
Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 14–25, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Distributed Collaborative Filtering for Robust
Recommendations Against Shilling Attacks

Ae-Ttie Ji1, Cheol Yeon1, Heung-Nam Kim1, and Geun-Sik Jo2

1 Intelligent E-Commerce Systems Laboratory,
Department of Computer Science & Information Engineering, Inha University

{aerry13,entireboy,nami}@eslab.inha.ac.kr
2 School of Computer Science & Engineering, Inha University,

253 Yonghyun-dong, Incheon, Korea 402-751
gsjo@inha.ac.kr

Abstract. Recommender systems enable a user to decide which information is
interesting and valuable in our world of information overload. Collaborative
Filtering (CF), one of the most successful technologies in recommender systems
suffers from improper use of personal information and the incredibility of rec-
ommendations. To deal with these issues, we have been focusing on the trust re-
lationships between individuals, i.e. web of trust, especially for protecting the
recommender system against profile injection attack. Based on trust propaga-
tion scheme, we proposed TCFMA architecture which is added agent-based
scheme obtaining attack resistance property as well as improving the efficiency
of distributed computing. In web of trust, users’ personal agents find a unique
migration path made up of latent neighborhoods and reduce search scope to a
reasonable level for mobile agents by using the Advogato algorithm. The ex-
perimental evaluation on Epinions.com datasets shows that the proposed
method brings significant advantages in terms of dealing with profile injection
attack without any loss of prediction quality.

1 Introduction

In a flood of information, a recommender system helps users to decide which items are
most valuable and interesting to them. Collaborative Filtering (CF), one of the most
successful technologies in recommender systems, has been applied to numerous com-
mercial recommender systems. Even though they are popular, there are problems of
improper use of personal information and the incredibility of recommendations espe-
cially in centralized CF recommender systems where all ratings by users are owned by
system providers [12]. These problems can be partially improved by a distributed per-
sonal recommender, but the distributed systems might be vulnerable to a shilling attack,
i.e. profile injection attack as similar as centralized ones. That is, an attacker may make
many profiles with biased ratings with a malicious intent to influence the recommenda-
tions [1, 13, 14]. Because most of recommender systems are open Web services, a mali-
cious attacker can easily inject manipulated profiles [13, 14]. One effective way to
protect the system against such an attack is to build web of trust among the individuals
in order to use only the profiles of trustworthy users [8, 11].

 Distributed CF for Robust Recommendations Against Shilling Attacks 15

In this paper, we propose TCFMA (Trust-based Collaborative Filtering with Mo-
bile Agents) architecture used a distributed CF method in peer-to-peer network using
web of trust in order to effectively offer the corresponding user trustworthy recom-
mendations. By using the Advogato trust metric [4], we propagate the trust informa-
tion for overcoming the sparseness of web of trust as well as obtaining resistance from
attacks by the malicious users [3, 4]. In addition, we employ mobile agents to increase
the efficiency of distributed computing.

The rest of this paper is organized as follows: The next section contains a brief
overview of some related work. In Section 3, we describe our proposed method in
detail. Then, the performance evaluation compared with other P2P approaches is pre-
sented in Section 4. Finally, Section 5 draws some conclusion of this paper with a
discussion of future work.

2 Backgrounds and Related Works

A Robustness Analysis of Collaborative Filtering. Most of Web-based CF recom-
mender systems employ profiles which are made by anonymous unauthenticated us-
ers. That is, the systems can be vulnerable to manipulation due to profiles which are
built and injected by an attacker. Many recent researches have shown that commonly
used CF algorithms are significantly affected by modest attacks [14]. There are two
formal types of profile injection attack that can be defined according to the intent of
an attacker: a push attack and a nuke attack [13, 14]. The former makes particular
items promoted and the latter makes them demoted in order to be more or less rec-
ommended. In the case of centralized CF systems where all profiles are owned by a
merchant, a system provider can be a “push” attacker. Because a merchant always
wants a customer to buy an item that maximizes profits. PocketLens [1], which we
benchmark, described that this concern can be met by a distributed personal recom-
mender because only a user can owns and controls his or her own profiles. Based on
the credibility of recommendations, diverse distributed recommender system architec-
tures and an incremental computing algorithm applicable to those architectures were
proposed through this work [1].

Trust in Recommender Systems. Even though the distributed recommender can par-
tially improve the effects of profile injection attacks from a system provider, it is still
not safe from an anonymous attacker [1]. In order to overcome the vulnerabilities of
CF systems to attacks, a number of recent studies focus on the notion of “trust” in rec-
ommendation [14]. Calculating explicit trust and reputation values of users or eliciting
trust relationships between users, a system employs only the owner’s profile guaran-
teed identity and trustworthiness [3, 4, 6, 8, 15]. In a more global view, “trust” of a
recommender system has been studied in terms of automated attack detection schemes
and robustness of recommendation algorithms in the face of malicious attacks [3, 4, 13,
14, 17]. Another perspective about trust focuses on correlation between trust and user
similarity. Recent research of Sinha et al. confirms the fact that people tend to prefer
recommendations from friends and acquaintances to those from online recommender
systems [6]. Moreover, Ziegler et al. shows that people’s preferences can be more
similar to preferences of trusted users than those of arbitrary users [7]. That is, using

16 A.-T. Ji et al.

“trust” for recommender system can be effective in terms of attack-resistance and rec-
ommendation quality. However, web of trust tend to be sparse; so a mechanism of
trust propagation is required [2]. R.Guha et al. define four atomic trust propagation
methods that can be applied repeatedly to obtain a final matrix with trust and distrust
information [2]. Ziegler et al. protect against massive attacks from malicious users
propagating trust effectively in a social network by proposing the Appleseed algo-
rithm based on the Advogato trust metric [3].

3 Trust-Based Collaborative Filtering for P2P Networks

Fig. 1 illustrates a brief overview of our proposed system with three steps; Firstly, a
user agent finds the migration path along which a mobile agent migrates in web of
trust. Along the path, the mobile agent finds trusted neighborhoods. Then the user
agent builds a similarity model incrementally for its user by using the information that
the mobile agent gathers from neighbors. Finally, the user agent provides its user with
recommendations and updates the model with his or her feedback.

Owner�s
Similarity Model

Trust
List

Item
List

Block
List

Web of Trust

Action & Feedback

Recommendation

Update
Similarity

Dispatch

Creation

Dispatch

Mobile
Agent

Mobile
Agent

Mobile
Agent

Model Owner

Get Neighbors�
Ratings

Neighbors�
Ratings

Find
Migration Path

Owner�s
Trust List

Neighbor�s
Agent

Mobile Agent

Message

Neighbors�
Trust List

User Agent

Fig. 1. Overview of trust-based collaborative filtering with mobile agents

3.1 Trust-Based User Selection

In this section we describe a scheme to finding a unique migration path, which con-
sists of the trusted users, for mobile agent of a target user. Before describing the
algorithms, some definitions of the notations used herein are introduced.

Let us assume a peer-to-peer network where each user trusts other users. The set of
{TRUSTPx}, that is the list of users trusted by each user PX, simply presented in the

 Distributed CF for Robust Recommendations Against Shilling Attacks 17

Table 1. The meaning of notations

PX Arbitrary user included in web of trust

PO Target user, i.e. similarity model owner

PC Current user who PO’s mobile agent is visiting at the moment

{TRUSTPx} List of users who are trusted by PX

{BLOCKPx} List of users who are distrusted by PX

{ITEMSPx}
List of <item, rating> pairs, i.e. items which PX already has
expressed his or her own opinion and these preference ratings.

{PATHPx} Migration path which PX’s mobile agent migrates along

AGENTPx Personal agent of PX

AGENTM
Px Mobile agent of PX

same fashion as shown in Advogato1 and Epinions.com2. Web of trust is constructed in
the form of a bidirectional graph based on the set of {TRUSTPx}. In contrast with other
systems, only a personal agent AGENTPx includes <item, rating> pairs, i.e. items in
which PX is interested and preference ratings for these items, as listed in {ITEMSPx}.

AGENTPx finds the migration path {PATHPx} that includes users trusted by PX for a
mobile agent AGENTM

Px. The Advogato maximum flow algorithm is exploited to ob-
tain the migration path for a mobile agent. This algorithm, inspired by the Ford-
Fulkerson maximum flow algorithm, was used to discover which users are trusted by
credible members of an online community and which are not [3, 4, 15]. Because the
bidirectional graph of trusts is restructured to form a tree-structure in the process of
finding maximum flow through the edges, the algorithm makes it possible to find a
unique migration path and to reduce search scope to reasonable levels for mobile
agent.

The procedure to find {PATHPx} is as follows: Assume that PO, who is the target user,
is the trust source. The capacities C are assigned to every user in web based on the
shortest-path distance from the source to PX. The capacity of the source, which can be
optionally chosen by PO, is based on the number of all users expected to be visited and
whose information is used for recommendations. Each successive level has a capacity
equal to that of the preceding level L divided by the average number of trust edges ex-
tending from nodes of L. In order to apply the Ford-Fulkerson maximum flow algorithm
to this single-source/multiple-target graph with capacity-constrained nodes, it has to be
restructured to a single-source/single-target one with capacity-constrained edges rather
than nodes. Each node PX is split into PX

+ and PX
−, and the capacity that is the original

C(PX) minus one is assigned to an edge between them. Then, a unit capacity edge is
added from PX

− to a virtual single target node. The original edge from PX to PY is repre-
sented as the one from PX

+ to PY
− with infinite capacity. AGENTPo applies the algorithm

1 Advogato http://www.advogato.org/
2 Epinions.com http://www.epinions.com/

18 A.-T. Ji et al.

to this converted graph tracing the shortest paths to the target first and adds the nodes
reached by network flow to {PATHPo} [3, 4, 15].

Owing to the bottleneck property proposed as a common feature of attack-
resistance trust metrics in [15], Advogato algorithm is useful to make profile injection
attacks take no effects. The bottleneck property is that “the total trust quantity ac-
corded to an s → t edge is not significantly affected by changes to the successors of t
[3, 15],” i.e., the number of biased nodes accepted depends only on the number of
precedence nodes, not on the number of biased ones. Assume that there is an attacker
who intents to promote or demote a particular item, or just to make the overall system
function poorly. Even though he builds many profiles (manipulated nodes t) with
fraud ratings coincided with his purpose, he cannot make s trust t manipulated by the
attacker. Therefore, the amount of trust accorded to t dose not increase even though
the attacker injects more nodes [3, 4]. For this reason, even the least of profiles that
make the attack succeeded is not included in the process of collaboration. More about
attack-resistance properties of various trust metrics are discussed in detail in [15] and
[17], it has been claimed that PageRank [16] possesses bottleneck property like
Advogato.

3.2 Incremental Model Building

Recommender algorithm can be characterized by the neighbors they choose for each
user, the model they build based on those neighbors, and the way they use the model
to form recommendations [1]. In our research, the neighbors of target user PO are cho-
sen from the users included in {PATHPo}. PO’s personal agent AGENTPo creates a mo-
bile agent, AGENTM

Po, to find neighbors and build a similarity model based on them
incrementally. AGENTM

Po involves only the least amount of information for model
building; {PATHPo} and {ITEMSPo}. Searching for the users in {PATHPo} is done by
the Depth First Search algorithm. Supposing that PC is a currently visited neighbor,
AGENTM

Po traces the path recursively until no users exist in {PATHPo}∩{TRUSTPc}.
Then AGENTM

Po is disposed of from the last node after visiting all users in {PATHPo}.

Trust
List

Item
List

Block
List

Trust
List

Item
List

Block
List

Trust
List

Item
List

Block
List

Owner�s
Similarity Model

Trust
List

Item
List

Block
List

Owner�s
Item List

Owner�s
Item List

Owner�s
Item List

Owner�s
Item List

Owner�s
Item List

Owner�s
Item List

Neighbor�s
AgentMobile

Agent
Matched item rating

Request for matched item rating

Mobile
Agent

User
Agent

Reject

Request for matched item rating

Mobile
Agent

Pre-computed information

Request for matched item rating

Migration Path

Information for similarity

Migration Path
Information for similarity

Neighbor�s
Agent

Neighbor�s
Agent

Neighbor�s
Similarity Model

[Case 1]

[Case 2]

[Case 3]

Rejection Message

Migration Path

Fig. 2. Agents’ tasks in each case

 Distributed CF for Robust Recommendations Against Shilling Attacks 19

The similarity model is composed of a set of similarities between pairs of items
and represented as a matrix [1]. For incremental computation of similarity relation-
ships, each agent does as follows;

1. AGENTM
Po identifies IO and IP that are {ITEMSPc}∩{ITEMSPo} and {ITEMSPc}-

{ITEMSPo} respectively, by communicating with a neighbor’s agent AGENTPc.
2. For each pair (IOi, IPj), which is IOi ∈ IO and IPj ∈ IP, AGENTM

Po calculates
values shown in Equation 1 and send the values to its own agent AGENTPo.

2
,,

2
,,

,,,

)(

)(

)(

jcjj

icii

jcicji

IPPIPIP

IOPIOIO

IPPIOPIPIO

RatingW

RatingW

RatingRatingW

=
=

×=

(1)

3. AGENTPo adds up these values incrementally until AGENTM
Po sends the values of

all users in {PATHPo} except for those which don’t have IOi.

jj

ii

ji

IPIPDenomDenom

IOIODenomDenom

IPIONumerNumer

WWW

WWW

WWW

,22

,11

,

+=

+=

+=

(2)

4. AGENTPo calculates the similarity of item pair (IOi, IPj).

21

),(
DenomDenom

Numer

ji

ji
ji

WW

W

IPIO

IPIO
IPIOsim =

×

•
= →→

→→

(3)

The above-mentioned procedure involving cosine-similarity metrics can have dif-
ferent versions simply by modifying the second process. For instance, in order to use
adjusted cosine similarities between two items as a similarity metric [5], Equ.(1), (2)
are modified as

2
,,

2
,,

,,,

)(

)(

)()(

cjcjj

cicii

cjccicji

PIPPIPIP

PIOPIOIO

PIPPPIOPIPIO

AvgRatingRatingW

AvgRatingRatingW

AvgRatingRatingAvgRatingRatingW

−=′
−=′

−×−=′

(4)

In general cases, AGENTPo can update a similarity model owned by PO incremen-
tally according to the above procedures. However, assume that a neighbor PC has the
list {BLOCKPc}, the list of the users whom PC distrusts, and PO is included in this list.
Not trusting PO, PC may not want to be open with PO about his own information. In
this case, AGENTPc rejects the request for information from AGENTM

Po.
If the similarity model has already been built for PC to get recommendation,

AGENTM
Po has no need to visit PC’s successive nodes and can get their values from

this model. This model has been built based on {PATHPc} setting PC as a source.
{PATHPc} is much more likely to include the same users as {PATHPo}; the closer the
distance from the source to PC, the more similar it is. In this case, PO’s similarity
model might include the information of more neighbors than the users whom
AGENTM

Po intended to visit at the beginning. Moreover, these users included in PC’s

20 A.-T. Ji et al.

model might overlap with the users who AGENTM
Po has already visited or is supposed

to visit hereafter. However, “overlapping users” means that they are trusted by more
preceding level users, which can have a positive influence on recommendations by
reflecting their opinions more. By pruning the successive nodes, tracing costs can be
decreased drastically.

3.3 Propagating User Feedback

Based on this similarity model, AGENTPo provides recommendations to PO. Simply,
the particular items, which obtain either the highest averages of each column or the
highest prediction values, are recommended. Explicit prediction values of user PO for
item IPj can be computed by the weighed sum of PO’s ratings about IOi using the
similarity sim(IOi, IPj) as the weight and defined as Equ.(5) [1, 5].

∑
∑

∈

∈
×

=
IOIO ji

IOIO IOPji

IPP

i

i io

jo

IPIOsim

RatingIPIOsim
ratingp

),(

}),({
_

,

,

(5)

The idea is that the average rating of items that are similar to the selected item is a
good estimate of the rating for the selected item [1].

One of the principle issues that we have to consider in a model-based approach is
how the updated information can be reflected in original models during the term when
they have not been re-built yet. When item IPk is recommended to PO, she can express
her preference for this item as a rating. Whenever the PO gives feedback, AGENTPo
deletes IPk’s column from her model and adds it to {ITEMSPo} because it now has its
own rating. Updated information that is, {ITEMSPo} including a pair <IPk, PO’s rating
about IPk>, is propagated to personal agents of users in {TRUSTPo}. From PC’s point
of view who is given this information by AGENTPo, item IPk has not been included in
{ITEMSPo} before, so the similarities between IPk and items in {ITEMSPo} ∩

{ITEMSPc} cannot be included in PC’s model.

IP1 ... IPk ... IPj

Delete

Add

Update

User Agent

Model Owner

IP4 ... IPk ... IPn

Trusted users’
Agent

IO1

IO2

IOi

IOk

IO7

IO2

IOm

�

�

�

�

�

�

IO7

IO4

Update
Propagating

user feedback

Rating
feedback

IPk

Recom-
mending

IPk

Fig. 3. Recommendations and propagation user’s feedback

AGENTPc now can compute similarities between them, update the model in
patches; incremental updating can be achieved by propagating it to the users in PC’s
own list {TRUSTPc}. Fig.3 illustrates feedback and update process.

 Distributed CF for Robust Recommendations Against Shilling Attacks 21

4 Experimental Results

In this section we present the results of applying TCFMA method for recommendation
in a peer-to-peer environment. The prototype system is implemented using IBM Aglet
Software with JDK1.4.2 [10].

4.1 Data Sets and Evaluation Metrics

Epinions.com is an online community where users can review various items and rate
them on a scale of 1 to 5. Judging whether the reviews of others are helpful to users
themselves or not, users can express trust or distrust of these reviewers. We collected
the dataset by crawling the Epinions.com site in May 2006. The collected dataset was
too sparse to be used for experiments, so we selected a dataset including users who
had rated at least 5 items and expressed a trust opinion of at least 25 users. In addi-
tion, the items had been rated by at least 10 users, i.e. the dataset contained 121,862
ratings for 2,955 items and 216,490 trust information presented by 4,751 users. The
sparsity level of our dataset is 1−(121,862/4751ⅹ2955), which is 0.9913. Then, this
dataset was divided into two parts; training set contains all of each user’s ratings ex-
cept one rating used for testing. Testing set contains the only one rating for each user.

In order to measure performance, Mean Absolute Error, which is used as a meas-
ure of how accurate prediction of user’s rating for an item can be, was performed
[1, 5, 8]. MAE of all users in the testing set is defined as:

M

ratingaratingp
MAE

M

i ii∑ =
−

= 1
|__| (6)

where M is a list of all items and <a_ratingi , p_ratingi> is the actual/predicted rating
pairs of each user in the testing set.

Another metric Absolute Prediction Shift measured the distortion of prediction oc-
curring due to an attack. While p_rating is the predicted rating computed before an
attack, p_rating′ means the predicted rating computed after an attack [14].

M

ratingpratingp
APS

M

i ii∑ =
′−

= 1
|__| (7)

The evaluation value of Prediction Shift originally has two meanings, in other
words, a positive value has different meaning from a negative value. Each value
means that the attack has succeeded in making the target item more positively or
negatively rated [14]. However, APS measures the absolute value just to evaluate the
influence from injected profiles regardless of attack-classification in our experiments.

4.2 Preliminary Experiments

Overall Performance of Prediction Quality. Increasing the number of users used
for similarity model building, we compared our system with one of the methods pro-
posed in PocketLens. The experiment was carried out in order to indicate that the pro-
posed method performs as good as an existing work. Prior to experiments, the vector
of ratings r

r
 for each user was normalized as ||r|| = 1 except for experiments by using

22 A.-T. Ji et al.

an adjusted cosine-based similarity metric; otherwise, users who had rated a large
number of items had more influence than users who had only rated a few items [9]. In
the process of model building, mobile agents find neighbor peers based on the con-
verted trust graph and compute similarity relations by using a cosine-based similarity
metric and an adjusted cosine-based one (see Equation 1 and 4). On the other hand, in
the benchmarked one, the information of the peers randomly accessed regardless of
web of trust is used for model building by using the cosine-based one.

Table 2. Overall performance of prediction quality

Neighbor peer size 10 30 50 70 100

Random 1.2866 1.2863 1.2859 1.2859 1.2859
TCFMA + cosine 1.2113 1.2114 1.2100 1.2101 1.2101

TCFMA + adjusted 1.2384 1.2480 1.2412 1.2415 1.2402

As shown in Table 2, all three methods provided nearly the same values for MAE.
When the TCFMA + cosine-based scheme was used, the results moved from 1.2113
to 1.2101, which shown better prediction quality than other two methods. It can be
observed that the proposed methods provide more accurate predictions than random
model building at all neighborhood size levels. For example, when the neighborhood
size is 50, the TCFMA + cosine-based scheme and the TCFMA + adjusted cosine-
based one obtain an MAE of 1.2100 and an MAE of 1.2412 whereas the random
scheme obtains an MAE of 1.2859.

In addition, the results show that even a small number of users can build relatively
better model with our proposed methods, whereas the random scheme needs more
users’ information to obtain a similarity model of stable.

Positive Effect of Trust for Prediction. When the dataset including the users who
have many trust opinions is used for building a similarity model, the model includes a
larger number of trustworthy users. In order to determine the sensitivity of trust opin-
ion size on the quality of the prediction, we assumed that each user have trust users of
only the number of x. In each step of evaluations, the trust opinion size was selec-
tively varied for building a similarity model of each testing user. According to the
value of x, the prediction quality in cases of the proposed methods, i.e. similarity
model building based on the converted trust graph, was evaluated.

Table 3. Sensitivity of trust on MAE (neighbor peer size = 50)

Trust x Trust 5 Trust 10 Trust 15 Trust 25 Trust 45

TCFMA + cosine 1.4131 1.3338 1.3313 1.2867 1.1611

TCFMA + adjusted 1.5688 1.3028 1.2952 1.2512 1.2238

The conclusion drawn from these results shown in Table 3 is that the more trust
opinions are included in each user, the better prediction quality is obtained. This
means that the direct trust opinions have positive influence on the prediction quality.

 Distributed CF for Robust Recommendations Against Shilling Attacks 23

4.3 Performance Evaluations

Robustness against Profile Injection Attack. To evaluate the robustness against a
malicious attack, a set of manipulated user profiles including arbitrary 50 ratings each
was inserted into the original training dataset, while the number of these profiles was
increased from 100 to 2000. Each user in the manipulated set was made to have the
trust edges to all users in the set while some users in the original set were made to
present trust to some of manipulated users. Through the prior experiment and previ-
ous research, we selected 50 as a neighborhood size and set it up in this experiment
[1, 9]. In both cases of TCFMA + cosine-based and random model building, the aver-
age number of manipulated users accessed for building each user’s model was meas-
ured and the distortion of prediction occurring due to these data was compared by
using Absolute Prediction Shift.

0

20

40

60

80

100

120

100 500 1000 2000

The Number of Injected Manipulated Users

A
cc

es
se

d
M

al
ic

io
us

 U
se

rs

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 A
bs

ol
uy

e
P

re
di

ct
io

n
S

hi
ft

#MR of TCFMA + cosine #MR of Random

APS of TCFMA + cosine APS of Random

Fig. 4. Comparison of robustness on manipulated users

In accordance with increases in the number of manipulated users, we find that the
proposed method showed better results than random model building in both meas-
urements. Fig. 4 illustrates that the proposed method significantly outperforms others
in resistance against the profile injection attack. For example, when the number of
manipulated users was 2000, TCFMA + cosine-based scheme obtained a #MR of
47.71 and an APS of 0.0224, whereas the random scheme obtained a #MR of 106.56
and an APS of 0.0639.

Efficiency of similarity model building. Finally, we focused on the time required for
model building. Forwarded along the path, a mobile agent only sends computed re-
sults to the personal agent of the model owner by the proposed methods whereas in
the random scheme request/response messages have to be exchanged between the
model owner and each random user for similarity model building. The experiment
was conducted to evaluate the time and the number of accessed users that are required

24 A.-T. Ji et al.

Table 4. Comparison of required time and accessed users (neighbor user size = 50)

Model Owner User 1 User 2 User 3 User 4 User 5 Average

Time(ms) 5786.81 11576.54 9776.97 12676.54 9425.59 9848.49 TCFMA
+ cosine # User 292.64 861.94 680.08 953.54 636.64 684.968

Time(ms) 31590.24 30129.18 31966.27 23209.48 20977.24 27574.48
Random

User 4379.48 4209.75 4505.89 3315.13 2962.29 3874.51

to build similarity models. For a <item, rating> pair of each 5 users in a testing set,
the similarity model was built 30 times relatively to get the average performance.

The experimental results show that the average time of TCFMA + cosine-based
model building is 9848.49 (msec.), which is reasonably shorter than 27574.48 (msec.)
of the random one. In addition, the number of users who have to be accessed for simi-
larity model building is also considerably smaller as shown in Table 4. These results
demonstrate that the proposed method is far superior with respect to the effectiveness
of similarity model building.

5 Conclusion and Future Work

In a peer to peer environment, a distributed recommender system is an ongoing area
of diverse applications [1]. In the paper, we propose a novel TCFMA architecture to
solve the problems that can occur in online collaborative filtering recommender sys-
tems related to an improper use of personal information and a profile injection attack.
In order to obtain more trustworthy and accurate recommendations, we consider the
trust relationships between users in web of trust. The Advogato trust metric is used as
a trust propagation scheme required for overcoming sparseness of trust information.
As noted in our experimental results, we obtain extraordinary robustness from mali-
cious attacks without any degradation of prediction quality, compared to general peer-
to-peer collaborative filtering recommender system. Moreover, we also achieve an
efficiency of distributed computing for building item-item similarity model by em-
ploying trust-based collaborative filtering scheme which is added some useful func-
tionality of mobile agents.

However, there still remains certain issue: trust decay. It means that the trust rela-
tionship becomes weaker as it forwards to its successors [2, 3]. In our system, al-
though a mobile agent finds trust neighbors who are in the closest-distance from a
model owner first, the neighbors, even on the different levels, are regarded as the
same. It is essential to take this phenomenon into consideration for applying trust
propagation algorithm to real-world application. Another interesting issue is about
attack detection, which has been often shown in recent studies. Automated attack de-
tection algorithms based on diverse types of attack model can lead more robust rec-
ommendation algorithms [13, 14, 17]. As the recommender systems have been more
common in E-commerce application, these issues are becoming more interesting and
important.

 Distributed CF for Robust Recommendations Against Shilling Attacks 25

References

1. Miller, B., Konstan, J., Terveen, L., Riedl, J.: PocketLens: Towards a Personal Recom-
mender System. In ACM Transactions on Information Systems 22 (2004) 437-476

2. Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of Trust and Distrust. In
Proc. of the 13th Int. Conf. on World Wide Web (2004), ACM Press

3. Ziegler, C-N., Lausen, G.: Propagation Models for Trust and Distrust in Social Networks.
In Information Systems Frontiers Vol. 7, Springer Netherlands (2005) 337 – 358

4. Levien, R., Aiken, A.: Attack Resistant, Scalable Name Service. Draft submission to the
4th Int. Conf. on Financial Cryptography (2000)

5. Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based Collaborative Filtering Recom-
mendation Algorithms. In Proc. of the 10th Int. Conf. on World Wide Web (2001)

6. Sinha, R., Swearingen, K.: Comparing Recommendations Made by Online Systems and
Friends. In Proc. of the DELOS-NSF Workshop on Personalization and Recommender
Systems in Digital Libraries (2001)

7. Ziegler, C-N., Lausen, G.: Analyzing Correlation between Trust and User Similarity in
Online Communities. In Proc. of the 2nd Int. Conf. on Trust Management, LNCS, Vol.
2995 (2004) 251-265

8. Massa, P., Avesani, P.: Trust-aware Collaborative Filtering for Recommender Systems. In
Proc. of Int. Conf. on Cooperative Information Systems (2004)

9. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An Algorithmic Framework for Per-
forming Collaborative Filtering. In Proc. of the 22nd ACM SIGIR Conf. on Research and
Development in Information Retrieval (1999)

10. Lange, D.B., Oshima, M.: Programming and Deploying Java Mobile Agents with Aglets.
Addison-Wesley (1998)

11. Jung, J. J.: Visualizing recommendation flow on social networks. Journal of Universal
Computer Science, Vol. 11, No. 11 (2005) 1780-1791

12. Kim, H.J., Jung, J.J., Jo, G.S.: Conceptual Framework for Recommendation System based
on Distributed User Ratings. LNCS, Vol. 3032 (2003) 115-122

13. O’Mahony, M., Hurley, N., Kushmerick, N., Silvestre, G.: Collaborative Recommenda-
tion: A Robustness Analysis. ACM Transactions on Internet Technology, Vol. 4, No. 4
(2004) 344-377

14. Mobesher, B., Bruke, R., Bhaumik, R., Williams, C.: Towards Trustworthy Recommender
Systems: An Analysis of Attack Models and Algorithm Robustness. to appear in ACM
Transactions on Internet Technology, Vol. 7, No. 2 (2007)

15. Leivien, R.: Attack Resistant Trust Metrics. Ph.D thesis, UC Berkeley, Berkeley, CA,
USA (2003)

16. Page, L., Brin, S., Motwani, R., Winograd, T.: The Pagerank Citation Ranking: Bringing
Order to the Web. Technical Report, Stanford Digital Library Technologies Project (1998)

17. Twigg, A., Dimmock, N.: Attack-resistance of computational trust models. In Proc. of the
12th IEEE Int. Workshop on Enabling Technologies (2003) 275-280

	Introduction
	Backgrounds and Related Works
	Trust-Based Collaborative Filtering for P2P Networks
	Trust-Based User Selection
	Incremental Model Building
	Propagating User Feedback

	Experimental Results
	Data Sets and Evaluation Metrics
	Preliminary Experiments
	Performance Evaluations

	Conclusion and Future Work
	References

