::= Single-Var-Triples-ref
 Single-Var-Triples -ref ::= [?var Nodes-ref Nodes-ref]
 Single-Var-Triples -ref ::= [Nodes-ref ?var Nodes-ref]
 Single-Var-Triples –ref ::= [Nodes-ref Nodes-ref ?var]

where ?var is a variable.
ANSWER: Result([?var Nodes-ref1 Nodes-ref2]) =

 { t ∈ TN | n1 ∈ Result(Nodes-ref1) ∧ n2 ∈ Result(Nodes-ref2)
 ∧ ∃m ∈ N : [m, asserts, t] ∧ [t, rdf:predicate, n1] ∧ [t, rdf:object, n2] }

Similarly, for the other two cases.
SEMANTICS: The part triple query [?var Nodes-ref1 Nodes-ref2] returns the set of
(system generated) triple nodes that are related by a binary predicate denoted by
Nodes-ref1 to some node denoted by Nodes-ref2. Similarly, for the other two cases.
Note that this query characterizes a node using its neighborhood.
EXAMPLE: [<silver> <atomic weight> ?x]

QUERY: Triples-ref ::= [Nodes-ref, Nodes-ref, Nodes-ref]
ANSWER: Result([Nodes-ref1, Nodes-ref2, Nodes-ref3]) =

 { t ∈ TN | n1 ∈ Result(Nodes-ref1)
 ∧ n2 ∈ Result(Nodes-ref2) ∧ n3 ∈ Result(Nodes-ref3)

 ∧ ∃m ∈ N : [m, asserts, t] ∧ [t, rdf:subject, n1]
 ∧ [t, rdf:predicate, n2] ∧ [t, rdf:object, n3] }

 A Unified Approach to Retrieving Web Documents and Semantic Web Data 585

SEMANTICS: The full triple query [Nodes-Ref, Nodes-Ref, Nodes-ref] returns the
set of (system generated) triple nodes matching the node references.
EXAMPLE: [http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2062instance

<name> <peter>]

QUERY: Triples-ref ::= Double-Var-Triples-ref
 Double-Var-Triples-ref ::= [?var, ?var, Nodes-ref]
 Double-Var-Triples-ref ::= [?var, Nodes-ref, ?var]
 Double-Var-Triples-ref ::= [Nodes-ref, ?var, ?var]
 where ?var is a variable.

ANSWER: Result([?var, ?var, Nodes-ref]) =
 { t ∈TN | m ∈ Result(Nodes-ref)

 ∧ [t, rdf:object, m] ∧ ∃n ∈ N : [n, asserts, t] }
Similarly, for the other two cases.
SEMANTICS: The part triple to triples query [?var ?var Nodes-ref] returns the set
of (system generated) triple nodes that are related to some node denoted by Nodes-ref.
Similarly, for the other two cases. Note that this query characterizes the node
neighborhood. Each variable occurrence is independent of the other occurrences.
EXAMPLE: [?x <title> ?x]

QUERY: Nodes-ref ::= Nodes-ref AND Nodes-ref

Nodes-ref ::= Nodes-ref OR Nodes-ref
Triples-ref ::= Triples-ref AND Triples-ref
Triples-ref ::= Triples-ref OR Triples-ref

SEMANTICS: “OR” and “AND” are interpreted as set-union and set-intersection
respectively. Each variable occurrence is independent of the other occurrences.

3.1 Queries for Exploring the System-Generated Neighborhood of a Node

QUERY: Nodes-ref ::= getAllTriples(Nodes-ref)
ANSWER: Result(getAllTriples(Nodes-ref)) =

 { t ∈TN | n ∈ Result(Nodes-ref) ∧ n appears in t
∧ ∃m ∈ N: [m, asserts, t] }

SEMANTICS: This query retrieves the (system generated) triple nodes in which the
queried node URI appears.
EXAMPLE: getAllTriples(http://www.daml.org/2003/01/periodictable/PeriodicTable#group_11)

QUERY: Nodes-ref ::= getLinkingNodes(Nodes-ref)
ANSWER: Result(getLinkingNodes(Nodes-ref)) =

 Result(Nodes-ref) ∪
 { m ∈ N | ∃n ∈ Result(Nodes-ref) : [m, linksTo, n] }
SEMANTICS: This query retrieves the nodes corresponding to Nodes-ref and the
document nodes containing references to the nodes corresponding to Nodes-ref.
Effectively, nodes and their neighborhoods are retrieved.
EXAMPLE: getLinkingNodes(http://www.aifb.uni-karlsruhe.de/Personen/viewPerson?id_db=2023)

586 T. Immaneni and K. Thirunarayan

QUERY: Nodes-ref ::= getAssertingNodes(Triples-ref)
ANSWER: Result(getAssertingNodes(Triples-ref)) =
 { m ∈ DN | ∃t ∈ Results(Triples-ref) : [m, asserts, t] }
SEMANTICS: This query retrieves document nodes containing the triples.
EXAMPLE: getAssertingNodes([<peter haase> <publication> ?x])

QUERY: Nodes-ref ::= getDocsByKeywords(ss), where ss ∈ PowerSet(STRINGS)
ANSWER: Result(getDocsByKeywords(kws)) =

 { m ∈ DN | hasDocument(m) = dt ∧ match(kws, dt) }
SEMANTICS: This query is analogous to the traditional keyword query that takes a
set of keywords and retrieves document nodes that match the keywords. match
embodies the criteria for determining when a document text is “relevant” to a
keyword. It can be as simple as requiring verbatim occurrence, to as complex as
requiring stemming, synonym generation, spelling correction, etc. match may be
compositional, that is, match (kws, dt) = ∀w ∈ kws: match(w, dt), but it is not
required.

QUERY: Nodes-ref ::= getLiteralsByKeywords (ss),
 where ss ∈ PowerSet(STRINGS)
ANSWER: Result(getLiteralsByKeywords(kws)) =

 { m ∈ LN | hasLiteral(m) = dt ∧ match(kws, dt) }
SEMANTICS: This is analogous to the above query customized for literal nodes.
EXAMPLE: getLiteralsByKeywords(semantic grid)

3.2 Further Queries for Retrieving Documents

QUERY: getDocsByContent: PowerSet(STRINGS) PowerSet(DN)
ABBREVIATION FOR: getDocsByContent(kws) =

getLinkingNodes(getDocsByKeywords(kws))
 where kws ∈ PowerSet(STRINGS)
SEMANTICS: This query retrieves the document nodes with content matching
keywords in kws and the neighboring document nodes that reference such nodes.
Intuitively, we want to pursue both the “authorities” and the “hubs” [6], assisting both
navigational searches and research searches [7].

QUERY: getDocsByIndexOrContent: PowerSet(STRINGS) PowerSet(DN)
ABBREVIATION FOR: getDocsByIndexOrContent (kws) =

 getDocsByKeywords(kws)∨
kwskw∈

∨ getLinkingNodes(kw)

where kws ∈ PowerSet(STRINGS)
SEMANTICS: This query retrieves the document nodes with content matching the
keywords kws or in the neighborhood of nodes indexed by kws. Implicitly, the
former captures syntactic retrieval and the latter enables semantic retrieval.
EXAMPLE: getDocsByIndexOrContent(semantic web)

QUERY: getDocsByIndexAndContent:

 Nodes-ref x PowerSet(STRINGS) PowerSet(DN)

 A Unified Approach to Retrieving Web Documents and Semantic Web Data 587

ABBREVIATION FOR: getDocsByIndexAndContent (nr, kws) =
 getLinkingNodes(Result(nr)) ∧ getDocsByKeywords(kws)

 where nr ∈ Nodes-ref, kws ∈ PowerSet(STRINGS)
SEMANTICS: This query retrieves the document nodes with content matching the
keywords kws and in the neighborhood of nodes corresponding to nr. Implicitly, if nr
is a URI of a document node containing the keywords kws, then the result will
contain this document node. If nr is a URI and this URI and the keywords kws are
contained in a document, then the result will contain the latter document node.
Similarly, for nodes in Result(nr) when nr contains wordset and wordset-pairs.

QUERY: getDocsByTriplesAndContent:

 Triples-ref x PowerSet(STRINGS) PowerSet(DN)
ABBREVIATION FOR: getDocsByTriplesAndContent(tr, kws) =

 getAssertingNodes(tr) ∧ getDocsByKeywords(kws)
 where tr ∈ Triples-ref, kws ∈ PowerSet(STRINGS)

SEMANTICS: This query retrieves (semantic web) document nodes that match the
keywords and contain the referenced triples.

QUERY: Single-Var-Triples-list ::= Single-Var-Triples-ref

 Single-Var-Triples-list ::= Single-Var-Triples-ref
 Single-Var-Triples-list

 Nodes-ref ::= getBindings(Single-Var-Triples-list)

QUERY1: Nodes-ref ::= getBindings([?var Nodes-ref Nodes-ref])
ANSWER: Result(getBindings([?var Nodes-ref1 Nodes-ref2]))

 = { n ∈ N | n1 ∈ Result(Nodes-ref1) ∧ n2 ∈ Result(Nodes-ref2)
 ∧ ∃m ∈ N : [m, asserts, t] ∧ [t, rdf:subject, n]

 ∧ [t, rdf:predicate, n1] ∧ [t, rdf:object, n2]}
Similarly, for the other two cases.

QUERY2: Nodes-ref ::= getBindings(Single-Var-Triples-ref
Single-Var-Triples-list)

ANSWER: Result(getBindings(Single-Var-Triples-ref Single-Var-Triples-list)) =
 Result(getBindings(Single-Var-Triples-ref)) ∩
 Result(getBindings(Single-Var-Triples-list))

SEMANTICS: This query retrieves the bindings for the variables that satisfy all the
triple references with single variable. All the variable occurrences are considered
identical, that is, they must all be assigned the same value throughout the getBindings-
argument.
EXAMPLE: getBindings([<phdstudent>::<peter> <name> ?x])
EXAMPLE: getBindings([?x <group> <group 1>] [?x <color> <white>])

QUERY: getDocsByBindingsAndContent:

 Single-Var-Triples-list x PowerSet(STRINGS) PowerSet(DN)

588 T. Immaneni and K. Thirunarayan

ABBREVIATION FOR: getDocsByBindingsAndContent(vtl, kws) =
 getBindings (vtl) ∧ getDocsByKeywords(kws)

 where vtl ∈ Single-Var-Triples-list,
 kws ∈ PowerSet(STRINGS)

SEMANTICS: This query retrieves document nodes that match the keywords and
contain the matching triples.
EXAMPLE: getDocsByBindingsAndContent([<phdstudent>::<peter> <homepage> ?x]
 “Semantic Grid”)

4 Implementation and Results

We have implemented an Apache Lucene [8] based retrieval system called SITAR
(Semantic InformaTion Analysis and Retrieval system) based upon our model. The
system can currently index HTML and RDF/OWL files in addition to RDF data. At
present, the system does not support pdf, doc files etc. (we index their URIs but their
content is not being analyzed).

Evaluating such a hybrid system is an extremely tricky process. The system has
DR components (triple matching) which render the precision and recall criteria
irrelevant. But at the same time, the system also has IR components such as keyword
based retrieval of documents in which case precision and recall become important. In
order to evaluate the system in terms of precision and recall, we would need a
standard data set (such as MEDLINE dataset) which has documents, their semantic
descriptions, some queries, and results of those queries (adjudged to be relevant by
human experts). We are still looking for such data sets. Here, we present qualitative
results obtained by experimenting with the invaluable AIFB SEAL [9] data.

The AIFB SEAL website has human-consumable XHTML documents (in English
and German) along-side OWL documents. Some of the XHTML documents have
explicit semantic descriptions (in the OWL documents). We crawled the SEAL
website looking only for English versions of web pages and RDF/OWL files using
heuristics. The crawler collected a total of 1665 files. Of these, we chose to
deliberately ignore some large OWL files (multiple copies of the same file with each
copy identified by a different URI) to simplify matters. Our system uses the
CyberNeko HTML parser [10] to parse HTML documents and the Jena ARP [11]
parser to parse RDF documents. The ARP parser could not parse some of the RDF
documents - possibly because of problems with container elements. In the end, a total
of 1455 (610 RDF files and 845 XHTML files) were successfully parsed and indexed.
A total of 193520 triples were parsed and indexed though there is no guarantee that
the same triple was not asserted by two different documents. Note that, all the index
structures are persistently stored.

Every URI is analyzed (using several heuristics) to build a set of index words for it.
More importantly, if the URI occurs in a HTML document as a hyperlink, we use the
anchor text to add to its index words set. A HTML document is indexed by the URIs
that it linksTo (or hyperlinksTo) as well as the words that are extracted from the URIs.
In this sense, it can be seen as a bag of URIs and words. An RDF document is
indexed by the URIs that it linksTo and by the triples (URIs) that it asserts. In this
sense, an RDF document can be seen as a bag of URIs and triples. Note that a hybrid

 A Unified Approach to Retrieving Web Documents and Semantic Web Data 589

document such as an RDFa document would be indexed by all of the above. But as
mentioned before, we are not experimenting with RDFa documents at present.

A user can use the HQL (Hybrid Query Language) described in the previous
section to query for data and documents. A user searching for information about a
person named peter can pose the query <peter>. This query, in effect returns all
nodes (URIs) that have been indexed using the word peter. A total of 52 URIs were
retrieved in response to the above query including OWL files (instance data of
people) and HTML files. The user can convey to the system that she is looking
specifically for Ph.D. students named peter using the query <phdstudent>::<peter>.
The following URIs were retrieved in response to this query:

http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2023instance
http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2119instance
http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2062instance

These are apparently URIs (of OWL files) representing individuals and containing
information about them. In order to find out the names of these individuals, the user
can use the query getBindings([<phdstudent>::<peter> <name> ?x]). This query
returned 125 literal nodes gathered from different RDF files (apparently FOAF files).
Note that the above queries are keyword-based, and hence easy to formulate, and
enable transparent traversal of the semantic web. The system finds the bindings for
the variable from triples such as those shown below:

uri: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonFOAF/foaf_80.rdf#tri52
sub: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2023instance
pred : http://xmlns.com/foaf/0.1/name
obj (Literal): Peter Haase

uri: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonFOAF/foaf_2127.rdf#tri27
subj: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2119instance
pred: http://xmlns.com/foaf/0.1/name
obj (Literal): Peter Bungert

uri: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonFOAF/foaf_2069.rdf#tri132
sub: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2062instance
pred: http://xmlns.com/foaf/0.1/name
obj (Literal): Peter Weiß

These triples repeated themselves in different files (with different URIs) and so a
lot of duplicate data has been indexed by the system. The user can search for the
homepages of Ph.D. students named peter by posing the query, getBindings
([<phdstudent>::<peter> <homepage> ?x]), which returns the following results:

http://www.aifb.uni-karlsruhe.de/WBS/pha/
http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/WBS
http://www.aifb.uni-karlsruhe.de/Personen/viewPerson?id_db=2023
http://www.aifb.uni-karlsruhe.de/Personen/viewPerson?id_db=2119
http://www.aifb.uni-karlsruhe.de/Personen/viewPerson?id_db=2062

The above URIs are, apparently, home pages of the above three individuals. The
interesting thing is that all of the URIs except the first one points to a German page
(whose content has not been indexed by our system). So, we cannot pose queries such
as get homepages of Ph.D. students named peter which talk about “semantic grid”
which translates into getDocsByBindingsAndContent([<phdstudent>::<peter>

590 T. Immaneni and K. Thirunarayan

<homepage> ?x] “semantic grid”) , unless we can convey to the system that the
German version of the page should be treated “same as” the English version. Now
that the user has the names, she can use the names to query the system. The query
<peter haase> retrieves the following URIs:

http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2023instance
http://www.aifb.uni-karlsruhe.de/Personen/viewPerson?id_db=2023
http://www.aifb.uni-karlsruhe.de/Personen/viewPersonenglish?id_db=2023
http://www.aifb.uni-karlsruhe.de/Publikationen/viewPublikationenPersonOWL/id2023.owl
http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2023.owl

These URIs are a mix of HTML (second and third URIs) and OWL documents.
The second URI is the homepage of the individual named Peter Haase. It is almost
synonymous with the individual [4] and so the pages that link to (linksTo) this page
must be, arguably, relevant to the individual. The query
getLinkingNodes (http://www.aifb.uni-karlsruhe.de/Personen/viewPerson?id_db=2023)
retrieves a set of RDF and HTML documents most of which are pages of projects on
which Peter Haase is working. Some of these results are shown below:

http://www.aifb.uni-karlsruhe.de/Personen/viewPersonDC/en/dc_2023.rdf
http://www.aifb.uni-karlsruhe.de/Personen/viewPersonFOAF/foaf_2023.rdf
http://www.aifb.uni-karlsruhe.de/Personen/Projekte/viewProjektenglish?id_db=78
http://www.aifb.uni-karlsruhe.de/Personen/Projekte/viewProjektenglish?id_db=80
http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/Projekte/viewProjektenglish?id_db=51
http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/Projekte/viewProjektenglish?id_db=71
http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/Projekte/viewProjektenglish?id_db=81
http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/Projekte/viewProjektenglish?id_db=42
http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/Projekte/viewProjektenglish?id_db=54

The user can query for publications by Peter Haase that have the word “semantic”
in the title by composing the query:
getBindings([<peter haase> <publication> ?x] [?x <title> <semantic>])
which retrieves the following URIs:

http://www.aifb.uni-karlsruhe.de/Publikationen/viewPublikationOWL/id399instance
http://www.aifb.uni-karlsruhe.de/Publikationen/viewPublikationOWL/id449instance
http://www.aifb.uni-karlsruhe.de/Publikationen/viewPublikationOWL/id748instance
http://www.aifb.uni-karlsruhe.de/Publikationen/viewPublikationOWL/id1003instance

All of the above are OWL files corresponding to publications. The user can query
for documents asserting the triples used to find the above bindings by using a query
such as getAssertingNodes([<peter haase> <publication> ?x]). The query
getDocByKeywords corresponds to straight-forward keyword search of HTML
documents. The query getDocByKeywords(peter haase) retrieves 251 HTML
documents. A Google search for “peter haase” retrieves 325 documents (with omitted
results) on the AIFB website. But note that we are not indexing all the AIFB web
pages and that we are completely ignoring PDF documents and the like.

SITAR indexes and retrieves RDF files too. In other words, SITAR aims at treating
HTML and RDF files with equal importance. SITAR allows users to simply enter a
set of keywords which is then automatically plugged into the query
getDocsByIndexOrContent. So, the query peter haase returns 299 documents which
are a mix of HTML and OWL documents (it also retrieves a PDF document URI).

 A Unified Approach to Retrieving Web Documents and Semantic Web Data 591

Note that in all of the above queries, the user is using intuitive keywords to explore
the RDF data. She is not aware of the underlying schema and hardly ever needs to
know the exact URIs of the resources. The user however is required to have an idea of
the underlying model. The idea is to retrieve data and document nodes from the same
unified whole. As can be imagined, this will especially be useful when dealing with
those documents that have both text and semantic markup. Such documents can be
indexed using URIs, triples and text, and the getLinkingNodes and getAssertingNodes
will play a major role in retrieving those documents. We are currently looking for an
RDFa like dataset to test this.

5 Related Research

Storing and retrieving RDF data is an area of research that has been well explored by
researchers in the recent past [12,13,14,15]. Retrieving RDF data is typically viewed
as a data retrieval problem and, not surprisingly, most of the query languages have the
SQL flavor [14]. When seen purely from the perspective of querying the RDF data,
HQL is unique because it allows the users to explore the RDF graph even without any
knowledge about the underlying schema (namespaces, exact URIs, ontologies, etc.).
The user can use HQL to quickly get a feel for the underlying data.

As far as document retrieval is concerned, there are several retrieval systems that
retrieve documents based upon their annotations/descriptions [6,16,17,18,19,20,21],
but none seems to aim at retrieving HTML, RDF and hybrid documents (that is, all
the three types). We index a document based upon words, URIs, and triples that can
be extracted from the document and give the user a light-weight query language to
retrieve documents based upon this information. The query language is hybrid in the
sense that it has both “formal” and keyword components but what is unique is that the
“formal” component itself is expressible using keywords.

Unlike our unified approach, Semantic Search [6] treats the SW and the HW as
two separate repositories and aims at retrieving documents from the HW (in fact they
use Google to search for documents). It lets the user communicate the disambiguation
information using the user interface. Like SITAR, quizRDF[16] indexes a document
(URL) using words obtained from its body as well as from the literals of triples in
which its URL participates. Like Semantic Search, quizRDF too uses a GUI to let the
user communicate disambiguation information.

SITAR views the SW and the HW as a unified whole (unlike Semantic Search).
One benefit of this, compared to quizRDF, is that the URL of a document is also
indexed by the anchor text words. Further, SITAR indexes a document using any
URIs (linksTo) or triples (asserts) that can be extracted from the document. This
allows it to index and retrieve RDF documents (and hybrid RDFa kind of documents
in the future). Also, unlike the above two systems, the user can specify the
disambiguation information (the “class”) using word-set pairs, and use it in
conjunction with linksTo information to retrieve documents.

Swoogle[18] specializes in retrieving ontology documents and URIs. It doesn’t
seem to index HTML documents or support triple search or keyword-based querying
of the RDF graph.

592 T. Immaneni and K. Thirunarayan

OWLIR’s[17] approach of treating a triple (that appears in the document) as an
indexing term corresponds to what we are doing. But the way the indexing
information is used and the nature of the query language is quite different. HQL is
keyword-based and so the users can retrieve an “asserting” document even when the
exact URIs are not known. Also, we index a document based upon the component
URIs of the triples and the hyperlinks that appear in the document (linksTo).

There are several other systems [19,20,21] that perform hybrid retrieval but our
system is different due to the reasons discussed above and due to the fact that we view
SW and HW as a single UW. We situate the SW data and the HW documents side by
side and query the Unified Web using HQL which has both keyword and “formal”
components. We also exploit existing hyperlink (linksTo) connections between HW
documents and SW nodes while retrieving documents.

6 Conclusion and Future Work

We have discussed the Unified Web model that seeks to present a unified view of the
SW and the HW, and the design and implementation of the Hybrid Query Language
that can be used to retrieve data and documents from the UW. We have presented
preliminary results obtained by experimenting with AIFB SEAL data.

HQL is a light-weight, keyword-based query language that allows the users to
query and explore the RDF graph even when no schema information is available. This
can then lead to composition of more involved queries using languages such as
SPARQL. If, in the future, we expect lay users to pose queries such as what is the
phone number of Ph.D. student Peter Bungert, to the Semantic Web and get back
answers, query languages like HQL are a step in the right direction (though at present
the user is still required to have knowledge of the RDF model).

One of the fundamental ideas behind HQL is to index a URI using a set of
keywords, which is a common notion in the literature. But because we position the
RDF data in a web of hypertext documents, we have the freedom to exploit
information from the hypertext documents (such as the anchor text) to enrich a URI’s
index words. At this level, we again see natural language induced problems such as
synonymy, polysemy, etc. (which only got pushed to a lower level). The resulting
uncertainty necessitates ranking (not unlike what Swoogle [18] is doing). But, this is
where the novel wordset pair queries such as <phdstudent>::<peter> enable
disambiguation, stating that the user is only interested in URIs of Peter the PhD
student. This, in essence, is how ontologies can help in document retrieval. And this is
where the “Semantic Web enabled Information Retrieval” starts deviating from
traditional IR. Otherwise, we are simply pushing the problem of keyword-based
document retrieval to the level of URIs (we have simply reduced the size of a typical
term vector) and there is nothing “semantic” about it – jaguar will retrieve both the
car and animal URIs in spite of “meaningful” label-literals.

SITAR and HQL are both works in progress and are gradually evolving. The major
piece of the puzzle missing from SITAR is ranking of URIs and documents. Even
though Lucene does rank URIs (SITAR stores a URI in a Lucene document that is
indexed by the index words), and of course, documents, we need a ranking algorithm
that is based on linksTo relationship among others (especially to rank RDF and hybrid
files). We are currently working on a ranking algorithm and its implementation.

 A Unified Approach to Retrieving Web Documents and Semantic Web Data 593

References

1. Semantic Web Activity page, [Webpage], http://www.w3.org/2001/sw/.
2. E. Prud'hommeaux, A. Seaborne, Eds., “SPARQL Query Language for RDF,” [W3C

Working Draft], October 2006, http://www.w3.org/TR/rdf-sparql-query/.
3. B. Adida, M. Birbeck, Eds., “RDFa,” [W3C Working Draft], 2006, http://www.w3 .org/

TR/xhtml-rdfa-primer/.
4. T. Immaneni and K. Thirunarayan, “Hybrid Retrieval from the Unified Web,” Proceedings

of the 22nd ACM Symposium on Applied Computing, Semantic Web and Applications
Track (ACM SAC 2007), Seoul, Korea, March 2007.

5. K. Thirunarayan, “On Embedding Machine-Processable Semantics into Documents,” in
IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 7, pp. 1014-1018,
July 2005.

6. J. Kleinberg, “Authoritative sources in a hyperlinked environment,” Proceedings of the 9th
ACM-SIAM Symposium on Discrete Algorithms, 1998.

7. R. Guha, R. McCool, and E. Miller, “Semantic search,” in Proceedings of the Twelfth
International Conference on World Wide Web, Budapest, Hungary, New York: ACM
Press, May 2003.

8. Apache Lucene, [Webpage], http://lucene.apache.org/.
9. J. Hartmann, Y. Sure., "An Infrastructure for Scalable, Reliable Semantic Portals," IEEE

Intelligent Systems 19 (3): 58-65. 2004.
10. CyberNeko HTML Parser, [Webpage], http://people.apache.org/~andyc/neko/doc/html/ .
11. Jena ARP, [Webpage], http://www.hpl.hp.com/personal/jjc/arp/.
12. D.Beckett, “SWAD-E Deliverable 10.2: Mapping Semantic Web Data with RDBMSes,”

[Online Document] 2003, http://www.w3.org/2001/sw/Europe/reports/ scalable_ rdbms_
mapping_report/

13. D. Beckett, “SWAD-Europe Deliverable 10.1: Scalability and Storage: Survey of Free
Software / Open Source RDF storage systems,” [Online Document] 2002, http://www.w3.
org/2001/sw/Europe/reports/rdf_scalable_storage_report/.

14. J. Bailey, F. Bry, T. Furche, and S. Schaffert, "Web and Semantic Web Query Languages:
A Survey," Reasoning Web, Eds., N. Eisinger and J. Maluszynski , Springer-Verlag, 2005.

15. P. Haase, J. Broekstra, A. Egerhart, and R. Volz, “A comparison of RDF query langauges,”
in Proceedings of the Third International Semantic Web Conference, Hiroshima, Japan,
2004.

16. J. Davies, R. Weeks, and U. Krohn, “QuizRDF: Search technology for the semantic web,”
Workshop on Real World RDF and Semantic Web Applications, 11th International World
Wide Web Conference, Hawaii, USA, 2002.

17. J. Mayfield and T. Finin, “Information retrieval on the semantic web: Integrating inference
and retrieval,” in Proceedings of the SIGIR 2003 Semantic Web Workshop, 2003.

18. Li Ding et al., "Finding and Ranking Knowledge on the Semantic Web", in Proceedings of
the 4th International Semantic Web Conference, November 2005.

19. C. Rocha, D. Schwabe, and M.P. Aragao, “A Hybrid Approach for Searching in the
Semantic Web,” in Proceedings of the 13th International World Wide Web Conference,
New York, May 2004, pp. 374-383.

20. L. Zhang, Y. Yu, J. Zhou, C. Lin, Y. Yang, “An enhanced model for searching in semantic
portals,” in Proceedings of the 14th International World Wide Web Conference, Chiba,
Japan, NY: ACM Press, May 2005.

21. D. Vallet, M. Fernández, and P. Castells, "An Ontology-Based Information Retrieval Model,"
in Proc. of 2nd European Semantic Web Conf. (ESWC 2005), Berlin Heidelberg, 2005.

Distributed Knowledge Representation

on the Social Semantic Desktop:
Named Graphs, Views and Roles in NRL

Michael Sintek1, Ludger van Elst1, Simon Scerri2, and Siegfried Handschuh2

1 Knowledge Management Department
German Research Center for Artificial Intelligence (DFKI) GmbH,

Kaiserslautern, Germany
firstname.surname@dfki.de

2 DERI, National University of Ireland, Galway
firstname.surname@deri.org

Abstract. The vision of the Social Semantic Desktop defines a user’s
personal information environment as a source and end-point of the Se-
mantic Web: Knowledge workers comprehensively express their informa-
tion and data with respect to their own conceptualizations. Semantic
Web languages and protocols are used to formalize these conceptualiza-
tions and for coordinating local and global information access. From the
way this vision is being pursued in the NEPOMUK project, we identified
several requirements and research questions with respect to knowledge
representation. In addition to the general question of the expressivity
needed in such a scenario, two main challenges come into focus: i) How
can we cope with the heterogeneity of knowledge models and ontologies,
esp. multiple knowledge modules with potentially different interpreta-
tions? ii) How can we support the tailoring of ontologies towards different
needs in various exploiting applications?

In this paper, we present NRL, an approach to these two question
that is based on named graphs for the modularization aspect and a view
concept for the tailoring of ontologies. This view concept turned out to
be of additional value, as it also provides a mechanism to impose different
semantics on the same syntactical structure.

We think that the elements of our approach are not only adequate
for the semantic desktop scenario, but are also of importance as building
blocks for the general Semantic Web.

1 Motivation: The Social Semantic Desktop

The very core idea of the Social Semantic Desktop is to enable data interoper-
ability on the personal desktop based on Semantic Web standards and technolo-
gies, e. g., ontologies and semantic metadata. The vision [6] aims at integrated
personal information management as well as at information distribution and col-
laboration, envisioning two expansion states: i) the Personal Semantic Desktop
for personal information management and later ii) the Social Semantic Desktop
for distributed information management and social community aspects.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 594–608, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Distributed Knowledge Representation on the Social Semantic Desktop 595

In traditional desktop architectures, applications are isolated islands of data—
each application has its own data, unaware of related and relevant data in other
applications. Individual vendors may decide to allow their applications to inter-
operate, so that, e. g., the email client knows about the address book. However,
today there is no consistent approach for allowing interoperation and a system-
wide exchange of data between applications. In a similar way, the desktops of
different users are also isolated islands—there is no standardized architecture for
interoperation and data exchange between desktops. Users may exchange data
by sending emails or upload it to a server, but so far there is no way of seamless
communication from an application used by one person on their desktop to an
application used by another person on another desktop. The problem on the
desktop is similar to that on the Web.

The Social Semantic Desktop paradigm adopts the ideas of the Semantic Web
(SW) paradigm [3], which offers a solution for the web. Formal ontologies capture
both a shared conceptualization of desktop data and personal mental models.
RDF (Resource Description Format) serves as a common data representation for-
mat. Together, these technologies provide a means to build the semantic bridges
necessary for data exchange and application integration. The Social Semantic
Desktop will transform the conventional desktop into a seamless, networked
working environment, by loosening the borders between individual applications
and the physical workspace of different users. By aligning the Social Semantic
Desktop paradigm with the Semantic Web paradigm, a Semantic Desktop can
be seen as source and end-point of the Semantic Web.

This viewpoint of the user comprehensively generating, manipulating and ex-
ploiting private as well as shared and public data has to be adequately reflected
in the representational basis of such a system. While we think in general the as-
sumptions of knowledge representation in the Semantic Web are a good starting
point the Semantic Desktop scenario generates special requirements. We identi-
fied two core questions which we try to tackle in the knowledge representation
approach presented in this paper:

1. How can we cope with the heterogeneity of knowledge models and ontologies,
esp. multiple knowledge modules with potentially different interpretation
schemes?

2. How can we support the tailoring of ontologies towards different needs in
various exploiting applications?

The first question is rooted in the fact that with heterogeneous generation and
exploitation of knowledge there is no “master instance” which defines and en-
sures the “interpretation sovereignty.” The second question turned out to be an
important prerequisite for a clean ontology design on the semantic desktop, as
many applications shall use a knowledge worker’s “personal ontology.”

From these general questions, we specialized the following five main require-
ments for knowledge representation on the Social Semantic Desktop:

Epistemological adequacy of modeling primitives:In the Social Semantic
Desktop scenario, knowledge modeling is not only performed offline (e. g., by a

596 M. Sintek et al.

distinguished knowledge engineer), but also by the end user, much like in the tag-
ging systems of the Web 2.0 where a user can continuously invent new vocabulary
for describing his information items. Even if much of the complexity of the un-
derlying representation formalism can be hidden by adequate user interfaces, it
is desirable that there is no big epistemological gap between the way an end-user
would like to express his knowledge and the way it is represented in the system.

Integration of open-world and closed-world assumptions: The main prin-
ciple of the SW is that it is an open world in which documents can add new
information about existing resources. Since the Web is a huge place in which
everything can link to anything else, it is impossible to rule out that a statement
could be true, or could become true in the future. Hence, the global semantic
web relies on a open-world semantic, with no unique-name assumption—the of-
ficial OWL and RDF/S semantics. On the other hand, the main principle on
the personal Semantic Desktop is that it is a closed-world as it mainly focuses
on personal data. While most people find it difficult to understand the logi-
cal meaning and potential inferences statements of the open-world assumption,
the closed-world assumption is easier to understand for the user. Hence, the
Personal Semantic Desktop requires the closed-world semantics with a unique-
name assumption or good smushing techniques to achieve the same effects. The
next stage of expansion of the personal semantic desktop is the Social Semantic
Desktop, which connects the individual desktops. This will require open-world
semantics (in between desktops) with local closed-world semantics (on the per-
sonal desktop). Thus the desktop needs to be able to handle external data with
open-world semantics. Therefore we require a scenario where we can always dis-
tinguish between data per se and the semantics or assumptions on that data. If
these are handled analogously, the semantic desktop, a closed-world in theory,
will also be able to handle data with open-world semantics.

Handling of multiple models: In order to adequately represent the social
dimension of distributed knowledge generation and usage [12], a module concept
is desirable which supports encapsulation of statements and the possibility to
refer to such modules. The social aspect requires a support for provenance and
trust information, when it comes to importing and exporting data. With the
present RDF model, importing external RDF data from another desktop presents
some difficulties, mainly revolving around the fact that there are no standard
means of retaining provenance information of imported data. This means that
data is propagated over multiple desktops, with no information regarding the
original provider and other crucial information like the context under which that
data is valid. This can result in various situations like ending up with outdated
RDF data with no means to update it, as well as redundant RDF data which
cannot be entirely and safely removed.

Multiple semantics: As stated before, the aspect of distributed (and indepen-
dently created) information requires the support of the open-world assumption
(as we have it in OWL and RDF/S), whereas local information created on a

Distributed Knowledge Representation on the Social Semantic Desktop 597

single desktop will have closed-world semantics. Therefore, applications will be
forced to deal with different kinds of semantics.

Multiple views: Also required by the social aspect is the support for multiple
views, since different individuals on different desktops might be interested in dif-
ferent aspects of the data. A view is dynamic, virtual data computed or collated
from the original data. The best view for a particular purpose depends on the
information the user needs.

In the next section, we will briefly discuss the state of the art which served
as input for the NEPOMUK Representation Language (NRL). Sec. 3 gives an
overview of our approach. The following sections elaborate on two important
aspects of NRL, the Named Graphs for handling multiple models (Sec. 4) and
the Graph Views for imposing different semantics on and application-oriented
tailoring of models (Sec. 5). In Sec. 6, we present an example which shows how
the concepts presented in this paper can be applied. Sec. 7 summarizes the NRL
approach and discusses next steps.

2 State of the Art

The Resource Description Framework [8] and the associated schema language
RDFS [4] set a standard for the Semantic Web, providing a representational
language whereby resources on the web can be mapped to designated classes
of objects in some shared knowledge domain, and subsequently described and
related through applicable object properties. With the gradual acceptance of the
Semantic Web as an achievable rather than just an ideal World Wide Web sce-
nario, and adoption of RDF/S as the standard for describing and manipulating
semantic web data, there have been many attempts to improve some RDF/S
shortcomings to handling such data. Most where in the form of representational
languages that extend RDF/S, the most notable of which is OWL [1]. Other work
attempted to provide further functionalities on top of semantic data to that pro-
vided by RDF/S by revising the RDF model itself. The most successful idea
perhaps is the named graph paradigm, where identifying multiple RDF graphs
and naming them with distinct URIs is believed to provide useful additional
functionality on top of the RDF model. Given that named graphs are manage-
able sets of data in an otherwise structureless RDF triple space composed of all
existent RDF data, most of the practical problems arising from dealing with RDF
data, like dealing with invalid or outdated data as well as issues of provenance
and trust, could be addressed more easily if the RDF model supports named
graphs. The RDF recommendation itself does not provide suitable mechanisms
for talking about graphs or define relations between graphs [2,8,4,7]. Although
the extension of the RDF model with named graph support has been proposed
[5,11,9], and the motivation and ideas are clearly stated, a concrete extension
to the RDF model supporting named graph has not yet materialized. So far, a
basic syntax and semantics that models minimal manipulation of named graphs
has been presented by participants of the Semantic Web Interest Group.1 Their
1 http://www.w3.org/2004/03/trix/

598 M. Sintek et al.

intent is to introduce the technology to the W3C process once initial versions
are finalized. The SPARQL query language [9], currently undergoing standard-
ization by the W3C, is the most successful attempt to provide a standard query
language for RDF data. SPARQL’s full support for named graphs has encour-
aged further research in the area. The concept of modularized RDF knowledge
bases (in the spirit of named graphs) plus views that can be used to realize the
semantics of a module (with the help of rules), amongst other things, has been
introduced in the Semantic Web rule language TRIPLE [11].

Since the existing approaches are incomplete wrt. the needs of NEPOMUK
and most Semantic Web scenarios in general, we propose a combination of named
graphs and TRIPLE’s view concept as the basis for NRL, the representational
language we are presenting. In contrast to TRIPLE, we will add the ability to
define views as an extension of RDF and named graphs at the ontological level,
thus we are not dependent on a specific rule formalism as in the case of TRIPLE.

In the rest of this paper, we will give a detailed description of the named graphs
and views features of NRL. Other features of NRL (which consist of some RDFS
extensions mainly inspired by Protégé and OWL) will not be discussed.

3 Knowledge Representation on the Social Semantic
Desktop: The NRL Approach

NRL was inspired by the need for a robust representational language for the
Social Semantic Desktop, that targets the shortcomings of RDF/S. NRL was
designed to fulfill requirements for the NEPOMUK Social Semantic Desktop
project,2 hence the particular naming, but it is otherwise domain-independent.

As discussed in the previous section, the most notable shortcoming of the
RDF model is the lack of support for handling multiple models. In theory Named
Graphs solve this problem since they are identifiable, modularized sets of data.
Through this intermediate layer handling RDF data, e. g., exchanging data and
keeping track of data provenance information, is much more manageable. This
has a great influence in the social aspect of the Social Semantic Desktop project,
since the success of this particular aspect depends largely on how to successfully
deal with these issues. All data handling on the semantic desktop including stor-
age, retrieval and exchange, will therefore be carried out through RDF graphs.
Alongside provenance data, more useful information can be attached to named
graphs. In particular we feel that named graphs should be distinguished by their
roles, e. g., Ontology or Instance Base.

Desktop users may be interested in different aspects of data in a named graph
at different times. Looking at the contents of an image folder for instance, the
user might wish to see related concepts for an image, or any other files related to
it, but not necessarily both concurrently even if the information is stored in the
same graph. Additionally, advanced users might require to see data that is not
usually visible to regular users, like additional indirect concepts related to the

2 http://nepomuk.semanticdesktop.org/

Distributed Knowledge Representation on the Social Semantic Desktop 599

file. This would require the viewing application to realize the RDF/S semantics
over the data to yield more results. The desktop system is therefore required
to work with extended or restricted versions of named graphs in different situ-
ations. However, we believe that such manipulations over named graphs should
not have a permanent impact on the data in question. Conversely, we believe
that the original named graph should be independent of any kind of workable
interpretation executed by an application, which can be discarded if and when
they are no longer needed.

For this reason, we present the concept of Graph Views as one of the core
concepts in NRL. By allowing for arbitrary tailored interpretations for any es-
tablished named graph, graph views fulfill our idea that named graphs should not
innately carry any realized semantics or assumptions, unless they are themselves
views on other graphs for exactly that purpose, and that they should remain un-
changed and independent of any view applied on them. This means that different
semantics can be realized for different graphs if required. In practice, different
application on the semantic desktop will require to apply different semantics, or
assumptions on semantics, to named graphs. In this way, although the semantic
desktop operates in a closed-world, it is also possible to work with open-world se-
mantic views over a graph. Importing a named graph with predefined open-world
semantics on the semantic desktop is therefore possible. If required (and mean-
ingful), closed-world applications can then work with a closed-world semantics
view over the imported graph.

Fig. 1. Overview of NRL—Abstract Syntax, Concepts and Semantics

Fig. 1 gives an overview of the components of NRL, depicting both the syn-
tactical and the semantic blocks of NRL. The syntax box contains, in the upper

600 M. Sintek et al.

part, the NRL Schema language, which is mainly an extension of (a large subset
of) RDFS. The lower part shows how named graphs, graph roles, and views are
related, which will be explained in detail in the rest of this paper.

The left half of the figure sheds some light on the semantics of NRL, which
has a declarative and a procedural part. Declarative semantics is linked with
graph roles, i. e., roles are used to assign meaning to named graphs (note that
not all named graphs or views must be assigned some declarative semantics, e. g.,
in cases when the semantics is (not) yet known or simply not relevant). Views
are also linked to view specifications, which function as a mechanism to express
procedural semantics, e. g., by using a rule system. The procedural semantics
has, of course, to realize the declarative semantics that is assigned to a semantic
view.

4 Handling Multiple Models: NRL Named Graphs

Named graphs (NGs) are an extension on top of RDF, where every distinct
RDF graph is identified by a unique name. NGs provide additional functionality
on top of RDF particularly with respect to metametadata (metadata about
metadata), provenance, and data (in)equivalence issues, besides making data
handling more manageable. Our approach is based on the work described in [5]
excluding however, the open-world assumption stated there. As stated earlier
(cf. Sec. 3) we believe that named graphs should not innately carry any realized
semantics or assumptions on the semantics. Therefore, despite being designed as
a requirement for the Semantic Desktop, which operates under a closed-world
scenario, NRL itself does not impose closed-world semantics on data. This and
other semantics can instead be realized through designated views on graphs.

A named graph is a pair (n, g), where n is a unique URI reference denoting the
assigned name for the graph g. Such a mapping fixes the graph g corresponding
to n in a rigid, non-extensible way. The URI representing n can then be used
from any location to refer to the corresponding set of triples belonging to the
graph g. A graph g′ consistent3 with a distinct graph g named n cannot be
assigned the same name n.

An RDF triple can exist in a named graph or outside any named graph. How-
ever, for consistency reasons, all triples must be assigned to some named graph.
For this reason NRL provides a special named graph, nrl:DefaultGraph. Triples
existing outside any named graph are considered part of this default graph. This
ensures backward compatibility with triples that are not based on named graphs.
This approach gives rise to the term RDF Dataset as defined in [9]. An RDF
dataset is composed of a default graph and a finite number of distinct named
graph, formally defined as the set {g, (n1, g1), (n2, g2), ..., (nn, gn)} comprising of
the default graph g and zero or more named graphs (ni, gi).

NRL distinguishes between graphs and graph roles, in order to have orthog-
onal modeling primitives for defining graphs and for specifying their role. A
3 Two different datasets asserting two unique graphs but having the same URI for a

name contradict one another.

Distributed Knowledge Representation on the Social Semantic Desktop 601

Fig. 2. NRL Named Graph Class Hierarchy

graph role refers to the characteristics and content of a named graph (e. g., sim-
ple data, an ontology, a knowledge base, etc.) and how the data is intended to
be handled. The NEPOMUK Graph Metadata vocabulary (NGM)4 provides a
vocabulary for annotating graph roles. Graph metadata will be attached to roles
rather than to the graphs themselves, because its more intuitive to annotate an
ontology, for example, rather than the underlying graph. Roles are more stable
than the graphs they represent, and while the graph for a particular role might
change constantly, evolution of the role itself is less frequent. An instantiation
of a role represents specific type of graph and the corresponding triple set data.

Fig. 2 depicts the class hierarchy supporting NGs in NRL. Graph roles are
defined as specialization of the general graph representation nrl:Data. A special
graph, nrl:DocumentGraph, is used as a marker class for graphs that are rep-
resented within and identified by a document URL. We now present the NRL
vocabulary supporting named graphs. General graph vocabulary is defined in
Sec. 4.1 while Sec. 4.2 is dedicated entirely to graph roles.

4.1 Graph Core Vocabulary

nrl:Graph and nrl:DocumentGraph Instances of these classes represent
named graphs. The name of the instance coincides with the name of the
graph. The graph content for a nrl:DocumentGraph is located at the URL
that is the URIref for the nrl:DocumentGraph instance. This allows existing
RDF files to be re-used as named graphs, avoiding the need of a syntax like
TriG5 to define named graphs.

nrl:subGraphOf, nrl:superGraphOf, and nrl:equivalentGraph. These
relations between named graphs have the obvious semantics: they are de-
fined as ⊆, ⊇, and = on the bare triple sets in these graphs.

nrl:imports is a subproperty of nrl:superGraphOf and models graph imports.
Apart from implying the ⊇ relation between the triple sets, it also requires

4 NGM will not be described in this paper.
5 http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/

602 M. Sintek et al.

that the semantics of the two graphs is compatible if used on, e. g., graphs
that are ontologies.

nrl:DefaultGraph This instance of nrl:Graph represents the graph containing
all triples existing outside any user-defined named graph. Since we do not
apply any semantics to triples automatically, this allows views to be defined
on top of triples defined outside of all named graphs analogously to the
named-graph case.

4.2 Graph Roles Vocabulary

nrl:Data This subclass of nrl:Graph is an abstract class to make graph roles
easy-to-use marker classes. It represents the most generic role that a graph
can have, namely that it contains data.

nrl:Schema and nrl:Ontology are roles for graphs that represent data in
some kind of conceptualization model. nrl:Ontology is a subclass of
nrl:Schema.

nrl:InstanceBase marks a named graph to contain instances from schemas or
ontologies. The properties nrl:hasSchema and nrl:hasOntology relate an
instance base to the corresponding schema or ontology.

nrl:KnowledgeBase marks a named graph as containing a conceptual model
plus instances from schemas or ontologies.

nrl:Configuration is used to represent technical configuration data that is ir-
relevant to general semantic web data within a graph. Other additional roles
serving different purposes might be added in the future.

nrl:Semantics Declarative semantics for a graph role can be specified by refer-
ring to instances of this class via nrl:hasSemantics. These will usually link
(via nrl:semanticsDefinedBy) to a document specifying the semantics in
a human readable or formal way (e. g., the RDF Semantics document [7]).

5 Imposing Semantics on Graphs: NRL Graph Views

A named graph consists only of the enumerated triples in the triple set as-
sociated with the name, and does not inherently carry any form of semantics
(apart from the basic RDF semantics). However in many situations it is desir-
able to work with an extended or restricted interpretation of simple syntax-only
named graphs. These can be realized by applying some algorithm (e. g., specified
through rules) which enhances named graphs with entailment triples, returns a
restricted form of the triple set, or an entirely new triple set. To preserve the
integrity of a named graph, interpretations of one named graph should never re-
place the original. To model this functionality and retain the separation between
original named graph and any number of their interpretations, we introduce the
concept of Graph Views.

Views are different interpretations for a particular named graph. Formally, a
view is an executable specification of an input graph into a corresponding output
graph. Informally, they can be seen as arbitrary wrappings for a named graph.

Distributed Knowledge Representation on the Social Semantic Desktop 603

Fig. 3. Graph Views in NRL

Fig. 3 depicts graph view support in NRL. Views are themselves named graphs.
Therefore one can have a named graph that is a different interpretation, or view,
of another named graph. This modeling can be applied recurrently, yielding a
view of a view and so on.

View specifications can execute the view realization for a view, via a set of
queries/rules in a query/rule language (e. g., a SPARQL query over a named
graph), or via an external application (e. g., an application that returns the tran-
sitive closure of rdfs:subClassOf). As in the latter example, view realizations
can also realize the implicit semantics of a graph according to some language or
schema (e. g., RDFS, OWL, NRL etc.). We refer to these as Semantic Views,
represented in Fig. 3 by the intersection of nrl:GraphView and graph roles. One
can draw a parallel between this figure and Fig. 1. In contrast to graph roles,
which have only declarative semantics defined through the nrl:hasSemantics
property, semantic views also carry procedural semantics, since the semantics
of these graphs are always realized, (through nrl:realizes) and not simply
implied.

5.1 Views Vocabulary

In this section we briefly present the NRL vocabulary supporting graph view
specifications.

nrl:GraphView represents a view, modeled as a subclass of named graph.
A view is realized through a view specification, defined by an instance of
nrl:ViewSpecification via nrl:hasSpecification. The named graph on
which the view is being generated is linked by nrl:viewOn. The separation
between different interpretations of a named graph and the original named
graph itself is thus retained.

nrl:ViewSpecification This class represents a general view specification,
which can currently take one of two forms, modeled as the two subclasses
nrl:RuleViewSpecification and nrl:ExternalViewSpecification. As
discussed earlier, semantic views realize procedural semantics and are linked
to some semantics via nrl:realizes. This is however to be differentiated

604 M. Sintek et al.

from nrl:hasSemantics, which states that a named graph carries (through
a role) declarative semantics which is not necessarily (explicitly) realized via
a view specification.

nrl:RuleViewSpecification Views can be specified by referring to a rule lan-
guage (via nrl:ruleLanguage) and a corresponding set of given rules (via
nrl:rule). These views are realized by executing the rules, generating the
required output named graph.

nrl:ExternalViewSpecification Instances of this class map to the location of
(via nrl:externalRealizer) an external application, service, or program
that is executed to create the view.

6 Example: NRL in Use

In this section, we demonstrate the utilization of the various NRL concepts in
a more complex scenario: Ella is a biologist and works as a senior researcher at
Institute Pasteur in central Paris. She would like to compile an online knowledge
base describing animal species for her students to access. She knows that a rather
generic ontology describing the animal species domain, O1, is already available
(which, technically speaking, means it exists as a named graph). Someone else
had also supplied data consisting of a vast amount of instances for the animals
ontology as a named graph with the role of instance base, I1. However this
combined data does not provide extensive coverage of the animal kingdom as
required by Ella. Therefore Ella hires a SW knowledge engineer to model another
ontology that defines further species not captured in O1, and this is stored as
another named graph, O2. Since Ella requires concepts from both ontologies,
the engineer merges O1 and O2 in the required conceptualization by creating
a named graph O as an ontology and defining it as supergraph of O1 and O2.
Furthermore, a number of real instances of the new animal species defined in O2

is compiled in an instance base, I2.
Ella now requires to use all the acquired and generated data to power a use-

ful service for the students to use. Schematic data from the graph O, and the
instances from I1 and I2 are all imported to a new graph, KB , acting as a knowl-
edge base. Ella would like the students to be able to query the knowledge base
with questions like ‘Are flatworms Deuterostomes or Platyzoa?’. Although by
traversing the animals hierarchy it is clear that they are Platyzoa, the statement
is not innately part of the graph KB . This can be discovered by realizing the
semantics of rdfs:subClassOf as defined in the RDFS semantics. However KB
might be required as is, with no assumed semantics, for other purposes. Directly
enriching KB with entailment triples permanently would make this impossible.

Therefore the knowledge engineer creates a view over KB for Ella, consisting of
the required extended graph, without modifying the original KB in any way. This
is done by defining a view specification that computes the procedural semantics
for KB . The specification uses a rule language of choice that provides a number
of rules, one of which computes the transitive closure of rdfs:subClassOf for
a set of RDF triples. Executing that rule over the triples in KB results in the

Distributed Knowledge Representation on the Social Semantic Desktop 605

semantic view V1(KB), which consists of the RDF triples in KB plus the gener-
ated entailment triples. The separation between the underlying model and the
model with the required semantics is thus retained and through simple queries
over V1(KB), students can instantly get answers to their questions.

Ella later on decides to provide another service for younger students by us-
ing ‘Graph Taxonomy Extractor’, a graph visualization API that generates an
interactive graph depicting the animal hierarchy within V1(KB). However this
graph contains other information in addition to that required (e. g., properties
attributed to classes). Of course, Ella does not want to discard all this useful
information from V1(KB) permanently just to generate the visualization. The
knowledge engineer is aware of a Semantic Web application that does exactly
what Ella requires. The application acts as an external view specification and
generates a view, consisting of only triples defining the class hierarchy, over
an input named graph. The view generated by this application, V2(V1(KB)), is
fed to the API to effectively generate the interactive graph for the students to
explore.

It is worth to note that all seven named graphs on which this last view is
generated upon are still intact and have not been affected by any of the opera-
tions along the way. If the knowledge engineer requires to apply some different
semantics over KB , it may still be done since generating V1(KB) did not have an
impact on KB . However, the content of KB needs to be validated, or generated,
each time it is used since one of its subgraphs (O1, O2, I1 and I2) can change.
Although from a practical point of view this might sound laborious, from a con-
ceptual point of view it solves problems regarding data consistency and avoids
other problems like working with outdated data that can’t be updated because
links to underlying models have been lost.

Fig. 4 presents the “dataflow” in our example scenario, demonstrating how
the theoretical basis of NRL can be applied in practice to effectively model data
for use in different scenarios in a clear and consistent way.

We now model the dataflow in Fig. 4 in TriG syntax.6 TriG is a straight-
forward extension of Turtle.7 Turtle itself is an extension of N-Triples8 which
carefully takes the most useful and appropriate things added from Notation39

while keeping it in the RDF model. TriG is a plain text format created for
serializing NGs and RDF Datasets. Fig. 5 demonstrates how one can make use
of the named graph paradigm and the syntax for named graphs:

[1] namespace declarations
[2-5] ontology graphs (ex:o1 and ex:o2 are defined and then imported into

ex:o)
[6-8] instance/knowledge base definitions
[9] contents of ontology ex:o2, defining extended animal domain
[10] contents of instance base ex:i2, defining instances of animals in (ex:o2

6 http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/
7 http://www.dajobe.org/2004/01/turtle/
8 http://www.w3.org/TR/rdf-testcases/#ntriples
9 http://www.w3.org/DesignIssues/Notation3

606 M. Sintek et al.

Fig. 4. NRL Dataflow Diagram

[1] @prefix nrl: <http://semanticdesktop.org/ontology/nrl-yyyymmdd#> .
@prefix ex: <http://www.example.org/vocabulary#> .

[2] ex:o2 rdf:type nrl:Ontology .
[3] <http://www.domain.com/o1.rdfs> rdf:type nrl:Ontology ,

nrl:DocumentGraph .
[4] ex:o1 rdf:type nrl:Ontology ;

nrl:equivalentGraph <http://www.domain.com/o1.rdfs> .
[5] ex:o rdf:type nrl:Ontology ;

nrl:imports ex:o1, ex:o2 .
[6] ex:i2 rdf:type nrl:InstanceBase ;

nrl:hasOntology ex:o2 .
[7] http://www.anotherdomain.com/i1.rdf> rdf:type nrl:InstanceBase ,

nrl:DocumentGraph .
[8] ex:kb rdf:type nrl:KnowledgeBase ;

nrl:imports ex:o, ex:i2, <http://www.anotherdomain.com/i1.rdf> .
[9] ex:o2 {

ex:Animal rdf:type rdfs:Class .
further Animal Ontology definitions here ## }

[10]ex:i2 {
ex:CandyCaneWorm rdf:type ex:Flatworm ;

further Animal Instance definitions here ## }
[11] ex:v1kb rdf:type nrl:KnowledgeBase, nrl:GraphView ;

nrl:viewOn ex:kb ; nrl:superGraphOf ex:kb ;
nrl:hasSpecification ex:rvs .

[12] ex:rvs rdf:type nrl:RuleViewSpecification ;
nrl:realizes ex:RDFSSemantics ; nrl:ruleLanguage "SPARQL" ;
nrl:rule "CONSTRUCT {?s rdfs:subClassOf ?v} WHERE ..." ;
nrl:rule "CONSTRUCT {?s rdf:type ?v} WHERE ..." .

[13] ex:RDFSSemantics rdf:type nrl:Semantics ; rdfs:label "RDFS" ;
nrl:semanticsDefinedBy "http://www.w3.org/TR/rdf-mt/" .

[14] ex:v2v1kb rdf:type nrl:GraphView, nrl:KnowledgeBase ;
nrl:viewOn ex:v1kb ; nrl:hasSpecification ex:evs .

[15] ex:evs rdf:type nrl:ExternalViewSpecification ;
nrl:externalRealizer "GraphTaxonomyExtractor" .

Fig. 5. NRL Example—TriG Serialization

Distributed Knowledge Representation on the Social Semantic Desktop 607

[11-13] ex:v1kb is defined as a view on ex:kb via the view specification
ex:rvs; furthermore, ex:v1kb is a super graph of ex:kb as it real-
izes the RDFS semantics and thus contains the original graph plus the
inferred triples; the view specification is realized (as an example) with
some SPARQL-inspired CONSTRUCT queries (for this to work, a real
rule language is required)

[14-15] similar to [11-13], but here we define ex:v2v1kb with the help of an
external tool, the “GraphTaxonomyExtractor”

7 Summary and Outlook

Aligning knowledge representation on a Social Semantic Desktop with the gen-
eral Semantic Web approaches (RDF, RDFS, OWL, ...) promises a compre-
hensive use of data and schemas and an active, personalized access point to
the Semantic Web [10]. In such a scenario, ontologies play an important role,
from very general ontologies stating which entities can be modeled on a Semantic
Desktop (e. g., people, documents, ...) to rather personal vocabulary to structure
information items. One of the most important design decisions is the question
of the representational ontology, constraining the general expressivity of such a
system. In this paper, we concentrated on those parts of the NEPOMUK Repre-
sentational Language (NRL) which are rooted in the requirements risen by the
distributed knowledge representation and heterogeneity aspects of the Semantic
Desktop scenario and which we think cannot satisfactorily be dealt with by the
current state of the art. In a nutshell, the basic arguments and design principles
of NRL are as follows:

– Due to the heterogeneity of the data creating and consuming entities in the
social semantic desktop scenario, a single interpretation schema cannot be
assumed. Therefore, NRL aims at a strict separation between data (sets of
triples, graphs) and their interpretation/semantics.

– Imposing specific semantics to a graph is realized by generating views on
that graph. Such a generation is directed by an (executable) view specifica-
tion which may realize a declarative semantics (e. g., the RDF/S or OWL
semantics specified in a standardization document).

– Graph views cannot only be used for semantic interpretations of graphs, but
also for application-driven tailoring of a graph.10

– Handling of multiple graphs (with different provenance, ownership, level of
trust, ...) is essential. Named graphs are the basic means to this problem.

– Graphs can play different roles in different contexts. While for one applica-
tion a graph may be an ontology, another one may see it as plain data. These
roles can explicitly be specified.

While originally designed as a NEPOMUK internal standard for the Social Se-
mantic Desktop, we believe that the arguments also hold for the general Semantic
Web, especially when we review the current trends which more and more show a
10 This corresponds to a database-like view concept.

608 M. Sintek et al.

development from the view of “the Semantic Web as one big, global knowledge
base” to “a Web of (machine and human) actors” with local perspectives and
social needs like trust, ownership, etc.

Within NEPOMUK, we are developing the approach technically, by comple-
menting the NRL standard with tools that facilitate its use by the application
programmer, as well as conceptually, by the development and integration of ac-
companying ontology standards, e. g., an annotation vocabulary, an information
element ontology, and an upper-ontology for personal information models.

Acknowledgements. This work was supported by the European Union IST
fund (Grant FP6-027705, Project NEPOMUK) and by the German Federal Min-
istry of Education, Science, Research and Technology (bmb+f), (Grant 01 IW
F01, Project Mymory: Situated Documents in Personal Information Spaces).
The authors would especially like to thank all contributors to NEPOMUK’s
ontology taskforce.

References

1. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinnes, P. Patel-
Schneider, and L. Stein. OWL web ontology language reference, 2004.

2. D. Beckett. RDF/XML syntax specification (revised). W3C recommendation,
W3C, February 2004. http://www.w3.org/TR/rdf-syntax-grammar/.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
89, May 2001.

4. D. Brickley and R. Guha. RDF vocabulary description language 1.0: RDF Schema.
Technical report, W3C, February 2004. http://www.w3.org/TR/rdf-schema/.

5. J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance and
trust. In WWW ’05: Proceedings of the 14th international conference on World
Wide Web, pages 613–622, New York, NY, USA, 2005. ACM Press.

6. S. Decker and M. Frank. The social semantic desktop. In Proc. of the WWW2004
Workshop Application Design, Development and Implementation Issues in the Se-
mantic Web, 2004.

7. P. Hayes. RDF semantics. W3C recommendation, W3C, February 2004. http://
www.w3.org/TR/rdf-mt/.

8. F. Manola and E. Miller. RDF primer. W3C recommendation, W3C, February
2004. http://www.w3.org/TR/rdf-primer/.

9. E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF. W3C
working draft, W3C, 2005. http://www.w3.org/TR/rdf-sparql-query/.

10. L. Sauermann, A. Dengel, L. Elst, A. Lauer, H. Maus, and S. Schwarz. Personaliza-
tion in the EPOS project. In M. Bouzid and N. Henze, editors, Proceedings of the
International Workshop on Semantic Web Personalization, Budva, Montenegro,
June 12, 2006, pages 42–52, 2006.

11. M. Sintek and S. Decker. TRIPLE—A query, inference, and transformation lan-
guage for the Semantic Web. In 1st International Semantic Web Conference
(ISWC2002), June 2002.

12. L. van Elst, V. Dignum, and A. Abecker. Towards agent-mediated knowledge
management. In L. van Elst, V. Dignum, and A. Abecker, editors, Agent-Mediated
Knowledge Management International Symposium AMKM 2003, Stanford, CA,
USA, March 24-26, 2003, Revised and Invited Papers, volume 2926 of LNAI, pages
1–31. Springer, Heidelberg, 2004.

Semantic Process Retrieval with iSPARQL

Christoph Kiefer1, Abraham Bernstein1, Hong Joo Lee2, Mark Klein2,
and Markus Stocker1

1 Department of Informatics, University of Zurich, Switzerland
{kiefer,bernstein,stocker}@ifi.unizh.ch

2 Center for Collective Intelligence, Massachusetts Institute of Technology, USA
{hongjoo,m klein}@mit.edu

Abstract. The vision of semantic business processes is to enable the in-
tegration and inter-operability of business processes across organizational
boundaries. Since different organizations model their processes differ-
ently, the discovery and retrieval of similar semantic business processes
is necessary in order to foster inter-organizational collaborations. This
paper presents our approach of using iSPARQL– our imprecise query
engine based on SPARQL– to query the OWL MIT Process Handbook–
a large collection of over 5000 semantic business processes. We partic-
ularly show how easy it is to use iSPARQL to perform the presented
process retrieval task. Furthermore, since choosing the best performing
similarity strategy is a non-trivial, data-, and context-dependent task, we
evaluate the performance of three simple and two human-engineered sim-
ilarity strategies. In addition, we conduct machine learning experiments
to learn similarity measures showing that complementary information
contained in the different notions of similarity strategies provide a very
high retrieval accuracy. Our preliminary results indicate that iSPARQL
is indeed useful for extending the reach of queries and that it, therefore,
is an enabler for inter- and intra-organizational collaborations.

1 Introduction

One of the cornerstones of the Semantic Web services vision is to enable the
design and execution of dynamic inter- and intra-organizational services (pro-
cesses). A major prerequisite for fulfilling this vision is the ability to find services
which have certain features (i.e., the ability for adaptive service discovery/-
matchmaking and/or mediation). Most approaches so far have relied on some
type of logical reasoning [4,10]. In earlier works, we suggested that statistical
methods based on a catalog of simple predefined similarity measures might be
more suitable for this task [3]. Indeed, using the OWLS-TC matchmaking test
collection, we showed that a straightforward method based on simple, off-the-
shelf similarity metrics performed almost as well as the “best of bread” OWLS-
MX matchmaker that was engineered to the task of matching OWL-S services.

While this success was remarkable it left open some important questions. First,
the question of which similarity measure is applicable for a given problem needs
to be answered. Findings from machine learning [8], information retrieval [1], and
psychology [9] show that the best performing similarity measure might be both

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 609–623, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

610 C. Kiefer et al.

task (e.g., OWL-S/WSML matchmaking, retrieval in ontologies, etc.) and domain
dependent (i.e., the ontologies involved). Indeed, finding the best similarity mea-
sure for any given task and domain can be mapped to an optimization problem,
where the “No Free Lunch” theorem [15] has proven that no uniformly best so-
lution exists. Hence, the choice of the best performing similarity measure for any
given task given an application domain seems anything but straightforward.

Second, given that our similarity-based approach was still slightly outper-
formed by the human-engineered, task-optimized OWLS-MX matchmaker, gives
rise to the question if a (human-) engineered, task-optimized similarity measure
would not perform better? This question is especially important since in many
practical applications a considerable amount of human (knowledge) engineering
is expended to improve the performance of systems. Hence, the engineering effort
would also go into similarity-based solutions.

Third, given that similarity is an inherently statistics-based notion almost
begs the use of statistical machine learning techniques for finding a similarity
measure optimized for a given task and application domain.

In this paper we use the iSPARQL framework to address exactly these ques-
tions. iSPARQL is an extension of official SPARQL that allows for similarity joins
which employ any of about 40 different similarity measures implemented in Sim-
Pack1 – our generic Java library of similarity measures for the use in ontologies.
It, therefore, lends itself as a platform for any kinds of similarity-based retrieval
experiments in ontologies. Specifically, the contributions of this paper are that
it (i) shows the simplicity of designing similarity based Semantic Web applica-
tions with iSPARQL, (ii) analyzes the usefulness of human-engineered task- and
domain-specific similarity measures in comparison to some off-the-shelf measures
widely used in computer science and AI, and (iii) shows how similarity measures
learned through supervised learning techniques outperform both the off-the-shelf
as well as the human-engineered measures in a service retrieval task. Last, the
paper introduces a new data set for (process/service) retrieval applications in
ontologies based on the MIT Process Handbook [13] that provides a very rich
structural and textual description of the provided processes.

The remainder of this paper is structured as follows. The next section suc-
cinctly summarizes the most important related work. Given the importance as an
underlying framework, Section 3 introduces the relevant features of iSPARQL.
Section 4 is the heart of the paper: it introduces the experimental setup including
the data set used in the evaluations, provides some details on the experiments,
and discusses the results. To close, Section 5 discusses the results in the light of
the claims, related work, and limitations. We close the paper with our conclu-
sions and some insight into future work.

2 Related Work

Several other studies focus on the comparison of semantic business processes
either for retrieval, discovery, matchmaking, or process alignment. We introduced
1 http://www.ifi.unizh.ch/ddis/simpack.html

http://www.ifi.unizh.ch/ddis/simpack.html

Semantic Process Retrieval with iSPARQL 611

in earlier works PQL – the Process Query Language to query the MIT Process
Handbook [4]. PQL does not make use of similarity measures to retrieve similar
query matches. However, PQL knows a “contains”-operator that can be roughly
compared with the SQL “like”-operator performing string comparisons.

We are aware of two other studies that address the task of aligning semantic
business processes using a similarity measure. Brockmans et al. and Ehrig et al.
[5,7] propose an approach to semantically align business processes originally rep-
resented as Petri nets. After the nets have been transformed to OWL, similarity
measures from different categories are employed to measure the affinity between
elements of Petri nets. Since we are able to define similarity strategies (i.e., com-
positions of several atomic similarity measurements and weighting schemes) with
our iSPARQL system, we consider such an ontology alignment task as being in
the range of tasks which could be perfectly carried out by iSPARQL.

With respect to matchmaking, Klusch et al. [10] present an approach to per-
form hybrid Semantic Web service matchmaking. Their OWLS-MX matchmaker
uses both, semantic similarity measures, as well as logic-based reasoning tech-
niques to discover similar web services to a given query service. Again, Semantic
Web service/process matchmaking is a possible application for iSPARQL.

Last, imprecise RDQL (iRDQL) is the predecessor of iSPARQL [3]. In iRDQL,
special keywords are used to specify the similarity strategy (and parameters) to
measure the relatedness between resources in ontologies. We did not want to
introduce new keywords in iSPARQL since this would break the official W3C
SPARQL grammar. Hence, we decided to integrate imprecise statements as vir-
tual triples allowing us to add similarity measures and parameters by simply
extending the virtual triple ontology.

3 iSPARQL

This section succinctly introduces the relevant features of our iSPARQL frame-
work that serves as the technical foundation to all evaluations.2 iSPARQL is an
extension of SPARQL [14] that allows to query by triple patterns, conjunctions,
disjunctions, and optional patterns. iSPARQL extends the traditional SPARQL
grammar but does not make use of additional keywords. Instead, iSPARQL in-
troduces the idea of virtual triples. Virtual triples are not matched against the
underlying ontology graph, but used to configure similarity joins: they specify
which pair of variables (that are bound by SPARQL to resources) should be
joined and compared using what type of similarity measure. Thus, they estab-
lish a virtual relationship between the resources bound to the variables describ-
ing their similarity. A similarity ontology defines the admissible virtual triples
and links the different measures to their actual implementation in our library
of similarity measures called SimPack. The similarity ontology also allows the
specification of more sophisticated combinations of similarity measures, which
we call similarity strategies (or simply strategies) in the rest of this paper. Note
2 An online demonstration of iSPARQL is available at http://www.ifi.unizh.ch/
ddis/isparql.html

http://www.ifi.unizh.ch/
ddis/isparql.html

612 C. Kiefer et al.

1 ������ ph: <http://www.ifi.unizh.ch/ddis/ph /2006/08/ProcessHandbook.owl#>
2 ������ isparql : <java:ch.unizh.ifi.isparql .query.property .>
3
4 ����	
 ?process1 ?name1 ? overallsimilarity
5 ����� {
6 ?process1 ph:name ?name1 .
7 ?process1 ph:description ?description1 .
8 ?process2 ph:name ‘‘Sell’’ ; ph:name ?name2 .
9 ?process2 ph:description ?description2 .

10
11 # ImpreciseBlockOfTriples (lines 13 -20 , 22 -24 , and 26 -33)
12
13 # NameStatement
14 ?strategy1 isparql :name ‘‘LoLN’’.
15 # ArgumentsStatement
16 ?strategy1 isparql :argument (? name1 ?name2) .
17 # IgnorecaseStatement
18 ?strategy1 isparql :ignorecase ‘‘true’’ .
19 # SimilarityStatement
20 ?strategy1 isparql :similarity ?sim1
21
22 ?strategy2 isparql :name ‘‘TFIDFD ’’ .
23 ?strategy2 isparql :arguments (?description1 ?description2) .
24 ?strategy2 isparql :similarity ?sim2 .
25
26 ?strategy3 isparql :name ‘‘ScoreAggregator’’ .
27 # ScoresStatement
28 ?strategy3 isparql :scores (?sim1 ?sim2) .
29 # WeightsStatement
30 ?strategy3 isparql :weights (0.8 0.2) .
31 # AggregatorStatement
32 ?strategy3 isparql :aggregator ‘‘sum’’ .
33 ?strategy3 isparql :similarity ?overallsimilarity
34 } ���� �� ���	(? overallsimilarity);

Listing 1.1. iSPARQL example query for the MIT Process Handbook

that the order of virtual triples is irrelevant since iSPARQL’s query processor
will inspect (reorder) them before the query is passed to the query engine. In
the remainder of this section, we will briefly discuss the iSPARQL grammar and
then introduce some of the similarity strategies employed in the evaluation.

3.1 The iSPARQL Grammar

The various additional grammar statements are explained with the help of the
example query in Listing 1.1. This query aims at finding processes (or services)
in a process ontology (we use the MIT Process Handbook introduced in Section
4.1) which are similar to the process “Sell” by comparing process names and
descriptions. To implement our virtual triple approach we added an Imprecise-
BlockOfTriples symbol to the standard SPARQL grammar expression of Fil-
teredBasicGraphPattern [14]. Instead of matching patterns in the RDF graph,
the triples in an ImpreciseBlockOfTriples act as virtual triple patterns, which
are interpreted by iSPARQL’s query processor

An ImpreciseBlockOfTriples requires at least a NameStatement (lines 14,
22, and 26) specifying the similarity strategy. iSPARQL has two kinds of strate-
gies: similarity strategies and aggregation strategies. The former defines how the

Semantic Process Retrieval with iSPARQL 613

proximity of resources should be computed. The latter aggregates previously
computed similarity scores to an overall similarity value. The example query
in Listing 1.1 defines the two similarity strategies “LoLN” (lines 13–20) and
“TFIDFD” (lines 22–24) as well as the aggregation strategy “ScoreAggregator”
(lines 26–33; see Section 3.2 for a discussion of the available strategies).

In addition, an ImpreciseBlockOfTriples requires an ArgumentsStatement
(lines 16 and 23) or a ScoresStatement (line 28), depending on whether it speci-
fies a similarity or an aggregation strategy. An ArgumentsStatement specifies the
resources under comparison to the iSPARQL framework. The ScoresStatement
takes a list of previously calculated values (typically from similarity strate-
gies) and summarizes the individual values in a user-defined way (e.g., average,
weighted sum, median, etc.). We found aggregators to be useful to construct
overall (sometimes complex) similarity scores based on two or more previously
computed similarity scores. The similarity ontology also allows the use of some
additional triple patterns (statements) for most strategies to pass parameters to
the strategies instructing them to, for example, ignore a string’s case during a
comparison operation (the IgnorecaseStatement on line 18) or to apply weights
to the aggregated values (using the WeightsStatement on line 30).

Table 1. Selection of five iSPARQL similarity strategies

Strategy Explanation
TFIDFD (simple) TFIDF between process descriptions: the textual descriptions of two pro-

cesses are compared by TFIDF, the standard information retrieval simi-
larity measure. This measure makes use of pre-computed corpus of process
descriptions which serves to retrieve statistics about words in the descrip-
tions. The TFIDF measure extends the cosine measure with the traditional
IR weighing scheme [1].

LevN (simple) Levenshtein similarity of process names: two process names are compared
with the Levenshtein string similarity measure [11]. The Levenshtein-
based similarity measures are founded on the Levenshtein string edit dis-
tance that measures the relatedness of two strings (process names) in
terms of the number of insert, remove, and replacement operations to
transform one string into another string.

LoLN (simple) Levenshtein Level 2 (Levenshtein of Levenshtein) similarity of process
names: two process names such as “Buy over the internet” and “Sell via In-
ternet” are compared string-by-string with the (inner) Levenshtein string
similarity measure. If the similarity between two strings is above a user-
defined threshold, the strings are considered as equal (i.e., they match).
These scores are used by the outer Levenshtein string similarity measure
to compute an overall degree of similarity between the two process names
(sequences of strings).

MITPH-LoLNTFIDFD
(engineered)

Levenshtein Level 2 similarity between process names, TFIDF between
process descriptions: this strategy is a combination of two atomic mea-
sures. An overall similarity score is computed by aggregating the individ-
ual scores.

MITPH-LoLNTFIDFD-
JaccardAll (engineered)

Levenshtein Level 2 similarity between process names, TFIDF between
process descriptions, Jaccard (Tanimoto) set-based similarity [6] between
process exceptions, goals, resources, inputs, and outputs: a combination
of six atomic measures; in addition to MITPH-LoLNTFIDFD, four sin-
gle similarity scores are computed from two processes’ goal, exception,
resource, in- and output sets. An overall score is, again, determined by
accumulating (and weighting) the individual scores.

614 C. Kiefer et al.

3.2 Similarity Strategies

Currently, iSPARQL supports all of the about 40 similarity measures imple-
mented in SimPack. The reference to the implementing class as well as all nec-
essary parameters are listed in the iSPARQL ontology. It is beyond the scope of
this paper to present a complete list of implemented strategies. Therefore, Table
1 summarizes the five similarity strategies we use to evaluate the performance
of iSPARQL on the MIT Process Handbook (see Section 4). We distinguish be-
tween simple and engineered strategies: simple strategies employ a single, atomic
similarity measure of SimPack, whereas engineered strategies are a (weighted)
combination of individual similarity measures whose resulting similarity scores
get aggregated by a user-defined aggregator. Table 1 lists in addition to the
explanation of each strategy if it is considered as simple or engineered.

4 Experimental Analysis

The goal of our experimental analysis was to find some empirical evidence to
answer the questions raised in the introduction: Which are the “correct” mea-
sures for a given task and domain? Do engineered measures outperform off-the-
shelf measures? And, can an “optimal” measure be learned? To that end we
constructed a large ontology retrieval data set and performed two sets of exper-
iments: the pure retrieval experiments show a comparison of both off-the-shelf
and domain/task-specific, engineered similarity strategies using iSPARQL; The
machine learning experiments compare the performance of these predefined mea-
sures to learned strategies gained using supervised learning approaches. In the
following, we first describe the experimental setup, explain the generation of the
test set that is used to perform the aforementioned experiments, and present the
results of our evaluations.

We conducted all our experiments on a two processor dual core AMD Opteron
270 2.0GHz machine with 4GB RAM, 7200rpm disks, using a 32Bit version of
Fedora Core 5.

4.1 Test Set Generation – “Mutating” the MIT Process Handbook

In order to evaluate our ontology retrieval approach, we needed a substantial
database of instances, which includes a sizable number of queries with its asso-
ciated correct answers. The correct answers are crucial, as they allow the quan-
titative evaluation of the retrieval approach. But preparing manually a suitable
database that is large enough to enable statistical analysis can be impracticably
time-consuming. We, therefore, decided to bootstrap the data set generation pro-
cess by a large existing knowledge base that describes business processes: The MIT
Process Handbook is an electronic repository of best-practice business processes
and the result of over a decade of development by over 40 researchers and practi-
tioners centered around the MIT Center forCoordinationScience.3 The Handbook
3 Now called the MIT Center for Collective Intelligence (http://cci.mit.edu).

http://cci.mit.edu

Semantic Process Retrieval with iSPARQL 615

Goal

Tradeoff

Exception Dependency

Any

Bundle Process

Entity Variable

Resource

VariableValue

is-a

is-ais-a

is-a

is-a

is-ais-a is-a

is-a

is-a

Fig. 1. Simplified structure of the OWL MIT Process Handbook Ontology

is intended to help people: (1) redesigning organizational processes, (2) inventing
newprocesses, and (3) sharing ideas about organizational practices [13].TheHand-
book includes a database of about 8000 business processes in addition to software
tools for viewing, searching, and editing the database contents [12]. The Process
Handbook is a process ontology: it provides a specialization hierarchy of processes
(verbs) and their interrelationships in the form of properties, which connect the
process to its attributes, parts, exceptions and dependencies to other processes.
Note that specialization in the process handbook is non-monotonic. In otherwords,
it is possible for a “child” process to overwrite or delete an inherited property. The
Process Handbook, thus, has the advantage of being a sizable data set that was
developed in a real-world setting (i.e., by end-users and not by Semantic Web re-
searchers).

In order to use the MIT Process Handbook for an evaluation, we had to export
it into an OWL-based format. Given the non-monotonic inheritance structure the
straight-forward translation of processes to concepts was not possible. We, there-
fore, decided to model the Process Handbook meta-model in OWL and export the
processes in the Handbook as instances of the meta-model.4 Hence, all major parts
of theHandbook such asProcess,Bundle,Goal, Exception,Resource,Dependency,
and Trade-offs are represented as OWL classes (see Figure 1). With the ontology,
we transformed the approximately 5000 business processes to OWL and stored
them in their own files. Figure 2 shows a representative example of such a process.

Next, we had to find a sizable number of realistic queries and their correspond-
ing correct answers in the Process Handbook. To that end we adopted a novel
approach for creating a test database that is based on semantics-preserving pro-
cess mutation. We began by selecting 105 distinct process models from within the
Process Handbook repository. These models represent the target set. For each
target process we then created 20 variants of that process that are syntactically
different but semantically equivalent using mutation operators. These variants
represent the “true positives” or correct answers (i.e., the database items that
should be returned when our retrieval algorithm is applied to find matches for

4 In order to preserve the inherent semantics of the MIT Process Handbook, some ad-
ditional rules in RuleML would be needed [2].

616 C. Kiefer et al.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix daml: <http://www.daml.org/2001/03/daml+oil#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix processHandbook: <http://www.ifi.unizh.ch/ddis/ph/2006/08/ProcessHandbook.owl#> .

<http://www.ifi.unizh.ch/ddis/ph/2006/08/E1024.owl#E1024> a processHandbook:Process ;
processHandbook:name "Determine cost" ;
processHandbook:description "This is a general activity to determine the cost

to the organization of purchase or production." ;
processHandbook:hasException <http://www.ifi.unizh.ch/ddis/ph/2006/08/E17159.owl#E17159> ;
processHandbook:hasSpecialization <http://www.ifi.unizh.ch/ddis/ph/2006/08/E6302.owl#E6302> ,

<http://www.ifi.unizh.ch/ddis/ph/2006/08/E8007.owl#E8007> ;
processHandbook:hasGeneralization <http://www.ifi.unizh.ch/ddis/ph/2006/08/E3356.owl#E3356> .

Fig. 2. The figure shows process E1024 (“Determine cost”) in Notation 3. E1024 has
one exception, two process specializations, and one process generalization

the target process). All other items in the database are viewed as non-matches,
and should not be returned by our retrieval algorithm if is it operating correctly.

Variants were created by applying semantics-preserving mutation operators
to the target processes. Every variant represented the application of between 1
and 20 randomly selected operators to a target process. We used the following
operators:

– a process step (i.e., part of a process) is
• split into two siblings (STEPSPLIT)
• split into a parent/child (STEPCHILD)
• merged with a (randomly selected) sibling (STEPMERGESIB)
• merged with its parent (STEPMERGEPARENT)
• deleted (STEPDELETE)

– a word in the name of a process is
• deleted (NAMEDELETE)

– a word in the description of a process is
• deleted (DESCRIPTIONDELETE)

The mutation operators were selected so that they produce a plausible alter-
native way of modeling the process they were applied to. If we were modeling
a restaurant process, for example, some people might combine the “order” and
“pay” actions into one substep (e.g., for a fast food restaurant), while others
might model the same process with separate substeps for “order” and “pay”.
These two approaches represent syntactically different, but semantically equiv-
alent, ways of modeling the same process. The STEPMERGESIB operator could
take a process model with distinct “order” and “pay” substeps and merge them
into one. Conversely, the STEPSPLIT operator could take a process model where
“order” and “step” are merged, and split them into two distinct substeps.

It should be noted, as a caveat, that there is a substantial random element
in how the mutation operators work, since they do not perform a sophisticated
semantic analysis of a step before, for example, deciding how to perform a split.
Hence, the process variants may not look much like what a human might have

Semantic Process Retrieval with iSPARQL 617

generated, even though they are generated by a process that is similar to what
a person might have used. It is our belief, however, that a semantics-preserving
mutation approach represents a promising way for generating large query collec-
tions enabling rapid and useful evaluations of different retrieval algorithms. The
algorithms that “rise to the top” as a result of this screening procedure can then
be evaluated using hand-generated test sets that, presumably, will produce re-
trieval and precision figures that are closer to what we can expect in “real-world”
contexts. The generated process retrieval test collection, including queries and
variants (true positives) is available at our project web site.5

4.2 Retrieval Experiments – Off-the-Shelf vs. Engineered

In order to compare the performance of off-the-shelf versus specifically engi-
neered similarity strategies, we first chose three simple strategies from SimPack:
TFIDFD, LevN, and LoLN (see Section 3.2). Obviously, we did not choose
them randomly but actually chose the off-the-shelf measures that we thought
would perform well and then discarded the ones that were not performing suf-
ficiently well to compete with the top-ranking ones. Second, we manually de-
fined (or engineered) two task and domain specific complex similarity strate-
gies that are both a combination of multiple similarity measures based on our
experience with the Process Handbook: MITPH-LoLNTFIDFD and MITPH-
LoLNTFIDFDJaccardAll. Note that while almost no domain knowledge is nec-
essary to choose and define the off-the-shelf similarity strategies, some domain
expertise is needed for the human-engineered strategies since specifying which
measures should be used to determine the similarity between which elements of
processes means to have a profound understanding of the structure of the data.

To compare the performance of the similarity strategies, we had to execute
all 105 query processes with each of the five similarity strategies. Here, the
capabilities of iSPARQL were very useful: since it was designed to run SPARQL
queries with similarity joins, we could simply construct iSPARQL queries that
would correspond to the retrieval operations. Consider the query depicted in
Listing 1.2: it computes a similarity join between the process with the reference
http://www.ifi.unizh.ch/ddis/ph/2006/08/ProcessHandbook.owl#E16056 and all
other entries in the knowledge base using the TFIDFD strategy and returns
them ordered descending by similarity. Actually, we were able to run all five
strategies with one query by having an ImpreciseBlockOfTriples (see Section
3.1) for each strategy in the same query, exemplifying how iSPARQL simplifies
the implementation of Semantic Web retrieval applications.

To evaluate the performance of the queries we chose the traditional informa-
tion retrieval measures precision and recall. As a representative example, the
results for process E160566 are shown in Figures 3(a) and 3(b), which depict
precision and recall for the 100 most similar processes to the query process.
As one can see, TFIDFD outperforms all other strategies in terms of precision

5 http://www.ifi.unizh.ch/ddis/ph-owl.html
6 http://www.ifi.unizh.ch/ddis/ph/2006/08/E16056.owl

http://www.ifi.unizh.ch/ddis/ph-owl.html
http://www.ifi.unizh.ch/ddis/ph/2006/08/E16056.owl

618 C. Kiefer et al.

1 ������ ph: <http://www.ifi.unizh.ch/ddis/ph /2006/08/ProcessHandbook.owl#>
2 ������ isparql : <java:ch.unizh.ifi.isparql .query.property .>
3
4 ����	
 ?process2 ?name2 ? similarity
5 ����� {
6 ?process2 ph:name ?name2 .
7 ?strategy isparql :name ‘‘TFIDFD ’’ .
8 ?strategy isparql :arguments (ph:E16056 ?process2) .
9 ?strategy isparql :similarity ?similarity .

10 ���� �� ���	(?similarity)

Listing 1.2. iSPARQL retrieval query

closely followed by MITPH-LoLNTFIDFD. Both, simple as well as engineered
strategies start very high with precision=1, except for MITPH-LoLNTFIDFD
that starts around 0.9. LoLN rapidly falls below 0.2 in precision (∼25 returned
processes), which expresses its low usefulness for this retrieval task. Consider-
ing recall (Figure 3(b)), MITPH-LoLNTFIDFD starts highest (recall ∼0.7) but
gets outperformed by TFIDFD (around 15 returns) for larger query result sets.
Why does the standard TFIDF perform so well? We believe it is due to the
large descriptions that are typically associated with Process Handbook entries.
Given that the descriptions were not mutated in all cases and that mutation
did essentially consist of deleting words, TFIDF, which has been found to be
very useful in full text retrieval, may have an unfair advantage. Nonetheless,
even disregarding TFIDF as a competitor, it is interesting to observe that nei-
ther of the engineered measures uniformly outperforms the off-the-shelf ones
in terms of precision, but that they only gain with larger result sets. Why does
the engineered measure MITPH-LoLNTFIDFDJaccardALL not perform equally
well (LoLN initially outperforms it in terms of precision and almost uniformly
outperforms it in terms of recall)? This might be due to badly chosen weights
of the individual similarity strategies (i.e., instead of giving the same weights
to TFIDFD, LoLN, and Jaccard, TFIDFD should probably be weighted much
higher as indicated by the simple strategies). We discuss an approach of how to
learn such weights in the next subsection.

Figure 4 shows average precision and recall of the five employed similarity
strategies across all 105 queries. As the figure illustrates the performance of
all measures across all the queries is not as good as for the the single query.
Nonetheless, we can see that the findings from the one query generalize qual-
itatively. Specifically, Figure 4(a) illustrates that the simple TFIDFD measure
clearly outperforms all other strategies in terms of precision – it seems as if the
descriptions across all the queries again are of much higher importance than
other structure properties of a process. However note, that precision for all mea-
sures (including TFIDFD) on average is not as high as in the single query case.
This due to the fact, that there are processes in the test collection which have
shorter textual descriptions and/or fewer properties resulting in lower TFIDF
similarity scores, which, in turn, leads to reduced average precision. In terms of
precision, all three simple strategies outperform the engineered ones again for

Semantic Process Retrieval with iSPARQL 619

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

TFIDFD
LevN
LoLN

MITPH-LoLNTFIDFD
MITPH-LoLNTFIDFDJaccardAll

(a) Precision for E16056.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

TFIDFD
LevN
LoLN

MITPH-LoLNTFIDFD
MITPH-LoLNTFIDFDJaccardAll

(b) Recall for E16056.

Fig. 3. Precision and recall for a representative example process

few processes returned. For larger query result sets, the two engineered strate-
gies MITPH-LoLNTFIDFD and MITPH-LoLTFIDFDJaccardAll perform bet-
ter than LevN and LoLN but still worse than simple TFIDF. Inspecting recall
(Figure 4(b)), the best performing similarity strategy is the engineered MITPH-
LoLNTFIDFD until ∼40 returned processes. With larger result sets, it gets out-
performed by TFIDFD that starts with about the recall of low (recall ∼0.3). We
note, that also on average, similarity strategies incorporating TFIDF to measure
the relatedness of processes of the MIT Process Handbook perform substantially
better than strategies focusing on other modeling aspects. Thus, future strate-
gies should probably use TFIDF as one of their component measures, assigning
it a high enough weight in the overall similarity computation.

Summarizing, we can state, that the engineered measures do not uniformly
outperform the off-the-shelf ones. Indeed, it seems that the simple ones that are
heavily reliant on full-text (such TFIDF) are favored by this data set. Ignoring
the description (and the TFIDF measure), however, we can see that the engi-
neered measures perform better in terms of both precision and recall for large
return sets. For small return sets the off-the-shelf measures are better in terms
of precision and at least competitive for recall.

4.3 ML Experiments – Off-the-Shelf and Engineered vs. Learned

The last question raised in the introduction demands clarification on the perfor-
mance on a learned measure in comparison to either the off-the-shelf or the engi-
neered ones. To that end we decided to employ the widely used machine learning
tool Weka7 in conjunction with iSPARQL to learn a similarity measure based on
the results obtained with the simple as well as engineered strategies. Specifically,
for each of the 105 queries we took all the off-the-shelf but the TFIDF measures
used so far. The rationale for not using the TFIDF measure was that we did not
want the description to have too much influence in this evaluation. Together with
the information if they were a correct or incorrect answer, we combined them
7 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

620 C. Kiefer et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

TFIDFD
LevN
LoLN

MITPH-LoLNTFIDFD
MITPH-LoLNTFIDFDJaccardAll

(a) Average precision.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

TFIDFD
LevN
LoLN

MITPH-LoLNTFIDFD
MITPH-LoLNTFIDFDJaccardAll

(b) Average recall.

Fig. 4. Average precision and recall for 105 queries and five similarity strategies

to a feature vector shelfi,j = [LevN(i, j), LoLN(i, j), correct(i, j)]T , where i is
the number of the target entity, j is the number of the entity from the Process
Handbook and correct(i, j) specifies if j is a correct answer to the query i. We
then combined all the vectors shelfi,j to the data set shelf . Analogously, we
constructed the vector engineeredi,j that extended shelfi,j with the engineered
measures to the data set engineered .

For each of these two data sets we then learned a similarity measure using a
logistic regression statistical learning algorithm performing an (almost) 10-fold
cross validation.8 We took 10% of the queries (always exactly 10, discarding the
rest), learned the similarity measure using the logistic regression learner on the
remaining 90% of the data, and then measured its effectiveness on these 10%.
This approach is standard practice in machine learning. The averages of the
results of the 10 runs are shown in Figure 5. As the Figures 5(a) and 5(b) show,
the performance of the learned measures vastly outperforms both the engineered
and the off-the-shelf measures (note the scale on the figures!). It, thus, seems
that each of the measures employed contains some latent (potentially different)
information about the similarity between the queries and its correct answers.
Combined, they provide an excellent performance. Note also, that the similarity
measure learned from the engineered data set (the upper line in Figures 5(a) and
5(b)) significantly outperforms the one learned from the shelf data set (lower
curves). Since precision/recall curves are sometimes misleading when evaluating
the performance of learning approaches, we also supply the average receiver
operating characteristic (ROC) curves for both learned measures. The ROC
curve graphs the true positive rate (y-axis) against the false positive rate (x-
axis), where and ideal curve would go from the origin to the top left (0,1) corner,
before proceeding to the top right (1,1) one. As Figure 5(c) clearly shows, the
similarity measure learned from the engineered data set almost perfectly mimics
a perfect prediction resulting in an accuracy of 99.469%; the one for the shelf
data set being not much worse with an accuracy of 98.523%.
8 We call it “almost” 10-fold cross validation because 105 queries cannot be divided

into 10 equally sized groups, but 5 groups of 10 and 5 groups 11 queries.

Semantic Process Retrieval with iSPARQL 621

 0.997

 0.9975

 0.998

 0.9985

 0.999

 0.9995

 1

 0 20 40 60 80 100

Precision (not engineered)
Precision (engineered)

(a) Precision curves.

 0.9993

 0.9994

 0.9995

 0.9996

 0.9997

 0.9998

 0.9999

 1

 0 20 40 60 80 100

Recall (not engineered)
Recall (engineered)

(b) Recall curves.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ROC (not engineered)
ROC (engineered)

(c) ROC curves.

Fig. 5. Results for the learned similarity measure (logistic regression)

5 Discussion, Limitations, and Future Work

The findings of the preceding analysis are relatively clear. First, the ease of
use of our iSPARQL framework for the presented semantic process retrieval
task has been clearly shown. Evaluations, that previously would have had to
be programmed tediously, could be effectuated by simply compose a query. The
seamless integration of simple, off-the-shelf as well as human-engineered similar-
ity strategies significantly simplified the implementation. We, therefore, believe
that a declarative query language containing statistical reasoning elements like
iSPARQL can significantly simplify the design and implementation of Semantic
Web applications that include some element of similarity. Since such elements
are included in many of the core Semantic Web applications (e.g., matchmak-
ing, retrieval in ontologies, ontology alignment, etc.), tools such as iSPARQL
can play an important role in simplifying the spread of the Semantic Web.

Second, as our retrieval experiments showed, the human-engineered measures
performed constantly better on large sets of processes than the off-the-shelf mea-
sures did. In contrast, the simple, off-the-shelf strategies turned out to be su-
perior for smaller sets. Furthermore, strategies including the TFIDF measure,
which heavily drew on the process descriptions performed better in terms of pre-
cision and recall. This indicates that the off-the-shelf methods captured a different
notion of the similarity between processes than the engineered ones. This finding
is further supported by the learned similarity measures. As Figure 5 shows the
results of the algorithm learned with only the off-the-shelf data is somewhat less
precise than the one learned with both the engineered and off-the-shelf methods.
Hence, the information contained in the engineered measures is at least partially
complimentary to the information contained in the off-the-shelf ones, which the
learning algorithm can exploit. Arguably, this additional information is the latent
experience of the experts that was embedded in the engineered measures.

Third, the learned measures clearly outperformed the designed or off-the-shelf
ones. The learning algorithm’s ability to combine the complimentary informa-
tion contained in the different notions of similarity proved to provide an overall
almost overwhelming accuracy. We can, therefore, clearly conclude that the value
of using learned similarity measures seems immense, assuming that a sufficient

622 C. Kiefer et al.

number of examples is available: irrespective of whether we used off-the-shelf or
expert measures, the learned measures performed close to perfect.

One major limitation of our work is the choice of experimental data. The
generalizability of our findings across tasks and domains is limited by the fact
that we (i) only used one data set, (ii) that this data set employed some generated
data, (iii) we only ran one task, and (iv) that the test suite generation strategy
might have influenced the results. Nonetheless, we believe that our findings are
likely to hold across domains and task: First, extrapolating from information
retrieval, where the choice of good similarity measures seem to permeate across
both tasks and domains. Second, while our data set is not ideal, it is one of
the first ones in the Semantic Web that contains a large data set with both
queries and associated true answers. Such data sets are very costly to design
and only their introduction to the community will allow comparative studies,
which, ultimately, is the basis of science. Last, even though the true positives
where generated (note that the data base itself was collected by domain experts),
their generation process was guided by many years of experience with the type
of data under study. We, therefore, believe that our findings will generalize at
least across domains and possibly, given the ubiquity of similarity measures in
computer science and AI, even across tasks.

We see a couple of future research directions: (1) extending our evaluation to
other domains and tasks to ensure our findings’ generalizability; (2) applying
iSPARQL to different Semantic Web tasks such as service matchmaking and
ontology alignment to shed some more light on its potential as a framework; and
(3) investigating extensions to iSPARQL that will further improve its usefulness
for additional tasks.

6 Conclusions

Our study investigated the use of similarity measures in a process ontology re-
trieval task using the iSPARQL framework. We found that the declarative nature
of iSPARQL did significantly simplify the task prompting us to a deeper inves-
tigation of the applicability of iSPARQL to different Semantic Web tasks such
as matchmaking and ontology alignment, beyond the presented process retrieval
task. We also found that the combination of different notions of similarity string
learning approaches significantly boosted the overall task performance. There-
fore, as seen from our evaluations, the use of statistics, either directly employed
by similarity strategies or by statistical learning algorithms, proved crucial for
the performance in this task. For the Semantic Web in general, these findings
raise the question whether the more wide-spread use of statistical reasoning ele-
ments would not improve the overall performance of its tools and applications.

Acknowledgment. One of the authors was supported by the Korea Research Foun-
dation Grant of the Korean Government (KRF-2006-214-D00193). We would like
to thank the anonymous reviewers for their valuable comments.

Semantic Process Retrieval with iSPARQL 623

References

1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

2. A. Bernstein, B. Grosof, and M. Kifer. Beyond Monotonic Inheritance: Towards
Non-Monotonic Semantic Web Process Ontologies. In W3C Ws. On Frameworks
for Semantics in Web Services, 2005.

3. A. Bernstein and C. Kiefer. Imprecise RDQL: Towards Generic Retrieval in Ontolo-
gies Using Similarity Joins. In Proc. of the 2006 ACM Symp. on Applied Computing
(SAC ’06), pages 1684–1689, New York, NY, 2006.

4. A. Bernstein and M. Klein. Towards High-Precision Service Retrieval. In Proc. of
the 1st Int. Semantic Web Conf. on The Semantic Web (ISWC ’02), pages 84–101,
London, UK, 2002.

5. S. Brockmans, M. Ehrig, A. Koschmider, A. Oberweis, and R. Studer. Semantic
Alignment of Business Processes. In Proc. of the 8th Int. Conf. on Enterprise
Information Systems (ICEIS ’06), pages 191–196, Paphos, Cyprus, 2006.

6. W. W. Cohen, P. Ravikumar, and S. Fienberg. A Comparison of String Distance
Metrics for Name-Matching Tasks. In Proc. of the IIWeb Ws. (IJCAI ’03), 2003.

7. M. Ehrig, A. Koschmider, and A. Oberweis. Measuring Similarity between Seman-
tic Business Process Models. In Proc. of the 4th Asia-Pacific Conf. on Conceptual
Modelling (APCCM ’07), Ballarat, Victoria, Australia, 2007. to appear.

8. L. Geng and H. J. Hamilton. Interestingness Measures for Data Mining: A Survey.
ACM Comp. Surv., 38(3), 2006.

9. D. Gentner and J. Medina. Similarity and the Development of Rules. Cognition,
65:263–297, 1998.

10. M. Klusch, B. Fries, and K. Sycara. Automated Semantic Web Service Discovery
with OWLS-MX. In Proc. of the 5th Int. Joint Conf. on Autonomous Agents and
Multiagent Systems (AAMAS ’06), pages 915–922, New York, NY, 2006.

11. V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707–710, 1966.

12. T. W. Malone, K. Crowston, and G. A. Herman. Organizing Business Knowledge:
The MIT Process Handbook. MIT Press, Cambridge, MA, 2003.

13. T. W. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner,
J. Quimby, C. S. Osborn, A. Bernstein, G. Herman, M. Klein, and E. O’Donnell.
Tools for Inventing Organizations: Towards a Handbook of Organizational Pro-
cesses. Management Science, 45(3):425–443, 1999.

14. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. Tech-
nical report, W3C, 2006.

15. D. Wolpert and W. Mcready. No Free Lunch Theorems for Optimization. IEEE
TOEC, 1(1):67–82, 1997.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 624–639, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Integrating Folksonomies with the Semantic Web

Lucia Specia and Enrico Motta

Knowledge Media Institute – The Open University
Walton Hall, MK7 6AA, Milton Keynes, UK
{L.Specia,E.Motta}@open.ac.uk

Abstract. While tags in collaborative tagging systems serve primarily an
indexing purpose, facilitating search and navigation of resources, the use of the
same tags by more than one individual can yield a collective classification
schema. We present an approach for making explicit the semantics behind the
tag space in social tagging systems, so that this collaborative organization can
emerge in the form of groups of concepts and partial ontologies. This is
achieved by using a combination of shallow pre-processing strategies and
statistical techniques together with knowledge provided by ontologies available
on the semantic web. Preliminary results on the del.icio.us and Flickr tag sets
show that the approach is very promising: it generates clusters with highly
related tags corresponding to concepts in ontologies and meaningful
relationships among subsets of these tags can be identified.

1 Introduction

Describing resources by means of a set of keywords is a very common way of
organizing content for future use, including search and navigation. A collaborative form
of this process for shared web-based resources, called “tagging”, or “social tagging /
annotation”, has been gaining impressive popularity among web users. In the light of the
Web 2.0 philosophy, the several social tagging systems available nowadays enable users
to annotate their resources (web pages, images, videos, etc.) with a set of words, the so-
called “tags”, which they believe to be relevant to characterize the resource according to
their own needs, without relying on a controlled vocabulary or a previously defined
structure. The main goal of this annotation is to facilitate the access to resources and,
since the systems allow users to share their resources and annotations, tags serve as
links to resources annotated both by their owners and by other users. This allows the
emergence of a shared and evolving classification structure, which is sometimes called
“folksonomy”1, i.e., a folk taxonomy, or a lightweight conceptual structure created by
the users.

Social tagging systems such as Flickr (http://www.flickr.com/), for photo-sharing,
and del.icio.us (http://del.icio.us/), for social bookmarking, are becoming more and
more popular, covering nowadays a wide range of resources and communities, with a
huge number participants sharing and tagging a large number of resources. For example,
del.icio.us is said to have more than 1,000,000 registered users in September 2006, who
have been posting more than 100,000 bookmarks each day (http://deli.ckoma.net/stats).

1 As defined by T. Vander Wal (http://www.vanderwal.net/random/entrysel.php?blog=1750).

 Integrating Folksonomies with the Semantic Web 625

Tagging systems are constituted by three main elements: users, resources and tags.
Although in most of the systems tags are not mandatory, they are certainly a very important
element. Besides establishing a relationship between a resource and a concept in the user’s
mind, tags can be thought of as the connecting element between resources and users, with
these connections defining (even implicitly) relationships amongst users (several users may
use the same tags) and amongst resources (resources can be tagged with the same words).

Taking subsets of the tags in Flickr and del.icio.us as examples, in this paper we
focus on the relationships amongst tags themselves and their mapping into formal
concepts in ontologies. We are therefore primarily interested in the collective purpose of
the tags assigned to resources. In that sense, one of the greatest strengths of the social
tagging systems, the fact that no pre-defined vocabulary is assumed, leads to a number
of limitations and weaknesses in what concerns the use of the tags to retrieve content.
As highlighted by Golder and Huberman (2005), the main problems of social tagging
systems include ambiguity, lack of synonymy and discrepancies in granularity. An
ambiguous word, e.g. apple, may refer to the fruit or the computer company, and
this in practice can make the user retrieve undesired results for a certain query.
Synonyms like lorry and truck, or the lack of consistency among users in choosing
tags for similar resources, e.g., nyc and new york city, makes it impossible for the
user to retrieve all the desired resources unless he/she knows all the possible variants of
the tags that may have been used. Different levels of granularity in the tags may also be
a problem: documents tagged java may be too specific for some users, but documents
tagged programming may be too general for others.

We present an approach to minimize these problems by making explicit the
semantics behind the tag space in social annotation systems. This is achieved by a
pipeline of processes including the cleaning up of tags, the analysis of co-occurrence
among tags, the clustering of tags based on the co-occurrence information, and finally
the mapping of tags in a cluster into elements (concepts, properties or instances) in
ontologies and the extraction of (taxonomic or non-taxonomic) semantic relations
between them, using for that information from ontologies available on the semantic
web, as well as resources like Wikipedia and Google. Although other attempts have
been made to bring the semantics of folksonomies to the surface, as we discuss in
Session 2, they do not go beyond finding groups of related tags - no assumption is
made about the nature of the tags or the relationships within clusters. Moreover, a
systematic evaluation on the quality of the clusters is not performed.

As result of our approach, we obtain groups of highly related tags corresponding to
elements in ontologies, structured according to the relationships holding amongst those
elements, which can be thought of as faceted ontologies, that is, partial ontologies
conceptualizing specific facets of knowledge. In contrast with traditional “monolithic”
ontologies, the resulting ontologies are constructed by putting together fragments derived
from multiple ontologies on the semantic web2. These resulting ontologies can be used to
enhance various tasks in the tagging systems (for users and semantic web applications):

a) Query (tag) extension/disambiguation: in searches for tags, query extension
to all related tags (or a subset of them) can be offered to the user. Simple

2 In (Motta and Sabou, 2006) we argue that this ability of dynamically combining and

integrating information coming from multiple ontologies on the web is one of the key
features of the emerging new generation of semantic web applications.

626 L. Specia and E. Motta

heuristics, based on the types of tags, can be used to extend the search to a
subset of the related tags. Also, if the searched tag is ambiguous, the user can
be given the related tags in each cluster it appears in order to choose the sense.
The search can then be restricted to that sense by adding another tag (from the
cluster) to the query.

b) Visualization: clusters of related tags (and the relationships among them) can
be graphically presented to provide a better understanding on the way the
searched tag is used in the system, which can also be used for query extension
/ disambiguation.

c) Tag suggestion: when tagging a resource, the user can be offered suggestions
of “good” tags, based on other tags used by other people for that resource (like
in del.icio.us), or related tags that are highly frequent in a given cluster.

The approach can also be used to support ontology evolution and population: the
new and dynamic knowledge provided by users can complement the formal
knowledge in ontologies by adding concepts (or instances of concepts) and
relationships (or instances of relationships) between concepts in that ontology.
Therefore, with our approach to integrating folksonomies and the semantic web we
intend to show ultimately both (i) that the ontologies provided by the semantic web
can be used to structure folksonomies semantically and (ii) that the dynamic
knowledge provided by folksonomies can be used as a resource for bottom-up
knowledge acquisition to support ontology evolution.

The rest of this paper is organized as follows. In Section 2 we describe a few
approaches that are related to our work. In Section 3 we present our approach to
integrate folksonomies with the semantic web. In Section 4 we show the results of
initial experiments with Flickr and del.icio.us tag sets. We conclude with some
remarks and future work in Section 5.

2 Related Work

Because one important step in our work is the identification of relations between tags,
before comparing our work to other approaches that try to extract semantics from
tagging systems, it is important to distinguish it from traditional approaches to
relation extraction from texts (Schutz and Buitelaar, 2005; Specia and Motta, 2006).
The main difference is that here we cannot count on the conventional notion of
“context”, i.e., surrounding words around the tag. Some attempts have been made to
use information about the resources as context, but there is no guarantee that this ad
hoc context will offer helpful clues. For example, (Aurnhammer et al., 2006) uses
image content features as context to improve search in Flickr: an ordinary search by
tag is accomplished and the user then selects a subset of the resulting images to
perform another search by “similar” images according to two simple features - colour
and texture. Images with other tags, not necessarily similar to the initial one, can
therefore be retrieved. However, this image retrieval strategy is unlikely to work well
with complex images. In our approach, we rely on no additional context except the
tags themselves.

Aiming to induce faceted ontologies from Flickr tags, (Schmitz, 2006) uses a
subsumption-based model, derived from the co-occurrence of tags, to find candidate

 Integrating Folksonomies with the Semantic Web 627

subsumption relations: a tag x subsumes another tag y if the probability of x occurring
given y is above a certain threshold and the probability of y occurring given x is
below that same threshold. Given the resulting set of “candidate pairs of tags”, a tree
of possible parent-child relationships is built, with certain candidate pairs being
filtered out according to their position and thus reinforcing the remaining
relationships. For each leaf of the tree, the best path to the root is chosen accordingly
and partial paths are merged into sub-trees. Some of the illustrated sub-trees show that
common features hold amongst certain tags. For example, a resulting tree contains san
francisco as the subsuming tag and a set of children like civiccenter,
cliffhouse, streetfair, muni. From a semantic point of view this approach is
however limited, as in the general case the identified relationships will vary
considerably (e.g., these trees may mix type-of, hyponym, or part-of relationships),
but these distinctions are not captured.

Other approaches that concentrate in finding groups of potentially related tags
include those of (Begelman et al., 2006) and (Wu et al., 2006). In (Begelman et al.,
2006), the tag space is first organized according to their co-occurrences in annotating
different resources. A cutoff co-occurrence value is defined based on disruption
points in frequency graphs. This new tag space is then represented as an undirected
graph, having strongly related tags as vertices and edges with pairs of tags weighted
according to the number of times they co-occur. This yields clusters of related tags,
but since some clusters are very big, a spectral clustering algorithm is applied to
refine them. Amongst the illustrated examples of clusters created for RawSugar data
(http://www.rawsugar.com), some seem to group truly related tags (e.g., {health,
nutrition, food, diet}), while tags in other clusters are less related (e.g.,
{health, shopping, research}). No assumption can be made about the nature of
the relationships holding within a cluster.

Wu et al. (2006) present a probabilistic model, which aims to generate groups of
semantically related tags based on the co-occurrence of tags, resources, and users.
Entities (user, resource or tag) are represented as a multi-dimensional vector, a
conceptual space, where each dimension represents a category of knowledge – whose
meaning is unknown. The value in each dimension should measure the level of
relationship between the entity and the corresponding category of knowledge. The
log-likelihood of the dataset is estimated in order to determine the number of
dimensions of that conceptual space and assign the relationship values of entities to
each dimension. In experiments with a subset of del.icio.us data, 40-dimensions are
estimated as sufficient to represent the major category of meanings. A small example
taking 10 randomly selected dimensions and the top 5 closely related tags to each of
those dimensions shows that relationships hold amongst the tags within each group
(dimension), however, once more, the types of these relationships are not explored.

Mika (2005) extends the traditional bipartite model of ontology with a social
dimension, yielding in a tripartite model involving users (actors), tags (concepts), and
resources (instances of concepts). With a subset of del.icio.us’ tags, based on the co-
occurrence of tags with resources and users, the author builds graphs relating tags and
users and also tags and resources. Techniques of network analysis, which are not
discussed in the paper, are then applied on those graphs in order to discover emergent
ontologies. For each graph, the result is a set of clusters of semantically related tags,
but the relations are not made explicit.

628 L. Specia and E. Motta

Schmitz et al. (2006) extract association rules between projections of pairs of
elements from the tripartite model of folksonomies, i.e., users, resources and tags. In
experiments with data from del.ici.us, the authors illustrate two different projections,
learning rules of the types: (i) users assigning certain tags to some resources often
also assign another set of tags to those resources; and (ii) users labelling certain
resources with a set of tags often also assign those tags to another set of resources.
While these kinds of association rules make it possible to identify the existence of
relationships among different tags, users or resources, they do not provide any
information about the nature of these relationships.

Finally, most of the social systems, including Flickr and del.icio.us, provide
facilities such as “clusters” and “related tags”, which show groups of related tags to
allow the user to tune the search to other (statistically) related tags. Del.icio.us also
provides “recommended tags” and “popular tags” when a given resource is being
tagged, based on tags previously used for the same resource. Apparently these
facilities rely on co-occurrence information but the groups express nothing about the
actual relationships between the tags.

Since none of the described approaches applies more sophisticated pre-processing
of the tags than eliminating infrequent tags, tags like Music and music count as
different elements. The same applies to tags with very little lexical variation, such as
blog and blogs. As we describe in the next section, we use specific strategies for
cleaning up tags, and, more importantly, besides identifying groups of related tags, we
investigate the nature of these relationships by exploiting information available on the
semantic web, in order to give semantics both to the tags themselves and to the
relationships between tags.

3 Integrating Folksonomies with the Semantic Web

As we previously mentioned, the tag space in social tagging systems encompasses
semantic aspects of the system that are not explicitly defined. By identifying formal
elements corresponding to tags and relationships among them it is possible to make
explicit a significant part of this underlying knowledge, which is crucial for the
efficient use of these systems. In fact, only with a clear semantic structure the
annotations in folksonomies can be useful not just to humans, but can be made
available to software agents and applications on the semantic web. Our hypothesis is
that this knowledge can be derived by means of a statistical analysis of the
annotations combined with pragmatic information provided by the semantic web and
additional clues given by external resources.

3.1 Datasets

We investigate the tag sets in Flickr and del.icio.us due both to their popularity (with
a large number of resources, users, and tags) and availability. These datasets differ
from each other in a series of features. In fact, Thomas Vander Wal3 mentions these
systems when distinguishing between broad and narrow folksonomies: in a broad

3 http://www.personalinfocloud.com/2005/02/explaining_and_.html

 Integrating Folksonomies with the Semantic Web 629

folksonomy (e.g., del.icio.us) many users tag the same resource, while in a narrow
folksonomy (e.g., Flickr) only the creator of the resource tags it. Other studies on the
structure of both del.icio.us and Flickr, focusing on user activity, tag frequency, kinds
and variability of tags, among other aspects, are presented in (Golder and Huberman,
2005) and (Marlow et al., 2006). In our experiments, we use the del.icio.us tags
provided by Peter Mika, which were also used in (Mika, 2005), and Flickr tags for
photos posted between 01-02-2004 and 01-03-2006. The total numbers of entries (i.e.,
a resource tagged by a user) and tags in both datasets, as well as the number of
distinct users, resources and tags, are shown in Table 1.

Table 1. Number of tags (with their corresponding users and resources) from del.icio.us and
Flickr

 Total Distinct
 #

entries
tags #

users

resources
tags

del.icio.us 19,605 89,978 7,164 14,211 11,960
Flickr 49,087 167,130 6,140 49,087 17,956

 Concept and relation identification

No

END

Remaining

tags?

Clustering

Google

Flickr / del.icio.us

Cluster tags

Cluster1 Cluster2 Clustern…

2 “related” tags

Find mappings &

relation for pair of tags

Yes

Analyze co-occurrence

of tags

Co-occurence matrix

Pre-processing

Tags

Group similar tags

Filter infrequent tags

Concise tags

Clean tags

Wikipedia

SW search engine

<concept, relation,

concept>

Fig. 1. System architecture

630 L. Specia and E. Motta

3.2 Methodology

Two very important features of our methodology are that it is unsupervised, i.e., it does
not assume previously identified mappings or relationships to train the system, and it does
not require any context besides the tags themselves, the resources being tagged and other
tags used for those resources. The general approach, as given in Fig. 1, consists of three
steps: pre-processing, clustering and concept / relation identification.

3.2.1 Pre-processing
The following shallow pre-processing steps were performed:

(1) Filter out unusual tags (and corresponding resources, if no other tag remains in
that annotation). From a social perspective, all tags are relevant, even if they
cannot be mapped to elements in ontologies. However, at this stage we are
interested in tags with a more general applicability, which can be possibly
found in ontologies, and therefore we define the following constraints: tags
must start with a letter followed by any number of letters, numbers, and
symbols like dash, dot, underscore, etc.

(2) Group morphologically very similar tags using the Levenshtein similarity
metric4 with a high threshold to determine “similar” words. This can tackle
minor morphological variations (by grouping tags such as cat and cats,
san_francisco, sanfrancisco and san.francisco) as well as
misspellings (by grouping tags such as theory and teory). Within each
group of similar tags, one is selected to be the representative of the group and
all the occurrences of tags in that group are replaced by their representative.
Given the alphabetically sorted list of tags within a group, the main criterion
for choosing its representative is the existence of the tag in WordNet, followed
by other simple criteria: preference is given to tags with letters only, followed
by words with some symbols, then combinations of words and numbers, and
so on. For example, the tags typography, web-based, and tutor were
respectively chosen to represent the following groups:

{tipography typograph typography}
{web-based web_based webbased}

{tutor tutors}

(3) Filter out infrequent and isolated tags (and corresponding resource), that is,
tags occurring less than a certain number of times or appearing only isolated.

3.2.2 Clustering
The second step of our approach is to perform a statistical analysis of the tag space in
order to identify groups, or clusters, of possibly related tags. Clustering is based on the
similarity among tags given by their co-occurrence. In order to find these similarities,
the tags in each of the datasets were organized as a co-occurrence matrix, that is: a n x n
symmetric matrix M, were n is the number of distinct tags in the dataset, and the value
of each element mij, representing the intersection of tagi and tagj, corresponds to the
number of times the pair tagi and tagj co-occur in the whole tagset (with the same or
different resources/users). If tagi = tagj, then the intersection represents the frequency of
the tag in the dataset.

4 As implemented in the package SimMetrics in http://sourceforge.net/projects/simmetrics/

 Integrating Folksonomies with the Semantic Web 631

In this co-occurrence matrix, each line (or column) is a vector representing one of
the tags. Therefore, several vector space statistics can be computed. We tried different
metrics to calculate the similarity between the pairs of vectors, including Euclidian
and Manhattan distance, angular separation (cosine), etc. Metrics computing absolute
distance like Euclidian and Manhattan showed to be inappropriate, since they are
much more sensitive to significant variations in a few elements than little variations in
a large number of elements, which is relevant to our problem. We chose angular
separation, illustrated in (1), which computes the cosine angle between two vectors
and thus is more sensitive to small changes in various elements. It is also less
complex than similar metrics such as correlation coefficient.

.

.
_

2

1

1 1

22

1

⎟
⎠

⎞
⎜
⎝

⎛
=

∑ ∑

∑

= =

=

n

k

n

k
jkik

n

k
jkik

ij

xx

xx
separationangular

(1)

As a result of computing the similarity between each possible pair of vectors in the co-
occurrence matrix (i.e., n x n pairs), for each tag we obtain a list of its similarities to all the
other tags. For example, Table 2 shows the top five similar words to the words audio,
semantic-web, adult, apple, and chat in del.icio.us data.

As we can see in Table 2, this co-occurrence-based similarity computation already shows
some semantics about the words. It goes beyond finding syntagmatic associations, since we
do not simply check the pairs of tags that co-occur a significant number of times, such as in
(Begelman, 2006). In our case, by using the co-occurrence matrix, we take into account all
the other tags as context and state that to be considered similar to a certain tagj, a tagi has to
co-occur not only with tagj, but also with the other tags co-occurring with tagj. That is, both
tags must have a similar pattern of co-occurrence, which is given by their co-occurrence
vectors. Similarities like these are sometimes called “paradigmatic associations”.

Table 2. Top 5 similar words to some examples of tags

Top audio semantic
-web

adult apple chat

1 mp3 rdf girls mac aim
2 music ontology nude macintosh messenger
3 playlist owl babes tiger gtalk
4 streaming semweb pics osx msn
5 radio daml sex macosx icq

Certainly, a single tag can have two or more patterns of co-occurrence, representing
different meanings or uses of the tag (e.g., apple as computer brand and as fruit). In that
case, the most similar tags to a given tag will mix words referring to distinct domains.
Therefore, although relevant, the information provided by the paradigmatic associations is

632 L. Specia and E. Motta

limited to pairs of tags, i.e., it can only tell, for a given tag, that there is a set of other tags that
are related to it, but this does not guarantee that a relationship also holds among the other
tags in that set. For example, we could also have found a paradigmatic association between
apple and fruit in Table 2, but clearly we should not include fruit in a group
representing the computer brand sense of apple. Therefore, we extend the paradigmatic
associations by defining a clustering algorithm on top of them.

In order to group the highly co-occurring tags, we first establish a similarity
threshold to filter out pairs of tags that are not highly similar. Given the highly similar
pairs of tags, the algorithm takes into account the mutual similarity amongst tags to
identify the groups. It considers each pair of similar tags, for example, audio and
mp3, as seeds constituting an initial cluster, and then tries to enlarge this cluster by
looking for tags that are similar to both the initial tags. This procedure is recursively
repeated for all the tags, i.e., each new “candidate” tag for a cluster must be similar to
the whole (possibly enlarged) set of tags in that cluster. Once there are no more
candidates for that cluster, a new pair of similar tags (e.g., audio and music) is
taken as seed and this is repeated until all pairs of tags have been processed5.

This procedure generates a set of clusters, including a number of identical clusters,
resulting from distinct seeds that are in fact similar amongst each other. It also generates
highly similar clusters, differing in only a few tags, which are in many cases a consequence
of the threshold to filter out not so similar pairs of tags. We use two smoothing heuristics to
avoid having a high number of these very similar clusters. For every two clusters:

1) If one cluster contains the other, that is, if the larger cluster contains all the
tags of the smaller, remove the smaller cluster;

2) If clusters differ within a small margin, that is, the number of different tags in
the smaller cluster represents less than a percentage of the number of tags in
the smaller and larger clusters, add the distinct words from the smaller to the
larger cluster and remove the smaller.

These heuristics make it possible to group two tags that are not sufficiently similar according
to the established threshold, but are both similar to a large set of other tags. Therefore, we are
able to eliminate redundancies but keep multiple clusters sharing a number of tags when
those tags have multiple meanings, indicating that they are ambiguous tags. Good quality
resulting clusters can already be used for several of the tasks described in Section 1,
including tag extension/disambiguation, visualization and suggestion.

One important feature of our clustering technique is that it does not require establishing
the number of clusters to be produced. The only parameters are the threshold to define the
minimum co-occurrence for pairs of tags and the percentage of variation allowed for “similar
clusters”. Alternatively, we could have used traditional clustering algorithms. However, as
we discuss in Section 5, this approach showed to be more appropriate for our problem.

5 Our clustering strategy can be compared to the Clustering by Committee approach (Pantel,

2003), in the sense that multiple elements are chosen to be the cluster’s centroids, as opposite
to traditional partitional approaches in which only one centroid per cluster. However, our
strategy is more strict, since all the elements within a cluster must be similar amongst each
other, instead of being similar just to the centroids.

 Integrating Folksonomies with the Semantic Web 633

3.2.3 Concept and Relation Identification
Since our clusters are derived from co-occurrence information only, there is no indication of
the relationships holding amongst subsets of the tags in each of them. Our goal is to use
knowledge provided by different sources, including ontologies available on the semantic
web, Wikipedia and Google, to discover if there are in fact relationships between tags in each
cluster and, if they exist, categorize them. This process involves mapping the tags into
concepts / instances / properties of ontologies and checking the possible relationships among
the mapped tags. As a source for ontologies we use semantic web search engines such as
Swoogle (Ding et al., 2004). The procedure within each cluster is the following:

1) Post each possible pair of tags to the semantic web search engine in order to
retrieve ontologies that contain both tags. All combinations of pairs are tried, since it
is not possible to know within which pairs a relation holds (look for matches with
labels and identifiers).

2) If any of the tags is not found by the search engine, consider that they can be
acronyms, misspellings or variations of known terms, and look for them in additional
resources:

2.1) Post the tag to Wikipedia in order to get (in the title field) the whole
expression in case it is an acronym. For example, the query term NYC in
Wikipedia returns as title New York City. Select the text in the title.
2.2) If the tag is not in Wikipedia, consider it to be a misspelling or multi-word
term. Post it to Google, looking for a suggestion of correct term. For example,
in a search for sanfrancisco in Google, the system returns the following
suggestion: “Did you mean: san francisco?” Select the suggested term.

3) If the two tags (or the corresponding terms selected from Wikipedia or Google)
are not found together by the semantic web search engine, consider them not to be
related and eliminate the pair from that cluster if they are not (possibly) related to any
other tags, that is, all the combinations of pairs of tags must be searched.

4) Conversely, if ontologies are found containing the two tags:
4.1) Check whether the tags were correctly mapped into elements of the
ontologies. Tags can refer to the following elements: concepts, instances, or
properties.
4.2) Retrieve information about the tags in each of the ontologies: the type
of tag (concept, instance, property), its parents (up to 3 levels) if it is a
concept or an instance, and its domain and range or value if it is a property.

5) For each pair of tags for which the semantic web search engine retrieved
information, investigate possible relationships between them:

5.1) A tag is an ancestor of the other. For example, in the Food ontology6, apple is
a subclass of fruit.

5.2) A tag is the range or the value of one of the properties of the other tag. For
example, in the Wine ontology7, the class representing the wine Zinfandel has
a property hasColor, for which the value is red. Therefore, the relation
hasColor holds between Zinfandel and red. This extends to properties
defined in superclasses of the actual classes of the tags.

6 http://lists.w3.org/Archives/Public/www-archive/2004Oct/att-0016/food.owl
7 http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine

634 L. Specia and E. Motta

5.3) Both tags have the same direct parent. For example, apple and pear are
concepts with the same parent (fruit) in the FOOD ontology.

5.4) Both tags have the same ancestors, at the same level. For example, in WordNet
(Miller et al., 1994), assembly has as ancestors building (1st level) and
construction (2nd level), while formation has the ancestors fabrication
(1st level) and construction (2nd level).

5.5) Both tags have the same ancestors, at different levels. For example, in
WordNet, chapterhouse has as ancestors building (1st level) and
construction (2nd level), while edifice has as ancestor construction
(1st level).

By looking for pairs of tags in single ontologies, instead of individual tags, we
eliminate much of the ambiguity in those tags. For example, in the case (5.3) above,
apple is also defined in other ontologies with different meanings, for example, the
computer brand in the CLib-core-office ontology8. However, this ontology does not
contain the tag pear, and thus it is not considered an information provider for the
relation identification.

If more than one ontology contains both tags (and possibly relationships between
those tags), we currently use a simple resolution strategy: we give preference to the
ontology containing also other tags (and possibly relationships) in the cluster. If there
are still multiple ontologies, the first fulfilling this constraint is chosen. If there are
multiple relationships between a pair of tags in that ontology, we choose the first of
them according to steps (5.1-5.5).

If the aforementioned procedure does not yield any relationship for a given pair of
tags co-occurring in at least one single ontology, we assume they are not related and
remove the pair from the current cluster (unless they are related to other tags).
Obviously these strategies are rather simplistic and in the future we plan to use more
elaborate strategies, in particular for deciding whether to merge information coming
from multiple ontologies and how to do so (Sabou et al., 2006). It is important to
notice that even when relationships are not found, if the tags can be correctly mapped
to elements in ontologies, these mappings can already be used to support the various
tasks discussed in Section 1. For example, related elements (concepts, instances, and
properties) in the ontology, like subclasses of a concept representing a tag, can be
used to extend searches. However, going one step ahead and finding self-contained
structures within each cluster by merging knowledge from multiple ontologies can
provide a much richer perspective on the underlying semantics of the tagging systems.
In what follows we present initial experiments with our approach to find both
meaningful clusters and the underlying relationships amongst their tags.

4 Experiments and Discussion

For both del.icio.us and Flickr datasets, in the first step of the approach, i.e., the pre-
processing strategies, we empirically defined the parameters as follows: (1) to be “similar”,
a pair of words has to reach 0.83 or higher score (Levenshtein metric); (2) a tag has to occur
at least 10 times. The resulting number of tags, resources, and users is shown in Table 3.

8 http://www.cs.utexas.edu/users/mfkb/RKF/tree/CLib-core-office.owl

 Integrating Folksonomies with the Semantic Web 635

Table 3. Number of tags (and their corresponding users and resources) after the pre-processing
steps

Total Distinct
entries # tags # users # resources # tags

del.icio.us 18,882 70,194 7,090 13,579 1,265

Flickr 44,032 127,098 5,321 44,032 2,696

For the clustering step, after generating the co-occurrence matrix for each of the
datasets and computing the similarity between all pairs of vectors (tags) in that
matrix, we empirically established a similarity threshold of 0.5 for both datasets to
filter out the pairs of tags that were not highly similar. This means eliminating a
number of tags that are not similar enough to any other tag. Excluding symmetric
pairs, this resulted in 2,298 pairs of tags (847 distinct) in del.icio.us, and 4,983 (2140
distinct) in Flickr.

For the smoothing heuristics to avoid a high number of very similar clusters, we
established the threshold of 0.3 as accepted difference to group two “similar” clusters,
that is, the number of distinct tags cannot be greater than 30% of the number of tags
in each of the clusters. This resulted in 410 clusters for del.icio.us, and 882 for Flickr.

The high number of clusters is due to the existence of clusters with only two tags.
This can mean simply that certain pairs of tags do not co-occur with other tags a
significant number of times. However, it may also indicate that the tags in the pair
constitute a compound word, co-occurring between each other much more than with
any other tag. This happens mostly in Flickr data, where we found clusters containing
pairs of words such as {el salvador}. If we discard clusters with two tags, the number
of clusters decreases to 47 in del.icio.us and 206 in Flickr. Some examples of clusters
are shown in Table 4.

Alternatively to our clustering strategy, we experimented with a traditional
clustering algorithm, namely, k-means, using cosine as the similarity metric. K-means

Table 4. Examples of clusters found for del.icio.us and Flickr data

del.icio.us data
{author books literature}
{bicycle bike courier cycling}
{bingo blackjack casino gamble gambling keno poker roulette slots}
{bookmark bookmarking folksonomy social tagging tags}
{browse extension firefox mozilla thunderbird}
{aim chat gtalk icq instant jabber messaging messenger msn yahoo}

Flickr data
{activism anarchism banner brutality demonstration eu globalization
gothenburg police protest riots summit syndicalism worker}
{backpacking hot humid iguacu lush rainforest waterfall wilderness}
{damage flooding hurricane katrina Louisiana}
{bosnia europe herzegovina Sarajevo}
{apple ibook mac ipod macintosh powerbook}

636 L. Specia and E. Motta

requires the number of clusters to be given a priori, and therefore we defined the
following numbers: 30, 50, 100, 150 and 200. Amongst the generated clusters, some
seem to be very good, but many of them contain noise and some are meaningless. One
of the reasons for that is the need of defining the number of clusters, which can force
clusters to be divided when it is not necessary (or vice-versa). Also, it is not possible
to discard pairs of tags that do not co-occur a certain number of times and therefore
all the tags will be in the resulting clusters. A final problem is that the random
criterion to create seed clusters can yield completely different clusters at each run. In
future we will experiment with a hybrid strategy involving hierarchical clustering,
which does not require defining the number of clusters, and a means of establishing a
similarity threshold to discard tags.

By looking at the clusters obtained for both tag sets, we found that clusters from
del.icio.us express concepts that are apparently closer to formal categories than
clusters from Flickr. This may be due to the distinct purposes of the two systems. In
fact, more pre-processing steps seem to be necessary to allow identifying meaningful
categories in Flickr. For example, dates in various formats could be mapped into a
semantic category “date”, while names of unknown people could be mapped to a
category “person”.

As we discussed in Section 3, meaningful clusters can be very useful to enhance
certain tasks in folksonomies. However, systematically evaluating the quality of
clusters is a very complex task, since it relies on subjective criteria. One way of
carrying out this evaluation could be verifying whether the tags within each cluster
are correctly mapped into elements in ontologies, as we show with a few examples in
what follows while describing the next step of our experiments.

For the last step of the approach, i.e., the concept and relation identification, we
used Swoogle, since it is the most comprehensive semantic web search engine
available on the web right now. Although Swoogle can provide useful information, it
does not take into account semantic particularities of the data when creating indexes,
and this yields severe limitations for our purposes. Querying facilities are limited to
keyword search, with a few modifiers allowed, while we need more fine-grained
queries, which would allow distinguishing between concepts, instances, properties,
etc. In the presentation of the results, only part of the information is returned in a
structured way and thus in most of the cases it is necessary to download and parse the
ontologies. In the near future, we will use a semantic web search engine under
development in our group, Watson (d’Aquin et al., 2007), which aims to overcome
these limitations.

Given the difficulties to find the information we need in Swoogle, we performed a
few experiments considering the search for concepts only, with exact matching. Tags
within a cluster were queried using the Ontology Dictionary facility in Swoogle 2005
and the retrieved ontologies were manually analyzed to find both mappings to
concepts and relationships. The examples illustrated here aim to show the potential of
the approach in finding mappings and relationships: a fully automated version will be
implemented when our semantic web search engine is ready.

Starting from the previously obtained clusters (410 for del.icio.us: and 882 for
Flickr), we posted all the possible pairs of tags within each cluster to Swoogle. Out of
a total of 3152 pairs (847 distinct tags) in del.icio.us and 5031 pairs (2140 distinct
tags) in Flickr, without using Wikipedia / Google to find unknown concepts in

 Integrating Folksonomies with the Semantic Web 637

Swoogle, the following numbers of pairs were found as concepts together in at least one
single ontology: 569 pairs (358 distinct tags) in del.icio.us and 309 pairs (492 distinct tags) in
Flickr.

Many of the pairs were found in WordNet only. WordNet, which is more like a
dictionary than an ontology, and thus has a wide coverage over most of the concepts.
In general, finding two concepts in any ontology does not mean that they are related,
but this is even more critical with WordNet: concepts are more likely to be related via
very generic semantic categories, such as “entity” or “thing”. Moreover, WordNet is
very limited in terms the relationships that are covered: mostly hierarchical. If we
consider only the pairs of tags that were found in other ontologies than WordNet, the
numbers decrease to 126 (97 distinct tags) in del.icio.us and 67 (94 distinct tags) in
Flickr. This means that 97 tags in del.icio.us and 94 in Flickr could be mapped to
concepts in ontologies (except WordNet). In order to assess the quality of these
mappings, and therefore the quality of the clusters containing the corresponding tags,
we manually verified whether the concepts identified in ontologies were in
accordance with the knowledge represented by their cluster. For example, in Cluster_1
in Fig. 2, all the tags except sourcecode where found in ontologies, i.e., there was a
possible mapping for all the other tags, even if no relationship was found for many of
them. The tags for which a valid relationship was found are considered correctly
mapped. Out of the remaining 7 tags, namely collection control dom form
layout program repository, only dom could not be correctly mapped to a concept
in any ontology. We believe this extends to most of the clusters: there will not be a
valid mapping for only a few tags in clusters. This may indicate that these tags do not
belong to any of the clusters, but also may just reflect the low coverage of the current
search engine over the ontologies available on the web. However, it is important to
notice that the most frequent tags in the two datasets, which are supposedly some of
the most relevant, are amongst the pairs of tags that were found in ontologies.

Regarding the identification of relationships, it is important to remember that not
all the pairs of tags in a cluster are expected to be related. In fact, the most common
situation is that a certain tag is related to a few others, which are, in turn, related to
others, composing an incomplete directed acyclic or cyclic (possibly disconnected)
graph. Without considering the pairs found in WordNet, in Fig. 2 we show examples
of partial ontologies that were produced for some del.icio.us clusters by following the
steps 5.1-5.5 (Section 3). Terms in italic are not part of the cluster, but were kept in
the graphs to indicate indirect relationships. Arrows without explicit relationships
represent “subclass” relations.

As we can see, not all the tags in each cluster are included in the graphs. This may
be because either the tag was not found in Swoogle at all (e.g., lms in Cluster_2), the
tag was not found in a single ontology together with at least one of the other tags
(e.g., sourcecode in Cluster_1), or no relationship was found within an ontology
(e.g., layout in Cluster_1). When a tag is not found in Swoogle, additional resources
can be used. In Cluster_3 these additional resources play a very important whole.
Swoogle does not contain concepts referring to distro, fedora, gentoo,
kubuntu, mandriva, or rpm. The only relationships that could be retrieved were:
suse and debian are subclasses of linux. By using Wikipedia, we could infer the
relationships between most of the other tags and linux.

638 L. Specia and E. Motta

Cluster_1: {admin application archive collection component control
developer dom example form innovation interface layout planning
program repository resource sourcecode}

Cluster_2: {college commerce corporate course education high instructing
learn learning lms school student}

Cluster_3: {debian distribution distro fedora gentoo kubuntu linux
mandriva rpm suse}

debian gentoo distro fedora

linux

mandrivasuse

education

training1,4 qualification

corporate1 institution

university2,3 college2

postSecondary
School2

school2

student3 studiesAt

course3
offersCoursetakesCourse

activities4

learning4 teaching4

participant

innovation

event

developer

activity

creator
planning example

applica-
tion

user

admin

resource

typeRange component

interface

partici-
patesIn

in-event
archive

Information
Object

has
Mention
Of

Fig. 2. Examples of relationships for del.icio.us clusters

5 Conclusions and Future Work

We have presented some initial work in the direction of integrating folksonomies with
the semantic web, thus making explicit the semantics behind the tag space in
folksonomies. Preliminary experiments with tags from del.icio.us and Flickr have
shown that the approach is feasible and very promising: meaningful groups of tags
corresponding to concepts in ontologies could be derived by means of co-occurrence
analysis and clustering techniques, while relationships within tags in each cluster
could be discovered by querying ontologies in Swoogle.

 Integrating Folksonomies with the Semantic Web 639

In the future we plan to improve the approach in several aspects. These include:
(i) using a new clustering technique which combines hierarchical clustering with a
threshold to discard tags that are not sufficiently similar to others, and (ii)
implementing a fully automated version of the last step of the approach, that is, the
process to map tags into ontology elements to build partial structures based on the
knowledge provided by our new semantic web search engine. In order to achieve this
goal we will also need to devise better strategies for ontology selection and matching,
as well as strategies to extract information from external resources (Wikipedia /
Google). We also plan to extrinsically assess the quality of our results by integrating
them in the context of the various tasks discussed in the paper (tag disambiguation,
result visualization, ontology evolution, etc).

References

Aurnhammer, M., Hanappe, P., Steels, L.: Augmenting Navigation for Collaborative Tagging
with Emergent Semantics. 5th ISWC, Athens, GA, LNCS 4273 (2006) 58-71.

Begelman, G., Keller, P., and Smadja, F.: Automated Tag Clustering: Improving search and
exploration in the tag space. Collaborative Web Tagging Workshop, 15th WWW
Conference, Edinburgh (2006)

d’Aquin, M., Sabou, M., Dzbor, M., Baldassarre, C., Gridinoc, L., Angeletou, S. and Mottta,
E.: WATSON: A Gateway for the Semantic Web. Poster Session at 4th ESWC (2007)

Ding, L., Finin, T., Joshi, A., Pan, R., Scott Cost, R., Peng, Y., Reddivari, P., Doshi, V.C., and
Sachs, J.: Swoogle: A Search and Metadata Engine for the Semantic Web. 13th ACM
Conference on Information and Knowledge Management, Washington D.C. (2004)

Golder, S., and Huberman, B.A.: The Structure of Collaborative Tagging Systems. HP Labs
technical report. (available in http://www.hpl.hp.com/research/idl/papers/tags/) (2005)

Marlow, C., Naaman, M., Boyd, D., Davis, M.: Position Paper, Tagging, Taxonomy, Flickr, Article,
ToRead. Collaborative Web Tagging Workshop, 15th WWW Conference, Edinburgh (2006)

Mika, P.: Ontologies are us: A unified model of social networks and semantics. 4th ISWC (2005)
Miller, A., Chorodow, M., Landes, S., Leacock, C., Thomas, R.G.: Using a Semantic

Concordancer for Sense Identification. Arpa Human Language Technology Workshop
(1994) 240-243

Motta, E and Sabou, M.: Next Generation Semantic Web Applications. In Mizoguchi et al.
(eds.), The Semantic Web - ASWC 2006, LCNS 4185, Springer (2006)

Pantel, P. Clustering by Committee. Ph.D. Dissertation. University of Alberta (2003)
Sabou, M., d’Aquin, M., Motta, E.: Using the Semantic Web as Background Knowledge for

Ontology Mapping. International Workshop on Ontology Matching, Athens, GA (2006)
Schmitz, C., Hotho, A., Jäschke, R. Stumme, G.: Mining Association Rules in Folksonomie.

IFCS Conference, Ljubljana (2006) 261-270
Schmitz, P.: Inducing ontology from Flickr tags. Collaborative Web Tagging Workshop, 15th

WWW Conference, Edinburgh (2006)
Schutz, A. and Buitelaar, P.: RelExt: A Tool for Relation Extraction from Text in Ontology

Extension. 4th ISWC, Galway (2005) 593-606
Specia, L., Motta, E.: A hybrid approach for extracting semantic relations from texts. 2nd

Workshop on Ontology Learning and Population at COLING/ACL 2006, Sydney (2006) 57-64
Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. 15th WWW

Conference, Edinburgh (2006) 417-426

IdentityRank: Named Entity Disambiguation in

the Context of the NEWS Project

Norberto Fernández1, José M. Blázquez1, Luis Sánchez1, and Ansgar Bernardi2

1 Carlos III University of Madrid, Leganés, Madrid, Spain
{berto,jmb,luiss}@it.uc3m.es

2 German Research Center for Artificial Intelligence, DFKI GmbH, Kaiserslautern,
Germany

ansgar.bernardi@dfki.de

Abstract. In this paper we introduce the IdentityRank algorithm, de-
veloped as part of the EU-funded project NEWS to address the problem
of named entity disambiguation in the context of semantic annotation of
news items. The algorithm provides a ranking of the candidate instances
within an ontology which can be associated to a certain entity. In order
to do so, it uses as context the metadata available in a certain news item.
The algorithm has been evaluated with promising results.

1 Introduction

The EU-IST funded project NEWS1 (News Engine Web Services) [3], which has
recently been completed, aimed at providing solutions which help news agencies
to overcome limitations in their current workflows and increase their productive-
ness and revenues by using a Web Service based architecture and Semantic Web
technologies.

In order to apply Semantic Web technologies to the news domain, in the
NEWS project a set of components were developed. One of them is the NEWS
ontology [4], a lightweight RDFS2 ontology providing a formal model of the
domain. Another one is an annotation component, developed by Ontology Ltd.,
which uses natural language processing techniques to provide capabilities such
as categorization and named entity extraction.

Within the semantic annotation process, one of the key problems that we
found in NEWS was the disambiguation of the entities detected by the natural
language processing engine. This engine extracts named entities out of the news
items, but, in order to allow a fine-grained semantic search for the user of the
NEWS system, these entities have to be matched against instances of the NEWS
ontology. That is, the natural language processing engine can detect that a cer-
tain occurrence of the piece of text Bush represents a person, but we also need
to deduce that this person is represented in the NEWS ontology by a certain
URI like http://www.news-project.com/2005/1.
1 Contract number: FP6-001906. Web site: http://www.news-project.com
2 http://www.w3.org/TR/rdf-schema/

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 640–654, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

IdentityRank: Named Entity Disambiguation 641

In this paper we describe the IdentityRank algorithm (a.k.a. IdRank) that
we designed in order to address the entity disambiguation problem in the news
domain. Our algorithm, inspired by PageRank [10], exploits the metadata
currently provided by news agencies (like news item timestamp) and the in-
formation provided by the natural language processing engine (categories and
entities) as a context for named entity disambiguation. Using all this infor-
mation, IdRank allows to match news items’ entities to ontology instances
automatically.

The rest of this paper is organized as follows: section 2 describes with more
detail the IdRank operational scenario within the NEWS workflow. Section 3
describes the algorithm. Section 4 shows the results of an experimental evaluation
of the algorithm. Section 5 takes a deeper look at related work, and finally, section
6 gives concluding remarks and finalizes the paper.

2 Scenario

In order to give a clearer idea of the operational environment of IdRank, we
describe in this section the NEWS workflow, which acts as an scenario for
the entity disambiguation problem. The NEWS workflow design has taken into
account that the journalists in the news agencies want to have control over
all the content production process in order to ensure the quality of the re-
sults. This leads to a supervised solution, where the journalist can validate
the results obtained in the different processing stages of a news items. These
are:

1. The journalist creates a news item using the NEWS GUI. The news item is
represented in XML and some metadata like author and timestamp are added
to it.

2. The news item is processed by the natural language processing component.
It annotates the news item with some entities and categories. The vocabu-
lary used for categorization is taken from the NEWS ontology. Basically this
vocabulary is an RDFS representation of the International Press Telecommu-
nication (IPTC) standard Subject Codes NewsCodes3. These Subject Codes
constitute a three level taxonomy that, at the moment, contains about 1300
different categories. In such taxonomy, each category is identified by a fixed
eight decimal-digit string. The first two digits represent the first level of the
taxonomy, which consists of 17 different categories. For instance, the Subject
Code 01000000 represents the category arts, culture and entertainment, the
Subject Code 01011000 represents the subcategory music and the Subject
Code 01011006 represents the subsubcategory of news items talking about
rock music.

With respect to entities, these are also added to the news item. For each
entity the natural language processing engine provides the tagged text and

3 http://www.iptc.org/NewsCodes

642 N. Fernández et al.

the entity type, which in our case is one of the three possibilities: person,
place or organization. For instance the following piece of XML:

<meta content="11000000" name="srs-category" />
<meta content="Gargano" name="entity-person" />
<meta content="Mexico" name="entity-places" />
<meta content="Liberal Party" name="entity-organization" />

would be added by the natural language processing engine to state that the
news item belongs to category 11000000 politics and mentions the entities
Gargano, a person, Mexico, a place, and Liberal Party, an organization.

3. The annotated document is sent back to the GUI and the journalist is allowed
to check the annotations. The validated document is sent to other of the
NEWS components: the Heuristic and Deductive Database (HDDB).

4. The HDDB stores the news item, indexes its textual content to allow keyword
based search, stores the news item metadata, including the categories and
entities, and then runs IdRank to disambiguate the entities to instances in
the NEWS ontology.

5. The results of IdRank, a set of assignments (entity, instance), are then shown
to the journalist. (S)he may confirm them, select a different instance for some
entity (creating a new one if needed) or might simply drop the assignment
and leave the entity without associated instance.

6. The results of the validation process are sent back to the HDDB, where are
stored and used to train IdRank. All the information generated and stored
in this process and the NEWS ontology are used by the HDDB to allow
intelligent content distribution services.

3 The Algorithm

As we have seen in the previous section, the NEWS natural language processing
engine is able to extract basic entities from text. But in order to allow fine-
grained semantic search over the news item repository stored in the HDDB it
is not enough to figure out, that the extracted text string Alonso represents a
person, we need to know who is that person by mapping the entity to an instance
in the NEWS ontology. For instance, for the entity (Alonso,person) there are the
following candidates in the NEWS ontology:

Fernando Alonso, Airbus flight testing vice-president.
http://www.news-project.com/2005/11
Fernando Alonso, Formula 1 driver.
http://www.news-project.com/2005/12
Mikel Alonso, soccer player.
http://www.news-project.com/2005/13
Xabi Alonso, soccer player.
http://www.news-project.com/2005/14
Jose Antonio Alonso Suarez, Spanish politician.
http://www.news-project.com/2005/15
Alonso Cano, Spanish painter, architect and sculptor.
http://www.news-project.com/2005/16
Alonso de Ercilla y Zuniga, Spanish poet.
http://www.news-project.com/2005/17

IdentityRank: Named Entity Disambiguation 643

So a problem of ambiguity arises: which is the best candidate instance to be
assigned to a certain entity? Finding that instance is the main task of the IdRank
algorithm, which is based on two principles:

Semantic coherence: Instances typically occur in news items of certain cat-
egories, e.g., the politician Jose Antonio Alonso in news items of politics
category. Also the occurrence of a certain instance gives information about
the occurrence of other instances. For example, the soccer player Xabi Alonso
usually appears in news items in which the soccer team where he plays, Liv-
erpool, is also mentioned.

News trends: Important events typically are described with several news items
covering a certain period of time. For instance when the Formula 1 driver
Fernando Alonso won the F1 world championship, several news items de-
scribing such event where composed, most of them including instances as
Fernando Alonso and Renault, his F1 team.

In this section we will describe in detail the main processes involved in the
IdRank algorithm. As we have said, IdRank is partially inspired by PageRank,
so we will start by briefly describing PageRank before going into the IdRank
details.

3.1 PageRank and Relation with IdRank

The PageRank algorithm [10] exploits the information in web links to compute
the ranking of a certain web page. The basic idea is mentioned in [10]: a page
has high rank if the sum of the ranks of its backlinks is high. So in PageRank the
ranking or importance of a certain page depends on the ranking and number of
the pages which point to it (backlinks). Mathematically this is represented by
the following equation (see [10]):

R(u) = λ
∑

vεBu

R(v)

Nv

+ λE(u) (1)

Where:

– λ is a factor used for normalization.
– R(u) represents the ranking of the web resource u. The L1 norm of the vector

R, composed of all R(u), is such that ||R||1 = 1.
– Bu is the set of backlinks of u.
– Nv is the cardinality of Fv, the set of pages v points to (forward links of v).
– E is a vector that corresponds to a source of rank. As is indicated in [10],

each component E(u) can be used to adjust the rank of a certain resource u,
for instance for personalization purposes (give more weight to certain pages).

This equation can be represented in a matricial manner:

R = λAR + λE (2)

Where A is a matrix, Auv = 1/Nv if vεBu or 0 otherwise, ||A||1 = 1.

644 N. Fernández et al.

The relation between PageRank and IdRank comes from the application of one
of the basic principles that inspire IdRank. The Semantic Coherence principle
states that the appearance of an instance gives certain information about the
occurrence of other instances. Paraphrasing the sentence in [10] we can say that:
an instance has high rank if the sum of the ranks in the news item of the instances
that typically cooccur with it is high. As PageRank does with web pages, the
objective of IdRank is to obtain a ranking: the ranking of the possible identities
(candidate instances) of a certain entity.

The next subsection will describe with more detail how IdRank works in
practice.

3.2 IdRank

Three are the main steps needed to run IdRank on a certain news item: finding
the candidates instances in the ontology for each entity in the news item, ranking
that candidate instances using a modified version of PageRank and retraining
the algorithm with the journalist feedback once the process is finished. The next
subsections will describe each of these steps in more detail.

Find candidate instances. This process takes as input the entities detected
by the natural language processing engine in a certain news item and produces
as output a set of candidate instances for each of the input entities. For instance,
given the entity (Alonso,person) the following steps are executed:

1. Given the entity type, the HDDB code is configured to decide which is the
upper class in the NEWS ontology taxonomy which maps to the entity type.
In our example the mapping is as follows: the entity type person maps to
the ontology class Human. The other possible mappings are: the entity type
place maps to the ontology class Location and the entity type organization
maps to the ontology class of the same name.

2. The HDDB computes the transitive closure of the subclassOf property to
find all the subclasses of the class of interest. For instance, in our example,
the deductive part of the HDDB computes the transitive closure of the class
Human finding the two subclasses of this class: Man and Woman.

3. An SQL query is automatically generated to query the database where the
NEWS ontology A-box is stored. With this query we find the candidate
instances that match the entity text and belong to the classes Human, Man
or Woman. For instance, in the example introduced above, the SQL looks
like:

SELECT DISTINCT(uri) from Instances
WHERE (

label LIKE ’% Alonso’ OR label LIKE ’Alonso %’ OR
label LIKE ’% Alonso %’ OR label = ’Alonso’

)
AND (

type IN (
’http://www.news-project.com/Ontology/Content#Human’,
’http://www.news-project.com/Ontology/Content#Man’,
’http://www.news-project.com/Ontology/Content#Woman’

)
);

IdentityRank: Named Entity Disambiguation 645

The same process is repeated with all the entities detected in the news item
by the natural language processing engine.

Rank the candidates using a modified version of PageRank. Once the
candidate instances of all the entities are obtained, a semantic network with
all these instances is defined. In such semantic network the nodes represent the
different candidate instances for the entities in the news item. If an instance is
candidate for more than one entity, it only appears once. The arcs between two
nodes appear when the two instances have cooccurred in the past in at least
one news item, that is, if at least one news item exists in the HDDB that is
annotated with occurrences of both instances.

Then we apply a modified version of PageRank to the semantic network. In our
algorithm, instead of dividing the importance of an instance among its forward
links evenly, as PageRank does with the quotient R(v)/Nv in equation (1), we
will give weights to the links. That is, in IdRank, the occurrence of an instance
can give more weight to certain instances than to others. These weights depend
on the cooccurrence frequency of the involved instances.

Mathematically we have the following set of equations:

R(Ii) = λ
∑

jεCi

αijR(Ij) (3)

Where:

– λ is a factor used for normalization.
– R(Ii) represents the ranking of the candidate instance Ii in the context of

the news item.
– Ci is the set of candidate instances in the semantic network that cooccur

with Ii in at least one news item apart from the one being analyzed.
– αij represent the weight of the link from Ij to Ii, that is, the proportional

part of the Ij importance or ranking which is given to Ii. Mathematically,
this can be expressed as:

αij =
fij

∑

kεCj

fkj

(4)

Where fij is the coocurrence frequency of Ii and Ij , that is, the number of
news items where both Ii and Ij occur divided by the number of news items
where Ij occurs. With this definition: αijε[0, 1] and:

∑

∀iεCj

αij = 1 (5)

Note that, as has been previously indicated, the weights αij and αji are, in
general, not equal due to equation (4).

646 N. Fernández et al.

At this point, we have described how the coocurrence of instances is used
by the algorithm, but still two contributions remain unclear: the Semantic Co-
herence principle is also dependent on the news item categories, and the News
Trends principle, which uses the timestamp, has also not been exploited.

In order to exploit also that information, we will use the E component in-
cluded in the original PageRank formula (equation (2)) where it was used to
personalize the ranking. In our case, we are going to use it with a similar mean-
ing, personalizing the ranking computation for the context of the concrete news
item. Mathematically we will have now:

R(Ii) = λ
∑

jεCi

αijR(Ij) + λE(Ii) (6)

In practice, the vector E, composed of all the E(Ii), is computed as a nor-
malized sum of contributions:

E =
∑

∀c

Ecnorm =
∑

∀c

Ec

||Ec||1
(7)

At the moment, the set of contributions which are being considered in the
context of NEWS are:

Etim: instance occurrence in last D days. The value of each element Etim(Ii)
of Etim is computed taking into account the frequency of occurrence of the
candidate instance Ii in the news items of the last D days, taking as time origin
the timestamp of the news item being analyzed. D is a constant empirically
determined (we worked with D=7).

Ecat: instance occurrence in news items of certain category. Takes into
account the occurrence of the instance in news items belonging to a certain
top level category (01000000-17000000). A news item belongs to a certain
category if the annotation engine assigns it that category or one of its sub-
categories. As a news item can belong to several different top level categories,
in practice Ecat is composed of the sum of several components.

For each top level category, tlc, in the news item, the value of each
element of the vector Etlc

cat(Ii) is computed taking into account the frequency
of occurrence of the candidate instance Ii in news items belonging to tlc. The
final vector Ecat is just a linear combination of the different vectors Etlc

cat.
Less frequent categories have a higher weight in that linear combination,
because they provide more information about the news item.

Taking into account these contributions and equation (7), we can represent
the equation (6) in a matricial manner, as in 3.1:

R = λAR + λE = λAR + λEcatnorm + λEtimnorm (8)

Where, in the same way as in [10], A is a matrix, A ∈ Mnxn, Aij = αij and
R, Ecatnorm, Etimnorm are vectors, R, Ecatnorm, Etimnorm ∈ Rn and n is the
total number of different candidate instances in the news item.

IdentityRank: Named Entity Disambiguation 647

Due to equation (5) ||A||1 = 1 and due to equation (7) ||Ecatnorm||1 = 1 and
||Etimnorm||1 = 1. The consequence of this fact is that if we use directly the
equation (8), we give the same weight in the computation of the R vector to
the components depending on instance coocurrence, A, depending on instance-
category coocurrence, Ecatnorm and depending on the temporal information,
Etimnorm. In order to control the effect in the final ranking of each contribution,
we have assigned weights to each component, resulting the equation:

R = λ(kaAR + kcatEcatnorm + ktimEtimnorm) (9)

Where ka + kcat + ktim = 1. As is indicated in [10], since ||R||1 = 1 the equation
(9) can be rewritten as:

R = λ(kaA + (kcatEcatnorm ∗ 1) + (ktimEtimnorm ∗ 1))R (10)

Where 1 represents a row vector of all ones, 1 ∈ Rn, and * represents the matrix
product.

Analyzing equation (10) we conclude that, as happens in the original PageR-
ank algorithm, we can compute the vector R simply by determining the main
eigenvector of a matrix. In our case the matrix is: kaA + (kcatEcatnorm ∗ 1) +
(ktimEtimnorm∗1) ∈ Mnxn. In our implementation, that eigenvector is computed
using a numerical method: the power method.

Once R is computed, we know the ranking of each candidate instance in the
context of the news item being analyzed: the weight of the instance Ii is simply
the component i of the vector R. For each entity in the news item, the algorithm
returns a vector with all the pairs (candidate instance, weight) for such entity.
This vector is sorted using the weight, so the candidate with the biggest weight
is the one shown to the journalist as best candidate instance for the entity. If
more than one candidate has the biggest weight, the algorithm randomly selects
one of them as the first one.

Retraining the system. The results of the ranking process are shown to the
journalist at the GUI. The journalist can check the suggestions of the system
and correct the wrong ones. The resulting annotations are stored into the HDDB
and used to retrain IdRank. Basically the retraining process consist in storing or
updating into the relational database used by the algorithm information needed
for the algorithm process. Concretely, for each instance in the news item we
update the following information: the occurrence of the instance in a certain
timestamp (used in computing Etim), the counter of number of coocurrences
between the instance and all the other instances detected in the new news item
(used in computing A) and the counter of the number of occurrences of the
instance in each of the top level categories of the news item (used in Ecat).

For each new news item, we store or update also the following information:
the counter of the total number of news items, the counter of the number of
news items belonging to a certain top level category (used in computing Ecat)
and the association between news item and its timestamp (used in Etim).

648 N. Fernández et al.

As IdRank reads on the fly from the database the information needed to
perform its computations, the next time the algorithm is run, the new training
information is taken into account.

4 Evaluation

The first step in the empirical evaluation of the algorithm was to define a theo-
retical threshold that we can take as reference to compare our algorithm. In our
case, that theoretical threshold is provided by the average accuracy of a naive
disambiguation algorithm that simply assigns randomly one of the possible can-
didate instances to each entity. We assume that all the candidates of a certain
entity have the same probability of being chosen as the right one. We also as-
sume that the decisions of that hypothetical algorithm are independent, that is,
that it chooses the candidate instance for a certain entity independently of all
the other elections in the corpus. Finally, we also assume that, for each entity in
the corpus, there exists in the ontology at least one candidate: the right candi-
date instance to be mapped. Though this last assumption seems unrealistic, in
practice in the NEWS scenario, as journalists are allowed to insert new instances
into the knowledge base, entities without the right instance can get one as soon
as they are detected.

With these assumptions, we get the following expression for the accuracy:

Av[Acc] =
Av[right]

total
=

∑

∀e

Occ(e)P (Right/e)

Nent

(11)

That is, the average accuracy is defined as the average number of right assign-
ments entity/instance of our naive algorithm divided by the total number of pos-
sible assignments. The total number of assignments coincides with the number of
entities in the corpus (Nent) due to the assumption that each entity has at least one
candidate. The total average number of right decisions is the addition of the aver-
age number of right decisions for each entity e in the corpus. Due to the assump-
tion of independent election, the average number of right decisions for a certain
entity e can be computed as the number of occurrences of the entity e in the cor-
pus Occ(e) multiplied by the probability of making a right decision on that entity
P (Right/e). Due to the assumption of random uniform election between the can-
didates for a certain entity, P (Right/e) = 1/Ncande, where Ncande represents
the number of candidates for the entity e in the ontology. As Nent is constant for
the summatory in the fraction, we can reformulate the equation (11) as:

Av[Acc] =
∑

∀e

Occ(e)

Nent

1

Ncande

(12)

As can be seen, and not surprisingly, the final accuracy depends on the con-
crete corpus used for evaluation (Occ(e)/Nent component) and the ontology used
as source of candidates instances in the evaluation (1/Ncande component). This

IdentityRank: Named Entity Disambiguation 649

value of the average accuracy of the naive random election algorithm can also be
interpreted as a measure of the degree of ambiguity of the pair corpus/ontology
used in the evaluation: the bigger Av[Acc] the lower the ambiguity.

Once the theoretical baseline that we use as reference for our algorithm is
defined, we will describe in next subsections the concrete results of the empirical
evaluation of the algorithm. We start by describing the corpus and ontology
used in the evaluation process, after that, we describe the results of the accuracy
evaluation and finally we include some measurements of the computation time
of the algorithm.

4.1 Corpus and Ontology

As we have seen previously, the corpus and the ontology selected to perform the
evaluation have direct influence on the results of the evaluation. Due to this,
we have carried out our evaluation using two different corpora and two different
ontologies, instead of only one.

Corpora. As we are evaluating an algorithm for ambiguity resolution, we are
interested in having ambiguity in our corpora. In order to achieve this, the
process of building our corpora started by selecting a possible ambiguous entity
and querying the NEWS repository, which contains real news items of Spanish
news agency EFE and Italian news agency ANSA, for news items where such
entity appears. More in detail two entities were selected for the process, Georgia,
location and Alonso, person. The query gave us 32 news items for the entity
Georgia, location and 65 for the entity Alonso, person. All the entities appearing
in the news items, where manually disambiguated using the NEWS ontology.
The annotations were reviewed by two different persons to ensure as much as
possible the quality of the evaluation corpora.

The results were 343 total entities in the Georgia corpus, 169 of them distinct
(different pair entity text, entity type), and 742 entities in the corpus of Alonso,
229 of them distinct. The entity Georgia, location appeared with two different
meanings in the Georgia corpus (Georgia as U.S. state -12 times- and Georgia as
country -20 times-) and the entity Alonso, person appeared with three different
meanings in the corpus of Alonso: Fernando Alonso, a Formula 1 driver (41
times), Jose Antonio Alonso a Spanish minister (23 times), and Xabi Alonso, a
soccer player (only once).

The timestamps of the Alonso news items range from the 13/Oct/2005 to
the 12/May/2006 and the ones of the Georgia corpus range from 17/Oct/2005
to 12/May/2006. Their distribution is shown in table 1. The distribution of
the number of news items belonging to the top level categories (01000000 to
17000000) in both the Georgia and Alonso corpora is shown in table 2. Note that
the total number of categories in each corpus is bigger than the total number of
news items in such corpus, because a single news item can be categorized into
different categories.

Ontologies. We have also used two different ontologies for our process. One
of the ontologies was the NEWS ontology, the other one was built using the

650 N. Fernández et al.

information on the annotated corpus. In order to build this second ontology,
we considered as the only possible candidates for each different entity the ones
that appear in the manually annotated corpus. For instance, as we have seen the
entity Alonso,person has 7 different candidates in the NEWS ontology, but in the
corpus it appears only with 3 different meanings, so the number of candidates
for this entity is 7 in the NEWS ontology and 3 in the ontology built considering
only the candidates that appear in the corpus.

Table 1. Number of news items in each month from Oct 2005 to May 2006

Oct Nov Dec Jan Feb Mar Apr May

Alonso 28 0 0 0 2 10 1 24

Georgia 27 0 0 0 0 2 0 3

Table 2. Number of news items in each of the top level categories

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

Alonso 1 9 0 1 0 0 0 2 0 0 23 0 0 1 40 4 0

Georgia 2 7 0 3 0 0 2 3 0 0 16 0 0 0 3 4 1

4.2 Accuracy Evaluation

In our accuracy evaluation process, we were interested in measuring the effect of
using different ontologies and corpora. Another aspect of interest was to measure
the impact on the final results of the three components involved in the IdRank
computation, instance coocurrences, categories and timestamp. Due to this, for
each of the four possible combinations (ontology,corpus) we ran four experiments
changing the values of the ka, kcat and ktim parameters. So the total number
of experiments performed was 16. As IdRank has a random component, each
of these experiments was run 10 times and the average accuracy of IdRank was
measured. We centered our attention on two aspects of the accuracy. One was the
global accuracy, measured as total number of right assignments entity/instance
divided by the total number of assignments. The other one was the relative
accuracy for the entity used to construct the corpus, defined as the number
of right assignments on the decisions of that entity divided by the number of
decisions about the entity.

The results of this evaluation are shown in table 3. The first column, labeled as
Corp, Ont, Res indicates the corpus (A, Alonso or G, Georgia) the ontology (N,
NEWS ontology or C, Corpus dependent ontology) and the results (Tot, total
accuracy or A/G, Alonso/Georgia, relative accuracy). So, for instance, the value
A,C,A indicates that these results where obtained with the corpus of Alonso,
using the ontology built taking as input such corpus and that only the relative
accuracy for the entity Alonso, person is shown. The second column shows the
theoretical results. These are computed with the equation 12 for the total accu-
racy case. For the relative accuracy case, the theoretical average accuracy is just

IdentityRank: Named Entity Disambiguation 651

the total number of occurrences of the entity, multiplied by the probability of
choosing the right candidate for the entity and divided by the total number of
occurrences of the entity, that is, just the probability of choosing the right can-
didate for the entity. As we have seen this depends on the concrete ontology, so
for instance, the second column in the row A,N,A is 1/7*100 = 14.3%, because
in the NEWS ontology, the one used in such experiments, the entity Alonso,
person has 7 candidates. The rest of the columns of the table show the results of
concrete experiences with the pair (ontology,corpus). The column A shows the
results obtained when ka = 1, the column Etim the results when ktim = 1, the
column Ecat the results when kcat = 1 and finally the column, All contains the
results obtained when the three components of the algorithm were considered. In
concrete we used: ka = 0.8, ktim = 0.05 and kcat = 0.15. For each of the entries
in the table, estimated by averaging the results of 10 executions of IdRank, the
mean and the standard deviation are shown.

Table 3. Average accuracy results (percentages)

Corp, Ont, Res Theo. (%) A (%) Etim (%) Ecat (%) All (%)

A,N,Tot 82.89 96.44 (0.62) 95.21 (0.52) 96.27 (0.58) 96.48 (0.52)

A,N,A 14.3 93.69 (1.35) 74.62 (1.81) 93.23 (0.79) 95.54 (0.49)

A,C,Tot 92.07 97.91 (0.25) 96.35 (0.33) 97.78 (0.25) 98.07 (0.23)

A,C,A 33.3 95.38 (0.73) 74.46 (2.63) 93.23 (1.30) 95.73 (0.68)

G,N,Tot 88.56 97.32 (0.55) 93.67 (0.65) 93.09 (0.55) 96.24 (0.57)

G,N,G 33.3 93.13 (1.98) 57.81 (8.10) 54.69 (3.68) 85.00 (1.32)

G,C,Tot 95.04 98.89 (0.18) 95.92 (0.55) 95.66 (0.47) 98.22 (0.26)

G,C,G 50 94.06 (1.77) 61.25 (6.28) 57.50 (4.70) 85.62 (1.61)

Analyzing the results in table 3, we see that the A component, related with
instances coocurrence, is more accurate in giving us the right candidate instance
than the Etim, Ecat components. The category-related component, works fine in
the case of the entity Alonso, person, because most of the news items in category
15000000 (sports) talk about Fernando Alonso, the Formula 1 driver, whereas
the news item in category 11000000 (politics) are mostly related with Jose Anto-
nio Alonso, a Spanish minister. Nevertheless, the behavior of the category-based
component, is worse in the case of the entity Georgia, location. This is due to the
fact that locations usually are not directly related with a certain subject, so we
can have news talking about very different events, and thus having completely
different categories, mentioning the same location. In fact, due to the bad per-
formance of the category-based component in the Georgia case, the results of
the All test are worse than the ones obtained by using only the instance coocur-
rences information. With respect to the temporal component, its poor results
can be explained by the fact that in our concrete corpora the occurrences of
the different candidates are interleaved, and the temporal window is relatively
long (D=7) to give good results. But, as the number of news items in the corpora

652 N. Fernández et al.

is low and they are relatively disperse, we had to use long windows to get sig-
nificative results for this component. So, more experiences with bigger corpora
and with different values of the temporal window D must be accomplished to
extract definitive conclusions.

4.3 Computation Time

As we have said in the initial sections, IdRank is designed to operate on the
real production environment of a news agency. In such environment the time
expended on creating and sending to the customers a new news item should be
minimized, because the news agencies are interested in providing the relevant
news items to the clients as soon as possible. In order to evaluate whether IdRank
is adequate to operate on such an environment, we have conducted an evaluation
of the time expended by the algorithm.

This evaluation consisted in running the algorithm 10 times with the Alonso
corpus and the NEWS ontology, the case with bigger ambiguity, and compute
the average time expended by the algorithm in each of its subprocess: candidate
finding, ranking and retraining. The parameters of the evaluation were: ka =
0.80, ktim = 0.05. kcat = 0.15. The tolerance and maximum number of iterations
of the iterative method used to compute the matrix eigenvector where 0.0001
and 100 respectively. We conducted this experiment on a machine with Linux
Debian 3.1 operative system, kernel 2.6.11, one Gigabyte of RAM memory and
a Pentium(R) Mobile 1.60GHz processor.

Table 4. Average Computation Time

Nent Ncat Av[Find] (msec) Av[Rank] (msec) Av[Retrain] (msec) Av[Total] (msec)

25 1 123.5 2705.7 3348.2 6177.4

26 1 270.4 1594.4 2015.6 3880.4

23 1 114.2 2246.3 2663.5 5024.0

23 1 197.1 2719.7 2347.6 5264.4

30 1 392.9 570.4 4868.4 5831.7

Table 4 shows the results for the five news items with worst total average
execution times. For each news item, the number of distinct entities Nent, the
number of categories Ncat and the average time of finding, ranking and retrain-
ing, are shown. The last column shows the average total time needed by IdRank
to process the news item.

As can be seen, the total time is in the order of seconds, which seems affordable
for the proposed application scenario. Another conclusion is that the retraining
time has a significative influence on the final results. On the positive side, we
have to say that the retraining process does not have much effect on the time
perceived by the journalist and the news agency client, because the retraining
process is done when the edition process of the news item is finished.

IdentityRank: Named Entity Disambiguation 653

5 Related Work

Named entity disambiguation or proper name disambiguation is a type of word
sense disambiguation [8], in which the words to be disambiguated are named
entities. There are lots of approaches in the state of the art dealing with word
sense disambiguation and also with named entity disambiguation. These different
approaches can be characterized according to a number of criteria:

– The context used to disambiguate the entity. Some approaches use the com-
plete document where the entity is placed to disambiguate [2]. Others use as
context a number of words before and after the entity. Those can be further
classified on those that take a “bag of words” context (the position of the
words taken as context is not considered) like [11] and those that try to use
the role of each word in the context and their relation with the entity [9].

Although some approaches use both common words and named entities
as context [11], others suggest that better results can be obtained using as
context only other named entities [9].

– The use of knowledge sources like lexical databases, etc., that define the
instances that should be matched against the entities and can provide infor-
mation that can be exploited to perform the matchings. There are of course
several approaches that make use of such knowledge sources [1,7]. However,
a remarkable number of approaches try to cluster the named entities without
any reference to an available list of possible instances [11,9].

– The disambiguation algorithms employed can make use of a number of tech-
niques or a combination of them: statistical procedures [6,11,9], morphosyn-
tactic analysis [9,2], or exploiting ontologies that provide rich linguistic and
semantic information about instances of interest [7].

– The domain: several approaches are oriented to a particular domain like
biology [5] or bibliographic citations [1,6].

The usage of a semantic network ranking algorithm, which also takes into
account the temporal component and the categorization system characteristic of
the news domain, are the main differences of our approach compared with the
ones in the state of the art.

6 Conclusions and Future Lines

In this paper we introduce the IdRank algorithm to address the problem of entity
disambiguation in the context of semantic annotation of news items. The algo-
rithm provides a ranking of the candidate instances within an ontology which
can be associated to a certain entity. In order to do so the algorithm uses as
context the metadata available in a certain news item. It is based on the prin-
ciples of Semantic Coherence (instances typically occur in similar contexts) and
News Trends (it is common to have temporal burst of news items talking about
a certain event).

654 N. Fernández et al.

We have performed an empirical evaluation of the algorithm that shows its ad-
equacy for the news domain, both for the quality of results and the computation
time.

A possible future line of development that we want to explore is the possibility
of using dynamic coefficients ka, kcat and ktim, instead of the constant ones. In
the training process we would decide the right coefficients for the next execution,
depending on the quality of results obtained in the past ones. Evaluating the
algorithm in bigger corpora and adapting it to other domains are also future
lines of development.

References

1. N. Aswani, K. Bontcheva, H. Cunnigham. Mining Information for Instance Unifi-
cation. In 5th International Semantic Web Conference. Ed. Springer, LNCS 4273,
pp. 329-342. Athens, USA. November 2006.

2. A. Bagga, B. Baldwin. Entity-Based Cross-Document Coreferencing Using the Vec-
tor Space Model. In 17th International Conference on Computational Linguistics.
Quebec, Canada. August 1998.

3. N. Fernández, J. M. Blázquez and J. Arias, L. Sánchez, M. Sintek, A. Bernardi, M.
Fuentes, A. Marrara, Z. Ben-Asher. NEWS: Bringing Semantic Web Technologies
into News Agencies. In 5th International Semantic Web Conference. Ed. Springer,
LNCS 4273, pp. 778-791. Athens, USA. November 2006.

4. N. Fernández, L. Sánchez, J. M. Blázquez, J. Villamor. The NEWS Ontology for
Professional Journalism Applications. A Handbook of Principles, Concepts and Ap-
plications in Information Systems. Ed. Springer, Integrated Series in Information
Systems, Vol. 14. To appear in December 2006.

5. F. Ginter, J. Boberg, J.Ärvinen, T. Salakoski, New Techniques for Disambiguation
in Natural Language and their Applications to Biological Text. Journal of Machine
Learning Research, 5: 605-621, 2004.

6. H. Han, L. Giles, H. Zha, C. Li, K. Tsioutsiouliklis. Two Supervised Learning
Approaches for Name Disambiguation in Author Citations. In Joint ACM/IEEE
Conference on Digital Libraries. Tucson, USA. June 2004.

7. J. Hassell, B. Aleman-Meza, I. Budak Arpinar. Ontology-Driven Automatic Entity
Disambiguation in Unstructured Text. In 5th International Semantic Web Confer-
ence. Ed. Springer, LNCS 4273, pp. 44-57. Athens, USA. November 2006.

8. N. Ide, J. Véronis. Word Sense Disambiguation: The State of the Art. Computa-
tional Linguistics, 24(1), 1998.

9. G. S. Mann, D. Yarowski. Unsupervised Personal Name Disambiguation. In 7th
Conference on Natural Language Learning. Edmonton, Canada. June 2003.

10. L. Page, S. Brin., R. Motwani, T. Winograd. The PageRank Citation Rank-
ing: Bringing Order to the Web. Stanford Technical Report available online at:
http://dbpubs.stanford.edu/pub/1999-66, 1999

11. T. Pedersen, A. Purandare, A. Kulkarni. Name Discrimination by Clustering Sim-
ilar Contexts. In 6th International Conference on Computational Linguistics and
Intelligent Text Processing. Ed. Springer, LNCS 3406. Mexico City, Mexico. Febru-
ary 2005.

A Study in Empirical and ‘Casuistic’ Analysis
of Ontology Mapping Results

Ondřej Šváb1, Vojtěch Svátek1, and Heiner Stuckenschmidt2

1 Department of Information and Knowledge Engineering,
University of Economics, Prague, W. Churchill Sq. 4, 130 67 Praha 3, Czech Republic

{svabo,svatek}@vse.cz
2 Universität Mannheim, Institut für Informatik, A5, 6 68159 Mannheim, Germany

heiner@informatik.uni-mannheim.de

Abstract. Many ontology mapping systems nowadays exist. In order to evaluate
their strengths and weaknesses, benchmark datasets (ontology collections) have
been created, several of which have been used in the most recent edition of the
Ontology Alignment Evaluation Initiative (OAEI). While most OAEI tracks rely
on straightforward comparison of the results achieved by the mapping systems
with some kind of reference mapping created a priori, the ’conference’ track
(based on the OntoFarm collection of heterogeneous ’conference organisation’
ontologies) instead encompassed multiway manual as well as automated analysis
of mapping results themselves, with ‘correct’ and ‘incorrect’ cases determined a
posteriori. The manual analysis consisted in simple labelling of discovered map-
pings plus discussion of selected cases (‘casuistics’) within a face-to-face consen-
sus building workshop. The automated analysis relied on two different tools: the
DRAGO system for testing the consistency of aligned ontologies and the LISp-
Miner system for discovering frequent associations in mapping meta-data includ-
ing the phenomenon of graph-based mapping patterns. The results potentially
provide specific feedback to the developers and users of mining tools, and gener-
ally indicate that automated mapping can rarely be successful without considering
the larger context and possibly deeper semantics of the entities involved.

1 Introduction

Ontologies can help integrate semantic views on real-world data. Unfortunately, design-
ers of ontologies themselves apply different views of the same domain during ontology
development. This yields semantic heterogeneity at ontology level, which is one of
main obstacles to semantic interoperability. Ontology mapping (also called ‘matching’
or ‘alignment’) is the core component of approaches attempting to solve this problem. It
consists in finding mappings (also called ‘correspondences’) among entities (classes, re-
lations) from different ontologies. The set of mappings is called alignment. The process
of mapping is followed by ontology merging, ontology transformation, data transfor-
mation etc. A survey of ontology mapping methods is e.g. in [11].

It is important to have means to evaluate the quality of mapping, and, consequently,
the fitness of different methods and tools with respect to different domains and settings.
Nowadays, the central approach to ontology mapping evaluation is based on the notion
of reference alignment (‘gold standard’), defined a priori, to which the results obtained

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 655–669, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

656 O. Šváb, V. Svátek, and H. Stuckenschmidt

by the matching systems are compared. This typically yields measures borrowed from
the discipline of Information Retrieval, such as precision (the proportion of mappings
returned by the matching system that are also present in the reference mapping) and re-
call (the proportion of mappings present in the reference mapping that are also returned
by the matching system). The correspondences in both the reference and experimental
alignments are most often expressed as simple concept-concept (or relation-relation)
pairs, interpreted as logical equivalence. Sometimes, alignments interpreted as logi-
cal subsumption (analogously to the same notion as omnipresent in ontology design),
and/or with a non-Boolean value of confidence are also considered. However, we might
even be interested in more complex alignment structures (patterns), which could reveal
interesting details about the relationship of the two ontologies—for example, the situa-
tion when an entity from one ontology can potentially be mapped on both a parent and
a child from the other ontology.

In case there is no reference alignment (and providing it manually would be un-
acceptably tedious) or we are interested in more complex phenomena—say, mapping
patterns—arising in ontology alignment, novel methods for mapping evaluation have
to be devised. Let us outline four of them that are focal in this paper; while the first and
the third are manual, the second and the fourth rely on automated procedures.

– Instead of formulating a reference alignment a priori, the mappings discovered by
the system (which are often just a small fraction of the carthesian product of the
sets of entities from two ontologies) can be a posteriori examined and labelled
(as in/correct or possibly using a richer set of labels) by human evaluator/s. Such
evaluation naturally lacks the rigour of ‘blindfold’ evaluation wrt. an (unbiased)
reference alignment, and does not tell much about the recall. Still, the precision
figure may be valuable1; and its subjective bias can be reduced via recourse to
multiple (ideally, expert) evaluators.

– Automated reasoning over aligned ontologies. A complement to manual labelling
of the mappings is the exploitation of an inference procedure that is usually con-
sidered as first step in exploiting ontologies: concept satisfiability testing. Clearly,
mappings that incur inconsistency to ontologies (that have been consistent as long
as standalone) are potentially inadequate.

– A side-product of both manual labelling and automated consistency checking can
be a list of ‘interesting’ (ambiguous, dubious, surprising etc.) mappings. In order
to get an overview of typical reasons (or ‘arguments’) for success/failure of auto-
mated mapping, some individual ‘interesting’ cases (not only the entities mapped
but also their context within the ontologies and possibly some metadata about the
mapping process) can be submitted to a discussion board. The outcome of discus-
sion is definitely of different nature than that of quantitative evaluation, but can lead
to complementary feedback to the developers of mapping tools. This discussion
can also help identify candidate mapping patterns to be quantitatively evaluated in
further analysis (see next item). We can view this approach as analogous to casu-
istic medical studies/literature, which is also sometimes used as complement to the
nowadays dominant empirical (evidence-based) one. In the context of this paper,
this ‘discussion’ approach is incarnated in the consensus building workshop.

1 Cf. the discussion on prior and posterior precision in ontology learning [6].

Empirical and ‘Casuistic’ Analysis of Ontology Mapping Results 657

– Large-scale mining over the mapping results with meta-data. The input to the min-
ing process can be not only the name of the mapping system, name and nature
of the ontologies mapped, the type of mapping (such as equivalence/subsumption)
and the subjective posterior evaluation, but also the information whether the given
mapping is part (and what part) of a certain mapping pattern. We believe that the
hypotheses discovered via data mining (over ontology mapping data including in-
formation about mapping patterns), in particular, mining for frequent associations,
can become useful feedback to the development and tuning of mapping tools, com-
plementary to the feedback provided by Information Retrieval measures with re-
spect to reference mapping.

The paper is structured as follows. Section 2 surveys the background of the cur-
rent research: the underlying ontology collection and the international initiative (OAEI)
within which the automated mapping experiments took place. Section 3 reports on the
evaluation via manual labelling. Section 4 deals with reasoning-based evaluation, using
the Drago distributed description logic (DDL) tool. Section 5 describes the consensus
building workshop in which selected discovered mappings were discussed by humans.
Section 6 first presents a simple typology of mapping patterns of interest; the rest of it is
devoted to the data mining effort; the mining tool used is briefly presented and then the
actual experiments in mining over ontology mappings (taking the mentioned patterns
into account) are given. Finally, section 7 surveys some related research, and section 8
wraps up the paper.

2 Project Background

2.1 OntoFarm Collection

The motivation for initiating the creation of the OntoFarm2 collection (in Spring 2005)
was the lack of ‘manageable’ material for testing ontology engineering (especially,
mapping) techniques. As underlying domain, we chose that of conference organisa-
tion—among other, for the following reasons:

– Most ontology engineers are academics who themselves submit and review papers
and organise conferences: there is zero overhead of acquiring the domain expertise.

– Organisation of a conference shares some aspects with (heavier-weighted) busi-
ness activities: access restrictions, hard vs. soft constraints, temporal dependencies
among events, evolution of the meaning of concepts in time etc. There is also a wide
range of supporting software tools covering various aspects of conference organisa-
tion. Their domain assumptions can also be captured using ontologies (specific for
each system). The process of matching the requirements of conference organisers
with the capacities of such tools is analogous with that of matching the require-
ments of a business with the capacities of an off-the-shelf enterprise information
system.

2 See http://nb.vse.cz/∼svabo/oaei2006; the development of the collection is de-
scribed in more detail in [12].

http://nb.vse.cz/~svabo/oaei2006

658 O. Šváb, V. Svátek, and H. Stuckenschmidt

– In many cases, even the underlying instance data could be obtained, since legal
restrictions are typically not as strong as e.g. in business or medicine.

The snapshot of the (constantly growing) collection used for the 2006 OAEI track,
see below, consisted of ten OWL-DL ontologies, typically of the size of 30–80 concepts
and 30–60 properties, some of them being endowed with DL axioms. The overview is in
Table 1. Six among the ontologies were derived from different conference organisation
support tools (for the review process, registration etc.), using their documentation and
experiments with installed tools (‘tool’ ontologies); two of them are based on the expe-
rience of people with personal participation in conference organization (‘insider’ on-
tologies); finally, two of them are merely based on the content of web pages of concrete
conferences (‘web’ ontologies). The ontology designers (partly students of a course on
Knowledge Modelling and partly experienced knowledge engineers) did not interact
among themselves. This should guarantee that, although the ontologies themselves are
to some degree ‘artificial’ (their development not being drived by an application need),
their heterogeneity was introduced in a ‘natural’ way, that possibly simulating the het-
erogeneity of ontologies developed by different communitites in the real world.

Table 1. Characteristics of ten OntoFarm ontologies

Number of Number of DL
Name Type Classes Properties expressivity

EKAW Insider 77 33 SHIN (D)
SOFSEM Insider 60 64 ALCHIF(D)
SIGKDD Web 49 28 ELI(D)
IASTED Web 140 41 ALCIF(D)
Confious Tool 57 57 SHIN (D)

PCS Tool 23 38 ELUIF(D)
OpenConf Tool 62 45 ALCIO(D)
ConfTool Tool 38 36 SIF(D)

CRS Tool 14 17 ALCIF(D)
CMT Tool 36 59 ALCIF(D)

2.2 OAEI 2006 Initiative

The Ontology Alignment Evaluation Initiative3 (OAEI) is a coordinated international
initiative that organizes the evaluation of the increasing number of ontology matching
systems. The main goal of OAEI is to to compare systems and algorithms on the same
basis and to allow anyone for drawing conclusions about the best matching strategies
[3]. The first OAEI evaluation campaign was presented at the workshop on Integrat-
ing Ontologies held in conjunction with the International Conference on Knowledge
Capture (K-Cap) 2005. The outcomes of the 2006 campaign were then presented at the
Ontology Matching (OM-2006) workshop at ISWC, in Athens, Georgia, USA. There
were six different test cases (ontology pairs/collections), related to different domains,
which emphasised different aspects of the matching needs; each of them constituted

3 http://oaei.ontologymatching.org

http://oaei.ontologymatching.org

Empirical and ‘Casuistic’ Analysis of Ontology Mapping Results 659

a specific track of evaluation. Four of the tracks (‘benchmark’, ‘anatomy’, ‘jobs’, ‘di-
rectory’) relied on some sort of pre-defined reference mappings to which those dis-
covered by the systems could be compared (resulting in standard relevance measures
such as precision/recall). The remaining ones (‘food’, ‘conference’) lacked such refer-
ence mappings, but the results were evaluated a posteriori. Here we concentrate on the
‘conference’ track, which was based upon the aforementioned OntoFarm collection and
culminated at the OM-2006 consensus building workshop.

3 Initial Manual Empirical Evaluation

There were six participant groups to the ‘conference’ track, with mapping systems4

named Automs, Coma++, OWL-CtxMatch, Falcon, HMatch and RiMOM. The align-
ments obtained were examined by the organizers, and each individual mapping was as-
signed a label. Results from the initial evaluation phase are on the result report page5;
these consist in global statistics about the participants’ results, which more-or-less re-
flect their quality.

The global statistics for each system amount to (among other):

– the distinction whether the mapping is true/false or is scaled between 0 and 1
– number of alignments (i.e. ontology pairs)
– number of individual mappings labeled as ‘correct’ vs. ‘incorrect’
– number of ‘interesting correct’ mappings, namely, those that were subjectively ‘not

so easy to identify’ at first sight (e.g. due to lack of string similarity)
– number of mappings that seemed to exhibit an interesting type of error (or problem-

atic feature), specifically for: subsumption mistaken for equivalence, sibling con-
cepts mistaken for equivalent ones, mutually inverse properties mapped on each
other, relation mapped onto class

– precision as ratio of the number of all correct mappings to the number of all map-
pings, and relative recall as ratio of the number of all correct mappings to the
number of correct mappings found by any of the systems

Additionally, some of the mappings that were retained as ‘worth discussing’ by both
independent evaluators were then submitted to the consensus building workshop.

4 Empirical Evaluation Via Logical Reasoning

In addition to manual evaluation, we conducted an automatic analysis on a subset of
the mappings. Mappings between class names in different ontologies were formalized
in C-OWL [1] and the DRAGO system [10] was used to determine whether the map-
pings created by a particular system cause logical inconsistencies in one of the mapped
ontologies. C-OWL was chosen as basis for the evaluation, as its semantics is tuned
towards describing mappings between ontologies of the same domain; it solves some

4 Descriptions of the systems are in the OAEI 2006 papers available from http://om2006.
ontologymatching.org/, see the section OAEI Papers.

5 http://nb.vse.cz/∼svabo/oaei2006/

http://om2006.
ontologymatching.org/
http://nb.vse.cz/~svabo/oaei2006/

660 O. Šváb, V. Svátek, and H. Stuckenschmidt

problems that occur when standard OWL is used for this purpose. A more detailed
description of the approach can be found in [7]. The analysis was performed on six on-
tologies only, as SOFSEM, IASTED, Confious and OpenConf could not be processed
by DRAGO. Further, we restricted the analysis to four matching systems, namely Fal-
con, OWL-CTXmatch, COMA++ and HMatch. The analysis can easily be extended to
other two participating systems, though.

Table 2 shows the results of the reasoning-based analysis. Note that the precision
only refers to mappings between class names and therefore naturally differs from the
numbers at the result report page. The precision has been determined by a manual in-
vestigation of the mappings by three independent people (different from those doing
almost the same task for the sake of the result report page). In cases of a disagreement
the correctness of a correspondence was decided by a majority vote. It however turned
out that there was little disagreement with respect to the correctness of correspondence.
For only about 3% of the correspondences the result had to be determined by vote.

Table 2. Results of Reasoning-Based Evaluation

Inconsistent Avg. number of Overall
System mappings6 inconsistent concepts Precision

Falcon 4 1,5 89,7 %
OWL-CTXmatch 6 9,6 85,67 %

Coma 12 2,2 67,7 %
HMatch 9 5,5 63,7 %

The results of this evaluation are useful in two ways. First of all, we can see from
the numbers that a low number of inconsistent alignments is an indicator for the quality
of mappings (we also see that the actual number of concepts that become unsatisfiable
is less relevant). The second benefit of this evaluation is the fact that the information
about inconsistent concepts and mappings that caused these inconsistencies reveal ob-
vious and also non-obvious errors in mappings. Some examples of obviously incorrect
mappings produced by matching systems in the experiments are the following:

Document = Topic

Decision = Location

Reception = Rejection

The real benefit of this evaluation is its ability to find non-obvious errors in mappings
that can only be detected taking the position of the mapped concepts in the concept
hierarchy into account. In our experiments, we found a number of such errors. Examples
include the following mappings:

Regular Paper = Regular

Reviewing event = review

Main office = Location

Empirical and ‘Casuistic’ Analysis of Ontology Mapping Results 661

In the case of the first correspondence, Regular actually denotes the regular partici-
pation fee as opposed to the early registration. The error in the second correspondence
is caused by the fact that Reviewing event represents the process of reviewing whereas
review denotes the review document as such. The last correspondence is not correct,
because the concept Main office actually represents the main office as an organizational
unit rather than a location. Such mappings are candidates for a closer inspection in
terms of a committee of experts that analyze the reason for the inconsistency and de-
cide whether the problem is in the mapping or in the ontologies.

5 ’Casuistics’ – Consensus Building Workshop

5.1 General Idea

The idea of consensus building workshop was to discuss some interesting mappings
in detail. Such interesting mappings are determined as a result of the manual and the
automatic evaluation of the matching results, as shown above. In the case of the man-
ual evaluation mappings where the evaluators where in doubt or where they disagreed
on the correctness of a mapping are candidates for a consensus workshop. In the au-
tomatic evaluation, mappings that have been shown to cause concepts in the mapped
ontologies to become inconsistent are such candidates, especially if the mappings have
been annotated as being correct in the manual evaluation. Often, a decision whether a
mapping is correct or not can be made quite easily in a committee of experts. In some
cases, however, it turns out that deciding whether a mapping is correct or not is far from
being trivial. In particular, it turns out that sometimes a detailed analysis of the mapped
ontologies is necessary to come to a decision.

As far as arguments against and for individual mappings are concerned, we expe-
rienced that lexical reasons of mapping were first considered by the workshop partici-
pants. Then followed arguments with regard to the context of elements in question. This
means consideration of certain neighborhood, subclasses and superclasses (in the case
of properties, we can consider subproperties and superproperties). This can disclose
different extensions of classes (especially through their subclasses). Also, properties re-
lated to classes were considered. As a last resort, axioms (more complex restrictions)
were taken into account if they were present.

5.2 Examples of Mappings Discussed

In the following, we focus on examples that illustrate the kinds of arguments used in
the discussion and the insights gained.

Person vs. Human. At first sight the equivalence between the concepts person and hu-
man looks rather intuitive, it is however not obvious that the two concepts have the same
intended meaning in different ontologies. First of all, the concept person can be inter-
preted in a legal context in which it also refers to organizations. Further, when we look
at the hierarchies of the different ontologies, we see that the concepts have completely
different sets of subconcepts depending on the scope of the ontology (compare figure 1.

662 O. Šváb, V. Svátek, and H. Stuckenschmidt

(a) IASTED (b) SIGKDD

Fig. 1. Subtrees rooted at the concepts Human and Person

As we can see, the notion of a person in SIGKDD also contains subclasses not sub-
sumed under human in IASTED (e.g. speakers). As it is clear, however that both ontolo-
gies cover the same domain, it was decided that in this case the two concepts actually
have the same intended meaning even though they do not share all subclasses.

PC Member vs. Member PC. The concepts PC member and member PC are another
example of mappings that seem to be trivially correct at first sight. In this case the
question is whether the ontologies assumes the same set of people to belong to the
program committee. A look at the hierarchies reveals that the two ontologies use a
different interpretation of the set of people belonging to the PC. In particular in one
case the PC chair is assumed to be a member of the committee, in the other case not
(compare figure 2). This seems to imply that the notion of PC member in EKAW is
more general than that in ConfTool. However, this is only the case if we assume that the
concepts Chair PC und PC Chair are equivalent. Another possible interpretation is that
the concepts PC member and Member PC are equivalent but Chair PC and PC Chair
are different concepts, namely one denoting PC chairs that are members of the PC and
the other denoting PC chairs that are not member of the PC. While both interpretations
are possible, the majority of workshop participants favored the first interpretation where
PC chairs are the same concepts.

Rejection vs. Reject. Another mapping under discussion was the one between the con-
cepts Reject and Rejection. It is clear that both are closely related to the outcome of
the review of a submitted paper. Differences were only detected when looking at the
subtrees of the superconcepts. While Rejection is a subconcept of Decision, Reject is
defined as a subconcept of Recommendation. Understanding the difference between
these two requires a deeper understanding of the process of reviewing, namely that a
recommendation is the input for the final evaluation and the decision is the output.

Location vs. Place. A similar situation could be observed in connection with the con-
cepts Location and Place. Both concepts are closely related as they refer to some ge-
ographical entity. A closer look however reveals that they are used in a very different

Empirical and ‘Casuistic’ Analysis of Ontology Mapping Results 663

(a) EKAW (b) ConfTool

Fig. 2. Subtrees containing the concepts PC Member and Member PC

way. While Location refers to the country and city in which the conference is held, Place
refers to buildings and parts of buildings in which certain conference-related events take
place. The detection of this fundamental difference required a detailed analysis of the
ontologies, in particular the range and domain restrictions of related properties in the
ontologies.

5.3 Lessons Learned

The discussions at the consensus workshop revealed a number of insights about the
nature of ontology matching and limitations of existing systems that provide valuable
input for the design of matching tools. In the following we summarize the three most
important insights gained.

Relevance of Context. Probably the most important insight of the consensus workshop
was that in many cases it is not enough to look at the concept names to decide whether
a mapping is correct or not. In all of the examples above, the position of the concept in
the hierarchy and in some cases also the scope of the complete ontology had to be taken
into account. In some cases, a decision actually requires deep ontological arguments,
for instance to distinguish between a recommendation and the actual decision made on
the basis of this recommendation. For existing matching tools this means that the use of
lexical matching techniques and often even of local structure matching is not sufficient.
Matchers rather have to take the complete ontology and its semantics or even back-
ground knowledge about basic ontological distinctions into account. This observation
is also supported by the results of the reasoning-based evaluation where automatically
created mappings often turned out to cause inconsistencies in the ontologies.

664 O. Šváb, V. Svátek, and H. Stuckenschmidt

Semantic Relations. All of the systems participating in the evaluation were restricted
to detecting equivalences between concepts or relations respectively. It turned out that
this restriction is a frequent source of errors. Often ontologies contain concepts that are
closely related but not exactly the same. In many cases one concept is actually a sub-
class of the other. Heuristics-based matching tools will often claim these concepts to be
equivalent, because they have similar features and similar positions in the hierarchy. As
a result, the corresponding mapping often becomes inconsistent. We believe that match-
ing tools that are capable of computing subsumption rather than equivalence relations
are able to produce more correct and suitable mappings.

Alternative Interpretations. The example of PC member illustrates the fundamental
dilemma of ontology matching, which tries to determine the intended meaning of con-
cepts based on a necessarily incomplete specification. As a result, it is actually not
always possible to really decide whether a mapping is correct or not. All we can do is
to argue that a mapping is consistent with specifications in the ontologies and with the
other mappings. In the example this leads to a situation where we actually have two
possible interpretations each of which makes a different set of mappings correct. It is
not completely clear how this dilemma can be handled by matching tools. The only rec-
ommendation we can give is in favor of using methods for checking the consistency of
mappings as an indicator whether the mapping encodes a coherent view on the system.

6 Evaluation Via Pattern-Aware Data Mining

6.1 Introducing Mapping Patterns

Before starting to talk about mapping patterns, it could be useful to briefly discuss the
notion of patterns as typically treated in ontological engineering research. We will con-
sider three categories of patterns: content patterns, logical patterns and frequent errors.
Content patterns [4] use specific non-logical vocabulary and describe a recurring, of-
ten domain-independent state of affairs. An example is the ”Descriptions&Situations”
pattern, which reflects the typical way a situation (with various entities and events in-
volved) is described using some representation. Logical patterns, in turn, capture the
typical ways certain modelling problems can be tackled in a specific ontological lan-
guage. An example is the ”Classes as Property Values” pattern7, which defines multiple
ways to satisfy the need for using a class in place of a value of an OWL property. Finally,
frequent errors (though not usually denoted as patterns, they are clearly so) describe in-
adequate constructions that are often used by unexperienced modellers [9]. All three
mentioned types of patterns are used to describe modelling behaviours that considered
as either ‘desirable’ (content and logical patterns) or ‘undesirable’ (frequent errors).
They can be qualified as design patterns; indeed, ontology building is essentially an
activity carried out by human intellect (at least at the level of defining logical axioms,
which are hard to obtain via automated ontology learning). In contrast, mapping pat-
terns that will be discussed further are by themselves neither desirable nor undesirable;

7 http://www.w3.org/TR/swbp-classes-as-values/

http://www.w3.org/TR/swbp-classes-as-values/

Empirical and ‘Casuistic’ Analysis of Ontology Mapping Results 665

their desirability depends on the correctness of the mappings. They don’t result from a
deliberate activity by humans but can be detected in data output by automated mapping
systems.

As opposed to ontology design patterns, which concern one ontology, mapping pat-
terns deal with (at least) two ontologies. These patterns reflect the structure of ontolo-
gies on the one side, and on the other side they include mappings between elements of
ontologies. A mapping pattern is a graph structure, where nodes are classes, properties
or instances. Edges represent mappings, relations between elements (eg. domain and
range of properties) or structural relations between classes (eg. subclasses or siblings).

Fig. 3. Pattern 1 – ‘Parent-child triangle’

The simplest (trivial) mapping pattern we do not consider here only contains one
element from each of the two ontologies (let us call them O1 and O2), and a mapping
between them. In our data mining experiments (described later) we employed three
slightly more complex mapping patterns.

The first one is depicted in Figure 3. The left-hand side (class A) is from O1 and the
right-hand side (class B and its subclass C) is from O2. There is a mapping between A
and B and at the same time between A and C.

The second pattern is depicted in Figure 4. It is quite similar to the previous one, but
now we consider a child and a parent from each ontology and simultaneous mappings
between parents and between children.

The third mapping pattern we consider is depicted in Figure 5. It consists of simul-
taneous mappings between class A from ontology O1 and two sibling classes C and D
from ontology O2.

A somewhat different kind of pattern could be that of mapping between a class and
a property. Such ‘heterogeneous mappings’ are described in [5].

6.2 4ft-Miner Overview

The 4ft-Miner procedure is the most frequently used procedure of the LISp-Miner data
mining system [8]. 4ft-Miner mines for association rules of the form ϕ ≈ ψ/ξ, where ϕ,
ψ and ξ are called antecedent, succedent and condition, respectively. Antecedent and
succedent are conjunctions of literals. Literals are derived from attributes, i.e. fields

666 O. Šváb, V. Svátek, and H. Stuckenschmidt

Fig. 4. Pattern 2 – ‘Mapping along taxonomy’

Fig. 5. Pattern 3 – ‘Sibling-sibling triangle’

of the underlying data matrix; unlike most propositional mining system, they can be
(at runtime) equipped with complex coefficients, i.e. value ranges. The association rule
ϕ ≈ ψ/ξ means that on the subset of data defined by ξ, ϕ and ψ are associated in the
way defined by the symbol ≈. The symbol ≈, called 4ft-quantifier, corresponds to some
statistical or heuristic test over the four-fold contingency table of ϕ and ψ.

The task definition language of 4ft-Miner is quite rich, and its description goes be-
yond the scope of this paper. Let us only declare its two features important for our
mining task: it is possible to formulate a wide range of so-called analytic questions,
from very specific to very generic ones, and the underlying data mining algorithm is
very fast thanks to highly optimised bit-string processing [8].

6.3 Using 4ft-Miner for Mining over Mapping Results

For the purpose of data mining, a data matrix with each record capturing all informa-
tion about one (occurrence of) correspondence was built8. This elementary information
amounted to: name of mapping system that detected this (occurrence of) correspondence;
validity assigned to the correspondence by the system; types of ontologies (‘tool’, ‘in-
sider’, ‘web’) on both sides of the correspondence; ‘correctness’ label manually assigned
to the correspondence (cf. section 3). In addition, there is information about patterns

8 In sum, there are 5238 records.

Empirical and ‘Casuistic’ Analysis of Ontology Mapping Results 667

(those from the previous section) in which the given correspondence participates. There
are two data fields for each of the three patterns; the first one contains the ‘correctness’
label of the other mapping within the pattern (note that there are exactly two mappings
in each of these simple patterns), and the second one contains the validity assigned to
this other correspondence by the system.

The analytic questions (i.e. task settings) we formulated for 4FT-Miner were for
example as follows9:

1. Which systems give higher/lower validity than others to the mappings that are
deemed ‘in/correct’?

2. Which systems produce certain mapping patterns more often than others?
3. Which systems are more successful on certain types of ontologies?

Due to limited space we do not list complete nor detailed results of the data mining
process. We only present some interesting association hypotheses discovered.

For the first question, we found for example the following hypotheses:

– Correspondences output by Falcon with medium validity (between 0,5 and 0,8)
are almost twice more often ‘incorrect’ than such correspondences output by all
systems (on average).

– Correspondences output by RiMOM and by HMatch with high validity (between
0,8 and 1,0) are more ‘correct’ than such correspondences output by all systems
(on average).

For the second question, we found for example the following hypotheses:

– Correspondences output by HMatch with medium validity (between 0,5 and 0,8)
are more likely to connect a child with a class that is also connected (with high
validity) with a parent (Pattern 1) than such correspondences with all validity values
(on average).

– Correspondences output by RiMOM with high validity (between 0,8 and 1,0) are
more likely to connect class C with class D whose parent B is connected (with high
validity) with A, which is parent of C (Pattern 2), than such correspondences with
all validity values (on average).

These two hypotheses seem to have a natural interpretation (at the level of patterns,
perhaps not so at the level of mapping systems). Pattern 1 represents a potential mapping
conflict (aka love triangle with a father and a son competing for the same woman), i.e.
increasing the validity of one may lead to decreasing the validity of the other. On the
other hand, Pattern 2 seems to evoke positive feedback between the two mappings (as
might be the case when a father is interested in the mother of his son’s girlfriend).

A feature of the OntoFarm collection that was clearly beneficial for the ‘data mining’
approach to mapping evaluation was the fact that it contains (far) more than two ontolo-
gies that can be matched. Thanks to that, mapping patterns frequently arising because
of the specific nature of some ontologi/es could be separated from mapping patterns
that are frequent in general.

9 Actually, the questions were even more generic; however, their generic form is less elegant
when translated to natural language.

668 O. Šváb, V. Svátek, and H. Stuckenschmidt

7 Related Work

To our knowledge, there has been no systematic effort in posterior analysis of ontolol-
ogy mappings without reference alignment involving multiple methods like in our re-
search. There are only projects with which we share some isolated aspects.

Mapping patterns are implicitly considered in [5]; however, they focus on ‘heteroge-
neous mappings’ (class to property) as special kind of pattern. We also considered this,
but it appeared too infrequently (essentially, it was only output by the Coma++ system)
to allow for meaningful data mining.

Data mining of a kind was also used for ontology mapping by Ehrig [2]. However,
unlike our approach, this was supervised Machine Learning rather than mining data for
frequent associations.

8 Conclusion and Future Work

The purpose of the current study was to examine multiple methods of posterior eval-
uation of ontology mappings, focussing on the situation when there is no reference
mapping available and/or we want to get deeper insight into the nature of mappings.
Our results could have at least two potential uses: to give the authors of individual map-
ping systems feedback on strong and weak points of the systems (going far beyond the
usual precision/recall statistics), and to contribute to better insight of the whole research
community into the possible argumentation used in the ontology mapping process.

Although the methods are principially different, they have certain dependencies. In
particular, initial manual empirical evaluation is pre-requisite for selecting representa-
tive cases for the consensus building workshop (this role was also played by automated
reasoning) as well as for subsequent data mining. Consensus workshop, in turn, helped
refine the nature of mapping patterns. An outline of general methodology could easily
be worked out from these dependencies.

In the future, we would like to more thoroughly compare the outcomes of the differ-
ent methods used (manual labelling, board discussion, data mining, logical reasoning).
We would also like to consider a richer variety of ontology mapping patterns. An im-
portant task is also to increase the size and improve the quality of OntoFarm collection,
which would presumably be used in the next OAEI edition.

The authors cordially thank Jérôme Euzenat and Pavel Schvaiko for their cooperation
in preparing the OM-2006 consensus building workshop, and Jan Rauch and Milan
Šimůnek for their assistence with the LISp-Miner tool. The research leading to this
paper was supported by the European Commission under contract IST FP6-507482,
Knowledge Web Network of Excellence. Ondřej Šváb and Vojtěch Svátek are partially
supported by the IGA VSE grant no.12/06 “Integration of approaches to ontological
engineering: design patterns, mapping and mining”, and by the grant no.201/05/0325
of the Czech Science Foundation, “New methods and tools for knowledge discovery
in databases”. Heiner Stuckenschmidt is partially supported by the German Science
Foundation under contract STU 266/1 as part of the Emmy-Noeter Programme.

Empirical and ‘Casuistic’ Analysis of Ontology Mapping Results 669

References

1. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini. L., Stuckenschmidt, H.: C-OWL:
Contextualizing ontologies. In: Proc. ISWC 2003, Springer 2003.

2. Ehrig M., Staab S., Sure Y.: Bootstrapping Ontology Alignment Methods with APFEL In:
Proceedings of ISWC, Galway, Ireland, 2005.

3. Euzenat, J., Mochol, M., Shvaiko, P., Stuckenschmidt, H., Šváb, O., Svátek, V., van Hage, W.
R., Yatskevich, M.: First Results of the Ontology Alignment Evaluation Initiative 2006. In:
International Workshop on Ontology Matching collocated with the 5th International Seman-
tic Web Conference ISWC-2006 , November 5, 2006: GA Center, Athens, Georgia, USA.

4. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: The Semantic Web -
ISWC 2005, 4th International Semantic Web Conference, Springer LNCS 3729.

5. Ghidini, C., Serafini, L.: Reconciling concepts and relations in heterogeneous ontologies. In:
Proc. ESWC 2006, Budva, Montenegro, 2006.

6. Kavalec, M., Svátek, V.: A Study on Automated Relation Labelling in Ontology Learning.
In: P.Buitelaar, P. Cimiano, B. Magnini (eds.), Ontology Learning and Population, IOS Press,
2005, 44-58.

7. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Improving Automatically Created Mappings
Using Logical Reasoning. In: Ontology Matching 2006, Workshop at ISWC 2006.

8. Rauch, J., Šimůnek, M.: An Alternative Approach to Mining Association Rules. In: Lin, T.
Y., Ohsuga, S., Liau, C. J., Tsumoto, S. (eds.), Data Mining: Foundations, Methods, and
Applications, Springer-Verlag, 2005, pp. 211–232

9. Rector, A., et al.: OWL Pizzas: Practical Experience of Teaching OWL-DL: Common Errors
and Common Patterns. Proc. EKAW 2004, LNAI3257, Springer-Verlag, 63-81.

10. Serafini, L., Tamilin, A.: DRAGO: Distributed Reasoning Architecture for the Semantic Web.
In: Proc. of the Second European Semantic Web Conference (ESWC’05), Springer-Verlag,
2005.

11. Shvaiko P., Euzenat J.: A Survey of Schema-based Matching Approaches. Journal on Data
Semantics, 2005.

12. Šváb O., Svátek V., Berka P., Rak D., Tomášek P.: OntoFarm: Towards an Experimental
Collection of Parallel Ontologies. Poster Session at ISWC 2005.

Acquisition of OWL DL Axioms from Lexical Resources

Johanna Völker, Pascal Hitzler, and Philipp Cimiano

Institute AIFB, University of Karlsruhe, Germany

Abstract. State-of-the-art research on automated learning of ontologies from
text currently focuses on inexpressive ontologies. The acquisition of complex ax-
ioms involving logical connectives, role restrictions, and other expressive features
of the Web Ontology Language OWL remains largely unexplored. In this paper,
we present a method and implementation for enriching inexpressive OWL ontolo-
gies with expressive axioms which is based on a deep syntactic analysis of natural
language definitions. We argue that it can serve as a core for a semi-automatic
ontology engineering process supported by a methodology that integrates meth-
ods for both ontology learning and evaluation. The feasibility of our approach is
demonstrated by generating complex class descriptions from Wikipedia defini-
tions and from a fishery glossary provided by the Food and Agriculture Organi-
zation of the United Nations.

1 Introduction

Knowledge modeling for semantic applications, particularly the creation of ontologies,
is a difficult and time-consuming task. It usually requires to combine the knowledge of
domain experts with the skills and experience of ontology engineers into a single effort
with high demand on scarce expert resources. We believe that this bottleneck currently
constitutes a severe obstacle for the transfer of semantic technologies into practice. In
order to address this bottleneck, it is reasonable to draw on available data, applying auto-
mated analyses to create ontological knowledge from given resources or to assist ontol-
ogy engineers and domain experts by semi-automatic means. Accordingly, a significant
number of ontology learning tools and frameworks has been developed aiming at the
automatic or semi-automatic construction of ontologies from structured, unstructured
or semi-structured documents. However, both quality and expressivity of the ontologies
which can be generated by the current state of the art in lexical ontology learning have
failed to meet the expectations of people who argue in favor of powerful, knowledge-
intensive applications based on ontological reasoning. Purely logical approaches on the
other hand presuppose a large number of manually created ABox statements, and lack
the scalability required by many application scenarios.

In this paper, we focus on text corpora as the source for automated ontology cre-
ation. Texts are available in abundance from the internet, and the knowledge expressed
e.g. through defining sentences given by experts can be expected to be a good base
for the creation of ontology axioms describing the same knowledge. Our approach is
essentially based on a syntactic transformation of natural language definitions into de-
scription logic axioms. It hinges critically on the availability of sentences which have
definitory character, like “Enzymes are proteins that catalyse chemical reactions.” Such
sentences could be obtained e.g. from glossaries or software documentation related to

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 670–685, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Acquisition of OWL DL Axioms from Lexical Resources 671

the underlying ontology-based application. Here, we exemplify our approach by us-
ing definitions taken from Wikipedia1 and a fishery glossary provided by the Food and
Agriculture Organization of the United Nations (FAO), while also sketching a number
of alternatives which could suggest themselves in different application scenarios. One
of these alternatives, and a particularly interesting case in point is the exploitation of
comments in less expressive ontologies given by means of annotation properties.

Consider, for example, an RDFS ontology (lying within OWL DL) essentially con-
sisting of a class hierarchy with some simple use of properties. This ontology, e.g.
modeling the scientific domain of Bioinformatics, could well describe a class Enzyme
being annotated with a comment like the sentence given before, which documents the
class for the ontology engineer – note that the sentence cannot be modeled properly in
RDFS. In order to enhance the RDFS ontology, our automated tool LExO can be used
to analyze this sentence and encode it as the OWL DL axiom

Enzyme ≡ (Protein � ∃catalyse.(Chemical � Reaction)).

This OWL DL axiom might then be conveyed to the ontology engineer as a sug-
gestion to enhance the ontology. We present here the initial work which can serve as
an acquisition core for realizing such a semi-automated process. While we think that
our approach has the necessary potential, several non-trivial obstacles remain to be ad-
dressed in forthcoming work. We will discuss these obstacles in detail and lay out a
work plan for realizing our vision.

The paper is structured as follows. We first give some preliminaries in Section 2. In
Section 3, we then describe our approach in detail, giving an ample supply of examples,
and also describe our prototype implementation. This leads to a discussion, in Sections
4 and 5, of the obstacles which need to be overcome to realize the vision based on our
initial work. We discuss related work and conclude in Section 6.

2 Preliminaries

The Web Ontology Language OWL [1] is being recommended as a web standard by
the World Wide Web Consortium for modeling ontological knowledge which requires
more expressivity than RDFS. Since then, OWL has found a multitude of uses, not only
on the web, but for knowledge representation in general. In essence OWL, or more
precisely its most important variant OWL DL, is a so-called description logic, or DL
for short [2]. DLs combine a rigorous semantics based on first-order predicate logic
with an intuitive way of structuring and encoding expressive conceptual knowledge.

In the following we give a formal introduction to the description logic underlying
OWL DL. We will keep this introduction very brief, as an intuitive understanding of
OWL DL suffices for understanding our approach. For the same reason, some finer
details of the definitions will be omitted; the interested reader can find them in [2,1].
We will introduce a syntax which is known as DL-syntax, as it is most convenient (and
the easiest to read) for the purpose of this paper.

OWL DL is essentially the description logic known as SHOIN (D), which we in-
troduce below. Knowledge bases in OWL DL are called ontologies, and they express

1 http://en.wikipedia.org

http://en.wikipedia.org

672 J. Völker, P. Hitzler, and P. Cimiano

relationships between the basic entities in OWL DL, which are concepts (or classes,
like Enzyme or Bank), roles (or properties, denoting relationships between things, like
provides or represents), and individuals (or instances, like Rudi or Lactase). There are
actually two types of roles, namely abstract roles, which relate individuals to individu-
als, like fatherOf, and concrete roles, like hasAge, which assign an element of a concrete
datatype D – in this case a number – to an individual.

For describing a SHOIN (D) (i.e. an OWL DL) ontology, we thus require three
sets: a set of concept names (called atomic or named concepts), a set of role names, and
a set of individual names. SHOIN (D) now allows to combine concepts to (complex)
concepts as defined by the following grammar, where A is an atomic concept, r is an
abstract role, s is a concrete role, d is a concrete domain predicate, ai are individuals,
ci are elements of a datatype, and n is a non-negative integer:

C → A | ⊥ | � | ¬C | C1 � C2 | C1 � C2 | ∃r.C | ∀r.C | ≥n r | ≤n r | =n r |
| {a1, . . . , an} | ∃s.D | ∀s.D | ≥n s | ≤n s | =n s

D → d | {c1, . . . , cn}

Formally, the semantics of concepts is given by means of interpretations, which are
mappings from the concept, role and individual names into sets, called domains of in-
terpretation which are to be considered as their extensions. This is done essentially as
in first-order predicate logic. We omit the details, which can be found in [1], and rather
provide some examples to convey the intuition. Female � Human stands for all human
females, i.e. for all women. ∃ hasChild.Male denotes all things which have a male child.
≤ 3 hasChild is a so-called cardinality restriction and denotes all things which have at
most 3 children. {a, b, c} stands for the class containing exactly the instances a, b, c.

SHOIN (D) furthermore allows to specify relations between roles. In particular,
two roles r1 and r2 can be in subrole relation (r1 � r2), can be equivalent (r1 ≡ r2) or
can be inverse to each other (r1 ≡ r−2). Roles can also be specified as transitive.

Information about individuals is given in terms of the ABox of an ontology, which
consists of statements of the form C(a) and r(a, b), where a, b are individuals, C is a
(complex) concept and r is a role. Information about concrete roles like s(a, d) can also
be given, here d is an element of a concrete datatype, and the semantics is analogous.

Complex concepts can now be related in the following way: If C, D are complex
concepts, then C � D and C ≡ D are inclusion axioms, where the first denotes that C
is a subconcept of D, and the second says that C and D are equivalent. The collection
of all axioms of an ontology together with information about roles is called the TBox
of the ontology. An ontology thus consists of a TBox and an ABox. By OWL axioms
or statements we denote everything which can be contained in an ABox or a TBox. An
OWL element is either an OWL axiom or a concept, role, or individual.

By means of the formal semantics which can be assigned to an ontology, it is possi-
ble to draw non-trivial logical inferences from an ontology. The ontology thus carries
implicit knowledge by means of its semantics.

3 The LExO Approach and Examples

In this section we present a conceptual approach for transforming natural language de-
finitions (e.g. annotation properties or associated dictionary entries) into sets of OWL

Acquisition of OWL DL Axioms from Lexical Resources 673

(E1 () (f i n) C
(3 i s (be) VBE i

(2 number (˜) N s
(1 A (˜) Det d e t)

)
(6 e n t i t y (˜) N p red

(E3 () (number) N s u b j 2)
(4 an (˜) Det d e t)
(5 a b s t r a c t (˜) A mod)
(E0 () (f i n) C r e l

(7 t h a t (˜) THAT whn 6)
(8 r e p r e s e n t s (r e p r e s e n t) V i

(E4 () (t h a t) THAT s u b j 6)
(10 co u n t (˜) N o b j

(9 a (˜) Det d e t)
(11 o r (˜) U punc)
(12 measurement (˜) N c o n j)

))))))

Fig. 1. Dependency Tree (Minipar)

axioms. The technical feasibility of this approach is demonstrated by a prototypical im-
plementation called LExO (Learning EXpressive Ontologies). However, the goal of our
work is not to put forward our prototype, but rather to investigate the potential, limi-
tations and challenges posed by attempting to acquire complex ontological knowledge
from lexical evidence. We will thus abstract from some implementation details in favor
of a critical discussion based on key examples, see Sections 3.1 and 4, and the develop-
ment of a general methodology for putting our ideas to practical use, see Section 5.

The implementation of LExO basically relies on KAON22, an ontology management
infrastructure for OWL DL, and the Minipar dependency parser [3]. Given a natural
language definition of a class, LExO starts by analyzing the syntactic structure of the
input sentence. The resulting dependency tree is then transformed into a set of OWL
axioms by means of manually engineered transformation rules. In the following, we
provide a step-by-step example to illustrate the complete transformation process. For
more (and more complicated) examples please refer to Section 3.1.

Here, we assume that we would like to refine the description of the class Number
which is part of the Proton ontology (see Section 3.1). The following definition of Num-
ber was taken from its corresponding Wikipedia article: A number is an abstract entity
that represents a count or measurement.3

Initially, LExO applies the Minipar dependency parser wrapped by our own Java-
based API in order to produce a structured output as shown in Figure 1. Every node
in the dependency tree contains information about the token such as its lemma (base
form), its syntactic category (e.g. N (noun)) and role (e.g. subj), as well as its surface
position. Indentation in this notation visualizes direct dependency, i.e. each child node
is syntactically dominated by its parent.

This dependency structure is now being transformed into an XML-based format (see
Figure 2) in order to facilitate the subsequent transformation process, and to make LExO
more independent of the particular parsing component.

2 http://kaon2.semanticweb.org
3 http://en.wikipedia.org/wiki/Number. In our experiments the word sense dis-

ambiguation required for identifying the correct article was done manually, although one could
well imagine an automatic or semi-automatic solution depending on the requirements of the
regarding application.

http://kaon2.semanticweb.org
http://en.wikipedia.org/wiki/Number

674 J. Völker, P. Hitzler, and P. Cimiano

<?xml v e r s i o n =”1 .0 ” en co d i n g =”UTF−8”?>
<r o o t>

<C i d =”E1” pos=”0”>
<VBE i d =”3” pos =”3” r o l e =” i ” p h r a s e =” i s ” b ase =” be”>

<N i d =”2” pos =”2” r o l e =” s ” p h r a s e =” number”>
<Det i d =”1” pos =”1” r o l e =” d e t ” p h r a s e =”A”/>

</N>
<N i d =”6” pos =”7” r o l e =” p red ” p h r a s e =” e n t i t y”>

<N i d =”E3 ” pos =”4” r o l e =” s u b j ” b ase =” number ” a n t e c e d e n t=”2”/>
<Det i d =”4” pos =”5” r o l e =” d e t ” p h r a s e =” an”/>
<A i d =”5” pos =”6” r o l e =”mod” p h r a s e =” a b s t r a c t ”/>
<C i d =”E0 ” pos =”8” r o l e =” r e l”>

<THAT i d =”7” pos =”9” r o l e =”whn” p h r a s e =” t h a t ” a n t e c e d e n t =”6”/>
<V i d =”8” pos =”10” r o l e =” i ” p h r a s e =” r e p r e s e n t s ” b ase =” r e p r e s e n t”>

<THAT i d =”E4 ” pos =”11” r o l e =” s u b j ” b ase =” t h a t ” a n t e c e d e n t=”6”/>
<N i d =”10” pos =”13” r o l e =” o b j ” p h r a s e =” co u n t”>

<Det i d =”9” pos =”12” r o l e =” d e t ” p h r a s e =” a”/>
<U i d =”11” pos =”14” r o l e =” punc ” p h r a s e =” o r”/>
<N i d =”12” pos =”15” r o l e =” c o n j ” p h r a s e =” measurement ”/>

</N> </V> </C> </N> </VBE> </C> </r o o t>

Fig. 2. XML Representation of Dependency Tree

r u l e : r e l a t i v e c l a u s e {
a r g 0 : / / N
a r g 1 : a r g 0 / C[@role= ’ r e l ’]
a r g 2 : a r g 1 /V
r e s u l t : [e q u i v a l e n t 0 [and 0−1 2]]

}
r u l e : v erb and o b j e c t {

a r g 0 : / / V
a r g 1 : a r g 0 /N[@role= ’ obj ’]
r e s u l t : [e q u i v a l e n t 0 [some 0−1 1]]
r e s u l t : [s u b O b j e c t P r o p e r t y O f 0 0−1]

}

Fig. 3. Transformation Rules

[e q u i v a l e n t l e x o : a number l e x o : a n a b s t r a c t e n t i t y t h a t r e p r e s e n t s a c o u n t o r m e a s u r e m e n t]
[e q u i v a l e n t l e x o : a n a b s t r a c t e n t i t y t h a t r e p r e s e n t s a c o u n t o r m e a s u r e m e n t

[and l e x o : a n a b s t r a c t e n t i t y l e x o : r e p r e s e n t s a c o u n t o r m e a s u r e m e n t]]
[e q u i v a l e n t l e x o : r e p r e s e n t s a c o u n t o r m e a s u r e m e n t [some l e x o : r e p r e s e n t s l e x o : a c o u n t o r m e a s u r e m e n t]]
[e q u i v a l e n t l e x o : a c o u n t o r m e a s u r e m e n t [o r l e x o : a c o u n t l e x o : measurement]]
[e q u i v a l e n t l e x o : a b s t r a c t e n t i t y [and l e x o : e n t i t y l e x o : a b s t r a c t]]

Fig. 4. Resulting Axioms

The set of rules which are then applied to the XML-based parse tree make use of
XPath expressions for transforming the dependency structure into one or more OWL DL
axioms. Figure 3 shows a few examples of such transformation rules in original syntax.
Each of them consists of several arguments (e.g. arg 1:. . .), the values of which are
defined by an optional prefix, i.e. a reference to a previously matched argument (arg 0),
plus an XPath expression such as /C[@role=’rel’] being evaluated relative to that prefix.
The last lines of each transformation rule define one or more templates for OWL axioms,
with variables to be replaced by the values of the arguments. Complex expressions such
as 0-1 allow for “subtracting” individual subtrees from the overall tree structure. A more
complete listing of the transformation rules we applied can be found further below.

A minimal set of rules for building a complete axiomatization of the Number ex-
ample could be, e.g. Copula, Relative Clause, Transitive Verb Phrase, Disjunction and
Subjective Adjective (see Table 1). The resulting list of axioms (see Figure 4) in KAON2

Acquisition of OWL DL Axioms from Lexical Resources 675

[e q u i v a l e n t l e x o : a number [and [and l e x o : e n t i t y l e x o : a b s t r a c t] [some l e x o : r e p r e s e n t s [o r l e x o : a c o u n t l e x o :
measurement]]]]

Fig. 5. Class Description (unfolded)

Table 1. Transformation Rules

Rule Natural Language Syntax OWL Axioms
Disjunction NP0 or NP1 X ≡ (NP0 � NP1)
Conjunction NP0 and NP1 X ≡ (NP0 � NP1)
Determiner Det0 NP0 X ≡ NP0

Intersective Adjective Adj0 NP0 X ≡ (Adj0 � NP0)
Subsective Adjective Adj0 NP0 X � NP0

Privative Adjective Adj0 NP0 X � ¬NP0

Copula NP0 VBE NP1 NP0 ≡ NP1

Relative Clause NP0 C(rel) VP0 X ≡ (NP0 � VP0)
Number Restriction V0 Num NP(obj)0 X ≡ =Num V0.NP0

Negation (not) not V0 NP0 X � ¬∃V0.NP0

Negation (without) NP0 without NP(pcomp-n)1 X ≡ (NP0 � ¬with.NP1)
Participle NP0 VP(vrel)0 X ≡ (NP0 � VP0)
Transitive Verb Phrase V0 NP(obj)0 X ≡ ∃V0.NP0

Verb with Prep. Compl. V0 Prep0 NP(pcomp-n)0 X ≡ ∃V0 Prep0.NP0

Noun with Prep. Compl. NP0 Prep0 NP(pcomp-n)1 X ≡ (NP0 � ∃Prep0.NP1)
Prepositional Phrase Prep0 NP0 X ≡ ∃Prep0.NP0

.

internal syntax is directly fed into KAON2 which interprets the textual representation
of these axioms, and finally builds an unfolded4 class description as shown in Figure 5.

In DL syntax, this final, unfolded axiomatization reads:

A number ≡ ((Entity � Abstract) � ∃represents.(A count � Measurement))

Obviously, all parts of this class description have to be normalized and possibly mapped
to already existing content of the ontology before the results can be used to generate
suggestions for ontology changes (cf. Section 5). As shown by the large body of re-
search done in the domain of ontology mapping, this task is not trivial at all. Semantic
ambiguities of labels (e.g. homonymy or polysemy), as well as the fact that a single en-
tity or axiom in the ontology can have arbitrarily many lexicalizations – differing even
in their syntactic category – make it necessary to consider a multitude of possible map-
pings. Moreover, idiomatic expressions, i.e. expressions the meaning of which cannot
be directly derived from the meaning of their individual components, need to be treated
properly. Therefore, in addition to integrating a state-of-the-art mapping framework, a
significant degree of user involvement will be unavoidable in the end (see Section 5).

4 By unfolding, a term borrowed from logic programming, we mean transformations like that of
{A ≡ ∃R.B, C ≡ A�D} to {C ≡ ∃R.B �D}. The specific for of output which we receive
allows us to remove many of the newly generated class names by unfolding, in order to obtain
a more concise output.

676 J. Völker, P. Hitzler, and P. Cimiano

Table 1 gives an overview of the most frequently used transformation rules. Each
row in the table contains the rule name (e.g. Verb with Prepositional Complement) and
an expression describing the natural language syntax matched by that rule – like, for
example, V0 Prep0 NP (pcomp-n)0, where V0 represents a verb, Prep0 a preposition
and NP (pcomp-n) denotes a noun phrase acting as a prepositional complement. Please
note that these expressions are very much simplified due to lack of space. The last
column shows the OWL axioms generated in each case, where X denotes the atomic
class name represented by the surface string of the complete expression matched by the
regarding transformation rule.

It is important to emphasize that this set of rules is by no means exhaustive, nor
does it define the only possible way to perform the transformation. In fact, there are
many different modeling possibilities, and the choice of appropriate rules very much
depends on the particular application or individual preferences of the user (see example
Tetraploid in Section 3.1).

3.1 Examples

We exemplify our approach by giving a number of axiomatizations automatically gen-
erated by LExO. The example sentences are not artificial, but were selected from real
sources. The first is a fishery glossary provided by the Food and Agriculture Organi-
zation (FAO) of the United Nations within the NeOn project5 – these are examples 1
through 8 below. The remaining examples concern classes of the Proton ontology [4],
which has been developed in the SEKT project.6 While Proton is an OWL ontology, it
is rather inexpressive, so we undertook to create more complex OWL axiomatizations
for Proton classes. For this purpose, we checked whether for a given Proton class name
there was a corresponding Wikipedia article, and took the first sentence of this article
as definitorial sentence for the class name. This approach worked reasonably well, as
we will see. We first list the example sentences together with their axiomatizations.

1. Data: Facts that result from measurements or observations.
Data ≡ (Fact � ∃result from.(Measurement � Observation))

2. InternalRateOfReturn: A financial or economic indicator of the net benefits expected from
a project or enterprise, expressed as a percentage.
InternalRateOfReturn ≡ ((Financial � Economic) � indicator � ∃of.(Net � Benefit �
∃expected from.(Project � Enterprise)) � ∃expressed as.Percentage)

3. Vector: An organism which carries or transmits a pathogen.
Vector ≡ (Organism � (carry � ∃transmit.Pathogen))

4. Juvenile: A young fish or animal that has not reached sexual maturity.
Juvenile ≡ (Young � (Fish � Animal) � ¬∃reached.(Sexual � Maturity))

5. Tetraploid: Cell or organism having four sets of chromosomes.
Tetraploid ≡ ((Cell � Organism) � =4 having.(Set � ∃of.Chromosomes))

6. Pair Trawling: Bottom or mid-water trawling by two vessels towing the same net.
PairTrawling ≡ ((Bottom � MidWater)� Trawling �=2 by.(Vessel �∃tow.(Same � Net)))

7. Sustained Use: Continuing use without severe or permanent deterioration in the resources.
SustainedUse ≡ (Continuing � Use � ¬∃with.((Severe � Permanent) � Deterioration �
∃in.Resources))

5 http://www.neon-project.org
6 http://sekt-project.com

http://www.neon-project.org
http://sekt-project.com

Acquisition of OWL DL Axioms from Lexical Resources 677

8. Biosphere: The portion of Earth and its atmosphere that can support life.
Biosphere ≡ (Portion � ∃of.((Earth � (Its � Atmosphere)) � ∃can support.Life))

9. Vehicles are non-living means of transportation.
Vehicle ≡ (¬Living � Means � ∃of.Transportation)

10. A minister or a secretary is a politician who holds significant public office in a national or
regional government.
(Minister � Secretary) ≡ (Politician � ∃holds.((Office � Significant � Public) �
∃in.(Government � (National � Regional))))

11. A currency is a unit of exchange, facilitating the transfer of goods and services.
Currency ≡ (Unit � ∃of.Exchange � ∃facilitate.(Transfer � ∃of.(Good � Service)))

12. An island or isle is any piece of land that is completely surrounded by water.
(Island � Isle) ≡ (Piece � ∃of.Land � ∃completely surrounded by.Water)

13. Days of the week are: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.
DayOfWeek ≡ {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}

Some critical remarks and observations on the examples:

1. This is a simple example, which works out very well.
2. This example shows the complex axiomatizations which can be obtained using our

approach. Here (and in other examples) we note that adjectives are so far interpreted
as being intersective – we discuss this in Section 4. Another recurring problem is
the generic nature of the role of. Nevertheless, the output is a reasonable approxi-
mation of the intended meaning and would serve well as suggestion for an ontology
engineer within an interactive process as we will draft in Section 5.

3. This is a Minipar parse error. The desired solution would be
Vector ≡ (Organism � (∃carry.Pathogen � transmit.Pathogen)).

4. Take particular attention to the handling of negation and of the present perfect tense.
5. The natural language sentence is actually ambiguous whether the number should

be read as exactly four or at least four, and the role name having is certainly not
satisfactory. Even more difficult is how set of chromosomes is resolved. A correct
treatment is rather intricate, even if modeling is done manually. The class name
Chromosomes should probably rather be a nominal containing the class name as
individual – which cannot be modeled in OWL DL, but only in OWL Full. Note
also that the cardinality restriction is used as a so-called qualified one, which is not
allowed in OWL DL but is supported by most DL reasoners.

6. Same is difficult to resolve. In fact, OWL DL is not expressive enough for properly
modeling the sentence!

7. Apart from the very generic role in and the problem with adjectives already men-
tioned, this is a complex example which works very well.

8. The possessive pronoun its would have to be resolved.
9. Here, means of transportation should probably not be further broken down.

10. Or is ambiguous. Here it indicates that minister and secretary mean the same.
11. The word and actually indicates a disjunction in this example.
12. The handling of the adverb completely is insufficient.
13. This example would be easy to implement, but we have not done it yet because

KAON2 currently cannot handle nominals.

678 J. Völker, P. Hitzler, and P. Cimiano

4 Critical Discussion

The syntactic transformation proposed in Section 3 creates a set of OWL axioms which
can be used to extend the axiomatization of any given class in an ontology. Our naive
implementation of this approach is as simple as efficient, but obviously requires a sig-
nificant amount of manual or automatic post-processing. This is to a major extent due to
a number of problems which relate to limitations of the linguistic analysis and the trans-
formation process, as well as fundamental differences between lexical and ontological
semantics. In the following we will discuss some of these problems in more detail, and
present possible solutions.

Semantic Aspects. Although the transformation takes into account some aspects of lex-
ical semantics, it is certainly not capable of capturing much of the intension of the terms
involved in the natural language expression that serves as an input for the transformation
process. Much of the meaning of the resulting axioms is still brought in by the semantics
of the underlying natural language terms. This does not necessarily constitute a signifi-
cant problem as long as the semantics of the description logic expressions is sufficiently
“in line” with the lexical semantics of the terms involved in their formation. Actually,
the semantics of ontological elements – not of the constructs of the ontology language,
but of the classes, properties and instances defined by means of these constructs – will
always be grounded to some extent in natural language semantics.

As it is impossible to express all possible aspects of a concept’s meaning by virtue
of description logic axioms, natural language labels and comments undoubtedly play a
key role in ontological knowledge representation. In fact, an ontology without natural
language labels attached to classes or properties is almost useless, because without this
kind of grounding it is very difficult, if not impossible, for humans to map an ontology
to their own conceptualization, i.e. the ontology lacks human-interpretability.

However, a grounding of ontologies in natural language is highly problematic due
to different semantics and the dynamic nature of natural language. It is important to
mention that many problems linked to either of these aspects are not necessarily specific
to ontology learning approaches such as the one we present in this paper. Since the way
people conceive and describe the world is very much influenced by the way they speak
and vice-versa (also known as the Sapir-Whorf hypothesis), ontology engineering is
often subject to our intuitive understanding of natural language semantics.

Lexical Semantics. The semantics of lexical relations fundamentally differs from the
model-theoretic semantics of ontologies. While lexical relations such as hyponymy,
antinomy or synonymy are defined over lexemes, ontological relations are used for
relating classes.7 And it is not obvious in all cases how to map words – especially very
abstract notions – to classes, as their extension often remains unclear.

7 For example, each of these classes could be associated with one or more natural language ex-
pressions describing the intended meaning (intension) of the class. And still, since hyponymy
is not “transitive” over (near-)synonymy it is not necessarily the case that all mutually syn-
onymous words associated with a subclass are hyponyms of all synonymous words associated
with its superclass.

Acquisition of OWL DL Axioms from Lexical Resources 679

For practical reasons it might be sensible to assume a correspondence between lexi-
cal relations and some types of axioms. Traditional ontology learning approaches
often rely on information about hyponymy for creating subsumption hierarchies [5],
or meronymy for identifying part-of relationships [6]. However, one has to be aware of
the fact that a one-to-one mapping between lexical and model-theoretic semantics may
affect the formal correctness of ontologies – even more, if ontology learning or engi-
neering exclusively relies on clues by means of lexico-syntactic patterns for inferring
lexical relationships. Due to the informal character of natural language it is no trouble
to say, for instance, “A person is an amount of matter”. But from the perspective of
formal semantics this might be problematic as pointed out by [7].

Dynamics of Natural Language. Further problems with respect to the use of natural
language in ontology engineering relate to the way in which semantics are defined.
While ontologies have a clear model-theoretic semantics, the semantics of lexical re-
lations is defined by so-called diagnostic frames, i.e. by typical sentences describing
the context in which a pair of words may or may not occur given a certain lexical re-
lation among them. This way of defining lexical relations does not guarantee for stable
semantics, since natural languages, other than ontology representation languages, are
dynamic. That means, each (open-class) word slightly changes its meaning every time
it is used in a new linguistic context. These semantic shifts, if big enough, can affect the
lexical relationships between any pair of words. And considering that natural language
expressions are regularly used for the grounding of ontologies they can potentially lead
to semantic “inconsistencies”, i.e. conflicting intensional descriptions. This kind of in-
consistencies can be avoided by more precise, formal axiomatizations of ontological
elements. However, it is an open issue how many axioms are required to “pin down”
the meaning of a given class or property.

Technical Problems. A significant objection one might have with respect to the techni-
cal implementation of our approach certainly refers to the rather sophisticated linguistic
analysis which is required prior to the actual transformation process. And indeed, the
Minipar8 dependency parser we use sometimes fails to deliver a parse, particularly in
the case of ill-formed or structurally complex sentences, or wrongly resolves syntactic
ambiguities such as prepositional phrase attachments. However, dependency parsers
are known to be much more robust than parsers using phrase structure grammar, for
example. And as most of our transformation rules can be mapped to surface structure
heuristics (see Table 1) in a relatively straightforward way, a chunker or shallow parser
could complement Minipar in case of failure. Efficiency is not so much an issue as the
parser is extremely fast, processing a few hundred sentences per second.

However, there are more severe problems apart from the quality or efficiency of
the syntactic analysis. Many of them concern semantic ambiguity related to quanti-
fier scope (e.g. “any”, see example Island) or homonymy (e.g. “net”). Both types of
problems are not appropriately handled at the moment. And our implementation also
lacks an anaphora resolution step which would help to identify antecedents of pro-
nouns (e.g. “its atmosphere”) or nominal anaphora, for instance. Although some types

8 http://www.cs.ualberta.ca/∼lindek/minipar.htm

http://www.cs.ualberta.ca/~lindek/minipar.htm

680 J. Völker, P. Hitzler, and P. Cimiano

of coreference including relative pronouns can be handled by Minipar itself, the lan-
guage we defined for describing the transformation rules is not expressive enough to
deal with phenomena such as long distance dependencies or deictic expressions. There-
fore, user intervention is still essential during the post-processing phase to replace pro-
nouns and to map co-referring nominals to the same class. Similarly, depending on
the desired degree of modeling granularity, user input might be required to support the
semantic analysis of compound nominals (e.g. “Pair Trawling”).

Moreover, the different semantics of adjectives are not taken into account by the
translation rules. Ideally, one would have to distinguish between at least three types
of adjectives – subsective (Y oung F ish � Fish), intersective (Sexual Maturity �
(Sexual � Maturity)) and privative (Fake F ish � ¬Fish). But since an automatic
classification of adjectives into these classes as proposed by [8], for example, is a very
challenging task, we currently assume intersective semantics for all adjectives. Even
more difficult is the semantics of adverbs (e.g. “completely surrounded”) and some
types of auxiliary verbs which express a spatial, temporal or behavioral modality (e.g.
“can support life”). And of course, temporal relationships expressed by past or future
verb tense are also very difficult to handle without temporal reasoning.

Another problem which is not yet sufficiently handled by our transformation rules
are so-called empty heads, i.e. nominals which do not contribute to the actual meaning
of a genus phrase (cf. the “any” in the Island example). In particular, the rules relying
on Hearst-style patterns [5] for the identification of hyponymy relationships may be
mislead by expressions such as one, any, kind, type. This phenomenon has already been
described [9,10] and could be handled by appropriate exception rules. An alternative
solution to this and similar problems could be to increase the expressiveness of the
rule language used in the transformation process. The language as it is defined by
now does not permit the usage of regular expressions, for instance, which might be
valuable means to generalize particular transformation rules. XSLT and tgrep could
help to overcome these limitations.

Finally, our approach is restricted to texts with definitory character such as glos-
sary entries or encyclopedic descriptions which have a universal reading and a more
or less canonical form, i.e. including a genus category and additional information to
distinguish the term from other members of the same category [11]. In order to extend
the applicability of LExO to a greater variety of textual resources, one would need a
component for the automatic identification of natural language definitions.

Further Remarks. Although we see a great potential in our approach (cf. Section 5),
the discussion shows that there are still many open issues – technical, but also very fun-
damental questions. The most important ones according to our perception relate to the
relationship of lexical and ontological semantics. Given a purely syntactical transfor-
mation such as ours, it will be crucial to investigate at which stage of the process and in
which manner particularities of both semantics have to be considered. And finally, we
will have to answer the question where the principal limitations of our approach with
respect to the expressivity of the learned ontologies really are. It is reasonable to assume
that at least some aspects of ontological semantics cannot (or not so easily) be captured

Acquisition of OWL DL Axioms from Lexical Resources 681

by purely lexical ontology learning methods. However, we believe that a combination
of lexical and logical approaches could help to overcome these limitations.

5 Realising the Vision

Despite the fact that our approach currently has a number of limitations as pointed out
in Section 4, we believe that it has the potential to become a valuable component of
a semi-automatic ontology engineering environment. Many of the technical drawbacks
of the approach can be alleviated by integrating more sophisticated methods for natural
language processing, ontology mapping or evaluation, and as a matter of course, by
adding a human factor to the ontology acquisition process.

In this section we sketch our vision of a semi-automatic ontology engineering
process involving a set of complementary methods for ontology engineering and eval-
uation along with an elaborate methodology. We describe the potential role of our ap-
proach within this scenario and identify the missing components.

Semi-automatic Ontology Engineering. The overall scenario we envision for engineer-
ing expressive OWL ontologies is a semi-automatic cyclic process of ontology learning,
evaluation and refinement, see Figure 6. The process starts with a relatively inexpressive
ontology, possibly a bare taxonomy given in RDFS, which is supposed to be enriched
and refined to meet the requirements, e.g. of a reasoning-based application. In each it-
eration of the process, the user selects the class to be refined, and optionally specifies
appropriate resources for the ontology generation phase (Step 1) such as

– manual user input,
– comments contained in the ontology,
– definitions extracted from ontology engineering discussions by email or Wiki,
– documentation of the underlying application and use cases,
– available glossaries and encyclopedias (e.g. Wikipedia), or
– textual descriptions of the domain which could be obtained by initiating a

GoogleTMsearch for definitions (e.g. “define: DNS”).

A tool such as LExO can analyze the given resources to identify and extract definitory
sentences, i.e. natural language descriptions of the class previously selected by the user.
These definitions are parsed and transformed into OWL DL axioms (Step 2) that can
be presented to the user, if she wants to intervene at this point. Otherwise, the system
directly proceeds to the mapping phase which aims at relating the newly generated
entities and axioms to elements in the initial ontology (Step 3). The outcome of this
phase are a number of mapping axioms which can be added to the class axiomatization
after being confirmed by the user.

Then, methods for ontology evaluation check for logical inconsistencies or potential
modeling errors (Step 4). Based on the learned axiomatization and additional mappings
the system now suggests ontology changes or extensions to the user (Step 5). The user
now revises the ontology by modifying or removing some of the axioms (Steps 6 and
7), before the whole process starts over again. Further entities, e.g. those introduced by
previous iterations, can be refined until the user or application needs are satisfied.

682 J. Völker, P. Hitzler, and P. Cimiano

Creation

of potential

mappings

Evaluation of

candidates

for axioms

and mappings

Selection and

modification

of changes by

the user

Application of

changes to

ontology

Selection of

class definition

to be refined

Generation of

axiom candidates

Generation of suggestions

for ontology changes

2 3

7

4

5

6

1

Ontology

Creation

of potential

mappings

Evaluation of

candidates

for axioms

and mappings

Selection and

modification

of changes by

the user

Application of

changes to

ontology

Selection of

class definition

to be refined

Generation of

axiom candidates

Generation of suggestions

for ontology changes

2 3

7

4

5

6

Creation

of potential

mappings

Evaluation of

candidates

for axioms

and mappings

Selection and

modification

of changes by

the user

Application of

changes to

ontology

Selection of

class definition

to be refined

Generation of

axiom candidates

Generation of suggestions

for ontology changes

2 3

7

4

5

6

1

Ontology

Fig. 6. Ontology Refinement Process

Ontology Evaluation. It is certainly nec-
essary to add further functionalities to the
interactive process. We point out two as-
pects which we judge to be of particular
importance, namely how to aid the ontol-
ogy engineer to ensure high quality of the
ontology, and to ensure completeness of
the modeling process in terms of the ap-
plication domain.

Quality insurance will have to be
based on previous work on the field of
ontology evaluation. Since the automatic
generation of expressive ontologies can
potentially lead to a substantial increase
in complexity, a simple manual revision
of the ontology generated by a system
such as the one described here might be
infeasible. Therefore, we believe that automatic techniques for ontology evaluation will
play a crucial role in the ontology learning and engineering cycle. These techniques
could check, for instance, the ontology’s validity with respect to the OntoClean method-
ology [12], or assure the logical consistency of the ontology. In particular, debugging
techniques like pinpointing [13] will be indispensable as soon as cardinality restric-
tions or any kinds of negation (e.g. class complement, disjointness) are introduced into
learned ontologies.

Since this aspect has not emerged in lexical ontology learning up to now, the prob-
lem of integrating ontology evaluation and debugging into the learning process has not
received much attention yet. As pointed out in [14] we see a great potential in exploiting
metadata such as confidence and relevance values generated during the ontology learn-
ing process for resolving inconsistencies in learned ontologies. But still, the perfect
synthesis of ontology learning and evaluation is a challenging problem.

In order to ensure completeness of the modeling process in terms of the application
domain, a structured approach for an exhaustive exploration of complex relationships
between classes is required. This can be realized e.g. by employing methods like re-
lational exploration [15] which is an adaptation of attribute exploration from Formal
Concept Analysis [16] to description logics. And finally, it might also be worthwhile to
consider an integration of LExO with other learning approaches which could compen-
sate for some of its limitations, e.g. with respect to the learnability of particular relations
between roles [17], or disjointness axioms [18].

The issues discussed for creating an interactive ontology engineering tool are under
investigation by the authors. In the medium term, we expect to develop a correspond-
ing system as part of a powerful ontology engineering environment like OntoStudio,
Protégé, or the forthcoming NeOn Toolkit9. It will also be worth investigating the use
of LExO for automated question answering. Integrating LExO into any of these appli-
cation scenarios will allow for a much more target-oriented evaluation of our approach.

9 http://www.neon-project.org

http://www.neon-project.org

Acquisition of OWL DL Axioms from Lexical Resources 683

6 Related Work and Conclusions

We have presented an approach which can support the semi-automatic engineering of
ontologies by automatically processing dictionary definitions or ontology comments
and translating these to axioms exploiting the expressive power of description logic
languages, in particular SHOIN (D), i.e. OWL DL. An alternative to automatically
processing definitory descriptions is to offer a natural language interface allowing users
to interact with an ontology editor using natural language. Recently, several approaches
relying on controlled language have been presented [19,20,21]. The drawback of such
approaches is that users have to actually learn a restricted language which might some-
times even seem unnatural [22]. Though our approach also has limitations, it aims at
processing language as used in dictionary definitions without notable restrictions.

There is also a large body of work on dictionary parsing reaching back to the 80s
and 90s [23, Chapter 6]. Recent work has focused on extracting knowledge from online
glossaries [24] and Wikipedia [25,26,27]. However, most of the work on processing
machine-readable dictionaries up to now has mainly focused on extracting lexical rela-
tions, in particular hyponymy or meronymy relations. The aspect which distinguishes
our approach from others is the fact that it aims at exploiting an expressive description
logic language. In this line, our approach is related to the work of Gardent and Jacquey
[28], who translate hypernyms, troponyms and antonyms as found in WordNet into DL
axioms to be used within a question answering application.

Other work which indeed has aimed at inducing DL class descriptions from data are
the ones of Lisi et al. [29] as well as Fanizzi et al. [30]. However, these approaches rely
on extensional data, i.e. they assume the availability of an ABox from which a TBox is
obtained by generalization. It remains an open issue how, and if these approaches can
be applied to learning knowledge bases from texts.

Summarizing, the potential of our treatment lies in its flexibility and simpleness, as
well as its suitability for an interactive process as spelled out in Section 5. We have
reported on the decisive initial steps in realizing this vision, and accompanied it with a
critical discussion of the obstacles which need to be overcome. We believe that these
efforts will eventually result in an interactive system which will aid ontology engineers
in the construction of expressive OWL DL ontologies.

Acknowledgments. This research has been partially supported by the European Com-
mission under contracts IST-2003-506826 SEKT, IST-2006-027595 NeOn and IST-
FP6-026978 X-Media, and by the German Federal Ministry of Education and Research
(BMBF) under the SmartWeb project (grant 01 IMD01 B).

References

1. W3C: Web Ontology Language (OWL) (2004) http://www.w3.org/2004/OWL/.
2. Baader, F., et al., eds.: The Description Logic Handbook: Theory, Implementation, and Ap-

plications. Cambridge University Press (2003)
3. Lin, D.: Dependency-based evaluation of MINIPAR. In: Proceedings of the Workshop on

the Evaluation of Parsing Systems. (1998)
4. Terziev, I., Kiryakov, A., Manov, D.: Base Upper-Level Ontology (BULO) guidance. SEKT

deliverable 1.8.1, Ontotext Lab, Sirma AI EAD (Ltd.) (2004)

http://www.w3.org/2004/OWL/

684 J. Völker, P. Hitzler, and P. Cimiano

5. Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of
the 14th International Conference on Computational Linguistics. (1992) 539–545

6. Poesio, M., Ishikawa, T., im Walde, S.S., Vieira, R.: Acquiring lexical knowledge for
anaphora resolution. In: Proceedings of the 3rd Conference on Language Resources and
Evaluation. (2002)

7. Guarino, N., Welty, C.A.: A formal ontology of properties. In: Knowledge Acquisition,
Modeling and Management. (2000) 97–112

8. Amoia, M., Gardent, C.: Adjective based inference. In: Proceedings of the EACL Workshop
on Knowledge and Reasoning for Answering Questions (KRAQ’06). (2006)

9. Guthrie, L., Slator, B., Wilks, Y., Bruce, R.: Is there content in empty heads? In: Proceedings
of the 13th conference on Computational linguistics, Morristown, NJ, USA, Association for
Computational Linguistics (1990) 138–143

10. Chodorow, M., Byrd, R., Heidorn, G.: Extracting semantic hierarchies from a large on-line
dictionary. In: Proceedings of the 23rd annual meeting on Association for Computational
Linguistics. (1985) 299–304

11. Klavans, J., Popper, S., Passonneau, B.: Tackling the internet glossary glut: Automatic ex-
traction and evaluation of genus phrases. In: Proceedings of the SIGIR’03 Workshop on
Semantic Web. (2003)

12. Völker, J., Vrandecic, D., Sure, Y.: Automatic evaluation of ontologies (AEON). In: Proc.
of the 4th International Semantic Web Conference (ISWC2005). Volume 3729 of LNCS.,
Springer (2005) 716–731

13. Schlobach, S.: Debugging and semantic clarification by pinpointing. In: Proc. of the 2nd
European Semantic Web Conference (ESWC’05). Volume 3532 of LNCS., Springer (2005)
226–240

14. Haase, P., Völker, J.: Ontology learning and reasoning – dealing with uncertainty and incon-
sistency. In: Proc. of the ISWC Workshop on Uncertainty Reasoning for the Semantic Web
(URSW). (2005) 45–55

15. Rudolph, S.: Exploring relational structures via FLE. In Wolff, K.E., Pfeiffer, H.D., Delu-
gach, H.S., eds.: Conceptual Structures at Work: 12th International Conference on Concep-
tual Structures. Volume 3127 of LNCS., Springer (2004) 196–212

16. Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations. Springer,
Berlin (1999)

17. Lin, D., Pantel, P.: DIRT–SBT–discovery of inference rules from text. In: Knowledge Dis-
covery and Data Mining. (2001) 323–328

18. Völker, J., Vrandecic, D., Sure, Y., Hotho, A.: Learning disjointness. In: Proceedings of the
4th European Semantic Web Conference (ESWC’07). (2007)

19. Tablan, V., Polajnar, T., Cunningham, H., Bontcheva, K.: User-friendly ontology authoring
using a controlled language. In: Proceedings of the 5th International Conference on Lan-
guage Resources and Evaluation (LREC’06). (2006)

20. Bernstein, A., Kaufmann, E., Göhring, A., Kiefer, C.: Querying ontologies: A controlled
english interface for end-users. In: Proceedings of the 4th International Semantic Web Con-
ference (ISWC’05). (2005) 112–126

21. Pease, A., Murray, W.: An English to Logic Translator for ontology-based knowledge rep-
resentation languages. In: Proceedings of the International Conference on Natural Language
Processing and Knowledge Engineering. (2003) 777–783

22. Fuchs, N., Kaljurand, K., Schneider, G.: Attempto Controlled English meets the challenges
of knowledge representation, reasoning, interoperability and user interfaces. In: Proceedings
of FLAIRS’06. (2006)

23. Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and Ap-
plications. Springer Verlag (2006)

Acquisition of OWL DL Axioms from Lexical Resources 685

24. Hovy, E., Philpot, A., Klavans, J., Germann, U., Davis, P., Popper, S.: Extending metadata
definitions by automatically extracting and organizing glossary definitions. In: Proceedings
of the 2003 annual national conference on Digital government research, Digital Government
Research Center (2003) 1–6

25. Ruiz-Casado, M., Alfonseca, E., Castells, P.: Automatic extraction of semantic relationships
for WordNet by means of pattern learning from Wikipedia. In: Proceedings of the Interna-
tional Conference on Natural Language for Information Systems (NDLB’05). Number 3513
in LNCS, Springer Verlag (2005) 67–79

26. Suh, S., Halpin, H., Klein, E.: Extracting common sense knowledge from Wikipedia. In:
Proceedings of the Workshop on Web Content Mining with Human Language Technologies
at ISWC’06. (2006)

27. Weber, N., Buitelaar, P.: Web-based ontology learning with ISOLDE. In: Proc. of the ISWC
Workshop on Web Content Mining with Human Language Technologies. (2006)

28. Gardent, C., Jacquey, E.: Lexical reasoning. In: Proceedings of the International Conference
on Natural Language Processing (ICON’03). (2003)

29. Lisi, F., Esposito, F.: ILP meets knowledge engineering: A case study. In: Proc. of the
International Conference on Inductive Logic Programming (ILP), Springer (2005) 209–226

30. Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Concept formation in expressive
description logics. In: Proc. of the 15th European Conference on Machine Learning
(ECML’04), Springer Verlag (2004)

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 686 – 700, 2007.
© Springer-Verlag Berlin Heidelberg 2007

On Enriching Ajax with Semantics: The Web
Personalization Use Case

Kay-Uwe Schmidt1, Ljiljana Stojanovic2, Nenad Stojanovic2, and Susan Thomas1

1 SAP Research, CEC Karlsruhe, Vincenz-Prießnitz-Str. 1,
76131 Karlsruhe, Germany

{Kay-Uwe.Schmidt,Susan.Marie.Thomas}@sap.com
2 FZI Forschungszentrum Informatik, Haid-und-Neu-Straße 10-14,

76131 Karlsruhe, Germany
{Ljiljana.Stojanovic,Nenad.Stojanovic}@fzi.de

Abstract. With the dawn of Ajax the capabilities of tracking user behavior
multiplied. The same holds for the capabilities of adapting the user interface in
a Web browser. To provide meaningful adaptation, the events, context and
elements of an Ajaxified Portal must be given meaning. We show the use of
ontologies as a model for user-related context and portal-related content.
Content-related concepts are used to annotate Ajax widgets to associate them
with meaning. As a user navigates a portal and fires events related to the
widgets, a semantically rich user model is built, enabling suitable adaptation.
Both the user model and the adaptation are based on ontologies and logic rules.
Since user tracking and portal adaptation in the era of Ajax, now takes place on
the client-side we present a resource-saving approach to executing adaptation
rules in the browser. The approach is applied in an e-Government case study.

Keywords: User Adaptivity, Ajax Portal, Semantic Web, e-Government.

1 Introduction

In most e-Government projects to date, technology was in the center of the project
and not the user, although the user, e.g., the citizen or business person, is the one who
shall in the end use all the new and exciting online e-Government services. As long as
all efforts are technology driven, e-Government will not take off, and will not reach
its full potential. To confront different citizens with a one-size-fits-all Web interface
is not the optimum way to deliver public sector services because every person is an
individual with different knowledge, abilities, skills and preferences. The
conventional brick-and-mortar office has a more human face because the clerk can
respond to different people in different manners. That is why people tend to use the
conventional office rather than the e-Government services. To transfer some of the
humanity to e-Government portals, it is necessary to build adaptive portals for public
services. Such user-adaptive portals will increase the usability, and, thus, the
acceptance of e-Government, enabling administrations to achieve the, as yet, elusive
efficiency gains and user satisfaction that are the primary goals of e-Government
projects.

 On Enriching Ajax with Semantics: The Web Personalization Use Case 687

This paper describes an approach for adaptation that addresses these issues. This
approach results in a system that is both user-adaptive and self-adaptive. By ‘user-
adaptive’, we mean an interactive system that acquires a model of the individual user,
and utilizes that model to adapt itself to the user. Such adaptation usually involves
some form of learning, inference or decision making (paraphrased from [1]). By ‘self-
adaptive’, we mean a system that observes the results of its actions and adapts itself to
improve future performance. Such adaptation can be automatic or mediated by a
human. This paper, however, concentrates on user-adaptivity.

Of the types of functions user-adaptation might fulfill – identified in [1] – the
approach focuses on two: first, ‘help with system use’, in particular, help that enables
a user to efficiently use an offered e-Government service; second, support for
information acquisition, in particular, the information related to the offered
e-Government services.

To achieve user-adaptivity we use a new approach that combines the power of
Ajax, the underlying technology of Web 2.0, with Semantic Web technologies to
create a client-side semantic framework for capturing the meaning of user behavior,
recognizing the user’s situation, and applying rules to adapt the portal to this situation.

Although, in this paper, the discussion centers around e-Government portals, the
architecture is easily generalizable to other types of portals, since at an abstract level
most portals can be said to offer some combination of services and associated
information.

The rest of this paper is organized as follows. Section 2 presents some examples of
e-Government services, and derives requirements on adaptive e-Government portals.
Sections 3 and 4 explain the advantages of Ajax and Semantic Web technologies
when it comes to meeting these requirements and achieving user-adaptation. Section 5
presents our approach, which combines Ajax and Semantic Web technologies.
Section 6 compares the approach to related work. Section 7 indicates the direction of
future work. Finally, Section 8 concludes the paper with acknowledgements.

2 Motivating Examples and Requirements

A typical service provided by an e-Government portal is submission of an application
form related to a building project. Such a service is actually a complex process,
subject to regulations that require the submission of different forms at different times,
depending on the type of building project. For an inexperienced user the challenge
starts here. With lack of background knowledge of the building regulations the user is
confused and does not know which form to choose for her building project. Such
users, unfamiliar with the portal and the specific service, need guidance to prevent
them from getting stuck in the portal shallows. On the other hand, for an architect
who works daily with the virtual building application within an e-Government portal,
any guidance would only hinder her smooth sailing. Therefore, there is, among other
things, a need to cater for different skill levels like novice, average and expert.

Moreover, adaptation, for example adaptation to skill level, is needed for each
service, since an expert in one service may be a novice in another. For example, the
architect, expert at building applications, may be a novice hen it comes to submitting

688 K.-U. Schmidt et al.

an application for child support. In fact, many services will only rarely be used by any
one user, so the majority of users will probably remain novices in their use.

Given this example we derive five basic requirements for adaptive e-Government
portals. Firstly, a portal must provide guidance and information that matches the
users, e.g., the different skill levels and interests of its citizens. Secondly, as citizens
typically use e-Government services rarely they should not be bothered with
providing and maintaining any user profiles.

The third important requirement is to observe the crucial usability principles such
as responsiveness, predictability and comprehensibility, controllability and
unobtrusiveness. Initial emphasis, in regard to usability, is placed on providing
accurate, but unobtrusive, guidance, when and where it is needed by the user.

The fourth general requirement is that the portal should be subject to continual
improvement. Explicit user feedback can be enormously helpful here, but the
feedback requested should be relevant to the services that the user executed.

A fifth, and final, important requirement is related to the nature of e-Government
services, and the fact that there are multiple units of e-Government at different levels,
e.g., local, regional and national. Given the similarity of many of the services offered
by these different units, there is an enormous potential for efficiency gains through
sharing best practices. Therefore, the fifth general requirement is the ability to share
successful adaptation strategies and rules.

In the rest of the paper, we describe an approach that meets these identified
requirements.

3 Mashup of Ajax and the Semantic Web

As indicated by the definition of user-adaptivity given in Section 1, acquisition of a
model of the user is the indispensable pre-requisite to adaptation. The second step is
then to use this model to perform the adaptation. As shown by the requirements
analysis of Section 2, it cannot be assumed that the system has any previous
information about a user, so that in each user session the user model has to be
acquired from scratch. Effectively, this means that the user model is based on the user
actions during a session. Therefore, it is essential to be able to track and interpret
these actions as accurately as possible. This section shows that Ajax enables the
required fine-grained tracking of user behavior and that, additionally, it provides a
richer set of adaptation options than standard HTML-based Web technology. The next
section then shows how semantics enables interpretation of the user behavior that can
be collected using Ajax.

In Adaptive Hypermedia Systems (AHS) adaptation strategies were already studied
[2] and are well understood for conventional Hypermedia systems. Under conventional
techniques the creation of HTML pages on a remote server and the typical request-
response user paradigm of the Web are subsumed. With conventional techniques, the
tracking of user clicks, the user modeling, as well as the adaptation all take place on
the server. This limits the possibilities of user tracking to the user requests seen by the
server [3], which is actually a subset of the user clicks. Furthermore adaptation can only
take place when a user requests a new page, which then is adapted to her needs. On the
fly adaptation without reloading the whole page in not obtainable.

 On Enriching Ajax with Semantics: The Web Personalization Use Case 689

With the dawn of Ajax in early 2005 [4] a new potential of tracking a user’s
browsing behavior, as well as new adaptation strategies arose. With Ajax the look and
feel of Web pages can be transformed to that of desktop applications. This is the result
of the seamless combination of three powerful technologies in Ajax: Asynchronous
communication, JavaScript and XML. Using asynchronous communication, just the
needed data can be obtained from the server without reloading the whole page.
Additionally, JavaScript as a language to execute code in a browser, and XML for the
ad-hoc manipulation of a Web page make it possible that a user can be supported
without explicitly clicking a link on a page. Thus help and guidance can be already
provided when the user behavior is recognized as searching for additional information
without server communication explicitly originated by the user.

With Ajax the range of user actions that can be tracked is extended beyond just
mouse clicks. For example, scrolling, mouse over and keystroke events can be tracked
enabling the detailed recording of user actions on the client-side. In the world of the
HTTP requests-response paradigm the Web server is not able to obtain such detailed
information. A Web server can only track a subset of user clicks. It misses browser
events, like the Back button and cached links. The well-known problem of assigning
clicks to users is also solved on the fly, since user tracking takes place directly on the
client-side. Additionally, the user’s Web browsing behavior can be processed directly
on the client and the browser can react immediately to recognized behavioral patterns.

The advanced user tracking possibilities are also accompanied by sophisticated
adaptation techniques formerly only seen in desktop applications, like tool tips and
fading help windows. However, this rich model of user actions and new adaptation
options can only be leveraged if their meaning is machine readable as discussed in the
next section.

4 Semantics-Based Adaptation

In this section we show how semantic technologies and in particular ontologies can be
utilized for automatic adaptation of an e-Government portal to the individual
requirements of the users. We firstly motivate the reasons for using ontologies and
thereafter we introduce the semantic model of adaptive portals. Even though the paper
is motivated by using e-Government examples, the proposed approach is general
enough to be applied in any other domain.

4.1 Advantages of Using Ontologies for Adaptation

There are several reasons to build our approach upon the intensive use of semantic
technologies. Firstly, ontologies enable semantic interpretation of user behavior in a
portal, which enables meaningful, effective and context-aware adaptation.

The building permission example from Section 2 is elaborated next to show how
Ajax and semantics together enable such context-aware adaptation. Assume that the
user, who wants to apply for building permission, goes to the appropriate
e-Government Web site. And, on this site, the user finds a list of hyperlinks to forms
related to building permits. But, she does not know which one is appropriate for her
building project. Being based on Ajax, the Web site implements mouse-over help for

690 K.-U. Schmidt et al.

these hyperlinks. The user knows this, and places the mouse on a hyperlink for a time
to make the help appear. Then the user does this for a second hyperlink, but still does
not choose a form. Assuming that the hyperlinks have been associated with concepts in
the ontology, the system can now make a semantic interpretation of the user’s
behavior. In this case, the conclusion would be that the user has a strong interest in the
concepts associated with the two mouse-over hyperlinks, and that the user needs help
choosing a form. In response to this context, the system can offer the user help. Not
only that, this help can be tailored to the user by taking account of the concepts in
which the user showed interest, concluded from her current navigation path and
behavior. As explained later, adaptation such as this is based on using semantic
annotation of a page and its structural elements (e.g. hyperlinks).

A second reason to use ontologies is that ontologies used in rules can make
adaptation logic more explicit. This declarative representation, expressed as rules
using concepts and relations from the ontology, helps the domain experts inspect,
understand and even modify the rationales behind adaptive functionality. For
example, the hierarchical organization of e-Government services allows the expert to
model adaptation rules on a more abstract level, i.e., covering more than one concrete
service (e.g. building permission service, independently of the type of building such
as house, office, etc). This reduces significantly the number of rules and makes
maintenance of the system much easier.

Finally, ontologies facilitate sharing knowledge between portals, especially for
those offering similar services (e.g. two municipalities in one state are similar). For
example, the best practices gathered in issuing building permits in one portal (e.g.
inexperienced users need an additional explanation regarding the hyperlink “required
documents”) can be easily transferred to other portals that implement the same
regulations for issuing building permits. This sharing is greatly facilitated by the fact
that all of the terms used (e.g. additional explanation, hyperlinks, “required
documents” etc.) are well defined. It is clear that the benefits for the users as well as
for e-Government are enormous, since the public administration can improve its
performance at much less expense.

4.2 Ontology-Based Model of Adaptive Portals

Since the data relevant for adaptation is rather sparse, or a great deal of interpretation
must be done to turn it into actually useful information, we have developed the
ontology-based model of adaptive portals. This model (the so-called Portal
Adaptation Ontology) is used to decide if an adaptation should take place and how to
do that. A part of the ontology is shown in Figure 1. The full version can be found in
[5]. The ontology represents all aspects relevant for adaptation such as Web site
structure (Web Portal Ontology), Web site content (Content Ontology), user profiles
(User Ontology), and Web site usage data as well as knowledge about the adaptation
process itself (Adaptation Ontology). Ajax-enabled Web pages as well as the UI
elements contained by those pages will be annotated with individuals and concepts
form the Portal Adaptation Ontology.

 On Enriching Ajax with Semantics: The Web Personalization Use Case 691

Page

Element

Hyperlink

User

SkillCategory

Entity

DomainEntity

Service

ServiceLevel

GettingInformation

StartingService

FullAutomation

Adaptation

Term

hasSynonym

Permission

Building
Permission

HouseBuidling
Permission

OfficeBuilding
Permission

Content
Adaptation

Presentation
Adaptation

Link
Adaptation

HeadPage

consistsOf

Event

MouseRelated
Event

KeyboardRelated
Event

hasDuration

hasPrevious

hasInterest

hasSkillCategory

Novice AvarageUser
Expert

isAbout

refers

appliesTo

PortalEntity

relatedTo

activates

hasServiceLevel

Behavior
Ontology

Web Portal
Ontology

Adaptation
Ontology

Content
Ontology

User
Ontology

isUsingService

MouseOver
Event

startedAt

ToolTip

Fig. 1. A part of the Portal Adaptation Ontology showing several entities of the included
ontologies as well as dependencies between them

Web Portal Ontology: The way that the Web site is physically laid out as well as the
structure of each page can be useful toward understanding usage behavior and
interpreting system suggestions. Additionally, the semantic information about the
reasons why the structure exists in the way that it does may also be useful. Thus, the
Web Portal Ontology contains entities representing the types of pages (such as Head
Page, Navigation Page, FAQ, Combined Page etc.) and the structural elements of a
page (e.g. Hyperlink, Figure, Table, Content, etc.). We note here that information
about page structure can be used to derive or to verify the type of a page [6]. For
example, a Navigation Page is a page with small content/link ratio; short time spent
on page and is not a maximal forward reference.

Content (Domain) Ontology: The content1 of Web pages themselves is essential to
determining particular topical interests and understanding the relationships between
pages. The Content Ontology consists of concepts and relations modeling the
meaning of services/information offered by an e-Government portal. This includes
already existing categorization2 of e-Government services (such as residential affairs,

1 By ‘content’ we assume the meaning and not the syntax of a page.
2 It has been developed based on the existing standards for modeling life events such as the

Swiss Standard eCH-001 that aims to give an overview over all relevant e-Government
services in Switzerland and therefore to provide a consistent and standardized classification of
the services.

692 K.-U. Schmidt et al.

residential permissions, identification, certifications, naturalization citizenship,
moving, education, etc.) as well as typical e-Government terminology (e.g. building
permission, building application, etc.).

User Ontology: The user is modeled through the concept User and its properties such
as hasInterest, hasSkillCategory, etc. As already mentioned the values of these
properties are determined on the basis of user actions during the session. For example,
to determine the interest of the user the content/meaning of the pages the user visited
is taken into account. Indeed, semantic annotation of pages using the entities from the
Content Ontology is used to derive this information. Returning to the example from
Section 2, the system would conclude that the user has a strong interest in the
concepts associated with the two moused-over hyperlinks, since these concepts define
the meaning of hyperlinks.

The hierarchy of user skill categories includes, at the first level, concepts such as
Novice, AverageUser and Expert. For example if a user often goes back to the
previously visited page, then we assume she is overwhelmed and has become unable
to navigate effectively and is therefore classified as a novice. We note that the skill
category of the user implicitly applies only to the service that the user is currently
using, since the scope of the user categories is limited. That is that the categories are
not valid on the global portal level but on page/service3 level. For instance a user
familiar with building applications might be categorized as an experienced user on the
appropriate pages in the e-Government portal which deals with building applications.
On the other hand, she might be a domain novice when trying to enroll her child in a
public school.

Behavior Ontology: The most important data set is the recording of interactions of
users with the Web site, in other words, the way that the Web site is used. Even
though, this is by far the most abundant collection of data, provided by Ajax, it is,
however, the least informative on its own and needs to be enriched with semantics
and interpreted.

However, interpreting event data is difficult if the data is not normalized into a
common, complete, and consistent model. This entails not only reformatting the data
for better processing and for achieving readability, but also breaking it down into its
most granular pieces. For example, the system has to be able to recognize all mouse-
related events such as mouse-down, mouse-move, mouse-out, mouse-over, mouse-up,
etc. Moreover, interpretation involves filtering out unwanted information to reduce
analytical errors or misrepresentations. For example, the system should be able to
condense the received events into a single event directly indicating a problem.
Returning to the example from the beginning of this section, the adaptation should be
generated only if two mouse-over events occur sequentially within a session. Finally,
interpretation involves acquiring more information from outside the scope of the
original event data, for example, from a page the event occurred on (e.g. replacing the
meaningless information such as name and target of a hyperlink with the meaning of
this hyperlink).

3 A page must be annotated with the service it belongs to in order to enable the system to link

the user with a service.

 On Enriching Ajax with Semantics: The Web Personalization Use Case 693

To cover all these requirements we have developed the Behavior Ontology that
structures information about the user’s interactions and relationships and/or
dependencies between interactions. The main purpose of the ontology is to store all
the interactions of the user which might help to identify her experience, actual context
and goals.

The most important concept of this ontology is the concept Event that describes
what happened, why it happened, when it happened, and what the cause was. The
structure of the hierarchy of events reflects the underlying technology used for
capturing events, i.e. Ajax. For example, events are decomposed at the first level into
the event categories: keyboard, button, mouse, focus and general events. Each of
these categories is further specialized. For example, keyboard-related events
occurring when a user hits a key contain events such as key-down, key-up and key-
press. The category of general events cover load, unload, submit, error handling, etc.

Adaptation Ontology: This ontology was derived from the taxonomy of adaptive
hypermedia systems [2]. We distinguish between content, presentation and link
adaptation. Each of these types can be further categorized. For example, adaptation of
navigation which realizes adaptation by changing the links of the system (i.e.
LinkAdaptation) can be realized by several techniques such as DirectGuidance,
LinkSorting, LinkHiding, LinkAnnotation, LinkGeneration or MapAdaptation. Each
technique might also be realized in several ways. For example, LinkHiding concerns
links that are not considered relevant for a user (at the current time), and can be
realized by hiding, disabling or removing links.

As shown in Figure 1, all the previously mentioned ontologies are combined in the
Portal Adaptation Ontology that models adaptive functionality formally and
explicitly. Moreover, it is enriched with rules4, as discussed below, to enable
automation of the adaptation process. In this way, we provide a logical
characterization of self-adaptive e-Government systems. We note here that we use the
OWL-DL ontology language to represent ontologies. Rules are encoded in the
SWRL5 language, and the KAON26 inference engine is used to perform ontology and
rule-based reasoning.

We classify the rules into two types based upon their roles in the adaptation process:

Categorization Rules: These rules assign a current user to the predefined user
categories. For example7, a user is an expert for a service, if she uses a bookmark to
load a page representing this service.

FORALL hasSkillCategory(U,"Expert")
User(U) AND Service(S) AND isUsingService(U,S) AND
Page(P) AND refers(P,S) AND bookmarkUsage(E) AND
relatedTo(E,P) AND activates(U,E).

4 Concepts and relations defined in the Portal Adaptation ontology directly or indirectly through

included ontologies are used in rules.
5 Semantic Web Rule Language: http://www.w3.org/Submission/SWRL
6 KAON2: http://kaon2.semanticweb.org/
7 Note that all terms used in these examples belong to the Portal Adaptation Ontology. Addi-

tionally, due to complexity of SWRL format, rules are represented using FLOGIC syntax.

694 K.-U. Schmidt et al.

Adaptation Rules: These rules automate corrective actions, i.e. adapt the content,
structure or layout of a page to the current user based on the category to which she
belongs. For example, if a user is not an expert, and if she spent more than 100ms
reading a tool tip of some element on a page, then context-sensitive and content-
sensitive help explaining the meaning of this element should be shown to this user.

FORALL D ShowAdditionalInformation(T,D)
User(U) AND hasSkillCategory(U,"Expert") AND
MouseOver(E) AND activates(U,E) AND hasDuration(E,t)
AND greater(t,TimeConstant8) AND ToolTip(T) AND
relatedTo(E,T) AND DomainEntity(D) AND refers(T,D).

5 Bringing Together Semantics and Ajax

In this section we relate the ontologies, introduced in the previous section to Ajax
technology, and describe how their combination enables adaptivity. There are four
key elements to achieving adaptivity: annotation, event interpretation and correlation,
the user model and adaptation to the user. These four are explained in the initial part
of this section. Then a more detailed description of the user model is given. After that
we discuss the main challenges of integrating semantics and Ajax.

The fundamentally new in the idea to marry Ajax with the semantic Web is that
JavaScript events are associated with concepts, thereby, becoming meaningful
‘words’ in the interaction with the user. By means of appropriate annotations, the
context of JavaScript events can be recognized and the portal can react accordingly.
The annotations come from our Portal Adaptation Ontology (see Section 4) and are
stored in a knowledge base.

Semantics are indirectly associated to events by annotating the UI elements which
fire events as the user interacts with the portal. The UI elements, also called Widgets,
of an Ajax page can be annotated with concepts from the Content Ontology (see
Section 4) e.g. the concept of a building application in an e-Government context.
They can also be annotated with concepts related to the purpose of the widget e.g.
with the concept of ‘navigation’ for a widget meant to navigate the user to a sought-
after service.

Events on their own, even when coupled with semantics, are not enough. First,
sequences of events have to be correlated into more meaningful units. Thus, simple
JavaScript events like mouse over events are combined into compound events, which
can, in turn, be a starting point for subsequent correlations. A compound event can
consist in such a way of multiple simple events. Based on the list of the compound
events, a model of the user can be derived, i.e. a proper instantiation of the Behavior
Ontology (see Section 4) will be generated.

The user model is the basis for adaptation. One attribute of the user model is the
user category. Categories are pre-defined, either on the basis of a priori knowledge, or
on the basis of offline categories discovered by data mining. When possible a user is
classified into one of these pre-defined categories. This is done on the basis of the

8 TimeConstant is a numerical value that is dynamically changed based on the log

information.

 On Enriching Ajax with Semantics: The Web Personalization Use Case 695

context information extracted from the semantic concepts related to the simple and
compound events. The list of events and the context of the user derived from it, as
well as the user category are the essential attributes of the user model that enable
adaptation.

Adaptation rules evaluate the current user model and generate abstract actions,
which can be interpreted by the portal to adapt to the user. Abstract actions must then
be converted by the portal into concrete changes to the user interface. For example,
from an adaptation rule, it might follow that the user is lost in the portal shallows, and
needs an assistance window in order to reach her goal. The adaptation rule only
specifies that an assistance window is needed. The content of the assistance window
is derived from the semantics of the events and from UI-elements linked with those
events. In this way, the exact conversion of the adaptation directives conforms to the
style sheets used by the portal.

In these last few paragraphs of this section, we take a closer look at the user model
and the advantages of SWRL rules. All significant events generated by user
interactions are collected and stored in logical event queues. The chronological
sequence of the events is guaranteed by the assignment of a time stamp to each event.
The rules for the correlation of events are expressed in SWRL. One advantage of
using SWRL is that the Portal Adaptation Ontology can be accessed by the rules
directly. A further advantage is that SWRL can be serialized as an OWL ontology.
Thus, reasoning support is available.

As discussed previously, SWRL rules are used to classify the user into a category.
They are also used to derive abstract actions to adapt the portal to the user. Like the
events, the actions are stored chronologically in a queue ordered by a time stamp.

Both logical queues are modeled in the Behavior Ontology during design time and
serve as client-side data structures driving the portal adaptation. The event queue
stores the JavaScript a.k.a. Ajax events and the action queue stores the resulting
adaptation steps.

5.1 Challenges Integrating Semantics and Ajax

The combination of Semantics and Ajax brings many advantages for dynamic portal
adaptation. But this does not come for free. While starting the implementation of our
solution we were faced with a lot of tricky challenges, all resulting from moving user
tracking from the server to the client-side.

The decision to react to user behavior at the level of JavaScript events leads to a
rich and verbose user model. With every new JavaScript event, the user model, and
thus the user context, may change. Every such change requires execution of rules. For
this reason, rule execution on the server-side, by means of the asynchronous
communication facility of Ajax is infeasible; it would overload the server. So, we
needed to move rule execution to the client-side. Therefore the major challenge is to
implement rule execution in the client, which has limited resources and limited
programming libraries.

That is, we have to deal with adaptation on the client-side, adaptation based on
JavaScript event streams, and JavaScript only programming capabilities. Taking these
constraints into account the following concrete challenges arise.

696 K.-U. Schmidt et al.

• Resource saving ontology-based model of adaptive portals
• Annotating Ajax pages with semantic concepts from the ontologies
• Extracting semantic annotations on the client-side
• Rule-based portal adaptation and Execution of rules on the client-side
• Portal specifics, dynamic Web pages and self-adaptivity

5.1.1 Resource Saving Ontology-Based Model of Adaptive Portals
We have already solved this challenge by carefully designing and implementing the
ontologies for portal adaptation with respect to the limited resources at the client-side
and to the rich user model conditioned by the verbose Ajax events (see Section 4).

Because of the resource restrictions in typical browser environments we developed
new and rather small user model and behavior ontologies and did not reuse already
existing but large user model ontologies like GUMO [7]. In GUMO a rich user model
is proposed with many concepts and properties not applicable to the domain of
adaptive portals.

5.1.2 Annotating Ajax Pages with Semantic Concepts from the Ontologies
The challenge here is to establish a link between the UI elements of an Ajax page and
the concepts of the Portal Adaptation Ontology that describe them. The annotation of
HTML pages with RDF triples was already a topic of several investigations and there
exist a couple of solutions [8]. However, because we wanted to avoid deep changes to
the portal we decided to follow a different approach.

Our idea is to store the semantic descriptions in a knowledge base. The knowledge
base is an extra ontology that is not directly integrated into the Web pages, but is left
on the server together with the other ontologies. But the open question is how to link
all relevant UI elements of an Ajax page to the concepts which provide the semantic
context information. This can be done using the optional id attribute provided by
nearly every HTML element. As all UI elements of an Ajax page are in fact HTML
elements, we can add the optional id attribute to every UI element we want to
annotate. In order to establish a link between the annotations stored in the knowledge
base and the UI elements described by them, a special property was introduced in the
ontology. This property carries the value of the id attribute of an UI element. Thus,
whenever information is needed for a certain UI element, the id serves as a link to its
semantic annotations.

However, this raises further challenges: How to guarantee the unambiguity of the
identifiers, and how to access the ontology containing the annotations from the
browser?

5.1.3 Extracting Semantic Annotations on the Client-Side
As discussed above we are in favor of using a separate ontology for storing the
semantic annotations of the portal. That saves us from dealing with the awkward
extraction of Metadata embedded directly in the HTML page. It also saves us from
cumbersome XML and ontology processing. The challenge is how to access the Portal
Adaptation ontologies stored on a Web server from the browser on the client-side.

Based on the work done in [9] we developed a prototypical Java library that
translates ontologies to JavaScript objects. These objects can be directly accessed and
evaluated within an Ajax page. A first promising candidate for the encoding of the

 On Enriching Ajax with Semantics: The Web Personalization Use Case 697

ontologies in JavaScript is JSON [10]. The JSON string encoding the ontologies can
be accessed by the Ajax page using its asynchronous communication facility.

Another issue for further investigation is to perform reasoning over the ontologies
in the browser with JavaScript. Although, there exist at least one inference engine
supporting JavaScript and backward-chaining reasoning [11] we decided not to use a
reasoner on the client-side. There are mainly two reasons which caused this decision:
Firstly, we already can perform the externalization9 of the ontology at the server. This
is only done once in advance on the server and thus has no negative implication on
the portal adaptation at runtime. Secondly there is no explicit need for doing
reasoning on the client-side because all HTML elements are also annotated in
advance and thus well know before runtime.

Not covered by externalization are the JavaScript events and the adaptation actions
because they are dynamically created at runtime. But events and actions are annotated
via their targets, that is, the UI elements they are connected with. So we don’t need
reasoning at runtime. At this stage, having the Portal Adaptation ontologies and the
link from the HTML elements to the ontologies, the open questions are: what is the
most appropriate representation of the Portal Adaptation ontologies at the client, and
what is the best way to synchronize the user model on the client with the user model
on the server-side, in case there are rules to be executed at the server-side.

5.1.4 Rule-Based Portal Adaptation and Execution of Rules on the Client-Side
The challenge here is to develop easy to maintain rules taking into account the
semantic knowledge of annotated JavaScript events. Four rule types have to be
designed: Extraction, correlation, categorization and adaptation rules. Extraction rules
add the semantic annotations from the knowledge base to the core JavaScript events.
Since the events are only indirectly annotated by their target UI elements, some logic
is necessary to combine the events with the semantics. Correlation rules combine
simple JavaScript events and their semantics to an interpretable user behavior.
Categorization rules evaluate the semantics of JavaScript events in order to categorize
the current user properly. Based on the user categories, adaptation rules will propose
appropriate adaptation strategies.

A promising rule language for OWL ontologies is SWRL. However, first
prototypical implementations already show that SWRL might not be sufficient, as we
also need production rules in order to fire adaptation actions. Thus, a further
investigation of SWRL and other rule languages is necessary.

In order to tackle this challenge of dealing with the extraction, correlation,
categorization and adaptation rules, we developed as an initial solution a server-side
component that translates SWRL rules into JavaScript control statements, and into
JavaScript objects or arrays, respectively. As JavaScript can be executed easily by any
Web browser, the extraction, correlation, categorization, as well as the adaptation
rules can now be executed at the client-side to guarantee instant portal adaptation.

To reduce the complexity of the client-side JavaScript rules, a two-stage rule-
handling approach will be introduced. Simple rules are transformed into JavaScript by
a server-side component, and are executed directly on the client-side. Complex rules,

9 With externalization we mean the transformation of implicit knowledge of an ontology into

explicit knowledge by reasoning.

698 K.-U. Schmidt et al.

with no time critical consequences for UI adaptation, remain on the server-side, in
order to utilize the powerful features of ontology processing and reasoning, as well as
rule execution frameworks at the server-side. Server-side rules are triggered and their
results are evaluated by JavaScript callback functions encoded into the Ajax page,
leveraging the XMLHttpRequest object for asynchronous communication.

5.1.5 Portal Specifics, Dynamic Web Pages and Self-adaptivity
So far, only static Web pages using the Ajax technology were examined. The open
question is what effort must be made in order to support complex portals with
dynamic Web pages. Another challenging area is portal self-adaptivity to achieve
continual improvement. Some relevant open research questions are: Which collected
data about the user and the user behavior should be recorded for the purpose of long-
term adaptation? How can this data be used to check the effectiveness of adaptation
rules and discover new adaptation needs?

6 Related Work

Related work to our approach includes standard models of adaptive hypermedia like
[12], recent semantic-based personalization systems [13], [14] and Ajax-based
personalized systems [15].

Comparing our work with standard models for adaptive hypermedia systems like
e.g. AHAM [12], we observe that they use several models like conceptual,
navigational, adaptational, teacher and learner models. Compared to our approach,
these models correspond to ontologies presented in Section 4, but miss their formal
representation. Moreover, we express adaptation functionalities as encapsulated and
reusable OWL-DL rules, while the adaptation model in AHA uses a rule based
language encoded into XML.

The Personal Reader [13] provides a framework for designing, implementing and
maintaining Web content readers, which provide personalized enrichment of Web
content for each individual user. The adaptive local context of a learning resource is
generated by applying methods from adaptive educational hypermedia in a semantic
Web setting. Similarly [14] focuses on content adaptation, or, more precisely, on
personalizing the presentation of hypermedia content to the user. However, both
approaches do not focus on the on-line discovery of the profile of the current user that
is one of the main features of our approach. Another difference would be the self-
adaptivity.

Recently some work has been done regarding the usage of Ajax for personalization,
like [15]. However, our approach resolves the problem of the syntactical processing of
the user’s click stream by combines Ajax with semantic technologies. Indeed, our
approach enables semantic interpretation of the user’s behavior in a portal.

7 Conclusion and Outlook

This paper presented an approach to achieving user-adaptivity that combines Ajax
with Semantic Web technologies. Three major advantages to this approach were

 On Enriching Ajax with Semantics: The Web Personalization Use Case 699

discussed. First, with this approach, user-adaptation can be more accurate and more
appropriate. Better accuracy is possible because Ajax enables finer-grained tracking
of user behavior, and semantic annotation enables meaningful interpretation of this
more accurate record of behavior. More appropriate adaptation is enabled by the
richer set of options for adaptation offered by Ajax, which makes a Web application
more like a desktop application.

A second advantage of the approach is that domain experts can inspect, understand
and modify the adaptation logic, since it is expressed in the form of explicit rules.
Moreover, hierarchical organization of rules makes them easier to maintain.

A third major advantage is that adaptation rules can be shared by groups, like
public administrations, that agree to use the same ontologies, since the rules are
formulated using concepts from ontologies.

Currently we are working on solving the open research challenges. We are
implementing our ideas prototypically in an Ajax-enabled JBoss Portal10. After
finishing this, we will first evaluate our prototype, and afterwards implement parts of
it in real e-Government portals.

Acknowledgements

The work is based on research done within the FIT project – Fostering self-adaptive
e-Government service improvement using semantic technologies. The FIT project is
co-funded by the European Commission under the "Information Society
Technologies" Sixth Framework Program (2002-2006).

References

1. Jameson, A.: Adaptive Interfaces and Agents. Chapter in Jacko, J. A., Sears, A. (eds.):
Human-Computer Interaction Handbook (2nd ed.). Erlbaum, Mahwah, New Jersey (2006)

2. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. In User Modelling and
User-Adapted Interaction, 6(2-3):87–129, July 1996

3. Mobasher, B., Cooley, Srivastava, J.: Automatic Personalization Based on Web Usage
Mining. Communication of ACM, 43(8):142–151, August 2000

4. Garrett, J. J.: Ajax: A New Approach to Web Applications. http://adaptivepath. com/
publications/essays/archives/000385.php, February 2005, retrieved on 2006-11-13

5. Stojanovic, L., et al., D2: Framework for self-adaptive e-Government. Available as
Deliverable D2, EU/IST Project FIT, http://www.fit-project.org/index.htm, 2006

6. Thomas, S.M., et al., D4: Identification of typical problems in e-Government portals.
Available as Deliverable D4, EU/IST Project FIT, http://www.fit-project.org/index.htm,
2006

7. Heckmann, D., Schwartz, T., Brandherm. B., Schmitz, M., von Wilamowitz-Moellendorf,
M.: GUMO - the General User Model Ontology. In Proceedings of the 10th International
Conference on User Modeling, Edinburgh, Scotland, Jun 2005

8. Palmer, S.: RDF in HTML: approaches. http://infomesh.net/2002/rdfinhtml/, 2002,
retrieved on 2006-12-28.

10 JBoss Portal: http://www.jboss.org/products/jbossportal

700 K.-U. Schmidt et al.

9. Kalyanpur, A. et al.: Automatic Mapping of OWL Ontologies into Java. In Proceedings of
the 16th International Conference of Software Engineering and Knowledge Engineering,
pages 98–103, 2004

10. Internet Engineering Task Force: The application/json Media Type for JavaScript Object
Notation (JSON). RFC 4627, 2006, http://www.ietf.org/rfc/rfc4627.txt, retrieved on 2006-
12-28.

11. Euler Proof Mechanism: http://eulersharp.sourceforge.net/, retrieved on 2006-12-28.
12. Bra, P. D., Aerts, A., Smits, D., Stash, N.: AHA! version 2.0: More adaptation flexibility

for authors. In Proceedings of the AACE ELearn'2002 conference, pages 240-246, Oct.
2002

13. Dolog, P., Henze, N., Nejdl, W., Sintek, M.: The Personal Reader: Personalizing and
Enriching Learning Resources using Semantic Web Technologies. AH 2004: International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, 2004

14. Frasincar, F., Houben, G.: Hypermedia presentation adaptation on the semantic Web. In
Proccedings of the 2nd International Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems (AH 2002), Malaga, Spain, 2002

15. Köberl, K.: Erfassen von Benutzerkontextinformationen mit Ajax. MSc thesis, Technische
Universitaet Graz, 2006

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 701–715, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Semantic Web Service Oriented Framework for
Adaptive Learning Environments

Stefan Dietze, Alessio Gugliotta, and John Domingue

Knowledge Media Institute
Open University

Milton Keynes, MK7 6AA, UK
{s.dietze,a.gugliotta,j.b.domingue}@open.ac.uk

Abstract. The current state of the art in supporting e-learning objectives is
primarily based on providing a learner with learning content by using metadata
standards. Due to this approach, several issues have to be taken into account – e.
g. limited re-usability across different standards and learning contexts and high
development costs. To overcome these issues, this paper describes an
innovative semantic web service-oriented framework aimed at changing this
data- and metadata-based paradigm to a highly dynamic service-oriented
approach. Instead of providing a learner with static data, our approach is based
on fulfilling learning objectives based on a dynamic supply of services.
Therefore, we introduce a semantic layer architecture to abstract from existing
learning data as well as process metadata standards by using Semantic Web
Service (SWS) technology. Furthermore, our approach is based on abstract and
reusable learning process models describing a learning process semantically as
a composition of learning goals. Based on the formal semantic descriptions of
learning goals as well as web services, services appropriate to achieve a specific
learning goal can be selected, composed and invoked dynamically. This
supports a high level of re-usability since a dynamic adaptation to different
learning contexts and requirements of individual learners is achieved while
utilizing standard-compliant learning applications. To illustrate the application
of our approach, we describe a prototypical implementation utilizing the
introduced approach based on the SWS framework WSMO.

Keywords: Semantic Web Services, Service oriented Architecture, WSMO, E-
Learning, IRS III, IMS Learning Design.

1 Introduction

Current approaches to support a learning objective are fundamentally based on
providing a learner with appropriate learning content – the so called learning objects.
Composite learning objects contain the learning resources - the physical data assets –
as well as a description of the learning process to be followed by the learner. The
latter usually is based on existing metadata standards - IEEE LOM [9], ADL SCORM
[1] – based on IMS Simple Sequencing - or IMS Learning Design (IMS LD) [15].
Due to the approach of allocating learning resources – whether services or data - at

702 S. Dietze, A. Gugliotta, and J. Domingue

design-time of a learning process model, the actual learning context – known at
runtime only – cannot be considered. This means, a new learning content package has
to be developed for every different learning scenario or individual needs of specific
learners. For instance, a package suiting the needs of a learner with specific
preferences – e. g. his native language or technological platform - can suit only this
specific requirements and cannot be reused across different learning contexts. The
identified limitations (cf. [2], [16], [6]) can be summarized as follows:

L1. Limited appropriateness and dynamic adaptability to actual learning contexts.
It is assumed that every learning objective occurs in a specific context which is
defined by e. g. the preferences of the actual learner. Learning data is allocated
at design-time what limits the appropriateness of the data to the actual learning
context. Moreover, the use of data excludes the dynamic adaptability a priori.
In parallel to data-centric approaches, analogous issues can also be observed
with service-oriented approaches. However, in that case, these issues are
related to the allocation of services only.

L2. Limited reusability across different learning contexts and metadata standards.
Due to L1, for every different learning context having distinct requirements or
learner needs a new learning content package has to be developed. Since
metadata is described based on standard-specific specifications, an individual
content package cannot be reused across different standards. Besides that, the
current approach limits opportunities for reusing available learning data and
service repositories.

L3. High development costs. Due to L1 and L2, high development costs have to be
taken into account when developing standard-compliant E-Learning packages.

To overcome these issues, the approach described in this paper changes this data- and
metadata-based paradigm to a dynamic service-oriented approach based on Semantic
Web Service (SWS) technologies.

SWS are aimed at enabling a automatic discovery, composition and invocation of
available Web services. Based on semantic descriptions of functional capabilities of
available Web services, a SWS broker automatically selects and invokes Web
services appropriate to achieve a given goal.

IRS-III [5], the Internet Reasoning Service, is an implementation of a SWS broker
environment. It provides the representational and reasoning mechanisms, which
enable the dynamic interoperability and orchestration between services as well as the
mediation between their semantic concepts. IRS-III utilizes a SWS library based on
the reference ontology Web Service Modelling Ontology (WSMO) [26] and the
OCML representation language [7] to store semantic descriptions of Web services and
knowledge domains.

WSMO is a formal ontology for describing the various aspects of services in order
to enable the automation of Web service discovery, composition, mediation and
invocation. The meta-model of WSMO defines four top level elements: Ontologies,
Goals, Web Services and Mediators. Whereas Ontologies describe the terminology
and its semantics used by Web Services, Web Service descriptions describe the
capabilities and interfaces of a particular service. Moreover, Goals describe a task
from a user perspective and Mediators handle data and process interoperability issues

 A Semantic Web Service Oriented Framework for Adaptive Learning Environments 703

that arise when handling heterogeneous systems. As a result, we enable the automatic
allocation of the adequate services at runtime – not only data – and the integration of
a wide variety of learning resources – whether data or services.

The following section of the paper outlines the issues of current learning
technologies which are addressed with this paper. Section 3 then describes our
approach of using a SWS oriented architecture to support learning processes followed
by a section describing our ontological framework. The fifth section explains a SWS
oriented architecture implemented as a first prototype and the used development
principles. Finally, we summarize the contributions of our work, draw a conclusion
and provide an outlook to future work related to our approach.

2 Related Work

Several approaches follow the idea of using semantic Web or Web service
technologies to provide dynamic as well as personalized support for learning
objectives.

To quote a few examples, [16] as well as [3] are concerned with bridging learning
contexts and resources by introducing semantic learning context descriptions. This
allows the adaptation to different contexts based on reasoning over the provided
context ontologies, but does not provide solutions for building complex adaptive
learning applications by reusing distributed learning functionalities. Moreover, [16] is
entirely based on IMS LD.

[4] follows the idea of using a dedicated personalization web service which makes
use of semantic learning object descriptions to identify and provide appropriate
learning content. Integration of several distributed learning services or service
allocation at runtime is not within the scope of this approach. The related research on
a Personal Reader Framework (PRF) introduced in [8], [13] and [14] allows a
mediaton between different services based on a socalled ”connector service”. The
composition of complex learning applications based on distributed services is not
within the scope of the PRF.

The work described in [22], [23] utilize semantic web as well as web service
technologies to enable adaptation to different learning contexts by introducing a
matching mechanism to map between a context and available learning data. However,
neither it considers approaches for automatic service discovery nor it is based on
common standards. Hence, the reuse and automatic allocation of a variety of services
or the mediation between different metadata standards is not supported. These issues
apply to the idea of ”Smart Spaces” for learning as well (cf. [24]).

Whereas the majority of the described approaches enable context-adaptation based
on runtime allocation of learning data, all of them do not enable the automatic
allocation of learning functionalities neither it does enable the integration of new
functionalities based on open standards. Nevertheless, all approaches do not envisage
mappings between different learning metadata standards to enable interoperability not
only between learning contexts but also between platforms and metadata standards.

704 S. Dietze, A. Gugliotta, and J. Domingue

3 Semantic Web Service Based E-Learning Applications: Vision
and Approach

This section describes our vision as well as the approach to support e-learning based
on semantic web services.

3.1 Vision: Context-Adaptation Through Automatic Service Selection and
Invocation

To overcome the limitations described above, we consider the automatic allocation
and invocation of functionalities at runtime. A typical learning related service
functionality provides the learner for instance with appropriate learning content or
topic-specific discussion facilities. Learning processes are described semantically in
terms of a composition of user objectives (goals) and abstract from specific data and
metadata standards. When a specific learning goal has to be achieved, the most
adequate functionality is selected and invoked dynamically regarding the demands
and requirements of the actual specific context. This enables a highly dynamic
adaptation to different learning contexts and learner needs.

This vision is radically distinctive to the current state of the art in this area, since it
shifts from a data- and metadata-centric paradigm to a context-adaptive service-
oriented approach. Moreover, using adequate mappings, our standard-independent
process models can be translated into existing metadata standards in order to enable a
reuse within existing standard-compliant runtime environments.

Addressing the limitations L1 and L2 identified in Section 0, we consequently
reduce the efforts of creating learning process models (L3): one unique learning
process model can adapt dynamically to different process contexts and can be
translated into different process metadata standards.

 3.2 Approach: Semantic Abstraction from Process Metadata, Functionalities
and Data

Our approach is fundamentally based on utilizing SWS technologies to realize the
following principles. To support these principles, we introduce several layers as well
as a mapping between them in order to achieve a gradual abstraction (Figure 1).

1. Abstraction from Learning Data and Functionalities. To abstract from
existing learning data and content we consider a Web Service Layer. It operates
on top of the data and exposes the functionalities appropriate to fulfill specific
learning objectives. This first step enables a dynamic supply of appropriate
learning data to suit a specific context and objective. Web services at this layer
may make use of semantic descriptions of available learning data. In order to
abstract from these functionalities (Web services), we introduce an additional
layer – the Semantic Web Service Layer. This layer enables the automatic
selection, composition and invocation of appropriate Web services for a specific
learning context. This is achieved on the basis of formal semantic, declarative
descriptions of the capabilities of available services which enable the dynamic
matching of service capabilities to specific user goals.

 A Semantic Web Service Oriented Framework for Adaptive Learning Environments 705

2. Abstraction from Learning Process Metadata. A first layer concerned with the
abstraction from current learning process metadata standards is the Semantic
Learning Process Model Layer. It allows the description of processes within the
domain of E-Learning in terms of higher level domain concepts - e. g. learning
goals, learners or learning contexts. This layer is mapped to semantic
representations of current learning metadata standards in order to enable the
interoperability between different standards. To achieve a further abstraction
from domain specific process models – whether it is e. g. a learning process, a
business process or a communication process – we consider an upper level
process model layer – Semantic Process Model Layer. For instance, this layer
supports the mapping between learning objectives and business objectives to
support all kind of organizational processes.

Data Abstraction

Process Metadata Abstraction

Semantic Process Model Layer

Semantic Learning Process Model Layer

Learning Metadata Standard Layer

mapping

mapping

Learning
Designer

Learner

Learning Data Layer

Semantic Web Service Layer

uses

mapping

Learning
Service
Provider

Web Service Layer

mapping

Fig. 1. Semantic layer architecture for supporting learning processes through SWS

Based on mappings between the described layers, upper level layers can utilize
information at lower level layers. In particular, we consider mappings between a
learning objective and a WSMO goal to enable the automatic discovery and
invocation of a Web service (Web Service Layer) from, for instance, a standard-
compliant learning application (Learning Application Standard Layer). As a result, a
dynamic adaptation to individual demands of a learner within a specific learning
context is achieved by using existing standard-compliant learning applications. It is
important to note, that we explicitly consider mappings not only between multiple
semantic layers but also within a specific semantic layer.

706 S. Dietze, A. Gugliotta, and J. Domingue

4 The Ontological Framework

This section describes an ontological framework aimed at implementing the
introduced semantic layers.

4.1 Staged Ontological Mapping

To implement the described semantic layer architecture, we follow an approach of a
staged ontological mapping between semantic models of a process at different levels
of abstraction. Therefore, our approach considers different ontologies aimed at
providing abstract semantic descriptions of data as well as processes.

The following figure gives an overview of the main ontological representations
considered in our approach as well as their relationships:

Fig. 2. Conceptual overview of proposed ontological framework

To enable mappings between different learning metadata standards, a higher level
ontology is introduced, to model the learning process from a general point of view -
independent from any supported platform or learning technology standard. This
Learning Process Modelling Ontology (LPMO) implements the Semantic Learning
Process Model Layer and is mapped to ontological representations of learning process
models based on current e-learning metadata standards. Currently, representations of
the following metadata standards are foreseen: adlScormO (The ADL SCORM 2004
Ontology); imsLdO (The IMS Learning Design Ontology); ieeeLomO (The IEEE
LOM Ontology).

 A Semantic Web Service Oriented Framework for Adaptive Learning Environments 707

The next level in our staged mapping approach abstracts from the specialised
process – e.g. learning process or business process – to a general process ontology.
This is the Upper Process Ontology (UPO) which implements our Semantic Process
Model Layer and is currently being developed as part of the SUPER project [25]. The
UPO enables the description of a process independent from its specific purpose and
can be mapped to domain specific process ontologies, e. g. the LPMO. In order to
enable a high level of interoperability of our ontologies, we intend to align the LPMO
as well as the UPO to the DOLCE foundational ontology [12] as well as to the
DOLCE Descriptions and Situations ontology (DDnS) [11].

Furthermore, the UPO is mapped to the WSMO standard. Therefore, a gradual
mapping between a standard learning application and WSMO entities is achieved
based on these ontologies. It has to be highlighted, that our ontological architecture
explicitly considers mappings not only between several semantic layers but also
within a specific semantic layer. This enables for example the mapping of our LPMO
concepts to other existing semantic descriptions of learning related concepts.
Furthermore, it has to be taken into account that the proposed ontologies are currently
implemented only partially, since this work is ongoing research at the moment.

4.2 Semantic Learning Process Model Layer

From an e-learning perspective, the LPMO has to be perceived as the central ontology
within our architecture, since it describes the semantics of a learning process from a

Fig. 3. Conceptual model of parts of the LPMO and key mappings to the UPO and the WSMO
framework

708 S. Dietze, A. Gugliotta, and J. Domingue

general point of view and independent from any supported platform or learning
technology standard. Figure 3 depicts an extract of the proposed LPMO containing
some of its main concepts as well as some mappings to some key concepts within
different semantic layers.

As shown below, a learning objective as defined in the LPMO is mapped to a
upo:Goal – which represents a central concept within the Semantic Process Model
Layer. This concept is furthermore mapped to the wsmo:Goal concept which
represents one of the main concepts of the Semantic Web Service Layer and enables
the mapping and matching of appropriate web services. Besides the proposed
mappings between several semantic layers, mappings are also considered within a
specific layer to enable a wide applicability of our approach. E. g. semantic concepts
of our LPMO can be mapped to other existing semantic concepts representing
learning-related entities within different approaches – e. g. learning process modules
as defined in [19], [17].

5 A SWS Based Framework for E-Learning - Prototype
Application Based on IMS Learning Design and WSMO

In order to validate the technical feasibility of the described approach, a first
prototype was implemented. In this section, we describe an application based on IMS
Learning Design as well as the WSMO framework. The application implements an
initial use case by utilizing the semantic layers and fundamental concepts as
introduced in 3.2.

5.1 Use Case: An Adaptive IMS LD Learning Package to Support Language
Learning

Within our supported scenario, several learners request to learn different languages:
English, German and Italian. It is assumed, that all learners have different preferences
– e.g. their spoken native language or technical environment. Following the current
approach of creating standard-compliant learning content packages, for every
individual learner a specific package would have to be created in order to achieve a
high level of appropriateness to the individual learner needs. Based on our
application, we enable all learners to use the same learning content package – an IMS
LD compliant content package. This is achieved by enabling a dynamic adaptation to
the individual learner requirements based on a dynamic selection and invocation of
semantic web services at runtime.

For example, a learner is authenticated as a person with the native language
“English” and wants to learn the language “German”. By following a learning process
as defined in the content package, the learner will be provided with learning content
appropriate to his specific native language as well as his current learning objective –
an English-based online learning unit aimed at teaching the German language. Due to
the dynamic adaptation at runtime, the standard-compliant learning process could suit

 A Semantic Web Service Oriented Framework for Adaptive Learning Environments 709

all kind of different individual requirements. Since our approach is fundamentally
based on the principles described in section 0, this scenario could be extended in the
future to achieve a dynamic adaptation to all kind of different learning contexts or
learner requirements.

5.2 A SWS Oriented Architecture

To implement a software architecture aimed at supporting our semantic web service
based approach, several dedicated software layers have to be provided. The following
figure illustrates the SWS oriented architecture for e-learning which is utilized in the
prototype application:

SWS Environment IRS III

Learners WSMO Web
Service Developers

WSMO Library

IMSLD Runtime Environment –
Reload IMSLD Player

IMSLD Application Authoring –
Reload IMSLD Editor

WSMO Goals WSMO Services

WSMO Ontologies WSMO Mediators

SOAP Handler

Ontology / SWS Development –
WSMO Studio, IRS III Browser

IMSLD Application
Developers

Invocation Engine

Mediation Handler

Choreography
Interpreter

Orchestration
Interpreter

SWSOA for E-Learning

Learning WS Library
(External)

Semantic Learning Metadata
(External)

Learning WS Library
(Internal)

Learning Content
(External)

Semantic Learner Profiles
(Internal)

Fig. 4. SWS-based software architecture as utilized in the prototype application

The architecture depicted above is fundamentally based on the semantic layers
described in section 3.2. In the figure, a SWS broker based on the WSMO framework
serves as foundation for a dynamic selection, composition and invocation of web
services. Services are distributed across different external repositories and provide
functionalities based on existing learning data and metadata repositories. In addition,
several user interfaces for developing and presenting learning applications as well as
for developing formal semantic descriptions of web services are utilized. Our current
implementation makes use of standard runtime environments and implements a SWS
oriented architecture based on these infrastructural components. For WSMO runtime
processing as well as development environment for WSMO, the SWS broker IRS III

710 S. Dietze, A. Gugliotta, and J. Domingue

[5] is used, whereas editing and runtime processing of IMS LD is supported by the
Reload Learning Design Editor and Player [21].

5.3 Implementation Approach

To support the described scenario based on an SWS-based approach the following
items had to be provided:

• An IMS LD-compliant content package describing the learning activities and
objectives

• Web services able to achieve the objectives
• Semantic descriptions of available services based on WSMO
• Ontologies implementing the semantic layers as described above
• Mappings between the semantic layers as well as the IMS LD standard.

As starting point, initial semantic representations of the LPMO, IMS LD as well as
utilized content objects were provided in terms of OCML [7] ontologies to implement
the Semantic Learning Process Model Layer. To support individual learner
preferences, we particularly consider semantic learner profiles which describe the
native language of every learner.

The web services utilized in this demonstrator were partly developed within the
LUISA project [18] which is aimed at providing innovative learning content
management technologies based on a SWS oriented architecture. Additional services
were provided to support e. g. the authentication of the learner, the retrieval of
semantic learner profiles or the retrieval of learning content. In addition, the mappings
between the semantic layers were implemented as web services – e. g. a mapping
between the Semantic Web Service Layer and the Semantic Learning Process Model
Layer.

Besides that, a learning process was described based on the IMS LD standard and
included into a IMS Content Package. The learning process in our example defines
some learning activities (imsld:Activities) as well as corresponding sequencing
information. Instead of grounding these activities to static learning data, no static
resources were associated with this learning process. In contrast, only references to
the described WSMO-Goals were associated with every learning activity within the
IMS LD metadata. At runtime, a WSMO-Goal then dynamically invokes a WSMO-
web service which shows the appropriate capabilities to achieve the specific goal. The
mapping between the IMS LD metadata and appropriate WSMO-Goals was achieved
by associating IMS LD learning activities with HTTP-references to a web applet
enabling to request the achievement of a specific WSMO-goal from the SWS broker.

5.4 Ontological Mappings

As described above, we created mappings between the initial implementations of
semantic representations of the IMS LD standard, the LPMO and WSMO. This

 A Semantic Web Service Oriented Framework for Adaptive Learning Environments 711

includes e. g. a mapping between the lpmo:Objective and the objective description
used within the IMS LD metadata (imsld:Objective). Furthermore, semantic learning
object descriptions based on the LPMO are mapped to learning content provided by
the Open Learn Project [20] based on an initial ontology representing this specific
learning content objects. Besides that, a web service implements the mapping between
the language of a content object (ol:Language) and the native language of the learner
(lpmo:Language).

It has to be highlighted, that our current prototype does not implement the mapping
to the UPO. Instead of that, our learning process was mapped directly to WSMO,
since the UPO currently is not supported by any software RTE. The following figure
depicts the main ontological mappings as implemented in our prototype:

Fig. 5. Ontological mappings implemented and utilized in the prototype

5.5 Dynamic Adaptation at Runtime

In our example scenario, several web services are invoked to retrieve semantic
learning metadata, learner profile descriptions and e-learning content as well as to
map between different semantic concepts. An initial service first authenticates the
learner and retrieves the semantic learner profile description. After providing an
individual objective, our application dynamically selects and invokes semantic web
services appropriate to the individual learner preferences and his specific objectives –
as defined in the IMS LD metadata.

For example, a learner is authenticated as an English-speaking person
(lpmo:Language=English) and uses an IMSLD package to learn the language
German. Therefore, an imsld:Activity with the imsld:Objective “Learn German” is
mapped to a WSMO-goal to achieve this learning activity. This triggers the selection,
orchestration and invocation of different web services to achieve the described
mappings and to retrieve appropriate learning content. The following OCML code

712 S. Dietze, A. Gugliotta, and J. Domingue

listing shows the partial capability description of a web service able to provide
learning content to teach the language German:

 (DEF-CLASS ACHIEVE-IMSLD-OBJECTIVE-GERMAN-WS-CAPABILITY
 (CAPABILITY)
 ?CAPABILITY

 ((USED-MEDIATOR :VALUE ACHIEVE IMSLD-OBJECTIVE-GERMAN-MED)
 (HAS-ASSUMPTION
 :VALUE
 (KAPPA

(?WEB-SERVICE) (= (WSMO-ROLE-VALUE ?WEB-
SERVICE 'HAS-IMSLD-OBJECTIVE)"Learn
German")))

(HAS-NON-FUNCTIONAL-PROPERTIES :VALUE ACHIEVE-IMSLD-
OBJECTIVE-GERMAN-WS-CAPABILITY-NON-FUNCTIONAL-
PROPERTIES)))

Listing 1. Partial source code of a web service capability description

In the listing above, a WSMO description defines the assumption of a web service
that the objective provided by the IMS LD package has the Value “Learn German”.
The imsld-Objective is furthermore mapped to the lpmo:Objective concept in order to
invoke another service for retrieving semantic metadata of an appropriate learning
object based on the lpmo:Objective. The retrieved object identifier is used to obtain
an Open Learn object appropriate to the individual language of the learner and its
current objective. An appropriate learning object is then presented dynamically in the
IMS LD runtime environment.

Figure 6 depicts a screenshot of the Reload IMS LD Player while presenting the
developed standard-compliant IMS Content Package and dynamically invoking SWS
appropriate to fulfill the given learning objective “Learn German”.

Fig. 6. Reload IMS Learning Design Player while dynamically invoking SWS for e-learning

 A Semantic Web Service Oriented Framework for Adaptive Learning Environments 713

The current prototype implements the basic approach of a standard-compliant
SWSOA for e-learning as described here, and will be extended in the future in order
to address existing limitations. Furthermore, the described approach was already
applied to another e-learning standard - ADL SCORM 2004.

6 Conclusions

Our approach - the support of learning objectives based on a dynamic invocation of
SWS at runtime of a learning process model - follows an innovative approach and is
distinctive to the current state of the art in this area. By using semantic web as well as
SWS technology this approach overcomes the limitations described in Section 0 and
provides a high level of openness to reuse existing service and data repositories.
Based on existing standards – SWS as well as E-Learning standards - new learning
data as well as application functionalities can be integrated by our SWS oriented
architecture. Furthermore, a high level of standard-compliancy and re-usability within
existing runtime environments is supported. In particular, the following contributions
should be taken into account:

• Dynamic adaptation to specific learning contexts at runtime
• Reuse and integration of available learning resources – services and data
• Automatic allocation of learning resources based on comprehensive semantics
• High reusability across learning contexts
• Platform- and standard-independence
• Decrease of development costs

Furthermore, our approach can lead to contributions for developing domain-
specific SWS applications in general, since we consider mappings between the
WSMO standard and higher-level process modeling as well as learning process
modeling standards. This enables the development of complex SWS based
applications and therefore several benefits are envisaged:

• Re-usability of SWS based applications based on semantic mappings with existing
process metadata standards

• Utilization of established standard-compliant software environments to implement
complex SWS based architectures

Since our framework is developed only in parts currently, next steps have to be
concerned with the implementation of complete ontological representations of the
introduced semantic layers as well as of current E-Learning metadata standards and
their mappings. For example, currently the Semantic Process Model Layer is not used
and semantic mappings between the Learning Process Model Ontology and available
process metadata standards are only developed in extracts. Nevertheless, the
availability of appropriate Web services aimed at supporting specific process
objectives has to be perceived as an important prerequisite for developing SWS based
applications. To provide more valid quantifications of the expected benefits, further
case studies are needed to illustrate the formalized measurements introduced in the

714 S. Dietze, A. Gugliotta, and J. Domingue

sections above. Besides that, future work could also be concerned with the mapping
of semantic process models across different process dimensions – e. g. business
processes or learning processes to enable a complete integration of a SWSOA in an
organizational process environment.

References

1. Advanced Distributed Learning (ADL) SCORM 2004 Specification
(http://www.adlnet.org).

2. Amorim, R. R., Lama, M., Sánchez, E., Riera, A., & Vila, X. A. (2006). A Learning
Design Ontology based on the IMS Specification. Journal of Educational Technology &
Society, 9 (1), 38-57.

3. M. Baldoni, C. Baroglio, V. Patti, and L. Torasso. Using a rational agent in an adaptive
web-based tutoring system. In Proc. of the Workshop on Adaptive Systems for Web-Based
Education, 2nd Int. Conf. on Adaptive Hypermedia and Adaptive Web-based Systems,
pages 43-55, Malaga, Spain, 2002.

4. M. Baldoni, C. Baroglio, I. Brunkhorst, N. Henze, E. Marengo and V. Patti: A
Personalization Service for Curriculum Planning. ABIS 2006 - 14th Workshop on
Adaptivity and User Modeling in Interactive Systems, Hildesheim, October 9-11 2006.

5. Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Norton, B., Tanasescu, V., Pedrinaci,
C.: IRS-III: A Broker for Semantic Web Services based Applications. In proceedings of
the 5th International Semantic Web Conference (ISWC 2006), Athens, USA (2006).

6. Collis, B. and Strijker, A. (2004). Technology and Human Issues in Reusing Learning
Objects. Journal of Interactive Media in Education, 2004 (4). Special Issue on the
Educational Semantic Web [www- jime.open.ac.uk/2004/4].

7. J. Domingue, E. Motta and O. Corcho Garcia (1999). Knowledge Modelling in WebOnto
and OCML: A User Guide, available from:
http://kmi.open.ac.uk/projects/webonto/user_guide.2.4.pdf.

8. Dolog P., Henze, N., Nejdl, W., Sintek, M., Personalization in Distributed elearning
Environments, In Proc. Of WWW2004 – The 13th international World Wide Web
Conference, 2004.

9. Duval, E. (2002). 1484.12.1 IEEE Standard for learning Object Metadata, IEEE Learning
Technology Standards Committee, http://ltsc.ieee.org/wg12/.

10. Fischer, G. and Ostwald, J. (2001). Knowledge Management: Problems, Promises,
Realities, and Challenges, IEEE Intelligent Systems, 16-1(60-72).
http://citeseer.ist.psu.edu/489331.html.

11. Gangemi, A., and Mika, P. Understanding the Semantic Web through Descriptions and
Situations. In Meersman, R.; Tari, Z.; and et al., D. S., eds., Proceedings of the On The
Move Federated Conferences (OTM’03), LNCS. Springer Verlag.

12. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening
Ontologies with DOLCE. In: A. Gómez-Pérez , V. Richard Benjamins (Eds.) Knowledge
Engineering and Knowledge Management. Ontologies and the Semantic Web: 13th
International Conference, EKAW 2002, Siguenza, Spain, October 1-4, 2002.

13. Henze, N., Personalized e-Learning in the Semantic Web. Extended version of 4.
International Journal of Emerging Technologies in Learning (iJET), Vol. 1, No. 1 (2006).

14. Nicola Henze, Peter Dolog, and Wolfgang Nejdl: Reasoning and Ontologies for
Personalized E-Learning. Educational Technology & Society, 2004, Vol. 7, Issue 4.

15. IMS Learning Design Specification (http://www.imsglobal.org).

 A Semantic Web Service Oriented Framework for Adaptive Learning Environments 715

16. Knight, C., Gašević, D., & Richards, G. (2006). An Ontology-Based Framework for
Bridging Learning Design and Learning Content. Journal of Educational Technology &
Society, 9 (1), 23-37.

17. Koper, R. (2004). Use of the Semantic Web to Solve Some Basic Problems in Education:
Increase Flexible, Distributed Lifelong Learning, Decrease Teacher's Workload. Journal of
Interactive Media in Education, 2004 (6). Special Issue on the Educational Semantic Web.
ISSN:1365-893X [www-jime.open.ac.uk/2004/6].

18. LUISA Project - Learning Content Management System Using Innovative Semantic Web
Services Architecture (http://www.luisa-project.eu/www/).

19. Naeve, A., Sicilia, M. A. (2006), Learning Processes and processing learning: from
organizational needs to learning designs, ADALE workshop at the Adaptive Hypermedia
conference, Dublin, June 20-23, 2006.

20. Open Learn Project: Online Educational Resources (http://openlearn.open.ac.uk/).
21. Reload Project (http://www.reload.ac.uk/).
22. Schmidt, A., Winterhalter, C. User Context Aware Delivery of E-Learning Material:

Approach and Architecture, Journal of Universal Computer Science (JUCS) vol.10, no.1,
January 2004.

23. Schmidt, A., Bridging the Gap Between E-Learning and Knowledge Management with
Context-Aware Corporate Learning (Extended Version), In: Professional Knowledge
Management (WM 2005), Post Proceedings, Springer, 2005.

24. Simon, B., Dolog., P., Miklós, Z., Olmedilla, D. and Sintek, M. (2004). Conceptualising
Smart Spaces for Learning. Journal of Interactive Media in Education, 2004 (9). Special
Issue on the Educational Semantic Web. ISSN:1365-893X [http://www-
jime.open.ac.uk/2004/9].

25. SUPER – Semantics Utilized for Process Management within and between Enterprises
(http://www.ip-super.org/).

26. WSMO Working Group, D2v1.0: Web Service Modeling Ontology (WSMO). WSMO
Working Draft, (2004). (http://www.wsmo.org/2004/d2/v1.0/).

Semantic Composition of Lecture Subparts for a
Personalized e-Learning

Naouel Karam, Serge Linckels, and Christoph Meinel

HPI, University of Potsdam, Germany
{naouel.karam,serge.linckels,christoph.meinel}@hpi.uni-potsdam.de

Abstract. In this paper we propose an algorithm for personalized learn-
ing based on a user’s query and a repository of lecture subparts —i.e.,
learning objects— both are described in a subset of OWL-DL. It works
in two steps. First, it retrieves lecture subparts that cover as much as
possible the user’s query. The solution is based on the concept covering
problem for which we present a modified algorithm. Second, an appro-
priate sequence of lecture subparts is generated. Indeed, the different
lecture subparts are only reachable when a given prerequisite is fulfilled,
i.e., the learner must have a minimal background knowledge to be able to
assimilate the requested learning object. Therefore, our algorithm takes
into account the user’s knowledge to generate a personalized lecture com-
position and suggests a flow of learning objects to the user.

1 Introduction

The Semantic Web aims to provide computer-processable information on the
Internet. It extends the current Web through the use of standards, markup
languages and related processing tools. The recent development of Semantic Web
technologies has a great impact on e-Learning. Indeed, the semantic annotation
of learning resources for the aim of automated retrieval and sequencing is fully
in the stream of the Semantic Web. Recent efforts on standardization led to the
definition of Learning Objects (LOs) as reusable units of educational content
that can be sequenced into larger units to allow personalized learning [17,11].

The availability of LOs in electronic form increases dramatically. Hence, the
task of finding the appropriate information becomes more and more awkward
and time consuming.

In this paper we propose the algorithm LectureComposer for personalized
learning that takes as input a user’s query and a repository of LOs, both de-
scribed in a subset of OWL-DL. The algorithm works in two steps. First, it
retrieves LOs that cover as much as possible the user’s query. Note that these
LOs can belong to different original lectures. Second, it composes a sequence of
LOs according to required prerequisites. The composition takes into account the
user’s knowledge about the subject in order to propose the best sequence for the
retrieved LOs.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 716–728, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Semantic Composition of Lecture Subparts for a Personalized e-Learning 717

For the first issue, we propose to use the concept covering problem, recently
introduced for a subset of OWL-DL [9]. It is stated as follows:

Given an ontology T and a query description Q, find a combination of
concepts from T that contains as much as possible of common informa-
tion with Q and as less as possible of extra information w.r.t. Q.

In our solution the concept covering problem allows to select a subset of LOs
from the repository that covers as much as possible the user’s query.

The work presented here has been developed in the context of the Web Uni-
versity project [2], which aims at exploring novel internet- and IT-technologies
in order to enhance university teaching and research. Our solution can be used
by learners to dynamically compose a personalized lecture according to their
needs and according to their current knowledge about the subject. It is able to
identify the missing information in the yielded results—i.e., the data that is not
available in the repository—and the required parts that are needed to fulfill the
user’s background knowledge. Our solution is particularly interesting for edu-
cation in a self-directed learning environment, where it fosters autonomous and
exploratory learning. It will be integrated to the e-Librarian Service "CHESt"
[14] which allows students to enter questions in natural language, and yields only
semantically relevant multimedia resources to the students needs.

The remainder of the paper is organized as follows. Section 2 presents an
overview of Description Logics and recalls the definition of the concept covering
problem. Section 3 describes the formalization of the LO composition problem.
Our proposed algorithm is detailed in section 4. An illustration of the algorithm
is given in section 5. Section 6 concludes the paper and outlines future work.

2 Description Logics

Description Logics (DLs) [5] are a family of knowledge representation formalisms
that allow to represent the knowledge of an application domain in a structured
way and to reason about this knowledge. DLs play an important role in the
definition of languages for the Semantic Web [3]. Indeed, the OWL sub-language
OWL-DL is based on DLs.

2.1 Preliminaries

In DLs, the conceptual knowledge of an application domain is represented in
terms of concepts (unary predicates) such as Network and Protocol, and roles
(binary predicates) such as hasProtocol and hasTopology. Concepts denote sets
of individuals and roles denote binary relations between individuals.

Based on basic concept and role names, complex concept descriptions are built
inductively using concept constructors. The different DLs languages distinguish

718 N. Karam, S. Linckels, and C. Meinel

themselves by the kind of constructs they allow. Examples of concept constructs
are the following:

– top-concept � and bottom-concept ⊥ denote all the individuals in the do-
main and the empty set respectively,

– conjunction �, e.g., StarTopology � RingTopology denotes topologies that are
both, star and ring topology (mixed topology),

– value restriction ∀r.C, e.g., Network �∀hasTopology.StarTopology denotes net-
works that have only a star topology,

– existential restriction ∃r.C, e.g., Network � ∃hasProtocol.TCPIP denotes net-
works that support the TCP/IP protocol.

Concept descriptions are used to specify terminologies that define the in-
tentional knowledge of an application domain. Terminologies are composed of
inclusion assertions and definitions. The first impose necessary conditions for an
individual to belong to a concept, e.g., to impose that Internet is, among other
things, a network that supports only the protocol TCP/IP, one can use the
inclusion assertion: Internet � Network � ∀hasProtocol.TCPIP. Definitions allow
to give a meaningful name to concept descriptions, e.g., to define that a home
network is a LAN based only on a star topology one can write: HomeNetwork .=
LAN � ∀hasTopology.StarTopology.

top

Network

BusTopologyWANLAN

Protocol

TCPIP

Topology

StarTopologyRingTopology

Fig. 1. Sample of a concept hierarchy about networking

DL systems provide various reasoning services. One of the most important is
subsumption, which is the basis of the concept hierarchy (see figure 1). Formally, a
concept description D subsumes a concept description C (noted C � D) if every
interpretation assigns to C a set of individuals included in the one assigned to D.

By opposition to early standard inferences in DLs, newly introduced inferences
are called non standard inferences. Among these inferences we use the least
common subsumer [4], which stands for the least concept description (w.r.t.
subsumption) that subsumes a given set of concept descriptions.

Another non standard inference is the difference operation. Introduced in [16],
it allows to remove from a given description all the information contained in an-
other description. In some DLs, the difference may contain descriptions which

Semantic Composition of Lecture Subparts for a Personalized e-Learning 719

are not semantically equivalent. Teege defines necessary conditions for a DL to
have a semantically unique difference. Those DLs are said with structural sub-
sumption. Among others, the language EL—which allows for conjunction (�),
existential restriction (∃r.C) and the top concept (�)—satisfies this property.
We use this language in the context of our project. In DLs with structural sub-
sumption, the subsumption test can be reduced to the test of inclusion between
clause1 sets. See [16] for further details.

This definition of difference requires that the second argument subsumes the
first one. However, the difference C − D between two incomparable descriptions
C and D can be given by constructing the least common subsumer of C and D:
C − D = C − lcs(C, D).

2.2 The Concept Covering Problem

The concept covering problem [9] defines a cover of a concept C w.r.t. a ter-
minology T as being the conjunction of some defined concepts in T that share
some information with Q. Based on two non standard inferences in DLs—i.e., the
least common subsumer (lcs), and the difference operation—a cover is formally
defined as follows:

Definition 1. Let L be a DL with structural subsumption, T be an L-terminology
and ST = {Si, i ∈ [1, n]} the set of concept definitions occurring in T . A cover of a
L-concept description Q 	≡ ⊥ using the terminology T is a conjunction E of some
names Si from T such that Q − lcs(Q, E) 	≡ Q.

The best cover is defined based on the remaining information in the query (called
Rest) and in the cover (called Miss).

Definition 2. Let Q be an L-concept description and E a cover of Q using T .
The rest of Q w.r.t. to E, written RestE(Q) is defined as follows: RestE(Q) .=
Q − lcsT (Q, E).

The missing information of Q w.r.t. E written MissE(Q) is defined as follows:
MissE(Q) .= E − lcsT (Q, E).

The best cover is the one with the smallest Rest and Miss.

Definition 3. A concept description E is called a best cover of Q using a ter-
minology T iff:

– E is a cover of Q using T , and
– there does not exists a cover E′ of Q using T such that

(|RestE′(Q)| , |MissE′(Q)|) < (|RestE(Q)| , |MissE(Q)|), where RestE(Q)
= Q − lcsT (Q, E), MissE(Q) = E − lcsT (Q, E), and < stands for the
lexicographic order.

An algorithm to compute the best cover based on hypergraphs theory was in-
troduced in [9]. It is defined for DLs with structural subsumption.
1 A clause is a term of conjunction that cannot be decomposed into the conjunction

of other terms.

720 N. Karam, S. Linckels, and C. Meinel

3 The LO Composition Problem

3.1 The Notions of Learning Object and Composition Flow

We suppose that lectures (or other educational content) can be split into sub-
parts. Each subpart is an educational entity that is about a precise subject in
the lecture. We call such a subpart a Learning Object (LO). For example, we
split a 90 minutes lecture about "Internetworking" that contains 80 slides into
27 LOs.

Related projects like [7] search for a set of LOs w.r.t. a user’s query that
is reachable with the user’s knowledge. However, if the user’s knowledge is not
sufficient to reach the requested LO, no result is returned at all. Our solution
returns a result even if the user’s knowledge is not sufficient. In that case, the
missing knowledge is identified and added to the proposed composition flow.

The problem is formalized as follows. Given a learning request Q and a repos-
itory of learning objects {LO1, ..., LOn}, find a composition of LOs that covers
the user’s query as much as possible.

Some LOs may require prerequisites. This means that the user’s background
knowledge must satisfy the prerequisites before he can reach the requested LOs.
In our solution, the LOs are organized in a way that the user can acquire such re-
quired knowledge by reading other LOs. Those complementary LOs are detected
by the system and added to the resulting composition flow.

3.2 Computing the Lecture Cover

The user’s query and his background knowledge are denoted Q and BK respec-
tively. The knowledge offered by a learning object LOi and the prerequisites
required to reach that LO are denoted LOi and PRi respectively. If the user
has no knowledge about the subject, then BK = �. In the same way, when no
prerequisites are needed to reach a LOi, then PRi = �.

For the sake of clarity, we use the following notations. Given a set of LOs
S = {LO1, ..., LOn}:

– LOS denotes the knowledge offered by all the LOs in S, i.e., the conjunction
LO1 � ... � LOn,

– PRS denotes the prerequisites needed to access all the LOs in S, i.e., the
conjunction PR1 � ... � PRn.

Self-contained Set of LOs. A self-contained set of LOs w.r.t. a background
knowledge BK must satisfy the following conditions:

– at least one LO is reachable with the user’s background knowledge BK, and
– every remaining LO must be reachable with the background knowledge BK

augmented by the knowledge offered by some other LOs.

Formally, a self-contained set against a background knowledge is defined as
follows.

Semantic Composition of Lecture Subparts for a Personalized e-Learning 721

Definition 4. Given a set of LOs S = {LO1, ..., LOn}, S is a self-contained set
against a background knowledge BK if:

– there exists at least one LOi, 1 ≤ i ≤ n such that BK � PRi, and
– ∀1 ≤ i ≤ n, if BK 	� PRi then there exists a set Sp ⊆ S such that BK �

LOSp � PRi.

Lecture Cover. We define a lecture cover according to a user’s query as a
self-contained set against the user’s background knowledge that shares some
information with the query.

Definition 5. Let L be a DL with structural subsumption, Q a L-concept de-
scription, S = {LOi, i ∈ [1, k]} a set of LOs and T = {LOi, i ∈ [1, k]} a
L-terminology describing the knowledge offered by S. A lecture cover Sc is a set
of LOs Sc ⊆ S such that:

– S is a self-contained set against BK, and
– Q − lcsT (LOSc , Q) 	≡ Q.

The best lecture cover is the one with the minimal non-covered part in the query.

Definition 6. A best lecture cover of a query Q over a set of LOs S is a set
Sc ⊆ S such that:

– Sc is a lecture cover of Q, and
– there exists no lecture cover S′c of Q using S such that

∣
∣Q − lcsT (LOS′

c
, Q)

∣
∣ <

|Q − lcsT (LOSc , Q)|, where < is the lexicographic order from the defini-
tion 3.

3.3 Computing the Flow

Once the lecture cover Sc is computed, the identified LOs are assembled into an
appropriated sequence, called the composition flow. The method is the following:

– at each step:
• compute the set of LOs reachable with the user’s background knowledge

(BK), noted Sr, with Sr ⊆ Sc,
• add the set Sr to the composition flow,
• remove Sr from Sc,
• update the user’s knowledge (BK′) with the knowledge of the LOs in Sr:

BK′ = BK � LOSr ,
– the process stops when no more LO remains in the lecture cover Sc.

Remark 1. We suppose that no cycle can occur in a self-contained set S. We
define the notion of cycle in a set of LOs S as follows. Let LO1 and LO2 be
LOs in S. We say that LO1 directly requires LO2 if LO2 � C � PR1, where
C is some concept description. We call "requires" the transitive closure of the
relation "directly requires". Then, S contains a cycle iff there exists a LO in S
that requires itself.

722 N. Karam, S. Linckels, and C. Meinel

4 An Algorithm for Lecture Composition

Our algorithm to solve the LO composition problem is called LectureComposer.
It is based on the algorithm ComputeBCov proposed in [9] for solving the best
covering problem.

4.1 The Best Covering Algorithm

The problem of computing the best covers of a concept is reduced to searching
for transversals with minimal cost of a hypergraph constructed from T and Q.
Before describing the process we recall the definition of a hypergraph and a
transversal.

Definition 7. A hypergraph H is a pair (Σ, Γ) of a finite set Σ = {V1, ..., Vn}
and a set Γ of subsets of Σ. The elements of Σ are called vertices, and the
elements of Γ are called edges.

A transversal of a hypergraph is a subset that hits all the edges of the hypergraph.
Formally, it is defined as follows.

Definition 8. A set T ⊂ Σ is a transversal of H if for each ε ∈ Γ , T ∩ ε 	= ∅.
A transversal is minimal if no proper subset T ′ of T is a transversal.

According to [9], we build the hypergraph HSQ corresponding to a concept Q
and a set of LOs S = {LOi, i ∈ [1, k]} as follows:

– each concept name LOi, i ∈ [1, k] is associated with a vertex VLOi , and
– each clause Ai ∈ Q is associated to an edge eAi with eAi = {VLOi

|
Ai ∈≡ lcs(Q, LOi)}, where ∈≡ stands for membership modulo equivalence2

of clauses.

The algorithm follows a classical approach for computing the minimal transver-
sals with some improvements. It works in n steps, where n is the number of edges
in the hypergraph. Starting from an empty set of transversals, it explores each
edge of the hypergraph—one edge in each step—and generates a set of candidate
transversals by computing all the possible unions between the candidates gener-
ated in the previous step and each vertex in the considered edge. At each step,
the non-minimal candidate transversals are pruned. Heuristics and combinatorial
optimization techniques [6] are used to discard non-minimal transversals at early
steps.

As our definition of the best cover does not take into account a preference
criteria between best covers, it is not necessary to compute all the transversals
of the hypergraph. Thus, we adopt a deep first strategy for computing transver-
sals as described in [13]. The idea is to compute a transversal of the partial
hypergraph and then add the next hyperedge to it. Instead of computing all the
transversals that follow, pick only one and add the next hyperedge. When no
2 Two concept descriptions C and D are called equivalent (C ≡ D) if CI = DI for all

interpretations I.

Semantic Composition of Lecture Subparts for a Personalized e-Learning 723

more hyperedge remains, the algorithm backtracks to the previous level and picks
the next transversal, etc. In this way the first transversal is displayed quickly.
As we need only one transversal, the process can stop after the computation of
the first transversal. We call the modified algorithm ComputeFirstBCov.

In summary, our algorithm computes from all possible best concept covers
only the first one that it finds. The advantage is that a solution—i.e., a best
cover—is found quickly, because not all combinations in the hypergraph have to
be explored.

4.2 The Composition Algorithm

Our algorithm (depicted in figure 2) takes as input a query Q and a set of LOs S.
First, the best cover of Q w.r.t. S is computed (line 1). As explained in section 4.1,
this corresponds to identifying the LOs that cover best the user’s query. The result
of the cover is the first transversal Tr of the corresponding hypergraph HSQ.

Require: a query Q, a set of LOs S = {LOi, i ∈ [1, k]}.
Ensure: Tr
1: Tr = ComputeF irstBCov(S ,Q)
2: P = PRTr − lcsT (BK � LOTr , PRTr)
3: while P �≡ � do
4: for each edge E ∈ ΓP do
5: Tr ← the next transversal obtained by adding E to Γ .
6: end for
7: P = PRTr − lcsT (BK � LOTr, PRTr)
8: end while

Fig. 2. The algorithm LectureComposer

Second, the prerequisites—to reach the LOs in the lecture cover—are updated
(line 2). All the prerequisites that are not covered by the user’s background
knowledge or by the knowledge given by other LOs in Tr are identified.

Third, the best cover for the required prerequisites is computed. Technically,
the hyperedges of each clause in the prerequisites’ definitions are added incre-
mentally following the deep-first strategy, and the transversal of the obtained
hypergraph is computed (lines 4 – 6). The notation ΓP is used to denote the set
of hyperedges corresponding to the clauses of the concept description P .

Again the prerequisites are updated as described above (line 7).
The process is repeated until no more uncovered prerequisites remain (line 3).
We ensure that the algorithm terminates because all the prerequisites are in

the repository and because no cycle can occur (see remark 1).
The next theorem proves that the algorithm LectureComposer returns a

transversal Tr that corresponds to the best composed lecture cover of the query
Q over a set of LOs S.

724 N. Karam, S. Linckels, and C. Meinel

Theorem 1. Let L be a DL with structural subsumption, Q a L-concept descrip-
tion, S = {LOi, i ∈ [1, k]} a set of LOs. Then, Tr = LectureComposer(Q, S) is
the best composed lecture cover of Q over S.

Proof. According to definitions 4, 5 and 6 about the best lecture cover of Q
over S, Tr must satisfy the following properties:

(1) there exists at least one LOi, 1 ≤ i ≤ n such that BK � PRi,
(2) ∀1 ≤ i ≤ n, if BK 	� PRi then there exists a set Tr ⊆ S such that BK �

LOTr � PRi,
(3) Q − lcsT (LOTr, Q) 	≡ Q, where T = {LOi, i ∈ [1, k]} is the L-terminology

describing the knowledge offered by S,
(4) there exists no lecture cover Tr′ of Q using S such that |Q − lcsT (LOTr′ , Q)|

< |Q − lcsT (LOTr, Q)|, where < is the lexicographic order of definition 3.

Points (3) and (4) follow directly from the definition of the best cover of a
concept w.r.t. a terminology.

Let us prove point (2). The algorithm returns a set Tr verifying:

PRTr − lcsT (BK � LOTr, PRTr) = �

This is equivalent to:
�

1≤i≤n Pri − lcsT (BK � LOTr, PRTr) = �, which again
is equivalent to: Pri − lcsT (BK � LOTr, PRTr) = �, ∀1 ≤ i ≤ n. From the
definition of the difference operator we now that, if C −D = E then C ≡ E �D,
so we can write:

lcsT (BK � LOTr, PRTr) ≡ PRi, ∀1 ≤ i ≤ n

It follows that:
BK � LOTr � PRi, ∀1 ≤ i ≤ n

Thus, we have proven point (2). Let us now turn to point (1). We have proven
in point (2) that LOTr � BK � PRi, ∀1 ≤ i ≤ n. Now we must prove that for
at least one i ∈ [0, 1] we have BK � PRi. In other terms, this means that for at
least one i ∈ [0, 1] we must prove that LOTr 	� PRi.

Let j ∈ [0, 1], we have: BK�LOTr � PRj . For all LOi ∈ LOTr, LOi 	� PRj ,
otherwise a cycle occurs in Tr. But as stated in remark 1, we suppose that S
is acyclic. Thus, there exists at least one j such that BK � PRj and we have
proven point (1).

5 Illustrating Example

The example is based on a lecture about networking that can be found in the
online tele-TASK archive [1]. A sample of the different LOs in the lecture with
their corresponding prerequisites is shown in figure 3.

The example shows that the LO introducing computer networks (LO1) can
be accessed by beginners because it requires no initial knowledge. The LO about

Semantic Composition of Lecture Subparts for a Personalized e-Learning 725

LO1
.
= ∃ PR1

.
= �

LO2
.
= ∃ PR2

.
= ∃

LO3
.
= ∃ PR3

.
= ∃

LO4
.
= ∃ PR4

.
= ∃

LO5
.
= ∃ PR5

.
= ∃

LO6
.
= ∃ PR6

.
= ∃

LO7
.
= ∃ PR7

.
= ∃ �∃

LO8
.
= ∃ PR8

.
= ∃

LO9
.
= ∃ PR9

.
= ∃

Fig. 3. Examples of LO descriptions and their corresponding prerequisites

star topology (LO7) requires some knowledge about topologies in general (LO6)
and about LAN (LO3). Therefore, this LO can only be accessed if the user’s
background knowledge BK fulfills this requirements.

Let us suppose that the user wants to learn something about topologies in
general and star topology in particular, and that he has a basic knowledge about
computer networks. Formally, this is written as follows:

Q
.= ∃structure.Topology �∃topology.StarTopology

BK .= ∃communicationSystem.Network

The associated hypergraph HSQ = (Σ, Γ) consists on the vertices Σ =
{VLO1 , ..., VLO9} and the edges Γ = {e∃structure.Topology,e∃topology.StarTopology}.
The only minimal transversal is Tr = {VLO6 , VLO7} (see figure 4). It covers
completely the query.

6
V

7
V

topology.StarTopology

structure.Topology

Fig. 4. The hypergraph HSQ

The prerequisites required for the set Tr are:

PRTr =∃communicationSystem.Network�∃structure.Topology�∃Network.LAN

The part of prerequisites that are not covered by the user’s background knowl-
edge or by other LOs is:

P = ∃network.LAN

The new hypergraph H′SQ that is obtained by adding the hyperedges in ΓP

is shown in figure 5.

726 N. Karam, S. Linckels, and C. Meinel

6
V

7
V

3
V

topology.StarTopology

structure.Topology

network.LAN

Fig. 5. The hypergraph H′
SQ

The new minimal transversal is then Tr = {VLO6 , VLO7 , VLO3}. The prereq-
uisites needed for it are:

PRTr =∃communicationSystem.Network�∃structure.Topology�∃network.LAN

The part of prerequisites not covered by the user background knowledge or
by other LOs is:

P = �

Thus, the algorithm stops and returns LO6, LO7 and LO3. Although, LO3 is
not directly requested by the user—i.e., it is not a cover of the user’s query—
it is needed to fulfill the missing prerequisite since the user must have some
knowledge about LAN before being able to learn something about star topology.

6 Discussion

In this paper we have proposed a novel algorithm for personalized lecture compo-
sition based on lecture subparts. We used two non-standard inferences in DLs—
i.e., the least common subsumer (lcs), and the difference operation—to compute
the best cover of the user’s query w.r.t. a repository of LOs. Then, the LOs are
assembled into a composition flow. The algorithm takes into account the user’s
knowledge as well as the sequencing constraints between the LOs in order to
retrieve a comprehensive and self-contained composition flow.

A lot of recent work has focused on personalized e-learning and composition of
LOs [12,7,8,10]. The work presented in [7] is closely related to ours. The authors
introduced a new definition of the concept covering problem that eliminates the
limitation of the DLs to have structural subsumption. It is based on the concept
abduction problem (CAP) which was introduced in [15] to provide an explana-
tion when subsumption does not hold. But, the proposed algorithm returns a
cover which is not necessarily the best one.

As DLs with structural subsumption are expressive enough for our application,
we chose to use the algorithm of Hacid & al. [9] because it always returns the
best cover. Also compared to [7], the novelty of our approach is that it always

Semantic Composition of Lecture Subparts for a Personalized e-Learning 727

proposes a solution to the user. When the user’s knowledge is not sufficient, our
algorithm looks for complementary LOs and adds them to the composition flow
in order to fill the missing knowledge.

Currently, we are improving our prototype that will be integrated in the Web
interface of the online tele-TASK archive [1]. Experiments on real scenarios will
be conducted on a set of lectures about "Internetworking". For this purpose, an
appropriated domain ontology is under development.

In future work, we will improve our algorithm by taking into account fur-
ther criteria for the best composition. We will consider minimizing a number of
parameters like the number of retrieved LOs, optimizing the length of the com-
position flow, and the number of original lectures involved in the composition
flow.

References

1. Tele-TASK – Teleteaching Anywhere Solution Kit. http://www.tele-task.de.
2. Web University project. http://www.hpi.uni-potsdam.de/∼meinel/research/web_

university.html.
3. F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology languages

for the semantic web. In F. Baader, I. Horrocks, and U. Sattler. Description logics
as ontology languages for the semantic web. In D. Hutter and W. Stephan, editors,
Festschrift in honor of J org Siekmann, Lecture Notes in Artificial Intelligence.,
2003.

4. F. Baader, R. Küsters, and R. Molitor. Computing Least Common Subsumers in
Description Logics with Existential Restrictions. In T.Dean, editor, Proceedings
of the 16th International Joint Conference on Artificial Intelligence (IJCAI’99),
pages 96–101. Morgan Kaufmann, 1999.

5. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge: University Press, 2003.

6. Boualem Benatallah, Mohand-Said Hacid, Alain Leger, Christophe Rey, and
Farouk Toumani. On automating web services discovery. The VLDB Journal,
14(1):84–96, 2005.

7. Simona Colucci, Tommaso Di Noia, Eugenio Di Sciascio, Francesco M. Donini, and
Azzurra Ragone. Semantic-based automated composition of distributed learning
objects for personalized e-learning. In The Semantic Web: Research and Appli-
cations 2nd European Semantic Web Conference ESWC 05, volume 3532, pages
633–648. Springer-Verlag, 2005.

8. Robert G. Farrell, Soyini D. Liburd, and John C. Thomas. Dynamic assembly of
learning objects. In WWW Alt. ’04: Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters, pages 162–169, New
York, NY, USA, 2004. ACM Press.

9. M. Hacid, A. Leger, C. Rey, and F. Toumani. Computing concept covers: A pre-
liminary report. In Workshop on Description Logics, 2002.

10. N. Henze. Personal readers: Personalized learning object readers for the semantic
web, 2005.

11. A. Ip, A. Young, and I. Morrison. Learning objects - whose are they? In Proceedings
of the 15th Annual Conference of the National Advisory Committee on Computing
Qualifications ISBN 0-473-08747-2, pages 315–320, 2002.

728 N. Karam, S. Linckels, and C. Meinel

12. Jelena Jovanovic, Dragan Gasevic, and Vladan Devedzic. Dynamic assembly of per-
sonalized learning content on the semantic web. In York Sure and John Domingue,
editors, ESWC, volume 4011 of Lecture Notes in Computer Science, pages 545–559.
Springer, 2006.

13. Dimitris J. Kavvadias and Elias C. Stavropoulos. An efficient algorithm for the
transversal hypergraph generation. J. Graph Algorithms Appl., 9(2):239–264, 2005.

14. Serge Linckels, Stephan Repp, Naouel Karam, and Christoph Meinel. The virtual
tele-task professor—semantic search in recorded lectures. In Ingrid Russell, Su-
san Haller, J.D. Dougherty, Susan Rodger, and Gary Lewandowski, editors, ACM
SIGCSE’07 Technical Symposium on Computer Science Education, pages 50–54,
New York, NY, USA, 2007. ACM Press.

15. Tommaso Di Noia, Eugenio Di Sciascio, Francesco M. Donini, and Marina
Mongiello. Abductive matchmaking using description logics. In Georg Gottlob
and Toby Walsh, editors, IJCAI, pages 337–342. Morgan Kaufmann, 2003.

16. G. Teege. Making the Difference: A Subtraction Operation for Description Logics.
In Jon Doyle, Erik Sandewall, and Pietro Torasso, editors, KR’94: Principles of
Knowledge Representation and Reasoning, pages 540–550. Morgan Kaufmann, San
Francisco, California, 1994.

17. Gottfried Vossen and Peter Jaeschke. Learning objects as a uniform foundation
for e- learning platforms. IDEAS, 2003.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 729–738, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Caravela: Semantic Content Management with
Automatic Information Integration and Categorization

(System Description)

David Aumüller and Erhard Rahm

University of Leipzig
{david,rahm}@informatik.uni-leipzig.de

Abstract. Semantic web content management poses much manual work onto
the community. To reduce this labour we have devised Caravela1, a generic
approach to dynamic content integration and automatic categorization. Content
and documents of different types can be integrated from diverse semi-structured
sources and categorized along multiple dimensions. Automatic linking provides
dynamic categorizations at no user cost. We illustrate our approach by an online
bibliography categorizing scientific research publications.

1 Introduction

With the emergence of semantic technologies, methods for semantically annotating
information are also used in web content management systems and collaborative
environments such as wiki systems. A recent survey of systems for semantic
annotation [17] lists several requirements of such systems, including support for user
collaboration, ontologies, heterogeneous document formats, document evolution,
persistent annotation storage, and automation. Current implementations have
problems to fully meet these requirements. In particular, they incur too much manual
work to add content, categorize content, and deal with the evolution of the content
schema and ontologies.

To better meet the requirement of automation we have devised a new approach to
semantic content management and created Caravela, a generic system for dynamic
content integration and automatic categorization. In addition to functions of a web
content management system it supports multiple taxonomies to semantically
categorize different types of content (e.g. documents, movies, products). It provides
functions to automatically integrate, transform, structure, and categorize content.
Powerful automatic linking creates dynamic categorization without any user effort.
Content can be enriched and periodically refreshed automatically from external web
data sources. Furthermore, content type schema and taxonomy evolution are
supported to meet changed user requirements. Caravela is fully operational and has
e.g. already been used in several instances of a collaborative publication categorizer
and a movie navigator.

1 A caravela is a small, highly manoeuvrable ship, used for exploration.

730 D. Aumüller and E. Rahm

The remainder of this paper is structured as follows. We first illustrate the use of
the generic platform by briefly introducing the publication categorizer application.
We illustrate the underlying architecture of our system in section 3, describing the
content repository supporting evolution. In section 4 we present the main
contributions towards semi-automatic content management, in particular integration,
transformation, and categorization. After presenting related work in section 5 we
conclude with an outlook on further work.

2 Sample Application

Caravela is being used for the development and maintenance of web-based
bibliographies to collect, structure, and classify scientific publications in a particular
domain. While there exist many bibliographic utilities (comprehensive list e.g. on
dmoz.org) most of them focus on the generation of references to include in own
publications. However, there is little tool support for maintaining open, web-
accessible bibliographies to collect relevant publications in dynamic areas, e.g.
semantic web technologies. Such bibliographies should ideally categorize
publications in semantically rich ways and require little manual work to add and
update bibliographic entries. While wiki technology can help to spread the manual
work among many users, automatic content integration and enrichment is very
important to improve the utility of a web-based bibliography. The Caravela platform
can be used to support such requirements.

Fig. 1 shows part of a screenshot of the publication categorizer for papers on
schema evolution [13]. Publications are classified along multiple taxonomies, shown
on the left. In the example domain we use separate taxonomies for research areas,
publication venue, year, citation counts, etc. The mappings between publications and
taxonomies may be many-to-many, e.g. for research areas. Categories exhibit an
occurrence count indicating the number of corresponding publications.

Fig. 1. Publication categorizer, showing publications sorted by citation count

All information to a single publication is presented on one web page, e.g. authors,
title, venue, abstract, fulltext or reviews. To reduce manual work we can automatically
integrate bibliographic data from external sources, e.g. from data sources like Google

 Caravela: Semantic Content Management 731

Scholar, publisher web sites or bibliographic reference files. To enrich existing entries
relevant data sources can dynamically be queried, e.g. to retrieve current citation counts.
We also allow wiki-like manual insertion and editing of instances by interested users.
Some taxonomies and some mappings are automatically generated from existing
attribute values, e.g. for publication year, publication venue or citation count. Key terms
like author names or conference names are automatically extracted and categorized
(“automatic linking”) and offered for navigational access. Standard features like
navigation along the taxonomies, fulltext search, etc. are also supported. Lists of
publications can be sorted by their attributes, e.g. their citation count or year.

3 Generic Content Representation

Fig. 2 shows the architecture of our generic approach to semi-automatic semantic web
content management, Caravela. It consists of three layers providing data storage
(repository), data handling, and data presentation. To limit the implementation effort
and to focus on the new aspects for reducing manual work and semantic
categorization, Caravela uses some functionality of an existing web content
management system (Drupal, drupal.org). In this section we describe the model for
generic content representation and its suitability to evolving content. The methods for
content integration and categorization are described in section 4.

Import Enrichment

User Interface (Navigate, Edit, Manage, Administer)

ExportTrans-
formation

Content Types Taxonomies

Content Instances

R
e
p

o
si

to
ry

Categorizer

Fig. 2. Architecture of the Caravela platform

We use a relational database to persistently and generically store content and
metadata, such as taxonomies. Fig. 3 below illustrates the generic repository structure.
Each content item, e.g. publication or movie, is associated to a particular content type
and described by several attributes. For example, the publication content type
typically has attributes like title, authors, year, and venue. Attributes either store data
in simple data types or comprise whole lists of constituents, e.g. a list of authors. We
intentionally do not store the constituents separately but extract them dynamically
when needed (see 4.3).

As user requirements change in managing content, the underlying content type
needs to be adapted. Content types can be altered (or new ones added) by changing,

732 D. Aumüller and E. Rahm

extending or reducing their attribute lists. Operators for content transformation
provide the means to establish the changes on the content instances. Thus, attribute
values can be atomized by extracting parts of the values into another attribute, e.g. to
extract special bits of data (consider e.g. dates, locations) from verbose text into its
own attribute.

attributes

attribute value with
multiple constituents

terms

taxonomies

content
type 2
content
type 2

interrelated content types
with relationship attribute

mappings

content type

content
type 2
content
type 2

content
type 2
content
type 2

Fig. 3. Content types with various types of attributes and mappings to taxonomies

There may be multiple content types with interrelationships, e.g. a publication
content type relating to a detailed conference content type. We use bidirectional
relationships between content types so that the content instances are accessible from
both directions. For instance, a publication may relate to a conference via a ‘published
in’ relationship, creating a bi-directional navigation path. Complex content evolution
is attributed by being able to promote attributes to their own content type. To establish
a new content type that is to hold a more detailed description of content formerly
residing within a single attribute, we provide data transformations across content
types. This includes the creation of associations between the emerging instances of
the new content type and the instance of the originating content type. For example, a
‘publication venue’ attribute can thus be promoted into its own ‘conference’ content
type, or a list of movie actors into their own ‘person’ content type.

Each content type may have mappings to multiple taxonomies and each content
instance may have multiple correspondences to one or more category terms per
taxonomy. These mappings are stored in the database with links to the taxonomy
terms (Fig. 3).

This simple and generic content representation model eases acquisition and storage
of most types of content. Furthermore, content types and taxonomies can easily be
added or changed thereby supporting schema evolution. The functionalities of
Caravela can be generically extended by providing user-supplied scripts, e.g. to
provide further integration (web scraping) and transformation capabilities. The
current implementation offers content export to other semantic applications.
Furthermore, multiple RSS-feeds provide dynamic content access for other
applications.

 Caravela: Semantic Content Management 733

4 Content Integration and Categorization

Semantic wiki applications (e.g. [2], [4], [11], [18]) can be used to collect any kind of
content along with attribute value pairs and interrelating typed links. Such systems
though impose the need to master specific syntax and/or lack automatisms to work
with the data. With the approaches presented e.g. in [8] and [16], at least the initial
population of information can be automated. The full potential of the Caravela
platform though lies in automating tasks to save effort and quickly add and transform
content. This involves similar data import and transformation tasks as for ETL
processing (extract, transform, load) in data warehousing, i.e. information extraction
(e.g. [1], [10]), data cleaning (e.g. [15]), and information integration (e.g. [5], [14],
[16]), however for documents and web content, where often screen scraping has to
take place (e.g. [7], [9]).

Caravela provides functionalities for automating content integration from the Web,
content transformation, and automatic categorization. To help maintain high quality
content and categorizations all information-editing tasks can also be performed
manually. In the next section we outline the methods to integrate and adjust content
from files and web sources. We then discuss how content instances are categorized
along the taxonomies and how automatic linking is implemented and used, with
special regards on the dynamic extraction of attribute constituents.

4.1 Generic Integration of Semi-structured Information

File import. Caravela provides a comprehensive import facility to integrate sets of
items available in external data sources. To import data from external files, e.g. XML,
RDF, RSS, or CSV files, we adopt a declarative mapping between these document
variants to the attributes of a content type. These mappings are specified via a list of
XPath expressions, denoting for each target content type attributes its source XML
elements. A typical mapping to generate publication instances follows. Here, for each
RDF/item construct in the source a publication content instance will be created and its
attributes filled accordingly:

 rdf:RDF/item --> publication
 ./dc:title --> publication: title
 ./dc:creator --> publication: authors

Web data integration. On a more dynamic level Caravela supports the integration of
external data by querying web services, search engines, and applying web/screen
scraping. Prior to integration each content instance gathered by such services will be
structured internally as list of attribute value pairs. User provided keywords are used
to query a service and retrieve values for all attributes of a content type.

An ad-hoc (light-weight) schema matching takes place to map the available
attributes of the external data source (web service) to the internal attributes of the
according content type. As the schemas of content types usually consist only of few
attributes, we use simple name-based matching using string matchers such as edit
distance, stemming, n-grams, and phonetic matchers such as soundex. Especially the
edit distance measure seems to provide good enough results in our context, as the
threshold can be set to match plural and singular forms, e.g. ‘authors’ and ‘author’, or

734 D. Aumüller and E. Rahm

Fig. 4. Editable web data integration

whether to accept ‘actors’ and ‘authors’ as match or not. To supply mappings that
cannot be determined automatically the user can provide synonyms manually that get
merged with the auto-generated mapping.

Querying a search engine or a web
service with user supplied keywords
usually yields multiple results. Thus,
before the intended content instances
are added into the system the user
chooses the instances of interest from
the list of returned result set. The user
can also adjust and add details much
like in a wiki page by editing and
adding attribute value pairs directly in
the result view (Fig. 4).

Generally, before content instances
get actually integrated into the system
the user may decide whether to
overwrite or skip already existing target
instances, or merely append missing
attribute values. Generic web/screen
scraping is supported by providing
scripts that take care of the web data
extraction and transform the web data
into attribute value pairs, e.g. via
regular expressions. Any web service
can be attached that offers querying the
provided instances by keyword.

Content enrichment. Instead of creating new content instances by manually
supplying keywords, attribute values from existing content instances can be used to
automatically query the services to enrich and complete or update the content by
incorporating related pieces of information from external data sources. To enrich
existing content instances it is necessary to map an existing content instance to an
external instance representing the same real world entity. Using multiple available
attributes of a content instance as query keywords ensures a better object matching. In
Caravela this content enrichment is available as bulk operation for a selection of
existing content instances. As the parameters of such a query operation can be stored,
it can also be made accessible as single-click action that triggers an update of attribute
values of the currently displayed content instance only.

Content mashup. The external content object matching can be used to create a
mashup, i.e. including external content live into a view instead of integrating the
content into the repository. For instance, we present the results of a Google Scholar
author search and author photographs or other images related to the author name in its
own blocks on the right hand side of an author page. Other embeddable content of
interest include maps and calendars depicting e.g. relevant conference locations and
dates.

 Caravela: Semantic Content Management 735

Data transformations. Integrating information from external data sources may yield
inconsistencies such as differently coded values, legacy values, or free form values
that may need to be transformed or aligned and mapped into consistent terms.
Caravela provides operations to transform attribute values of content instances to
achieve such data cleaning. Operations take the specified attribute values of a
selection of content instances and replace them by the transformed values and/or fill
other attributes with it. Operators for transformation are assembled by regular
expressions for search and replace within or across attributes, e.g. replacing instances
of unwanted values by defined ones (e.g. ‘1’ and ‘F’ into female, or ‘Very Large Data
Bases’ into ‘VLDB’). As such search and replace rules may sometimes not suffice,
conversion tables can be incorporated for look-up. More expressive content
manipulation operators can be made available by user-supplied, pluggable scripts that
supply functions to derive calculated values, e.g. to normalize author names into a
consistent representation.

4.2 Categorization Along Multiple Taxonomies

Content instances in Caravela may be categorized along multiple taxonomies.
Offering multiple hierarchies instead of merely one, each taxonomy may be more
clearly defined and thus smaller in size, i.e. more easily to understand and maintain.
Categorizing content results in a faceted classification available for navigation. This
kind of navigation is getting more and more adopted in web applications, e.g. to
narrow down product categories or to browse for images and other media (e.g. see [3],
[11], [12], [19]). Often, the content in these applications is purely read-only from an
end-user perspective or the navigation scheme or categorization is fixed, whereas in
Caravela we offer category adjustments that instantly update navigation paths.

The various taxonomies are displayed each in a block on the left hand side. Along
each category term the occurrence count indicates the number of correspondences
belonging to the term and its descendants, thus adding up document instances
assigned to more specific category terms (see Fig. 1). To avoid manual categorization
work we provide several automatisms for the categorization along taxonomies. These
include the categorization of content instances along given taxonomies, the creation
of taxonomies from given content attribute values, and the extension of taxonomies
by generating more general terms. We use regular expression and query patterns or
incorporate user-supplied scripts to match and create terms.

One approach for automatic categorization is achieved by deriving taxonomy
correspondences from given attribute values or parts thereof as specified via a
regular expression pattern. Consider finding the corresponding decade for a given
year. A substring comparison or numerical range containment fulfils this task, as e.g.
a substring of the attribute value ‘1968’ matches with the given category term ‘1960s’
or the exact number matches the interval 1960—1969 using a ‘between’-query.
Existing attribute values can be used to create a new taxonomy from scratch,
establishing according correspondences to the content instances. This is useful when
there are many terms in attributes that are to form a category and/or no other sources
available. Consider a taxonomy of all publication venues/conferences mentioned in
the system. This approach first yields a flat taxonomy of terms, i.e. simply a
‘controlled’ vocabulary list, which may be extended by generating more general

736 D. Aumüller and E. Rahm

Fig. 5. Occurrence counts in attributes/constituents

terms to increase the expressiveness of the taxonomy. To derive the hypernym terms
syntactic approaches as aforementioned can be used. From a flat taxonomy of single
years e.g., we can derive a first level of more general terms by constructing the
decades. Another level on top of that would be presented by the according centuries.
This could e.g. be devised by taking the first two digits from the year, incrementing it
by 1, and appending ‘[st|nd|rd|th] century’ as suffix to name it appropriately. These
functionalities can be extended in Caravela by providing scripts that contain functions
to return a more general term to a given term. By querying thesauruses like WordNet
such a script may come up with hypernyms not derivable by syntactical patterns.
Another strategy for creating a rich taxonomy including more general terms would be
to take the number of occurrences belonging to one term into account. Less frequent
terms, e.g. years that only carry few correspondences to content instances, could be
grouped with others under one more general term. Summarizing, Caravela offers the
means to create whole category trees from available attribute values.

As categorization often underlies subtle semantic decisions, e.g. the assignations of
publications to research areas, categorization of content cannot be fully automated. To
ease manual categorization we devised the drag’n’drop category browser (using
AJAX). It offers two modes: In the view displaying all available categories at once,
documents can be moved freely around to adjust categorization. A second view
presents each taxonomy individually along the list of documents not yet categorized
into the current taxonomy. This further entices complete categorization of all content
instances.

4.3 Dynamic Categorization by Automatic Linking and Weighting

Apart from taxonomical categorization Caravela offers a powerful dynamic
categorization based on attributes. The key idea is that values from certain attributes
are automatically and dynamically extracted and cross-linked to all content instances
with the corresponding value. These attribute values can be offered for navigation,
e.g. at the very spot where they appear in the content instances, or separately as
(weighted) lists of grouped/aggregated attribute values (Fig. 5 and 6).

As attributes may contain lists
of values, the distinct values
(constituents) are available via
dynamic extraction as specified in
the attribute definition. The default
separator for constituents is a semi-
colon, but any other pattern may be
defined. It can be chosen to define a
split pattern as separator or a match
pattern to identify the constituents
or interesting parts of an attribute
value. Any regular expression is allowed; this can be simply a comma or slash for a
split pattern or more complex expressions for a match pattern. To display the
according occurrence count behind each term (i.e. the number of content instances
that contain the same term), the count is gathered using an SQL-query as in select
count(*) from content_type where attribute like ‘%term%’. Each term carries

 Caravela: Semantic Content Management 737

Fig. 6. Author cloud as weighted by occurrences
(shade) and citations (size)

an automatically created dynamic link to browse for the content instances containing
that term, e.g. for publications by the same author or movies with the same actor. The
creation of these dynamic cross links poses no effort to the user who after adding new
content immediately benefits from the additional navigation path and the updated
occurrence counts.

Aggregated (or grouped) lists of all distinct values or constituents of an attribute
within the collection form another categorization scheme to distinguish more
prominent attribute values or constituents. Instead of merely presenting the
occurrence count or aggregated group count as number the constituents can be
visually weighted to produce so called tag clouds. Here the occurrence counts get
represented by font size or shades of
gray. Thus, more frequent terms get
represented larger or in a darker/deeper
colour. Instead of representing the
frequency (occurrence count) of the
terms in the document collection, the
weights can also be determined taking
other attribute values into account.
Regarding the publication categorizer a
useful representation consists of author
names weighted by their average or
maximum citation count of their
aggregated publications (Fig. 6). This
highlights the more influential authors in the document collection. Such tag clouds are
great means to start browsing a collection, as each attribute value or constituent links
to appropriate overview pages. Again, there is no user effort in creating them.

5 Conclusion and Outlook

With the presented approach towards automatic semantic content management we
keep the amount of manual work low. The proposed content repository model is
applicable to a large variety of content, easy to maintain and to extend. By being able
to integrate information from disparate and unstructured sources Caravela can be used
to turn unstructured data into structured data of multiple formats. We provide
automatisms for integrating, transforming, and categorizing content of varying type
along multiple taxonomies, offering further automatically created dynamic links. By
releasing the user from tedious manual work the community can collaboratively lay
their strength on maintaining a high quality of the content. Periodically updating
content by integrating information from external data sources helps to keep the
managed data up to date, e.g. citation counts. Changed user requirements are
attributed by schema and taxonomy evolution techniques. Caravela has been
successfully applied for different applications, in particular for a powerful publication
categorizer, which is well accepted by a growing user base. In further work we plan to
provide workflow capabilities to support the repetitive execution of more complex
information acquisition and content transformation tasks. The generic approach will
be applied to more domains.

738 D. Aumüller and E. Rahm

References

[1] A. Arasu, H. Garcia-Molina. Extracting structured data from Web pages. In SIGMOD,
2003

[2] D. Aumueller. Semantic Authoring and Retrieval within a Wiki. In ESWC, 2005
[3] V. Broughton. Faceted classification as a basis for knowledge organization in a digital

environment: the bliss bibliographic classification as a model for vocabulary management
and the creation of multidimensional knowledge structures. In New Rev. Hypermedia
Multimedia 7(1), 2002

[4] M. Buffa, F. Gandon. SweetWiki: semantic web enabled technologies in Wiki. In
Symposium on Wikis, 2006

[5] W. Cohen. Some practical observations on integration of Web information. In WebDB,
1999

[6] A. Doan et al. Community Information Management. In IEEE Bull. on Data Engineering.
[7] G. Gottlob et al. The Lixto data extraction project: back and forth between theory and

practice. In PODS, 2004
[8] A. Di Iorio et al. Automatic Deployment of Semantic Wikis: a Prototype. In 1st Workshop

on Semantic Wikis, 2006
[9] U. Irmak, T. Suel. Interactive wrapper generation with minimal user effort. In WWW,

2006
[10] A. Laender et al. A brief survey of Web data extraction tools. In SIGMOD Record, 31(2),

2002
[11] E. Oren etal. Annotation and Navigation in Semantic Wikis. In SemWiki WS at ESWC,

2006
[12] Schraefel, M.C. et al. The evolving mSpace platform: leveraging the Semantic Web on

the Trail of the Memex. In Hypertext, 2005
[13] E. Rahm, P.A. Bernstein. An Online Bibliography on Schema Evolution. ACM SIGMOD

Record, Dec. 2006
[14] E. Rahm et al. iFuice – Information Fusion utilizing Instance Correspondences and Peer

Mappings. In WebDB, 2005
[15] E. Rahm, H.H. Do. Data Cleaning: Problems and Current Approaches. In IEEE Data

Eng. Bull. 23(4), 2000
[16] A. Sheth et al. Managing Semantic Content for the Web. In IEEE Internet Computing

6(4), 2002
[17] V. Uren et al. Semantic annotation for knowledge management: Requirements and a

survey of the state of the art. In Journal of Web Semantics 4(1), 2005
[18] M. Völkel et al. Semantic Wikipedia. In WWW, 2006
[19] P. Yee et al. Faceted Metadata for Image Search and Browsing. In ACM CHI, 2003

The NExT System:

Towards True Dynamic Adaptations of Semantic
Web Service Compositions

(System Description)

Abraham Bernstein and Michael Dänzer

University of Zurich, Department of Informatics, 8050 Zurich, Switzerland
{bernstein,daenzer}@ifi.unizh.ch

Abstract. Traditional process support systems typically offer a static
composition of atomic tasks to more powerful services. In the real world,
however, processes change over time: business needs are rapidly evolving
thus changing the work itself and relevant information may be unknown
until workflow execution run-time. Hence, the static approach does not
sufficiently address the need for dynamism. Based on applications in the
life science domain this paper puts forward five requirements for dynamic
process support systems. These demand a focus on a tight user interaction
in the whole process life cycle. The system and the user establish a con-
tinuous feedback loop resulting in a mixed-initiative approach requiring
a partial execution and resumption feature to adapt a running process
to changing needs. Here we present our prototype implementation NExT
and discuss a preliminary validation based on a real-world scenario.

1 An Illustrating Scenario - As Is

Peter, the chemist in our scenario, needs to determine the 3D structure of a
bio-molecule using NMR spectroscopy. Without having IT support, he uses his
paper lab book to construct a rough experimental plan. He then starts the exper-
iment. Only, he forgets to calibrate the spectrometer, a fact he quickly realises
as the spectrometer returns first data, which shows a systematic and continuous
shift over all values. At some later point, Peter stumbles on a problem with his
experiment, which he does not know how to solve. He is unable to interpret
a spectrum correctly and therefore to choose which measurement to perform
as the next step. He reads a publication about a similar problem and makes a
lengthy (formal descriptions are hard to explain in prose form) telephone call
with his advisor, which is visiting a conference overseas. Anyhow, his advisor can
help him and following his lead, he studies some intermediate results returned
from the spectrometer. Peter then realises that he forgot to repeat a proceeding
measurement with adapted parameter values rendering the current measurement
totally useless. But even worse, he did not store the intermediate results during
the execution, so he has to restart the execution from scratch.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 739–748, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

740 A. Bernstein and M. Dänzer

2 Introduction

The scenario shows that conducting meaningful experiments or exploratory ac-
tivities requires a user to construct a complex and long-running sequence of
atomic tasks which may have to be changed during all phases in their life cycle
(process choreography [1]). Their size can be very large leading to long and com-
plex interrelations. Furthermore, processes and their elements may change their
degree of specificity (see Figure 1) over time: Underspecified processes can be-
come well specified when more information becomes available and well-specified
processes can become less specified (e.g., due to exceptions) – thus, the pro-
cess moves along the Specificity Frontier [2]. A system acting in domains whose
processes show varying degrees of specificity and dynamically move along the
frontier must conform to such behaviour.

Fig. 1. The Specificity Frontier [2]

Usually, several potential realizations exist for an atomic task (such as Web or
Grid Services or local procedure calls), so choosing the appropriate one (process
orchestration [1]) turns out to be non-trivial. At run-time, exceptions can be
thrown (e. g., hardwre malfunctions, software crashes), unforeseeable events may
take place or the user wants to intervene when he observes something unusual,
forcing the execution to halt and the system to react accordingly. The process
must then be adapted in some way preserving its correctness and consistency.
Finally, the execution must be resumed at the correct and optimal resumption
point. Once the experiment has finished, all its related data must be documented
(e.g., for publication in academia or to record that the process was maintained
in legal environments).

In our opinion, a process support system acting in highly dynamic domains
must focus on the user and keep him/her engaged in a tight interaction. Based on
the system’s domain knowledge and the explicitly given information, the system
should provide contextual guidance to the user in all situations, especially in the
complex creative phases of his work. More specifically, based on the preliminary
work [2], we proclaim that such a system has to fulfill the following requirements:

R1: Support users throughout the process choreography and orchestration steps.
R2: Support partial executions and dynamic adaptations at run-time.
R3: Integrate reasoners and planners to provide useful alternatives for the user.
R4: Incorporate a Case Base. Then a Case Based Reasoner [3] can infer useful

information from past cases (from both best and worst practices).

The NExT System: Towards True Dynamic Adaptations 741

R5: Support (semi-)automated data mediation to connect processes with differ-
ent data formats which are transformable into each other.

In this paper we will present an overall approach for a process support system
addressing these requirements. We focus on the second one and will show in more
detail how partial executions, run-time adaptations and changes to parameter
values can be supported. The remainder of this paper is structured as follows:
In Section 3 we operationalize the requirements into concrete foundational chal-
lenges for our prototype NExT (N ext-generation Experiment Toolbox). Section
4 then introduces the most important architectural and implementation aspects
of NExT. A preliminary validation of the prototype in the context of the intro-
ductory scenario is discussed in Section 5, followed by a comparison with related
work in section 6. We conclude with a summary and an outlook on future work.

3 Overall Operationalization of NExT

In order to assure and a clear separation of concerns, we divided NExT into
two parts: the underlying knowledge bases (KBs) containing all the domain
knowledge and a generic execution support system. The content of these KBs
is provided in a formal, machine readable language, which is a pre-requisite for
planning and reasoning (R3, R4). We identified three types of entities to store
in separate online KBs: First a Process Library with models for all atomic tasks
and templates for composite processes with a loose coupling to their concrete
realizations allowing for their dynamic reassignment (R1). Second, a Data Entity
Library containing models for all data/object types to enable (semi-)automated
data mediation in fulfillment for R5. Last, but not least, a Case Base containing
a collection of completed process executions enables both automated as well as
human case based reasoning (R4). Note that due to the KBs NExT exhibits
significant network effects in the micro-economic sense: the more people use
it the more attractive it becomes. If a sufficiently large group of people in a
given domain publish their processes into the repositories then the possibility
for knowledge exchange increases, collaborating in designing/executing processes
is simplified, and their use as case bases and domain KBs increases the quality
and diversity of planner/reasoner results.

We follow an approach known as Mixed-Initiative planning and execution
[3]; the user and the NExT system work hand-in-hand informing each other
with newly discovered facts. The more information and constraints the system
receives from the user, the more (implicit) knowledge it can infer and present
to him. He then can use this additional information to either retrieve even more
information or make decisions, both of which become new input for the system.
User and system are, thus engaged in a continuous feedback loop. In addition,
the system continuously monitors newly arriving information (such as detected
exceptions) and initiates an interaction with the user whenever necessary.

NExT guides the user by providing suggestions whenever she has to make
decisions or she explicitly requests help. During the process choreography the
system’s degree of assistance ranges between suggestions, which processes are

742 A. Bernstein and M. Dänzer

suitable for the next step, and the generation of whole process plans at once
(R1). During the process orchestration the system will (1) guide the users to
concrete realizations and (2) help them to decide which one is suitable under
the given constraints and user preferences (R1). When two processes are chained
together by a data flow and the types of their parameters are not ”castable”,
then the system tries to resolve the mismatch or suggests solutions to the user
(R5). The execution history is recorded and contains the execution sequence of
atomic tasks, the links to used realizations, and all intermediate results. This is
an apparent prerequisite to build up cases (R4) for CBR.

The NExT user interface (UI) attempts to integrate all the necessary tools in
one common interface (the workbench metaphor). NExT’s target audience are
not computer scientists (but domain experts), so we tried to provide as simple as
possible interaction approaches. A graphical data-flow style editor allows the user
to easily create, start, pause, and adapt workflows and shows also the current
state of the process during execution. Interactive browsers allow querying and
browsing the KBs at any point in time and reasoners/planers/mediators act as
wizard-like pop-ups to impart advise whenever asked.

3.1 Supporting Partial Executions and Adaptations

In contrast to pure static workflows, dynamically evolving processes in most cases
cannot be fully specified before the start of the execution (e.g., some relevant
information becomes only available at run-time). Therefore, we allow the user to
start executing such processes, at least as long as the first steps in the sequence
are well specified. Over time the amount of information rises and the process
specification can be improved iteratively. Nevertheless, every problem that leads
to a failure at runtime must be resolved. Hence, our concept of partial execu-
tions consists of four elements: (1) errors in the process specifications and/or
exceptions and events must be detected before they affect the execution, (2) the
process execution must be interruptible, (3) the user must be able to adapt the
process to solve the problem, and (4) the execution must be re-continuable at a
correct and optimal point to ensure the overall process consistency.

The process specification is validated each time before the execution starts (or
re-continues) and at run-time, exceptions and events are caught by an exception
handler. For further handling, we developed an ontology of possible incidents
combined with adequate (semi-)automated resolution strategies (see Table 1).

Table 1. Excerpt of the problem ontology including the problem resolution strategies

Exception Resolution Strategy

Hole in the
sequence

1. Call planner to provide alternatives to fill the gap
2. Ask user to define a realization manually

Missing
parameter makes
a condition
unsatisfiable

1. Query KB for processes, that produce the missing variables
2. Relax the condition
3. Remove processes whose effects make the condition unsatisfiable
4. At run-time, instantiate an input and let the user enter its value.

The NExT System: Towards True Dynamic Adaptations 743

After catching a problem, NExT exploits this ontology to map each problem to
an incident and determines then the priority for the problem resolution. When-
ever a severe incident is detected that endangers the immediate continuation of
the process the respective resolution strategy is applied instantly. On the other
hand, minor, not time-critical problems are simply reported to the user which
then can trigger the resolution manually (or the incident’s severity rises over
time above a threshold and then needs to be resolved immediately).

In most cases atomic tasks will not be interruptible when already under exe-
cution (except they explicitly support this behaviour). In most cases this issue
can be addressed by interrupting the execution of the overall process when the
execution of the current atomic task finishes. If the cause for the interruption
is related to the outcome of the atomic task’s execution then its outcome will
have to either ignored, undone, or taken into account when it finished (in fact,
this is an instance of the Specificity Frontier). Consider this logistics scenario:
The plane transporting a piece of cargo for us is already airborne and we hear
that the cargo staff at the destination airport is on strike. Thus, it will not be
delivered at the demanded time, which is a hard constraint from our costumer.
Since, it is not in our power to reroute the plane we have to adapt our process
to the new circumstances.

Whenever possible the strategies attempt an automated, systems-led resolu-
tion of the exception. If this fails or the user intervenes, she is integrated in
the loop (usually when too little information is known for the incident’s resolu-
tion). We found that the majority of the resolution strategies include changes in
the parameter values or adaptations of the process’s control and/or data flow.
Thus NExT must support such change operations and guide the user by the same
mechanisms as during process creation phase. In addition it must be ensured that
the process’s new execution plan is consistent and of its execution trail/history
remains correct and consistent. Before re-continuation of the process, the correct
and optimal resumption point must be found. Whenever processes or parameter
values that already were executed respectively computed are changed, it must
be computed wether the execution path is still correct. If not, some processes
must be rolled back to start over at a previous stage of the execution.

4 The NExT Prototype Implementation

In order to ensure domain independence our system’s process meta-model defines
the system’s view on both processes and data entities (R3, R5 - Planner, Medi-
ation). Code was written in terms of meta-model concepts whereas applications
may inherit from or extend the meta-model for their own purposes. We describe
processes by their IOPE, meaning the (semantic) notion of inputs, outputs, pre-
conditions and effects (or post-conditions) and encode them in a declarative,
formal and machine readable language. These are the minimal properties to use
AI planners [4] (R3). We furthermore differentiate between an AtomicTask and
a CompositeProcess, whereas only the former can be related with one or sev-
eral mappings to concrete realizations (R1). The mapping contains the specific

744 A. Bernstein and M. Dänzer

how (and where) to invoke a realization. A CompositeProcess on the other hand
consists of a sequence of processes (potentially both atomic and composite). We
have chosen to use OWL-S [5], because it supports most of the concepts we need
out-of-the-box. When the execution of a process starts, the HistoryTrail is at-
tached. All atomic tasks in their execution sequence and all intermediate values
of all parameters are stored and define hereby a Case (R4). DataItems can be
nested to compose complex types (R5 - mediation).

As our process execution engine we extended the Mindswap OWL-S API1

with two features: First, we added a new type of grounding that an atomic
task directly maps to a Java method. Second, we augmented the API with a
facility to interrupt and resume a process execution. NExT, furthermore, pro-
vides a component to retrieve content for the user assistance (R1, R3-R5) and
a second component controlling the partial execution and dynamic adaptation
aspect (R2), which we present in more detail in the next section. The guidance
component integrates several types of inferencing mechanisms:

– Deductive reasoners acting directly on the semantic model items. Specifically
we used the Pellet reasoner [6] that came with the Mindswap API.

– A Case Based Reasoner can find past processes similar to the one in use. The
current implementation relies on SimPack2 [7] to retrieve similar entities.

– A plug-in interface to integrate several AI planners suitable for web service
composition [8,9,10,11,12] into the system. Herby we can exploit their spe-
cialization on a certain planning aspect (e.g. to use planners addressing the
changing information issue [13,14].

NExT is based on the Eclipse3 framework. It is built as a workbench inte-
grating graphical tools for all important purposes. A process editor allows the
graphical creation and editing of workflows, their initiation and interruption. as
well as monitoring all process-related information such as partial results during
execution.

4.1 Supporting Partial Executions and Adaptations

We implemented a hierarchy with specific handlers for each type of incident in
our ontology. These handlers encapsulate the incident itself, its severity, and
implement its resolution strategy. To ease the development of these strategies
general facilities for common steps are provided by the NExT system (such as
UI widgets for user interaction or encapsulations for standard interactions with
planners). We then extended the Mindswap OWL-S API to perform consistency
checks on OWL-S process descriptions for design-time detection of problems
and improved the exception handling within the execution engine for run-time
detection. Both methods return an instance of incident stubs (or a list thereof).
Depending on its severity, the incident is either added to a warning list for
1 See http://www.mindswap.org/2004/owl-s/api
2 See http://www.ifi.unizh.ch/ddis/research/semweb/simpack/
3 See http://www.eclipse.org

The NExT System: Towards True Dynamic Adaptations 745

detached resolution or the resolution strategy is immediately applied. As long
as the problems are not resolved, The execution is postponed (when not yet
started) or stays interrupted as long as not all severe problems are resolved.

Once the execution (re-) starts, the correct and optimal resumption point
must be computed. If all changes took place after the current execution point,
then we can simply continue the process. Else the algorithm attempts to roll
back all the effects of the computation by applying the following strategy to
each process step backwards until the first change:

1. When an inverse process is specified, invoke it. Proceed with next step.
2. When the process triggered no changes in the world state besides IO trans-

formations, the corresponding values are set back. Proceed with next step.
3. The user is asked to perform the roll-back manually. To suggest potential

solutions, the process library is queried to find a process with reversed in-
put/output and pre-/post-condition.

4. Abort the execution.

Note, that we must consider that massive amounts of data can be generated
during the execution. Hence, storing all intermediate results on all atomic tasks
is unpractical. We therefore let the user define storage points in the process se-
quence at which the intermediate results are written on disk. Second, note, that
finding the correct termination point for the strategy above shows some complex-
ity too. Parallel execution of steps or loop construct may introduce dependencies
between steps, which must be taken into account. The actually implemented al-
gorithm takes these two points into consideration. With all these considerations,
we propagate to fulfill R2.

5 Preliminary Validation – The Introductory Scenario
Revisited

Let us have a second look at our scenario. Peter conducts the same experiment,
this time with a copy of NExT. First, he finds a similar project in the past,
adopts its process sequence (see Figure 2 for a screenshot of NExT) and adapts
it slightly to his needs. The ”calibrate spectrometer” process is part of a) the
pre-condition of the ”run measurement” process and b) the standard ”setup
spectrometer” process template, so this time Peter does not forget this step.
All the steps that can be automated such as spectrometer calibration or some
simple analysis steps are executed automatically, but still some tasks need to be
performed manually. Peter though encounters the same problem as before. But
this time, the system provides him several potential solutions and he chooses
the correct alternative amongst them. NExT re-sets the execution pointer to the
correct position and continues the experiment avoiding its restart from scratch.
In the end, Peter completes his experiment with success and much faster than
earlier. In addition to his prose report, he uploads the whole case including
all intermediate results, the history trail, and all additional information into a
shared knowledge base of the journal. Furthermore, Peter is able to generalize a

746 A. Bernstein and M. Dänzer

Fig. 2. Screenshot of NExT with the experimental sequence for a NMR case

part of the process sequence for a certain type of bio molecules into a template
and publishes it in a NMR-community maintained Knowledge Base.

6 Related Work

Most of the Process Support Systems that have been developed in the past
30 years support either fixed, pre-defined, standard processes (e.g., workflow
management systems) or informal ad-hoc dynamic processes (such as e-mail or
groupware). The former use formal process definitions and can thus assist users
during the workflow creation whereas the latter are not bound to strict rules to
ensure flexible process adaptations at run-time. Only a few systems provide the
base for both. The FAR [15] system implements an exception handler based on
Event-Condition-Action (ECA) rules defined in a specific exception specification
language. ADEPTflex [16] is based upon a graph-based workflow model and
includes a complete and minimal set of (dynamic) change operations such as
task insertion or deletion. Consistency and correctness are preserved hereby.

Modern systems from the life science community are oriented towards service
orientation and grid computing. Prominent representatives thereof are Kepler
[17], Pegasus [18], and Taverna [19]. They all provide the basic functionality to
help users in the process life cycle, but none of them is focused on highly dynamic
processes and tight user integration. Both Taverna and Kepler allow the user to
manually pause an execution, Taverna can re-assign intermediate results during
an interruption and Kepler allows in addition adaptations to the control and
data flow. Pegasus on the other hand differentiates between the process and
its realization, uses a partial-order planning [4] algorithm for guidance in the

The NExT System: Towards True Dynamic Adaptations 747

process composition and in combination with Virtual Data System [20] some
interfaces support for data mediation are provided.

7 Future Work/Conclusion

In future, we want to deploy NExT in a life science environment to observe its
practical usage for complex experiments. We plan to extend OWL-S by integrat-
ing the concepts of exceptions and events into the language. This would enable
reasoning upon these concepts and thus improve the user guidance facilities.
Furthermore, we will incrementally extend and refine our incident ontology and
NExT’s facilities for applying the resolution strategy. Also, we hope to exploit
the ongoing research on both AI and non-AI composition algorithms to offer
further guidance to users on the process composition and adaptation steps.

In this paper, we presented an approach for a process support system that as-
sists its users throughout the whole process life cycle from creation to enactment,
adaptation and publication in the end. The system aims at domains confronted
with complex, long-running and highly dynamic processes. The process support
system maintains a tight interaction with its human users: they want to be as-
sisted in the creative work parts and they need to have the full control, but
simple and monotonic tasks should be executed automatically to hold off the
user from these time-consuming tasks.

As our main contribution we developed five requirements for process support
systems in complex experimental domains. We have, furthermore, shown a ba-
sic architecture and key implementation elements of our NExT process support
system based on Semantic Web technologies and AI planning and reasoning
methodologies (planners, Case-Based Reasoning) that implements our vision.
We especially focused on the partial execution feature (R2) and showed how we
detect problems, exceptions, and events at run-time (as well in design-time), al-
low for appropriate adaptations in the process, and resume the execution at the
correct and optimal resumption point. We hope that such systems will enable
the practical use of Semantic Web Services system in practice.

Acknowledgments. We are deeply indebted to Professor Konstantin Pervushin
for his expertise in the NMR spectroscopy domain and to Professor Josef Joller
and his students Markus Krähenbühl, Georg Kunz and Franco Sebregondi for
their contribution in the runtime adaptation component.

References

1. Peltz, C.: Web services orchestration and choreography. Computer, Innovative
Technology for Computing Professionals (2003)

2. Bernstein, A.: How can cooperative work tools support dynamic group processes?
bridging the specificity frontier. In: Proceedings Computer Supported Cooperative
Work (CSCW 2000), ACM Press (2000)

3. Veloso, M., Mulvehill, A., Cox, M.: Rationale supported mixed-initiative case-based
planning. In: IAAI-97, Innovative Applications of Artificial Intelligence. (1997)

748 A. Bernstein and M. Dänzer

4. Ghallab, M., Nau, D., Traverso, P.: Automated Planning, theory and practice.
Elsevier (2004)

5. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIllraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: Owl-s: Semantic markup for web services. (2004)

6. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical owl-dl
reasoner. (Journal of Web Semantics)

7. Bernstein, A., Kaufmann, E., Kiefer, C., Bürki, C.: Simpack: A generic java library
for similiarity measures in ontologies. Technical report, Department of Informatics,
University of Zurich (2005)

8. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: Htn planning for web service
composition using shop2. Journal of Web Semantics 1(4) (2004) 377–396

9. Klusch, M., Gerber, A., Schmidt, M.: Semantic web service composition planning
with owls-xplan. In: 1st International AAAI Fall Sympsoium on Agents and the
Semantic Web. (2005)

10. Sheshagiri, M., desJardins, M., Finin, T.: A planner for composing service described
in daml-s. In: International Conference on Automated Planning and Scheduling.
(2003)

11. McIlraith, S., Son, T.: Adapting golog for composition of semantic web services.
In: Proceedings of the 8th Intl. Conference on Knowledge Representation and Rea-
soning. (2002)

12. Ponnekanti, S.R., Fox, A.: Sword: A developer toolkit for web service composition.
In: Proceedings Intl. WWW Conference. (2002)

13. Kuter, U., Sirin, E., Parsia, B., Nau, D., Hendler, J.: Information gathering during
planning for web service composition. Journal of Web Semantics 3(2) (2005)

14. Au, T.C., Kuter, U., Nau, D.: Web service composition with volatile information.
In: Proceedings of the International Semantic Web Conference (ISWC). (2005)

15. Casati, F., Ceri, S., Paraboschi, S., Pozzi, G.: Specification and implementation
of exceptions in workflow mangament systems. ACM Transactions on Database
Systems 24(3) (1999) 405–451

16. Reichert, M., Dadam, P.: Adeptflex - supporting dynamic changes of workflows
without losing control. Journal of Intelligent Information Systems - Special Issue
on Workflow Managment 10(2) (1998) 93–129

17. Ludscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M.,
Lee, E., Tao, J., Zhao, Y.: Scientific workflow management and the kepler system.
Journal for Concurrency and Computation: Practice and Experience, Special Issue
on Scientific Workflows (2005)

18. Gil, Y., Ratnakar, V., Deelman, E., Spraragen, M., Kim, J.: Wings for pegasus:
A semantic approach to creating very large scientific workflows. In: Proceedings
OWL: Experiences and Directions. (2006)

19. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: A tool for the composition
and enactment of bioinformatics workflows bioinformatics journal 20(17) pp 3045-
3054, 2004. Bioinformatics Journal 20(17) (2004) 3045–3054

20. Zhao, Y., Wilde, M., Foster, I., Voeckler, J., Dobson, J., Glibert, E., Jordan, T.,
Quigg, E.: Virtual data grid middleware services for data-intensive science. In:
Middleware 2004, Concurrency, Practice and Experience. (2004)

WSMO Studio – A Semantic Web Services

Modelling Environment for WSMO

(System Description)

Marin Dimitrov, Alex Simov, Vassil Momtchev, and Mihail Konstantinov

Ontotext Lab. / Sirma Group
135 Tsarigradsko Shose Blvd., Sofia 1784, Bulgaria

firstname.lastname@ontotext.com

Abstract. The Web Service Modelling Ontology (WSMO) provides a
unique, highly innovative perspective onto the Semantic Web Services
domain. Robust and easy-to-use tools play crucial role for the adoption
of any technological innovation and indeed the overall value of the inno-
vation can be severely undermined by the lack of proper tools supporting
it. In this paper we present a prototype of an integrated modelling envi-
ronment that supports and elaborates the innovative WSMO perspective.

1 Introduction

Robust and easy-to-use tools play a crucial role for the adoption of any new
technology. Indeed, the overall value of a technological innovation can be severely
undermined by the lack of proper tools to support it. The Web Service Modelling
Ontology (WSMO, [1][2]) provides a unique, highly innovative perspective onto
the Semantic Web Services domain.

Unfortunately, current tool support in the area is still lagging behind the the-
oretical advancements but real progress can be achieved only when the Semantic
Web Services technology is easily usable. Another major problem with the tool
landscape at present is that almost all of the available tools focus on only one
of the relevant Semantic Web Services aspects (for example only ontology man-
agement or only service composition), while end users rarely focus on a single
task and an integrated modelling environment will be more appropriate and
productive.

In this paper we present a prototype that supports and elaborates the in-
novative WSMO perspective, making the technology accessible and easy to use
for early adopters. In particular, we present WSMO Studio1 – an open source
integrated modelling environment for the Semantic Web Services domain, which
is being developed within several EU-funded research projects2.

1 http://www.wsmostudio.org
2 The work described in this document is partly funded by the European Commission

under the IST projects DIP (FP6-507483), InfraWebs (FP6-511723), SemanticGov
(FP6-027517) and SUPER (FP6-026850).

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 749–758, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

750 M. Dimitrov et al.

This paper is organised as follows: section 2 presents the goals of WSMO Stu-
dio. section 3 provides details on present WSMO Studio functionality. section 4
attempts to evaluate the extent to which WSMO Studio has achieved the defined
goals and contains a brief overview of several prominent Semantic Web Services
tools and their relation to WSMO Studio. Finally, section 5 provides details on
work in progress for domain specific extensions of WSMO Studio.

2 WSMO Studio Goals

The three main goals of WSMO Studio are:

1. Providing a prototype that supports and elaborates the WSMO approach
to Semantic Web Services, making the technology accessible and easy to use
for early adopters. As we have already pointed out, adequate tool support
is crucial for the adoption of a technological innovation.

2. Providing an integrated environment that maximises the productivity of the
user. Current SWS tools usually focus on only one aspect (ontology editing,
service composition, etc.) but users most often need functionality that covers
various tasks in an integrated manner.

3. Providing an extensible environment where 3rd party tool providers can eas-
ily add new functionality or modify and customise existing functionality.

With respect to the first goal, we have already presented in [3] a summary
of the tasks that a Semantic Web Services modelling environment should cover,
such as:

– ontology modelling,
– semantic annotation of existing web services,
– working with semantic repositories for publishing, browsing and querying of

WSMO ontologies, services, goals and mediators,
– goal-based service discovery,
– specification of service compositions (i.e. orchestration and choreography

interfaces),
– interaction with Semantic Web Service runtime environments (such as

WSMX3 and IRS-III4).

The second goal we have set is providing functionality that covers various
related Semantic Web Services tasks in an integrated modelling environment, so
that users will not need to use several different tools to accomplish their goals.
As noted in [4] users rarely focus on only one aspect or task when they work –
indeed, users usually play different roles and perform different related tasks, so
the environment should provide functionality covering various perspectives and
tasks.
3 http://www.wsmx.org
4 http://kmi.open.ac.uk/projects/irs/

WSMO Studio – A Semantic Web Services Modelling Environment 751

Finally, extensibility is a requirement that is mostly ignored by the current
Semantic Web Services tools. But as noted in [4]:

. . . open-ended extensibility is essential in the commercial IDE arena be-
cause no IDE vendor could possibly provide a sufficient set of useful tools
to satisfy all customer needs. Which third party tool will be bundled as
an add-in for a particular IDE is determined by market forces.

This statement, based on commercial IDE experience, can equally well be
applied for SWS modelling environments. Indeed, tool extensibility is even more
important for an emerging domain such as the Semantic Web Services one, so
that when the domain evolves, tools will be able to follow this evolution and
provide the relevant functionality.

3 WSMO Studio Functionality

This section presents a summary of the main features of WSMO Studio, with
respect to the requirements identified in [3]. A detailed overview of WSMO Studio
is available in [5].

WSMO Studio is built on top of the Eclipse platform5. The functionality of
WSMO Studio is available both as a standalone application and as a set of
individual components (called plug-ins), that can be incorporated into 3rd party
applications.

An important feature of Eclipse is that its component model presents a declar-
ative specification of ways to extend an application, called extension points [6].
New plug-ins may extend existing plug-ins and may be easily incorporated into
an application.

3.1 Core Components

The core runtime layer provides functionality common across all components of
the WSMO Studio.

The most important component of this layer is the wsmo4j plug-in, based on
the wsmo4j framework6. The functionality includes: creating WSMO models,
validating models, export and import from various WSML formats (as defined
in [7]) and languages such as RDF and a subset of OWL-DL.

The wsmo4j plug-in publishes several extension points, so that 3rd party ex-
tensions (for example a new parser) can be easily integrated.

In addition, the runtime layer contains several utility components for workspace
management and a shared entity cache.

3.2 WSMO Editor

This plug-in provides the main User Interface for modelling of WSMO ontologies,
goals and services. Import and export from WSML formats, RDF and a subset of
5 http://www.eclipse.org
6 http://wsmo4j.sourceforge.net

752 M. Dimitrov et al.

OWL-DL is provided via the core layer. Most of the User Interface elements of the
WSMO editor are also available for extension and customisation via published
extension points.

3.3 Choreography Editor

The Choreography editor (Figure 1) provides the User Interface for describing
WSMO choreography interfaces, as defined in [8].

A WSMO choreography description is comprised of:

– a state signature that specifies the concepts and relations of an ontology
that will be used to represent the choreography states, together with their
respective roles.

– a set of transition rules that express the state changes.

Fig. 1. WSMO Studio – choreography editor

The choreography descriptions, created by WSMO Studio, are used by exe-
cution environments (such as WSMX) during the execution of Semantic Web
Services.

3.4 SAWSDL Editor

The SAWSDL editor (Figure 2) provides functionality for attaching semantic
annotations to existing WSDL descriptions according to the SAWSDL recom-
mendation [9]. SAWSDL is used at present as the grounding mechanism for

WSMO Studio – A Semantic Web Services Modelling Environment 753

WSMO, i.e. mapping the semantic interface description of a service (in terms of
imported ontologies, capability and choreography interface) to its WSDL inter-
face.

The User Interface allows that semantic annotations are attached to the fol-
lowing WSDL elements: simple / complex XML types, messages, operations and
interfaces.

Fig. 2. WSMO Studio – SAWSDL editor

At present the SAWSDL editor does not provide support for the lifting/lowering
schema, i.e. the XSLT expressions that define the exact mappings between com-
plex XML types defined in WSDL documents and concepts in an ontology, but
such functionality will be provided in future versions.

3.5 Repository Front-End

The Repository front-end provides an abstraction of an Semantic Web Service
repository for storing and querying WSMO descriptions.

WSMO Studio will be able to interact with a particular repository as long as
it provides a special adaptor based on the WSMO API repository interfaces7.

7 http://wsmo4j.sourceforge.net

754 M. Dimitrov et al.

At present WSMO Studio provides an integrated ORDI repository8 as well as
adaptors for remote IRS-III and WSMX repositories. Adaptors for other repos-
itories will be developed in the future.

3.6 Service Discovery Front-End

Discovery of WSMO services at present is based on the idea of goal-based discov-
ery [10], i.e. the user provides a request represented as a WSMO goal (possibly
with some additional information such as quality-of-service or cost restrictions),
and the discovery component returns a list of matching services, ranked accord-
ing to some ranking criteria.

The Discovery front-end in WSMO Studio provides a simple User Interface
for goal-based discovery engines. At present only the EPFL QoS-enabled Service
Discovery Component [11] is supported but future versions will provide integra-
tion options with other discovery engines and matchmakers.

3.7 Integrated Validator and Reasoners

WSMO Studio provides integrated WSML-Flight and WSML-DL reasoners via
the WSML2Reasoner framework9. The integrated reasoners can be used for val-
idation and satisfiability tests when building WSMO ontologies. The currently
supported reasoners are MINS, KAON2 and Pellet.

WSMO Studio contains an integrated WSML validator from the wsmo4j
framework. All errors, warnings and notifications produced from the validator
are listed in the standard Problems view of Eclipse. The information associated
with each problem is: severity, explanation message and problematic location. To
minimise the processing overhead, validation is performed only when a WSML
file is opened or saved.

4 Evaluation and Related Tools

This section provides an evaluation of the extent to which WSMO Studio has
achieved the defined goals and contains a brief overview of several prominent
Semantic Web Services tools and their relation to WSMO Studio

4.1 Evaluation of WSMO Studio

With respect to the outlined goals in section 2, the following assessments can be
made:

– Functionality – the WSMO Studio functionality, outlined in section 3, covers
most of the basic tasks for Semantic Web Services modelling, namely support
for modelling WSMO ontologies, services, goals; support for choreography

8 http://www.ontotext.com/ordi/
9 http://dev1.deri.at/wsml2reasoner/

WSMO Studio – A Semantic Web Services Modelling Environment 755

descriptions; means for attaching semantic annotations to WSDL documents;
front end to Semantic Web Service repositories and matchmakers; integrated
reasoners and validators.

Other functionality, such as interaction with Semantic Web Services run-
time environments (e.g. WSMX and IRS-III) or support for ontology medi-
ation is still not available in WSMO Studio but is already provided by other
tools (e.g. WSMT) and may be easily integrated into WSMO Studio.

– Integration – WSMO Studio provides functionality covering various Semantic
Web Services modelling aspects in a single integrated modelling environment.
Since WSMO Studio is based on the Eclipse platform, the functionality is
provided by means of plug-ins, which can be also integrated into other prod-
ucts and applications.

– Extensibility – the Eclipse extensibility mechanism allows that functionality
is added, replaced or customised by means of published extension points.
WSMO Studio defines several such extension points, which allows customi-
sation and replacement of specific User Interface elements, as well as adding
new functionality (e.g. adaptors for new Semantic Web Services repositories
or matchmakers, reasoners, etc.).

WSMO Studio extensions have already been developed by 3rd parties
within the DIP and InfraWebs research projects.

An additional aspect that influences all three goals is the flexible licensing –
WSMO Studio is licensed under LGPL [12], which allows that individual com-
ponents (plug-ins) are incorporated within and distributed with 3rd party ap-
plications without any restrictions on the licensing terms of the latter. Our ex-
pectation is that the Open Source licence increases the visibility of a tool and
the chances for 3rd party contributions and adoption, though it is not possible
to provide a reliable assessment on that.

4.2 Related Tools

Current tool support in the area of Semantic Web Services is still lagging behind
the theoretical advancements. Integrated toolsets, that provide functionality cov-
ering many aspects of Semantic Web Services are still not readily available and
tools generally lack means of extensibility, that could improve their reusability
and adoption.

This section contains brief overviews of several prominent Semantic Web Ser-
vices tools related to WSMO Studio.

The Web Services Modelling Toolkit10 (WSMT) is an Eclipse based applica-
tion which provides an advanced ontology viewer, an ontology mediation com-
ponent and a WSMX management component as well as support for modelling
WSMO ontologies and an integrated reasoner. Since WSMT is Eclipse based, its
plug-ins can be used from within WSMO Studio and and vice versa.

10 http://sourceforge.net/projects/wsmt

756 M. Dimitrov et al.

METEOR-S11 is a Semantic Web Services toolset that provides functionality
for adding semantics to web services standards like WSDL, UDDI and WS-
BPEL. Radiant is an Eclipse based tool for adding semantic annotations to
WSDL documents according to the SAWSDL and WSDL-S recommendations.
Lumina provides an Eclipse based user interface for discovery of web services.
Additionally, the METEOR-S toolset also includes a Service Discovery Engine
and a semantically enhanced service registry based on UDDI.

OWL-S Editor12 is a Protégé13 plug-in for modelling OWL-S services. The edi-
tor provides means for describing atomic and composite processes (i.e. the OWL-
S Process definition). The OWL-S Editor also provides some limited grounding
support, by generating ’skeleton’ OWL-S services from WSDL files. The op-
tions for integrating new functionality and extensions of existing functionality
are quite limited.

Semantic Tools for Web Services14 is a set of Eclipse plug-ins which offer
two main functionalities: semantic annotation of existing WSDL documents into
WSDL-S [13], and semantic matching and composition of web services (based
on inferencing via the ABLE rule engine), where the queries are represented
by WSDL files and the results are references to the matched WSDL service
descriptions or a composition of services. The plug-ins are not extensible. STWS
is not directly comparable to WSMO Studio since its focus is on WSDL-S based
semantic annotations for WSDL.

5 Future Work

WSMO Studio has already been used as the Semantic Web Services modelling
environment within two EU-funded research projects, DIP15 and InfraWebs16.

Within the scope of two active research projects, SUPER17 and Semantic-
Gov18, WSMO Studio will be enhanced with domain specific extensions for the
Business Process Modelling and eGovernment domains.

Within SUPER, WSMO Studio will provide functionality for modelling and
querying of Semantic Business Processes using ontologies and Semantic Web Ser-
vices, according to the Business Process Modelling Ontology (BPMO) [14][15].
In summary, BPMO provides an abstraction over business process modelling lan-
guages such as EPC [16] and BPMN [17], support for workflow patterns [18], and
added semantics in terms of using ontology concepts for explicit modelling of the
dataflow and attaching abstract WSMO goals to process tasks. The BPMO de-
scriptions will be semi-automatically translated to sBPEL, which is the semantic
version of WS-BPEL.
11 http://lsdis.cs.uga.edu/projects/meteor-s/
12 http://owlseditor.semwebcentral.org/
13 http://protege.stanford.edu/
14 http://www.alphaworks.ibm.com/tech/wssem
15 http://dip.semanticweb.org
16 http://www.infrawebs.org
17 http://www.ip-super.org/
18 http://www.semantic-gov.org/

WSMO Studio – A Semantic Web Services Modelling Environment 757

Within SemanticGov, WSMO Studio will provide means for modelling of Pub-
lic Administration services based on the Governance Enterprise Architecture
(GEA) and the WSMO-PA [19][20] extension of WSMO for the Public Admin-
istration domain.

6 Conclusion

In this paper we presented a prototype of an integrated modelling environment
for the Semantic Web Services domain, called WSMO Studio. The prototype has
already been used for modelling of Semantic Web Services in several research
projects.

Our future work will be focused on providing domain specific extensions for
the application of WSMO in the eGovernment and Business Process Modelling
domains.

References

1. Feier, C., Roman, D., Polleres, A., Domingue, J., Stollberg, M., Fensel, D.: Towards
intelligent web services: Web Service Modeling Ontology (WSMO). In: In Proc. of
the International Conference on Intelligent Computing (ICIC 2005), Hefei, China
(2005)

2. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,
A., Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied
Ontology 1 (2005) 77–106

3. Dimitrov, M., Simov, A., Momtchev, V., Ognyanov, D.: WSMO Studio - an in-
tegrated service environment for WSMO. In Bussler, C., Fensel, D., Keller, U.,
Sapkota, B., eds.: In Proceedings of the 2nd Workshop on WSMO Implementa-
tions (WIW 2005). Volume 134., Innsbruck, Austria (2005)

4. Rivieres, J.D., Wiegand, J.: Eclipse: A platform for integrating development tools.
IBM Systems Journal 43 (2004)

5. Dimitrov, M., Simov, A., Momtchev, V., Konstantinov, M.: WSMO Studio Users
Guide. (2006) Available online at http://www.wsmostudio.org.

6. Gruber, O., Hargrave, B.J., McAffer, J., Rapicault, P., Watson, T.: The Eclipse
3.0 platform: Adopting OSGi technology. IBM Systems Journal 44 (2005) 289–299

7. de Bruijn, J., Lausen, H., Krummenacher, R., Polleres, A., Predoiu, L., Kifer, M.,
Fensel, D.: D16.1: The Web Service Modeling Language WSML. WSML working
draft, DERI (2005) http://www.wsmo.org/TR/d16/d16.1/v0.3/.

8. Roman, D., Scicluna, J., Fensel, D., Polleres, A., de Bruijn, J.: D14: Ontology-based
choreography of WSMO services. WSMO working draft, DERI (2006) Available
at online at http://www.wsmo.org/TR/d14/v0.4/.

9. Farrell, J., Lausen, H.: Semantic annotations for WSDL and XML Schema. W3C
working draft, W3C (2006) Available online at http://www.w3.org/TR/sawsdl/.

10. Keller, U., Lara, R., Polleres, A., Toma, I., Kifer, M., Fensel., D.: D5.1: WSMO
web service discovery. WSMO working draft, DERI (2004) Available online at
http://www.wsmo.org/TR/d5/d5.1/v0.1/.

11. Vu, L., Hauswirth, M., Porto, F., Aberer, K.: A search engine for QoS-enabled
discovery of Semantic Web Services. International Journal of Business Process
Integration and Management (IJBPIM) (2006)

758 M. Dimitrov et al.

12. Free Software Foundation: GNU Lesser General Public License, version 2.1 (1999)
Available at http://www.opensource.org/licenses/lgpl-license.php.

13. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.T., Sheth, A.,
Verma, K.: Web service semantics – WSDL-S. W3C member submission, W3C
(2005) Available at http://www.w3.org/Submission/WSDL-S/.

14. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business
process management: A vision towards using semantic web services for business
process management. In: Proceedings of the IEEE ICEBE 2005, Beijing, China
(2005) 535–540

15. Hepp, M., Belecheanu, R., Domingue, J., Filipowska, A., Kaczmarek, M., Kacz-
marek, T., Nitzsche, J., Norton, B., Pedrinaci, C., Roman, D., Stein, S.: Business
process modelling ontology and mapping to WSMO. SUPER technical report,
Project IST-026850 SUPER (2006)

16. Mendling, J., Neumann, G., Nüttgens, M.: Towards workflow pattern support of
Event-Driven Process Chains (EPC). In: 2nd GI Workshop XML4BPM - XML for
Business Process Management, BTW 2005, Karlsruhe, Germany (2005) 23–38

17. Object Management Group: Business process modeling notation specification
(BPMN). Technical report, Object Management Group (2006) Available at
http://www.bpmn.org.

18. Aalst, W.M.P.V.D., Hofstede, A.H.M.T., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distributed and Parallel Databases 14 (2003) 5–51

19. Wang, X., Vitvar, T., Peristeras, V., Mocan, A., Goudos, S., Tarabanis, K.: WSMO-
PA: Formal specification of public administration service model on semantic web
service ontology. In: Proceedings of the Hawaii International Conference on System
Sciences (HICSS), Waikoloa, Big Island, Hawaii (2007)

20. Peristeras, V., Mocan, A., Vitvar, T., Nazir, S., Goudos, S., Tarabanis, K.: To-
wards semantic web services for public administration based on the web service
modeling ontology (WSMO) and the governance enterprise architecture (GEA),.
In: Proceedings of the DEXA, Krakow, Poland (2006)

An Annotation Tool for Semantic Documents

(System Description)

Henrik Eriksson

Dept. of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden
her@ida.liu.se

Abstract. Document annotation is a common technique for relating
text and knowledge representation. Although the semantic web empha-
sizes the annotation of web pages, there are other types of documents
that can benefit from ontology-based annotations. PDF documents com-
bined with OWL ontologies form semantic documents that support pro-
fessional printing, on-line viewing, and ontological models. PDFTab is
an extension to the Protégé ontology editor that allows developers to
annotate PDF documents with OWL-based ontologies. It is possible to
add OWL ontologies to preexisting PDF documents and to relate docu-
ment parts to concepts in the ontology. PDFTab integrates Adobe Ac-
robat with Protégé and allows users to switch seamlessly between the
document and ontology views. PDFTab illustrates how it is possible to
extend semantic-web techniques to the widely-used PDF format while
maintaining strong support for ontology development and editing.

1 Introduction

The semantic web is a well-known approach to adding metadata in terms of on-
tologies to documents and to facilitating machine-to-machine communication [1].
Although the semantic-web languages and tools are inspired by the web and its
underlying formats, such as HTML and XML, there are other possible applica-
tion frameworks for the semantic-web approach. For example, there is a growing
interest in multimedia annotation [2]. Furthermore, there are many types of tex-
tual documents that require formats other than HTML. For example, Adobe’s
Portable Document Format (PDF) is a widely-used electronic-document format,
which supports on-line viewing and both desktop and professional printing [3].

The prospect of adding semantic annotations to these document formats is
interesting because it makes it possible to extend the scope of the semantic web
to include this type of electronic documents to form semantic documents. We
have previously explored the benefits of semantic documents based on annotated
PDF documents and their potential applications [4, 5]. One conclusion from this
work is that, while semantic documents integrate well with regular electronic
documents and allow viewing and printing using standard tools, they require
new solutions for document annotation.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 759–768, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

760 H. Eriksson

Semantic document

Text annotations

Embedded ontology-
based annotation

Fig. 1. Semantic documents. The ontology annotations are included in the internal
document format.

Adequate tool support is a prerequisite for document annotation. Document
formats such as PDF are difficult to create and modify manually (e.g., using a
text editor). Thus, we need tools that can both read and write the document
format and that can support markup in this format, for instance by selecting
document parts and relating them to the ontology. Our approach is to extend
the ontology editor Protégé [6] with a plug-in that supports seamless ontology
development and annotation of PDF documents. The PDFTab extension allows
developers to load PDF documents into Protégé and annotate them in a graphi-
cal user interface using Adobe Acrobat. Furthermore, PDFTab allows developers
to relate document markup to individuals in the ontology. The advantage of the
PDFTab tool architecture is that it retains the rich ontology-editing functional-
ity of the Protégé environment while adding PDF support.

2 Semantic Documents

The semantic-document approach combines electronic documents with ontolo-
gies [4]. The principal idea is to store the ontologies in the internal document
representation. Just as RDF and OWL statements can be invisible parts of web
pages, semantic documents include ontologies not shown when users view and
print the documents. Figure 1 illustrates the semantic-document approach. The
documents contain the ontologies and the relationships between concepts in the
ontologies and document parts. The rest of the document, including text, graph-
ics, and formatting information, can remain unchanged. This approach allows
PDF tools such as Adobe Acrobat to recognize and open the documents in the
normal way.

While our approach in general does not assume a particular document for-
mat, there are several advantages of using PDF for prototyping and evaluating
semantic documents.

1. PDF is a common format for printing and on-line publication. Since the
early 1990s, authors and publishers have used PDF for document exchange
and publishing.

An Annotation Tool for Semantic Documents 761

2. PDF is an open and documented format [3]. There are many commercial
and open source applications for generating, modifying, and viewing PDF
documents.

3. The PDF specification allows for basic document annotations, such as text
highlighting (by color) and the addition of textual notes (similar to MS Word).

4. PDF specifies document compressions and security (e.g, encryption and sign-
ing). These methods work for ontologies stored in PDF documents.

In addition, Adobe has added the extensible metadata protocol (XMP) to PDF
[7]. XMP supports RDF-based metadata in the file formats of several Adobe
products. Unfortunately, the way XMP uses the RDF structures in Acrobat
makes it incompatible with OWL. Thus, we must store OWL-based metadata
for semantic documents separate from XMP in PDF documents.

Compared to HTML, PDF is a much more complex format. One of the major
advantages of the HTML format is that it allows document creation and editing
with basic tools, such as text editors. Indeed, it is possible to add OWL annota-
tions to HTML documents manually using a text editor (although this requires a
lot of work). However, for a complex document format like PDF specialized an-
notation tools are essential. As mentioned previously, other widely-used formats,
such as MS Word, may also be used as the basis for semantic-document markup.
Tallis [8] discussed an interesting MS Word extension that supports semantic an-
notations. Authors can use this tool to add OWL statements to MS Word files
interactively.

3 Annotation Model

Before presenting the tool architecture, let us first discuss the annotation model.
There are several models for adding annotations to documents. In this section,
we will discuss three of them. The first possibility is to add metadata to docu-
ments without relating the metadata to the document content or parts. XMP,
for example, uses this method. The second modeling alternative is to relate the
metadata to sections of the document text and other document parts. The ad-
vantage of the latter model is that it enables tight integration between documents
and ontologies. For example, the model enables users and application programs
to use the document text to look up parts of the ontology and vice versa.

Finally, it is possible to store metadata outside the documents, for instance
in a separate metalevel database. The advantage of this approach is that no
changes are required to the documents. However, the metadata do not follow the
documents if they are copied, moved, or communicated to others electronically.
Moreover, it is not possible to collect metadata from documents published on
the web.

In our work on semantic documents and the PDFTab implementation, we
choose the second approach; that is, to store the metadata in the document
and to relate document annotations to the ontologies. Our motivation for using
this model is that we want to integrate documents and ontologies and keep the
metadata within the documents.

762 H. Eriksson

4 Tool Architecture

The goal for the tool architecture is to combine advanced ontology development
with full support for PDF, such as fully compatible rendering. The strategy
is to integrate two state-of-the-art tools to form an environment that supports
both perspectives; documents and ontologies. The ontology part of the semantic-
document annotation tool builds on the Protégé environment [6]. The PDF hand-
ling and rendering part uses Adobe Acrobat.

Protégé is a suitable basis for the ontology part because it has an advanced
graphical user interface and it supports different ontology formats, including
OWL [9]. Furthermore, Protégé is a widely-used tool with an active user com-
munity. The Java-based Protégé implementation features a core application pro-
gramming interface (API) for manipulation of ontologies and knowledge bases.
The basic system consists of this core API combined with standard plug-ins for
graphical editing and storage of ontologies and knowledge bases. This extend-
ability enables us to add new functionality for adding document views to the
Protégé user interface and to interconnect Protégé with Adobe Acrobat.

There are many advantages of using Acrobat as the PDF-handling part. Acro-
bat is the standard tool for creating, manipulating, and viewing PDF documents.
There are alternative PDF viewers, but many of these tools may have rendering
incompatibilities for certain documents. Specifically, we could not find any Java-
based PDF viewers with full PDF support. The main disadvantage of Acrobat,
for our purpose, is that there is no support for communication and interoper-
ability with Java programs. It is a major challenge to integrate Protégé with
Acrobat because of the different programming languages and communication
platforms used. Nevertheless, we believe that the best semantic-document tool
solution can be accomplished by integrating these systems.

Figure 2 shows the overall tool architecture. Both Protégé and Acrobat use
collections of standard extensions. The PDFTab extension interconnects Protégé
and Acrobat using such plug-ins. PDFTab act both as a graphical plug-in that
adds a tab to the main Protégé user interface and as a module for managing the
communication with Acrobat. The Acrobat plug-in supports graphical markup
of PDF documents and manages the communication with the Protégé plug-in.
These plug-ins work in concert to enable the users to move seamlessly between
the ontology and document views.

An important aspect of the architecture is support for multiple documents.
The Adobe and Protégé extensions handle several documents, each with their
own ontology. Protégé uses a main ontology, which can import subontologies. In
Protégé, users can select the active ontology for editing. Likewise, Acrobat sup-
ports several open documents. PDFTab allows developers to associate a list of
documents with the main ontology, much like importing the subontologies con-
tained in the documents. The support for multiple documents enables develop-
ers to create an ontology structure consisting of a group of semantic documents,
which refers to a common main ontology.

The current PDFTab implementation is a research prototype that allows users
to experiment with semantic documents and to evaluate the architecture in

An Annotation Tool for Semantic Documents 763

Protégé

Adobe Acrobat

Protégé extensions
PDFTab
extension

Acrobat
extension

Fig. 2. The PDFTab tool architecture. Extensions of Protégé and Acrobat allow bidi-
rectional communication.

practice. As such, the implementation has a number of limitations. Although
Protégé is available on all platforms that support Java and the graphical user
interface Swing and Acrobat is available on almost all major platforms (e.g.,
MS Windows, Apple Macintosh, Sun Solaris, and Linux), the current PDFTab
implementation supports the MS Windows platform only. The Adobe plug-in
API and inter-application communication protocol is platform dependent, and
we choose to focus on the MS Windows platform. The implementation uses
the MS Component Object Model (COM) for the communication between the
applications, because Acrobat supports this technique.

5 User Interface

The overall design goal for the tool user interface is to provide an integrated
environment for documents and ontologies. The user interface should follow the
general interaction and visual style of both Protégé and Acrobat while making
it easy for users to move between the documents and ontologies. Furthermore,
the user interface should support handling of multiple documents. Finally, the
other Protégé tabs for ontology editing should work as before, including custom
and third-part tab extensions.

The user interface of PDFTab consists of two major parts. The Protégé part
is a user-interface tab that adds a document view of the Protégé ontology. The
Acrobat part consists of additional toolbar buttons for creating three types of
semantic annotations and the graphical highlighting of document text and re-
gions. Let us begin by discussing the Protégé document tab. Figure 3 illustrates
the layout of the tool user interface with the document tab selected (Fig. 3a).
The list of documents provides an overview of the documents associated with
the main ontology in Protégé (Fig. 3b). The Acrobat view shows the selected
document and allows users to browse it and add annotations (Fig. 3c). Protégé

764 H. Eriksson

Protégé
Classes

List of
documents

Properties DocumentsIndividuals
a

b
c

Adobe Acrobat

Fig. 3. The organization of the PDFTab user interface. (a) The tab for viewing PDF
documents. (b) The list of the documents available. (c) The Acrobat view of the selected
document.

uses Acrobat as a user-interface extension just like web browsers, such as MS
Internet Explorer and Mozilla Firefox, use Acrobat to support viewing of on-line
PDF documents. The main advantage of this user-interface layout is that users
can easily move between the document view and one of the ontology views (e.g.,
classes, properties, and individuals).

5.1 Document Management

The support for multiple documents requires user-interface functionality for
adding, removing, and inspecting documents. The list of documents (Fig. 3b)
contains all documents associated with the project. Users can add existing doc-
uments to this list by selecting the document add button or by dragging docu-
ments to the list. In PDFTab, the documents must be plain PDF files created
by an external application, such as Acrobat Distiller, or PDF-based semantic
documents produced by PDFTab. Users can select items from the list of docu-
ments for inspecting metadata and for viewing and annotating in the Acrobat
view (Fig. 3c). Alternatively, users can access a list of all annotations for the se-
lected document. This annotation browser provides an overview of the document
annotations, which is helpful for long documents with many annotations. Select-
ing an item in the annotation browser brings up the corresponding annotation
individual, which is part of an annotation ontology.

5.2 Annotation Editing

Users edit annotations in the Acrobat view. PDFTab makes easy to add new
annotations to the selected document. To create a new annotation, the user

An Annotation Tool for Semantic Documents 765

Fig. 4. Annotation buttons in the Acrobat view

Fig. 5. Document annotation in PDFTab

selects an annotation button, such as the text annotation button, and highlights
the text or area to annotate. Figure 4 shows the buttons for the rectangle, text,
and graphics annotation tools added to Acrobat. By selecting one of these tool
buttons, the user can select a rectangular area, a piece of text, or a figure in the
document for semantic annotation. The Acrobat extension highlights the item
selected and sends a request to Protégé to prepare the annotation on the Protégé
side.

Figure 5 shows the Protégé user interface with the document view, which
enables users to browse the document and navigate to the text to annotate.
(This screen dump corresponds to the user-interface overview in Fig. 3.) Here, the
user has selected the text annotation button and highlighted the text “Document
annotation”. After the user has marked the text, PDFTab creates automatically
an OWL individual that represents the annotation, the annotation individual,
and opens a form-based editor for this individual (see Fig. 6). In Protégé, users
can custom-tailor forms by modifying the layout and selecting widgets for the
fields [6]. This functionality enables users to adjust the form for the annotation
to suit the subject domain. Furthermore, it is possible to navigate from the
document to the ontology by double clicking on the highlighted text, which opens
the editor for the annotation individual. Likewise, users can look up annotations
in the document by clicking on buttons in the annotation-individual forms.

The annotation individual can refer to classes and individuals in the doc-
ument’s ontology or in another related ontology, such as the main ontology.
By default, the annotation class has a target property, which is a pointer to a

766 H. Eriksson

Fig. 6. Form for the annotation individual. This individual corresponds to the anno-
tation in the document. The individual contains information about the annotation id,
page number, position, size, creation date, selected text, and an optional reference to
a corresponding domain individual.

Document annotation

Text annotation
in document

is a common technique
to relate...

Annotation
ontology

Document
loading

Document
saving

Tool selection Text marking

Annotation individual

Fig. 7. The annotation process from document loading over annotation creation to
document saving

An Annotation Tool for Semantic Documents 767

target individual for the annotation. For example, the target individual can be
a class modeling a domain concept or a domain-specific individual. In this case,
the annotation individual acts as an intermediate between the document anno-
tation and the domain ontology. This approach helps structuring the ontologies
by separating annotation-specific information from domain-specific information.

Figure 7 summarizes the process of creating an annotation. The Protégé and
Acrobat extensions load the PDF file (and extracts any previous metadata).
Then the user selects the text annotation tool and marks the text to annotate.
Next, the Acrobat extension initiates the creation process by highlighting the
selected text and sending a creation message to the Protégé extension. Protégé
then instantiates the text annotation class to create the annotation individual
and opens a form-based editor for the annotation. When the user saves the
document, Protégé will serialize all classes and individuals associated with the
document and send this structure to Acrobat for inclusion in the document.
Acrobat then saves the document as a file.

6 Discussion

Integrating documents and ontologies has many advantages. Documents are an
important communication and storage format for human knowledge. Ontolo-
gies are a structured way of organizing and representing knowledge, especially
terminologies and conceptualizations. However, to produce and use semantic
documents in practice and extend the vision of the semantic web to documents
beyond web pages, it is necessary to have the appropriate infrastructure for
handling these documents.

PDFTab is a unique tool in the sense that it supports annotation of PDF
documents and combines PDF with advanced ontology-editing support. The
user interface combines ontology editing and document viewing in a seamless
way and allows users to quickly move between the view, just like using a sin-
gle application. Furthermore, we believe that the tool architecture is scalable.
Both Protégé and Acrobat scale well for large ontologies and documents, respec-
tively. PDFTab already supports multiple documents. Therefore, it is possible
to extend the architecture to accommodate for massive document storage in
repositories and databases by redesigning the mechanism for handling multiple
documents.

The PDFTab approach of combining a standard Windows application with
Protégé can serve as an architectural template for other development tools. For
example, an interesting prospect is to combine Protégé with other office-oriented
applications, such as MS Word and PowerPoint. Such hybrid tools can support
new ways of developing ontologies and integrating them with other types of
documents and application objects. We believe that the semantic web can benefit
from new types of tools that expand the interoperability with common, everyday
applications.

768 H. Eriksson

7 Conclusion

Extending the semantic web beyond web pages and HTML to complex docu-
ment and multimedia formats requires new types of tools that can support both
ontologies and the target format in an adequate manner. The PDFTab extension
of Protégé illustrates the feasibility of efficient support for semantic documents.
The combination of Adobe Acrobat and Protégé forms a solid foundation for
state-of-the-art handling of documents and ontologies. Although the integration
of such different tools requires advanced technical solutions, which adds to the
complexity of the system, it is possible to overcome these difficulties and develop
hybrid tools that combine the document and ontology views.

Acknowledgments

This work was supported in part by VINNOVA under grant no. 24478-1 and in
part by Statistics Sweden.

References

[1] Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5) (2001) 34–43

[2] Stamou, G., van Ossenbruggen, J., Pan, J.Z., Schreiber, G.: Multimedia annota-
tions on the semantic web. IEEE MultiMedia 13(1) (2006) 86–90

[3] Adobe: PDF Reference Version 1.6. 5th edn. Adobe Press, Berkeley, CA (2004)
[4] Eriksson, H.: The semantic document approach to combining documents and on-

tologies. (in press)
[5] Eriksson, H., Tu, S.W., Musen, M.: Semantic clinical guideline documents. In:

Proceedings of the AMIA 2005 Annual Symposium, Washington, DC (October
22–26 2005)

[6] Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriks-
son, H., Noy, N.F., Tu, S.W.: The evolution of Protégé: An environment for
knowledge-based systems development. 58(1) (2003) 89–123

[7] Adobe: XMP Specification. Adobe Systems Incorporated (2004)
[8] Tallis, M.: Semantic word processing for content authors. In: Proceedings of the

Workshop on Knowledge Markup and Semantic Annotation at the Second Inter-
national Conference on Knowledge Capture, Sanibel, FL (October 25–23 2003)

[9] Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL plu-
gin: An open development environment for semantic web applications. In: Proceed-
ings of the Third International Semantic Web Conference, ISWC 2004, Hiroshima,
Japan (2004) 229–243

SWHi System Description: A Case Study in

Information Retrieval, Inference, and
Visualization in the Semantic Web

Ismail Fahmi, Junte Zhang, Henk Ellermann, and Gosse Bouma

Information Science Department and University Library,
University of Groningen

Broerstraat 4, 9712 CP Groningen, The Netherlands
{i.fahmi,junte.zhang,h.h.ellermann,g.bouma}@rug.nl

http://www.rug.nl

Abstract. Search engines have become the most popular tools for find-
ing information on the Internet. A real-world Semantic Web applica-
tion can benefit from this by combining its features with some features
from search engines. In this paper, we describe methods for indexing and
searching a populated ontology by using an information retrieval tool; its
results are enriched with inference. For visualization purposes, all of the
retrieved ontology instances are clustered based on their classes; and the
clusters are linked using instance properties. The approach is illustrated
using our SWHi (Semantic Web for History) prototype as a case study.

Keywords: semantic web, ontology, information retrieval, inference,
visualization.

1 Introduction

The Semantic Web can be seen as a general web which describes units of in-
formation. Once this information is available in some web documents (which
then become Semantic Web documents), people can gather and manipulate the
exchanged information using Semantic Web technologies in various useful ways.
Tim Berners-Lee in his Scientific American article “the Semantic Web” [2] il-
lustrated some examples of how the semantic information can help everyday
tasks, such as finding a health care provider, prescription treatments, making an
appointment, and planning a trip.

In order for Semantic Web technologies to have an impact, they should be
able to work together with existing general information retrieval technologies
[6], and even provide new services which cannot be delivered by general Web
search engines such as Google. The most popular Web search engine, Google1

combines instant responses, huge repositories, advanced search methods, and a
sophisticated relevance-ranking algorithm.

1 Google www.google.com

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 769–778, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.rug.nl

770 I. Fahmi et al.

We begin the development of our Semantic Web application from a library point
of view. In this case, Eric Miller [9] believes that “Libraries–digital libraries in
particular–are important memory organizations that form a keystone for the de-
velopment of the Semantic Web.” The digital library stands on collections of an-
notated data, in the form of metadata. This should naturally make the digital
library a successful primary adopter of the Semantic Web, and, on the other hand,
challenge the Semantic Web to improve and widen services provided by digital li-
braries, which nowadays still heavily rely on information retrieval technology.

In our Semantic Web for History (SWHi) project, we combine some features
from the Web search engine and the Semantic Web technology. From the Seman-
tic Web technology point of view, the adoption of the Web search engine tech-
nology is expected to improve its search performance. In this paper we describe
how the search engine tool Lucene2 can be used to index ontology instances,
parse user input queries, and retrieve matched instances. Given a plain list of
ontology instances from the search results, Semantic Web technology will enrich
the retrieved information. Inference will be applied during the indexing and en-
richment steps. For visualization purposes, we organize the results in clusters
based on classes of the retrieved instances (e.g. person, organization, document,
subject, and year) and relations between instances in the classes. We present the
clusters and their relationships using a two dimensional cluster map. Through
this map, users can browse search results interactively, and explore interesting
relationships in an ontology.

2 Motivation

2.1 Data Sources

The concept of a Semantic Web is promising but difficult to implement on most
current Web documents. The Semantic Web requires semantic information which
is typically not encoded in the documents. Considering the importance of such
information, metadata is added into the document. On the other hand, many
digital libraries do have metadata in place. Metadata is a key piece which de-
scribes every resource managed by the digital libraries.

Our SWHi application is developed from the digital library point of view,
where our main data sources are repositories which provide metadata (subsection
3.2). This metadata is mapped and stored into an ontology based on an ontology
schema. Furthermore, literal values in the metadata, for example describing title
and description properties, are analyzed, from which we extract named entities,
events and terminology. To enrich the ontology, we also extract new related
information from selected Web documents.

2.2 Information Retrieval in the Semantic Web

Current popular web search engines (e.g. Google and Yahoo3) provide both
simple and advanced search interfaces. While the advanced search interfaces
2 Lucene lucene.apache.org
3 Yahoo www.yahoo.com

SWHi System Description 771

provide more functionality, the simple search interfaces are preferred by most
users. A Semantic Web application will typically also provide these kinds of
search interfaces.

Using a simple search interface, a user can enter query terms regardless of the
question in which fields the terms would exist. For example, a user may want to
find any information (any document, year, person, or relation between persons)
in our SWHi ontology related to a topic such as French settling colonies involving
Mr. Samuel Kirkland and General Washington in 1777. Using a bag-of-words
searching technique, she might simply type kirkland washington 1777 french
settle into a search form. We face some issues while processing this query using
an RDF query language such as SeRQL[3]. A query processor (which generates
SeRQL queries) will face at least two problems. First, it does not know in which
class or property a word can be found. To avoid this problem, a Semantic Web
application such as OpenAcademia4 requires users to type a keyword into the
appropriate field (author, title or year) in its advanced search interface. Second,
there are some limitations in the substring matching of SeRQL using a wildcard
character ‘*’. Searching for general* will match general and generally only at
the beginning of a text. And searching for * general * (with a space between
the wildcards and the word) will only match general in the middle of a text,
but not at the beginning or end of the text. These problems can be solved using
an information retrieval application such as Lucene which provides powerful,
accurate, and efficient search algorithms. Besides the fielded searching feature,
Lucene also supports phrase queries, wildcard queries, proximity queries, range
queries and more5.

Prior uses of information retrieval technology in a Semantic Web applica-
tion can be found in QuizRDF[4], the Knowledge and Information Management
(KIM) platform[1], OWLIR and Swoogle[6]. QuizRDF creates RDF resource in-
dexes based on RDF Schema and retains this structure in its indexes. KIM uses
Lucene engine to index and retrieve semantically annotated documents while
OWLIR and Swoogle use the Haircut information retrieval engine to index and
retrieve RDF documents based on character n-grams as indexing terms.

2.3 Visualization

In the Semantic Web, visualization is becoming more important. In our case,
since the retrieved instances can be of any type (documents, persons, years,
etc.), a common plain list presentation is not suitable. There are complex rela-
tionships among the resource instances which cannot be presented using a plain
list. Moreover, this presentation typically only displays a small number of search
results (in the range of 10-20 results per page). Documents obscured in the tail
of a search result will likely never be accessed.

Various solutions to this problem have been proposed in the IR as well as
the SW area. Currently, popular result presentations in the information re-

4 OpenAcademia www.openacademia.org
5 Lucene’s Features lucene.apache.org/java/docs/features.html

772 I. Fahmi et al.

trieval technology use topical clustering and mapping techniques. Vivisimo6 and
Grokker7, for instance, both use clustering techniques to analyze and organize
search results according to topics found in the retrieved document descriptions.

In the Semantic Web, the complex nature of relationships between concepts in
an ontology has driven many efforts toward graphical visualization of ontology
browsing and navigation [10,12,11,7]. For example, Cluster Map [7] is used to
visualize instances of selected classes, organized by their classifications. This
map is designed to aid users when navigating their search results and ontologies.
The Spring embedding model [8,5] has been widely used to visualize collections
of instances and ontologies[10,7]. It draws highly related entities close to each
other with a directed edge and gives the effect of separation in a two-dimensional
plane.

3 System Architecture and Data Source

3.1 Architecture

The general architecture of the SWHi system is shown in Fig. 1. It consists of
three layers: Knowledge Management System (KMS), Semantic Web Applica-
tion, and User Interface layers. The bottom layer, is responsible for processing
(information extraction and semantic annotation), indexing, and storing histor-
ical resources (metadata and documents), also providing API for its upper layer
to query the knowledge base. This layer highly depends on several third party
tools, such as GATE8, Sesame9, and Lucene.

In the middle layer, several application modules which enable the Semantic
Web were developed to carry out the following functions: processing data sources
(text and metadata), processing user queries, and delivering results in several
ways (network graph, cluster map, and time line). And the top layer provides
interface to users which are being designed as simple and easy to use as possible.

3.2 Data Source and Ontology

It is obvious from the Fig. 1 that the ontology plays as a central role in the SWHi
system. For the development of the SWHi ontology, we reuse existing ontology
resources for structuring and storing historical information, namely: PROTON10

base ontology, the types of American history imprints identified (automatically)
in the metadata, the taxonomical subject classification by NewsBank/Readex11,
Dublin Core12, and Friend of a Friend13. This ontology is stored using the Sesame
2, an RDF storage and querying framework.
6 Vivisimo www.vivisimo.com
7 Grokker www.grokker.com
8 GATE gate.ac.uk
9 Sesame www.openrdf.org

10 PROTo ONtology proton.semanticweb.org
11 Newsbank InfoWeb infoweb.newsbank.com/?db=EVAN
12 Dublin Core dublincore.org
13 FOAF xmlns.com/foaf/0.1/

SWHi System Description 773

Fig. 1. The general architecture of the SWHi system

Our initial instances for this ontology are extracted from the Early American
Imprints, Series I: Evans, 1639-180014. This knowledge source gives insight in
all published works of the 17th- and 18th-century America. Its metadata con-
sist of 36,305 records, which are elaborately described (title, author, publication
date, etc) with numerous values, and have been compiled by librarians in the
format MARC21. In the future we will extend the data sources with other his-
torical electronic journal metadata as well as full texts, like digitized version
of Early American Imprints, Wikipedia, and biographical profiles that libraries
have about historical US figures.

4 Indexing, Searching, and Inference

4.1 Indexing and Inference

Performance is very important in a real-word application. No matter how so-
phisticated and accurate the logic behind a search engine, if it cannot provide a
fast search response, users will likely less appreciate it. To ensure that our sys-
tem will have an acceptable response time and process query terms efficiently,
we use the Lucene text search engine API to index our ontology instances. We
make use of Lucene fielded data feature to store and index instance properties.
When indexing, each instance in the SWHi ontology is added to a Lucene index
as if it is a new document, and instance properties are added to the document
as document fields.

In our experiments, getting information directly from an ontology through
inference could cost an unacceptable processing time, especially if the inference
14 Early American Imprints Series I www.readex.com

774 I. Fahmi et al.

queries are complex or repeated many times. However inference is required to
return the most relevant instances given user queries. For example, searching
for instances with literal values containing the term “washington” in the SWHi
ontology would give us 7 instances of Person class or 586 instances of all classes
(Person, Location, Event, and Document) in any order. Using inference, in-
stances with higher relevance can have higher position in the order. For example,
a person who is known by many people and created many documents would get
a higher score. For this purpose, we apply inference during an indexing step to
get additional information about an instance.

Table 1 illustrates how an instance of Person class should be indexed by
Lucene. For example, an instance with a label “George Washington” is being
indexed. Each Lucene field of the instance is populated by querying the ontology
repository. Then, the number of persons that Washington knows will be stored in
the foaf knows field, and the number of persons who know him will be stored in
the known by field. These numbers will not be searched, but will be used during
query analysis which boost particular fields based on their values.

Table 1. The Lucene fields of Person class instance. The container field will used by
search “All”

Field Lucene type Description

uri Field.UnStored a URI of an instance

rdfs label Field.Text a short label of an instance

container Field.Text contains all data from other fields (not stored)

foaf topic interest Field.Text a textual list of topics

foaf knows Field.Keyword the number of persons as String

known by Field.Keyword the number of persons as String

dc creator Field.Text a textual list of document titles

protont involvedIn Field.Text a textual list of events

protont startTime Field.Keyword a date as a String (YYYYMMDD)

protont endTime Field.Keyword a date as a String (YYYYMMDD)

4.2 Searching and Enrichment

Retrieving and processing information from the SWHi ontology will be done
through these processes: Query formulation, Query analysis and parsing, Search
and retrieval, Enrichment, and Clustering.

Query Formulation. When performing a query, users often encounter difficul-
ties whether they have to use “AND” or “OR” [13]. To overcome this problem,
we present a free-text search interface to users. Using a form in this interface,
users can type any query terms, such as a combination of terminology, person
name, year, and location. For advanced users, we provide an advanced search
interface where they can use multiple fields for their query terms.

SWHi System Description 775

Query Analysis and Parsing. All free-text search queries will be processed
by Lucene. Since its searches are case-sensitive, a general best practice is to
lowercase query terms during query analysis. The StandardAnalyzer which is
used during the indexing will be used again to perform this task. In this step,
we set different boosting factors to the index fields based on their importance to
the class being searched. For example, the field known by is a good indicator of
how well-known the person was. This can be implemented using FunctionQuery
feature of Lucene which can return a score based on fields’ values. For advanced
search queries, we generate SPARQL queries and send them directly to the
Sesame repository.

Search and Retrieval. Given a free-text search query, Lucene searches its in-
dex to find all matched resources, and given an advanced search query, Sesame
searches for instances from its ontology repository. Each time a search is per-
formed, the Search Module retrieves URIs of instances in the search results and
stores them into a cache memory. This will speed up the retrieval process when
a user clicks on other pages of the same search results, which could happen if
the number of instances exceed an allowed number of instances per page.

Enrichment. The goal of this step is to deduce new information given a list
of URIs in the search results retrieved by the previous search process. The
SWHi ontology will be used to enrich presented instances with important in-
formation and relationships. For this purpose, we define inference algorithms
for each instance class. Since the search phase typically produces many search
results, we have to optimize this enrichment phase to achieve an acceptable
performance. For example, we limit only to the first 200 instances returned by
Lucene that will be enriched for clustering, and 10 to 20 instances for a plain list
presentation.

Clustering and Visualization. Clustering is performed to preprocess the
results before they are presented in a cluster map to users. Since the results
consist of various resource types, a visual representation technique would be a
promising option. The underlying concept of our visualization is based on this
Visual Information Seeking Mantra [13]: “Overview first, then zoom & filter,
then details on demand”.

We implement this principle by clustering the results. Our cluster data will
be organized to support the following levels of presentation details:

Global view of results. Users can see a global view of all of the results in
a two-dimensional graphical visualization. In this view, the results are or-
ganized into clusters based on the results’ classes or topics. Grouping by
topics seems to be more interesting than by classes, because users can see
interactions between instances of different classes in a topic. Between the
clusters, we draw relationships based on properties carried by the results in
each cluster. Every instance in a cluster will be presented using a symbol.

776 I. Fahmi et al.

Zoom view of a cluster. Users can zoom into a cluster to see interactions
between instances in the selected cluster. For example, in a cluster of persons,
users can see how persons in that cluster know each other.

Detailed description view of a cluster or a node. Users can read a detailed
description of a cluster or a node (member of a cluster). For example, they
can see the name of a cluster, the number of its nodes (cluster’s members), a
complete list of the nodes’ titles and links, or a short description of a node.

5 Results

In this section, we describe the results of our system development and illustrate
them with some examples. Assume users want to find information about “George
Washington and wars” and type the keywords “+washington +wars” in a free-
text search interface. After receiving search results, the first task of the user
interface is to display a general view of the results. For this task we use the
Cluster Map [7] as shown in Fig. 2.

The user interface in the figure is divided into three main panes: left, right,
and bottom. The left pane shows the classification tree of the results, containing
the names of the clusters, their children and the numbers of objects within each
cluster. In this pane, the users perform cluster selection that will change the
visualization of the clusters in the right pane. For example, Document, Person,
and Topic clusters are selected together with some of their sub-clusters as shown
in the right pane. Objects in the results are now classified according to their

Fig. 2. Search results for the query “+washington +wars” visualized using ClusterMap

SWHi System Description 777

Fig. 3. Browsing objects and their relationships

clusters and intersections, which help users select objects satisfying their needs.
In the figure they can click on a cluster of 7 objects (documents) related to a
Political science topic. A list of objects (of any type, e.g., document, person,
date, or location) in the cluster are then displayed in the bottom pane. Detailed
information of an object will be presented when users click on a title in the
list.

A different visualization strategy is shown in Fig. 3. While ClusterMap shows
objects in the result set as clusters, the last strategy shows relationships between
objects in a cluster or in the whole result set. For example, the figure shows how
individuals in the Person class relate each other. Objects and their relations are
not limited by the result set, but can be retrieved directly from the repository
when requested information is not available in the set. This can be seen as an-
other way of browsing the result set and repository. We implement this strategy
using the TouchGraph15 tool.

6 Summary and Future Work

This paper has described a case study in implementing information retrieval, in-
ference, and visualization in the Semantic Web. The use of information retrieval
technology is mainly motivated by pragmatic reasons which are to provide rich
search functionalities and to return semantically related search results with high
performance. However, in this application, the ontology keeps playing an impor-
tant role, especially in shaping information structure in the indexes, in infer-
encing, and in clustering. Subject and terminology classes in the ontology help
generating clusters based on resource topics. Visualization based on this group-
ing technique is interesting because it combines information from the ontology
and information retrieval into a single graph.

The SWHi application is an on going project. We are also in a progress of
enriching the ontology by implementing named entity, event, and terminology
extraction.

15 TouchGraph www.touchgraph.com

778 I. Fahmi et al.

References

1. Kiryakov Atanas, Popov Borislav, Terziev Ivan, Manov Dimitar, and Ognyanoff
Damyan. Semantic annotation, indexing, and retrieval. Journal of Web Semantics,
2, 2005.

2. Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American, 2001.

3. Jeen Broekstra and Arjohn Kampman. An RDF Query and Transformation Lan-
guage, pages 23–39. Semantic Web and Peer-to-Peer. Springer Berlin Heidelberg,
2006.

4. John Davies, Richard Weeks, and Uwe Krohn. QuizRDF: Search technology for
the Semantic Web. In Proceedings of the 37th Annual Hawaii International Confer-
ence on System Sciences (HICSS’04), pages 112–119. BTexact Technologies, IEEE
Computer Society, 2004.

5. P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160,
2000.

6. Tim Finin, James Mayfield, Clay Fink, Anupam Joshi, and Scott R. Cost. Infor-
mation Retrieval and the Semantic Web. In Proceedings of the 38th International
Conference on System Sciences, 2005. Received Best mini-track paper award.

7. Christiaan Fluit, Marta Sabou, and Frank Harmelen van. Ontology-based infor-
mation visualisation: Towards semantic web applications. Springer Verlag, 2005.

8. Thomas M.J. Fruchterman and Edward M. Reingold. Graph drawing by force-
directed placement. Softw. Pract. Exper., 21(11):1129–1164, 1991.

9. E Miller. Digital libraries and the semantic web. http://www.w3.org/2001/09/06-
ecdl/slide1-0.html, 2001. Accessed 11 December 2006.

10. Paul Mutton and Jennifer Golbeck. Visualization of semantic metadata and on-
tologies. In Seventh International Conference on Information Visualization (IV03),
pages 300–305. IEEE, 2003.

11. Bijan Parsia, Taowei Wang, and Jennifer Golbeck. Visualizing web ontologies with
cropcircles. In End User Semantic Web Interaction WS. ISWC 2005, 2005.

12. D.A. Quan and David R. Karger. How to make a semantic web browser. In WWW
’04: Proceedings of the 13th international conference on World Wide Web, pages
255–265, New York, NY, USA, 2004. ACM Press.

13. Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In IEEE Visual Languages, pages 336–343, College Park, Maryland
20742, U.S.A., 1996.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 779–788, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Semantic Turkey: A Semantic Bookmarking Tool
(System Description)

Donato Griesi, Maria Teresa Pazienza, and Armando Stellato

AI Research Group, Dept. of Computer Science, Systems and Production
University of Rome, Tor Vergata

Via del Politecnico 1, 00133 Rome, Italy
{griesi,pazienza,stellato}@info.uniroma2.it

Abstract. In this work we introduce Semantic Turkey, a Semantic Extension for
the popular web browser Mozilla Firefox. Semantic Turkey can be used to keep
track of relevant information from visited web sites and organize collected
content according to a personally defined ontology. Clear separation between
knowledge data (the WHAT) and web links (the WHERE) is established into
the knowledge model of the system, which allows for innovative navigation of
both the acquired information and of the pages where it has been collected. This
paper describes the architecture of the Semantic Turkey extension for Firefox,
analyzes its development, shows its most interesting features and presents our
plans for future improvements of the tool.

1 Introduction

In this work we introduce Semantic Turkey, a Semantic Extension for the popular
web browser Mozilla Firefox [3], which can be used to annotate information from
visited web sites and organize this information according to a personally defined
ontology. Semantic Turkey should not be addressed as a “Semantic Web Browser”
(whatever the nature of this term, which will probably take shape in the next future);
it is intended as a personal desktop solution for organizing and managing the relevant
information which is observed during web navigation, an advanced replacement for
the traditional “Favorites” menu, offering clear separation between knowledge data
(the WHAT) and web links (the WHERE), thus allowing for innovative navigation of
the acquired information as well as of the pages where it has been observed.

2 Motivations and Approach Followed

Our research work, funded by the FILAS (Finanziaria Laziale di Sviluppo) agency

under contract C5748-2005, has been centred on providing innovative methodologies
and instruments for browsing the web and for organizing information of interest
gathered during navigation. A specific point which emerged in our interviews inside
FILAS is the emerging great need for efficient recovery of already visited pages (and,
more in general, of already accessed knowledge): people are often exposed to large

780 D. Griesi, M.T. Pazienza, and A. Stellato

quantities of information, which are not always useful when seen for the first time,
though difficult to recover when needed. The result is that people often become
frustrated by the classical “I’ve seen it somewhere, but I don’t remember where!”
problem. We thus focused on finding interesting solutions for collecting, managing
and retrieving data observed during web navigation. Our key goal was to overcome
the limited usability of bookmarks lists, which:

− see weblinks as first class citizens. They can be categorized by implicitly adding
them to a bookmarks folder, but they are no way separated from the knowledge
they represent. More links could be related to the same subject, but there is no way
to represent this aspect, except from considering the subject as a folder itself, thus
betraying the intended equation: folder = category. Also, in some cases, it could be
important to identify the portion of a page which contains the relevant information
which caused it to be bookmarked. (e.g., “John Doe” is cited in a long web
document which is very generic and not directly related to John Doe; we would
like to take note of the page, still maintaining the focus on the real subject of our
interest and immediately recognize where it has been identified).

− do not foresee any kind of multiple categorization. Any folder cannot belong to
two or more different folders (a kind of multiple inheritance between categories),
nor can any single weblink belong (with the possible exception of new systems
adopting virtual foldering) to more than one folder (multiple instantiation).

− single knowledge resources cannot assume any kind of structure. It is not possible
to further characterize a weblink, or to relate it with other ones (except putting
them in the same folder/category).

Our project headed towards the development of a sort of “semantic notepad”1 offering
basic functionalities for:

1. capturing information from web pages, both by considering the page as a whole, as
well as by annotating portions of their text

2. editing a personal ontology for categorizing the annotated information and,
possibly, to exchange information with other people and exporting to other tools.

3. navigating the structured information as an underlying semantic net which,
populated with the many relationships which bind the annotated objects between
them, eases the process of retrieving the knowledge which was buried by the past
of time For example, a user could discover that two persons which he has kept
track of in separate sessions (by annotating their presence and some aspects of their
profiles appearing in different web pages), work in the same place, or have any
kind of connection he would not recall with any kind of traditional
bookmarking/annotation service.

4. clearly separating the business model from the user interface, by adopting a
“knowledge service” architecture. This way, the same architecture could be
exploited for an enhanced personal web browser as well as for a shared
environment for collaborative semantic tagging of web pages.

1 “Taccuino” is the italian word for the term “Notebook”. In our lab, we hate so much the silly

Italian expression “Taccuino Semantico” (Semantic Notebook) that we started to use any kind
of misspelling of its name, the funniest (and most used) of which was “Tacchino Semantico”
(Semantic Turkey). The rest is history.

 Semantic Turkey: A Semantic Bookmarking Tool 781

Fig. 1. Architecture of Semantic Turkey

3 Architecture

The architecture (Fig. 1) of Semantic Turkey consists in a web application, designed
using a three layered approach.

The first layer, the presentation layer, has been developed as an extension for the
web browser Firefox. Everything relating to user interaction is directly managed by
the Firefox extension, thanks to a solution directly integrated in the browser. This
approach has two main advantages: total reuse of the functionalities of a well
assessed, stable and complete software for web browsing, and a non invasive offer for
the user, who can still use the web browser he has been acquainted with.

782 D. Griesi, M.T. Pazienza, and A. Stellato

The second layer, the service layer, is realized through a collection of Java Web
Services, published through the Web Server “Jetty” [8]. Jetty is implemented entirely
in Java, and the architecture foresees its use as an embedded component. This means
that the Web Server and the Web Application run in the same process, without
interconnection overheads and other sort of complications. This solution also allows
for a flexible use of the tool, since it can both be adopted as a completely autonomous
web browser extension, as well as a personal access point for collaborative web
exploration and annotation: in the latter case, a centralized solution is being adopted,
in which clients communicate with the same server.

The third layer, the persistence layer, comprehends the component for managing
the ontology, which is represented in the OWL language [10]. This layer has been
realized by using Sesame [1] and the OWLIM plugin [9]. Sesame is an open source
RDF database with support for RDF Schema inference and querying. Since the
Knowledge Model of Semantic Turkey is expressed in the OWL Lite [11] dialect of
the Web Ontology Language, the OWLIM plugin has been employed to provide
OWL Lite reasoning to the Sesame component.

3.1 Architectural Layers

The following sections describe more in detail the three layers which constitute the
architecture of Semantic Turkey.

Presentation Layer. As previously mentioned, the presentation layer has been
realized as an extension to the web browser Firefox. The User Interface has been
created through a combined use of the XML User Interface Language XUL [17],
XBL [15] and Javascript language. Physically it appears as a sidebar, containing the
ontology tree, which may be shown on the left side of the window by selecting
dedicated “ontology” item added in “Tools” menu. The icons that represent the nodes
of the tree distinguish between classes and instances that belong to the ontology.

The ontology is loaded/updated through calls to the server, carried out using the
Ajax [5] technique: the data – in XML format – is thus mainly exchanged between the
two layers in an asynchronous way, to preserve good performance and to not penalize
the activity of the browser.

The extension has also another prerogative, which is not an ordinary feature of the
presentation layer: it has to assure that the web server is being loaded as an embedded
component, at the start of the browser process. To do that XPCOM [16] components,
written in JavaScript, have been developed for linking the chrome part and the Java part.

In order to load the Java component, the Simile Java Firefox Extension [12] has
been used. This component allows to load java classes or jar packages, instantiate
objects and to invoke static methods or methods of the object previously instantiated.

At the start of the browser process, after loading the java components (the java
server code and the required libraries), a static method is being invoked with the role
of instantiating the web server. This solution makes it possible to install all the
application simply as a Firefox extension, without configuring other software.

 Semantic Turkey: A Semantic Bookmarking Tool 783

Service Layer. This layer offers services which may be invoked through http requests
submitted according to the Ajax paradigm, thus enabling communication between the
client (Firefox extension) and the server. The server receives the requests coming
from the client by GET or POST http calls, carries out the operations associated to
these calls, and in case replies with an XML response. If a call implies the return of a
XHTML page, a XSLT transformation is being performed, in order to decouple the
data model with its manifestation in the presentation layer.

The majority of invocations to the server are being completed in an asynchronous
way, so that, independently from the workload that is subjected the server, the
browser can continue to respond to the user. This is a crucial issue for the usability of
the application: expensive computations blocking normal behavior of the browser
would otherwise not be tolerated by the user.

Besides supporting the communication with the client, the service layer provides
the functionalities for definition, management and treatment of the data. Several
objects are described through an ontological model (see next section), to represent
both pure conceptual knowledge as well as application required information.

Finally, the service layer also provides another important functionality linked with
the presentation layer. It allows for the capability of visiting the ontology through a
graph view, using the TouchGraph library [14]. TouchGraph is an open source tool
for visualizing networks of interrelated information. It renders networks of
information concepts as interactive graphs that lend themselves to a variety of
transformations. By engaging with the visual image, a user is able to navigate through
large networks of information and to explore different ways of arranging the
network's components on the screen. This functionality has been positively judged by
the technophores, as it allows unexpected correlations to emerge from the network of
information.

In order to access TouchGraph from presentation layer, a dedicated java applet and
related servlet have been realized. The servlet works like a proxy, redirecting the
applet loaded, with the correct parameters, to the client side.

Persistence Layer. Sesame provides the abstraction layer over ontological data. The
foundation of the component is the Storage And Inference Layer (SAIL). This SAIL
is an API that abstracts from the storage device used (in-memory storage, disk-based
storage, RDBMS) and takes care of inference.

From the architecture perspective the Access APIs are the most important
component. These APIs provide high-level access functionality to client applications,
either locally or remotely (over HTTP or RMI).

Sesame can thus be deployed as an RDF database, with persistence in an RDBMS,
or as a Java library for embedded use in applications. This last modality has been
employed for the definition of the architecture. In our case, the ontology data is, by
default, handled in memory and stored in the (local) File System, but it is possible to
easily switch to the database storage backend for managing very large ontologies.
Also, the ontology repository may be located in a different, remote, site, thus offering
different possibilities for decentralizing the application.

784 D. Griesi, M.T. Pazienza, and A. Stellato

Fig. 2. Annotating concepts from a web page and establishing relationships between them

3.2 The Knowledge Model

The knowledge model of Semantic Turkey has been structured into four different
layers of ontological knowledge:

1. The Application ontology: This ontology contains resources needed by Semantic
Turkey to organize, retrieve and present information to the user.

2. The Top Ontology (which owl:import the Application Ontology): this ontology has
originally been conceived inside our project for FILAS, and is thought for
representing a minimal knowledge which should be shared across the different
technophores. This ontology can simply be seen as a guideline for driving the
personal annotations of each of the technophores, and could be used as well as a
shared ontology for exchanging information between them.

3. The Personal/Domain Ontology (which owl:import the Top Ontology): The third
ontological layer allows for a personalized organization of the knowledge which is
extracted and collected from the web.

4. The Knowledge Base (which owl:import the Top Ontology), i.e. the set of instances
which populate the personal ontology of the user.

The Application ontology is composed of resources useful for managing the
annotation functionalities. These, among the others, include the classes:

− Annotable identifying the part of the ontology which can be annotated by the user
− URL which stores links to the visited pages

 Semantic Turkey: A Semantic Bookmarking Tool 785

− SemanticAnnotation containing the annotations performed by the user,
described by their URL, related concept etc…

and the properties:

− has_location linking URLs with Annotable concepts
− observed_lexicalization describing the form with which a given object

appeared in a specific annotation. this property has been preferred to a more
precise information, like reporting the byte offset of the annotation inside the page,
to make retrieval of the annotated object more robust with respect to minor
changes that occurred to the page over time.

The Application ontology is invisible to the user and is only exploited by the
application to get the proper logic for administering the upper ontological layers. Key
elements for the annotation process are expressed in terms of concepts from this
ontology.

Resources originated from the Top ontology are read-only, and cannot be deleted
as a consequence of any edit operation by the user. In a really general perspective, the
Top Ontology could even be left empty (i.e. if there is no supposed shared
conceptualization which must be adopted by users working on a common annotation
framework; in this case, each user can build from scratch its own conceptualization,
which will be thus constituted by the sole Personal Ontology), or external resources
could be imported, possibly exchanging their content with other applications, like a
mail browser (e.g. by adopting the FOAF ontology [4] for managing contacts) or a
client for instant messaging. The Personal Ontology is the last conceptual layer which
can be modeled according to personal preferences, perspectives and needs.

4 User Interaction

Semantic Turkey offers some basic editing operations for populating the personal
ontology with annotations from visited web sites, as well as search and navigation
functionalities which facilitate the recovery of already acquired knowledge.

4.1 Main Functionalities

The user may interact with the ontology panel to modify its personal ontology,
through a series of operations, which we describe here, organized into categories.

Interaction with the browser. These mainly include drag&drop operations which
allow to annotate information from the visited sites:

1. Drag and drop of a selection of a text from an html document displayed in the
browser, on the icon that represents a class, in order to create an individual of that
class. The selection will become the ID of the new individual and a new icon will
be shown below the selected class

2. Drag and drop of a selection of text from an html document, on the icon that
represents an individual, in order to characterize a property which that individual
owns. A specific window will open, prompting the user to choose the fitting
property. The selection will become the ID of a new individual that represents the

786 D. Griesi, M.T. Pazienza, and A. Stellato

instance of the range of the property chosen. If the selected property is an object
property, a new icon will be created relatively to the range class.

3. Drag and drop of a selection of text from an html document, on the icon that
represents an individual, in order to define a further lexicalization for that
individual. The user can choose, from the same panel described before, if the
selection characterizes a range of a property or a new observed lexicalization (see
section 3.2).

Direct Ontology Editing. These functionalities operate exclusively on the ontologies,
as it should be important for the user to integrate its knowledge with information he
would acquire through other media (communication with other people, radio, tv
etc…). These include:

1. Semantic Editing. It is possible to create, modify and/or delete new
classes/individuals/properties. All the operations are being carried out through
specific panels that are activated by a context menu associated to the nodes of the
tree, in a way much similar to traditional ontology editing tools, like Protégé [6] or
TopBraid Composer [13]. By offering complete interaction with the ontology via
the XUL interface (instead of an HTML interface, like in Piggy-Bank), the user is
not diverted from his current navigation (i.e. the main browser panel is still focused
on the visited web page, which would otherwise be replaced by the HTML UI) and
may maintain its attention over the observed web page.

Fig. 3. Semantic Navigation: recalling ontology and web links for “Armando Stellato”

 Semantic Turkey: A Semantic Bookmarking Tool 787

2. Lexical Editing. Add synonyms and documentation for the concepts. These
alternative lexicalization provide several anchors for referring the same ontological
entries. This solution facilitates retrieval of knowledge objects when the ontology
reaches a considerable growth, or simply when its knowledge is transferred to
other users. Advanced search functionalities over the ontology objects and their
lexicalizations in different languages, have been made available thanks to an
embedded indexing engine [7] and the adoption of a library implementing different
string matching algorithms [2].

Semantic Navigation. As an additional feature, the user may graphically explore the
ontology (Fig. 3), thanks to the SemanticNavigation component. A Java applet will be
loaded on a new tab of the browser displaying the graph view of the ontology,
allowing the user to navigate its content and get back to the pages related to the
annotated knowledge. Conversely, Semantic Turkey reports to the user, through a
dedicated status bar, the pages which have been previously annotated. When the user
visits an already annotated page, an icon with the shape of a pencil is being shown in
the lower part of the browser. If the icon is being clicked, the html text entries that
represent the past annotations will be emphasized (providing the page still contains
those entries) with a light background color.

5 Conclusions

In this paper Semantic Turkey, a special environment for supporting end users in
annotating information caught from visited web sites, has been described.

Main objective of our first experience in developing Semantic Turkey has been to
extend “usual” web browsing modalities, with a particular focus on efficient and
intuitive retrieval of information already observed during past navigation. A key
characteristic of this approach has been to separate the role of site bookmarking from
the more complex aspect of knowledge management and, at the same time, to
interweave both of them in a homogeneous perspective over the two dimensions of
the Web: traditionally exposed documents and the new web of data fostered by the
Semantic Web. We are now in the direction of refining the overall architecture to
meet more general requirements which would make Semantic Turkey an open and
reusable platform. In particular, the multilayered approach in the knowledge model
must be flexible enough to allow the user to import and reuse any number of available
ontologies, while an extension mechanism should make it easy to produce specific
add-ons for adding new functionalities to the browser. The flexibility offered by the
client-server paradigm in the overall architecture should also be exploited to offer the
possibility of performing and handling concurrent accesses to remote ontology
repositories, effectively transforming the system in a client front-end for collaborative
ontology management.

Acknowledgements

Our research work on Semantic Turkey has been funded by the FILAS (Finanziaria
Laziale di Sviluppo) agency under contract C5748-2005.

788 D. Griesi, M.T. Pazienza, and A. Stellato

References

1. J. Broekstra, A. Kampman & F.v. Harmelen I. Horrocks & J. Hendler (ed.) Sesame: “A
Generic Architecture for Storing and Querying RDF and RDF Schema”. Springer Verlag,
Proceedings of the First International Semantic Web Conference, Sardinia, Italy, pages 54-
68, July 2002

2. W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance metrics
for name-matching tasks. In Proceedings of the IJCAI-2003.

3. Firefox home page: http://www.mozilla.com/en-US/firefox/
4. Friend Of A Friend Ontology (FOAF): http://xmlns.com/foaf/0.1/
5. J.J. Garrett. “Ajax: A New Approach to Web Applications”. Feb. 18, 2005

http://www.adaptivepath.com/publications/essays/archives/000385.php
6. J. Gennari, M. Musen, R. Fergerson, W. Grosso, M. Crubézy, H. Eriksson, N. Noy, and S.

Tu. The evolution of Protégé-2000: An environment for knowledge-based systems
development. International Journal of Human-Computer Studies, 58(1):89–123, 2003

7. Erik Hatcher and Otis Gospodnetić. Lucene in Action. Manning ed. 456 pages. 2004.
ISBN: 1932394281

8. Jetty Java HTTP Servlet Server. http://jetty.mortbay.org/jetty/.
9. Kiryakov, D. Ognyanov & D. Manov OWLIM – a Pragmatic Semantic Repository for

OWL. In Proc. of Int. Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS 2005), WISE 2005, New York City, USA, 20 November 2005

10. Web Ontology Language: http://www.w3.org/TR/owl-features/
11. OWL Lite Description: http://www.w3.org/TR/2004/REC-owl-features-20040210/#s3
12. Simile Java Firefox Extension: http://simile.mit.edu/java-firefox-extension/
13. TopBraid Composer: http://topbraidcomposer.info/
14. Touchgraph Development Page: http://touchgraph.sourceforge.net/
15. Extensible Binding Language: http://www.mozilla.org/projects/xbl/xbl.html
16. XPCOM. http://www.mozilla.org/projects/xpcom/
17. XML User Interface Language (XUL) Project. http://www.mozilla.org/projects/xul/

The Web Service Modeling Toolkit - An

Integrated Development Environment for
Semantic Web Services

(System Description)

Mick Kerrigan, Adrian Mocan, Martin Tanler, and Dieter Fensel

Digital Enterprise Research Institute (DERI),
Leopold-Franzens Universität Innsbruck, Austria

firstname.lastname@deri.org

Abstract. The time of engineers is a precious commodity. This is espe-
cially true for engineers of semantic descriptions, who need to be highly
skilled in conceptual modeling, a skill which will be in high demand as Se-
mantic Web technologies are adopted by industry. Within the software
engineering community Integrated Development Environments (IDEs)
like the Eclipse Java Development Toolkit and NetBeans have proved to
increase the productivity of engineers by bringing together tools to help
engineers with their everyday tasks. This paper motivates the need for
such an IDE for the Semantic Web and in particular describes the Web
Service Modeling Toolkit (WSMT), an Integrated Development Environ-
ment for Semantic Web Services through the WSMO paradigm.

1 Introduction

The combination of Semantic Web and Web service technologies, to create Se-
mantic Web Services (SWS), with the aim of automating the Web service usage
process has been the aim of the WSMO[4], WSML[5] and WSMX[7] working
groups over the last number of years. The research in this area has produced
a conceptual model, a formal langauge and many back-end services for finding
and using Web services that meet the requirements of end-users. However the
process of creating the required semantic descriptions is a difficult task and the
time of Ontology and Semantic Web Service engineers is a precious commodity.

Within the Semantic Web domain there is much ongoing research into how to
present ontologies and semantic data to users. Each of the tools resulting from such
research tend to address a given problem within the domain, with these individual
research efforts rarely being aligned or integrated together. The lack of integration
results in developers switching back and forward between different tools for differ-
ent tasks. In this paper we introduce the Web Service Modeling Toolkit (WSMT)1,
an Integrated Development Environment for Semantic Web Services, aimed at in-
creasing the productivity of Ontology and Semantic Web Service engineers.
1 Available for download from http://wsmt.sourceforge.net

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 789–798, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

790 M. Kerrigan et al.

An Integrated Development Environment (IDE) is defined as a type of com-
puter software that assists computer programmers to develop software2. The main
aim of an IDE is to improve the productivity of the developer by seamlessly inte-
grating tools for tasks like editing, file management, compilation, debugging and
execution. Before the creation of the WSMT, developers of semantic descriptions
using the WSMO paradigm were forced to create their ontologies, web services,
goals and mediators by hand in a text editor. This has many inherent problems,
as due to the lack of validation and testing support it is very easy for errors to
creep into these semantic descriptions, which go unnoticed by the developer until
run-time. Many other tasks that are very easy in an IDE, can be hugely time
consuming without one, for example registering a semantic description with an
execution environment. Providing a fully integrated suite of tools for Semantic
Web Services, that meets the needs and requirements of developers should aid
in the adoption of the WSMO technology and reduce the overhead of creating
SWS applications.

In the following section we provide the background for our work, in section
3 we describe the problems currently addressed by the WSMT, in section 4 we
describe related work and finally in section 5 we provide some conclusions and
future work.

2 Background

The Semantic Web aims to make the vast quantities of information available
on the Web machine-understandable, by the use of ontologies to annotate Web
content. Web service technologies have emerged as a contender for the next
generation of Web applications, essentially lifting the Web from a static collection
of information to a dynamic computational entity. Web services have machine-
processable annotations that are well structured (using XML) and describe how
to interface with these services. However these annotations are purely syntactic
and not machine-understandable, thus large amounts of human effort is required
to build Service Oriented Architectures. Semantic Web Services are the extension
of ontologies to describe Web services such that a machine can reason about
the functionality they provide, the mechanism to invoke them, and the data
they expect as input and return as output. Once Web services are described
semantically it allows for large parts of the Web service usage process to be
automated. Services can be discovered based upon their functionality, can be
selected based upon the quality of the service, heterogeneity issues with respect
to the data they exchange or the process to invoke them can be mediated. It
is important to note that the semantic descriptions to enable this functionality
layer on top of the existing syntactic descriptions for existing Web services. Thus
Semantic Web Services are not a reinvention of Web services but an enhancement
to them. There are two main contenders in the field of Semantic Web Services,
namely WSMO[4] and OWL-S[16][15]. Within the scope of this paper we focus
on WSMO as the conceptual model for Semantic Web Services.
2 http://en.wikipedia.org/wiki/Integrated development environment

The WSMT - An IDE for SWS 791

The Web Service Modeling Ontology (WSMO)[4] is a conceptual model for
creating semantic descriptions for Web services that can be used to resolve inter-
operability issues and automate the Web service usage process. WSMO is based
on the Web Service Modeling Framework (WSMF)[5] and as such, is based on
the four main elements of the WSMF: ontologies, web services, goals and medi-
ators. The aim of WSMO is to solve the integration problem by describing Web
services semantically and by removing ambiguity about the capabilities of Web
services, the problems they solve and the process of interacting with them.

The Web Service Modeling Language (WSML)[10] is a formalization of the
WSMO ontology, providing a language within which the properties of Semantic
Web Services can be described. There are five language variants, based on De-
scription Logic and Logic Programming. Each language variant provides different
levels of logical expressiveness[10]. These variants are: WSML-Core, WSML-DL,
WSML-Flight, WSML-Rule and WSML-Full. WSML-Core, which corresponds
to the intersection of Description Logic and Horn Logic, provides the basis for all
the variants, while WSML-Full unites the functionality of all variants. WSML
Core is extended in the direction of more expressive Description Logic by WSML-
DL and towards Logic Programming by WSML-Flight and WSML-Rule.

A Semantic Execution Environment (SEE) for Semantic Web Services can be
used to bind service requestors and providers together at runtime using seman-
tic descriptions of the user’s goal and the provider’s Web service. SEEs provide
functionality for discovering, composing, selecting, mediating, and invoking Web
services that match the end users requirements. There are currently two Se-
mantic Execution Environments for WSMO, namely the Web Service Execution
Environment (WSMX)[7] and IRSIII[2]. The SEE functionality is currently being
standardized through the OASIS standardization.

3 The Web Service Modeling Toolkit

The Web Services Modeling Toolkit (WSMT) is an Integrated Development En-
vironment (IDE) for Semantic Web Services implemented in the Eclipse frame-
work. The WSMT aims to aid developers of Semantic Web Services through the
WSMO paradigm, by providing a seamless set of tools to improve their pro-
ductivity. As already mentioned a Integrated Development Environment (IDE)
is defined as a type of computer software that assists computer programmers to
develop software. IDE’s like the Eclipse Java Development Toolkit (JDT)3 and
NetBeans4 for developing java software have proven that good tool support can
improve the productivity of engineers. It could be said that the time of ontology
and Semantic Web Service engineers is a more precious commodity, as the num-
ber of people who are currently skilled in conceptual modeling is much less than
those that can code in Java. This underscores the need for adequate tool sup-
port for working with semantic technologies and an IDE can tie together these
tools in such a way that the whole application is more than the sum of the parts
3 http://www.eclipse.org/jdt/
4 http://www.netbeans.org

792 M. Kerrigan et al.

that make it up. The main advantage of using the IBM Eclipse framework is
the existence of other useful plugin projects, for example the Eclipse Web Tools
Platform (WTP)5, which provides tools for Web service technologies like WSDL
and XML. This enables developers to put the WSMT and the WTP together
to build their Web services and semantically describe them with WSMO. The
process of building ontologies or describing Web services semantically involves
the creation of different types of documents. The main tasks in this process
revolve around four main themes:

– Editing: Firstly the actual descriptions must be created. It is important
that users of different skill levels are supported within the IDE, thus editing
support at different levels of abstraction should be provided. Considering
ontologies, it may be more convenient for the engineer to create an ontology
using a textual representation and then to use a graph based representation
to learn more about the ontology.

– Validating: The most common problem that occurs when creating semantic
descriptions is incorrect modeling. It can be very easy for an engineer to make
a mistake without any tool support. Validation of semantic descriptions is a
non trivial task and validation at both the syntactic and semantic levels can
vastly reduce the time an engineer spends debugging an ontology.

– Testing: Once valid semantic descriptions exist the engineer needs to ensure
that they behave in the expected manner in their intended environment
prior to deploying them. Having testing integrated into the development
environment reduces the overhead of the user performing a lengthy, iterative,
deploy-test scenario.

– Deploying: Ultimately the descriptions created within the development en-
vironment must be used in some run-time system. Deploying descriptions
can also be a huge overhead on the engineer and having tool support in an
IDE can prevent mistakes occurring at this crucial stage of the process.

The WSMT focuses on three main areas of functionality, namely the engineering
of WSMO descriptions, creation of mediation mappings and interfacing with
execution environments and external systems. Towards these aims, the Eclipse
editors and views available within the WSMT are broken up into three Eclipse
perspectives6. These perspectives are the WSML, Mapping and SEE perspectives
respectively and are described in the next sections.

3.1 The WSML Perspective

Creating ontology descriptions is a non trivial task that requires the skills of
a trained ontology engineer, and many tools exist for building ontologies in
OWL[16] and RDF(S)[1]. In the case of WSMO the engineer must also be knowl-
edgable about both Ontologies and Web services in order to creation semantic
5 http://www.eclipse.org/webtools/
6 Eclipse perspectives are used to group together editors and views that a given de-

veloper will use while performing a given set of tasks.

The WSMT - An IDE for SWS 793

descriptions. As already described it is important that tool support exists for
efficiently using the time of this skilled engineer. Within the WSML perspective
a number of tools are provided that allow users of different skill levels to create,
manage and interact with semantic descriptions in the WSMO paradigm. These
tools include:

– WSML Validation: WSMO4J7 is an object model for manipulating WSMO
descriptions and is capable of parsing and serializing WSML documents to
and from this object model. WSMO4J also provides a validator for each of
the 5 WSML variants, which is exploited within the WSMT to validate the
files that are located within the WSMT workspace as the user edits these
documents. This validation ensures that the engineer of the semantic de-
scriptions gets immediate feedback of errors they create, both in the syntax
and the semantics of the semantic descriptions, as they create them.

– WSML Text Editor: Until recently ontology engineers using the WSMO
paradigm would create there WSMO descriptions by hand in a text editor.
It is very tempting when creating a toolkit to abstract away from a text
editor and to provide more advanced editing support; However in many cases
the engineer is more comfortable with editing the raw text of the semantic
description. This is especially true with respect to WSML, as the WSML
human readable syntax is a very lightweight syntax. Within the WSMT we
cater for such users and provide them with additional features including
syntax highlighting, syntax completion, in line error notification, content
folding and bracket highlighting.

– WSML Form based Editor: Moving up from the WSML text editor,
we have abstracted to a form based editor that provides the user with an
intuitive interface for building semantic descriptions by completing forms.
In this editor the user can create new elements related to their semantic
description and specify their properties. Within the editor the user is always
manipulating a WSMO4J object model, which can be serialized to the human
readable syntax by saving the editor.

– WSML Visualizer: The WSML Visualizer[8] is a fully integrated graph
based visualization and editing tool for WSML. The WSML Visualizer al-
lows the engineer to learn more information about their semantic descriptions
as they create them. Normally visualization solutions are bolted on top of
existing ontology engineering solutions after the fact, by providing an inte-
grated solution the user need not switch back and forth between an editing
environment and a visualizer to understand the effects of changes to the on-
tology. The visualizer tries to resolve the graph scalability problem that is
often found with visualization solutions by breaking down the visualization
into multiple levels and allowing the user to browse these levels like in a
web browser. The tool includes manipulation features like zoom and rotate,
along with the ability to filter nodes of a certain type.

– WSML Reasoner View: Semantic descriptions are only useful if they can
eventually be reasoned over and much work is ongoing within the WSML

7 http://wsmo4j.sourceforge.net/

794 M. Kerrigan et al.

community to create reasoners for all 5 variants of the WSML language. This
view exposes the functionality of the WSML2Reasoner framework, which
currently provides access to the Pellet[14] description logic reasoner and
MINS logic programming reasoner8. The purpose of this view is to allow the
engineer of semantic descriptions to be sure that the descriptions they create
yield the expected results when put into a reasoner.

– Discovery View: When engineers are creating Semantic Web Service de-
scriptions, it must always be at the forefront of their mind that these Web
Service descriptions will ultimately be discovered by a users Goal descrip-
tion. The discovery view can be used in a similar way to the reasoner view
to allow the engineer to check that a specified Goal matches the expected
set of the Web Services in the users workspace, i.e. that the Goal will behave
as expected in a given discovery engine.

3.2 The Mapping Perspective

When enabling interoperability between two business partners it is important
that the data exchanged is correct. However it is unlikely that both partners will
use the same ontology to represent their data. Ontology to ontology mediation
within the WSMX environment is considered as a semi automatic process, where
mappings between two ontologies are created at design time and then applied
automatically at runtime in order to perform instance transformation. Automatic
approaches for creating mappings do exist but their accuracy is relatively low and
we believe that for business to business integration an engineer must be involved
in creating and validating the mappings. This is a non trivial task and the user
should be guided through the process of creating the mappings and ensuring that
they are correct. Within the WSMT all mappings are in the Abstract Mapping
Langauge (AML)[13] syntax, which is formalism neutral, and later grounded to
WSML within WSMX.

– AML Validation: The importance of validating semantic descriptions as
the user creates them was already described in section 3.1, and this is equally
true for the Abstract Mapping Language. Within the WSMT we currently
provide validation for the syntax of AML documents and will extend this to
semantic validation when a validator for the AML semantics is available.

– AML Text Editor: The Abstract Mapping Language Text Editor provides
a text editor for the human readable syntax of the AML. It features similar
features to that of the WSML human readable text editor including syntax
highlighting, in line error notification, content folding and bracket highlight-
ing. This editor enables the engineer to create or modify mappings through
textual descriptions, this is especially useful for tweaking mappings that have
been produced by other editors.

– AML View Based Editor: The AML View Based Editor provides a graph-
ical means to create mappings between ontologies. It is often the case that
the expert that understands the problem domain and is capable of aligning

8 http://tools.deri.org/mins/

The WSMT - An IDE for SWS 795

the two ontologies is not also a specialist in logics. The suggestion of possible
mappings is done by using a set of algorithms for both lexical and structural
analysis of the concepts. Additionally, the guidance is offered by decompo-
sition and context updates. As described in [11], the graphical point of view
adopted to visualize the source and target ontologies makes it easier to iden-
tify certain types of mismatches. This viewpoints are called perspectives and
it is argued that by using combinations of these perspectives on the source
and target ontologies, certain types of mappings can be created using only
one simple operation, map, combined with mechanisms for ontology traversal
and contextualized visualization strategies.

– AML Mapping Views: The AML Mapping Views have the role of pro-
viding a light overview on the mappings created either by using the AML
Text Editor or the AML View Based Editor. Instead of seeing the full de-
scription of mappings it is also useful to see a more condensed version of
this information with the entities in the source and in the target that are
mapped and the conditions associated with them. For this purpose there been
four types of Eclipse views defined (Concept2Concept, Attribute2Attribute,
Concept2Attribute and Attribute2Concept), each corresponding to the com-
binations of the entities that can participate in a mapping.

– MUnit Testing View: Mappings must be updated as ontologies evolve,
it can be hard for the engineer to be aware of the effects that these con-
stant changes have. The MUnit unit testing view for the Abstract Mapping
Language gives the engineer support to ensure that instances are correctly
transformed. The user can define pairs of sources and targets, specifying that
the result of transforming the sources, using the existing mappings, should
be the targets. These tests can then be incrementally run by the engineer
when validation of the mappings is required.

3.3 The SEE Perspective

Ultimately the purpose of creating semantic descriptions in WSMO and defining
mappings between ontologies is to allow automation of the Web service usage
process and to bind requester and provider at runtime with minimal human
intervention. As described in section 2, Semantic Execution Environments, like
WSMX and IRSIII provide automatic discovery, composition, selection, media-
tion, and invocation of Semantic Web Services. Many of the tasks performed by
the Semantic Web Service engineer involve interfacing with these SEEs. Func-
tionality is provided within the WSMT to reduce the effort normally spent in-
teracting with these environments.

– Integration with WSMX: WSMX exposes a number of Web service inter-
faces that give access to its functions. These Web services can be split into
two categories, namely services related to executing WSMX and services re-
lated to storing and retrieving descriptions. The SEE Perspective provides
access to both of these types of services, users can right click on WSML

796 M. Kerrigan et al.

and AML documents in the workspace and use the descriptions contained
within these documents to invoke the entry points of WSMX i.e. Achieve-
Goal, InvokeWebService or these descriptions can be stored to the internal
repositories of WSMX. The SEE perspective also shows all the descriptions
currently stored within the WSMX repositories and allows the user to down-
load these descriptions into their workspace.

– Integration with IRSIII: Similar functionality as for the WSMX system
is available for the IRSIII system. One interesting difference is that all data
within IRSIII is described in terms of the Open Universities OCML[12] for-
mat, and the WSMT must translate back and forth from this format when
sending data to or retrieving data from IRSIII.

4 Related Work

This section outlines other efforts in the direction of creating integrated environ-
ments aiding users of semantic technologies. For this we have selected the most
popular tool for creating ontologies in OWL, namely the Protégé OWL Plugin,
along with WSMO Studio, which is the closest alternative to the WSMT for
creating WSMO descriptions.

Protégé[6] is a free open source ontology engineering environment that can be
extended to support different ontology formats. Through a collection of these ex-
tensions Protégé currently supports Frames, XML Schema, RDF(S) and OWL.
The Protégé OWL Plugin[9] was developed at Stanford Medical Informatics9

as a tool for editing the Web Ontology Language (OWL)[16]. The plugin at-
tempts to abstract the user away from the underlying OWL RDF syntax and
provides a number of graphical widgets that can be accessed by the user for
building ontologies and creating instance data. The Protégé OWL Plugin can
also be extended with plugins, existing plugins provide functionality for visual-
izing OWL ontologies, integrating with OWL reasoners etc. The main limitation
of Protégé is that, while it is the standard toolkit used within the Semantic Web
community for building ontologies, other tools are not integrated with this en-
vironment. Semantics will soon be present in many different parts of computer
science and as already described integrating Semantic Web tools into the Eclipse
framework allows for them to be used side by side with other toolkits like the
Java Development Toolkit (JDT) or Web Tools Platform (WTP).

WSMO Studio[3] is a collection of tools for editing WSMO descriptions de-
veloped for the Eclipse Framework by OntoText Labs10, Sirma. WSMO Studio
offers the engineer functionality for editing WSMO descriptions through the
WSML paradigm. The main difference between the WSMT and WSMO Studio
is the level of abstraction. WSMO Studio focuses squarely on editing descrip-
tions at the form based level and provides only basic functionality in a text editor
for WSML, i.e. Syntax highlighting and no ontology visualization functionality.

9 http://smi.stanford.edu/
10 http://www.ontotext.com

The WSMT - An IDE for SWS 797

With respect to Semantic Execution Environments, WSMO Studio has function-
ality for invoking the IRSIII system through its repositories view but does not
provide any functionality for integrating with WSMX. The choice of Eclipse by
both environments allows for the tools of each, which in many ways complement
each other, to be placed in the same application.

5 Conclusions and Future Work

This paper has described the need for an Integrated Development Environment
for the Semantic Web and for Semantic Web Services. It has also introduced
the Web Service Modeling Toolkit (WSMT), which aims to provide such an
IDE to improve the productivity of engineers of semantic descriptions. Section 3
introduced the concepts of editing, validating, testing and deploying in an
IDE. The following table shows how the Web Service Modeling Toolkit meets
these four concepts for each of the descriptions that it supports:

Feature Ontology, Web Service & Goal Mappings

Editing Text, Form & Graph Text & Dual Tree
Validating Syntactic & Semantic Syntactic
Testing Reasoning View & Discovery View MUnit View
Deploying SEE Perspective SEE Perspective

Future work in the WSMT includes automation of the process of ensuring
that semantic description behave as expected, by the addition of unit testing
functionality for WSML. This unit testing functionality will allow the user to
ensure that their ontologies behave in the expected way as they evolve. Further
integration with the WSMX and IRSIII systems will also be added to the SEE
perspective, allowing the user to visualize the processes that are executing within
the Semantic Execution Environments. Thus allowing engineers to debug their
descriptions with respect to their behavior within a SEE.

Acknowledgments

The work is funded by the European Commission under the projects ASG,
DIP, enIRaF, InfraWebs, Knowledge Web, Musing, Salero, SEKT, SEEMP, Se-
manticGOV, Super, SWING and TripCom; by Science Foundation Ireland un-
der the DERI-Lion Grant No.SFI/02/CE1/I13 ; by the FFG (Österreichische
Forschungsförderungsgeselleschaft mbH) under the projects Grisino, RW2, Sem-
NetMan, SeNSE, TSC and OnTourism.

798 M. Kerrigan et al.

References

1. D. Brickley and R.V. Guha. Resource Description Framework (RDF) Schema
Specification 1.0, W3C Recommentdation, 2000.

2. L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, B. Norton, V. Tanasescu, and
C. Pedrinaci. IRS-III: A Broker for Semantic Web Services Based Applications. In
Proc. of the 5th Int’l Semantic Web Conf (ISWC), 2006.

3. M. Dimitrov, A. Simov, V. Momtchev, and D. Ognyanov. WSMO Studio - an
Integrated Service Environment for WSMO. In WSMO Implementation Workshop
2005, volume 134 of CEUR Workshop, 2005.

4. C. Feier, A. Polleres, D. Roman, J. Domingue, M. Stollberg, and D. Fensel. Towards
Intelligent Web Services: The Web Service Modeling Ontology (WSMO). In Proc.
of the Int’l Conf on Intelligent Computing (ICIC), 2005.

5. D. Fensel and C. Bussler. The Web Service Modeling Framework (WSMF). Elec-
tronic Commerce Research and Applications, 1(2):113–137, 2002.

6. J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubzy, H. Eriks-
son, N. F. Noy, and S. W. Tu. The Evolution of Protégé: An Environment for
Knowledge-Based Systems Development. Technical report, 2002.

7. A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX - A Semantic
Service-Oriented Architecture. In Proc. of the Int’l Conf on Web Services (ICWS),
2005.

8. M. Kerrigan. WSMOViz: An Ontology Visualization Approach for WSMO. In
Proc. of the 10th Int’l Conf on Information Visualization, 2006.

9. H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The Protégé OWL
Plugin: An Open Development Environment for Semantic Web Applications. In
Proc. of the 3rd Int’l Semantic Web Conf (ISWC), 2004.

10. H. Lausen, J. de Bruijn, A. Polleres, and D. Fensel. WSML - A Language Frame-
work for Semantic Web Services. In Proc. of the W3C Workshop on Rule Languages
for Interoperability, 2005.

11. A. Mocan, E. Cimpian, and M. Kerrigan. Formal Model for Ontology Mapping
Creation. In Proc of the 5th Int’l Semantic Web Conf (ISWC 2006), 2006.

12. E. Motta. Reusable Components for Knowledge Modelling. Case Studies in Para-
metric Design Problem Solving, volume 53 of Frontiers in Artificial Intelligence
and Applications. IOS Press, 1999.

13. F. Scharffe and J. de Bruijn. A language to specify mappings between ontologies.
In IEEE Conference on Internet-Based Systems SITIS6, 2005.

14. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A Practical
OWL-DL Reasoner. Submitted for publication at ”Journal of Web Semantics”,
2006. Available from: http://www.mindswap.org/papers/PelletJWS.pdf.

15. N. Srinivasan, M. Paolucci, and K. Sycara. Adding OWL-S to UDDI, Implemen-
tation and Throughput. In Proc. of 1st Int’l Workshop on Semantic Web Services
and Web Process Composition (SWSWPC), 2004.

16. W3C. OWL Web Ontology Language Reference. Technical report, 2004.

Understanding Large Volumes of Interconnected

Individuals by Visual Exploration

(System Description)

Olaf Noppens and Thorsten Liebig

Institute of Artifical Intelligence
Ulm University
Ulm, Germany

{olaf.noppens|thorsten.liebig}@uni-ulm.de

Abstract. Ontologies are now used within an increasing number of real-
world applications. So far, significant effort has been spend in building
tools to support users in creating, maintaining, and browsing the termi-
nological part of an ontology. On the other hand, only little work has
been done in supporting the user to explore the manifold interconnected
assertional knowledge in order to analyze, visualize, and understand this
network of individuals. In this paper, we present a new efficient visualiza-
tion and editing approach which allows to investigate relationships within
large volumes of interlinked individuals in order to grasp the structure
of the assertional knowledge more easily.

1 Motivation

An OWL ontology typically consists of two parts [2]: The terminological or
schema part introduces concepts and properties and gives structure to them
in terms of axioms using the available OWL Lite or OWL DL language con-
structs (also called TBox in Description Logics). The assertional or data part
defines concrete individuals and relationships between those individuals (also
called ABox) utilizing the concepts and properties of the terminology.

As an example, consider the ontology given by the widely known Lehigh Uni-
versity Benchmark (LUBM) [6]. This test suite has become a de-facto standard
for measuring reasoning performance and consists of an ontology covering ba-
sic elements in the domain of tertiary education. For instance, its TBox defines
terms like Department, Student, and Course as well as properties like subOr-
ganisationOf, takesCourse, and headOf. A corresponding ABox covers virtual
universities, faculties, research groups, etc. which are randomly populated with
individuals such as FullProfessor3, GraduateStudent27, GraduateCourse6.
These individuals are related via property instantiations, e. g. GraduateStu-
dent27 takesCourse GraduateCourse6. A huge ontology of this kind obviously
is characterized by a large number of individuals (i. e. students, departments,
etc.), property instantiations (course attendees, employees, etc.) and a constant

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 799–808, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

800 O. Noppens and T. Liebig

number of terms within the terminological schema. In fact, within a typical real-
world application, the TBox is assumed to be much smaller in comparison to
the amount of assertions in the ABox.

New reasoning systems as well as recent system optimizations have shown
significant increase in speed for answering conjunctive queries with respect to
LUBM test cases containing several hundred thousands of individuals [13,14,18].
Even if these results rely on synthetically generated data produced by a rela-
tively simple benchmark generator such as the LUBM, they clearly demonstrate
promising progress in the development of scalable reasoning systems.

On the other hand, little has yet been done to support ontology users or de-
velopers to visually edit or explore such large volumes of interrelated individuals.
There is currently no representation approach or even a tool to gradually inspect
an individual with respect to its direct and indirect fillers regarding a transitive
property. For instance, within the university domain one could be interested in
stepping through the subOrganisationOf relationship up to a specific institute
in order to expand all the persons which are advised by the corresponding chair.
Or within the Gene Ontology (GO) [4], which contains millions of individuals,
users are presumably interested in investigating which specific DNA binding
product interacts with which kind of receptors for example.

Our approach utilizes a user-driven visualization strategy, making use of ani-
mated expansion steps, clustering techniques, and different levels of detail views.
It allows for operations on a single individual or on sets of individuals and takes
property features such as transitivity, symmetry, etc. into account.

1.1 Visualizing Entailed Assertions

Note that our visualization approach inherently requires reasoning. Since OWL
allows for property hierarchies as well as symmetrical, transitive, or functional
properties, a reliable reasoning system such as RacerPro [7] is needed to make
implicit property instantiations explicitly available. Without reasoning feedback
an ABox visualizer would degrade to a syntax imaging tool, probably hiding the
most important correlations. For instance, in case of has-child being a sub-
property of a transitive property has-descendant, there implicitly exists a has-
descendant link between an individual and all its children. Another example
deals with the fact that in OWL individuals are not disjoint by default. As a
consequence two fillers of a functional property (a property with at most one filler
per source) will be merged to one individual by the inference engine. Thus, an
ABox visualization should also render them as one object bearing two identifiers.

Therefore, the underlying presentation principle of our ABox visualizer is
to always render the semantical implied relationships between individuals in
order to make effectively visible what is entailed in the ontology. We argue that
any serious ontology authoring or browsing tool should allow users to explore
implicitly modeled as well as explicitly given information, while being able to
distinguish between both. In this sense this component is a direct extension of
our OWL TBox authoring tool OntoTrack [12].

Understanding Large Volumes of Interconnected Individuals 801

1.2 Related Work

As mentioned before, there is poor tool support in browsing and editing ABox
data. There are some OWL editors which allow for inspection of single individ-
uals with help of selection lists and standard form elements such as Protégé [10]
or SWOOP [8]. However, they only provide one level of detail and have no in-
terface for exploring the fillers of more than one property in parallel. Moreover,
list-style and table-based approaches are not adequate techniques to analyze
large amounts of data and are less practical in showing a chain of property fillers
in a clear and concise manner (e. g. to follow the transitivity of properties).

Tools such as GrOWL [11] try to offer a graph based interface which uses
graphical icons to depict different types of nodes (class, property, or individual)
as well as language constructs (negation, union, etc.). GrOWL provides a spring
layout which dynamically adds nodes to the graph on user demand. However,
this functionality is not sufficiently fine-graded enough for the task of gradually
inspecting property fillers. In addition, the resulting graph is somewhat verbose
and may distract the user due to frequent layout changes or node agglutination.

On the triple-based representation level of RDF, individuals are just as any
other resources. Furthermore, since OWL is layered on top of RDF Schema,
there is a lack of expressivity in RDF needed to capture the semantics of an
OWL ABox appropriately. As said before, the graph representation of the RDF
data model is conceptually different from the graph structure of an ABox even
without considering entailed statements.

Nevertheless, RDF Gravity [5] effectively supports a user in filtering a RDF
graph by means of selecting resources or specifying RDQL queries but is not
ideal with respect to a user-friendly layout.

2 Interactive Exploring of Individuals

Exploring Large Volumes of Interrelated Individuals. When visualizing
large data volumes there always is a trade-of between detailedness and overview.
One lesson learnt from the visual analysis of large data sets in general is that
it is not advisable to arbitrarily visualize all dependencies, particulars etc. at
any time [9]. Hence, our approach tries to provide detail information on user
demand while offering an overview at the same time. Here we adopt the single-
view visualizing paradigm enabling selective detailed views which has turned out
to be adequate for visualizing concept and property hierarchies as invented by
our ontology authoring framework OntoTrack.

Our visualization paradigm is based on a user-directed exploration of interre-
lated individuals which does consider an individual as a first-class element but
also allows to group them within clusters as following. Starting with a user se-
lected individual, one can interactively exploit the property fillers (respectively
datatype values in the case of datatype properties) of each property the indi-
vidual is related to in a step-wise fashion. For instance, the LUBM ontology
defines a property named takesCourse which relates students with courses, e. g.
GraduateStudent27 takesCourse Course10 as well as Course21.

802 O. Noppens and T. Liebig

Exploring on User-Demanded Expansion. Figure 1 shows that the root is
related via the property subOrganizationOf with exactly one other individual.
When hovering over an individual with the mouse pointer and clicking the middle
mouse button, the tool offers a preview depicting all the properties together with
their number of fillers (as long as they have at least one). From our experience,
it is often the case that a “natural” exploration of an ontology will typically
not only include a directed exploration with respect to a property but also its
inverse direction even if there is no inverse property explicitly defined (to provide
a bidirectional exploration). For instance, when having all courses a student
takes one would like to explore other students of a specific course. In Figure 1
there are filler of four other properties to which the actual root is related to
in an inverse fashion. In order to denote the different directions a small arrow
indicates whether the actual root is the source of the property (right arrow) or
a filler (left arrow).

Fig. 1. Preview context menu for expanding property fillers

After expansion, all fillers with respect to the selected property are grouped
within a so-called property filler cluster which will be drawn as a a club originat-
ing from the individual which is considered as the source of the expansion (e. g.
takesCourse in Figure 2). Each individual within the cluster are rendered as
circles whose labels are accessible via mouse-over tooltips. Due to a standardized
package algorithm the clusters diameter approximates the number of individuals
and allows to easily compare different filler sets by their rendering size.

At any time the user can guide his exploration by choosing a follow up root
from the individuals within the currently visible clusters or may branch by se-
lecting other properties for further expansion. To distinguish different properties
different colors are used. In addition each club carries its corresponding property
label. One can optionally switch of in-view label rendering. Then there will be a
list of colored property names in order to denote which property is represented
by which color. However, in both cases, the color of the property club and the
property label is always the same for clubs which are based on the same prop-
erty. In a similar manner, different colors are uses for the different types of fillers
(i. e. individuals versus data values).

Understanding Large Volumes of Interconnected Individuals 803

Figure 2 shows an example snapshot of a partially expanded LUBM ontology
containing five universities (approx. 60 thousand overall individuals). Following
the first expansion level at the very bottom of Figure 2 it is easy to perceive that
the root individual (an undergraduate student) takes two courses. Furthermore,
one of this courses has more than 30 other participants from which one takes
four courses. The root individual also is member of an university with over 40
employees (see → memberOf ← worksFor expansion). Any changes in the lay-
out such as (de-)expanding clusters are animated to easily grasp the differences
between two exploration states. Beyond that the whole layout can continuously
be zoomed or paned simply by mouse-down movements.

Fig. 2. Partial expanded property fillers

Close-By Detail Information. In our first prototype [15] we followed exactly
the detailed view mode paradigm of OntoTrack to provide further informa-
tion for individuals, such as name, via mouse-wheel usage. However, displaying
individuals names within clusters results in diluting the correlation between the
property filler cluster’s diameter and its number of fillers. We therefore decided
to provide an additional area for detailed information instead. When hovering
over a property filler cluster with the mouse pointer, all contained individuals are
displayed in the detailed view area at the right hand side of the visualization as
shown in Figure 3. Here, further detailed levels can be activated or de-activated
using the mouse-wheel, e. g. to display (in a non-graph-based way) all direct
classes the selected individual is instance of, or even to display told information.

Identifiers, Labels, and Names. When showing the name of an individual
the question arises what does the name mean and where it comes from. Our
experience with our first prototype attested the feeling that for exploring an on-
tology more naturally, names as typically provided with a RDF label annotation

804 O. Noppens and T. Liebig

is better suited. However, as these labels are just labels and does not carry any
semantics or constraints there are not always used. For instance, to express that
each individual which is instance of Person should have a name, this is typically
modeled as restrictions with respect to a property hasName. Therefore, our visu-
alization offers the possibility not only to use the local name of the URI or the
label (if any) but also to specify a (datatype) property whose filler is used for
labeling the graphical representation. Note that there must exist such a filler.

Fig. 3. Sampled detailed view for the individuals of the second property filler cluster
takesCourse

Cloning in Favor of a Concise Visualization. From a logical perspective,
one and the same individual can be related to another individual via different
properties and may appear multiple times within the expansion path of a specific
property, e. g. due to cycles or inverse exploration. A visualization can either use
one single graphical representation for each individual or has to use a cloned
graphical representation for different occurrences of the same individual. We
decided to allow for clones representations in clusters containing one an the
same individual because otherwise a path-directed expansion would no longer
be possible. However, if a user hovers with the mouse pointer over an individual,
all its visible representations are highlighted simultaneously.

Exploring at Different Levels of Granularity. In addition to expand a single
individual it is also possible to expand the fillers of a whole cluster with respect to a
property as shown in Figure 4. This can be done by choosing the club itself (border
or background) rather than a specific individual as expansion source. The emerg-
ing filler cluster then contains the union of all fillers of the predecessor cluster. In
case of already expanded clubs (with respect to that specific property), all their
individuals move into the new cluster in an animated manner which may serve as
a simple visual explanation of the underlying action semantics.

Distinguishing Between Inferred and Told Information. According to
the semantics of a transitive property an individual is related to all directly or
indirectly related fillers reachable via this property. Therefore, when expanding
the fillers of a transitive property with respect to an individual (or cluster of

Understanding Large Volumes of Interconnected Individuals 805

Fig. 4. Cluster expansion and instant highlighting of search matches

individuals) the transitive closure of related fillers are shown. One can, how-
ever, distinguish between directly and indirectly related fillers by expanding the
next level. The first expansion will then only contains the direct property fillers
whereas all other fillers are transferred into the subsequent property cluster in
an animated fashion. For instance, the upper part of Figure 5 shows the first
expansion level of the transitive property subOrganizationOf, which contains

Fig. 5. Follow up expansion of a transitive property

806 O. Noppens and T. Liebig

two individuals which are reachable from the selected individual in the inverse
expanded property filler cluster. After expanding the next level (lower part of
Figure 5) it becomes apparent that one of the individuals now has moved to the
next expansion level.

Searching and Editing Features. Our ABox visualizer also supports Onto-

Track’s search features which are based on dynamic queries [17] which also can
be found in tools like SpaceTree [16]. For instance, during a string based search
process the user starts typing an individual or property name and all match-
ing entities are instantly highlighted. Each additional character or deletion in
the search string directly results in an updated highlighting of the matching
individuals as shown in Figure 4. In addition to browsing, the ABox visualizer
also supports rudimentary editing features such as the removal and addition of
property fillers. One can add an individual to a filler set by using the drag ’n
drop paradigm. For instance, a user can drag an individual out of a cluster into
another one or onto the work space. The result of the former is a changed filler
set membership, the latter will remove the instance from the original filler set.
However, removing an individual from all filler sets does not remove the individ-
ual from the underlying ontology. For those kind of editing actions additional
authoring features still have to be developed.

3 Implementation and Current Work

During our implementation of a first prototype [15] we discovered several prob-
lems with respect to the visualization paradigm and the communication per-
formance with our external reasoning system. These experiences were carefully
considered when designing the current revision of our ABox visualizer. As a
recent analysis has shown, ontologies typically consist of several hundreds of in-
dividuals [19]. Obviously, scalability and performance are very important issues
for user-friendly tools. From a graphical perspective, we address scalability and
performance with our decision for the Piccolo framework [3] because of our posi-
tive experience with large numbers of graphical objects in the ontology authoring
framework OntoTrack.

Following from our description above, our ABox tool is linked with an OWL
inference engine in order to be able to visualize entailed knowledge. Querying for
all entailed knowledge at start up is obviously not a feasible solution when dealing
with large volumes of data. As we are currently not able to use the standard
DIG 1.1 interface [1] for reasoner communication because it only supports very
basic ABox queries, we use in the meantime the RacerPro reasoner via its native
syntax and query interface over TCP [7]. The use of the nRQL query language
gives us also the possibility for an query optimization: we query for the first
property fillers in advance which are successors of the current visible clusters1.
The querying of the next answer tuples is then organized following the last come,
1 The first ones are those which are “easily” to compute by the reasoner. For more

information to that subject please refer to Racer’s nRQL language.

Understanding Large Volumes of Interconnected Individuals 807

first serve principle. If the user exploits other branches of the property fillers
those will be computed first. The graphical representation also gives feedback
about the process of querying, i. e. the question mark symbol is shown in the
middle of a property filler cluster when some individuals are still missing until the
reasoner answered the query for the remaining fillers. Note that the upcoming
new version of DIG, namely DIG 2.0, will support more fine-graded and more
expressive queries.

Current work deals with focus and thumbnail techniques in order to preserve
an overview of the data during exploration operations. Whenever a cluster would
occupy to much screen space, i. e. when the size will exceed a certain value, it
will automatically switch to a more compact visualization using a thumbnail
representation. We also plan to optimize the layout algorithm with respect to
individual or club placing and better visualization of the starting points of prop-
erty filler clusters. Our experience with the first prototype showed us some im-
provements we have implemented and therefore plan to conduct a user study in
order to gain real-user feedback.

4 Summary and Outlook

In this paper we presented a novel approach for exploring large volumes of in-
dividuals within ontology languages such as OWL. In contrast to other visual-
ization tools we focus on a visualization of semantically interrelated individuals.
The system therefore incorporates a reasoning system to discover, for instance,
direct and indirect fillers, symmetric, functional and transitive properties to
provide a semantically correct visualization and not only told information. Our
implementation allows for incremental inspection of filler sets, selective brows-
ing and applies several abstractive visualization techniques not found in current
tools. First experiences with volumes containing several thousands of individuals
such as in the synthetical LUBM benchmark ontologies are encouraging.

References

1. Sean Bechhofer. The DIG Description Logics Interface: DIG/1.1. Technical report,
University of Manchester, 2003.

2. Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter Patel-Schneider, and Lynn Andrea Stein. OWL Web Ontology
Language Reference. W3C Recommendation, February 2004.

3. Ben Bederson, Jesse Grosjean, and Jon Meyer. Toolkit Design for Interactive Struc-
tured Graphics. Technical Report CS-TR-4432, University of Maryland, January
2002.

4. The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology.
Nature Genetics, 25:25–29, May 2000.

5. Sunil Goyal and Rupert Westenthaler. RDF Gravity. Salzburg Research, 2004.
http://semweb.salzburgresearch.at/apps/rdf-gravity/.

6. Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: a benchmark for OWL
knowledge base systems. Journal of Web Semantics, 3(2):158–128, July 2005.

808 O. Noppens and T. Liebig

7. Volker Haarslev and Ralf Möller. Racer: A Core Inference Engine for the Semantic
Web. In Proc. of the 2nd Int. Workshop on Evaluation of Ontology-based Tools
(EON 2003), pages 27–36, 2003.

8. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau, and James
Hendler. Swoop: A Web Ontology Editing Browser. Journal of Web Semantics,
4(2), 2006.

9. Daniel A. Keim. Visual exploration of large data sets. Communications of the
ACM, 44(8):38–44, 2001.

10. Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and Mark A. Musen. The
Protégé OWL Plugin: An Open Development Environment for Semantic Web Ap-
plications. In Proc. of the 3rd Int. Semantic Web Conference (ISWC 2004), pages
229 – 243, 2004.

11. Sergey Krivov, Ferdinando Villa, and Rich Williams. GrOWL, visual browser and
editor for OWL ontologies. Journal of Web Semantics, 2006.

12. Thorsten Liebig and Olaf Noppens. OntoTrack: A semantic approach for ontol-
ogy authoring. Journal of Web Semantics, 3(2):116 – 131, 2005.

13. Ralf Möller, Volker Haarslev, and Michael Wessel. On the scalability of Descrip-
tion Logic instance retrieval. In Proc. of the 29th German Conf. on Artificial
Intelligence, LNAI, pages 171–184, Bremen, Germany, June 2006. Springer.

14. Boris Motik and Ulrike Sattler. A comparison of reasoning techniques for querying
large Description Logic ABoxes. In Proc. of the 13th Int. Conf. on Logic Pro-
gramming Artificial Intelligence and Reasoning (LPAR’06), volume 4246 of LNCS,
pages 227–241, Phnom Penh, Cambodia, November 2006. Springer.

15. Olaf Noppens and Thorsten Liebig. Interactive Visualization of Large OWL In-
stance Sets. In Proc. of the 3rd Semantic Web User Interaction Workshop (SWUI
06) at the ISWC’06, 2006.

16. Catherine Plaisant, Jesse Grosjean, and Benjamin B. Bederson. SpaceTree: Sup-
porting Exploration in Large Node Link Tree, Design Evolution and Empirical
Evaluation. In Proc. of the IEEE Symposium on Information Visualization (IN-
FOVIS 2002), pages 57 – 64, Boston, USA, October 2002.

17. Ben Shneiderman. Dynamic queries for visual information seeking. IEEE Software,
11(6):70–77, 1994.

18. Evrin Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL DL reasoner. Journal of Web Semantics, 2006. To
appear.

19. Taowei David Wang, Bijan Parsia, and James Hendler. A Survey of the Web
Ontology Landscape. In Proc. of the 5th Int. Semantic Web Conference (ISWC
2006), 2006.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 809–818, 2007.
© Springer-Verlag Berlin Heidelberg 2007

System Description: An Orienteering Strategy
to Browse Semantically-Enhanced

Educational Wiki Pages

Luciano T.E. Pansanato1 and Renata P.M. Fortes2

1 Universidade Tecnológica Federal do Paraná – Campus de Cornélio Procópio,
Av. Alberto Carazzai, 1640, 86300-000 Cornélio Procópio, PR, Brazil

2 Departamento de Ciências de Computação, Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo – Campus de São Carlos

Caixa Postal 668, 13560-970 São Carlos, SP, Brazil
luciano@utfpr.edu.br, renata@icmc.usp.br

Abstract. Wikis have been adopted along the years, aiming to provide an easy
and simple support to people keep the information systems on the Internet up-
to-date, and making possible efficient collaborative authoring. As the number of
pages and corresponding contents increases, wiki users face difficulties when
browsing for wiki pages. This paper presents a system prototype based on
orienteering to browse semantically-enhanced educational wiki pages. The
results of a user-based evaluation of the system prototype are also presented.

Keywords: Semantic Web, Metadata, Wiki, Interactive Retrieval.

1 Introduction

Information seeking activities play an important role in a wide range of tasks based on
information systems. In Wikis, the support for information seeking activities is
important to enable users to find the information they need. However, browsing for
information in Wikis may be difficult when users are supported only by the traditional
keyword search paradigm.

The keyword search paradigm is popular because of its ability to identify quickly
the pages containing specific information. However, keyword search is not an
efficient means of finding information in several situations. For example: (a) a user
may be uncertain of what he is looking for until the available options are presented;
(b) the target cannot be expressed by keywords or (c) the exact terminology used in
the pages is unknown, and (d) in cases where a great deal of information and context
should be obtained along with the pages (and not only the final page). In such
situations, other paradigms such as traditional browsing may be more useful than
keyword search [1].

We have observed this problem with the CoTeia1 [2], a Computer Supported
Collaborative Learning (CSCL) tool used to complement face-to-face lectures with

1 http://incubadora.fapesp.br/projects/coteia/

810 L.T.E. Pansanato and R.P.M. Fortes

collaborative learning activities at Institute of Mathematical Sciences and Computing
/ University of São Paulo (ICMC/USP). CoTeia is a wiki-based asynchronous
collaborative tool analogous to CoWeb [3]. CoTeia users, in particular faculty,
frequently look for wiki pages to reuse their material. CoTeia has been used since
2001 and contains a significant amount of teaching material. Although CoTeia
provides a keyword search tool, we have observed many cases where users engage in
an exhaustive browsing to find what they are seeking.

We agree that typical wiki-based environments, such as CoTeia, can be enhanced
by metadata, which may strongly influence information seeking techniques and tools.
Semantic MediaWiki is also a well-known wiki behind Semantic Wikipedia [4].
However, the ease in using metadata to find wiki pages (or other kind of information
objects) is related to the existence of appropriate support to information seeking
strategies. The main objective of our research is to investigate and develop an
interactive support inspired by an orienteering strategy [1, 5] to browsing for wiki
pages, which uses an infrastructure of Semantic Web. Orienteering denotes a strategy
in which people satisfy a particular information need through a sequence of small
steps (or actions) to narrow the focus of the goal. At each step, prior information and
local context are used to decide the next step.

We have developed a prototype for integrating a variety of tools to support an
orienteering strategy. We argue that an information seeking environment should make
available several categories of tools (including keyword search), enabling users to
choose the appropriate tool or the best combination of tools (that is, the best strategy)
in agreement with different levels of users’ ability, background, preferences, and kind
of information that they are looking for at moment. It enables users to prioritize
different ways their choices of tools to each step in an orienteering strategy. We
expected that users take advantage of this kind of environment to carry out
information seeking tasks as an alternative to the one-size-fits-all approach of the
keyword search paradigm.

Section 2 describes the orienteering strategy and the techniques we have explored
to support information seeking activities. Sections 3 and 4 present the prototype and a
preliminary user-based evaluation which points to its effectiveness. Sections 5 and 6
are dedicated to related work and conclusions respectively.

2 Strategies and Tools

In our work, we exploit the levels of information seeking activities as described by
Bates [6]. Based on empirical studies of the information seeking behavior of
experienced library users, Bates distinguishes four levels of activity:

1. A move is an identifiable thought or action that is a part of information seeking.
For example, locating some portion of text in a wiki page.

2. A tactic is one or a handful of moves made to further an information seeking
activity. For example, broadening or narrowing a query to retrieve a larger or
smaller number of wiki pages.

3. A stratagem is a complex set of moves and/or tactics, and generally involves both
a particular information domain anticipated to be productive by the user, and a

 System Description: An Orienteering Strategy 811

mode of tackling the particular organization of that domain. For example, finding
all wiki pages which are related to a particular course.

4. A strategy is a plan for satisfying an information need, and may include
combinations of all the previously mentioned types of information seeking
activities. For example, performing a keyword search to retrieve wiki pages related
to specific terms describing a subject, browsing through those considered relevant
and then finding references in the text to books and articles.

We are interested in providing an interactive support to help users to find wiki
pages at CoTeia. The support provided for moves and tactics is implemented as a set
of tools and these are integrated in an environment. Combining the tools users may
compose stratagems and strategies. Thus, in this work a tool is a software program
that implements one or more methods or techniques to support an information seeking
activity; and an environment is a software program that integrates diverse tools.

Subsection 2.1 describes the underlying orienteering strategy used to integrate the
tools which has influenced the choice of the tools as well as some extensions. The
tools are briefly discussed in Subsection 2.2.

2.1 Orienteering Strategy

Orienteering is a sport of finding one’s way across country on foot using a map and a
compass. The main strategy consists in using the information on the current position
to make better choices about the way to reach the next checkpoint or the final target.
Furthermore, the orienteer must constantly concentrate, make decisions, and keep
track of the path covered.

A similar strategy has been described in studies of information seeking behavior in
the literature [1, 5]. Orienteering involves using both prior and contextual information
to narrow in on the actual information target, often in a series of steps
(moves/tactics/stratagems, according to Bates, or simply actions), without specifying
the entire information need up front. For example, first one can submit a query to a
search engine to get into the proximity of the information that satisfy the target
information need, and then explore the links retrieved to find the desired information.
Other works also described this strategy [7, 8], though not under that name.

We have elected the following categories of techniques that could help the user to
engage in an orienteering strategy: combining browsing and searching; showing
context; previewing content; keeping interaction history; and narrowing toward the
goal. The latter is a key feature of an orienteering strategy. It consists in starting with
a general query and using small steps to narrow down the information space until the
user finds what they are looking for.

2.2 Orienteering Tools

We have implemented common tools and extended others to incorporate metadata in
their mechanism, i.e. a Resource Description Framework (RDF) model about a
collection of wiki pages used in educational activities. Methods for automatic

812 L.T.E. Pansanato and R.P.M. Fortes

metadata generation were explored to populate the RDF model as described in
previous work [9, 10]. The following tools were implemented:

− Keyword search. This tool is a search engine which searches previously indexed
wiki pages for specified keywords and returns a list of those where the keywords
were found. In spite of this approach being straightforward, it works for its
purpose: to obtain a list of wiki pages relating to the keywords the user entered.
Some search engines can use relevance ranking that many users find disconcerting:
some pages can be ranked high even if they do not contain all the keywords.

− Facet browse. Faceted browsing is one way to use faceted metadata to allow users
to find information. Metadata can have several facets: attributes in various
orthogonal sets of categories. For example, in the domain of educational wiki
pages, possible facets might be authors (professors or students). This tool (Facet
browse) allows users to filter a set of items (e.g. wiki pages) by progressively
selecting from only valid values (instances) of facets. The list of valid values is
filtered to show only those that have results available. Thus, it is impossible to get
an empty result. The combination of facets and hierarchy can help the user to
decide how to start and to explore the collection.

− Highlight. This tool displays the occurrences of query terms within the context of
the document retrieved. It is useful to support local exploration because most users
do not read pages carefully when they scan text for what they are looking for. We
extend this technique to highlight also names, locations, email addresses, and
phone numbers. The knowledge about people’s names and locations is harvested
from ICMC/USP website and added inside the RDF model.

− Flag. This tool implements a preview technique that consists in automatically
flagging a result which contains certain content so it can be found easily among
other results. For example, results of documents that contain names, locations,
email addresses, dates, or times. It is useful for users to be able to see at a glance
whether the results they get in response to an action have a particular content.

− Work memory. The underlying technique of this tool consists in providing a special
memory resource which can store results and some operations to handle them.
Basically, we implemented the same memory functions of a typical calculator: M+
(sum), M- (difference), MR (recall), and MC (clear). This support is important in
cases where the goal consists of a collection of results that should be obtained from
a variety of different strategies, not just at the end of a strategy. For example,
collecting links to wiki pages which contains educational material (for reuse) may
involve the storage of intermediary results to compose the final list of those
considered relevant.

− Sort. This tool sorts the results by relevance, as determined by the number and
location of matched words in the wiki page, and by any metadata of wiki pages in
the RDF model. While all search engines sort results by relevance as default, a few
of them can sort by other option (e.g. Ask, http://www.ask.com/, allows to sort
saved results by date or title).

− Group. Some search engines attempt to classify results automatically into concepts
(or domains), such as Vivísimo, http://vivisimo.com/. The drawback of this

 System Description: An Orienteering Strategy 813

technique is that the categories automatically generated are not always well
organized. This tool (Group) implements a straightforward improvement by
exploiting the available metadata in the RDF model to organize the results
according to the same category layout that is used by the tool for faceted browsing.

− Undo and Restart. The reverse of actions is supported by means of undoing and
starting over the task. The Undo tool allows user to cancel any performed action
and consequently, the results will reflect on the new sequence. The Restart tool
allows user to begin again from scratch. These tools help to keep the interaction
process under user control.

3 Prototype

We have developed a prototype which integrates the orienteering tools described in
previous section. The prototype has been used to browse approximately 4,230 wiki
pages stored in two CoTeia repositories2. Fig. 1 shows an example of interaction with
the prototype. The interface is divided into three parts: the set of tools on the left, the
history of actions on the top right, and the results and content area on the bottom right.

Using a tool often corresponds to a move, tactic, or stratagem (discussed in Section 2),
and this interaction is called action in the interface. The sequence of performed
actions during a strategy is showed in the history in the top right. The history serves as
important aid to reduce working memory load. Any particular information seeking
activity may include other behaviors and cognitions that cannot be captured by the
prototype.

When the user performs an action, the results (i.e. a list of links to wiki pages in
this case) to that action are presented. The next action has effect on the current set of
results. This is an important aspect in the interaction process of the user with the
prototype: the tools are integrated so that the results obtained in one are used as the
input to the next.

Fig. 1 shows the result of a hypothetical interaction in which the user has chosen
different tools to look for wiki pages with material (slides) used in a particular course.
First, the user selected the term “SCE0225 Hipermídia” (A) in the facet Course to
refine the entire collection of all wiki pages to a set of those related with the course.
Second, the user performed a keyword search (B) to narrow the current set of wiki
pages (from previous tool) to those which contain the word “aula” (lecture). Next, the
user sorts the results alphabetically by Title (C) and follows a link to the wiki page
entitled “Aula a Aula” (D). The wiki page is showed in the content area (E). Next, the
highlight tool is used to highlight the word “Aula” (F) in the content of the wiki page
(the highlight tool does not appear in the figure). Finally, the flag tool is used to puts a
mark (a red lozenge) (G) on the results which contain one or more people’s names.

The prototype was built using PHP and MySQL. We have used AJAX
(Asynchronous JavaScript and XML) programming techniques to allow better user
interactions in the interface. The RDF model is manipulated and searched using RAP
(RDF API for PHP, http://sourceforge.net/projects/rdfapi-php/).

2 (1) http://coteia.icmc.usp.br/coteia/ and (2) http://safedevel.icmc.usp.br/coweb/

814 L.T.E. Pansanato and R.P.M. Fortes

Fig. 1. Screenshot of the prototype

4 User-Based Evaluation

This section presents the evaluation we conduct to test and evaluate the prototype,
and, through the users’ interaction with the prototype, to gain knowledge about it.

4.1 Aims

We had three goals for the evaluation. First, we were interested in validating if the
users could get relevant information using the prototype. Second, we wanted to
confirm if the users use different strategies. Finally, we were interested in studying
step-by-step the strategies that users follow to browsing for wiki pages using the
prototype and their preferences concerning the available tools.

4.2 Methodology

We have combined a variety of methods to gather data about the user experience with
the prototype. Our methodology combined: (a) Questionnaire, (b) Think Aloud, (c)
Interview, and (d) User Log Recording. The participants consisted of 15 professors
(11 women, 4 men) at ICMC/USP. They were all experienced users of search engines,
searching for information daily. The participants were regular users of the CoTeia
with 2-6 years of experience and weekly they access wiki pages for reading and/or
editing. Thus, the participants are potential end-users of the prototype.

 System Description: An Orienteering Strategy 815

The participants completed a set of tasks that involved browsing for educational
material for reuse. We defined five tasks in four different task scenarios (types), based
on Shneiderman’s definition [11]: specific fact-finding, extended fact-finding, open-
ended browsing and exploration of availability (see Table 1). We were interested in
covering the largest number of scenarios using the smallest number of tasks.

The tasks were presented to the participants in agreement with the concept of
simulated work task situation [12]. A simulated work task situation is an open
description of the context/scenario of a given situation. It then works as the trigger of
the participant’s information need and the base for relevance judgment. The objective
is to ensure the largest possible realism by the involvement of potential users who,
based on the simulated work task situation, develop individual and subjective
information need interpretations. Individually, the participants use the prototype and
assess relevance of the obtained results in relation to their perceptions of the
information need and the underlying simulated work task situation.

Table 1. Five tasks in four scenarios

 Tasks Scenarios
 T1: Look for a particular exercise.
 T2: Look for the e-mail of a course monitor.

specific fact-finding

 T3: Look for evaluation criteria recently
published by other professors.

extended fact-finding

 T4: Look for a new approach used to teaching a
particular topic.

open-ended browsing

 T5: Look for the learning material available to a
particular course.

exploration of availability

The evaluation was comprised of four sessions as follows: (a) a survey session, (b)
a training session, (c) a task session, and (d) an interview session. The survey was
designed to collect demographic information and participant’s experience with search
tools and experience with CoTeia. A training session was given, including an
overview of the prototype so that the participant could become familiar with the tools
and the environment. After the training session, participants completed tasks while
thinking aloud about their strategies. The participants were instructed to articulate
what they are thinking and what they feel while working with the prototype. The
utterances were registered using audio recording. In connection with each task, the
interactions of the participants with the prototype were registered using log-file
recording. All participants were requested to complete the same tasks. No time limit
was set for any of the tasks. After each task participants answered questions about
relevance of the results obtained and the usefulness of the prototype concerning that
task. After performing the tasks, participants were interviewed for their perceptions of
the prototype that they had experienced.

4.3 Results and Observations

After each task, participants completed a short questionnaire about the results
obtained and the usefulness of the prototype for the task. The judgments were made

816 L.T.E. Pansanato and R.P.M. Fortes

on 7-point Likert scales (1 = none, 7 = extreme). The participants assigned an average
rating of 5.92 (SD = 0.90) for relevance and 6.07 (SD = 0.81) for usefulness. These
results support our first goal: the users could get relevant information using the
prototype.

By analyzing the user log we found out that participants used different tools to
complete the tasks. The average number of different tools per task was 3.24 (SD =
1.48). We have also observed different number of times tools were used, different
choices of tools, and different sequences chosen to perform each task. Additionally,
these differences were detected among participants for a same task. In general, the
results confirmed our hypothesis for the second goal: users use different strategies.
We intend to investigate the users’ strategies in detail to improve the integration of
each tool within the environment.

Fig. 2 shows how often the tools were actually used. Facet Browse and Keyword
Search were the most used tools. The tools provided ways of search/retrieval results,
and participants chosen to begin with Facet Browse (62.5%) more frequently than
with Keyword Search (37.5%). Unexpectedly, Work Memory has a somewhat high
percentage of usage; however, few participants (3) made extensive use of Work
Memory while others (9) did not consider this tool in their tasks.

Fig. 2. Percentage of time tools were used

In general, participants considered available facets as representative of the wiki
pages. Course (31.55%), Learning Material Type (16.67%), and Learning Activity
Type (11.90%) were the most used metadata in faceted browsing. One of the
participants requested that the term (year/semester) concerning Course should be
included in the interface. These results have motivated the need for specific
vocabularies.

Participants commented favorably about the approach of the prototype and the
available tools. Some (6) followed a strategy and after having completed the task they
said that could improve the strategy. Participants were specifically asked to comment
about the control of the navigation process. All participants stated that they felt in
control by using the history feature. Furthermore, when asked participants did not

 System Description: An Orienteering Strategy 817

stated getting lost while using the prototype. Initially, some participants (3) did not
understand that, after cancel (undo) an action, the results reflect the resultant sequence
of actions. However, as the participants continued to use the prototype, they perceived
this feature and tried to exploit it. At the end of the interview, most of participants
indicated they intend to use the prototype in the future.

5 Related Work

Many Semantic Wikis have been described in the literature, e.g. Semantic MediaWiki
[4], Platypus Wiki [13], WikSAR [14], SemperWiki [15]. These Wikis use semantic
information (metadata) to offer improved navigation, browsing, and searching. In
general, they are primarily focused on semantic navigation (e.g. providing additional
information on the relation a link describes) and semantic search (e.g. allowing a
semantic query on the underlying knowledge base). SemperWiki has also provided
faceted browsing [16]; however, it does not integrate this technique with others.

Our proposal integrates several tools in an environment to help browsing and
searching. The prototype provides an interactive support to information seeking
strategies based on orienteering. Users may choose an appropriate tool or a
combination of tools to take steps along the way to satisfy their information needs.

6 Conclusions

Browsing for information in Wikis can become difficult as the number of pages and
corresponding contents increases. We present a prototype developed to demonstrate
our initial ideas combining searching tools to compose a strategy of orienteering. An
evaluation showed that the prototype is useful to find relevant information in CoTeia
repositories and provided insight regarding the tools and the underlying orienteering
strategy.

Concerning future work, our main efforts address experiments with other types of
user, in particular students, to investigate their interactions and performance using the
prototype. We also plan to recognize some repeating strategies that can yield to
patterns.

Acknowledgments. Our thanks to FINEP, FAPESP and UTFPR for funding parts of
this research.

References

1. Teevan, J., Alvarado, C., Ackerman, M. S., Karger, D. R.: The perfect search engine is not
enough: A study of orienteering behavior in directed search. In: Proc. Conference on
Human Factors in Computing Systems (2004) 415-422

2. Arruda Jr, C. R. E., Izeki, C. A., Pimentel, M. G. C.: CoTeia: Uma ferramenta colaborativa
de edição baseada na Web. In: Proc. 8th Brazilian Symposium on Multimedia and
Hypermedia Systems (2002) 371-374 (in Portuguese)

818 L.T.E. Pansanato and R.P.M. Fortes

3. Guzdial, M.: Supporting learners as users. The Journal of Computer Documentation 23(2)
(1999) 3-13

4. Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H.: Semantic Wikipedia. In: Proc. 15th
Int. Conf. on WWW (2006) 585-594

5. O’Day, V. L., Jeffries, R.: Orienteering in an Information Landscape: How Information
Seekers Get From Here to There. In: Proc. ACM CHI (1993) 438-445

6. Bates, M. J.: Where should the person stop and the information search interface start?
Information Processing and Management 26(5) (1990) 575-591

7. Navarro-Prieto, R., Scaife, M., Rogers, Y.: Cognitive strategies in Web searching. In:
Proc. 5th Conference on Human Factors & the Web (1999)

8. Hölscher, C., Strube, G.: Web search behavior of internet experts and newbies. In: Proc.
9th Conf. on WWW (2000)

9. Pansanato, L. T. E., Fortes, R. P. M.: Strategies for Filling Out LOM Metadata Fields in a
Web-Based CSCL Tool. In: Proc. Third Latin American Web Congress (2005) 187-190

10. Pansanato, L. T. E., Fortes, R. P. M.: Strategies for automatic LOM metadata generating in
a web-based CSCL tool. In: Proc. 11th Brazilian Symposium on Multimedia and the Web
(2005) 1-8

11. Shneiderman, B.: Designing information-abundant web sites: issues and recommendations.
International Journal of Human-Computer Studies 47(1) (1997) 5-29

12. Borlund, P.: The IIR evaluation model: a framework for evaluation of interactive
information retrieval systems. Information Research 8(3) (2003)

13. Tazzoli, R., Castagna, P., Campanini, S. E.: Towards a Semantic Wiki Wiki Web. In:
Poster Track of the 3rd International Semantic Web Conference (2004)

14. Aumueller, D.: Semantic authoring and retrieval within a Wiki. In: Demos and Posters of
the 2nd European Semantic Web Conference (2005)

15. Oren, E.: SemperWiki: a semantic personal Wiki. In: Proc. of the 1st Workshop on The
Semantic Desktop, 4th International Semantic Web Conference (2005)

16. Oren, E., Delbru, R., Möller, K., Völkel, M., Handschuh, S.: Annotation and Navigation in
Semantic Wikis. In: Proc. of the 1st Workshop on Semantic Wikis, 3rd European Semantic
Web Conference (2006)

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 819–828, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Efficient Content Creation on the Semantic Web Using
Metadata Schemas with Domain Ontology Services

(System Description)

Onni Valkeapää, Olli Alm, and Eero Hyvönen

Helsinki University of Technology (TKK), Laboratory of Media Technology
University of Helsinki, Department of Computer Science

Semantic Computing Research Group (SeCo)
P.O. Box 5500, FI–02015 TKK, Finland

{onni.valkeapaa,olli.alm,eero.hyvonen}@tkk.fi
http://www.seco.tkk.fi/

Metadata creation is one of the major challenges in developing the Semantic
Web. This paper discusses how to make provision of metadata easier and cost-
effective by an annotation editor combined with shared ontology services. We
have developed an annotation system supporting distributed collaboration in
creating annotations, and hiding the complexity of the annotation schema and
the domain ontologies from the annotators. Our system adapts flexibly to
different metadata schemas, which makes it suitable for different applications.
Support for using ontologies is based on ontology services, such as concept
searching and browsing, concept URI fetching, semantic autocompletion and
linguistic concept extraction. The system is being tested in various practical
semantic portal projects.

1 Introduction

Currently, much of the information on the Web is described using only natural
language, which can be seen as a major obstacle in developing the Semantic Web [1].
Since the annotations describing different resources are one of the key components of
the Semantic Web, easy to use and cost-effective ways to create them are needed, and
various systems for creating annotations have been developed [14,18]. However, there
seems to be a lack of systems that 1) can be easily used by annotators unfamiliar with
the technical side of the Semantic Web, and that 2) are able to support distributed
creation of semantic metadata based on complex metadata annotation schemas and
domain ontologies [19].

Metadata descriptions are usually based on ontologies of two kinds. First, an
annotation ontology, i.e. a metadata schema, tells what kind of properties and value
types should be used in describing a resource. For example, the Dublin Core schema
uses 15 elements, such as dc:title, dc.creator, dc:subject, etc. Second, a set of domain
ontologies are used to define vocabularies by which the values for metadata properties
are given. This suggests that three kinds of tools are needed to address the problems

820 O. Valkeapää, O. Alm, and E. Hyvönen

of metadata creation. First, an annotation editor supporting the usage of different
metadata schemas is needed. Second, we need services for supporting the usage of the
domain ontologies (vocabularies) that are employed for the annotations. Third, tools
for automating the creation of actual metadata descriptions in various ways, e.g., for
finding suitable values for the elements, must be developed.

To test this idea, we have developed a system of three integrated tools that can be
used to efficiently create semantic annotations based on metadata schemas, domain
ontology services, and linguistic information extraction. These tools include, at the
moment, an annotation editor system Saha1 [19], an ontology service framework
Onki2 [9] and an information extraction tool Poka3 for (semi)automatic annotation.
The annotation editor Saha supports collaborative creation of annotations and it can
be connected to Onki servers for importing concepts defined in various external
domain ontologies. Saha has a browser-based user interface that hides complexity of
ontologies from the annotator, and adapts automatically to different metadata
schemas. The tool is targeted especially for creating metadata about web resources. It
is being used in different applications within the National Semantic Web Ontology
Project in Finland (FinnONTO)4 [4].

In order to support the kind of annotation that is required in our project, we
identified the following basic needs for an annotation system. These were also
features that we felt were not supported well enough in many of the current
annotation platforms:

• Simplicity. The system should, as a rule, hide technical concepts related to
markup languages and ontologies from its user.

• Adaptivity. The system should be adaptable to different annotation cases with
different kinds of contents to be described.

• Quality. When annotation is done by hand, the annotator should be guided to
produce annotations in qualified and pre-defined form, if needed.

• Collaboration. The system should support collaborative annotation, where the
annotation process can be shared among different annotators at different
locations.

• Portability. The annotator should be able to use the system at any location
without installing any special software.

2 Saha Annotation System

2.1 Utilizing Annotation Schemas

Ontologies may be used in two different ways in annotation: they can either serve as a
description template for annotation construction (annotation schemas/ontologies) or
provide an annotator with a vocabulary which can be used in describing resources

1 http://www.seco.tkk.fi/applications/saha/
2 http://www.seco.tkk.fi/applications/onki/
3 http://www.seco.tkk.fi/applications/poka/
4 http://www.seco.tkk.fi/projects/finnonto/

 Efficient Content Creation on the Semantic Web Using Metadata Schemas 821

(reference/domain ontologies) [15]. An annotation schema has an important role in
expressing how the ontological concepts used in annotations are related to the web
resources being described. Without annotation schemas, the role of these concepts
would remain ambiguous. In addition to explicitly expressing the relation between a
resource and an annotation, the schema helps the annotator to describe resources in a
consistent way and it can be effectively used to construct a generic user-interface for
the annotation application.

Saha uses an approach similar to the one introduced in [8] to form its user interface
according to an annotation schema loaded on it. Saha does not use any proprietary
schemas, but instead will accept any RDF/OWL-based ontology as a schema. By
schemas we mean a collection of classes with a set of properties. An annotation in
Saha is an instance of a schema’s class that describes some web resource and is being
linked to it using the resource’s URL (in same cases, URI). We make the distinction
between the annotation of a document (e.g. a web page) and the description of some
other resource (e.g. a person) that is somehow related to the document being
annotated. In addition to containing classes used to annotate documents (annotation
classes), an annotation schema used with Saha can also contain reference classes for
describing resources other than documents. In other words, an annotation schema
forms a basis for the local knowledge base (KB) that contains descriptions of different
kinds of resources that may or may not exist on the web. Instances of the reference
classes are used as values of properties in annotations.

Each annotation schema loaded to Saha forms an annotation project, which can
have multiple users as annotators. In practice, an annotation project is Jena’s5
ontology model stored in a database. A model is comprised of the annotation schema
and the instances of the schema’s classes. It can be serialized to RDF/XML in order to
use the annotations in external applications.

2.2 Architecture and User Interface

The main difference between Saha and ontology editors such as Protégé [12] is that
Saha offers the end-user a highly simplified view of the underlying ontologies
(annotation schemas). It does not provide tools to modify the structure (classes and
properties) of ontologies, but rather focuses on using them as a basis for the
annotations.

Saha is a web application implemented using the Apache Cocoon6 and Jena
frameworks. It uses extensively techniques such as JavaScript and Ajax7. The basic
architecture of Saha is depicted in figure 1. It consists of the following functional
parts: 1) annotators using web browsers to interact with the system, 2) Saha
application running on a web server, 3) applications using the annotations created
with Saha, 4) the Onki ontology service, 5) PostgreSQL database used store the
annotations, and 6) the Poka information extraction tool.

The user interface of Saha, depicted in figure 2, provides an annotator with a view
of the classes and properties of an annotation schema. The annotator can choose a

5 http://www.hpl.hp.com/semweb/tools.htm
6 http://cocoon.apache.org/
7 http://en.wikipedia.org/wiki/Ajax_%28programming%29

822 O. Valkeapää, O. Alm, and E. Hyvönen

Fig. 1. Architecture of Saha

class from the class hierarchy (left side of the screen), view the annotations/KB-
instances and create new ones. The lower part of the screen views the resource being
annotated. In figure 2, an annotation belonging to class “Document” is being edited.
The properties of the annotation, such as “Title”, as well as fields to supply values for
them are shown on the right side of the class hierarchy.

Fig. 2. The user interface of Saha

Properties of an annotation schema accept either literal or object values. In the
latter case, values are KB-instances or concepts of some external domain ontology.
KB-instances can be chosen using semantic autocompletion [5]. Here, the user types

 Efficient Content Creation on the Semantic Web Using Metadata Schemas 823

in a search word and selects a proper instance from the list populated by the system. If
the proper KB-instance does not exist, user may also create a new one. rdfs:range or
owl:Restriction is used to define the types of things that are allowed as values.

2.3 Setting Up an Annotation Project

Saha’s annotation cycle starts by defining settings for an annotation schema. These
settings will define 1) the way how the schema is visualized for the annotator, 2) how
human readable labels (rdfs:label) are automatically created for new annotations and
KB-instances, and 3) how different property fields are filled in the annotations. By
visualization, we refer to e.g. defining a subset of schema’s classes that are shown in
the editor’s class-hierarchy, or defining an order of the properties of a class in which
they are shown to the annotator. Human readable labels, by turn, are needed when
annotations or instances are represented in the user-interface. These labels can be, in
many cases, formed automatically using property-values supplied by the annotator for
the annotation/KB-instance. In Saha, properties can be filled manually or using
integrated ontology services, which include the ontology server system Onki and the
information extraction tool Poka to be presented in section 3. When using these
services, we map a property of an annotation schema to the desired service. In the
case of Onki, the values of the property will be concepts defined in some external
domain ontologies, selected by an annotator using a dedicated Onki-browser. When
Poka is used, values are ontological concepts or literals provided by the extraction
tool. For example, an extraction component recognizing people’s names could be
coupled with the property dc:creator.

Settings for an annotation project are defined in a schema-specific RDF-file, which
we call meta-schema. Although the use of a meta-schema is not compulsory, it is
highly practical in most cases. At the moment, meta-schemas are done by hand, but
we are developing an easy-to-use editor for the task.

3 Utilizing Ontology Services

3.1 Onki Ontology Services

One of the key features of Saha is its ability to connect to the Onki ontology service
[9]. The Onki system has an important role in sharing ontological resources between
different organizations and actors. In annotation, Onki enables the use of concepts of
external domain ontologies as values of an annotation schema’s properties. These
ontologies are made available to the annotators through the Onki ontology server,
which offers two interfaces to ontological information: searching and browsing. The
first one is similar to the instance KB search described above. When using it, the
annotator types a search word which is sent to the Onki ontology server character by
character and matched with the concepts in the underlying ontology. Concepts
matching to the query will be sent back to Saha and shown below the search field
from which they can be selected by the user. The other option is to use a browser
view of the Onki system. It is practical when the annotator does not get agreeable

824 O. Valkeapää, O. Alm, and E. Hyvönen

results using the semantic autocompletion, or wants to see the resources within the
context of the class hierarchy. The Onki ontology browser can be opened in a new
window by clicking a property field in Saha (see figure 3). After that, the annotator is
able to browse the class hierarchy, and when a suitable concept is found, fetch it to
the input form of Saha by clicking on the button “Fetch concept” on the Onki browser
page. Both modes of using ontology services provided by Onki can be conveniently
integrated to different web applications on the client side using Ajax.

Fig. 3. Using the Onki ontology browser

3.2 Automatic Recognition of Concepts and Entities

Saha uses the ontology-based information extraction tool Poka to suggest concepts
based on the documents being annotated. Poka can process a document to 1)
recognize concepts of external ontologies and to 2) extract named entities using non-
ontological tools.

In schema-based annotation, things to be extracted are defined by the properties of
the annotation schema’s classes. Accordingly, the function of an extraction
component is to provide suitable concepts or entities to be used as values of those
properties. Because Saha supports arbitrary annotation schemas, extraction tools must
be adaptable in order to support different extraction tasks. In the Poka environment
we have solved the problem of adaptivity in two ways. First, we have implemented
generic non-ontological extraction components such as person name identifier and
regular expression extractor. Second, user-defined external ontologies can be
integrated with the system and used in concept recognition.

 Efficient Content Creation on the Semantic Web Using Metadata Schemas 825

Extraction of Non-ontological Entities. In Poka, two extraction components for
non-ontological entities have been implemented: person name extractor for Finnish
language and regular expression extractor. The main idea in the rule-based name
recognition tool is to first search for full names within the text at hand. After that,
occurrences of the first and last names are mapped to full names. Simple coreference
resolution within a document is implemented by mapping the individual name
occurrences to the corresponding unambiguous full name if there exist one. Single
first names and surnames without corresponding full names are discarded. Search for
potential names is started from the uppercase words of the document. Predefined list
of first names is utilized for recognizing potential full names. With morphosyntactic
clues some hits can be discarded. For example, first names in Finnish rarely have
certain morphological affixation such as “-ssa” (similar to the English preposition
“in”) or “-lla” (preposition “on”) when they occur before the surname in the sentence.
Poka makes use of the morphosyntactic analyzer and parser FDG8 [17]. The FDG-
parser's surface-syntactic analysis is also used for revealing proper names.

The names that are automatically recognized are suggested as potential new
instances in Saha. The type of a new instance is a reference class of the annotation
schema used in Saha, say myAnnotation:Person. If there exists an instance with the
same name, the user can tell whether the newfound name refers to an existing instance
or to a new one.

The regular expression extractor acts in a similar way as the name extractor. The
difference is that the thing to be extracted is defined by the expression, not the
component itself. Expressions can be utilized to find literal values or potential new
instances from the document.

Extraction of Ontological Concepts. For ontological extraction, an ontology has to
be integrated to the extraction system. By ontological extraction we mean 1)
deduction of string representations of concepts from the ontology and 2) finding the
occurences of the representations.

In Poka, the integration starts by defining a set of concepts in an ontology that are
to be extracted from the documents. The ontology can be used in its entirety, or it can
be only partly used by selecting e.g. instances or some sub-part of the ontology’s
hierarchy tree. After this, the human readable properties representing concept names,
e.g. the values of the literal properties rdfs:label or skos:prefLabel, are chosen as
targets for the recognition.

For the string matching in the extraction process, the string representations of
ontological resources are indexed in the prefix trie. Since two or more concepts may
share the same label, a trie entity can refer to multiple URIs. In some languages (e.g.
Finnish), it is useful to lemmatize the concept representations for efficient extraction.
This is because syntactical forms of words may vary greatly in languages with heavy
morphological affixation [11]. Lemmatization of both the text and the concept names
helps to achieve better recall in the extraction process.

Currently the adaptation of new extraction ontologies is done by system experts.
Our future work involves developing a user interface for integrating ontological
resources for extraction.

8 http://www.connexor.com, Machinese Syntax

826 O. Valkeapää, O. Alm, and E. Hyvönen

4 Discussion

4.1 Contributions and Applications

Ontology-based semantic annotations are needed when building the Semantic Web.
Although various annotation systems and methods have been developed, the question
of how to easily and cost-effectively produce quality metadata still remains largely
unanswered. We tackled the problem by first identifying the major requirements for
an annotation system. As a practical solution, an annotation system was designed and
implemented which supports the distributed creation of metadata and which can
utilize ontology services as well as automatic information extraction. It is designed to
be easily used by non-experts in the field of the Semantic Web.

Saha is currently a working prototype. It is in trial use for the distributed content
creation of the semantic health promotion portal TerveSuomi.fi [3,16]. Much of the
content and metadata for the portal will be provided by health experts working at
various health organizations in Finland. Saha has also been tested, among others, in
metadata creation for the Opintie portal, a follow-up version of the educational
semantic portal Orava [10], using Learning Object Metadata (LOM).

Full usability testing of Saha has not yet been conducted. Initial feedback from end
users indicates that some intricate ontological structures, such as deep relation paths
between resources, are difficult to comprehend. These difficulties, however, can be
facilitated by proper design of annotation schemas.

4.2 Related Work

A number of semantic annotation systems and tools exist today [14,18]. These
systems are primarily used to create and maintain semantic metadata descriptions of
web pages.

Annotea [6] supports collaborative, RDF-based markup of web pages and
distribution of annotations using annotation servers. Annotations created with
Annotea can be regarded as semi-formal, since the system does not support the use of
ontological concepts in annotations. Instead, annotations are textual notes which are
associated with certain sections of the documents they describe.

The Semantic Markup Tool [8] has a user interface that is generated according to
an annotation schema in a similar way as is done in Saha. It uses Information
Extraction techniques to find different kinds of entities in documents and proposes
them for values of the annotation’s properties. The schemas it supports are relatively
simple, and it cannot be thus used to describe more complex semantic relations.
Moreover, the expressivity and adaptation of templates is not explicitly stated in [8].
The Ont-O-Mat system [2], in turn, can be used to describe diverse semantic
structures as well as to edit ontologies. It also has a support for automated annotation.
The user interface of the Ont-O-Mat is not, however, very well suited for the
annotators unfamiliar with concepts related to ontologies and semantic annotation in
general. Another example of the user interface of an annotation tool requiring
understanding of the Semantic Web concepts can be found in SMORE [7].

Most of the current annotation systems, like the ones mentioned here, are
applications that run locally on the annotator’s computer. Because of this, the systems

 Efficient Content Creation on the Semantic Web Using Metadata Schemas 827

may not necessarily be platform independent and must always be installed on the
user’s system, before the annotation can begin. In Saha, these problems are addressed
by implementing the system as a web application. By doing so, the system can be
installed and maintained centrally and the requirements for the annotator’s
computational environment are minimal. The way Saha is designed and implemented
also strongly supports the collaboration in annotation, making the sharing of
annotations and new individuals (free indexing concepts) easy.

4.3 Future Work

Our future plans include using Saha to provide metadata for additional semantic
portals as well as further develop the automation of the annotation. Currently, the
coupling of the annotation schema’s properties and information extraction
components provided by the Poka are not fully utilizing the ontological
characteristics. In other words, instead of using restrictions and constraints such as
rdfs:range to define which of the schema’s properties an automatically recognized
resource matches to, we are currently using a meta-schema to do the mapping.
However, our plans include using the property restrictions to do the matching in the
future. We are also aiming to map the automatically extracted entities to ontologies in
order to support property restriction with them as well. For example, date regular
expressions would be mapped to a corresponding class of the reference ontology, say
myOnto:Date. This way, the proper values for an object property are defined by the
range (ontological restriction), not by the component itself.

Acknowledgements

This research is a part of the National Ontology Project in Finland (FinnONTO) 2003-
2007, funded mainly by the Finnish Funding Agency for Technology and Innovation
(Tekes) and a consortium of 37 companies and public organizations.

References

1. Dill, S., Tomlin, J., Zien, J., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A.,
Kanungo, T., Rajagopalan, S. and Tomkins, A. (2003) SemTag and Seeker: Bootstrapping
the Semantic Web via Automated Semantic Annotation. Proceedings of the 12th
International World Wide Web Conference, WWW2003.

2. Handschuh, S. and Staab, S. (2002) Authoring and Annotation of Web Pages in CREAM.
Proceedings of the 11th International Conference on World Wide Web, WWW2002.

3. Holi, M., Lindgren, P., Suominen, O., Viljanen, K. and Hyvönen, E. (2006) TerveSuomi.fi
– A Semantic Health Portal for Citizens. Proceedings of the 1st Asian Semantic Web
Conference, ASWC2006, poster papers.

4. Hyvönen E. (2006) FinnONTO—Building the Basis for a National Semantic Web
Infrastructure in Finland. Proceedings of the 12th Finnish AI Conference STeP 2006.

5. Hyvönen, E. and Makelä, E. (2006) Semantic Autocompletion. Proceedings of the 1st
Asian Semantic Web Conference, ASWC2006.

828 O. Valkeapää, O. Alm, and E. Hyvönen

6. Kahan, J., Koivunen, M.R., Prud'Hommeaux, E. and Swick R.R. (2001) Annotea: An
Open RDF Infrastructure for Shared Web Annotations, Proceedings of the 10th
International World Wide Web Conference, WWW2001.

7. Kalyanpur, A., Hendler, J., Parsia, B. and Golbeck, J. (2005) SMORE – Semantic Markup,
Ontology, and RDF Editor. Available at: http://www.mindswap.org/papers/SMORE.pdf

8. Kettler, B., Starz, J., Miller, W. and Haglich, P. (2005) A Template–based Markup Tool
for Semantic Web Content. Proceedings of the 4th International Semantic Web
Conference, ISWC2005.

9. Komulainen, V., Valo, A. and Hyvönen, E. (2005) A Tool for Collaborative Ontology
Development for the Semantic Web. Proceedings of the International Conference on
Dublin Core and Metadata Applications, DC 2005.

10. Känsälä, T. and Hyvönen, E. (2006) A Semantic View–Based Portal Utilizing Learning
Object Metadata. Proceedings of the Workshop on Semantic Web Applications and Tools,
the 1st Asian Semantic Web Conference, ASWC2006.

11. Löfberg, L., Archer, D., Piao, S., Rayson, P., McEnery, T., Varantola, K. and Juntunen, J.–
P. (2003) Porting an English Semantic Tagger to the Finnish Language. In Proceedings of
the Corpus Linguistics 2003 conference, pp. 457–464. UCREL, Lancaster University.

12. Noy, N., Sintek, M., Decker, S., Crubézy and M., Fergerson, R. (2001) Creating Semantic
Web Contents with Protégé–2000. IEEE Intelligent Systems 2(16):60–71.

13. Popov, B., Kitchukov, I., Angelov, K. and Kiryakov, A. (2006) Co-occurrence and ranking
of entities. Available at: http://www.ontotext.com/publications/CORE_otwp.pdf

14. Reeve, L. and Han, H. (2005) Survey of Semantic Annotation Platforms. Proceedings of
the 2005 ACM Symposium on Applied Computing.

15. Schreiber, G., Dubbeldam, B., Wielemaker and J.,Wielinga, B. (2001) Ontology–Based
Photo Annotation. IEEE Intelligent Systems, 16(3):66–74.

16. Suominen O., Viljanen K. and Hyvönen E. (2007) User-centric Faceted Search for
Semantic Portals. Proceeedings of the 4th European Semantic Web Conference
ESWC2007, forth-coming.

17. Tapanainen, P. and Järvinen, T. (1997) A Non–projective Dependency Parser. Proceedings
of the 5th Conference on Applied Natural Language Processing, pp. 64–71.

18. Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E. and Ciravegna,
F. (2006) Semantic Annotation for Knowledge Management: Requirements and a Survey
of the State of the Art. Journal of Web Semantics, 4(1):14–28.

19. Valkeapää, O. and Hyvönen, E. (2006) A Browser-based Tool for Collaborative
Distributed Annotation for the Semantic Web. Proceedings of the Workshop on Semantic
Authoring and Annotation, the 5th International Semantic Web Conference, ISWC2006.

Author Index

Alberti, Marco 68
Albertsen, Thomas 549
Aleman-Meza, Boanerges 235
Alm, Olli 819
Auer, Sören 503
Aumüller, David 729

Baumgartner, Robert 16
Behrendt, Wernher 190
Bernardi, Ansgar 640
Bernstein, Abraham 609, 739
Blázquez, José M. 640
Blomqvist, Eva 549
Böhm, Sebastian 296
Bojārs, Uldis 235
Boley, Harold 235
Bouma, Gosse 769
Brachman, Ron 1
Brambilla, Marco 4
Breslin, John G. 235

Celino, I. 220
Ceri, Stefano 4
Cerizza, D. 220
Chesani, Federico 68
Christodoulakis, Stavros 443
Cimiano, Philipp 670
Cregan, Anne M. 429

da Silva, Sérgio Roberto P. 371
Dänzer, Michael 739
Damjanović, Violeta 190
Davies, John 281, 341
de Bruijn, Jos 129
Decker, Stefan 160, 518
Della Valle, Emanuele 4, 220
Deng, Xi 326
Di Noia, Tommaso 414
Di Sciascio, Eugenio 414
Dietze, Stefan 701
Dimitrov, Marin 749
Domingue, John 701
Donini, Francesco M. 414
Duke, Alistair 341

Ellermann, Henk 769
Eriksson, Henrik 759

Estublier, J. 220
Euzenat, Jérôme 267

Fahmi, Ismail 769
Fensel, Dieter 789
Fernández, Norberto 640
Fortes, Renata P.M. 809
Frölich, Oliver 16
Fuchs, Norbert E. 458

Gale, Caroline 281
Gavanelli, Marco 68
Gerke, Sebastian 160
Glover, Tim 341
Gottlob, Georg 16
Griesi, Donato 779
Grimm, Stephan 114
Groza, Tudor 518
Guarrera, P. 220
Gugliotta, Alessio 701
Gutierrez, Claudio 53

Haarslev, Volker 326
Handschuh, Siegfried 518, 594
Hartig, Olaf 564
Heese, Ralf 564
Hepp, Martin 129
Heymans, Stijn 99
Hitzler, Pascal 399, 670
Holzapfel, Merlin 190
Hotho, Andreas 175
Hunter, Jane 533
Hyvönen, Eero 356, 819

Immaneni, Trivikram 579
Ishizuka, Mitsuru 251

Janik, Maciej 145
Jin, YingZi 251
Jung, Jason J. 267

Karam, Naouel 716
Karanastasi, Anastasia 443
Keller, Uwe 99, 114
Kerrigan, Mick 220, 789
Kiefer, Christoph 609

830 Author Index

Kings, Nicholas J. 281
Klein, Mark 609
Kochut, Krys J. 145
Konstantinov, Mihail 749

Lamma, Evelina 68
Lausen, Holger 99, 114
Lee, Hong Joo 609
Lehmann, Jens 503
Liebig, Thorsten 296, 799
Lin, Zuoquan 399
Linckels, Serge 716
Lukasiewicz, Thomas 384
Luther, Marko 296

Ma, Yue 399
Matsuo, Yutaka 251
Meinel, Christoph 716
Mello, Paola 68
Mocan, Adrian 789
Mochol, Malgorzata 235
Möller, Knud 518
Momtchev, Vassil 749
Montali, Marco 68
Monteleone, G. 220
Moran, Matthew 84
Motta, Enrico 624
Muñoz, Sergio 53

Nagypál, Gábor 114
Newman, Andrew 533
Nixon, Lyndon JB 235
Noppens, Olaf 296, 799

Oren, Eyal 160

Pansanato, Luciano T.E. 809
Pazienza, Maria Teresa 779
Pérez, Jorge 53
Pinto, H. Sofia 488
Plößnig, Manuela 190
Polleres, Axel 235

Ragone, Azzurra 414
Rahm, Erhard 729
Ramı́rez, J. 220
Rilling, Jürgen 37
Roberto, Rafael Liberato 371

Sánchez, Luis 640
Sazedj, Peyman 488

Scerri, Simon 594
Schlobach, Stefan 205
Schmidt, Kay-Uwe 686
Schroeter, Ronald 533
Schwitter, Rolf 458
Shiri, Nematollaah 326
Simov, Alex 749
Sintek, Michael 594
Specia, Lucia 624
Stellato, Armando 779
Stocker, Markus 609
Stojanovic, Ljiljana 686
Stojanovic, Nenad 686
Stollberg, Michael 99
Straccia, Umberto 414
Stuckenschmidt, Heiner 655
Suominen, Osma 356
Sure, York 175, 311
Šváb, Ondřej 655
Svátek, Vojtěch 655

Tanler, Martin 789
Thirunarayan, Krishnaprasad 579
Thomas, Susan 686
Torroni, Paolo 68

Valkeapää, Onni 819
van Atteveldt, Wouter 205
van Elst, Ludger 594
van Harmelen, Frank 205
Vega, G. 220
Viljanen, Kim 356
Villazon, B. 220
Vitvar, Tomas 84
Völker, Johanna 175, 670
von Henke, Friedrich 296
Vrandečić, Denny 175, 311

Wang, Chong 473
Weithöner, Timo 296
Witte, René 37

Xiong, Miao 473

Yu, Yong 473

Zaremba, Maciej 84
Zhang, Junte 769
Zhang, Yonggang 37
Zhao, G. 220
Zhdanova, Anna V. 235
Zhong, Ning 27
Zhou, Qi 473

	Title
	Preface
	Organization
	Table of Contents
	Emerging Sciences of the Internet: Some New Opportunities (Extended Abstract)
	Design Abstractions for Innovative Web Applications: The Case of the SOA Augmented with Semantics
	Introduction and Motivation
	Support of Service-Oriented Architectures
	Process Extensions
	Content Model Extensions
	Hypertext Meta-model Extensions
	Tool Framework Extensions

	Support of Semantic Web Services
	Process Extensions
	Content Model Extensions
	Hypertext Meta-model Extensions
	Tool Framework Extensions

	Related Work
	Conclusions
	References – WebML

	The Lixto Systems Applications in Business Intelligence and Semantic Web
	Introduction
	Motivation
	Competitive Intelligence and Business Intelligence
	Semantic Web
	Integrated Wrapper Technologies

	The Lixto Solution
	Wrapper Generation with Visual Developer
	The Transformation Server

	Application Business Cases
	CI Solution for Pirelli
	The Personal Publication Reader

	References

	Ways to Develop Human-Level Web Intelligence: A Brain Informatics Perspective
	Introduction
	Web Based Problem Solving with Human Level Capabilities
	Reasoning Centric Thinking Oriented Studies in Human Information Processing System
	A Data-Brain Model and Its Construction
	Conclusion

	Empowering Software Maintainers with Semantic Web Technologies
	Introduction and Motivation
	Semantic Web and Software Maintenance
	Software Maintenance Challenges
	Identified Requirements

	System Architecture and Implementation
	Ontology Design for Software Maintenance
	Source Code Ontology
	Documentation Ontology

	Automatic Ontology Population
	Populating the Source Code Ontology
	Populating the Documentation Ontology

	Application of Semantic Web-Enabled Software Maintenance
	Source Code Security Analysis
	Establishing Traceability Links Between Source Code and Documentation
	Architectural Analysis

	Related Work and Discussions
	Conclusions and Future Work
	References

	Minimal Deductive Systems for RDF
	Introduction
	RDF Semantics
	Interpretations
	RDFS Vocabulary

	The ρdf Fragment of RDFS
	Deductive System for ρdf Vocabulary

	Deductive Systems for Minimal Fragments of ρdf
	TheComplexityof ρdf Ground Entailment
	Conclusions
	References

	Web Service Contracting: Specification and Reasoning with SCIFF
	Introduction
	Architecture
	The $alice$ and $eShop$ Scenario

	Notation
	Declarative Semantics and Reasoning
	Declarative Semantics
	Operational Semantics

	The $alice$ and $eShop$ Scenario Revisited
	Refined Query
	Unconstrained Query

	Discussion

	Dynamic Service Discovery Through Meta-interactions with Service Providers
	Introduction
	Semantic Web Services and WSMO
	Data Fetching for Discovery
	Algorithm
	WSMO Service Interface for Data Fetching

	Implementation and Evaluation
	Scenario and Assumptions
	Modeling Ontologies, Goals and Services
	Implementation
	Evaluation

	Related Work
	Conclusion and Future Work

	Two-Phase Web Service Discovery Based on Rich Functional Descriptions
	Introduction
	Concepts and Approach
	Web Services and Goals
	The Meaning of a Match for Web Service Discovery

	Formal Functional Descriptions
	Definition and Semantics
	Illustration in Running Example

	Semantic Matchmaking for Web Service Discovery
	Goal Template Level
	Goal Instance Level
	Integration of Matchmaking Techniques

	Evaluation
	Related Work
	Conclusions

	A Reasoning Framework for Rule-Based WSML
	Motivation
	The WSML Language
	Language Constructs
	Reasoning in Rule-Based WSML

	Mapping WSML to Datalog
	Ontology Transformations
	WSML Semantics Through Meta-level Axioms
	WSML Reasoning by Datalog Queries
	Realising Datatype Reasoning

	Debugging Support
	Identifying Constraint Violations
	Debugging by Meta-level Reasoning

	Reasoning Framework Overview
	Conclusion and Outlook

	GenTax: A Generic Methodology for Deriving OWL and RDF-S Ontologies from Hierarchical Classifications, Thesauri, and Inconsistent Taxonomies
	Introduction
	Classification, Thesaurus, and Taxonomy
	Our Contribution

	A Uniform Model of Classifications, Thesauri, and Taxonomies
	Overview
	Formal Definition

	Deriving OWL and RDF-S Ontologies from Hierarchical Categorization Schemas
	Overview
	Implementation
	Statistical Diagnosis of Conceptual Properties and Relevant Anomalies
	Example

	Evaluation: eClassOWL and unspscOWL
	eCl@ss as a Products and Services Ontology
	UNSPSC as a Cost Accounting Ontology

	Discussion
	References

	SPARQLeR: Extended Sparql for Semantic Association Discovery
	Introduction
	Motivation
	Background
	Semantic Associations in RDF Description Bases
	Defined Directionality Paths

	SPARQLeR
	Path as RDF Meta-resource and Path Patterns
	Path Patterns
	Testing Paths
	Prototype Implementation of SPARQLeR

	Experiment Design and Results
	Data Sets
	Functionality Test in the Biomedical Domain
	Scalability Tests on Modified DBLP Datasets

	Conclusions and Future Work
	References

	Simple Algorithms for Predicate Suggestions Using Similarity and Co-occurrence
	Introduction
	Classification-Based Algorithm
	Preliminaries
	Classification Step
	Ranking Step
	Qualitative Results
	Performance

	Co-occurrence-Based Algorithm
	Pre-computation Step
	Suggestion Step

	Implementation
	Example Suggestions

	Evaluation
	Evaluation Approach
	Results

	Related Work
	Conclusion

	Learning Disjointness
	Introduction
	Features for Learning Disjointness
	Taxonomic Overlap
	Subsumption
	Semantic Similarity
	Patterns
	OntoClean
	Meta Algorithm

	Experiment: Human Annotation of Disjointness
	Ontology
	Evaluation Setting: Manual Taggings
	Analysis of Human Annotations
	Discussion

	Evaluation: Learning a Classifier
	Experimental Settings
	Results

	Related Work
	Conclusion and Future Work

	Developing Ontologies for Collaborative Engineering in Mechatronics
	Introduction
	State of the Art and Research Gaps in Collaborative Engineering
	State of the Art and Research Challenges in Mechatronic Engineering
	State of the Art and Research Challenges in Mechatronic Domain Modeling

	ImportNET Approach to Mechatronic Domain Modeling
	Ontology Landscape in ImportNET
	Ontology Alignment to the DOLCE Foundational Ontology
	Methodology for the Development of the Mechatronic Ontology

	Objectives, ImportNET System Architecture, Usage and Validation Scenario
	Objectives and Initial Findings
	ImportNET System Architecture and Issues Around Semantic Modelling
	Usage and Validation Scenario for Collaborative Mechatronic Design

	Conclusions
	References

	Media, Politics and the Semantic Web An Experience Report in Advanced RDF Usage
	Introduction
	Content Analysis as the Domain of Formalization
	(Relational) Content Analysis
	Relational Content Analysis Using the NET Method
	Requirements

	Formalizing the NET Method
	R1-2, R7: Low Hanging Fruit
	R3-6: Enriching Triples with Extra Information
	R8: Dynamic Roles
	R9: Disjoint Categorization
	R10: Categorizing and Extracting Data

	Implementation
	Data Model and Ontology
	The iNET Annotation Tool
	The NeBro Browser / Visualizer

	Conclusions
	References

	SEEMP: An Semantic Interoperability Infrastructure for e-Government Services in the Employment Sector
	Introduction
	A e-Employment Running Example
	Interoperability Issues
	The SEEMP Approach
	The SEEMP Solution Architecture
	Structural Overview
	Functional Overview

	The SEEMP Solution Components
	Reference and Local Ontology for e-Employment
	An Employment Market Place Abstract Machine
	SEEMP Connectors

	Comparing SEEMP with Other Approaches
	Conclusions and Future Work

	Combining RDF Vocabularies for Expert Finding
	Introduction
	Critical Success Factors
	Practical Use Cases from the ExpertFinder Initiative
	The ExpertFinder Vocabulary Framework
	Starting Points: FOAF, SIOC and SKOS
	ExpertFinder Framework Extensions for the Core Vocabularies

	Related Projects, Initiatives and Approaches
	Related Projects
	Community-Driven Approaches

	Conclusions and Outlook

	Extracting Social Networks Among Various Entities on the Web
	Introduction
	Related Works
	Extraction of Social Networks
	Problem of Existing Methods
	Relation Identification
	Threshold Tuning

	Social Network Extraction for Firms
	System Flow
	Results and Evaluation
	Effectiveness of Relation Keywords

	Social Network Extraction for Artists
	System Flow
	Evaluation
	Navigation Site for Yokohama Triennale

	General Extraction of a Social Network Using a Search Engine
	Conclusion

	Towards Semantic Social Networks
	Introduction
	Emerging Collaboration in Peer to Peer Networks
	Network Analysis
	Three-Layered Architecture for Semantic Social Networks
	Social Layer
	Ontology Layer
	Concept Layer

	Inferring Relationships
	Similarity on the Concept Layer
	From Concept Similarity to Ontology Similarity
	From Concept Similarity to Alignment
	From Ontology Similarity to People Affinity

	Experimental Results
	Related Work
	Concluding Remarks and Future Work
	References

	Knowledge Sharing on the Semantic Web
	Introduction
	Models of Knowledge Sharing

	Software Overview
	System Architecture
	Semantic Annotations

	Squidz in Action
	Fetching Related Pages
	Sharing Annotations
	Exploring Annotations

	Evaluation
	Related Work
	Experimental Design
	Results and Analysis

	Discussion and Conclusions
	References

	Real-World Reasoning with OWL
	On Benchmarking OWL Reasoners
	System Analysis
	Benchmarking Experiences
	Starting Point: Existing ABox Benchmarks
	Implicit Knowledge - A Stumbling Block?
	Influence of Serialization
	TBox Complexity
	Query Repetition and Query Specialization
	Dynamic Behavior
	Completeness Versus Performance

	Requirements for a Comprehensive ABox Benchmark
	Summary

	How to Design Better Ontology Metrics
	Introduction
	Current Metrics and Measures
	Ontological Metrics
	Normalization of an Ontology
	Examples of Normalization
	Stability of Metrics
	Conclusion and Future Work

	Measuring Inconsistencies in Ontologies
	Introduction
	Preliminaries
	Ontologies in the Semantic Web
	Description Logics

	Inconsistency Measures
	Motivating Example
	Definitions
	Inconsistency Measure Based on the Shapley Value
	Properties of the Inconsistency Measures
	Apply the Inconsistency Measures to Clauses

	Computational Complexity Concerns
	Partition Based on Structural Relevance
	Optimization Based on Properties of the Inconsistency Measure

	Experimental Results
	Related Work
	Conclusion and Future Work

	Squirrel: An Advanced Semantic Search and Browse Facility
	Introduction
	Scenario
	Architecture
	PROTON
	Full-Text Index
	KAON2
	Natural Language Generation
	DIWAF
	Ontology Generation
	User Profile Construction and Usage
	Massive Semantic Annotation
	Segmentation
	Integration

	Interface Description
	Initial Search
	Meta-result
	Refining by Topic
	Attribute-Based Refinement
	Document View
	Entity View
	Consolidated Results

	Evaluation
	Discussion and Related Work
	Conclusion and Future Work
	References

	User-Centric Faceted Search for Semantic Portals
	Introduction
	Extending Faceted Search Architechure
	Ontological Metadata for a Health Promotion Portal
	Creating User-Centric Search Facets with Card Sorting
	Selecting Card Contents
	Performing the Card Sorting
	Creating the Result Categories Based on the Card Piles
	Finalizing and Evaluating the Categorisation

	Mapping User-Centric Facets to Ontologies
	Prototype Implementation
	Discussion
	Contributions
	Related Work
	Future Work

	References

	An Approach for Identification of User’s Intentions During the Navigation in Semantic Websites
	Introduction
	The User Modeling
	The Linguistic Aspects That Affect the User Model
	The Cognitive Aspects That Affect the User Model
	Linking Navigational Patterns and Semantic Content
	An Identification Algorithm of a User’s Interests

	An Evaluation of the Proposed Algorithm
	Conclusion and Future Projects
	References

	A Novel Combination of Answer Set Programming with Description Logics for the Semantic Web
	Introduction
	Disjunctive Programs Under the Answer Set Semantics
	Description Logics
	Disjunctive DL-Programs Under the Answer Set Semantics
	Semantic Properties
	Algorithms and Complexity
	Tractability Results
	Related Work
	Summary and Outlook

	Algorithms for Paraconsistent Reasoning with OWL
	Introduction
	Preliminaries
	The Description Logic \mathcal{ALC}
	 Four-Valued Logic

	The Four-Valued Description Logic $\mathcal{ALC}4$
	Transforming $\mathcal{ALC}4$ to \mathcal{ALC}
	Resolution-Based Reasoning with $\mathcal{ALC}4$
	Translating $\mathcal{ALC}4$ into Clauses
	Ordered Resolution with Selection Function $O4_{DL}$ for $\mathcal{ALC}4$

	Implementation
	Conclusions and Further Work

	Vague Knowledge Bases for Matchmaking in P2P E-Marketplaces
	Introduction
	Basic Technologies
	Top-k Retrieval

	Matchmaking Scenario
	Matchmaking with Vague Knowledge Bases
	Top-\emph{k} Retrieval for Matchmaking in Vague Knowledge Bases
	An Illustrative Example
	Related Work
	Conclusion

	Symbol Grounding for the Semantic Web
	Introduction
	Meaning and Symbol Grounding
	What Is Meaning?
	Entailment and Designation
	Denotation and Connotation
	Relevance to the Semantic Web
	The Symbol Grounding Problem

	Why the Semantic Web Needs Symbol Grounding
	Meaningfulness
	Semantic Interoperability Problems
	Current Support for Semantic Interoperability Conflict Resolution
	Why Using URIs Is Not a Sufficient Grounding Strategy

	Next Steps and Conclusions
	References

	Ontology-Driven Semantic Ranking for Natural Language Disambiguation in the OntoNL Framework
	Introduction
	Related Work
	The OntoNL Semantic Disambiguation Algorithm
	The OntoNL Ontology-Driven Semantic Ranking
	Representation of Natural Language Interactions
	Evaluation
	Conclusions
	References

	Web-Annotations for Humans and Machines
	Getting Your Questions Answered – Or Perhaps Not
	The Problem
	Question Answering
	Automatic Summarisation
	Semantic Web
	Augmenting RDF by Natural Language Annotations
	Annotations in Controlled Natural Language

	Controlled Natural Languages
	Controlled Natural Languages for Web Annotations
	How to Compose Web Annotations
	Inverted Pyramid Style
	The Lead Section
	The Five W’s (plus H)

	How to Attach Web Annotations to a Web Page
	Deductions from Web Annotations
	A Two-Step Process to Answer Questions
	Background Knowledge
	Missing and Inconsistent Answers

	Other Uses of Web Annotations
	Conclusions
	References

	PANTO: A Portable Natural Language Interface to Ontologies
	Introduction
	Background
	Features and Contributions

	PANTO Architecture
	The Lexicon
	Translator: Translating Parse Tree to SPARQL
	QueryTriple Extractor
	OntoTriple Extractor
	Target and Modifier Extractor
	SPARQL Generator

	Experiments and Evaluation
	System Implementation and Experiment Setup
	Results and Discussion

	Limitations and Future Work
	Related Work
	Conclusion

	Mining the Web Through Verbs: A Case Study
	Introduction
	Related Work
	Generic Problem Description
	Divide and Conquer
	Selecting Verb Arguments
	Mapping Verbs to Relations

	Formal Analysis
	Algorithms
	Selecting Verb Arguments
	Mapping Verbs to Relations

	FactBox Framework
	Case Study: Biographies from IMDb
	The IMDb Biography Corpus
	Relations of Interest
	Statistics

	Evaluation
	Experiment 1
	Experiment 2

	Concluding Remarks

	What Have Innsbruck and Leipzig in Common? Extracting Semantics from Wiki Content
	Introduction
	Knowledge Extraction from Wikipedia Templates
	MediaWiki Templates
	Extraction Algorithm
	Extraction Results
	Obstacles
	Guide for Designing Semantically Rich Templates

	Browsing and Querying Extracted Knowledge
	OntoWiki
	Graph Pattern Builder
	Example Queries

	Related Work
	Conclusions

	SALT - Semantically Annotated LATEX for Scientific Publication
	Introduction
	Use Case
	Ontological Foundation and Syntactical Support
	The Semantic Layer
	Syntactical Support

	Annotation and Publishing
	The SALT Process
	The Publishing Process

	First Experiences
	Related Work
	Discussion
	Conclusion and Future Work

	Annotating Relationships Between Multiple Mixed-Media Digital Objects by Extending Annotea
	Introduction
	Previous Work
	Free Annotation Tools
	Semantic Annotation Tools

	Annotea
	Ontology-Based Annotations Using Annotea
	Controlled Vocabularies
	Simple Formal Statements

	Comparisons and Associations Using Annotea
	Attempt 1: The isLinkedTo Property
	Attempt 2: The AnnotationGroup Object
	Attempt 3: The Target Object
	Recommended Solution: The Context Object

	Conclusion
	Future Work
	References

	Describing Ontology Applications
	Introduction
	Background
	Ontologies and Patterns
	Ontology Applications
	Software Architectures and Patterns
	Architecture Description Languages

	Ontology Application Patterns
	Definition
	Specific Characteristics
	Pattern Template

	Architecture Description
	Suggested ADL
	Architecture Example

	Conclusions and Future Work
	References

	The SPARQL Query Graph Model for Query Optimization
	Introduction
	Running Example
	Structure and Goals of This Paper

	SPARQL Query Graph Model
	Fundamentals
	Translating a SPARQL Query to an SQGM

	Query Rewriting Based on SQGMs
	Implementation and Evaluation
	Related Work
	Conclusion and Future Work

	A Unified Approach to Retrieving Web Documents and Semantic Web Data
	Introduction
	The Unified Web Model
	Hybrid Query Language Specification
	Queries for Exploring the System-Generated Neighborhood of a Node
	Further Queries for Retrieving Documents

	Implementation and Results
	Related Research
	Conclusion and Future Work
	References

	Distributed Knowledge Representation on the Social Semantic Desktop: Named Graphs, Views and Roles in NRL
	Motivation: The Social Semantic Desktop
	State of the Art
	Knowledge Representation on the Social Semantic Desktop: The NRL Approach
	Handling Multiple Models: NRL Named Graphs
	Graph Core Vocabulary
	Graph Roles Vocabulary

	Imposing Semantics on Graphs: NRL Graph Views
	Views Vocabulary

	Example: NRL in Use
	Summary and Outlook

	Semantic Process Retrieval with iSPARQL
	Introduction
	Related Work
	iSPARQL
	The iSPARQL Grammar
	Similarity Strategies

	Experimental Analysis
	Test Set Generation -- ``Mutating'' the MIT Process Handbook
	Retrieval Experiments -- Off-the-Shelf vs. Engineered
	ML Experiments -- Off-the-Shelf and Engineered vs. Learned

	Discussion, Limitations, and Future Work
	Conclusions

	Integrating Folksonomies with the Semantic Web
	Introduction
	Related Work
	Integrating Folksonomies with the Semantic Web
	Datasets
	Methodology

	Experiments and Discussion
	Conclusions and Future Work
	References

	IdentityRank: Named Entity Disambiguation in the Context of the NEWS Project
	Introduction
	Scenario
	The Algorithm
	PageRank and Relation with IdRank
	IdRank

	Evaluation
	Corpus and Ontology
	Accuracy Evaluation
	Computation Time

	Related Work
	Conclusions and Future Lines

	A Study in Empirical and ‘Casuistic’ Analysis of Ontology Mapping Results
	Introduction
	Project Background
	OntoFarm Collection
	OAEI 2006 Initiative

	Initial Manual Empirical Evaluation
	Empirical Evaluation Via Logical Reasoning
	'Casuistics' -- Consensus Building Workshop
	General Idea
	Examples of Mappings Discussed
	Lessons Learned

	Evaluation Via Pattern-Aware Data Mining
	Introducing Mapping Patterns
	4ft-Miner Overview
	Using 4ft-Miner for Mining over Mapping Results

	Related Work
	Conclusion and Future Work

	Acquisition of OWL DL Axioms from Lexical Resources
	Introduction
	Preliminaries
	The LExO Approach and Examples
	Examples

	Critical Discussion
	Realising the Vision
	Related Work and Conclusions

	On Enriching Ajax with Semantics: The Web Personalization Use Case
	Introduction
	Motivating Examples and Requirements
	Mashup of Ajax and the Semantic Web
	Semantics-Based Adaptation
	Advantages of Using Ontologies for Adaptation
	Ontology-Based Model of Adaptive Portals

	Bringing Together Semantics and Ajax
	Challenges Integrating Semantics and Ajax

	Related Work
	Conclusion and Outlook
	References

	A Semantic Web Service Oriented Framework for Adaptive Learning Environments
	Introduction
	Related Work
	Semantic Web Service Based E-Learning Applications: Vision and Approach
	Vision: Context-Adaptation Through Automatic Service Selection and Invocation
	Approach: Semantic Abstraction from Process Metadata, Functionalities and Data

	The Ontological Framework
	Staged Ontological Mapping
	Semantic Learning Process Model Layer

	A SWS Based Framework for E-Learning - Prototype Application Based on IMS Learning Design and WSMO
	Use Case: An Adaptive IMS LD Learning Package to Support Language Learning
	A SWS Oriented Architecture
	Implementation Approach
	Ontological Mappings
	Dynamic Adaptation at Runtime

	Conclusions
	References

	Semantic Composition of Lecture Subparts for a Personalized e-Learning
	Introduction
	Description Logics
	Preliminaries
	The Concept Covering Problem

	The LO Composition Problem
	The Notions of Learning Object and Composition Flow
	Computing the Lecture Cover
	Computing the Flow

	An Algorithm for Lecture Composition
	The Best Covering Algorithm
	The Composition Algorithm

	Illustrating Example
	Discussion

	Caravela: Semantic Content Management withAutomatic Information Integration and Categorization (System Description)
	Introduction
	Sample Application
	Generic Content Representation
	Content Integration and Categorization
	Generic Integration of Semi-structured Information
	Categorization Along Multiple Taxonomies
	Dynamic Categorization by Automatic Linking and Weighting

	Conclusion and Outlook
	References

	The NExT System: Towards True Dynamic Adaptations of Semantic Web Service Compositions (System Description)
	An Illustrating Scenario - As Is
	Introduction
	Overall Operationalization of NExT
	Supporting Partial Executions and Adaptations

	The NExT Prototype Implementation
	Supporting Partial Executions and Adaptations

	Preliminary Validation -- The Introductory Scenario Revisited
	Related Work
	Future Work/Conclusion

	WSMO Studio – A Semantic Web Services Modelling Environment for WSMO (System Description)
	Introduction
	WSMO Studio Goals
	WSMO Studio Functionality
	Core Components
	WSMO Editor
	Choreography Editor
	SAWSDL Editor
	Repository Front-End
	Service Discovery Front-End
	Integrated Validator and Reasoners

	Evaluation and Related Tools
	Evaluation of WSMO Studio
	Related Tools

	Future Work
	Conclusion

	An Annotation Tool for Semantic Documents (System Description)
	Introduction
	Semantic Documents
	Annotation Model
	Tool Architecture
	User Interface
	Document Management
	Annotation Editing

	Discussion
	Conclusion

	SWHi System Description: A Case Study in Information Retrieval, Inference, and Visualization in the Semantic Web
	Introduction
	Motivation
	Data Sources
	Information Retrieval in the Semantic Web
	Visualization

	System Architecture and Data Source
	Architecture
	Data Source and Ontology

	Indexing, Searching, and Inference
	Indexing and Inference
	Searching and Enrichment

	Results
	Summary and Future Work

	Semantic Turkey: A Semantic Bookmarking Tool (System Description)
	Introduction
	Motivations and Approach Followed
	Architecture
	Architectural Layers
	The Knowledge Model

	User Interaction
	Main Functionalities

	Conclusions
	References

	The Web Service Modeling Toolkit - An Integrated Development Environment for Semantic Web Services (System Description
	Introduction
	Background
	The Web Service Modeling Toolkit
	The WSML Perspective
	The Mapping Perspective
	The SEE Perspective

	Related Work
	Conclusions and Future Work

	Understanding Large Volumes of Interconnected Individuals by Visual Exploration (System Description)
	Motivation
	Visualizing Entailed Assertions
	Related Work

	Interactive Exploring of Individuals
	Implementation and Current Work
	Summary and Outlook

	System Description: An Orienteering Strategy to Browse Semantically-Enhanced Educational Wiki Pages
	Introduction
	Strategies and Tools
	Orienteering Strategy
	Orienteering Tools

	Prototype
	User-Based Evaluation
	Aims
	Methodology
	Results and Observations

	Related Work
	Conclusions
	References

	Efficient Content Creation on the Semantic Web Using Metadata Schemas with Domain Ontology Services (System Description)
	Introduction
	Saha Annotation System
	Utilizing Annotation Schemas
	Architecture and User Interface
	Setting Up an Annotation Project

	Utilizing Ontology Services
	Onki Ontology Services
	Automatic Recognition of Concepts and Entities

	Discussion
	Contributions and Applications
	Related Work
	Future Work

	References

	Author Index

