
Multi-state Directed Acyclic Graphs

Michael Wachter1 and Rolf Haenni1,2

1 University of Bern, Switzerland
{wachter,haenni}@iam.unibe.ch

2 Bern University of Applied Sciences, Switzerland
rolf.haenni@bfh.ch

Abstract. This paper continues the line of research on the representa-
tion and compilation of propositional knowledge bases with propositional
directed acyclic graphs (PDAG), negation normal forms (NNF), and bi-
nary decision diagrams (BDD). The idea is to permit variables with more
than two states and to explicitly represent them in their most natural
way. The resulting representation languages are analyzed according to
their succinctness, supported queries, and supported transformations.
The paper shows that most results from PDAGs, NNFs, and BDDs can
be generalized to their corresponding multi-state extension. This implies
that the entire knowledge compilation map is extensible from proposi-
tional to multi-state variables.

1 Introduction

Boolean functions play a crucial role in many areas of computer science and
mathematics, most notably in Artificial Intelligence, digital system design, for-
mal verification, mathematical logic, reliability theory, and combinatorial
optimization. They are fundamental whenever knowledge is represented by prop-
ositional variables, i.e. through a set of possible states in the corresponding
multi-dimensional Boolean space.

In practice, working with Boolean functions presupposes efficient ways to rep-
resent them. Among the existing approaches for representing Boolean functions
are truth tables, Karnaugh maps, sum-of-products such as DNFs or prime im-
plicants, product-of-sums such as CNFs or prime implicates, and most notably
binary decision diagrams (BDD) [1,2,3], negation normal forms (NNF) [4,5],
propositional directed acyclic graphs (PDAG) [6], and all their derivatives. Some
of these forms are known to be impractical, as they impose representations of
exponential size for most possible r-ary functions [7], but many BDD, NNF, and
PDAG forms provide polynomial representations at least for many functions.

The restriction of these techniques to propositional variables does not en-
tirely meet the requirements of real-world models, which are often not limited
to Boolean variables. For example, the possible states of a traffic light (in most
parts of the world) are red, yellow, and green. At a particular time, the traffic
light is in exactly one of these states. We will use the following terminology to
distinguish the different types of variables: propositional, Boolean, or binary vari-
ables have exactly two states, non-binary variables have more than two states,

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 464–475, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Multi-state Directed Acyclic Graphs 465

and multi-state variables have two or more states.1 In addition, we suppose that
each (binary, non-binary, or multi-state) variable has a unique (but typically
unknown) true state.

Multi-state variables have been discussed in the literature of decision diagrams
[10], where multivalued decision diagrams (MDD) arise as an extension of BDDs
to multi-state variables. They are an alternative to the usual replacement of
multi-state variables by �log2 �� Boolean variables, where � denotes the number
of possible states. In this way, MDDs can be transformed into BDDs with a linear
growth in size, which relativizes the benefits of MDDs over BDDs, especially if
� is small. The conclusion in [10] is the following:

“MDDs are useful if the considered function has a natural description
with multivalued variables.” [10, Section 9.1, page 216]

In applications of NNFs, especially in the contexts of probabilistic reasoning,
Bayesian networks, and model counting [11,12,13], it is common to use similar
Boolean encodings for multi-state variables. These encodings typically use � (or
�−1) auxiliary Boolean variables, i.e. one for each state (except for the last one).
The exclusivity and exhaustiveness of these auxiliary variables requires explicit
representations of corresponding exclusive ORs, which is a non-negligible over-
head, especially if � is large. Another problem of these Boolean encodings is the
computation of probabilities, if independent probability mass functions are given
for all multi-state variables. The core of the problem is the fact, that the auxil-
iary Boolean variables are no longer independent. It is possible to overcome this
difficulty by transforming the given probabilities into conditional probabilities
[11,12], but the existing solutions are rather cumbersome.

If we decide to work with multi-state variables from the beginning, these
problems all disappear, including the one of selecting an appropriate Boolean
encoding. The goal of this paper is thus to modify the existing PDAG, NNF,
and BDD languages to multi-state variables (unless it is not yet done elsewhere).
We will show that most theoretical results remain valid. In this way, we add an
additional dimension to the knowledge compilation map promoted in [5,6].

The remainder of this paper is organized as follows. In Sect. 2, we extend the
definition of PDAGs to multi-state variables, compare the resulting multi-state
directed acyclic graphs (MDAG) with PDAGs, and finally define different MDAG
sub-languages. In Sect. 3, some theoretical results about the succinctness, the
supported queries, and the supported transformations of PDAGs are generalized
to MDAGs. Section 4 concludes the paper.

2 Multi-state Directed Acyclic Graph

Let V = {V1, . . . , Vr} be a set of r variables and suppose that ΩVi denotes the
finite set of states of Vi. A finite indicator function f is defined by f : ΩV → B,
1 To outline the difference to multivalued or many-valued logics, where logical sen-

tences are mapped into more than two truth values [8,9], we prefer to use the term
’multi-state’ instead of ’multivalued’ or ’many-valued’.

466 M. Wachter and R. Haenni

where ΩV = ΩV1 × · · · × ΩVr and B = {0, 1}. To emphasize the fact that f is a
mapping from the Cartesian product ΩV1 × · · · ×ΩVr to {0, 1}, we will call it a
Cartesian indicator function (CIF). The so-called satisfying set Sf = {x ∈ ΩV :
f(x) = 1} = f−1(1) of f is the set of r-dimensional vectors x ∈ ΩV for which
f evaluates to 1. Special cases of finite CIFs are Boolean functions (BF), where
ΩVi = B, and therefore ΩV = B

r.
The most general forms for representing BFs are PDAGs. As shown in [6],

the well-known NNFs, BDDs, and their derivatives correspond to subsets of
PDAGs. While multivalued decision diagrams (MDD) have been proposed as an
extension of BDDs to multi-state variables in the context of decision diagrams
[10], there is no such extension for NNFs or PDAGs. PDAGs, and therewith
NNFs, will be extended to multi-state variables below. We will see that the
resulting language also includes the existing MDDs. As in the case of PDAGs and
NNFs, the representation we propose here is based on directed acyclic graphs,
but now we impose some particularities.

Definition 1. A multi-state DAG (MDAG) is a rooted directed acyclic graph,
where:

1. Leaves are represented by � and labeled with � (true), ⊥ (false), or X=x,
where X ∈ V is a variable and x ∈ ΩX is one of its states;

2. Non-leaves are represented by � (logical and), � (logical or), or ♦ (logical
not). �- and �-nodes have at least one child, ♦-nodes have exactly one child.

In a MDAG, each node α represents a finite CIF fα by

fα =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∧

i=1

fβi =
t

min
i=1

fβi , if α is an �-node with children β1, . . . , βt,

t∨

i=1

fβi =
t

max
i=1

fβi , if α is an �-node with children β1, . . . , βt,

¬fψ = 1 − fψ, if α is a ♦-node with the child ψ,
1, if α is a �-node labeled with �,
0, if α is a �-node labeled with ⊥,

fX=x, if α is a �-node labeled with X=x,

where fX=x(x) with x ∈ ΩV is defined by

fX=x(x) =

{
1, if x is the corresponding value of X in x,
0, otherwise.

The MDAG depicted in Fig. 1 represents the finite CIF f = ([Y=y1]∧ [X=x1])∨
([Y=y2] ∧ ¬[X=x2]) ∨ ([X=x2] ∧ [Y=y3]). Note that with this, ΩX and ΩY are
not necessarily restricted to {x1, x2} and {y1, y2, y3} from the beginning.

Formally, we will write MDAGV for the set of all possible MDAGs with respect to
V. We follow the view from [5,6] and call MDAGV a language. When no confusion
is anticipated, we omit the reference to the set V, i.e. we simply write MDAG

Multi-state Directed Acyclic Graphs 467

Y =y3X=x1Y =y1 Y =y2 X=x2

ϕ

Fig. 1. The finite CIF f represented as the MDAG ϕ

instead of MDAGV and Ω instead of ΩV. Our convention is to denote MDAGs
by lower-case Greek letters such as ϕ, ψ, or the like. Remember that any node
α included in a MDAG ϕ defines its own (sub-) MDAG, and is thus another
element of MDAG.

The number of edges of ϕ ∈ MDAG is called its size and is denoted by |ϕ|.
MDAGs are called binary, if no �- or �-node has more than two children. The
set of variables included in a sub-MDAG α of ϕ is denoted by vars(α). The
path-length of a path from the root to a leave is the number of edges minus
the number of ♦-nodes along the path. The height of ϕ, denoted by h(ϕ), is its
maximal path-length. Note that these concepts (size, binary, vars, path-length,
height) have the same meaning for PDAGs.

Any finite CIF can be represented by a MDAG, so the MDAG language is
complete. On the other hand, MDAGs are not canonical, i.e. we may have several
equivalent MDAGs representing the same finite CIF. Two MDAGs ϕ, ψ ∈ MDAG
are equivalent, denoted by ϕ ≡ ψ, iff fϕ(x) = fψ(x) for all x ∈ Ω. Furthermore,
ϕ entails ψ, denoted by ϕ |= ψ, iff fϕ(x) ≤ fψ(x) for all x ∈ Ω. In terms of their
satisfying sets, Sfϕ = Sfψ means equivalence and Sfϕ ⊆ Sfψ entailment. Again,
both equivalence and entailment have the same meaning for PDAGs.

2.1 Sub-languages

We will now turn our attention to some sub-languages of MDAG. The classification
of sub-languages is done according to the following properties, which are based
on the ones given in [5,6]:

1. Decomposability: the sets of variables of the children of each �-node α in ϕ
are pairwise disjoint (i.e. if β1, . . . , βn are the children of α, then vars(βi) ∩
vars(βj) = ∅ for all i �= j);

2. Determinism: the children of each �-node α in ϕ are pairwise logically con-
tradictory (i.e. if β1, . . . , βn are the children of α, then Sfβi ∩ Sfβj = ∅ for
all i �= j);

3. No-Negation:2 ϕ does not contain any ♦-node;
2 No-negation corresponds to simple-ngeation in [5,6].

468 M. Wachter and R. Haenni

ν1 νtX=x1 X=xt

X

x1 xt

ν1 νt

· · ·

· · ·

· · ·

· · ·

MDAG
DD

Fig. 2. A decision node X with ΩX = {x1, . . . , xt} and its decision structure. νi are
further nodes of the DD, resp. MDAG.

4. Flatness : h(ϕ) ≤ 2;

5. Simple-Conjunction: the children of each �-node α in ϕ are leaves without
any common variable (i.e. α is a proper term),

6. Simple-Disjunction: the children of each �-node α in ϕ are leaves without
any common variable (i.e. α is a proper clause);

7. Smoothness : the children of each �-node α in ϕ include the same set of
variables (i.e. if β1, . . . , βn are the children of α, then vars(βi) = vars(βj)
for all i �= j).

Note that smoothness is not that important from a complexity viewpoint, unless
we have flatness [5]. We will not further discuss smoothness in this paper. Simple-
disjunction and simple-conjunction are characteristic for classical forms such as
CNFs, DNFs, prime implicates, etc.

In addition to the basic properties above, we also consider some properties
of decision diagrams (DD). According to [10,14], a decision diagram consists
of non-leaves, so-called decision nodes, and leaves, so-called terminals. Decision
nodes are represented by ©, labeled with X ∈ V, and have outdegree |ΩX |, see
left part of Fig. 2. In addition, Fig. 2 shows the one-to-one mapping between a
decision node and its MDAG representation, called decision structure. Terminals
are represented by � and labeled with 1 or 0 in decision diagrams, resp. with �
or ⊥ in MDAGs.

8. Decision: ϕ contains only decision structures and terminals.

9. Read-once: each path from the root to a terminal contains at most one
decision node/structure for each variable X ∈ V;

10. Ordering: on each path from the root to a leaf, the occurrence of decision
structures respects a total ordering on V;

11. π-Ordering: on each path from the root to a leaf, the occurrence of decision
structures respects the globally specified ordering π on V.

The sub-languages of MDAG are defined via these properties in the same way as
sub-languages are defined for PDAG [6]. Table 1 shows MDAG and some of its most

Multi-state Directed Acyclic Graphs 469

T
a
b
le

1
.
M
D
A
G

a
n
d

so
m

e
o
f
it

s
su

b
-l
a
n
g
u
a
g
es

a
cc

o
rd

in
g

to
th

e
1
1

p
ro

p
er

ti
es

.
W

it
h

’x
’
w

e
in

d
ic

a
te

th
a
t
a

la
n
g
u
a
g
e

sa
ti

sfi
es

th
e

co
rr

es
p
o
n
d
in

g
p
ro

p
er

ty
,
a
n
d

’(
x
)’

m
ea

n
s

th
a
t

th
is

p
ro

p
er

ty
is

im
p
li
ed

b
y

o
th

er
p
ro

p
er

ti
es

.

decomposability

determinism

no-negation

flatness
simple-conjunction

simple-disjunction

smoothness
decision

read-once

ordering

π-ordering

D
es

cr
ip

ti
o
n

B
o
o
le

a
n

C
a
se

M
D
A
G

m
u
lt

i-
st

a
te

d
ir
ec

te
d

a
cy

cl
ic

g
ra

p
h

(M
D

A
G

)
P
D
A
G

c
-M
D
A
G

x
d
ec

o
m

p
o
sa

b
le

M
D

A
G

c
-P
D
A
G

d
-M
D
A
G

x
d
et

er
m

in
is

ti
c

M
D

A
G

d
-P
D
A
G

n
-M
D
A
G

x
n
eg

a
ti

o
n
-f
re

e
M

D
A

G
N
N
F

(≡
n
-P
D
A
G
)

c
d
-M
D
A
G

x
x

d
ec

o
m

p
o
sa

b
le

d
et

er
m

in
is

ti
c

M
D

A
G

c
d
-P
D
A
G

c
n
-M
D
A
G

x
x

d
ec

o
m

p
o
sa

b
le

n
eg

a
ti

o
n
-f
re

e
M

D
A

G
D
N
N
F

(≡
c
n
-P
D
A
G
)

d
n
-M
D
A
G

x
x

d
et

er
m

in
is

ti
c

n
eg

a
ti

o
n
-f
re

e
M

D
A

G
d
-N
N
F

(≡
d
n
-P
D
A
G
)

c
d
n
-M
D
A
G

x
x

x
d
ec

o
m

p
o
sa

b
le

d
et

er
m

in
is

ti
c

n
eg

a
ti

o
n
-f
re

e
M

D
A

G
d
-D
N
N
F

(≡
c
d
n
-P
D
A
G
)

f
-M
D
A
G

x
fl
a
t

M
D

A
G

f
-P
D
A
G

f
n
-M
D
A
G

x
x

fl
a
t

n
eg

a
ti

o
n
-f
re

e
M

D
A

G
f
-N
N
F

(≡
f
n
-P
D
A
G
)

M
C
N
F

x
x

x
m

u
lt

i-
st

a
te

co
n
ju

n
ct

iv
e

n
o
rm

a
l
fo

rm
(M

C
N

F
)

C
N
F

M
P
I

x
x

x
m

u
lt

i-
st

a
te

p
ri
m

e
im

p
li
ca

te
s

P
I

M
D
N
F

(x
)

x
x

x
m

u
lt

i-
st

a
te

d
is

ju
n
ct

iv
e

n
o
rm

a
l
fo

rm
(M

D
N

F
)

D
N
F

M
I
P

(x
)

x
x

x
m

u
lt

i-
st

a
te

p
ri
m

e
im

p
li
ca

n
ts

I
P

d
-M
D
N
F

(x
)

x
x

x
x

d
et

er
m

in
is

ti
c

M
D

N
F

d
-D
N
F

M
M
O
D
S

(x
)

x
x

x
x

x
m

u
lt

i-
st

a
te

m
o
d
el

s
M
O
D
S

M
D
D

(x
)

x
x

m
u
lt

iv
a
lu

ed
d
ec

is
io

n
d
ia

g
ra

m
(M

D
D

)
B
D
D

F
M
D
D

(x
)

(x
)

x
x

x
fr

ee
M

D
D

F
B
D
D

O
M
D
D

(x
)

(x
)

x
x

(x
)

x
o
rd

er
ed

M
D

D
(O

M
D

D
)

O
B
D
D

π
-O
M
D
D

(x
)

(x
)

x
x

(x
)

(x
)

x
O

M
D

D
u
si
n
g

o
rd

er
π

π
-O
B
D
D
,
O
B
D
D

<

470 M. Wachter and R. Haenni

MDAG

c-MDAGd-MDAG n-MDAG f-MDAG

fn-MDAGdn-MDAGcd-MDAG cn-MDAG

cdn-MDAG

MDNF

d-MDNF

MCNF

MPIMIP

MMODS

MDD

FMDD

OMDD

π-OMDD

Fig. 3. Sub-language relationships for MDAG. An edge L1 → L2 indicates that L1 is a
sub-language of L2.

important sub-languages. Note that this table is far from being complete. We
use c, d, f, and n to indicate that the properties decomposability, determinism,
flatness, and no-negation hold. Figure 3 shows how the languages are related in
terms of set inclusion.

2.2 MDAGs vs. PDAGs

In this subsection, the usage of MDAGs and PDAGs will be compared. For this
purpose, we will first examine the special case of BFs, before considering the
general case of finite CIFs. The reader may skip this subsection, if the interest
is primarily on MDAGs.

Formally, PDAGs are almost like MDAGs, except that leaves are represented
by © and labeled with � (true), ⊥ (false), or X , where X ∈ V is a Boolean
variable with ΩX = {0, 1} [6]. The language of all possible PDAGs is denoted
by PDAG. The left hand side of Fig. 4 depicts a PDAG ψ with fψ = (¬[X=1] ∧
[Y=1]]∨([X=1]∧¬[Y=1]). Leaves labeled with � (⊥) represent the constant BF
which always evaluates to 1 (0). A leaf labeled with the propositional symbol X
is interpreted as the assignment X=1, i.e. it represents the BF which evaluates
to 1 iff X = 1. All other nodes (�, �, ♦) have the same meaning as for MDAGs.

From a PDAG ψ representing a BF f , we obtain an MDAG ϕ representing the
same BF f by simply replacing ©-nodes labeled with X by �-nodes labeled with
X=1, as shown in Fig. 4. Conversely, i.e. to obtain a PDAG ψ from a MDAG
ϕ, �-nodes labeled with X=1 are replaced by ©-nodes labeled with X , and

Multi-state Directed Acyclic Graphs 471

YX

ψ

X=1 Y =1

ϕ

Fig. 4. The BF f represented by a PDAG ψ and a MDAG ϕ

�-nodes labeled with X=0 are replaced by ♦-nodes, whose children are ©-nodes
labeled with X .

Proposition 1. For every PDAG ψ, there is an equivalent MDAG ϕ with
|ψ| = |ϕ|. Similarly, for every MDAG ϕ representing a Boolean function, there
is an equivalent PDAG ψ with |ϕ| ≤ |ψ| ≤ |ϕ| + r.

To represent CIFs by PDAGs, we need ways to transform them into BFs, i.e.
each multi-state variable has to be replaced by auxiliary Boolean variables.

Decision Diagrams: Each multi-state variable can be replaced by d = �log2 ��
auxiliary Boolean variables, where � denotes the number of possible states
[10]. For each decision node in the MDD, this replacement induces a tree-
shaped decision diagram of depth d and with l − 1 binary decision nodes.
Figure 5 depicts the decision diagram for the multi-state variable X with
ΩX = {x1, x2, x3, x4} and its replacement with the auxiliary variables X1

and X2, i.e. for d = 2 and � = 3.
In [10], it is argued that this encoding corresponds to a linear transforma-

tion with a small constant. This argument is used to put the usefulness of
MDDs into question. Such a conclusion is partly valid from a purely logical
point of view and for small �, but it does no longer hold when � is large
or when MDAGs are used to compute probabilities. In the latter case, the
Boolean variables used to replace a multi-state variable are no longer inde-
pendent, which disallows the classical method of probability computation.
One way to overcome this is to derive respective conditional probabilities
and to attach them to the edges as depicted in Fig. 5. This shows that the
variable X2 depends on X1. Since the outgoing edges of the X2 node have
different probabilities, this is like using �− 1 new variables.

PDAGs and NNFs: In this context, the probabilities are attached to the vari-
ables. In our example, we would have to attach two different conditional
probabilities to X2, which is impossible. An obvious alternative replacement
considers each decision node of the decision diagram as an auxiliary variable,
i.e. l−1 variables in total, where the probabilities of the variables correspond
to the probabilities attached to the edges. This is essentially the replacement
proposed in [13].

472 M. Wachter and R. Haenni

X=x1 X=x2 X=x3 X=x4

p1 + p2

p1

p1 + p2

p2

p1 + p2

p3

p3 + p4

p4

p3 + p4

p3 + p4

X=x1 X=x2 X=x3 X=x4

X

p1 p2 p3 p4

x3 x4x2x1

X1

X2 X2

1 0

1 0 1 0

Fig. 5. Decision diagram for variable X and its replacement. The labels of the edges
correspond to states and (conditional) probabilities.

An alternative replacement considers each state of a multi-state variable
as a binary variable. This requires the explicit inclusion of an exclusive or
over these auxiliary variables [11,12]. In this way, the switch to conditional
probabilities is not necessary, but still the computation of probabilities be-
comes more difficult. A possible solution is to do some sort of weighted model
counting, where the probabilities are attached to the leaves only, and their
negations get the constant value 1.

The size of the different replacements and the additional effort strengthens our
conclusion, namely that multi-state variables are useful and should be used, not
encoded.

3 Succinctness, Queries and Transformations

The crucial properties of a language are its succinctness and the sets of queries
and transformations supported in polynomial time. Depending on the applica-
tion, we may come up with a set of queries and transformations, which the
chosen language should support in polynomial time. If more than one language
qualifies, the most succinct language provides the most compact representation.
This is then the most appropriate language for the considered application.

In the following analysis of the MDAG language family, we will try to generalize
as many results as possible from corresponding PDAG languages.

3.1 Succinctness

With respect to two languages L1 and L2, the intuitive idea of succinctness is to
figure out whether finite CIFs are represented more compactly by elements of
L1 or by elements of L2. The following definition corresponds to the one given in
[5,6].

Definition 2. Let L1 and L2 be two languages. L1 is equally or more succinct
than L2 (or L1 is at least as succinct as L2), denoted by L1 � L2 iff for every

Multi-state Directed Acyclic Graphs 473

ϕ2 ∈ L2, there is a ϕ1 ∈ L1 such that ϕ1 ≡ ϕ2 and |ϕ1|,the size of ϕ1, is
polynomial in |ϕ2|, the size of ϕ2.

The relation � is clearly reflexive, anti-symmetric, and transitive, i.e. it defines
a partial order over all possible subsets of MDAG. Two languages L1 and L2 are
called equally succinct, denoted by L1 ≡ L2, iff L1 � L2 and L2 � L1. The language
L1 is called strictly more succinct than L2, denoted by L1 ≺ L2, iff L1 � L2 and
L2 �� L1. They are incomparable, iff L1 �� L2 and L2 �� L1.

To generalize the succinctness results of PDAGs to MDAGs, let LP1, L
P
2 be

two different PDAG sub-languages and let LM1, LM2 be their corresponding MDAG
sub-languages (see Table 1). The following proposition is direct consequence of
Proposition 1.

Proposition 2. LP1 �� LP2 ⇒ LM1 �� LM2 (≡ LM1 � LM2 ⇒ LP1 � LP2).

Proving the converse, i.e. LP1 � LP2 ⇒ LM1 � LM2, is more difficult. Although this
proof is missing in general, most of the results can be transfered, since only two
methods are used to proof LP1 � LP2:

– Sub-language relationships: if LP2 is a sub-language of LP1, then LP1 � LP2 holds
trivially. The corresponding languages LM1, L

M
2 have of course the same sub-

language relationship. Thus, LM1 � LM2 holds.
– Providing an algorithm that obtains ϕP1 ∈ LP1 from ϕP2 ∈ LP2 while meeting

the size restriction. Taking a closer look at these algorithms reveals that
they can be adapted to multi-state variables, i.e. ϕM1 ∈ LM1 is obtainable from
ϕM2 ∈ LM2 while meeting the size restriction. Thus, LM1 � LM2 holds.

In this sense the succinctness relation between LM1, L
M
2 matches the succinctness

relation between LP1, LP2 as given in [5,6].

3.2 Queries

A query is an operation that returns information about a MDAG represent-
ing a finite CIF without changing it. Among the important queries for finite
CIFs are: consistency (CO) or satisfiability (SAT), validity (VA), clause entail-
ment (CE), term implication (IM), sentential entailment (SE), equivalence (EQ),
model counting (CT), model enumeration (ME), counter-model enumeration (MEC),
probabilistic equivalence (PEQ), and probability computation (PR).

If a language supports a query in polynomial time with respect to the size of
the PDAG(s)/MDAG(s) (in the case of model or counter-model enumeration,
the reference size is both the size of the PDAG/MDAG and size of the satisfying
set or its compliment), we simply say that it supports this query. In the following,
let LM be a MDAG sub-language, LP be the corresponding PDAG sub-language, and
Q be a query. A direct consequence of Proposition 1 is: If Q is supported by LM,
then Q is supported by LP. Or equivalently:

Proposition 3. If Q is not supported by LP, then Q is not supported by LM.

474 M. Wachter and R. Haenni

Unfortunately, the converse, i.e. (LP supports Q) ⇒ (LM supports Q), is not proofed
in general. However, it is easy to proof it for the languages given in Table 1. If Q
is supported by a language L, it is also supported by the sub-languages of L, i.e.
it is enough to consider the algorithms of the super-languages. Furthermore, it
is sufficient to consider Q ∈ {CO, IM, CT, EQ, SE} due to the correlations between
the queries, see [6] for details.

In this sense the supported queries of LM matches the supported queries of LP

as given in [5,6].

3.3 Transformations

A transformation is an operation that returns a MDAG representing a modified
finite CIF. The new MDAG is supposed to satisfy the same properties as the
language in use. Let’s consider the following transformations: term conditioning
(TC), forgetting (FO), singleton forgetting (SFO), conjunction (AND), binary con-
junction (AND2), disjunction (OR), binary disjunction (OR2), and negation (NOT).

Note that conditioning, denoted by ϕ|[X=xi], includes the implicit exclusive
or. This means the leaf labeled with X=xi is replaced by the leaf labeled with
� and, in addition, leaves labeled with X=xj , j �= i, are replaced by the leaf
labeled with ⊥.

If a language supports a transformation in polynomial time with respect to
the size of the PDAG(s)/MDAG(s), we simply say that it supports this transfor-
mation. In the following, let LM be a MDAG sub-language, LP be the corresponding
PDAG sub-language, and T be a transformation. Another direct consequence of
Proposition 1 is: If T is supported by LM, then T is supported by LP. This is
equivalent to:

Proposition 4. If T is not supported by LP, then T is not supported by LM.

Once more, proving the converse, i.e. (LP supports T) ⇒ (LM supports T), is an
open task. Nevertheless, the results can be generalized, since the proof for LP

supporting T can be adapted to LM. Therefore, we have to consider the proof
of Proposition 5.1 in [5], but only the parts were a language LP supports a
transformation T. These proofs can be extended to hold also for LM. In this sense
the set of transformations supported by LM matches the set of transformations
supported by LP as given in [5,6].

4 Conclusion

By allowing multi-state variables, this paper extends the family of graph-based
languages for representing BFs to the corresponding family of graph-based lan-
guages for representing finite CIFs. Our main result is the observation, that
properties w.r.t. succinctness, supported queries, and supported transformation
are inherited, i.e. the mostly entire knowledge compilation map is extensible from
propositional to multi-state variables. This allows us to avoid the usual approach
of transforming the given CIF into a BF and the resulting linear growth.

Multi-state Directed Acyclic Graphs 475

Acknowledgments

This research supported by the Swiss National Science Foundation, Project No.
PP002-102652/1, and The Leverhulme Trust.

References

1. Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers 27(6)
(1978) 509—516

2. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers 35(8) (1986) 677–691

3. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary decision dia-
grams. ACM Computing Surveys 24(3) (1992) 293–318

4. Darwiche, A.: Decomposable negation normal form. Journal of the ACM 48(4)
(2001) 608–647

5. Darwiche, A., Marquis, P.: A knowlege compilation map. Journal of Artificial
Intelligence Research 17 (2002) 229–264

6. Wachter, M., Haenni, R.: Propositional DAGs: a new graph-based language for
representing Boolean functions. In Doherty, P., Mylopoulos, J., Welty, C., eds.:
KR’06, 10th International Conference on Principles of Knowledge Representation
and Reasoning, Lake District, U.K., AAAI Press (2006) 277–285

7. Hill, F.J., Peterson, G.R.: Introduction to Switching Theory and Logical Design.
John Wiley and Sons, New York, USA (1974)

8. Lukasiewicz, J., Tarski, A.: Untersuchungen über den Aussgenkalkül. Comptes
rendus des séances de la Société des Sciences et des Lettres de Varsovie Cl. III 23
(1930) 30–50

9. Rosser, J.B., Turquette, A.R.: Many-Valued Logics. North-Holland (1952)
10. Wegener, I.: Branching Programs and Binary Decision Diagrams – Theory and Ap-

plications. Number 56 in Monographs on Discrete Mathematics and Applications.
SIAM (2000)

11. Chavira, M., Darwiche, A.: Compiling Bayesian networks with local structure. In:
IJCAI’05, 19th International Joint Conference on Artificial Intelligence, Edinburgh,
U.K. (2005)

12. Palacios, H., Bonet, B., Darwiche, A., Geffner, H.: Pruning conformant plans
by counting models on compiled d-DNNF representations. In: ICAPS’05, 15th
International Conference on Planning and Scheduling, Monterey, USA (2005) 141–
150

13. Sang, T., Beame, P., Kautz, H.: Solving Bayesian networks by weighted model
counting. In: AAAI’05, 20th National Conference on Artificial Intelligence. Vol-
ume 1., Pittsburgh, USA (2005) 475–482

14. Bollig, B., Sauerhoff, M., Sieling, D., Wegener, I.: Binary decision diagrams. In
Crama, Y., Hammer, P., eds.: Boolean Functions. Volume II. (2006 (to appear))

	Introduction
	Multi-state Directed Acyclic Graph
	Sub-languages
	MDAGs vs. PDAGs

	Succinctness, Queries and Transformations
	Succinctness
	Queries
	Transformations

	Conclusion

