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Abstract. Recommender systems enable a user to decide which information is 
interesting and valuable in our world of information overload. Collaborative 
Filtering (CF), one of the most successful technologies in recommender systems 
suffers from improper use of personal information and the incredibility of rec-
ommendations. To deal with these issues, we have been focusing on the trust re-
lationships between individuals, i.e. web of trust, especially for protecting the 
recommender system against profile injection attack. Based on trust propaga-
tion scheme, we proposed TCFMA architecture which is added agent-based 
scheme obtaining attack resistance property as well as improving the efficiency 
of distributed computing. In web of trust, users’ personal agents find a unique 
migration path made up of latent neighborhoods and reduce search scope to a 
reasonable level for mobile agents by using the Advogato algorithm. The ex-
perimental evaluation on Epinions.com datasets shows that the proposed 
method brings significant advantages in terms of dealing with profile injection 
attack without any loss of prediction quality.  

1   Introduction 

In a flood of information, a recommender system helps users to decide which items are 
most valuable and interesting to them. Collaborative Filtering (CF), one of the most 
successful technologies in recommender systems, has been applied to numerous com-
mercial recommender systems. Even though they are popular, there are problems of 
improper use of personal information and the incredibility of recommendations espe-
cially in centralized CF recommender systems where all ratings by users are owned by 
system providers [12]. These problems can be partially improved by a distributed per-
sonal recommender, but the distributed systems might be vulnerable to a shilling attack, 
i.e. profile injection attack as similar as centralized ones. That is, an attacker may make 
many profiles with biased ratings with a malicious intent to influence the recommenda-
tions [1, 13, 14]. Because most of recommender systems are open Web services, a mali-
cious attacker can easily inject manipulated profiles [13, 14]. One effective way to  
protect the system against such an attack is to build web of trust among the individuals 
in order to use only the profiles of trustworthy users [8, 11].  
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In this paper, we propose TCFMA (Trust-based Collaborative Filtering with Mo-
bile Agents) architecture used a distributed CF method in peer-to-peer network using 
web of trust in order to effectively offer the corresponding user trustworthy recom-
mendations. By using the Advogato trust metric [4], we propagate the trust informa-
tion for overcoming the sparseness of web of trust as well as obtaining resistance from 
attacks by the malicious users [3, 4]. In addition, we employ mobile agents to increase 
the efficiency of distributed computing. 

The rest of this paper is organized as follows: The next section contains a brief 
overview of some related work. In Section 3, we describe our proposed method in 
detail. Then, the performance evaluation compared with other P2P approaches is pre-
sented in Section 4. Finally, Section 5 draws some conclusion of this paper with a 
discussion of future work. 

2   Backgrounds and Related Works 

A Robustness Analysis of Collaborative Filtering. Most of Web-based CF recom-
mender systems employ profiles which are made by anonymous unauthenticated us-
ers. That is, the systems can be vulnerable to manipulation due to profiles which are 
built and injected by an attacker. Many recent researches have shown that commonly 
used CF algorithms are significantly affected by modest attacks [14]. There are two 
formal types of profile injection attack that can be defined according to the intent of 
an attacker: a push attack and a nuke attack [13, 14]. The former makes particular 
items promoted and the latter makes them demoted in order to be more or less rec-
ommended. In the case of centralized CF systems where all profiles are owned by a 
merchant, a system provider can be a “push” attacker. Because a merchant always 
wants a customer to buy an item that maximizes profits. PocketLens [1], which we 
benchmark, described that this concern can be met by a distributed personal recom-
mender because only a user can owns and controls his or her own profiles. Based on 
the credibility of recommendations, diverse distributed recommender system architec-
tures and an incremental computing algorithm applicable to those architectures were 
proposed through this work [1].  

Trust in Recommender Systems. Even though the distributed recommender can par-
tially improve the effects of profile injection attacks from a system provider, it is still 
not safe from an anonymous attacker [1]. In order to overcome the vulnerabilities of 
CF systems to attacks, a number of recent studies focus on the notion of “trust” in rec-
ommendation [14]. Calculating explicit trust and reputation values of users or eliciting 
trust relationships between users, a system employs only the owner’s profile guaran-
teed identity and trustworthiness [3, 4, 6, 8, 15]. In a more global view, “trust” of a 
recommender system has been studied in terms of automated attack detection schemes 
and robustness of recommendation algorithms in the face of malicious attacks [3, 4, 13, 
14, 17]. Another perspective about trust focuses on correlation between trust and user 
similarity. Recent research of Sinha et al. confirms the fact that people tend to prefer 
recommendations from friends and acquaintances to those from online recommender 
systems [6]. Moreover, Ziegler et al. shows that people’s preferences can be more 
similar to preferences of trusted users than those of arbitrary users [7]. That is, using 
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“trust” for recommender system can be effective in terms of attack-resistance and rec-
ommendation quality. However, web of trust tend to be sparse; so a mechanism of 
trust propagation is required [2]. R.Guha et al. define four atomic trust propagation 
methods that can be applied repeatedly to obtain a final matrix with trust and distrust 
information [2]. Ziegler et al. protect against massive attacks from malicious users 
propagating trust effectively in a social network by proposing the Appleseed algo-
rithm based on the Advogato trust metric [3].  

3   Trust-Based Collaborative Filtering for P2P Networks 

Fig. 1 illustrates a brief overview of our proposed system with three steps; Firstly, a 
user agent finds the migration path along which a mobile agent migrates in web of 
trust. Along the path, the mobile agent finds trusted neighborhoods. Then the user 
agent builds a similarity model incrementally for its user by using the information that 
the mobile agent gathers from neighbors. Finally, the user agent provides its user with 
recommendations and updates the model with his or her feedback. 
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Fig. 1. Overview of trust-based collaborative filtering with mobile agents 

3.1   Trust-Based User Selection  

In this section we describe a scheme to finding a unique migration path, which con-
sists of the trusted users, for mobile agent of a target user. Before describing the  
algorithms, some definitions of the notations used herein are introduced.  

Let us assume a peer-to-peer network where each user trusts other users. The set of 
{TRUSTPx}, that is the list of users trusted by each user PX, simply presented in the 
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Table 1. The meaning of notations 

PX Arbitrary user included in web of trust 

PO Target user, i.e. similarity model owner 

PC Current user who PO’s mobile agent is visiting at the moment 

{TRUSTPx} List of users who are trusted by PX 

{BLOCKPx} List of users who are distrusted by PX 

{ITEMSPx} 
List of <item, rating> pairs, i.e. items which PX already has 
expressed his or her own opinion and these preference ratings. 

{PATHPx} Migration path which PX’s mobile agent migrates along 

AGENTPx Personal agent of PX 

AGENTM
Px Mobile agent of PX 

same fashion as shown in Advogato1 and Epinions.com2. Web of trust is constructed in 
the form of a bidirectional graph based on the set of {TRUSTPx}. In contrast with other 
systems, only a personal agent AGENTPx includes <item, rating> pairs, i.e. items in 
which PX is interested and preference ratings for these items, as listed in {ITEMSPx}. 

AGENTPx finds the migration path {PATHPx} that includes users trusted by PX for a 
mobile agent AGENTM

Px. The Advogato maximum flow algorithm is exploited to ob-
tain the migration path for a mobile agent. This algorithm, inspired by the Ford-
Fulkerson maximum flow algorithm, was used to discover which users are trusted by 
credible members of an online community and which are not [3, 4, 15]. Because the 
bidirectional graph of trusts is restructured to form a tree-structure in the process of 
finding maximum flow through the edges, the algorithm makes it possible to find a 
unique migration path and to reduce search scope to reasonable levels for mobile 
agent.  

The procedure to find {PATHPx} is as follows: Assume that PO, who is the target user, 
is the trust source. The capacities C are assigned to every user in web based on the 
shortest-path distance from the source to PX. The capacity of the source, which can be 
optionally chosen by PO, is based on the number of all users expected to be visited and 
whose information is used for recommendations. Each successive level has a capacity 
equal to that of the preceding level L divided by the average number of trust edges ex-
tending from nodes of L. In order to apply the Ford-Fulkerson maximum flow algorithm 
to this single-source/multiple-target graph with capacity-constrained nodes, it has to be 
restructured to a single-source/single-target one with capacity-constrained edges rather 
than nodes. Each node PX is split into PX

+ and PX
−, and the capacity that is the original 

C(PX) minus one is assigned to an edge between them. Then, a unit capacity edge is 
added from PX

− to a virtual single target node. The original edge from PX to PY is repre-
sented as the one from PX

+ to PY
− with infinite capacity. AGENTPo applies the algorithm 

                                                           
1 Advogato  http://www.advogato.org/ 
2 Epinions.com  http://www.epinions.com/ 
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to this converted graph tracing the shortest paths to the target first and adds the nodes 
reached by network flow to {PATHPo} [3, 4, 15]. 

Owing to the bottleneck property proposed as a common feature of attack-
resistance trust metrics in [15], Advogato algorithm is useful to make profile injection 
attacks take no effects. The bottleneck property is that “the total trust quantity ac-
corded to an s → t edge is not significantly affected by changes to the successors of t 
[3, 15],” i.e., the number of biased nodes accepted depends only on the number of 
precedence nodes, not on the number of biased ones. Assume that there is an attacker 
who intents to promote or demote a particular item, or just to make the overall system 
function poorly. Even though he builds many profiles (manipulated nodes t) with 
fraud ratings coincided with his purpose, he cannot make s trust t manipulated by the 
attacker. Therefore, the amount of trust accorded to t dose not increase even though 
the attacker injects more nodes [3, 4]. For this reason, even the least of profiles that 
make the attack succeeded is not included in the process of collaboration. More about 
attack-resistance properties of various trust metrics are discussed in detail in [15] and 
[17], it has been claimed that PageRank [16] possesses bottleneck property like  
Advogato. 

3.2   Incremental Model Building 

Recommender algorithm can be characterized by the neighbors they choose for each 
user, the model they build based on those neighbors, and the way they use the model 
to form recommendations [1]. In our research, the neighbors of target user PO are cho-
sen from the users included in {PATHPo}. PO’s personal agent AGENTPo creates a mo-
bile agent, AGENTM

Po, to find neighbors and build a similarity model based on them 
incrementally. AGENTM

Po involves only the least amount of information for model 
building; {PATHPo} and {ITEMSPo}. Searching for the users in {PATHPo} is done by 
the Depth First Search algorithm. Supposing that PC is a currently visited neighbor, 
AGENTM

Po traces the path recursively until no users exist in {PATHPo}∩{TRUSTPc}. 
Then AGENTM

Po is disposed of from the last node after visiting all users in {PATHPo}. 
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Fig. 2. Agents’ tasks in each case 
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The similarity model is composed of a set of similarities between pairs of items 
and represented as a matrix [1]. For incremental computation of similarity relation-
ships, each agent does as follows; 

1. AGENTM
Po identifies IO and IP that are {ITEMSPc}∩{ITEMSPo} and {ITEMSPc}-

{ITEMSPo} respectively, by communicating with a neighbor’s agent AGENTPc. 
2.  For each pair (IOi, IPj), which is IOi ∈ IO and IPj ∈ IP, AGENTM

Po calculates 
values shown in Equation 1 and send the values to its own agent AGENTPo. 
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3. AGENTPo adds up these values incrementally until AGENTM
Po sends the values of 

all users in {PATHPo} except for those which don’t have IOi. 
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4. AGENTPo calculates the similarity of item pair (IOi, IPj).  
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The above-mentioned procedure involving cosine-similarity metrics can have dif-
ferent versions simply by modifying the second process. For instance, in order to use 
adjusted cosine similarities between two items as a similarity metric [5], Equ.(1), (2) 
are modified as  
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(4) 

In general cases, AGENTPo can update a similarity model owned by PO incremen-
tally according to the above procedures. However, assume that a neighbor PC has the 
list {BLOCKPc}, the list of the users whom PC distrusts, and PO is included in this list. 
Not trusting PO, PC may not want to be open with PO about his own information. In 
this case, AGENTPc rejects the request for information from AGENTM

Po.  
If the similarity model has already been built for PC to get recommendation, 

AGENTM
Po has no need to visit PC’s successive nodes and can get their values from 

this model. This model has been built based on {PATHPc} setting PC as a source. 
{PATHPc} is much more likely to include the same users as {PATHPo}; the closer the 
distance from the source to PC, the more similar it is. In this case, PO’s similarity 
model might include the information of more neighbors than the users whom 
AGENTM

Po intended to visit at the beginning. Moreover, these users included in PC’s 
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model might overlap with the users who AGENTM
Po has already visited or is supposed 

to visit hereafter. However, “overlapping users” means that they are trusted by more 
preceding level users, which can have a positive influence on recommendations by 
reflecting their opinions more. By pruning the successive nodes, tracing costs can be 
decreased drastically. 

3.3   Propagating User Feedback 

Based on this similarity model, AGENTPo provides recommendations to PO. Simply, 
the particular items, which obtain either the highest averages of each column or the 
highest prediction values, are recommended. Explicit prediction values of user PO for  
item IPj can be computed by the weighed sum of PO’s ratings about IOi using the 
similarity sim(IOi, IPj) as the weight and defined as Equ.(5) [1, 5].  

∑
∑

∈

∈
×

=
IOIO ji

IOIO IOPji

IPP

i

i io

jo

IPIOsim

RatingIPIOsim
ratingp

),(

}),({
_

,

,

 
(5) 

The idea is that the average rating of items that are similar to the selected item is a 
good estimate of the rating for the selected item [1]. 

One of the principle issues that we have to consider in a model-based approach is 
how the updated information can be reflected in original models during the term when 
they have not been re-built yet. When item IPk is recommended to PO, she can express 
her preference for this item as a rating. Whenever the PO gives feedback, AGENTPo 
deletes IPk’s column from her model and adds it to {ITEMSPo} because it now has its 
own rating. Updated information that is, {ITEMSPo} including a pair <IPk, PO’s rating 
about IPk>, is propagated to personal agents of users in {TRUSTPo}. From PC’s point 
of view who is given this information by AGENTPo, item IPk has not been included in 
{ITEMSPo} before, so the similarities between IPk and items in {ITEMSPo} ∩ 

{ITEMSPc} cannot be included in PC’s model. 
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Fig. 3. Recommendations and propagation user’s feedback 

AGENTPc now can compute similarities between them, update the model in 
patches; incremental updating can be achieved by propagating it to the users in PC’s 
own list {TRUSTPc}. Fig.3 illustrates feedback and update process. 
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4   Experimental Results 

In this section we present the results of applying TCFMA method for recommendation 
in a peer-to-peer environment. The prototype system is implemented using IBM Aglet 
Software with JDK1.4.2 [10]. 

4.1   Data Sets and Evaluation Metrics 

Epinions.com is an online community where users can review various items and rate 
them on a scale of 1 to 5. Judging whether the reviews of others are helpful to users 
themselves or not, users can express trust or distrust of these reviewers. We collected 
the dataset by crawling the Epinions.com site in May 2006. The collected dataset was 
too sparse to be used for experiments, so we selected a dataset including users who 
had rated at least 5 items and expressed a trust opinion of at least 25 users. In addi-
tion, the items had been rated by at least 10 users, i.e. the dataset contained 121,862 
ratings for 2,955 items and 216,490 trust information presented by 4,751 users. The 
sparsity level of our dataset is 1−(121,862/4751ⅹ2955), which is 0.9913. Then, this 
dataset was divided into two parts; training set contains all of each user’s ratings ex-
cept one rating used for testing. Testing set contains the only one rating for each user. 

In order to measure performance, Mean Absolute Error, which is used as a meas-
ure of how accurate prediction of user’s rating for an item can be, was performed  
[1, 5, 8]. MAE of all users in the testing set is defined as:  

M
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M

i ii∑ =
−
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where M is a list of all items and <a_ratingi , p_ratingi> is the actual/predicted rating 
pairs of  each user in the testing set.  

Another metric Absolute Prediction Shift measured the distortion of prediction oc-
curring due to an attack. While p_rating is the predicted rating computed before an 
attack, p_rating′ means the predicted rating computed after an attack [14].  
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The evaluation value of Prediction Shift originally has two meanings, in other 
words, a positive value has different meaning from a negative value. Each value 
means that the attack has succeeded in making the target item more positively or 
negatively rated [14]. However, APS measures the absolute value just to evaluate the 
influence from injected profiles regardless of attack-classification in our experiments.  

4.2   Preliminary Experiments 

Overall Performance of Prediction Quality. Increasing the number of users used 
for similarity model building, we compared our system with one of the methods pro-
posed in PocketLens. The experiment was carried out in order to indicate that the pro-
posed method performs as good as an existing work. Prior to experiments, the vector 
of ratings r

r
 for each user was normalized as ||r|| = 1 except for experiments by using 
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an adjusted cosine-based similarity metric; otherwise, users who had rated a large 
number of items had more influence than users who had only rated a few items [9]. In 
the process of model building, mobile agents find neighbor peers based on the con-
verted trust graph and compute similarity relations by using a cosine-based similarity 
metric and an adjusted cosine-based one (see Equation 1 and 4). On the other hand, in 
the benchmarked one, the information of the peers randomly accessed regardless of 
web of trust is used for model building by using the cosine-based one.  

Table 2. Overall performance of prediction quality 

Neighbor peer size 10 30 50 70 100 

Random 1.2866 1.2863 1.2859 1.2859 1.2859 
TCFMA + cosine 1.2113 1.2114 1.2100 1.2101 1.2101 

TCFMA + adjusted 1.2384 1.2480 1.2412 1.2415 1.2402 

As shown in Table 2, all three methods provided nearly the same values for MAE. 
When the TCFMA + cosine-based scheme was used, the results moved from 1.2113 
to 1.2101, which shown better prediction quality than other two methods. It can be 
observed that the proposed methods provide more accurate predictions than random 
model building at all neighborhood size levels. For example, when the neighborhood 
size is 50, the TCFMA + cosine-based scheme and the TCFMA + adjusted cosine-
based one obtain an MAE of 1.2100 and an MAE of 1.2412 whereas the random 
scheme obtains an MAE of 1.2859.  

In addition, the results show that even a small number of users can build relatively 
better model with our proposed methods, whereas the random scheme needs more 
users’ information to obtain a similarity model of stable. 

Positive Effect of Trust for Prediction. When the dataset including the users who 
have many trust opinions is used for building a similarity model, the model includes a 
larger number of trustworthy users. In order to determine the sensitivity of trust opin-
ion size on the quality of the prediction, we assumed that each user have trust users of 
only the number of x. In each step of evaluations, the trust opinion size was selec-
tively varied for building a similarity model of each testing user. According to the 
value of x, the prediction quality in cases of the proposed methods, i.e. similarity 
model building based on the converted trust graph, was evaluated.  

Table 3. Sensitivity of trust on MAE (neighbor peer size = 50) 

Trust x Trust 5 Trust 10 Trust 15 Trust 25 Trust 45 

TCFMA + cosine 1.4131 1.3338 1.3313 1.2867 1.1611 

TCFMA + adjusted 1.5688 1.3028 1.2952 1.2512 1.2238 

The conclusion drawn from these results shown in Table 3 is that the more trust 
opinions are included in each user, the better prediction quality is obtained. This 
means that the direct trust opinions have positive influence on the prediction quality. 
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4.3   Performance Evaluations 

Robustness against Profile Injection Attack. To evaluate the robustness against a 
malicious attack, a set of manipulated user profiles including arbitrary 50 ratings each 
was inserted into the original training dataset, while the number of these profiles was 
increased from 100 to 2000. Each user in the manipulated set was made to have the 
trust edges to all users in the set while some users in the original set were made to 
present trust to some of manipulated users. Through the prior experiment and previ-
ous research, we selected 50 as a neighborhood size and set it up in this experiment 
[1, 9]. In both cases of TCFMA + cosine-based and random model building, the aver-
age number of manipulated users accessed for building each user’s model was meas-
ured and the distortion of prediction occurring due to these data was compared by 
using Absolute Prediction Shift. 
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Fig. 4. Comparison of robustness on manipulated users 

In accordance with increases in the number of manipulated users, we find that the 
proposed method showed better results than random model building in both meas-
urements. Fig. 4 illustrates that the proposed method significantly outperforms others 
in resistance against the profile injection attack. For example, when the number of 
manipulated users was 2000, TCFMA + cosine-based scheme obtained a #MR of 
47.71 and an APS of 0.0224, whereas the random scheme obtained a #MR of 106.56 
and an APS of 0.0639. 

Efficiency of similarity model building. Finally, we focused on the time required for 
model building. Forwarded along the path, a mobile agent only sends computed re-
sults to the personal agent of the model owner by the proposed methods whereas in 
the random scheme request/response messages have to be exchanged between the 
model owner and each random user for similarity model building. The experiment 
was conducted to evaluate the time and the number of accessed users that are required  
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Table 4. Comparison of required time and accessed users (neighbor user size = 50) 

Model Owner User 1 User 2 User 3 User 4 User 5 Average 

Time(ms) 5786.81 11576.54 9776.97 12676.54 9425.59 9848.49 TCFMA 
+ cosine # User 292.64 861.94 680.08 953.54 636.64 684.968 

Time(ms) 31590.24 30129.18 31966.27 23209.48 20977.24 27574.48 
Random 

# User 4379.48 4209.75 4505.89 3315.13 2962.29 3874.51 

to build similarity models. For a <item, rating> pair of each 5 users in a testing set, 
the similarity model was built 30 times relatively to get the average performance. 

The experimental results show that the average time of TCFMA + cosine-based 
model building is 9848.49 (msec.), which is reasonably shorter than 27574.48 (msec.) 
of the random one. In addition, the number of users who have to be accessed for simi-
larity model building is also considerably smaller as shown in Table 4. These results 
demonstrate that the proposed method is far superior with respect to the effectiveness 
of similarity model building.  

5   Conclusion and Future Work 

In a peer to peer environment, a distributed recommender system is an ongoing area 
of diverse applications [1]. In the paper, we propose a novel TCFMA architecture to 
solve the problems that can occur in online collaborative filtering recommender sys-
tems related to an improper use of personal information and a profile injection attack. 
In order to obtain more trustworthy and accurate recommendations, we consider the 
trust relationships between users in web of trust. The Advogato trust metric is used as 
a trust propagation scheme required for overcoming sparseness of trust information. 
As noted in our experimental results, we obtain extraordinary robustness from mali-
cious attacks without any degradation of prediction quality, compared to general peer-
to-peer collaborative filtering recommender system. Moreover, we also achieve an 
efficiency of distributed computing for building item-item similarity model by em-
ploying trust-based collaborative filtering scheme which is added some useful func-
tionality of mobile agents.    

However, there still remains certain issue: trust decay. It means that the trust rela-
tionship becomes weaker as it forwards to its successors [2, 3]. In our system, al-
though a mobile agent finds trust neighbors who are in the closest-distance from a 
model owner first, the neighbors, even on the different levels, are regarded as the 
same. It is essential to take this phenomenon into consideration for applying trust 
propagation algorithm to real-world application. Another interesting issue is about 
attack detection, which has been often shown in recent studies. Automated attack de-
tection algorithms based on diverse types of attack model can lead more robust rec-
ommendation algorithms [13, 14, 17]. As the recommender systems have been more 
common in E-commerce application, these issues are becoming more interesting and 
important. 
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