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Preface

This volume contains the papers presented at AI 2007, the 20th conference of
the Canadian Society for the Computational Study of Intelligence (CSCSI). AI
2007 attracted a new record of 260 paper submissions. Each paper was assigned
to three reviewers who tirelessly worked to provide high-quality reviews. Out
of these, 46 high-quality papers were accepted for publication by the Program
Committee. The organization of AI 2007 has benefited from the collaboration of
many individuals. Foremost, we express our appreciation to the Program Com-
mittee members and the additional reviewers who provided thorough and timely
reviews. We are grateful to Andrei Voronkov and the support team assisting with
the EasyChair Conference System that hosted the AI 2007 paper submission and
review process. We also extend our thanks to the School of Computer Science at
the University of Windsor for hosting the conference Web site. Finally, we thank
the Organizing Committee and the members of the CSCSI Executive Committee
for all their efforts in making AI 2007 a successful conference.

May 2007 Ziad Kobti
Dan Wu
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Modeling Role-Based Agent Team* 

Yu Zhang 

Computer Science Department, Trinity University, San Antonio, TX 78212 
Tel.:(210)999-7399, Fax:(210)999-7477 

yzhang@cs.trinity.edu 

Abstract. The problem of ensuring agents work as an effective team in dynamic 
distributed environments still remains a challenging issue. In this paper we pro-
posed a role-based team model. In our model, the role characterizes the respon-
sibilities and provides logic patterns to achieve certain goals and cooperate with 
others. The agent is an autonomous execution unit and follows the logic pat-
terns that the role provides. We also developed algorithms and mechanisms to 
evolve the plan of a role to the plan of an agent. Our role-based team model al-
lows the split of roles (who define the plans) and agents (who execute the plans) 
in team plans, and dynamic role-agent assignment. It also achieves a certain 
level of plan reusability. We present two experiments which show plan reus-
ability and its flexibility in supporting simultaneously plan invocation. 

Keywords: Agent teamwork, Role, Plan. 

1   Introduction 

Teamwork is becoming increasingly important in many dynamic multi-agent systems 
[13]. Agents in a team need to form joint mental states which drive agents to act to-
gether as a team and form the interactions leading their individual actions to team 
efforts [5, 7]. To simulate teamwork, a teamwork language is demanded to explicitly 
express the mental states underlying teamwork. In our opinion, the effective design of 
a teamwork language requires two aspects to consider. First, it should be able to han-
dle unexpected uncertainties occurred in complex and dynamic domains, such as 
dynamic changes in team’s goals, team members’ unexpected failures to fulfill their 
responsibilities, decision-making in dynamic environment, and dynamically backing 
up other team members. Second, considering the perspective of software engineering, 
the teamwork language would better allow specify teamwork knowledge conceptually 
for being reused, particularly, team plans are better specified in terms of abstract  
entities, instead of specific agents, so as to be reused by different teams of agents. 

A lower level of abstraction, role, is currently used by many researcher of multi-
agent systems to close this gap [14, 9, 11, 6, 16]. Biddle and Thomas’s role theory 
views role as the concept of partitioning behaviors and emphasizing coordination and 
cooperation [2]. Becht’s ROPE (Role Oriented Programming Environment for multi-
agent systems) uses roles to decouple the organization of agents from the structure of 
cooperation processes [1]. Cooperation process is designed from a global perspective 

                                                           * This work was supported by DoD MURI F49620-00-I-326 administered through AFOSR. 



2 Y. Zhang 

and largely independent of concrete agents so that shifting cooperative behavior does 
not require changing agents (agents can fill multiple roles and switch between them). 
Stone and Veloso introduced roles as a mechanism for specifying an agent’s internal 
and external behaviors and decomposing team tasks [12]; they then used this to model 
robot soccer. A formation decomposes the task space by defining a set of roles. There 
are as many roles as there are agents in the team, so that each role is filled by one 
agent. The mapping between agents and role is not pre-specified. 

In this paper, we propose a role-based teamwork language. Different with the exist-
ing work, we use roles and role variables distinguish static (by roles) and dynamic (by 
role variables) action associations; and when delegating roles and role variables in a 
plan to agents, we have the agents form s joint mental state to enforce the execution of 
the plan as a team effort, particularly the sub-actions in the plan will be executed 
coherently. Our concepts of role and role variable enable our mechanisms of task 
decomposition and delegation, by which role-based plans drive agents to actually 
execute teamwork. Our mechanism of task decomposition is based on a notion of 
responsibility, which is defined in terms of what a responsibility contains and how a 
responsibility impacts the mental states of the agent(s) taking the responsibility. Our 
mechanism of task delegation has three steps: 1) a team task is translated to a team 
responsibility which is represented by a graph; 2) through decomposing the team 
responsibility graph to individual responsibility graphs, a team task is decomposed to 
individual sub-tasks; and 3) individual sub-tasks are delegated to agents. 

The structure of this paper is as follows. Section 2 formalizes the basic concepts. 
Section 3 introduces algorithms for task decomposition and delegation. Section 4 
introduces delegating roles to agents, formalize a notion of admissible assignment, 
and present a CSP algorithm to search for admissible assignments. Section 5 is  
experiment. Section 6 concludes the paper. 

2   Role-Based Plan 

In their role theory, Biddle and Thomas concluded that roles can be defined based on 
partitioning concepts for persons and their behaviors [2]. They also pointed out that 
pre-association with roles is too restrictive, i.e. the determination of which role actu-
ally performs which action being determined dynamically in a specific situation. 
Based on it, we define a position as all entities that can perform a set of primitive 
operations, and use this to characterize a collectively recognized category of persons 
who are able to exhibit a set of behaviors. We define a role as an entity of a position 
associated with a bag of temporally ordered actions. We define a role variable as an 
entity which is dynamically selected from a set of roles to be associated with a bag of 
temporally ordered actions. Generally speaking, a role variable stands for some role 
out of a set of roles. Depending on concrete situation, one role from the set is dynami-
cally selected to fill the role variable. When this happens, the bag of operations of the 
assuming role is dynamically expanded. 

2.1   Position 

We define a concept of position to refer a collectively recognized category of entities 
(persons) that exhibit a set of behaviors. 
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Definition 1. An entity is an abstraction of any performer (e.g., agent or person) that 
is able to perform operations. 

Definition 2. A position is a named set of all entities that are able to perform a set of 
primitive operations, denoted by operators. Given a set of operations O, a position 
based on the operations is 

P(O)={e|e∈ Entities ∧ ∀o (o∈O) ∧ Capable(e, o)},                                      (1) 

where e represents an entity and Capable(e, o) means that e is able to perform opera-
tion o, assuming the preconditions of o are true. 

The purpose of defining position is to capture the capability requirements on agents. 
Every entity of a position is required to be capable to do the operators defined in the 
position. For example, 

(POSITION sniffer (talk move movein randmove sense selectTarget)).                     (2) 

A position sniffer is defined by a set of operators, including talk, move, movein, 
randmove, sense, and selectTarget. Suppose e is an entity that takes on the position 
sniffer; e should be able to perform the above operators. 

2.2   Role 

We base our definition for a role on a position. In other words, any action (i.e., primi-
tive operation) associated with the role must be in the operation set of the position. 
Let O be a bag of operations that must be performed by the same entity of a position, 
COND be a bag of conditional operators where each action is contingent on a con-
junction of conditions, and CO be a bag of ordering constraints that impose a “tempo-
ral order” on O and the evaluation of the conditions in COND. We define a role r as 
an abstraction of the entity of position P that satisfies the constraints.  

Definition 3. A role is an abstraction of an entity that performs a specific bag of op-
erations and includes temporal constraints on the order in which the operations may 
be performed: 

r = (id, P, O, COND, <r).                                                                  (3) 

where id is the name of r and refers to the entity of position P  that must perform the 
operations in O.  

<r is a set of temporal orders as (oi, oj) where oi, oj ∈ O ∪  COND ∪ S, and S = {os, 
oe}. os is a dummy starting operation that can be performed by any entity of a posi-
tion, and oe is a dummy ending operations that can be performed by any entity of a 
position. Temporal orders are transitive. That is, if there are two temporal orders (oi, 
oj) and (oj, ok), then (oi, ok) is a true temporal order too. However, <r is not a transitive 
closure. That means, even though (oi, oj) and (oj, ok) are in <r, (oi, ok) may not be in <r. 
And, cycles may exist in the set of temporal orders <r. That is, there exist temporal 
orders as (o1, o2), (o2, o3), …, (ok, o1), where k ≥ 2. This does not mean a temporal 
conflict. Rather, it means that the operators may be executed more than once in  
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accordance with the temporal orders. The feature also holds in the temporal orders of 
role variables (described later in Sec. 2.3). 

2.3   Role Variable 

A role variable is similar to a role except that the role variable is dynamically selected 
from a set of roles. So, in the definition of a role variable, we do not explicitly require 
it to belong to any specific position. Rather, we require a selection constraint whose 
satisfaction will select one role out of a set of roles to perform the operations of the 
role variable in accordance with the specified order. For clarity, we prefix role  
variables by “?”.  

Definition 4. A role variable is an abstraction of an entity that is dynamically se-
lected from a set of roles to be associated with a bag of temporally ordered actions: 

?r = (?id, O, COND, <?r, RS, SC).                                                        (4) 

where ?id is the name of ?r, RS is the selection scope, i.e., a set of roles, SC is the 
selection constraint. 

2.4   Role-Based Plan 

In RoB-MALLET, processes are the place to specify team activities in terms of roles 
or role variables. 

Definition 5. Suppose the process of a role-based plan is composed by a set of roles 
r1, r2, …, rm, where 1≤ i≤m, and a set of role variables ?r1, ?r2, …, ?rn, where 1≤ j≤n. 
The process, denoted Proc, is the union of the roles and role variables: 

         Proc= U UU UUU U U
n

j

n

j
rjrj

m

i

n

j
rjri

n

j
rj

m

i

n

j

m

i
rirjri SCRSCondCondOO

1 1
??

1 1
?

1
?

1 1 1
? ,,,,

= == === = =

<∪<∪∪        (5) 

The difference between the actions associated with roles and actions associated with 
role variables is that, action associations by roles are static (or direct) while action 
associations by role variables are dynamic (or indirect). In this way, the process of a 
role-based plan allows both static and dynamic action association. We call the aggre-
gation of the roles in a role-based plan the virtual team of the plan, denoted by VT. 
We call the aggregation of the role variables in a role-based plan as role variable set 
of the plan, denoted by RVS. We note that, roles in VT may form a sub-team to invoke 
a sub-plan and the sub-plan contains a virtual team too. 

To delegate roles to agents, the agents must be “qualified” to fill the roles (we call 
this process role assignment, see Sec. 4 for detail). A necessary condition for this is 
that the agent must be able to perform operations required by the role. As well as the 
qualification of the roles, there can be a set of social norms (i.e., conditions), which 
specify the selection of agents for roles. The social norms may exist for different 
kinds of reasons, such as geographical reasons, workload balance, cooperation re-
quirement. We define social norms as a set of constraints on delegating roles to 
agents, and denote these constraints by Γ.  
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Definition 6. A role-based plan is defined as  

P = (Φ, θ, Ψ, VT, Γ, RVS, Proc)                                           (6) 

where Φ is a set of preconditions, θ is a set of effects, Ψ is a set of termination condi-
tions, VT is a virtual team, Γ is a set of constraints specifying social norms on  
delegating roles to agents, RVS is a set of role variables to specify non-predetermined 
actions, and Proc is the process of actions of VT achieving the pursuing goal (i.e., 
effects) under similar situations (i.e., preconditions). By this means, team plans are 
reusable for different agents, i.e. they are to achieve the effects in any situation in 
which the preconditions are satisfied, independent of the agents executing the plan. 

Figure 1 shows an example role-based plan. It is a multi-agent version of the clas-
sic wumpus world problem [11]. It defines a role-based plan scanandkill. The virtual 
team consists of three roles, r1, a sniffer, and r2 and r3, fighters. Also, a role variable 
?fi is selected from r2 and r3 and the one closest to the wumpus to be killed is se-
lected. The constraints on delegating agents to roles also are specified. To fill r2 and 
r3, agents must have arrows, and r2 and r3 must be filled by different agents. 

 

Fig. 1. An Example Role-Based Plan 

3   Responsibility 

3.1   Generating Team Responsibility Graph for Role-Based Plan 

A responsibility is an obligation by an agent or a team of agents to perform actions, 
which forms an intention to do the actions. Responsibility is represented as a directed 
bipartite graph G(V, E), where V is a set of nodes and E is a set of directed links con-
necting nodes. The nodes represent the entrance and exit of a plan P, the evaluation of 
conditions, operations, cooperation among roles, and flow control. The links represent 
various kinds of relations among nodes, including dependencies between two nodes, 
coordination connections, sub-plan connections, goal connections, and connections 
among roles for the selection of role variables. 
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generateTeamResponsibility ( )

1: create a team responsibility, ;

2: build the syntax tree of , ;
3: let be the root of ;

4: create an entrance node, , in ;

5: create an exit node, , in ;

6: Translate( , , , );
 

Fig. 2. Generating Team Responsibility Graph for Role-Based Plan P 

Figure 2 is the algorithm that translates the process of a role-based plan into a 
graph of a team responsibility. Figure 3 shows team responsibility graph of the plan 
scanandcollect (see Fig. 1) after reducing redundant connector nodes. 

 

Fig. 3. A Reduced Team Responsibility Graph 

3.2   Decomposing a Team Responsibility Graph to Individual Responsibility 
Graphs 

We decompose a team responsibility graph into individual responsibility graphs by 
ownerizing the nodes and links in the team responsibility graph to the roles and role 
variables in the role-based plan. As a result, the individual responsibility graph of a role 
(or role variable) contains the nodes and links ownerized to the role (or role variable).  

The decomposition needs to ensure two things: 1) every action in team responsibil-
ity is included into the responsibility of the role (or role variable) with which the ac-
tion is associated; and 2) the temporal orders on the actions in team responsibility can 
be preserved so that the joint intention to the actions in the team responsibility can be 
realized by individual intentions to the actions in the individual responsibilities.  

As described in previous Sec. 3.1, when we translate a role-based plan into a team 
responsibility graph, we translate the actions in the process into corresponding nodes 
and ownerize the nodes to the roles or role variables with which the actions are asso-
ciated. If an action is an invocation of an individual operator, the action is translated 
into an operator node and the operator node is ownerized to the role (or role variable) 
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which invokes the operator. If an action is an invocation of a team operator, the ac-
tions are translated into individual operators corresponding to the team operator and 
one of the individual operators is ownerized to each involved role (or role variable). If 
an action is a complex action other than a team operator, such as a role selection, a 
sub-plan invocation, or a goal achievement, the action is translated to a set of nodes 
corresponding to the action and one of the nodes is ownerized to each involved role 
(or role variable).  

Because a link connects two nodes and represents the relationship between two 
nodes, the owner of the link depends on what the owners of the two nodes are. If the 
owners of the two nodes are the same role or role variable, the owner of the link is 
consequently the same role or role variable. Otherwise, if the owners of the two nodes 
are different, the link implies communication between the owners of the two nodes 
and the source of the link is the initiator of the communication. It is thus very natural 
to let the owner of the link be that of the source node. 

Figure 4 is the algorithm for decomposition. Resp is the team responsibility graph 
of P with entrance node, Start, and exit node, End. The algorithm visits the graph of 
team responsibility using Depth-First Search from two directions, following the direc-
tions of links and starting from the node Start, and following the reverse direction of 
links and starting fromthe node End. An array, VisitedList, is used to keep track of 
visited nodes. 

decomposeTeamResponsibility ( )

1: create array ;

2: forwardOwnerize( ;

3: reset to empty; 

4: backwardOwnerize( ;

 

Fig. 4. Decomposing A Team Responsibility To Individual Responsibility 

4   Role-Agent Assignment 

Our mechanism of task delegation is realized by delegating individual responsibilities 
to agents. Our mechanism of task delegation contains two levels of responsibility 
delegations. The first level is delegating the team responsibilities of all the roles in a 
role-based plan to the agents invoking the role-based plan before the agents start exe-
cuting the role-based plan. The second level is dynamically delegating the responsi-
bilities of role variables during the execution of the role-based plan. If a role is  
selected to fill a role variable, the responsibility of the role variable is dynamically 
included into the responsibility of the role. Given that a certain agent has intended to 
the responsibility of the role in the first level, the responsibility of the role variable is 
implicitly and dynamically delegated to the agent. Therefore, key issues in our 
mechanism of task delegation are the determining a team assignment for invoking a 
role-based plan and selecting a role for a role variable. 
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4.1   Role-Agent Assignment and Admissibility 

We define a role-agent assignment to be a delegation of a role r to an agent ag, de-
noted by Assign(r, ag). Once a role r is delegated to an agent ag, agent ag commits to 
the responsibility of role r. Consequently, agent ag intends to perform the actions in 
the responsibility of role r, i.e. Intend(ag, r, P).  

To actually execute the actions in the responsibility of role r, agent ag must be ca-
pable of the actions. Otherwise, agent ag is not “qualified” for role r, or Assign(r, ag) 
is not feasible. We use a notion of admissibility of role-agent assignment to character-
ize feasible role-agent assignments.  

Definition 7. Assign (r, ag) is admissible iff 

oprequirement(r) ⊆ capability(ag),                                         (7) 

where oprequirement(r) is the qualification of role r, and capability(ag) is the set of 
operators of which agent ag is capable. 

4.2   Team Assignment and Admissibility 

Suppose that a team of agents T wants to invoke a role-based plan P with virtual team 
VT. We define a team assignment for T invoking the role-based plan P to be the ag-
gregation of role-agent assignments of all roles in VT to the agents in T, denoted by 
Assign(VT, T). It could happen that more than one role is delegated to a single agent. 
Once the roles in VT are delegated to the agents in T, the agents jointly commit to the 
team responsibility of VT. Consequently, the agents jointly intend to perform the 
actions in the team responsibilities of VT, i.e., JIntend(T, VT, Assign(VT, T), P). To 
perform the actions in the team responsibility of VT, every agent ag in T intends to 
perform the actions in the responsibility of role r delegated to the agent ag according 
to Assign(VT, T), i.e., Intend(ag, r, P). 

Similarly, admissibility is required for team assignment. 

Definition 8. Assign(VT, T) is admissible iff it satisfies the following conditions: 

1. For every Assign(r, ag) in Assign(VT, T), Assign(r, ag) is admissible; 
2. Every constraint in the constraint set of plan P is satisfied under As-

sign(VT, T); 
3. For every sub-plan invocation, there is an admissible team assignment.  

We note that, the above formalism is only to search for an admissible team assign-
ment for T invoking P, and it occurs when the execution reach the point when T  
invokes P. The statements inside P, including condition evaluations and sub-plan 
invocations, have not been reached yet. Checking condition 3 is to ensure that with 
the found admissible team assignment for T invoking P, there will be admissible team 
assignments for sub-plan invocations of P during the future execution of P (the team 
assignment searching for sub-plan invocations occurs when the execution  
reach them).  

One may question why not just decide which role is delegated to which agent dur-
ing the execution of a role-based plan (i.e., at the first moment when a role invokes an  
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action). The reason why we search for an admissible team assignment before actu-
ally executing a role-plan is that, we want to not only decide which role is dele-
gated to which agent, but also have agents form a joint intension to enforce the 
execution of the role-based plan to be a team effort; moreover, the joint intension 
ensures that every action in P will be executed in accordance with the temporal 
ordering on them unless the termination conditions of the role-based plan are  
satisfied. 

4.3   CSP Algorithm of Searching for Admissible Team Assignments 

Suppose a team of agents T wants to invoke a role-based plan, P. The virtual team VT 
of plan P is a set of roles, and the constraints of plan P is CO. In the process of P, 
there is a set of sub-plan invocations Inv. The problem of searching for an admissible 
team assignment for T invoking P can be formalized as a constraint satisfaction prob-
lem (CSP) [9]: 

• The set of variables of the CSP is VT of plan P. 
• The nonempty domain of the CSP is T. The possible values for each variable 

(role) are the agents in T. 
• The set of constraints of the CSP includes three types of constraints: 1) qualifi-

cation for delegating roles to agents, i.e. for any role ri in VT, oprequire-
ment(ri) ⊆ Capability(ag), where ag is the agent assigned to ri; 2) the  
constraints in CO; and 3) an admissible team assignment for each sub-plan in-
vocation in Inv. 

An algorithm of backtracking search has been developed to search for an admissi-
ble team assignment for agents invoking a role-based plan.  

4.4   Role Selection 

A role selection is the select of a role r to fill a role variable ?r. By Definition 4, role 
variable declaration includes the selection scope RS and the selection constraints SC. 
On the other hand, the capability requirement of every role in RS must include all 
actions associated with the ?r. However, the capability requirement may not include  
 

roleSelection ( , , )

1: loop{ 

2:    if  roles  have been tested 

3:             return ;
4:    randomly select an untested role from ;

5:    let be the agent to which role is delegated; 

6:    if  constraints are satisfied with substituted by 
7:             return ;

8:    mark as a tested role;}
 

Fig. 5. Selecting A Role for A Role Variable 
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all actions associated with ?r. Correspondently, if role r is selected to fill ?r, the agent 
to whom r delegated may not be capable to do some action(s) associated with ?r. 
To prevent this oddity, a plan can be statically checked to make sure all role vari-
ables in the plan are well defined. Also, the agents to whom the selected roles are 
delegated must be able to execute the actions associated with the role variables. 
For this reason, we only consider the selection constraints but not the capability 
issue when resolving role selections. Figure 5 is the algorithm for role selection. 

5   Experiments 

We choose an extension of the wumpus world described in [10], a multi-agent wum-
pus world, as the domain for our experiments. There are three roles including r1, snif-
fer, r2, fighter, and r3, carrier.  

Table 1. The Durations of Operators 

Operator Duration (ms) 
move 200 
sense 100 
shoot 100 
collect 100 

Table 1 lists operators and their durations. A sniffer can perform sense, a fighter 
can perform shoot, and a carrier can perform collect. They all can perform move. 
The goal of the team is to kill wumpuses and collect gold. The team plan scanandkill 
was shown in previous Fig. 1. 

We collect three data: 1) the number of wumpuses killed, 2) the amount of gold 
collected, and 3) time performance by the absolute execution time of a plan.  

We report two experiments. The first explores plan reusability of RoB-MALLET. 
The second shows its flexibility in supporting simultaneity of invocation. 

5.1   Evaluating Plan Reusability 

Experiment 1 evaluates that RoB-MALLET is flexible enough to allow reuse of role-
based plans by running a role-based plan with different formation of agents.  

Table 2 defines five teams of agents that could invoke a role-based plan in the 
wumpus world. The randomly generated world is 10×10 squares and contains 20 
wumpuses and 20 pieces of gold. Agents initially have no knowledge of the 
squares. 

Table 3 shows that all five teams have successfully completed the teamwork. Even 
though they have different time performances of accomplishing the teamwork, our 
model is flexible for different formations of teams to invoke the plan. We note that, 
each of teams T2, T3, and T4 consists of two agents, however, the two agents in dif-
ferent teams play different roles. The workload of the agent taking r1 (sniffer) directly 
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Table 2. Teams with Different Formations Executing the Plan 

Team Agent Capability Role(s) 

T1 ag1 move, sense, shoot, collect r1, r2, r3 
ag2 move, sense r1 T2 
ag3 move, shoot, collect r2, r3 
ag4 move, shoot r2 T3 
ag5 move, sense, collect r1, r3 
ag6 move, collect r3 T4 
ag7 move, sense, shoot r1, r2 
ag8 move, sense r1 
ag9 move, shoot r2 

T5 

ag10 move, collect r3 

Table 3. The Duration of Different Teams Executing the Plan 

Team Time to kill all 
wumpuses (s) 

Time to collect 
all gold (s) 

T1 387 429 
T2 151.5 183 
T3 285 241 
T4 253 296.5 
T5 139.5 163.5 

decides team performance. The faster agent finds wumpuses and gold, the faster the 
team finishes the teamwork. In T2, the agent taking r1 did not take another role. In T3 
and T4, the agents taking r1 also took another role (r2 in T3 and r3 in T4). Conse-
quently, the team performance of T2 is better than T3 and T4. For the similar reasons, 
T3 killed wumpuses slower than T4 because the agent taking r2 did not take other role 
in T3 while the agent taking r2 took r1; and T3 collected gold faster than T4 because 
the agent taking r3 did not take other role in T3 while the agent taking r3 took r1. 

5.2   Evaluating Simultaneity of Invocations 

Simultaneity of invocation means that an agent may be involved in multiple plan 
invocations (at the top level) dynamically and simultaneously. In experiment 2, we 
use a world of 20×20 squares which contain 40 wumpuses and 60 pieces of gold. 
Rather than randomly generate the world, it has been specifically constructed to con-
tain more difficult scenarios therefore need close cooperative behaviors. These are 25 
pieces of unreachable gold in the wumpus world. For example, a piece of gold in the 
corner is surrounded by two wumpuses. Such gold is unreachable unless a path is 
opened by killing one of the surrounding wumpus. Again, agents initially have no 
knowledge of the squares. 

We define two teams pursuing different top level goals. Team T1 consists of two 
agents, ag1 and ag2, who scan a wumpus world and collect the gold found respec-
tively. Team T2 only consists of agent ag3 who is able to kill wumpuses but has a 
separate goal that is irrelevant to the main point of this example. We represent it sim-
ply by random motion through the world. Three plans, randommove, scancollect 
and kill, are separate team processes for T1 and T2. Two teams start plans  
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scancollect and randommove simultaneously (at the top level). With proactive 
communication from ag1 [4, 18], ag3 dynamically finds plan kill for a goal and builds 
and executes a script to start it many times to help ag2 while ag3 is still involved in 
plan randommove. The team collects 54 pieces of gold finally. Figure 6 shows the 
distribution of the number of pieces of gold collected over the execution time. 

We note that T2 was considered a separate team from T1, rather than as a second 
sub-team of a larger team, to show the more general situation with separate teams. 
The entire scheme works within sub-teams of a team as well. 

Time(s )
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Fig. 6. The Distribution of Gold Collected Over the Execution Time 

6   Conclusions 

We have defined role and role variable and accommodated them to complex actions. 
Based on these conceptual notations, the knowledge of team processes can be speci-
fied without having to specific agents and agent variables. This will allow joint men-
tal states to be formed and the teamwork knowledge to be reused by different teams of 
agents. Based on roles and role variables, we have developed mechanisms of task 
decomposition and task delegation, by which the knowledge of a team process is 
decomposed into the knowledge of a team process for individuals and then delegate it 
to agents. We have developed an efficient representation of joint mental states by 
which agents only maintain individual processes complementary with others’ individ-
ual process and a low level of overlapping for team organizations. 
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Abstract. Recommender systems enable a user to decide which information is 
interesting and valuable in our world of information overload. Collaborative 
Filtering (CF), one of the most successful technologies in recommender systems 
suffers from improper use of personal information and the incredibility of rec-
ommendations. To deal with these issues, we have been focusing on the trust re-
lationships between individuals, i.e. web of trust, especially for protecting the 
recommender system against profile injection attack. Based on trust propaga-
tion scheme, we proposed TCFMA architecture which is added agent-based 
scheme obtaining attack resistance property as well as improving the efficiency 
of distributed computing. In web of trust, users’ personal agents find a unique 
migration path made up of latent neighborhoods and reduce search scope to a 
reasonable level for mobile agents by using the Advogato algorithm. The ex-
perimental evaluation on Epinions.com datasets shows that the proposed 
method brings significant advantages in terms of dealing with profile injection 
attack without any loss of prediction quality.  

1   Introduction 

In a flood of information, a recommender system helps users to decide which items are 
most valuable and interesting to them. Collaborative Filtering (CF), one of the most 
successful technologies in recommender systems, has been applied to numerous com-
mercial recommender systems. Even though they are popular, there are problems of 
improper use of personal information and the incredibility of recommendations espe-
cially in centralized CF recommender systems where all ratings by users are owned by 
system providers [12]. These problems can be partially improved by a distributed per-
sonal recommender, but the distributed systems might be vulnerable to a shilling attack, 
i.e. profile injection attack as similar as centralized ones. That is, an attacker may make 
many profiles with biased ratings with a malicious intent to influence the recommenda-
tions [1, 13, 14]. Because most of recommender systems are open Web services, a mali-
cious attacker can easily inject manipulated profiles [13, 14]. One effective way to  
protect the system against such an attack is to build web of trust among the individuals 
in order to use only the profiles of trustworthy users [8, 11].  
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In this paper, we propose TCFMA (Trust-based Collaborative Filtering with Mo-
bile Agents) architecture used a distributed CF method in peer-to-peer network using 
web of trust in order to effectively offer the corresponding user trustworthy recom-
mendations. By using the Advogato trust metric [4], we propagate the trust informa-
tion for overcoming the sparseness of web of trust as well as obtaining resistance from 
attacks by the malicious users [3, 4]. In addition, we employ mobile agents to increase 
the efficiency of distributed computing. 

The rest of this paper is organized as follows: The next section contains a brief 
overview of some related work. In Section 3, we describe our proposed method in 
detail. Then, the performance evaluation compared with other P2P approaches is pre-
sented in Section 4. Finally, Section 5 draws some conclusion of this paper with a 
discussion of future work. 

2   Backgrounds and Related Works 

A Robustness Analysis of Collaborative Filtering. Most of Web-based CF recom-
mender systems employ profiles which are made by anonymous unauthenticated us-
ers. That is, the systems can be vulnerable to manipulation due to profiles which are 
built and injected by an attacker. Many recent researches have shown that commonly 
used CF algorithms are significantly affected by modest attacks [14]. There are two 
formal types of profile injection attack that can be defined according to the intent of 
an attacker: a push attack and a nuke attack [13, 14]. The former makes particular 
items promoted and the latter makes them demoted in order to be more or less rec-
ommended. In the case of centralized CF systems where all profiles are owned by a 
merchant, a system provider can be a “push” attacker. Because a merchant always 
wants a customer to buy an item that maximizes profits. PocketLens [1], which we 
benchmark, described that this concern can be met by a distributed personal recom-
mender because only a user can owns and controls his or her own profiles. Based on 
the credibility of recommendations, diverse distributed recommender system architec-
tures and an incremental computing algorithm applicable to those architectures were 
proposed through this work [1].  

Trust in Recommender Systems. Even though the distributed recommender can par-
tially improve the effects of profile injection attacks from a system provider, it is still 
not safe from an anonymous attacker [1]. In order to overcome the vulnerabilities of 
CF systems to attacks, a number of recent studies focus on the notion of “trust” in rec-
ommendation [14]. Calculating explicit trust and reputation values of users or eliciting 
trust relationships between users, a system employs only the owner’s profile guaran-
teed identity and trustworthiness [3, 4, 6, 8, 15]. In a more global view, “trust” of a 
recommender system has been studied in terms of automated attack detection schemes 
and robustness of recommendation algorithms in the face of malicious attacks [3, 4, 13, 
14, 17]. Another perspective about trust focuses on correlation between trust and user 
similarity. Recent research of Sinha et al. confirms the fact that people tend to prefer 
recommendations from friends and acquaintances to those from online recommender 
systems [6]. Moreover, Ziegler et al. shows that people’s preferences can be more 
similar to preferences of trusted users than those of arbitrary users [7]. That is, using 
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“trust” for recommender system can be effective in terms of attack-resistance and rec-
ommendation quality. However, web of trust tend to be sparse; so a mechanism of 
trust propagation is required [2]. R.Guha et al. define four atomic trust propagation 
methods that can be applied repeatedly to obtain a final matrix with trust and distrust 
information [2]. Ziegler et al. protect against massive attacks from malicious users 
propagating trust effectively in a social network by proposing the Appleseed algo-
rithm based on the Advogato trust metric [3].  

3   Trust-Based Collaborative Filtering for P2P Networks 

Fig. 1 illustrates a brief overview of our proposed system with three steps; Firstly, a 
user agent finds the migration path along which a mobile agent migrates in web of 
trust. Along the path, the mobile agent finds trusted neighborhoods. Then the user 
agent builds a similarity model incrementally for its user by using the information that 
the mobile agent gathers from neighbors. Finally, the user agent provides its user with 
recommendations and updates the model with his or her feedback. 
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Fig. 1. Overview of trust-based collaborative filtering with mobile agents 

3.1   Trust-Based User Selection  

In this section we describe a scheme to finding a unique migration path, which con-
sists of the trusted users, for mobile agent of a target user. Before describing the  
algorithms, some definitions of the notations used herein are introduced.  

Let us assume a peer-to-peer network where each user trusts other users. The set of 
{TRUSTPx}, that is the list of users trusted by each user PX, simply presented in the 
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Table 1. The meaning of notations 

PX Arbitrary user included in web of trust 

PO Target user, i.e. similarity model owner 

PC Current user who PO’s mobile agent is visiting at the moment 

{TRUSTPx} List of users who are trusted by PX 

{BLOCKPx} List of users who are distrusted by PX 

{ITEMSPx} 
List of <item, rating> pairs, i.e. items which PX already has 
expressed his or her own opinion and these preference ratings. 

{PATHPx} Migration path which PX’s mobile agent migrates along 

AGENTPx Personal agent of PX 

AGENTM
Px Mobile agent of PX 

same fashion as shown in Advogato1 and Epinions.com2. Web of trust is constructed in 
the form of a bidirectional graph based on the set of {TRUSTPx}. In contrast with other 
systems, only a personal agent AGENTPx includes <item, rating> pairs, i.e. items in 
which PX is interested and preference ratings for these items, as listed in {ITEMSPx}. 

AGENTPx finds the migration path {PATHPx} that includes users trusted by PX for a 
mobile agent AGENTM

Px. The Advogato maximum flow algorithm is exploited to ob-
tain the migration path for a mobile agent. This algorithm, inspired by the Ford-
Fulkerson maximum flow algorithm, was used to discover which users are trusted by 
credible members of an online community and which are not [3, 4, 15]. Because the 
bidirectional graph of trusts is restructured to form a tree-structure in the process of 
finding maximum flow through the edges, the algorithm makes it possible to find a 
unique migration path and to reduce search scope to reasonable levels for mobile 
agent.  

The procedure to find {PATHPx} is as follows: Assume that PO, who is the target user, 
is the trust source. The capacities C are assigned to every user in web based on the 
shortest-path distance from the source to PX. The capacity of the source, which can be 
optionally chosen by PO, is based on the number of all users expected to be visited and 
whose information is used for recommendations. Each successive level has a capacity 
equal to that of the preceding level L divided by the average number of trust edges ex-
tending from nodes of L. In order to apply the Ford-Fulkerson maximum flow algorithm 
to this single-source/multiple-target graph with capacity-constrained nodes, it has to be 
restructured to a single-source/single-target one with capacity-constrained edges rather 
than nodes. Each node PX is split into PX

+ and PX
−, and the capacity that is the original 

C(PX) minus one is assigned to an edge between them. Then, a unit capacity edge is 
added from PX

− to a virtual single target node. The original edge from PX to PY is repre-
sented as the one from PX

+ to PY
− with infinite capacity. AGENTPo applies the algorithm 

                                                           
1 Advogato  http://www.advogato.org/ 
2 Epinions.com  http://www.epinions.com/ 
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to this converted graph tracing the shortest paths to the target first and adds the nodes 
reached by network flow to {PATHPo} [3, 4, 15]. 

Owing to the bottleneck property proposed as a common feature of attack-
resistance trust metrics in [15], Advogato algorithm is useful to make profile injection 
attacks take no effects. The bottleneck property is that “the total trust quantity ac-
corded to an s → t edge is not significantly affected by changes to the successors of t 
[3, 15],” i.e., the number of biased nodes accepted depends only on the number of 
precedence nodes, not on the number of biased ones. Assume that there is an attacker 
who intents to promote or demote a particular item, or just to make the overall system 
function poorly. Even though he builds many profiles (manipulated nodes t) with 
fraud ratings coincided with his purpose, he cannot make s trust t manipulated by the 
attacker. Therefore, the amount of trust accorded to t dose not increase even though 
the attacker injects more nodes [3, 4]. For this reason, even the least of profiles that 
make the attack succeeded is not included in the process of collaboration. More about 
attack-resistance properties of various trust metrics are discussed in detail in [15] and 
[17], it has been claimed that PageRank [16] possesses bottleneck property like  
Advogato. 

3.2   Incremental Model Building 

Recommender algorithm can be characterized by the neighbors they choose for each 
user, the model they build based on those neighbors, and the way they use the model 
to form recommendations [1]. In our research, the neighbors of target user PO are cho-
sen from the users included in {PATHPo}. PO’s personal agent AGENTPo creates a mo-
bile agent, AGENTM

Po, to find neighbors and build a similarity model based on them 
incrementally. AGENTM

Po involves only the least amount of information for model 
building; {PATHPo} and {ITEMSPo}. Searching for the users in {PATHPo} is done by 
the Depth First Search algorithm. Supposing that PC is a currently visited neighbor, 
AGENTM

Po traces the path recursively until no users exist in {PATHPo}∩{TRUSTPc}. 
Then AGENTM

Po is disposed of from the last node after visiting all users in {PATHPo}. 
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The similarity model is composed of a set of similarities between pairs of items 
and represented as a matrix [1]. For incremental computation of similarity relation-
ships, each agent does as follows; 

1. AGENTM
Po identifies IO and IP that are {ITEMSPc}∩{ITEMSPo} and {ITEMSPc}-

{ITEMSPo} respectively, by communicating with a neighbor’s agent AGENTPc. 
2.  For each pair (IOi, IPj), which is IOi ∈ IO and IPj ∈ IP, AGENTM

Po calculates 
values shown in Equation 1 and send the values to its own agent AGENTPo. 
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3. AGENTPo adds up these values incrementally until AGENTM
Po sends the values of 

all users in {PATHPo} except for those which don’t have IOi. 
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4. AGENTPo calculates the similarity of item pair (IOi, IPj).  
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The above-mentioned procedure involving cosine-similarity metrics can have dif-
ferent versions simply by modifying the second process. For instance, in order to use 
adjusted cosine similarities between two items as a similarity metric [5], Equ.(1), (2) 
are modified as  
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(4) 

In general cases, AGENTPo can update a similarity model owned by PO incremen-
tally according to the above procedures. However, assume that a neighbor PC has the 
list {BLOCKPc}, the list of the users whom PC distrusts, and PO is included in this list. 
Not trusting PO, PC may not want to be open with PO about his own information. In 
this case, AGENTPc rejects the request for information from AGENTM

Po.  
If the similarity model has already been built for PC to get recommendation, 

AGENTM
Po has no need to visit PC’s successive nodes and can get their values from 

this model. This model has been built based on {PATHPc} setting PC as a source. 
{PATHPc} is much more likely to include the same users as {PATHPo}; the closer the 
distance from the source to PC, the more similar it is. In this case, PO’s similarity 
model might include the information of more neighbors than the users whom 
AGENTM

Po intended to visit at the beginning. Moreover, these users included in PC’s 
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model might overlap with the users who AGENTM
Po has already visited or is supposed 

to visit hereafter. However, “overlapping users” means that they are trusted by more 
preceding level users, which can have a positive influence on recommendations by 
reflecting their opinions more. By pruning the successive nodes, tracing costs can be 
decreased drastically. 

3.3   Propagating User Feedback 

Based on this similarity model, AGENTPo provides recommendations to PO. Simply, 
the particular items, which obtain either the highest averages of each column or the 
highest prediction values, are recommended. Explicit prediction values of user PO for  
item IPj can be computed by the weighed sum of PO’s ratings about IOi using the 
similarity sim(IOi, IPj) as the weight and defined as Equ.(5) [1, 5].  
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The idea is that the average rating of items that are similar to the selected item is a 
good estimate of the rating for the selected item [1]. 

One of the principle issues that we have to consider in a model-based approach is 
how the updated information can be reflected in original models during the term when 
they have not been re-built yet. When item IPk is recommended to PO, she can express 
her preference for this item as a rating. Whenever the PO gives feedback, AGENTPo 
deletes IPk’s column from her model and adds it to {ITEMSPo} because it now has its 
own rating. Updated information that is, {ITEMSPo} including a pair <IPk, PO’s rating 
about IPk>, is propagated to personal agents of users in {TRUSTPo}. From PC’s point 
of view who is given this information by AGENTPo, item IPk has not been included in 
{ITEMSPo} before, so the similarities between IPk and items in {ITEMSPo} ∩ 

{ITEMSPc} cannot be included in PC’s model. 
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Fig. 3. Recommendations and propagation user’s feedback 

AGENTPc now can compute similarities between them, update the model in 
patches; incremental updating can be achieved by propagating it to the users in PC’s 
own list {TRUSTPc}. Fig.3 illustrates feedback and update process. 
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4   Experimental Results 

In this section we present the results of applying TCFMA method for recommendation 
in a peer-to-peer environment. The prototype system is implemented using IBM Aglet 
Software with JDK1.4.2 [10]. 

4.1   Data Sets and Evaluation Metrics 

Epinions.com is an online community where users can review various items and rate 
them on a scale of 1 to 5. Judging whether the reviews of others are helpful to users 
themselves or not, users can express trust or distrust of these reviewers. We collected 
the dataset by crawling the Epinions.com site in May 2006. The collected dataset was 
too sparse to be used for experiments, so we selected a dataset including users who 
had rated at least 5 items and expressed a trust opinion of at least 25 users. In addi-
tion, the items had been rated by at least 10 users, i.e. the dataset contained 121,862 
ratings for 2,955 items and 216,490 trust information presented by 4,751 users. The 
sparsity level of our dataset is 1−(121,862/4751ⅹ2955), which is 0.9913. Then, this 
dataset was divided into two parts; training set contains all of each user’s ratings ex-
cept one rating used for testing. Testing set contains the only one rating for each user. 

In order to measure performance, Mean Absolute Error, which is used as a meas-
ure of how accurate prediction of user’s rating for an item can be, was performed  
[1, 5, 8]. MAE of all users in the testing set is defined as:  

M

ratingaratingp
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M

i ii∑ =
−

= 1
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where M is a list of all items and <a_ratingi , p_ratingi> is the actual/predicted rating 
pairs of  each user in the testing set.  

Another metric Absolute Prediction Shift measured the distortion of prediction oc-
curring due to an attack. While p_rating is the predicted rating computed before an 
attack, p_rating′ means the predicted rating computed after an attack [14].  
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The evaluation value of Prediction Shift originally has two meanings, in other 
words, a positive value has different meaning from a negative value. Each value 
means that the attack has succeeded in making the target item more positively or 
negatively rated [14]. However, APS measures the absolute value just to evaluate the 
influence from injected profiles regardless of attack-classification in our experiments.  

4.2   Preliminary Experiments 

Overall Performance of Prediction Quality. Increasing the number of users used 
for similarity model building, we compared our system with one of the methods pro-
posed in PocketLens. The experiment was carried out in order to indicate that the pro-
posed method performs as good as an existing work. Prior to experiments, the vector 
of ratings r

r
 for each user was normalized as ||r|| = 1 except for experiments by using 
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an adjusted cosine-based similarity metric; otherwise, users who had rated a large 
number of items had more influence than users who had only rated a few items [9]. In 
the process of model building, mobile agents find neighbor peers based on the con-
verted trust graph and compute similarity relations by using a cosine-based similarity 
metric and an adjusted cosine-based one (see Equation 1 and 4). On the other hand, in 
the benchmarked one, the information of the peers randomly accessed regardless of 
web of trust is used for model building by using the cosine-based one.  

Table 2. Overall performance of prediction quality 

Neighbor peer size 10 30 50 70 100 

Random 1.2866 1.2863 1.2859 1.2859 1.2859 
TCFMA + cosine 1.2113 1.2114 1.2100 1.2101 1.2101 

TCFMA + adjusted 1.2384 1.2480 1.2412 1.2415 1.2402 

As shown in Table 2, all three methods provided nearly the same values for MAE. 
When the TCFMA + cosine-based scheme was used, the results moved from 1.2113 
to 1.2101, which shown better prediction quality than other two methods. It can be 
observed that the proposed methods provide more accurate predictions than random 
model building at all neighborhood size levels. For example, when the neighborhood 
size is 50, the TCFMA + cosine-based scheme and the TCFMA + adjusted cosine-
based one obtain an MAE of 1.2100 and an MAE of 1.2412 whereas the random 
scheme obtains an MAE of 1.2859.  

In addition, the results show that even a small number of users can build relatively 
better model with our proposed methods, whereas the random scheme needs more 
users’ information to obtain a similarity model of stable. 

Positive Effect of Trust for Prediction. When the dataset including the users who 
have many trust opinions is used for building a similarity model, the model includes a 
larger number of trustworthy users. In order to determine the sensitivity of trust opin-
ion size on the quality of the prediction, we assumed that each user have trust users of 
only the number of x. In each step of evaluations, the trust opinion size was selec-
tively varied for building a similarity model of each testing user. According to the 
value of x, the prediction quality in cases of the proposed methods, i.e. similarity 
model building based on the converted trust graph, was evaluated.  

Table 3. Sensitivity of trust on MAE (neighbor peer size = 50) 

Trust x Trust 5 Trust 10 Trust 15 Trust 25 Trust 45 

TCFMA + cosine 1.4131 1.3338 1.3313 1.2867 1.1611 

TCFMA + adjusted 1.5688 1.3028 1.2952 1.2512 1.2238 

The conclusion drawn from these results shown in Table 3 is that the more trust 
opinions are included in each user, the better prediction quality is obtained. This 
means that the direct trust opinions have positive influence on the prediction quality. 
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4.3   Performance Evaluations 

Robustness against Profile Injection Attack. To evaluate the robustness against a 
malicious attack, a set of manipulated user profiles including arbitrary 50 ratings each 
was inserted into the original training dataset, while the number of these profiles was 
increased from 100 to 2000. Each user in the manipulated set was made to have the 
trust edges to all users in the set while some users in the original set were made to 
present trust to some of manipulated users. Through the prior experiment and previ-
ous research, we selected 50 as a neighborhood size and set it up in this experiment 
[1, 9]. In both cases of TCFMA + cosine-based and random model building, the aver-
age number of manipulated users accessed for building each user’s model was meas-
ured and the distortion of prediction occurring due to these data was compared by 
using Absolute Prediction Shift. 
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Fig. 4. Comparison of robustness on manipulated users 

In accordance with increases in the number of manipulated users, we find that the 
proposed method showed better results than random model building in both meas-
urements. Fig. 4 illustrates that the proposed method significantly outperforms others 
in resistance against the profile injection attack. For example, when the number of 
manipulated users was 2000, TCFMA + cosine-based scheme obtained a #MR of 
47.71 and an APS of 0.0224, whereas the random scheme obtained a #MR of 106.56 
and an APS of 0.0639. 

Efficiency of similarity model building. Finally, we focused on the time required for 
model building. Forwarded along the path, a mobile agent only sends computed re-
sults to the personal agent of the model owner by the proposed methods whereas in 
the random scheme request/response messages have to be exchanged between the 
model owner and each random user for similarity model building. The experiment 
was conducted to evaluate the time and the number of accessed users that are required  
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Table 4. Comparison of required time and accessed users (neighbor user size = 50) 

Model Owner User 1 User 2 User 3 User 4 User 5 Average 

Time(ms) 5786.81 11576.54 9776.97 12676.54 9425.59 9848.49 TCFMA 
+ cosine # User 292.64 861.94 680.08 953.54 636.64 684.968 

Time(ms) 31590.24 30129.18 31966.27 23209.48 20977.24 27574.48 
Random 

# User 4379.48 4209.75 4505.89 3315.13 2962.29 3874.51 

to build similarity models. For a <item, rating> pair of each 5 users in a testing set, 
the similarity model was built 30 times relatively to get the average performance. 

The experimental results show that the average time of TCFMA + cosine-based 
model building is 9848.49 (msec.), which is reasonably shorter than 27574.48 (msec.) 
of the random one. In addition, the number of users who have to be accessed for simi-
larity model building is also considerably smaller as shown in Table 4. These results 
demonstrate that the proposed method is far superior with respect to the effectiveness 
of similarity model building.  

5   Conclusion and Future Work 

In a peer to peer environment, a distributed recommender system is an ongoing area 
of diverse applications [1]. In the paper, we propose a novel TCFMA architecture to 
solve the problems that can occur in online collaborative filtering recommender sys-
tems related to an improper use of personal information and a profile injection attack. 
In order to obtain more trustworthy and accurate recommendations, we consider the 
trust relationships between users in web of trust. The Advogato trust metric is used as 
a trust propagation scheme required for overcoming sparseness of trust information. 
As noted in our experimental results, we obtain extraordinary robustness from mali-
cious attacks without any degradation of prediction quality, compared to general peer-
to-peer collaborative filtering recommender system. Moreover, we also achieve an 
efficiency of distributed computing for building item-item similarity model by em-
ploying trust-based collaborative filtering scheme which is added some useful func-
tionality of mobile agents.    

However, there still remains certain issue: trust decay. It means that the trust rela-
tionship becomes weaker as it forwards to its successors [2, 3]. In our system, al-
though a mobile agent finds trust neighbors who are in the closest-distance from a 
model owner first, the neighbors, even on the different levels, are regarded as the 
same. It is essential to take this phenomenon into consideration for applying trust 
propagation algorithm to real-world application. Another interesting issue is about 
attack detection, which has been often shown in recent studies. Automated attack de-
tection algorithms based on diverse types of attack model can lead more robust rec-
ommendation algorithms [13, 14, 17]. As the recommender systems have been more 
common in E-commerce application, these issues are becoming more interesting and 
important. 
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Abstract. Agent competition and coordination are two classical and
most important tasks in multiagent systems. In recent years, there was a
number of learning algorithms proposed to resolve such type of problems.
Among them, there is an important class of algorithms, called adaptive
learning algorithms, that were shown to be able to converge in self-play to
a solution in a wide variety of the repeated matrix games. Although cer-
tain algorithms of this class, such as Infinitesimal Gradient Ascent (IGA),
Policy Hill-Climbing (PHC) and Adaptive Play Q-learning (APQ), have
been catholically studied in the recent literature, a question of how these
algorithms perform versus each other in general form stochastic games
is remaining little-studied. In this work we are trying to answer this
question. To do that, we analyse these algorithms in detail and give a
comparative analysis of their behavior on a set of competition and coor-
dination stochastic games. Also, we introduce a new multiagent learning
algorithm, called ModIGA. This is an extension of the IGA algorithm,
which is able to estimate the strategy of its opponents in the cases when
they do not explicitly play mixed strategies (e.g., APQ) and which can
be applied to the games with more than two actions.

1 Introduction

Competition and coordination between autonomous agents are two classical and
most important tasks in multiagent systems. Coordination is especially impor-
tant in multi-robotic systems where a number of non-adversarial robots (but not
necessarily explicitly cooperative) are aimed to accomplish a task while being
limited in communication and in knowledge about principles of rationality under-
lying their counterparts. On the other hand, competition is a natural condition
of most real life situations. The agents that share limited resources, negotiate
about prices and, in general, have proper interests first or last find themselves
in a competitive situation.

Typically, multiagent environments are modeled as stochastic games [1].
Stochastic game is a model to represent multi-state multiagent environments
having Markovian property and a stochastic inter-state transition rule, and can
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be used to model inter-agent interactions in such environments. Formally, a
satochastic game is a tuple (n,S,A1...n, T, R1...n), where n is the number of
agents, S is the set of states s ∈ S now represented as vectors, Aj is the set of
actions aj ∈ Aj available to agent j, A is the joint action space A1 × . . .×An,
T is the transition function: S ×A × S �→ [0, 1], Rj is the reward function for
agent j: S×A �→ R and s0 ∈ S is the initial state.

Further, in the article we will refer to a game theoretic terminology, therefore
let’s introduce some useful notions of the Game Theory here. A matrix game is
a tuple (n,A1...n, R1...n), where n is the number of players, Aj is the strategy
space of player j, j = 1 . . . n, and the value function Rj : A1 × An �→ R defines
the utility for player j of a joint action a ∈ A = A1× . . .×An. A mixed strategy
for player j is a distribution πj , where πjaj is the probability for player j to
select some action aj. A strategy is pure if πjaj = 1 for some aj . A strategy
profile is a collection Π = {πj |j = 1 . . . n} of all players’ strategies. A reduced
profile for player j, Π−j = Π\{πj}, is a strategy profile containing strategies
of all players except j, and Π−ja−j is the probability for players k �= j to play
a joint action a−j ∈ A−j = A1 × . . . × Aj−1 × Aj+1 × . . . × An where a−j is
〈ak|k = 1 . . . n, k �= j〉.

Recently, there was a number of learning algorithms proposed to resolve de-
cision problems in stochastic games [1,2,3,4,5,6,7,8,9,10,11]. Typically, these al-
gorithms are constructed to iteratively play a game with an opponent, and, by
playing this game, to converge to a solution. Solution in game theory is called
equilibrium. We say that the playing strategies of all agents forms an equilibrium
in a stochastic game if a unilateral deviation of an agent from its current strategy
contradicts its principles of rationality (usually, maximization of the utility).

Among the learning algorithms proposed for the stochastic games, there is an
important class, which we call adaptive learning algorithms, that are proven to
be able to converge in self-play (i.e., when learning “against” agents that are
using the same learning algorithm) to an equilibrium solution in a wide variety
of repeated matrix games. The advantage of the adaptive learning algorithms
with respect to other class of multiagent learning algorithms, such as equilib-
rium learning algorithms [1,7,8], is that the latter are calculating an equilibrium
solution regardless the other agents’ actual behavior (i.e., equilibrium learners
assume that their opponents are rational, though they may not be) and their
convergence is limited to a number of cases where these equilibria are identifi-
able. The adaptive learning agents, on the contrary, make no assumptions about
their opponents’ rationality and learning capabilities, and about the solution
type they are searching. Adaptive agents are adapting to their opponents and
a solution is found as an emerging result of this adaptation. Among adaptive
algorithms, the most outstanding and theoretically sound ones are Infinitesi-
mal Gradient Ascent (IGA) [4], Policy Hill-Climbing (PHC) [2] and Adaptive
Play Q -learning (APQ) [3]. These algorithms were empirically tested by their
respective authors on the different test benches. However, although these algo-
rithms were tested on a number of repeated matrix games and on some exam-
ples of stochastic games, a number of questions is remaining. First, whether these
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algorithms are well extensible to the general form stochastic games. Second, how
these algorithms are comparable between themselves (in terms of convergence
and relative effectiveness against each other).

In this paper we are trying to answer these questions. To do that, we analyse
these algorithms in detail and give a comparative analysis of their behavior on a
set of competition and coordination stochastic games, which includes two-robot-
on-the-grid coordination game and two-robot-predator-prey competition game.
Further, we introduce a new multiagent learning algorithm, called ModIGA, a
modification of the IGA algorithm.

2 Adaptive Learning Algorithms

As we noted above, to learn a “good” policy in stochastic games a number of
adaptive algorithms have been proposed. They can be conventionally divided
onto three groups: (1) Opponent Modelling algorithms [3,5], (2) Policy Gradi-
ent based algorithms [2,4] and Adaptivity Modelling algorithms [9,10,11]. Al-
though the algorithms of the third group are very interesting and empirically
shown to have several attractive properties, such as exploiting their opponents
in adversarial games [10,11] and converging to a solution maximizing welfare of
both players in non-adversarial two-player matrix games [11], there are still no
theoretical proofs of their correctness, while in the first two groups there are
algorithms that were formally proven to have such properties as rationality and
convergence. In our analysis, we opted for the following three adaptive learning
algorithms: Infinitesimal Gradient Ascent (IGA) [4], Policy Hill-Climbing (PHC)
[2] and Adaptive Play Q -learning (APQ) [3] because, as we have just noted, (1)
they are theoretically proven to converge to a stable solution (at least in self-
play), (2) they represent two major classes of learning algorithms, those able to
play pure strategies only (APQ) and those able to play mixed strategies (IGA,
PHC).

In this section we analyze in detail these algorithms. Also, we introduce a new
multiagent learning algorithm, called ModIGA. This is an extension of the IGA
algorithm, which is able to estimate the strategy of its opponents in the cases
when they do not explicitly play mixed strategies (e.g., APQ) and which, unlike
IGA, can be applied to the games with more than two actions.

2.1 Adaptive Play Q-Learning

Formally, each player j playing Adaptive Play [12] saves in memory a history
Hj
t = {a−jt−p, . . . ,a−jt } of the last p joint actions played by the other players. To

select a strategy to play at time t+1 each player randomly and irrevocably sam-
ples from Hj

t a set of examples of length l, Ĥj
t = {a−jk1 , . . . ,a−jkl

}, and calculates
the empiric distribution Π̂−j as an approximation of the real reduced profile of
strategies played by the other players, using the following:

Π̂−ja−j =
C(a−j , Ĥj

t )
l

(1)
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where C(a−j , Ĥj
t )) is the number of times that the joint action a−j was played

by the other players according to the set Ĥj
t . Given the probability distribution

over the other players’ actions, Π̂−j , the player j plays its best reply, BRj(Π̂−j),
to this distribution with some exploration. If there are several equivalent best
replies, the player j randomly chooses one of them. Young [12] proved the con-
vergence of Adaptive Play to an equilibrium when played in self-play for a big
class of games such as the coordination and common interest games.

Adaptive Play Q -learning (APQ) is an extension of Young’s algorithm to
the multi-state stochastic game context. To do that, the usual single-agent
Q-learning update rule [13] was modified to consider multiple agents as follows:

Qj(s,a)← (1− α)Qj(s,a) + α[Rj(s,a) + γ max
aj∈πj(s′)

U j(Π̂(s′) ∪ {πj(s′)})]

where j is an agent, a is a joint action played by the agents in state s ∈ S,
Qj(s,a) is the current value for player j of playing the joint action a in state
s, Rj(s,a) is the immediate reward the player j receives if the joint action a is
played in the state s and πj(s′) are all possible pure strategies that are available
for player j in state s′.

2.2 Infinitesimal Gradient Ascent

To examine the dynamics of using policy gradient in repeated games, Singh,
Kearns and Mansour modeled this process for two-player, two-action matrix
games. They called their approach Infinitesimal Gradient Ascent (IGA) [4]. Un-
like APQ, which can learn and play pure strategies only, IGA players were de-
signed to be capable to learn and play mixed strategies.

The problem of the gradient ascent in matrix games was modelled by Singh
and colleagues as having two payoff matrices for the row and column players, r
and c, as follows:

Rr =
[
r11 r12

r21 r22

]
, Rc =

[
c11 c12

c21 c22

]

If row player r selects an action i and the column player c selects an action j,
then the payoffs they obtain are Rr

ij and Rc
ij respectively.

Because the game being modelled has only two available actions for each agent,
a mixed strategy can be represented as a single value. If we let α ∈ [0, 1] be a
probability the player r selects the action 1, then 1−α will be the probability to
play the action 2. Similarly, we can define as β ∈ [0, 1] and 1−β the probabilities
to play actions 1 and 2 by the player c. The expected utility of playing a strategy
profile {α, β} for player r can then be calculated as follows:

U r({α, β}) = r11αβ + r22(1− α)(1 − β) + r12α(1 − β) + r21(1− α)β

At each game iteration, to estimate the effect of changing its current strategy,
player r calculates a partial derivative of the expected utility with respect its
current mixed strategy:

∂U r({α, β})
∂α

= βu − (r22 − r12)
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where u = (r11 + r22)− (r21 + r12).
Having calculated the gradient, IGA agent adjusts its current strategy in the

direction of this gradient as to maximize its utility:

αt+1 = αt + η
∂U r({αt, βt})

∂α

where η is a step size, usually 0 < η 
 1. Similar equations can be written for the
column player c as well. Obviously, the opponent’s mixed strategy is supposed
to be known by the players.

Singh and colleagues proved the convergence of IGA to an equilibrium (or,
at least, to the equivalent average reward of an equilibrium), when played in
self-play, in the case of the infinitesimal step size (limη→0).

2.3 Policy Hill-Climbing Algorithm

The first practical algorithm capable to play mixed strategies that realized the
convergence properties of IGA was Policy Hill-Climbing (PHC) learning algo-
rithm [2]. The PHC algorithm requires neither knowledge of the opponent’s
current stochastic policy nor its recently executed actions (the latter is required
for the APQ algorithm, for example). The algorithm, in essence, performs hill-
climbing in the space of mixed strategies and is, in fact, a simple modification
of the single-agent Q -learning technique. It is composed of two parts. The first
part is the reinforcement learning component, which is based on the Q -learning
technique to maintain the values of the particular actions in the states:

Q̂j(st, a
j
t)← (1− α)Q̂j(st, a

j
t) + α

[
Rj
t (st, a

j
t) + γ max

aj
t+1

Q̂(st+1, a
j
t+1)

]

The second part is the game theoretic component, which maintains the current
mixed strategy in each system’s state. The policy is improved by increasing the
probability that the agent selects the highest valued action, by using the small
step δ which is called learning rate:

πjaj (s)← πjaj (s) + Δsaj (2)

where

Δsaj =
{−δsaj if aj �= argmaxa′j Q̂(s, a′j)∑

a′j �=aj δsa′j otherwise (3)

δsaj = min
(

πj(s, aj),
δ

|Aj | − 1

)
(4)

while constrained to a legal probability distribution. If δ = 1 the algorithm
is equivalent to the single-agent Q -learning as soon as the learning agent will
deterministically execute the best action (greedy policy). As well as the single-
agent Q -learning, this technique is rational and converges to the optimal solution
if the other players follow a fixed (stationary) policy. However, if the other players
are learning, the PHC algorithm may not converge to a stationary policy though
its average reward will converge to the reward of a Nash equilibrium [2].
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2.4 ModIGA

While IGA demonstrated good convergence results, its applicability in reality
is limited to the two-action case where the opponent is playing an identifiable
mixed strategy. This assumption does not reflect real nature problems. In reality,
we are usually expecting agent to observe the opponent’s actions rather than
its mixed strategy. Furthermore, the real life learning agents, as well as their
counterparts, are intended to have more than two available actions.

We introduce an improved version of the IGA algorithm, which is able to learn
a mixed strategy for more than two simple actions and to estimate the strategy
of its opponents even if they do not explicitly play a mixed strategy. (This is the
case, for example, when playing against APQ algorithm.)

To make IGA agent able to estimate the strategy of its opponent we used
the Adaptive Play’s probability estimation technique described in Subsection
2.1. Having calculated the estimation of the opponent’s strategy, Π−jt+1, the IGA
agent is able to calculate the gradient of its own current strategy by using the
equations of Subsection 2.2. It is important to note that even if the opponent
is not playing explicitly mixed strategies (e.g., APQ), the IGA agent using this
technique is still able to calculate the gradient of its strategy, though this gradient
will be calculated to the averaged opponent’s strategy rather than to its real
strategy.

When there are more than two actions at the agents’ disposal, the techniques
of gradient calculation and strategy update of two-action case do not work well
and, as we observed, cannot be readily extended to the case of multiple actions.
First, this is because in this case there can not be one variable to represent the
agent’s strategy and another one depending on it. Second, in the two-action case,
an increase of the probability to make one action tacitly and at the same degree
decreased the probability of the other action to be executed, which always kept
the total probability equal to 1. In the multiple action case, this is no longer so.

To deal with this problem, we adapted the technique used in PHC algorithm.
It consists in updating the strategy in the direction of the action with the higher
Q-value (see equations 2,3,4). But unlike PHC, in our ModIGA algorithm, δ is
proportional to the Q-value. This keeps the gradient ascent property, i.e., the
step in the direction of the gradient is proportional to the gradient itself.

3 Examples

To make our experiments, we programmed two stochastic games, which model two
the most important types of multiagent interactions: coordination and competi-
tion. The first game is called two-robot-on-the-grid coordination problem, first
introduced by Hu and Wellman [7]. The game consists of the grid containing a
number of cells. There are two robots on the grid, which have four available actions,
up, down, left and right. By making actions, robots are able to transit
between cells with a certain probability of the transition success. If transition is
successful, robot changes the cell in the intended direction. Otherwise, robot keeps
its current position. For each action made in each cell, except the goal cell, robot
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Fig. 1. (a) The two-robot-on-the-grid coordination problem and (b) The two-robot-
predator-prey competition game

receives a negative reward. A collision is possible if robots are trying to transit into
the same cell or to trade cells. In the case of collision, robots receive a negative col-
lision reward. The goal of each robot hence is to reach its respective goal cell by
collecting the minimal value of negative reward. In our experiments we set the fol-
lowing values of the parameters of the model. The action reward in all non-goal
cells is −0.04 and is 0 in the goal cell, the collision reward is 0.1, the probability of
action success is 0.9 and the discount factor is 0.95. The configuration of the grid
and the start and goal cells of robots are depicted in Figure 1(a).

The second stochastic game we programmed is called two-robot-predator-prey
competition game. In this game, there are two robots on the same grid as in the
coordination game, but the robots play different roles. The first robot (player 1) is
called “predator” and its goal in the game is to catch (to achieve a collision with)
the second robot, called “prey”. The goal of the “prey” (player 2) is to reach a
refuge where it cannot be catched. I.e., the goal situations for both robots are op-
posite. If the predator has achieved its goal (i.e., catched the prey) its reward for
any action in this state is 0 and the prey, in turn, receives a negative reward of −1
for any action. On the other hand, if the prey has reached the refuge, its reward
for any action in this state is 0 and the reward of the predator is −1 regardless its
position and action. In all other states robots receive a negative reward of −0.04
for any action. So, we see, that this game is strictly competitive. We set the fol-
lowing values of the other parameters of the model. The probability of action suc-
cess of predator was set to 0.9, the same parameter of the prey was set to 0.65.
These values equalize the chances of winning of both predator and prey, as it was
determined in self-play (when both predator and prey used the same learning al-
gorithms). The discount factor was set to 0.95. The configuration of the grid, the
start cells and the refuge cell for the prey are depicted in Figure 1(b).

4 Experiments

In our experiments we compared the convergence processes and the final solution
quality of all algorithm pairs (i.e., IGA versus IGA, IGA versus PHC, and so on)
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in the both environments presented in Figure 1. The curves in Figures 2-5 show
the results of these experiments.

Figures 2-3 show the results of the experiments in the two-robot-on-the-grid
coordination problem. The curves represent the average number of inter-cell
transitions of player 1 in one trial as a function of the number of trials. To build
each curve, we averaged data over 10 similar experiments. (The results are shown
for the first agent only, because the curves for the second agent are the same.) To
reflect the convergence speed of each algorithm pair, Figure 2 represents the first
50, 000 trials of the learning process. We can easily see that the IGA×IGA pair
converges slower than the other pairs, and, on the contrary, the pair PHC×PHC
demonstrates the fastest convergence speed. This can be explained by the fact
that the learning space of the APQ and IGA algorithms is |S||A|2, since they
learn in the space of joint actions, instead of |S||A| of the PHC algorithm, which
considers its own actions only.

Figure 3 reflects the final 100, 000 trials of the same learning processes. These
curves reflect the solution quality of each algorithm pair. We can see here that
whereas PHC demonstrated the faster convergence speed in the first learning
trials, all algorithm pairs with a participation of PHC demonstrated a worse
final solution quality, i.e., in these curves, the final value of average trial length
is higher than this for the algorithm pairs without PHC. On the other hand,
the cases APQ×APQ and IGA×IGA demonstrated the best average solutions.
This can be explained by the fact that both APQ and IGA can observe the
actions of their opponents, and, by so doing, to adapt better to the strategy of
the opponent. Moreover, since in the two-robot-on-the-grid problem the solution
is deterministic (a pair of trajectories) and APQ learns pure strategies directly,
it is obvious that in that case the solution found by APQ×APQ cannot be worse
than the others.

In our opinion, the results obtained, in particular the empirical convergence of
the algorithms of different types against each other, are very interesting, because
there have been no theoretical guarantees that these algorithms converge when
playing not against themselves. This could be explained by the the similarity
of the convergence curves of these algorithms in self-play. Hence, the policies
generated at the end of each trial differ not much. Thus, the agents had almost
the same behavior when we combined these different algorithms in one play.
Additionally, the convergence properties can be held in this situation, because
the agents were not able to distinguish whether the other agent was using the
same algorithm or not.

Figures 4-5 show the results of the experiments in the two-robot-predator-
prey problem. As in the coordination problem’s case, we tested all the possible
two-by-two combinations of the chosen algorithms. The curves represent average
trial length of the predator agent. For the same reasons as sated above, we did
not present the curves for the prey agent.

Similarly to the results obtained in the coordination game, in this adversarial
game we observed the convergence to a stable value for each algorithm pair. Be-
cause of the same factors, the convergence speed during the first 50, 000 trials was
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Fig. 2. The optimal trajectory learning in a 5 × 5 two-robot-on-the-grid game. The
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use the algorithms PHC, IGA/ModIGA and APQ: the first 50, 000 trials.
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use the algorithms PHC, IGA/ModIGA and APQ: the final 100, 000 trials.

the slowest for the IGA×IGA algorithm pair and the fastest for the PHC×PHC
case (Figure 4). However, in terms of the solution quality (final value of average
trial length), the results are inverse. All the algorithm pairs with a participation
of PHC (PHC×PHC, PHC×APQ and IGA×PHC) behaved better than those
without PHC during the last 100, 000 learning trials (Figure 5). We explain this
by the ability of PHC to learn mixed strategies, which can bring better solutions
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in adversarial games than pure strategies can do. For the same reasons, APQ
cannot perform better than PHC in this case. But, surprisingly for us, IGA×IGA
case demonstrated the longest average trial length at the end of the learning,
which is somewhat unexpected, since its convergence properties are the same as
for the PHC algorithm. This fact is remaining for further investigation.
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Table 1. Effective running time in different games, in seconds.

Game PHC×PHC PHC×IGA PHC×APQ IGA×IGA IGA×APQ APQ×APQ

Coordination 69 98 113 128 117 153
Adversarial 86 121 147 171 280 218

Finally, we measured the average running time of all experiments (Table 1).
As expected, the PHC algorithm was the fastest in terms of calculation time
(it is, in fact, the simplest in terms of the amount of calculations required at
each iteration). APQ was, as expected, the slowest among all algorithms in
both competition and coordination games, since at each iteration it performs a
computationally hard operation of the opponent strategy estimation.

5 Conclusion and Future Work

In this work we compared different multiagent learning algorithms in play in
two different stochastic games, a coordination game and an adversarial game.
To do that, we extended Infinitesimal Gradient Ascent algorithm [4] to the case
where the environment has multiple states and the agents can execute more then
two different actions. The other two algorithms, namely Policy Hill Climbing [2]
and Adaptive Play Q-learning [3] have already been adapted to the stochastic
game setting by their respective authors. These algorithms was proven to con-
verge to an equilibrium in self-play in the repeated matrix games, but, to our
knowledge, they were never compared with each other in the case of stochastic
games. This encouraged us to do this research. The goals we aimed were to in-
vestigate these algorithms in detail and to make a preliminary conclusion about
their performance in stochastic games when playing against each other.

The first important observation, which we noted as a result of our experiments,
is that these algorithms converge in play against each other, which was not
observed and theoretically proved before. The second observation is the different
quality of the solutions found by the different algorithm pairs.

In terms of execution time, we observed that the PHC algorithm required less
time to get a decision in each state and, thus, it converged more quickly in the
examples we used in this work. On the other hand, in the cooperation game the
algorithms, which were able to observe the actions of their opponents (i.e., AQP
and IGA) learned better solutions in terms of the average trajectory length, than
PHC which had not such ability.

In our future work we would like to focus our attention to the finding of the
formal convergence properties of these algorithms when used one against other.
Also, we would extend our experiments to the more complex and unpredictable
environments and to the algorithms using the learning principles other then
adaptivity to the opponent’s current policy, such as Hyper-Q [10] and some
non-stationary algorithms such as [14,15].
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Abstract. Real-time vehicle location information enables to facilitate more 
efficient decision-making in dynamic automotive shipment yard environment. 
This paper proposes a multiagent-based decentralized decision-making model 
for the vehicle deployment planning in a shipment yard. A multiagent 
architecture is designed to facilitate decentralized algorithms and coordinate 
different agents dynamically. The results of computational experiments show 
that the proposed deployment model outperforms a current deployment practice 
with respect to the deployment performance measures. 

1   Introduction 

Recently, radio frequency identification (RFID) technologies have been widely 
introduced into real world supply chains [7][9]. RFID-enabled real time locating 
system (RTLS) provides a real-time visibility of dynamics by tracking all the entities 
of supply chains and allowing instant identification and automatic information 
transfer of the entities’ state [1]. Providing the visibility of dynamics and the state of 
supply chain entities in an automated and timely manner gives new opportunities to 
better control the dynamic supply chain [4][5][8]. 

This paper introduces a deployment planning in an automotive shipment yard as a 
practical application. A finished vehicle is deployed in a particular slot of the 
shipment yard of a plant until it is shipped to a destination. The shipment yard is 
equipped with RTLS, where an active RF tag attached to a vehicle transmits RF 
signals to the readers and then, the RF processor determines the vehicle’s information 
including its location. RTLS can facilitate the exchange of necessary information in 
real-time. Due to the real-time availability, a new decision-making approach needs to 
be adaptable and flexible to make decisions in constantly changing operational 
environment of the shipment yard. The objective of this paper is to develop a new 
decision-making model for improving finished vehicle deployment in the RTLS-
enabled shipment yard with the real-time information from RTLS. A proposed 
multiagent computational architecture facilitates decentralized algorithms and 
coordinates vehicle agents dynamically using a market-based model.  
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2   Vehicle Deployment Planning 

Once a vehicle is produced from an assembly plant, the vehicle is moved to a 
temporary buffer in a shipment yard and then, deployed to a general buffer. The 
general buffer stores a number of deployed vehicles until they are moved to loading 
buffers where they are loaded onto trucks for delivery. A vehicle is manufactured 
with its delivery destination and priority. The loading area and the loading schedule of 
the vehicle are determined by its delivery destination and priority. To reduce order-to-
delivery lead-time, a loading schedule is determined based on two general dispatching 
rules, high-priority-first-loaded (HPFL) rule and first-come-first-loaded (FCFL) rule. 

2.1   Description of Deployment Operations 

For a single vehicle, the deployment process is divided into four elementary 
operations conducted by yard workers. As illustrated in Figure 1, they are: (i) driving 
vehicle i from pick up area Q in a temporary buffer to allocated parking slot bi in a 
general buffer; (ii) riding back to the temporary buffer from bi by a transportation 
utility like a van; (iii) walking from determined loading area Li to slot bi ; and (iv) 
driving vehicle i from bi to its loading area Li. The operations, (i) and (ii), are 
conducted by yard workers belonging to a temporary buffer, namely group A, and (iii) 
and (iv) are performed by workers belonging to a loading buffer, namely group B. 
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Fig. 1. Illustration of the elementary operations related to deployment of vehicle i 

Based on the understanding of deployment operations in a shipment yard, the 
deployment decision and the deployment planning are defined as follows; 

Definition 1 (Deployment decision). A deployment decision is the problem of 
allocating the available parking slots in a general buffer to a newly produced vehicle 
to minimize the total operational labor cost to conduct the deployment of vehicle.      

Definition 2 (Deployment planning). A planning for the periodic deployment 
decisions through the planning time horizon is termed as a deployment planning, 
where each deployment decision is made interactively. Thus, the objective of 
deployment planning is to achieve better long term performance by controlling 
deployment decisions in dynamic environments.                                                            
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2.2   Performance Measure of Vehicle Deployment 

In this study, a consolidated operational labor cost is used as a performance measure 
for a vehicle deployment. The consolidated operational labor cost is heavily depends 
on driving, riding, and walking distance which define the distance between every pair 
of locations. Driving and riding distances can be approximately calculated as a 
rectilinear distance because a general buffer is filled with vehicles, and vehicles and 
vans can move only through the accessible roads in the yard. For example, driving 
and riding distances between two locations α and β, dD(α, β) and dR(α, β), are 
calculated by ( ) ( ) βαβαβαβα YYXXdd RD −+−== ,,  where Xi and Yi represent  

X-coordinate and Y-coordinate of location i, respectively. Walking distance, 
represented as Euclidian distance, between two locations α and β is obtained by: 

( ) ( ) ( )22
, βαβαβα YYXXdW −+−= . Using the approximated distance matrices, the 

consolidated operational labor cost C(i) for vehicle i is calculated by: 
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where sD, sR, and sW are driving, riding, and walking speeds (unit distance / unit time), 
respectively. cA and cB are unit time labor cost for group A and group B. 

2.3   Dynamics in Vehicle Deployment Planning 

Since vehicles are produced sequentially over time, a series of the decisions for 
corresponding parking slot allocations are formulated as a dynamic deployment 
planning problem that consists of a set of deployment decisions. In the dynamic 
deployment planning problem, deployment decisions made in the current time period 
affect decisions that will be made later. The dynamic deployment planning problem is 
mathematically formulated as follows: 
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where T is the set of decision epochs throughout the time horizon for deployment 
planning, and decision epoch t implies the time when a newly produced vehicle is 
released to the temporary buffer. Bt represents the set of available parking slots at time 
t, and a binary decision variable xi

b is 1 if a vehicle produced at time t is assigned to 
parking slot b (b∈Bt), otherwise 0. In this formulation, the dynamics of the set of 
available parking slots is represented as { }[ ] tBbBB t

t
tt ∀∪= ++ ,ˆ\ 11 , where bt is the 

parking slot that is allocated to the vehicle produced at time t, and 1ˆ +tB  is the set of 
parking slots that are newly emptied between time t and t+1. 

Newly emptied parking slots occur due to two main reasons. Parking slots become 
empty as vehicles deployed in these slots move into loading areas to be shipped out 
based on loading schedules. In general, once a truck arrives at a shipment yard to load 
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FIND Vk = { j | Lj = k,  j ∈ V }, where V is the set of all vehicles in a general buffer 
FOR  m = 1 To Tcapa (Tcapa is the maximum capacity of truck) 

    FIND )}(maxarg|{ j
Vj

pjjJ
k∈

∗∗∗ == , where pj is delivery priority of vehicle j. 

    IF  | J* | = 1  THEN 
        Load the vehicle j* in J* 

   Vk = Vk \ { j* } 
    ELSE IF  | J* | > 1  THEN  

        FIND )(minarg*
∗

∗∗∈
=

j
Jj

FC rj , where rj is production time of vehicle j. 

   Load the vehicle j*
FC 

   Vk = Vk \ { j*
FC

 } 
    END IF 
    m = m + 1 
END FOR 

 

Fig. 2. HPFL and FCFL based vehicle loading schedule in a shipment yard 

vehicles at loading area k, a vehicle loading schedule is generated by high-priority-
first-loaded (HPFL) rule and first-come-first-loaded (FCFL) rule as described in 
Figure 2. However, the loading schedule cannot be perfectly predicted because of 
various uncertainties in vehicle loading environment. 

The other reason is that vehicles can be put on hold or returned to the plant because 
of unexpected product quality problems. Once a quality problem for already deployed 
vehicles is reported, yard workers hold the related vehicles or move those vehicles to 
the plant to take corrective actions. Due to above two main reasons, the set of 
available parking slots keeps dynamically changing throughout the time horizon, and 
these inherent dynamics in the deployment planning environment lead to consider an 
adaptable and flexible decision-making model that can handle the dynamics. 

2.4   Deployment Planning in a Current Shipment Yard 

In a current shipment yard, the information about the available parking slots is 
obtained by manual reporting. Yard workers report the parking slots to a yard 
manager after they moved vehicles into a general buffer for deployment or into 
loading areas for shipment. By gathering manually reported information, the yard 
manager updates the status of the general buffer. Since manual reporting and updating 
processes take some time, the status of the general buffer is not updated in a real time 
manner, but updated every certain time period, typically once a day. 

In the beginning of each time period, the set of available parking slots B obtained 
by manual reporting is provided for the deployment of vehicles that will be produced 
during that time period. Since vehicle production schedule cannot be predicted with 
accuracy, a deployment decision is made whenever a finished vehicle is released to a 
shipment yard. Each decision in this period is made only based on the set of available 
parking slots B obtained at the beginning of this period. In other words, even though 
parking slots may become empty during this period, this information is not available 
for the deployment decisions made in this period. Now, by solving the following 
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problem, one of the available parking slots is assigned to vehicle i so as to minimize a 
consolidated operational labor cost: 
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where decision variable xi
b is 1 if vehicle i is allocated to slot b (b∈Bi), otherwise 0. In 

this formulation, Bi, which denotes the set of available slots for vehicle i, is obtained 

from B by excluding iB
~ ( )BBi ⊂

~
, where iB

~
 is the set of parking slots allocated to the 

vehicles that are produced earlier than vehicle i during the period. 

3   Multiagent-Based Deployment Planning with RTLS 

In a new shipment yard, RTLS enables the yard manager to be aware of the 
information of the vehicles in the yard and the available parking slots in real-time. To 
handle the dynamics in a vehicle deployment and the real-time information from 
RTLS, a multiagent-based deployment planning model is proposed, where a market-
based mechanism is introduced to improve the initially made deployment decision. 

3.1   Initial Deployment Decision 

Once a vehicle is newly produced and moved into a temporary buffer, the yard 
manager obtains the vehicle information, including its delivery priority and loading 
area and then, allocates the best parking slot among the currently available slots 
which are automatically updated in a real-time manner by RTLS. An initial 
deployment decision for a newly produced vehicle i can be determined by: 
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where decision variable xi
b is 1 if parking slot b (b∈Bi) is allocated to vehicle i, 

otherwise 0. In the above formulation, Bi, the set of available slots for vehicle i, is 
provided in real-time by detecting the set Bi

E and Bi
C, where Bi

E is the set of all empty 
parking slots when vehicle i is produced and Bi

C denotes the set of parking slots that 
are empty but allocated to other vehicles currently in the yard, however the vehicles 
are not completely moved into the slots yet. 

3.2   Improvement of Initial Deployment Decision 

Once a vehicle is moved into the temporary buffer, it requires some time period until 
the vehicle is completely moved to a parking slot in the general buffer. This time 
period is explained by two main operational delays. One is a vehicle needs to stay in a 
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temporary buffer until a yard worker becomes available to move, and the other is, it 
takes some operational time to move a vehicle from the temporary buffer to an 
allocated parking slot. During this time period, the set of available parking slots keeps 
changing due to the dynamics in shipment yard operations. To improve the 
adaptiveness and competitiveness of a decision-making model in this dynamic 
environment, initial decisions made in Section 3.1 are required to be updated in 
response to those changes. 

Since RTLS can capture dynamic events in the yard, whenever a newly emptied 
parking slot is detected, current parking slot allocations for the vehicles that are not 
completely moved into a general buffer can be updated by solving: 
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where decision variable xi
b is 1 if parking slot b is assigned to vehicle i, otherwise 0, 

and bnew is the newly detected empty parking slot. In this formulation, VP represents 
the set of vehicles that are produced but not completely moved to a general buffer yet, 
and BP denotes the set of parking slots that are currently allocated to vehicles in VP. 

The above formulation is based on a centralized information processing and 
decision-making in which the yard manager should be aware of all the related 
shipment yard information, such as vehicles with their locations, general buffer 
availability, and loading areas. Morever, the above decision problem is required to be 
solved repeatedly whenever a new empty slot is detected and to provide a solution in 
time. With increasing dynamics and growing uncertainties in the shipment yard, the 
centralized approach is inadequate in processing all the distributed information and is 
unable to make prompt responses to real shipment yard situations. 

Therefore, this study proposes a multiagent-based decision-making architecture 
where a market-based mechanism is facilitated to accommodate the dynamics and to 
process a large amount of distributed information. A multiagent-based decision-
making framework is well known as it follows a nature of decentralization and has 
been suggested to overcome limitations of the centralized approach [6][10]. 

3.3   Iterative Auction Mechanism to Update Initial Deployment Plan 

Market-based control mechanism is a paradigm for controlling distributed and 
dynamic system by taking advantage of desirable features of a market, including 
decentralization, interacting agents, and notion of resource that need to be allocated 
[3]. Due to the nature of the updating process of parking slot allocations, as discussed 
in Section 3.2, it is very natural to model this process as a negotiation process 
between competitive vehicle agents who need to acquire parking slots to achieve their 
individual goals. An iterative auction algorithm proposed by Bertsekas to solve n to n 
allocation problem [2] is introduced as a market-based mechanism in the proposed 
multiagent-based approach. Since the problem in Section 3.2, is n vehicle agents to 
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n+1 parking slots allocation problem, we add a dummy vehicle agent to re-design the 
problem as one-to-one matching allocation problem. 

It is supposed that parking slot b has a price p(b) and the vehicle agent who takes 
the slot must pay the price p(b). Net value of parking slot b for vehicle agent i is 
represented as a difference between the utility value and the price, that is, ui(b)−p(b). 
Through the algorithm, parking slots are allocated to vehicle agents so as to maximize 
the total summation of utility values. 

In this model, once a new empty parking slot bnew is detected, the deployment 
planner agent calls all the vehicle agents in VP to request the information of the 
currently allocated parking slots to the vehicle agents in VP. Now vehicle agent i, 
i∈VP responds to the deployment planner agent by sending a currently allocated 
parking slot bi. After collecting the set of currently allocated parking slots BP, the 
deployment planner agent opens an auction market by broadcasting the set of all 
available slots including bnew, BP ∪ {bnew}, to vehicle agents in VP. 

The auction algorithm proceeds in iterations starting with current allocation where 
bnew is initially allocated to dummy vehicle vd and initial prices of parking slots are set 
to zero. Each iteration starts with the allocation result and the set of prices taken from 
previous iteration, and the iteration continues until all vehicle agents are satisfied with 
an allocation. By introducing ε-complementary slackness, vehicle agent i would be 
satisfied if the net value of allocated parking slot bi is within ε of maximum net value: 
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However, it is assumed that dummy vehicle agent vd is always satisfied with the 
any allocation result through the iteration. 

In each iteration, if there is any vehicle agent i not satisfied with the previous 
allocation result, this vehicle agent finds a slot bi

* that provides maximal net value; 
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Once vehicle agent i finds the parking slot bi
*, she/he exchanges parking slots with 

the vehicle agent allocated to bi
* at the beginning of the iteration by bidding a new 

price for parking slot bi
*. The new price of parking slot bi

*, pnew(bi
* ), is set to the level 

where vehicle agent i is indifferent between bi
* and her/his second best parking slot: 

( ) ( ) ( )εβα +−+= ∗∗
iiiinew bpbp  (8) 

where αi denotes the net value of the best parking slot for vehicle i and βi  represents 
the net value of the second best parking slot. The net values, αi and βi, are calculated 
as 
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β , respectively. As shown 

in Figure 3, the above process is repeated in a sequence of iterations until all vehicle 
agents are satisfied with the result of allocations. The strength of an ε-complementary 
slackness iterative auction algorithm is explained by its computational efficiency and 
optimality properties [2]. 
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STEP 1 : Deployment Planner Agent (Opening a market) 
Ask vehicle agent i, for ∀i∈VP, about currently allocated slot bi  
Broadcast BP ∪ bnew to vehicle agents in VP 
GO TO  STEP 2 

 

STEP 2 : Vehicle Agents (Bidding and Exchanging) 
FOR Vehicle agent i,  i∈VP 
 IF  ( ) ( )

{ }
( ) ( ){ } ε−−<−

∪∈
bpbuMaxbpbu i

bBb
iii

new
P

 THEN  

  Bid new price pnew(bi
* ) for bi

*  
  Exchange slots with vehicle agent assigned to bi

* 
  Set  p(bi) = pnew(bi

* )  
 ELSE 
  Do nothing 
 END IF 
END FOR 
GO TO  STEP 3 
 

STEP 3 : Deployment Planner Agent (Terminating a market) 

IF  ( ) ( )
{ }

( ) ( ){ } ε−−≥−
∪∈

bpbuMaxbpbu i
bBb

iii
new

P
,  for PVi ∈∀  THEN 

 Close a market 
ELSE 
 GO TO  STEP 2 
END IF 

  

Fig. 3. A high level description for implementing iterative auction algorithm 

3.4   Design of Two Different Utility Functions for Vehicle Agent 

The utility value of a parking slot for a vehicle agent plays key role in the proposed 
market-based algorithm. To calculate ui(b), the value of utility when vehicle agent i 
takes parking slot b, two different utility functions are proposed. One is the utility 
function without consideration of delivery priority, ui

w/oDP (b), and the other is the 
utility function with consideration of delivery priority, ui

wDP (b). As defined in 
Equation (9), the reciprocal of a consolidated operational labor cost is given as the 
utility function ui

w/oDP (b). 
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As described in Section 2.3, vehicles in the general buffer are moved into loading 
area based on high-priority-first-loaded (HPFL) rule. The HPFL rule based loading 
schedules cause vehicles to be shipped out by the order of delivery priority. As a 
result, the amount of time a vehicle with higher delivery priority stays in a general 
buffer before it is moved into loading area is expected to be shorter than the amount 
of time a vehicle with lower delivery priority stays, and a vehicle agent with higher 
delivery priority should have higher utility value for the parking slot than a vehicle 
agent with lower delivery priority has. With the utility function with consideration of 
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delivery priority, a parking slot that is preferred by multiple vehicle agents can be 
highly utilized by decreasing the amount of time which a certain vehicle agent stays at 
this preferred parking slot. This mechanism makes it possible to reduce the overall 
operational labor cost caused during the deployment planning period. The utility 
function ui

wDP (b) is represented as: 
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(10) 

where pi denotes delivery priority of vehicle agent i. The value of pi is within 0 to 1, 0 
< pi < 1, and larger pi represents the higher delivery priority.  

4   Numerical Experiments 

To validate the proposed multiagent-based deployment planning model in the RTLS-
enabled shipment yard, computational experiments are conducted using simulations. 
As illustrated in Figure 4, the size of the general buffer considered in the experiments 
is a 20×50 grid, where the total parking slots is 1,000, and the number of loading 
areas is 20. Each simulation run is continued until 20,000 vehicles complete their 
deployment, and a total of 20 simulation runs for each deployment model are 
conducted. 
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Fig. 4. Sizes of a general buffer and a loading buffer considered in simulations 

Through the simulations, three deployment planning models are compared with 
respect to the selected performance measures, such as consolidated operational labor 
cost and shipment yard utilization. Three deployment models are: (i) DMCurrent: 
current deployment model presented in Section 2.4, (ii) MA-DMW/ODP: multiagent-
based deployment model with the utility function ui

w/oDP(b), and (iii) MA-DMWDP: 
multiagent-based deployment model with the utility function ui

wDP (b). 
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4.1   Consolidated Operational Labor Cost 

First, the average of consolidated operational labor cost per a vehicle is used to 
measure the performance of three deployment planning models. As explained in 
Section 2.2, consolidated a operational labor cost is computed based on the four 
elementary distances. It is obvious that the consolidated operational labor cost for a 
vehicle depends on which parking slot in a general buffer is allocated to the vehicle. 
For the simulation experiments, the delivery priority for each vehicle is randomly 
selected from a uniform random distribution of [0, 1], the unit time labor costs for 
yard worker group A and B are given as 10 and 15 unit costs, and it is assumed that 
unit speeds of driving and riding are 10 and 8 times higher than that of walking. 

Table 1. The average consolidated operational labor cost (COLC: unit cost) and the average 
walking distance (WD: unit distance) for a vehicle in different deployment planning models 

DMCurrent   MA-DMW/ODP   MA-DMWDP 
 

 COLC WD  COLC WD  COLC WD 

Ave.  768.3 231.6 632.1 149.8 590.1 129.6 

Table 1 shows the experimental results for the average consolidated operational 
labor cost and the average walking distance for a vehicle in three different models. 
The average consolidated operational labor costs in MA-DMW/ODP and MA-DMWDP 
are decreased as 17.7% and 23.2%, respectively, compared to the current deployment 
model. The average walking distances are reduced as 35.3% in MA-DMW/ODP and 
44.1% in MA-DMWDP compared to the current model. From the results, it is indicated 
that the walking distance dw(L, b) is a dominant factor in calculating the consolidated 
operational labor cost for a vehicle deployment. This lesson is quite reasonable in that 
walking from determined loading area L to slot b is the most time-taken operation in a 
vehicle deployment, because walking speed is much slower than driving and riding 
speeds.  

4.2   Shipment Yard Utilization 

The consolidated operational labor cost can be reduced mainly by reducing the 
walking distance of a yard worker. This fact implies that increasing a utilization rate 
of the parking slot near loading areas results in the reduction of the walking distance. 
Through the analysis of experimental results, it is found that the utilization rate of the 
parking slot near loading areas is considerably increased in the proposed multiagent-
based deployment model. Figure 5(a) and 5(b) show the utilization rates of parking 
slots in deployment planning with DMCurrent and MA-DMWDP, respectively. 
Deployment planning with MA-DMWDP in the RTLS-enabled shipment yard 
significantly increases the utilization rate of the parking slots near loading areas 
compared to deployment planning with DMCurrent. In this figure, parking slots with a 
lower column number represent they are located more close to loading areas than 
those with a higher column number. This fact provides an opportunity to reduce the 
size of a general buffer. 
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Fig. 5. The utilization rates of parking slots in (a) DMCurrent and (b) MA-DMWDP 

4.3   The Number (Frequency) of Vehicles Deployed into Parking Slots 

As described in Section 3.4, the amount of time a vehicle with higher delivery priority 
stays in the general buffer is supposed to be shorter than that of a lower priority 
vehicle. To increase the number (frequency) of vehicles deployed to the parking slots 
near loading areas, the utility function with consideration of delivery priority is 
proposed in Section 3.4. As shown in Figure 6, the number of vehicles deployed into 
the parking slots near loading areas during the planning period are increased in MA-
DMWDP compared to MA-DMW/ODP, which resulted in the reduction of the overall 
operational labor cost caused during the planning period. It is also obviously shown 
that the proposed multiagent-based deployment models considerably increase the 
number of vehicles deployed into the parking slots near loading areas. 
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5   Concluding Remarks 

This paper has presented a new approach to resolve the dynamic vehicle deployment 
planning problem in the RTLS-enabled shipment yard. The proposed approach uses a 
multiagent-based decentralized decision-making framework in which a market-based 
mechanism is facilitated to dynamically update initial vehicle deployment decisions. 
In this mechanism, a market is configured for determining a parking slot for each 
individual vehicle agent, and a utility function of a vehicle agent is designed in 
consideration of delivery priority. 

The experimental results demonstrated that multiagent-based deployment planning 
models, MA-DMW/ODP and MA-DMWDP, outperformed DMCurrent with respect to the 
selected measures of deployment performance. The results also indicated that MA-
DMWDP improved the utilization of the parking slots near loading areas, which leads 
to the reduction of overall operational labor cost. In addition, it was shown that the 
decision algorithms based on multiagent-based architecture and real-time vehicle 
information from RTLS can improve the performance further because these 
algorithms can capture the dynamics of the shipment yard environment in real-time. 
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Abstract. Resource allocation is a widely studied class of problems
in Operation Research and Artificial Intelligence. Specially, constrained
stochastic resource allocation problems, where the assignment of a con-
strained resource do not automatically imply the realization of the task.
This kind of problems are generally addressed with Markov Decision
Processes (mdps). In this paper, we present efficient lower and upper
bounds in the context of a constrained stochastic resource allocation
problem for a heuristic search algorithm called Focused Real Time Dy-
namic Programming (frtdp). Experiments show that this algorithm is
relevant for this kind of problems and that the proposed tight bounds
reduce the number of backups to perform comparatively to previous ex-
isting bounds.

1 Introduction

Resource Allocation problem is a widely studied class of problem in Operation
Research and Artificial Intelligence. This class is known to be NP-complete [10].
Since resources are usually constrained, the allocation of resources to one task
restricts the options available for other tasks. As the action space is exponential
according to the number of resources, and as the state space is exponential
according to number of resources and tasks, this type of problem with time
constraints is very complex.

A common way of addressing this large stochastic problem is by using Markov
Decision Processes (mdps), and in particular real-time search where many algo-
rithms have been developed recently. For instance Real-Time Dynamic Program-
ming (rtdp) [1], lrtdp [4], frtdp [9], hdp [3], lao� [5] are all state-of-the-art
heuristic search approaches in a stochastic environment. Because of its anytime
quality, rtdp, introduced by Barto et al. [1] is an interesting approach since it
updates states in trajectories from an initial state s0 to a goal state sg in a very
efficient way.

Actually, rtdp is much more effective if the action space can be pruned of
sub-optimal actions. To do this, McMahan et al. [6], Smith and Simmons [9],

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 50–60, 2007.
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and Singh and Cohn [8] proposed solving a stochastic problem using a rtdp
type heuristic search with upper and lower bounds on the value of states.

The bounds proposed by McMahan et al. [6] are related to a stochastic shortest
path problem. Their approach is well suited for problems where the rewards (or
costs) are obtained whenever an action is executed in a state. In the case of
our resource allocation problem where rewards are only obtained when tasks are
achieved, this approach is not applicable.

The frtdp approach by Smith and Simmons [9] proposes an efficient tra-
jectory of state updates to further speed up the convergence, given upper and
lower bounds. This efficient trajectory of state updates are combined to the ap-
proach proposed in this paper as we focus on the definition of tight bounds for
a constrained resource allocation problem.

On the other hand, the bounds proposed by Singh & Cohn [8] are suitable to
our case, and extended in this paper using, in particular, the concepts of task
criticality and feasibility to elaborate tight bounds. These bounds are imple-
mented in the context of a frtdp heuristic search approach.

Our bounds are compared theoretically and empirically to the bounds pro-
posed by Singh & Cohn using the frtdp approach. Indeed, when implementing
frtdp with our proposed upper and lower bounds, its convergence to the op-
timal policy is faster compared to the Singh & Cohn bounds using the same
algorithm. Also, even if the algorithm used to obtain the optimal policy is rtdp,
our bounds can be used with any other algorithm to solve an mdp. The only con-
dition on the use of our bounds is to be in the context of stochastic constrained
resource allocation.

Figure 1 gives an example of a stochastic resource allocation problem to execute
tasks. In this problem, there are two tasks to realize: ta1 = {wash the dishes},
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and ta2 = {clean the floor}. These two tasks are either in the realized state, or
not realized state. Thus, the combination of the specific states of the individual
tasks determines the four global states in Figure 1. To realize the tasks, two type of
resources are assumed: res1 = {brush}, and res2 = {detergent}. A computer has
to compute the optimal allocation of these resources to the cleaner robots to realize
their tasks. In this problem, a state represents a conjunction of the particular state
of each task and a time interval for which the task are going to be in this state. The
resources may be constrained by the amount that may be used simultaneously.
Furthermore, the higher is the number of resources allocated to realize a task, the
higher is the expectation of realizing the task. A possible action in this state may
be to allocate one unit of detergent to task ta1, and one brush to task ta2. The
state of the system changes stochastically, as each task’s state does. For example,
the floor may be clean or not with a certain probability, after having allocated the
brush to clean it.

2 Markov Decision Processes (MDPs) in the Context of
Resource Allocation

A Markov Decision Process (mdp) framework is used to model our stochastic
resource allocation problem. mdps have been widely adopted by researchers to-
day to model a stochastic process. This is due to the fact that mdps provide a
well-studied and simple, yet very expressive model of the world.

An mdp in the context of a resource allocation problem with limited resources
is defined as a tuple 〈Res, Ta, S, A, P, W, R, 〉, where:

– Res = 〈res1, ..., res|Res|〉 is a finite set of resource types available for a
planning process.

– Ta is a finite set of tasks with ta ∈ Ta to be executed.
– S is a finite set of states with s ∈ S. A state s is a tuple 〈tstart, tend, T a, alloc〉.

In particular, tstart is the start time of the state, tend is the end time of the
state. alloc is a set of allocations which are already in execution at time
tstart. Also, S contains a non empty set sg ⊆ S of goal states. A goal state
is a sink state where an agent stays forever.

– A is a finite set of actions (or assignments). The allocations a ∈ A(s) appli-
cable in a state are the combination of all resource assignments that may be
executed, according to the state s. In particular, a is simply an allocation
of resources to the current tasks, and ata is the resource allocation to task
ta. Each action has a start time tstart and an end time tend. The possible
actions are limited by the amount that may be used on a task at a particular
time.

– Transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s).
– W = [wta] is the relative weight (criticality) of each task.
– State rewards R = [rs] :

∑
ta∈Ta

rsta ← �sta × wta. The relative reward of the

state of a task rsta is the product of a real number �sta by the weight factor
wta. For our problem, a reward of 1× wta is given when the state of a task
(sta) is in an achieved state, and 0 in all other cases.
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– A discount factor γ, which is a real number between 0 and 1. The discount
factor describes the preference of an agent for current rewards over future
rewards.

A solution of an mdp is a policy π mapping states s into actions a ∈ A(s). In
particular, πta(s) is the action (i.e. resources to allocate) that should be executed
on task ta, considering the global state s. In this case, an optimal policy is
one that maximizes the expected total reward for accomplishing all tasks. The
optimal value of a state, V (s), is given by:

V �(s) = R(s) + max
a∈A(s)

γ
∑
s′∈S

Pa(s′|s)V (s′) (1)

The end time tend of s is set to the earliest ending time of an action in allocation
(alloc) or to execute (a) in state s. The start time tstart of state s′ is equal to
time tend of state s. Furthermore, one may compute the Q-Values Q(a, s) of each
state action pair using the following equation:

Q(a, s) = R(s) + γ
∑
s′∈S

Pa(s′|s) max
a′∈A(s′)

Q(a′, s′) (2)

where the optimal value of a state is V �(s) = max
a∈A(s)

Q(a, s). The policy is sub-

jected to the resource constraint res(π(s)) ≤ CsT a∀ s ∈ S , and ∀ res ∈ Res,
where CsT a is the resource constraint on tasks Ta. Heuristic search may reduce
the complexity of a stochastic resource allocation problem by focussing on rel-
evant states. To this end, Real-Time Dynamic Programming (rtdp) heuristic
search is now introduced.

3 Real Time Dynamic Programming

Barto et al. [1] proposed Real Time Dynamic Programming (rtdp) (Algorithm 1)
as an effective real-time heuristic search approach. rtdp is a simple dynamic pro-
gramming algorithm that involves a sequence of trial runs, each starting in the ini-
tial state s0 and ending in a goal or a solved state. Eachrtdp trial (trialRecurse
function) is the result of simulating the policy π, through the pickNextState
function, while updating the upper bound values s.U using a Bellman backup
(Equation 1) over the states s that are visited. h(s′) is a heuristic which defines
an initial value for state s′. This heuristic has to be admissible — The value given
by the heuristic has to overestimate (or underestimate) the optimal value when
the objective function is maximized (or minimized). For example, an admissible
heuristic for a stochastic shortest path problem is the solution of a deterministic
shortest path problem. Indeed, since the problem is stochastic, the optimal value
is lower than for the deterministic version. The new set of tasks to accomplish is
produced by the pickNextState function which randomly picks a none-solved
state, containing a new set of tasks to realize, by executing the current policy.

It has been proven that rtdp, given an admissible initial heuristic on the value
of states cannot be trapped in loops, and eventually yields optimal values [4].
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Algorithm 1. rtdp

Function initNode(s): {implicitly called
the first time each state s is touched}

1: s.U ← hU (s)

Function rtdp(s0,hU ):
2: loop trialRecurse(s0)

Function backup(s):
3: s.U ← maxaQU(s, a)

Function trialRecurse(s):
4: if s ∈ G then return
5: π(s) ← arg maxaQU(s, a)
6: s′ ← s.pickNextState()
7: trialRecurse(s′)
8: backup(s)

Function QU(s, a):
9: return R(s, a)+γ

∑
s′∈S γT a

s,s′s
′.U

3.1 Focused RTDP

focused rtdp (alg. 2) is an rtdp based algorithm proposed by Smith & Simmons
[9]. As in rtdp, frtdp’s execution consists in trials that begin in a given initial
state s0 and then explore reachable states of the state space, selecting actions
according to an upper bound. Once a final state is reached, it performs Bellman
updates on the way back to s0.

Unlike rtdp, frtdp maintains also a lower bound and uses others criteria
to select actions outcomes and to detect trial termination. The lower bound is
used to establish the policy and it also contributes in the priority calculation
of states to expand on the fringe of the search tree. Trial termination detection
has been modified and improved by adding an adaptive maximum depth D in
the search tree in order to avoid over-committing to long trials early on. In fact,
the maximum depth D is updated by kDD each time the trial is not useful
enough. This usefulness is represented by δW where δ measures how much the
update changed the upper bound value of s and W the expected amount of
time the current policy spends in s, adding up all possible paths from s0 to s.
Refer to the pseudo-code of Algorithm 2 and to Smith & Simmons’ article [9]
for details.

3.2 Singh & Cohn’s Lower and Upper Bounds

Singh & Cohn [8] defined lower and upper bounds for a stochastic problem. Their
approach is pretty straightforward. First of all, a value function is computed for
all tasks to realize, using a standard rtdp approach. Then, using these task -value
functions, a lower bound hL, and upper bound hU can be defined. In particular,
hL(s) = maxta∈Ta Vta(sta), and hU (s) =

∑
ta∈Ta Vta(sta). The admissibility of

these bounds has been proven by Singh & Cohn, such that, the upper bound
always overestimates the optimal value of each state, while the lower bound
always underestimates the optimal value of each state. In this paper, the bounds
defined by Singh & Cohn and implemented using frtdp define the Singh-frtdp
approach.

The next sections propose to tighten the bounds of Singh-frtdp to permit
a more effective pruning of the action space.
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Algorithm 2. Focused rtdp

Function initNode(s): {implicitly called
the first time each state s is touched}

1: (s.L, s.U) ← (hL, hU ); s.prio ← Δ(s)

Function frtdp(s0, ε,hL,hU ,D0,kD):
2: D → D0

3: while s0.U − s0.L > ε do
4: (qp, np, qc, nc) ← (0, 0, 0, 0)
5: trialRecurse(s0,W = 1,d = 0)
6: if (qc/nc) ≥ (qp/np) then

D ← kDD
7: end while

Function trialRecurse(s, W , d):
8: (a∗, s∗, δ) → backup(s)
9: trackUpdateQuality(δW, d)

10: if Δ(s) ≤ 0 or d ≥ D then return
11: trialRecurse(s∗,γT a∗

s,s∗W ,d + 1)
12: backup(s)

Function trialUpdateQuality(q, d):
13: if d > D/kD then

(qc, nc) ← (qc + q, nc + 1)
14: else (qp, np) ← (qp + q, np + 1)

Function backup(s):
15: s.L ← maxaQL(s, a)
16: u ← maxaQU(s, a)
17: a∗ ← arg maxaQU(s, a)
18: δ ← |s.U − u|
19: s.U ← u
20: p ← maxs′∈S γT a∗

s,s′s
′.prio

21: s∗ ← arg maxs′∈S γT a∗
s,s′s

′.prio
22: s.prio ← min(Δ(s), p)
23: return (a∗, s∗, δ)

Function Δ(s):
24: return |s.U − s.L| − ε/2

Function QL(s, a):
25: return R(s, a)+ γ

∑
s′∈S γT a

s,s′s
′.L

Function QU(s, a):
26: return R(s, a)+γ

∑
s′∈S γT a

s,s′s
′.U

3.3 Reducing the Upper Bound

In the next two sections, tight bounds are proposed for a stochastic resource
allocation problem. The frtdp approach initiated with these bounds defines
the Resource frtdp (r-frtdp) approach.

The upper bound of Singh-frtdp includes actions which may not be possible
to execute because of resource constraints. To consider only possible actions, the
upper bound is now:

hU (s) = max
a∈A(s)

∑
ta∈Ta

Qta(ata, sta) (3)

where Qta(ata, sta) is the Q-value of task ta for state sta, and action ata computed
using a frtdp approach.

When the time is introduced into the problem, matching task states to the
global state is not obvious. Indeed, the start time and end time of a global state
are generally different of the start time and end time of the specific state of
each task. This is caused by the fact that the end time of a state s is obtained
according to the time of the first action to end when considering all tasks. On
the other hand, the end time of a task state sta is obtained with the first action
to end, when considering the current task ta only.

To match correctly a task state sta within a global state s, we find a task
state for which:

tstartta ≤ tstart < tendta (4)
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where tstartta and tendta are, respectively the starting and ending time of sta.
Also, sta has to match the other characteristics of the task ta in the global
state s.

Here, the best matching state for a task is found. It is a matching state since
the start time of sta is less or equal than the start time of the global state s.
Indeed, the possible actions in state sta are equal or greater than the possible
actions in state s for task ta. Also, it is the best matching state because one and
only one state for a task can satisfy Equation 4 and it is the state which has the
start time the nearest possible of tstart, but for which tstartta is not greater than
tstart.

Theorem 1. The upper bound of Equation 3 is admissible.

Proof: The resource constraints are satisfied because the upper bound is com-
puted using all global possible actions a. However, hU (s) still overestimates V �(s)
because the future states of the tasks violates the resource constraint. Indeed,
each task may use all consumable resources for its own purpose. Doing this pro-
duces a higher value for each task, than the one obtained when planning for all
tasks globally with the shared limited resources. �

Complexity of Computing the Upper Bound. For the upper bound,
Singh-frtdp and r-frtdp compute a value function for each task. We con-
sider |Sta| as the number of possible states for task ta. Also, |STa| is the number
of possible joint states for all tasks ta ∈ Ta. Since |STa| is combinatorial with
the number of tasks, thus |Sta| 
 |STa|. Indeed,

|STa| = O(|Sta||Ta|) (5)

When the number of tasks is high, the complexity of computing a value function
for each task is negligible compared to computing a global value function for all
tasks. The main difference in complexity between the Singh-frtdp approach,
and r-frtdp is how the value function is used. The Singh-frtdp approach
simply sums the value function Vta(sta) of each task ta to determine the upper
bound of a state s. As for r-frtdp, all global actions a ∈ A(s) are computed
to determine the maximal possible upper bound, considering the resource con-
straints of a state s. Thus, the complexity to determine the upper bound of a
state is O(|A| × |Ta|). The computation of all global actions is much more com-
plex than simply summing the value functions, as in Singh-frtdp. A standard
Bellman backup, when computing the global solution sums |S| for each a ∈ A(s),
thus has complexity O(|A| × |S|). Since |A| × |Ta| 
 |A| × |S|, the computation
time to determine the upper bound of a state, which is done one time for each
visited state, is much less than the computation time required to compute a
standard Bellman backup for a state, which is usually done many times for each
state. Thus, the computation time of the upper bound is negligible.
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Increasing the Lower Bound. As time is integrated in this problem a first
heuristic is to use a rule based reactive planner to assign resources as tasks
income. Thus, the lower bound we develop assign resources to tasks according
to their priority and remaining time while respecting constraints as described
by algorithm 3. Practically, trials are made with action chosen by the reactive
planner in order to evaluate its policy. Choice of next states of actions are made
depending on the same criteria as frtdp (see section 3.1 or [9]). An adaptive
number of trial is also chosen, until the value gained between each trial is no
more a fixed threshold. As a result, an approximation of a sub-optimal policy is
calculated depending on time wanted to be spend on lower bound calculation.

Theorem 2. The lower bound proposed in this section is admissible.

Proof: This is a lower bound since the reactive policy is sub-optimal and resource
constraints are checked by the algorithm 3. �

Algorithm 3. hL: Reactive algorithm [2]

1: Inputs: Tasks: Tasks list;

2: Resources: Resources list;

3: {Tasks pre-treatment:}
4: Tasks ← Prioritize(Tasks)
5: Resources ← OrderByEfficiency(Resources)

6: T ← First(Tasks)
7: R ← First(Resources)
8: while Resources �= ∅ do
9: if Available(R) and Assignable(R,T ) then

10: Assign(R,T )
11: Tasks ← Tasks \ {T}
12: Resources ← Resources \ {R}
13: T ← First(Tasks)
14: else
15: T ← Next(Tasks)
16: end if
17: R ← First(Resources)
18: end while
19: return An allocation of all available resources

4 Experimental Results

The domain of the experiments is a naval platform which must counter incoming
missiles (i.e. tasks) by using its resources (i.e. weapons, movements). For the
experiments, 100 randomly resource allocation problems were generated for each
approach, and possible number of tasks. In our problem, |Sta| was generally 7,
thus each task can be in 6 distinct states. In particular, there were generally
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5 possible states for a missile where actions can be performed to counter it. In
other words, there are 5 possible reallocation for a missile until it is too late
to execute it. The number of reallocation depends greatly on the speed of the
missile and its time of appearance. For each task, there are two goal states; a
state where the missile is realized, and a state where the missile has hit the ship.
The state transitions are all stochastic because when a missile is in a given state,
it may always transit in many possible states. The number of resource type has
been fixed to 3, where each type has constraints on the amount that may be
used at a time. In particular, at most 1 resource of any type can be allocated
on a task on a particular time. This constraint is also present on a real naval
platform because of sensor and launchers constraints and engagement policies.
Each resource type has its specific range of effectiveness. In particular, the first
resource type generally has 3 possible reallocations before the threat is too near
of the ship to be able to use this resource. The effectiveness of this resource varies
between 90% and 95%. These variations in effectiveness depends greatly on the
type of threat and its range from the ship. The second resource type has a part
of its effectiveness range which overlaps with the first resource type and has 2
possible reallocations on a threat. The effectiveness of this resource is between
35% and 50%. The last resource type can be used when the threat is very near
the ship and has no possible reallocation to it. The effectiveness of this resource
varies between 65% and 85%. The bulk of the planning work is on made on the
decisions of how to allocate the first resource type which has a big range and a
high probability of effectiveness.

The optimal r-frtdp, Singh-frtdp, Up-frtdp and Low-frtdp approaches
are compared in Figure 2. Two more versions have been added to the results.
First of all, Up-frtdp uses the lower bound of Singh & Cohn [8] and the upper
bound of Section 3.3. Then, Low-rtdp uses the upper bound of Singh & Cohn
[8] and the lower bound of Section 3.3.
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In terms of experiments, notice that the Singh-frtdp approach for resource
allocation, which use loose bounds requires the most time for convergence. For
instance, it takes an average of 26.6 seconds to plan for an Singh-frtdp ap-
proach with eight tasks (see Figure 2). The r-frtdp approach solves optimally
the same type of problem in an average of 3.23 seconds. This is a very significant
improvement. The number of iterations required for convergence is significantly
smaller for r-frtdp Singh-frtdp. Indeed, the more tight the bounds are, the
faster these bounds converge to the optimal value.

On the figure results, we may also observe that the reduction in planning
time of r-frtdp compared to Singh-frtdp is obtained mostly with the lower
bound. Indeed, when the number of task to execute is high, the lower bounds
by Singh-frtdp takes the values of a single task. On the other hand, the lower
bound of r-frtdp takes into account the value of all task by using a heuristic to
distribute the resource. Indeed, an optimal allocation is one where the resources
are distributed in the best way to all tasks, and our lower bound heuristically
does that.

5 Conclusion

The experiments have shown that r-frtdp provides a potential solution to solve
efficiently stochastic resource allocation problems. Indeed, the planning time of
r-frtdp is significantly lower than for frtdp with no initial heuristic or with
the Singh & Cohn [8] heuristic. While the theoretical complexity of r-frtdp is
higher than for Singh-frtdp, its ability to produce a tight bound offsets this
aspect, as shown in the experiments.

An interesting research avenue would be to experiment r-frtdp with other
heuristic search algorithms than frtdp. hdp [3], and lao� [5] are both efficient
heuristic search algorithms which could be implemented using our bounds. As a
matter of fact, the bounds proposed in this paper can be used with any stochastic
algorithm which solves a perfectly observable resource allocation problem.

Furthermore, our approach could be improved by considering the probability
of new tasks coming in the environment and reserving resources for them as done
by Mercier & Van Hentenryck [7]. This would permit to have a more effective
model and thus a better allocation.
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Abstract. MAS failures are not only due to programming exceptions;
they may originate from other sources such as the environment of the
MAS which may influence the MAS’ behavior. Furthermore, MAS fault-
tolerant techniques based on agent replication cannot always be applied
to a MAS. For example, it is not always possible to replicate a costly
robot in a robotic MAS application. In this paper, we propose a reorga-
nization strategy, based on both task and agent replication, to enable a
MAS to detect and recover from its failures. Our strategy is different from
those presented in the literature, which are based on agent replication,
since it does not deal with programming faults but with failures origi-
nating from the MAS environment, and it is based on task and agent
replication and not only on agent replication. Our strategy is scalable
and is robust in detecting agents failure.

1 Introduction

Several fault-recovery techniques, based on agent replication, have been proposed
in the literature to build fault-tolerant multi-agent systems [2] [3] [4] [5] [6] [8] [9]
[11]. However, considering the case of a robotic MAS, it is not always possible to
replicate costly robots. Consequently, these fault-tolerant techniques could not
be applied to a MAS in this case. Furthermore, a MAS may have several sources
of failures originating from programming faults as described in [6]. However, a
MAS may operate under conditions which may prevent it from achieving its
tasks. For example, if a robot that must move is blocked by an obstacle which
it cannot encounter, then there should be another robot in the system to carry
out the tasks of the failed one. If not, the MAS is in failure without having
programming exceptions. In this paper, we will not address issues related to
programming failures but to other sources of failures which may prevent the
MAS from achieving its tasks, those induced by the environment.

In this paper, we present a reorganization strategy which includes:

– a fault-recovery technique that detects the existence of faults and eliminate
them;

– a fault-tolerance technique that provides services complying with the speci-
fications of the system in case of faults.

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 61–72, 2007.
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This strategy is evaluated with regard to its scalability, to the required time
for the system to recover from its failures, to the required time to detect an agent
failure, and to its robustness to detect agents failure. As presented in Section 4,
the technique is scalable and robust.

The paper is organized as follows. Section 2 proposes a categorization of fail-
ures. Section 3 describes the reorganization strategy. Section 4 presents the
experiment results. Section 5 compares our work with related work on fault-
tolerance techniques. Section 6 concludes this paper.

2 Categorization of Agent Failures

In this paper, we do not address failures originating from programming excep-
tions. We address failures originating from other sources mainly the environment.
We try to answer the question: what could be these other sources of failure?

To this end, we start from the assertion that a MAS is situated within an
environment with which it interacts. The environment of a MAS is defined as
what lies outside the MAS’ boundary [12]. The MAS’ boundary is the area within
which the MAS can make things happen, or prevent them from happening.
Consequently, if the MAS is in failure, then it will be able to prevent this failure
from happening if the failure is originating from the MAS’ boundary. However,
the MAS cannot prevent failures originating from its environment; we address
this kind of failures. When developing critical fault-tolerant systems such as
security systems, the different possible system failures, either those originating
from program failures or those originating from the environment must be taken
into account in order to overcome them when they occur.

The sources of failures we address here can be thought of as preconditions to
execution of agents’ tasks [1]. These preconditions may influence the whole MAS,
the agents, or the tasks. They can be grouped into three categories. The precondi-
tions in the first category are those that, if not met, prevent the MAS from being
operational. For example, a group of robots moving on a solar planet can see its
activities shutdown if the conditions on this planet are unfavorable (like a solar
storm). The preconditions of the second category are those that, if not met, pre-
vent individual agents from being operational, as for example when one robot is
out of electric power. The preconditions of the third category are those that, if not
met, prevent agent tasks from being executable. For example, if a robot moves
and encounters an obstacle which it is not able to avoid, then it will no longer
move. In this case, one of the tasks of the robot cannot be performed. However,
the robot may continue providing services to other robots which do not require
that the robot moves. Table 1 summarizes these three categories of failures.

Furthermore, each precondition of either category 2 or category 3 may affect
respectively only one agent (or task) or several agents (or tasks). This catego-
rization will be used in Section 4 to determine when the MAS may be able to
recover from its failures or not, and if so, how.

In this section, we provided a new categorization of MAS failures which should
be taken into account when developing a MAS.
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Table 1. Agents failure categories

Failure type Description

Category 1: This type of failure prevents
MAS failure the MAS from functioning

Category 2: Any failure of this type
Agent failure prevents a set of agents

from functioning

Category 3: Any failure of this type
Task Failure prevents individual task

from functioning

3 The Reorganization Strategy

As presented in [13], at least the following techniques should be taken into ac-
count in order to build fault-tolerant systems :

1. Fault-prevention technique: to prevent fault introduction and occurrence;
2. Fault-recovery technique: to detect the existence of faults and eliminate

them;
3. Fault-tolerance technique: to provide services complying with the system’s

objectives in case of faults.

The reorganization strategy we present in this paper includes a fault-recovery
technique, and a fault-tolerance technique. The fault-prevention technique will
be developed in future work. In what follows, we present these two techniques.
Before introducing these technique, we present in the next section the different
concepts required to define them.

3.1 Basic Concepts

Let Λ be the set of agents operating in a MAS. If there are m agents, Λ = {ai,
i ∈ [1..m]}; | Λ | = m. Each agent can perform several tasks. Tasks are the
activities required, or believed to be necessary for an agent to achieve a goal in
an interactive environment [1]. We define τ the set of all tasks to be performed by
agents. Let | τ |=q, and τ = {ti, i ∈ [1..q]}. Each task has a set of preconditions
which must be met so that the task is properly performed. These preconditions
are in category 3. Also, each task has post-conditions which are conditions that
must be met after the execution of the task.

For a MAS to operate correctly, its agents may require to use resources. If a
resource, required by the system, is not available, then the system may be in
failure. Hence, the set of resources required by the system must be identified.
We define, in what follows, the set R of resources required by the system; R =
{r1, ..., rl}. | R |=l.

In this section, we presented the basic concepts on which our reorganization
is defined. In what follows, we present the reorganization technique.
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3.2 The Fault-Tolerance Technique

Our fault-tolerance technique is based on task and agent redundancy. The idea
is to first replicate tasks whenever possible, and if not, then to replicate agents.
Hence, the fault-tolerance technique should reduce the overall MAS complexity
by minimizing the number of agents to be replicated.

In a MAS, there are agents determined at system design which are called
original agents, and there are agents added to the system to replicate original
agents in order to acquire the system with fault-tolerance capabilities which are
called replica agents. Consequently, a fault-tolerant multi-agent system will be
composed of the original agents and of the replica of some agents. Let Oa be the
set of the original agents of a MAS. Let Ra be the set of the replica agents. The
set of agents Λ is defined as the union of Oa and Ra.

As stated before, our approach is based on first replicating tasks if possible, oth-
erwise replicating original agents. To determine which tasks and original agents
to replicate, we introduce the notions of critical and non-critical agents. A crit-
ical agent is an original agent which performs at least one task that cannot be
replicated in any other original agent in the system. An original agent task could
be replicated in any other original agent if the latter has access to the required
resources of that task. A non-critical agent is an original agent for which each
task can be replicated in at least another original agent. We propose to replicate
all the critical agent. All the non-critical agents will see their tasks replicated in
other original agents. Each task is replicated in only one agent. If there are two
possible agents in which a given task can be replicated, then the MAS’ designer
may use several criteria in order to choose the agent in which to replicate the tasks.
These criteria can depend, for example, on the cost to replicate a task in another
agent or to replicate a task into the agent which has a minimal number of tasks
to perform. This problematic is out of the scope of this paper.

Now, when the system will operate, agents must identify the agents in which
their tasks are replicated in order to coordinate their activities. To this end, we
couple the agents on a task basis so that we avoid the overhead associated with
task reallocation after a task failure. The coupling function is implemented in
the Task class and returns the list of agents which handle this task. Each task
maintains a list of the two agents which can perform it (the original one and
the replica). When an agent is created, it is assigned a set of tasks, and each
assigned task will see its list of agents handling it updated.

Now that our fault-tolerance technique is defined, the MAS should recover
from its failures. Before introducing our fault-recovery technique, we determine
the situations from which the MAS may recover and those from which it cannot.
If a precondition of category 1 is not met then the MAS cannot operate; it is
in a fatal failure. In this case, it is not possible for the MAS to recover from its
failure except if there is an external intervention to make this precondition met.

If at least one precondition of category 2 is not met then there is at least
an agent a1 down. If all the not met a1’s preconditions are not shared with a1’s
replica, then the replica may take over the failed agent and the MAS may recover
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from its failure. Otherwise, the replica will be in failure too and the MAS would
not be able to recover from its failure.

If at least one precondition of category 3 is not met, or one of the required
resources is not available then there is at least a task t1 in failure. If all the
not met preconditions or not available t1’s resources are not shared with a t1’s
replicated task (which is implemented in another agent) then the MAS should
be able to recover from its failure since t1’s replicated task should be performed.
Otherwise, it will not recover from its failures.

Now that we identified the cases in which the MAS may recover from its
failures, we present in the next section the fault-recovery technique.

3.3 The Fault-Recovery Technique

The fault-recovery technique should allow the MAS to continue operating cor-
rectly despite failures whenever possible as stated earlier. It should allow the
system to first detect failures and then recover from them. In this section, we
provide techniques to detect and recover from failures. To illustrate our tech-
niques, we consider an agent ai in failure such that its tasks are replicated in
more than one agent.

Fault Detection Techniques
Each agent should be able to detect other agents’ failure and help to recover
from it. Let aj be an agent such that ai has some of its tasks replicated in aj ,
i.e, each agent maintains a list of agents with which it communicates.1 ai can
be down or some (and not all) of its tasks could be in failure. In order for the
agents in ai.duplicate() to take over the failed tasks, they have to know whether
ai is down or in failure. if ai is in failure and cannot perform a task t, then it
should notify a counterpart, an other agent aj acting as a backup agent for task
t, i.e, aj is coupled with ai for task t. Otherwise, it wouldn’t be able to inform
the other agents. To that effect we propose to use a handshake protocol in order
to ensure that coupled agents know whether their counterparts are down or not.
In Section 4, we evaluate the impact of the number of agents operating in the
system on the number of handshake messages exchanged between agents.

If ai is down, then each of the agents in ai.duplicate() will not receive a
handshake from ai, and will assume that they have to take over. Nevertheless,
all these agents must agree that ai is down in order to take over. We propose to
use a counter on the number of agents agreeing that ai is down. All the agents
which are in duplicate(ai) can modify the value of this counter. Each agent which
detects that ai is down increments the value of this counter. If the value of the
counter is equal to | ai.duplicate() |, then the agents agree that ai is down.
Otherwise, the agents that have incremented the value of the counter deduce
that ai is not able to communicate with them, but ai is not down. Furthermore,
there could be a loss of handshake messages in the MAS which may lead to
false failure detection; that is agents detect that an agent is down but it is not

1 A duplicate function is implemented in the agent class which returns, for each agent
instance, the list of agents with which it communicates.
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the case. In Section 4, we test the robustness of our technique with regard to
handshake messages loss.

The algorithm defining the fault-detection is presented in what follows.

Let L be the set of agents with which an agent ai has to communicate;
Let ldownAgent be a list of agents which may be down;
for ∀ aj ∈ L do

if ai.handShake(aj) = false then
Add aj to ldownAgent;
let lAgentCommunicateWith be the set of agents in which aj tasks are
replicated;
for ∀ a ∈ lAgentCommunicateWith do

if a.handShake(aj) = false then
counter:= counter + 1; – we increment the counter associated to aj .

end if
end for

end if
if counter = lAgentCommunicateWith.getSize() then

Agent aj is down;
end if

end for

Now that a failure is detected, the system should recover from it, whenever
possible.

Fault Recovery Technique
In what follows, we present how the system recovers from its failures. Let ai be
an agent in failure. Each task t, of ai, in failure will be performed by agent aj

in ai.duplicate() such that ai and aj are coupled for t. Nevertheless, aj should
have a copy of ai’s knowledge so that it can continue operating from the last
non-faulty point, if possible. aj can have a copy of ai’s knowledge by receiving
ai’s knowledge from it and in which ai’s knowledge pertaining to task t is stored.

This knowledge is implemented as an abstract class (Knowledge.java) in
which there is a reference to the agent owning this knowledge. In addition, each
agent has an attribute of type Knowledge which represents the mental state of
the agent. Each agent maintains a copy, as a list, of the mental states of the
agents for which it replicates their tasks. Doing so, when an agent mental state
of this list will be updated, we have only to update its corresponding element of
the list.

When an agent is in failure, each of its tasks in failure will be performed
by replica agents. Consequently, the communication links between agents will
change since the agents that were communicating with the agent in failure will
now communicate with some of its replica. The time needed for the agent to
change their communication links is evaluated in Section 4.

The algorithm for changing agent communication links is described in what
follow:
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if an agent is down then
Let L be the list of all agents needing to communicate with the down agent;

end if
for ∀ ak ∈ L do

Let sbl be the set of tasks to be performed by the down agent;
for ∀ t ∈ sbl do

Determine a back up agent a′ to perform t;
Add a′ to the set of agents with which ak communicate;

end for
end for

To summarize, the fault-recovery technique is based on:

– fault detection: faults are detected based on a presence notification mecha-
nism that relies on:
• a) a direct handshake protocol between coupled agents;
• b) a request for the counterpart agent whenever a task failure is detected

by an agent.
– fault recovery: the system can recover from its failures based on the shared

memory areas between agents.

4 Experiments and Results

We presented a reorganization strategy which may allow the MAS to recover
from its failures. Our strategy is based on a handshake protocol. However, there
is a risk of loosing handshake messages and consequently a false agent failure
detection may occur. In addition, when an agent is in failure, new communication
links must be established between agents. In brief, we have to evaluate our
reorganization strategy by the following tests:

1. the first test evaluates the number of handshake messages exchanged between
a 200 agents system (see Figure 1) while changing the time frequency of these
messages from 2 seconds to 25 seconds;

2. the second test evaluates the time taken to change the communication links
between agents in case of failure. The test is based on a number of agents
varying from 100 to 200, while increasing the number of tasks per agent from
two tasks per agent (see Figure 2) to 20 tasks per agent (see Figure 3);

3. the third test provides the rate of false failure detection when messages are
lost. The test is based on a number of agents varying from 40 to 200 (see
Figures 4 and 5) with a rate of lost messages varying from 20% to 100%.
The rate of false failure detection is evaluated as the ratio of the number of
false failure detection by the number of all failure detection. The number of
all failure detection is the sum of the number of real failure detection and
the number of false failure detection;

4. the fourth test is the mean time for detecting errors in the MAS by handshake
frequency (see Figure 6).
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Fig. 1. Number of handshake messages with 200 agents

Fig. 2. Required time for changing communication links with 2 tasks per agent

Fig. 3. Required time for changing communication links with 20 tasks per agent

The different tests have been done on a 1.6GHz pentium processor with a
512MO RAM. Each test was run 50 times then we evaluated the mean value of
all these tests as depicted in the different graphics. Furthermore, in order to make
the tests more realistic, we changed the values resulting from the evaluation of
the preconditions at run time in order to randomly bring agents up or down.
Each agent performs 20 tasks while in the second test, we have experiments with
agents only performing two tasks.

For the first test (Figure 1), we can see that as the time interval between hand-
shake messages increases, the number of messages exchanged between agents
considerably decreases, which is an expected result. Consequently, depending
on the capacity of the network hosting the MAS, we determine the handshake
messages frequency. If the network offers a high bandwidth capacity then we can
use short handshake messages frequency.

With the second test (Figures 2 and 3), we can see that the required time
to create new communication links between agents depends on the number of
tasks per agent. In fact, the more tasks there are, the more replica per agent
may exist, and then the more links between agents must be established since
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Fig. 4. Rate of false failure detection with 40 agents

Fig. 5. Rate of false failure detection with 200 agents

Fig. 6. Mean time for fault detection by handshake frequency

the agents that previously were communicating with the failed agent have to
communicate with new agents in which the failed tasks are replicated.

For the third test (Figures 4 and 5), we can see that the rate of false fail-
ure detection decreases when the number of agents is high. In fact, the more
agents there are in the MAS, the more links between agents are established, and
the more replica per agent there are. Consequently, the probability that all the
handshake messages with an agent ai are lost decreases when the number of ai’s
replica increases. We can see that there is approximately no false detection with
a 200 agents system (see Figure 5) with a loss messages rate of 60%. The more
agents the system has and the less false failure detections are done.

From the fourth test (see Figure 6), we can see that the mean time to detect
a failure in a MAS is approximately half the time of the frequency of handshake
messages. For example, if the handshake messages frequency is 25 seconds, then
it will take, at mean time, about 12 seconds for the MAS to detect an agent
failure if it occurs. The more the MAS is critical, the more we must detect
failures in time, and the more we have to use short time handshakes.

From these tests, first, we conclude that our technique is scalable since it
can be applied to 200 agents but it is limited to 300 agents. At 300 agents, our
program is out of memory. The technique must be improved to deal with more
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than 300 agents. Second, the duration time taken to establish new communi-
cation links depends on the number of agents and on the number of tasks per
agent; it is about 14 seconds with a system having 200 agents and 2 tasks per
agent. Third, the mean time taken to detect an agent failure is about half of the
handshake frequency. Consequently, the more critical the system is, the shorter
the handshake frequency should be.

Our reorganization strategy does not guarantee that the MAS will properly
operate. It should be combined with other techniques which deal with program-
ming failures and exceptions such as those described in [7], [8], [10], or [11].
Our reorganization strategy only addresses the failures which come from the
environment.

5 Discussion

There are several works done for building fault-tolerant multi-agent systems such
as those based on exceptions handling [10] or on task delegation [7]. However,
we cannot compare ourselves to these works since we are not addressing the
same issue because first, we are not dealing with exceptions handling on multi-
agent systems. As stated earlier, we are focusing on errors originating from the
MAS environment and not from programming exceptions. Second, fault-tolerant
techniques based on task delegation are based for example on a trust model as
described in [7] and which determines whether the risk for an agent partner to
fail is minim. However, such techniques do not address the issue when the task
in execution is in failure and this is what our strategy tries to address. Hence,
we compare our work to the techniques based on agents replication.

Before presenting this comparison, we briefly describe two relevant fault-
tolerant techniques based on agent replication. The first technique is imple-
mented in the DARX framework [8] used to develop fault-tolerant multi-agent
systems. It is based on data and/or computation replication. DARX allows to
automatically and dynamically apply replication mechanisms to agents. The
second technique helps brokers recover from failures [11]. It is based on broker
replication. It is applied when there are several broker agents in a multi-agent
system [11]. These broker agents may be able to substitute for any broker agent
that becomes unavailable. Hence, the multi-agent system can continue to oper-
ate as long as there is at least one broker agent remaining idle. The agents, that
were communicating with the failed broker will subscribe to this new broker,
and communication will resume.

The replication strategy we propose is different from the replication strategies
proposed in the literature [8] [11]. Our strategy is based on task and agent
replication and not on only agent replication as in [8] [11]. In our evaluation, we
were able to demonstrate the impact that the number of tasks per agent has on
the performance of the system (see Figures 3 and 4).

Our strategy is well suited to critical systems in which high performance is re-
quired. In fact, our strategy determines the MAS’ environment as a boundary be-
tween what the MAS controls and what it does not control. Consequently new
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sources of failures related to the outside environment can be identified from the
start, during the design phase that the techniques described in [8] and [11] do not
allow. Hence, several recovery plans may be anticipated and added to agents ac-
tion plans in order to overcome unexpected failures originating from the environ-
ment. This should guarantee more fault-tolerance to the system since new sources
of failures are taken into account in the development phase of the MAS.

6 Conclusion

In this paper, we defined a reorganization strategy which proposes a failure cat-
egorization that it has not been proposed in the literature. It allows determining
the conditions under which the MAS may recover from its failures and those
from which it may not. The reorganization strategy includes a fault-tolerance
and a fault-recovery techniques. The fault-tolerance technique determines the
critical agents of the system which must be replicated. The other agents of the
system will only see their tasks being replicated in other agents. Hence, this
technique decreases the resulting system complexity by minimizing the number
of agents to replicate. Furthermore, if it is costly to replace an agent by another
one, then this technique allows to minimize such a cost. The fault-recovery tech-
nique allows the agents to detect and overcome failures originating from the
MAS’ environment.

As future works, first, we have to improve the reorganization strategy by in-
creasing the number of agents on which its can be performed (more than 300).
Second, this strategy can be adapted to deal with different application domains
such as supply chain management problems. For example, let us consider a sup-
ply chain with several warehouses. If a disaster occurs, the supply chain must
continue operating. If each warehouse is considered as an agent, then the sources
of disasters describe the environment of the supply chain. Since it is not possible
to replicate all the warehouses, the technique can be applied and adapted to
deal with such problems. Finally, this strategy must be integrated within a more
general framework such as a MAS design methodology in order to support MAS
designers when building fault-tolerant multi-agent systems.
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Abstract. In this work, we build a decision tree to predict fungal pro-
tein localization based on physiochemical properties of proteins calcu-
lable from their primary sequences. Although there is clear evidence of
presence of the same protein in more than one sub-cellular compartment,
almost all existing automated systems restrict their predictions to single-
site localization. We address this issue by predicting as many localization
sites as possible. When localizing among 17 sub-cellular compartments,
in 64% of the cases our system successfully predicts at least one of the ex-
perimentally reported localizations. Moreover, all reported localizations
are correctly predicted in 49% of the cases. We also report 76 fungal
protein features expected to be implicated in localization, based on the
constructed decision tree.

Keywords: subcellular localization, fungal protein, decision tree, multi-
site.

1 Introduction

Sub-cellular localization allows biologists to make inference on the functions of a
protein and its annotation. It also provides important hints on the pathways the
protein is involved in and the class of proteins it may interact with. Biochemi-
cal, cytological and genetic methods are used for functional characterization of
known proteins as well as search of new proteins. The results of such experi-
ments provide accurate and reliable information on sub-cellular compartments
that are targeted by proteins. These experiments are, however, labour intensive
and manual annotation cannot keep up with the increasing number of gene prod-
ucts that become available. Automated predictors have been built in recent years
in an effort to accelerate the localization process. These systems use classification
schemes that are based on one or more of the following approaches: i) Ab-initio
methods that use compositional, bio-chemical or structural features of proteins
to predict their localization (ex: PLOC [1]), ii) Methods based on sorting signals
that determine a protein’s target location (ex: TargetP [2]), (iii) Signature-based
methods that use motifs and profiles to characterize protein families and family
domains that, in turn, serve in localization (ex: PSLT [3]), and (iv) Homology-
based methods (ex: Proteome Analyst [4]). There are also predictors that are
based on a combination of the 4 mentioned methods. The best known of such
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hybrid systems is PSORT [5] and its extensions (PSORT II, PSORTb, iPSORT
and WoLF PSORT) that use a knowledge-based system to predict localization
based on a protein’s overall amino acid composition, targeting signals and motifs.

It is not known a priori which specific features or combination of features of a
protein play determining roles in its localization. Therefore, all biochemical and
environmental factors are potentially representative and should undergo scrutiny.
Moreover, it is widely recognized that proteins localize to more than one sub-
cellular site [10]. A predictor should therefore also be able to handle multi-site
localization. We propose to build a classifier that learns, from experimentally
derived localization information, which bio-chemically meaningful features of
proteins are relevant to their localization. The system then uses this knowledge
to determine, given an amino acid sequence of a protein, all sub-cellular locations
to which the protein is destined. Two important aspects of our system need to be
emphasized: (i) the use of a hybrid classification approach based on bio-chemical
properties of proteins captured through their amino acid compositions, targeting
signals as well as functional motifs, and (ii) multiple-site localization, i.e., the
capacity to determine all the destinations within the cell to which a given protein
may be targeted. Fungi were chosen as organism group for our investigation
because they are endowed with numerous organelles and sub-cellular locations.
Moreover, extensive experimental data related to fungi may be found in the
literature.

2 Methods and Materials

2.1 Methodology

We obtain a significant number of experimental examples localizing various fun-
gal proteins in numerous compartments of the cell. For each element of the set
thus obtained, i.e. for each protein of known sub-cellular localization, we compute
a set of pre-determined characteristic features purely based on the information
contained in its amino acid sequence. Using the reported localizations and the
feature values calculated from the collected examples, we build a feature-location
matrix that associates each set of feature values with its corresponding localiza-
tion. This matrix is input into a learning tool (ID3) that generates a decision tree
that classifies the proteins according to their targeted locations. By analyzing
this decision tree, we shall attempt to find out which of the selected features have
no or little impact on the targeting of proteins to a given location, and which
sub-cellular locations cannot be localized given our set of training examples.

2.2 Data Source

For the purpose of the current work, we selected 17 localization sites (Table-1)
from the Cellular Component portion of Gene Ontology (GO). The criteria used
to guide the selection were: (i) Biological importance of the compartment - for ex-
ample nucleolus is considered as a distinct site of localization, and (ii) Availabil-
ity of evidences of experimentally discovered localizations. We also downloaded
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Table 1. Count of experimentally reported localizations per site

Cellular Site Count of Reported Localizations

Cell Cortex 72
Cell Wall 140
Cytoplasm 2821
Endosome 39
Endoplasmic Reticulum (ER) 74
Extracellular Region 35
Golgi 50
Mitochondrial Inner Membrane 73
Mitochondrial Matrix 42
Mitochondrial Outer Membrane 23
Mitochondrial Intermembrane Space 26
Nuclear Envelope 81
Nucleus 1755
Nucleolus 147
Peroxisome 24
Plasma Membrane 211
Vacuole 46
Total 5659

localization data for Saccharomyces cerevisiae, Candida albicans and Schizosac-
charomyces pombe from annotation section of GO (Release: 13 Feb. 2006) [6]. The
current experimental finding of fungal protein localizations is far from complete
and most of the localizations found in the selected sources (as well as elsewhere in
the literature) are inferred from electronic annotation or from sequence or struc-
tural similarity. In order to choose more biologically significant localizations, from
the downloadeddata we solely selected the experimentally evidenced localizations,
i.e. those inferred from direct assay, genetic interaction, mutant phenotype or phys-
ical interaction. We thus compiled, as our data set, 5659 reported localizations for
the 17 sites of Table-1. The complete listing of 4529 proteins in our data set may
be found in Table-A5 of [7]. Among these proteins, 3458 are reported to localize
to a single site and the remaining ones are multi-site (1014, 55 and 2 proteins are
reported to localize to 2, 3 and 4 sites respectively).

2.3 Selection and Calculation of Protein Features

Eukaryotic cells are endowed with many sub-cellular organelles and non-organelle
structures. Each of these structures exists within a unique biochemical environ-
ment and performs one or more specific functions. Three major aspects of pro-
teins potentially related to their localization are: i) physiochemical properties, ii)
molecular functions, and iii) biological pathways. We propose to consider three
categories of protein features, calculable from their primary sequence, as charac-
teristics associated with the three mentioned aspects. These are compositional
features, functional motifs, and targeting motifs, respectively.
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Compositional features. Length, molecular weight, and isoelectric point are three
important physical features of proteins. The latter two features are often used
in protein separation methods. As for chemical features, it has been shown that
there is a correlation between amino acid composition and cellular location of
proteins [8]. We propose to consider the following distinctive chemical features:
a) amino acids percentage composition, b) distribution of residue size (tiny,
small, medium-sized and bulky), c) basic, acidic, uncharged-polar, non-polar,
aromatic and aliphatic composition, d) hydrophobicity (hydrophobic, weakly-
hydrophobic and hydrophilic content), and e) dipeptide composition. In total,
42 physiochemical features were selected for this category, a list of which is found
in Table-A2 of [7].

Functional motifs. Most of the proteins can be grouped, on the basis of similari-
ties in their structure and function, into a limited number of families and family
domains. PROSITE database [9] is a compilation of protein families. It uses one
or more patterns (functional motifs) to represent each protein family. Through
interaction with environmental factors within the cell, these functional motifs
confer to the proteins the specific functionality that characterizes the family. We
propose to extract these functional motifs from PROSITE and use them as char-
acteristic features for fungal protein localization. On release 19 of PROSITE, we
found 119 patterns (regular expressions) associated with fungal proteins. These
patterns are listed in Table-A3 of [7] and we study them as potential factors
implicated in localization to specific sites.

Targeting motifs. Proteins that take part in a given biological process are often
from diverse families. Therefore, family-specific functional motifs alone are not
sufficient for targeting proteins in the pathways in which they are involved. The
final address of proteins that enter the secretory pathway is largely specified
by short signals (motifs) within the protein that determine interaction with
particular elements of the pathway [10]. Indeed, numerous experimental studies
provide well-documented information on how the sorting receptors within the cell
recognize various motifs in proteins amino acids sequences and selectively target
them to appropriate destinations. Through review of findings in the literature,
we selected a set of 17 motifs (Table-2) that have been recurrently associated
with targeting of specific cellular compartments. Further details on the selected
motifs, that are also regular expressions, may be found in Table-4 of [7].

Considering the three mentioned categories, a total number of 178 features
were selected for localization study. For each example protein in our data set,
we calculated each of the compositional feature values as well as Boolean values
indicating presence/absence of each of the mentioned functional and targeting
motifs. We thus constructed a feature-localization matrix with each tuple con-
sisting of a protein name, a reported localization site and values of the 178
selected features. For each protein that is reported to localize to multiple sites,
this matrix includes as many tuples as there are reported localizations.
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Table 2. Protein targeting motif features and their corresponding hypothesized target
sites

Feature name Hypothesized Targeting Site

Cleavable signal Peptide (CLSP) Extracellular Region
Transmembrane segment (TMS), Membrane
Mature protein Transmembrane Segment (MTMS),
Length of MTMS (MTMSLEN)
ER retention/retrieval signal (ERRS) ER
Endosomal signal (ES) Endosome
Vacuolar targeting signal (VTS) Vacuole
GPI attaching signal (GAS) Cell Wall
ER transmembrane segment (ERTMS) ER membrane
Vacuolar transmembrane segment (VTMS) Vacuole
Nuclear membrane localization signal (NMLS) Nuclear Envelope
Nuclear localization signal (NLS) Nucleus
Peroxisomal targeting signal (PTS) Peroxisome
Peroxisomal membrane signal (PMS) Peroxisomal membrane
Mitochondrial transfer peptide (MTP) Mitochondrial inner/outer membrane
Mitochondrial matrix transport signal (MMTP) Mitochondrial Matrix
Vesicular signal (VS) Cytoplasmic membrane-bound Vesicles

2.4 Localization Based on Decision Tree

A decision tree is built by applying ID3 [11] on our feature-localization matrix.
Classification of a query protein is accomplished by starting at the root of the
decision tree and traversing the tree until a terminal node is reached. The lo-
calization site associated with this terminal node then represents the prediction
for our query protein. During the tree traversal, the branch taken at each node
is determined by the value of the query protein for the feature associated with
that node. If a node is reached at which no emanating branch corresponds to
the feature value of the query protein, then no prediction could be made for this
query protein. If, on the other hand, the tree traversal leads to a certain node at
which no decision could be made as to which branch to take next (this could oc-
cur, for example, when the set of examples associated with that node consists of
2 or more proteins with identical feature values but different localization sites),
then we consider such a node as a multi-site terminal node and predict the query
protein to target all the localizations associated with that node.

3 Results

3.1 Performance

To evaluate the performance of the system, we followed a 5-fold cross-validation.
We divided our data set into five subsets of approximately equal size ensur-
ing that: a) single-site, double-site and triple-site proteins are each equally dis-
tributed among the five subsets, b) quadruple-site proteins (two in our data set)
are distributed into distinct subsets, and c) each subset contains approximately
the same proportion of examples located to each sub-cellular site. In each of
the five cross validations, a distinct set among these five subsets was used as
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Table 3. Per protein performance evaluation measures for localizations

Localization Protein Count Partial Prediction Total Prediction Identical Prediction

Single-Site Proteins 3458 58% 58% 30%
Double-Site Proteins 1014 82% 20% 10%
Triple-Site Proteins 55 84% 5% 0%
Quadruple-Site Proteins 2 100% 0% 0%
All Proteins 4529 64% 49% 25%

the query set and the totality of the remaining 4 subsets was used as training
set. The set of experimentally reported localizations was then compared to the
corresponding prediction set using the following performance criteria: i) Partial
prediction: system correctly predicts some of the reported localizations; we de-
termine the percentage of proteins for which at least one true positive (TP) pre-
diction was made, ii) Total prediction: system correctly predicts all the reported
localizations but may also predict some that are not reported; we determine the
percentage of proteins for which no false negative (FN) prediction was made, iii)
Identical prediction: system correctly predicts all the reported localizations and
none other; we determine the percentage of proteins for which neither FN nor
false positive (FP) prediction was made. Table-3 depicts the results. There were
76 proteins for which no localization could be predicted by the system. These
are listed in Table-9 of [7].

To measure the effect of the variability of the number of training examples
on the system’s predicting power, we calculated the proportion of correct pre-
diction of single-site proteins for each of the designated localization sites. The
result (Table-4) clearly shows a correlation between the number of training exam-
ples and the proportion of correct localization. In the lower extreme, no correct
prediction could be made for the mitochondrial matrix and outer membrane
as well as the peroxisome. As a general finding, all the proteins (single-site or
multiple-site) for which the system could not correctly predict any of the re-
ported localizations had 25 or less examples in the training set.

3.2 Characteristic Features

In order to determine the features that are effective in localization, a full de-
cision tree was built for 5659 examples using 178 features. We found that 76
feature values were actually used in the decision tree in order to determine the
localizations. These features are therefore expected to play a role in sorting the
target locations. Table-5 provides a list of these features.

3.3 Targeting Motifs Validation

The constructed decision tree is used to validate the hypothesized targeting mo-
tifs. Targeting motif feature values attached to each node of the decision tree
built from our data set are compared to values proposed to favour specific tar-
gets as per Table-2. Table-6 shows the frequency of occurrence of the targeting
motifs in proteins that localize to 12 corresponding sub-cellular sites. From the
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Table 4. Proportion of correct localization as a function of number of training examples

Reported Localization Site Examples Correct Prediction Percent Correct Prediction

Cytoplsm 1878 1290 69%
Nucleus 981 551 56%
Cell Wall 101 46 46%
Plasma Membrane 133 59 44%
Extracellular Region 23 9 39%
Golgi Apparatus 20 5 25%
Nucleolus 51 12 24%
Mitochondrial Inter-membrane Space 11 2 18%
Mitochondrial Inner Membrane 48 8 17%
Vacuole 25 4 16%
Nuclear Envelope 33 4 12%
Endoplasmic Reticulum 38 4 11%
Cell Cortex 49 4 8%
Endosome 20 1 5%
Mitochondrial Matrix 25 0 0%
Mitochondrial Outer Membrane 15 0 0%
Peroxisome 7 0 0%

result in the last six rows (indicating that only less than or equal to 38% of the
analyzed proteins contain the proposed targeting motifs), even after considering
the margin of error, we can claim that the stated targeting motifs are not suffi-
cient for localization of fungal proteins to peroxisome, vacuole, nuclear envelope,
mitochondrial matrix, endosome and cell wall.

4 Discussion

4.1 Containment Factor

Lack of sufficient protein examples localized to one or more sub-cellular sites is
the main obstacle in predicting correctly the localizations, as shown in
Table-4. Another hindrance may be the containment factor resulting from the
use of ”part-of” relationship when we compiled our data based on GO classifica-
tion. For example a protein reported to localize to the nucleolus but predicted
to go to the nucleus or one reported to target the cell cortex but predicted to go
to the cytoplasm are each counted as a false positive (FP) and a false negative
(FN). On the other hand, the fact that the system predicts, quite correctly, that
localization occurs in the nucleus and cytoplasm (respectively) is not considered
as true positive (TP). This containment factor is a result of the hierarchical
nature of the cellular compartments. To measure the extent of impact of such
containment on system’s prediction, we re-calculated the system performance as
we did before (Table-3) but this time we considered a given predicted localiza-
tion site as true positive (TP) when it is identical to or when it contains the
experimentally reported localization site (ex: when a localization is reported to
be nucleolus, prediction of nucleolus and nucleus are both considered as TP).
Performance evaluation measures for this trial were 67%, 54% and 35% for par-
tial, total and identical predictions respectively. Comparison of these results
with those of Table-3 indicates that containment factor has some effect on the
correctness of the localizations.
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Table 5. 76 Characteristic fungal protein features implicated in sub-cellular localization

Feature Type Feature Name

Physical properties Length, molecular weight, isoelectric point
Chemical properties Acidic, basic, aliphatic, aromatic, polar and uncharged, non-polar
Size distribution Tiny, small, medium, bulky
Hydrophobicity Hydrophobic, Weakly hydrophobic, Hydrophilic, Hydrophobicity
Dipeptide composition LL, LS, SL
Amino acid composition A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y
Functional Motifs Malate dehydrogenase active site signature

Multicopper oxidases signature 1
Malic enzymes signature
Actins signature 1
Profilin signature
Glutamine amidotransferases class-I active site
FGGY family of carbohydrate kinases signature 2
Ribosomal protein S5 signature
Glycosyl hydrolases family 10 active site
Indole-3-glycerol phosphate synthase signature
Glycosyl hydrolases family 2 signature 1
Glycosyl hydrolases family 11 active site signature 1
Glycosyl hydrolases family 11 active site signature 2
Chorismate synthase signature 3
EPSP synthase signature 2
Cutinase, aspartate and histidine active sites
Glyoxalase I signature 1
Imidazoleglycerol-phosphate dehydratase signature 2
Dehydroquinase class I active site
DNA/RNA non-specific endonucleases active site
Chitinases family 18 active site
Casein kinase II regulatory subunit signature
N-acetyl-gamma-glutamyl-phosphate reductase active site

Targeting Motifs Cleavable signal Peptide
ER retention / retrieval signal
ER transmembrane segment
Endosomal signal
GPI attaching signal
Mitochondrial transfer peptide
Nuclear localization signal
Nuclear membrane localization signal
Peroxisomal membrane signal
Peroxisomal targeting signal
Vesicular signal
Vacuolar targeting signal
Transmembrane segment

4.2 Performance Comparison with Existing Localizers

The State of the Art localization predictor, Proteome Analyst [4], achieves a
precision of 87% when set to predict localization of fungal proteins among 9 sub-
cellular sites. We note, however, that Proteome Analyst’s classifier
selects the most probable localization and does not report multiple-site localiza-
tions. Similarly, many other existing predictors do not consider this multiplic-
ity and predict only the best possible localization. Among the systems that do
output more than one prediction for a given protein is the PSORT [5] family
of localizers. These localizers provide as output, the probabilities of targeting
to individual sub-cellular compartments. WoLF PSORT, the most recent mem-
ber of the PSORT family, specializes in animal, plant and fungal proteins. An
overall prediction accuracy of 83% has been reported for a 14 compartment
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Table 6. Occurrence of targeting motifs in proteins of the targeting set

Localization Site Protein Targeting Motifs Count Protein Percent Localized

Targeting Motifs with motifs to proposed site

Mitochondrial inner membrane 73 MTP 73 100%
Mitochondrial outer membrane 23 MTP 23 100%
Nucleus 1755 NMLS / NLS 1663 95%
ER 74 ERRS / ERTMS 62 84%
Plasma membrane 211 TMS / MTMS 170 81%
Extracellular Region 35 CLSP 25 71%
Peroxisome 24 PTS / PMS 9 38%
Vacuole 46 VTS / VTMS 9 20%
Nuclear Envelope 81 NMLS 5 6%
Mitochondrial Matrix 42 MMTP 0 0%
Endosome 39 ES 0 0%
Cell Wall 140 GAS 0 0%

localization of yeast by WoLF PSORT [12]. These 14 compartments consist of
10 single-site locations and 4 dual localization sites (cytoplasm and nucleus, cyto-
plasm and mitochondrion, cytoplasm and peroxisome, and finally mitochondrion
and nucleus). WoLF PSORT analyzes the sequence using pre-determined rules
having as pre-conditions information on the type of targeting signal motifs that
direct proteins to various sub-cellular locations. WoLF PSORT also uses some
correlative sequence features such as amino acid content from iPSORT [13] and
sequence length. Although the latter features contain non-causal ab-initio in-
formation about the sorting signals, causal components of localization reflected
through rules continue to drive the decision process.

There is a risk involved in attempting to guide the localization process through
rules and pre-conditions as many of such rules are incomplete. In fact, as it was
shown in Table-6, in many cases the presence of a targeting motif is not a suffi-
cient cause for localization to a particular site. Moreover, there are ambiguities
involved in determining the exact pre-condition to which some of these targeting
motifs should correspond. For example, a trans-membrane helix is indicative of
the presence of a targeting motif that favours localization to the plasma mem-
brane or to the membrane of an organelle. On the other hand, the presence of
a secretory signal peptide implies direction of the protein to the extracellular
region. Now, it is hard to distinguish between these two signals. In fact, it has
been shown that the presence of one signal in a protein consistently interferes
with the detection of the other [14].

The only existing single-species predictor that does consider multi-site lo-
calization in a rigorous manner is the one devised by Chou and Cai [15]. This
system uses a data set of 3875 proteins that are experimentally localized into one
or more of 22 sub-cellular locations in budding yeast [16]. This amounts to a total
of 5132 reported localizations or (p,s) pairs where p stands for a protein and s
for a single sub-cellular site. To define a protein’s feature space, this system uses
a dimensional vector of 9772 entries consisting of 3 categories of information:
a) InterPro-mapped-to-GO, b) functional domain composition, and c) pseudo
amino acid composition. For a given query protein, p, its feature vector, v, is
compared to the set of feature vectors, V , of 5132 training proteins. The reported
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localization(s) of those elements of V that show the highest similarity with v are
designated as the system prediction(s) for the query protein. For example, if the
three vector features (p,s1), (p,s2) and (p,s3) depict the highest similarity with v
then p is predicted to localize to the set consisting of the union of s1, s2 and s3.
The performance measure reported by Chou and Cai [15] consists of the standard
per site sensitivity measure TP / (TP + FN). The reported values are 70%, 84%
and 90% (respectively) when the highest-ranking, the two highest-ranking, and
the three highest-ranking predictions (respectively) in terms of similarity with
experimental results are taken into consideration. No mention of FP and the
impact of considering more than one highest-ranking prediction on the number
of FP has been made in their work.

For the purpose of comparing our system’s performance with that of Chou
and Cai, we also proceeded with per-site evaluation of sensitivity of our system.
For each protein, we counted the number of sites that were correctly predicted,
summed this number over all the proteins and divided the result by the total
number of sites reported. We thus obtained a per-site sensitivity of 55%. Chou
and Cai did not, however, report the number of false positive (FP) and how this
number increases as they would consider more than one (2 or 3) top ranking
candidates for the purpose of localization based on similarity. As a performance
measure that reflects FP we also calculated the per-site specificity of our sys-
tem and obtained 91%. Furthermore, it is important to note that Chou and
Cai’s system deals solely with budding yeast and does not perform multi-species
prediction as is attempted in this work.

4.3 Design Decisions

Studies of dipeptide frequencies in the literature reveal that GF, GY, NG, NT
are among the dipeptides that occur most frequently in proteins in general [17].
However, to our knowledge, no results have been reported for this occurrence
specifically in fungi. We use the amino acid sequences of a set of representative
fungi to find the dipeptides that predominantly occur in fungal proteins. Calcula-
tions performed on a large set (120734) of fungal proteins from 20 different fungal
species from RefSeq database of NCBI (http://www.ncbi.nlm.nih.gov/RefSeq/
Release 7) revealed that 5 specific dipeptides (SS, LL, LS, AA, SL) occur more
often (20% or more frequent) than others in fungal protein sequences. We select
these dipeptides as features to study for localization.

We chose functional motifs (as represented by patterns in PROSITE) as protein
signature for determination of localization. This choice was motivated by the fol-
lowing considerations: i) a motif is usually located in a short well-conserved region
— typically an enzyme catalytic site, prosthetic group and an attachment site [18],
ii) motifs have a higher frequency of occurrence than domains, and iii) a motif is a
regular expression that is a quantitative descriptor: it either matches or it does not.

Our choice of ID3 as the learning tool was motivated by the following consid-
erations: i) Our training examples are known at the time of building the classifier
so there is no need for incremental learning, ii) ID3 uses all training examples
at each step in the search to make statistically based decisions regarding how
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to refine its current hypothesis and so the resulting search is much less sensitive
to errors in individual training examples, and iii) ID3’s inductive bias has been
proven to provide a high efficiency for very large sizes of training set [11].

4.4 System Coverage

Three types of coverage need to be considered in evaluating a sub-cellular lo-
calization problem: i) Location coverage: sub-regions that are supported by a
predictor. In this work, we selected 17 sub-cellular compartments as representa-
tive of all cellular components found in GO (Table-1); ii) Sequence coverage: ratio
of sequences for which a prediction is made to the total number of sequences of
interest. The total number of query proteins for which the system could not pre-
dict any localization was 76. Out of a total of 4529 query proteins, this amounts
to (76/4529 =) 1.7% of the total set considered, hence a sequence coverage of
98.3%; (iii) Taxonomic coverage: measures the range of organisms that the pre-
dictor covers. In our work, we have considered 3 species in fungi kingdom for
which we have found extensive experimental localization information.

4.5 Hierarchy and Multiple Classification Issues

Gene ontology cellular components form a directed graph and not a tree. For
example, both cell cortex and site of polarized growth have polarisome as a direct
descendant and a protein reported to localize to the latter site may be classified
as belonging to either of the two former sites. Moreover, some prominent sub-
cellular compartments are fully contained within other compartments. Nucleolus
found within nucleus and cell cortex contained within cytoplasm are two such
examples. In many cases there is no apparent solution to this hierarchy issue. For
example, the nuclear proteins that are not localized to the nucleolus or to the
nuclear envelope are not reported as such. Instead, they are rather simply identi-
fied as belonging to the nucleus. All these reported localizations are nonetheless
significant and need to be equally considered as representative examples. But
then, how can a predictor distinguish between such classes? A predictor that
is seeking differences in protein features that would explain distinct targeting
could not utilize such examples. So the information contained in such examples
hampers classification of proteins into a single category. These considerations
necessitate multiple localizations of the same protein to different locations, the
problem that we address in this work.

5 Conclusion

Proteins target those sub-cellular locations where they can perform their func-
tions. They are guided to their respective destinations through interaction with
other proteins (Protein-Protein interaction, PPI). Specificity of such interactions
is presumed to be due to physiochemical and biological characteristics inherent
in the very protein considered. Molecular functions of a protein as well as the bi-
ological processes in which it takes part are also expected to influence the choice
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of its target destination. Specificity of such aspects need to be characterized by
appropriate protein family signatures as well as targeting sequence signals that
allow recognition of the proteins by specific receptors of a given process.

In this work, we have started with a set of features that can potentially impact
PPI, protein function and the biological processes that the protein is involved
in. A uniform, non-causal method has then been deployed to determine the
features that truly correlate with any of the sub-cellular localizations. Our de-
veloped algorithm is non-causal in the sense that no pre-established rule has
been introduced that would specifically favour the localization of proteins with
certain motifs to particular compartments. In spite of our simple approach, us-
ing a classical machine learning method, and our restriction of the feature space
to utilize solely the knowledge elicitable from the protein’s primary sequence,
the developed system succeeded in correctly predicting 64% of the multiply-
localized proteins. This result is indicative of our distinctive strategy that uses
the decision tree and an ab-initio approach to handle the problem of sub-cellular
localization. We have also contributed towards elucidation of protein charac-
teristics that correlate with localization to sub-cellular sites by identifying and
reporting 76 features that are used in our decision tree. Lastly, in contrast to
other multi-site localizers built and evaluated based on a single organism (yeast),
in this work we have attempted to take advantage of the variability of the sorting
mechanisms that may be found in different species. This work is a first attempt
in multi-site, multi-species localization of fungal proteins.

The system could not predict the localizations of proteins to the mitochondrial
matrix, the mitochondrial outer membrane and the peroxisome due to the lack
of sufficient training examples. There is ongoing work to collect more examples
as they become available in order to enlarge our dataset. Experimental localiza-
tion results for organisms other than the 3 species considered here may also be
used. In upcoming work, we also intend to improve the system’s performance by
expanding the feature set to include structural information on proteins. Further-
more, we shall investigate the distinguishing features of proteins that account
for localization to specific sites. In particular, we shall attempt to identify the
features that are necessary for localization to each site.
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Abstract. Based on the general framework of logical analysis of data,
we develop a probe design method for selecting short oligo probes for
genotyping applications in this paper. When extensively tested on ge-
nomic sequences downloaded from the Lost Alamos National Labora-
tory and the National Center of Biotechnology Information websites in
various monospecific and polyspecific in silico experimental settings, the
proposed probe design method selected a small number of oligo probes
of length 7 or 8 nucleotides that perfectly classified all unseen testing se-
quences. These results well illustrate the utility of the proposed method
in genotyping applications.

Keywords: oligo probes, microarrays, LAD, set covering, learning the-
ory, optimization, viral pathogens.

1 Introduction

A microarray or a DNA chip is a small glass or silica surface bearing DNA probes.
Probes are single stranded reverse transcribed mRNAs, each located at a specific
spot of the chip for hybridization with its Watson-Crick complementary sequence
in a target to form the double helix [1]. Microarrays currently use two forms of
probes, namely, oligonucleotide (shortly, oligo) and cDNA, and have prevalently
been used in the analysis of gene expression levels, which measures the amount
of gene expression in a cell by observing the hybridization of mRNA to different
probes, each targeting a specific gene. With the ability to identify a specific target
in a biological sample, microarrays are also well-suited for detecting biological
agents for genetic and chronic disease [2,3,4,5]. Furthermore, as viral pathogens
can be detected at the molecular and genomic level much before the onset of
physical symptoms in a patient, the microarray technology can be used for an
early detection of patients infected with viral pathogens [6,7,8].
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The success of microarrays depends on the quality of probes that are tethered
on the chip. Having an optimized set of probes is beneficial for two reasons. One,
the background hybridization is minimized, hence true gene expression levels can
be more accurately determined [9]. The other, as the number of oligos needed
per gene is minimized, the cost of each microarray is minimized or the number
of genes on each chip is increased, yielding oligo fingerprinting a much faster and
more cost-efficient technique [9,10]. Short probes consisting of 15-25 nucleotides
(nt) are used in genotyping applications [1]. Having short optimal probes means
a high genotyping accuracy in terms of both sensitivity and specificity [6,9] and
can play a key role in genotyping applications.

From the perspective of numerical optimization, genomic data present an
unprecedented challenge for supervised learning approaches for a number of
reasons. First, genomic data are long sequences over the nucleic acid alpha-
bet Σ = {A,C,G,T}. Second, for example, the complexity of viral flora, owing to
constantly evolving viral serotypes, requires a supervised learning theory to be
trained on a large collection of target and non-target samples. That is, a typical
training set contains a large number of large-scale samples. Third, a supervised
learning framework usually requires a systematic pairing or differencing between
each target and non-target samples during the course of training a decision rule
[10,11,12,13]. Adding to these, the nature of data classification is difficult [14].

Based on the general framework of logical analysis of data (LAD) from [15],
we develop in this paper a probe design method for selecting short oligo probes
of length l nt, where l ∈ [6, 10]. To list some advantages of selecting oligo probes
by the proposed method, first, the method selects probes via sequential solution
of a small number of compact set covering (SC) instances, which offers a great
advantage from computational point of view. To be more specific, consider clas-
sification of two types of data and suppose that a training set is comprised of
m+ target and m− non-target sequences. The size of the SC training instances
solved by the proposed method is minimum of m+ and m− orders of magni-
tude smaller than optimization learning models used in [10,11,12]. Second, the
method uses the sequence information only and selects probes via optimization
based on principles of probability and statistics. That is, the probability of an
l−mer (oligo of length l) appearing in a single sequence by chance is (0.25)l,
hence the probability of an l−mer appearing in multiple samples of one type but
in none or only a few of the sequences of the other type by chance alone is ex-
tremely small. Third, the proposed method does not rely on any extra tool, such
as BLASTn [16], a local sequence alignment search tool that is commonly used
for probe selection [6,8,17], or the existence of pre-selected representative probes
[6]. This makes the method truly stand-alone and free of problems that may
possibly be caused by limitations associated with external factors. Last, with
an array of efficient (meta-)heuristic solution procedures for SC, the proposed
method is readily implementable for an efficient selection of oligo probes.

As for the organization of this paper, we develop an effective method for
selecting short oligo probes in Section 2 (for reasons of space, we omit proofs
for the mathematical results in this section) and extensively test the proposed
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probe design method in various in silico genotyping experiments in Section 3
with using viral genomic sequences from the Los Alamos National Laboratory
and the National Center of Biotechnology Information websites.

2 Proposed Probe Selection Method

The task of classifying more than two types of data can be accomplished by se-
quential classifications of two types of + and − data (see [18,19,20] and Section 3
below). Without loss of generality, therefore, we present the material below in
the context of binary classification.

The backbone of the proposed procedure is LAD. A typical implementation
of LAD analyzes data on hand via four sequential stages of data binarization,
support feature selection, pattern generation and classification rule formation.
As a Boolean logic-based, LAD first converts all non-binary data into equivalent
binary observations. A + (−) ‘pattern’ in LAD is defined as a conjunction of one
or more binary attributes or their negations that distinguishes one or more + (−)
type observations from all− (+) observations. The number of attributes used in a
pattern is called the ‘degree’ of the pattern. As seen from the definition, patterns
hold the structural information hidden in data. After patterns are generated,
they are aggregated into a partially-defined Boolean discriminant function/rule
to generalize the discovered knowledge to classify new observations.

Referring readers to [13,15,21] for more background in LAD, we design a
LAD-based method below for efficiently analyzing large-scale genomic data.

2.1 Data Binarization

Let there be m+ and m− sample observations of type + (target) and − (non-
target), respectively. For • ∈ {+,−}, let us use •̄ to denote the complementary
element of • with respect to the set {+,−}. Let S• denote the index set of m•

sample sequences for • ∈ {+,−}.
A DNA sequence is a sequence of nucleic acids A, C, G and T, and the training

sequences need to be converted into Boolean sequences of 0 and 1 before LAD
can be applied. Toward this end, we first choose an integer value for l, usually l ∈
[6, 10] (see Section 3), generate all 4l possible l−mers over the four nucleic acid
letters and then number them consecutively from 1 to 4l by a mapping scheme.
Next, each l−mer is selected in turn and every training sample is fingerprinted
with the oligo for its presence or absence. That is, with oligo j, we scan each
sequence pi, i ∈ S+∪S−, from the beginning of the sequence and shifting to the
right by a base and stamp

pij =

{
1, if oligo j is present in sequence i; and
0, otherwise.

After this, the oligos that appear in all or none of the training sequences
can be deleted from further consideration. We re-number the surviving l−mers
consecutively from 1 to n and replace the original training sequences described in
the nucleic acid alphabets by their Boolean representations. Let N = {1, . . . , n}.
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2.2 Pattern Generation

The data are now described by n attributes aj ∈ {0, 1}, j ∈ N . For observation
pi, i ∈ S•, • ∈ {+,−}, let pij denote the binary value the j−th attribute
takes in this observation. Denote by lj the literal of binary attribute aj . Then,
lj = aj (lj = aj) instructs to take (negate) the value of aj in all sequences.
A term t is a conjunction of literals. Given a term t, let Nt ⊆ N denote the
index of literals included in the term. Then, we have t =

∧
j∈Nt

lj. A • pattern is a

term that satisfies t(pi) :=
∏
lj=aj ,
j∈Nt

pij
∏
lj=āj ,
j∈Nt

p̄ij = 1 for at least one pi, i ∈ S•, and

t(pk) = 0 for all pk, k ∈ S •̄. Note here that Nt of a • pattern identifies probes
that collectively distinguish one or more • sequences from the sequences of the
other type.

Let us introduce n additional features an+j , j ∈ N , and use an+j to negate
aj . Let N ′ = {1, . . . , 2n} and let us introduce a binary decision variable xj for
aj , j ∈ N ′, to determine whether to include lj in a pattern. [15] formulated
a compact mixed integer and linear programming (MILP) model below with
respect to a reference sample pi, i ∈ S•, • ∈ {+,−}:

(MILP-2.i•)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z2.i = min
x,y,d

∑
l∈S•\{i}

yl

s. t.
∑
j∈Ji

xj = d

∑
j∈Ji

pljxj + yl ≥ d, l ∈ S• \ {i}
∑
j∈Ji

pljxj ≤ d− 1, l ∈ S•

1 ≤ d ≤ n
x ∈ {0, 1}n
0 ≤ y ≤ n,

where Ji := {j ∈ N ′ : pij = 1} for pi, i ∈ S•. Consider the following.

Lemma 1. Let (x,y, d) denote a feasible solution of (MILP-2.i•). Let Nt =
{j ∈ Ji : xj = 1}. Then, P :=

∧
j∈Ji,xj=1

aj forms a • pattern.

We note here that genomic data are large-scale in nature. Furthermore, owing
to constantly evolving viral serotypes, the complexity of viral flora is high, and
this requires large numbers of target and non-target viral samples to be used for
selecting optimal genotyping probes. Adding to these the difficulties associated
with numerical solution of MILP, we see that (MILP-2.i•) above presents no
practical way of selecting genotyping probes.
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With the need to develop a more efficient pattern generation scheme, we select
a reference sequence pi, i ∈ S•, • ∈ {+,−}, and set

a
(i,k)
j =

{
1, if pij �= pkj ; and
0, otherwise,

(1)

for k ∈ S •̄ and j ∈ N. Next, we set

a
(i,l)
j =

{
1, if pij = plj ; and
0, otherwise,

for l ∈ S• and j ∈ N. Now, consider the set covering model

(SC•i )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x,y

∑
j∈N

cjxj +
∑

l∈S•\{i}
yl

s.t.
∑
j∈N

a
(i,l)
j xj + yl ≥ 1, l ∈ S• \ {i}

∑
j∈N

a
(i,k)
j xj ≥ 1, k ∈ S •̄

xj ∈ {0, 1}, j ∈ N
yl ∈ {0, 1}, l ∈ S• \ {i},

where cj (j ∈ N) are positive real numbers.

Theorem 1. Let (x,y) denote a feasible solution of (SC•i ). Then,

P :=
∧
xl=1,
p•il=1

al
∧
xl=1,
p•il=0

āl (2)

forms a • LAD pattern.

Lemma 2. With a feasible solution (x,y) of (SC•i ), let Nt = {j ∈ N : xj = 1}.
Then, yl = 0 for l ∈ S• \ {i} if and only if plk = pik for all k ∈ Nt.

Although smaller than the MILP counterpart by only one constraint and one
integer variable, (SC•i ) has a much simpler structure and is defined only in terms
of 0-1 variables. In addition, it can exploit any of SC heuristic procedures devel-
oped so far (see, for example, [22] and references therein) for its efficient solution,
hence is much preferred.

Note that (SC•i ) is defined by m+ + m−− 1 cover inequalities and n + m•− 1
binary variables. Also, recall that n is large for genomic sequences and the analy-
sis of viral sequences requires large numbers of target and non-target sequences,
that is, m+ and m− are also large numbers. To develop a more compact SC-based
probe selection model, we select a reference sequence pi, i ∈ S•, • ∈ {+,−}, and
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set the values of a
(i,k)
j for k ∈ S •̄ and j ∈ N via (1). Consider the following SC

model:

(SC-pg•i )

∣∣∣∣∣∣∣∣∣∣

min
x

∑
j∈N

cjxj

s.t.
∑
j∈N

a
(i,k)
j xj ≥ 1, k = 1, . . . , m•̄

xj ∈ {0, 1}, j ∈ N,

where cj ’s are positive reals.

Theorem 2. Let x denote a feasible solution of (SC-pg•i ). Then, P generated
on x via (2) forms a • LAD pattern.

Lemma 3. With a feasible solution x of (SC•i ), generate a • pattern P via (2).
Then, P distinguishes every • sequence pl, l ∈ S•, with plk = pik for all k ∈ Nt

from the •̄ observations, where Nt = {j ∈ N : xj = 1}.
Below, we use (SC-pg•i ) to design one simple oligo probe selection procedure.
Let P • denote the set of • patterns generated so far.

procedure SC-pg
begin

for • ∈ {+,−} do
set P • = ∅ and S ← S•.
while S �= ∅ do

- randomly choose pi, i ∈ S, and formulate (SC-pg•i ).
- solve (SC-pg•i ).
- generate a • pattern P via (2).
- set P • = P • ∪ {P} and S = S \ {i} \ {j ∈ S, j �= i : pjk = pik, ∀k ∈ Nt}.

end while
end for

end

Theorem 3. procedure SC-pg terminates finitely.

3 Experiments and Discussions

In this section, we extensively test the proposed probe design for the classification
of viral disease-agents in in silico setting with using genomic sequences obtained
from the Los Alamos National Laboratory (LANL) and the National Center for
Biotechnology Information (NCBI). Table 1 summarizes the number and the
length (the minimum, average±1 standard deviation and maximum lengths) of
each type of the genomic data that were used in our experiments.

In analyzing data in an experiment, we first decided on a length of oligos to
use by calculating the smallest integer value l such that 4l became larger than
or equal to the average of the lengths of target and non-target sequences of the
experiment. Then, 4l candidate oligos were generated to fingerprint and binarize
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the data. Note here that if a constraint in (SC-pg•i ) has all zero coefficients, then
the SC instance has no feasible solution, and this case arises when the reference
sequence pi, i ∈ S•, and the sequence pj , j ∈ S •̄ have identical 0-1 fingerprints,
which is a contradiction. Supervised learning methodologies, including LAD,
presume for the existence of a classification function that each unique sequence
in the training set belongs to exactly one of the two classes. When data under
analysis are indeed contradiction-free, then contradiction-free 0-1 clones of the
data can always be obtained by using oligos of longer length for data fingerprint-
ing and binarization. Therefore, when we generated the identical fingerprint for
data of different types, we incremented the value of l by 1 and repeated the data
binarization stage until the binary representations of the data became contra-
diction free. Next, procedure SC-pg was applied to generate patterns, hence
probes. In applying procedure SC-pg in these in silico experiments, we selected
a minimal set of oligo probes by setting cj = 1 for all j ∈ N . For solving the
unicost (SC-pg•i )’s generated, we used the textbook greedy heuristic [23] for ease
of implementation.

Denote by P+
1 , . . . , P+

n+
and P−1 , . . . , P−n− the positive and negative patterns,

respectively, generated via procedure SC-pg. In classifying unseen + (target)
and − (non-target) sequences, we use three decision rules. Specifically, for the
polyspecific genotyping experiments (in Section 3.1 and Experiments 2 and 3 in
Section 3.2), we form the standard LAD classification rule [13]

Δ :=
n+∑
i=1

ω+
i

|S+|P
+
i −

n−∑
i=1

ω−i
|S−|P

−
i , (3)

where ω•i denotes the number of • training sequences covered by P •i . We assign
class + (−) to new sequence p if Δ(p) > 0 (Δ(p) < 0). We fail to classify sequence
p if Δ(p) = 0.

For monospecific genotyping in Experiment 1 in Section 3.2, we form a decision
rule by

Δ+ :=
n+∑
i=1

P+
i and Δ− :=

n−∑
i=1

P−i (4)

and assign p to class • if Δ•(p) > 0 while Δ•̄(p) = 0. When Δ•(p) > 0 and
Δ•̄(p) > 0 or when Δ•(p) = 0 and Δ•̄(p) = 0, we fail in classifying the sequence.

For monospecific classification of more than two viral (sub-)types k = 1, . . . , m
in Experiment 4 in Section 3.2, we use the decision rule

Δk :=
nk∑
i=1

P k
i , (5)

where P k
1 , . . . , P k

nk
are the probe(s) selected to for virus (sub-)type k, and assign

p to class k if Δk(p) > 0 while Δi(p) = 0 for all i = 1, . . . , m, i �= k. When
Δ(p) > 0 for more than two virus types or Δk(p) = 0 for all k, then we fail to
assign a class to sequence p.
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In each of the experiments in this section, we tested the proposed oligo probe
selection method in 20 independent hold-out experiments, each with randomly
selected 90% of the target and of the non-target data forming a training set
of sequences and the remaining 10 % of the target and of the non-target se-
quences forming the testing data. More specifically, after a training set of data
was formed, we binarized the training data and selected optimal oligo probes
on them via procedure SC-pg. Next, a classification rule was formed by one
of (3), (4) and (5) above and then used for classifying the corresponding test-
ing sequences. These steps were repeated 20 times to obtain the average testing
performance and other relevant information of the experiment.

The computational platform used for these experiments was an Intel 2.66GHz
Pentium Linux PC with 512Mb of memory.

Table 1. Viral sequences used in experiments

viral sequence number
length

min. avg.±1 std. dev. max.

human papillomavirus (HPV):
- high risk HPV 18 449 7365±1730 7989
- low risk HPV 54 455 7198±1683 8027

SARS coronavirus 105 29350 29692±91 29765

coronavirus 39 9203 29013±3569 31526

other virus:
- human respiratory syncytial virus 10 13933 15091±386 15226
- human adenovirus 32 34125 35215±618 36015
- human parainfluenza virus 4 15646 15652±3 15654
- human rhinovirus (A, B) 8 7102 7157±36 7212
- influenza virus (A, B, C) 53 838 1701±527 2368

influenza virus hemagglutinin (H) subtype:
- H1 137 1698 1749±24 1778
- H3 660 1695 1735±21 1768
- H5 148 1677 1721±25 1779
- H7 77 1659 1690±27 1792
- H9 93 1683 1704±26 1742
- H else (2, 4, 6, 8, 11, 12, 13, 16) 65 1689 1742±29 1773

influenza virus neuraminidase (N) subtype:
- N1 218 1344 1410±39 1463
- N2 1050 1341 1434±28 1467
- N3 44 1326 1411±29 1460
- N else (4, 5, 6, 7, 8, 9) 64 1341 1434±25 1467

3.1 Classification of High and Low Risk HPV: A Comparative
Experiment

The infection with HPV is the main cause of cervical cancer, the second most
common cancer in women worldwide [24,25]. There are more than 80 identified
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types of HPV and the genital HPV types are subdivided into high and low risk
types: low risk HPV types are responsible for most common sexually transmitted
viral infections while high risk HPV types are a crucial etiological factor for the
development of cervical cancer [26].

We applied the proposed probed design method on the 72 HPV sequences
downloaded from LANL with their classification found in Table 3 of [27]. The
selected probes were used to form a decision rule by (3) and tested for their
classification capability.

Results from this polyspecific probe selection experiment are provided in
Table 2. In this table and also in the table found in the following subsection,
the target (+) and the non-target (−) virus types of the experiments are first
specified. Then, the tables provide two bits of information on the candidate oli-
gos, namely, the length l and the average and the standard deviation of the
number of features generated and used in the 20 runs of each experiment for
data binarization and for pattern generation. Provided next in the tables is the
information on the number of probes selected in the format ‘the average ± 1
standard deviation’ and information on the LAD patterns generated. Finally,
the testing performance of the probes selected is provided in the last column of
the tables, summarized in format ‘the average ± 1 standard deviation’ of the
percentage of the correct classifications of the unseen sequences.

Table 2. Polyspecific classification of high and low risk HPV by the proposed method

Experiment
l−mers used probes selected testing

l number∗ number∗ patterns accuracy∗†

high risk HPV (+) vs.
8 58359.9±130.4

18.7±1.7 degree 1 & 2 patterns
90.6±9.8

HPV low (−) 22.8±1.6 degree 1 & 2 patterns
∗: in format average ± standard deviation
†: percentage of correct classifications of testing/unseen data

Briefly summarizing, the proposed probe design method selected probes on
the HPV data in a few CPU seconds that tested 90.6% accurate in classifying
the unseen HPV samples. For comparison, the same HPV dataset was used in
[2] and [27] for the classification of HPV by high and low risk types. In brief, the
probe design methods of [2] and [27] required several CPU hours of computation
and selected probes that obtained 85.6% and 81.1% correct classification rates,
respectively.

Before moving on, we note that the sequences belonging to the target and
the non-target groups in this experiment all have different HPV subtypes (see
Table 3 in [27]). The combination of all target and non-target sequences being
different from one another and the presence of noise in the data (the classification
errors) gave rise to selecting a relatively large number of polyspecific probes in
this experiment.
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3.2 Genotyping Experiments with Viral Pathogens

The proposed probe design method was tested on genomic viral sequences from
NCBI for selecting monospecific and polyspecific probes for screening for SARS
and AI in a number of different binary and multicategory experimental setting
and performed superbly on all counts. We describe individual experiments below
and summarize results from these experiments in Table 3.

Table 3. Genotyping viral pathogens by the proposed method

Experiment
viruses l−mers used probes selected testing

distinguished l number∗ number∗ patterns generated accuracy∗†

1
SARS virus (+)

8 57745.3±306.1
1±0 degree 1

100±0
coronavirus (−) 1±0 degree 1

2
SARS virus (+)

8 64141.5±36.5
1±0 degree 1

100±0
influenza virus (−) 10.1±0.8 degree 1 only

3
H5 & H9 (+)

8 39056±398.3
6.7±0.5 degree 1 only

100±0
other H strains (−) 21.6±1.3 degree 1 only

4
N1

7 13151±39.3
3±0 degree 1

100±0N2 3.7±0.5 degree 1 only
N3 1±0 degree 1

∗: in format average ± standard deviation
†: percentage of correct classifications of testing/unseen data

Experiment 1. SARS virus vs. coronavirus
SARS virus is phylogenetically most closely related to group 2 coronavirus [28].
105 SARS sequences and 39 coronavirus samples were used to select 1 monospe-
cific probe for screening for SARS. Used in a classification rule (4), the SARS
probe and one probe selected for coronavirus together perfectly classified all
testing sequences.

Experiment 2. SARS virus vs. influenza virus
This experiment simulates a SARS pandemic where suspected patients with
SARS-like symptoms are screened for the disease. We used the 105 SARS virus
sequences and 108 samples of other influenza virus types (the ‘other virus’ in
Table 1) in this experiment and selected polyspecific probes. Used in a classi-
fication rule (3), these probes collectively gave the perfect classification of all
testing sequences.

Experiment 3. Classification of lethal AI virus H5 & H9 and other influenza
virus H subtypes
AI virus H5 and H9 subtypes cause a most fatal form of the disease [29], and they
were separated from the other H subtypes of influenza virus in this experiment.
241 H5 and H9 target sequences and 1010 other H subtype sequences were used
to select polyspecific probes for detecting AI virus H5 and H9 subtypes from
the rest. In a classification rule (3), the selected probes collectively classified all
testing sequences correctly.
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Experiment 4. Monospecific Classification of N1, N2 and N3 influenza virus
The statement “monospecific neuraminidase (NA) subtype probes were insuf-
ficiently divers to allow confident NA subtype assignment” from [6] motivated
us to design this experiment on multicategory and monospecific classification of
influenza virus by N subtypes. We used the three influenza virus N subtypes
with 30 or more samples in Table 1 and selected monospecific probes for their
classification. Tested in a classification rule (5), the selected probes performed
perfectly in classifying all testing sequences. Note that only a small number of
monospecific probes were selected and proved ‘needed’ in this experiment.
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Abstract. Many researchers have used text classification method in solving the 
ontology mapping problem. Their mapping results heavily depend on the 
availability of quality exemplars used as training data. However, manual 
preparation of exemplars is costly. In this work, we propose to automatically 
extract text from web pages returned by a search engine. Search queries are 
formed according to the semantic information given in the ontology. We have 
implemented a prototype system that automates the entire process (from search 
query formation to conditional probability calculation) and conducted a series 
of experiments. We assessed the effectiveness of our approach by comparing 
the obtained conditional probabilities with human expectations. Our main 
contribution is that we explored the possibilities of utilizing web information 
for text classification based ontology mapping and made several valuable 
discoveries on its usefulness for future research. 

Keywords: Semantic web, ontology mapping, text classification, search engine. 

1   Introduction 

The semantic web is an "extension of the current web" [1], where information is 
marked up by ontology languages such as OWL and RDF so that it can be understood 
and processed by programs. However, it is not realistic to assume everyone shares a 
single ontology. Instead, different organizations may have different ontologies for the 
same domain, reflecting their designers’ own perceptions and conceptualizations of 
the domain. For example, a course on neural networks may be called "Introduction to 
Neural Networks" in one university's course ontology but "Introduction to 
Connectionist Models" in another’s. Understanding these two courses actually 
teaching similar materials will not be a problem to a computer science professor 
because in the professor's knowledge base, the two course titles have the same or very 
similar meaning or semantics. However, when programs based on one ontology try to 
exchange information with programs based on another, problems will happen. This 
so-called interoperability problem has been known for a long time in software 
integration, and becomes more acute in the semantic web [2]. 

One of the approaches to address this interoperability problem is to map concepts 
defined in one ontology to semantically identical or similar concepts in another. Text 
classification is a very powerful technique some have suggested for this purpose  
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[8, 9]. However, its success is highly dependent on the availability of text documents 
that are exemplars of individual concepts in the ontologies. Manually preparing a 
good number of exemplars for hundreds of concepts is time-consuming and very 
costly. This greatly reduces the attractiveness of text classification based ontology 
mapping. To address this difficulty, we propose to automatically retrieve exemplars 
from the web, the largest information source available. A prototype system has been 
built based on this idea, which allows us to experiment with different parameters and 
methods in each step of this approach. A series of experiments have shown 
encouraging results. 

The rest of the paper is organized as follows. Section 2 provides background and 
motives of this work; Section 3 presents the technical details of this approach and the 
prototype system; Section 4 describes the experiments and results; Section 5 discusses 
related works; and Section 6 concludes with suggestions to future research. 

2   Background and Motivation 

In computer science, an ontology is a set of concepts each of which can have 
individual members, its own properties, and its relations with other concepts in the 
set. For example, Fig.1 shows a simple ontology defined in OWL based on [3]. 
 
 
 
 
 
 

 

 
 
 

Fig. 1. Ontology for CommercialJet in OWL 

From this ontology, we know, by the SubClassOf property, that Boeing-747 is a 
kind of Boeing Jet, which itself is a kind of commercial jet. If we define a “made-in” 
property, we can specify “Boeing-Jets are made-in WA”. If the ontology also has 
information that WA is the same as Washington State, and it is a-part-of USA, then 
these data can be easily used by a program to answer questions like “Find all types of 
commercial jets that are made in the USA”.  

By defining relations between concepts, we effectively build a web of concepts, 
potentially a huge integrated database, where information can be shared among 
applications easily and more complicated reasoning can be supported. The arrival of 
this semantic web requires ontologies to be developed and shared by many 
organizations and individuals. However, it is hard to make ontology development a 
coordinated centralized activity and it is also a fact that people can use different terms 
for one concept or similar concepts, so different ontologies can be created for the 

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
<rdf:Class rdf:ID= "CommercialJet"></rdf:Class> 
<rdf:Class rdf:ID= "BoeingJet"> 
   <rdf:subClassOf rdf:resource ="CommercialJet"/></rdf:Class> 
<rdf:Class rdf:ID= "AirbusJet"> 
   <rdf:subClassOf rdf:resource ="CommercialJet"/></rdf:Class> 
<rdf:Class rdf:ID= "Boeing-747"> 
   <rdf:subClassOf rdf:resource ="BoeingJet"/></rdf:Class> 
<rdf:Class rdf:ID= "A-380"> 
   <rdf:subClassOf rdf:resource ="AirbusJet"/></rdf:Class> 
</rdf:RDF>
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same domain. For the semantic web to work, it is imperative to relate or map concepts 
between such ontologies.  

Different approaches to ontology mapping have been developed. Manual mappings 
between large ontologies have been tried in recent years [4, 5]. The mapping is 
accurate and it can be saved for future use. The problem is that the size of ontologies 
can be very large and ontologies can keep growing, which requests a huge amount of 
continuous human efforts in establishing and maintaining the mapping. Consequently 
more researchers are looking for ways to map ontologies (semi)automatically. 

String matching of concept names in two ontologies [6] is an effective alternative. 
Large amount of information can be processed very quickly and with a high degree of 
accuracy. For example, “meetingPlace” and “PlaceOfMeeting” can be matched. But 
matching “Tank” and “Armored Motor Vehicle” would usually involve complicated 
lexical analysis, and a complete dictionary such as WordNet has to be consulted.  

Many researchers choose more powerful methods of machine learning, especially 
text classification techniques [7, 8, 9]. Usually, text exemplars for each concept or 
class in a given ontology (OntoA) are manually collected. Then a text classifier is 
trained using these data. To map a concept C defined in another ontology (OntoB) to 
some concept in OntoA, exemplars for C need to be collected and classified into the 
classifier of OntoA. Based on the initial classification results, algorithms such as [7] 
and [8] can be used to carry out the further steps of ontology mapping. Text 
classification based ontology mapping is much less time-consuming than manual 
mapping, and more powerful than string matching, because semantic meanings of 
apparently different strings can be analyzed by processing information contained in 
the provided exemplars. Here, the existence of exemplars for each concept and their 
relevancy to the concept they represent are the key factors to the effectiveness of this 
approach. However, finding sufficient, high-quality exemplars manually is costly, and 
is thus the limiting factor of this approach.  

The WWW is the richest information resource available anywhere in the world. 
Collecting text exemplars from the WWW is a promising approach. To assess its 
effectiveness, we designed a tool to retrieve documents from the web through a search 
engine and tried a number of different ways to process the documents downloaded 
before using them for text classification. We tested our tool by actually performing 
some preliminary ontology mapping experiments with small-scale ontologies. 

3   System Design 

Here we use OntoA to refer to the ontology in which we seek a mapping for a foreign 
concept and use OntoB to refer to the ontology that provides the foreign concept. The 
system has the following main components: 

1. A parser to parse ontology files in OWL format and to form search queries. 
2. A retriever to drive a web search engine with the queries generated by the parser 

and to retrieve a specified number of web pages based on the search results. 
3. A processor to process the raw HTML documents obtained from the retriever to 

construct text files as exemplars for concepts in the ontologies. 
4. A model builder to build a probabilistic model for OntoA from its exemplars using 

a text classification software. This model becomes OntoA‘s classifier. 
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5. A calculator to feed the text exemplar for concepts in OntoB to OntoA‘s classifier, 
collects classification outputs and calculates conditional probabilities as initial 
mapping results. 
We chose Google as our search engine and Rainbow [10] as our text classification 

software. The structure of the system is shown in Fig.2. 

Ontology A 

Parser

Processor HTML Docs

Queries

Text Files (A)

Links to Web Pages

Retriever

Model Builder

Mapping ResultsCalculator

Feature Model

Ontology B

Text Files (B)

Rainbow

WWW

Search 
Engine

Rainbow

 

Fig. 2. System components overview 

3.1   The Parser 

We parse the ontology file to generate search queries for Google. To obtain better 
results, the query should contain more semantic information than just a class name. 
Because a word may have multiple senses or meanings, a query consisting of only the 
words of a concept’s name may return web pages based on a more popular meaning 
of the word, which sometimes is not the particular meaning intended for the concept 
in the ontology. For example, in an ontology for food with a root class called “food”, 
we may have a concept called apple, which is a subclass of “fruit”. If we only use 
“apple” as the keyword, documents showing how to make an apple pie and 
documents showing how to use an iPod may both be returned. Apparently, the 
documents using apple as a computer manufacturing are irrelevant to a subclass of 
fruit. To avoid this, when forming a query, we use all the terms on the path from the 
root class to the class in question together as a query to send to the search engine. In 
the apple example, the query would be “food+fruit+apple” instead of “apple” itself 
alone. By doing so, the number of irrelevant documents returned is greatly reduced. 
This kind of “word sense disambiguation” by adding additional semantically relevant 
terms into the search queries can be further extended to include concept’s properties. 
However, it needs to be noted that queries that include too many terms of high 
specificity (e.g., those in zoology or botany) may lead to very few search results. 
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3.2   The Retriever 

The retriever takes a file containing queries generated by the parser, initiates a 
connection with a search engine, and sends a query in. It then goes through the search 
result pages for the query one by one and extracts URLs from each result page. After 
it collects a pre-specified number of URLs from the search results, it tries to 
download web pages at these URLs. Currently, only URLs starting with http:// and 
ending with .html, .htm or / are extracted because other file types, for example, doc or 
pdf will be difficult for the processor to process. All the HTML files obtained through 
a query for a particular class are saved in one directory and will be used by the 
processor to generate exemplars for that class. 

For most of the experiments, we retrieved documents using Google as the search 
engine, because it is the easiest one to be integrated into our system and it is generally 
considered the best. Although Google provides a programming API to obtain search 
results, we decided to develop our own retriever program. This gives us the flexibility 
to experiment with search engines other than Google (for example, Clusty.com) in 
some of our experiments. 

3.3   The Processor 

Documents collected by the retriever are HTML files. These raw data have to be 
processed before being used as exemplars. The processor will remove all HTML tags, 
image files, script programs, etc. Also removed are hyperlinks, which may contain 
some useful semantic information, but more often are just links to other irrelevant 
pages or websites. Since the retriever can easily retrieve a huge amount of relevant 
documents from the web, we can afford to be more selective in the process. 

After the above steps, we have a large number of pure text files for each concept. 
The processor can perform some optional tasks: keeping only the sentences where a 
word in the query appears in each text file. Since not every part of a text file is 
necessarily relevant to the concept in question, this step may help remove irrelevant 
information and keep only the most closely relevant text. Text files processed with 
and without this option are both used in our experiments and the results are compared. 
The processor can also choose to keep paragraphs, rather than sentences in which 
query words appear. 

3.4   The Model Builder 

The system takes Naïve Bayes text classification approach to build a probabilistic 
model for concepts in OntoA. In a text classification problem, we need to decide 
among a set of mutually exclusive categories C1, C2, C3 … Cn, to which category a 
new document d should belong. This can be determined by which category has the 
greatest posterior probability, given d, i.e., maxi(P(Ci | d)| i = 1, …, n), or 
equivalently, maxi(P(d | Ci) * P(Ci)) since only thing that matters here is the ranks 
among these categories. 

Naïve Bayes approximates P(d | Ci) as follows. Let d contain m distinct words d = 
{w1, …, wm}, where wi is the frequency of the ith word in d. Then assuming that 
whether a word appears in a category is independent of other words in that category, 
we have the Naïve Bayes rule 
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Note that the independence assumption does not hold in general. Despite of this, good 
performance is still achieved. Details of this method can be found in [11].  

A Naïve Bayes classifier requires the predefined categories C1, C2, C3 … Cn to be 
mutually exclusive and exhaustive, so that the probability results can be correct and 
sum to 1. In our system, classification categories are closely related to ontology 
concept classes. Our model builder allows one to select concept classes in different 
ways when forming these classification categories.  

For simplicity, this work only considers OWL ontology files that can be viewed as 
a concept tree based on the subClassOf property. The leaf classes in such a tree are 
assumed to be mutually exclusive and exhaustive regarding to the root class. By leaf 
classes, we mean those classes that do not have a subclass. The default behavior of the 
model builder is to use all the leaf classes in an ontology as the classification 
categories. Then Rainbow is called to build a probabilistic model for these categories.  

Besides the default behavior, the model builder has an option to build a model for 
each class in OntoA except the root. Two categories A+ and A- are created by the model 
builder for class A in OntoA. A+ is associated with exemplars for that class, and A- is 
associated with exemplars for the complement of that class, which are taken from 
classes that are not A, not A’s ancestors nor A’s successors in the ontology tree. The 
model builder then builds a model using the exemplars for the two categories. This 
option is not applicable to the root class, because the root’s complement is empty. For 
example, the exemplars for “not CAT” in the ontology tree shown in Fig.3 would 
include those found for all classes except “CAT” and its ancestors, “ANIMAL” and 
“LIVING_THINGS”.  

3.5   The Calculator 

Rainbow and other naïve Bayes text classifiers tend to produce extreme values (0 or 1) 
because of the independence assumption. This is certainly good enough if one only 
wants to get a right classification. However, our purpose is to use the classifier to obtain 
P(A | B) of concept A in OntoA, given concept B in OntoB, and hope to use this value as 
a basis to measure the semantic similarity between A and B. The calculator solves this 
problem by providing estimates of true conditional probabilities. It works as follows: 
(1) feeds all exemplars of concept B of OntoB one by one to Rainbow, which performs 
classification using the model of OntoA, (2) keeps records of the classification results 
for each exemplar, (3) calculate average results grouped by categories in the model as 
the conditional probability, and (4) write a summary report. It can also perform some 
additional calculations like estimating conditional probabilities for mapping involving 
non-leaf classes. 

To see how classification results for a concept is averaged, suppose that APC is a 
class of OntoB, a weapons ontology. For simplicity, suppose OntoA, another weapons 
ontology, has three leaf classes: TANK-VEHICLE, AIR-DEFENSE-GUN, and 
SAUDI-NAVAL-MISSILE-CRAFT. We build a model using these three classes as 
classification categories. To calculate the conditional probability given class APC, we 
classify each exemplar of APC against the model. Suppose we have 200 exemplars of 
class APC, and the numbers of exemplars giving result of 1 to the three categories are 
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170, 20, and 10, respectively. Then by taking the average, the conditional probability 
P(TANK-VEHICLE | APC) = 170 /200= 0.85, P(AIR-DEFENSE-GUN | APC) = 0.1, 
and P(SAUDI-NAVAL-MISSILE-CRAFT | APC) = 0.05. 

4   Experiments and Results 

A large number of ontologies of different sizes have been used in many of our 
experiments. Due to the page limit, we only report some representative experiments, 
which involved two sets of ontologies. The first involves a small ontology whose 
structure is shown in Figure 3. We performed text classification between classes 
within this ontology and also with some foreign classes. The second set, 
WeaponsA.n3 and WeaponsB.n3, were taken from I3Con2004 [14]. 

LIVING_THINGS

ANIMAL PLANT

HUMAN

MAN

CAT

WOMAN

TREE

ARBOR

GRASS

FRUTEX

 

Fig. 3. Structure of LIVING_THING ontology 

The system was implemented on Linux and different components developed in perl 
or Java are glued together by shell scripts. The whole process from parsing, 
generating queries, to collecting exemplars, building models and calculating results is 
fully automated. 

4.1   Results for Weapons Ontologies 

Usually to generate a query for a class, the parser will use all the classes along the 
path from the root to the class in question. For weapons ontologies, because of their 
high specificity, to insure that sufficient web pages are returned, we decided to let the 
parser generate shorter queries, using only the class itself and its parent class.  

OntoA, WeaponsA.n3 has more than 60 leaf classes. The model builder ran in 
default mode, and built a model using these leaf classes as classification categories. 
The retriever collected 100 exemplars on average for each class. The processor was 
invoked in two different ways and the results were compared. One is the default mode 
in which the entire text body of a web page is retained as a pure text exemplar; the 
other is to only keep sentences containing any of the search keywords as exemplars. 

There are 9 classes in WeaponsB.n3 that do not appear in WeaponsA.n3. We try to 
find a mapping for each of them in WeaponsA.n3. These 9 classes and the manually 
selected desired mapping leaf classes in WeaponsA.n3 are listed in Table 1. 
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The conditional probabilities obtained are given in Table 2. For space limitation, 
here we only list the classes that have the highest probability instead of the complete 
results over 60 leaf classes for each of the 9 classes. The first column contains classes 
from WeaponsB.n3. The second and the third columns are the classes in 
WeaponsA.n3 with the highest conditional probability obtained by using a whole file 
as an exemplar. The last two columns are results obtained by using only sentences 
containing keywords as an exemplar. 

If we simply judge the mapping accuracy by looking at the class that has the 
highest conditional probability, it is easy to see that when a whole text document is 
used as an exemplar, the accuracy is 11% (only LIGHT-AIRCRAFT-CARRIER is 
correctly mapped). However, the results are improved significantly if we use 
sentences containing keywords, as exemplars. The accuracy is 56% in this case. There  
 

Table 1. Classes and their desired mappings 

Classes from WeaponsB.n3 Desired leaf class mappings 
LIGHT-AIRCRAFT-CARRIER AIRCRAFT-CARRIER 

APC TANK-VEHICLE 

SUPER-ETENDARD-FIGHTER SUPER-ETENDARD 

FIGHTER-ATTACK-PLANE SUPER-ETENDARD 

PATROL-WATERCRAFT PATROL-CRAFT 

PATROL-BOAT-RIVER PATROL-CRAFT 

PATROL-BOAT PATROL-CRAFT 

LIGHT-TANK TANK-VEHICLE 

FIGHTER-PLANE SUPER-ETENDARD 

Table 2. Classes with highest conditional probability 

New Classes Whole file Prob 
Keywords 
Sentences Prob 

LIGHT-AIRCRAFT-
CARRIER 

AIRCRAFT-
CARRIER 0.65 AIRCRAFT-ARRIER 0.57 

APC 
SILKWORM-
MISSILE-MOD 0.46 

SELF-PROPELLED-
RTILLERY 0.36 

SUPER-ETENDARD-
FIGHTER 

SILKWORM-
MISSILE-MOD 0.66 

(BALLISTIC-
MISSILE) RBM 0.51 

FIGHTER-ATTACK-
PLANE 

SILKWORM-
MISSILE-MOD 0.83 

(BALLISTIC-
MISSILE) RBM 0.38 

PATROL-
WATERCRAFT 

SILKWORM-
MISSILE-MOD 0.28 PATROL-CRAFT 0.52 

PATROL-BOAT-RIVER 
SILKWORM-
MISSILE-MOD 0.65 PATROL-CRAFT 0.54 

PATROL-BOAT 
SILKWORM-
MISSILE-MOD 0.51 PATROL-CRAFT 0.66 

LIGHT-TANK 
SILKWORM-
MISSILE-MOD 0.56 TANK-VEHICLE 0.3 

FIGHTER-PLANE 
AIRCRAFT-
CARRIER 0.49 

(BALLISTIC-
MISSILE) RBM 0.38 
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are four classes, APC, FIGHTER-PLANE, FIGHTER-ATTACK-PLANE, and 
SUPER-ETENDARD-FIHTER, whose desired mapping classes do not have the 
highest conditional probability. We can see that by keeping only sentences containing 
keywords in an exemplar, noisy information in some web pages can be filtered out, 
which results in a better classification.  

We further looked into those classes that did not get a correct mapping. For class 
APC, its desired mapping class TANK-VEHICLE has the second highest conditional 
probability (0.28). We also notice that the one with the highest conditional 
probability, SELF-PROPELLED-ARTILLERY is also closely related to APC 
(Armored Personnel Carrier). Text classification method and conditional probability 
can tell how related two concepts are, but the fact that two concepts are closely 
related does not mean that they are identical or similar semantically. This case is an 
example of an interesting problem for future research. For class SUPER-
ETENDARD-FIGHTER, its desired mapping class SUPER-ETENDARD also has the 
second highest conditional probability (0.21). For the other two FIGHTER classes, 
the results are not good at all. We think one reason is SUPER-ETENDARD is the 
only leaf node in WeaponsA.n3 that represents a plane (violation of exhaustive 
assumption for categories). It is possible that it is indeed not a perfect mapping for 
some plane classes from WeaponsB.n3. To test this, we added a class WARPLANE-
OTHER under the class WARPLANE in WeaponsA.n3, containing exemplars 
retrieved with a search query “WARPLANE+-SUPER+-ETENDARD” and 
performed the classification process again. Class FIGHTER-PLANE was mapped to 
its desired WARPLANE-OTHER with the highest conditional probability of 0.41. 
While class FIGHTER-ATTACK-PLANE still got a wrong mapping. This shows that 
adding a complement class helps. Moreover, FIGHTER-PLANE is a super class of 
the other two. The fact that a super class can be correctly mapped will make the 
mapping of its sub classes easier. 

4.2   Results for Living_things Ontology 

To obtain further insights of this approach, we conducted the following additional 
experiments using the “living_things” ontology shown in Fig.3. 

1. Calculate P(MAN | HUMAN) and P(WOMAN | HUMAN), both expected to be 
around 0.5.  

2. Given a new, foreign class GIRL, build a model with classes ANIMAL and 
PLANT as the classification categories and perform classification. If class GIRL is 
mapped to class ANIMAL, then repeat this process by building a model with Class 
HUMAN and CAT, and so on. 

The system performed these experiments automatically with at most 500 exemplars 
for each class. Extensive experiments were done with varying parameters. The typical 
results are reported in Table 3 and 4 (all using sentence-based exemplars). 

What is disturbing is that Class CAT has a comparatively high conditional 
probability given GIRL. This was present during all the experiments we performed 
for this set of ontology. One reason for this anomaly is that words like human, man, 
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Table 3. Results of experiment 1 

P(MAN | HUMAN) 0.62 
P(WOMAN | HUMAN) 0.38 

Table 4. Results of Experiment 2 

P(ANIMAL | GIRL) 0.76 
P(PLANT | GIRL) 0.23 
P(HUMAN | GIRL) 0.70 
P(CAT | GIRL) 0.30 
P(MAN | GIRL) 0 
P(WOMAN | GIRL) 1 

woman and girl often appear in web pages associated with class CAT because cats 
have such close relations with human beings (sometimes cat is even used to describe a 
human). Manual inspection of the exemplars supports this reason.  

The “cat” problem shows that even with the best parameters, the exemplars 
obtained with our system may still be far from perfect. This problem was further 
confirmed by an additional experiment in which DOG (another domesticated animal) 
and PYCNOGONID (a kind of sea spider) were added into the ontology as subclasses 
of ANIMAL. Most of the exemplars of GIRL went to Dog, and none to 
PYCNOGONID as shown in Table 5. 

Table 5. Results with additional classes 

P(DOG | GIRL) 0.57 
P(CAT | GIRL) 0.03 
P(HUMAN | GIRL) 0.40 
P(PYCNOGONID | GIRL) 0 

We conjecture that, although all exemplars for CAT taken as a whole are closely 
related to GIRL, it is different at the level of individual exemplars, some are close but 
others are not. The CAT problem can then be solved if we can separate exemplars that 
truly reflect the intended semantics of CAT from those that are not. As a first step, we 
have tried to perform clustering on exemplars of each class in the hope that one of the 
clusters would contain those truly relevant exemplars. We replaced Google with a 
clustering search engine Clusty.com that automatically clusters search results based 
on some text clustering algorithm. Then the largest cluster for each class returned by 
Clusty.com is used as exemplars. Results are a lot better as shown in Table 6. 

We also tried to cluster exemplars obtained by Google search with clustering 
package in WEKA [15]. Taking the largest cluster does not yield good results this 
time. These limited experiments indicate that clustering of exemplars is promising in 
resolving the “CAT” problem, provided we find a way to identify the right clusters. 
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Table 6. Results by applying clustering on exemplars 

P(ANIMAL | GIRL) 0.83 
P(PLANT | GIRL) 0.17 
P(HUMAN | GIRL) 0.92 
P(CAT | GIRL) 0.08 
P(WOMAN | GIRL) 0.63 
P(MAN | GIRL) 0.37 

5   Related Work 

Many people have used text classification methods to solve the ontology mapping 
problem, they include, for example, OntoMapper [9], CAIMEN [7], and GLUE [8]. 
Although differing in technical details, one thing in common for these methods is that 
they all require the text exemplars for each concept class be given, and in their 
experiments, these exemplars are all manually collected. To our knowledge, no one 
has tried to automatically retrieve text exemplars from the web for this purpose.  

On the other hand, some researchers in other applications do treat the WWW as a 
big sampling pool. For example, [16] also uses Google search results to estimate 
conditional probabilities. For example, P(MAN | HUMAN) would be calculated as 
the ratio of the number of results for “man” and that for “human+man” (result 
changes as the number of pages found changes). This method depends on how likely 
MAN appears on web pages where HUMAN appears; while our method depends on 
the similarity of pages containing MAN, pages containing HUMAN and pages 
containing “NOT HUMAN”, which brings more semantic information in the contexts 
and ensures that the probabilities of all the leave classes sum to 1. 

6   Conclusions 

We proposed to automatically retrieve exemplars from the web for text classification 
based ontology mapping. We designed and implemented a fully automated system to 
collect exemplars and calculate conditional probability of two concepts as an initial 
similarity mapping. The tool can be very useful for ontology mapping tools and 
frameworks like [7, 8, 9, 12, and 13] and other researches using such a conditional 
probability [16]. 

Although our experiment results are mixed, they are in general encouraging and 
shed lights to the insight of this approach and further work. Two factors probably are 
most responsible for the less-than-ideal results. The first is the noise in the search 
results as revealed by the “cat” problem. This may be because that many search 
results are not really semantically relevant to the keywords, or they are relevant but 
not semantically close to keywords. The second is that a search is not really a random 
sampling of the web because all search engines return results according to their own 
ranking algorithms. How to address these problems and how to best utilize the 
imperfect exemplars in ontology mapping are the directions for future research. 
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Abstract. For high-dimensional classification tasks, such as face recog-
nition, the number of samples is smaller than the dimensionality of the
samples. In such cases, a problem encountered in Linear Discriminant
Analysis-based (LDA) methods for dimension reduction is what is known
as the Small Sample Size (SSS) problem. A number of LDA-extension
approaches that attempt to solve the SSS problem have been proposed
in the literature. Recently, a different way of employing a dissimilarity
representation method was proposed [18], where an object was repre-
sented based on the dissimilarity measures among representatives ex-
tracted from training samples instead of the feature vector itself. Apart
from utilizing the dissimilarity representation, in this paper, a new way
of employing a fusion technique in representing features as well as in
designing classifiers is proposed in order to increase the classification
accuracy. The proposed scheme is completely different from the conven-
tional ones in terms of the computation of the transformation matrix as
well as the selection of the number of dimensions. The present experimen-
tal results demonstrate that the proposed combining mechanism works
well and achieves further improved efficiency compared with the LDA-
extension approaches for well-known face databases involving AT&T and
Yale databases. The results especially demonstrate that the highest ac-
curacy rates are achieved when the combined representation is classified
with the trained combiners.

1 Introduction

Over the past two decades, numerous families and avenues for Face Recognition
(FR) systems have been developed. This development is motivated by the broad
range of potential applications for such identification and verification techniques.
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Recent surveys are found in the literature [1] and [2] related to FR. As facial
images are very high-dimensional, it is necessary for FR systems to reduce these
dimensions. Linear Discriminant Analysis (LDA) is one of the most popular
linear projection techniques for dimension reduction [3]. The major limitation
when applying LDA is that it may encounter what is known as the Small Sample
Size (SSS) problem [4], [5]. This problem arises whenever the number of samples
is smaller than the dimensionality of the samples. Under these circumstances,
the sample scatter matrix can become singular, and the execution of LDA may
encounter computation difficulties.

In order to address the SSS issue, numerous methods have been proposed in
the literature. One popular approach that addresses the SSS problem is to intro-
duce a Principal Component Analysis (PCA) step to remove the null space of
the between- and within-class scatter matrices before invoking the LDA execu-
tion. However, recent research reveals that the discarded null space may contain
the most significant discriminatory information. Moreover, other solutions that
use the null space can also have problems. Due to insufficient training samples,
it is very difficult to identify the true null eigenvalues. Since the development
of the PCA+LDA [3], other methods have been proposed successively, such as
the pseudo-inverse LDA [6], the regularized LDA [7], the direct LDA [8], the
LDA/GSVD [5] and the LDA/QR [9]. In addition to these methods, the Dis-
criminative Common Vector (DCV) technique [10], has recently been reported
to be an extremely effective approach to dimension reduction problems. The de-
tails of these LDA-extension methods are omitted here as they are not directly
related to the premise of the present work.

Recently, a new paradigm to pattern classification has been proposed
[11] - [13] based on the idea that if “similar” objects can be grouped together
to form a class, the “class” is nothing more than a set of these similar objects.
This methodology is a way of defining classifiers between the classes. It is not
based on the feature measurements of the individual patterns, but rather on
a suitable dissimilarity measure between them. The advantage of this is clear:
As it does not operate on the class-conditional distributions, the accuracy can
exceed the Bayes’ error bound. Another salient advantage of such a paradigm
is that it does not have to confront the problems associated with feature spaces
such as the “curse of dimensionality”, and the issue of estimating large numbers
of parameters. Particularly, by selecting a set of prototypes or support vectors,
the problem of dimension reduction can be drastically simplified.

On the other hand, combination systems which fuse “pieces” of information
have received considerable attention because of its potential to improve the per-
formance of individual systems. Various fusion strategies have been proposed
in the literature and workshops1 - excellent studies are found in [14], [15], and
[16]. The applications of these systems are many. For example, consider a de-
sign problem involving pattern classifiers. The basic strategy used in fusion is to
solve the classification problem by designing a set of classifiers, and then combin-
ing the individual results obtained from these classifiers in some way to achieve

1 http://www.diee.unica.it/mcs/home.html
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reduced classification error rates. Therefore, the choice of an appropriate fusion
method can further improve on the performance of the individual method. Vari-
ous classifier fusion strategies have been proposed in the literature. The decision
rules commonly used are Product, Sum, Max, Min, Median, and Majority vote
rules. Their details can be found in [14] and [15].

Motivated by the methods mentioned above, a combined dissimilarity-based
scheme is investigated to solve the SSS problem in FR.

Recently, Kim [18] experimented the utilization of the dissimilarity represen-
tation as a method for solving the SSS problem. Apart from utilizing the dissimi-
larity representation, in this paper, a new way of employing a fusion technique in
representing features as well as in designing classifiers is proposed. The combined
dissimilarity-based scheme is completely different from the conventional ones in
terms of the computation of the transformation matrix and the selection of the
number of dimensions. A problem that is encountered in this paper concerns solv-
ing the SSS problem when the number of available facial images per subject is
insufficient. For this reason, all samples are initially represented with different
dissimilarity measures2 among the samples instead of the feature vectors them-
selves. However, in facial images there are many kinds of variations, such as pose,
illumination, facial expression, and distance. To overcome this problem, an object
is classified with a combined classifier designed in the dissimilarity space.

In some cases, newly generated features based on a certain feature combi-
nation could be more informative compared to the original features. To obtain
more powerful representation, in this paper, the dissimilarity representations are
first combined into new ones by building an extended matrix or by simply aver-
aging them. Then, the object is classified by invoking a group of dissimilarity-
based classifiers as the base classifiers designed in the newly created dissimilarity
space. The final decision is obtained with a fixed or trained combiner which is
applied to the outputs of the base classifiers. The details of these classifiers are
included in the present paper. The present experimental results for well-known
face databases demonstrate that the proposed combining mechanism works well
and achieves further improved efficiency results compared with the conventional
LDA-extension approaches.

Two modest contributions are claimed in this paper by the authors:

1. This paper lists the first reported results that reduce the dimensionality
and solve the SSS problem by resorting to the combined dissimilarity-based
classifiers. Although the result presented is only for a case when the task
is face recognition, the proposed approach can also apply to other high-
dimensional tasks, such as information retrieval and bioinformatics.

2. The paper contains a formal algorithm in which, to improve classification
performances for high-dimensional tasks, a fusion strategy in representing
features as well as in designing classifiers is employed. The paper also

2 Here, dissimilarity representations are measured with Euclidean-based metrics, such
as the Euclidean distance and the regional distance, with the intent of simplifying the
problem. The details of these measures will be included in the present paper.
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provides experimental results by which the rationale of the dissimilarity-
based scheme for employing the fusion technique is proven to be valid.

To the best of the authors’ knowledge, all of these contributions are novel to
a field of high-dimensional classification such as image recognition. This paper
is organized as follows: An overview is initially presented of the dissimilarity
representation in Section 2. Following this, the algorithm that solves the SSS
problem by incorporating the use of dissimilarity representation and a fusion
strategy is presented. Experimental results for the real-life benchmark data sets
are provided in Section 3, and the paper is concluded in Section 4.

2 Combining Dissimilarity-Based Classifiers (DBCs)

2.1 Foundations of DBCs

Let T = {x1, · · · , xn} ∈ �p be a set of n feature vectors in a p-dimensional
space. Assume that T is a labeled data set so that T can be decomposed into,
for example, c disjoint subsets {T1, · · · , Tc} such that T =

⋃c
k=1 Tk, Ti ∩ Tj =

φ, ∀i �= j. The goal is to design a DBC in an appropriate dissimilarity space
constructed with this training data set and to classify an input sample z into
an appropriate class. To achieve this, first of all, a prototype set of class ωi,
Yi =

{
y1, · · · , ymi

}
, m =

∑c
i=1 mi, is extracted from the training data, Ti.

Every DBC assumes the use of a dissimilarity measure, d, computed from the
samples, where d(xi, yj) represents the dissimilarity between two samples, xi
and yj . The dissimilarity computed between T and Y leads to a n×m matrix,
D(T, Y ), where xi ∈ T and yj ∈ Y . Consequently, an object xi is represented
as a column vector as following:

(d(xi, y1), d(xi, y2), · · · , d(xi, ym))T , 1 ≤ i ≤ n. (1)

Here, the dissimilarity matrix D(·, ·) is defined as a dissimilarity space on which
the p-dimensional object, x, given in the feature space, is represented as an m-
dimensional vector d(x, Y ), where if x = xi, d(xi, Y ) is the ith row of D matrix.
In this paper, the column vector d(x, Y ) is simply denoted by d(x), where the
latter is an m-dimensional vector, while x is p-dimensional.

From this perspective, it becomes clear that the dissimilarity representation
can be considered as a mapping by which x is translated into d(x); thus, m is
selected as sufficiently small (m << p), what is being worked in is essentially a
space with much smaller dimensions. Based on this consideration, the mapping
could be considered as a way of solving the SSS problem.

Two factors to consider for a dissimilarity representation are to select a proto-
type subset from the training samples and to quantify the dissimilarity between
two vectors. To do these things, various representative selection methods and
dissimilarity measures have been proposed in [12], [13], and [17]. The details of
these are omitted here in the interest of compactness.
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2.2 Classifier Fusion Strategies (CFSs)

Recently, classifier combination (“Fusion”) has received considerable attention
because of its potential to improve the performance of classification systems. The
basic idea is to solve each classification problem by designing a set of classifiers,
and then combining the classifiers in some way to achieve reduced classification
error rates. Therefore a choice of an appropriate fusion method can further im-
prove on the performance of the combination. Various CFSs have been proposed
in the literature - excellent studies are found in [14], [15], and [16]. The CFS’s
decision rules of [15] are summarized here briefly.

Consider a pattern recognition problem where pattern z is to be assigned
to one of the c possible classes, ω1, · · · , ωc. Assume that there are M classifiers
each representing the given pattern by a distinct measurement vector. Denote the
measurement vector used by the ith classifier by xi, i = 1, · · · , M . In this case, the
Bayesian decision rule computes the a posteriori probability p(ωk|x1, · · · , xM )
using the Bayes theorem as follow:

p(ωk|x1, · · · , xM ) =
p(x1, · · · , xM |ωk)P (ωk)∑c
j=1 p(x1, · · · , xM |ωj)P (ωj)

. (2)

Let us assume that the representations used are statistically independent.
Then the joint probability distribution of the measurements extracted by the
classifiers can be rewritten as follow:

p(x1, · · · , xM |ωk)P (ωk) =
M∏
i=1

p(xi|ωk), (3)

where p(xi|ωk) is the measurement process model of the ith representation.
Based on (2) and (3), the commonly used decision rules, such as Product,

Sum, Max, Min, Median, and Majority vote rules, are obtained. Their details
can be found in [14] and [15]. Although all of them can be used in a CFS, a rule
used in the present experiment, namely, the Majority vote rule which operates
under the assumption of equal priors, can be described as follows:

M∑
i=1

Δji = max
1≤k≤c

{
M∑
i=1

Δki

}
⇒ z ∈ ωj , (4)

Δki =
{

1, if p(ωk|xi) = max1≤j≤c {p(ωj |xi)} .
0, otherwise. (5)

Here, for each class ωk, the sum of Δji simply counts the votes received for this
result from the individual classifiers. Thus the class which receives the largest
number of votes is then selected as the majority decision.

The above combination schemes can be applied for combining a set of distinct
features as well as different classifiers. Here, it is interesting to note that a
number of distinct dissimilarity representations can be combined into a new
one to obtain a more powerful representation in the discrimination. The idea



On Combining Dissimilarity-Based Classifiers to Solve the SSS Problem 115

of this feature combination is derived from the possibility that discriminative
properties of different representations can be enhanced by a proper fusion [12].
There are several schemes for combining multiple representations to solve a given
classification problem. Some of them are : Average, Product, Min, and Max rules.
The details of these methods are omitted here, but can be found in [12].

The reasons for combining several distinct dissimilarity representations and
different dissimilarity-based classifiers will be exhaustively investigated in the
present paper.

2.3 Combined Dissimilarity-Based Classifiers (CDBCs)

In this section, a dissimilarity-based method of classifying the high-dimensional
samples without encountering the SSS problem is proposed. A simple
Dissimilarity-Based Classifier (DBC) [17] consists of the following steps:

1. Select the representative set, Y , from the training set T by resorting to one
of the prototype selection methods as described in [13], [17].

2. Compute the dissimilarity matrix, D(T, Y ), with T and Y , in which each indi-
vidual dissimilarity is computed using one of the measures. To test a sample
z, compute a dissimilarity column vector, d(z), using the same measure.

3. Achieve a classification based on invoking a classifier built in the dissimilarity
space and operating on the dissimilarity vector d(z).

However, in facial images there are many kinds of variations based on such
factors as pose, illumination, facial expression, and distance. Thus, by simply
measuring the differences of facial images for each class, it is not possible to
obtain a good representation. To overcome this limitation, a classifier fusion
strategy is employed. The basic strategy used in fusion is to solve the classifica-
tion problem by designing a set of classifiers, and then to combine the individual
results obtained from these classifiers in some way to achieve reduced classifica-
tion error rates. The tangible rationale for this fusion strategy will be presented
in a later section together with the experimental results.

The proposed approach, which is referred to as a Combined Dissimilarity-
Based Classifier (CDBC), is summarized in the following:

1. Select the input training data set T as a representative subset Y .3

2. Compute dissimilarity matrices, D(1)(T, Y ), D(2)(T, Y ), · · ·, D(k)(T, Y ), by
using the k different dissimilarity measures for all x ∈ T and y ∈ Y .

3. To obtain more powerful representation, combine the dissimilarity matrices,
{D(i)(T, Y )}ki=1, into new ones, {D(j)(T, Y )}lj=1, by building an extended
matrix or by computing their weighted average.

3 This is a Wholeset method. Undoubtedly, for “large size” applications, we can select
the small number of representatives from the given training data set through the
clustering phase. Rather than deciding to discard or retain the training points with
the Random C, PeatSeal, or KCentres [13], we can do this by invoking a PRS (Pro-
totype Reduction Scheme). For the interest of brevity, the details of the PRS-based
methods are omitted here, but can be found in [17].



116 S.-W. Kim and R.P.W. Duin

4. For any dissimilarity matrix, D(j)(T, Y ), (j = 1, · · · , l), perform classification
of the input, z, with combined classifiers designed on the newly created
dissimilarity space as follows:
(a) Compute a dissimilarity column vector, d(j)(z), for the input sample z,

with the same method as in measuring the D(j)(T, Y ).
(b) Classify d(j)(z) by invoking a group of DBCs as the base classifiers de-

signed with n m-dimensional vectors in the dissimilarity space. The clas-
sification results are labeled as class1, class2, · · · , classM , respectively.

5. Obtain the final result from the class1, class2, · · · , classM by combining the
base classifiers designed in the above step, where the base classifiers are
combined to form the final decision in the fixed or trained fashion.

In the above algorithm, using the n×n dissimilarity matrix, the feature-based
vectors are translated into the dissimilarity-based vectors, where the dimension-
ality is determined with the number of samples n. While the dimensionality of
the feature-based vectors is p, thus, the dimensionality of the dissimilarity-based
vectors is n(<< p). Notice also that the sample to be tested is projected onto
the dissimilarity space represented by the dissimilarity matrix. From these con-
siderations, it can be noted that the algorithm can be used as a scheme to reduce
the dimensionality without encountering the SSS problem in FR.

In Step 3, on the other hand, a number of distinct dissimilarity matrices can
be combined into a new one to obtain a more powerful representation in the dis-
crimination. A simple method to do this is to average different representations.
For example, two dissimilarity matrices, D(1)(T, Y ) and D(2)(T, Y ), can be av-
eraged into 1

2 (α1D
(1)(T, Y ) + α2D

(2)(T, Y )) after scaling with an appropriate
weight, ατ , to guarantee that they all take values in a similar range. In addition
to this averaging method, the two dissimilarity matrices can be combined into
:

∑2
τ=1 log(1 + ατD

(τ)(T, Y )), minτ{ατD(τ)(T, Y )}, and maxτ{ατD(τ)(T, Y )}
[12]. Some of them will be exhaustively investigated in the present experiment.

The computational complexity of the proposed algorithm depends on the com-
putational costs associated with the dissimilarity matrix. The time complexity
of CDBC can be analyzed as follows: Step 1 requires O(1) time. Step 2 requires
k×O(n2) = O(n2) time to compute the k dissimilarity matrices. Step 3 requires
l × O(n2) = O(n2) time to compute the l combined matrices, for example, by
averaging the l matrices. Step 4 requires O(n)+M ×O(γ1) = O(γ1) time (where
M is the number of the base classifiers and γ1 is the time for doing classification
with the base classifiers.) to project the test sample onto the dissimilarity space
and classify it with the base classifiers designed in the dissimilarity space. Step
5 requires O(γ2) time to classify the test sample with the combined classifier
designed in the dissimilarity space. Here, γ2 is the time for obtaining the final
result. Thus, the total time complexity of the CDBC is O(n2 + γ1 + γ2). Then,
the space complexity of CDBC is O(n(n + p)).4

4 In [9], it was reported that the time complexities of LDA-extension methods such
as PCA, PCA+LDA, LDA/GSVD, and RLDA, respectively, are O(n2p), O(n2p),
O((n + c)2p), and O(n2p) and their space complexities are all the same as O(np).
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3 Experimental Results

3.1 Experimental Data

The proposed method has been tested and compared with conventional methods.
This was done by performing experiments on two well-known benchmark face
databases, namely, the “AT&T”5 and “Yale”6 databases.7

The face database captioned AT&T, formerly the ORL database of faces, con-
sists of ten different images of 40 distinct subjects, for a total of 400 images. Each
subject is positioned upright in front of a dark homogeneous background. The
size of each image is 112× 92 pixels, for a total dimensionality of 10304. The face
database termed as Yale contains 165 gray scale images of 15 individuals. The size
of each image is 243× 320 pixels, for a total dimensionality of 77760. However, in
this experiment, each facial image of 236×178 pixels was manually extracted, and
then represented by a centered vector of normalized intensity values.

3.2 Experimental Method

In this paper, all experiments were performed using a “leave-one-out” strategy.
To classify an image of object, that image is removed from the training set and
the dissimilarity matrix is computed with the n − 1 images. Following this, all
of the n images in the training set and the test object were translated into a
dissimilarity space using the dissimilarity matrix, and recognition was performed
based on the proposed algorithm in Section 2.3. We repeated this n times for
every sample and obtained a final result by averaging them.

To construct the dissimilarity matrix, all samples were selected as represen-
tatives and the dissimilarities were measured with the Euclidean distance and
the regional distance. Here the two distance measures are named as “ED” and
“RD”, respectively.8 The distance measure called RD is defined as the average
of the minimum difference between the gray value of a pixel and the gray value
of each pixel in the 5× 5 neighborhood of the corresponding pixel. In this case,
the regional distance compensates for a displacement of up to three pixels of
the images. For the interest of brevity, the details of the distance measure are
omitted here, but can be found in the literature including [19].

However, the faces for some subjects vary with pose, illumination, facial ex-
pression, and whether or not they are wearing glasses. Thus, the dissimilarity

5 http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html
6 http://www1.cs.columbia.edu/ belhumeur/pub/images/yalefaces
7 A thorough evaluation on AT&T and Yale databases is presented here. It would be

interesting to see results on more challenging datasets, such as FERET and CMU-
PIE. The results on these datasets will appear in the next paper.

8 Here, we experimented with two simple measures, namely, ED and RD. However,
it should be mentioned that we can have numerous solutions, depending on dissim-
ilarity measures, such as the Hamming distance, the modified Hausdorff distances,
the blurred Euclidean distance, etc. From this perspective, the question “what is the
best measure?” is an interesting issue for further study.
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matrix simply obtained by measuring the input images can not work as a rep-
resentative. To overcome this problem as well as the SSS problem, a combined
dissimilarity representation and two classifier fusion strategies are employed in
the experiment. To investigate this combination rule, first of all, two dissimilar-
ity representations, namely, ED and RD, are averaged into a new representation
(which is named as “AD” here) after normalization. As mentioned in the previ-
ous section, three base classifiers are designed in this newly defined dissimilarity
space, and then all of their results are combined in fixed or trained fashion.

Since the diversity between the base classifiers is essential for constructing a
robust ensemble, different classifiers, such as Nearest Mean Classifiers, Normal
Density based Classifiers, and Nonlinear Classifiers, are considered as the base
classifiers. These three kinds of base classifiers are implemented with PRTools,9

and will be denoted as nmc, ldc, and knnc, respectively, in a subsequent section.
The outputs of the base classifiers are combined with fixed combiners, such as
Product, Median, and Majority vote rules, and two trained classifiers. All five
combiners are also implemented with PRTools, and named as prodc, medianc,
votec, meanc, and fisherc, respectively. To simplify the classification task for
the paper, only three base classifiers, three fixed and two trained combiners
are experimented. However, other classifiers, including neural network and SVM
based classifiers, and combining rules can also be considered.

3.3 Experimental Results

The run-time characteristics of the proposed algorithm for the two benchmark
databases, AT&T and Yale, is reported below and shown in Table 1. The perfor-
mance of the dissimilarity-based classifiers (DBC and CDBC) is investigated
first. Following this, a comparison is made between the conventional LDA-
extension methods and the proposed CDBC scheme.

First of all, to examine the rationality of employing a fusion technique in
the CDBC, the simple Dissimilarity-Based Classifier (DBC) was experimented.
While CDBC involves all of the five steps given in Section 2.3, DBC consists of
only the steps 1, 2, and 4 with k = 1 and l = 1. The classification accuracy rates
of DBC was evaluated for the AT&T and Yale databases. In this experiment,
the same dissimilarity matrix was constructed for both DBC and CDBC.

Table 1 shows the classification accuracy rates (%) of DBCs and CDBCs for
the two databases. Here, the abbreviations ED, RD, and AD, which are the
Eucledian distance, the regional distance, and the averaged distance, indicate
the dissimilarity measures employed in this experiment. Additionally, in the base
classifiers column, an Uncorrelated Normal based Quadratic Classifier (named
as udc) was used for the RD representation instead of the Normal Density based
Classifier (ldc). Also, knnc stands for the k-Nearest Neighbor Classifier (k = 1).

From Table 1, it is observed that the classification accuracies for the bench-
mark databases can be improved by employing the philosophy of CDBC. This
is clearly shown in the classification accuracy rates of the classifiers designed for
9 PRTools is a Matlab Toolbox for Pattern Recognition. PRTools can be downloaded

from the PRTools website, http://www.prtools.org/
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Table 1. A comparison of classification accuracy rates (%) of the base Dissimilarity-
Based Classifiers (DBC) and the Combined Dissimilarity-Based Classifiers (CDBC)
designed with the fixed and the trained combiners. Here, the classifiers of nmc, ldc
(udc*), and knnc are designed and evaluated as DBCs. Then, the combiners of prodc,
medianc, and votec are employed as the fixed combining schemes of the DBCs. Finally,
the classifiers of meanc and fisherc are employed as the trained combiners respectively.

Data Distance Base Classifiers Fixed Combiners Trained Combiners
Sets Measures nmc ldc(udc*) knnc prodc medianc votec meanc fisherc

ED 81.25 98.75 96.50 98.75 98.25 98.00 98.75 99.00
AT&T RD* 71.25 88.00 95.00 88.00 89.25 89.00 88.00 89.00

AD 76.25 99.25 95.75 99.25 98.50 98.00 99.25 99.25

ED 80.61 93.33 79.39 93.33 86.06 86.06 93.33 93.33
Yale RD* 78.18 72.12 79.39 72.12 76.36 76.97 72.12 78.18

AD 79.39 96.36 78.79 95.76 82.42 86.67 96.36 96.36

the AT&T database measured with ED. Specifically, the classification accuracies
of the base classifiers, namely, nmc, ldc, and knnc, are 81.25, 98.75, and 96.50
(%), while those of the fixed combiners, such as prodc, medianc, and votec, are
98.75, 98.25, and 98.00 (%), respectively. Additionally, the trained combiners
of meanc and fisherc have the classification accuracies of 98.75 and 99.00 (%),
respectively. From this consideration, it is evident that the rationale of the paper
for employing a fusion technique works well. Furthermore, the result of the com-
parison is completely in accord with the well-known fact that the combination
of different classifiers for the same feature set only slightly improves the best
individual results. Besides this, the results also prove that the best overall result
is obtained by a trained combiner. This is the case of the fisherc here. For the
Yale database, the same characteristics can be observed.

Secondly, as the main results, it should be noted that it is possible to improve
the classification performance by appropriately combining the dissimilarity rep-
resentations. For instance, the classification accuracy rates of the three base
classifiers designed with AD for AT&T database are (76.25, 99.25, 95.75) (%),
respectively, and those of the three fixed and the two trained combiners applied
to the outputs of the base classifiers are (99.25, 98.50, 98.00) and (99.25, 99.25)
(%), respectively. The above comparison shows that the accuracy rates of the
combiners are generally higher than those of the base classifiers. From these
considerations, the reader should observe that the newly created dissimilarity
representation of AD improves the performance of the classification accuracy
more effectively than the ED or RD measure. Therefore, it can be concluded
that the highest accuracy rates are achieved when the combined representation,
namely, AD, is classified with the trained combiners. However, it should be also
pointed out that the classification efficiencies were not improved in both com-
biners for RD. For the Yale database, the same characteristics can be observed.

Finally, CDBC can be compared with LDA-extensions for solving the SSS
problem in FR. Consider experimental results on the LDA-extensions, such as
the PCA [3], the PCA+LDA [3], the direct LDA [8], the DCV [10], and the
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LDA/GSVD [5], which have been recently reported in [18]. In that experiment, to
reduce the computational complexity, each facial image from the two databases,
AT&T and Yale, was down-sampled into 56× 46 and 61× 80, respectively. Ad-
ditionally, the “leave-one-out” strategy was also used to experiment with these
methods. In [18], the classification accuracies of the PCA, PCA+LDA, direct
LDA, DCV, and LDA/GSVD methods for AT&T and Yale databases are (93.25,
95.50, 98.50, 97.25, 93.50) and (72.73, 74.55, 92.12, 70.91, 98.79) (%), respec-
tively. A comparison of these figures and Table 1 shows that the classification
accuracy of CDBCs is marginally higher than that of the conventional meth-
ods. From this consideration, the rationale of the dissimilarity-based scheme for
employing a fusion technique is proven to be valid.

In review, it is not easy to say that one specific method is superior to others for
solving the SSS problem in FR. However, as a matter of comparison, it is clear
that the combined dissimilarity-based method is better than the conventional
schemes with regard to the classification accuracy rates.

4 Conclusions

In this paper a method that seeks to address the SSS problem of image recog-
nition by combining the dissimilarity-based classifiers was considered. Rather
than use Fisher’s criterion to reduce the dimensionality, a completely different
approach was employed, in which an object was represented based on the dis-
similarity measures among training samples instead of the feature vector itself.
Apart from utilizing the dissimilarity representation [18], to increase the classi-
fication accuracy, in this paper, a new method of employing a fusion technique
in representing features as well as in designing classifiers was proposed.

The proposed method has been tested on two well-known face databases and
compared with LDA-extension approaches. The experimental results demon-
strate that the proposed scheme works well and its classification accuracy is
better than that of the conventional ones. The results especially demonstrate
that the highest accuracy rates are achieved when the combined representation
is classified with the trained combiners. Although an investigation was made
that focused on the possibility that the combined dissimilarity-based classifiers
could be used to solve the SSS problem, many problems remain. One of them
is an improvement of the classification performance by utilizing an appropriate
dissimilarity measure (i.e., a modified Hausdorff distance) and by developing a
suitable feature combination in the dissimilarity space. The research concerning
this is a future aim of the authors.
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Abstract. In this paper, we propose an efficient palmprint recognition
scheme which has two features: 1) representation of palm images by two
dimensional (2-D) wavelet subband coefficients and 2) recognition by a
modular, personalized classification method based on Kernel Principal
Component Analysis (Kernel PCA). Wavelet subband coefficients can
effectively capture substantial palm features while keeping computational
complexity low. We then kernel transforms to each possible training palm
samples and then mapped the high-dimensional feature space back to
input space. Weighted Euclidean linear distance based nearest neighbor
classifier is finally employed for recognition. We carried out extensive
experiments on PolyU Palmprint database includes 7752 palms from 386
different palms. Detailed comparisons with earlier published results are
provided and our proposed method offers better recognition accuracy
(99.654%).

1 Introduction

Biometrics is becoming more and more popular in an increasingly automated
world. Palmprint recognition is one kind of biometric technology and a rela-
tively new biometric feature. Compared with other biometrics, the palmprints
has several advantages: low-resolution imaging can be employed; low-cost cap-
ture devices can be used; it is difficult to fake a palmprint; the line features of the
palmprints are stable, etc. [1]. It is for these reasons that palmprint recognition
has recently attracted an increasing amount of attention from researchers.

There are many approaches for palmprint recognition using line-based [2][4][5],
texture-based [9][5], and appearance-based methods [3][8][7][6] in various litera-
ture. In the line-based approach, the features used such as principal lines, wrin-
kles, delta points, minutiae, etc. are sometimes difficult to extract directly from
a given palmprint image with low resolution. The recognition rates and com-
putational efficiency are not strong enough for palmprint recognition. In the
texture-based approach, the texture features are not sufficient and the extracted
features are greatly affected by the lighting conditions. From that disadvantages,
researches have developed the appearance-based approaches. The appearance-
based approaches only use a small quantity of samples in each palmprint class

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 122–133, 2007.
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randomly selected as training samples to extract the appearance features (com-
monly called algebraic features) of palmprints and form feature vector.

Eigenpalms method [8], fisherpalms method [3], and eigen-and-fisher palms
[7] are presented as the appearance-based approaches for palmprint recognition
in literature. Basically, their representations only encode second-order statistics,
namely, the variance and the covariance. As these second order statistics pro-
vide only partial information on the statistics both natural images and palm
images, it might become necessary to incorporate higher order statistics as well.
In other words, they are not sensitive to higher order statistics of features. A
kernel fisherpalm [6] is presented as another work to resolve that problem. In
addition, for palmprint recognition, the pixelwise covariance among the pixels
may not be sufficient for recognition. The appearance of a palm image is also
severely affected by illumination conditions that hinder the automatic palmprint
recognition process.

Converging evidence in neurophysiology and psychology is consistent with the
notion that the visual system analyses input at several spatial resolution scales
[19]. Thus, spatial frequency preprocessing of palms is justified by what is known
about early visual processing. By spatial frequency analysis, an image is repre-
sented as a weighted combination of basis functions, in which high frequencies
carry finely detailed information and low frequencies carry coarse, shape-based
information. Recently, there have been renewed interests in applying discrete
transform techniques to solve some problems in face recognition [13][14][17], in
palmprint recognition [17][18] and many real world problems. An appropriate
wavelet transform can result in robust representations with regard to lighting
changes and be capable of capturing substantial palm features while keeping
computational complexity low.

From these all considerations, we propose to use discrete wavelet transform
(DWT) to decompose palm images and choose the lowest resolution subband
coefficients for palm representation. We then apply kernel PCA as a nonlinear
method to project palmprints from the high-dimensional palmprint space to a
significantly lower-dimensional feature space, in which the palmprints from the
different palms can be discriminated much more efficiently. The main contribu-
tions and novelties of the current paper are summarized as follows:

– To reliably extract palmprint representation, we adopt a template matching
approach where the feature vector of a palm image is obtained through a
multilevel two-dimensional discrete wavelet transform (DWT). The dimen-
sionality of a palm image is greatly reduced to produce the waveletpalm.

– A nonlinear machine learning method, kernel PCA, is applied to extract
palmprint features from the waveletpalm.

– The proposed algorithm is tested on a public palmprint databases. We pro-
vide some quantitative comparative experiments to examine the performance
of the proposed algorithm and different combinations of the proposed algo-
rithm. Comparison between the proposed algorithm and other recent ap-
proaches is also given.
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This paper is organized as follows. Section 2 introduces briefly wavelet trans-
form, lowest subband image representation, and fast Fourier transform (FFT)
which is also implemented in this work to compare the efficiencies on the palm-
print recognition. A brief description of kernel PCA (KPCA) and similarity mea-
surement used are given in Sections 3 and 4 respectively. Experimental results
on the palmprint database are summarized in Section 5 followed by discussions
and conclusions in Section 6.

2 Discrete Transforms

In the proposed algorithm, the palmprint is first transformed into the wavelet
domain, then kernel PCA is applied to extract higher order relations among
waveletpalms for future recognition. In order to compare the efficiencies of the
wavelet transform and discrete fast Fourier transform (FFT) is alternately em-
ployed in the proposed algorithm.

2.1 Discrete Wavelet Transform

The DWT was applied for different applications given in the literature e.g. tex-
ture classification [12], image compression, face recognition [13][14], because of
its powerful capability for multiresolution decomposition analysis. The wavelet
transform breaks an image down into four subsampled, or decimated, images.
They are subsampled by keeping every other pixel. The results consist of one
image that has been high pass filtered in both the horizontal and vertical direc-
tions, one that has been high pass filtered in the vertical and low pass filtered
in the horizontal, one that has been lowpassed in the vertical and highpassed in
the horizontal, and one that has been low pass filtered in both directions.

So, the wavelet transform is created by passing the image through a series of
2D filter bank stages. One stage is shown in Fig. 1, in which an image is first
filtered in the horizontal direction. The filtered outputs are then down sampled
by a factor of 2 in the horizontal direction. These signals are then each filtered
by an identical filter pair in the vertical direction. Decomposed image into 4
subbands is also shown in Fig. 1. Here, H and L represent the high pass and
low pass filters, respectively, and ↓ 2 denotes the subsampling by 2. Second-
level decomposition can then be conducted on the LL subband. Second-level
structure of wavelet decomposition of an image is also shown in Fig. 1. This
decomposition can be repeated for n-levels. Fig. 2 shows one-level, two-level and
three-level wavelet decomposition of a palm image.

The proposed work based DWT addresses the four-level decomposition of im-
ages in the database used for experiments. Daubechies-8 [11] low pass and high
pass filters are also implemented. Additionally, four-level of decompositions are
produced, then 32 x 32 sub-images of 128 x 128 images in the wavelet are pro-
cessed as useful features in the palmprint images. Reduce of the image resolution
helps to decrease the computation load of the feature extraction process.
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Fig. 1. One-level 2-D filter bank for wavelet decomposition and multi-resolution struc-
ture of wavelet decomposition of an image

Fig. 2. Palm images with one-level, two-level, and three-level wavelet decomposition
are shown

2.2 2-D Discrete FFT

F (u, v) is 2-D FFT coefficients of W x H image I(x, y). The feature sequence
is generated using the 2D-FFT technique. The palmprint image (128 x 128) in
the spatial domain is not divided into any overlap blocks. The FFT coefficients
for the palmprint image are first computed. In FFT, the coefficients correspond
to the lower frequencies than 3 x 3, and to the higher frequencies than 16 x
16 in FFT, were discarded by filtering. In other words, 247 coefficients ((16 x
16)-(3 x 3)) correspond to the 6% coefficients in the frequency domain, (64 x
64), were only processed. These data are empirically determined to achieve the
best performance. Therefore, the size of the palmprint image (128 x 128) in the
spatial domain was reduced to the very few coefficients in the frequency domain
correspond to the 1.5% coefficient. Finally, N = μxν features form a vector
χ ∈ �N , χ = (F0,0, F0,1, ...Fμ,ν) for FFT.
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3 Kernel PCA

The kernel PCA (KPCA) is a technique for nonlinear dimension reduction of
data with an underlying nonlinear spatial structure. A key insight behind KPCA
is to transform the input data into a higher-dimensional feature space [10]. The
feature space is constructed such that a nonlinear operation can be applied in the
input space by applying a linear operation in the feature space. Consequently,
standard PCA can be applied in feature space to perform nonlinear PCA in the
input space.

Let χ1, χ2, ..., χM ∈ �N be the data in the input space (the input space is
2D-DWT coefficients in this work), and let Φ be a nonlinear mapping between
the input space and the feature space i.e. using a map Φ : �N → F , and then
performing a linear PCA in F . Note that, for kernel PCA, the nonlinear mapping,
Φ, usually defines a kernel function [10]. The most often used kernel functions
are polynomial kernels, Gaussian kernels, and sigmoid kernels [10]:

k(χi, χj) = 〈χi, χj〉d, (1)

k(χi, χj) = exp

(
−‖χi − χj‖2

2σ2

)
, (2)

k(χi, χj) = tanh(κ〈χi, χj〉+ ϑ), (3)
where d is a number in the set of natural numbers, e.g. {1,2,. . . }, σ > 0, κ > 0,
and ϑ < 0.

The mapped data is centered, i.e.
∑M
i=1 Φ(χi) = 0 (for details see [10]), and let D

represents the data matrix in the feature space: D = [Φ(χ1)Φ(χ2) · · ·Φ(χM )]. Let
K ∈ �MxM define a kernel matrix by means of dot product in the feature space:

Kij = (Φ(χi) · Φ(χj)) . (4)

The work in [10] shows that the eigenvalues, λ1, λ2, . . . , λM , and the eigenvectors,
V1, V2, . . . , VM , of kernel PCA can be derived by solving the following eigenvalue
equation:

KA = MAΛ (5)
with A = [α1, α2, . . . , αM ] and Λ = diag{λ1, λ2, . . . , λM}. A is MXM orthogonal
eigenvector matrix, Λ is a diagonal eigenvalue matrix with diagonal elements in
decreasing order (λ1 ≥ λ2 ≥ · · · ≥ λM ), and M is a constant corresponds to
the number of training samples. Since the eigenvalue equation is solved for α’s
instead of eigenvectors, V = [V1, V2 . . . VM ], of kernel PCA, first, A should be
normalized to ensure that eigenvalues of kernel PCA have unit norm in the
feature space, therefore λi‖αi‖2 = 1, i = 1, 2, . . . , M . After normalization the
eigenvector matrix, V , of kernel PCA is then computed as follows:

V = DA (6)

Now let χ be a test sample whose map in the higher dimensional feature space
is Φ(χ). The kernel PCA features of χ are derived as follows:

F = V TΦ(χ) = ATB (7)

where B = [Φ(χ1) · Φ(χ)Φ(χ2) · Φ(χ) · · ·Φ(χM )Φ(χ)]T .
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4 Similarity Measurement

When a palm image is presented to the wavelet-based kernel PCA classifier,
the wavelet feature of the image is first calculated as detailed in Section 2, and
the low-dimensional wavelet-based kernel PCA features, F , are derived using the
equation 7. Let M0

k , k = 1, 2, .., L, be the mean of the training samples for class
wk. The classifier applies, then, the nearest neighbor rule for classification using
some similarity (distance) measure δ:

δ(F, M0
k ) = minjδ(F, M0

j ) −→ F ∈ wk, (8)

The wavelet-based kernel PCA feature vector, F , is classified as belong to the
class of the closest mean, M0

k , using the similarity measure δ.
Popular similarity measures include the Weighted Euclidean Distance (WED)

and Linear Euclidean Distance (LED) which are defined as follows:

WED : dk =
N∑
i=1

(f(i)− fk(i))2

(sk)2
(9)

where f is the feature vector of the unknown palmprint, fk and sk denote the
kth feature vector and its standard deviation, and N is the feature length.

LED : dij(x) = di(x) − dj(x) = 0 (10)

where di,j is the decision boundary separating class wi from wj . Thus dij > 0
for pattern of class wi and dij < 0 for patterns of class wj .

dj(x) = xTmj − 1
2
mT
j mj , j = 1, 2, ...M (11)

mj =
1

Nj

∑
x∈wj

x, j = 1, 2, ..., M (12)

where M is the number of pattern classes, Nj is the number of pattern vectors
from class wj and the summation is taken over these vectors.

Support Vector Machines (SVMs) have recently been known to be successful
in a wide variety of applications [10][15]. SVM-based and WED-based classifier
are also compared in this work. In SVM, we first have a training data set,
like, D = {(xi, yi)|xi ∈ X, yi ∈ Y, i = 1, ..., m}. Where X is a vector space of
dimension d and Y = {+1,−1}. The basic idea of SVM consists in first mapping
x into a high dimension space via a function, then maximizing the margin around
the separating hyperlane between two classes, which can be formulated as the
following convex quadratic programming problem:

maximize W (α) =
m∑
i=1

αi − 1
2

m∑
i,j=1

αiαjyiyj(K(xi, xj) +
1
C

δi,j) (13)

subject to 0 ≤ αi ≤ C, ∀i, (14)
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and

m∑
i

yiαi = 0 (15)

where αi(≥ 0) are Lagrange multipliers. C is a parameter that assigns penalty
cost to misclassification of samples. δi,j is the Kronecker symbol and K(xi, xj) =
〈φ(xi) ·φ(xj)〉 is the Gram matrix of the training examples. The form of decision
function can be described as

f(x) = 〈w, Φ(x)〉 + b (16)

where, w =
∑m

i=1 α∗jyiΦ(xi), and b is a bias term.

5 Experiments

The PolyU palmprint database [9] was obtained by collecting palmprint images
from 193 individuals using a palmprint capture device. People was asked to
provide about 10 images, each of the left and right palm. Therefore, each person
provided around 40 images, so that this PolyU database contained a total of
7,752 grayscale images from 386 different palms. The samples were collected in
two sessions, where the first ten samples were captured in the first session and
other ten in the second session. The average interval between the first and second
collection was 69 days. The resolution of all original palmprint images is 384 x
284 pixels at 75 dpi. In addition, they changed the light source and adjusted the
focus of the CCD camera so that the images collected on the first and second
occasions could be regarded as being captured by two different palmprint devices.
The palmprint images collected in the second occasion were also captured under
different lighting conditions.

At the experiments on the database, we use the preprocessing technique de-
scribed in [9] to align the palmprints. In this technique, the tangent of the two
holes (they are between the forefinger and the middle finger, and between the
ring finger and the little finger) are computed and used to align the palmprint.
The central part of the image, which is 128 x 128, is then cropped to represent
the whole palmprint. Such preprocessing greatly reduces the translation and

Fig. 3. Original palmprint and it’s cropped image
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rotation of the palmprints captured from the same palms. An example of the
palmprint and its cropped image is shown in Figure 3.

In the first experiment on the database, the first session was used as training
set, second session includes 3850 samples of 386 different palms was also used
as testing set. In this experiment, the features are extracted by using the pro-
posed kernel based eigenspace method with length 50, 75, 100, 200, and 300.
Weighted Euclidean distance(WED)-based matching was used to cluster those
features. The matching is separately conducted and the results are listed in
Table 1. The numbers given in Table 1 correspond to the correct recognition
samples in all test samples (3850). The entries in brackets also represent the
corresponding recognition rate. High recognition rate 93.168% was achieved
for the DWT+KPCA with feature length of 300. A nearest-neighbor classifier
based on WED is employed to produce recognition rates given in the Table 1.
The recognition rates obtained by PCA and kernel PCA based methods are
comparatively illustrated in Table 1. When the feature number varies from 50 to
300, although KPCA-based approach only achieves higher recognition rate than
PCA-based with feature length of 75, but DWT+KPCA based the proposed
method achieved higher recognition rate then all combinations of PCA-based
and FFT+KPCA-based approaches. Finally, it is evident that feature length
can play an important role in the matching process. Long feature lengths lead
to a high recognition rate.

Table 1. Comparative performance evaluation for the different matching schemes with
different feature lengths. Train is first session, test is second session.

Method Feature length
50 75 100 200 300

PCA 3411 (88.597) 3477 (90.311) 3498 (90.857) 3513 (91.246) 3513 (91.246)
DWT+PCA 3444 (89.454) 3513 (91.246) 3546 (92.103) 3570 (92.727) 3568 (92.675)

KPCA 3411 (88.597) 3481 (90.415) 3498 (90.857) 3508 (91.116) 3510 (91.168)
FFT+KPCA 2746 (71.324) 2933 (76.181) 3034 (78.805) 3174 (82.441) 3253 (84.493)
DWT+KPCA 3457 (89.792) 3531 (91.714) 3558 (92.415) 3584 (93.09) 3587 (93.168)

The performance variation for WED-based nearest-neighbor (NN) and SVM
classifiers with the increase in number of features are shown in Figure 4. The
SVM using radial basis function was employed in the experiments and the pa-
rameters of SVM were empirically selected. The training parameter γ, ε and C
were empirically fixed at 0.55, 0.001, and 100, respectively. As shown in Figure
4, the SVM classifier achieved higher recognition when 50 features were only im-
plemented. For the feature lengths longer than 50, the WED-based NN classifier
has achieved better performance.

As final experiment and very similar to the experiments published in litera-
ture, the palm images collected from the first session were only used to test the
proposed algorithm. We use the first four palmprint images of each person as
training samples and the remaining six palmprint images as the test samples.
So, the numbers of training and test samples are 1544 and 2316. We also test the
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method using the SVM- and WED-based classifiers

Table 2. Testing results of the eight matching schemes with different feature lengths

Method Feature length
50 100 200 300 380

PCA
LED 60.664 % 71.804 % 74.568 % 1723 (74.395 %) 1717 (74.136 %)
WED 98.747 % 99.179 % 99.093 % 2294 (99.05 %) 2292 (98.963 %)

DWT + LED 59.542 % 71.459 % 87.305 % 2032 (87.737 %) 2032 (87.737 %)
PCA WED 98.834 % 99.309 % 99.352 % 2301 (99.352 %) 2302 (99.395 %)

KPCA
LED 63.557 % 73.661 % 75.82 % 1730 (74.697 %) 1712 (73.92 %)
WED 98.877 % 99.222 % 99.05 % 2293 (99.006 %) 2291 (98.92 %)

DWT LED 83.462 % 86.01 % 86.01 % 2025 (87.435 %) 2039 (88.039 %)
KPCA WED 98.747 % 99.309 % 99.568 % 2308 (99.654 %) 2308 (99.654 %)

8 approaches against conventional PCA method using different test strategies.
Based on these schemes, the matching is separately conducted and the results
are listed in Table 2. The meaning of LED and WED in Table 2 is linear Eu-
clidean discriminant and weighted Euclidean distance based nearest neighbor
classifier, respectively. The numbers given for feature lengths 300 and 380 in Ta-
ble 2 represent the number of the correct recognition samples in all 2316 palms
used as test samples. The entries in the brackets also represent the correspond-
ing recognition rate (%). A high recognition rate (99.654 %) was achieved for
kernel PCA with 2D-DWT (abbreviated as DWT+KPCA) and WED classifier
approach, with feature length of 300. One of the important conclusion from Ta-
ble 2 is that, long feature lengths lead to a high recognition rate. However, this
principle only holds to a certain point, as the experimental results summarized
in Table 2 show that the recognition rate remain unchanged, or even become
worse, when the feature length is extended further.
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Fig. 5. Experimental results by the different rotation and translation conditions. (Top)
Some palm images in training set, (Bottom) Correctly classified corresponding samples
in testing set.

Fig. 6. Misclassified four palm samples. Top: Some palm images in training set, Bot-
tom: Corresponding and misclassified samples in testing set.

Typical samples in this database are shown in Figs. 5 in which the top images
were used as training samples, the bottom images were also used as test samples.
Although the rotation and translation conditions are quite different from the
samples used as test set, the proposed algorithm can still easily recognize the
same palm. The misclassified samples were only 8 samples in all 2316 used as
testing set, and some of them are also shown in Figure 6 in which the top
images show the sample in training set, and corresponding bottom images were
misclassified samples used in test set. The other misclassified four samples have
not been shown because of the page limitation.
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Table 3. Comparison of different palmprint recognition methods

Method
Proposed In [4] In [5] In [3] In [8] In [6] In [7] In [16] In [17] In [18]

Database
palms 386 3 100 300 382 160 100 100 190 50

samples 3860 30 200 3000 3056 1600 600 1000 3040 200
Recog. Rate 99.654 95 91 99.2 99.149 97.25 97.5 95.8 98.13 98

Comparison has been finally conducted among our method and other methods
published in literature, and is illustrated in Table 3. The databases given in the
Table 3 are defined as the numbers of the different palms and whole samples
tested. The data represent the recognition rates given in Table 3 is taken from
experimental results in the cited papers. In biometric systems, the recognition
accuracy will decrease dramatically when the number of image classes increase
[1]. Although the proposed method is tested on the public database includes
more different palms and samples, the recognition rate of our method is more
efficient, as illustrated in Table 3.

6 Conclusion

This paper presents a new appearance-based non-linear feature extraction (ker-
nel PCA) approach to palmprint identification that uses low-resolution images.
We first transform the palmprints into wavelet domain to decompose the origi-
nal palm images. The kernel PCA method is then used to project the palmprint
image from the very high-dimensional space to a significantly lower-dimensional
feature space, in which the palmprints from the different palms can be dis-
criminated much more efficiently. WED based NN classifier is finally used for
matching. The feasibility of the wavelet-based kernel PCA method has been suc-
cessfully tested on PolyU database. The data set consists of 7752 images of 386
subjects. Experimental results show the effectiveness of the proposed algorithm
for palmprint recognition.
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Abstract. Interactive data mining focuses on efficient and effective
human-computer interactions for data analysis purposes. An interactive
system is an integration of a human user and a computer machine. ICS,
an interactive classification system, is implemented to demonstrate the
power of interactive data mining. The interaction is mutually beneficial
to users and machines. This article describes the architecture of ICS, and
introduces the main features of ICS in the entire data mining process.

1 Introduction

Data mining deals with many important tasks, such as description, prediction
and explanation of data. Whereas many data mining models concentrate on
automation and efficiency, interactive data mining systems focus adaptive and
effective communications between human users and computer systems. One of
the key elements that distinguishes an interactive data mining systems from
more traditional data mining systems is its capability to dynamically support
a user’s expectation, mining and reasoning. Though human-machine interaction
has been emphasized for many disciplines, it did not get enough attention in
the domain of data mining until recently [1,2,4,8]. The research includes several
related areas: the input of domain knowledge, the input of user requirements
and the enhancement of visualization.

The knowledge discovery process is normally described as six phases: data
preparation, data selection and reduction, data pre-processing and transform-
ing, pattern discovery, pattern explanation and evaluation, and pattern pre-
sentation [2,3,5,6]. Users need to involve in all these phases. Specifically, users
expect computer systems to support different forms of user involvement, such as:
hypothesis formulation, information acquisition, assistance acquisition, manipu-
lation, and evaluation and explanation [7]. These forms of involvement can be
applied to the entire data mining process to arrive at desirable mining results.
Through interaction and communication, computers and users can share the
tasks involved in order to achieve a good balance of automation and human con-
trol. Moreover, interactive data mining can encourage users’ learning, improve
insight and understanding of the problem to be solved, and stimulate users to
explore creative possibilities. Users’ feedback can be used to improve the system.
The interaction is mutually beneficial, and imposes new coordination demands
on both sides [7,8].

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 134–145, 2007.
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To exemplify the power of interactive data mining, ICS, an interactive classifi-
cation system, is designed and implemented (refer to the current version ICS-V1
on http://www.cs.uregina.ca/∼yanzhao/ICS.html). The main output of ICS is a
set of classification rules represented as a spacial tree structure, called a granule
tree. ICS enables users to be involved in two main issues of classification. First,
it allows a user to visually select and state which granule to be classified. The
user can express his/her own interest or priority to execute the classification
by a free selection of the candidate granule to be classified. Second, the system
allows the user to visually select and state how to classify by providing diverse
statistical evaluations. Various interactions are supported in all of the six data
mining phases.

2 An Architecture of Interactive Data Mining Systems

In this section, we discuss six phases of interactive data mining, and five basic
forms of human-user interactions. Based on this model, we outline the architec-
ture and major components of ICS.

2.1 The Process of Interactive Data Mining

In an interactive system, the six phases of data mining can be carried out as
follows:

– Interactive data preparation prepares dataset to be processed, and observes
raw data within a specific format.

– Interactive data selection and reduction involves the reduction of the number
of attributes and/or the number of records. A user can specify the attributes
of interest and/or data area, and remove data that is outside of the area of
concern.

– Interactive data pre-processing and transformation determines the number
of intervals, as well as cut-points for continuous datasets, and transforms the
dataset into a workable dataset.

– Interactive pattern discovery interactively discovers patterns under the user’s
guidance, selection, monitoring and supervision. Interactive controls include
choosing search strategies and heuristics, deciding rule directions, and han-
dling abnormal situations.

– Interactive pattern explanation and evaluation explains and evaluates the
discovered pattern if the user requires it. The effectiveness and usefulness of
the explanations is subject to the user’s judgement.

– Interactive pattern presentation visualizes the patterns that are perceived
during the pattern discovery phase, and/or the pattern explanation and eval-
uation phase.

Practice has shown that the process is virtually a loop, which is iterated until
satisfying results are obtained.
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2.2 The Forms of Interactive Data Mining

Users should be allowed to formulate hypotheses, describe decisions and selec-
tions based on their preference and judgement. For example, a user can state
an interested class for classification tasks, express a target knowledge represen-
tation, indicate a question, infer features for explanation, describe a preference
order of attributes, set up constraints, and so on. Subjects of hypotheses differ
among the varying views of individuals. The potential value consideration enters
into the choice of proposition.

Information can be presented in various fashions and structures in an interac-
tive data mining system. Raw data is raw information. Mined rules are extracted
knowledge. Numerous measurements show the information of an object from
different aspects. Each data mining phase contains and generates much infor-
mation. An object might be changed; the information it holds might be erased,
updated or manipulated by the user in question. Benchmarks, standards and de
facto standards are valuable reference knowledge, which can make it easier to
learn and evaluate new applications. Users need to retrieve information in an
interactive manner.

One of the roles that an interactive system can play is to provide knowledge
or skills that the user does not have in-house, for example, doing an evaluation
or providing an analysis of the implications of environmental trends. To achieve
this expert role, the interactive system must be able to “understand” the hu-
man proposition, and be able to make corresponding inferences. Assistance is
especially useful while the domain is complex and the search space is huge. It
ensures the process develops in a more balanced manner.

Manipulation is the form of user participation that includes selecting, retriev-
ing, combining and changing objects, and using operated objects to obtain new
results. Different data mining phases require different kinds of manipulations.
Interactive systems should allow users to build their own models, and define
their own heuristics and algorithms. The procedures can be connected by func-
tions similar to the pipe command in UNIX systems. It means that the standard
output of the left of the pipe is sent as standard input of the right of the pipe.

The evaluation and explanation phase is guided by humans. Sometimes people
doubt and challenge the so-called knowledge, if it is not understandable within
their previous knowledge. We believe that information can turn into knowledge
if, and only if, it can be rationalized, explained and validated.

A particular interactive data mining system can involve interactions of all the
five forms at the six different phases. Figure 1 illustrates the process and the
forms of interactive data mining.

2.3 The Architecture of ICS

Based on the framework of interactive data mining, an interactive classification
system, ICS, is developed. The general architecture of ICS is shown in Figure 2.
It is composed of three layers: the storage layer, the interactive manipulation
layer and the presentation layer. The bottom layer is executed by the computer,
storing raw user data and classification results. The middle layer, implementing
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the main phases of data mining, is executed by the user and the computer. The
upper layer is supported by the computer. It presents raw data, intermediate
results, and final results in different forms.

The manipulation layer is the most essential part of ICS. Through the data
preparation component, users can define the schema of a new table, create
tables, import tables and edit data in the existing tables. These tables are
stored in the storage layer, and presented in the presentation layer. Through
the data selection component, users can split the table into two parts. One is for
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Fig. 2. The architecture of ICS
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training a classifier, the other is for testing the classifier. The partitioned tables
are also stored and presented. Through the pattern discovery component, users
can select decision classes of interest, select classification and evaluation mea-
sures, select algorithms, determine searching strategies and heuristics, decide
stopping criteria, and evaluate classification rules at any time. The intermediate
results are presented in different forms, such as a tree, a table or a chart. These
results help the user with further decision-making. If the user questions the rea-
son of a particular discovered result, he/she can construct explanations of it
through the pattern explanation component. This component allows the user to
suggest explanation profiles, and construct an explanation table. The plausible
explanations can be constructed in the explanation table through the pattern
discovery component. We introduce the detail modules of the architecture in the
next section.

3 Implementation of ICS

We use an information table as our data representation, and a granule tree as our
knowledge representation. After introducing the basic concepts of information
tables and granule trees, we present the main features of ICS based on the system
architecture.

3.1 Data and Knowledge Representation

An information table is the following tuple:

S = (U, At, {Va | a ∈ At}, {Ia | a ∈ At}, L),

where U is a finite nonempty set of objects, At is a finite nonempty set of
attributes, Va is a nonempty set of values of a ∈ At, Ia : U → Va is an information
function. L is a decision logic language, consists of a set of formulas. An atomic
formula of L is a descriptor a = v, where a ∈ At and v ∈ Va. The well-formed
formulas (wff) of L is the smallest set of formulas containing the atomic formulas
and closed under ¬, ∧, ∨, → and ≡. If a formula is defined by only logical
conjunction ∧, it is called a conjunctor. If a formula is defined by only logical
disjunction ∨, it is called a disjunctor.

Given a formula φ ∈ L, the set m(φ), defined by mS(φ) = {x ∈ U | x |= φ},
is called the meaning of the formula φ in S, or a definable granule of S. If φ is
a conjunctor, then mS(φ) is called a conjunctively definable granule. If φ is a
disjunctor, then mS(φ) is called a disjunctively definable granule.

For classification tasks, At = C ∪ {class}, where C is a set of conditional
attributes and class is a decision attribute. A classification rule is expressed as
φ ⇒ ψ, where the formula φ is defined by conditional attributes in C and the
formula ψ is defined by the decision attribute class.

A granule network [8] systematically organizes all the conjunctively definable
granules and conjunctors with respect to the given universe. Each node consists of
a granule, and each arc leading from a granule to its child is labelled by an atomic
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formula. A path from a coarse granule to a fine granule indicates a conjunctive
relation. Given an information table S = (U, At, {Va}, {Ia}), a granule network
has |At|+1 levels. According to a hierarchical structure, the root node is the most
coarse granule U , labelled by 
. The second level contains all the 1-conjunctor
definable granules, the third level contains all the 2-conjunctor definable granules,
and so on, until the (|At| + 1)th level contains all the |At|-conjunctor definable
granules.

A granule tree, as a heuristic searching result for classification, is a portion of
a granule network. It can be organized as a tree structure. Each path from the
root to a leaf can be equivalently expressed as a decision rule.

3.2 Interactive Data Preparation and Selection

Data can be stored in ICS in three ways. First, ICS allows a user to define and
create his/her datasets from scratch. A “schema editor” module allows the user
to specify the attribute names of a dataset. A “data editor” module allows the
user to type in each individual data entry, or copy-paste an existing dataset from
elsewhere. Second, ICS can import an existing dataset from Microsoft Access or
Excel directly, and convert it to XML format. All the user datasets in ICS can
be edited before being processed in the “data editor” module. Third, a user can
compose a new dataset by natural joining two or more than two existing tables
together in the “query builder” module. The process of selecting tables to be
joined is subjectively based on uses’ requirement.

The natural join operation designed in the “query builder” module is es-
pecially useful for explaining data mining results. The explanation profiles of a
target to be explained may exist inside or outside of the original dataset. By nat-
ural joining the tables in which a pattern is located, and another table in which
the proposed explanation profiles are stored, we are able to construct plausible
explanations of the discovered pattern. Intuitively, given different explanation
profiles, different sets of explanatory accounts can be generated.

For the purpose of training and testing a classifier, a user can decide either to
use a random leave-out method, or the 5-cross validation method to divide the
dataset into two parts. For the random leave-out method, ICS randomly picks
objects for constructing classification rules or trees, and keeps the remaining
objects for testing the accuracy of the learned rules or the tree. For the 5-cross
validation method, ICS needs the user to indicate which fold is retained for
testing, and the remaining four folds are used for training.

3.3 Interactive Pattern Discovery

The discovery module is called a “data analyser,” which consists of three sub-
modules: low order rule miner, high order rule miner and built-in algorithm rule
miner. Each sub-module can generate a specific granule tree, and can be eval-
uated separately. Either a partition space or a covering space of the granule
network can be searched for classification solutions. Many measures are involved
in the classification process. They represent different aspects of all formulas
that can be added conjunctively to the selected granule. ICS assists the user
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Input: A dataset for classification.
Output: A granule tree and its corresponding classification rules.
Set U as the root node of a granule tree at the initial stage.
While the user wants to continue

Select a branch N .
If ADD

Select an atomic formula a = v with respect to N regarding a certain criterion.
Modify the granule tree by adding the granule m(φ ∧ a = v) as a new node,
connect it to N by an arc, and name it by a = v.
Label the node by the class that satisfies the majority objects of the node.

If DELETE
Modify the granule tree by deleting all the finer granules of N , removing the
arcs, and deleting the granule N from the tree.

Update information of the branch N and the constructed tree.

Fig. 3. An algorithm of interactive classification

to observe all these aspects at the same time, and allows the user to select the
measures that are preferred. The induction process of ICS is briefly outlined in
Figure 3.

Information acquisition. In the process of interactive pattern discovery, users
require three types of information before deciding what action to take.

- Information of the constructed granule tree. At the initial stage, the granule
tree only has the root, the entire universe, the biggest granule. If it is not
consistently classified by any class, we start the classification process. Nodes
from the root to each labelled leaf form a classification rule. The view of the
granule tree and the view of the corresponding set of rules are switchable.
The evaluation of the rule set is also the evaluation of the tree.

- Information of a selected branch. A branch is a path from the root to a
selected node. Initially, the only branch is the root. After an atomic formula
is added conjunctively to the root, there are two branches, the root, and the
branch ended with the new added node. The user can choose any one of the
branches to investigate. As a result, he/she can alternatively add another
atomic formula to the previous one, or add an atomic formula to the root.
Some measures can be selected to evaluate the properties of the selected
branch.

- Information of the available atomic formulas (called active nodes in ICS)
and the available attributes (called active attributes in ICS) with respect
to a selected branch. When a branch is consistently classified, the finer
granules of it are all consistently classified, and thus are not meaningful.
When a branch is not yet consistently classified, then the user needs to de-
cide which atomic formula should be added conjunctively to the selected
branch.
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Measures of active attributes:

NumberOfAttributeV alues(a) = |Va|;
ConditionalEntropy(class|a)

= −∑
v∈Va

p(a = v)
∑

ci∈Vclass
p(class = ci|a = v) log(class = ci|a = v),

= −∑
v∈Va

∑
ci∈Vclass

p(class = ci, a = v) log(class = ci|a = v);
JointEntropy(class, a)

= −∑
v∈Va

∑
ci∈Vclass

p(class = ci, a = v) log(class = ci, a = v);
Gini(a)

= 1−∑
v∈Va

p(a = v)
∑

ci∈Vclass
p2(class = ci|a = v).

Measures of active nodes:

confidence(a = v ⇒ class = ci) = p(class = ci|a = v);
coverage(a = v ⇒ class = ci) = p(a = v|class = ci);
Entropy(a = v) = −∑

ci∈Vclass
p(class = ci|a = v) log(class = ci|a = v);

Generality(a = v) = |m(a = v)|.

Mining low order and high order rules. Two levels of dependencies, referred
to as the local and global dependencies, may be observed in an information table.
The local dependencies show how one specific combination of values on one set
of attributes determine one specific combination of values on another set of
attributes. The global dependencies show how all combinations of values on one
set of attributes determine all combinations of values on another set of attributes.
Given an information table S, for A, B ⊆ At, a low order rule and a high order
rule are defined as:

A low order rule : ∀a∈A Ia(x) = va ⇒ ∀b∈B Ib(x) = vb.
A high order rule : ∀a∈A Ia(x) = Ia(y)⇒ ∀b∈B Ib(x) = Ib(y).

The interface of the low order rule module and the high order rule module is
illustrated in Figure 4, together with two constructed granule trees. ICS supports
two different ways of mining low order classification rules. With respect to a
selected tree node, one can either add an active node, or add an active attribute.
For the former, only one rule is generated at each time; while for the latter, there
is a set of rules, corresponding to the possible values of the added attribute, being
added simultaneously. Both ways only concern the selected node, and thus are
low ordered.

ICS also supports two ways for mining high order classification rules. One way
is to select an active attribute at each time, and add it to all the inconsistent
nodes of the tree at once. Each node derives a set of rules, corresponding to the
possible values of the added attribute. The other way is to decide an ordering of
the attribute set. Following this order, ICS adds the attributes one by one to the
inconsistent nodes of the tree. By clicking one title of the active attribute table,
the attributes are sorted according to the selected measure, and the derived
attribute order is shown in the attribute order table on the right bottom. Both
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Fig. 4. ICS produces a low order granule tree and a high order granule tree in the
data analyser module, where 100% of user data are used for training. Both the decision
classes and all the measures are selected to be shown for the low order module, while
only two measures are selected for the high order module.
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ways concern all the inconsistent nodes at the same time. They thus are high
ordered. A pre-pruning method is provided by ICS to allow the user to indicate
the confidence threshold. Although a high order tree is constructed more quickly,
there is less human interaction involved in the discovery process.

Mining partition-based and covering-based granule trees. Partitions
and coverings are two simple and commonly used granulations of the universe.
A partition of a finite universe U is a collection of non-empty, and pairwise
disjoint granules of U whose union is U . A covering of a finite universe U is a
collection of non-empty, possibly overlapped granules of U , whose union is U .
Partitions are a special case of coverings.

To describe and classify all the classes, partition-based granule trees are suit-
able. Whenever an attribute is selected, all of its possible values are added to
the granule tree, with the corresponding granules being pairwisely disjointed.
The partition-based approach ensures that no portion will be missed for classi-
fication. If one needs to achieve partial success, namely, to describe and classify
one particular class, then covering-based granule trees are more suitable. In this
case, the active nodes and their measurements are of concern. Normally, the
progression of investigation moves from the most promising branch to the less
promising ones. One can apply the depth-first mode to explore each branch se-
quentially, or apply the breath-first mode to explore the granules at the same
level. A mixture method also is allowed.

Mining rules and exceptions. A classification rule is expressed as φ ⇒ ψ.
When the accuracy of a rule is not satisfied, there are two methods to obtain a
rule with higher confidence. The first method is to construct a rule in the form
of φ ∧ φ′ ⇒ ψ. That means, by refining the granule of m(φ) to the sub-granule
m(φ ∧ φ′), one expects the finer granules are tend to be more consistent. The
second method is to construct a rule in forms of φ∧φ′ ⇒ ψ′. The interpretation
is: if only the condition φ is known, we can conclude ψ to a certain degree.
However, if we also know that φ′ holds, we need to change our conclusion to ψ′.
That is, the second rule is an exception rule to the first general rule. By using
an interactive approach, ICS can generate both conventional classification rules
and exception rules.

Interactive system assistances. ICS provides effective assistances for inter-
active classification. Besides the functions we have introduced above, there is an
important sub-module of data analyser, called the “built-in algorithms” module.
It contains various prototypes of partition-based algorithms, such as ID3, AS-
SISTANT, C4.5, CART, and covering-based algorithms like PRISM, CN2 and
Itrule. Users can compare the resulting trees with these standard algorithms, and
improve and adjust the current learning results. The built-in algorithm module
is, of course, faster than the low order rule module and the high order rule
module. However, it supports the lowest level of human-computer interactivity.
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Fig. 5. ICS evaluates a constructed low order tree and its corresponding rules in the
data analyser module, low order rule mining sub-module. 5-cross validation method is
applied for splitting user data. The first fold of data records are for testing. Both the
decision classes, and both the training and testing tables are examined.

3.4 Interactive Pattern Evaluation

In the process of interactive evaluation, users need to obtain two types of eval-
uations: on one hand, we need to evaluate the description of the training data.
ICS keeps track of the number of objects that have been processed and covered
by any one of the constructed rules, the number of objects that have not been
covered by any rules, the sum of the correctly classified objects that covered by
certain solutions and/or manually-set solutions, and the sum of incorrectly clas-
sified objects. The values are updated when a new node is added to a selected
branch, a label is manually set for a branch, or a branch is deleted from the gran-
ule tree. On the other hand, we need to evaluate the prediction of the testing
data regarding the constructed classification rules. By the interactive method,
one does not need to complete the whole training process before doing the test.
The test process can be carried out whenever the user wishes. Similarly, the
classification process can be stopped manually when the accuracy of the testing
result is acceptable.

Corresponding to the three sub-modules: low order, high order and built-
in algorithms, three separate evaluation modules, called “result view” are im-
plemented. The user graphic interface of result view is illustrated in Figure 5,
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showing both the evaluation of the training data and the testing data regarding
a constructed low order rule tree and its corresponding rules.

4 Conclusion

The objective of interactive data mining is to provide an effective and efficiency
human-user interaction for data analysis purposes. ICS, equipped with many
features, supports interactive classification. It can simulate different algorithms
and generate different types of rules. Because the user decision-making process
can be totally indeterministic and unpredictable, the behavior of ICS is too rich
for a nice mathematical model.

We plan to extend ICS by adding more interactive features, such as an interac-
tive data preprocessing module. This will enable ICS to handle continuous data,
and allow users to cluster data according to their requirements. This module
is necessarily supported by better data visualization approaches. We also plan
to add a feature selection module into ICS. In this case, the relevant attributes
are suggested to be used for classification, while the irrelevant attributes are
suggested to be ignored.
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Abstract. The nearest neighbor (NN) classifier has been a widely used tech-
nique in pattern recognition because of its simplicity and good behavior. To  
decide the class of a new object, the NN classifier performs an exhaustive com-
parison between the object to classify and the training set T. However, when T 
is large, the exhaustive comparison is very expensive and sometimes becomes 
inapplicable. To avoid this problem, many fast NN algorithms have been devel-
oped for numerical object descriptions, most of them based on metric properties 
to avoid comparisons. However, in some sciences as Medicine, Geology, Soci-
ology, etc., objects are usually described by numerical and non numerical at-
tributes (mixed data). In this case, we can not assume the comparison function 
satisfies metric properties. Therefore, in this paper a fast most similar object 
classifier based on search methods suitable for mixed data is presented. Some 
experiments using standard databases and a comparison with other two fast NN 
methods are presented. 

1   Introduction 

The NN algorithm [1] has been a widely used technique for classification problems. 
Given a new object Q, the NN classifier consists in finding the nearest object ONN of 
Q from a training set T, using a distance function, and assigning the class of ONN  to Q. 
However, performing an exhaustive comparison between objects becomes impractical 
for applications where the training set T is large. To avoid this problem, many fast NN 
algorithms, which were designed for numerical object descriptions and most of them 
based on metric properties, have been developed. 

However, in some sciences as Medicine, Geology, Sociology, etc., objects are de-
scribed by numerical and non numerical data (mixed data). In this case, we can not 
assume the comparison function satisfies metric properties and therefore, we can not 
use most of the methods proposed for numerical objects. So, if a metric is not avail-
able but a comparison function that evaluates the similarity between a pair of objects 
could be defined, the objective would be to find the most similar neighbor (MSN) and 
use it for classifying. 

The MSN classifier is based on a training set T of N objects. Each object is de-
scribed by d attributes, which can be numerical or non numerical. Given a new object 
Q to classify, the goal consists in finding the MSN according to a comparison function 
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and assigning to Q the class of its MSN. The exhaustive search of the MSN, as occurs 
with the NN, could be very expensive if T is large. Therefore, in this paper we intro-
duce a fast MSN classification method based on a tree structure, which is not based on 
any metric property of the comparison function. 

The paper is organized as follows: section 2 provides a brief review of tree based 
fast NN algorithms. In section 2.1 and 2.2 two well known methods are detailed. In 
section 2.3 the comparison functions used in this work are described. In section 3 our 
fast MSN classifier is introduced. In section 4 we report experimental results obtained 
using our methods and the methods described in section 2. Finally, in section 5 we 
present some conclusions and future work.  

2   Related Work 

To avoid the exhaustive search, one of the most common strategies is the branch and 
bound technique. In a preprocessing step, the objects in T are organized in a tree 
structure. In the classification step, the tree is traversed to find the nearest neighbor. 
The speed up is obtained while the exploration of some parts of the tree is avoided. 
One of the first fast NN classifier, that use the branch and bound technique, was pro-
posed by Fukunaga and Narendra [2]. In the last years, some methods have been de-
veloped to improve the method proposed by Fukunaga and Narendra in two ways, the 
first one is focused on building a better tree that can lead to a faster classification 
process [3,4,5,6] and the second one is focused on the improvement of the search 
method [5,6,7,8].  

The improvements proposed in [3,4,5,6,8] are exact methods to find the nearest 
neighbor and all of them are based on metric properties of the distance to avoid com-
parisons between objects. However, finding the nearest neighbor (even using a fast 
method) is a slow process for some tasks, therefore in [7] an approximated method is 
proposed, where Fukunaga’s pruning rules are modified in order to finish the search 
when the current nearest neighbor is not too far from the exact nearest neighbor. In 
this process lower classification accuracy is obtained but in a shorter classification 
time. 

It is important to highlight that until now, all methods based on tree structures were 
designed to work with numerical data when the comparison function satisfies metric 
properties. 

2.1   The Classifier Proposed by Fukunaga and Narendra 

In the first phase (preprocessing phase) of the method proposed by Fukunaga and 
Narendra [2], a tree structure is built as follows: the training set T is divided in l sub-
sets, after that, each subset is divided into l subsets again (Fukunaga suggested using 
l=3). This procedure is recursively applied to construct the tree, until certain level is 
reached. The K-Means [9] method is used for clustering the sets at each level in the 
tree, using the Euclidean distance.  

Each node p of the tree contains four features, which are: the set of objects in the 
node p (Sp), the number of objects in p (Np), the centre of the node (Mp) and finally the 
maximum distance between the centre of p and the objects in the node p (Rp).  
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Given a new object Q to classify, the Fukunaga fast NN classifier searches the 
nearest neighbor based on a branch and bound method to traverse the tree. Two prun-
ing rules are used to decide whether a node or an object of the tree is evaluated or not. 
These rules are based on the triangle inequality. The first rule is applied to nodes of 
the tree and the second one is applied to objects that belong to leaves of the tree. For 
every child p of the current node, the pruning condition (first rule) is:  

),( pp MQDRB <+  (1) 

Where B is the distance between Q and the nearest object found so far and D is the 
comparison function. The nodes that satisfy this condition are not evaluated. In the 
final level of the tree, the objects that belong to that leaf node are tested to decide 
whether or not to compute the distance from the sample Q to the objects from the 

node. The pruning rule for every object pi So ∈  is: 

),(),( ppi MQDMoDB <+  (2) 

The objects that satisfy condition (2) can not be closer than the nearest neighbor 
found so far and the distance to Q is not computed. The search process finishes when 
all nodes in the tree have been evaluated or eliminated by the pruning rule. Finally, 
the class of the nearest neighbor found in the search process is assigned to Q. 

2.2   The Classifier Proposed by Moreno-Seco  

The fast approximate NN classifier proposed by Moreno-Seco [7] creates a tree struc-
ture in the same way as it is proposed by Fukunaga, with l=2 and only one object in 
each leaf node. 

The Moreno-Seco fast NN classifier is based in the Fukunaga and Narendra search 
with a modification on the first pruning condition: 

BRMQDe pp >−+ )),()(1(  (3) 

Where e is an error margin that allows to finish faster.  

2.3   Comparison Functions for Mixed Data 

Let us consider a set of objects {O1,O2, …, ON}, each object described by d attributes 
{x1,x2, …, xd}. Each attribute could be numerical or non numerical. To compare ob-
jects, in this work we used the function F used in [10,11] suitable to work with mixed 
data, which is defined as follows:  
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For quantitative data Ci(xi(O1), xi(O2)) is defined as follows: 
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Where, σi is the standard deviation of the attributes xi.  
The function F allows comparing objects described by numerical and non numeri-

cal attributes even if there is missing information. Using the function F, the object 
that maximizes the function is considered as the most similar neighbor. 

In this work we used the function S defined as follows.  

S = (1 - F) (7) 

In this work, to compare objects we also used the functions: HVDM, described in 
[12] and HOEM [13], which also allow us to compare objects described by mixed 
data. Besides, in order to consider missing information the HOEM function was modi-
fied, using the same criterion that HVDM applies for missing values.  

In the functions S, HVDM and HOEM the most similar neighbor is the object that 
minimizes the function.  

3   Proposed Method 

In this section, an approximate fast MSN classifier, based on a tree structure, which 
considers object described by mixed data is introduced. The method consists of two 
phases. The first phase, or preprocessing phase, is the construction of a tree structure 
from the set T, using suitable strategies for mixed data. 

In the second phase, two fast approximate MSN search methods are used, which 
are independent of metric properties of the comparison function.  

In order to compare the proposed methods, the search methods used in the second 
phase are compared against the search method proposed by Fukunaga [2] adapted for 
mixed data, which is an exact method based on metric properties. The proposed 
method is also compared with an adaptation for mixed data of the search method pro-
posed by Moreno-Seco [7] which is an improvement over Fukunaga’s method that 
allows to decrease the number of comparisons by introducing an error margin in the 
search. For this reason, Moreno-Seco’s method is not an exact method anymore. 
However, this method also relies on metric properties to avoid comparisons.  

There are other methods based in tree structures [14,15]. However, it is not possi-
ble to adapt these methods to work with similarity functions because these methods 
involve techniques such as PCA which are only applicable to numerical data. 

3.1   Preprocessing Phase 

In this phase, it is proposed to create a tree structure from the training set. In order to 
build the tree structure, the training set is hierarchically decomposed. The K-Means 
with Similarity Functions (KMSF) algorithm, which is an extension of the K-Means 
algorithm suitable to work with mixed data [10,11] is used. In the original  
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K-Means the mean of the objects is considered as the centre of the cluster, meanwhile 
in KMSF an object of the cluster is used as the centre of it (see [10,11] for details). 

The root of the tree (node 0) represents the whole set T. To create the first level of 
the tree, the set T is divided (using KMSF) in K disjoint sets (clusters), which form the 
K nodes of the tree in this level. Each node is divided again and this process is re-
peated until a stop criterion (SC) is satisfied. In figure 1 the algorithm to construct the 
tree is described.  

Each node p of the tree contains three features which are: the set of objects that be-
long to the node Sp, the number of objects in the node Np and unlike Fukunaga’s and 
Moreno-Seco’s methods a representative object of the node Repp.  

          NodesToDivide = Empty 
          CurrentNode = 0 
          Divide the objects from CurrentNode in K clusters  
          For every cluster c =1:K 
                    cluster(c)= nodec from the tree 
                    nodec is a child of CurrentNode 
                    Compute the features of nodec: Sc, Nc, Repc 

                     If Nc < 6 
                              nodec is a leaf 
                    Else 
                              Add nodec to the list NodesToDivide 

                End for every 
                p=K+1 
                While | NodesToDivide | ≠ 0 

                    CurrentNode = NodesToDivide [1] 
                    Subdivide the objects belonging from CurrentNode in K clusters  
                    For every cluster c =1:K 
                              cluster(c)= nodep from the tree 
                              nodep is a child of CurrentNode 
                              Compute the features of nodep: Sp, Np, Repp 

                               If Np < 6 
                                        nodec is a leaf 
                               Else 
                                        Add nodec to the list NodesToDivide 

                                     p=p+1       
                          End for every 

                   Eliminate CurrentNode from NodesToDivide 
          End while 

Fig. 1. Tree building algorithm 

3.2   Classification Phase  

In this phase, two search methods to find an approximate most similar neighbor are 
used. In the first method (MSN local search method) we propose to use a modified 
depth-first search is used to find an approximate most similar neighbor and in the sec-
ond method (MSN global search method) we propose to use a modified best-first 
search. In the original search methods (depth-first search and best-first search), an 
exhaustive search over all nodes of the tree is performed. To avoid the exhaustive tree 
traversal, the previous fast k-NN classifiers rely on pruning rules (based on metric 
properties). As we propose a method applicable when the comparison function does 
not satisfy metric properties and an exhaustive tree traversal would not be appropri-
ate; then it is proposed to stop the search when a leaf of the tree is reached. The pro-
posed methods for searching the MSN are described below: 
 



 Fast Most Similar Neighbor Classifier for Mixed Data 151 

MSN local search method: It begins at the root (node 0) of the tree following the path 
of the most similar node and finishing when a leaf of the tree is reached, where a local 
exhaustive search to find an approximate most similar neighbor OMSN is performed 
(see pseudocode in figure 2).  

       Current Node = node 0 
       While Current Node ≠ Leaf 
                  Compute the similarity between Q and the representative objects from  
                        the descendant nodes of the Current Node. 
                  Select the most similar node to Q:  

)),((min p
DesNodM

RepQHVDMrNodeMostSimila
p ∈

=  

                 Current Node = MostSimilarNode 
        End while 
        Perform an exhaustive search with the objects in the Current Node  
        to report the OMSN found so far: 
                                              )),((min i

SO
MSN OQHVDMO

pi∈
=  

        Class(Q)=Class(OMSN) 

Fig. 2. MSN  local search method 

MSN global search method: It begins at the root of the tree, comparing Q with the 
descendant nodes of the root, which are added to a list. After that, the list is ordered in 
such way that the most similar node to Q is in the first place. The most similar node is 
eliminated from the list and its descendant nodes are evaluated, added to the list and 
the list is ordered again. In this search it is possible to reconsider nodes in levels of 
the tree already traversed if the first node of the list belongs to a previous level in the 
tree (see pseudocode in figure 3). 

The two search methods finish the search the first time they reach a leaf node, 
where an exhaustive search over the objects in the leaf node (Sp) is performed to find 
the most similar neighbor OMSN. After finding OMSN, its class is assigned to the new 
object Q. 

       Current Node = node 0 
       List = {0} 
       While Current Node ≠ Leaf 
                  Current Node = List [1] 
                  Delete Current Node  from List 
                  Compute the similarity between Q and the representative objects of  
                        the descendant nodes of the Current Node. 
                  Add the nodes to List  
                  Order List in such way that the most similar object to Q is the first element of the list.  
        End while 
        Perform an exhaustive search with the objects in the Current Node  
        to report the OMSN found so far: 
                                        

)),((min i
SO

MSN OQHVDMO
pi∈

=
 

        Class(Q)=Class(OMSN) 

Fig. 3. MSN  global search method 

In the figure 4 the difference between the search methods is shown. As we can see, 
global search method allows to evaluate nodes in levels already traversed. 

 



152 S. Hernández-Rodríguez, J.F. Martínez-Trinidad, and J.A. Carrasco-Ochoa 

1                          2                                                       3 

4               5               6                      7               8               9                     10              11             12

 52  53  54                                  55  56  57                       58  59   60 

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29  30    31  32  33  34  35  36  37  38  39

 40  41   42           43   44   45                                  46  47  48                            49  50  51 

MSN local search method
MSN global search method

 

Fig. 4. Traversals of the search methods 

4   Experimental Results 

In this section, we report the results obtained by applying the proposed fast approxi-
mate MSN classifier over 16 datasets from the UCI repository [16]. These datasets are 
numeric (Glass, Iris and Wine), non numeric (Tictac, Hayes, Soybean-large, Bridges 
and Mushrooms) and mixed (Hepatitis, Credit, Zoo, Flag, Echocardiogram, All-
Hyper, Ann-thyroid and Thyroid 0387). In all the experiments 10-fold-cross-
validation was used. 

In the experimentation, the next five fast NN (MSN) classifiers were compared:  

1. The Exhaustive NN classifier (using a dissimilarity function) 
2. Adapted Fukunaga’s NN classifier 
3. Adapted Moreno-Seco’s NN classifier  
4. The proposed method using MSN local search 
5. The proposed method using MSN global search 

To compare Fukunaga’s and Moreno-Seco’s classifiers with our proposed meth-
ods, we adapted these classifiers. The adaptation consists on the use of the same tree 
structure proposed in section 3.1 and the same function suitable to work with mixed 
data, instead of a distance function.  

In order to compare the classification methods, the accuracy and the number com-
parisons between objects are considered. 

Before using adapted Moreno-Seco’s classifier, some tests with different values of 
the parameter e were proved. To make this experiment the HVDM function was used 
and only Zoo, Hepatitis, Flag, Echocardiogram, Bridges, Glass, Iris and Wine were 
considered. From figure 5a we can see that at the time the parameter e grows, the er-
ror is incremented. But, the number of comparisons between objects is reduced  
(figure 5b). In the next experiments, adapted Moreno-Seco’s classifier was used with 
e=20, because as we can see in figure 5, the number of comparisons is reduced with a 
slightly accuracy reduction. 

In order to evaluate the performance of the compared methods taking into account 
the size of the tree, some experiments were performed, using the datasets: Zoo,  
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Fig. 5. a) Accuracy performed by adapted Moreno-Seco’s classifier with different values of e. 
b) Percentage of comparisons performed by adapted Moreno-Seco’s classifier with different 
values of e. 

Hepatitis, Flag, Echocardiogram, Bridges, Glass, Iris and Wine, for selecting the 
value of K for the next experiments.  

The parameter K of the KMSF algorithm corresponds to the number of branches of 
the nodes in the tree. The number of levels of the tree is not fixed, because it depends 
of the stop criterion (SC). So, in Figure 6 the accuracy for different values of K is 
shown. To evaluate the similarity between objects the HVDM function was used.  
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Fig. 6. Accuracy according to the values of K when: a) K ∈  [2, 5], b) K is related to the num-
ber of classes (No. classes) in each dataset and c) K is related to the number of objects (No. 
objects) in each dataset. 

In figure 7, the percentage of comparisons between objects for the same values of 
K is depicted, where the number of comparisons performed by the exhaustive search 
is considered as the 100 % of comparisons. According to figure 6, the accuracy in-
creases when K grows. However, the number of comparison between objects (figure 7) 
increases too, in some cases it is even higher than 100%. In the next experiments K=3 
was used, because as we can see in figures 6 and 7 there is not a big variation of the 
accuracy and for K=3 the number of comparisons is reduced. 
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Fig. 7. Percentage of comparisons between objects according to the values of K when: a) K ∈  
[2, 5], b) K is related to the number of classes (No. classes) in each dataset and c) K is related 
to the number of objects (No. objects) in each dataset. 

Another important parameter in the tree algorithm is the stop criterion (SC). In the 
preprocessing phase, each node of the tree is divided until there are few objects in a 
node. In the figure 8a, the accuracy obtained according different values of SC (SC = 1, 
5, 10, 15 and 20 objects) is depicted. The percentage of comparisons between objects 
is shown in figure 8b. From figures 8a and 8b it is possible to see that the accuracy 
and the percentage of comparisons do not vary too much using the methods proposed 
in this work. 
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Fig. 8. a) Accuracy according to different values of the stop criterion (SC). b) Percentage of 
comparisons between objects according to different values of the stop criterion (SC). 

In table 1, the accuracy obtained (Acc) and the percentage of comparisons between 
objects (Comp. Percen.) are shown, using K=3 and SC=20. The number of compari-
sons performed by exhaustive search is considered as the 100 % of comparisons. 
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Table 1. Results using the HVDM function 

Exhaustive NN 
classifier 

Adapted Fuku-
naga’s NN 
classifier

Adapted Mo-
reno-Seco’s 
NN classifier 

Proposed 
method using 

MSN local
search 

Proposed  
method using 
MSN global 

search 
Datasets

Acc Comp.     
Percen. Acc Comp.     

Percen. Acc Comp.     
Percen. Acc Comp.     

Percen. Acc Comp.     
Percen. 

Hepatitis 82,1 100 82,1 138,10 80,20 82,18 81,66 14,1 81,75 12,32 
Credit 80,9 100 80,9 51,97 80,1 39,63 79,4 4,41 77,13 4,24 
Zoo 96,0 100 92,09 30,14 88,09 23,68 94,2 20,25 95,09 23,48 
Flag 55,6 100 56,6 88,41 56,13 55,12 52,7 11,34 54,73 13,90 
Echocardio-
gram 84,1 100 84,1 171,16 83,46 73,7 80,16 18,02 82,4 20,24 

All-hyper 97,9 100 97,9 20,92 97,21 16,82 97,5 1,22 96,8 1,36 
Ann-thyroid 95,0 100 95,0 21,59 94,90 13,59 92,0 0,52 91,25 0,59 
Thyroid0387 87,8 100 86,47 181,89 86,74 81,97 79,6 0,61 84,7 0,61 
Avg. of mixed 
Data 84,93 100 84,4 88,02 83,35 48,34 82,15 8,81 82,98 9,59 

Tictac 90,6 100 90,6 9,91 90,41 8,10 85,92 3,06 84,87 3,19 
Hayes 82,0 100 82,0 28,43 80,16 24,23 80,05 17,67 80,1 14,67 
Soybean-large 89,9 100 89,58 34,73 84,90 32,84 85,4 8,53 87,7 7,76 
Bridges 60,4 100 59,18 122,76 56,36 65,02 54,09 18,96 54,77 18,84 
Mushroom 100 100 100 18,16 99,95 11,22 98,74 0,45 98,1 0,50 
Avg. of non 
numerical data 84,58 100 84,27 42,80 82,36 28,28 80,84 9,73 81,11 8,99 

Glass 70,3 100 70,3 54,13 63,98 43,15 67,98 11,49 67,98 9,67 
Iris 93,3 100 93,3 32,85 93,3 26,11 93,3 13,61 93,3 12,86 
Wine 94,5 100 94,5 88,88 91,0 68,5 90,9 10,44 90,9 10,51 
Avg. of numeri-
cal data 86,03 100 86,03 58,62 82,76 45,92 84,06 11,85 84,06 11,01 

General 
average 85,18 100 84,9 63,15 82,82 40,85 82,35 10,13 82,72 9,87 

 

The original Fukunaga’s NN classifier is an exact method because of the triangle 
inequality property of the distance function. However, as the HVDM function does 
not necessarily satisfies this property, adapted Fukunaga’s NN classifier (using the 
HVDM function) becomes an inexact method. As we can see from table 1, using the 
adapted Fukunaga’s NN classifier, the accuracy does not decrease too much (from 
85,18% to 84,9%). However, the number of comparisons between objects is only 
slightly reduced (from 100% to 63,15%). 

Using adapted Moreno-Seco’s NN classifier the percentage of comparisons is slightly 
reduced (40,85%). However, using the proposed method (with MSN local and MSN 
global search), the percentage of comparisons is much smaller (10.13% and 9.8%). 
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Fig. 9. Accuracy per dataset 
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Fig. 10. Percentage of comparisons between objects per dataset 

As it was mentioned in section 1, the fast NN classifier methods are proposed for 
problems where the set T is large; such is the case of the datasets: All-hyper, Ann-
thyroid and Mushrooms, where a big reduction on the comparisons between objects 
was reached (less than 1%).  

In figure 9, the accuracy obtained by the five fast classifiers listed before over each 
dataset is shown; here we can see that the performance of the five methods is very 
similar. 

In figure 10, the number of comparisons between objects per dataset is depicted. It 
is possible to see from this figure that the number of comparisons using adapted Fu-
kunaga’s classifier sometimes is even higher than the exhaustive search. With 
adapted Moreno-Seco’s classifier, the comparisons are always less than using 
adapted Fukunaga’s classifier, but the proposed methods (MSN local and MSN global 
search) always did much less comparisons than adapted Fukunaga’s and Moreno-
Seco’s classifiers.  
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Fig. 11. Accuracy against the comparisons percentage using the different classifiers and three 
different comparison functions 
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In figure 11 a graph of the accuracy against the comparisons percentage using the 
different fast NN (MSN) classifiers is shown. From this graph we can see that all the 
classifiers obtained similar accuracy but the proposed methods (using MSN local and 
MSN global search) did the smallest number of comparisons.  

The fast MSN classifiers were also tested with HOEM and S functions. It is possi-
ble to see (from figure 11) that for different functions the accuracy and the number of 
comparisons do not vary too much among the classifiers.  

5   Conclusions 

In practical problems, it is frequent to find non numerical object descriptions or even 
mixed (numerical and non numerical). So, it is important to use suitable methods that 
allow us to work with these features.  

According to our experimental results, it is possible to see that methods based on 
metric properties are not suitable when the objects are described by mixed attributes 
and the comparison function does not satisfy metric properties. 

In this work, an approximated fast MSN classifier (with two search strategies) suit-
able for mixed data was proposed. In order to compare our method, Fukunaga’s and 
Moreno-Seco’s classifiers were implemented using the same comparison functions for 
mixed data. Based on our experimental results, unlike adapted Fukunaga’s and Mo-
reno-Seco’s classifiers, our method (using MSN local and MSN global search), ob-
tained a big reduction on the number of comparisons between objects with only a 
slightly accuracy reduction.  

As future work we are going to look for an exact fast MSN classifier for mixed 
data, which could allow us to obtain the same accuracy that the exhaustive method, 
but reducing the number of comparisons.  
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Abstract. This study emphasizes the importance of using appropriate
measures in particular text classification settings. We focus on methods
that evaluate how well a classifier performs. The effect of transformations
on the confusion matrix are considered for eleven well-known and recently
introduced classification measures. We analyze the measure’s ability to
retain its value under changes in a confusion matrix. We discuss benefits
from the use of the invariant and non-invariant measures with respect to
characteristics of data classes.

Keywords: Machine Learning, Evaluation Measures, Text Classifica-
tion, Human Communication.

1 Introduction

Machine Learning has recently benefited from attention to the performance mea-
sures used in classification. The interest is supported by the development of new
methods and their application in different domains. Evaluation of learning algo-
rithms concentrates on two goals: comparison of algorithms and the applicability
of algorithms on a specific domain. Empirical comparison is often done by ap-
plying algorithms on one or many data sets and then ranking the performance
of the classifiers the algorithms have produced [1].

We focus on measures that evaluate how well a classifier identifies classes,
without reference to computational costs or time. Specifically, we address the
problem of performance measures for new types of text classification. The amount
of web-posted texts necessarily invited applications of Data Mining (DM) and
Text Data Mining (TDM), Machine Learning (ML) and Natural Language Pro-
cessing (NLP) techniques. The data became a popular subject of DM, TDM,
ML and NLP research through text classification (for a detailed review of the
field refer to [2]). However, current studies on text classification undistinguish
between texts in general and the data obtained in human-to-human communi-
cation. This led to leaving characteristics, specific to communications, out of the
research scope. As a result, the same measures are used to evaluate classification
performance on documents and on records of political debates, e.g., [3] and [4].

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 159–170, 2007.
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In this work we show the that problem of classification of communication
records differs from the problem of general text classification. Thus, standard
performance measures for text classification should be re-evaluated with respect
to the characteristics of new problems. For this purpose we seek ways to compare
various evaluation measures. We suggest a set of changes in a confusion matrix
that correspond to specific characteristics of communication textual data. We
analyze under what changes a measure retains its value, and therefore preserves
the classifier’s rank. This is called the measure’s invariance under a change. We
analyze measure invariance for several measures with respect to a transformation
of a confusion matrix. Invariance properties identify measure applicability to
particular learning settings. The presented analysis is supported by examples
of applications where invariance properties of measures lead to good ranking of
classifiers.

Establishing measure’s invariance is one of the main goals of the measure-
ment theory. If a measure is not invariant under the permissible transformations
then statistical inference can be applied only to the measure values, but not
to the measured attribute [5]. Data Mining has successfully exploited the in-
variant properties of interestingness measures for comparison of association and
classification rules [6,7,8]. The invariant properties of classification measures re-
cently had been discussed in [9], without specifically referencing them to text
classification problems.

2 Human Communications in Text Classification

In recent years NLP and ML communities have turned their attention to studies
of opinions, subjective statements, and sentiments. Data for these studies are
found on chart-boards, blogs, product and movie reviews, and in email, records
of phone conversations and political debates, electronic negotiations, etc. These
sources represent records of human communications. Communication, through
the variety of forms, conveys meanings sent by a speaker and received by a
hearer. These meanings can be complex and subtly expressed and made up from
what is said and what is implied [10].

Success of communication depends on the speaker’s ability to produce a mes-
sage and on the hearer’s ability to understand it. Pragmatics, the study of
language use, accepts that to be able to infer the meaning of the speaker’s
message, the hearer expects that the message satisfies standards of the Grice
Maxims [11]: Quantity (informativeness), Quality (truthfulness), Relation (rele-
vance) and Manner (clarity). These require the message to be as informative as
the situation requires, trustworthy, relevant, clear and brief [10].

Not all communications satisfy Grice Maxims. Sometimes a hidden context
interferes with the correct understanding of a message. We present examples
of situations where communications and actions come in sharp contradiction.
Seemingly successful negotiation given by Table 1 fails because the participant
refuses to sign the agreement. Praise for a camera reported in Table 1 is also
misleading because the user labels the camera as negative.
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Table 1. Examples of situations where communicated meaning contradict actions of
interlocutors

Communication Action

Dear XXX, I am YYY, a representative of Such and Such
Company. Our company is interested in your [products] . . .
Dear XXX, I like your last offer and accept it. Thank The participant refuses
you very much for your cooperation. to sign the agreement.

A great camera! . . . easy to use, viewfinder, flash are good
. . . it’s a best buy! The user labels

the camera as negative.

Table 2. Examples from communication categories

Means Interaction types
one-to-one one-to-few one-to-many

Written Letter List email Chart-board
message

Verbal Phone talk Local radio Radio broadcast
announcement

Visual & verbal Videophone talk Video presentation YouTube video

Face-to-face Conversation Lecture Rally address

Language plays an important role in communication. The language role is
critical in a situation when people communicate only verbally, e.g., by phone. In
exclusively written communication language is the only tool to deliver a message.
However, delivery of a message depends on many factors, including

- means, e.g., face-to-face meeting, email;
- topic of discussion, e.g., business, personal;
- time mode, i.e., synchronous or asynchronous;
- interaction mode, determined by the speaker-hearer ratio, e.g., one-to-one,

one-to-many;
- speaker-hearer roles, e.g. doctor-patient, buyer-seller, presenter-audience; etc.

We suggest to use a two-dimensional Interaction-Means taxonomy that allows
to distinguish between different types of interactions and mediations:

– one-to-many written: chart-boards, blogs, web-posted product and movie
reviews;

– one-to-few face-to-face: political debates in the US Congress;
– one-to-few written: list email;
– one-to-one written: electronic negotiations.

Table 2 presents examples of different communication categories. Columns could
be added with “few-to-one”, ..., “many-to-many” types.

Records of one-to-one and one-to-few communications, e.g., electronic negoti-
ations and email discussions, are used in studies of individual behavior. The aim
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of such studies is to find what factors influence behavior of a person in a specific
situation. Classification of texts depends on the problem statement, e.g. [12,13].
Transcripts of the US Congress debates are used as a part of fast-growing studies
of social networking. Here a common task is to define important influence factors
and predict future behavior of members of a social group. In this case, records
are classified according to actions of speakers, e.g. [4].

So far, records of one-to-many communications attract more attention and
produce more volume of research than other types of communication. These
records are studied as evaluative texts, i.e. delivering the author’s opinion on
the discussed subject. Movie reviews, blogs are often used in sentiment analy-
sis to find whether texts reflect positive or negative opinion of the author on
certain products or events. In this case, texts are classified according to opin-
ion/sentiment labels, e.g. [14,15]. Another popular learning task is to establish
strength of the author’s opinion, e.g. [16].

3 Text Classification and Performance Measures

Quality of classification can be assessed using a confusion matrix, i.e., records
of correctly and incorrectly recognized examples for each class. Table 3 reports
on binary classification, where tp are true positive, fp – false positive, fn – false
negative, and tn – true negative counts.

Table 3. A confusion matrix for binary classification

Class Classified
as pos as neg

pos tp fn

neg fp tn

In text classification, an input text needs to be classified into one (and only
one) of j classes (or groups) C1, . . . , Cj . The existence of the classes is known a
priori. Work by Gabrilovich and Markovitch, e.g. [17], exemplifies characteristics
of traditional text classification:

1. this is essentially classification of documents, e.g, research papers, technical
reports, magazine articles, etc.

2. the main task is topic classification, e.g, identification of documents about
Dallas, Texas, or documents about bands and artists, etc.

3. classes are built as relevant vs irrelevant documents, i.e., documents about
Dallas, Texas, are distinguished from all other documents; hence, classes are
built as positive vs “everything else”;

4. retrieval of relevant documents, or a positive class, is the most important
task, thus focus is on tp classification.

Importance of retrieval of positive examples is reflected by the choice of perfor-
mance measures for text classification:
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Precision =
tp

tp + fp
(1)

Recall =
tp

tp + fn
(2)

Fscore =
(β2 + 1)tp

(β2 + 1)tp + β2fn + fp
(3)

BreakEvenPoint =
tp

tp + fp
=

tp
tp + fn

(4)

Three measures evaluate the classifier performance by calculating the ratio of cor-
rectly classified positive examples to examples labeled as positives (Precision),
positive examples in data (Recall), and total positive examples, labeled and
from data, (Fscore). BreakEvenPoint essentially estimates when disagreement
between data and algorithm labeling of positive examples is balanced (fp = fn).
All these measures omit tn in their formulas, thus do not consider correct clas-
sification of negative examples.

Work by Lee et al, e.g., [4], concentrates on records of communications and
presents direction in text classification started by [14] in 2002:

1. this is classification of political debates, web postings, phone calls, etc., i.e.,
records of human communications;

2. the main task is non-topic classification, e.g, vote classification, gender clas-
sification, mood classification, etc.

3. classes often have distinct features, e.g., male and female, success and failure,
etc.; in this case positive and negative classes are both well-defined;

4. retrieval of a positive class, discrimination between classes, balance between
retrieval of both classes are possible tasks whose importance depends on the
problem at hand.

So far, there is no common understanding on the choice of measures used to eval-
uate performance of classifiers in opinion, subjectivity, and sentiment analysis.
Employed performance measures are either

Accuracy =
tp + tn

tp + fn + fp + tn
, (5)

which is used in [14,4] and other works by this group, or Precision , Recall ,
Fscore, e.g., [18], or correspondence between

Sensitivity =
tp

tp + fn
= Recall (6)

and
Specificity =

tn
fp + tn

(7)

reported in [13].
With different measures in use, it is important to know how performance

evaluations, produced by those measures, relate to each other. Experimental
evidence shows that disagreement happens quite often [13].
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4 Invariance Properties of Measures

Finding appropriate measure is possible by establishing how comparable are the
involved measures. Following [9], we focus on the ability of a measure to preserve
its value under a change in a confusion matrix. The invariance of a measure
signals that it does not detect this change. Depending on the learning goals, non
detection can be beneficial or adverse.

For instance, text classification extensively uses Precision and Recall (Sensiti -
vity). These measures do not detect changes in tn, when all other matrix entries
remain the same. In document classification, a large number of unrelated doc-
uments constitutes a negative class that lacks unifying characteristics (a multi-
modal negative class). The criterion for the performance of the classifier is its
performance on related documents (a well-defined, unimodal, positive class) and
may not depend on tn. Precision and Recall depend on tp, which shows agree-
ment between data and algorithm labeling of positive examples, and fp and fn ,
which show disagreement between data and algorithm labeling of positive exam-
ples. Thus these measures provide the most important perspective on classifiers’
performance for document classification. Another emerging application of text
classification, classification of consumer reviews, works with highly related doc-
uments constituting unimodal positive and negative classes. Thus the evaluation
measure may depend on classification of negative examples and reflect the tn
change, when other matrix elements stay the same.

We examine the invariance properties with respect to basic changes of a ma-
trix. Our claim is that the following invariance properties affect the measure’s
applicability and trustworthiness:

Exchange of tp with tn and fn with fp (t1). Table 4 shows the confusion
matrix after the changes to the confusion matrix reported in Table 3. A
measure is invariant if

m(tp, fn, tn, fp) = m(tn, fp, tp, fn) (8)

This shows measure permanence with respect to classification results distri-
bution. If the measure is invariant, then it does not distinguish tp from tn
and fn from fp and may not recognize asymmetry of classification results.
Thus it may not be trustworthy when classifiers are compared on data sets
with different and/or unbalanced class distributions. For example, invari-
ant measures may be more appropriate for assessment of classification of
consumer reviews then for document classification.

Change of true negative count (t2). Table 5 presents the resulting confu-
sion matrix. A measure is invariant if

m(tp, fn , tn, fp) = m(tp, fn, tn′, fp) (9)

This measure does not recognize specifying ability of classifiers. Such evalu-
ation may be more applicable to domains with a multi-modal negative class,
built as “everything not positive”. If the measure is non-invariant, has t2,
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then it acknowledges ability of classifiers correctly identify negative exam-
ples. If the measure is able to do this, it may be reliable for comparison
in domains with a well-defined, unimodal, negative class. In case of text
classification, these invariant measures are suitable for evaluation of docu-
ment classification and non-invariant measures are preferable for evaluation
of such communications where criteria exist for positive as well as for nega-
tive results.

Change of a false count (t3). Table 6 reports the confusion matrix. A mea-
sure is invariant if

m(tp, fn , tn, fp) = m(tp, fn, tn, fp′) (10)

t3 indicates measure constancy if disagreement increases between the data
and classifier labels. An invariant measure shows preference for data labels.
In case of unreliable data labeling such measure may give misleading results.
A non-invariant measure may not be suitable for data with many counter
examples. If classifier ranking improves when fp increases, the measure may
favor a classifier prone to faux positives. In case of t3, the use of invariant
and non-invariant measures might be decided based on problem and data
characteristics. This is especially important for problems in sentiment clas-
sification of blogs, charts, consumer reviews, where some data do not have
consistent labels because of the absence of rigorous labeling rules, and in
classification of records of long-term communications, where some data have
a substantial number of counter-examples.

Classification scaling (t4). Table 7 presents the confusion matrix. A measure
is invariant if

m(tp, fn, tn, fp) = m(k1tp, k2fn , k2tn, k1fp) (11)

This shows measure uniformity with respect to proportional changes of clas-
sification results. If the measure is non-invariant, then its applicability may
depend on class sizes. If we expect that for different data sizes the same
portion of examples exhibits positive (negative) characteristics, then the
invariant measure may be a better choice for classifiers’ evaluation. The non-
invariant measures may be more reliable if we do not know how represen-
tative is the data sample in terms of proportion positive/negative examples
(which is might be the case in web-posted consumer reviews).

5 Empirical Evidence

Application on “real life” communication data supports our claim on necessity
of measure comparison. The data are the records of human-to-human electronic
negotiations, where a buyer and a seller try to reach an agreement on virtual
purchase of commercial products. A negotiation is successful when agreement is
reached, otherwise it is failed. Support Vector Machine(SVM) and Naive Bayes
(NB) have been applied on the same data set. Tables 8 and 9, adapted from
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Table 4. Confusion matrix after
the exchange of tp with tn and fn
with fp

Class Classified
as pos as neg

as pos tn fp

as neg fn tp

Table 5. Confusion matrix after a
change in true negative count

Class Classified
as pos as neg

pos tp fn

neg fp tn ′

Table 6. Confusion matrix after a
change in false positive count

Class Classified
as pos as neg

pos tp fn

neg fp′ tn

Table 7. Confusion matrix after
scaling

Class Classified
as pos as neg

pos k1tp k2fn

neg k1fp k2tn

Table 8. Confusion matrix for SVM

Class Classified
as pos as neg

pos 1242 189

neg 390 740

Table 9. Confusion matrix for NB

Class Classified
as pos as neg

pos 1108 323

neg 272 858

[13], report their confusion matrices. The matrices are representative in a sense
that changes in data representation do not statistically affect SVM and NB
performance and, consequently, tp, fn, fp,tn.

We apply several measures to rank the classifiers, starting with the listed in
Section 3 evaluators. Except these evaluators, the employed measures include
the Area Under Curve (AUC ), calculated for one run of the Receiver Operating
Characteristic

AUC =
1
2
(

tp
tp + fn

+
tn

tn + fp
) (12)

likelihoods ρ+, ρ− that are frequently used for comparison of diagnostic tests
[19],

ρ+ =
tp(tn + fp)
fp(tp + fn)

(13)

ρ− =
fn(tn + fp)
tn(tp + fn)

. (14)

Huang and Ling [20] newly introduced a combined measure that they denote as
AUC :acc

AUC :acc =
Sensitivity + Specificity

2 ·Accuracy
(15)

First four columns of Table 10 report measure values and the classifier ranks.
Recall is omitted because of co-linearity with Sensitivity . Fscore is used with
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Table 10. Empirical comparison, invariance properties and clustering of performance
measures

Measure Empirical evidence Invariance Cluster
SVM NB t1 t2 t3 t4 1 2 3

% rank % rank

Accuracy 77.4 1 76.8 2 + - - -
√

Sensitivity 86.8 1 77.5 2 - + + -
√

Specificity 65.4 2 75.9 1 - - - -
√

Precision 76.0 2 80.1 1 - + - +
√

Fscore 81.2 1 78.9 2 - + - -
√

BreakEvenPoint 74.0 1 72.4 2 - + - -
√

AUC 52.3 2 53.4 1 - - - -
√

ρ+ 2.51 2 3.22 1 - - - -
√

ρ− 0.20 1 0.30 2 - - - -
√

AUC :acc 98.3 2 99.8 1 - - - -
√

β = 1. In four “Invariance” columns “+” and “-” denote invariance and non-
invariance respectively on our data.

We also emphasize that measure’s focus on tp does allow to evaluate how well
a classifier deals with the specific problems of human communication data (refer
to examples given by Table 1). Most probably, those examples could be falsely
classified as positives.

6 Analysis of Results

The invariant properties, introduced in Section 4, divide the measures into three
clusters. One cluster is constructed from measures non-invariant under the four
matrix transformations. Specificity , AUC , ρ+, ρ− and AUC :acc change their
values under all the considered changes in a confusion matrix.

– The first non-invariance, t1, means that the measures are sensitive to asym-
metry of classification. This is a well-known characteristic for Specificity ,
but not for the other four measures that have been recently introduced to
classification. The non-invariance may explain why AUC :acc is more reli-
able than Accuracy when used for classifiers’ assessment on imbalanced data
[20].

– The second non-invariance, t2, signals that the use of the measures is more
appropriate on data with a unimodal negative class than with a multi-modal
one. This implication is more important for AUC and AUC :acc than for
Specificity and ρ+, ρ−. The latter are usually used in combinations with
other measures, whereas the former might be applied separately.

– The third non-invariance, t3, shows that the measures may be resistant to
unreliable data labeling. To find out whether the measures may favor a
classifier with a poor ability of detecting counterexamples, we have to check if
ranking increases when fp increases. This is not true for ranking produced by
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Specificity . Rankings produced by the other four measures are not monotonic
under the property assumptions.

– The last non-invariance, t4, indicates that the measures may not be compa-
rable when used on data with considerably different sizes.

The remaining five measures can be naturally categorized into Accuracy and the
Fscore group (Precision , Recall (Sensitivity), Fscore and BreakEvenPoint). All
the Fscore group measures are invariant under the change of tn. This well-known
property have made them a tool of choice for evaluations of document classifica-
tion. Within this group, Precision is invariant under scaling, Recall (Sensitivity)
– under the change of fp and Fscore and BreakEvenPoint have identical invari-
ance properties (t1, t2, t3, t4). The Accuracy’s only invariance, t1, has been
much discussed in Machine Learning community. The last three columns of Ta-
ble 10 represent three clusters containing the measures that correspond to the
check marks (

√
) in the lines.

Invariance with respect to the matrix transformations is especially important
because it connects evaluation measures to particular learning settings. We sum-
marize applicability of measures to subfields of text classification: document clas-
sification and classification of human communications. The initial assumption
would be to apply Fscore measures as the most suitable for text classification
evaluation. However, subfields’ classification problems exhibit different charac-
teristics. That may require applications of different evaluation measures. Based
on the analysis of invariance properties of measures we propose the following:

– Document classification data are usually highly imbalanced. Relevant docu-
ments construct a small well-defined positive class, a populous negative class
is built from non-relevant documents as “everything non-positive”. Presence
of a multi-modal negative class favors the use of the Fscore measures.

– Classification of human communications often is mostly represented by sen-
timent classification where data are collections of free form texts of product
evaluations. Proportion of positive and negative examples depends on the
popularity of a product. Positive and negative classes are well-defined. Due
to presence of a unimodal negative class, Sensitivity and Specificity may pro-
vide more reliable classifier ranking than Precision and Recall (Sensitivity).
AUC :acc may be preferable over Accuracy if there is a class imbalance.
However, other measures might be suitable for classification of communica-
tions in social activities, such as political debates or electronic negotiations.
If data have a unimodal negative class and a large number of counter ex-
amples, as in records of electronic negotiations, Accuracy , Precision , Recall
(Sensitivity), and Specificity may be used for reliable classification ranking.

7 Conclusions and Future Work

We have analyzed applicability of performance measures to different subfields
of text classification. We have shown that document classification differs from
classification of human communications, thus that these two types of text clas-
sification may require different set of performance measures.
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We have shown that the results of the classifier comparison depend on a num-
ber of factors, including invariant properties of the measures. We have considered
effects of various transformations of the confusion matrix on several well-known
performance measures. The invariance properties have lead to fine distinctions of
relations between the measures and the data characteristics. One way to insure
reliable evaluation is to employ a measure corresponding to the learning set-
ting. The next step would be to expand the list of connections between learning
settings and evaluation measures.

This approach opens new directions for future work. First, we built a frame-
work for the two-dimensional relations “measure vs invariance” and omitted
decision theory relations. Note that the listed measures evaluate different deci-
sion aspects of the classifier performance. Given below is a condensed description
from [19,1]:

– Accuracy, Recall (Sensitivity), Specificity show how effectively a classifier
identifies the data labels;

– Precision estimates the class agreement of the data labels with the labels
given by the classifier;

– AUC indicates the classifier’s ability to avoid false classification;
– ρ+ and ρ− assess prediction ability on positive and negative classes respec-

tively.

Combining the decision aspects with the existing framework leads to constructing
a three-dimensional “measure vs invariance vs decision aspect” taxonomy of
measures.

Next, this study focuses on binary classification. A natural way to extend it
is to apply similar systematization to multi-class classification. Multi-class ex-
tension is desirable because many Machine Learning applications switch from
binary “positive vs everything else” to finer grained problems. For example, in
sentiment analysis, opinion mining and other subfields of subjectivity analy-
sis three-class classification problems gradually substitute binary classification
problems.

Next, our study concentrates on text classification, but it can be expanded
to other language applications of Machine Learning. Machine Translation and
Natural Language Processing are other examples of the fields where the discussed
measures, e.g., Fscore, are used for comparison of classifiers.

Acknowledgments. This work has been funded by the Natural Sciences and
Engineering Research Council of Canada.
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Abstract. This paper explores two simple and efficient pre-pruning
strategies for the cost-sensitive decision tree algorithm to avoid over-
fitting. One is to limit the cost-sensitive decision trees to a depth of two.
The other is to prune the trees with a pre-specified threshold. Empirical
study shows that, compared to the error-based tree algorithm C4.5 and
several other cost-sensitive tree algorithms, the new cost-sensitive deci-
sion trees with pre-pruning are more efficient and perform well on most
UCI data sets.

1 Introduction

For most previous research on classification, the main goal is to develop algo-
rithms that minimize the number of errors on previously unseen examples. This
is valid only when the costs of different errors are equal. In many real-world
applications, however, it is far from the case. For example, in medical diagnosis,
the errors for diagnosing someone as healthy carries a very high cost when that
person in fact has a life-threatening disease, compared to the cost from mistak-
enly diagnosing a healthy one as having the disease. Cost sensitive classification
deals with such cases where misclassification costs are not equal.

Generally, there are three main types of strategies for cost sensitive clas-
sification, implemented by manipulating one of the three components respec-
tively: the train data, the learning algorithm, and the output of the learned
model [1]. Many approaches have been developed in the past few years in mak-
ing the traditional cost-insensitive classification algorithms cost-sensitive. For
example, [2], [3], [4] discussed neural networks for cost-sensitive classification;
[5] and [6] worked on cost-sensitive evolutionary algorithm; [7] made support
vector machines sensitive to the cost; [8], [9] and [10] focused on the ensem-
ble techniques such as bagging and boosting; decision tree algorithms, one of
the most popular machine learning techniques, have also been studied fo
cost-sensitivity.

Current research in cost-sensitive decision trees falls into two categories. The
first category is concerned with making the attribute splitting criterion
sensitive to cost [11,12,13]. The other category develops new or modified prun-
ing algorithms to minimize the expected cost [14,15]. In this paper, we pro-
pose two simple and efficient pre-pruning strategies for cost-sensitive decision

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 171–179, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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trees to avoid overfitting. Compared to the classical error-based tree algorithm
C4.5 and several other cost-sensitive tree algorithms, our cost-sensitive deci-
sion trees with pre-pruning are more efficient and perform well on most UCI
data sets.

The rest of the paper is organized as follows. In section 2, we first review
unpruned cost-sensitive decision tree [13], which uses an attribute splitting cri-
terion for reducing the total cost including the misclassification cost and test
cost. Our new pre-pruning cost-sensitive trees are proposed after that. Then, we
present our experiment results in section 3. Finally, section 4 draws conclusions
and suggests future work.

2 Cost-Sensitive Decision Trees

2.1 Unpruned Cost Reduction Based Decision Tree

[13] proposes a new attribute splitting criterion for building cost-sensitive de-
cision trees by minimizing the sum of misclassification and test cost [16]. In
the decision tree building process, the algorithm directly chooses an attribute
that reduces and minimizes the total cost (the sum of the misclassification cost
and test cost) for the split, instead of choosing an attribute that minimizes the
entropy (as in C4.5).

Similar to the traditional error-based decision tree algorithms, this cost mini-
mization algorithm may have the deficiency of overfitting the training examples.
That is, when a decision tree is built, some branches may be built reflecting
anomalies in the train data due to noise or outliers, and this often leads to
good performance on the train data but bad on test data. Pre-pruning and
post-pruning are two typical methods to remove the least reliable branches and
generally result in faster and better classification ability for independent test
data.1

2.2 Cost-Sensitive Decision Trees with Pre-pruning

The algorithms we proposed in this paper are based on [13], incorporating two
simple pre-pruning methods, described below.

2-Level Tree. With this approach, we just build the tree with no more than
2 levels. [18] and [19] have used similar approaches for error-based tree build-
ing, and shown that simpler trees often work quite well in many data sets. In
this paper, we use the same idea in the cost-sensitive tree building process. The

1 [13]’s work includes both misclassification costs and attribute costs. Attribute costs
can act as a natural pruning mechanism, because an expensive attribute is unlikely
to be chosen to split the data further, unless there is a large gain in the reduction
of the misclassification cost. Nevertheless, overfitting could still happen, especially
when the attribute cost is small or zero (as we study here). [17] incorporates post-
pruning in cost-sensitive decision trees.
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empirical study in section 3 will show that indeed the simple approach works
quite well.

Threshold Pruning Tree. Another common approach for pre-pruning is im-
posing a pre-specified threshold on the splitting measure. Using cost reduction
alone, the unpruned tree [13] would be expanded until the cost reduction is
smaller than or equal to 0. We set a threshold on the cost reduction to avoid
overfitting. We assume that the tree expansion is worthwhile only when the
cost reduction is greater than the sum of False Positive(FP) and False Nega-
tive(FN) cost (we assume that the cost of True Positive and True Negative is 0).
That is:

Threshold = FP + FN

For cost-sensitive trees with both pre-pruning methods, the following is used
to label leaves. If the cost reduction is 0 or negative (for the 2-level trees), or if
the cost reduction is less than the threshold (pre-specified threshold pruning), a
leaf node is formed, and it should be labeled as the class minimizing the expected
cost according to train data falling into the node. If no instance is falling into
a node, then a leaf is also formed labeled as the class minimizing the expected
cost of its parent node.

3 Empirical Study

3.1 Configuration

We conduct experiments on the new algorithms above and compare them against
the classical error-based algorithm C4.5 and cost-sensitive algorithms including

Table 1. UCI data sets used in the empirical study

Data set No. of attributes No. of examples Class distribution

Breast-cancer 9 277 196/81
Breast-w 9 699 458/241
Colic 22 368 232/136
Credit-a 15 690 307/383
Credit-g 20 1000 700/300
Diabetes 8 768 500/268
Heart-statlog 13 270 150/120
Hepatitis 19 155 32/123
Ionosphere 34 351 126/225
Kv-vs-kp 36 3196 1669/1527
Labor 17 57 20/37
Sick 29 3772 3541/231
Sonar 60 208 97/111
Vote 16 435 267/168
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the original unpruned cost reduction tree [13], weighting approach (with and
without minimum expected cost) [20] and MetaCost [9], all implemented in Weka
[21]. Only misclassification cost is considered in this paper (other types of cost
will be studied in the future work).

14 data sets from UCI Machine Learning Repository [22] are used in the
empirical study, all of which have discrete attributes and binary class without
missing values. Information on these data sets is tabulated in Table 1.

Five cost matrices are used on these UCI data sets to evaluate the effects of
different cost ratios. The costs of true positive and true negative are always set
as 0, while false positive is always set to 1, and false negative cost is set to be
2, 5, 10, 20 and 50. This makes the cost ratio as 2, 5, 10, 20 and 50, which is
supposed to show algorithms’ performance with different cost ratios.

Under each cost matrix, 10-fold cross validation is performed on each data set.
The experiment is repeated for 10 times and the average cost (total cost divided
by the size of the test data) is recorded in the final results. Two-tailed t-test
with a 95% confidence level is conducted to examine statistical significance.

3.2 Experiments Results

A total of 7 algorithms are compared; they are: pruned C4.5 labeled as “C4.5(P)”,
unpruned cost reduction tree [13] labeled as “CR”, instance-weighting approach
(with and without minimum expected cost) [20] with C4.5 labeled as “C4.5cs-
mc”and “C4.5cs”, MetaCost [9] with C4.5 labeled as “MetaCost”, the proposed
2-level tree labeled as “CR-2”, and the proposed threshold pruning tree labeled as
“CRPrune”. Table 2 lists the average misclassification cost, and Table 3 lists the
corresponding summary on the t-test. Each entry w/t/l in Table ?? means that
the algorithm at the corresponding row wins in w data sets, ties in t data sets, and
loses in l data sets, compared to the algorithm at the corresponding column. The
same notation is used in Table 5.

Table 2. Average misclassification cost on UCI data sets

Cost Ratio = 2

Data set C4.5(P) CR C4.5cs C4.5cs-mc MetaCost CR-2 CRPrune

breast-cancer 0.046 0.047 0.050 0.048 0.047 0.047 0.047
breast-w 0.009 0.008 0.008 0.008 0.008 0.009 0.007
colic 0.026 0.029 0.027 0.027 0.026 0.029 0.029
credit-a 0.023 0.024 0.021 0.022 0.021 0.021 0.020
credit-g 0.045 0.047 0.042 0.043 0.042 0.042 0.040
diabetes 0.046 0.045 0.036 0.040 0.040 0.039 0.039
heart-statlog 0.032 0.046 0.030 0.032 0.033 0.041 0.040
hepatitis 0.026 0.035 0.025 0.027 0.023 0.027 0.028
ionosphere 0.015 0.014 0.014 0.014 0.013 0.018 0.012
kr-vs-kp 0.001 0.027 0.001 0.001 0.001 0.034 0.028
labor 0.018 0.024 0.013 0.015 0.018 0.018 0.026
sick 0.003 0.003 0.003 0.003 0.004 0.003 0.003
sonar 0.041 0.049 0.040 0.040 0.037 0.035 0.043
vote 0.006 0.006 0.006 0.006 0.006 0.006 0.006
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Table 2. (Continued)

Cost Ratio = 5

Data set C4.5(P) CR C4.5cs C4.5cs-mc MetaCost CR-2 CRPrune

breast-cancer 0.110 0.094 0.083 0.076 0.074 0.068 0.068
breast-w 0.018 0.017 0.014 0.015 0.014 0.018 0.012
colic 0.058 0.050 0.050 0.052 0.053 0.048 0.045
credit-a 0.049 0.073 0.030 0.037 0.032 0.037 0.036
credit-g 0.099 0.087 0.062 0.068 0.065 0.060 0.063
diabetes 0.105 0.082 0.052 0.054 0.050 0.051 0.052
heart-statlog 0.066 0.106 0.051 0.054 0.052 0.065 0.063
hepatitis 0.047 0.060 0.021 0.026 0.025 0.026 0.021
ionosphere 0.022 0.027 0.012 0.019 0.015 0.019 0.015
kr-vs-kp 0.002 0.034 0.002 0.002 0.002 0.034 0.034
labor 0.027 0.041 0.023 0.014 0.018 0.016 0.019
sick 0.008 0.006 0.005 0.006 0.006 0.006 0.005
sonar 0.078 0.096 0.047 0.069 0.051 0.054 0.063
vote 0.011 0.009 0.009 0.010 0.010 0.009 0.009

Cost Ratio = 10

Data set C4.5(P) CR C4.5cs C4.5cs-mc MetaCost CR-2 CRPrune

breast-cancer 0.216 0.181 0.072 0.075 0.071 0.069 0.071
breast-w 0.032 0.023 0.019 0.019 0.022 0.014 0.015
colic 0.112 0.139 0.076 0.076 0.068 0.081 0.080
credit-a 0.092 0.144 0.039 0.056 0.051 0.047 0.047
credit-g 0.189 0.099 0.068 0.088 0.073 0.074 0.070
diabetes 0.204 0.145 0.060 0.073 0.065 0.063 0.058
heart-statlog 0.123 0.197 0.064 0.076 0.065 0.070 0.057
hepatitis 0.083 0.108 0.021 0.026 0.021 0.034 0.021
ionosphere 0.033 0.048 0.025 0.025 0.016 0.022 0.014
kr-vs-kp 0.003 0.034 0.004 0.004 0.004 0.034 0.034
labor 0.042 0.072 0.035 0.016 0.021 0.019 0.035
sick 0.015 0.008 0.007 0.010 0.009 0.009 0.008
sonar 0.138 0.179 0.047 0.091 0.062 0.077 0.048
vote 0.020 0.015 0.019 0.017 0.015 0.016 0.015

Cost Ratio = 20

Data set C4.5(P) CR C4.5cs C4.5cs-mc MetaCost CR-2 CRPrune

breast-cancer 0.427 0.346 0.071 0.080 0.071 0.084 0.077
breast-w 0.061 0.051 0.022 0.031 0.028 0.021 0.019
colic 0.218 0.262 0.066 0.085 0.064 0.088 0.070
credit-a 0.177 0.272 0.046 0.053 0.044 0.045 0.045
credit-g 0.368 0.137 0.074 0.104 0.070 0.075 0.070
diabetes 0.401 0.268 0.065 0.079 0.064 0.068 0.069
heart-statlog 0.237 0.365 0.056 0.100 0.060 0.082 0.056
hepatitis 0.154 0.204 0.021 0.032 0.021 0.052 0.021
ionosphere 0.056 0.087 0.025 0.039 0.018 0.027 0.018
kr-vs-kp 0.007 0.034 0.006 0.006 0.008 0.034 0.034
labor 0.072 0.135 0.035 0.019 0.019 0.026 0.035
sick 0.030 0.014 0.011 0.017 0.016 0.016 0.010
sonar 0.260 0.345 0.047 0.126 0.059 0.097 0.047
vote 0.039 0.029 0.025 0.031 0.027 0.030 0.027
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Table 2. (Continued)

Cost Ratio = 50

Data set C4.5(P) CR C4.5cs C4.5cs-mc MetaCost CR-2 CRPrune

breast-cancer 1.062 0.895 0.071 0.094 0.071 0.136 0.071
breast-w 0.149 0.125 0.031 0.053 0.031 0.030 0.030
colic 0.538 0.632 0.063 0.121 0.063 0.133 0.063
credit-a 0.432 0.646 0.044 0.067 0.044 0.050 0.044
credit-g 0.906 0.255 0.070 0.159 0.070 0.082 0.070
diabetes 0.993 0.635 0.065 0.106 0.069 0.080 0.065
heart-statlog 0.579 0.882 0.056 0.172 0.063 0.121 0.056
hepatitis 0.367 0.490 0.021 0.050 0.021 0.104 0.021
ionosphere 0.126 0.206 0.036 0.080 0.019 0.044 0.018
kr-vs-kp 0.017 0.034 0.010 0.011 0.011 0.034 0.034
labor 0.161 0.325 0.035 0.030 0.019 0.047 0.035
sick 0.075 0.033 0.014 0.039 0.036 0.038 0.011
sonar 0.625 0.831 0.047 0.248 0.047 0.177 0.047
vote 0.095 0.073 0.057 0.107 0.083 0.088 0.080

Table 3. Summary of the t-test on average misclassification cost

C R C4.5(P) CR C4.5cs C4.5cs-mc MetaCost

2 CR-2 5/5/4 7/4/3 4/3/7 5/4/5 2/6/6
CRPrune 6/4/4 9/4/1 7/0/7 5/4/5 5/3/6

5 CR-2 10/3/1 9/5/0 4/2/8 6/5/3 4/5/5
CRPrune 12/1/1 12/2/0 3/6/5 8/3/3 7/3/4

10 CR-2 13/0/1 11/2/1 4/3/7 8/5/1 4/5/5
CRPrune 12/1/1 11/3/0 4/7/3 10/2/2 7/4/3

20 CR-2 13/0/1 11/2/1 0/5/9 8/4/2 1/3/10
CRPrune 13/0/1 13/1/0 3/8/3 11/1/2 3/6/5

50 CR-2 12/1/1 11/1/2 0/3/11 8/3/3 0/3/11
CRPrune 12/1/1 12/2/0 2/10/2 12/1/1 2/10/2

Table 4 lists the average model training time (on a PC with Intel P4 3.0G
Hz CPU and 512M memory), and Table 5 lists the corresponding summary with
the t-test. As the cost ratio does not affect the model training time, we take only
one cost ratio (cost ratio = 10) for the result.

Table 4. Average model training time on UCI data sets

Data set C4.5(P) CR C4.5cs C4.5cs-mc MetaCost CR-2 CRPrune

breast-cancer 0.004 0.005 0.004 0.005 0.046 0.003 0.002
breast-w 0.004 0.011 0.004 0.005 0.056 0.005 0.006
colic 0.011 0.013 0.011 0.010 0.095 0.004 0.005
credit-a 0.017 0.027 0.015 0.013 0.146 0.007 0.004
credit-g 0.043 0.017 0.043 0.038 0.378 0.008 0.006
diabetes 0.013 0.017 0.016 0.013 0.133 0.004 0.005
heart-statlog 0.006 0.008 0.007 0.005 0.062 0.002 0.001



Cost-Sensitive Decision Trees with Pre-pruning 177

Table 4. (Continued)

hepatitis 0.003 0.003 0.003 0.003 0.032 0.004 0.001
ionosphere 0.009 0.016 0.013 0.010 0.104 0.007 0.009
kr-vs-kp 0.117 0.065 0.095 0.120 1.260 0.070 0.065
labor 0.002 0.001 0.001 0.001 0.013 0.001 0.000
sick 0.057 0.105 0.066 0.061 0.630 0.075 0.096
sonar 0.011 0.025 0.012 0.012 0.129 0.009 0.003
vote 0.005 0.005 0.005 0.005 0.057 0.003 0.004

Table 5. Summary of the t-test on model training time

C4.5(P) CR C4.5cs C4.5cs-mc MetaCost

CR-2 8/5/1 9/5/0 8/6/0 8/5/1 14/0/0
CRPrune 10/3/1 11/3/0 10/3/1 10/3/1 14/0/0

From the experiment results, several interesting observations can be made:
First, when the cost ratio is rather low (cost ratio = 2), CR-2 and CRPrune

perform better than CR: the w/t/l value on the average misclassification cost is
7/4/3 between CR-2 and CR, and 9/4/1 between CRPrune and CR. However,
they do not outperform other algorithms. In fact, no algorithm wins all the time
on all data sets; even cost-based algorithms do not always perform significantly
better than error-based algorithms. The low cost ratio makes the task similar
to error-based classification, where cost-sensitive approaches have no particular
advantage.

Second, when the cost ratio is high (cost ratio ≥ 5), the proposed algorithms
significantly outperform C4.5, CR and even C4.5cs-mc. In addition, CRPrune
are comparable to C4.5cs and MetaCost, while CR-2 performs worse than them.

Third, the proposed new algorithms CR-2 and CRPrune are the definite win-
ner on the model training time compared with all other algorithms. Simplicity
and efficiency are certainly significant advantages of the proposed algorithms.

4 Conclusions and Future Work

This paper explores two simple and efficient pre-pruning strategies for the cost-
sensitive decision tree algorithm to avoid overfitting. One is to limit the cost-
sensitive decision trees to a depth of two. The other is to prune the trees with
a pre-specified threshold. Empirical study shows that, compared to the error-
based tree algorithm C4.5 and several other cost-sensitive tree algorithms, our
cost-sensitive decision trees with pre-pruning are more efficient and perform well
on most UCI data sets.

In the future, we plan to incorporate other pruning methods in our algorithms.
In addition, it is also valuable to extend our pre-pruning cost-sensitive trees to
include other types of cost.
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Abstract. Locally weighted naive Bayes (LWNB) is a successful
instance-based classifier, which first finds the neighbors of the test in-
stance using Euclidean metric, and then builds a naive Bayes model in
the local neighborhood. However, Euclidean metric is not the best choice
for LWNB. For nominal attributes, Euclidean metric has to order and
number the values of attributes, or judge whether the attribute values are
identical or not. For numeric attributes, Euclidean metric is not appropri-
ate for different attribute scales and variability, and encounters the prob-
lem of attribute value outliers when normalizing values. In this paper,
we systematically study probability based metrics, such as Interpolated
Value Difference Metric (IVDM), Extended Short and Fukunaga Metric
(SF2), SF2 calibrated by logarithm (SF2LOG) and Minimum Risk Met-
ric (MRM), and apply them to LWNB. These probability based metrics
can solve the above problems of Euclidean metric since they depend on
the difference between the probabilities to evaluate the distances between
the instances. We conduct the experiments to compare the performances
of LWNB classifiers using Euclidean metric and probability based metrics
on UCI datasets. The results show that LWNB classifiers using IVDM
outperform the ones using Euclidean metric and other probability based
metrics. We also observe that SF2, SF2LOG and MRM do not perform
well due to their inaccurate probability estimates. An artificial dataset
is built by logical sampling in a Bayesian network, where accurate prob-
ability estimates can be produced. We conduct the experiment on the
artificial dataset. The results show that SF2, SF2LOG and MRM using
accurate probability estimates perform better than Euclidean metric and
IVDM in LWNB.

Keywords: LWNB, Probability Based Metrics, IVDM, SF2, SF2LOG,
MRM.

1 Introduction

In practice, Bayes’ theorem is intractable since there are no sufficient training
instances to obtain an accurate estimate of the full joint probability distribution.
Naive Bayes classifier is a very popular and successful application of Bayes’ theo-
rem, which makes an extreme assumption by assuming that all the attributes are
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conditionally independent given the class. It is well-known that this assumption
is rarely held in the real world. But the performance and efficiency of naive Bayes
surprises the researchers in many classification problems. Various approaches
have been developed to improve the performance of naive Bayes. Many of them
believe that, if the naive conditional independent assumption can be reduced,
naive Bayes can be improved without impacting its simplicity and computational
efficiency. Locally weighted naive Bayes (LWNB) [1] is one of the most successful
approaches. LWNB is an instances-based learning method which simply stores
the training instances in the training time, and then defers building a classifier
until the testing time. When a test instance arrives, a naive Bayes classifier is
built using a set of weighted training instances in the locale of the test instance.
Because there are fewer training instances needed to build a local naive Bayes
model, there is less chance of encountering strong dependencies in the neighbor-
hood, and the effects of attribute dependencies are relieved. The experimental
results show that LWNB improves classification accuracy dramatically compared
with naive Bayes classifier and other related classifiers.

Like other instances-based learning methods, it is very important for LWNB
to consider which metric should be selected to calculate the distance between
the instances. Frank et al. [1] use Euclidean metric to evaluate the instances’
distances. Although Euclidean metric proves the effect, it still has some problems.
First, Euclidean metric is not a natural way to tackle the nominal attributes.
It has to deal with the nominal attributes by two means: one is to order and
number the values of the nominal attributes and to treat them as numeric values;
the other is to judge whether the values are identical or not. Second, Euclidean
metric is not always suitable for different scales (e.g. mm of Hg vs. degree Celsius)
and different variability (e.g. high variability of blood pressure vs. low variability
of body temperature) of numeric attributes. A simple way to fix the problem is
to normalize numeric attribute values. But it is not satisfying when an outlier
appears (e.g. body temperature = 50). [14]

In this paper, we systematically study probability based metrics, such as In-
terpolated Value Difference Metric (IVDM) [2], Extended Short and Fukunaga
Metric (SF2) [3], SF2 calibrated by logarithm (SF2LOG), and Minimum Risk
Metric (MRM) [3], and apply them into LWNB. IVDM is an augmented VDM
[4] which not only uniformly deals with both nominal and numeric attributes
as the heterogeneous distance metric, but also uses interpolation to alleviate
the discretization problems. SF2 is extended from Short and Fukunaga Met-
ric [5] which is proposed to minimize the expected value of the difference be-
tween the misclassification error with finite samples and the one with infinite
samples. We design SF2LOG based on SF2, which uses logarithm to calibrate
the probabilities. Compared with SF2, MRM directly minimizes the finite mis-
classification risk and relies on simpler optimality condition. In general, these
probability based metrics evaluate the distances between the instances by the
difference between the probabilities. They can solve the problems of Euclidean
metric. For nominal attributes, the probabilities are estimated by counting the
frequencies of occurrences, and there is no need to order and number the values,
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or judge whether they are identical or not. For numeric attributes, the proba-
bilities can be produced by the standard Gaussian distribution. Normalization
for different scales and different variability is not necessary, and it is certain
that there is no worry about the outliers. We conduct experiments to compare
the performances of LWNB classifiers using Euclidean metric and probability
based metrics on UCI datasets. From the experimental results, LWNB classifiers
using IVDM outperform the ones using Euclidean metric and other probability
based metrics. We also observe that SF2, SF2LOG and MRM do not perform
well due to inaccurate probability estimates. Furthermore, an artificial dataset
is designed by logical sampling [16] in a Bayesian network, in which the accurate
class membership probabilities can be computed. We conduct the experiment
on the artificial dataset. The results show that SF2, SF2LOG and MRM with
accurate probability estimates perform better than Euclidean metric and IVDM
in LWNB.

The rest of paper is organized as follows. In Section 2, we describe the proce-
dure of LWNB. In Section 3, various probability based metrics are introduced.
In Section 4, we present the experiments for LWNB classifiers using different
metrics on UCI datasets and the artificial dataset, and also analyze and discuss
the experimental results. Finally, we summarize our work and bring forward the
future work in Section 5.

2 Locally Weighted Naive Bayes

The idea of LWNB is similar to locally weighted linear regression [6] which is
considered as a local likelihood method from the statistical perspective. A local
naive Bayes model is built within the neighborhood of the test instance. The
training instances in this neighborhood are weighted by distances. The farther
from the test instance, the less weights are assigned to the training instances.
The final classification result is obtained from the local naive Bayes model.

At the beginning, the distance between each training instance and the test
instance is computed. k is a user-specified parameter which controls how many
instances are used to form the neighborhood of the test instance. The array of
the distances is sorted ascendingly and the kth distance is defined as bandwidth.

Let di be the distance between the test instance and the ith nearest neighbor
xi, and dk be the bandwidth. di is scaled by di/dk. After that, some of distances
are between zero and one if their un-scaled distances are equal to or smaller
than dk, whereas the other distances are greater than one. Then a monotonically
decreasing weighted kernel is chosen to assign the weights. In our experiments, we
use the linear weighting function which lets the weight decrease linearly with the
distance. It is defined as wi = flinear(di) = Max(0, 1−di), where di is a scaled
distance. This function means that the instances whose un-scaled distances equal
bandwidth are assigned weight zero; some of instances, which are farther away
from the test instance, are also assigned weight zero; the instances whose scaled
distances between zero and one receive non-zero weights. The instances with
non-zero weights are kept to form the neighborhood of the test instance.
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Frank et al. [1] found that the performance of LWNB can be improved em-
pirically by further rescaling the weights so that the total of the instances’
weights is approximately k. Assume that there are m training instances xi used
to generate the local naive Bayes. Then the rescaled weights w′i are computed
as w′i = wi ∗m/

∑n
q=1 wq , where n is the total number of training instances.

3 Probability Based Metrics

3.1 Interpolated Value Difference Metric

The Value Difference Metric (VDM) was introduced by Stanfill and Waltz [4] as
a valuable distance function for nominal attributes. A simplified version of the
VDM defines the distance between two attribute values ai and aj of an attribute
A as

vdmA(ai, aj) =
C∑

q=1

|P (cq|ai)− P (cq|aj)|, (1)

where C is the number of class labels, P (cq|ai) and P (cq|aj) are nominal at-
tribute conditional probabilities which are estimated by computing frequencies
of attribute values’ occurrences.

Wilson and Martinez [2] extend VDM to a set of heterogeneous metrics which
can deal with a dataset having both nominal and numeric attributes. Interpo-
lated Value Difference Metric (IVDM) is an excellent one in VDM family. IVDM
can be applied directly to numeric attributes which alleviates the need for nor-
malization between attributes.

In IVDM, the values of numeric attributes are discretized into s equal-width
intervals, where s is an integer supplied by users. In this paper, s takes the value
of C or 5, whichever is greater, where C is the number of class labels. The width
wA of a discretized interval for attribute A is given by:

wA = |maxA −minA|/s, (2)

where maxA and minA are the maximum and minimum values, respectively,
occurring in the training instances for A. The discretized value u of an attribute
value ai is given by:

u = discretizeA(ai) =

⎧⎨
⎩

ai if A is discrete, else
s if ai = maxA, else
�(ai −minA)/wA�+ 1

(3)

The difference between IVDM and other VDMs is that IVDM needs to retain
the original numeric values after the discretization. This can be useful to distin-
guish the numeric values which fall into the same interval after the discretization.
IVDM assumes that attribute conditional probabilities hold true values at the
midpoint of each interval, and the interpolation between the midpoints is helpful
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to produce better probability estimates. Given two instance x and y, the distance
function for IVDM is defined as:

IV DM(x, y) =
m∑

j=1

ivdmAj (aj
x, aj

y)
2
, (4)

where m is the number of attributes of instance x and y, Aj is the jth at-
tribute, aj

x and aj
y are the attribute values of Aj in x and y respectively, and

ivdmAj (aj
x, aj

y) is defined as:

ivdmAj (aj
x, aj

y) =
{

vdmAj (aj
x, aj

y) if Aj is discrete∑C
q=1 |P ′(cq|aj

x)− P ′(cq|aj
y)| otherwise

(5)

where P ′(cq|aj
x) and P ′(cq|aj

x) is the interpolated probabilities of numeric at-
tribute values. In the general case, we assume that a is an attribute value of
numeric attribute A, u is an integer where u = discretizeA(a), c is a class label.
The interpolated probability P ′(c|a) is defined as:

P ′(c|a) = P (c|u) + (
a−mida,u

mida,u+1 −mida,u
) ∗ (P (c|u + 1)− P (c|u)). (6)

In Equation 6, mida,u and mida,u+1 are midpoints of two consecutive discretized
ranges such that mida,u ≤ a ≤ mida,u+1. P (c|u) is the nominal attribute condi-
tional probability which is estimated by frequencies of occurrences in the range
u (and similarly for P (c|u+1)). If x < mida,u, u subtracts 1. Moreover, if u < 1
or u > s, P (c|u) is taken to be 0. The value of mida,u can be found as follows:

mida,u = minA + wA ∗ (u + 0.5). (7)

3.2 Short and Fukunaga Metric

Short and Fukunaga [5] address the problem of selecting the best distance mea-
sure for minimizing the difference between the finite sample nearest neighbor
classification error and the asymptotic nearest neighbor error based on proba-
bilities. In their work, they consider the metric for the l-nearest neighbor and
two-class case. Let x and y be two instances, c1 and c2 be two class labels,
and P (c1|x), P (c1|y), P (c2|x) and P (c2|y) be the class membership probabil-
ities. Then r(x, y) = P (c1|x)P (c2|y) + P (c2|x)P (c1|y) is the finite 1-nearest
neighbor error rate, in which the probability of misclassifying x is evaluated by
a particular metric given the nearest neighbor y. r∗(x) = 2P (c1|x)P (c2|x) is
the asymptotic 1-nearest neighbor error rate [8]. Short and Fukunaga [5] show
that minimizing the expectation E[(r(x, y) − r∗(x))2] is equivalent to minimizing
E[(P (c1|x)− P (c1|y))2], so the proper local metric is

SF (x, y) = |P (c1|x)− P (c1|y)|. (8)
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Myles and Hand [9] extend this metric to the multiple-class case and propose
the following equation:

SF2(x, y) =
C∑

i=1

|P (ci|x)− P (ci|y)|. (9)

In Equations 8 and 9, the class membership probabilities are estimated by
naive Bayes estimator [15]. Although the computation of naive Bayes is effective,
the produced probabilities is not accurate enough. We use logarithm to calibrate
the probabilities to improve the performance. It is called SF2LOG which is shown
as follows:

SF2LOG(x, y) =
C∑

i=1

|log(P (ci|x))− log(P (ci|y))|. (10)

3.3 Minimum Risk Metric

Blanzieri and Ricci propose the Minimum Risk Metric (MRM) [3], which is a
very simple metric that directly minimizes the risk of misclassification.

Assume that there is an instance x and its nearest neighbor y. Given class
label ci, the finite risk of misclassifying x is P (ci|x)(1−P (ci|y)). In the multiple-
class case, the total finite risk is the sum of the risks extended to all the different
classes, which is given by r(x, y) =

∑C
i=1 P (ci|x)(1 − P (ci|y)), where C is the

number of class labels. Compared with the above approach of SF2 which mini-
mizes the expectation of difference between the finite error and the asymptotic
error, MRM directly minimizes the risk r(x, y) which is given as follows:

MRM(x, y) = r(x, y) =
C∑

i=1

P (ci|x)(1 − P (ci|y)). (11)

In Equation 11, the class membership probabilities are also estimated by naive
Bayes estimator [15].

4 Experimental Results

4.1 Experiments on UCI Datasets

In this section, we conduct the experiments on 33 UCI datasets [11] to compare
the performances of LWNB classifiers using Euclidean metric (EUM), IVDM,
SF2, SF2LOG and MRM. These UCI datasets consist of nominal attributes, or
numeric attributes, or both of nominal and numeric attributes (for convenience,
we call them mixture attributes). They are downloaded in the format of arff
from the website of Weka [10]. We use the implementation of LWNB in Weka,
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and implement IVDM, SF2, SF2LOG and MRM in Weka’s framework. Some
typical values of k have been selected for LWNB classifiers. The influence of k
will be described in the following section.

First, the experiments are conducted on discretized UCI datasets. We ap-
ply the filter of ReplaceMissingValues in Weka to replace the missing values of
attributes. Then, we used the filter of Discretize, the unsupervised ten-bin dis-
cretization in Weka, to discretize numeric attributes. Thus, all the attributes are
treated as nominal. It is well-known that, if the number of values of an attribute
is almost equal to the number of instances in a dataset, this attribute does not
contribute any information to classification. So we use the filter of Remove in
Weka to delete such attributes. In 33 UCI datasets, Hospital Number in dataset
colic, Instance Name in dataset splice and Animal in dataset zoo are deleted. We
conduct the following experiments to compare the performances of LWNB clas-
sifiers using different metrics in terms of classification accuracy. The accuracy
of each classifier is measured via the ten-fold cross validation for all datasets.
Runs with the various algorithms are carried out on the same training sets and
evaluated on the same test sets. The cross-validation folds are the same for all
the experiments on each dataset. Furthermore, we conduct two-tailed t-test with
a 95% confidence level to compare each pair of algorithms.

Next, we conduct experiments for LWNB classifiers using different metrics on
UCI datasets which consist of numeric or mixture attributes. There are 25 such
datasets in 33 UCI datasets. Similarly as above, we apply the ReplaceMissing-
Values filter in Weka, and Remove filter which removes the attribute Animal
in dataset zoo. The accuracy of each classifier is also measured via the ten-fold

Table 1. Experimental results on accuracy with discretized UCI datasets

Dataset IVDM IVDM EUM EUM SF2LOG SF2 MRM
K=30 K=50 K=30 K=50 K=50 K=50 K=50

anneal 99.09 98.92 98.80 98.84 99.01 97.45 97.35
audiology 77.91 77.30 78.06 78.11 74.47 75.26 74.64
autos 78.82 77.94 79.65 78.57 78.35 74.05 73.71
balance-scale 88.59 89.23 85.92 85.92 95.27 97.06 97.15
breast-cancer 72.11 71.98 73.02 72.85 70.35 70.64 70.64
breast-w 97.07 97.21 96.61 96.74 96.07 95.80 95.80
colic 83.15 82.85 81.82 79.78 81.07 81.41 81.41
credit-a 86.06 86.09 85.57 86.13 84.35 84.36 84.36
credit-g 75.18 75.35 73.22 73.36 74.70 74.79 74.79
diabetes 74.82 75.31 72.82 72.95 73.42 73.58 73.58
glass 63.79 63.35 63.14 64.82 65.65 61.35 59.13
heart-c 81.88 81.62 80.40 80.46 80.83 80.85 80.62
heart-h 82.90 82.94 83.00 82.76 81.11 80.89 80.89
heart-statlog 83.00 82.56 80.89 81.07 82.96 83.26 83.26
hepatitis 83.56 84.64 85.28 85.98 84.91 85.21 85.21
hypothyroid 93.39 93.58 92.99 93.31 93.34 92.95 92.88
ionosphere 91.22 91.23 91.51 92.31 83.10 79.14 79.14
iris 96.00 96.00 94.47 95.33 95.87 95.40 95.40
kr-vs-kp 97.74 97.65 97.69 97.78 92.39 92.41 92.41
labor 93.10 95.10 93.90 94.20 95.47 96.50 96.50
lymph 85.77 84.68 84.54 84.12 83.30 82.73 82.06
mushroom 100.00 100.00 100.0 100.00 100.00 100.00 100.00
primary-tumor 45.13 46.79 43.77 45.66 44.63 45.58 44.66
segment 95.42 95.54 95.11 95.15 94.83 93.10 92.59
sick 98.06 98.08 98.08 98.05 97.45 97.44 97.44
sonar 83.04 82.31 83.28 82.52 72.69 72.98 72.98
soybean 93.57 93.66 92.93 93.48 92.87 92.97 92.83
splice 94.88 95.18 92.45 94.11 96.15 96.15 96.09
vehicle 71.80 71.17 71.10 71.63 70.39 66.06 64.88
vote 95.05 95.49 95.08 95.95 95.33 95.08 95.08
vowel 95.34 95.07 94.92 94.97 91.48 83.81 79.02
waveform-5000 82.66 82.94 76.70 78.38 83.30 82.70 82.70
zoo 96.94 95.75 96.25 96.25 96.05 96.15 96.05
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Table 2. Summary of comparisons on discretized UCI datasets

IVDM50 EUM30 EUM50 SF2LOG SF2 MRM

IVDM30 0/33/0 0/25/8 0/27/6 2/26/5 2/22/9 2/22/9
IVDM50 0/27/6 0/28/5 2/25/6 2/21/10 2/21/10
EUM30 2/30/1 3/25/5 3/22/8 3/22/8
EUM50 3/25/5 3/22/8 3/22/8
SF2LOG 1/26/6 1/24/8
SF2 0/31/2

Table 3. Experimental results on accuracy with UCI datasets which consist of numeric
or mixture attributes

dataset IVDM IVDM EUM EUM SF2LOG SF2 MRM
K=30 K=50 K=30 K=50 K=50 K=50 K=50

anneal 98.96 99.14 98.58 98.33 97.18 98.27 98.27
autos 76.96 77.52 76.47 77.51 74.97 71.71 71.71
balance-scale 79.42 80.95 89.41 89.91 95.27 95.99 95.99
breast-cancer-w 96.07 95.62 96.28 96.31 94.99 95.65 95.65
coli. 82.31 80.06 78.61 79.76 79.39 79.14 79.14
credit-a 84.80 83.57 85.33 83.33 78.32 77.86 77.86
credit-g 73.11 73.51 74.29 75.07 72.03 72.41 72.41
diabetes 70.79 71.01 71.54 70.40 70.04 70.17 70.17
glass 74.54 73.96 71.31 72.20 67.75 66.22 66.22
heart-c 81.03 80.61 82.65 81.43 79.50 79.23 79.23
heart-h 80.04 82.18 82.38 82.53 81.76 81.97 81.97
heart-statlog 79.07 79.74 80.89 79.33 78.00 79.22 79.22
hepatitis 85.24 83.55 82.78 83.00 84.37 85.53 85.53
hypothyroid 96.79 97.00 95.49 96.29 96.16 96.87 96.61
ionosphere 91.43 89.49 80.23 82.91 92.74 91.83 91.83
iris 94.67 95.33 95.33 96.67 96.67 92.00 92.00
labor 95.00 93.33 91.67 93.33 89.67 88.00 88.00
lymph 82.33 82.33 85.67 83.00 81.00 79.67 80.33
segment 96.58 96.67 97.45 96.54 93.07 92.16 91.34
sick 97.56 97.45 96.71 96.85 97.03 97.03 97.03
sonar 87.05 86.10 88.52 88.00 85.14 78.88 78.88
vehicle 73.87 74.70 75.42 75.30 71.63 70.33 68.92
vowel 98.38 98.48 96.26 96.87 96.77 92.73 90.20
waveform 82.82 81.68 81.52 81.82 83.36 83.86 84.36
zoo 99.00 98.09 98.00 98.00 97.00 98.00 98.00

cross validation for all datasets, and two-tailed t-test with a 95% confidence level
is conducted to compare each pair of algorithms.

Table 1 and Table 3 display the accuracy of each classifier on two kinds of UCI
datasets. The two-tailed t-test results are shown in Table 2 and Table 4. Each
entry of Table 2 and Table 4 has the format of w/t/l. It means that, compared
with the classifier using the metric in the corresponding row, the classifier using
the metric in the corresponding column wins in w datasets, ties in t datasets
and loses in l datasets.

From the experimental results, we can see that LWNB classifiers using IVDM
(particularly when k = 30) outperform LWNB classifiers using Euclidean metric
and other probability based metrics. Compared with LWNB classifiers using
Euclidean metric (the one when k = 50 is the best one reported by [1]), LWNB
classifiers using IVDM improve the performances on two kinds of UCI datasets.
SF2 and MRM do not perform well on discretized UCI datasets. On UCI datasets
consisting of numeric and mixture attriutes, however, the performances of SF2
and MRM are close to Euclidean metric. SF2LOG performs better than SF2 and
MRM on two kinds UCI datasets.
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Table 4. Summary of comparisons on UCI datasets which consist of numeric or mixture
attributes

IVDM50 EUM30 EUM50 SF2LOG SF250 MRM50

IVDM30 1/23/1 1/16/8 1/16/8 1/17/7 1/18/6 1/19/5
IVDM50 2/15/8 2/18/5 1/18/6 2/18/5 2/18/5
EUM30 2/21/2 3/18/4 4/16/5 4/16/5
EUM50 2/19/4 3/17/5 3/17/5
SF2LOG50 0/23/2 0/22/3
SF250 0/25/0

The experimental results are not surprising. IVDM is based on the attribute
conditional probabilities which are estimated directly by the frequencies of oc-
currences. However, SF2, SF2LOG and MRM have to use the estimates of the
class membership probabilities by naive Bayes estimator. The estimates are
constrained by the conditional attribute independent assumption so that the
probabilities are not accurate. The inaccurate probability estimates hurt the
performances of these metrics. By calibrating the probability estimates using
logarithm, the performance of SF2LOG is better than SF2 and MRM.

4.2 Artificial Dataset

In this section, we design an artificial dataset from which the accurate probabili-
ties can be produced. On this artificial dataset, we conduct an experiment to see
the performances of SF2, SF2LOG and MRM using the accurate probabilities.

The artificial dataset is constructed by a Bayesian network. The structure of
Bayesian network is defined as Figure 1, where the class variable node C is the
parent of all the other nodes, A1 is the only node which has one parent, the
other nodes A2, ..., An has two parents which are C and the preceding node. In
this experiment, a network which has 25 nodes has been built, where node C
represents the binary class label and other nodes represent the binary attributes.
The conditional probability table is randomly generated on each node. We draw
the dataset at random by logical sampling [16] in this Bayesian nettwork. Given
an instance from the artificial dataset, the accurate class membership probability
of this instance is easy to compute by searching the conditional probability
table on each node. The results of LWNB classifiers with Euclidean metric and

C

A1 A2 A3 An. . . . . . 

Fig. 1. The structure of the Bayesian network
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Table 5. Experimental results on accuracy with artificial dataset

EUM IVDM SF2 MRM SF2LOG

Artificial dataset 92.80 93.80 94.20 94.70 96.00

probability based metrics are shown in Table 5, where k=100. In the experiment,
SF2, SF2LOG and MRM use the accurate probability estimates computed from
the Bayesian network. From the results, we can see that SF2, SF2LOG and MRM
perform better than than Euclidean metric and IVDM. Although it is not easy to
get the accurate class membership probabilities in real-world applications, we can
treat the accurate probabilities from this artificial dataset as a yardstick. When
the probabilities estimates are more accurate, the probability based metrics, such
as SF2, SF2LOG and MRM perform better for LWNB classifier.

4.3 Influence of k

We conduct a series of experiments for LWNB classifiers using different met-
rics with various values of k. These experiments are conducted on one of UCI
datasets, balance-scale, whose attributes are all numeric. The performances of
LWNB classifiers using different metrics on the discretized and the original
dataset with various values of k are shown in Figure 2 and Figure 3.

From the Figure 2 and Figure 3, we can see that the performance of LWNB
classifier using Euclidean metric is not sensitive to the change of k. LWNB
classifier using IVDM is not sensitive on discretized dataset. The performances
of other probability based metrics swing within a small range before k < 300,
and then stabilize.
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Fig. 2. Performances of LWNB classifiers using different metrics on discretized balance-
scale dataset
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Fig. 3. Performances of LWNB classifiers using different metrics on original balance-
scale dataset

5 Conclusion and Future Work

In this paper, we systematically study the probability based metrics, such as
IVDM, SF2, SF2LOG and MRM, and apply them into LWNB classifiers. LWNB
is a very successful instance-based learning classifier. Frank et al. use Euclidean
metric on LWNB classifier. However, Euclidean metric has some problems when
used to deal with nominal attributes or numeric attributes. Probability based
metrics can solve these problems. They depend on probability estimates to eval-
uate the difference between the instances. Specifically, IVDM uses the sum of the
difference between the attribute conditional probabilities which are estimated by
frequencies of occurrences. SF2, SF2LOG and MRM utilize the class member-
ship probabilities which are produced by naive Bayes estimator. We conduct the
experiments for LWNB classifiers using Euclidean metric and probability based
metrics on the discretized UCI datasets and UCI datasets which consist of nu-
meric and mixture attributes. From the experimental results, IVDM outperforms
other metrics on two kinds of UCI datasets. Due to the poor class membership
probabilities estimated by naive Bayes estimator, SF2, SF2LOG and MRM do
not perform well. But SF2LOG can improve the performance by calibrating
probabilities using logarithm compared with SF2 and MRM. We also conduct
the experiments on an artificial dataset which is built by logical sampling in
a Bayesian network. Accurate probability estimates can be produced from the
Bayesian network. The experimental results show that SF2, SF2LOG and MRM
can perform better using more accurate probability estimates.

The main problem of probability based metrics is the estimation of probability.
In the future work, we will try the probability calibration methods to calibrate
the class membership probability. Zadrozny and Elkan [12] obtain the calibrated
probability estimates from decision trees and naive Bayes classifier. They also
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use pair-adjacent violators (PAV) [13] to calibrate probabilities. All the methods
are worth trying to improve the performance of probability based metrics.
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Abstract. Boosted ensemble classifiers have a demonstrated ability to
discover regularities in large, poorly modeled datasets. In this paper we
present an application of multi-hypothesis AdaBoost to detect epilepti-
form activity from electrophysiological recordings. While existing boost-
ing methods do not account automatically for the sequence information
that is available when analyzing time-series data, we present a recurrent
extension to AdaBoost, and show that it improves classification accuracy
in our application domain.

Medical treatment design has long been the exclusive domain of clinical experts.
However, recently there has been a growing interest in automatically optimizing
adaptive treatment strategies for the management of chronic diseases. The chal-
lenge is in developing sequences of treatments which adapt to a patient’s char-
acteristics and the disease’s progression [1]. Additionally, there has been much
recent interest in using automatic techniques to classify neurological time-series
data [2]. There are tremendous opportunities in applying automated learning
and discovery techniques to these classes of problems.

The optimization of an adaptive treatment strategy can be cast as a rein-
forcement learning problem [1]. Reinforcement learning addresses the problem
of optimizing action sequences in dynamic and stochastic systems [3]. In this
paradigm, the state of the system represents the patient’s medical history, and
the goal is to use direct experimentation with the system to learn, for each
state, the optimal treatment strategy (or policy). Reinforcement learning unfor-
tunately tends to require large amounts of data to reach an optimal strategy.
This is impractical where data is sparse and expensive, as is often the case with
human medicine. The best way to reduce data requirements is to impose strong
constraints on the state representation.1 Thus a significant challenge is finding
a good compact state representation for a patient’s medical history.

In this paper we focus on the problem of learning a compact state represen-
tation for epileptic events. Epilepsy is a brain disorder characterized by seizures
(also known as ictal events) resulting from episodes of abnormal electrical activ-
ity in the brain. It affects about 1% of the population [4], of which at least 25% do
1 A secondary technique is to impose strong constraints on the policy space, but this

generally requires a known state representation.

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 192–203, 2007.
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not respond to anti-epileptic medication [5]. For these non-responsive patients,
treatment by electrical stimulation has recently emerged as a promising alter-
native therapy [6]. The technology is relatively simple: a small pacemaker-like
device that applies mild electrical stimulation to the nervous system is implanted
in the patient. The optimization of an adaptive treatment strategy for such a de-
vice requires a compact state representation, as it is likely that limited amounts
of data will be available for learning. Therefore we seek methods for classifying
epileptic states from electrical field potential recordings.

In this paper we attempt to detect epileptic states by performing classification
problem over fixed time frames, and we investigate the use of boosting techniques
to discover information about key features for our state representation. Though
this is not always well recognized, ensemble methods such as AdaBoost provide a
principled and efficient mechanism for feature selection in large, poorly modeled
datasets [7,8]. However, existing boosting methods do not naturally account for
the sequential nature of time-series data, such as electrophysiological recordings.
We present a new recurrent formulation of AdaBoost, in which the classification
of prior time frames is included in the feature vector of the current time frame.
This technique distinctly improves classification accuracy in our application,
especially the detection of rare events. We also evaluate the performance of
recurrent AdaBoost using a synthetic dataset from the UCI database [9] and
demonstrate improved classification accuracy compared to standard AdaBoost.
While we do not provide a formal analysis of the properties of boosting under
the recurrent formulation, this will be an interesting line of future research.

1 Problem Description

Epileptiform signals can be separated into long normal phases, with periodic
ictal events that may span several minutes. They are also characterized by brief
interictal events, sometimes called spikes.

The problem of automated real-time detection and prediction of epileptic
seizures using electrophysiological recordings has been investigated extensively,
yielding a variety of approaches, including neural networks [10], wavelet meth-
ods [11], and nonlinear time series analysis [12]. However these results are not
sufficiently interpretable to build compact state representations.

1.1 Data Recordings

The data used in this study are field potential recordings of seizure-like activity
in slices obtained from rat brains [13]. The recordings were made using micro-
electrodes inserted in the regions of interest and sampled at a rate of 5012.5 Hz.
The recordings were filtered to roll off frequencies above 100 Hz. This study used
three separate brain slices. In each slice, neural activity was recorded in three
different channels placed in different brain structures, thus yielding a total of
nine data traces. These recordings are between 10.5 and 13 minutes in length.
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1.2 Signal Processing

Each data trace was processed as a series of nonoverlapping frames consisting
of 4096 samples (0.82 sec). Each frame was normalized by subtracting the mean
and dividing by the full range of the entire frame. The per-frame mean, range,
and energy (the sum of squared deviations from the mean) were saved for use as
features in the classification. Each frame was then apodized with a Hann window
and converted to a power spectrum using the discrete fast Fourier transform.
Because the signals were low-pass filtered at 100Hz, only the first 80 frequency
bands were used as features, representing a frequency range of approximately
1-98 Hz. The real and imaginary components of each band of the FFT were
combined into a single magnitude, giving 83 features per frame (the frequency
bands, plus mean, range and energy). Each trace yielded between 731 and 947
usable frames, for an overall total of 7692 frames.

1.3 Labeling

Each of the channels of the recordings was segmented into normal, spike, or ictal
(or seizure) periods based on guidance from an expert. This classification was
somewhat qualitative and performed by visual analysis. As can be seen in Fig. 1,
the events are reasonably distinctive. Spikes were noted only for the duration of
the most prominent portion of the spike waveform, giving a typical spike length
of 50 milliseconds. The majority (82%) of the frames was classified as normal,
with about 3% classified as an interictal spike and 14% classified as ictal. We
have also made this labeled dataset publicly available [14].

Fig. 1. An example recording, showing several spikes and an ictal event (far right)

2 Algorithmic Approach

Boosting is a general supervised learning technique that seeks to combine an
ensemble of simple, easily chosen classification rules (or hypotheses) into a single
strong hypothesis. Most boosting algorithms proceed in a series of rounds in
which a new weak hypothesis is trained according to a labeled set of training
examples. After each round, the distribution of the training examples is updated
to increase the weights of those examples that were improperly classified in the
current round. The final strong hypothesis is formed by a weighted combination
of the weak hypotheses [15].
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2.1 AdaBoost

The general boosting framework specifies neither how distributions and weights
are updated, nor how the weak hypotheses are to be combined. The AdaBoost
(“adaptive boosting”) algorithm was invented by Freund and Schapire [7]. Our
work uses AdaBoost.MH (illustrated as Algorithm 1), which is a multiclass ex-
tension of AdaBoost [16] that generalizes both the distributions and the weak
learners over a set of possible labels. We specifically use “real” AdaBoost.MH,
which outputs a real-valued confidence prediction for each class.

Our choice of AdaBoost was motivated primarily by the relative simplicity of
the final classifier. While perhaps less amenable to human interpretation than a
decision tree, a boosted classifier can yield insights into the structure of a poorly
characterized problem by weighting features according to their discriminative
power [8]. Also, while the algorithm’s performance is influenced by the choice of
weak learners, the final strong hypothesis can often be evaluated very efficiently.

The use of the AdaBoost family of algorithms was also influenced by recent
work in music genre classification which revealed AdaBoost as a powerful clas-
sification approach for complex time-series signals [17].

We use the freely available AdaBoost.MH implementation BoosTexter 2.1 [18],
which includes weak learners consisting of simple decision stumps over contin-
uous attributes. While this implementation was intended for text processing
applications, it is general enough for our application.

We use the features described in Sect. 1.2 to form the feature domain X .

Algorithm 1. Discrete AdaBoost.MH [16]
Given: (x1, Y1), . . . , (xm, Ym) where xi ∈ X , Yi ⊆ Y
Initialize D1(i, �) = 1/(mk)
for t = 1, ..., T do

Train weak learner using distribution Dt

Get weak hypothesis ht : X × Y → IR
Choose:

αt =
1

2
ln

(
1 + rt

1 − rt

)
, rt =

∑
i,�

Dt(i, �)Yi[�]ht(i, �)

Update:

Dt+1(i, �) =
Dt(i, �) exp(−αtYi[�]ht(xi, �))

Zt

(Where Zt is a normalizing constant chosen such that
∑

i Dt+1(i) = 1)
end for
Output final hypothesis:

H(x, �) = sign

(
T∑

t=1

αtht(xi, �)

)
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2.2 Recurrent AdaBoost

AdaBoost does not directly represent any dependencies between events; each
training example is assumed to be drawn independently randomly from the set
X . For time series data it is likely that the classification of prior frames in the
series will provide useful information for the classification of later frames.

The most obvious way to test this is to incorporate features from prior time
frames xi−1, ..., xi−N with features of the current time frame xi. This method,
which we call AdaBoost with Memory, is conceptually simple and maintains the
good theoretical properties of boosting. However, it scales badly for domains
with a large feature space.

Instead, we propose to use the classification labels of prior time frames. We
train a classifier f such that yi = f(xi, yi−1, ..., yi−N ), where xi is the input
feature of frame i, N is the number of prior predictions considered, and yi is
the set of real numbers corresponding to the class membership scores output by
AdaBoost.MH. We call this algorithm Recurrent AdaBoost. It scales nicely with
history size, assuming a small number of classes (3 in our case). A problem with
K classes and N recurrent time steps adds NK features to the input vector.

Our recurrent approach requires inserting two steps in the AdaBoost training
procedure. First, during initialization we set all of the prior labels in our training
examples to zero. Second, these labels must be updated at the end of each
round of training. The testing procedure also must be modified slightly in cases
where test frames are processed in a batch manner. It is necessary to iterate
classification of the test set (up to N times) to allow full incorporation of the
classifier information. This is not necessary when test examples are presented in
an order consistent with the time-series.

3 Experimental Evaluation

3.1 Method

In this section, we investigate the performance of boosting for the classification
of epileptic brain activity from electrophysiological signals. We consider three
different classification approaches:

yi = f(xi) Standard AdaBoost
yi = f(xi, xi−1, ..., xi−N ) AdaBoost with Memory
yi = f(xi, yi−1, ..., yi−N ) Recurrent AdaBoost

In the control experiment, which we call Standard AdaBoost, each feature
vector includes the 83 scalar values associated with the current time frame only.

In the second experiment, which we call AdaBoost with Memory, each feature
vector includes the features of both the current time window and the prior time
window for a total of 166 scalar values. This method can be extended to longer
memory, but we did not try this because of the substantial training time required.
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In the third experiment, which we call Recurrent AdaBoost, the input feature
vector includes the 83 standard features with the addition of the output weights
for each class, for each of N prior windows (where we vary N from 1 to 5.)

In each experiment, we performed three train/test folds using six traces as the
training set and three traces as the test set. Training proceeded for 300 rounds,
as the classification error leveled off after that point.

3.2 Results

We begin by considering an illustrative example. Figures 2b, 2c, and 2d show
the classifier outputs for a representative test trace, using Standard AdaBoost.
While overall results in this case were good (93% accuracy), only 10 of 12 spike
frames (83%) and 82 of 119 ictal frames (69%) were correctly classified.

Figures 2e, 2f, and 2g show classifier outputs using Recurrent AdaBoost with
the predictions of two prior frames. Here all 12 spike frames were properly iden-
tified, and the recognition of ictal frames increased to 102 out of 119 (86%).

We now present a more formal comparison of the approaches. We achieved
average overall accuracy greater than 90% with all methods considered.
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Fig. 2. Results for classification of one channel. (a) The original trace. (b) (c) (d)
The per-class confidence values using Standard AdaBoost. (e) (f) (g) The per-class
confidence values using Recurrent AdaBoost with two prior time frames.
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Results for all cases are summarized in Table 1. For Standard AdaBoost,
the variance in accuracy among train/test folds was relatively high, ranging
from 90% to 97%. Recognition of spikes was quite poor. Spike events may be
especially difficult for our detector, because of both their short duration and
their relatively rarity (3% of all frames). In some cases the classifier tended to
classify spikes as ictal events. This may reflect variability in the spikes, which
can resemble brief ictal events (see Fig. 3).

In the AdaBoost with Memory case, all features from the prior frame are
concatenated with all features from the current frame. This approach shows a
large improvement over Standard AdaBoost, and markedly reduced the variance
in the accuracy. Note especially the improved detection of interictal spikes.

Fig. 3. Three channels recording a spike at approximately the same time. The bottom
spike shows a long “ictal” tail.

Table 1. Summary of experimental results. Row labels reflect ground truth, column
labels reflect classification results.

Experiment Normal Spike Ictal Total Class% Overall% Range%

Standard Normal 6209 18 67 6294 99 95 90–97
AdaBoost Spike 35 119 99 253 47

Ictal 97 65 983 1145 86

AdaBoost Normal 6242 15 37 6294 99 97 93–99
with Spike 48 187 18 253 74
Memory Ictal 92 15 1038 1145 91

Recurrent Normal 6253 16 25 6294 99 98 94–99
AdaBoost Spike 49 187 17 253 74
(1 prior) Ictal 69 12 1064 1145 93

Recurrent Normal 6239 22 33 6294 99 97 92–99
AdaBoost Spike 42 199 12 253 79
(2 prior) Ictal 101 15 1029 1145 90

HMM Normal 97 94
Spike 45
Ictal 78
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Results for Recurrent AdaBoost are shown for two cases, incorporating the
predictions for either one or two prior frames. Incorporating one prior frame,
there is a strong improvement over Standard AdaBoost in classifying both spikes
and ictal events. Incorporating two prior frames provides no consistent benefit.
These results are comparable to those of AdaBoost with Memory, but with less
training time, given the smaller size of the feature space.

We evaluated Recurrent AdaBoost when incorporating predictions for 1–5
prior frames into the feature vector. These results are summarized in Fig. 4.
There is little improvement beyond two frames, suggesting that, for our dataset,
there is little added information in more distant time frames.

0 1 2 3 4 5
0

20

40

60

80

100

Number of prior frames

P
er

ce
nt

 c
or

re
ct

Normal
Spike
Ictal
Overall

Fig. 4. Results for Recurrent AdaBoost using varying numbers of prior frames

These results show solid detection of the various epileptic states. However,
spike detection accuracy is at most 79%. In conversations with experts with years
of experience reading recordings of the type shown in Fig. 1, the consensus is that
given a full trace it is fairly easy to differentiate spiking and ictal events. However,
given only data up to time t, it is difficult to predict whether a subsequent burst
of energy is either a spike or the onset of an ictal event.

We also show results obtained using a standard time-series approach, the
Hidden Markov Model (HMM) [19].2 The results for classification of spike events
are comparable to those of Standard AdaBoost but significantly worse than those
of Recurrent AdaBoost. Classification of ictal events is worse than both Standard
and Recurrent AdaBoost.

3.3 Feature Extraction

To better characterize the data, we performed principal components analysis of
the 83 features that form our input space. Figure 5 shows that at least 50%
of the principal components are required to reconstruct 90% of the variance
2 Observation probabilities were modeled assuming each input feature follows a uni-

variate Gaussian. All parameters were derived from the labeled training data.



200 R.D. Vincent et al.

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Number of eigenvectors

P
ro

po
rt

io
n 

of
 v

ar
ia

nc
e

Fig. 5. Principal components analysis of 83 features

in our data. We also observed much overlap between the spike class and the
ictal/normal classes in principal components space. Both this analysis and the
prior literature on the topic suggest that epileptic state detection from electrical
signals is difficult, especially for spike events.

We also examined the strong hypotheses produced by AdaBoost.MH for all
of the experiments. We observed a number of striking regularities.

In all recurrent examples, the first weak hypothesis recruited was either fre-
quency band 62 or 63, corresponding to frequencies of 76 or 77 Hz. High values
in these bands favor a normal classification, whereas low values weight towards
ictal classification. Frequency bands 6–8 (∼ 7–10 Hz) were consistently recruited
early. Low values in these bands favor normal classification, whereas high values
favor ictal classification.

In most cases, energy was recruited in the first 20 rounds. A high energy value
resulted in a strong weighting toward a spike classification. A similar effect was
seen for the range feature.

In recurrent cases, prior labels primarily acted as a source of hysteresis in the
system: prior labels of ictal or normal biased the present frame towards either
ictal or normal, respectively.

3.4 Validation

We also performed validation of Recurrent AdaBoost with synthetic data by
adapting a similar task of known difficulty, the “waveform” classification prob-
lem from the UCI Machine Learning repository [20,9,21]. This task requires
discrimination among three classes of 21 noisy continuous features. When the
classes are chosen uniformly randomly in sequence (i.e. when the examples are
generated i.i.d.), Bayes optimal performance is 86% [9]. We modified the problem
by sampling examples from these three classes in a nonuniform sequence using
the simple Markov model illustrated in Fig. 6 so as to produce time-series data.

We repeated each of the algorithms using 12 train/test rounds of 5000 train-
ing examples and 1000 testing examples, varying the transition probability P .
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S1

(1-P)/2

S2

S3
(1-P)/2

(1-P)/2

P

P P

Fig. 6. Simple Markov model used to generate synthetic data. The parameter P sets
the probability that the output class of an example is the same as that of the prior
example. Initial states are chosen uniformly randomly.

The results are summarized in Fig. 7. The bar graph on the left shows the results
for P = 0.9 for Standard AdaBoost (left), AdaBoost with Memory (middle), and
Recurrent AdaBoost using one prior prediction (right). The line graph on the
right shows the results for Recurrent AdaBoost when P = 0.33, P = 0.66, and
P = 0.9, varying the number of prior predictions.
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Fig. 7. Results for experiments with synthetic data. Error bars show 95% confidence
intervals over 12 folds.

When no prior information is used, the results are similar to the Bayes opti-
mal value (86%) for the uniformly random case; this is the Standard AdaBoost
algorithm. However, when prior information is incorporated, we achieve signifi-
cantly improved performance, as the algorithm is able to exploit the time-series
information we added to the problem. Unsurprisingly, the improvement is largest
when the value of P is highest, and only a single prior prediction is needed to
capture the first-order Markov model. Recurrent AdaBoost performs slightly bet-
ter than AdaBoost with Memory on this domain. We speculate that Recurrent
AdaBoost achieves this by forming a smoothed summary of the state history.
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4 Discussion

We propose a new way to apply boosting to time-series data by recurrent incor-
poration of class predictions into the feature vector. We show that this approach
improves classification results in experiments with both real and synthetic data.
We also contribute a new labeled dataset for time-series classification [14].

We also provide the first empirical evidence that AdaBoost can be used to
characterize epileptic states in neurophysiological recordings. This task is diffi-
cult because of the large feature space, the unbalanced class distributions, the
limited availability of training data, and the great variability of these recordings.

These findings show robust detection of key epileptic states. Recognition of
interictal spikes was the most problematic, exhibiting high variance over the test
cases. Note however that the training set is very small for this class, at most 204
examples for an 83-dimensional feature space. Furthermore, the class has strong
overlap with others over the principal components of the feature space. In the
future, we hope to investigate whether a similar approach may be used to classify
subtler signals, such as those of cognitive states.

Our investigation was limited to using very simple weak learners. There is
evidence that more sophisticated weak learners may yield a better strong hy-
pothesis [17]. Other methods for applying boosting to time series data involved
modifying the weak learners to account for time or spatial relationships [22,23].
This may be something to consider in the future.

We do not at this time provide a formal analysis of the convergence properties
of Recurrent AdaBoost. The main challenge is the fact that the input set is not
stationary due to its dependence on the classification of prior instances. This
raises interesting theoretical questions which will be addressed in the future.
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Abstract. We have constructed a poker classification system which
makes informed betting decisions based upon three defining features ex-
tracted while playing poker: hand value, risk, and aggressiveness. The
system is implemented as a player-agent, therefore the goals of the clas-
sifier are not only to correctly determine whether each hand should be
folded, called, or raised, but to win as many chips as possible from the
other players. The decision space is found by evolutionary methods, start-
ing from a data-driven initial state. Our results showed that evolving an
agent from a data-driven “head-start” position resulted in the best per-
formance over agents evolved from scratch, data-driven agents, random
agents, and “always fold” agents.

Keywords: Evolution, Pattern Classification, No-limit Hold’em, Poker.

1 Introduction

In recent years, poker has become a growing phenomenon. Within the world
of poker itself, the game of Texas hold’em, and in particular, no-limit Texas
hold’em, has arisen as perhaps the favourite among amateur players.

Texas hold’em is slightly different from other variations of poker. It has two
significant properties which contribute to its popularity. First, the simplicity of
the game means that memorization techniques are not nearly as important as in
such variants as stud poker. Second, the use of “community” table cards which
are available to all players ensures a measure of similarity between the qualities
of the hands. This automatic balancing of the game makes tactics and strategy
a much more important component of the game.

Poker lends itself well to classification, but due to the peculiarities noted
above, Texas hold’em presents a unique challenge to the classification problem.
If a player were only playing to win hands, then a straight classifier would be
useful for determining the player’s actions. However, when a player is trying to
win as much money as possible, it no longer makes sense to raise every time that
the player has very good cards as a straight classifier undoubtedly would. If a
player will likely win regardless of the cards to come, the hand might be better

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 204–215, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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played by playing the cards as though they were merely mediocre in an attempt
to draw more money out of the opponents.

Another problem can arise when a player always makes the same moves in
the same situations. The player becomes predictable. Predictable players can be
exploited, and as such, can be defeated by intelligent players regardless of their
hands. The classification problem lies not in the ability to predict which action
is the most beneficial in a given situation, but rather in the ability to win money
for the player over the long term, possibly gaining less money in the short.

1.1 Recent Work in the Area

Several attempts have been made to make a successful poker-playing agent using
various strategies to take factors such as playing styles, bluffing, and predictabil-
ity into account. Billings et al. [1,2] created the Poki system. Although Poki plays
limit hold’em, and our program plays no-limit, several similarities are present in
our architectures. Poki uses opponent modeling and hand evaluation to arrive
at betting decisions. It is also capable of bluffing in particular situations. Unlike
our system, much of the decision making in Poki is rule-based, and thus the
best choice will be made every time, making the player somewhat predictable.
This practice is acceptable for limit hold’em since monetary risk is limited. Un-
fortunately, it becomes unviable when no-limit hold’em and unlimited bets are
considered.

The agent developed by Blank et al. [3] was also for limit hold’em. They use
support vector machines to create three classifiers: fold vs. call, fold vs. raise, and
call vs. raise. A voting system is used to choose the most advantageous betting
choice. In the case of ties, confidence of the decisions is used as a tie-breaker.
Unlike our system, predictability is not considered, and the system presented
merely selects the best solution from the candidates. Again, this is acceptable
for limit hold’em, but could quickly prove dangerous in no-limit.

Oliehoek [4] uses co-evolution in an attempt to minimize the worst-case pay-
out between two poker players. Unlike our system, Oliehoek concentrates on a
simplified variation of poker, using a deck of 8 cards and a single betting round.

Southey et al. [5] use several different methods, including Bayes classification
and a-priori classification to determine the best selection in a 2-player limit
tournament. It seems that limit poker is a variant that is investigated much
more often than no-limit.

Although limit and no-limit hold’em share many characteristics, play varies
considerably due to the differences in betting structures. It can be said that
a player is “punished” more for making a bad decision in no-limit hold’em.
The cost even to see the first of the community cards can be exceedingly high.
Consequently, the cost of playing incorrectly in such a situation can be extreme.

2 System Architecture and Design Choices

While most existing poker classifiers are built to play limit hold’em, we wanted
to create a player-agent for the much more popular no-limit variant. Existing
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Fig. 1. Raise type distributions. An agent will randomly choose a raise value based on
the distribution of the selected raise type.

systems are also often designed only for the two-player or “heads up” situation.
Although this is arguably the most exciting part of a hold’em game, it is only
a subset of the larger game. We strove to create a player-agent that could play
well against anywhere from 1 to 9 opponents, as in a true hold’em game.

Our system considers three main features: hand value, risk and aggressiveness,
described below. From these features, a decision is made whether to fold, call,
or raise. It does not simply perform the optimal action in each circumstance,
but rather determines a probability of choosing each action: fold, call, and raise.
This method of action selection allows our agent to make informed decisions,
without becoming predictable to other players. Since our agent is playing no-
limit hold’em and raise amounts are not pre-defined, we divide raises into three
categories—small, medium, and large raises—which are considered as separate
actions. The bet distributions for each of the raise categories can be seen in
Figure 1.

2.1 Hand Value

The hand value is calculated as the probability that the current hand will beat
all opponents’ hands assuming that their cards are distributed uniformly. The
value is normalized so that it is independent of the number of opponents being
faced. Although this calculation could prove temporally expensive, an exhaustive
lookup table was created allowing the calculation to be done in constant time.

2.2 Risk

The risk function for our system went through several incarnations before arriv-
ing at its final state. Initially, we determined the risk as a direct ratio between
the bet size and the pot size. This measure, the so-called “implied odds” used in
current poker research, fails to take into account the magnitude of the bets. In
cases where the bet amounts are small, as is the case immediately after blinds are
posted, the risk thus calculated is evaluated as high, despite the minimal cost of
calling. To address this failing, our second risk function (Equation 1) multiplied
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the implied odds by the Euclidean distance from the origin normalised by the
blind. This function was still inadequate because it did not consider the size of
the player’s chip stack, and the range of the function was inconsistent.

risk =
bet

√
bet2 + pot2

pot × blind
(1)

The final risk function (Equation 2) replaced the pot size with the future
pot size, calculated by adding the player’s bet, should he call. The Euclidian
distance previously used to account for the magnitude of the bet was changed to
a Manhattan distance. The normalizing factor—the maximum pot, determined
as the amount of the pot should the player go all-in and all remaining players
call—was changed to take players’ chip counts into consideration. The result was
then multiplied by 4

3 to set the range of the values between zero and one. The
final risk amounts to a multiplicative average, hence the presence of the square
root in the formula.

risk =

√
4
3
× bet(2bet + pot)

maxpot(bet + pot)
(2)

2.3 Aggressiveness

Most other systems observed have some sort of player-modeling which we repre-
sent in our aggressiveness feature. Whenever an opponent makes a decision (fold,
call, or raise), our agent determines the opponent’s most probable hand value.
We do this by assuming that opponents play in the same way as our agent. The
most probable hand value can be determined as the average hand value for which
our agent would make the same decision while facing the same risk. Figure 2
shows how one agent estimates these probable hand values. Opponents’ general
aggressiveness can be modeled as the deviation of their estimated hand values
from their expected hand values, assuming their hands are uniformly distributed.
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The aggressiveness of a particular action is evaluated as the most probable
hand value for that action normalized by the player’s general aggressiveness, as
seen in Equation 3, where A is the player’s calculated aggressiveness, L is the
aggressiveness of the player’s last action, and G is the player’s general aggres-
siveness. Our system does not use opponent aggressiveness directly as a factor
in its decision making. Instead, the player’s hand value is modified by the aver-
age aggressiveness of the table in the current hand according to in Equation 4,
where V2 is the modified hand value, w is the aggressiveness weight, and V1 is
the original hand value.

A = L
−1

log2(G) (3)

V2 = w × V
−1

log2(A)

1 + (1 − w) × V1 (4)

3 Training and Testing Data

We worked under the hypothesis that evolutionary methods would produce the
best results for training our classifier. The principal benefit of evolutionary meth-
ods is that enormous data sets are not needed for training. The evolutionary
process essentially generates its own training data. Agent evolution can be given
a head start by training a data-driven agent from a small, hand-derived set of
training data, and applying evolutionary techniques from that data-driven agent.

To create the data-driven agent (the head-start for evolution), a source of
training data was needed. All public database recordings of poker games that
we found were presented from a spectator’s point of view. Unfortunately, the
spectator does not get to see players’ cards in many, if not most, circumstances.
This missing information is critical for training a system properly. As an alter-
native, we chose to record data from televised poker games, where all players’
cards are shown at all times. In this manner, an adequate data set was collected
for training our data-driven agent.

4 Implementation

A k-nearest neighbour estimation [6] was used to approximate the densities of
folds, calls, and raises. These density estimations are presented in Figure 3.1

A classifier can be constructed from the density estimations of the various
actions. The density of each action is divided by the total density (obtained by
summing the densities of each of the actions) to obtain a relative probability
for choosing that action. These relative probabilities define our agent’s probable
action in any given situation (defined by its risk and hand value). The relative
probabilities obtained by this method are presented in Figure 4.

These action topographies were decided upon as the best way of defining
our classifier because they most effectively cover the problem domain. Neural
1 For high-quality colour versions of these and other topographies appearing in this

paper, see http://www2.cs.uregina.ca/∼gerhard/research/poker.html

http://www2.cs.uregina.ca/~gerhard/research/poker.html
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Fig. 3. Action distribution density estimations. (top-left) folds; (top-right) calls;
(bottom-left) raises; (bottom-right) combined distribution of all actions. Densities
range from zero (black) to maximal density (white).

networks require considerable training data, and with our limited data set, we
expected that the networks would be incorrectly trained leading to poor poker
agents. Decision trees would unnecessarily condense our data. Furthermore, with
only three feature values, a decision tree would not adequately separate our data
without being overly large.

We set up an evolutionary process wherein each generation involves a set
of agents playing a number of tournaments. For each generation, the agents
with the best results from the previous generation are carried forward and used
as parents to generate the remaining agents for that generation. For the first
generation, the data-driven agent is used as the sole evolutionary parent for the
remaining agents.

New agents created from parents carried forward from previous generations
are generated by common evolutionary methods, both recombination and mu-
tation. Combination of parents is achieved by using a weighted average of their
action topographies. It should be noted that a child need not have two parents
but could have any number including one.
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Fig. 4. Action topographies of the data-driven agent. Clockwise from top left: folds,
calls, and raises.

Mutation was a bit more difficult to envision and implement. Unlike other
evolutionary algorithms which simply flip a bit to simulate mutation, we did not
want to change values across the probability tables. Such high frequency noise
would result in inconsistency in an agent’s playing habits. To counter this form
of sporadic play, we developed a “hill function” which would generate a number
of random positive or negative hills. Such hill functions provide a more desirable
low frequency noise which results in more meaningful mutations.

It should be noted that the agents that survived from the last generation are
not mutated at all so as to preserve the best agents from the previous round of
tournaments. It may occur that none of the children are better than the parents,
in which case the parents should be kept.

5 Comparison and Results

We created several different types of agents in addition to our initial data-driven
agent, although for testing purposes, we consider three of interest. The first is
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Fig. 5. Action topographies evolved from uniform topographies. Clockwise from top
left: folds, calls, and raises.

the data-driven agent described earlier which was generated from the collected
test data. The second was generated using our evolutionary algorithm starting
with uniform topographies, and the third was generated using our evolutionary
algorithm with the data-driven agent as a head-start.

The agent evolved from scratch would possess no inherent biases which may
have been present in the data collected. The result was a set of action topogra-
phies which appear quite smooth when compared to others. These topographies
can be seen in Figure 5.

It can be seen that although the evolution started out with uniform topogra-
phies, structured topographies developed and a competent player-agent emerged.
The agent, as it turns out, is not only better than random but better than the
data-driven agent already developed.

A one-thousand generation evolution was run starting with the data-driven
agent. The process showed a marked improvement in the leading agents which
slowed down as the generations passed. Over the course of the one thousand
generations of evolution, twenty seven unique agents emerged. Afterward, these
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Fig. 6. Tournament results of agents evolved from the data-driven agent

agents, together with the data-driven agent, were duplicated eight times and
played against one another in a number of tournaments (224 agents each).

Figure 6 plots their average standing (lower is better) against the generation
in which they appeared, thus demonstrating the effectiveness of the evolution.
The final action topographies for our evolved agents can be seen in Figure 7.
It can be seen that folds tend to dominate the landscape. Although this result
might seem unrealistic, it is actually a reasonable strategy. Although online poker
tends to see a lot of calls and raises, professional poker tournaments and even
real-money online games often see the majority of hands folded as players wait
for better cards. Calls are typically made in low risk situations. Raises, it is quite
apparent, appear with high hand values. These properties are what one would
expect from an intelligent player.

The aggressiveness function described earlier determines opponent aggressive-
ness with respect to how the agent would play a particular hand. Necessary for
this calculation is the prior-probability distribution of hand value and risk. In the
case of the data-driven agent, this distribution is known from the test data. For
evolved agents, records from the previous generation’s tournaments are used to
determine the prior probabilities. These updated prior probabilities prepare the
evolved agents for the situations which they actually face and which, assuming
that successive generations are getting progressively more intelligent, should bet-
ter reflect the real world. The prior-probability distributions used for the evolved
agents of interest can be seen in Figure 8. The prior-probability distribution for
the data-driven agent is in the bottom right frame of Figure 3.

To compare the performance of two agents, a set of tournaments are run, each
with an equal number of agents of the two playing styles. The results of these
tournaments are used to evaluate which of the two playing styles is superior. The
score function seen in Equation 5 is a metric which we developed to quantify the
comparison results. x1 and x2 are the mean standing for agents of two playing
styles, and n is the total number of agents in the tournament. The function is a
relative score to be considered in conjunction with the opponent against whom it
was obtained. A score of 100% against random agents would imply that all of the
random agents finished in the bottom half of the rankings in every tournament.
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Fig. 7. Action topographies evolved from the data-driven agent in Figure 4. Clockwise
from top left: folds, calls, and raises.

Fig. 8. Prior probabilities used in aggressiveness functions for evolved agents. (left)
evolved from random; (right) evolved from the data-driven agent. Prior probabilities
for the data-driven agent are equivalent to the combined distributions from Figure 3.
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Table 1. Mean player-relative scores

Random Data-driven Folding Scratch

Head-start 72.5% ± 0.36% 56.1% ± 0.39% 28.4% ± 0.43% 36.6% ± 0.43%

Scratch 65.9% ± 0.36% 43.3% ± 0.42% 27.0% ± 0.45%
Folding 79.2% ± 0.32% 65.9% ± 0.40%

Data-driven 29.7% ± 0.44%

A zero score implies that the opponents in that tournament were equally skilled
because they each have the same mean ranking. A negative score suggests that
the opponent is better than the agent being considered.

Score =
x2 − x1

n/2
(5)

The three agents of interest (data-driven, evolved from random, and evolved
from head-start) were all played against one another as well as two control
agents: a random agent (1

3 fold, 1
3 call, 1

9 small raise, 1
9 medium raise, 1

9 large
raise) and an agent that folds every hand. The relative scores are presented in
Table 1. “Head-start” is the agent evolved from the data-driven agent, “Scratch”
is the agent evolved from uniform topologies. “Folding” is an agent that folds
every hand, “Data-driven” is the agent trained from our collected data set, and
“Random” is the random agent described above. The head-start evolved agent
performed better than all the others.

6 Conclusions and Future Work

Although we did evolve several poker playing agents that performed well against
random play and against one another, it is difficult to gauge whether or not they
are good poker players. The player-agents were able to win simulated tourna-
ments, but these tournaments were against other agents. Although the agents
played capably against us, we are by no means expert poker players. The re-
sults are encouraging. Competent poker playing agents can be developed us-
ing evolutionary techniques, with playing ability improving from generation to
generation.

Significant optimization of the evolutionary parameters was not done, and
the parameters used may not have been the best ones. Although we did tweak
the parameters slightly, we arrived at no definite conclusion regarding the best
values for any given parameter. It would also be possible to take the evolution
to later epochs to determine if agents can be further improved.

Considerable testing against human players is required to gain a full under-
standing of the capabilities and limitations of our system. Data from such testing
would likely also be useful for further enhancement of the system.

Finally, an adaptation could be made allowing the system to build profiles of
human players. A human player could play the game while the system builds a
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strategy from his playing style. This profile could be compared to player agents,
or possibly used as another head-start point for experimental evolution.
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Abstract. Conditional CSPs and Composite CSPs have been known in the CSP
discipline for fifteen years, especially in scheduling, planning, diagnosis and con-
figuration domains. Basically a conditional constraint restricts the participation
of a variable in a feasible scenario while a composite variable allows us to ex-
press a disjunction of variables or sub CSPs where only one will be added to the
problem to solve. In this paper we combine the features of Conditional CSPs and
Composite CSPs in a unique framework that we call Conditional and Compos-
ite CSPs (CCCSPs). Our framework allows the representation of dynamic con-
straint problems where all the information corresponding to any possible change
are available a priori. Indeed these latter information are added to the problem
to solve in a dynamic manner, during the resolution process, via conditional (or
activity) constraints and composite variables. A composite variable is a variable
whose possible values are CSP variables. In other words this allows us to repre-
sent disjunctive variables where only one will be added to the problem to solve.
An activity constraint activates a non active variable (this latter variable will be
added to the problem to solve) if a given condition holds on some other active
variables. In order to solve the CCCSP, we propose two methods that are respec-
tively based on constraint propagation and Stochastic Local Search (SLS). The
experimental study, we conducted on randomly generated CCCSPs demonstrates
the efficiency of a variant of the MAC strategy (that we call MAC+) over the
other constraint propagation techniques. We will also show that MAC+ outper-
forms the SLS method MCRW for highly consistent CCCSPs. MCRW is however
the procedure of choice for under constrained and middle constrained problems
and also for highly constrained problems if we trade search time for the quality
of the solution returned (number of solved constraints).

Keywords: Constraint Satisfaction, Local Search, Arc Consistency.

1 Introduction

Conditional CSPs and Composite CSPs have been known in the CSP discipline for fif-
teen years, especially in configuration domains [1,2,3,4,5,6,7,8,9,10]. In fact these two
frameworks are quite typical for any combinatorial problem such as planning, diagno-
sis, and temporal reasoning. Basically a conditional constraint restricts the participation
of a variable in a feasible scenario while a composite variable allows us to express a dis-
junction of variables or sub CSPs where only one will be added to the problem to solve.
In the original Conditional CSP framework [1], activity constraints are introduced to
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handle conditional variables. A variable has either active or non-active status. Only ac-
tive variables are required value assignments. Given two variables Xi and Xj, four types
of activity constraints have been defined as follows:

1. require var. active : (Xi)∧ ((Xi = ai1)∨ . . . (Xi = aip))→ Xj

2. always require. active : (Xi)→ Xj

3. require not. active : (Xi)∧ ((Xi = ai1)∨ . . .(Xi = aip))
rn−→ Xj

4. always require not. active : (Xi)
rn−→ Xj

The activity constraint (1) will activate Xj if the active variable Xi is assigned one of
the values ai1 . . .aip from its domain whereas the activity constraint (2) will activate Xj

if Xi is active. In (3) and (4), if the condition is true, Xj is not required in a solution,
or is set to a non-active variable. The following three systematic resolution techniques
have been proposed for Conditional CSPs.

1. A CCSP is converted into a CSP by reformulating an activity constraint by a com-
patibility constraint (by adding a NULL value to the domain of the conditional vari-
ables). Classical CSP techniques are then applied to solve the resulting CSP.

2. Generating a set of all possible CSPs from a Conditional CSP. Classical CSP tech-
niques are then applied to solve each CSP.

3. Solving a Conditional CSP directly using constraint propagation.

To improve the performance of the third technique above, the constraint propagation
methods Forward Checking (FC) and Maintaining Arc Consistency (MAC) are applied
during the search [3]. Even though solving a Conditional CSP directly does not provide
the best performance in time, this method is more flexible and time efficient when we
are dealing with dynamic problems. Indeed, in the case of the second method, a small
change of an activity constraint causes the regeneration of all possible sets of standard
CSPs. Moreover, method 2 suffers from the waste of memory space needed to store
many generated CSPs that will not be considered during search. In [2] Composite CSPs
have extended the traditional CSP framework by including the combination of three
new CSP paradigms : Meta CSPs, Hierarchical Domain CSPs, and Dynamic CSPs. In
a composite CSP, the variable values can be entire sub CSPs. A domain can be a set of
variables instead of atomic values (as it is the case in the traditional CSP). In configura-
tion problems and planning, it is often obvious to organize the domains of variable val-
ues in a hierarchical manner. Jónsson and Frank [8] proposed a general framework using
procedural constraints for solving dynamic CSPs. This framework has been extended
to a new paradigm called Constraint-Based Attribute and Interval Planning (CAIP) for
representing and reasoning about plans [9]. CAIP and its implementation, the EUROPA
system, enable the description of planning domains with time, resources, concurrent
activities, disjunctive preconditions and conditional constraints. The main difference,
comparing to the formalisms we described earlier, is that in this latter framework [8]
the set of constraints, variables and their possible values do not need to be enumerated
beforehand which gives a more general definition of dynamic CSPs. Note that the defi-
nition of dynamic CSPs in [8] is also more general than the one in [7] since in this latter
work variable domains are predetermined. Finally, in [10], Tsamardinos et al propose
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the Conditional Temporal Problem (CTP) formalism for Conditional Planning under
temporal constraints. This model extends the well known qualitative temporal network
proposed in [11] by adding instantaneous events (called observation nodes) representing
conditional constraints.

In this paper we combine the features of Conditional CSPs and Composite CSPs
in a unique framework that we call Conditional and Composite CSPs (CCCSPs). Our
framework allows the representation of constraint problems where all the information
corresponding to any possible change are known a priori. Indeed these latter information
are added to the problem to solve in a dynamic manner, during the resolution process,
via conditional (or activity) constraints and composite variables. A composite variable
is a variable whose possible values are CSP variables. In other words this allows us to
represent disjunctive variables where only one will be added to the problem to solve.

An activity constraint has the following form X1∧ . . .Xp
condition→ Y where X1, . . . ,Xp and

Y are variables (can be composite). This activity constraint will activate Y (Y will be
added to the problem to solve) if X1∧ . . .Xp are active (currently present in the problem
to solve) and condition holds between these variables. In order to solve the CCCSP, we
propose two methods that are respectively based on constraint propagation and Stochas-
tic Local Search (SLS). The goal of the constraint propagation method is to overcome,
in practice, the difficulty due to the exponential search space of the possible CSPs gen-
erated by the CCCSP to solve and also the search space we consider when solving each
CSP. Indeed, a CCCSP represents DM possible CSPs where D is the domain size of
the composite variables and M the number of composite variables. In the same way
as reported in [1,3], we use constraint propagation in order to detect earlier later fail-
ure. This will allow us to discard at the early stage any subset containing conflicting
variables. The method based on constraint propagation is an exact technique that guar-
antees a complete solution. The method suffers however from its exponential time cost
as we will notice by the experimental results we present in this paper. In many real-life
applications where the execution time is an issue, an alternative will be to trade the
execution time for the quality of the solution returned (number of solved constraints).
This can be done by applying approximation methods such as local search and where
the quality of the solution returned is proportional to the running time. Basically, the
method we propose is based on Min-Conflict-Random-Walk (MCRW) [12] and consists
of starting from a complete assignment of values to the different variables and iterates
by improving at each step the quality of the assignment (number of solved constraints)
until a complete solution is found or a maximum number of iterations is reached. The
experimental study, we conducted on randomly generated CCCSPs demonstrates the ef-
ficiency of a variant of the MAC strategy (that we call MAC+) over the other constraint
propagation techniques. We will also show that MAC+ outperform the SLS method
MCRW for highly consistent CCCSPs. MCRW is however the procedure of choice for
under constrained and middle constrained problems and also for highly constrained
problems if we trade search time for the quality of the solution returned (number of
solved constraints).

The rest of the paper is organized as follow. In the next section we will introduce
our CCCSP model. Sections 3 and 4 are then respectively dedicated to the constraint
propagation and SLS techniques we propose for solving CCCSPs. In Section 5 we
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present the experimental study evaluating and comparing the methods we propose on
randomly generated CCCSPs. Concluding remarks are finally listed in Section 6.

2 CCCSPs

A Conditional and Composite Constraint Satisfaction Problem (CCCSP) is a tuple
〈X ,DX ,Y,DY , IV,C,A〉, where :

– X={x1, . . .xn} is a finite set of variables.
– DX = {Dx1 , . . .Dxn} is the set of domains of the variables. Each domain Dxi contains

the possible values that Xi can take.
– Y = {y1, . . .ym} is the finite set of composite variables.
– DY ={Dy1 , . . .Dym} is the set of domains of the composite variables. Each domain

Dyi is the set of variables that the composite variable yi can take.
– IV is the set of initial variables (including composite variables) : IV ⊆ X

⋃
Y .

– C = {C1, . . .Cp} is the set of compatibility constraints. Each compatibility con-
straint is a binary relation between variables in case these latter variables are not
composite, or a set of binary relations if at least one of the two variables involved
is composite.

– A is the set of activity constraints. Each activity constraint has the following form

where Z1, . . .Zp and T are variables (can be composite). Z1∧ . . .Zp
condition→ T . This

activity constraint will activate T if Z1, . . . ,Zp are active and condition holds on
these variables. condition can be, for example, the assignment of particular values
to the variables Z1, . . . ,Zp.

We will use the following example to illustrate the CCCSP model.

Example

The goal of this configuration problem is to estimate the price of a new vehicle
given a list of specifications. Figure 1 provides a complete list of features that
the potential customer will choose from in order to build and price a new car.
A solid line connecting a pair of nodes (circles) corresponds to a given con-
straint between the corresponding features. For instance, the constraint match
color between Exterior and Windows contains all the pair of colors that go to-
gether. A solid arrow with a diamond corresponds to an activity constraint. For
example, the choice of limited edition will activate the corresponding sunroof
option. Dash lines connect the components to the class to which they belong.
An OR connection corresponds to a list of features where only one will be se-
lected by the customer. After the customer selects all the features, one or more
consistent scenarios will be listed. The customer can also specify a maximum
value of the price such that only scenarios with price less than this value will
be displayed.

Figure 2 illustrates the CCCSP model corresponding to the above example. There are
1 composite and 10 single variables (Model). The domain of the variables Exterior,
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Build and Price

Accessories

Options Model Color

SportBase ExteriorLimited InteriorEngine Seats Wheels AudioWindowsSunroof

Floor mat Deflector

OR

Color match

Sport Colors

Limited Colors

Leather seats

Alloy
CD Charger

CD Charger

Color match

Limited Sunroof

V6 Engine

V6 Engine

Color match

Color match

Color match

Fig. 1. The Build and Price Configuration Problem

SportBase ExteriorLimited InteriorEngine Seats Wheels AudioWindowsSunroofFloor mat Deflector

Color match

Sport Colors

Limited Colors

Seats=Leather 

Wheels=Alloy
Audio=CD Charger

Audio=CD Charger

Color match

Sunroof=Limited
Engine=V6

Engine=V6

Model

Color match

Color match
Color match

Fig. 2. CCCSP corresponding to the Build and Price Configuration Problem

Interior, Floor mat and Deflector contains a list of possible colors for each item.
The domain of the other variables contains the different options corresponding to each
feature. Each activity constraint is labelled by the activation condition and the constraint
that will be added if the activation condition is true. For instance, if the composite
variable Model is assigned the value Sport then the variable Engine will be activated
and the constraint between Sport and Engine is that this latter should be assigned the
value V6 from its domain.

3 Constraint Propagation for CCCSPs

Different methods for solving conditional CSPs have been reported in the literature
[6,1,3,4]. In [6], all possible CSPs are first generated from the CCSP to solve. CSP
techniques are then used on the generated CSPs in order to look for a possible solu-
tion. Dependencies between the activity constraints are considered in order to generate
a directed a-cyclic graph (DAG), where the root node corresponds to the set of initially
active variables. Activity constraints are applied during the derivation of one total order
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from the partial order given by the resulting DAG. In [1,3] resolution methods have
been proposed and are directly applied on CCSPs. Maintaining arc consistency (MAC)
is used to prune inconsistent branches by removing inconsistent values during the search
[3]. The solving method starts by instantiating the active variables. For each active
variable instantiation, the algorithm first checks the compatibility constraints and then
activates the activity constraints. The method will then enforce look-ahead consis-
tency (through arc consistency) along the compatibility constraints and prunes incon-
sistent values from the domains of future variables. When activity constraints come
into play, newly activated variables are added to the set of future variables. MAC is
then applied to the set of all active variables. In [4,3], a CCSP is reformulated into an
equivalent standard CSP. A special value “null” is added to the domains of all the vari-
ables which are not initially active. A variable instantiation with “null” indicates that
the variable does not participate in the problem resolution. The CCSP is transformed
into a CSP by including the “null” values. The disadvantage is that, in a large constraint
problem, all variables and all constraints are taken into account simultaneously even if
some are not relevant to the problem at hand.

In the above methods, backtrack search is used for both the generation of possible
CSPs and the search for a solution in each of the generated CSPs. Thus, these meth-
ods require an exponential time for generating the different CSPs and an exponential
time for searching a solution in each generated CSP. Moreover these methods are lim-
ited to handle only activity constraints. The other problem of the above methods is
the redundant work done when checking at each time the consistency of the same set
of variables (subset of a given generated CSP). The goal of the constraint propagation
method we propose for solving CCCSPs is to overcome, in practice, the difficulty due to
the exponential search space of the possible CSPs generated by the CCCSP to solve and
also the search space we consider when solving each CSP. In the same way as reported
in [1,3], we use constraint propagation in order to detect earlier later failure. This will
allow us to discard at the early stage any subset containing conflicting variables. The
description of the method we propose is as follows.

1. The method starts with an initial problem containing a list of initially activated
variables (including composite variables). Arc consistency is applied on the initial
variables in order to reduce some inconsistent values which will reduce the size of
the search space. If the initial problem is not arc consistent (in the case of an empty
domain) then the method will stop. The CCCSP is inconsistent in this case.

2. Following the forward check principle [13], pick an active variable v, assign a value
to it and perform arc consistency between this variable and the non assigned active
variables. If one domain of the non assigned variables becomes empty then assign
another value to v or backtrack to the previously assigned variable if there are no
more values to assign to v. Activate any variable v′ resulting from this assignment
and perform arc consistency between v′ and all the active variables. If arc inconsis-
tency is detected then deactivate v′ and choose another value for v (since the current
assignment of v leads to an inconsistent CCCSP). If v is a composite variable then
assign a variable to it (from its domain). Basically, this consists of replacing the
composite variable with one variable x of its domain. We then assign a value to x
and proceed as shown before except that we do not backtrack in case all values of
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x are explored. Instead, we will choose another variable from the domain of the
composite variable v or backtrack to the previously assigned variable if all values
of v have been explored. This process will continue until all the variables are as-
signed in which case we obtain a solution to the CCCSP. The arc consistency in the
above two steps is enforced as shown in the four cases below. We will assume in the
following that x1 and x2 are non composite variables while y1 and y2 are composite.

(a) The constraint is (x1,x2). Arc consistency [14] is applied here i.e. each value
a of x1 should have a support in the domain of x2.

(b) The constraint is (y1,x1). Each value a, from the domain of a given variable x
within y1, should have a support in the domain of x1.

(c) The constraint is (x1,y1). Each value a, from the domain of x1, should have a
support in at least one domain of the variables within y1.

(d) The constraint is (y1,y2). Apply case 2 between y1 and each variable x within y2.

Using the above rules, we have implemented a new arc consistency algorithm for
CCCSPs as shown in Figure 3. This algorithm is an extension of the well known AC-3
procedure [14,15,16].

REV ISE(Di ,D j)
REV ISE ← f alse
For each value a ∈ Di do

if not compatible(a,b) for any value b ∈ D j then
remove a from Di
REV ISE ← true

end if
end for

REV ISE COMP (Di ,D j)
REV ISE COMP← f alse
if i is a single variable and j is a composite variable

Dtmp ← /0
For each event k ∈ D j do

D ← Di − Dtmp
REV ISE COMP← REV ISE COMP OR REV ISE(D,Dk)
Dtmp ← Dtmp ∪D

end for
Di ← Dtmp

end if
if i is a composite variable and j is a single variable

For each event k ∈ Di do
REV ISE COMP← REV ISE COMP OR REV ISE(Dk ,D j)

end for
end if
if i and j are composite variables

For each event k ∈ Di do
REV ISE COMP(Dk ,D j)

end for
end if

AC−3−CCCSP
Given a graph G = (X ,U)
Q ← {(i, j)|i, j∈U}
while Q �= Nil do

Q ← Q−{(i, j)}
if i or j is composite variable

if REV ISE COMP(Di ,D j) then
Q ←∪{(k, i)|k, i∈U and k �= j}

end if
else if REV ISE(Di ,D j) then

Q ←∪{(k, i)|k, i∈U and k �= j}
end if

end if
end while

Fig. 3. AC-3 for CCCSPs
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Like for general CSPs, variable and value ordering, during search, has a significant
impact on the size of the explored space in the case of CCCSPs. For variable selection,
we will follow the idea of choosing the most constrained variable first in the hope of
triggering early failure. In the case of value selection, we start with the value that leads
to an easiest to solve CCCSP first since our goal here is to find the first solution and that
there is no preference on the solution obtained. More precisely, our variable and value
selection policy works as follows.

1. The variables (simple and composite variables) are selected by decreasing order of
the number of constraints they share with other variables. For a given variable x, this
number (that we call degree of a variable) corresponds to the node degree (number
of edges connected to the node) of the node corresponding to x in the constraint
graph.

2. The degree of a composite variable x is equal to the minimum variable degree of all
the variables within X domain.

3. If a variable x activates other variables then we add to its variable degree, the min-
imum number of constraints it can generate (activate) through the activity con-
straints.

4. For value selection, in the case of a composite variable x, select the simple variables,
within the domain of x, by decreasing number of their degrees.

5. For a simple variable select the least constrained value first (the value that causes
the activation of the minimum number of constraints).

4 MCRW for CCCSPs

The method we presented in the previous Section is an exact technique that guaran-
tees a complete solution. The method suffers however from its exponential time cost
as we will see in the next Section. In many real-life applications where the execution
time is an issue, an alternative will be to trade the execution time for the quality of
the solution returned (number of satisfied constraints). This can be done by applying
approximation methods such as local search and where the quality of the solution re-
turned is proportional to the running time. In this Section we will study the applicability
of a local search technique based on the Min-Conflict-Random-Walk (MCRW) [12] al-
gorithm for solving CCCSPs. Basically, the method consists of starting from a complete
assignment of values to variables and iterates by improving at each step the quality of
the assignment (number of satisfied constraints) until a complete solution is found or a
maximum number of iterations is reached. Given the dynamic aspect of CCCSPs (some
variables are added|removed dynamically during the resolution process) we propose the
following algorithm based on MCRW for solving CCCSPs.

1. The algorithm starts with a random assignment of values to the initial variables. If
the initial variable is composite then it will be replaced by one variable selected
randomly from its domain. This latter variable will then be randomly assigned a
value from its domain.

2. Activate any variable where the activating condition is true and randomly assign to
it a value from its domain as shown in the previous step.
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3. If a complete solution is not found and the maximum number of iterations is not
reached, randomly select an active variable v and proceed with one of the following
two cases.

– If v belongs to the domain of a given composite variable y then select the pair
< v,val > that increases the quality of the current solution (number of solved
constraints). v belongs here to the domain of y and val is a value of v′s domain,

– otherwise, assign to v a value that increases the quality of the solution.
4. Deactivate any variable activated by the old assignment of v and goto 2.

5 Experimentation

In order to evaluate the methods we propose, we have performed experimental tests
on randomly generated CCCSPs. The experiments are performed on a PC Pentium 4
computer running Linux. All the procedures are coded in C/C++. CCCSPs are build
from CSPs randomly generated by the model RB proposed in [17]. This model has ex-
act phase transition and the ability to generate asymptotically hard instances. Following
the model RB, we generate each CSP instance as follows using the parameters n, p, α
and r where n is the number of variables, p (0 < p < 1) is the constraint tightness, and
r and α (0 < α < 1) are two positive constants. 1) Select with repetition rn lnn random
constraints. Each random constraint is formed by selecting without repetition 2 of n
variables. 2) For each constraint we uniformly select without repetition pdk incompat-
ible pairs of values, where d = nα is the domain size of each variable. Each CCCSP
instance is then generated as follows.

1. Randomly generate a CSP with the parameters n, p, α and r as shown above.
2. Generate N composite variables each containing D simple variables.
3. Select with repetition r[(n+N) ln(n+N)−n lnn] new random constraints (between

the n + N variables), each formed by selecting without repetition 2 of the n + N
variables. This will guarantee that the total number of constraints is r(n+N) ln(n+
N). For each constraint we uniformly select without repetition pdk incompatible
pairs of values.

4. Select I(n + N) initial variables from n + N (0 < I < 1).
5. Select a(nd + ND) activity constraints for each of the n + N− I(n + N) non initial

variables (0 < a < 1).

As demonstrated in [17], when the number of variables approaches infinity the phase
transition occurs when the constraint tightness p = 1− e−

α
r . Thus the phase transition

is an asymptotic phenomenon since, only for infinite number of variables, we can have
sharp phase transitions. In addition, the number of variables and constraints of the pos-
sible CSPs, each CCCSP contains, is slightly different from the one of the CCCSP
they are generated from. The tests we have performed compare the following four
propagation strategies.

1) Forward Check (FC). This is the strategy we have described in Section 3 which
consists of maintaining arc consistency, during the search, between the current
variable (the variable that we are assigning a value) and the future active vari-
ables (variables not yet assigned) sharing a constraint with the current variable.
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Fig. 4. Comparative tests on random CCCSPs

2) Maintaining Arc Consistency (MAC). This strategy maintains a full arc consis-
tency on the current and future active variables.

3) FC+. Same as FC except that the applicability of the arc consistency is extended to
non active variables as well.

4) MAC+. Same as MAC except that the applicability of the arc consistency is ex-
tended to non active variables as well.

Figure 4 presents the results of comparative tests performed on random consistent
CCCSPs generated with the following parameters: n = 140, N = 10, D = 5, α = 0.8,
I = 0.8, a = 0.2 and r = 0.6. As mentioned earlier, the phase transition can be computed

as follows : p = 1− e−
α
r = 1− e−

0.8
0.6 = 0.73. Thus, consistent instances are those with

the tightness less than 0.73. For each test (corresponding to a particular tightness value
p), each of the four methods is executed on 100 instances and the average running time
in seconds is taken. All the methods have similar running times in the case of under
constrained problems. Indeed, in this particular case the extra effort done by MAC and
MAC+ does not remove much of the inconsistent values and thus does not improve
the overall running time to find a solution. However when we move toward the phase
transition the extra work performed by MAC and especially MAC+ starts to pay off.
At the phase transition MAC+ is almost 10,000 times faster than FC and FC+; and
100 times faster than MAC. In general MAC+ is the best method for solving random
CCCSPs.

In order to compare MAC+ to the MCRW method, we run this latter technique to the
same problem instances described above. Since MCRW is an approximation method,
in case it does not find a complete solution for a given instance we report the quality
(percentage of solved constraints) of the best solution obtained and the time it took to
get this quality. Note also that we only consider consistent instances (more specifically
those with tightness less than or equal to 0.7). The test results are reported in table 1.
For each test, each method is executed on 100 instances and the average running time
in seconds is taken. As we can see in the table, MCRW outperforms MAC+ for under
and middle constrained problems. Indeed, in the case of under constrained problems,
for example, the solution is obtained in the case of MCRW after a couple of random
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Table 1. Comparative tests on random CCTCSPs

Tightness MCRW MAC+
Time success(%)

0.1 0 100 0
0.2 0 100 0.01
0.3 0 100 0.01
0.4 0.01 100 0.05
0.5 0.08 100 0.1
0.6 0.3 80 1.3
0.7 0.4 70 5.2

assignments. However when we approach the phase transition, the random search is
affected by the change of the constraint network at each iteration. Indeed, each time
an assignment is reconsidered it usually results in deactivating several variables and
activating others. MCRW has then to restart with this new configuration. Note that while
MCRW does not solve completely highly constrained problems, it is still a method of
choice in case we want to trade search time for the quality of the solution returned. As
we can see in the table, in the case where the tightness is equal to 0.7 for example, we
can decide to get the incomplete solution (solving 70% of the constraints) within 0.4
seconds with MCRW instead of waiting 5.2 seconds to get a complete one. Trading
search time for the quality of the solution can be very relevant for reactive and real time
applications where an answer is needed within a given deadline.

6 Conclusion

We have presented in this paper a CSP based framework for representing and managing
compatibility constraints, activity constraints and composite variables with a unique
constraint network that we call Conditional Composite Constraint Satisfaction Prob-
lem (CCCSP). Solving a CCCSP consists of finding a solution for one of its possible
CSPs. This requires an algorithm with O(DNdM) time cost where N,D,M and d are
respectively the number of non composite variables and their domain size, the num-
ber of composite variables and their domain size. In order to overcome this difficulty
in practice, we have proposed two methods respectively based on constraint propaga-
tion and Stochastic Local Search (SLS). Constraint propagation prevents earlier later
failure which improves, in practice, the performance in time of the backtrack search.
On the other hand, because of its polynomial time cost, the SLS method has better
time performance than constraint propagation but does not always guarantee a com-
plete solution. The experimental study, we conducted on randomly generated CCCSPs
demonstrates the efficiency of a variant of the MAC strategy (that we call MAC+) over
the other constraint propagation techniques. We will also show that MAC+ outperforms
the SLS method MCRW for highly consistent CCCSPs. MCRW is however the pro-
cedure of choice for under constrained and middle constrained problems and also for
highly constrained problems if we trade search time for the quality of the solution re-
turned (number of solved constraints).
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Multiagent Constraint Satisfaction with

Multiply Sectioned Constraint Networks

Y. Xiang and W. Zhang

University of Guelph, Canada

Abstract. Variables and constraints in problem domains are often dis-
tributed. These distributed constraint satisfaction problems (DCSPs)
lend themselves to multiagent solutions. Most existing algorithms for
DCSPs are extensions of centralized backtracking or iterative improve-
ment with breakout. Their worst case complexity is exponential. On the
other hand, directional consistency based algorithms solve centralized
CSPs efficiently if primal graph density is bounded. No known multia-
gent algorithms solve DCSPs with the same efficiency. We propose the
first such algorithm and show that it is sound and complete.

1 Introduction

Many practical problems can be solved as constraint satisfaction problems
(CSPs). Often, the variables and constraints in the problem domain are nat-
urally distributed, spatially, cognitively, or otherwise. These distributed CSPs
(DCSPs) [13] lend themselves naturally to solutions using multiagent systems.

Most existing algorithms for solving DCSPs are extensions of centralized algo-
rithms based on backtracking or iterative improvement with breakout
[13,11,14,5,7,9,8]. Their worst case complexity is exponential. Another class of
algorithms [12] is based on truth maintenance, e.g., DATMS [4]. The complexity
of truth maintenance problem is at least NP-hard [6].

On the other hand, directional consistency based algorithms [2,3] solve cen-
tralized CSPs efficiently if the density of the primal graph (measured by tree
width) is upper-bounded. To the best of our knowledge, no existing multiagent
algorithms solve DCSPs with the same efficiency. In this work, we propose the
first such algorithm. We present formally an multiagent representation of DC-
SPs. We prove soundness and completeness of the algorithm and illustrate with
a detailed example. Due to space limitations, however, we omit proofs.

2 Background

CSPs are formally modeled as constraint networks. A constraint network (CN)R
is a pair R = (V, Λ). V is an non-empty set of discrete variables, called domain.
Each variable v ∈ V has a finite space Dv. The space of a subset X ⊂ V is
the Cartesian product of spaces of variables in X and is denoted by DX . Each
x ∈ DX is a configuration of X . Λ is an non-empty set of constraints. Each

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 228–240, 2007.
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constraint is a relation RX ⊆ DX , where X ⊂ V is the scope of the constraint.
The union of scopes of all constraints covers the domain, i.e., ∪RX∈ΛX = V .

A configuration x ∈ DX satisfies a constraint RX if x ∈ RX . Otherwise, it
violates the constraint. The projection of configuration x to Y ⊂ X is denoted
by πY (x) and the projection of relation RX to Y ⊂ X is denoted by πY (RX).
Configuration x is consistent or legal if it satisfies every constraint RY such that
Y ⊆ X . A solution to CN R is a consistent configuration over V . Formally, the
set of all solutions, called the solution set, of R is the relation ��R∈Λ R, where
�� refers to relational operator natural join. R is consistent iff ��R∈Λ R �= ∅.

The dependence structure of R can be depicted by a primal graph G = (V, E),
where each node is labeled by a variable v ∈ V and each link 〈u, v〉 ∈ E connects
nodes u, v if there exists a constraint RX ∈ Λ such that u, v ∈ X .R can be solved
through an alternative dependence structure compiled from its primal graph. A
cluster is a subset of V . A cluster tree connects a set of clusters into a tree. Each
link, called a separator, connects two clusters whose intersection S �= ∅, and is
labeled by S. A cluster tree is a junction tree (JT) if the intersection of each pair
of clusters is a subset of every separator on the path between them. Details on
how to compile a graph into a JT can be found in [10].

For DCSP, we assume that variables and constraints are distributed among
multiple agents such that each agent is in charge of a CN. We introduce concepts
for description of primal graphs from multiple CNs to be used later. Let Gi =
(Vi, Ei) (i = 0, 1) be two graphs. G0 and G1 are graph-consistent if subgraphs of
G0 and G1 spanned by V0 ∩ V1 are identical. Given two graph-consistent graphs
Gi = (Vi, Ei) (i = 0, 1), the graph G = (V0 ∪V1, E0 ∪E1) is the union of G0 and
G1, denoted by G = G0 ∪ G1. Given a graph G = (V, E), a partition of V into
V0 and V1 such that V0 ∪ V1 = V and V0 ∩ V1 �= ∅, and subgraphs Gi (i = 0, 1)
of G spanned by Vi, G is said to be sectioned into G0 and G1.

3 Solving CSP with Junction Tree Representation

The method for solving centralized CSPs is attributed to Dechter and Pearl
[2,3,1]. Our work extends theirs to multiagent systems. We review the method so
that its components can be directly referenced later in presenting our extension.
Our formulation, however, is not necessarily identical to that in the references.

Given CN R = (V, Λ) and its primal graph G, first, compile G into a JT
T . Second, for each constraint RX in Λ, assign RX to a cluster Q in T such
that X ⊆ Q. Third, for each cluster Q in T , replace the set ΛQ of constraints
assigned to it by a single constraint RQ = UQ ��R∈ΛQ R, where UQ is a universal
relation over Q (containing every configuration of Q). Let Λ′ denotes the set
of new constraints one per cluster of T . Note that Λ′ is simply a grouping of
Λ. Finally, let each cluster in T be a variable and its space be configurations
in the relation associated with the cluster. For each pair of adjacent clusters
Q and C with separator S, impose the implicit constraint between Q and C:
πS(q) = πS(c), where q is a configuration of Q and c is a configuration of C. The
triple (V, T, Λ′) is the JT representation of R and its solution set is ��R∈Λ′ R.
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Note that Λ′ does not include implicit constraints since they simply allows ��
operation to be well defined. Note also that (V, T, Λ′) is equivalent to a binary
CN. Proposition 1 below establishes the key property of the JT representation
and plays an important role in analysis of our method.

Proposition 1. Let (V, Λ) be a CN and (V, T, Λ′) be its JT representation. The
solution set of (V, Λ) and that of (V, T, Λ′) are identical.

The complexity of the compilation is O(|Λ| kq), where k binds the space for
variables in V and q binds the size for clusters in T . (V, T, Λ′) can be solved based
on directional arc-consistency. Given two clusters Q and C with S = Q ∩ C,
configurations q and c are consistent if πS(q) = πS(c). A cluster Q in T is
consistent relative to an adjacent cluster C if, for each configuration in RQ,
there exists a consistent configuration in RC . Let Q∗ be any cluster in T . Given
Q∗, T can be viewed as a tree rooted at Q∗ and each two adjacent clusters
form a parent-child pair. (V, T, Λ′) is directional arc-consistent relative to a root
cluster Q∗ if for every pair of clusters Q and C, where Q is the parent of C, Q
is consistent relative to C.

The following object oriented algorithm is activated at each cluster in T by
a caller, which is either an adjacent cluster or the object T . After it is called in
Q∗ by T , (V, T, Λ′) is directional arc-consistent relative to Q∗.

Algorithm 1 (CollectSeparatorConstraint). When caller calls in cluster
Q, it does the following:

Q calls CollectSeparatorConstraint in each adjacent cluster C except caller;
for each cluster C (whose separator with Q is S),

Q receives from C a constraint RS;
if RS = ∅, Q sends ∅ to caller and halts;
Q assigns RQ = RQ �� RS;

if caller is a cluster (whose separator with Q is S′), Q sends πS′(RQ) to caller;

The complexity of CollectSeparatorConstraint is O(t l2), where t is the number
of clusters in T and l binds the size of relation in each cluster. After Collect-
SeparatorConstraint is called in Q∗, if ∅ is returned, the CN is inconsistent.
Otherwise, (V, T, Λ′) can be solved by T calling the following algorithm in Q∗.
It will then be called recursively at each cluster.

Algorithm 2 (DistributeSeparatorSolution). When caller calls in cluster
Q, it does the following:

if caller is a cluster (whose separator with Q is S),
Q receives from caller a constraint RS of a single configuration;
Q assigns RQ = {q}, where q ∈ RQ �� RS;

else Q removes all configurations in RQ except one;
for each adjacent cluster C (whose separator with Q is S′) except caller;

Q calls DistributeSeparatorSolution in C with πS′(RQ);
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After DistributeSeparatorSolution is called in Q∗, the solution to (V, T, Λ′) can
be obtained by retrieving RQ from each cluster Q and joining them together.

CollectSeparatorConstraint above only achieves directional arc-consistency.
A parent cluster Q (relative to a root) is consistent relative to a child cluster
C, but C may not be consistent relative to Q. This is possible because the
constraint RS sent from C to Q during CollectSeparatorConstraint may contain
a configuration s such that no configuration q in RQ satisfies πS(q) = s. Adjacent
clusters Q and C are consistent if Q is consistent relative to C and vice versa.
(V, T, Λ′) is full arc-consistent if every pair of adjacent clusters is consistent. Full
full arc-consistency is not needed to solve (V, T, Λ′) as shown above. However, it
is necessary for solving DCSPs as will be seen.

The following object oriented algorithm can be performed after CollectSepa-
ratorConstraint to make a JT full arc-consistent.

Algorithm 3 (DistributeSeparatorConstraint). When caller calls in clus-
ter C, it does the following:

if caller is a cluster (whose separator with C is S),
C receives from caller a constraint RS;
C assigns RC = RC �� RS ;

for each adjacent cluster Q (whose separator with C is S′) except caller,
C calls DistributeSeparatorConstraint in Q with πS′(RC);

The following algorithm combines CollectSeparatorConstraint and Distribute-
SeparatorConstraint.

Algorithm 4 (UnifyConstraint). Choose a cluster Q∗ arbitrarily and call
CollectSeparatorConstraint in Q∗. If Q∗ returns ∅, return false. Otherwise, call
DistributeSeparatorConstraint in Q∗ and return true upon completion.

After UnifyConstraint, a JT is full arc-consistent as summarized below.

Proposition 2. Let (V, T, Λ′) be the JT representation of a CN. The CN is in-
consistent iff UnifyConstraint returns false. Otherwise, UnifyConstraint returns
true and the JT is full arc-consistent.

4 Multiply Sectioned Constraint Network

A DCSP involves a large problem domain where variables and constraints are dis-
tributed. We solve a DCSP with a multiagent system, where each agent is in charge
of a subset of variables and constraints. To ensure that computation is sound and
complete as well as efficient, partition of variables and constraints among agents
needs to satisfy certain conditions. We model a DCSP as an multiply sectioned
constraint network (MSCN) which specifies these conditions formally.

Definition 1. From a set of CNs {Ri = (Vi, Λi)} (each called a subnet), an
MSCN R is defined as a pair R = (V, Λ), where V =

⋃
i Vi is the domain (with
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each Vi called a subdomain) and Λ =
⋃
i Λi is the set of constraints, such that

the following holds: (1) A JT exists with {Vi} as the set of clusters. (2) For any
two subnets Ri and Rj such that Vi ∩ Vj �= ∅, their primal graphs are graph-
consistent. The solution set of R is ��i (��R∈Λi R).

This concise definition has a number of implications: First of all, although there
is no mention of agents in the definition, we assume that each subnet Ri is
embodied by a unique agent Ai who is in charge of subdomain Vi. Hence, a
variable shared by two subnets are public to the corresponding agents and a
variable unique in a subnet is private.

Second, domain partition is required to satisfy the connectivity condition
(a JT is connected). That is, for any two subdomains Vi and Vj , there exists
a sequence of subdomains such that every two adjacent in the sequence share
some variables. This restriction implies that each subnet is relevant to the partial
solution in each other subnet.

Third, domain partition is required to satisfy the JT condition. Although a
natural domain partition may not satisfy this condition, it can be enforced by
making limited private variables public. Agents Ai and Aj are said to be adjacent
if Vi and Vj are adjacent in the JT.

Fourth, primal graphs are required to be graph-consistent. This means that
every constraint over public variables in one subnet must be contained in every
other subnet that share these variables. We assume that this condition is enforced
by communicating any constraint over public variables to other agents in a pre-
processing. Similarly, if a constraint RZ has a scope Z = X∪Y , where X∩Y = ∅,
X is public, and Y is private, we assume that the constraint πX(RZ) has been
communicated to the other agent. The condition essentially ties variable sharing
between subnets with constraint sharing.

Fifth, as each subnet uniquely defines its primal graph and these primal graphs
are graph-consistent, the collection of primal graphs from all subnets defines a
multiply sectioned primal graph over the domain, and hence the name MSCN.

Sixth, although an MSCN may admit multiple JTs (condition (1)), one of
them, referred to as the hypertree, is agreed upon by all agents and governs
agent communication. That is, if Ai and Aj are adjacent in the hypertree, then
they can communicate directly. We refer to each cluster Vi in the hypertree as a
hypernode, and associate the hypernode with subnetRi and agent Ai. Hence, the
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Fig. 1. The hypertree (a) and primal graphs (b) of an MSCN. Each link in (b) repre-
sents a �= constraint.
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hypertree is the agent organization. If Ai and Aj are adjacent in the organization,
we refer to Vi ∩ Vj as their agent interface.

Finally, joining a relation multiple times to another relation has the effect of
exactly once. Hence, communicating constraints over public variables, as men-
tioned above, has no impact on the solution set.

Fig. 1 shows a distributed map coloring problem as an example MSCN. The
primal graphs of subnets are shown in (b) and the hypertree is shown in (a). The
space of each variable contains three colors which we denote simply by {0, 1, 2}.

5 Linked Junction Forest Representation of MSCN

To extend JT based solution of CNs to MSCNs, we compile MSCNs to a runtime
representation. Exploring structural similarity between constraint reasoning and
probabilistic reasoning, we adopt key steps in structure compilation of multiply
sectioned Bayesian networks (MSBNs)[10]: cooperative triangulation, local JT
construction, and linkage tree (LT) construction. Formal specification in the con-
text of MSBNs can be found in the reference. Outcome of structure compilation
for the MSCN in Fig. 1 is shown in Fig. 2.
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Fig. 2. The linked junction forest compiled from MSCN in Fig. 1. The constraint
assigned to each cluster is shown in {}.

Each subnet is compiled into a JT, e.g., subnet G1 is compiled into T1. Each
agent interface is compiled into a LT, e.g., the agent interface between A1 and
A2 is compiled into LT L1,2 which consists of two clusters. Each cluster in L1,2

is referred to as a linkage, e.g., {b, c}. Each linkage has two host clusters one in
each JT it links. For instance, linkage {b, c} has host cluster {b, c, t} in T1 and
host cluster {b, c, m} in T2.

After the structure compilation, each agent Ai assigns constraints in Λi to
clusters in Ti as follows: For each constraint RX in Λi, assign RX to a cluster Q
in Ti such that X ⊆ Q. After assignment, for each cluster Q in Ti, Ai replaces the
set ΛQ of constraints assigned to it by a single constraint RQ = UQ ��R∈ΛQ R,
where UQ is the universal relation over Q.

Let each cluster in Ti be a variable and its space be configurations in the
relation associated with the cluster. For each pair of adjacent clusters Q and C
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with separator S, let the implicit constraint between Q and C be πS(q) = πS(c),
where q is a configuration of Q and c is a configuration of C. For instance, con-
straint between clusters {c, f, t, u} and {b, c, t} in T1 requires their configurations
to have the same value over c and t. The similar implicit constraint is imposed
relative to each linkage S and its two linkage hosts Q and C. For instance, con-
straint between linkage hosts {b, c, t} in T1 and {b, c, m} in T2 requires their
configurations to have the same value over b and c.

Given an MSCN R = (V =
⋃
i Vi, Λ =

⋃
i Λi), the outcome of compilation

is a tuple (V, T, L, Λ′), where T = {Ti} is a set of JTs each compiled from
a subnet of R, and L = {Li,j} is a set of LTs one compiled from each pair
of adjacent subnets on hypertree. Λ′ = {Λ′i} is a collection of sets. Each Λ′i
is a set of constraints one per cluster of Ti. We refer to (V, T, L, Λ′) as the
linked junction forest representation (LJF) of the MSCN. Again, we assume that
agents are attached to LJF such that each Ti is embodied by Ai. The solution
set of (V, T, L, Λ′) is ��i (��R∈Λ′

i
R). Note that Λ′ does not include implicit

constraints since they simply allow �� operation to be well defined. The following
theorem establishes an important property of the LJF. It follows from definitions
of solution sets for MSCN and its LJF, as well as the composition of Λ′.

Theorem 1. Let R = (
⋃
i Vi,

⋃
i Λi) be an MSCN and F = (V, T, L, Λ′) be its

LJF representation. Then, R and F have the same solution set.

The compilation computation is dominated by the cooperative triangulation and
local JT construction. The complexity is O(n λ kq), where n is the number of
agents, λ bounds |Λi|, k binds the space for variables in V and q binds the size
for clusters in JTs in T .

6 Solving MSCN with LJF

To solve MSCN using its LJF, we extend directional arc-consistency to LJF.
An agent Ai is interface-consistent relative to an adjacent agent Aj if, for each
configuration Ri associated with Ai (Ri ∈ ��R∈Λ′

i
R), there exists a consistent

configuration associated with Aj . A LJF is directional interface-consistent rela-
tive to a root agent if, for every two agents Ai and Aj where Ai is the parent of
Aj relative to the root, Ai is interface-consistent relative to Aj .

The following two algorithms achieve directional interface-consistency in a
LJF. The first below is used by agent Ai to update constraints in its linkage
hosts based on constraint message from an adjacent agent Aj .

Algorithm 5 (AbsorbInterfaceConstraint). When agent Ai performs Ab-
sorbInterfaceConstraint relative to agent Aj with a set Ω = {RX}, where each
RX is a constraint over a linkage X with agent Aj, Ai does the following:

for each linkage C with Aj with linkage host Q at Ai,
assign RQ = RQ �� RC , where RC ∈ Ω;
if RQ = ∅, return false;

return true;
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The second algorithm below recursively propagates constraint messages inwards
along the hypertree. The agent executing the algorithm is referred to as A0

with local JT T0. The execution is activated by a caller agent, who is either an
adjacent agent, denoted by Ac, or the coordinator. Additional adjacent agents
of A0 are denoted by A1, . . . , Am, if any.

Algorithm 6 (CollectInterfaceConstraint). When caller calls A0 to Col-
lectInterfaceConstraint, it does the following:

1 for each agent Ai (i = 1, . . . , m),
2 call CollectInterfaceConstraint on Ai;
3 if Ai returns ∅, return ∅;
4 receive Ωi = {RC} where RC is a constraint over a linkage C with Ai;
5 perform AbsorbInterfaceConstraint relative to Ai with Ωi;
6 if false is returned, return ∅;
7 perform UnifyConstraint;
8 if false is returned, return ∅;
9 if Ac is an adjacent agent,
10 initialize Ωc = ∅;
11 for each linkage S with Ac of linkage host Q at A0,
12 compute RS = πS(RQ);
13 if RS = ∅, return ∅;
14 else add RS to Ωc;
15 return Ωc to Ac;
16 else return a special set ∇ to coordinator signifying successful completion;

Theorem 2 shows the consistency properties achieved by the above algorithm.

Theorem 2. Let F = (V, T, L, Λ′) be the LJF representation of an MSCN pop-
ulated by agents and CollectInterfaceConstraint is called on any agent A0.
F is inconsistent iff A0 returns ∅. Otherwise, A0 returns ∇ and the following

holds:

1. F is directional interface-consistent relative to A0.
2. Each Ti is full arc-consistent.
3. Each linkage tree Li is full arc-consistent.

The following algorithm generates a (partial) solution for a subdomain con-
strained by a partial solution over the interface with the calling agent.

Algorithm 7 (GetLocalSolution). When agent A0 performs GetLocalSolu-
tion with Ω = {RX}, where each RX is a singleton constraint (consisting of a
single configuration) over a linkage X with agent Ac, it does the following:

if Ω = ∅, call DistributeSeparatorSolution in any cluster in T0;
else

for each linkage C with Ac (whose host cluster is Q),
assign RQ = RQ �� RC , where RC ∈ Ω;

call DistributeSeparatorSolution in the host of any linkage with Ac;
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Note that after the assignment, RQ is not necessarily a singleton. After Dis-
tributeSeparatorSolution is called, it is so. The following recursive algorithm
propagates partial solutions over agent interfaces along the hypertree.

Algorithm 8 (DistributeSolution). When caller calls A0 to DistributeSolu-
tion, it does the following:

1 if caller is an adjacent agent,
2 receive Ω = {RX} where each RX is a singleton constraint over linkage

X with caller;
3 perform GetLocalSolution with Ω;
4 else perform GetLocalSolution with ∅;
5 for each agent Ai (i = 1, . . . , m),
6 initialize Ω′ = ∅;
7 for each linkage C with Ai (whose host cluster is Q), add πC(RQ) to Ω′;
8 call DistributeSolution on Ai with Ω′;

The following algorithm is executed by the system coordinator.

Algorithm 9 (SolveDCSP). Choose an agent A∗ arbitrarily. Call CollectIn-
terfaceConstraint in A∗. If A∗ returns ∅, return failure. Otherwise, call Dis-
tributeSolution in A∗.

Theorem 3 below establishes that SolveDCSP is sound and complete.

Theorem 3. Let F = (V, T, L, Λ′) be a LJF of an MSCN and SolveDCSP be
executed. Then failure will be returned iff F is inconsistent. Otherwise, R′ =��i
(��Q∈Ti RQ) is a singleton such that R′ ⊆ R, where R is the solution set of F .

Let n be the number of agents, t the maximum number of clusters in a lo-
cal JT, q the maximum size of clusters, and k bind the space for variables in
V . After CollectInterfaceConstraint completes, SolveDCSP is backtracking free.
Hence, computation is dominated by UnifyConstraint during CollectInterface-
Constraint. UnifyConstraint has no more than twice the amount of computation
of CollectSeparatorConstraint, whose complexity is O(t l2) (Section 3), where
l binds the size of relation in each cluster. Instead, we use a conservative com-
plexity estimation, O(t k2q), by replacing l with kq. Therefore, the complexity
of SolveDCSP is O(n t k2q). When q is upper bounded, SolveDCSP is efficient.
Note that q characterizes the density of an MSCN and is equivalent to the tree
width of a centralized CN.

Another advantage of our method is that private variables in each agent and
constraints over them are kept private during compilation and solution.

7 Example

We illustrate solution process for the example MSCN. Its compiled LJF is shown
in Fig. 2. Initial constraints for clusters are listed in Table 1, where relations of
the ‘same’ set of configurations are listed only once. For instance, relations over
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Table 1. Initial constraints associated with clusters. A single line separates variables
of relations with identical set of configurations which are enclosed by double lines.

R1

d e g h

a b j k

c f t u

0 0 1 2

0 0 2 1
1 1 0 2
1 1 2 0
2 2 0 1
2 2 1 0

R2

g h i

b c m

e r v

b r s

f n p

0 0 1
0 0 2
0 1 2
0 2 1

1 0 2
1 1 0
1 1 2
1 2 0
2 0 1

2 1 0
2 2 0
2 2 1

R3

d e r

a b r

b c t

c f n

0 0 1
0 0 2
0 1 1
0 1 2
0 2 1

0 2 2
1 0 0
1 0 2
1 1 0
1 1 2

1 2 0
1 2 2
2 0 0
2 0 1
2 1 0

2 1 1
2 2 0
2 2 1

Table 2. Constraints as messages between clusters or newly assigned to clusters

R4

b r

c t

e r

f n

g h

0 1
0 2
1 0
1 2

2 0
2 1

R5

b r s

e r v

f n p

g h i

0 1 2
0 2 1
1 0 2
1 2 0
2 0 1

2 1 0 R6

a b

c f

d e

0 0

1 1
2 2

R7

b c t

0 0 1
0 0 2
0 1 2

0 2 1
1 0 2
1 1 0
1 1 2
1 2 0

2 0 1
2 1 0
2 2 0
2 2 1

R8

a b r

c f n

d e r

0 0 1

0 0 2
1 1 0
1 1 2
2 2 0
2 2 1

clusters {g, h, i} and {b, c, m} are shown in the middle and will be referred to as
R2 over {g, h, i} and R2 over {b, c, m}, respectively.

Suppose SolveDCSP is executed with A∗ = A0. Then, CollectInterfaceCon-
straint is called in A0. In turn, A0 calls CollectInterfaceConstraint in A1, which
calls CollectInterfaceConstraint in A2 and A3.

A3 performs UnifyConstraint by calling CollectSeparatorConstraint in cluster,
say, {g, h, i}, which in turn calls CollectSeparatorConstraint in cluster {d, e, g, h}.
In response, {d, e, g, h} sends relation R4 (Table 2) over {g, h} to {g, h, i}, which
causes modification of the constraint at {g, h, i} to R5 (Table 2).

Next, A3 calls DistributeSeparatorConstraint in {g, h, i}, which in turn calls
DistributeSeparatorConstraint in {d, e, g, h} with R4 (Table 2). This results in
no change in the constraint at {d, e, g, h}. UnifyConstraint at A3 returns with
true. T3 is full arc-consistent with cluster constraints: R1 (Table 1) for {d, e, g, h}
and R5 (Table 2) for {g, h, i}. Before completing CollectInterfaceConstraint, A3

sends A1 a message containing constraint R6 (Table 2) over linkage {d, e}.
At the same time, A2 also performs UnifyConstraint by calling CollectSepara-

torConstraint in cluster, say, {a, b, j, k}, followed by calling DistributeSeparator-
Constraint in {a, b, j, k}. During CollectSeparatorConstraint, the message from
{b, c, m} to {a, b, j, k} is a universal relation over {b}, which causes no change in
{a, b, j, k}. During DistributeSeparatorConstraint, the message from {a, b, j, k}
to {b, c, m} is the same universal relation that causes no change in {b, c, m}.
UnifyConstraint at A2 returns with true and T2 is full arc-consistent. Before
completing CollectInterfaceConstraint, A2 sends A1 a message containing two
constraints with one over each linkage. The constraint over {a, b} is R6 (Table 2)
and that over {b, c} is universal.

After A1 receives the message from A3, it calls AbsorbInterfaceConstraint,
which causes the constraint at linkage host {d, e, r} to be modified into the
relation R8 (Table 2). Similarly, after receiving the message from A2, A1 calls
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AbsorbInterfaceConstraint. It modifies the constraint at linkage host {a, b, r}
into the relation R8 (Table 2) but constraint at linkage host {b, c, t} remains as
R3 (Table 1).

Subsequently, A1 performs UnifyConstraint by calling CollectSeparatorCon-
straint in cluster, say, {a, b, r}, followed by calling DistributeSeparatorConstraint.
During CollectSeparatorConstraint, the message sent from {e, r, v} to {d, e, r} is
a universal relation over {e, r} and hence causes no change to the constraint at
{d, e, r}. The message sent from {d, e, r} to {a, b, r} is a universal relation over
{r} and hence causes no change to the constraint at {a, b, r}. The message from
{b, r, s} to {a, b, r} is a universal relation over {b, r} and causes no change to the
constraint at {a, b, r}. The message from {c, f, t, u} to {b, c, t} is R4 (Table 2) over
{c, t} and changes the constraint at {b, c, t} to R7 (Table 2). The message from
{b, c, t} to {a, b, r} is universal over {b} and causes no change to constraint at
{a, b, r}.

During DistributeSeparatorConstraint, the message from {a, b, r} to {d, e, r}
is a universal relation over {r} and causes no change to the constraint at {d, e, r}.
The message from {d, e, r} to {e, r, v} is R4 (Table 2) over {e, r} and it mod-
ifies the constraint at {e, r, v} to R5 (Table 2). The message from {a, b, r} to
{b, r, s} is R4 (Table 2) over {b, r} and modifies the constraint at {b, r, s} to R5

(Table 2). The message from {a, b, r} to {b, c, t} is a universal relation over {b}
and causes no change to the constraint at {b, c, t}. The message from {b, c, t}
to {c, f, t, u} is R4 (Table 2) over {c, t} and causes no change to the constraint
at {c, f, t, u}. UnifyConstraint at A1 returns with true. T1 is full arc-consistent
with the following cluster constraints: R1 (Table 1) for {c, f, t, u}, R7 (Table 2)
for {b, c, t}, R8 (Table 2) for {d, e, r} and {a, b, r}, R5 (Table 2) for {e, r, v} and
{b, r, s}. Before completing CollectInterfaceConstraint, A1 sends A0 a message
containing constraint R6 (Table 2) over linkage {c, f}.

After A0 receives the message, it calls AbsorbInterfaceConstraint which re-
places the constraint at linkage host {c, f, n} by R8 (Table 2). Afterwards, A0

performs UnifyConstraint by calling CollectSeparatorConstraint in cluster, say,
{f, n, p}, followed by calling DistributeSeparatorConstraint. During CollectSepa-
ratorConstraint, the message from {c, f, n} to {f, n, p} is R4

(Table 2) over {f, n}. It modifies the constraint at {f, n, p} into R5 (Table 2).
During DistributeSeparatorConstraint, the message from {f, n, p} to {c, f, n} is
R4 (Table 2) over {f, n} and has no effect at {c, f, n}. UnifyConstraint at A0 re-
turns with true. T0 is full arc-consistent with the following cluster constraints: R8

(Table 2) for {c, f, n} and R5 (Table 2) for {f, n, p}. As the result, A0 terminates
CollectInterfaceConstraint and returns ∇.

Subsequently, A0 is called to DistributeSolution. It runs GetLocalSolution
by first calling DistributeSeparatorSolution at, say, {f, n, p}. This produces the
partial solution R11 for {f, n, p} first and then R10 (Table 3) for {c, f, n} at T0.

Next, A0 calls A1 to DistributeSolution with the message containing the re-
lation R12 (Table 3) over {c, f}. In response, A1 modifies its constraint in link-
age host {c, f, t, u} to R9. It then calls DistributeSeparatorSolution in the host
{c, f, t, u}. The resultant partial solution at each cluster of T1 are as follows: R13
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Table 3. Relations generated during DistributeSolution

R9

c f t u

2 2 0 1
2 2 1 0

R10

a b r

b c m

b c t

c f n

d e r

2 2 1

R11

b r s

e r v

f n p

2 1 0 R12

a b

b c

c f

d e

2 2

R13

a b j k

c f t u

d e g h

2 2 1 0 R14

g h i

1 0 2

over {c, f, t, u}, R10 over {b, c, t}, {a, b, r}, R11 over {b, r, s}, R10 over {d, e, r},
and R11 over {e, r, v}.

After that, A1 calls A2 to DistributeSolution with the message containing
relations R12 over {a, b} and {b, c}. In response, A2 generates partial solutions
R13 (Table 3) over {a, b, j, k} and R10 over {b, c, m} at T2.

Similarly, A1 calls A3 to DistributeSolution with the message containing re-
lation R12 over {d, e}. In response, A3 generates partial solutions R13 over
{d, e, g, h} and R14 over {g, h, i} at T3. SolveDCSP now terminates successfully
and the natural join of the above partial solutions in all agents is the solution.

8 Conclusion

In this contribution, we proposed a representation of DCSPs as MSCNs, ex-
tended techniques for MSBNs [10] to compilation of MSCNs into runtime LJFs,
and presented the first algorithm suite that solves efficiently DCSPs of bounded
primal graph density. The algorithm suite is shown to be sound and complete.
Therefore, we have shown that MSCNs form a tractable class of DCSPs. Exper-
imental study on distributed scheduling is underway.
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Abstract. This paper proposes an adaptive subcluster merging (ASM)
based clustering algorithm. The ASM algorithm has two stages: subclus-
ter partition and subcluster merging. Specifically, it first applies local
expanding with variance constraint to partition subclusters with uniform
granularity, and then it adaptively merges the subclusters into clusters
with the notion of density. Through these two stages, ASM algorithm can
identify clusters of heterogeneous structures. The feasibility of the algo-
rithm has been successfully tested on both synthetic and real-world data
sets. Comparative experimental studies of various clustering algorithms
are also performed. The results demonstrate that the proposed algorithm
performs better than K-means, complete-link hierarchial, density-based
and maximum variance algorithms.

1 Introduction

Clustering analysis is an unsupervised learning technique used to discover group
structure of a data set. The goal of clustering is to group a set of patterns,
points, or objects into meaningful subsets whose in-class members are “similar”
in some sense and whose cross-class members are “dissimilar”. The clustering
problem has been extensively studied in many scientific disciplines and a variety
of different algorithms have been developed [2,7,6,10,11].

Generally speaking, clustering algorithms can be categorized into hierarchical
and partitional algorithms [4]. Hierarchical algorithms deliver a hierarchy of
possible clusterings, while partitional clustering algorithms divide the data up
into a number of subsets. In partitional clustering analysis, many algorithms,
such as the K-means [4] and Gaussian Mixture Model [9], assume the number of
clusters to be known a priori. Other algorithms partition clusters by minimizing
the cluster scatter with a constraint on certain measures, such as cluster variance
[11]. Since the real data clusters are usually heterogeneous, the structure of a
data set probably can not be found by simply imposing a variance constraint.

In this paper, we propose an adaptive subcluster merging (ASM) based clus-
tering algorithm, which is capable of discovering the heterogeneous structures of
the data set. Specifically, the ASM algorithm has two stages: subcluster partition
and subcluster merging. The subcluster partition stage applies local expanding,
i.e. expanding the subcluster by its nearest neighbor under the condition that
the variance of the expanded subcluster is less than a threshold. After this stage,

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 241–249, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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all patterns in a data set will be partitioned into a number of subclusters of sim-
ilar granularity. The second stage is to merge the subclusters according to the
density of subclusters’ borders. By these two stages, ASM algorithm overcomes
the homogenous limitation of the resultant clusters of MVC [11]. It also avoids
the shortcoming of density consistency in DBSCAN algorithm [10]. Experimen-
tal results on synthetic data and UCI data [8] show our algorithm performs
better than other popular clustering algorithms, e.g. K-means [4], complete-link
hierarchial [4], density-based [10], and MVC algorithm, in terms of Fowlkes and
Mallows index [5,3].

The rest paper is organized as follows. Section 2 describes the proposed algo-
rithm. Detailed experimental evaluations among our algorithm and other famous
clustering algorithms are shown in section 3. Finally, section 4 provides some
concluding remarks.

2 The Adaptive Subcluster Merging Algorithm

2.1 Subcluster Partition

“Subcluster” is a set of homogeneous data whose variance is within a constraint.
It is anticipated to be a subset of a real cluster. In order to partition the sub-
clusters, a reduced maximum variance cluster algorithm [11] is applied. The key
notion of subcluster partition is to gradually expand a hypothesized subcluster
by its nearest neighbor under the condition that variance of current subcluster
is below the constraint.

A subcluster begins with a “unlabeled” pattern in the data set. Then the
subcluster is expanded by its nearest “unlabeled” pattern and the expanding
process is terminated when the variance of the subcluster becomes larger than
a constraint. After the accomplishment of partitioning a subcluster, a new sub-
cluster is started to be partitioned in the same way. Subclusters are partitioned
one by one until there is no “unlabeled” pattern left in the data set. The main
issue of subcluster partition lies in searching for the nearest neighbor of a sub-
cluster. Here a convenient method is utilized to solve this issue. It is evident
that the neighbor of a subcluster is also the neighbor of the subcluster’s border.
Once the border is identified, the nearest neighbor of the subcluster is easy to
identify. A subcluster’s border consists of those samples that are the furthest
cluster mates of the samples in the subcluster. Let Bi stand for the border of
the ith subcluster Ci. Accordingly, the kth order border of the ith subcluster,
called Bi(k), can be expressed as follows:

Bi(k) =
⋃
x∈Ci

I(x, k, Ci) (1)

where I(x, k, Ci) is the set of k furthest samples of x in Ci. In other words, the
k furthest neighbors of x in subcluster Ci are:

I(x, k, Ci) =
{

f(x, Ci)
⋃

I(x, k − 1, Ci − f(x, Ci)), if k>0
ø, if k=0 (2)
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where f(x, Ci) is the furthest neighbor of x in Ci and

f(x, Ci) = arg max
y∈Ci

‖ y − x ‖2 . (3)

The ith subcluster’s border Bi can be found according to the above process.
Thus, the nearest foreign neighbor of the subcluster Ci, which is also the nearest
foreign neighbor of the border Bi, is defined as follows:

NN(Ci) = NN(Bi) = arg min
y �∈Ci

‖ y − x ‖2, where x ∈ Bi. (4)

From Equation(4), it can be observed that the nearest neighbor of the subcluster
is also the expanding pattern which makes the minimal change to the variance
of current subcluster.

Obviously, the variance of a cluster is increasing step by step along with the
local expanding process. If there is no constraints, the n patterns in the whole
set D = {x1, ..., xn} will form a single subcluster. Here we propose a variance

constraint(T ) to all subclusters, that is σ2
i =

∑
x∈Di

‖x−mi‖2

ni
≤ T , where ni is the

number of patterns in the i’s subcluster and mi = 1
ni

∑
x∈Di

x is the mean vector
of the ni patterns. The variance of a subcluster is computed after each expanding
step. If it is higher than T , the subcluster will stop expanding. Though subcluster
partition stage, the whole set D may be split into a number of subclusters with
same granularity.

2.2 Subcluster Merging

Apparently, resulting subclusters of the reduced MVC algorithm turn to be sim-
ilar hyperspherical shapes [11]. However, clusters of real data sets may have
different distributions, sizes, and shapes. Thus, this kind of solution might not
be able to reveal real data structures. Let’s take an example for explanation.
Fig.1(a) shows a synthetic data set, which consists of two Gaussian distributed
clusters signed with gray “*” and dark “o”. Varying the variance constraint T
from 0.8 to 1.5, we can obtain the resulting subclusters proposed in Fig.1(b),
(c), and (d) with different colors and signs. None of the resultant partitions can
identify the real partition of the data set.

In order to avoid the homogenous limitation of MVC and discover heteroge-
nous structure of data, we introduce density-based subcluster merging stage.
The density notion is that the density of the inner part of a cluster center is
higher than that of the cluster border. With this notion, we can investigate the
density of borders between two subclusters in order to determine whether to
merge them.

Let’s explicate the definition of density. The density of a point q, denoted
as ρ(q, ε), is described as the number of samples in set A, where A = {p |
distance(q, p) ≤ ε}. Here we propose the notion of densely density-reachable. If
1)distance(q, p) ≤ ε, and 2)ρ(p, ε) ≥ ρm (ρm is a certain density threshold), we
regard point q is densely density-reachable to point p. Densely density-reachable
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Fig. 1. The original data set and its clustering results with the variance constraint
T=0.8, 1, and 1.5 respectively

Fig. 2. Concept of densely density-reachable

is symmetric for core point pairs. However, it is not symmetric if a border point
is involved. For example core points, as point P and Q in Fig.2, are densely
density-reachable to each other (with respect to ρm = 4) while the core point
P is not densely density-reachable to border point K. Thus, we can take some
border point pairs from two different subclusters, whose distances are below
ε, into consideration. If two border points of every pair are densely density-
reachable to each other, they must be core points of a cluster. As a result, we
merge these two subclusters.

The properties of every subclusters is utilized in order to determine the density
parameter ε and ρm. Suppose average distances between every border point and
its nearest neighbor in the ith subcluster is regarded as ε(i). That is

ε(i) =

∑
p∈Bi

distance(p, nn(p))
k

, (5)

where nn(p) is the nearest neighbor of p, i.e. nn(p) = arg min
y∈Ci

‖ y − p ‖2, and k

is the total number of points in border Bi. And ρm(i) is regarded as the average
density of border points with respect to the ε(i),

ρm(i) =

∑
p∈Bi

ρ(p, ε(i))
k

. (6)

The merging rule of two subcluster (i and j) can be detailed as follows. The
density parameters are set by ε = ε(i)+ε(j)

2 and ρm = max(ρm(i), ρm(j)). If there
exist 1) a border point pair set S = {(x, y) | x ∈ Bi, y ∈ Bj , and distance(x, y) ≤
ε}; and 2) all border point pairs satisfy ρ(x, ε) ≥ ρm and ρ(y, ε) ≥ ρm, i.e.
they are all densely density-reachable border pairs; we merge the ith and jth
subcluster.
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2.3 Clustering Algorithm

The proposed two-stage algorithm has only one parameter, i.e. the variance
constraint. The detailed description of the algorithm is proposed as follows.

ASM Algorithm

Input: Date set D ∈ R
n×d (all the n samples in d-dimension are marked as “unlabeled”), variance

constraint T

Output: Set of m clusters Ci, where
i=m⋃
i=1

Ci = D

{Subcluster partition stage}
i = 0; % each cluster is given an identifier i
index = randomPermutation(1...n);
for j = 1 to n do

a = index(j);
if xa is marked as “unlabeled” then

mark xa as “labeled”;
i = i + 1;
Ci = {xa};
σ2 = 0;
while σ2 < T

find the border Bi(k) of the cluster Ci; % k is set to 5
find the nearest neighbor of Bi in “unlabeled” patterns;
if NN(Bi) �= ∅

Ci = Ci

⋃
NN(Bi);

mark NN(Bi) as “labeled”;
recompute the variance σ2 of the current cluster Ci;

else
break;

end while;
end if ;

end for;
{Subcluster merging stage}
for j = 1 to i do

for k = j + 1 to i do

compute density merging parameters, i.e. ε = ε(j)+ε(k)
2 and ρm = max(ρm(j), ρm(k));

find the pattern pair set in the jth and kth borders,
i.e. S = {(x, y) | x ∈ Bj , y ∈ Bk, and distance(x, y) ≤ ε};
if S �⊂ ∅ and two patterns in each pair of S are all densely density-reachable to each other,

save the cluster identifiers j and k, which can be merged;
end if ;

end for;
end for;
updata cluster identifier i;

The space complexity of ASM algorithm is O(n2). This is because a similarity
matrix of size n×n has to be stored, where n denotes the number of samples in
the dataset. Its time complexity is O(n2). Typically, n is fixed in advance and
so the algorithm has linear computational complexity in the size of the data set.

3 Experiments and Analysis

3.1 Data Sets and Evaluation Measure

In order to assess the feasibility and performance of our ASM algorithm, exper-
iments are done on both synthetic data shown in Fig.1(a) and some real-world
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Table 1. Summary of datasets used in the experiments

Data set Num. of samples Num. of clusters Num. of features

Synthetic data 325 2 2

Wisconsin Breast Cancer 699 2 9

Iris 150 3 4

Glass 214 6 9

Handwritten numerals 2000 10 64

data sets, available in the UCI Machine Learning Repository [8]. The details of
the datasets are listed in Table 1.

The quality of a clustering solution is evaluated using the Fowlkes and Mallows
index [5,3], which measures the similarity of resulting clusters with real clusters
of a data set. Consider C = {C1, ..., Cm} is a clustering structure of a data set
D, and P = {P1, ..., Ps} is the actual partition of the data. The state of each
pair of samples (xq , xk) pertains to one of the following four states: 1) SS: if both
samples belong to the same cluster of the resulting cluster C and to the same group
of partition P ; 2) SD: if samples belong to the same cluster of C and to different
groups of P ; 3) DS: if samples belong to different clusters of C and to the same
group of P ; 4) DD: if both samples belong to different clusters of C and to different
groups of P . Assuming that a, b, c and d are the number of SS, SD, DS, DD pairs
respectively. The Fowlkes and Mallows index is then defined as:

FM =
√

a

a + b
· a

a + c
(7)

Apparently, a higher value of FM means the resultant partition C is more similar
to the real partition P . A perfect clustering solution leads the value of FM to 1.

3.2 Experimental Results

Our experiments are started with the synthetic data shown in Fig.1(a) consist-
ing of two Gaussian clusters. We compare the ASM clustering algorithm with
K-means, complete-link hierarchial (CLH)[4], maximum variance cluster (MVC)
[11], and density-based (DBSCAN) algorithms in terms of the Fowlkes and Mal-
lows (FM) index . For fair comparisons, the optimal parameter of each algorithm
is reported in Table 2. As K-means, MVC, DBSCAN, and ASM are sensitive to
the randomly selected initial patterns, each algorithm is run 10 times. The av-
erage FM index and standard deviation (std) of all algorithms are reported in
Table 2 while the graphic resultant partitions are shown in Fig.3. The results
show that K-means algorithm is the most sensitive to the randomly initialized
patterns. MVC tends to partition clusters into hyperspherical shapes. DBSCAN
can detect the high density regions but fails to identify the low density borders.
This observation of DBSCAN is the same with [12]. ASM is the only algorithm
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Table 2. Statistical results of different algorithms on Synthetic data

Algorithm Parameter FM ± std Num. of result clusters

K-means k=2 0.650 ± 0.014 2

CLH t=8 0.667 ± 0 2

MVC σ2 = 1.2 0.699 ± 0.002 5

DBSCAN MinPts = 4, Eps = 0.18 0.812 ± 0.003 4

ASM T ∈ [0.8, 1.5] 1 ± 0 2
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Fig. 3. Clustering results of five algorithms on synthetic data

which can not only obtain the highest FM index but also identify the real struc-
ture of the data set. Furthermore, varying the parameter T from 0.8 to 1.5, the
ASM algorithm can always obtain perfect performance. That is the reason the
algorithm is called “adaptive”.

The following experiments compare ASM algorithm with other four algo-
rithms (K-means, CLH, MVC, and DBSCAN) using four real-world data sets in
Table 1. We vary the parameters of different algorithms to get different number
of resulting clusters, and compare their FM index under the same number of
resulting clusters. Apparently, for the same number of resulting clusters a higher
FM index indicates the better quality of the clustering solution. Comparative
performance of the five algorithms on four different data sets are presented in
Fig.4. The main observations from these experiments are:

1. The performances of K-means algorithm fluctuate dramatically with the
changing of result cluster numbers as shown in Fig.4(a) and (c).

2. In general, the performances of complete-link hierarchical method are not
satisfying. It manipulates a dissimilarity matrix between patterns, imposes
a hierarchical structure on data. This property indicate the CLH algorithm
only considers local neighbors in each step, the global shape and size of
clusters are always ignored [1]. Thus, unbalanced clusters are not adequately
handled by this method.

3. The performance of MVC and DBSCAN are similar in the four experiments.
A common point of these two algorithms is that their peak values are not
obtained when the resulting cluster number is equal to real class number.

4. The FM indexes of our proposed method are generally higher than other al-
gorithms under the same number of resulting cluster. In addition, the highest
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Fig. 4. Comparative performance of the five algorithms on four different data sets.(the
vertical dashed line indicates the real cluster number)

FM indexes are obtained when the resulting cluster number equal to the real
cluster number. A problem to be noted is that when the number of resulting
clusters get too large the superiority of ASM is not evident. It is because
that the subclusters are so many that merging of them accurately is difficult.

3.3 Discussion

In this section, we discuss the effect of the variance parameter of ASM algorithm.
As the demonstration in section 2, the parameter dominates the granularity
of the subclusters. A too small parameter will produce the subclusters which
has only one sample in, thus the ASM algorithm will be similar to DBSCAN
which merges the samples in the data set one by one. On the other hand, a
too large parameter will induce all the samples be in a single “subcluster”,
therefore merging process would be omitted. As long as the parameter is neither
larger than the minimal variance of the real clusters nor too small, the ASM
algorithm can adaptively merge the subclusters. Experimental results in Table
2 demonstrate that a wide range of T can obtain expecting results. It is one
of superiority of our algorithm that a wide range of parameters are suitable to
obtain its best performance.

4 Conclusions

This paper proposes an adaptive subcluster merging based clustering algorithm,
which can be separated into subcluster partition and subcluster merging stages.
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Experiments have proven that the ASM algorithm is generally superior to
K-means, CLH, MVC, and DBSCAN algorithms. It is capable of identifying
heterogeneous cluster structures, and also flexible on parameter selection. A
drawback of the AGM algorithm may be lie in its computational complexity.
Our next goal is to utilize other clustering algorithms to the subcluster partition
stage and optimize its computational efficiency.
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Abstract. Video Association Mining(VAM) is the process of discovering
associations in a given video. Two key phases of VAM are (i) Transfor-
mation and (ii) Frequent Temporal Pattern Mining. The transformation
phase converts the original input video to an alternate transactional for-
mat, namely a cluster sequence. Frequent temporal pattern mining phase
concerns the generation of patterns subject to the temporal distance and
support thresholds. The paper addresses the issue of frequent temporal
pattern mining and studies algorithms for the same. The existing Apri-
ori based algorithm is compared with three other approaches highlighting
the case specific situations suited by each.

1 Introduction

Data Mining is the nontrivial process of extraction of previously unknown and
potentially useful information from large databases. A few of the existing data
mining techniques are Classification, Clustering, Association Rule Mining, Pre-
diction, Outlier Analysis, etc [1]. Association Rule Mining is the process of gener-
ating associations and hence identifying interesting relationships among database
items. It finds application in Market Basket Analysis to identify frequently pur-
chased items and establish relationships among them [1, 2]. Data Classification
is a supervised mining technique that generates class information or labels for
input test data. Clustering, an unsupervised technique groups input data based
on the principle of maximising intra cluster and minimising inter cluster simi-
larity. These data mining technique have been well explored in the context of
conventional and transactional databases.

Modern day information technology and internet revolution has resulted in
enormous amounts of multimedia datasets such as images, videos, etc. With
large volumes of multimedia data available, Multimedia Data Mining (MDM)
is an emerging trend in knowledge extraction research. It deals with applica-
tion of data mining techniques to discover high level multimedia information
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22]. MDM differs from its conventional
counterpart due to the presence of data specific properties in multimedia data.

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 250–260, 2007.
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Video data is governed by temporal properties while images are bound by spatial
properties. Conventional data mining algorithms lacking these properties are not
suited to multimedia data. MDM concentrates on adapting existing or evolving
new data mining techniques to extract knowledge from multimedia data sets.

Data Mining techniques such as Classification, Clustering, Association Min-
ing, Prediction find immediate application in the domain of multimedia data.
Classification and Clustering are used for class determination or grouping of
video and image inputs [10, 11, 16]. Association Mining is employed to establish
relationships among the constituents of the multimedia data [10, 13, 14, 16, 17].
Associations mined from images and videos are also employed in classification
to determine the overall nature of the video or image data [9, 11, 12, 18]. Refer-
ence [15] discusses various knowledge types that can be mined from video data.
Amongst the various MDM techniques, Video Association Mining is a relatively
new and emerging research trend and forms the focus of this paper.

The rest of the paper is organized as follows: Section 2 discusses Video As-
sociation Mining and its applications in greater detail. Frequent Temporal Pat-
tern(FTP) mining, an important phase of VAM is explained in Section 3. The
proposed algorithms for FTP mining are presented in Section 4. Section 5 per-
forms a detailed complexity analysis of the proposed approaches in relation to
Apriori based one and Section 6 presents the experimental results. Section 7 sum-
marizes the results of our study and concludes with future research directions.

2 Video Association Mining

Video Association Mining is the process of discovering associations in a given
video. Associations can be established between various objects in a frame that
are representative of a scene. Also associations can be established at higher lev-
els of abstraction such as relationships between director, movie type, etc. The
generated associations could also be used to predict futuristic events based on
the occurrence of a certain sequence of events frequently. Reference [15] discusses
the different types of knowledge that can be mined from cinema and its appli-
cations. Generated associations can also be employed in video classification to
determine the overall nature of the movie such as being romantic, comic, etc.
Video associations are also employed in summarization by including the most
frequent patterns in the summary [9, 12, 18].

References [9, 12, 18] discuss a technique of generating video associations by
transforming the original video input data into an equivalent transactional data
format. This is done by grouping the various shots of the original video into
different clusters, each of which consists of visually similar shots. A shot cluster
sequence consisting of cluster information of each shot arranged by its temporal
order is constructed. The problem of mining video associations thus gets reduced
to that of mining associations from cluster sequences. Two types of associations
identified in [9, 12] are Intra and Inter associations. Intra associations are those
in which all items involved in the association are the same. This could be a
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result of scenes composed of visually similar shots of the same object taken
from different viewpoints. Inter associations are those which consists of items of
different types, which are scenes that consist of visually distinct shots of different
objects.

Video mining differs from its other multimedia counterparts in the presence of
temporal properties in the input data. References [9,12,18] incorporate the tem-
poral aspect in the video association mining process via two parameters namely
temporal support and distance thresholds. Temporal distance(TD) between two
items or shots is the number of shots between them. The temporal distance of
the pattern AB in the input sequence ACEB is 2. The support measure based on
temporal distance is referred to as temporal support. It is the number of times
the association is shown sequentially in the input video, subject to the temporal
distance threshold value. For example in the input sequence ABABACABC, the
temporal support of pattern ABC for TD=∞ is 2 and TD=0 is 1. A tempo-
ral distance threshold value of ∞ denotes infinite distance between the various
possible patterns or shot clusters.

The existing video association mining technique employs two phases namely
(i) Transformation and (ii) Mining. The transformation phase converts the orig-
inal video data into an alternate transactional data format using clustering. By
the end of the transformation phase, the problem of VAM gets reduced to mining
frequent patterns from the transformed cluster sequence, subject to the temporal
distance and support factors. This process of frequent pattern mining subject
to the temporal factors is referred as Frequent Temporal Pattern (FTP) mining
and is discussed in greater detail in the following section.

3 Frequent Temporal Pattern (FTP) Mining

FTP mining though similar to the frequent set mining phase of conventional
association rule mining differs from its transactional counterparts in the tem-
poral support and distance factors. Reference [8] provides a detailed survey of
algorithms for frequent set mining in conventional data domain. The existing
video association mining technique employs Apriori algorithm [2] in the process
of FTP mining. Apriori, the first algorithm for frequent set mining is based on
a level wise principle and the anti-monotone property of set theory that “Every
subset of a frequent set is also frequent”.

Apriori based FTP mining algorithm [9, 12, 18] first constructs frequent pat-
terns (item-sets) of length 1 or L1 from candidate patterns of length 1 or C1

(all possible unique symbols in the input sequence). It then generates higher
level candidate patterns (Ci) from immediate previous level frequent patterns
or Li−1. Thus C2 is generated by self joining L1 with itself (i.e C2 = L1 ∗ L1).
Subsequent frequent patterns (Li or L2) are generated by subjecting the corre-
sponding level candidate patterns to the support factor. Since a complete scan
of the database is required for a candidate set to be identified as frequent or
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infrequent, the number of repeated scans of the original database during the
entire FPM process is huge and is a serious limitation.

With respect to conventional frequent set(pattern) mining, the repeated scans
limitation of Apriori has been overcome by several algorithms [8]. The Frequent
Pattern (FP) tree based algorithm [5] requires only two overall scans of the orig-
inal input and adopts a tree or pattern growth approach. It is not suited to FTP
mining since it loses track of the ordering of symbols within a pattern. Patterns
AB and BA are identical in FPM but in FTP mining they are treated as different
patterns. The Dynamic Item-Set Counting approach [7] reduces the number of
scans by constructing frequent sets in a simultaneous fashion. Frequent set min-
ing algorithms discussed in [8] either lack the temporal or ordering property or
require several repeated scans of the input sequence when used for FTP mining
and hence there is an impending research requirement for efficient algorithms
for the same.

FTP mining, can also be treated as Sequence Pattern Mining(SPM). GSP [19],
an apriori principle based SPM algorithm does not meet our requirement of
avoiding the huge repeated scans setback. A few of the other SPM algorithms
avoiding the repeated scans setback of Apriori are FreeSpan [4], PrefixSpan [3]
and SPADE [6]. FreeSpan and PrefixSpan adopt a pattern growth approach sim-
ilar to FP growth but incorporate ordering aspect in the mining process. The
database projection logic used in these algorithms do require repeated scans,
but it is significantly lesser than Apriori. Also the scans are not over the entire
database but over a trimmed version. These algorithms are not suited to FTP
mining, since they require the input to be in the form of transactional records.
Transactionalizing the input sequence to a record format results in loss of tempo-
ral continuity across records. Hence there is an impending research requirement
of efficient algorithms for mining frequent temporal patterns. The next section
presents the proposed FTP mining algorithms, avoiding the repeated input scans
and meeting the temporal continuity restrictions.

4 Proposed Algorithms for Frequent Temporal Pattern
Mining

This section presents the three algorithms proposed for FTP mining that over-
come the repeated input scans limitation of Apriori and hence contribute to
efficient video association mining approaches [20, 21, 22]. The algorithms ac-
cept as input the shot cluster sequence output of the transformation phase
and generate the various possible frequent patterns subject to the temporal
support and distance threshold factors. The permutations based FTP mining
algorithm (p-FTP) is described in Figure 1. Algorithm t-FTP that adopts a
pattern growth approach is explained in Figure 2 while Figure 3 explains the
m-ary tree based FTP mining algorithm. Illustrations are not included due to
space constraints.
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1. Scan the original input sequence once to identify frequent and infrequent single
length item sets (patterns) by subjecting the candidate single length patterns to
the minimum support threshold factor. Frequent single length patterns constitute
the set L1. Assume |L1| is k.

2. Generate all possible permutations of patterns using elements of L1.
3. Order the various patterns generated in Step 2 into k distinct groups. Grouping

is done on the basis of starting label of the respective patterns. Thus if L1 is
composed of 3 symbols namely A, B and C, then group A would comprise patterns
A, AB,AC, ABC and ACB. On similar lines other patterns commencing with B
and C can as well be grouped respectively. Every pattern has an associated count
parameter (initialized to 0) to reflect the count or occurrence of the pattern in the
input sequence.

4. For every element or symbol of the input sequence:
(a) Establish the group to which the element belongs to.
(b) Increment the counter of single symbol pattern of the respective group suitably.
(c) For other patterns of the group established in 4.a, count is incremented only

when the entire pattern is encountered in the input sequence. In other cases,
the starting labels are disabled (denoting that the respective symbol is en-
countered in the input arrived so far).

(d) If starting labels have been disabled, patterns of the respective group being
processed are reordered with

i. other groups identified in Step 2 for the first input element.
ii. other groups identified in earlier iteration.

Regrouping is required since after disabling, starting labels of patterns differ.
(e) Non single length patterns have their counts incremented only when they

match as an entire pattern (all symbols have been disabled). Once its count
is incremented, it is reintroduced into the respective group, with disabled
symbols enabled again.

5. The minimum support threshold criterion is applied to the various patterns by
the end of Step 4, resulting in the net FTP set.

Fig. 1. Proposed p-FTP Mining Algorithm

5 Complexity Analysis of the Algorithms

5.1 Apriori Based FTP Mining - Time Complexity

Two key phases of Apriori based FTP mining are candidate patterns generation
and support computation of the generated candidate patterns. Let us assume
that the length of the original input sequence is N. The candidate pattern gen-
eration process is of the order of (C2

mj
·O(j)), where Cmj denotes candidate set

composed of mj subsequences. Generation of all frequent sequences of length
k requires k loops over the original input sequence. Thus the searching phase
is of the order of kN . Support computation process for Cj that contains mj
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1. Scan the original input sequence to identify frequent 1 items that constitutes the
set L1. L1 is generated by subjecting the candidate patterns of length 1 to the
minimum support threshold factor.

2. For every member of L1, now construct a pattern tree as follows:
(a) Make the element of L1 the root of the tree.
(b) Start scanning the original input sequence from the point where the considered

element appears.
(c) Add paths from the root of the tree to the item encountered in the sequence

in a cumulative fashion updating both the item count as well as the path
count. This is done till the considered element appears again in the input (a
subsequence). If an element that has already been added as a node to the tree
appears again then maintain suitable reverse links as well.

(d) Repeat the earlier step for other sequences that commence with the considered
element, for which either traverse the existing paths updating the counters
suitably or add new paths from the root of the tree depending on the items
encountered in the sequence.

3. From each of the pattern tree’s constructed, temporal patterns and hence frequent
temporal patterns are generated as follows:
(a) Traverse the tree from the root retrieving patterns whose temporal count is

the path count.
(b) Once a branch is traversed, suitably decrement the path count as well as the

item count to reflect that the pattern has been counted once.
(c) To generate patterns that do not appear as a branch in the tree, consider

pending nodes that appear to the right of some specific node in the tree as
either destination or intermediate items in the pattern.

(d) Integrate such patterns that match with the tree branch pattern to generate
the net temporal pattern set .

4. From each of the pattern tree’s temporal pattern set, retain only those patterns
that satisfy the temporal support threshold specified.

Fig. 2. Proposed t-FTP Mining Algorithm

subsequences is of the order of mj ·O(j ·N). For example, support computation
for candidate set C1 requires m1 · O(N) time , where m1 is the cardinality of
C1. Thus the overall time complexity of Apriori based FTP mining algorithm is
given by Ta =

∑
j

(
(C2

mj
·O(j)) + (mj ·O(j ·N))

)
.

5.2 p-FTP - Time Complexity

This section discusses the time complexity of the proposed p-FTP algorithm.
Let N denote the length of the original input sequence and |L1|=n. Assume
M represents the total number of candidate patterns generated by permuting
the n frequent 1 elements and mj denotes the maximum number of candidate
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1. Scan the original input sequence once to identify frequent 1 items that constitutes
the set L1. L1 is generated by subjecting the candidate patterns of length 1 to the
minimum support threshold factor. Let |L1| be m.

2. Construct a m-ary tree of height m with root as empty node (e or ε).
3. Label the m descendant paths of all nodes in the tree at a particular level with

the different possible symbols in L1. Maintain two parameters for every path in
the tree namely count and traversed that will be updated during the algorithms
execution.

4. For the first input sequence element, the respective path from e or ε that bears
the same label as the element is traversed, its count parameter is incremented and
the visited parameter is enabled.

5. For every other input sequence element:
(a) The respective path from e or ε with the same label as the considered element

is traversed, suitably updating the count and visited parameters.
(b) Also other paths in the tree whose visited parameters have already been en-

abled are traversed. Count parameter is suitably incremented and visited pa-
rameter is enabled if they are not already enabled for paths whose labels
match with the input element encountered. Since repetitive patterns are as
well maintained due to the completeness of the algorithm, they are handled
as a special case. Counts at leaf path levels are incremented only when corre-
sponding count at root path level has been incremented as a multiple of the
tree depth.

6. To generate frequent patterns, the m-ary tree at the end of step 5 is traversed
retaining those paths that satisfy the minimum support threshold.

Fig. 3. Proposed m-FTP Mining Algorithm

sets of length j processed within any group. Permutations are generated in a
time efficient manner using exchanges method of linear time complexity [23].
Grouping of candidate sets done in Step 3 of the algorithm is of the order of∑

j mj · O(j) and filtering of frequent patterns done in Step 5 requires O(M)
time. Step 4 is of the order of

∑
i

∑
j mj ·O(j). Thus the overall time complexity

of p-FTP is given by Tp = O(n2) +
∑

i

∑
j mj ·O(j) + O(M).

5.3 m-FTP - Time Complexity

Time complexity of m-FTP involves the time required for complete m-ary tree
construction, update of the m-ary tree during the processing of input sequence
elements and frequent temporal patterns generation. Assume the original in-
put sequence is of length N as before. The height of a complete m-ary tree is
O(logmn), where n is the total number of leaves in the tree. Number of leaves
at a particular depth d is md. Based on these factors, the complete m-ary tree
construction phase is of the order of nlogmn, where n is the number of leaves.
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The tree is updated by traversing branch(es) that match with the input sequence
element arrived or those that have already been traversed. Not all branches of
the complete m-ary tree are traversed during the processing of an input sequence
element. Assuming that b is the number of branches traversed during the pro-
cessing of a specific input sequence element, the update process is of the order
of bN . Retrieval of patterns or tree traversal subject to the support factor is of
the order of nlogmn. Thus the overall complexity of the proposed algorithm is
given by Tm = O(n · logmn) + O(bN).

t-FTP algorithm’s complexity is dependent on the actual makeup of the se-
quences(subsequences or sub transactions) and its improvements in execution
time is established using experimental results in the following section.

5.4 Space Complexity Analysis

p-FTP constructs all possible permutations of patterns using elements in L1.
For a sample input consisting of 3 unique elements, p-FTP processes with 15
candidate patterns. In general for n unique elements, the total space required
works out as n!. Number of candidate patterns in Apriori approximates to com-
binations of the number of frequent patterns in the immediate prior level(l) and
hence is l! times lesser than the space consumed by p-FTP.

In m-FTP, any particular level d in the tree can have a maximum of md states
or patterns and hence the space consumed is exponential in nature. Though the
space complexity of p and m-FTP are more in comparison to Apriori (a tradeoff
as a result of the reduced input scans), Apriori would also suffer from the same
problem when the number of frequent patterns at any particular level is large. As
a result of the recent advances in storage technology and extremely huge memory
capacities to the tune of giga and terra bytes available these days, performance
improvements in time are always preferred and crucial.

Thus the proposed approaches, namely p and m-FTP make significant con-
tributions to the temporal frequent set mining community despite their space
limitations. t-FTP adopts an on the fly approach to the entire frequent temporal
pattern mining process. Pattern trees are grown based on the input sequence el-
ement encountered and there is no exhaustive generation of candidate patterns
as opposed to the other two proposed approaches. This results in a balanced
algorithm that offers considerable improvement in time in relation to Apriori
and is also a space efficient version as explained in the next section.

6 Experimental Results

This section deals with performance analysis of the proposed algorithm in com-
parison to Apriori and the proposed approaches. All experiments have been
conducted on a 256MB RAM machine supporting LINUX 9. Algorithms are
analysed for the effect of sequence length and support factor on execution time.
Figure 4 establishes the performance improvement of the proposed algorithms
as a result of the reduced number of input scans in comparison to Apriori. A
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similar qualitative growth pattern is observed with other varied input sequences.
We have observed 73%, 62% and 53% improvements in execution time of m, p
and t FTP mining algorithms respectively in relation to Apriori based one.

m-FTP achieves the best performance due to the significantly reduced num-
ber of scans (two) in comparison to Apriori and t-FTP. Between m and p-
FTP, the time used up in computing all possible permutations and frequent
enabling/disabling logic in p-FTP results in the performance variation. p-FTP
outperforms t-FTP and Apriori primarily as a result of the reduced number of
input scans. t-FTP is second to m and p-FTP in terms of performance improve-
ment (due to more repeated (but significantly less compared to Apriori) scans
than p and m-FTP). However t-FTP achieves a balance in the space time com-
plexity tradeoff. Since it is a pattern growth approach, it is only the patterns
or sequences encountered in the input that are maintained by the algorithm, as
opposed to the exhaustive approaches adopted by m and p-FTP. Thus the space
requirements of t-FTP is significantly lesser compared to Apriori, m and p-FTP.

Despite being low on space consumption, t-FTP achieves better performance
in comparison to Apriori and moderately lowered performance in comparison to
m and p-FTP, as a result of the more number of repeated scans. Thus situations
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where the input is composed of lengthy sequences involving relatively lesser
number of unique elements and more frequent patterns, algorithms m and p-
FTP are preferred in comparison to Apriori and t-FTP. On the other hand, for
inputs involving lengthy sequences and more unique elements, t-FTP is ideal
compared to Apriori, m and p-FTP. This is due to the balanced space and
time improvements offered by t-FTP. In the case of inputs involving lengthy
sequences, more unique elements and less number of frequent patterns, Apriori
dominates the rest as a result of its support biased logic, wherein it prunes
out infrequent patterns at a much earlier stage of the algorithm in relation to
the proposed approaches. The support based logic favours less frequent patterns
scenarios, but also contributes to the repeated scans limitation of Apriori with
inputs composed of more frequent patterns.
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The proposed algorithms are independent of the support factor as opposed
to the level wise support dependent logic of Apriori. Execution time of Apri-
ori is inversely proportional to support threshold and hence execution times at
lowered support values are high compared to higher support values. This is a
result of Apriori’s level wise principle, wherein, as a result of the reduced sup-
port values, more patterns become frequent at a particular level. Candidate and
subsequent frequent pattern generation becomes time consuming due to the in-
creased frequent patterns in the preceding level. The effect of support threshold
on execution times of the algorithms is shown in Figure 5. As can be observed,
all the three proposed approaches exhibit only slight variation in execution times
due to run time resource allocation constraints. On the other hand, Apriori shows
considerable variation in execution times due to the changing support factors.
Varied input sequences establish a similar qualitative behavior. The proposed
approaches require the support parameter only during the initial scan to decide
on frequent and infrequent single length patterns and finally to generate all pos-
sible frequent temporal patterns. Apriori on the contrary, requires the support
factor at each level to generate frequent patterns from candidate patterns.

7 Conclusion

Frequent Temporal Pattern mining is an essential phase of video association
mining. We have studied the algorithms for FTP mining comparing the existing
Apriori based one with our proposed approaches. Association Mining research in
the domain of conventional databases led to the evolution of several efficient and
application specific frequent pattern mining algorithms. FTP mining is a rela-
tively new and emerging research area with the potential for further efficient and
application specific approaches. The proposed algorithms overcome the repeated
scans limitation of Apriori and hence contribute to an efficient video association
mining strategy. Case specific applications of generated frequent patterns such
as classification, summarization and dedicated algorithms for the same is a can-
didate for further research.
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Abstract. Ubiquitous Healthcare (u-healthcare) which focuses on automated 
applications that can provide healthcare to citizens anywhere/anytime using 
wired and wireless mobile technologies is becoming increasingly important. 
Ubiquitous healthcare data provides a mine of hidden knowledge which can be 
exploited in preventive care and “wellness” recommendations. Data mining is 
therefore a significant aspect of such systems. Distributed Data mining (DDM) 
techniques for knowledge discovery from databases help in the thorough  
analysis of data collected from healthcare facilities enabling efficient decision-
making and strategic planning. This paper presents and discusses the develop-
ment of a prototype ubiquitous healthcare system. The prospects for integrating 
data mining into this framework are studied using a distributed data mining sys-
tem. The DDM system employs a mixture modelling mechanism for data parti-
tioning. Initial results with some standard medical databases offer a plausible 
outlook for future integration.  

1   Introduction 

The advances in and rapid deployment of wireless technology through devices and 
mobile telephony have resulted in the development of novel ubiquitous healthcare 
systems that simplify the monitoring and treatment of patients [1]. The provision of 
healthcare services at any time and any place for individual consumers has become a 
necessity due to the increase in aging population in several countries and the health-
care field facing strong pressures to reduce costs while increasing quality of services 
delivered. Such u-Healthcare systems also provide enhanced services including real-
time patient data collection and monitoring for emergency care as well as preventive 
health recommendations.  

The vast amount of data collected from the distributed users of u-Health services re-
sults in a growing need for analyzing them across geographical lines using distributed 
and parallel systems. The success of these u-Healthcare systems will depend on smart 
utilization of healthcare information systems for decision support and knowledge man-
agement. In this paper, we focus on the use of a preliminary distributed data mining 
(DDM) system [12] within a u-Healthcare framework. A data partitioning technique 
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based on mixture modeling [13] is employed in the distribution of data for local data 
mining. Subsequently we introduce and present empirical analysis on some simple  
databases. The indispensability of DDM systems to u-Healthcare is substantiated. 

2   Ubiquitous Healthcare Initiatives and Challenges 

A growing number of ubiquitous healthcare projects are being pursued by large enter-
prises owning healthcare related companies and government bodies. MobiHealth pro-
ject [2] is a mobile healthcare project supported by the EC with countries such as 
Netherlands, Germany, Spain and Sweden participating in it, and companies such as 
Philips and HP are providing technical support.  EliteCare[3], is an elderly care sys-
tem developed in the USA that monitors patients using various sensors and provides 
emergency and health information services. Tele-monitoring service[4] is being de-
veloped by the Philips Medical system, where centers analyze data that is collected 
from homes and transmitted by biomedical signal collection devices, and provide 
health management and related information. CodeBlue[5] is a sensor network based 
healthcare system being developed to treat and deal with emergencies, rehabilitation 
of stroke patients, and in general, to use health signal data in addition to hospital re-
cords in real time treatment decisions. The UbiMon[6] project which stands for Ubiq-
uitous Monitoring Environment for Wearable and Implantable Sensors is studying 
mobile monitoring using sensors and real-time biomedical data collection for long 
time trend analyses. The Smart Medical Home[7] aims to develop a fully integrated 
personal health system with ubiquitous technology based on infrared and bio sensors, 
computers, video cameras and other devices. Sensor data is collected and transmitted 
to a center for further analysis and preventive care. 

There are several ubiquitous challenges in the development of such healthcare 
frameworks and systems. These include: 

• issues of security and privacy related to information transfer through unsecured 
infrastructure, potentially lost or stolen devices, legal enforcement and other 
scenarios; 

• determining current context and user activity in real-time and locating context 
dependent information such as automatic discovery of services based on user 
health needs; 

• development of low-power sensors to monitor user context and health condition; 
• information management through development of techniques to collect, filter, 

analyze and store the potentially vast quantities of data from widespread patient 
monitoring and applying privacy preserving data mining at several levels; 

• simple patient interaction systems to provide guidance, feedback and access to 
medical advice in acute situations; 

• Adaptable network infrastructures to support large-scale monitoring, as well as 
real-time response from medical personnel or intelligent agents.; 

• integration of specialized local u-Health architectures for unified data access and 
connection to National grids; 
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3   Ubiquitous Healthcare System Framework 

Figure 2 shows an overview of the ubiquitous healthcare service framework as sug-
gested in this paper. A system user in this paper refers to a patient who has a contract 
with a provider to use the ubiquitous healthcare services and regularly receives medi-
cal treatment at a hospital. The user wears a sensory device, provided by the hospital, 
on his wrist. The sensor regularly transmits collected data to a healthcare center 
through networking or mobile devices, and the transmitted data is stored at the u-
healthcare center. In the center, monitoring staff are stationed to answer the user’ que-
ries, monitor his biomedical signals, and call an emergency service or visit the patient 
to check his status when an abnormal pattern is detected. The hospital monitors the 
collected data and judges the patient's status using the collected biomedical signals in 
his periodic checkup. It is important to note the framework is currently developed for 
a subscription-oriented service.  

 

Fig. 1. System Framework 

3.1   Biomedical Signal Collection and Transmission 

The wrist sensor, attached to a user's wrist throughout the day, collects data such as 
the user's blood pressure, pulse, and orientation and transmits the collected data to the 
user's mobile phone or access point (AP) at home using a wireless ZigBee device. 
ZigBee is established by the ZigBee Alliance and adds network, security and applica-
tion software to the IEEE 802.15.4 standard. Biomedical signals can be collected 
while moving in and out of the user’s residence. The data collected inside of the 
house is sent to the AP in the house using Zigbee module. The AP stores the collected 
data and sends it regularly to the data storage at the healthcare center. When the user 
is outside of the house, the sensor sends the collected data to the user's mobile phone 
and then using CDMA module of the mobile phone, transmits the data to the center. 

A light-weight data mining component is being developed for the mobiles and APs 
which briefly analyzes the data collected. This component has the responsibility of 
judging if an emergency occurs by analyzing the biomedical signals collected by the 
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sensor. It also includes a function to call an emergency service using a motion detec-
tor attached to the sensor if it detects user collapse. 

3.2   Healthcare Center 

The healthcare center has two primary roles. First, it provides storage and manage-
ment for the biomedical data collected from the users, and second, it monitors the us-
ers' health status and takes appropriate emergency or preventive action when required. 
A database server in the healthcare center stores and manages data including the 
medical, personal, family and other information for all registered users as well as 
biomedical signals collected from them. This data is used for real-time monitoring of 
users in case of emergencies and is also useful in periodic checkups. 

The healthcare center also includes personnel who are stationed to keep monitoring 
users' health status and provide health information as well. Some of their responsibili-
ties include regular phone checks, personal visits to users and emergency assistance if 
any abnormal signals are detected from a user. 

3.3   CDSS (Clinical Decision Support System) 

We plan to provide the following decision-support/strategic-planning services includ-
ing, analysing trends in hospital admission, analyzing treatment pattern, analyzing 
outcomes of treatment, analysing cost-effectiveness of health care, planning out-of 
hospital (ambulatory) care, forecasting ‘new disease’ and strategizing appropriate 
preventive measures, forecasting complications of treatment, forecasting the spread of 
infectious diseases. The CDSS supports long-term and short-term decision making 
processes by using models from distributed data mining, developing alternative plans 
and performing comparison analysis. In the short-term it assists in optimal planning to 
solve various decision making problems confronted in emergencies by utilizing the 
biomedical signals. The goal of this system is to provide an information system envi-
ronment where a decision maker can solve problems easily, accurately and promptly 
such that users are benefited. The CDSS needs to be integrated with a distributed data 
mining system that can provide global models. 

3.4   Emergency Response 

Emergencies in a U-health framework require robust and quick recognition followed 
by an efficient emergency response. In this framework we employ a three pronged 
emergency recognition drive. Firstly, personnel monitoring the streaming biomedical 
data may detect abnormal signs and check user through phones or visits. Secondly, 
abnormal signs are also detected while mining the biomedical data collected over a 
period by the CDSS. Lastly, motion detectors mounted on sensors detect occurrence 
of falls and erratic movement. 

The emergency management system uses a variety of hardware and software compo-
nents that aim to improve emergency counteractions at the appropriate time and lower 
preventable deaths. This includes portable personal terminals comprising of RFID tags, 
portable RFID readers, an ambulance information system, a hospital information system 
and a healthcare information system. The efficiency of the treatment in emergency 
rooms is increased by using RFID tags and readers. Since the system is well integrated 
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it also transfers patient information in real-time to hospitals, and therefore medical 
teams who will provide treatment during emergencies can be well-prepared.  

3.5   Remote Monitoring System 

With increasing urbanization, shrinking of living space and shifting concepts of the 
family, elderly people often tend to live alone without any assistance at home. In such 
cases prompt responses are most important when a medical emergency occurs. The 
remote monitoring system is used to detect falls and erratic movement occurring at 
homes remotely using cameras or by checking current situations when an abnormal 
sign is detected. There may be signals that cannot be detected even with motion detec-
tors mounted on sensors, or false alarms may occur. In these cases, the situations can 
be checked using in-house video cameras. The remote monitoring system is not only a 
management system for patient monitoring but aims for general health improvement 
of consumers through prevention of diseases, early detection, and prognosis manage-
ment. Thus a customized personal healthcare service is established, maintained and 
controlled continuously [9, 10]. 

4   Distributed Data Mining  

Distributed Data Mining (DDM) deals with mining of geographically distributed data.  
DDM research is continually developing improved tools and methods to deal with 
distributed data.  Databases in u-healthcare domains are naturally distributed geo-
graphically and data from all sites must be used to optimise data mining models. 
There are many different DDM systems, algorithms, techniques and paradigms. In our 
study we address the case where a hospital or health data center has a large local da-
tabase which needs to be analysed on a local cluster.  

 

Fig. 2. A Typical DDM Scenario 

4.1   Cluster-Based DDM  

There are a large number of aspects that need to be studied when designing cluster-
based DDM systems. In general the following steps are significant: 
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1. Data Partitioning– a large dataset must be partitioned into smaller subsets of data 
with the same domain according to some function F.  

2. Data Distribution – the individual partitions must be distributed for processing 
over the cluster of PCs typically over the LAN. An appropriate distribution 
scheme may be devised depending on number of clusters, size of clusters, content 
of clusters, size of LAN and LAN communication speeds.  

3. Data Modelling – after distribution local data mining models have to be con-
structed on the nodes in the cluster. Many different knowledge discovery tools and 
algorithms are widely available. The choice of classification algorithm depends on 
the nature of the data (numerical, nominal or a combination of both), the size of 
the data and the destined nature and purpose of the models. 

4. Model Aggregation - local models must be combined and aggregated in an opti-
mal manner to produce a global model that supports accurate decision support. 
Model aggregation attempts to achieve one of the fundamental aims of DDM that 
is to develop a final global model from the distributed data to match the efficiency 
and effectiveness of a data model developed from undistributed data.  

4.2   Mixture Modelling in Data Partitioning 

Local healthcare databases are often too large to process on one machine due to cpu, 
memory and space restrictions. Therefore we require tools and techniques to partition 
the database into manageable subsets. SNOB is a system developed for cluster analy-
sis and automatic classification using mixture modelling by Minimum Message 
Length (MML) [13]. SNOB aims to discover the natural classes in the data by catego-
rising data sets based on their underlying numerical distributions. It does this using 
the assumption that if it can correctly categorise the data, then the data can be de-
scribed most efficiently (i.e. using the minimum message length). SNOB uses MML 
induction, a scale-invariant Bayesian technique based on information theory. A re-
lated goal in our project is to investigate whether using SNOB as our method of 
choice for clustering is appropriate and efficient in the framework of DDM. 

A database is usually composed of many objects or instances. Each instance has a 
number of different attributes with each attribute having a particular value. We can 
think of this as a population of instances in a space with each attribute being a differ-
ent dimension or variable. SNOB assumes to know the nature, number and range of 
the attributes. The attributes are also assumed to be uncorrelated and independent of 
each other. SNOB attempts to divide the population into groups or classes such that 
each class is tight and simple while ensuring the classes’ attribute distributions sig-
nificantly differ from one another. In figure 4 we can see the partitioning part of out 
DDM system with SNOB being the core of the partitioning operation. SNOB is used 
to cluster the data and generate a report file, which is then scanned and the complete 
database gets divided into the appropriate partitions.  

In brief SNOB generates a hypothesis (the first part of the general message) that is 
translated into the data’s class structure. The data is coded optimally by shortest mes-
sage length where the hypothesis holds true (this is the second part of the general 
message and is talked about above). Note that SNOB doesn’t construct the message 
but rather only calculates the length the message would have if it were constructed.  
The message length is calculated in ‘nits’, a nit is [log e / log 2] and is a unit message 
length. 
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5   Healthcare Decision Support with Distributed Data Mining 

A small number of published studies address the value of data mining within the 
healthcare industry. ANNs have been used to predict transfusion needs [21], identify 
myocardial infarctions [1], estimate drug and plasma concentrations levels of pharma-
ceutical drugs [20], and predict the risk of coronary artery disease [12]. All studies as-
sert that a key strength of ANNs compared to traditional statistical models is their 
ability to deal with nonlinearities in data sets while not worrying about the underlin-
ing distribution of data [5]. Other popular data mining techniques applied to health-
care are Bayesian models, association rules, case-based reasoning, genetic algorithms, 
and fuzzy systems (see[18] for applications).  

Table 1. Levels of u-Healthcare data mining 

sensor data mining for emergency detection Low Level 

sensor data fusion for decision support 

periodic trend analysis & wellness recommen-
dations 

analysis of patient groups for drug effects, 
CRM and indirect factors 

Hospital-Based 

recovery analysis, drug interaction and other 
studies like allergy cause and detection 

clustering and classification analysis for epi-
demics and other implicit patterns 

Global Level 

GRID based mining of biomedical data like 
gene expressions and MRI images, on a National 
and International scale. 

 

In table 1 we define the various levels of data mining applicable is such healthcare 
frameworks. In this paper we consider the scenario [12] where a hospital needs to 
analyze a very large database with real-time patient sensor data. Due to processing 
and memory limits the database is partitioned and sent to individual machines to be 
processed. In this section we discuss how distributed data mining plays an important 
role within the CDSS component of the ubiquitous healthcare system. 

5.1   CDSS and DDM 

In a ubiquitous healthcare framework DDM systems are required due to the large 
number of streams of data that have a very high data rate and are typically distributed. 
These need to be analyzed/mined in real-time to extract relevant information. Often 
such data come from wirelessly connected sources which have neither the computa-
tional resources to analyze them completely, nor enough bandwidth to transfer all the 
data to a central site for analysis. There is also another scenario where the data col-
lected and stored at a center needs to be analyzed as a whole for creating the dynamic 
profiles. The preliminary empirical analysis with the prototype distributed data  
 



268 M. Viswanathan 

Hospital A Hospital B 

GRID SERVICES INTERFACE
 

Fig. 3. From Local to Global Mining 

mining system discussed in this paper is suited towards this latter situation. The inte-
gration of the CDSS component of the ubiquitous healthcare framework with such a 
DDM is important. 

Data mining techniques used in the decision making system divide patients into 
groups. As a collection of patients have their own characteristics, they should be 
divided properly, and group properties are found through applying cluster analysis 
modeling techniques and searching created groups in the group analysis step. Sec-
ondly, causal models are developed for health patterns using mining techniques. 
Finally, a dynamic profile of the patient can be created using past history and do-
main knowledge in conjunction with sensory data. Each patient's risk rate is calcu-
lated by a system reflecting mining results, and administrators can see  
patients' risk rankings from the risk rates and give priority to patients with higher 
rates.  

5.2   Distributed Data Mining Architecture 

This section describes a prototype system for DDM. For a detailed exposition of this 
system see [16]. The DDM system is build from various components as seen in figure 
3. The DDM system takes source data and using SNOB [13], a mixture modeling tool, 
partitions it to clusters. The clusters get distributed over the LAN using MPI [14]. 
Data models are developed for each cluster dataset using the classification algorithm 
C4.5 [15]. 

Finally the system uses a voting scheme to aggregate all the data models. The final 
global classification data model comprises of the top three rules for each class (where 
available). Note that MPI is used in conjunction with the known maximum number of 
hosts to classify the clusters in parallel using the C4.5 classification algorithm. If the 
number of clusters exceeds the available number of hosts then some hosts will clas-
sify multiple clusters (using MPI). Also the aggregation model scans all Rule files 
from all clusters and picks the best rules out of the union of all cluster rule sets.  
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Fig. 4. DDM System Components 

During the classification phase we have also classified the original dataset and pro-
duced rules modeling this data. To finally ascertain if our DDM system is efficient we 
compare our global model to this data model from the un-partitioned database. We 
compare the top three rules for each class from this model with our rules from the 
global model. If our global model is over 90% accurate in comparison to the data 
model from the original database we consider this as a useful result. 

5.3   Preliminary Results 

The DDM system was tested on a number of real world datasets in order to test the ef-
fectiveness of data mining and the predictive accuracy. Detailed empirical analysis 
can be studied from [16]. In this section we present the DDM system performance re-
sults on the Pima-Indians-Diabetes and Yeast datasets taken from the UCI KDD Ar-
chive [17]. The diagnostic is whether the patient shows signs of diabetes according to 
World Health Organization criteria.  

In order to study the usefulness of the system we compare the top three rules 
(where available) for each class from the partition-derived classification rules and 
rules from the original dataset. The aim of this testing is to find out the effect of our 
clustering process in partitioning, to the efficiency of our classification model and 
its predictive accuracy. We consider a 10% threshold, average error rates of rules 
from partitions greater then 10% of that of the corresponding original rules is not 
useful. 

We can observe in figure 5 that the average error rates of rules from partitions and 
original rules differ within reasonable limits with the average error rate of partition 
rules staying above the original rules throughout with this gap closing as we approach 
higher classes. In general the distributed data mining system offers useful perform-
ance in the presence of a number of factors influencing the predictive accuracy. How-
ever many improvements and further research is needed in order to optimize the 
DDM system.  
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Fig. 5. Predictive Accuracy Comparison 

6   Conclusions and Future Work 

Electronic healthcare (e-healthcare) is now shifting to ubiquitous healthcare which 
enables real-time monitoring, early diagnosis and treatment for potential risky dis-
eases. In addition to devices such as wearable healthcare sensor systems and smart 
medical homes, distributed computing for large scale analysis of physiologic signals 
have also been developed. The growth in wireless technology has also had a signifi-
cant impact on the development of truly ubiquitous healthcare systems. Provision of 
quality low-cost healthcare services is becoming an increasingly critical issue due to 
the elderly population growth in many countries. Our research aims to enable a pa-
tient-centric ubiquitous healthcare environment instead of the existing hospital-centric 
approach.  

Despite this advancement in technologies for developing u-Healthcare systems, 
such systems face an important challenge in maintaining privacy of patient data due to 
rampant monitoring and access. In the ubiquitous sensor era, it is possible to collect 
the data from end node and track user locations without their awareness. Further re-
search is needed to counter the security and privacy challenges in u-Healthcare sys-
tems.  Another issue is that of scalability. It is important to understand that the system 
described in the paper will offer specialist paid services and is still under develop-
ment. In many developed countries (e.g., South Korea) network bandwidth is also not 
a critical issue anymore.  

This paper commences by describing a ubiquitous healthcare framework designed 
to provide consumers with freedom from temporal and spatial restrictions in their ac-
cess to professional and personalized healthcare services anytime and anywhere – 
even outside of the hospital. The use of traditional verification-based approaches to 
analysis is difficult when the data is massive, highly dimensional, distributed, and  
uncertain. Components of the system framework are discussed in brief. A prototype 
distributed data mining system based on mixture modelling is introduced with results  
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from preliminary experiments on data. The plausibility of integrating such a DDM 
system with the clinical decision support component (CDSS) of the ubiquitous health-
care frameworks is highlighted. 
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Abstract. The judgment that whether an email is spam or non-spam may vary 
from person to person. Different individuals can have totally different responses 
to the same email based on their preferences. This paper presents an innovative 
approach that incorporates user preferences to construct an anti-spam mail sys-
tem, which is different from the conventional content-based approaches. We 
build a user preference ontology to formally represent the important concepts 
and rules derived from a data mining process. Then we use an inference engine 
that utilizes the knowledge to predict the user’s action on new incoming emails. 
We also suggest a new rule optimization procedure inspired from logic synthe-
sis to improve comprehensibility and exclude redundant rules. Experimental  
results showed that our user preference based architecture achieved good per-
formance and the rules derived from the architecture and the optimization 
method have better quality in terms of comprehensibility. 

Keywords: user preference ontology, anti-spam system, data mining. 

1   Introduction 

Spam mail is unsolicited, unwanted email sent indiscriminately, directly or indirectly, 
by a sender having no current relationship with the recipient [1]. Most software for 
email clients provides some automatic spam mail filtering mechanism, typically in the 
form of blacklists or keyword-based filters. This filtering technique was somewhat 
effective in the beginning, but it gradually declined with accuracy over time because 
spammers started using personal-sounding subjects to thwart the keyword filters [2]. 
A variety of machine learning algorithms such as naïve Bayesian classifier (NBC) and 
support vector machine (SVM) have been used for email categorization task on dif-
ferent metadata. While these anti-spam filters achieve statistically impressive accura-
cies, they remain prone to false positives (i.e., non-spam or legitimate email tagged as 
spam, which is called “ham”) and false negatives (spam in your mailbox). More to the 
point, some email is spam to someone but ham to others in many real situations. For 
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example, it is possible that the a customer service staff at a credit card company may 
send many business emails to customers and get feedbacks from some of them. In this 
case, some customers consider the mail as spam but others find it useful. Users’ be-
haviors to emails vary from one another according to the different personal prefer-
ences. Therefore it is meaningful to provide user-oriented anti-spam services based on 
the preferences. In this work, we have collected user preference information and 
email responses from a group of college students to train an association and classifica-
tion mining system. Then we have used the generated rules to define a user preference 
ontology in a formal language. To show how the ontology can help anti-spam sys-
tems, we designed a concept of user preference based anti-spam mail system and did a 
proof-of-concept implementation. The experimental results indicate that the proposed 
approach is promising. 

The paper is organized as follows. Section 2 introduces some related work. Section 3 
describes the data collection and preprocessing. Section 4 covers our ontology con-
struction methodology using association and classification mining. Section 5 presents 
the proposed architecture and experimental results. Conclusions are given in Section 6. 

2   Related Research 

Recently some works about personal email management system have been proposed. 
Gray and Haahr suggested personalized, collaborative spam filtering [3]. Personalized 
collaborative filters deliver the most relevant spam notices to each user from the  
collection of all spam messages that are reported by members of the network. To 
implement this personalized collaborative filter, whenever a new spam is classified, a 
signature should be computed and propagated to those users likely to receive a similar 
mail in order to consider it spam. This requires that information is compiled and 
maintained for each user and other users who are in similar groups. The P2P architec-
ture lends itself nicely to such a system. Since this approach depends on other user’s 
signature in the P2P network, it is not stand alone. On the other hand, Ravi et al. pro-
posed personalized email management at network edges [4]. Their artificial neural 
network based spam filter performs spam and virus filtering at the server’s origin and 
therefore saves network bandwidth. The system has two filters: 1st filter recognizes 
text pattern in email and learns from the pattern, and 2nd filter learns images in email. 
This system is very close to human spam identification. But this methodology has a 
centralized spam filter which just identifies the spam in one email account and helps it 
learn and then deletes such spam mails from all other accounts of the same user. 

Several anti-spam mail systems considering user preferences are currently operat-
ing. Most of them require users’ selection about what they accept or not based on the 
recommendation of the anti-spam system. In these systems, an email that could be a 
potentially spam but cannot be classified as definitely spam will be stored in a spe-
cific area. The intended recipient of the email will receive a web link to the specific 
area, where any emails held there can be classified. Within the specific area the indi-
vidual user will be able to classify the email as required. The system will remember 
the individual user’s preference and in the future always transmit or block emails 
from that particular source to the user’s inbox [5]. Another setting included in user 
preferences specifies the languages in which the ham emails are expected to be  



274 J. Kim et al. 

written. Current anti-spam systems considering user preference are summarized; they 
are mainly based on other users’ advice in the same group or other email account 
information of the same user or user’s judgment to accept or not based on the recom-
mendation of the system. However, our goal is to develop a user preference ontology 
based anti-spam management system which is purely based on user preferences and 
user responses. 

There are two main methods to design any domain ontology: top-down and bottom-
up. In the top-down approach, ontology experts determine the concepts and their 
relationships based on their domain knowledge and intuition. In the bottom-up ap-
proach, ontology experts select the important concepts by analyzing data coverage 
and patterns related to them. Both top-down and bottom up approaches need human 
involvement, although some automatic tools can reduce manually efforts, e.g., the 
tools which can acquire ontological knowledge from natural language texts [6]. Text-
based learning also can be useful for selecting the keywords for the vocabulary in 
domain thesauri. In this paper, we focus on finding the relationships between user 
preferences and their behaviors (i.e., responses to emails). The relationships can be 
represented as rules (axioms) in the domain ontology. 

Data mining is useful in discovering the classification rules but it is hard to tell 
which rules are useful in terms of comprehensibility and accuracy from probably a 
great number of rules derived through the mining process. Some rules may be too 
long or too specific to be useful in ontology construction. There are several works on 
multi-valued logic in machine learning that can be used for rule minimization and 
optimization. Files and Perkowski explored the multi-valued logic synthesis (MVLS) 
method [7]. They described how some concepts of machine learning matched nicely 
with MVLS and showed how MVLS outperformed both C4.5, the widely used classi-
fication algorithm and Espresso, an industry standard logic minimization tool. Also, 
iterative mining for rules with constrained antecedents was reported [8]. This ap-
proach was an iterative algorithm that could exploit mining information gained in 
previous steps to efficiently answer subsequent queries. In this paper, we suggest a 
simple rule minimization approach based on logic synthesis inspired from Karnaugh 
map [9] and data mining to exclude lengthy and redundant rules which are not easy 
for humans to understand. 

3   Data Preparation 

We collected data for user preferences and responses to the emails from the under-
graduate students majoring in computer science and information technology at Daegu 
University in Korea. The first author has conducted several experiments on content-
based email filtering [10]. From his previous experience, we aimed at developing an 
anti-spam mail system based on personal interests and behaviors from a specific user 
or user group instead of mere analysis of the contents of the email header and body. 

First, we designed a user profile format to represent the user preference and their 
different types of responses to the emails. Many web mail systems such as Yahoo  
and Comcast provide registration forms to collect personal information about  
the users’ interests. Similar to these forms, we chose {Age, Gender, RequiredHits, 
News, Finance, Sports, Adults, TvMovieMusic, Kids, Games, Travel, Shopping,  
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Jobs, RealEstates} as attributes to be included in our user profile. The Age attribute has 
2 options -FS (= freshman and sophomore) and JS (= junior and senior) - as all the par-
ticipants were college students. The RequiredHits (from now on, RHit) was originally 
adopted in Spam Assassin [2]. It is defined as how many hits are required before a mail 
is considered as spam, which indicates the strength of the spam filter that the user ex-
pects. However not like Spam Assassin which uses numbers in this option, we use lin-
guistic terms such as Very Weak (VW), Weak (W), Neutral (N), Strong (S), and Very 
Strong (VS) because we do not consider email contents and linguistic representation is 
more comfortable to people. However, since weak (W) was never chosen by users par-
ticipated in this work, we eliminated the W value from the RHit attribute set in the ex-
periment. If the users want a very strong spam filter, for example, they can choose VW 
for RHit, or S if a relatively weak one is preferred. We include the information of email 
category (henceafter, ECat) labeled by human expert together with the users preferences 
and their responses in the data mining process to study how the preferences affects 
responses.  

Second, the feature selection was performed before we mined the data. Feature se-
lection involves searching through all possible combination of features in the candi-
date feature set to find which subset of features works best for prediction. A few of 
the mechanisms designed to find the optimum number of features are information 
gain, mutual information, chi squared test and so on. According to previous works on 
data mining [11], information gain is a good solution to this problem. We calculated 
information gains for all 15 attributes in a user profile plus the ECat attribute, and 
chose several attributes from them. The detail of this procedure is described in  
Section 5.3. 

Third, we conclude that email recipients typically have four kinds of response to 
incoming emails: Reply, Delete, Store, and Spam. When they have no interest on a 
mail, they just delete it. If they think a mail is important and valuable to respond, then 
they reply to the sender. Regardless of replying it or not, they sometimes just hold 
some mails in mail box because the emails might be useful in the future. Finally when 
a mail is concerned as spam, most of the users move it to a spam dump box to explic-
itly mark it. Surely, someone can do both actions such as deletion and moving into a 
spam box but the other either deletes or moves it. The important thing is that most of 
users would like to maintain only ham in their mail boxes. 

Thus we collected some sample emails, personal information and preferences of 
participating users, and their responses to the samples. Among all the attributes in the 
profile, most of them have binary values. For example, {FS, JS} are used for the Age 
attribute and {male (M), female (F)} are given for the Gender attribute, respectively. 
And all the attributes concerning the user’s interests are given in the true-or-false 
form. If a user is interested in News, he or she checks true for the attribute. However, 
multi-valued attributes (VW, N, S, and VS) are used for RHit. And ECat attribute 
uses 12 values to indicate different email category labels; besides the original 11 la-
bels of category, the Etc label is used if no category is labeled for a specific email. 
The target variable or the output variable of classification mining, Response, has four 
categories {Reply, Delete, Store, Spam}. 
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4   Ontology Construction 

Ontologies, which can be defined as formal specification of vocabulary of concepts 
and their relationships, play a key role to define the semantics of information for intel-
ligent systems [12]. To achieve user preference based anti-spam system, it will be 
helpful to construct a domain ontology which can formally define user behaviors 
based on their preferences. To do that, we mainly perform three steps. The first step is 
to use association and classification mining to find relationships (rules) between sev-
eral users’ preferences and their email responses. In the next step, we apply a new 
rule-pruning procedure eliminating redundant rules and preserving highly comprehen-
sible ones. Translation from optimized rules to axioms in a domain ontology is per-
formed during the final step. The details are described as following. 

First, we try to discover association rules between various groups of users and their 
responses for sample email data. For example, we expected that women usually like 
shopping and students have strong interests in job recruiting. This intuition was real-
ized after we applied association mining to user preference data set. In the same way, 
we wanted to find unknown correlations between user profiles and user log files, 
which include user responses to sample emails. Thus, we chose the typical decision 
tree algorithm, ID3 [11], to train sample email preference data. Our sample data are 
composed of mostly binary features and some are nominal features as described in 
Section 3. So ID3 is suitable to discover representative rules from the data set. After 
ID3 mining was performed, a decision tree is generated. We can convert the decision 
tree into rules by describing each path of the tree with a rule. From a root node to 
internal nodes in each path are considered as antecedent conditions of each rule and 
the leaf node as a conclusion of each rule. To evaluate which rule is good, we count 
the accuracy by calculating the proportion of testing instances which match the rules. 

Second, we apply a new rule minimization procedure in order to exclude redundant 
rules and select highly comprehensible ones. Thus we suggest a rule pruning approach 
inspired from logic synthesis. Karnaugh map (K-map) is well known as a simple and 
easy method to understand Boolean logic simplification [9]. It is possible to find two 
or more simplified logic expressions in a K-map. For example, a function F (A, B, C) 
= Σ(1, 3, 4, 5, 6, 7) is composed of three input variables A, B, and C. This function F 
has 6 min terms, {001, 011, 100, 101, 110, 111}. Two kinds of logic minimizations 
are possible as shown in Figure 1(a) and (b). 

           
(a) F(A,B,C) = C + AC’                       (b) F(A,B,C) = A + A’C 

Fig. 1. K-map method examples for 3 variables 
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As shown in Figure 1, even though the function F is fixed, it is possible to get two 
different logic representations. Both expressions are equivalent with respect to logic. 
Since we got the idea about rule minimization from this K-map example, our rule 
minimization approach is called logic synthesis based rule pruning (LSRP). There are 
several variables in a rule set derived from data mining. Most variables are Boolean or 
binary but some of them are multi-valued such as RHit and ECat. In LSRP, if two or 
more corresponding logic of a specific variable are distinct, the rules with the specific 
variable are merged into one and then the corresponding antecedent condition of the 
variable will be omitted in a merged rule. Thus simpler rules can be derived. The 
following example with six artificial rules shows the idea well. 

R1: if Age = JS and ECat = Finance and RHit = S and Adults = F and Games = T 
and Jobs = T then Response = Spam. 

R2: if Age = JS and ECat = Finance and RHit = S and Adults = F and Games = T 
and Jobs = F then Response = Spam. 

R3: if Age = FS and ECat = Adults and RHit = VW and Adults = T then Response 
= Store. 

R4: if Age = FS and ECat = Adults and RHit = N and Adults = T then Response = 
Store. 

R5: if Age = FS and ECat = Adults and RHit = S and Adults = T then Response = 
Store. 

R6: if Age = FS and ECat = Adults and RHit = VS and Adults = T then Response = 
Store. 

There are two similar rules R1 and R2 with only one distinct antecedent condition 
in Jobs attribute. Therefore the two rules are merged into R1 ∙R2 where the antecedent 
conditions T and F of the variable Jobs are merged into Null because Jobs = T is in 
conjunction with Jobs = F by logic synthesis operation. So a new rule R7 is derived 
by excluding the Null condition in R1∙R2. 

R7: if Age = JS and ECat = Finance and RHit = S and Adults = F and Games = T 
then Response = Spam. 

Similar operation can be also performed for nominal variables. As we mentioned, a 
variable RHit has four categories. If RHit values of four rules being compared are 
distinct, then the four rules are merged into one rule. In the above example, R3 has 
VW value as RHit and the values of RHit in the other three rules are N, S, and VS, 
respectively. From the synthesis of rules 3, 4, 5, and 6, the antecedent condition of 
RHit should have Null and hence the condition is excluded to construct a new rule 
R8. 

R8: if Age = FS and ECat = Adults and Adults = T then Response = Store. 

It is possible that two or more rules sometimes compete to merge other rules with 
only one different antecedent condition. To resolve this situation, we consider infor-
mation gain (IG) of each attribute in a rule set. When two or more candidates are 
found to be merged, we should choose a variable with lowest IG and then merge two 
rules with distinct binary attribute values or several rules with distinctive multiple 
attribute values in the variable. It is fair that the attributes with higher IGs should 
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survive in a rule set. As we expected, experimental results (see Section 5.3) are a little 
different from the ID3 mining. 

Third, we interpret the derived classification rules to an ontology using a formal 
language, Web-PDDL [13], a strongly typed first order language especially for repre-
senting ontologies and mappings between them. Based on previous results, we first 
define a user preference ontology in Web-PDDL and it can be automatically trans-
lated to other popular ontology and rule languages, such as OWL [14] and SWRL 
[15]. We selected the following concepts as classes and properties: 

Classes (Types): Preference, Event, Email, Action, Client, Gender, ECat, RHit, Re-
sponse 

Properties (Predicates): name, sex, age, prefer, category, respond 

In Web-PDDL, it looks like   
(define (domain spam_email) 
    (:extends (uri "http://orlando.drc.com/daml/ontology/Person/G3/Person-ont-g3r1" 
                        :prefix pdt) 
                  (uri "http://www.w3.org/2000/10/XMLSchema"    :prefix xsd)) 
    (types: Event Email Preference - Object Action - Event  Client - @pdt:Person 
            Gender RHit ECat Age - @xsd:string Response - Action)  
    (:Objects Reply Store Delete Spam - Response 
                    Adults Games Jobs …. - Preference) 
    (:predicates (name c - Client n - @xsd:string) 
            (sex c - Client s - Gender) 
            (age c - Client a - Age) 
            (prefer c - Client e - Preference) 
            (category e - Email e - ECat) 
            (respond c- Client e - Email r - Response))) 

Where user responses (e.g., Reply Store Delete Spam) and preferences (e.g., Adults 
Games Jobs) can be defined as objects (instances) of “Response” class and “Prefer-
ence” class. Then the rules we got from data mining can be put into the user prefer-
ence ontology as axioms. For example, R8 can be represented in Web-PDDL as  
axioms:  

(axioms: 
(forall (c - Client e - Email) 
        (if  (and (age c “FS”) (prefer c Adults) (category e “Adults”)  

             (respond c e Store))) 

In the following section, we will show how to use this ontology in an ontology-
based anti-spam system. 

5   Architecture, Experiments, Results, and Discussion 

In this section, we will present the architecture for our ontology-based system and 
several measures for evaluation of the system performance and the quality of rules 
derived from the LSRP process. Experimental results and some discussion are also 
described. 
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5.1   Architecture 

Each user can respond differently to a mail with even identical mail header and con-
tent. This situation is mainly caused by personal preferences and potential modes of 
behaviors. However, we do not consider users’ unpredictable behaviors in this paper, 
because the work is out of our research scope. We started from this assumption and 
decided to show that it was valid in real situations. Thus, we collected preferences for 
a group of users. To analyze potential responses of users to various emails, we pro-
vided sample emails to a user group and asked them to respond of the predefined 
(Reply, Delete, Store, Spam) actions. In this work, “Reply”, “Delete”, and “Store” 
responses are considered ham emails but only “Spam” response is considered as 
spam. Thus, our research is different from conventional anti-spam mail works because 
we classify user’s specific responses into 4 categories instead of spam and ham. 

The proposed architecture is given in Figure 2: user profile was collected from sev-
eral participant users, user log file was also built with their responses to sample 
emails, and ECat values were given to individual mails by a human expert. We used a 
popular data mining tool, WEKA [11] developed by Witten and Frank to find some 
association and classification rules between preferences and responses. User prefer-
ence ontology was constructed after data mining and rule minimization. Using the 
ontology, especially those axioms which we constructed, our inference engine Onto-
Engine [16], which is a first order logic reasoner using generalized modus ponens, can 
classify the emails into four categories - Spam, Reply, Delete, and Store - based on 
user preferences, email category, and personal information by forward chaining. 

 

Fig. 2. Architecture of the proposed ontology-based anti-spam mail system 

Conventional anti-spam software provides content-oriented filtering service. How-
ever, the proposed system can give user oriented anti-spam mail service, because our 
system not only gives information about spam mail but also estimates user’s response 
to an incoming mail. This approach is new and can be an essential service for email 
clients suffering from lots of spam messages. 
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5.2   Measures 

Performance measures are required to evaluate inference results of OntoEngine using 
axioms in user preference ontology. There are several measures such as misclassifica-
tion, accuracy, prediction, recall, and so on in anti-spam mail system field [1]. Since 
these measures are calculated from email contents, they can be called email-oriented 
measures. However, we aim at user preference oriented service and hence different 
measures are needed to show that the proposed user preference ontology is meaning-
ful to the anti-spam system. In this work, we suggest three measures to achieve this 
goal. 

First, axiom accuracy or axiom confidence is useful to calculate correctness of each 
axiom in the user preference ontology, which is defined as the ratio of the number of 
instances that match the rule only in the antecedent part to the number of instances 
that match the whole rule. Consider the antecedent part and conclusion of each axiom 
when the input attributes of a test instance exactly match the antecedent conditions of 
i-th axiom, we increment the match count of the axiom, axiom[i].match. If the re-
sponse of the test instance is also the same as the conclusion part of the axiom, the 
correct count of the axiom, axiom[i].correct increments too. Then axiom confidence is 
calculated by dividing axiom[i].correct over axiom[i].match. The ontology with 
higher axiom accuracy is more preferable. 

Second, conventional classification accuracy is not appropriate in this context. 
Consider the following scenario. Two users, Bill and John, have almost the same 
preferences and their responses to training instances are also very similar. They can 
be grouped into one small user group and their responses to any email are highly 
possible to be inferred as the same according to the ontology. In this situation, we also 
suppose that the response of the user group in which Bill and John are included has 
been inferred as spam for specific antecedent portion in an axiom. All possible in-
stances, including Bill’s spam response and John’s delete one for the specific antece-
dent portion in the axiom, have been already reflected during the data mining process. 
After that, the system judges that Bill’s response is correct and John’s one is wrong 
for the test instance matched with corresponding antecedent portion in the axiom. It is 
not certain to determine which one is correct. It is not guaranteed that users’ responses 
are equivalent to every kind of email. So we introduce axiom capacity as a measure of 
how many instances can be accommodated by each axiom. Therefore, if the summa-
tion of match scores of each axiom (Σi axiom[i].match) is equal to the total number of 
test instances, then the axiom set can accommodate all instances and there is no ca-
pacity problem. However, it is not easy because we have mined several thousands of 
instances with binary as well as nominal attributes to derive tens of rules. We should 
pass outside instances away from axioms in the ontology to conventional content-
based email filters such as NBC or SVM and let them process the instances.  

Third, we provide a simple quantified measure to evaluate comprehensibility of  
a rule derived from the proposed rule minimization method (LSRP). We defined  
the matched term ratio in a rule, mt, for each rule as the number of attributes in each 
instance over the number of antecedent conditions in each rule. The greater the  
average value of all matched term ratio in a rule set is, the simpler and more easily 
interpretable the rule set is to humans. For example, a test instance, (Age = JS and 
ECat = Adults and RHit = S and Adults = F and Games = T and Jobs = T) and  
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(Response = Spam) is presented. Two rules (R9: if Age = JS and ECat = Adults and 
RHit = S and Adults = F and Games = T then Response = Spam) and (R10: if  
Age = JS and ECat = Adults and RHit= S and Adults = F then Response = Spam) are 
given. Then mt[9] = 6/5 = 1.2 and mt[10] = 6/4 = 1.5. Therefore, the R10 rule has a 
greater matched term ratio than R9 in terms of quantified comprehensibility. This 
measure is simple and quantified. Chan and Freitas also measured rule comprehensi-
bility by the average number of terms in the discovered rules [8] but they did not 
consider the number of input attributes. The above three measures help performance 
evaluation in terms of axiom confidence, capacity, and comprehensibility. 

5.3   Experiments, Results and Discussion  

To evaluate the proposed approach based on the user preference ontology, we col-
lected 40 sample emails with labelled categories. We also collected responses to those 
emails from 90 college students together with their respective preference over several 
options. And thus we used a dataset with 3,600 records; each record consists of the 
email category, user preferences, and the corresponding response. We used 2,400 
instances of the dataset in the training process, and the rest for testing by performing 
the rule evaluation methods described in the previous section. Before carrying out the 
ID3 mining, we selected 6 out of 15 attributes with the highest information gain, 
namely, ECat, Age, RHit, Adults, Games, and Jobs. 

We got 89 rules with accuracies greater than 0% from the ID3 data mining. To 
evaluate the performance of derived rules, we applied them to the 1,200 test instances 
and carried out the proposed rule minimization approach (LSRP), which then gener-
ated a reduced amount of 77 rules. We interpreted the rules in logic axiom form and 
selected some representative ones where one rule was chosen for each email category, 
as shown in Table 1 in descending order of accuracy. Each rule in the table explains 
the way that a user responds to a certain email with respect to the specific preference. 
For example, the first axiom rule shows that 85% of users with Adults=False and 
RHit=Neutral preferences responded as “Spam” when they got adult-related emails. 
In fact, all adult emails were definitely classified to spam in content-based filters, 
while this experiment shows that a few users did not think of those kinds of emails as 
spam. This point convinces us that the proposed user preference ontology based ap-
proach can be a customized solution for individual users. 

Table 2 shows a comparison of the rule set generated by using rule minimization 
method and the one without using it. As shown in the table, average axiom rule accu-
racy was degraded a little by 3.3%. However the number of axiom rules is reduced by 
13.5%, and the average matched term ratio and the total capacity are also improved 
by 15.2% and 1.6% respectively. This reduced rule set with shorter rules is desirable 
to construct a user preference ontology because we pass the rules to each user and the 
user feedback personal preference ontology to the system by easily modifying the rule 
set according to his or her personal interest. 

The correlation of the user’s response to a certain kind of email with respect to 
his/her preference shown in the rules derived from the current experiment data set is 
not significant enough as expected. It is because the data set is not sufficient to supply 
samples for all pre-defined email categories and the distribution of which is unbal-
anced as well. And the lack of sample email data makes it hard to illustrate a clear 
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pattern of the user’s response to a certain email category. To increase the accuracy 
and practicality of the rules, more data should be collected in the future. However our 
work points out an innovative anti-spam approach which incorporates the user prefer-
ence rather than analyzing the email content alone. The result under the current  
experiment setup also demonstrates a good performance of the proposed rule minimi-
zation method. 

Table 1. Axioms derived by logic synthesis based rule pruning and their performance 

No Axiom rules Matched 
term ratio

Accuracy 

1 ECat=Adults ∧  Adults=F ∧  RHit=N => Re-
sponse=Spam 

2 85.0% 

2 ECat=Etc ∧  Age=FS ∧  Jobs=T ∧  Games=T ∧ 
RHit=S => Response=Spam 

1.2 82.4% 

3 ECat=Finance ∧ Age=JS ∧  Adults=F ∧ Games=F ∧ 
RHit=N  => Response=Spam 

1.2 81.5% 

4 ECat=News ∧  Age=JS ∧  Jobs=F ∧  Adults=F ∧ 
RHit=N => Response=Delete 

1.2 75.0% 

5 ECat=TVMovieMusic ∧ Age=JS ∧ Jobs=T ∧ RHit=N 
=> Response=Reply 

1.5 71.4% 

6 ECat=IT ∧ Age=JS ∧ Jobs=T ∧ Games=T ∧ RHit=N 
=> Response=Delete 

1.2 65.9% 

7 ECat=Shopping ∧ Age=JS ∧ Adults=F ∧ Games=F ∧ 
RHit=N => Response=Spam 

1.2 50.0% 

8 ECat=Travel ∧  Age=JS ∧  Jobs=T ∧  Games=F ∧ 
RHit=N => Response=Store 

1.2 45. 5% 

9 ECat=Jobs ∧  Age=JS ∧  Jobs=T ∧  Adults=F ∧ 
RHit=N => Response=Spam 

1.2 34.6% 

Table 2. Comparison on experimental results for two axiom rule sets derived by the original 
ID3 mining and the proposed rule pruning 

Number of axiom rules Method 
Reply Delete Store Spam 

Axiom 
accuracy

Capacity Matched 
term ratio 

ID3 10 18 17 44 60.1% 1111/1200 1.25 
LSRP 8 16 15 38 58.1% 1129/1200 1.44 
Improv. 20% 11.1% 11.8% 13.6% -3.3% 1.6% 15.2% 

6   Conclusion 

We proposed a method to construct user preference ontology for anti-spam mail sys-
tems. The important feature of our approach is to allow users to give different  
response to the same email based on their preferences. It is different from conven-
tional systems that normally judge which mail is spam based on the email content and 
expect every user to equally respond to the same email. It is a big step forward  
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personalized anti-spam mail service considering user preference and previous re-
sponse history as well as email content. The most important contribution of this work 
is that a user preference ontology can explain why a mail is decided to be spam or 
ham in a meaningful way. Also, the logic rules found by data mining contribute to this 
purpose and a rule pruning method improves human comprehensibility. For the future 
work, we need to extend the proposed system to process real-time and larger number 
of emails to compare our system’s performance with conventional content-based 
filters. We expect that users have consistent responses when the volume of experi-
ment corpus is bigger and thus the testing result can reflect the impact of the  
preferences over their decision.  

Acknowledgement. The first author was supported by the Korea Research Founda-
tion Grant. (KRF-2006-013-D00285) He has worked as a visiting scholar at the AIM 
Lab during his sabbatical year 2006 and thanks to the Department of Computer and 
Information Science at the University of Oregon. Also we appreciate 90 participant 
students to give their preferences and feedback their responses to sample emails. 

References 

1. Cormack, G. V., Overview of the TREC 2005 Spam Track, http://plg.uwaterloo.ca/ 
~gvcormac/trecspamtrack05 

2. Wolfe, P., Scott, C., and Erwin, M., Anti-Spam Tool Kit, McGraw Hill (2004) 
3. Gray, A. and Haahr, M., “Personalized, Collaborative Spam Filtering,” in Proc. of the First 

Conference on Email and Anti-Spam (2004) 
4. Ravi, J., Shi, W., and Xu, C., “Personalized Email Management at Network Edges,” IEEE 

Internet Computing, Vol.9(2) (2005) 54-60 
5. Anti-Spam Firewall, http://www.barracudanetworks.com/ns/products/anti_spam_tech.php 
6. Maedche, A., “Ontology Learning for the Semantic Web,” The Kluwer International Se-

ries in Engineering and Computer Science, Volume 665 (2003) 
7. Files, C. M. and Perkowski, M. A., “Multi-Valued Functional Decomposition as a Ma-

chine Learning Method,” in Proc. of ISMVL '98 (1998) 173-178 
8. Chan, A. and Freitas, A., “A New Classification-Rule Pruning Procedure for an Ant Col-

ony Algorithm,” LNCS 3871 (2005) 25-36 
9. Sasao T., “Switching Theory for Logic Synthesis,” Kluwer Academic Publishers (1999)  

10. Kim, J. and Kang, S., “Feature Selection by Fuzzy Inference and Its Application to Spam-
Mail Filtering,” LNAI 3801 (2005) 361-366 

11. Witten, I. H. and Frank, E., Data Mining: practical machine learning tools and techniques,  
2nd ed, Morgan Kaufmann (2005) 

12. Gruber, T. R., “Toward Principles for the Design of Ontologies Used for Knowledge Shar-
ing,” Int. Journal of Human-Computer Studies, Vol.43 (1995) 907-928 

13. McDermott, D. and Dou D., "Representing disjunction and quantifiers in RDF," in Proc. 
Int'l Semantic Web Conference (2002) 250-263 

14. OWL Web Ontology Language. http://www.w3.org/TR/owl-ref/ 
15. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. 

http://www.w3.org/Submission/SWRL/ 
16. Dou, D,, McDermott, V., and Qi, P., “Ontology translation on the semantic web,” Journal 

of Data Semantics, Vol.2 (2004) 35-57 



Question Answering Summarization of

Multiple Biomedical Documents

Zhongmin Shi, Gabor Melli, Yang Wang, Yudong Liu, Baohua Gu,
Mehdi M. Kashani, Anoop Sarkar, and Fred Popowich

School of Computing Science, Simon Fraser University
Burnaby, BC V5A 1S6, Canada

Abstract. In this paper we introduce a system that automatically sum-
marizes multiple biomedical documents relevant to a question. The sys-
tem extracts biomedical and general concepts by utilizing concept-level
knowledge from domain-specific and domain-independent sources. Se-
mantic role labeling, semantic subgraph-based sentence selection and
automatic post-editing are involved in the process of finding the informa-
tion need. Due to the absence of expert-written summaries of biomedical
documents, we propose an approximate evaluation by taking MEDLINE
abstracts as expert-written summaries. Evaluation results indicate that
our system does help in answering questions and the automatically gen-
erated summaries are comparable to abstracts of biomedical articles, as
evaluated using the ROUGE measure.

1 Introduction

With the rapid development of biological and medical research in the last decade,
the volume of biomedical scientific articles has greatly increased. For instance,
over 2,000 new articles are being added to the MEDLINE database every day. It
is extremely difficult for physicians and researchers in medicine and biology to
build up their own knowledge base from existing publications and update it daily.
Therefore automatic methods such as summarization and question answering
(QA) that can quickly understand and find the main points of biomedical articles
are becoming more essential.

Domain-independent summarizers, such as WebSumm [1], Newsblaster1 and
Alias-I2, have been used to generate summaries of biomedical articles [2], However,
when tuning a summarizer to a particular domain, domain specific information
would improve the quality of summaries. Gaizauskas et al. proposed TRESTLE
(Text Retrieval Extraction and Summarization Technologies for Large Enter-
prises) that relies on named entity annotations and scenario templates to generate
single sentence summaries of pharmaceutical news archives [3]. Centrifuser [4] is
a summarization system that computes topical similarities among documents us-
ing a tree structure-based calculation and extracts sentences from topic-relevant
1 http://www.cs.columbia.edu/nlp/newsblaster/
2 http://www.alias-i.com/
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documents. Elhadad and McKeown introduced a summarizer that generates a
patient-specific summary from journal medical articles [5]. In this system docu-
ments are first categorized into main clinical tasks, from which a set of templates
are built and matched with patient records. Patient-relevant templates are then
merged and ordered to generate fluent English text.

In this paper we introduce BioSquash, a question-oriented extractive summa-
rization system on biomedical multi-documents that are relevant to a question.
The system was based upon a general-purpose summarizer, Squash [6]. We pur-
pose a method to utilize concept-level characteristics from a domain-specific on-
tology, UMLS (Unified Medical Language System3), and a domain-independent
lexicial reference system, WordNet4. Details of the system design are described
in the rest of this paper as follows. §2 provides a high-level description of the
BioSquash system. The automatic annotation of the input documents to be
summarized is described in §3 and §4. Construction of the semantic graph and
the sentence extraction step based upon concept-level characteristics are dis-
cussed in §5. §6 introduces our redundancy elimination and sentence ordering
strategies to produce more readable summaries. The evaluation on experimental
results is given in §7. Some discussions and future work are brought forward
in §8.

2 The System Architecture

The BioSquash system has four main components: the Annotator, Concept
Similarity, Extractor and Editor modules, as illustrated in Fig. 1. The system
starts off by annotating the documents and the question text with syntactic and
shallow semantic information in the Annotator module. These annotations do
not provide sufficient semantic background when we study the relations among
concepts in documents and questions. The actual semantic meanings of both
general and biomedical concepts as well as the ontological relations among these
concepts are obtained in the Concept Similarity Module.

The annotations and conceptual information are then fed to two summa-
rization stages: the first is the Extractor module, which focuses on content
selection and aims to optimize the ROUGE5 score; while the next stage, the
Editor module, focuses on linguistic readability. In the Extractor module, a
semantic graph is constructed based on the semantic role labeling and the con-
ceptual information of documents as well as the question text. Sentence selection
is performed by sub-graph selection on the semantic graph. Sentence redundancy
is also measured and used to create sentence clusters related to the topic ques-
tion. The Editor module orders sentences from the sentence clusters provided
by the Extractor, eliminates irrelevant content from long sentences and finally
produces the summary conforming to the length limit.

3 http://www.nlm.nih.gov/research/umls/
4 http://wordnet.princeton.edu/
5 Recall-Oriented Understudy for Gisting Evaluation, http://haydn.isi.edu/ROUGE/
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Fig. 1. The overall system design of BioSquash

3 The Annotator Module

The annotations used in the BioSquash system include output of a statis-
tical parser [7], a named-entity recognizer and a semantic role labeler. The
named-entity recognition (NER) sub-module categorizes atomic text elements
into predefined named entity classes. We use Alias-I’s Lingpipe system to iden-
tify persons, organizations, locations, numeric entities, pronoun entities as well
as biomedical entities as defined in the GENIA ontology6.

A semantic role is the relationship that a syntactic constituent has with a
predicate. Typical semantic roles for arguments of the predicate include Agent,
Patient, Instrument, and semantic roles for adjuncts include indicating Locative,
Temporal, Manner, Cause, among others. The task of semantic role labeling is,
for each predicate in a sentence, to identify all constituents that fill a semantic
role and to determine their roles, if any [8,9]. Recognizing and labeling semantic
arguments is a key task for answering “Wh-” and other more general types of
questions in the summarization task. Automatic semantic role labeling methods
have been discussed in depth in [8]. The semantic role labeling (SRL) for doc-
uments and questions is produced by transducing the output of the statistical
parser using our own SRL system [10], which is trained on the semantic annota-
tions provided by the CoNLL-2005 data-set, a modified version of the annotation
provided by the Penn PropBank data-set [11]. The following example illustrates
the input and output of the SRL sub-module:

6 http://www-tsujii.is.s.u-tokyo.ac.jp/genia/topics/Corpus/genia-ontology.html
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Example 1
Input : (S (NP (NP (DT The) (NN processing)) (PP (IN of) (NP (NNP LcnA)))) (VP

(VBZ involves) (NP (NNP LcnC))) (. .))

Output : (S (A0 (NP (NP (DT The) (NN processing)) (PP (IN of) (NP (NNP LcnA)))) )

(VP (VBZ PREDICATE involves) (A1 (NP (NNP LcnC)) )) (. .)) 7

4 The Concept Similarity Module

Identification of similarity between questions and sentences in documents is
crucial to our QA summarization task, in which sentences in documents are
selected based on their similarities with other sentences in documents and ques-
tions. Specifically, the sentence similarity metric is used to choose the significant
“group” of sentences and to decide the relevance of a sentence to the question. A
sentence similarity confined to word surface patterns and simple string matching
would however fail in cases of:

– identifying synonyms. Synonyms with different lexical forms are not taken
into account in the sentence similarity metric using only the word-based
approach. This problem is especially sensitive in biomedical documents, since
many biological and medical substance names have various lexical forms. For
instance, when the question asks“ the role of the gene BARD1 in the process
of BRCA1 regulation”, we would expect terms like “function”/“character”,
“BARD 1”, “Breast Cancer 1 Protein” to be considered as similar.

– identifying hypernym-hyponym relations. If the question contains hy-
pernyms of words in the sentence, the word-based approach does not consider
the sentence to be similar to the question. For instance, the occurrence of the
words “arbovirus”, “bacteriophage” and “viroid” in the sentence should im-
prove the sentence significance when the question involves their hypernym,
“virus”.

– word sense disambiguation. The word-based approach would take lexi-
cally identical words as the same, even though they occur different senses in
a particular context.

We define Super Concept, as a synonym, hypernym (is-a) or holonym (part-
of ) of a concept. Therefore, super concept is reflexive and transitive: 1) Any
concept is a super concept of itself; 2) If concept A is a super concept of B and
B is a super concept of C, then A is a super concept of C. We say two concepts
are related ontologically if one is the super concept of the other.

The BioSquash system recognizes each concept by a Concept ID (CID), a
unique identification of each distinct entity, event and relation. Concepts with
the same CID are synonyms. In addition, hypernyms of each concept are also
provided, therefore the system would ideally not have above three problems after
the conceptualization.

7 We use the Role Set defined in the PropBank Frames scheme [9].
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Concepts and their hypernyms are extracted from two public ontologies:
WordNet for domain-independent concepts and UMLS for domain-specific con-
cepts. We apply a CPAN module8, WordNet::SenseRelate::AllWords, to select
the correct sense of each word. The module is an implementation of a word sense
disambiguation algorithm that measures similarity and relatedness based on the
context of the word and the word sense glosses in WordNet [12]. Table 1 shows
an example of sentence annotation that can allow matching according to concept
similarity by matching CIDs.

Table 1. An example of a sentence annotated with concept ID’s to allow matching
according to concept similarity

WORD The processing of LacZ involves LcnC .

WordNet CID - (13366961) - - (02602586) - -

UMLS CID - - - (C0022959) - (C1448241) -

5 The Extractor Module

The Extractor takes the results from the Annotator and Concept Similarity
Modules (see §3 & §4) and provides relevant sentences to the Editor module (see
§6). The extractor module performs the following tasks.

5.1 Concept Identification

The first task of the Extractor is to locate the concepts that exist in the document
set. Given the deep syntactic and shallow semantic annotation, a relatively com-
plete set of concepts is extracted. Three types of concepts are located: ontological
concepts, named entities and noun phrases. An ontological concept is a phrase
that Concept Similarity Module has connected to one of the available ontologies
(WordNet or UMLS). For example, the well-studied organism Pseudomonas aeu-
roginosa, the phrase nucleotide sequence, and the word located would likely be
assigned a concept because the Concept Similarity Module would recognize it as
a member of UMLS. Similarly, a named entity concept is a text phrase that Anno-
tator has identified to be a certain named entity type. For example, the recently
discovered protein macrophage inflammatory protein-1a could be identified by a
named-entity recognizer (NER) but not by Concept Similarity Module because
the ontology is dated and/or curated. Finally, a word that is not recognized as
either a named entity or a member of the available ontologies, but is recognized
to be a noun phrases by the statistical parser, is also labelled as a concept.

5.2 Text Graph Creation

Once the concepts have been identified within the documents, the next task
performed by the Extractor is to identify linguistic and semantic relationships
8 http://www.cpan.org/
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between them. The relationships between concepts result in graph edges. More
specifically, the semantic relations of a document can be given by the seman-
tic labeler. As in [13] a semantic graph is used as a semantic representation of
the document. Because the system works on multiple documents for one ques-
tion, the semantic graph represents the semantic relations for all the documents
by sharing the common nodes and links. An example of a small portion of the
semantic graph constructed from a set of documents is shown in Figure 2. Con-
structed from the output of the Annotator, the text graph contains the informa-
tion in the text of the documents and question that is essential to topic-based
multi-document summarization.

Fig. 2. Subgraph of the overall text graph associated with the proposition P. aerug-
inosa secreted the protein LcnC. The dashed lines indicate multiple edges that likely
exist but are not included in the figure. In this example the question asks for informa-
tion about proteins associated with P. aeruginosa.

5.3 Concept and Proposition Significance

Given a text graph, each concept is assigned a significance score and then each
proposition is scored based on concepts it contains. The value of this score is
based on 1) the number of edges to questions, documents and propositions; 2)
whether the type is an ontological concept, named entity or noun phrase. Next,
each proposition in every sentence from every document is given a significance
score, which will be used to rank the relevance of each proposition to the sum-
mary. The contribution to the significance score is calculated as the summation of
the individual significance values for each unique entity in the sentence. Further
details about assigning the significance score are described in [6].

5.4 Covering the Concept Space

The selection of propositions occurs sequentially, and a fixed number of sen-
tences is returned. This number is large enough to result in more sentences than
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strictly needed for the summary length limit. The selection of the first proposi-
tion is simply based on the largest significance score, with ties broken randomly.
Once the first proposition is selected, similar propositions are of less value to
Extractor. These similar propositions are penalized in order to ensure that other
interesting topics were selected. This process is iterated until the required num-
ber of sentences was selected. Further details about the penalty function are
introduced in [6].

6 The Editor Module

The task of the Editor module is to produce a fluent summary. To achieve this,
we order all the sentences based on their significance scores produced by the
Extractor module, and select the highest scoring subset of the sentences as the
candidate sentences for the summary. Those sentences are then re-ordered by a
2-phase sentence ordering algorithm and a summary candidate is generated after
compressing the re-ordered sentences. The sentence compression step deletes
words or phrases that involve the use of discourse or chronological markers that
can affect fluency of the summary after re-ordering.

We propose a two-phase ordering algorithm to assign an Importance score to
each sentence and order them. In the first phase, the importance score g of each sen-
tence si is computed as a linear combination of a list of features: g(si) = w1F1 +
. . . +wnFn, where Fj is the value of the jth feature equal to either 0 or 1. wj is the
corresponding interpolation weight of Fj . We manually set wj based on a study
of existing summaries. The following features are used to calculate the importance
score: information importance from Extractor module, question and sentence over-
lap, first and last sentences in the document and sentence-length cutoff.

The sentences are then re-ordered by their importance scores. In order to
choose the sentences that are coherent to their neighbors in the summary, we cal-
culate the similarity score of two sentences based on their Longest Common Sub-
sequences (LCS), as the second phase of ordering. More specifically, to choose
the kth sentence mk of the summary, each of the rest sentences is measured
against the sum of two scores in said ordering phases: mk = argmaxs∈S′ g(s) +
LCS(s, mk−1), where S′ denotes the set of sentences that have not been selected
in the summary. Note that, although we have not experimented with different
sentence similarity measures, LCS may be replaced by other techniques, for in-
stance, edit distance and n-gram comparison.

7 Experiments and Evaluations

7.1 Data

One of the challenges to developing a document summarizer for biomedical doc-
uments is measuring the quality of the machine-generated summaries. The ideal
scenario is to have the summaries evaluated by experts in biomedicine. Unfortu-
nately, as in most research settings, we did not have access to a pool of experts
to evaluate our summaries. The more typical method of evaluation is to use an
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n-gram based algorithm to compare the machine-generated summaries to a set
of human written summaries (for which we also need domain experts to produce
multiple summaries for the same question/topic). The annual Document Under-
standing Conference (DUC)9 for example hires humans to write summaries of
newspaper articles that answer a specific questions, such as: What countries have
chronic potable water shortages and why? To the best of our knowledge however,
no dataset has been explicitly created to test automated summarization from the
biomedicine domain.

We solve this problem by transforming data from the Ad-hoc Retrieval task
of Genomics Track at the 2005 Text Retrieval Conference (TREC)10 in order to
test the BioSquash system. The original TREC task was: given a question on
relationships that exist among biological substances and/or processes, retrieve a
set of documents that are relevant to the question from a 4.5-million document
subset of the MEDLINE database. To transform this dataset to our needs we
simply treat the paper abstracts as substitutes for expert-written summaries.
Our assumption is that a paper abstract selected to be relevant by a human
judge will closely approximate the summarized answer sought from the question.
Figure 3 contains a sample question from the TREC task.

From the TREC data we selected the 18 questions (the precise question IDs are
provided in Fig. 4) with the most number of documents associated with it. The
questions with a large number of documents were required in order to effectively
apply ROUGE, a recall oriented n-grammatching measure of summarization qual-
ity [15]. For each TREC question the relevant abstracts are separated into three
subsets: 5 abstracts as peers(eachpeer abstract is taken to be a humanwritten sum-
mary and compared our machine generated summary), 30 abstracts that will be
summarized by BioSquash and 30 abstracts to be used as references by ROUGE.

A fourth set of abstracts was associated to each of the 18 selected questions.
This set is based on the documents retrieved by one of the Information Retrieval
(IR) systems that participated in the TREC task [14]11. This set allows us to
present results for a real-life system that both retrieves appropriate documents
and produces a summary from them. Figure 3 presents one of selected questions
and the corresponding summary generated by BioSquash from documents re-
trieved by the chosen IR system.

In summary, the following sets of abstracts are available for each of the 18
questions:

– Peer Abstracts: Five of the human selected abstracts are treated as inde-
pendently written human expert summaries.

– Relevant Abstracts: 30 of the human selected abstracts are used to create
a summary with BioSquash. This summary is supports the scenario in which
documents are manually selected by a human expert and the task is to
automatically summarize the documents.

9 http://www-nlpir.nist.gov/projects/duc/
10 http://ir.ohsu.edu/genomics/
11 this system’s performance was within the average of all submitted systems (Means

of Average Precision: 0.1834).
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Question: Provide information about the role of the gene Apolipoprotein E (ApoE) in
the disease Alzheimer’s Disease.
Summary: The raised frequency of the epsilon 4 allele in the patients with onset
Alzheimer’s disease was of a lower magnitude than that in United States and Cana-
dian studies. The frequency of E4 alleles was increased (chi 2 = 42; df = 1; p < 10)
among patients with Alzheimer’s disease compared with a Danish control population.
Apolipoprotein E is associated with Alzheimer’s disease neurofibrillary tangles and beta-
amyloid protein in senile plaques. The relative epsilon 4 allele frequency was 0.472 in
LBD, 0.513 in AD-CVD, 0.405 in presenile AD, 0.364 in senile AD, and 0.079 in vas-
cular dementia. To clarify the association of ApoE polymorphism with Alzheimer’s dis-
ease and vascular dementia in Japan, 13 patients with early onset sporadic Alzheimer’s
disease, 40 patients with late onset sporadic Alzheimer’s disease, 19 patients with vas-
cular dementia, and 49 non-demented control subjects were analysed. Apolipoprotein
E sigma4 allele is associated with Alzheimer’s disease in familial and sporadic cases,
but the associations of ApoE sigma4 allele and vascular dementia and/or ischemic
cerebrovascular disease are still controversial. Alzheimer’s disease is associated with an
increased frequency of the apolipoprotein E type epsilon 4 allele. The epsilon 4 allele
has also been shown to reduce the age at onset of dementia in AD in a dose dependent
manner, with the epsilon 2 allele having an opposing effect. Apolipoprotein E epsilon
4 allele frequency among Alzheimer’s disease patients is increased compared to control
subjects and is influenced by the presence of other genetic factors and age at symptom
onset.

Fig. 3. One of the TREC questions (q117) and the corresponding summary generated
by BioSquash from documents retrieved by the IR system [14]

– Retrieved Abstracts: 30 of the system retrieved abstracts are used to
create a summary with BioSquash. This summary supports the scenario in
which the human expert only provides the question and both the retrieval
and summarization are automatically performed.

– Reference Abstracts: Up to 50 of the human selected abstracts are used
as the full set of gold standard summaries when computing the ROUGE
score for the peer “summary” or machine generated summary.

7.2 Evaluation Measures and Results

We follow the evaluation methodology of DUC 2005 and DUC 2006 that used
ROUGE-2 and ROUGE-SU4 to measure performance. ROUGE-n is an n-gram
recall-oriented measure to compare a candidate summary with a set of reference
summaries [15]. ROUGE-SU4 is similar to ROUGE-n except that it involves
bi-grams with maximum skip distance of 4 [15].

As described in §7.1, our experiment’s ROUGE scores measure three different
sets of candidate summaries (peer abstracts, summaries of relevant abstracts and
summaries of retrieved abstracts) against the reference abstracts. The evaluation
of summaries based on retrieved abstracts is related to the settingwhich an IRmod-
ule is used to retrieve several documents relevant to the query, and then our system
is used to produce a question-focused summarization. Table 2 shows ROUGE-2
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and -SU4 scores for the three sets, among which summaries of relevant abstracts
outperform others on both ROUGE-2 and -SU4. The results indicate that our
question-focused machine generated summaries contain information that is more
pertinent to the question when compared to human-written abstracts (which were
not written with any particular question in mind, but rather summarize the docu-
ment for which the abstract was written). Figure 4 illustrates ROUGE-2 and -SU4
scores of the three sets of candidate summaries for all chosen questions.

Table 2. ROUGE-2 and -SU4 scores of the three sets of candidate summaries. For
peer abstracts, scores listed are the average of ROUGE scores of 5 peer abstracts.

Candidate Summary ROUGE-2 ROUGE-SU4

Summaries of relevant abstracts 0.0697 0.1300
Summaries of retrieved abstracts 0.0669 0.1248

Peer abstracts (average) 0.0690 0.1118

Fig. 4. ROUGE-2 (upper) and -SU4 (lower) of three candidate summary sets for all
selected questions, sorted by the performance of BioSquash on abstracts that were
retrived by the IR system
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8 Conclusion and Future Work

Text summarization in a professional domain, e.g., biology and medicine, is a
very challenging task due to the need of domain knowledge in understanding
domain-specific contents and a great amount of co-operation from domain ex-
perts, especially with respect to evaluation of summarization systems. In this
paper we proposed a QA-based summarization system, BioSquash, that au-
tomatically produces a summary of biomedical multi-documents relevant to a
question. The system utilizes conceptual information extracted from both domain-
independent and domain-specific ontologies to create fluent 250-word summaries
relevant to a user question.

Due to the absence of expert-written biomedical summaries, in the evaluation
phase we instead treat MEDLINE abstracts as expert-written summaries when
calculating ROUGE scores. We do not know how close this approximate eval-
uation would be to the ideal evaluation procedure before a certain amount of
expert-written summaries is available. However, our experimental results indi-
cate that: 1) machine-generated summaries of abstracts known to be relevant to
the question have better quality in terms of n-gram matching than the human
written abstracts that are oblivious to the question; 2) machine-generated sum-
maries of abstracts that were retrieved using an IR system with the question as
the query are comparable to abstracts known to be relevant to the question.

The evaluation involves no linguistic readability of summaries, since the work
needs significant amount of expert participation that is not available to our
system at this stage. We are planning a more comprehensive evaluation on the
BioSquash system by collecting human sources, e.g., expert-written summaries
and domain expert assessors in future work. We plan to evaluate our system on
full articles in addition to abstracts.
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Abstract. Different types of rules are mined from transaction databases often
with the goal of improving sales and services. In this paper, we link the interest-
ingness of rules with the context of business marketing. We consider the profits
generated from some specific marketing strategies that are developed based on
particular discovered rules. This leads to a profit-based business model for eval-
uating rule interestingness. With this additional utility, we investigate some re-
lationships between different marketing strategies and fundamental properties of
rules for profit increasing.

1 Introduction

The rule mining was initiated as “market basket analysis,” which is used to discover co-
occurrence or correlation relationships in a set of commercial items that are recorded
in a large volumes of customer transaction database [1]. For example, an association
rule can be expressed as “for people who buy spaghetti, wine, and sauce (A), they
also buy garlic bread (B),” or symbolically, A ⇒ B. Since rule mining is virtually
practical, it has a direct impact on business and takes up many actionable concerns such
as maximizing profit and payoff, minimizing cost, and finally leading to a wise action
and decision making [2].

From the application view of rule mining, a rule is considered to be interesting if it
is novel, potentially useful, understandable, actionable, profitable or explainable [4,8].
Moreover, a rule is only advantaged while it can be understood and rationalized [19].
These lead to different philosophies in designing data mining solutions to real world
problems and measures to evaluate rule interestingness [7]. Based on measurement and
utility theories, a measure is proposed to evaluate one aspect of usefulness or inter-
estingness of rules with respect to a particular context or user preference [5,15,18].
Different preferences of discovered rules must be represented quantitatively by differ-
ent measures. It is difficult to justify and argue the usefulness or interestingness of a
rule without concerning its usage or preference [17]. One needs to examine various cir-
cumstances in which rules are built and applied. Similar to the practice of medicine, the
medicine treatment plans are determined based on the medical knowledge and practi-
cally clinical analysis and judgements [3].

In this paper, we link conventional rule mining with the concern of business profit.
Typically, a discovered rule can be viewed as a type of knowledge or a belief about
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purchasing behaviors or patterns of customers. Thus, rules can be used to design pro-
motional packages or arrange cross-selling aiming to achieve more profit. For example,
suppose a department store attempts to use an association rule, A ⇒ B, to improve
sales and services [1,16]. Items in A and B may be located adjacent to each other in
order to achieve an implicit recommendation and provide customers more convenience
based on the learned rule A⇒ B.

A simple way to evaluate rules is to apply the marketing strategies developed from
rules to the real world markets, and then check whether higher profits can be generated.
In fact, a profit-based model is necessary and essential to evaluate the interestingness
of discovered rules. However, there exist some difficulties to implement such strategies
in practice. Therefore, an alternative way is to build a model to analyze the discovered
rules based on some basic business assumptions. This offers us a new interpretation and
view of rules.

In this paper, we introduce a profit-based business model and consider two types of
marketing strategies to increase profits. The relationships among discovered rules, mar-
keting strategies and profit increments are investigated. In other words, the statistical
factors of rules are analyzed based on the criterion, such that the corresponding mar-
keting strategies can generate high profits. The results show that different types of rules
might be useful for different types of marketing strategies.

The study proposed in this paper provides a basic and novel approach to evaluate
the interestingness of rules in the context of business and economy. It is evident that an
evaluation or measurement of rules should be linked to some particular contexts. This
result may provide new opportunities and challenges on research and development of
data mining systems.

2 Related Work

Many economic utilities have been studied in order to identify cost-effective and profit-
benefit association rules [12,14,16,17]. Kleinberg et al. provided a microeconomic view
of data mining [10]. They considered decision theory in the domain of data mining and
argued that data mining is about extracting actionable rules which can increase utility,
such as profit, security or loyalty. Wang et al. proposed a profit-based association rule
mining model, called profit mining. They focused on a recommender that recommends
items that maximize profit from future customers [16]. Lin et al. argued that people
should consider the use of rules in the context of marketing [11]. An added value,
such as profit, privacy, importance, uncertainty, or benefit of itemsets, is introduced
into association rule mining model.

Some measures in actionable rule mining deals with profit-driven actions required by
business decision making [12,13,14]. A rule is referred to as actionable if the user can
apply it to do something. An action may be some business strategies or promotions to
change the non-desirable /non-profitable rules to desirable/profitable rules. For business
users, actionable rule mining can help them to influence and control their changes or
actions to obtain higher profits from consumers.
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3 Rules and Probabilistic Interpretations

In data mining, rules are typically interpreted in terms of probability. Different proba-
bilistic measures can be defined to reflect various aspects of rules [20]. In this section,
several probabilistic measures are investigated.

The sales data of a supermarket or a company can be recorded as a binary table of
transactions, called a transaction table. A transaction table can be formally defined by

S = (T, I, {Vi | i ∈ I}, {Ri | i ∈ I}),
where

T is a finite nonempty set of transactions,
I is a finite nonempty set of items,
Vi is a set of binary values {0, 1} for i ∈ I,

Ri : T → Vi is a function between transactions and items.

Each function Ri maps a transaction in T to a binary value of Vi for an item i ∈ I . If a
transaction t ∈ T contains an item i, then the value Ri(t) is 1, otherwise, Ri(t) is 0. In
a transaction table, the rows correspond to transaction records, the column correspond
to items, and each cell is a binary value of a transaction with respect to an item.

A subset of items A ⊆ I is called an itemset. Each transaction t contains an itemset.
For an itemset A ⊆ I , let m(A) denote the portion of database formed by transactions
containing all items in A, namely,

m(A) = {t ∈ T | ∀i ∈ A, Ri(t) = 1}.
The itemset A acts as a condition for the selection of transactions from the transaction
database T . With this notation, we have T = m(∅).

For two disjoint itemsets, A, B ⊆ I and A ∩ B = ∅, an implication of the form
A⇒ B is used to express a rule. It shows the relationship between purchasing itemset
A and purchasing itemset B. A quantitative measure, called generality, of an itemset
A ⊆ I is defined by:

G(A) =
|m(A)|
|T | = P (A),

where | · | denotes the cardinality of a set, and P denotes the probability in statistics.
This measure indicates the relative size of the transactions containing the itemset A.
The quantity may be viewed as the probability of a transaction t containing itemset A.
Obviously, we have 0 ≤ G(A) ≤ 1. Moreover, the generality of the itemsets A and B
is expressed by:

G(A, B) =
|m(A ∪B)|
|T | =

|m(A) ∩m(B)|
|T | = P (A, B),

which may be viewed as the joint probability of a transaction t containing itemsets A
and B. The absolute support of an itemset B provided by A is defined by:

AS(A, B) =
|m(A ∪B)|
|m(A)| =

P (A, B)
P (A)

= P (B | A).
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This quantity shows the degree to which A implies B, B depends on A or B associates
with A. It may be viewed as the conditional probability of transactions containing the
itemset B given that they contain the itemset A. The range of this measure is 0 ≤
AS(A, B) ≤ 1. The change support of an itemset B provided by A is defined by:

CS(A, B) = AS(A, B) −G(B) = P (B | A)− P (B).

One may consider G(B) to be the prior probability of B and AS(A, B) the posterior
probability of B after knowing A. The difference of posterior and prior probabilities
represents the change of our confidence regarding whether A actually relates to B. The
range of change support is from −1 to 1. For a positive value, one may say that A is
positively related to B; for a negative value, one may say that A is negatively related
to B.

Three measures, absolute support AS(A, B), generality G(A, B) and change sup-
port CS(A, B), are used to define and quantify peculiarity rules and association rules
[1,20]. We can qualitatively characterize association and peculiarity rules in the
following table:

Rules AS(A,B) G(A, B) CS(A, B)

Peculiarity Rules High Low High
Association Rules High High Low

Generality G(A, B) and absolute support AS(A, B) are also called the support and
confidence in association rule mining [1].

4 A Profit-Based Business Model

In this section, we propose a profit-based business model for evaluating mined rules.
Profit is one of the primary financial objectives of a business [6]. It is one of basic tasks
of business management. A general model of profit can be defined by: [6]

PF (A) = [f(A)− f ′(A) − f ′′(A)− f ′′′(A)] · V (A)− FOE, (1)

where PF (A) is the total amount of profit on the itemset A, f(A) is the sales price of
the itemset A, f ′(A) represents the product costs of producing or purchasing the itemset
A, f ′′(A) represents unit-driven costs on the itemset A, such as the costs of shipping,
handling and packaging, f ′′′(A) represents revenue-driven costs on the itemset A, such
as commissions paid to salespersons and credit card discounts paid by retailers to the
banks. These different costs are incremental (i.e. increased with each additional unit
sold), V (A) is sales volume of A (i.e. total number of units of A actually are sold over
a period), and FOE is fixed operating costs, such as rent, depreciation, salaries, and
utilities. The amount of profit per unit after deducting various costs, including product
costs, unit-driven costs and revenue-driven costs, from sales price is called unit margin
or unit profit [6]. When the generality (probability) of selling itemset A, G(A), and
total number of transactions |T | are known, the sales volume can be considered as



300 Y. Chen, Y. Zhao, and Y. Yao

U
ni

t P
ro

fi
t

Sales Volume

Fig. 1. Distribution between sales price and sales volume

V (A) = |m(A)| = |T | ·G(A). Let p(A) denote the unit profit, that is, p(A) = f(A)−
f ′(A) + f ′′(A) + f ′′′(A). Then, the Equation 1 can be re-expressed simply as

PF (A) = p(A) · V (A) − FOE. (2)

In this paper, the fixed operating costs FOE are assumed to be unaffected by a mar-
keting strategy. The other two factors, unit profit p(A) and sales volume V (A), affect
each other [9]. That is, when unit profit is increased, the sales volume is probably de-
creased. Conversely, when sales volume is increased, the unit profit probably has to be
decreased. Their relationship can be demonstrated in Figure 1 [9]. Accordingly, mar-
keting strategies to increase the profit can be generally classified into two groups based
on the two factors in the profit model:

– Price-based strategy: to increase the unit profit (e.g. raising sales price, or reduc-
ing various costs).

– Volume-based strategy: to increase the sales volume (e.g. reducing sales price, or
recommend and advertising items).

A measure, called profit change, can be defined to quantify the difference of the profits
generated after and before applying a particular marketing strategy. Let s denote a par-
ticular marketing strategy. The profit change on itemset A, denoted as CPs(A), with
respect to the marketing strategy s is formally defined by

CPs(A) = PFs(A)− PF (A),
= ps(A) · Vs(A)− p(A) · V (A), (3)

where PFs(A), ps(A) and Vs(A) represent the profit, unit profit and sales volume on
A after applying the marketing strategy s, respectively, and PF (A), p(A) and V (A)
represent the profit, unit profit and sales volume on A before applying the market-
ing strategy, respectively. Obviously, the profit change on itemsets A and B can be
expressed as:

CPs(A, B) = [PFs(A)− PF (A)] + [PFs(B)− PF (B)],
= CPs(A) + CPs(B). (4)

The cost of running marketing strategy can be counted as various costs in the profit
model. A positive profit change, CPs(A, B) > 0, means the profit increased, and a
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negative profit change, CPs(A, B) < 0, states the profit decreased after applying the
marketing strategy s.

5 An Analysis on Marketing Strategies, Discovered Rules and
Profit Changes

Discovered rules can be used to develop the two types of marketing strategies for profit
increasing. In this section, based on the profit-based business model, we investigate
relationships between two types of rules and profit changes with respect to the price-
based and volume-based marketing strategies.

5.1 Profit Changes Based on Price Changes

A price-based strategy is to raise the unit profits of items to increase the total profits,
such as increasing sales price, reducing the unit costs, or cutting some services. With
respect to a rule A ⇒ B and A �= B, two types of price-based strategies are generally
considered and analyzed as follows.

Price-based strategy on itemset A: Let s1 denote a price-based strategy on itemset
A. This strategy probably leads to decrease the sales volume on the itemset A. The
decreased sales volume and increased unit profit can be viewed as a kind of trade-
off. Thus, we suppose that the profit on the itemset A after applying the strategy s1 is
(at least) the same as the profit before applying the strategy, that is, CPs1 (A) = 0.
Then, the profit change CPs1(A, B) on itemsets A and B is

CPs1(A, B) = CPs1(B) = p(B) · [Vs1(B) − V (B)].

Suppose the association relationship between itemsets A and B is not changed. In other
words, the absolute support AS(A, B) is not changed. Then, the difference of sales
volumes on the itemset B can be expressed as

Vs1(B)− V (B) = Vs1(A) ·AS(A, B)− V (A) ·AS(A, B),
= [Vs1(A) − V (A)] ·AS(A, B).

Let ΔVs1 (B) denote the change of sales volume on itemset B, that is, ΔVs1 (B) =
Vs1(B)−V (B), and ΔVs1(A) denote the change of sales volume on itemset A, that is,
ΔVs1(A) = Vs1(A) − V (A). Then, the above equation can be expressed as

ΔVs1(B) = ΔVs1(A) · AS(A, B). (5)

and the profit change CPs1 (A, B) is

CPs1(A, B) = p(B) ·ΔVs1 (A) · AS(A, B). (6)

Since the unit profit p(B) is a constant, the profit change CPs1(A, B) is determined by
two factors: sales volume change ΔVs1(A) and absolute support AS(A, B). Therefore,
sales volume change on itemset A determines the direction of profit change, while the
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absolute support AS(A, B) determines the degree of profit change. A high absolute
support can make profit change significantly.

Moreover, the sales volume V (B) can be expressed as the total number of transac-
tions multiplying the generality of itemset B. Thus, the difference of sales volumes on
itemset B can also be expressed as

ΔVs1 (B) = |Ts1 | ·Gs1(B)− |T | ·G(B).

A large generality of itemset B, G(B), means a small space to decrease, while a low
generality of itemset B means a large space to decrease.

We consider two types of rules, peculiarity rules [20] and association rules [1], with
high absolute supports used in this type of price-based strategies. The relationships
between profit change and the two types of rules are generally summarized in Table 1.
From Table 1, we can obtain a general idea such that the profit decreasing based on the

Table 1. Relationships between profit changes and rules based on price increasing on A

Discovered Probabilistic Interpretations Profit Change
Rules AS(A,B) G(A, B) CS(A, B) G(A) G(B) CPs1(A, B)

Peculiarity Rules High Low High Low Low Low
Association Rules High High Low High High Very Low

association rules is more significant than the profit change based on the peculiarity rules
when applying a price-based strategy on the itemset A.

Example 1. Suppose a supermarket uses a peculiarity rule, printer ⇒ ink, to develop
a price-based strategy. The parameters of the rule are G(printer) = 2%, G(ink) =
1.6%, and G(printer, ink) = 1.6%, AS(printer, ink) = 80%, CS(printer, ink) =
78.4%. The unit profit and sales volume of printer are originally $50.00 and 200. The
unit profit and sales volume of ink are originally $1.00 and 160. After applying the
price-based strategy on printer, the unit profit of printer is raised to $60.00, however,
the sales volume of printer is down to 150. Suppose the sales of ink depends on the
sales of printer, so the sales volume of ink will go down to 120 as the sales volume
of printer going down. Therefore, the total profit of printer and ink is changed from
$10160 to $9120, decreased about 10%.

Suppose a supermarket uses an association rule, milk ⇒ eggs, to develop a price-
based strategy. The parameters of the rule are G(milk) = 80%, G(eggs) = 85%, and
G(milk, eggs) = 75%, AS(milk, eggs) = 94%, CS(milk, eggs) = 9%. The unit
profit and sales volume of milk are originally $1.00 and 8, 000. The unit profit and
sales volume of eggs are originally $0.50 and 8, 500. After applying the price-based
strategy on milk, the unit profit of milk is raised to $1.20, however, the sales volume
of milk is down to 5, 000. Suppose the sales of eggs depends on the sales of milk,
so the sales volume of eggs will go down to 5, 000 as the sales volume of milk going
down. Therefore, the total profit of milk and eggs is changed from $12250 to $8500,
decreased about 31%.
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Price-based strategy on itemset B: Let s2 denote a price-based strategy on itemset B.
In this type of strategies, the unit profit and sales volume on the itemset A are supposed
not to be changed. Thus, the profit change CPs2(A, B) is

CPs2 (A, B) = CPs2 (B) = ps2(B) · Vs2 (B)− p(B) · V (B).

If the rules show the larger dependence and larger generality of A and B, namely
AS(A, B) and G(A, B) are very high, then increased unit profit on B may not make
the sales volume decrease, otherwise, the unit profit increasing may lead to decrease the
sales volume on itemset B.

The relationships between profit change and two types of rules are generally
summarized in Table 2. It shows the association rules can be useful to generate more
profit than the peculiarity rules.

Table 2. Relationships between profit change and rules based on price increasing on B

Discovered Probabilistic Interpretations Profit Change
Rules AS(A,B) G(A, B) CS(A, B) G(A) G(B) CPs2(A, B)

Peculiarity Rules High Low High Low Low Low
Association Rules High High Low High High High

Example 2. Suppose a supermarket uses a peculiarity rule, printer ⇒ ink, to develop
a price-based strategy. The parameters of the rule are G(printer) = 2%, G(ink) =
1.6%, and G(printer, ink) = 1.6%, AS(printer, ink) = 80%, CS(printer, ink) =
78.4%. The unit profit and sales volume of printer are originally $50.00 and 200.
The unit profit and sales volume of ink are originally $1.00 and 160. After applying
the price-based strategy on ink, the unit profit of ink is raised to $1.50. Suppose the
sales of ink depends on the sales of printer, so the sales volume of ink will keep
unchanged. Therefore, the total profit of printer and ink is changed from $10160 to
$10240, increased about 0.7%.

Suppose a supermarket uses an association rule, milk ⇒ eggs, to develop a price-
based strategy. The parameters of the rule are G(milk) = 80%, G(eggs) = 85%, and
G(milk, eggs) = 75%, AS(milk, eggs) = 94%, CS(milk, eggs) = 9%. The unit
profit and sales volume of milk are originally $1.00 and 8, 000. The unit profit and sales
volume of eggs are originally $0.50 and 8, 500. After applying the price-based strategy
on eggs, the unit profit of eggs is raised to $1.00. Suppose the sales of eggs depends
on the sales of milk, so the sales volume of eggs will keep unchanged. Therefore, the
total profit of milk and eggs is changed from $12250 to $16500, increased about 35%.

5.2 Profit Changes Based on Volume Changes

The volume-based strategies are to increase sales volumes (i.e. the amount of customers
who buying items) to increase total profits. For example, one can reduce the sales price
or recommend items to customers to increase sales volumes. With respect to a rule,
A ⇒ B and A �= B, two types of volume-based strategies are generally considered:
strategy on the itemset A and strategy on the itemset B.
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Volume-based strategies on itemset A: Let s3 denote a volume-based strategy on
itemset A. The unit profit on itemset A probably has to be reduced in order to increase
the sales volume. The increased sales volume and decreased unit profit are viewed as a
kind of tradeoff. Suppose the profit on itemset A after applying a volume-based strategy
is the same as the profit before applying the volume-based strategy. That is, PFs(A) =
PF (A) and CPs(A) = 0. Then, the profit change CPs3 (A, B) is

CPs3(A, B) = CPs3(B) = p(B) · [Vs3(B) − V (B)],

Suppose the association relationship between itemsets A and B is not changed, that is,
the absolute support AS(A, B) is not changed. Then, the difference of sales volumes
on the itemset B can be expressed as

Vs3(B)− V (B) = Vs3(A) ·AS(A, B)− V (A) ·AS(A, B),
= [Vs3(A) − V (A)] ·AS(A, B).

Let ΔVs3 (B) denote the change of sales volume on itemset B, that is, ΔVs3 (B) =
Vs3(B)−V (B), and ΔVs3(A) denote the change of sales volume on itemset A, that is,
ΔVs3(A) = Vs3(A) − V (A). Then, the above equation can be expressed as

ΔVs3(B) = ΔVs3(A) ·AS(A, B), (7)

and the profit change CPs3 (A, B) is

CPs3(A, B) = p(B) ·ΔVs3 (A) · AS(A, B). (8)

Since the unit profit p(B) is a constant, the profit change CPs3(A, B) is determined by
two factors: sales volume change ΔVs3(A) and absolute support AS(A, B). Therefore,
the sales volume on A determines the direction of the profit change, and the absolute
support AS(A, B) determines the degree of profit decreasing. A high absolute support
can make profit change significantly.

Moreover, the sales volume V (B) can be expressed as the total number of transac-
tions multiplying the probability of selling the itemset B. Thus, the difference of sales
volumes on the itemset B can also be expressed as

ΔVs1 (B) = |Ts1 | ·Gs1(B)− |T | ·G(B).

A large generality of B, G(B), means a small space to decrease, while a low generality
of B means a large space to decrease.

We consider two types of rules with high absolute supports used in this type of
volume-based strategies. The relationships between profit change and the two types
of rules are generally summarized in Table 3. Table 3 shows that the peculiarity rules
can increase the profit more significantly than the association rules.

Example 3. Suppose a supermarket uses a peculiarity rule, printer ⇒ ink, to develop
a volume-based strategy. The parameters of G(printer) = 2%, G(ink) = 1.6%, and
G(printer, ink) = 1.6%, AS(printer, ink) = 80%, CS(printer, ink) = 78.4%.
The unit profit and sales volume of printer are originally $50.00 and 200. The unit
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Table 3. Relationships between profit changes and Rules based on volume increasing on A

Discovered Probabilistic Interpretations Profit Change
Rules AS(A,B) G(A, B) CS(A, B) G(A) G(B) CPs3(A, B)

Peculiarity Rules High Low High Low Low High
Association Rules High High Low High High Low

profit and sales volume of ink are originally $1.00 and 160. After applying the volume-
based strategy on printer, the unit profit of printer is reduced to $5.00, and the sales
volume of printer is up to 2000. Suppose the sales of ink depends on the sales of
printer, so the sales volume of ink will go up to 1600 as the sales volume of printer
going up. Therefore, the total profit of printer and ink is changed from $10160 to
$11600, increased about 14%.

Suppose a supermarket uses an association rule, milk⇒ eggs, to develop a volume-
based strategy. The parameters of the rule are G(milk) = 80%, G(eggs) = 85%, and
G(milk, eggs) = 75%, AS(milk, eggs) = 94%, CS(milk, eggs) = 9%. The unit
profit and sales volume of milk are originally $1.00 and 8, 000. The unit profit and
sales volume of eggs are originally $0.50 and 8, 500. After applying the volume-based
strategy on milk, the unit profit of milk is reduced to $0.90, and the sales volume of
milk is up to 8, 900. Suppose the sales of eggs depends on the sales of milk, so the
sales volume of eggs will go up to 9, 000. Therefore, the total profit of milk and eggs
is changed from $12250 to $12510, increased about 2%.

Volume strategy on itemset B: Let s4 denote a volume-based strategy on itemset B.
The unit profit and sales volume on the itemset A are supposed not to be changed. Thus,
the profit change CPs4(A, B) is

CPs4 (A, B) = CPs4 (B) = ps4(B) · Vs4 (B)− p(B) · V (B).

If the discovered rules show the larger dependence and larger generality of A and B,
namely AS(A, B) and G(A, B) are very high, then the decreased unit profit on item-
set B may not make the sales volume increase significantly, otherwise, the unit profit
decreasing may lead to increase the sales volume significantly. That means stronger
the association is between two itemsets, the more profit is decreased when applying a
volume-based strategy on itemset B.

Therefore, with a volume-based strategy, the relationships between profit changes
and two types of rules are summarized in Table 4. Table 4 shows that by applying a

Table 4. Relationships between profit changes and Rules based on volume increasing on B

Discovered Probabilistic Interpretations Profit Change
Rules AS(A,B) G(A, B) CS(A, B) G(A) G(B) CPs4(A, B)

Peculiarity Rules High Low High Low Low Low
Association Rules High High Low High High Very Low
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volume-based strategy on itemset B, the association rules decrease the profit more sig-
nificantly than the peculiarity rules.

Example 4. Suppose a supermarket uses a peculiarity rule, printer ⇒ ink, to develop
a volume-based strategy. The parameters of the rule are G(printer) = 2%, G(ink) =
1.6%, and G(printer, ink) = 1.6%, AS(printer, ink) = 80%, CS(printer, ink) =
78.4%. The unit profit and sales volume of printer are originally $50.00 and 200. The
unit profit and sales volume of ink are originally $1.00 and 160. After applying the
volume-based strategy on ink, the unit profit of ink is down to $0.90. Suppose the
sales of ink depends on the sales of printer, so the sales volume of ink will keep
unchanged. Therefore, the total profit of printer and ink is changed from $10160 to
$10144, decreased about 0.2%.

Suppose a supermarket uses an association rule, milk⇒ eggs, to develop a volume-
based strategy. The parameters of the rule are G(milk) = 80%, G(eggs) = 85%, and
G(milk, eggs) = 75%, AS(milk, eggs) = 94%, CS(milk, eggs) = 9%. The unit
profit and sales volume of milk are originally $1.00 and 8, 000. The unit profit and
sales volume of eggs are originally $0.50 and 8, 500. After applying the volume-based
strategy on eggs, the unit profit of eggs is down to $0.40. Suppose the sales of eggs
depends on the sales of milk, so the sales volume of eggs will keep unchanged. There-
fore, the total profit of milk and eggs is changed from $12250 to $11400, decreased
about 7%.

Generally, based on the analysis above, we can summarize that different types of rules
are useful for different marketing strategies. Based on the profit-based model, the as-
sociation rules are more useful to develop price-based strategies, while the peculiarity
rules are more useful to develop volume-based strategies.

6 Conclusion

The common practice in data mining focuses more on algorithmic and statistical aspects
of rules. Although many useful results have been achieved, the real application of dis-
covered rules remains to be a challenging problem. Without a domain specific semantic
interpretation of rules, one may not solve this problem successfully. In this paper, we
introduce a profit-based business model for the semantics study and application. Two
types of rules and two types of marketing strategies are considered. We analyze the
marketing strategies where the rules are used to generate high profits. One can find out
that requirements of rules to generate high profits in different marketing strategies are
different. It confirms that semantics and domain knowledge should be incorporated into
data mining process.
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Abstract. The present paper is about a framework of formal topologi-
cal reasoning originating from the fundamental work of Moss and Parikh
relating to this. We add a set of unary operators involving sets to that
system. This new means of expression gives us considerably more expres-
sive power with regard to spatial operations, but the accompanying logic
remains sound and semantically complete with respect to the class of
all subset spaces that are enriched accordingly. Moreover, the new logic
turns out to be decidable. We prove these results by relying heavily on a
particular extension of the common modal formalism, viz hybrid logic.

Keywords: the logic of knowledge, spatial logics, topological reasoning,
set-valued functions, hybrid logic.

1 Introduction

The subject of this paper is the interplay between procedural knowledge and
spatial concepts, in particular, those arising from topology. We extend some
of the previous systems dealing with that, eg, those from [1], [2], and [3]. Our
aim is to further clarify how the ideas of knowledge and space are related, and
simultaneously develop a theoretical basis for corresponding reasoning tools. This
is done in a way being similar to the one taken in [4], where the part state-valued
functions play in that was investigated.

We begin the motivational part of the paper by recalling Moss and Parikh’s
particular approach in reasoning about knowledge; see [1,5]. The bi-modal logic
of knowledge and effort invented in these papers facilitates on the one hand a
qualitative description of procedures gaining knowledge, and reveals on the other
hand a certain topological component of knowledge. In fact, since knowledge is
represented by the space of all knowledge states, which are the sets of states an
agent in question considers possible at a time, knowledge acquisition appears
as a shrinking procedure regarding this space of sets. Thus certain notions from
topology like closeness or neighbourhood turn up together with knowledge in a
natural way.

Moss and Parikh suggestively called their system topologic. We prefer the
acronym MLS here, indicating the modal language (and logic, respectively) of
subset spaces. In the following, the basics of this language are given. As it has
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just been indicated, formulas may contain two one-place operators: a modality
K representing the knowledge of the agent under discussion and another one,
�, representing (computational) effort. The domains for evaluating formulas are
triples (X,O, V ) called subset spaces, which consist of a non-empty set X of
states, a set O of subsets of X representing the knowledge states of the agent,
and a valuation V determining the states where the atomic propositions are
true. The operator K then quantifies over some knowledge state U ∈ O, whereas
� quantifies ‘downward’ over O since shrinking and acquiring knowledge corre-
spond to each other.

After [1] was published, several classes of subset spaces, including the ordinary
topological ones, could be characterized by means of MLS; cf [6,7,8,9]. However,
more expressive power is needed to specify other interesting topological notions
like separation or connectedness. To this end, a version of MLS based on hybrid
logic, hybrid MLS, was introduced in [2] and further developed subsequently; see
[3]. The origins of hybrid logic date back from the work of A. Prior on temporal
logic. Corresponding features have been successfully applied to many fields since
then, in particular, to various formalisms concerning space and time; see [10] for
an overview. Actually, hybrid MLS turned out to be quite useful as well. This
is demonstrated, eg, in the paper [11], where a problem raised in [9] could be
solved by using hybrid methods. In the present paper, we utilize that logic for
proving our main results.

Quite recently, state-valued functions have been incorporated into hybrid
MLS. In the paper relating to this, [4], the main concern was a formal descrip-
tion of the relationship between knowledge and continuity. Here we focus on a
complementary aspect of (hybrid) MLS by considering unary operations on sets.
Forming the complement, the closure, or the interior, of a set are examples of
such operations. Thus further-reaching topological modelling and reasoning is
supported by the extended system.

The subsequent technical part of the paper is organized as follows. In the next
section we define the language for MLS with operations on sets. We give also some
examples concerning expressiveness there. In Section 3, we turn to the arising
logic. Hybridizing the underlying language enables us to establish a corresponding
soundness and completeness theorem. In Section 4, we prove that the new logic is
decidable. Concluding the paper, we summarize and mention future research.

The theory developed below fits into the chapter on topology and epistemic
logic of the forthcoming handbook [12], in which several alternative approaches
to reasoning about space are treated as well.

2 The Language

We now introduce the language underlying the logics studied later on. After
that, we use the new language to describe certain properties of some spatial and
topological operations, respectively.

We first define the syntax. Let PROP = {A, B, . . .} be a denumerable set
of symbols called proposition letters. Moreover, let F = {F, G, . . .} be a set of
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one-place function symbols (mostly called operation symbols below). Then, the
set WFF of well-formed formulas over PROP ∪ F is defined by the rule

α ::= A | ¬α | α ∧ β | Kα | �α | [F ]α.

The missing boolean connectives are treated as abbreviations, as needed. The
duals of the modal operators K, � and [F ] are denoted L, � and 〈F 〉, respec-
tively.1

Second, we turn to semantics. For a start, we define the relevant domains. We
let P(X) designate the powerset of a given set X .

Definition 1 (Subset frames and subset spaces)

1. A subset frame is a pair S := (X,O), where X is a non-empty set and
O ⊆ P(X) a set of subsets of X such that {∅, X} ⊆ O.

2. Let S = (X,O) be a subset frame. The set of neighbourhood situations of S
is NS := {(x, U) | x ∈ U and U ∈ O}.

3. Let S = (X,O) be a subset frame and V : PROP −→ P(X) a mapping.
Then V is called an S–valuation.

4. Let S = (X,O) be a subset frame and V an S–valuation. Then, M :=
(X,O, V ) is called a subset space. In this case we say that M is based
on S.

In essence, Definition 1 is like the original one from [5]. Because of the forward
looking nature of the effort operator, the requirement ‘{∅, X} ⊆ O’ is in a sense
insignificant, but convenient for MLS; cf [5], Sec. 1.1. That is no longer true for
the extended system; see Sec. 3. However, we must be careful with X and the
empty set when dealing with operations on sets; cf Example 1 below.

Definition 2 (Subset frames and subset spaces with operations)

1. A subset frame with operations is a triple

S := (X,O, {fF | F ∈ F}) ,

where (X,O) is a subset frame and, for every F ∈ F , fF : O −→ O is a
partial function.

2. Let S = (X,O, {fF | F ∈ F}) be a subset frame with operations and V an
S–valuation. Then, M := (X,O, {fF | F ∈ F}, V ) is called a subset space
with operations (or, in short, an SSO).

The use of partial functions is adequate for interpreting the elements of F since
O need not be closed under some of the operations that are to be modelled.

Now, let an SSO M be given. We define the relation of satisfaction, |=M ,
between neighbourhood situations of the underlying frame and well-formed for-
mulas. In the following, neighbourhood situations are written without brackets.
1 The dual of, eg, K is given by Lα :≡ ¬K¬α, for all α ∈ WFF (and correspondingly

for the other operators). Semantically, the dual represents the ‘existential shape’ of
the modality.
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Definition 3 (Satisfaction and validity). Let

M := (X,O, {fF | F ∈ F}, V )

be an SSO based on S = (X,O, {fF | F ∈ F}) , and let x, U ∈ NS be a neigh-
bourhood situation. Then

x, U |=M A :⇐⇒ x ∈ V (A)
x, U |=M ¬α :⇐⇒ x, U �|=M α

x, U |=M α ∧ β :⇐⇒ x, U |=M α and x, U |=M β

x, U |=M Kα :⇐⇒ for all y ∈ U : y, U |=M α

x, U |=M �α :⇐⇒ for all U ′ ∈ O : (x ∈ U ′ ⊆ U ⇒ x, U ′ |=M α)
x, U |=M [F ]α :⇐⇒ for all x′, U ′ ∈ NS : (fF (U) = U ′ ⇒ x′, U ′ |=M α) ,

for all A ∈ PROP, F ∈ F , and α, β ∈WFF. In case x, U |=M α is true we say
that α holds inM at the neighbourhood situation x, U. Furthermore, a formula α
is called valid inM iff it holds inM at every neighbourhood situation. (Manner
of writing: M |= α.)

The following comments on this definition may be useful. We will refer to some
of the points addressed therein later on.

1. Apart from the last clause the definition clearly applies to subset spaces in
the sense of Definition 1.

2. The meaning of proposition letters is independent of neighbourhoods by
definition, thus ‘stable’ with respect to �. This fact is reflected by a special
axiom; see Sec. 3.

3. According to the above definitions we realized operations on sets implicitly,
i.e., by means of a respective modality. The explicit way, i.e., by using first-
order-like terms, turns out to be unsuitable for our purposes.2

Concluding this section we give some sample specifications. These concern the
operations we already mentioned in the introduction.

Example 1 (Complementation). Let S = (X,O, {fF | F ∈ F}) be a subset frame
with operations. Assume that O is closed under complements, and let G ∈ F
be an operation symbol which is to model complementation. Then fG is inverse
to itself, i.e., satisfies fG ◦ fG = idO. Thus M |= Kα → [G][G]α is true for all
SSOs M based on S and all formulas α ∈ WFF. Moreover, we also have that
M |= α → [G]〈G〉α is true for all such M and α. That is, the accessibility
relation associated with the modality [G] is symmetric. Note, however, that
although fG is a total function that relation is not serial (cf [14], § 1) since the
schema [G]α→ 〈G〉α is not sound. The latter is due to the fact that {∅, X} ⊆ O;
see the remark right before Definition 2.

2 An attempt to ‘algebraizing’ hybrid logic in this spirit was undertaken, eg, in [13].
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Example 2 (Interior and closure). During this example we assume that the
underlying subset frame is appropriately derived from a topological space. If
fG models the assignment of the interior (or the closure) to a subset, where
G is any operation symbol, then obviously the following formulas are valid:
[G]α → [G][G]α and [G] ([G]α→ α) , for all α ∈ WFF. The first schema ex-
presses that the accessibility relation associated with [G] is transitive, and the
second one says that it is secondary reflexive; cf [15], 3.51. Additionally, we can
describe how [G] interacts with the ‘composite modality’ K� in these special
cases. We actually have that the schemata K�α→ [G]α and α→ [G]L�α are
valid for the interior and the closure, respectively. – The point of view taken up
in this example is complementary to the usual one; cf, eg, [16] or the chapter on
modal logics of space of the handbook [12].

A more important example follows at the end of the next section.

3 The Logic

In this section, we first propose an axiomatization of the logic of subset spaces
with operations. The logic is designated MLSO. Secondly, we hybridize this
logic and show the soundness and semantic completeness of the resulting hybrid
version, HLSO. And finally, the usefulness of the hybrid language for applications
is demonstrated by an example.

To begin with, we list the axioms for MLS from [5].

1. All instances of propositional tautologies.
2. K(α→ β)→ (Kα→ Kβ)
3. Kα→ (α ∧ KKα)
4. Lα→ KLα
5. � (α→ β)→ (�α→ �β)
6. (A→ �A) ∧ (�A→ A)
7. �α→ (α ∧��α)
8. K�α→ �Kα,

where A ∈ PROP and α, β ∈ WFF. In this way, it is expressed that for every
Kripke model M validating these axioms

– the accessibility relation K−→ of M belonging to the knowledge operator is
an equivalence,

– the accessibility relation �−→ of M belonging to the effort operator is reflexive
and transitive,

– the composite relation �−→◦ K−→ is contained in K−→◦ �−→ (this is usually
called the cross property), and

– the valuation of M is constant along every �−→ –path, for all propositional
letters; see the second remark following Definition 3.
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The cross property is induced by Axiom 8, which is called the Cross Axiom
therefore. The Cross Axiom (or a variant of it) is characteristic of every logic
including knowledge and and an effort-like modality.

Now let F be a fixed set of operation symbols. It will be convenient to assume
that F is finite. The new axioms describing operations on sets read as follows.

(O 1) [F ](α→ β)→ ([F ]α→ [F ]β)
(O 2) K[F ] (α→ Lβ) ∨ K[F ] (β → Lα)
(O 3) [F ]α→ [F ]Kα ∧ K[F ]α,

where F ∈ F and α, β ∈ WFF. A couple of points are worth mentioning here.
First, note that capturing the functionality of fF works completely different from
the case of state-valued functions; cf [4]. In particular, contrasting that case it
is possible to give a purely modal description here (although the type of fF
is ‘higher’). And second, Axiom (O 2) is related to the modal formula schema
corresponding to no branching in the future of the accessibility relation; cf [14],
p 22. This axiom was used literally (but with respect to a different semantics)
as a certain linearity constraint for ‘temporal’ MLS; cf [17].

We obtain the logical system MLSO by adding the standard proof rules of
modal logic, i.e., modus ponens and necessitation with respect to each modality.

Definition 4 (The logic). Let MLSO be the smallest set of formulas which
contains the axiom schemata 1 – 8 and (O 1) – (O 3) and is closed under the
application of the following rule schemata:

(modus ponens)
α→ β, α

β
(Δ–necessitation)

α

Δα
,

where α, β ∈WFF and Δ ∈ {K, �} ∪ {[F ] | F ∈ F}.
We could now use the established techniques for proving the completeness of
MLSO with respect to the class of all SSOs; cf [5], Sec. 2.2. However, the same
does not go any longer for decidability, due to the schema (O2). Thus we extend
the methods of proof right away in order to obtain both results.

To this end, we enrich the language with elements from hybrid logic. Let
Nstat = {i, j, . . .} and Nsets = {I, J, . . .} be two disjoint denumerable sets of
symbols called names of states and names of sets, respectively. The elements
of Nstat ∪ Nsets are also called nominals. Moreover, let A designate the global
modality (cf [18], Sec. 7.1) and E its dual.3

Definition 5 (Hybrid SSOs). Let S = (X,O, {fF | F ∈ F}) be a subset frame
with operations.

1. A mapping V : PROP ∪ Nstat ∪ Nsets −→ P(X) is called a hybrid S–
valuation iff the following two conditions are satisfied:
(a) V (i) is either ∅ or a singleton subset of X for every i ∈ Nstat , and

3 We need A mainly for technical reasons; see the remark following Definition 6.
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(b) V (I) ∈ O for every I ∈ Nsets .
2. Let V be a hybrid S–valuation. Then, M := (X,O, V ) is called a hybrid

subset space with operations (or, in short, an HSSO).

Note that the definition takes into account that nominals may have an empty
denotation. This is appropriate to us for technical reasons, but not usual for
standard hybrid logic.

Now, we extend Definition 3 accordingly.

Definition 6 (Hybrid satisfaction and validity). Let

M = (X,O, {fF | F ∈ F}, V )

be an HSSO based on S = (X,O, {fF | F ∈ F}), and let x, U ∈ NS be a neigh-
bourhood situation. Then

x, U |=M i :⇐⇒ x ∈ V (i)
x, U |=M I :⇐⇒ V (I) = U

x, U |=M Aα :⇐⇒ for all x′, U ′ ∈ NS : x′, U ′ |=M α,

for all i ∈ Nstat , I ∈ Nsets and α ∈ WFF.4 In case x, U |=M α is true we say
that α holds inM at the neighbourhood situation x, U , as above. Additionally, a
formula α is called valid inM iff it holds inM at every neighbourhood situation.

Note that the formulas of the form i ∧ I, where i ∈ Nstat and I ∈ Nsets , can be
taken as names of neighbourhood situations. The hybrid satisfaction operator
associated with such a name (cf [18], Sec. 7.3) then reads @i∧I α :≡ E(i∧ I ∧α),
where α ∈ WFF. Thus a formula of that kind functions as a ‘proper’ nominal
in SSOs. The operators @i∧I are needed for axiomatizing the logic of HSSOs; cf
footnote 3.

Actually, we do not want to list the axioms for hybrid MLS here, but refer
the reader to the paper [3] regarding this. However, one crucial axiom of the new
system cannot be too strongly emphasized, viz

(O 2 ′) 〈F 〉(i ∧ I) ∧ L〈F 〉(j ∧ J)→ [F ] ((i ∧ I)→ L(j ∧ J)) ,

where i, j ∈ Nstat and I, J ∈ Nsets . This schema serves as a substitute for Axiom
(O 2) in the hybrid context and contributes decisively to the final success of our
approach.

Furthermore, the unorthodox proof rules of the new system are worth men-
tioning.

Definition 7 (Hybrid proof rules). The following rule schemata have to be
added to the modal ones:

(namestat)
j → β

β
(namesets)

J → β

β

4 From now on, WFF denotes the set of formulas of the enriched language.
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(∇–enrichment)
E (i ∧ I ∧∇(j ∧ J ∧ α))→ β

E (i ∧ I ∧∇α)→ β
,

where α, β ∈ WFF, i, j ∈ Nstat , I, J ∈ Nsets , ∇ ∈ {L, �, E} ∪ {〈F 〉 | F ∈ F},
and j, J are new each time (i.e., do not occur in any other syntactic building
block of the respective rule).

For the reader not familiar with hybrid proof rules a ‘contrapository’ reading is
suggested; eg, the rule (namestat) is to be read ‘if β is satisfiable, then j ∧ β is
satisfiable, too’ (provided that the nominal j does not occur in β). From that,
the soundness of the unorthodox rules should be rather apparent.

Technically, the name and enrichment rules have to be used for proving
an appropriate Lindenbaum Lemma and an Existence Lemma, respectively; cf
[18], Lemmata 7.25 and 7.27, and [3], Lemmata 3.3 and 3.6. Both auxiliary
results make up the first steps towards the desired completeness theorem. In
fact, these lemmata enable us to ‘hybridize’ the canonical model of the logical
system. The model falsifying a given non-derivable formula then can be obtained
as a certain space of partial functions, X , over the carrier set D of that model,
actually in the following way. The domain dom(h) of every function h ∈ X is
a maximal subset of the set Q := {[Σ] | Σ ∈ D} of all equivalence classes
[Σ] := {Σ′ ∈ D | Σ K−→Σ′} of the accessibility relation induced by the modality
K. Maximality is meant with regard to the following two conditions here:

1. h([Σ]) ∈ [Σ] for all [Σ] ∈ dom(h), and

2. h([Σ]) �−→h([Θ]) for all [Σ], [Θ] ∈ dom(h) such that [Σ] � [Θ];

the precedence relation � occurring in the second item is defined by [Σ] � [Θ] :

⇐⇒ ∃Σ′ ∈ [Σ], Θ′ ∈ [Θ] : Σ′ �−→ Θ′, where Σ, Θ are points of D and �−→
denotes (as above) the accessibility relation belonging to the effort modality �.
We write hΣ := h([Σ]) in case h([Σ]) exists. Furthermore, we let

– U[Σ] := {h ∈ X | hΣ exists}, for all Σ ∈ D,
– O := {U[Σ] | Σ ∈ D} ∪ {∅, X}, and
– V : PROP ∪Nstat ∪Nsets −→ P(X) be defined by

h ∈ V (c) :⇐⇒ c ∈ hΣ for some Σ ∈ D such that hΣ exists,

for all c ∈ PROP ∪Nstat ∪Nsets .

With that, we obtain the relevant Truth Lemma, from which completeness follows
in case no operation symbols are involved.

Lemma 1. S := (X,O) is a subset frame and V a hybrid S–valuation. More-
over, lettingM := (X,O, V ) we have that

(
h, U[Σ] |=M α ⇐⇒ α ∈ hΣ

)
is valid

for all formulas α in which no operation symbols occur, every function h ∈ X,
and all points Σ ∈ D such that h ∈ U[Σ].5

5 As to this satisfaction relation, cf the first remark following Definition 3.
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We now define the interpretation fF : O −→ O of the operation symbol F , for
every F ∈ F . Let U[Σ] be any element of O, where Σ ∈ D. We distinguish the

cases whether or not there exists some Θ ∈ D such that Σ
[F ]−→Θ. According to

that we let fF
(
U[Σ]

)
:= U[Θ], if Θ exists, and be undefined otherwise. As the

following lemma shows, every F ∈ F is in fact realized as a certain functional of
a higher type in this way.

Lemma 2. fF is well-defined.

Proof. Some results from [3] are required for the proofs of this and the fol-
lowing lemma. These proofs are directed to the expert. – We have to show
that the definition of fF is independent of Σ and Θ, respectively. We may
restrict attention to the case fF is defined. First, let Σ′ ∈ D be such that
U[Σ] = U[Σ′]. Then [Σ] = [Σ′] holds according to [3], Lemma 3.8.1 and Lemma

3.10. That is, Σ
K−→Σ′. – Second, take any Θ′ ∈ D such that Σ′

[F ]−→Θ′. We

then must show that Θ
K−→Θ′ is valid. For this we utilize that every element

of D is named, i.e., determined by some formula i ∧ I where i ∈ Nstat and
I ∈ Nsets (cf [3], Lemma 3.5.3). Let, correspondingly, i ∧ I ∈ Θ and j ∧ J ∈ Θ′.
Then, 〈F 〉(i ∧ I) ∧ L〈F 〉(j ∧ J) ∈ Σ. Because of Axiom (O 2 ′) it follows that
[F ] ((i ∧ I)→ L(j ∧ J)) ∈ Σ, hence L(j ∧ J) ∈ Θ. Consequently, Θ

K−→ Θ′, as
desired. We obtain that [Θ] = [Θ′] and, therefore, U[Θ] = U[Θ′].

As a consequence of Lemma 2 we get that M := (X,O, {fF | F ∈ F}, V ) is an
HSSO. It remains to establish the Truth Lemma for the case involving operations
on sets.

Lemma 3. Lemma 1 remains valid if operations on sets are integrated into the
system.

Proof. In this proof we use, among other things, that a function h ∈ X is
already determined by its value for a single argument. And, vice versa, every
Σ ∈ D induces an element of X passing through this point; see [3], Lemma
3.9. Therefore, that function is denoted hΣ. – Let α = 〈F 〉β. We first prove
the right-to-left direction. Assume that α ∈ hΣ is valid. Then there exists some

Θ ∈ D such that hΣ
[F ]−→Θ and β ∈ Θ. Using the above notations we let g := hΘ

and get Θ = gΘ with that. It then follows that g ∈ U[Θ]. From the induction
hypothesis we obtain g, U[Θ] |=M β. But U[Θ] = fF

(
U[Σ]

)
, by definition. Thus

we have that h, U[Σ] |=M 〈F 〉β, according to the last clause of Definition 3 .
Conversely, let h, U[Σ] |=M 〈F 〉β be satisfied. By Definition 3, there are g ∈ X

and Θ ∈ D such that g ∈ U[Θ], U[Θ] = fF
(
U[Σ]

)
and g, U[Θ] |=M β. By applying

the induction hypothesis we obtain β ∈ gΘ from that. Now, it remains to prove

that hΣ
[F ]−→gΘ is valid. Here is the place where Axiom (O 3) comes into play. But

first of all we conclude from the condition U[Θ] = fF
(
U[Σ]

)
and the definition of

fF that there is some Ξ ∈ D such that Σ
[F ]−→Ξ and U[Ξ] = U[Θ], i.e., Ξ

K−→Θ
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(see the proof of Lemma 2). We also have that Θ
K−→ gΘ. Thus the first part

of Axiom (O 3) implies that Σ
[F ]−→gΘ. Since hΣ

K−→Σ is true we finally obtain

hΣ
[F ]−→ gΘ with the aid of the second part of Axiom (O3). This proves the

left-to-right direction.

The following theorem can easily be obtained from the previous lemmata.

Theorem 1 (Soundness and completeness). A formula α ∈ WFF is valid
in all SSOs, iff α is contained in HLSO.

It should be mentioned that the hybrid framework is not only useful for theo-
retical reasons but also for concrete applications. We give an example.

Example 3 (Monotone functions). The new language enables us to specify the
monotonicity of functions operating on sets. Monotone set-valued functions are
important in connection with the fixpoint characterization of the semantics of
certain language constructs, according to the Knaster-Tarski Fixpoint Theorem.
The formula schema capturing the monotonicity of fF : O −→ O reads

�〈F 〉I → 〈F 〉�I,

where I ∈ Nsets . Note the formal similarity of this schema to the dual of the
Cross Axiom. Moreover, note that it is true the corresponding modal schema,
�〈F 〉α→ 〈F 〉�α, is sound for monotone functions, but it is not a correspondent
in the spirit of modal logic; cf [14], § 1.

4 Decidability

We now argue that HLSO is decidable. This will imply that MLSO is decidable
as well. At the end of this section we comment on the complexity of the HLSO–
satisfiability problem.

Theorem 2 (Decidability). HLSO is a decidable set of formulas.

Proof. It is our aim to establish a certain finite model property of the logic.
This can be done with the aid of filtrations; cf [14], § 4. In order to validate
the axioms in the filtrated model, Axiom (O 2 ′) in particular, we first of all
must fix the filter set suitably. The nominals as well as the operation symbols
occurring in the (consistent) formula α for which we want to find a finite model
have to be taken into account for that. In concrete terms, the following sets
of formulas have to be added to the set Σ0 we started off with in case of the
function-free language (cf [3], Sec. 4): Σ1 := {[F ]¬� | F ∈ F occurs in α} , and
Σ2 := {[F ](i ∧ I), [F ]¬(i ∧ I) | F ∈ F , i ∈ Nstat and I ∈ Nsets occur in α} . We
then close the resulting set of formulas successively under negations, finite con-
junctions of pairwise distinct elements, single applications of the operator L,
and, finally, formation of subformulas. Thus the new filter set too is finite and
subformula closed.



318 B. Heinemann

We secondly take the respective smallest filtration of all the accessibility rela-
tions of the canonical model (where α is realized at some point); cf [14], p 33. We
then modify the structure obtained in this way with regard to the nominals and
the modalities [F ], respectively, which do not occur in α. We take the nowhere
defined function as the interpretation of an operation symbol not occurring in
α, and the empty set as the denotation of such a nominal. This modification
obviously does not affect the semantics of α.

The model surgery procedure which just has been indicated provides for the
desired validity of Axiom (O2 ′) (and of some other hybrid axioms not consid-
ered here). In fact, by exploiting both the minimality of the filtrations and the
definition of the sets Σ1 and Σ2, respectively, we can directly calculate in case
all the names and operations involved in the axiom really occur in α; otherwise
the proof is even simpler.6

Finally, we mention that the validation of Axiom (O3) is similar to the one
of the Cross Axiom in [5], proof of Lemma 2.10. The closure properties of the
filter set are utilized for that.

The finite model property of the logic HLSO with respect to a certain recur-
sively enumerable set of models can be inferred from that in a standard manner
now. (An initial segment of the natural numbers can be chosen as the carrier
set of every model from that set, actually.) This gives us the desired decidability
result, in accordance with [18], Theorem 6.13.

The decidability of MLSO follows as an immediate corollary to Theorem 2.

Corollary 1. MLSO is a decidable set of formulas.

The complexity of HLSO is generally rather high. In fact, if F contains at least
two function symbols, then the HLSO–satisfiability problem is hard for EXP-
TIME. This can be proved by reducing the satisfiability problem for attribute
value logic to HLSO–satisfiability. The assertion then follows since the former
problem is EXPTIME–complete, by Theorem 4.5 of the paper [19].

5 Concluding Remarks

We proposed a rather expressive logical system for reasoning about knowledge,
topology and operations on sets. We proved that the set of all theorems of
this logic is finitely axiomatizable, semantically complete, and decidable. For
that we took advantage of the power of hybrid logic. In this way, the most
basic theoretical foundations of a tool for corresponding spatial reasoning were
provided in particular.

Future research will be directed at putting this in more concrete terms. Addi-
tionally, we will utilize special operations on sets for reasoning about knowledge
acquisition.
6 This is the decisive point where the hybrid methods prove to be superior to the usual

modal ones. Even if we had carried out the completeness proof for MLSO, we would
have been forced to use the detour via hybrid logic for decidability.
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Abstract. Various families of Neural Networks (NN) have been used
in the study and development of the field of Artificial Intelligence (AI).
More recently, the Hodgkin-Huxley (HH) has attracted a fair bit of atten-
tion. Apart from the HH neuron possessing desirable “computing” prop-
erties, it also can be used to reasonably model biological
phenomena, and in particular, in modeling neurons which are “synchro-
nized/desynchronized1”. This paper, which we believe is a of pioneering
sort, derives some of the analytic/learning properties of the HH neuron,
and neural network.

The HH Neuron is a nonlinear system with two equilibrium states:
A fixed point and a limit cycle. Both of them co-exist and are stable.
The behavior of this neuron can be switched between these two equi-
libria, namely spiking and resting respectively, by using a perturbation
method. The change from spiking to resting is referred to as Spike An-
nihilation. In this paper, we analytically prove the existence of a brief
excitation (input) which, when delivered to the HH neuron during its
repetitively firing state, annihilates its spikes. We also formally derive
the characteristics of this brief excitation. We thus believe that our anal-
ysis of the HH neuron has practical implications in clinical applications,
especially in the case of the desynchronization of neuronal populations.

1 Introduction

In the pioneering research of Hopfield and Grossberg , the process of coding infor-
mation using neural networks (NN) was developed around the regime involving
fixed point attractors. An alternative philosophy, motivated by clinical neurolo-
gists, indicated that brain dynamics is characterized by cyclic and weakly chaotic
regimes. Some theories proposed in Artificial Intelligence (AI) have attempted

1 We believe that the entire concept of desynchronizing the neurons in a NN, is an area
which is relatively open. Indeed, the available results concerning desynchronization
are scanty.

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 320–331, 2007.
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to exploit cyclic attractors for information encoding. One of these theories con-
sists of indexing the “attractor information items” by means of external stimuli
rather than by using initial conditions as proposed by Hopfield. This algorithm
implies the existence of alternative responses to external stimuli and a switch-
ing process from one of these potential attractors to another in response to any
input stimulus. The process of retrieving the information stored in the cycles
depends on the model chosen for the investigation: A more realistic model for
the neuron will have a richer range of non-linear behaviors (represented by sta-
ble or unstable limit cycles). Our paper investigates the process of retrieving the
information stored in the cycles, namely that of controlling the neuron (to be
more specific, a Hodgkin-Huxley (HH) neuron).

We present now a few considerations about the dynamical properties of the
HH neuron. This neural model can be in one of two states: A resting state and a
state that fires in response to certain forms of stimulation. Usually, the neuron is
considered to be in a equilibrium mode when it is in a resting state. However, this
statement is not universal because there are two equilibrium states associated
with this neuron, namely a fixed point and the limit cycle, both of which are
stable. One problem to be considered here is the switching of the neuron from
one equilibrium mode to the other, which is a phenomenon which can occur
without modifying the number and the stability of the equilibria.

From a classical system theory point of view, the equilibrium point of a non-
linear dynamical system may disappear or may lose its stability if a control
parameter is changed, depending on the type of bifurcation displayed by the
system. In our research, the HH neuron is considered to be a dynamical nonlin-
ear system whose equilibrium states are not to be radically changed with regard
to its stability. We investigate the case when both equilibria, namely the fixed
point and the limit cycle, co-exist and remain stable. In this particular situa-
tion, the system is bi-stable, and with a carefully chosen synaptic input, it is
possible to switch the behavior from being resting to one which demonstrates
spiking, or from being spiking to a resting (spike annihilation) mode. The goal
of this research is to describe the properties of the stimulus that can achieve this
switching.

This above stimulus, chosen to be a brief pulse of current, is not a control
parameter. Its behavior affects neither the existence of the equilibrium points,
nor their stability. The control parameter is the strength of the constantly applied
current and, during our investigation, it is set to be constant. We argue that
injecting a constant current into the axon is not equivalent to injecting a brief
pulse of current. In the former, the system can go through a bifurcation of
the equilibrium by changing the existence of the equilibria or by affecting their
stability. In the latter, however, the system can jump to an alternate location in
the state space, which is achieved by the system resetting the initial condition.
The neuron is driven to a state of “shock”, and consequently, the membrane
potential instantly switches to a new value. The fixed point, corresponding to
the resting state, co-exists with the limit cycle, which corresponds to the spiking
state, and the system continues to be bistable. This leads us to the goals of
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this research: (i) to prove analytically the existence of such stimuli, and (ii) to
describe the characteristics of these brief depolarizing shock-stimuli that, when
inserted at the appropriate time, can switch the neuron from the spiking to the
resting state.

1.1 Contribution of the Paper

As far as we know, the entire concept of synchronization/desynchronization of
the neurons has not been studied for most families because such a study not
only involves the asymptotic behavior, but also an analysis of transient/periodic
phenomena of the individual neurons. Without being apologetic, we mention
that the paper is fairly theoretical. But all our results are supported by rigorous
simulations.

As we stated before, our paper investigates only one stage of the process of
retrieving the information stored in the cycles, namely that of controlling the
HH neuron. In contrast to the previous pieces of work, which validated experi-
mentally or anticipated theoretically that annihilation is possible, we achieve the
followings: (i) We formally prove that the problem of spike annihilation has a
well defined solution. (ii) We formally derive the characteristics of the proposed
solution. All of the results are novel, and to the best of our knowledge, unknown
in the field. We thus believe that our analysis of the HH neuron constitute a
contribution to the process of modeling of retrieving the information and also
has practical implications in clinical applications, especially in the case of the
desynchronization of neuronal populations [3],[4],[5],[6].

2 The Bistable HH Neuron

In this section we investigate the stability-related characteristics of the HH neu-
ron. In the previous section, we stated that the HH neuron can be perceived as a
dynamical nonlinear system with two stable equilibria. This is formalized below.

Consider a two-dimensional dynamical system:

dV

dt
= P (V, R), (1)

dR

dt
= Q(V, R), (2)

where P (V, R) and Q(V, R) are polynomials of real variables V and R, and where
the corresponding coefficients are real. The fundamental problem associated with
the qualitative theory of such systems seems to be Hilbert’s Sixteenth Problem
[1], stated as follows: Find the maximum number and the relative positions of
the limit cycles of the system described by Equations (1) and (2). This problem
remains unsolved.

It should be mentioned that there are many methods which yield specific
results related to the study of limit cycles. However, the above general problem
has not been solved, even for the simplest quadratic systems. Rather, we intend



Analytic Results on the Hodgkin-Huxley NN: Spikes Annihilation 323

to explore, numerically, the less general system defined by Equations (3) and (4)
proposed by Rinzel and Wilson [2], which, indeed, approximate the Hodgkin-
Huxley neuron:

dV

dt
=

1
τ
[−(a1 + b1V + c1V

2)(V − d1)− e1R(V + f1) + B + σ], (3)

dR

dt
=

1
τR

(−R + a2V + b2), (4)

where a1, a2, b1, b2, c1, d1, e1, f1,τ , and τR are constants,2 B is the background
activity,3 and σ is an excitation stimulus. Apart from deriving certain specific an-
alytic results, we propose to discover, numerically, the number and the positions
of the limit cycles.

By introducing Hilbert’s Sixteenth Problem as a motivation for the solutions
of the system, we argue that the numerical approach to yield the number and
the relative positions of the limit cycles of the system described by Equations (3)
and (4), is the only reasonable strategy (instead of an analytical one) to tackle
the problem.

It is true that there are some theoretical results [1], which can be postulated
as theorems, that can be applied for two-dimensional nonlinear systems. But
their contributions are only qualitative without being capable of describing the
complete picture of the number and the relative positions of the limit cycles.
Thus, in the interest of completeness we mention these formal results that can
be used to prove that a system described by Equations (3) and (4) has a limit
cycle and a bifurcation point.

2.1 Related Theoretical Foundation

The first useful Theorem, due to Poincare [2], states that a limit cycle must
surround one or more equilibrium points.

Poincare Theorem: If a limit cycle exists in an autonomous two-dimensional
system, it must necessarily surround at least one equilibrium point. If it encloses
exactly one equilibrium point, the latter must be a node, a spiral point, or a
center, but can not be a saddle point.

The Poincare Theorem is a necessary but not a sufficient condition for the ex-
istence of the limit cycle in systems described by Equations (3) and (4). In the
general case of a two-dimensional nonlinear system, it is possible to find multiple
steady states without limit cycles. Consequently, the applicability of the Poincare
Theorem is limited, since by utilizing it, we will not be able to determine whether
a system described by Equations (3) and (4) has a limit cycle.

2 In their experiments, Rinzel and Wilson [2] set the constants as: a1 = 17.81, b1 =
47.71, c1 = 32.63, d1 = 0.55, e1 = 0.55, f1 = 0.92, a2 = 1.35, b2 = 1.03, τ = 0.8 ms
and τR = 1.9 ms.

3 The background activity generates limit cycles in the system. Without this value,
the system will converge through the stable spiral point.
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On the other hand, we need a theorem that specifies the conditions under which
a system is forced to have a limit cycle. In the literature [2], the Poincare-Bendixon
Theorem defines the conditions for the existence of a limit cycle. But more appli-
cable to our scenario, is the Hopf Bifurcation Theorem [2], presented below, which
defines the conditions for the existence of a stable or unstable limit cycle.

Hopf Bifurcation Theorem: Consider a nonlinear dynamical system in N ≥ 2
dimensions that depends on a parameter, β, as:

d
−→
X

dt
= −→F (−→X, β). (5)

Let X0 be an isolated equilibrium point of the system. Assume that there is a
critical value of β = α with the following properties determined from the Jaco-
bian, J(β): (i) X0 is asymptotically stable for some finite range of values β < α.
(ii) When β = α the system has at least one pair of pure imaginary eigenvalues
λ = ±iω, while all other eigenvalues have negative parts. (iii) X0 is unstable for
some range of values β > α.

Then, the system defined by Equation (5) either possesses an asymptotically
stable limit cycle over a range β > α, or it possesses an unstable limit cycle over
some range β < α. Furthermore, in the neighborhood of β = α, the frequency of
the oscillation characterized by the limit cycle will be approximately ω

2π , and this
oscillation will emerge with infinitesimal amplitude sufficiently close to α. ��
The Hopf Bifurcation Theorem indicates that near the critical value of β = α
there is a limit cycle. It does not tell us whether this is an unstable limit cycle
occurring when β < α, or if it is an asymptotically stable limit cycle for β > α.
However, the theorem specifies where we can search in the parameter space, to
locate a limit cycle behavior. Thus, although we are not able to provide the
equation that describes the limit cycle, we can identify, by investigating the
neighborhood of α, the qualitative description of the limit cycle.

To render our theoretical consideration meaningful, in the following, we shall
derive: (i) The equilibrium states of the HH neuron by solving the system of
equation described by the isoclines, (ii) The Jacobian corresponding to the sys-
tem described by Equations (3) and (4), at the equilibrium states, (iii) The
eigenvalues of the Jacobian, by solving the characteristic equation associated
with the Jacobian, and (iv) The requirements on the eigenvalues as specified by
the Hopf Bifurcation Theorem for identifying the limit cycle.

2.2 Computing the Equilibrium States

Consider a system described by Equations (3) and (4). We compute the the equi-
librium states by solving the system of equations described by their isoclines.
This is formalized in the following Lemma.

Lemma 1. The equilibrium points of the HH neuron can be obtained by solving
a cubic polynomial equation:

x3V
3 + x2V

2 + x1V + x0 = 0 (6)
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where: x3 = −c1, x2 = −(b1 + a2e1 − c1d1), x1 = −(a1 − b1d1 + a2e1f1 + b2e1),
x0 = a1d1 − b2e1f1 + B.

Proof: From Equations (3) and (4), we see that the system has two isoclines,
specified by the contours: dVdt = 0 and dR

dt = 0, which can be written as:

1
τ
[−(a1 + b1V + c1V

2)(V − d1)− e1R(V + f1) + B] = 0 (7)

and
1
τR

(−R + a2V + b2) = 0. (8)

The background activity B is the control parameter β specified in the Hopf
Bifurcation Theorem.

The equilibrium states can be computed as solutions of Equations (7) and (8).
By substituting R from Equation (8) as R = a2V + b2, and utilizing this value
in Equation (7), we obtain the equation:

x3V
3 + x2V

2 + x1V + x0 = 0 (9)

where the coefficients x3, x2, x1, and x0 are as defined in the Lemma statement.
Hence the Lemma. ��
2.3 Computing the Jacobian

We now consider a Jacobian-based analysis of the HH neuron, formalized in the
following Lemma.

Lemma 2. The Jacobian matrix of the system representing the HH neuron is
given by:

J(V, R) =
(

y12V
2 + y11V + y10 y21V + y20

y30 y40

)
,

where y12 = − 1
τ 3c1, y11 = − 1

τ (2b1 + 2c1d1 + a2e1), y10 = − 1
τ (a1 + b1d1 + e1b2),

y21 = − 1
τ e1, y20 = − 1

τ f1, y30 = 1
τR

a2, y40 = − 1
τR

.

Proof: We know from the theory of dynamical systems that the Jacobian matrix
of the system is :

J(V, R) =

(
∂V (V,R)
∂V

∂V (V,R)
∂R

∂R(V,R)
∂V

∂R(V,R)
∂R

)
.

Evaluating each of these components yields:
∂V (V,R)
∂V =∂[ 1

τ [−(a1+b1V+c1V
2)(V−d1)−e1R(V+f1)+B]]

∂V == 1
τ [−3c1V

2−(2b1+2c1d1)V−
(a1 + b1d1)− e1R],
∂V (V,R)
∂R =∂[ 1

τ [−(a1+b1V+c1V
2)(V−d1)−e1R(V+f1)+B]]

∂R = =− 1
τ e1(V + f1),

∂R(V,R)
∂V =

∂( 1
τR

(−R+a2V+b2))

∂V = 1
τR

a2,
∂R(V,R)
∂R =

∂( 1
τR

(−R+a2V+b2))

∂V =− 1
τR

.

But Equation (8) can be used to eliminate R from the partial derivatives. By
achieving this, and omitting the laborious algebraic steps, the result follows. ��
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2.4 Finding the Bifurcation Point

We shall now consider the problem of finding the neuron’s bifurcation point by
using the dynamical matrix of the system. This value of the bifurcation point is
used to “set” the neuron so as to render it to be bi-stable.

Theorem 1. A HH neuron obeying the Equations (3) and (4) has a bifurcation
point if and only if a root of the equation 1

τ [−3c1V
2 − (2b1 + 2c1d1)V − (a1 +

b1d1)− e1R]− 1
τR

= 0 satisfies the inequality V > −f1 − 1
e1

τ
τR

.

Proof: For the bifurcation point, the roots of the characteristic equation, com-
puted from the Jacobian, are purely imaginary. It is well known that a quadratic
equation x2−Sx+P = 0 has imaginary roots if Condition 1 : S = 0, and Condi-
tion 2 : P > 0, where S and P are the sum and product of the roots, respectively.

Consider the Jacobian of the HH neuron as given by Lemma 2. Applying
Condition 1 to this Jacobian generates the equation: 1

τ [−3c1V
2−(2b1+2c1d1)V −

(a1 + b1d1) − e1R] − 1
τR

= 0. This equation has two roots, say V1 and V2. The
problem now is one of verifying whether V1 and V2 satisfy Condition 2. This in
turn implies that for V1 and V2: 1

τ
1
τR

[−3c1V
2−(2b1+2c1d1)V−(a1+b1d1)−e1R]+

1
τR

1
τ e1(V + f1) > 0. We can rewrite this inequality using the observation that

V1 and V2 are solutions to the equation corresponding to Condition 1, namely
1
τ [−3c1V

2 − (2b1 + 2c1d1)V − (a1 + b1d1) − e1R] = 1
τR

. Using this relation,
Condition 2 becomes: 1

τR

1
τR

+ 1
τR

1
τ e1(V + f1) > 0.

We know that τR and τ are time constants, being positive. We make a con-
vention that e1 is also a positive constant. With these considerations, Condition
2 can be rewritten in a new form as: V > −f1− 1

e1
τ
τR

. The theorem follows since
whenever these constraints are satisfied, we obtain purely imaginary roots. ��

2.5 The Stable and Unstable Limit Cycles

If we consider B to be a control parameter, we can analytically compute the
equilibrium point, which, for certain values of σ, leads to a spiral stable point,
and which, for other values of σ, leads to an unstable spiral point. The behavior
around a specific value, namely the change of the stability of the equilibrium
point, induces the concept of a subcritical (hard) Hopf bifurcation. By plotting
the evolutions of the numerical solutions of the system (Equations (3) and (4)),
we discover that for the settings of Rinzel and Wilson [2], there is a stable limit
cycle to the right of the bifurcation point. To identify a hypothetical unstable
limit cycle, we can modify the system’s equations to make time run “backwards”.
The modification, which consists of rendering the sign of the two constants, τ and
τR, to be negative, changes the unstable limit cycle to become asymptotically
stable. In this way, by using a numerical method, we can identify the position
of a second limit cycle, which happens to be unstable. The stable spiral point
is surrounded by this unstable limit cycle which, in turn, acts as a separatrix
defining a basin of attraction for the stable point.

In Figure 1 we present the stable and unstable limit cycles, together with the
isoclines (dVdt = 0 and dR

dt = 0). The trajectory starts at the point indicated by
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Fig. 1. (left side) The phase space representing the stable limit cycle and the resulting
isoclines ( dV

dt
= 0 and dR

dt
= 0) obtained by using Rinzel and Wilson settings for the

HH neuron. The starting point, (represented with ‘1’) is V0 = −0.7, and R = 0.08. In
addition, B = 0.08. (right side) The phase space representing the unstable limit cycle.
The starting point must be outside the zone called ZoneA, defined by the cycle. In
this graph, the starting point (represented with ‘1’) is V0 = −0.7, and R0 = 0.2. In
addition, B = 0.08.

‘1’ and follows the arrowed curves. Observe that in the case of Figure 1 (left
side), the trajectory of the HH neuron trajectory follows the stable limit cycle,
and in Figure 1 (right side), the trajectory follows the unstable limit cycle. When
B is increased from the resting value, the steady state remains asymptotically
stable and the spikes are generated only after the bifurcation point is reached,
by increasing the value of B.

3 The Problem of Annihilation

The problem of the annihilation of spikes for the HH neuron involves moving
the state of the system, by using a pulse stimulus, from outside a particular
zone (denoted as ZoneA) to being inside ZoneA, where ZoneA is a basin of
attraction of the stable spiral point which is described by an unstable limit cycle.
For example, if the system is characterized by the settings specified by Rinzel
and Wilson [2], ZoneA is contained in the region given by V ∈ [−0.6,−0.8] and
R ∈ [0.1, 0.15], as depicted in Figure 1. Figure 2 contains all the steady states of
the system, including the stable spiral point, and the stable and unstable limit
cycles.

The success of the annihilation process depends on four crucial issues: (i)
What should be the initial point (V, R) for the system to exhibit annihilation?
(ii) When should the pulse stimulus, σ, be applied to the system to annihilate
it? (iii) What should the amplitude of the pulse stimulus be for the annihilation
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x 21

Fig. 2. The annihilation process for the system specified in Figure 1. The stable fixed
point, the stable limit cycle, and the unstable limit cycle (the separatrix given by
the dashed line) are represented together. If the system starts in a carefully chosen
configuration at State 1 on the stable limit cycle, the system can be driven to State 2
by applying a carefully chosen stimulus. From this state, it will then go to the stable
fixed point.

to be achieved? (iv) What should the duration of the pulse stimulus be for the
annihilation to be achieved? The solution of the annihilation problem consists
of determining a stimulus which adequately responds to all the above questions.

We now formally prove that the problem of spike annihilation is well-defined,
and propose an algorithm for finding a solution to it. The problem is clarified in
Figure 2. If the system starts in a carefully chosen configuration at State 1 on
the stable limit cycle, the system can be driven to State 2 by applying a carefully
chosen stimulus. From this state, it will then go to the stable fixed point.

We plan to analytically demonstrate that the spike annihilation problem has
a well-defined solution. The strategy of solving this problem consists of: (i) Com-
puting the steady states. (ii) Analyzing the stability of the steady states. (iii)
Computing the bifurcation points and the bifurcation diagram. (iv) Computing
the stable and unstable limit cycles. (v) Analyzing the existence of the stimulus
that can annihilate the system.

3.1 The HH Neuron Annihilation Theorem

Since we are interested in annihilating the spikes, we shall demonstrate that this
can be done by invoking a discretized4 time model. To achieve this, first of all,
we rewrite the dynamical system of equations for a bistable model of the HH
neuron in a discrete-time manner as:

V [n+1]=V [n]+
1
τ
[−(a1+b1V [n]+c1V

2[n])(V [n]−d1)−e1R[n](V [n]+f1)+Bk+σ],

(10)

R[n + 1] = R[n] +
1
τR

(−R[n] + a2V [n] + b2). (11)

The general Theorem of Annihilation is formally written below.

4 A continuous-time approach cannot be invoked to prove this theorem, because, by
virtue of its relation to Hilbert’s Sixteenth Problem, it is not known how we can
compute the explicit solutions for the system of equations.
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Theorem 2 (HH Neuron Annihilation). Consider a system described by its
discretized dynamical equations:

(
V [n + 1]
R[n + 1]

)
=

(
V [n]
R[n]

)
+

(
f1(V [n], R[n])
f2(V [n], R[n])

)
+ S[n], (12)

with n = 0, 1, .., where f1 and f2 specify the unexcited dynamics, and S[n] is the
excitation applied to the system.

If the system has a stable limit cycle, a stable spiral point and an unstable limit
cycle which separates the fixed point and the stable limit cycle, then, there exists
an excitation function S[n], which equals 0 everywhere except at a specific point
(V [0], R[0]) on the stable limit cycle, at which point S[0] has the value [A, 0]T

for a duration of one iteration, and which when applied to the system, forces it
from the stable limit cycle to the stable spiral point.

Proof: Consider the system defined by Equation (12), which has the excitation
S[n]. Analyzing the Jacobian of the system, we observe that it has the same
form as the one corresponding to the continuous case. Thus, all the qualitative
results obtained in the previous Section are also applicable for the discrete time
approach, and thus, the system has a stable fixed point, a stable limit cycle and
an unstable limit cycle (also known as a separatrix ).

For the purpose of proof, we define, three distinct areas in the state space,
as depicted by Figure 3: (i) We denote AIn as the region corresponding to the
basin of attraction of the stable fixed point, bordered by the separatrix. (ii) We
observe two regions outside the separatrix, that can have as their boundaries the
tangents in the maximum and minimum ‘R’ points on the separatrix, the stable
limit cycle and the isoclines. We denote them as:
AOut,1: The region where V [n + 1] > V [n] and R[n + 1] < R[n], and
AOut,2: The region where V [n + 1] > V [n] and R[n + 1] > R[n].

Let us denote the intersection between the tangents in the maximum and min-
imum ‘R’ points on the separatrix, and the stable limit cycle (see Figure 3) as

V V
R

dV

dR

dt

dt

RVV

A1 B2
01

02
B1A2

=0

=0

1 23

4

5 6

78

Fig. 3. (left side) The stable spiral point, the stable and the unstable limit cycle for
the bi-stable HH neuron. (right side)A zoom-in of the phase space. The regions AOut,1

and AOut,2 correspond to Area V and Area VI, respectively. The regions AIn,1, AIn,2,
AIn,3, and AIn,4 correspond to Area I, Area II, Area III, and Area IV, respectively.
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VA1,VA2, VB1, VB2. The sequence of these points corresponds to the time evolu-
tion on the stable limit cycle.

Within the discrete-time model of computation, the problem of annihilation
involves proving that there exists a stimulus A, which when applied between VA1

and VA2 or between VB1 and VB2 moves the system into the basin of attraction
of the stable fixed point, namely within AIn. Observe that if the system is within
this region, it is inside the separatrix, and it will thus converge to the fixed point.
Indeed, it suffices to show that this input can be applied for a single time unit.

Consider the scenario in which the system is on an initial point V [0] between
VA1 and VA2. Since the stable limit cycle and the separatrix are non-intersecting,
there exists a positive “distance” d0 between V [0] and the separatrix. We intend
to determine a value of A that moves the system from (V [0], R[0]) to an arbitrary
point in AIn. Clearly, the magnitude A has to satisfy the condition :

(V [1]− V [0]) > d0 (13)

Computing V [1] as a function of V [0] we have: V [1] = V [0] + f1(V [0]) + A.
The condition (13) becomes:

(V [0]+f1(V [0]+A−V [0]) > d0 =⇒ (f1(V [0]+A) > d0 =⇒ A > d0−f1(V [0]).
(14)

We now invoke the monotonic property of the function V [n], that corresponds
to the portion of the state space below the isocline, where V [n + 1] > V [n],
namely in AIn. Here, the term f1(V [n]) = V [n + 1]− V [n] is positive. We thus
see that there exists a value of A, satisfying the condition (14), that moves the
initial point of the system between VA1 and VA2, to be in AIn. We have now to
evaluate the sign of the expression [d0 − f1(V [0])]. Starting from (V [0], R[0]) on
the stable limit cycle, with V [0] between VA1 and VA2, we know that, without
adding the A stimulus, the next point (V [1], R[1]) will also be on the stable
limit cycle. The difference between V [1] and V [0] is exactly f1(V [0]). In this
context, f1(V [0]) will satisfy the condition f1(V [0]) < d0, because there is no
intersection, between the limit cycle and the unstable limit cycle (described by
the separatrix). We have now thus proved that [d0 − f1(V [0])] > 0. Thus, A is a
positive value satisfying A > d0 − f1(V [0]).

The analogous rationale can be used if the initial point V [0] is between VB1

and VB2. In this case, there exists a distance d1 (a positive value) between V [0]
and the separatrix. We intend again to find a value of A that moves the system
into region AIn. The magnitude that A has to satisfy, leads to the condition :

(V [0]− V [1]) > d1. (15)

Observe also that this part of the state space, (also below the isocline), cor-
responds to V [n + 1] > V [n], and, thus, the term f1(V [n]) = V [n + 1]− V [n] is
also positive.

Computing V [1] and R[1] as a function of V [0] and R[0] we have: V [1] =
V [0] + f1(V [0]) + A. The condition (15) thus becomes:

(V [0]− V [0]− f1(V [0])−A > d1 =⇒ A < −d1 − f1(V [0]). (16)
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Observe that both d1 and f1(V [0]) are positive quantities, and the term [−d1−
f1(V [1])] is a negative value. We have proved that there exists a value of A that
moves the initial point of the system from being between VB1 and VB2, to be
within AIn. Since both these cases are exhaustive, the theorem is proved. ��

4 Conclusions

The literature about the synschronization/desynchronization of NNs is scanty
because such an analysis would involve transient/periodic phenomena of the
individual neurons. We have made a small step in this regard to analyze the
synchronization properties of one such NN, the network of HH neurons. This
paper briefly described the HH neuron and formally derived various properties
of its stability. It also described the formal proof that the problem of spike anni-
hilation has a well defined solution, and presented an algorithm for computing
the properties of the stimulus. We add that the method of perturbation with
brief stimuli differs from the classical approach of modifying the control param-
eter and changing the Jacobian of the system. In our approach, we keep the
system bi-stable all the time, and our task is to switch between these two states
without modifying their stability. To conclude, we have analytically proved the
existence of the brief current pulse that annihilates the spikes of the HH neuron.
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Abstract. Importance sampling-based algorithms are a popular alternative when
Bayesian network models are too large or too complex for exact algorithms. How-
ever, importance sampling is sensitive to the quality of the importance function.
A bad importance function often leads to much oscillation in the sample weights,
and, hence, poor estimation of the posterior probability distribution. To address
this problem, we propose the adaptive split-rejection control technique to adjust
the samples with extremely large or extremely small weights, which contribute
most to the variance of an importance sampling estimator. Our results show that
when we adopt this technique in the EPIS-BN algorithm [14], adaptive split-
rejection control helps to achieve significantly better results.

1 Introduction

Bayesian networks [11] have become core tools for knowledge representation in Arti-
ficial Intelligence. One obstacle to their application is their computational complexity,
which is NP-hard [3]. Importance sampling based algorithms are a popular alterna-
tive when Bayesian network models are too large or too complex for exact algorithms.
The state of the art importance sampling algorithm is the EPIS-BN algorithm [14],
whose main idea is to use several steps of loopy belief propagation (LBP) [10] to es-
timate an importance function for importance sampling. The algorithm is shown to
reach the precision limit of sampling algorithms on some networks. However, due to
the potential instability of LBP and, hence, possibly poor importance functions, EPIS-
BN can still perform sub-optimally. This is manifested in the oscillation in the sample
weights. Samples with extremely large weights and extremely small weights contribute
most to the variance of the estimator. To address this problem, we propose an adap-
tive split-rejection control technique to adjust these samples. The technique consists of
two parts: adaptive split control, which is to adaptively split samples with extremely
large weights, and adaptive rejection control, which is to stochastically reject sam-
ples with extremely small weights. Although the adaptive split-rejection control may
introduce correlation into the samples, the correlation is minimal in comparison to
the reduction in the overall variance for sample sets with much oscillation. Our re-
sults show that when we apply adaptive split-rejection control in EPIS-BN, it helps
the algorithm to achieve significantly better results. Two closely related techniques are
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resampling [9] and pruned-enriched Rosenbluth method (PERM) [5,7,12]. The ma-
jor advantage of our technique is that it exploits the fact that importance sampling in
Bayesian networks is a high dimensional problem such that it generates useful samples
more efficiently.

2 Importance Sampling

We start with the theoretical roots of importance sampling. We will use capital letters
for variables and lowercase letters for their states. Bold letters denote sets of variables
or states. Let f(X) be a function of n variables X = {X1, ..., Xn} over the domain
Ω ⊂ Rn. Consider the problem of estimating the multiple integral

V =
∫
Ω

f(x)dx . (1)

We assume that the domain of integration of f(X) is bounded, i.e., that V exists. Im-
portance sampling approaches this problem by estimating

V =
∫
Ω

f(x)
g(x)

g(x)dx , (2)

where g(X), called the importance function, is a probability density function such
that g(X) > 0 across the entire domain Ω. One practical requirement of g(X) is
that it should be easy to sample from. In order to estimate the integral, we generate
samples x1,x2, ...,xN from g(X) and use the generated values in the sample-mean
formula

V̂ =
1
N

N∑
i=1

f(xi)
g(xi)

. (3)

The estimator almost surely converges to V under certain weak assumptions [4].
The performance of the estimator in Equation 3 can be measured by its variance

varg[
f(X)
g(X)

] =
∫
Ω

f2(x)
g(x)

dx− V 2. (4)

Rubinstein [13] shows that if f(X) > 0, the optimal importance function is

g(X) =
f(X)

V
. (5)

In this case, the variance of the estimator is zero. However, the concept of the optimal
importance function is of rather theoretical significance because finding V is equivalent
to finding the posterior distribution, which is the problem that we are facing. Neverthe-
less, it suggests that if we find instead a function that is close enough to the optimal
importance function, we can still expect good convergence rates.
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3 Improving Importance Sampling by Adaptive Split-Rejection
Control

Since we normally have no access to the optimal importance functions, we have to
resort to approximation techniques or even guess work to estimate them. Importance
functions thus obtained may yield far from optimal performance, which is directly re-
flected in the much oscillation in the sample weights. In such a sample set, extremely
large weights and extremely small weights contribute most to the variance of the esti-
mator. Furthermore, if the ratio f/g is unbounded, the variance of the estimator may
be infinite, in which case importance sampling is unreliable. To remedy this problem,
we propose the adaptive Split-Rejection control technique to adjust these samples. The
technique includes two parts: adaptive split control and adaptive rejection control.

3.1 Adaptive Split Control

Samples with extremely large weights have a large impact on the variance of an impor-
tance sampling estimator, because they dominate the estimator and make other samples
less useful. If some of these large-weight samples are in the unimportant parts of f ,
the estimator will wrongly put too much emphasis on these parts, and its performance
will inevitably be poor. To deal with this problem, we propose the adaptive split control
technique. The basic idea is to split a sample with a large weight into several samples
with smaller weights. This technique is related to the enrichment method in [12,5,7].
In Bayesian networks, since we need to go over all the nodes in the topological order
to draw a single sample, we can further exploit the power of adaptive split control by
appointing several rejection nodes, say every 50th nodes. More formally, adaptive split
control works as follows.

Adaptive Split Control:

1. For i = 1, ..., M , draw xi from g(X), and keep track of the cumulative weights for
every rejection node.

2. For all the rejection nodes, sort the weights ascendingly, and let split threshold
cs = w�αs×M� using the choose split percentile αs .

3. For j = 1, ..., N (N �M ), draw xj from g(X) according to Steps 4 and 5.
4. Go over each node in the topological order of the network, and instantiate it to a

state that is sampled from its distribution conditional on its parents.
5. If the cumulative weight w becomes larger than the split threshold cs at a rejection

node, we split it into k = �w/cs + 1� samples, each with weight w/k.

It is easy to show that the new estimator is still unbiased.

Theorem 1. The importance sampling estimator with adaptive split control is
unbiased.

There are two purposes for the adaptive split control technique. First, we can prevent a
sample weight from blowing up and get samples with more uniform weights. Second,
after we split the sample, the resulting samples enable us to explore a wider range of
the sample space, and we are more likely to get better samples. Intuitively, adaptive
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split control tries to modify the old importance function such that the new importance
function gs(X) approximately follows the following distribution:

gs(X) = q−1
cs

max{g(X),
f(X)

cs
} , (6)

where qcs is defined as

qcs =
∫

max{1,
w(x)
cs
}g(x)dx , (7)

where w(x) = f(x)/g(x). The result is only approximate because of the way that we
calculate the number of split samples. Suppose the target density and the importance
function are both normalized, the following theorem shows that adaptive split control
reduces the χ2 distance between the two distributions, which is defined as

χ2(f, g) =
∫
Ω

[f(x)− g(x)]2

g(x)
dx ≡ varg[

f(X)
g(X)

] . (8)

Theorem 2. The χ2 distance between the modified importance function in Equation 6
and the target density is smaller than that between the original importance function and
the target density; that is,

vargs [
f(X)
gs(X)

] ≤ varg[
f(X)
g(X)

] . (9)

Proof. Let

h(w1, w2) = [max{w1, cs} −max{w2, cs}]×
[w1 min{w1, cs} − w2 min{w2, cs}] .

h(w1, w2) is always nonnegative, because

h =

⎧⎪⎨
⎪⎩

0 ≥ 0, max(w1, w2) < cs,
cs(w1 − w2)2 ≥ 0, cs < min{w1, w2},
(cs − w2)(w2

1 − w2cs) ≥ 0, w1 ≤ cs ≤ w2,
(w1 − cs)(w1cs − w2

2) ≥ 0, w2 ≤ cs ≤ w1.

Hence, max{w(x), cs} and min{w(x), cs}w(x) are positively correlated. There-
fore,

cs[1 + vargs{
f(x)
gs(x)

}]
= qcsEg[min{w(x), cs}w(x)]
= Eg[min{w(x), cs}w(x)]Eg max{cs, w(x)}
≤ Eg[{min{w(x), cs}max{cs, w(x)}w(x)}]
= csEg[w2(x)]

= cs[1 + varg{f(x)
g(x)

}] .
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Although splitting samples may introduce correlations among the samples, we can look
at it in a different way. After we increase the mass of the importance function in the
parts where large-weight samples come from, these weights will have smaller weights.
In the mean time, we also have more chances to hit these samples. In some sense,
we are performing selective resampling; we are only resampling from samples with
extreme weights. Also, there is an interesting connection between adaptive split control
and Rao-Blackwellization [8]. The idea of Rao-Blackwellization is, if we can perform
part of the multiple integral in Equation 1 analytically, we can reduce the variance
of the estimator in Equation 3. In adaptive split control, instead of performing exact
integration, we draw multiple samples to estimate that part of the integral, which can
also reduce the variance of the estimator.

3.2 Adaptive Rejection Control

Samples with extremely large weights have a large impact on the variance of an impor-
tance sampling estimator. Similarly, samples with extremely small weights also have
impact on the variance. Since they are very small, they do not play much role in the
estimator but only make its variance larger. Simply throwing them away is not good
because that introduces bias. To adjust these samples, we can apply a technique called
rejection control (RC) [8]. Suppose we have drawn samples x1,x2, ...,xN from g(X).
Let wj = f(Xj)/g(Xj). Rejection control conducts the following operation for any
given threshold value cr > 0.

Rejection Control:

1. For j = 1, ..., N , accept xj with probability

rj = min{1,
wj
cr
} . (10)

2. If the jth sample xj is accepted, its weight is updated to w∗j = qcrwj/rj , where

qcr =
∫

min{1,
w(x)
cr
}g(x)dx . (11)

It can also be easily shown that rejection control is an unbiased operation.

Theorem 3. The importance sampling estimator with rejection control is unbiased.

Similarly to adaptive split control, rejection control adjusts the importance function so
that the new importance function gr(X) is expected to be closer to the target function
f(X). In fact, it is easily seen that

gcr(X) = q−1
cr

min{g(X),
f(X)

cr
} . (12)

The following theorem can be proven analogously to Theorem 2.

Theorem 4. [8] The χ2 distance between the target density and the modified impor-
tance function in Eqn. 12 is smaller than that between the target density and the original
importance function; that is,

vargr [
f(X)
gr(X)

] ≤ varg[
f(X)
g(X)

] . (13)
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Theorem 4 is a very strong result, because it holds essentially for any cr. However, it
has also been shown that rejection control can be looked on as an importance sampling
algorithm in a higher dimension, and the χ2 distance between the target density and the
modified importance function for the new algorithm is larger than that of the importance
sampling algorithm without rejecting any samples [1].

To make rejection control useful, we propose the adaptive rejection control tech-
nique, which extends rejection control in two ways. First, to draw one sample for a
Bayesian network, we need to go over all the nodes in the network. However, we need
not wait until the end in order to figure out that some samples may have extremely low
weights. If we find that they become very small and not promising before we finish
drawing them, we can reject them early. Therefore, the first extension works as follows.

– Early rejection: Instead of using rejection control after we get a complete sample,
we apply this technique for each, say 50th, node when drawing each sample.

This extension reduces the cost of rejecting samples and improves the efficiency in
obtaining effective samples; It is the key element that makes rejection control useful.

Second, we notice that it is hard to specify a cr in advance when we apply rejection
control to importance sampling in Bayesian networks, because the posterior distribution
is only known up to a constant. Therefore, the second extension is:

– Adaptive rejection: Instead of setting a rejection threshold cr in advance, we draw
an initial sample set with size M , sort the sample weights wis, and let cr =
w�α×M�, where α is a chosen rejection percentile.

The bigger α is, the more samples are likely to be rejected, so we need to draw more
samples in order to obtain a predefined number of samples. The cost is that the running
time of the algorithm will inevitably increase. Therefore, we can fine-tune the choice of
α in order to achieve a satisfactory tradeoff between precision and efficiency.

To summarize, the adaptive rejection control technique works as follows:
Adaptive Rejection Control:

1. For i = 1, ..., M , draw xi from g(X), and keep track of the cumulative weights for
every 50th node.

2. Sort the weights ascendingly, and let cr = w�αr×M� using the choose rejection
percentile αr for all the rejection nodes.

3. For j = 1, ..., N (N � M ), draw xj from g(X), during which we apply rejection
control technique each time when we come across a rejection node.

3.3 Adaptive Split-Rejection Control

We call the resulting technique by putting adaptive split control and adaptive rejection
control together adaptive split-rejection control. The following corollary follows from
Theorem 1 and 3.

Corollary 1. The importance sampling estimator with adaptive split-rejection control
is unbiased.
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Algorithm: ASREPIS-BN
Input: Bayesian network B with variables X, a set of evidence variables E;
Output: The marginal distributions of non-evidence variables.

1. Order the nodes in their topological order.
2. Initialize parameters αs, αr, M , N , and ε.
3. Use several steps of LBP to calculate an importance function.
4. Enhance the importance function by ε-cutoff.
5. for j ← 1 to M do

for each Xj in X
Sample xj according to P (Xj |PA(Xj)).
Calculate the partial score wjScore.
if j%50 == 0, store wjScore.

end for
end for

6. Calculate thresholds cs and cr for all rejection nodes.
7. Set i = 0.
8. while i < N do

for each Xj in X
Sample xj according to P (Xj |PA(Xj)).
Calculate the partial score wjScore.
if j%50 == 0 and wjScore < cj

r

Accept xj with p = wjScore/cj
r .

if accepted,wjScore = cj
r; else,wjScore = 0.

else if j%50 == 0 and wjScore > cj
s

Split xj into k = wjScore/cj
s samples.

Assign each sample weight wjScore/k.
end if

end for
if wiScore > 0

Add wiScore to the score tables.
i ← i + 1;

end if
end while

9. Normalize each score table, and output the estimated beliefs for each node.

Fig. 1. The Adaptive Split-Rejection Controlled Evidence Pre-propagation Importance Sam-
pling (ASREPIS-BN) Algorithm

Furthermore, it is easily seen that the new importance function of the adaptive split-
rejection control has the following form.

gcsr(X) = (qcsqcr)
−1 min{max{g(X),

f(X)
cs
}, qcsf(X)

cr
} . (14)

The following corollary immediately follows from Theorems 2 and 4.

Corollary 2. The χ2 distance between the target density and the modified importance
function in Eqn. 14 is smaller than that between the target density and the original
importance function; that is,
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vargsr [
f(X)

gsr(X)
] ≤ varg[

f(X)
g(X)

] . (15)

This technique not only allows us to discard some poor samples well before we finish
drawing them, but also enables us to explore a wider range of the sample space. The
technique is very general, because it can be applied in any existing importance sampling
algorithm for Bayesian networks.

However, we should not blindly apply adaptive split-rejection control the same way
under all circumstances. When the original sample set is already good, the correlation
introduced by the technique may become dominant in comparison to the reduction of
the sample variance, so the results may become worse. In that case, it is desirable to
adjust the split and rejection percentiles or simply switch it off altogether in order to
reduce the number of samples involved in the control. The quality of a sample set can be
evaluated by the coefficient of variation (cv2(w)) [8]. The cv2(w) of the unnormalized
weights is defined as follows:

cv2(w) =

N∑
j=1

(w(xj)− w)2

(N − 1)w2 . (16)

cv2(w) is a good estimator of the χ2 distance between the importance function and
the target distribution. We recommend to increase the split percentile and the decrease
rejection percentile as cv2(w) decreases, and we switch off the adaptive split-rejection
control as cv2(w) drops below some threshold value cvc.

We extend the EPIS-BN algorithm using the above adaptive rejection control tech-
nique,which results in theAdaptiveSplit-RejectionControlled EvidencePre-propagation
Importance Sampling (ASREPIS-BN) algorithm, outlined in Figure 1. The algorithm
has three main stages. The first stage (Steps 1-4) applies loopy belief propagation and
ε-cutoff to calculate an importance function. The second stage (Steps 5-6) draws an ini-
tial sample set to estimate the split thresholds cs and rejection thresholds cr. The third
stage (Steps 7-9) applies adaptive split-rejection control to do importance sampling.

4 Experimental Results

To test the performance of the ASREPIS-BN algorithm, we compared it against the
EPIS-BN algorithm. We did experiments on the ANDES, CPCS, and PATHFINDER

networks. Our comparison was based on Hellinger’s distance [6] between exact answers
and sampling results. Hellinger’s distance yields results identical toKullback-Leibler
divergence in most cases, but its major advantage is that it can handle zero probabilities,
which are not uncommon in Bayesian networks. We implemented our algorithm in
C++ and performed our tests on a 2.8 GHz Xeon Windows XP computer with 2GB
memory.

4.1 Review of the Performance of EPIS

Experimental results in [14,15] show that the EPIS-BN algorithm achieves a con-
siderable improvement over the previous state of the art algorithm, the AIS-BN [2].
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Furthermore, the results in [14,15] also show that the EPIS-BN algorithm already ap-
proaches the limit that sampling algorithms can achieve on CPCS and PATHFINDER,
because the precision that it achieves on these networks is already in the same order
as those of probabilistic logic sampling on the same networks without evidence. In the
latter case, since there is no evidence in the networks, logic sampling samples from
the optimal importance function, the prior distribution. We believe that precision so
achieved is the limit of sampling algorithms.

4.2 Results of Proposed Heuristics on ANDES Network

In this experiment, we generated a total of 75 test cases for the ANDES network. These
cases consisted of five sequences of 15 cases each. For each sequence, we randomly
chose a different number of evidence nodes: 15, 20, 25, 30, 35 respectively. We set αr
to be 0.8 and αs to be 0.99. We switched off adaptive split-rejection control when the
cv2(w) of the initial sample set was less than cvc = 3.0. Since adaptive split-rejection
control has two heuristics: adaptive split control (S) and adaptive rejection control (R),
we performed experiments that aimed at disambiguating their roles. We denote EPIS-
BN without any heuristic method as the EPIS algorithm, EPIS-BN with only adaptive
split control as EPIS+S, EPIS-BN with only adaptive rejection control as EPIS+R,
and EPIS-BN with both heuristics as EPIS+SR (ASREPIS-BN). We also tested the
EPIS-BN with pure rejection control method proposed in [8], which is denoted as
EPIS+RC. Again, the difference between our proposed adaptive rejection control and
pure rejection control is that the former method applies rejection control periodically
before finishing a complete sample, while the latter applies rejection control to complete
samples. We compared the performance of EPIS, EPIS+S, EPIS+R, EPIS+SR and
EPIS+RC and tested them on the same 75 test cases generated as described above. In
order to be fair for all the algorithms, we let EPIS-BN run for 320K samples and let

(a) (b)

Fig. 2. (a) Results of our proposed heuristics, adaptive split control (S) and adaptive rejection
control (R), when applied in the EPIS-BN algorithm for a fixed running time (same as a) on
ANDES network; (b)The results of EPIS-BN and EPIS-BN with pure rejection control for a
fixed running time (around 12s); Pure rejection control made the performance of EPIS-BN worse
on ANDES network
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other algorithms run for the same amount of time. The size of the initial sample sets of
EPIS+S, EPIS+R, EPIS+SR, and EPIS+RC are all 4K . Boxplots of the errors of the
algorithms are shown in Figure 2.

From the Figure 2b, we can see that the pure rejection control [8] made the per-
formance of EPIS-BN worse, which is rightly pointed out in [1]. However, our pro-
posed adaptive rejection control with several extensions, helped EPIS-BN achieve a
better precision as Figure 2a shows. Figure 2a also shows that adaptive split control
also helped EPIS-BN achieve a better precision. More dramatically, the two heuris-
tics amplified each other in EPIS+SR (ASREPIS-BN) and helped it achieve a much
better precision. The median errors for EPIS-BN, EPIS+S, EPIS+R and EPIS+SR
are 0.0029, 0.0022, 0.0025, and 0.0017 respectively. A paired one-tail t-test indicates
that that the improvement of ASREPIS-BN over EPIS-BN is significant at p =
4.44 × 10−18 level. We would like to stress that the improvement is achieved within
the same time and with fewer samples. The ASREPIS-BN algorithm only generated,
on the average, 170K samples. Therefore, we conclude that the quality of the samples
generated by ASREPIS-BN is much better than that of EPIS-BN.

4.3 Fixed Number of Samples

In this experiment, we let both EPIS-BN and ASREPIS-BN run for 320K samples.
Obviously, since we let ASREPIS-BN run for more samples than the last experiment,
we can get even bigger improvement. Figure 3(a) shows the overall error of the results
of the two algorithms. The median errors were 0.0032 for EPIS-BN and 0.0013 for
ASREPIS-BN. ASREPIS-BN achieves an overall error that is less than half of that
of EPIS-BN.

4.4 Results on CPCS and PATHFINDER

Since EPIS-BN already performs almost optimally on the CPCS and PATHFINDER net-
works, we used more conservative parameters in this experiment; We let rejection per-
centile αr to be 0.2, split percentile αs to be 0.999, and switch-off threshold cvc to

Fig. 3. Hellinger’s distance of the EPIS-BN and ASREPIS-BN algorithms on ANDES network
given a fixed number of samples (320K)
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(a) (b)

Fig. 4. Results of our proposed heuristics, adaptive split control (S) and adaptive rejection control
(R), when applied in the EPIS-BN algorithm for a fixed running time on (a) CPCS and (b)
PATHFINDER

be 3.0. The results are shown in Figure 4. We can see that adaptive split-rejection con-
trol also brings some improvements for CPCS and PATHFINDER. The median errors for
EPIS-BN, EPIS+S, EPIS+R, and EPIS+SR were 0.00076, 0.00072, 0.00069, 0.0006
on CPCS and 0.00063, 0.00055, 0.00061, 0.00055 on PATHFINDER respectively. Al-
though the improvement is not much in comparison to that on ANDES, we again believe
that this is due to ceiling effect: EPIS-BN already does very well on the two networks.

5 Conclusion

We propose the adaptive split-rejection control technique to stochastically reject sam-
ples with extremely small weights and adaptively split samples with extremely large
weights for importance sampling in Bayesian networks. Our results show that the
technique significantly improves the performance of EPIS-BN. Although adaptive
split-rejection control may introduce correlation among the samples, the correlation is
minimal in comparison to the reduction in the overall sample variance for sample sets
with much oscillation. However, how to choose optimal split and rejection percentiles
under different circumstances needs further exploration.
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Abstract. When using Bayesian networks, practitioners often express constraints
among variables by conditioning a common child node to induce the desired dis-
tribution. For example, an ‘or’ constraint can be easily expressed by a node mod-
elling a logical ‘or’ of its parents’ values being conditioned to true. This has the
desired effect that at least one parent must be true. However, conditioning also
alters the distributions of further ancestors in the network. In this paper we argue
that these side effects are undesirable when constraints are added during model
design. We describe a method called shielding to remove these side effects while
remaining within the directed language of Bayesian networks. This method is then
compared to chain graphs which allow undirected and directed edges and which
model equivalent distributions. Thus, in addition to solving this common mod-
elling problem, shielded Bayesian networks provide a novel method for imple-
menting chain graphs with existing Bayesian network tools.

Keywords: Bayesian networks, constraints, mixed networks, chain graphs,
graphical models, Bayesian modelling, complementary priors.

1 Introduction

When using Bayesian networks it is often convenient to use conditioned nodes to en-
force constraints across the network. Consider the following example:

Example 1. There are three professors, Alice, Bob and Cindy, at a university that needs
at least one instructor for its AI course. For Alice we define four variables: IA, mod-
elling our belief that she is interested in AI; this influences WA, our belief they she
wants to teach the course; which influences TA, our belief that she will actually end up
teaching the course; which influences RA, our belief that she completes her current re-
search project on time. Variables are defined analogously for Bob and Cindy. The joint
distribution of the variables TA, TB, TC is consistent with the constraint that at least
one professor must teach the course.

A natural way to represent this distribution is to add a node, C, to the network that
models an ‘or’ of its parents and is conditioned to true. Figure 1 shows the Bayesian
network that results. This enforces1 the desired constraint onto the variables TA, TB, TC

1 There are other ways to achieve this type of distribution without conditioning but it requires
many new variables to be added and is difficult to maintain, see [1] for more details.

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 344–355, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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IA IB IC

WA WB WC

TA TB TC

RA RB RC

C

Fig. 1. Topic interests and teaching desires of three professors. C is an ‘or’ node stating that
someone must teach the course.

which we call the affected nodes. This is similar to what [2] calls adding constraints us-
ing an auxiliary network. That paper models constraints by merging constraint network
formalisms into Bayesian networks.

The desired distribution is one where the CPDs of all nodes express the probabilities
given the presence of the constraint on the affected nodes. Thus, if p(IA = true) = .7
then we want p(IA = true|C) = .7. But in a standard BN this will not be the case.
IA will be influenced by C, we call this influence a side effect of C. The reason we
don’t want side effects is that they arise from treating C as evidence and p(TA|WA)
as a simple conditional distribution. In fact, for this model, neither of these is the case.
C is merely a convenient way to express a constraint, it does not constitute evidence,
and thus its value should not be used freely for inference amongst its ancestors. But the
constraint must be satisfied amongst its parents and the distribution on TA is defined
given the constraint. p(TA|WA) actually defines the probability distribution of TA given
that someone else has already been assigned to teach the course.

Thus, the constraint should have no influence no IA. Our beliefs about Alice’s in-
terest in AI are tied to the likely teaching assignments but are decoupled from the con-
straints on those teaching assignments. Altering or observing Cindy’s interest in AI
should have no impact on Alice’s interest. On the other hand, RA, is influenced by the
constraint. Research productivity is directly influenced by teaching assignments and so
anything that impacts this must be taken into account when determining the likelihood
of RA.

Here we present a method to eliminate these side effects while maintaining a fully
directed model and using existing Bayesian network tools. We will compare this method
to chain graphs [3] which represent the same set of distributions by defining away the
possibility of side effects. This paper has the dual goal of explaining how to solve a
practical modelling problem with existing tools, as well as giving a new interpretation
of chain graphs in terms of fully directed models.
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2 Bayesian Networks

A Bayesian network (BN) [4] is a directed acyclic graph that represents the interdepen-
dence amongst a set of random variables. Suppose the variables are V1, . . . , Vn. The
Bayesian network represents the following the factorization for the joint probability of
a set of nodes in a Bayesian network:

p(V1, . . . , Vn) =
n∏
i=1

p(Vi|pa(Vi)) (1)

where pa(Vi) are the parent nodes on which Vi is dependant, if any.

2.1 Types of Conditioning

Conditioning refers to the general technique of setting a variable to a particular value
within a BN. There are, at least, three types of conditioning. The most common type
is simply recording an observation about the state of a variable or observation condi-
tioning. The value here represents new information that rules out possible worlds that
are incompatible with the observation. The remaining worlds are then renormalized
to sum to 1. An observation can influence all of its ancestors and their descendants.
If a variable is set by the user arbitrarily we call this intervention conditioning [5].
In this case the variable is set to some value by a mechanism outside of the model
and so is not indicative of the variable’s distribution. Thus the intervention cannot be
used for inference about influences on the variables Decision variables are of this type.
An intervention should be cut off from influencing its ancestors but still influences its
descendants.

A third type of conditioning, constraint conditioning, is the type being addressed in
this paper. A node’s value is set as part of the model definition in order to induce a par-
ticular distribution amongst its parent nodes. Other ancestors should not be affected just
as they are not affected by the initial distributions of any other descendants. Influence
on ancestors is cut off, just as in intervention, but in this case one level of nodes are
allowed to be influenced. All of the descendants of these parents will then be influenced
in the usual way. In this paper the constraint conditioned nodes such as C will be called
c-nodes. The nodes in the constraint will (the parents) are the affected nodes or e-nodes.
Nodes that are parents of affected nodes but are not themselves affected are known as
shielded nodes or s-nodes.

We believe this is an important modelling problem for BNs. Bayesian networks are
used widely every day for a broad range of purposes. We know from discussions with
practitioners and experience that constraint conditioning is often used in practice. This
is done as a natural extension of BN modelling and the full ramifications of side effects
on the model may not always be realized. It is important for this issue to be widely
discussed and possible solutions or alternative modelling techniques provided.

3 Removing Side Effects

Our goal now is to construct a BN in such a way that after inference is carried out the
constraint conditioned nodes will have the desired influence and no more. We call this
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method shielding. The chief insight is that we can add more conditioned nodes to cancel
out the side effects. So, after adding a node Ĉ, which we will define momentarily, we
want the following to be true:

p(WA|IA, c, ĉ) = p(WA|IA) p(WB |IB, c, ĉ) = p(WB |IB)
p(WC |IC , c, ĉ) = p(WC |IC) p(WA, WB, WC |c, ĉ) = p(WA, WB, WC) (2)

where c indicates that C = c.

3.1 Antifactors

To define Ĉ we need to think about how inference is carried out. A factor is the result
of summing out some variables in a network during inference using a technique such
as variable elimination [6][7]. In our example, if the affected nodes are summed out a
factor is obtained, fTABC (WA, WB , WC), representing the combined effect of the con-
straint on the WA, WB and WC nodes. To cancel this we create an antifactor node, Ĉ,
with these nodes as parents, see Figure 2. The distribution of Ĉ is defined by inverting
the factor for the affected nodes as follows:

p(ĉ|WA, WB, WC) =
1
Z

1
fTABC (WA, WB, WC)

(3)

where fTABC (WA, WB , WC)=
∑
T

p(c|TA, TB, TC)p(TA|WA)p(TB|WB)p(TC |WC)

The constant, Z , ensures that all values are in the range [0,1]. During inference this will
cause the distributions of Ĉ and the nodes C, TA, TB and TC to exactly cancel each
other making the distribution consistent with (2).

IA IB IC

WA WB WC

TA TB TC

RA RB RC

SC

EC

C

Ĉ

Fig. 2. An antifactor Ĉ shields the influence of the c-node C
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3.2 General Antifactors

We now define the problem more generally.

Definition 1. A shielded Bayesian network (SBN) as satisfying the following require-
ment:

p(SC|c, ĉ) = p(SC) (4)

Where C is a c-node and Ĉ is a conditioned node added to the network with a distribu-
tion constructed to satisfy (4). The set EC = pa(EC) contains the affected nodes and
SC = pa(pa(C)) − EC contains the shielded nodes. We assume there is no node in
that is both an ancestor and a descendant of nodes in EC.

This can be satisfied by creating an antifactor node, Ĉ , with parents SC such that

p(ĉ|SC) =
1
Z

1
fEC(SC)

A more general case is shown in Figure 3. Here C1 and C2 are connected in a com-
ponent because they share parents. Let κ be the minimum set of pairwise, disjoint com-
ponents. The set Sκ then denotes all the nodes to be shielded from every c-node in κ.
An antifactor, Ĉ, is defined with parents Sκ. Its distribution is computed by summing
out all nodes in Eκ = EC1 ∪EC2 .

A B D

H I

L M N

Q R

EC1
EC2

Sκ

C1 C2

Ĉ

κ

Fig. 3. The nodes L, M, N are constrained by two c-nodes with κ = {C1, C2}.The antifactor,
Ĉ, cancels out the effect on the Sκ nodes.

Definition 2. With κ as a, possibly singleton, set of connected c-nodes and Ĉ as its
corresponding antifactor node, the following is the general definition of shielding:

p(Sκ|κ, ĉ) = p(Sκ) (5)

Note that the antifactor always exists except in the case where the factorfEκ(Sκ) contains
a zero term. This occurs when the distribution of the affected network assigns a probability
of zero to some instance of Sκ after all the affected nodes have been summed out.
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4 Antinetworks

The major drawback of using antifactors is complexity. Ĉ connects all of the nodes in
Sκ creating a large new clique in the network. We could improve complexity by creating
a conditional structure to reduce the number of parents of the antifactor.

An antinetwork is a set of nodes that mimic the structure of the original c-node and its
parents. The distributions of the copied Ĉ and Eκ̂ nodes are computed so that summing
out Eκ̂ will yield 1

fEκ (Sκ) . Figure 4 shows the antinetwork for our example.

IA IB IC

WA WB WC

TA TB TC
T̂A T̂B T̂C

RA RB RC

SC

ECEĈ

CĈ

Fig. 4. An antinetwork shields the influence of c-node C

4.1 Existence of a Solution

Unlike the antifactor solution it is not certain that a proper set of parameters for the
antinetwork always exists although we have found them in many cases. Here we discuss
some general properties of solutions.

The parameters to be solved for the antinetwork conform to the following system of
equations. For simplicity, the case with binary nodes is shown here.

Let π = fEκ̂
(Sκ) =

1
fEκ(Sκ)

π =
∑
x∈Eκ̂

∏
ĉ∈κ̂

p(ĉ|Eĉ)
∏
ê∈x

p(ê|Sĉ)

0 =
∑
x∈Eκ̂

∏
ĉ∈κ̂

γĉ
∏
ê∈x

(ψê)(ê=t)(1− ψê)(ê=f) − π = gs(X) (6)

Where x captures one assignment to all the nodes in Eκ̂ and the indicator exponent
(ê = t) is simply 1 or 0. Note that this represents one equation for each instance
s ∈ Sκ. We will refer to this system as gs(X) for X = {γĉ, ψê} for all ĉ ∈ κ and
ê ∈ Eĉ. When X is found such that gs(X) = 0 then the antinetwork satisfies the
shielding requirement.
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Solution Bounds. When all the parameters are set to zero, denoted X0, and one, X1,
the system yields:

gs(X0) = −π gs(X1) = 1− π

Since π is normalized to be a probability we have

gs(X0) ≤ 0 ≤ gs(X1) for all s ∈ Sκ

Since gs(X) is a continuous function for each s ∈ Sκ we know there is a solution Xs

such that gs(Xs) = 0. Unfortunately, we have not yet been able to show that there is
always a simultaneous solution, X∗, to these equations such that gs(X∗) = 0 for all
s ∈ Sκ. The solution X∗ is easy to identify when found as all the functions will be
zero. When X �= X∗, the solution can be used as an approximation to the correctly
shielded distribution.

4.2 Finding a Solution

The antinetwork parameters can be solved by framing them as a constrained optimiza-
tion problem. The objective function is a linear combination of the gs(X) functions.
The same functions are also used to define nonlinear, inequality constraints of the form
gs(X) ≥ 0. Optimization is then begun at some known positive point, such as X1 and
minimized until all gs(X) = 0. See [1] for more details.

4.3 Solution Example

The solved CPDs for the antinetwork nodes, for Example 1, are shown in figure 5. The
posteriors of the shielded nodes, WA, and their ancestors, IA, are correctly uninflu-
enced by the existence of the constraint. In particular, the ancestors maintain their prior
distributions:

p(IA = t|c, ĉ) = .3 p(IB = t|c, ĉ) = .7 p(IC = t|c, ĉ) = .6

For networks where the affected sets overlap this method does not always find an exact
solution. Our results approach the correct distribution but do not find an exact match.
This indicates a solution may exist and that improved search techniques could yield a
better approximation or an exact solution. When an exact solution is required an antifac-
tor can always be used to shield the given c-nodes instead. Furthermore, antinetworks
and antifactors can be used in the same network.

5 Undirected Models and Chain Graphs

Another way to think about constraint conditioning is through undirected models. A
Markov Random Field (MRF) [4] can easily be expressed as a BN by replacing all
cliques potentials, φ, with conditioned nodes. A simple construction makes this clear,
see Figure 6:
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ĈT̂A

T̂A

T̂B

T̂B

T̂C

T̂C
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Fig. 5. Computed CPDs for antinetwork found using nonlinear constrained optimization

– For each clique Ci in the MRF, remove all links between nodes and replace with a
directed link from each node in Ci to a new binary node Ci.

– Assign the CPD of Ci such that p(Ci = true|Ci) = φi(Ci)
– Condition all of these added Ci nodes to be true.

These two representations model equivalent distributions. Note that under this construc-
tion the conditioned nodes will never have grandparents so shielding will not be needed.
To model the full range of distributions we are interested in we need a combination of
directed and undirected relationships.

TA

TB TC

TA

TB TC

C

Fig. 6. MRF to BN construction: a) A Markov Random Field. b) This MRF as a Bayes net with
conditioned nodes replacing clique potentials.
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5.1 Chain Graphs

A chain graph (CG) [3] is a graphical model that can have directed or undirected edges
between its nodes. A chain component, τ ∈ T , is any set of nodes forming a connected
component using undirected edges. Nodes in the directed portions of the network form
their own chain components of size one. A CG can be seen as a directed, acyclic graph
of chain components. The graph is acyclic in that there are no partially directed cycles.
This is a cycle containing some directed edges, all pointing in the same direction around
the cycle. Our example can be represented as a CG with the affected nodes represented
as in figure 6(a) and other nodes connected as within the original BN.

The joint density of a CG is given by the following factorization [8] where the values
of a set of variablesV is given by xV . HereA(τ) are all the fully connected sets of nodes
from within τ ∪ pa(τ). Each of these has a clique potential φA(xA) across the nodes
in the fully connected set. The Z term normalizes the density by summing across the
values of all the nodes within the current chain component:

p(xV) =
∏
τ∈T

p(xτ |xpa(τ)) (7a)

p(xτ |xpa(τ)) =
1

Z(xτ )

∏
A∈A(τ)

φA(xA) (7b)

Z(xτ ) =
∑
xτ

∏
A∈A(τ)

φA(xA) (7c)

Consider computing p(WA). It is clear that the distribution of the TA, TB, TC chain
component will play no part. This is because the nodes in the chain will be summed out
in equation (7b) which will lead the φ and Z terms to cancel exactly. In fact, lacking
any observations, the variables WA, WB, WC are independent of each other. CGs thus
already express the kind of distribution we are concerned with where a joint constraint
can exist amongst a set of variables without their ancestors being affected by the exis-
tence of that constraint. Note that in the presence of observations of a node in TA, TB or
TC this independence would no longer hold as this is new information that is relevant
to all nodes.

5.2 Equivalence of SBNs and CGs

We will show the equivalence of shielded Bayesian networks with chain graphs by
mapping each portion of SBNs to the factorization of CGs from equation (7).

1. The assumption in definition 1 is equivalent to the restriction against partially di-
rected cycles in CGs.

2. Each chain component, τ , in a CG has a corresponding set κ of c-nodes in an SBN.
3. Each potential function in the CG corresponds to the distribution of a c-node and

the set of its affected nodes in the SBN

φA(xA) ∝ p(c|EC)p(EC|SC).
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4. The Z term is equivalent to marginalizing out the affected nodes. So for antifactors:

1
Z(xτ )

∝ p(ĉ|Sκ) =
1

fEκ(Sκ)
. (8)

And similarly for antinetworks:

1
Z(xτ )

∝ p(ĉ|Eκ)
∏
Eκ

p(Eκ|Sκ) =
1

fEκ(Sκ)
(9)

Note that if κ contains more than one c-node then they must be dealt with simulta-
neously.

With these mappings in place, the joint distributions in either model comes from a
calculation that is equivalent up to a constant factor. This equivalence shows us that
both models can be used to represent the same distribution.

The complexity of inference in graphical models is exponential in the size of the
largest cliques in the network. We use clique in the same sense as in Junction trees [9],
which are often used to perform inference in graphical models. Using either SBNs with
antifactors or CGs this will be dominated by the size of the set Sκ. This is because an
antifactor has all of the nodes in Sκ as its parents and so creates a clique of that size.
Likewise, the potential function of a CG, φA(xA), is defined over a moralized graph
[10] where all the parents of nodes in a chain component are connected together. As
we will show in the next section, antinetwork can avoid this blowup at least for some
classes of networks.

6 Complexity Comparison

Consider the case where each e-node has m parents, none of which are shared with
other e-nodes and all nodes have a domain of size D. This is the type of distribution
described in Example 1. In all networks of this type tried an antinetwork solution has
always been found.

The complexity for CGs is then exponential in the size of the clique A which is :

CG = D|EC |+|SC|

= D|EC |+m|EC| since |SC | = m× |EC |
= D|EC |(m+1) (10)

For SBNs with antifactors, all of the s-nodes are combined into one clique. To maintain
the triangulation property for junction trees each e-node is joined to all s-nodes. This
leads to a slightly higher complexity than for CGs although the dominant term is the
same as the CG complexity.

SBNantifactor = D|EC |+|SC| + D|SC | + D|EC| (11)

An example of the junction tree for the third model, using antinetworks, is shown in
figure 7. Conditional independence in the antinetwork reduces the complexity to:

SBNantinetwork = D2|EC | + |EC |D2+m + 2D|EC | (12)
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S1S2S3E1Ê1 S4S5S6E2Ê2

E1Ê1E2Ê2

Ê1Ê2Ĉ E1E2C

Fig. 7. Junction tree for antinetwork model with |EC| = 2 and m = 3

Thus, for this set of models we find that

SBNantinetwork < CG when both |EC | ≥ 2 and m ≥ 2.

So in general, as the number of parents of each e-node goes up, SBNs increase in com-
plexity more slowly than CGs if the connectivity between ancestors of each e-node is
low. When this is not the case, the antifactor method still provides a solution that has the
same dominant term as the CG although it will have additional, smaller cliques as well.

7 Conclusion

In this paper we have formalized a common informal technique for adding constraints
to BNs and pointed out serious side effects that may not be desired. The modeler faced
with these unwanted side effects has several choices. They could re-evaluate their mod-
elling assumptions, attempt to represent the constraint in other ways or use chain graphs
instead. Modelers now have another option which is to use one of the shielding meth-
ods proposed here. The first method, antifactors, is universal and simple to apply but
may be costly during inference. The second method, antinetworks, is more efficient for
inference and while the empirical existence of solutions is promising there are no guar-
antees as of yet. The distributions modelled by these networks are equivalent to those of
chain graphs. We have shown that at least for some classes of distribution, antinetworks
are a more efficient representation than chain graphs. Further questions remain such
as: Are there antinetwork solutions for wider classes of BNs? Are there any distribu-
tions that have compact antifactor solutions that would combine the advantage of both
shielding methods? Can antifactors or antinetworks take advantage of context specific
independence to reduce complexity?

There are strong similarities between our methods and complementary priors in [11]
which offer intriguing lines of further research into learning. That work computes com-
plimentary priors quickly and efficiently to cancel out interdependence between net-
work layers, it would be interesting to see if this can be applied to our modelling task.
We believe the modeller’s toolkit should include a variety of methods that allow flex-
ibility to model any distribution needed. The techniques described here can be a very
useful part of that toolbox when directed models and constraints are needed. Chain
graphs are also available for these tasks but SBNs would be very natural to many mod-
ellers familiar with BNs. They require no extra tools beyond standard BN software to
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be used and it would be straightforward to implement precompilers to automatically
add antifactors or antinetworks to BNs. This solution contributes to Bayesian network
modelling as well as adding insight into the relationships between all of these common
modelling languages.
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Abstract. Product-based possibilistic networks allow an efficient rep-
resentation of possibility distributions. However, when the graph is mul-
tiply connected, the propagation may be unfeasible because of the high
space complexity problem. In this paper, we propose a new inference
approach on product-based possibilistic networks based on compact rep-
resentations of possibility distributions, which are possibilistic knowledge
bases.

Keywords: Possibilistic networks, possibilistic logic, inference.

1 Introduction

Probabilistic and possibilistic networks are important graphical tools for repre-
senting and reasoning under uncertain pieces of information. In possibility the-
ory, there are two kinds of possibilistic networks: min-based possibilistic networks
and product-based possibilistic networks [1]. These two kinds of possibilistic net-
works only differ on the definition of possibilistic conditioning. Existing works
for handling possibilistic inference through graphical models are mostly a direct
adaptation of probabilistic approaches. In particular, for multiply-connected pos-
sibilistic networks, a graphical transformation from an initial possibilistic net-
work to a junction tree (a tree of cliques) is achieved. This procedure allows to
deal with many practical problems, however it fails when the number of variables
in cliques are large, since it may be impossible to assign possibility distributions
to cliques.

This paper proposes an alternative implementation of product-based possi-
bilistic networks. We follow the same ideas that have recently been proposed
for min-based possibilistic networks [2,3]. More precisely, we propose to use on
cliques a compact representation of possibility distributions using possibilistic
knowledge bases. In fact, properties of the possibilistic knowledge bases allow
a more implicit representation of beliefs. This idea of combining logical-based
representation and graphical have been previously considered by several authors
[4,5,6,7]. In particular, Moral [6] uses local propagation algorithm for the de-
duction process in classical propositional logic. Our approach can be viewed as
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an extension of their works, for non-idempotent operators, where propositional
formulas are associated with necessity degrees.

The rest of this paper is organized as follows: first, we give a brief background
on possibility theory and propagation algorithm for standard product-based pos-
sibilistic networks (section 2). Then, we present our new representation of the
product-based possibilistic networks (Section 3). Section 4 details the different
steps of the logic-based algorithm for product-based multiply connected graphs.

2 Possibility Theory

2.1 Notations

Let V = {A1, A2, ..., An} be a set of variables. DAi denotes the finite domain
associated with the variable Ai. For the sake of simplicity, and without lost
of generality, variables considered here are assumed to be binary. ai denotes
any of the two instances of Ai and ¬ai represents the other instance of Ai.
ϕ, ψ, .. denote propositional formulas obtained from V and logical connectors ∧
(conjunction),∨ (disjunction),¬ (propositional negation). � and ⊥, respectively,
denote tautologies and contradictions.

Ω = ×Ai∈V DAi represents the universe of discourse and ω, an element of
Ω, is called an interpretation. It is either denoted by tuples (a1, ..., an) or by
conjunctions (a1 ∧ ... ∧ an), where ai’s are respectively instance of Ai’s. In the
following, |= denotes the propositional logic satisfaction. ω |= ϕ means that ω is
a model of ϕ.

2.2 Possibility Distribution and Possibility Measure

One of the basic elements of possibility theory is the notion of possibility dis-
tribution π which is a mapping from Ω to the interval [0, 1]. The degree π(ω)
represents the compatibility of ω with available pieces of information. By con-
vention, π(ω) = 1 means that ω is totally possible, and π(ω) = 0 means that ω is
impossible. When π(ω) > π(ω′), ω is a preferred to ω′ for being the real state of
the world. A possibility distribution π is said to be normalized if there exists at
least one interpretation which is consistent with available pieces of information.
More formally,

∃ω ∈ Ω, π(ω) = 1

Uncertainty on an event ϕ ⊂ Ω can be described by two dual measures: possi-
bility measure Π and necessity measure N .

Considering a possibility distribution π, the possibility measure of a formula
ϕ is as follows :

Π(ϕ) = max{π(ω) : ω |= ϕ}
Π(ϕ) represents the possibility degree that a model of ϕ exists in the real word.
This measure evaluates the consistency level of ϕ with information encoded by π.

A necessity measure of a formula ϕ is defined as follows:

N(ϕ) = 1−Π(¬ϕ)
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which corresponds to the certainty degree associated with ϕ from available pieces
of information encoded by π.

Possibilistic conditioning
Conditioning [8] is a crucial notion when dealing with independence relations.
It consists of updating pieces of information encoded by π when an evidence
(certain information) e, is observed. Let ϕ be the model set of e. Each π(ω) is
then replaced by π(ω|φ).

In next sections, we will only consider the product-based conditioning,
defined by:

π(ω | φ) =

{
π(ω)
π(φ) if ω |= φ

0 otherwise.
(1)

The product independence relation is obtained by using the product-based con-
ditioning. Namely,

Π(x ∧ y|z) = Π(x|z).Π(y|z), ∀x, y, z. (2)

2.3 Possibilistic Logic

A possibilistic knowledge base [9] is a finite weighted formula set:

Σ = {(ϕi, αi) : i = 1, ..., m}
where αi is the lower-boundary of the necessity degree N(ϕ). Namely, N(ϕi) ≥
αi. Formulas with a necessity degree equal to 0 are not explicitly represented in
the knowledge base. The more a formula is height-weighted the more it’s certain.
From each possibilistic knowledge base a unique possibility distribution is gener-
ated by associating each interpretation with a compatibility degree considering
available information:

∀ω ∈ Ω,

πΣ(ω) =
{

1 if ∀(ϕi, αi) ∈ Σ, ω |= ϕi,
1−max{αi : ω �|= ϕi} otherwise.

(3)

The following definitions are useful for the rest of the paper:

Definition 1. Two possibilistic knowledge bases Σ1 and Σ2 are said to be equiv-
alent if their associated possibility distributions are equal, namely :

∀ω ∈ Ω, πΣ1(ω) = πΣ2(ω)

Subsumption definition is as follows :

Definition 2. Let (ϕ, α) a formula in Σ. Then (ϕ, α) is said to be subsumed by
Σ if Σ and Σ\{(ϕ, α)} are equivalent knowledge bases.

Coherence
A possibilistic knowledge Σ is said to be consistent if its classical support, ob-
tained by forgetting the weights, is classically consistent.
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Definition 3. Let Σ be a possibilistic knowledge base. The inconsistency degree
of Σ, denoted Inc(Σ), is defined by :

Inc(Σ) = max{αi : Σ≥αi |= ⊥} (4)

where Σ≥αi is a set of possibilistic formulas in Σ having a weight greater or
equal to αi.

Inc(Σ) = 0 means that Σ is consistent.
Lang [10] proposed an algorithm to compute the inconsistency degree of Σ

with a complexity equal to log2 n SAT where n is the number of different
valuations involved in Σ, and SAT is the propositional satisfiability test.

2.4 Standard Product-Based Possibilistic Networks

Possibilistic networks [1,11], denoted by ΠG, are directed acyclic graphs (DAG).
Nodes correspond to variables and edges encode relationships between variables.
A node Aj is said to be a parent of Ai if there exists an edge from the node Aj

to the node Ai. Parents of Ai are denoted by UAi .
Uncertainty is represented at each node by local conditional possibility dis-

tributions. More precisely, for each variable A:
If A is a root, namely UA = ∅, then max(π(a), π(¬a)) = 1.
If A has parents, namely UA �= ∅, then max(π(a|UA), π(¬a|UA)) = 1, for each

uA ∈ DUA , where DUA is the cartesian product of domains of variables which
are parents of A.

Possibilistic networks are also compact representations of possibility distribu-
tions. More precisely, joint possibility distributions associated with possibilistic
network are computed using a so-called possibilistic chain rule similar to the
probabilistic one, namely :

πΠG(a1, ..., an) =
∏
i=1..n

Π(ai | uAi), (5)

where ai is an instance of Ai and uAi ⊆ {a1, ..., an} is an element of the cartesian
product of domains associated with variables UAi which are parents of Ai.

Example 1. Figure 1 gives an example of possibilistic networks. Table 1 pro-
vides local conditional possibility distributions of each node given its parents.

Using possibilistic chain rule, the possibility degree of π(¬ab¬cd) is computed
as follows: π(¬ab¬cd) = π(¬a).π(b|¬a).π(¬c|¬a).π(d|b¬c) = 1.14 .1.1 = 1

4

Inference algorithm in multiply-connected possibilistic networks
When DAGs are singly connected then the propagation algorithm is polynomial
[11,1,12]. In this section, we only focus on multiply connected graphs.

A well-known propagation algorithm for multiply connected graphs proceeds
to a transformation of the initial graph into a junction tree. The main steps of
the junction tree construction are:
- Moralization of the initial DAG: Create an undirected graph from the initial
graph and add links between parents of a common variable.
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Fig. 1. Example of possibilistic network ΠG

Table 1. Local conditional possibility distributions associated with DAG of Figure 1

a 1
4

¬a 1

B|A a ¬a

b 1
4

1
4

¬b 1 1

C|A a ¬a

c 1 1
2

¬c 3
4

1

D|BC bc ¬bc else

d 1 1
4

1

¬d 1
2

1 1

- Triangulation of the moral graph: Consists of adding edges to connect non-
adjacent nodes in cycles of length four or greater.
- Building a junction tree from the triangulated moral graph: Consists of the
junction tree construction by choosing the appropriate cliques and separators
from the triangulated graph.

The main idea of these steps is to delete loops from the initial graph gathering
some variables in a same node. The resulting graph is a tree, denoted AJ , where
each node, called clique, is a set of variables. Common variables of two adjacent
cliques are grouped into another type of node, called a separator.

Figure 2 gives an example of a junction tree associated with the DAG of figure
1 (there are two cliques {ABC} and {BCD} and one separator {BC} which is
the intersection of the two cliques).

Fig. 2. Junction tree associated with graph ΠG of figure 1

The propagation algorithm is then applied on this resulting structure. The
idea is to require that adjacent cliques sharing common variables should have
the same marginal distributions with respect to these common variables namely
on their separator.

More precisely, the propagation algorithm consists of associating to each clique
Ci a possibility distribution πCi which is a combination of initial local possibility
distributions at the level of variables in the initial graph.
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First, all possibility distributions are initialized to 1. Then, ∀A in the initial
graph, we select a clique Ci containing {A} ∪ UA (UA: parents of A) and we
update πCi as follows:

πCi ← πCi .π(A|UA)

Once the local possibility distributions πCi are initialized, the propagation process
steps are realized throughmessage passing between cliques until reaching stability:

∀Ci, Cj ∈ AJ πCi(ω) = πCj (ω)

Let Mij(Sij) (resp. Mji(Sij)) be the message sent from Ci (resp. Cj) to Cj (resp.
Ci). This algorithm is different from the one proposed by [11,1,12] since a clique
Cj receiving a message does not update its local distribution but use the new
received information by the message Mji(Sij) to sent its own messages to other
neighboring cliques. The local distributions are computed once all messages are
sent. Then, each clique Ci receives from all its adjacent cliques Ck other than
Cj a message Mki(Ski) before sending its message to Cj given by:

Mij(sij) = max
Ci\Sij

πCi(Ci)
∏
k �=j

Mki(ski) (6)

which is the combination between information received from neighbors and local
distribution.

After sending all messages, the local distribution Ci is computed by combining
local information by messages received from all its neighbors:

πCi = πCi(Ci)
m∏
k=1

Mki(Sik) (7)

where m is the number of adjacent cliques of Ci.
When the junction tree is globally consistent, π(A) can be computed from

any clique containing A by applying marginalization:

π(A) = max
Ci\A

πCi (8)

3 Possibilistic Logic-Based Networks

This section presents our new framework called possibilistic logic-based networks.

Logic-based representation. Before presenting the new representation, it re-
mains to find the syntactical equivalent of the product operator. Let π1 and π2 be
possibilistic distributions and π∗ = π1.π2 (the product of the two distributions).
Let Σ1 and Σ2 be the possibilistic knowledge bases associated with π1 and π2 re-
spectively. We need to find the knowledge base Σ∗ associated with π∗ [13]:

Proposition 1. The resulting possibilistic knowledge bases associated with π∗ is:

Σ∗(Σ1,Σ2)
= Σ1 ∪Σ2 ∪ {ϕi ∨ ψj , αi + βj − αi ∗ βj}

where (ϕi, αi) ∈ Σ1 and (ψi, βi) ∈ Σ2.
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The combination can be applied to several elements without taking care of the
ordering in which elements are considered.

Our new representation framework is called a logic-based network , denoted
LG, and is defined as follows:

– A graphical component which is represented by a DAG (like standard possi-
bilistic networks) that allows to represent independence relationships.

– A quantitative component which encodes uncertainties. It associates to each
node A a local knowledge base ΣA (on A and its parents) instead of a
conditional possibility distribution.

Fig. 3. Logic-based graph LG with local knowledge bases

Logic-based graphs are also compact representations of joint possibility distri-
butions. A possibility distribution associated with a logic-based possibilistic net-
work LG is defined by:

∀ω, πLG(ω) =
∏
A∈V

πΣA(ω) (9)

where πΣA is the possibility distributions associated with ΣA obtained using
equation (3).

Any standard possibilistic network ΠG can be equivalently represented by
a logic-based network LG. Let A be a variable, and π(ai|ui) be a local possi-
bility degree associated with A. Then the logic-based possibilistic network LG
associated with ΠG is obtained in the following way: for each A, define

ΣA = {(¬ai ∨ ¬ui, αi) : αi = 1− π(ai|ui) �= 0}. (10)

Then we have:

Proposition 2. Let ΠG be a standard possibilistic network. Let LG be a logic-
based network having the same DAG and where ΣAi ’s are obtained from the local
possibility distributions πΠG(Ai|Ui) in ΠG using equation (10), then,

πΠG(ω) = πLG(ω) (11)

where πΠG and πLG are obtained by using (5) and (9).

This approach has an intuitive appeal. Namely, possibilistic knowledge bases
allow a more implicit representation:
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– possibilistic formulas having a weight equal to 0 are not represented in the
possibilistic knowledge base,

– several formulas may be subsumed by other ones.

Example 2. Let us build a logic-based possibilistic network LG from product-
based possibilistic network ΠG of example 1 by assigning a knowledge base to
each node using 10. Uncertainty at the level of nodes A, B, C and D (binary
variables) is represented by possibilistic knowledge bases ΣA, ΣB, ΣC and ΣD

as follows:

ΣA = {(¬a, 3
4 )}; ΣB = {(¬a∨¬b, 3

4 ), (a∨¬b, 3
4 )}; ΣC = {(a∨¬c, 1

2 ), (¬a∨c, 1
4 )};

ΣD = {(b ∨ ¬c ∨ ¬d, 3
4 ), (¬b ∨ ¬c ∨ d, 1

2 )}
We can check that, ∀ω, πΠG(ω) = πLG(ω). For instance, πLG(¬ab¬cd) =
πΣA(¬ab¬cd).πΣB (¬ab¬cd).πΣC (¬ab¬cd).πΣD (¬ab¬cd) = 1.14 .1.1 = 1

4
which is the same result as in example 1.

4 Possibilistic Inference in LJT

To apply the general propagation algorithm through junction trees, we need
an equivalent structure using the new representation. This structure is called
logic-based junction tree and is denoted LJT . It is characterized by:

– Graphical component: Graphical component is a junction tree built from the
initial graph in a similar way as for standard networks.

– Numerical component:First,Weassociate an emptyknowledgebaseΣCi (resp.
Sij) for each cliqueCi (resp. separator Sij).Then, for all variableA in the initial
graph, we select a clique Ci containing A ∪ UA (UA parents of A):

ΣCi ← ΣCi ∪ΣA

where ΣA is the local knowledge base in LG at the level of A.

Before introducing the propagation algorithm on the LJT structure, we need
to present the notion of prioritized forgetting (see [14]) which allows to give the
syntactic counterpart of the marginalization process.

4.1 Prioritized Forgetting

Lin and Reiter [14] proposed an approach allowing variable domain restriction in
propositional knowledge bases (see [15,16] for details). Variable forgetting (also
known as projection or marginalization) is defined as:

Definition 4. Let K be a propositional knowledge base and X be a propositional
variable set. The forgetting of X in K, noted forget(K, X), is equivalent to a
propositional formula that can be inductively defined as follows:

• forget(K, ∅) = K.
• forget(K, {x}) = Kx←⊥ ∨Kx←
.
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• forget(K, X ∪ {x}) = forget(forget(K, X), {x}).
where Kx←⊥ (resp. Kx←
) refers to K in which we affect false (resp. true)
value to each occurrence of x (instance of X). By Ki ∨ Kj we mean the set
{(ϕi ∨ ψj) : ϕi ∈ Ki and ψj ∈ Kj}.
This approach is defined for classical propositional logic. We present an exten-
sion of this definition, called prioritized forgetting, which deals with possibilistic
knowledge bases.

Let Σ1 and Σ2 be two possibilistic knowledge bases. The disjunction of two
bases in possibilistic framework, denoted by �, is defined as follows:
Σ1�Σ2 = {(ϕi ∨ ψj , min(αi, βj)) : (ϕi, αi) ∈ Σ1 and (ψj , βj) ∈ Σ2}
Prioritized forgetting, denoted pforget, can then be defined as follows:

Definition 5. Let Σ be a possibilistic knowledge base and X be a variable set.
The prioritized forgetting of X in Σ, denoted pforget(Σ, X), is equivalent to a
possibilistic formula defined as follows:
• pforget(Σ, ∅) = Σ,
• pforget(Σ, {x}) = Kx←⊥�Kx←

• pforget(Σ, X ∪ {x}) =pforget(pforget(Σ, X), {x}).
Prioritized forgetting allows to syntacticly capture the base associated with
marginal distributions. More precisely:

Proposition 3. Let Σ be a possibilistic knowledge base and π its associated dis-
tribution. Let X be a set of variables. Then the possibility distribution associated
with pforget(Σ, X) is:

πpforget(Σ,X) = max
V \X

πΣ (12)

4.2 Propagation Algorithm

After defining the prioritized forgetting, we propose an alternative propagation
algorithm in junction trees. In fact, our propagation algorithm can be viewed
as the counterpart of the one proposed in Subsection 2.4 (for standard junction
trees), where rather to use possibility distributions, we use possibilistic knowl-
edge bases.

To illustrate this process, let LJT be the junction tree and let m be the
number of cliques in LJT . Suppose that a clique Ci has q adjacent cliques
{B1, ..., Bq}. Let Cij and Xij be the set of cliques and the variable set on the
subtree containing Ci when dropping the link Ci −Bj .

Then, X = Cij ∪ Cji = Xij ∪Xji.
The main steps of the logic-based junction tree algorithm are summarized in

figure 5.
In next sections, we present each step details.

Step 1-Initialization by handling evidence (if e �= ∅). Handling evidence
consists of computing for each variable A ∈ V the possibility degree π(A∧e) when
e is the total evidence. To handle the evidence, we should extend the propagation



On the Use of Possibilistic Bases for Local Computations 365

Fig. 4. Decomposition into disjoint sets

Begin
- Apply step 1: Handling evidence (if e �= ∅),
While (Junction tree is not consistent) do

- Apply step 2: Computing messages (knowlege bases) Mij and Mji,
∀Ci, Cj adjacent cliques,

done
- Apply step 3: Computing the new local knowledge bases ΣCi for each clique Ci

using Mij and Mji,
- Apply step 4: Answering queries.

End

Fig. 5. Logic-based propagation algorithm

procedure by transforming the initial local knowledge bases {ΣCi : Ci ∈ LJT}
at the level of the logic-based junction tree LJT as follows:

- For each observed variable A = a, select a clique Ci containing the variable
A, and add the formula (a, 1) to the knowledge base associated with Ci.

In fact, adding the formula (a, 1) implies that, ∀ω : ω |= ¬a; π(ω) = 0.
After this step, messages are sent between cliques in order to guarantee the

consistency condition.

Step 2-Computing messages Mij. In order to be able to compute the mes-
sages Mij and Mji sent between the disjoint subtrees Cij and Cji, we first
compute the knowledge base ΣSij of a typical separator. Let us consider the
following decomposition:

X\Sij = (Xij ∪Xji)\Sij = (Xij\Sij) ∪ (Xji\Sij) = Rij ∪Rji (13)

where Rij = Xij\Sij . It is trivial that Rij and Rji are disjoint subsets.
The possibilistic knowledge base ΣSij associated with the separator Sij is

computed as follows:
ΣSij = pforget(ΣLJT , X\Sij)

= pforget(Σ∗(ΣCk
: k = 1, ..., m), X\Sij)

= pforget(Σ∗(ΣCk
: k = 1, ..., m), Rij ∪Rji)

= Σ∗(pforget(Σ∗(ΣCk
: Ck ∈ Cij), Rij), pforget(Σ∗(ΣCk

: Ck ∈ Cji), Rji))
= Σ∗(Mij , Mji)
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Let us consider this composition:

Xij\Sij = (Ci\Sij) ∪ (
⋃
k �=j

Xki\Sij) (14)

Thus, ∀k, k �= j, we obtain:
Mij = pforget(Σ∗(ΣCs : Cs ∈ Cij), Xij\Sij)

= pforget(pforget(Σ∗(ΣCs : Cs ∈ Cij), Xki\Ski), Xij\Sij)
= pforget(Σ∗(ΣCi , Σ

∗({pforget(Σ∗(ΣCs : Cs ∈ Cij), Xki\Ski)})), Ci\Sij)
= pforget(Σ∗(ΣCi , Σ

∗(Mki : k �= j)), Ci\Sij)
since information at the level of Ci is the combination of the local knowledge
and the knowledge coming from all neighboring cliques other than Bj .

Then, message sent from Ci to Bj is:

Mij = pforget(Σ∗(ΣCi , Σ
∗(Mki : k �= j)), Ci\Sij)

The message sent from Bj to Ci is:

Mji = pforget(Σ∗(ΣBj , Σ
∗(Mkj : k �= i)), Bj\Sij)

The possibilistic knowledge base associated with the separator Sij is simply the
syntactical equivalent of the product Σ∗ of these two messages. These messages
contain all relevant information. Namely, they gather information from one side
of the link and propagate it to the other side. The last equation shows that the
message Mij sent by the clique Ci to its adjacent clique Bj can be computed as
soon as Ci receives all messages {Mki : k �= j}.
Step 3-Computing local possibilistic knowledge bases ΣCi . After re-
ceiving all messages {Mki : k = 1, ..., q} from all its neighboring cliques, the
clique Ci computes its local knowledge base ΣCi. Let us consider the following
decomposition:

X\Ci = (
q⋃

k=1

Xki)\Ci =
q⋃

k=1

(Xki\Ci) =
q⋃

k=1

Rki (15)

Then, the JPD of Ci is given as the following:

ΣCi = pforget(ΣLJT , X\Ci)
= pforget(Σ∗(ΣCj : j = 1, ..., m), X\Ci)
= Σ∗(ΣCi , pforget(Σ∗(ΣCj : j �= i), X\Ci))
= Σ∗(ΣCi , pforget(Σ∗(ΣCj : j �= i), R1i ∪ .... ∪Rqi))
= Σ∗(ΣCi , pforget(Σ∗(ΣCk

: Ck ∈ C1i), R1i),
..., pforget(Σ∗(ΣCk

: Ck ∈ Cqi), Rqi))
= Σ∗(ΣCi , Σ

∗(Mki : k = 1, ..., q))

This equation shows that the local knowledge base ΣCi can be computed as soon
as the clique Ci receives all messages from its neighboring cliques.

After sending all messages and computing all local possibilistic knowledge
bases, the junction tree is called ”globally consistent”. Formally, LJT is consis-
tent if ∀i, j, we have:

ΣSij = pforget(ΣCi , Ci\Sij) = pforget(ΣCj , Cj\Sij) (16)
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Proposition 4. The joint possibility distribution πLJT associated with the junc-
tion tree after sending all messages is equivalent to the initial distribution πLG
(associated with the initial graph):

πLG = πLJT (17)

Example 3. The knowledge base ΣC2 associated with the clique C2 after receiv-
ing ΣS12 is:
ΣC2 = ΣC2 ∪ΣS12 = {(b∨¬c∨¬d, 3

4 ), (¬b∨¬c∨ d, 1
2 ), (¬b, 3

4 ), (¬c, 1
2 )} which is

equivalent to ΣC2 = {(b ∨ ¬c ∨ ¬d, 3
4 ), (¬b, 3

4 ), (¬c, 1
2 )}.

At the end of propagation process, we obtain the following local knowledge bases:
- ΣC1 = {(¬a, 3

4 ), (¬b, 3
4 ), (¬c, 1

2 )}.
- ΣC2 = {(¬b, 3

4 ), (¬c, 1
2 ), (b ∨ ¬c ∨ ¬d, 3

4 )}.
It can be checked that LJT is consistent.

Step 4-Answering queries. After the propagation process, the syntactical
marginal with respect to Vi is computed at the level of clique Ci. Then, to
compute {π(A) : A ∈ Vi}, it is enough to eliminate symbols from intermediate
result on Ci which represents a computational simplification.

When the junction tree is consistent, computing Π(A) is done syntactically
using possibilistic inference:

Proposition 5. Let Σ be a possibilistic knowledge base. Let a be an instance of
A. Then,

π(a) = 1− Inc(Σ ∪ {(a, 1)})
where Inc(Σ∪{(a, 1)}) is the inconsistency degree of Σ∪{(a, 1)}. For computing
the inconsistency degree Inc see [9].

5 Conclusion

In this paper, we proposed a new inference algorithm for product-based possi-
bilistic networks. Our framework called possibilistic logic-based networks allows
to encode standard possibilistic networks. The algorithm consists of local com-
putations using compact representations of possibility distributions which are
possibilistic knowledge bases. Our approach is an interesting alternative imple-
mentation of well-known junction tree algorithms, since it is particularly appro-
priate when it is impossible to initialize local distributions on cliques (namely
when cliques’ sizes are large).
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Abstract. Before an autonomous agent can perform automated negoti-
ation on behalf of a user in an electronic commerce transaction, the user’s
preferences over the set of outcomes must be learned as accurately as pos-
sible. This paper presents a structure, a Conditional Outcome Preference
Network (COP-network), for modeling preferences directly elicited from
a user. The COP-network then expands to indicate all preferences that
can be inferred as a result. The network can be easily checked for con-
sistency and redundancy, and can be used to determine quickly whether
one outcome is preferred over another. An important feature of the COP-
network is that conditional preferences, where a user’s preference over
outcomes depends on whether particular attribute values are included,
can be modeled and inferred as well. If the agent also knows the user’s
utilities for some of the possible outcomes, then these can be considered
in the COP-network as well. Three techniques for estimating utilities
based on the specified preferences and utilities are described. One such
technique, which works by first estimating utilities for long chains of out-
comes for which preferences are known, is shown to be the most effective.

1 Introduction

The widespread use of the Internet today allows people to engage in more com-
munication, interaction, and transactions online than ever before. Opportunities
for automated negotiation between agents over the Internet are abundant, and
the use of such technologies becomes more and more feasible as the speed of
communication and processing increases. Buyers can negotiate with sellers over
the price or other terms of a potential exchange. Web users can negotiate the
terms of websites’ policies for handling private information. Even the terms of use
and configuration of web services can be negotiated. However, before negotiation
can commence, an agent representing a user must know the user’s utilities for
potential agreements. Utility elicitation techniques can help the agent to learn
some of the user’s preferences, but it is typically infeasible to learn all of them
due to the exponential number of outcomes. Therefore, an agent must gather as
much information as possible from a few utility elicitation queries, and attempt
to estimate or infer utilities over outcomes that cannot be elicited directly.

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 369–380, 2007.
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In the realm of privacy, as well as many other application areas, utilities for
outcomes cannot typically be computed as an additive function of the user’s
utilities for individual aspects or attributes of those outcomes. This is due to the
highly dependent nature of the attributes. Matters are complicated when a user
specifies conditional preferences. For example, a user may not mind releasing in-
formation which identifies his place of employment, nor would he mind exposing
his job title. However, he may have strong reservations when it comes to giving
away both of these particular items of information, as it may personally identify
him. So perhaps his utility for exposing his job title is dependent on whether his
place of employment is also part of the final outcome.

One can envision other situations where this may be the case, such as in the
stock market. Investors often prefer to create a balanced portfolio, where risks are
hedged against each other and the chance of overall growth is maximized. Here,
adding particular items to the portfolio will be more or less preferred, depending
on which others are included. Another example is the case of determining options
to be included in a new car. Perhaps air conditioning is important to a particular
buyer, but becomes less important if a convertible roof is included.

Given this, one can see that it is quite complex to determine a global util-
ity function that is consistent with all preferences that can be derived given the
known interdependencies. In order to determine such utilities, a preference struc-
ture is needed. Boutilier et al [1,2] present a structure, known as a CP-network,
for reasoning about conditional preferences over values within a single attribute.
Consider a car example with attributes “Make” and “Colour”. A user may spec-
ify preferences for “Make” such as “Pontiac is preferred over Volkswagen”, or
“Colour” such as “Black is preferred over silver”. From this, the reasoning tech-
nique can infer that black Pontiacs are preferred over silver Volkswagens, all else
equal. Additionally, conditional preferences can be used. For example, consider
a buyer that only likes Pontiacs that were made after 2002. Then the preference
for “make” is conditional on the outcome for “year”.

In the privacy example, attributes of outcomes correspond to items of per-
sonal information to be exchanged. Each attribute can then take on one of two
values: “included in the agreement” or “not included in the agreement”. Un-
der Boutilier’s model, the user can only specify preferences such as for “e-mail
address” , “not included” is preferred over “included” (and likewise for “phone
number”). In areas such as privacy where sets of items are being negotiated,
a richer model is needed where preferences can be expressed across attributes,
such as the value “included” is preferred for “phone number” over the value
“included” for “e-mail address” (i.e., phone number is preferred over e-mail).

In this paper, we develop a preference structure that will indicate all pref-
erences that can be derived, given the conditional and unconditional utilities
elicited from the user. This structure is referred to as a Conditional Outcome
Preference Network (COP-network or COPN). The COP-network is a directed
graph where, given that the information elicited from the user is accurate, if an
outcome o in the graph precedes another outcome o′, then the user’s true utility
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for o is higher than that for o′. This network is then used to estimate the user’s
utilities for all outcomes for which the utility has not been elicited.

The paper is organized as follows. In Section 2 we briefly review the
CP-network, and in Section 3 we introduce our COP-network. In Section 4 we
demonstrate how the COPN can be used to estimate utilities over outcomes,
and give a simple example of how this would be applied. In Section 5 we discuss
the results of our tests for accuracy of our technique, and in Sections 6 and 7 we
offer our conclusions and discuss directions for future work.

2 Conditional Preference Networks (CP-Nets)

Boutilier et al. [1,2] explore a representation referred to as a conditional prefer-
ence network (CP-network) for structuring user preferences. The representation
is based on the dependence and conditional preferential independence between
attributes. A CP-network over a set of n attributes is graphical, where a node
is created for every attribute. For each attribute, the user must identify a set
of parent attributes whose values can influence the user’s preference over values
for the attribute. Each node has an associated table describing the user’s pref-
erences over values for the attribute given every combination of parent values.
The theory works on the concept of ceteris paribus (all else being equal), where
preferences are defined and accepted as being true, given the conditions, all else
equal. Let X , Y and Z (non-empty) partition the set of attributes. X is said to
be conditionally preferentially independent of Y given Z if, for any assignments
x1, x2, y1, y2 and z to those sets of attributes:

x1y1z � x2y1z iff x1y2z � x2y2z

Thus if Z is the set of parent attributes of X (i.e. the conditions imposed on the
preferences in X), then given the conditions, preferences in X are said to hold
ceteris paribus, meaning that values for attribute values for Y are irrelevant. We
employ the ceteris paribus assumption in our model as well.

For example, suppose that there are four attributes, A, B, C, and D, and that
each attribute has binary values (a and a are values for attribute A, b and b for
B, etc.); and that attribute A has no parent, A is the parent of B, and B is the
parent of C and D. Suppose that the conditional preferences are as follows:

A : a � a (a is preferred over a)
B : a : b � b (given a, b is preferred over b)

a : b � b (given a, b is preferred over b)
C : b : c � c (given b, c is preferred over c)

b : c � c (given b, c is preferred over c)
D : b : d � d (given b, d is preferred over d)

b : d � d (given b, d is preferred over d)

The CP-network is shown in Figure 1.
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 N   B 

D    C 

A 

Fig. 1. An example CP-net

A dominance checking algorithm is then used to determine whether one out-
come is preferred over another. The idea here is that preferences higher in the
CP-net are more important than those that are lower. That is, if outcome o
has a violation in the user’s preference for attribute X (i.e. the less preferred
value is present), and outcome o′ has a violation in attribute X ′, then if X is an
ancestor of X ′ in the CP-net, then o is preferred over o′. In the example, abcd
has a violation in D and abcd has a violation in A. Since A is an ancestor of D,
the violation in abcd is more damaging than the violation in abcd, and thus abcd
is preferred over abcd. This can be shown by a sequence of “flips”:

abcd ≺ abcd (since a � a, a is flipped to a)
abcd ≺ abcd (since a : b � b, b is flipped to b)
abcd ≺ abcd (since b : c � c, c is flipped to c)

3 Conditional Outcome Preference Networks

In this section we define a structure for representing the specified preferences in
such a way that new preferences that can be directly inferred will be immediately
evident. The structure is a directed graph that represents preferences over the
set of outcomes, and is referred to as a Conditional Outcome Preference Network
(COP-network). The main aim in using the network is to (1) determine whether
one outcome is preferred over another, and (2) estimate utilities for the entire
set of outcomes.

3.1 Creating an Initial COP-Network

Users can specify preferences in many formats. For example, a preference could
be specified as a comparison of values from the same attribute or across different
attributes, with or without condition, and over two or more than two values.
While the CP-networks described in Section 2 are restricted to representing
preferences over values within a single attribute, COP-networks can also handle
preferences across different attributes.

To create an initial COP-network, each given preference is transformed to
a standard format referred to as a preference rule. A preference rule a1 � a2
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for a set A of attributes is defined as a specification that represents that one
assignment a1 to the attributes in A is preferred over another assignment a2.
Before the COP-network is constructed, all preferences specified by the user are
transformed to preference rules. For example, the two conditional preferences
a : bc � bc and a : bc � bc would be transformed into the two preference rules
abc � abc and abc � abc.

A COP-network is represented by a directed graph, where every outcome is
represented by a node, and for nodes n and n′ representing outcomes o and o′,
respectively, if n is a proper ancestor of n′ then o is necessarily preferred over o′,
given the specified preferences and the ceteris paribus assumption. Initially, for
every specified preference o � o′, an arc is inserted from the node representing
o to the node representing o′. In subsequent sections, we discuss consistency
checking and removal of redundant edges. Such a graph, without consistency
checking and reduction, is referred to as an initial COP-network.

Example 3.1. Suppose that there is a set {A, B, C} of attributes, and that each
attribute has binary values (a and a are values for attribute A, b and b for B, c
and c for C), and that there are the following preferences:

a � a , b � b , c � c , ab � ab , a : bc � bc , a : bc � bc

To structure a COP-network with the above preferences, all feasible outcomes
are listed: abc, abc, abc, abc, abc, abc, abc, abc. Next, preference rules as dictated
by the given preferences are applied to the outcomes, and a set of preferences
over the outcomes is generated. For example, by applying the preference rule
a � a, we determine that outcome abc is preferred over outcome abc. The final
step is to build a directed graph by creating a node for every outcome and adding
a directed edge from node ni to node nj if the preference oi � oj holds for the
corresponding outcomes. The resulting graph is shown in Figure 2, where Table 1
denotes which outcome is represented by each node.

Table 1. Node representation for Figure 2. Bar values are removed (e.g. abc ⇒ a).

Node: n0 n1 n2 n3 n4 n5 n6 n7

Outcome: φ a b ab c ac bc abc

3.2 Consistency

In decision making, an outcome cannot be preferred over itself. For any given set
of preferences, it can be determined whether an outcome is preferred over itself
by building an initial COP-network and checking whether there is a cycle in the
network. An outcome is preferred over another outcome if there is a path from
a node for the first outcome to another node for the second outcome. An initial
COP-network is said to be consistent if and only if there is no outcome that is
preferred over itself - i.e., if and only if the network is acyclic. If a COP-network
corresponding to a given set of preferences is found to have a cycle, then the
user must be consulted in order to correct the inconsistency.
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Fig. 2. The initial COPN

3.3 Reducing an Initial COP-Network

For nodes ni, nj and nk in an initial COP-network, if there are two paths ni →
nj → · · · → nk and ni → nk, the second path (i.e. the arc from ni to nk)
is not necessary since preferences that are reflected by the first path include
the preference that the second path reflects. Thus, the arc (ni, nk) is said to be
redundant and can be removed. This results in a transitive reduction of the initial
COP-network. The aim of reducing the network is to make it easy to compute
a utility function based on the network.

The graph from Figure 2 can be reduced to the graph shown in Figure 3.

n0 n1 n2 n4 n5

n3

n6

n7

Fig. 3. The reduced COP-network

3.4 Preference Checking

If each outcome is associated with an offer in a negotiation, the ability to show
that one outcome is preferred over another should help the decision making in
the negotiation. In a COP-network, the outcome corresponding to a node is
preferred over the outcome associated with any proper descendant. For any pair
of outcomes, preference checking is quite easy and efficient. For example, for any
pair of outcomes oi and oj with corresponding nodes ni and nj :

– If ni is a proper ancestor of nj , oi is preferred over oj (oi � oj):
– If ni is a proper descendant of nj , oj is preferred over oi (oj � oi);
– If ni is neither an ancestor nor a descendant of nj , neither of oi and oj is

known to be preferred over the other
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Consider Example 3.1. Outcome o0 is preferred over outcome o1 since n0 is
the parent of n1. Outcome o1 is preferred over outcome o7 since n1 is an ancestor
of n7. Neither of outcomes o3 and o6 is known to be preferred over the other
since n3 is neither an ancestor nor a descendant of n6.

4 COPN Utility Functions

In addition to obtaining a set of preferences from the user during the elicita-
tion stage, our model also allows for querying about specific utilities for out-
comes. This can be done by asking standard gamble questions (see Keeney and
Raiffa [8]), or by initially treating utility for an outcome as a random variable
from a known distribution, and querying the user to sufficiently reduce the un-
certainty in the utility estimate (see Chajewska et al. [5]), to cite some examples.
Note that there will always be at least two outcomes for which utility is known,
since we employ the convention of assigning a utility of 1 to the most preferred
outcome (the topmost node in the network), and a utility of 0 to the least pre-
ferred outcome (the bottommost node in the network). Based on the COP-net
derived from the specified preferences, and the partial utility function u : O′ → �
specifying utilities for a subset O′ of outcomes, a utility function û over the en-
tire set O is produced. This is done in such a way as to preserve the preference
ordering specified by the COP-net. Specifically, let n and n′ represent outcomes
o and o′. If n is a proper ancestor of n′, then û(o) > û(o′).

This section demonstrates three techniques for computing û: The Bounded
method, the Random-Path method and the Longest-Path method. Each method
is then tested for accuracy against an existing method.

4.1 The Bounded Method

The Bounded method computes the utility by setting upper and lower bounds
for each outcome o for which utility is unknown, and assigns the average of these
bounds as the utility value. Let n represent o in the tree, let Ok be the set of
outcomes for which the utility is known, and let Oa, Od ⊆ Ok be the set of
outcomes represented by ancestors and descendents of n, respectively. Then the
Bounded method computes the utility estimate ûB as

û =
min{u(o′) | o′ ∈ Oa}+ max{u(o′) | o′ ∈ Od}

2
(1)

By selecting the value that lies in the middle of the possible range, the bounded
method produces utilities that are, in most cases, not too far from the true
utilities. However, when there are paths of outcomes in the COP-net for which
the preference ordering is known, if the utilities for the outcomes have the same
upper and lower bounds the Bounded method will assign the same utility to each
outcome. The next two methods overcome this drawback by assigning utilities
that preserve preference orderings.
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4.2 The Random-Path Method

Given a COP-network and a set of known utilities, the Random-path technique
randomly selects a path of outcomes in the network for which utilities are un-
known, and assigns utilities to those outcomes in such a way that preserves this
preference ordering. Formally, let p = (o1, o2, . . . , on) be a path in the network.
This path is a candidate for selection if (1) û is known for o1 and on, and û
is unknown for all other outcome nodes on p, (2) for all paths satisfying (1),
û(o1) is minimal, and (3) for all paths satisfying (1) and (2), û(on) is maximal.
Requirements (2) and (3) ensure consistency in the utilities in the graph1. Once
a suitable path p has been selected, the utility û is assigned for each outcome on
p, decreasing from o1 to on, by

û(oi) = û(on) +
(n− i)(û(o1)− û(on))

n− 1
(2)

For example if p consisted of four outcomes with û(o1) = 0.8 and û(o4) = 0.2,
then û(o2) and û(o3) would be assigned utilities of 0.6 and 0.4, respectively.

The process of selecting paths at random and assigning utilities in this way
continues until all outcomes are considered.

4.3 The Longest-Path Method

The Longest-Path method works in much the same manner as the Random-Path
method, except that the longest acceptable candidate path is always selected.
Utilities for outcomes are assigned according to Equation 2. Path selection con-
tinues until all outcomes have been considered.

4.4 A Simple Example

Consider the COP-network in Figure 4 containing 6 nodes, where each node ni

represents outcome oi. Initially let u(o1) = 0.82 and u(o6) = 0.1. Each of the
three techniques described above computes û for outcomes o2 to o5 as follows:

Bounded: Since the upper bound for all outcomes o2 to o5 is 0.82 and the lower
bound is 0.1, û(oi) = 0.82−0.1

2 = 0.46 for all i = 2 to 5.

Random-Path: Random-Path will randomly begin with one of two paths: p1 =
(o1, o2, o3, o5, o6) or p2 = (o1, o4, o5, o6).

1. If p1 is chosen first, then û(o2) = 0.64, û(o3) = 0.46 and û(o5) = 0.28. Next,
path (o1, o4, o5) is chosen and û(o4) = 0.55.

2. If p2 is chosen first, then û(o4) = 0.58 and û(o5) = 0.34. Next, path
(o1, o2, o3, o5) is chosen and û(o2) = 0.66 and û(o3) = 0.5.

Longest-Path: Longest-Path will choose p1 = (o1, o2, o3, o5, o6) first (since it
is the longer of p1 and p2), and compute utilities as in point 1 in Random-Path
above.

1 Refer to Chen [6] for more on ensuring consistency in path selection.
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n1

n4

n3

n2

n5

n6

Fig. 4. An example COP-net for computing utilities

5 Analysis

5.1 Accuracy Testing

There are three techniques developed in this paper and discussed in previous
sections. Given a set of preferences and given utilities for some of the possi-
ble outcomes, each technique constructs a COP-network and develops a utility
function to predict all unknown utilities. Experiments were run to compare the
accuracy of these three techniques as well as a previously developed technique
for determining utilities, which we refer to as the additive utility. This technique,
which is used by the “MONOLOGUE” automated negotiation system [4], han-
dles interdependencies among attribute values that result from the specified
conditional preferences by modifying the amount of utility that each attribute
value contributes in a given outcome. For example, if an attribute value a is
considered less desirable when attribute value b is present, then a contributes
less utility to an outcome including b than it would to an outcome not including
b. The overall utility for an outcome is then the sum of these modified utilities.

To test the accuracy of the algorithms, test cases were generated for different
numbers of attributes and different numbers of conditional preferences. Tests
were then run on these cases to determine how accurately the techniques could
estimate a simulated user’s true utilities for all outcomes, given a small number
of preferences and known utilities. In this experimentation, there were 33 test
cases. The numbers of attributes ranged from 4 to 9. The numbers of conditional
preferences ranged from 0 to 7.

For each test case, several sets of user preferences were generated, giving a
large number of different test COP-networks. For each of these COP-networks,
10,000 trials were run. In each trial, a set of true utilities was generated to be
consistent with the given preferences. Each of the four techniques (Bounded,
Random-Path, Longest-Path and Additive) was then tested, to determine how
accurately it could estimate the true utilities.

In order to determine the accuracy of the four techniques, two measures were
considered: the differences between computed utilities and true utilities and the
standard errors of those differences. For each test case, each technique computed
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the utility for each outcome, and the difference between the computed utility and
the true utility was noted. The winning technique was determined for each of
the following criteria:

1. Total difference winner: The technique with the lowest difference for an
outcome is viewed as having the best ability to predict utility for that out-
come in the particular test case. This technique is deemed the difference
winner for the outcome. For all test cases, the technique deemed the differ-
ence winner the most often is viewed as having the best ability to predict
utility. This technique is deemed the total difference winner.

2. Difference mean winner: For all test cases, the technique with the lowest
mean of differences over all outcomes is deemed the difference mean winner.

3. Total standard error winner: For each trial, the standard error over the
set of estimated utilities is measured. The technique with the lowest standard
error is deemed the standard error winner for the trial. For all test cases,
the technique deemed the standard error winner the most often is viewed as
having the best ability to predict utility. This technique is deemed the total
standard error winner.

4. Standard error mean winner: For all test cases, the technique with the
minimal mean of standard errors over all outcomes is deemed to be the
standard error mean winner.

The accuracy of predicting utility of the four techniques is evaluated by consid-
ering the total difference winner, the difference mean winner, the total standard
error winner, and the standard error mean winner. Table 2 shows the number of
times each technique was the winner for each of these four criteria. Clearly, the
Longest-Path technique is shown to most accurately predict utility regardless of
the numbers of attributes and conditional preferences.

Table 2. Experimental results

Technique Total difference Difference mean Standard error Standard error
winner winner winner mean winner

Bounded 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Random-Path 1 (3%) 6.5 (20%) 1 (3%) 5 (15%)

Longest-Path 23 (70%) 25.5 (77%) 32 (97%) 28 (85%)

Additive 9 (27%) 1 (3%) 0 (0%) 0 (0%)

5.2 Discussion on Running Time

Since a COP-net contains a node for every possible outcome, run-time for build-
ing and traversing the tree is very expensive in the worst case. Let n denote
the number of attributes. If attributes are binary-valued, there are 2n outcomes.
Testing showed that algorithms for computing utilities began to slow significantly
at n = 15. We envision that, in most practical applications of the technology, 15
attributes is more than sufficient. For example, when negotiating which items
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will be exchanged in a privacy scenario, or which options will be included in
a car, it is difficult to imagine scenarios where both parties have enough con-
cern over so many variables that more than 15 would need to be negotiated.
However, in cases where significantly more items are involved, the COP-net can
be divided into two or more sub-networks. This is done by partitioning the set
of attributes such that dependent attributes are grouped together, and indepen-
dent attributes are separated. A COP-network is then built for each group. Each
such group is unlikely to consist of more than 15 attributes. Utilities can then be
computed for outcomes in these COP-nets independently, and a multi-attribute
utility function can be used to determine utilities for complete outcomes.

6 Conclusions and Related Work

In this paper, a graphical model referred to as a Conditional Outcome Preference
Network (COP-network) is described. Using this model, techniques are developed
to infer user preferences and utilities over all possible outcomes, given a small
set of known preferences and utilities. Previous preference networks (such as
CP-networks [1]) have handled only preferences specified over values for a partic-
ular attribute. In this paper, techniques are developed that can infer preferences
over outcomes when user preferences are specified for values across attributes as
well. As in previous techniques, conditional preferences are also handled. Efficient
algorithms have been presented for checking the consistency of a COP-network
and for using a given network to determine the user’s preferences between any
two possible outcomes. Three techniques are presented for estimating utilities
for outcomes in the COP-net: Bounded, Random-Path and Longest-Path. Ex-
periments show that the Longest-Path technique achieves the best results of the
three, and also outperforms an existing technique.

Preference elicitation is becoming an increasingly popular topic for researchers
working in the areas of agents and electronic commerce. Boutilier et al. [3] pro-
pose a minimax regret-based approach to preference elicitation. Given a decision
problem, choices are made that the user would regret the least should an ad-
versary choose the utility function consistent with the elicited preferences. If
regret is higher than some threshold, then more querying is necessary. Deter-
mining such a consistent utility function is difficult, especially when conditional
preferences exists, so perhaps our work can complement this. Other works on
utility elicitation, such as those by Chajewska et al. [5] and Haddawy et al. [7],
demonstrate effective ways to estimate utilities based on data obtained on other
individuals’ preferences or utilities over outcomes. Our work differs from these
as we assume that no such data exists.

7 Future Work

For future work, a COP-network capturing a user’s known preferences and a set
of estimated utilities could be used to make decisions about which preference
elicitation questions to ask next. If two nodes in the graph have the property
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that neither is an ancestor of the other, then it would be reasonable to ask
the user a preference elicitation question with the goal of determining which
outcome is preferable. However, learning the user’s preference over some pairs of
outcomes might be more informative than other pairs. For example, due to the
structure of the graph, learning that the user prefers outcome o1 over outcome
o2 (o1 � o2) might also tell the agent that o3 � o2 and that o1 � o4. This then
has the potential to be a more useful question than one that provides no such
additional preference information.

The approach to this problem will include experimenting with graph-theoretic
methods to find a set of candidate edges corresponding to potential preference
elicitation questions, and then evaluating the anticipated effect of learning the
answer to each of these questions on the expected utility of the agent’s strategy
(perhaps a negotiation strategy to be used in negotiations with an opposing
agent). The question perceived to yield the highest increase in expected utility
would be the next question chosen.

Another possible direction for future work is to investigate the feasibility of
reducing the space consumption of the current COP-network model by attempt-
ing to modify the network so that it contains a node for each attribute rather
than each outcome.
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Abstract. Although (probabilistic) inference in Bayesian networks has
been well studied, the recent trend on extending Bayesian networks
to model large and complex domains imposes new challenges on in-
ference. In this paper, we suggest a method called path propagation
that addresses these new challenges. The experimental results indicate
that the proposed method achieves better performance than conventional
method, especially for large Bayesian networks.

1 Introduction

The Bayesian network (BN) model is a probabilistic graph model that has been
successfully developed and applied in various domains for uncertainty manage-
ment [6]. It abstracts a problem domain using a set U of random variables and
a directed acyclic graph (DAG) to encode the conditional independency infor-
mation among variables in U . One of the most important services that a BN
provides is inference (or probabilistic inference), which simply means calculating
posterior probability p(x|E = e) for a variable x ∈ U given that variables in
E are taking a specific value e. Computing p(x|E = e) is also called a query in
this paper. Various research has been carried out on designing and implement-
ing algorithms for performing inference [2], for instance, the renowned global
propagation (GP) method originally developed in [4, 3].

Although quite a successful model for uncertainty management, researchers
have noticed that the BN model has inherent deficiencies in its modeling ca-
pacity for large and complex domains. Very recently, research has been done to
extend the BN model to handle such domains, for instance, the multiply sec-
tioned Bayesian network (MSBN) model and the object-oriented Bayesian net-
work (OOBN) model. Both models focus more on providing methodologies for
modeling large and complex domains than developing completely new methods
for inference. In fact, it was suggested that one can transform a MSBN or OOBN
to a single BN on which the GP method can be applied [1].

The GP method performs quite well on many small or medium BNs in prac-
tice. However, the idea of applying the GP method to a large BN (for instance,
a BN converted from a MSBN or OOBN) for inference presents new challenges.
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Adverse scenarios could arise in the process of inference in large BNs. For ex-
ample, the response time of inference could be slow, or inference using the GP
method is not possible at all because of the size of the BN. One of our recent
experiments shows that Hugin fails to operate on a network with about 1300
nodes, reporting an out of memory error message on a P4 machine with 512 MB
memory and normal load.

In this paper, we suggest an on-demand thrifty method designed for inference
in large BNs. This approach is based on the GP method but with novel features
tailored for large BNs. By identifying common query patterns and making full
use of known properties of the GP method, in the proposed approach, the com-
putation needed for answering a query p(x|E = e) is on-demand and thrifty in
the sense that only the necessary minimal computation is carried out to obtain
p(x|E = e).

The paper is organized as follows. In Section 2, we review the GP method
for inference. In Section 3, we discuss the new challenges of inference in large
BNs. In Section 4, we present the proposed method for inference that addresses
the challenges. We show the experimental results in Section 5 and conclude the
paper in Section 6.

2 Global Propagation for Inference

A Bayesian network defined over a set U of variables, written as (D, P), is
a probabilistic graphical model where D denotes a DAG and P denotes a set
of conditional probabilistic distributions (CPDs), such that each node x in D
corresponds one-to-one to a variable in U and each node is also associated one-
to-one with a CPD p(x|πx) in P , where πx denotes the parents of x in D. The
product of the CPDs in P defines a joint probability distribution (JPD) over U
as p(U) =

∏
x∈D p(x|πx) [6].

One of the standard methods for performing inference is the so-called global
propagation (GP) method originally developed in [4]. Since GP is well under-
stood, we refer readers to [2] for a complete exposition. We will only describe
relevant background of the GP method that will be used in the paper using an
example.
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Fig. 1. (i) The Asia BN D. (ii) The junction tree transformed from the Asia BN in (i).
(iii) GP is performed on the junction tree with C4 as root; separators are omitted for
simplicity and clarity.
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Consider the Asia BN [4] (D, P) defined over U = {a, b, c, d, e, f, g}. Its
DAG D is shown in Figure 1 (i). For simplicity, we assume all variables in U
are binary. In order to perform GP, the DAG has to be first transformed into a
junction tree, shown in Figure 1 (ii), through the moralization and triangulation
processes. The round rectangles in the junction tree represent cliques and they
are C1 = ac 1, C2 = bde, C3 = cdf , C4 = def , C5 = fh, and C6 = efg. The
(smaller) rectangles represent separators, i.e., the intersections of two adjacent
cliques and they are S1 = c, S2 = de, S3 = df , S4 = f , and S5 = ef . Along
with the graphical transformation from the DAG to the junction tree, each CPD
p(x|πx) in P is also assigned to a unique clique Ci if {x} ∪ πx ⊆ Ci to form
an associated clique potential (function) denoted ψi(Ci). The potential ψi(Ci) is
defined as the product of all CPDs assigned to clique Ci or 1 if no CPD is assigned
to Ci at all. Each separator Sij connecting two cliques Ci and Cj in the junction
tree is also associated with a separator potential ψij(Sij) with initial value 1.
A potential can be represented as a table [7]. The size of a clique (potential)
usually refers to the number of entries (rows) in the associated potential table.

The GP method is performed on the junction tree by picking an arbitrary
clique as root and then passing messages inward and outward with respect to
the chosen root. Passing a message between two cliques is the core operation
of the GP method. Consider two adjacent cliques Ci and Cj with separator
Sij = Ci ∩ Cj . Clique Ci passing a message to clique Cj means the following
calculation:

ψj(Cj) = ψj(Cj) ·
∑

Ci−Sij
ψi(Ci)

ψij(Sij)
. (1)

In Figure 1 (iii), clique C4 was picked as root. The solid arrows indicate inward
pass of message passing, each clique potential passing a message to its neighbor
towards the root, starting from the leaf cliques. The dashed arrows indicate
outward pass of message passing, each clique potential passing a message to all
its neighbors away from the root, starting from the root clique. The objective of
GP is to compute the marginal distribution for each clique and separator in the
junction tree. After the GP finishes, the clique potentials ψ(Ci) have now been
turned into marginals p(Ci). At this stage, the probability p(x) for any x ∈ U
can be easily computed.

The notion of evidence means that some variables in U are taking specific
values from their respective domains. For instance, if variable a takes the value
0 and variable c takes the value 1, then we use E to denote this evidence and
use v(E) to denote variables occurring in E, i.e., {a, c}. Two pieces of evidence
E and E

′
are contradicting if there exists a variable x such that x ∈ v(E) and

x ∈ v(E
′
) but x are taking different values in E and E

′
. Otherwise, E and E

′

are compatible.
With an evidence E observed, we are interested in computing the posterior

probability p(x|E) for variable x ∈ U of interest, to be compared with its prior
probability p(x). In order to compute p(x|E), the evidence E needs to be first
1 By ac, we mean {a, c}, etc.
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incorporated in some clique potential ψi(Ci) if v(E) ⊆ Ci and the GP method
has to be applied again on the junction tree. The objective of reapplying GP
on a junction tree with evidence observed (and incorporated) is to compute the
updated marginals for each clique(and separator). Note the updated marginal is
in fact the probability distribution for the variables in the clique conjoint with
the evidence E. For instance, if evidence E is a = 0, then after reapplying the
GP method, we obtain p(Ci, E) for each clique. At this stage, the posterior
probability p(x|E) for any x ∈ U is also readily available, and can be compared
with p(x) to see how the evidence changes one’s belief on x.

To summarize, applying the GP method to a junction tree with no evidence
observed results in marginal distributions for cliques (and separator) computed;
applying the GP method to a junction tree with evidence observed and incorpo-
rated results in updated marginal distributions computed for cliques (and sep-
arator). The application of the GP method is in full scale in the sense that all
the cliques in the junction tree are involved in the propagation process.

3 Inference in Large BNs – New Challenges

Although the BN model and the GP method for inference are quite successful in
many real applications with BNs of small or medium size, researchers are now
aiming at modelling large and complex domains. For instance, the OOBN and
MSBN model. It was suggested to perform inference by converting a OOBN or
MSBN into a single BN on which the GP method can be applied. However, it
is important to note that since both MSBN and OOBN models are originally
developed to model large and complex domains, the BN converted could be much
larger than any existing BNs.

There are two concerns regarding inference using the GP method for large BNs
in general. First, the effectiveness and efficiency of the GP method in practice
are strongly related to the size of all the cliques in a junction tree. As the sizes of
BNs increase, it is expected that the size of all the cliques in a junction tree will
be much larger, and this concerns the performance of inference on large BNs. It is
foreseeable that larger BNs will take much longer time to perform GP and answer
queries. Secondly, the GP method involves inward and outward message passing
performed on the whole junction tree, the upside of such a propagation scheme
is that probability (or posterior probability when evidence is observed) is readily
available for every variable once the GP method finishes its execution. However,
in many applications, it is unreasonable to assume that users are interested
in the probability(or posterior probability when evidence is observed) for each
and every variable in the network, especially in large BNs. For instance, in the
“Munin3” BN which has 1045 variables, if evidence observed, performing GP on
this network could produce posterior probability for each of the 1045 variables,
it is unlikely that the posterior probability for each variable in the network will
be of interest to the user whenever new evidence is observed. In most cases,
only the posterior probabilities of a few variables are of interest [7], that means
much of the computation occurred when applying GP is totally wasted. In other



Path Propagation for Inference in Bayesian Networks 385

words, performing a full scale GP only for a few variables of interest is not an
economic way to utilize computing resources.

4 Path Propagation in Large BNs

In response to the concerns just expressed, in this section, we present an on-
demand thrifty propagation method called path propagation (PP). The path
propagation method is based on the assumption that the GP method is applied
in full scale only once on a junction tree with no evidence observed, and the
marginals for cliques and separators in the junction trees are known thereinafter.
This assumption is justified by how a BN is used in practice. In real applications,
one always needs to know the prior probability p(x) for a variable x of interest
and compare it with posterior probability p(x|E) to see how the evidence E
affects one’s belief on x.

We first introduce two theorems that lay the foundation for path propagation.
Consider two adjacent cliques Ci and Cj in a junction tree with separator Sij =
Ci ∩Cj . Let p(Ci), p(Cj), and p(Sij) be the marginals corresponding to Ci, Cj ,
and Sij , respectively. Suppose an evidence E is observed such that v(E) ⊆ Ci.
We then have the following theorem.

Theorem 1

p(Cj , E) = p(Cj) · p(E|Sij) = p(Cj) ·
∑

Ci−v(E)−Sij
p(Ci, E)

p(Sij)
. (2)

Proof: By product rule, p(Cj , E) = p(Cj) ·p(E|Cj). Since Cj = Sij ∪(Cj−Sij),
it then follows p(Cj , E) = p(Cj)·p(E|Sij, Cj−Sij). The structure of the junction
tree dictates that E is conditionally independent of Cj−Sij given Sij [7], namely,
p(E|Sij , Cj − Sij) = p(E|Sij). Eq. 2 then follows naturally. ��
Theorem 1 indicates that in order to obtain the updated marginal p(Cj , E),
we need to compute p(E|Sij). However, p(E|Sij) = p(E, Sij)

p(Sij)
, in which the de-

nominator p(Sij) is the marginal on Sij and the numerator p(E, Sij) is readily
available from p(Ci) (note that v(E) ⊆ Ci) because of our assumption. Moreover,
the calculation in Eq. (2) is in exactly the same form as Ci passing a message to
Cj in Eq.(1), and we call the computation in Eq. (2) as that the clique Ci (with
the updated marginal p(Ci, E)) passes the evidence E to clique Cj (to obtain
the updated marginal p(Cj , E)).

Example 1. Consider again the junction tree shown in Figure 1 (iii). Suppose
we now observe an evidence E that e = 0 and we want to compute p(cdf, E).
By Theorem 1, p(cdf, E) = p(cdf) · p(E|df), in which p(cdf) is known and
p(E|df)(i.e., p(e = 0|df)) can be computed from p(def, E)(i.e., p(def, e = 0)).

It is not hard to see that Theorem 1 implies that clique Ci with its updated
probability p(Ci, E) can always pass the evidence E to its adjacent clique Cj to
obtained the updated probability p(Cj , E).
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Consider a more general case with two adjacent cliques Ci, Cj , and the separa-
tor Sij . Let p(Ci, Ei) and p(Cj , Ej) be the marginals on Ci and Cj respectively
where Ei and Ej are compatible evidences. Suppose another evidence E

′
com-

patible with both Ei and Ej is observed and v(E
′
) ⊆ Ci. We then have the

following theorem.

Theorem 2. The clique Ci with its updated marginal p(Ci, Ei, E
′
) passing

the evidence E
′
to clique Cj results in the updated marginal p(Cj , Ej , E

′
).

Theorem 2 can be similarly proved as Theorem 1. Theorem 1 and Theorem 2
paves the way for introducing path propagation.

We begin our discussion of path propagation by first observing some noticeable
patterns in queries in many real applications. Imagine the following scenario, a
doctor, when diagnosing a patient with the help of an expert system built on
the BN model, can ask the patient to take one or two lab tests because the
doctor is suspicious of a few diseases, say diseases x and y, that the patient may
suffer. The returned lab results are evidence E, and the doctor is interested in
the posterior probabilities of diseases x and y given the evidence E, namely,
p(x|E) and p(y|E). It happens that p(x|E) and p(y|E) do not differ too much
from their priors p(x) and p(y). This does not give the doctor enough confidence
to conclude the diagnosis. By referring to some medical diagnosis repository, the
doctor realizes that the patient may also suffer a rare life threatening disease w,
and the doctor wants to know p(w|E) to see if the patient possibly has disease
w. We formalize the pattern exhibited in this scenario as the following inference
task.

Definition 1. Query Pattern 1 (multiple variables): Given evidence E, compute
the posterior probability for x1, x2, . . ., xn given E, namely, compute p(x1|E),
. . ., p(xn|E).

Imagine another scenario in the same medical diagnosis setting. The doctor
suspects that the patient is suffering disease x and the doctor asks the patient
to do a lab test to confirm the suspicion. However, the posterior probability
p(x|E) does not warrant the doctor to make a conclusive diagnosis until another
lab test can double confirm the suspicion. The patient has no choice but to do
another lab test, i.e., providing another evidence E

′
. This time, the posterior

probability p(x|E, E
′
), does warrant the doctor to make a conclusive diagnosis.

We formalize the pattern exhibited in this scenario as the following inference
task.

Definition 2. Query Pattern 2 (multiple evidences): Compute the posterior
probability for a variable x given incrementally compatible evidences E1, E2,
. . ., En, namely, compute p(x1|E1), p(x1|E1, E2), . . ., p(x1|E1, . . . , En).

In the following, we introduce path propagation for computing posterior proba-
bility in the above two patterns.

We first introduce a procedure to compute p(x|E) where v(E) is contained by
a clique C. Recall that we have assumed that GP had been applied once and
marginals on each clique and separator in the junction tree are now known.
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PROCEDURE Compute(x, E)
Input: variable x and evidence E such that v(E) is contained by clique C.
Output: p(x|E).
{

1: Identify a clique C
′
such that x ∈ C

′
.

2: Find out a path (C0, C1, . . . , Cm) in the junction tree such that
C0 = C, Cm = C

′
, and (Ck, Ck+1) is an edge in the junction tree,

k = 0, . . . , m− 1.
3: For k = 0 to m− 1, clique Ck passes the evidence E to Ck+1.
4: Compute p(x|E) from p(C

′
, E).

5: Mark each clique Ci, i = 0, . . . , m, with evidence E, denoted CE
i .

6: Return p(x|E).
}

The above procedure for computing p(x|E) is based on Theorem 1. It first
identifies a path in the junction tree connecting cliques C and C

′
; it then begins

to pass the evidence E sequentially starting from clique C. Based on Theorem
1, p(Ci, E) for each clique Ci along the path is obtained. Note that the message
passing occurring in the above procedure involves only the cliques along the path
between C and C

′
. Only the cliques in the path are necessary for computing

p(C
′
, E), from which p(x|E) can be obtained in Step 4. All the other cliques in

the junction tree are irrelevant to the query p(x|E) and they are not involved in
computing p(x|E). As a side-effect, since p(Ci, E), i = 1, . . . , m − 1, are all
computed in Step 3, if y ∈ Ci, then p(y|E) is also readily available. In step 5, we
mark each clique Ci as CE

i to indicate that the marginal on Ci is now conjoint
with the evidence E, i.e., p(Ci, E).

4.1 Solving Pattern 1: Multiple Variables

A solution to the queries of pattern 1, namely, the multiple variables case,
can be formulated based on the above procedure. Consider a fixed evidence
E and the task of computing p(x1|E), . . ., and p(xn|E) for a sequence of vari-
ables x1, . . . , xn. This can obviously be accomplished by calling the procedure
Compute(x, E) with fixed E and different x1, . . . , xn variables in the sequence
as the first argument. However, there is room for improving the efficiency as the
following example shows.

Example 2. Consider again the Asia BN in Section 2, Figure 1. Suppose we
want to know p(a|E) and p(b|E) given the fixed evidence E denoting g = 1. The
evidence is residing in clique C6, and the variables a and b are residing in cliques
C1 and C2, respectively.

We invoke the procedure Compute first with the pair (a, E) as the arguments.
According to the procedure, the path (C6, C4, C3, C1) in the junction tree is
identified in step 2 shown in Figure 2. Note that every clique in the path will be
marked to indicate that the marginal on that clique is conjoint with the evidence
E after the procedure finishes. In order to compute (b, E), although we can find
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Fig. 2. Compute p(a|E) and p(b|E) in pattern 1

a path (C6, C4, C2), however, it is important to note that marginals on C6 and
C4 are already conjoint with E (namely, p(C6, E) and p(C4, E)) from previous
application of the procedure on the pair (a, E) for computing p(a|E). Passing
the evidence E from C6 to C4 has no effect. Therefore, passing evidence from
C6 to C4 and then to C2 can be simplified as passing the evidence E from C4 to
C2.

Example 2 indicates that in finding the path connecting the clique C
′
containing

the variable whose posterior probability is of interest (say clique C2 in Exam-
ple 2) and the clique C where the evidence is originally residing (say clique C6

in Example 2), we may possibly make use of the fact that the evidence may have
been propagated to other cliques in the junction tree during previous compu-
tations such that the path found in step 2 between C and C

′
can be possibly

shortened. In the path (C0 = C, C1, . . . , Cm = C
′
) identified in step 2, we may

examine each clique in the path in sequence and locate the last clique, say Ci,
0 ≤ i ≤ m, that has been marked in step 5 in the procedure Compute by the ev-
idence E before. In consequence, the original path (C0 = C, C1, . . . , Cm = C

′
)

can then be shortened to (Ci, . . . , Cm = C
′
) which results in less computation

for computing p(x|E) where x ∈ C
′
.

The final solution to query pattern 1, based on the above discussion, can be
simply described as

(1) identifying a path in the junction tree from a clique C whose marginal is
conjoint with E to the clique C

′
containing the variable of interest such that

the length of such a path is the shortest, and
(2) passing the fixed evidence E along the path as in step 3 in the procedure

Compute.

Imagine Pattern 1 in a large junction tree, answering the query p(xi|E) using
the above described method only involves a path in the junction tree and the
evidence is passed along this path only. In other words, only a part of the original
junction tree takes part in computing p(xi|E) instead of a full scale GP. If the
user is only interested in the posterior probabilities for a few variables given a
fixed evidence, it is obvious that the proposed method saves a lot of computation
compared with a full scale GP.
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4.2 Solving Pattern 2: Multiple Evidences

The pattern of multiple evidence can be solved in a similar fashion. We explain
the solution using an example first.
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Fig. 3. Compute p(g|E1) and p(g|E1, E2) in pattern 2

Example 3. Consider the junction tree in Figure 2. Suppose the first evidence
observed is E1 which denotes b = 0, and we want to know p(g|E1). The evidence
is residing in clique C2, and the variables g is residing in cliques C6. The evidence
E1 can be passed as indicated by arrows in Figure 3 (i) from clique C2 to C6

via C4. Note that the updated marginals on cliques C4 and C6 are p(C4, E1)
and p(C6, E1) respectively once the procedure Compute finishes according to
Theorem 2.

Suppose we further observed evidence E2 which denotes h = 1, and we want
to know p(g|E1, E2). The evidence E2 is residing in clique C5. According to
Theorem 2, we can pass the evidence E2 towards the clique C6 which contains
the variable g to obtain p(C6, E1, E2), from which p(g|E1, E2) can be finally
computed. The evidence E2 was passed as indicated by arrows in Figure 3 (ii)
from clique C5 to C6 via C3 and C4. Note that the updated marginals for each
clique along the path connecting C5 and C6 are also indicated.

Example 3 gives rise to a solution to the multiple evidence scenario of inference
as follow. We can

(1) first pick the clique which contains the variable of interest as the root of the
junction tree, and

(2) whenever new (compatible) evidence Ei is observed, we pass Ei from the
clique containing the evidence Ei to the chosen root which contains the
variable of interest.

The updated marginal on the root thus is always conjoint with all the evidence
observed so far.

Imagine Pattern 2 in a large junction tree, in order to answer the queries
p(xi|E1), p(xi|E1, E2), . . ., p(xi|E1, . . . , Em), based on the above described
method, one has to pass evidence Ej from a clique contain v(Ej) to the clique
containing variable xi for j = 1, . . . , m sequentially. This process involves only
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m paths in the whole junction tree and there is no need to perform a full scale
GP which incurs much more computation than necessary for the query imposed.

To summarize, the salient feature of the proposed method is that (1) the
computation occurred during the propagation is based on the query imposed by
the users and it answers the query only, and (2) the computation for obtaining
the posterior probability for the variables of interest is minimal in the sense that
the propagation only involves those cliques that have to participate to produce
the results. Such a thrifty method avoids a full scale GP, takes less time to
answer queries, and waste less computational resources.

5 Experimental Results

In this section, we present experimental results that demonstrate the effective-
ness and efficiency of path propagation. Both GP and path propagation are
implemented in C language under Unix for comparison. The two implementa-
tions are identical to each other except the propagation part. As in [5], we use
the number of binary arithmetic operations (additions, multiplications, and di-
visions) in GP and path propagation as the measurement of efficiency of the
implementations.

The experiments are conducted on 4 Bayesian networks with increasing sizes.
They are car-ts.net with 12 variables, 4sp.net with 58 variables, pigs.net with
441 variables, and munin2.net with 1003 variables. Query patterns 1 and 2 are
tested on each of the networks.
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Fig. 4. Experimental Results for query pattern 1

Figure 4 shows the results of query pattern 1. Taking 4sp.net as an example, it
contains four different query sessions 2, and the evidence used in each session is
different. For each query session, the number of variables of interest is gradually
increasing. For example, the first query session is for one variable; the second

2 A query session of pattern 1(or 2) is a sequence of queries that satisfies the definition
of query pattern 1(or 2).
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is for 3 variables; the third is for 5 variables; the fourth is for 7 variables. All
variables of interest in each query session are generated randomly. The X-axis
represents the number of variables of interest in each query session, and the
numbers in Y-axis represent the total number of calculations needed for both
propagations.
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Fig. 5. Experimental Results for query pattern 2

Figure 5 shows the results of query pattern 2. Taking car ts.net as an example,
it contains one query session with increasing number of evidences (4 pieces of
evidence in total). For example, at the beginning of the query session, there
is only one piece of evidence; then the second piece of evidence comes, then
the third and fourth pieces of evidence come. The evidences in the session are
generated randomly. The X-axis represents the number of variables in all pieces
of evidence in the query session, and the numbers in Y-axis represent the total
number of calculations needed for both propagation.

The results in both figures obviously indicate that path propagation uses much
less arithmetic operations than GP for inference. In Figure 5, the slope of the
curve for path propagation is much smaller than that of GP which implies that
the more the number of variables of interest, the greater the savings of needed
arithmetic calculation. In Figure 4, the slope of the curve for path propagation is
only marginally greater than that of GP. That means the two curves will intersect
at some point. However, the x-axis value at the intersect point, which represents
the number of variables of interest, will be a very large number. Since users of
BNs are only interested in the probability of a few variables in the network,
the fact that the arithmetic calculations for both path propagation and GP
will be equal at some point does not really concern us. All these advantages
of path propagation is simply because that the GP method has to be operated
on the whole junction tree, while path propagation only carries out necessary
calculations on certain paths as explained in Section 4. The results also show
that as networks become large, the savings of path propagation compared with
GP are significant.
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6 Remarks and Conclusion

Throughout the paper, we have assumed that v(E) is contained by a clique. If
v(E) is not contained by any clique in a junction tree, for example, consider the
evidence E denoting a = 1, g = 0, suppose v(E) = {a, g} is not contained
in any clique in a junction tree, one can always decompose E as E1 denoting
a = 1 and E2 denoting g = 0 such that v(E1) = {a} and v(E1) = {g} must be
contained by a clique because they are singleton sets after decomposition.

We only discussed two query patterns in Section 4. In reality, pattern 1 and
2 can interweave with each other in a query session. This interweaving case
can be similarly solved as pattern 1 and 2. We have also based our discussion
of query pattern 2 on the assumption that evidences E1, E2, . . ., and En are
compatible. Due to the length limit of the paper, we postpone the discussion of
the interweaving case and contradicting evidence case in an extended version of
this paper.

The implementation of path propagation involves as a major operation finding
a path in a junction tree connecting the clique containing the variable of interest
and the clique containing the evidence. Finding a path in a tree can be effectively
and efficiently implemented. Since the proposed method for answering queries
only involves a few paths in a junction tree based on the queries imposed instead
of the whole junction tree, it takes less time and resources to compute the answer
for a query, especially for large and complex BNs in which the GP method may
fail to operate effectively and efficiently.
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Abstract. In an intelligent tutoring system (ITS), the domain expert should pro-
vide relevant domain knowledge to the tutor so that it will be able to guide the 
learner during problem solving. However, in several domains, this knowledge is 
not predetermined and should be captured or learned from expert users as well as 
intermediate and novice users. Our hypothesis is that, knowledge discovery (KD) 
techniques can help to build this domain intelligence in ITS. This paper proposes 
a framework to capture problem-solving knowledge using a promising approach 
of data and knowledge discovery based on a combination of sequential pattern 
mining and association rules discovery techniques. The framework has been im-
plemented and is used to discover new meta knowledge and rules in a given do-
main which then extend domain knowledge and serve as problem space allowing 
the intelligent tutoring system to guide learners in problem-solving situations. 
Preliminary experiments have been conducted using the framework as an alter-
native to a path-planning problem solver in CanadarmTutor.  

1   Introduction 

In an intelligent tutoring system (ITS), the domain expert should provide relevant 
domain knowledge to the tutor so that it will be able to guide the learner during prob-
lem solving. However, in several domains, this knowledge is not predetermined and 
should be captured or learned from expert users as well as intermediate and novice 
users. Our hypothesis is that, knowledge discovery (KD) techniques can help to build 
this domain intelligence in ITS. 

This paper proposes an approach to support new domain knowledge discovery in 
domain where it is difficult to set up a clear problem space or task models. In such a 
domain, we need to capture new procedures (correct or incorrect), new problem 
spaces and new problem-solving strategies from users’ actions. Cognitive task analy-
sis that aims at producing effective problem space or task model (to support model 
and knowledge tracing, coaching, errors detection and plan recognition) is a very time 
consuming process [8]. How can we build this complex structure by learning from us-
ers’ interactions with an ITS ? 

The approach presented in this paper is based on a combination of sequential pat-
tern recognition and association rule discovery. We show how the proposed approach 
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is used to discover new knowledge in a given domain, which then extends domain 
knowledge and serves as a problem space allowing the intelligent tutor to track learn-
ers’ actions and give relevant hints when needed. 

The paper is organized as follows. First, we will present the context of this research 
work by stating the need of KD to enhance tutoring agent knowledge. Then we will 
describe the tutoring context and show how data can be transformed for KD. We will 
also briefly describe algorithms that take this context as input, to extract significant 
sequences of patterns and relationships between them, which will constitute relevant 
partial or complete plans reusable in a given problem-solving activity to track student 
cognitive behavior. Finally, we show how this knowledge is used by a tutoring system 
(CanadarmTutor) aimed at training astronauts during procedural tasks on the ISS (In-
ternational Space Station) using a robot manipulator called CanadarmII. 

2   Problem Statement and Related Works 

Educational data mining is becoming a very important area in the Artificial Intelli-
gence in Education community [1]. Several techniques are used to extract relevant 
data, information or knowledge mainly from databases and log files of learning ses-
sions. However, most work focuses on learner or group classification, clustering or 
sorting [2, 3]. Very few studies address procedural knowledge learning and none at-
tempts to find and learn relations between actions, sequences of actions, and patterns 
among them, which may provide useful information regarding the procedure.  

Kay et al. [4] describe student group interaction data mining that seeks to identify 
significant sequences of activity. Their goal is to flag interaction sequences which in-
dicate problems and successes, so that tutors can help students recognize problematic 
situations in the early stages of the learning sessions. Their goal is not related to learn-
ing procedures nor does it aim to find links between significant interaction sequences 
or patterns. 

Very little AIED research investigated ITS automatic procedural knowledge learn-
ing [5, 6, 7]. Yet, such a capability could facilitate the development of problem spaces 
(task model, procedural knowledge, etc.) and reduce the need for domain experts. For 
example, [6] attempted to induce simple production rules using a single example and the analogy 
mechanism in ACT-R; [7] looks up a set of marked examples, trying to generalize them and gen-
erate production rules. None of them have explored sequential patterns and rules discov-
ery, which can help determine problem-solving steps and rules.   

Creating cognitive tutors usually rests on the implicit assumption that one should 
predefine a task model describing correct and incorrect solution paths. Similarly, 
CTAT (Cognitive Tutor Authoring Tool) [8] offers a set of tools that allows ITS de-
signers to specify the behavioural graph (BG) of a task, presenting correct and buggy 
paths. BGs (sometimes transformed into production rules) are used to track student 
actions. The behaviour recorder can automate the translation of user actions into a 
BG. This concept was improved by the BND (Bootstrapping Novice Data) approach 
proposed by McLaren et al. [5]. BND records the actions of many students in a log 
file which is then used to create a common BG that can be improved by designers. In-
stead of having authors build problem-solving expertise from scratch, tap into only 
their own experience or incorporate student data manually as in traditional ITS  
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development, this tool semi-automatically leverages the empirical data of actual prob-
lem-solving activities. However, the BND approach is devoid of data mining and 
learning, reducing the approach to a simple way of storing or integrating raw user so-
lutions into a structure, as in [6] and [7]. In fact, student data are incorporated into the 
BG regardless of possible links between problem steps or actions. This is very limit-
ing because the system does not try to extract useful knowledge from those solutions, 
which could enrich the problem space.  

Contrary to these approaches, we are proposing a solution to create a more general, 
flexible and powerful (albeit sometimes partial) BG-like structure by inferring asso-
ciation rules between actions or action sequences. In fact, domain users (both expert 
and novice) can provide primitive action sequences required to achieve typical tasks 
in the application domain. These sequences (good and buggy) may then be used to 
teach procedural knowledge associated with the task, thereby continually enhancing 
the system's intelligence. 

3   Modelling Procedural Knowledge in CanadarmTutor  

One of the main goals of an intelligent tutoring system is to actively provide relevant 
feedback to the student in problem-solving situations [9]. This kind of support be-
comes very difficult when an explicit representation of the training task is not avail-
able. This is the case in the ISS environment where the problem space associated with 
a given task consists of an infinite number of paths. Moreover, there is a need to  
generate new tasks on the fly without any cognitive structure. Roman Tutor brings a 
solution to these issues by using FADPRM, a path planner, as main resource for the 
tutoring feedback. 

FADPRM [10] is a flexible and efficient approach for robot path planning in con-
strained environments. In addition to the obstacles that the robot must avoid, our  
approach holds account of desired and non-desired (or dangerous) zones. This will 
make it possible to take into account the disposition of cameras on the station. Thus, 
our planner will try to bring the robot in zones offering the best possible visibility of 
the progression while trying to avoid zones with reduced visibility.  

FADPRM allows us to put in the environment different zones with arbitrary geo-
metrical forms. A degree of desirability dd, a real in [0 1] is assigned to each zone. 
The dd of a desired zone is then near 1, and the more it approaches 1, the more the 
zone is desired; the same for a non-desired zone where the dd is in [0 0.5]. On the in-
ternational Space Station, the number, the form and the placement of zones reflect the 
disposition of cameras on the station. A zone covering the field of vision of a camera 
will be assigned a high dd (near 1) and will take a shape which resembles that of a 
cone; whereas a zone that is not visible by any camera from those present on the sta-
tion will be considered as an non-desired zone with a dd near to 0 and will take an ar-
bitrary polygonal shape. 

The ISS environment is then preprocessed into a roadmap of collision-free robot 
motions in regions with highest desirability degree. More precisely, the roadmap is a 
graph such that every node n is labeled with its corresponding robot configuration n.q 
and its degree of desirability n.dd, which is the average of dds of zones overlapping 
with n.q. An edge (n,n') connecting two nodes is also assigned a dd equal to the  
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average of dd of configurations in the path-segment (n.q,n'.q). The dd of a path (i.e., a 
sequence of nodes) is an average of dd of its edges.  

Following probabilistic roadmap methods (PRM) [11], we build the roadmap by 
picking robot configurations probabilistically, with a probability that is biased by the 
density of obstacles. A path is then a sequence of collision free edges in the roadmap, 
connecting the initial and goal configurations.  

Following the Anytime Dynamic A* (AD*) approach [12], to get new paths when 
the conditions defining safe zones have dynamically changed, we can quickly re-plan 
by exploiting the previous roadmap. Moreover, paths are computed through incre-
mental improvements so that the planner can be called at anytime to provide a colli-
sion-free path and the more time it is given, the better the path optimizes moves 
through desirable zones. Therefore, our planner is a combination of the traditional 
PRM approach [11] and AD* [12] and it is flexible in that it takes into account zones 
with degrees of desirability. This explains why we called it Flexible Anytime  
Dynamic PRM (FADPRM).   

We implemented FADPRM as an extension to the Motion Planning Kit (MPK)[11] 
by changing the definition of PRM to include zones with degrees of desirability and 
changing the algorithm for searching the PRM with FADPRM. The calculation of a 
configuration’s dd and a path’s dd is a straightforward extension of collision checking 
for configurations and path segments. 

 

Fig. 1. Path planning and task demonstration using FADPRM 



 Problem-Solving Knowledge Mining From Users’ Actions in an ITS 397 

FADPRM computes a collision and soft constraints (camera views, etc.) free path 
that serves as expert solution for the tutor. FADPRM is also called when the tutor 
needs to validate student actions, to demonstrate a given task or to suggest a solution 
path. However, the resulting path is sometimes too much complex to be followed by a 
human user and far from the procedure that a human would execute in a real-world 
situation. In figure 1, FADPRM generates a path that the user should follow and can 
demonstrate it in another window. 

A good tutor in procedural tasks should fulfill at least the following important 
properties: 1) guide the user through expert users’ solution; 2) and recognize the stu-
dent profile (novice, intermediate or expert) to offer tailored help. 

Tutoring services based on FADPRM fails to satisfy these properties. We believe 
that a way to solve this problem is to base coaching on knowledge that comes from 
users themselves. In this way, the system can 1) capture data from the system usage 
by users of all possible profiles and 2) learn rules and constraints that can contribute 
to a knowledge base to support adapted tutoring services. Our hypothesis is that, tu-
toring services based on such a knowledge base will guarantee high quality assistance 
to the learners. 

The next sections of this paper present a way to implement this solution. 

4   Problem-Solving Data Representation 

In cognitive tutors, problem-solving knowledge is represented as procedures each cor-
responding to a possible path to a successful or unsuccessful solution to the problem. 
A procedure (or a plan) is a sequence of atomic and non-atomic actions. Non-atomic 
actions are actions containing at least two atomic actions. Actions are events that oc-
cur at a given time. Table 1 shows an example dataset of 8 successful plans where 
each entry corresponds to a plan’s events. From this dataset, it is possible to easily 
compute frequent sequences of actions using a minimal support (minsup) defined by 
the user. A sequence is said to be frequent if it occurs more than minsup times.  

Table 1. A data set of 8 successful plans 

PlanID Sequences of  actions 

P1 1 2 25 46 48 {9 10 11 31} 
P2 1 25 46 54 79 {10 11 25 27}  

P3 1 2 3 {9 10 11 31} 48 

P4 2 3 25 46 11 {14 15 16 48} 74  

P5 2 25 46 47 48 49 {8 9 10} 
P6 1 2 3 4 5 6 7 
P7 25 26 27 28 30 {32 33 34 35 36} 
P8 46 54 76 {10 27} {48 74} 

From the frequent sequences set, the next step consists in finding rules that connect 
them using a simple algorithm that considers sub-sequences of each sequence and de-
rives a relationship between them given their number of occurrences in the dataset.  
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5   The Proposed Framework 

The system that we propose goes through different stages or processes to learn rules. 
At each stage, we adapt and integrate specific algorithms. The main scheme is as fol-
low (process in bold): 

Log files containing users plans  Automatic coding of data  Formated Binary-
File  Sequential Patterns Finding (PrefixSpan)  Frequent patterns  Building 
of the Meta-Context  Meta-Context  Association Rules Finding (IGB)  New 
procedural task knowledge (PTK)   Integration within the Tutoring System. 

5.1   Sequential Patterns Mining  

The problem of mining sequential patterns was originally proposed by Agrawal and 

Srikant [11]. Let I = {i1, i2,…, in} be a set of items or actions. We call a subset X ⊆ I an 
itemset or an actionset and we call |X| the size of X. A sequence s = (s1, s2, … , sm) is 

an ordered list of actionsets, where si ⊆ I, i ∈ {1,…,m}. The size, m, of a sequence is 
the number of actionsets in the sequence, i.e. |s|. The length of a sequence s = (s1, s2, 
… , sm) is defined as :  l =  ∑ |si|,  for i =1 to m. 

 A sequence with length l is called an l-sequence. A sequence sa = (a1,a2,…, an) is 
contained in another sequence sb = (b1, b2,…, bm) if there exists integers 1 ≤ i1 < i2 < 

… < in ≤ m such that a1 ⊆ bi1 , a2 ⊆ b i2 , . . . , an ⊆ bin. If sequence sa is contained in 
sequence sb, then we call sa a subsequence of sb and sb a supersequence of sa.  

The relative support is defined as the percentage of sequences s ∈ D that contains 
sa. The support of sa in D is denoted by supD(sa).  

Given a support threshold minsup, a sequence sa is called a frequent sequential pat-
tern on D if supD(sa) ≥ minsup. The problem of mining sequential patterns is to find 
all frequent sequential patterns for a database D, given a support threshold minsup.  

Table 1 shows the dataset consisting of tuples in its sequence representation. Con-
sider the sequence of plan 2; the size of this sequence is 6, and the length of this se-
quence is 9. Suppose we want to find the support of the sequence sa = (1 {9 31}). 
From Table 1, we know that sa is a subsequence of the sequences for plan 1 and plan 3 
but is not a subsequence of the sequence for plan 2. Hence, the support of sa is 2 (out 
of a possible 8), or 0.25. If the user-defined minimum support value is less than 0.25, 
then sa is deemed frequent. 

A subsequence or pattern, P, is closed if there exists no superset of P with the same 
support in the database. A closed pattern induces an equivalence class of pattern shar-
ing the same closure. The minimal generators and the unique closed pattern of an 
equivalence class of actionsets share a common set of plans. The minimal generators 
are the minimal ones among the equivalent actionsets, while the closed pattern is the 
maximum one. The closed pattern is unique. 

5.2   Finding Frequent Sequential Patterns Using PrefixSpan 

Many algorithms have been proposed to efficiently mine sequential patterns or other 
time-related data [13, 14, 15, 16]. We choose here the PrefixSpan approach [15] as it is 
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one of the most promising ones for mining large sequence databases having numerous 
patterns and/or long patterns, and also because it can be extended to mine sequential 
patterns with user-specified constraints. PrefixSpan is a projection-based, sequential pat-
tern-growth approach that recursively projects a sequence database into a set of smaller 
projected databases. Sequential patterns are grown in each projected database by explor-
ing only locally frequent fragments. Table 2 shows examples of sequential patterns ex-
tracted by PrefixSpan from data in table 1 using a minimum support equals 25%. 

Links between sequential patterns can lead to the tutor goal. Thus PrefixSPan can 
find long frequent sequence patterns, and those patterns will be linked by generating 
associations among them. In our case, we are interested by minimal and non redun-
dant association rules, also called generic bases. 

Table 2. Examples of sequential patterns extracted by PrefixSpan with their associated labels 

Sequential patterns Sequence patterns’ labels 
1 25  46  48 S1 

1 25 46 {10 11} S2 
1 {9 10 31} S6 
1 {9 11 31} S7 

1 {9 10 11 31} S8 
1 46 {10 11} S13 

Among previous studies on mining of generic bases, we choose IGB [17] as it effi-
ciently extracts more compact generic bases without information loss, i.e. all associa-
tion rules can be derived from these generic bases with their exact support. 

5.3   Extracting Generic Rules Between Patterns Using IGB 

IGB [17] is a new informative generic basis. It has a valid and complete axiomatic 
system allowing the derivation of all the association rules. Rules of IGB are correla-
tions between minimal premise and maximal conclusion (in term of items number). 
Indeed, it was shown that this kind of rules is the most general (i.e., conveying the 
maximum of information). The premise of some generic rules of IGB can be empty 
such that they are two types of generic rules: (1). factual rules having an empty prem-
ise; and (2). implicative rules having a non empty premise. 

IGB basis is generated by a dedicated algorithm which takes as input the meta-
context of initial plans, and two thresholds which are the minimum support, minsup 
(already defined in PrefixSpan), and the minimum confidence, minconf. The meta-
context of initial plans (see example in Table 3) is the set of plans redefined with the 
frequent sequential patterns obtained with PrefixSpan.  

IGB algorithm checks for each non empty closed pattern, P, if its support is greater 
or equal to minconf. If it is the case, then the generic rule Ø  P is added to IGB 
base. Else, it iterates on all frequent closed actionsets P0 subsumed by P. For those 
having support at least equal to support(P)/minconf, the algorithm iterates on the list 
of minimal generators associated to P0. During this iteration, we look for the smallest 
minimal generator gs, such that there does not exist a generator g0 subsumed by gs 
which is already inserted in the list L of smallest premises. Then, IGB algorithm  
iterates on all elements of the list L in order to generate rules of IGB which have the 
following form: gs  (P – gs). 
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Table 3. Part of the crisp meta-context of frequent sequences built from dataset in table1 

PlanID Frequent sequential patterns 

P1 S1 S2 S4 S5 S6 S7 S8 S9 S10 S95 S97 S98 S113 S116 S118 
P2 S1 S5 S6 S7 S9 S98 
P3 S1 S2 S3 S4 S5 S6 S8 S10 S95 S97 S98 S113 S116 S118 
P4 S2 S3 S6 S7 S9 S10 
P5 S2 S4 S5 S7 S9 S10 S95 
P6 S1 S2 S3 
P7 S7 
P8 S5 S9 S10 

By dividing the sub-sequence occurrence by the plans’ occurrence, we obtain the 
relative support associated to the sub-sequence. Let consider a minsup of 2 (25%), 
meaning that a valid sequence should occur in at least 2 input-plans, we can obtain the 
meta-context which part is shown in table 3. Each sub-sequence can appear in a plan 
with a certain confidence which is its relative support (in table 3, we consider a crisp 
context where dichotomic values (0 or 1) are assigned when a subsequence appears or 
not in a plan). Using this meta-context as input, IGB computes a set of generic meta-
rules, part of which is shown in table 4. These meta-rules combined with frequent se-
quential patterns will constitute the knowledge that will be used by the tutor to guide 
students and domain users to explore and learn the procedural task. 

Table 4. Examples of generic meta-rules extracted by IGB 

Meta-rules  Support   Confidence Expanded meta-rules 
S10 ===> S9  4   0.8 … 
S9 ===> S7  4   0.8 1 {10 31} ===>  1 {9 11 31} 
S9 ===> S5  4   0.8 … 
S5 ===> S10  4 0.8 … 

6   How the Learned Knowledge Base Is Used for Tutoring 
Services? 

As said before, tutoring systems should provide useful tutoring services to assist the 
learner. These services include coaching, assisting, guiding, helping or tracking the stu-
dent during problem-solving situations. To offer these services, a tutoring system needs 
some knowledge related to the context. The knowledge base namely procedural task 
knowledge (PTK) obtained from the previous knowledge mining process serves to that 
end. The next paragraphs present some examples of services that can be supported. 

Assisting the User to Explore Possible Solutions of a Given Problem. Domain ex-
pert users can explore, validate or annotate the PTK. The validation can consist in  
removing all meta-rules with a low confidence, meaning that those rules can not sig-
nificantly contribute to help the student. Annotation consists in connecting some use-
ful information to meta-rules lattice depicting semantic steps of the problem as well as  
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hints or skills associated to a given step. A meta-rule lattice annotated in this way is 
equivalent to [8]’s BN or Sherlock’s effective problem space (EPS), except that EPS 
and BN are explicitly built from scratch by domain experts. 

For student users, exploring PTK will help them learn about possible ways of solv-
ing problem. They can be assisted in this exploration using an interactive dialog with 
the system which can prompt them on their goals and helps them go through the rules 
in order to achieve these goals. This kind of service can be used when the tutoring 
system wants to prepare students before involving them in real problem-solving  
situation.  

Tracking the Learner Actions to Recognize the Plan S/He is Following. Plan rec-
ognition is very important in tutoring systems. PTK is a great resource to this process. 
Each student’s action can be tracked by searching the space defined by meta-rules lat-
tice so that we can see the path being followed. For this service, partitioning the space 
in terms of equivalent classes corresponding to maximal sequences as proposed in 
[14] can make plan recognition (and exploration) easier. In fact, when it is recognized 
the current plan is in a class, all other classes are pruned so that the exploration will 
continue only in a single class.  

Guiding Learners. When solving a problem, an ITS should be able to help the stu-
dent. A classic situation is when the student asks the tutor what to do next from the 
actual state. PTK can help the tutoring agent to produce the next most probable ac-
tions that the student should execute and prompt him on that, taking into account un-
certainty related to rules’ confidence. An example of a dialog can be as follow: 

…. 
Student : What should I do now ? 
Tutor : Oh! I don’t quite know but I think you should try action B. 
Student : Why ? 
Tutor : Well, in 75% of the cases, people who tried that action achieved the final goal ! 
Student : Ok! Are there any other possibilities? 
... 

7   Results and Discussion 

We have set up two scenarios consisting each in moving the load to one of the two 
cubes (figure 2a). A total of 15 users (a mix of novices, intermediates and experts) 
have been invited to execute these scenarios using the CanadarmII robot simulator. A 
total of 119 primitive actions have been identified. Figure 2b shows part of an exam-
ple log file from a user’s execution of the first scenario. We obtain a database with 45 
entries each corresponding to a given usage of the system. A value indicating the fail-
ure or success of the plan has been added at the end of each entry. 

The framework presented in section 5 was applied. A unique number was assigned 
to each action. After coding each entry of the traces database using PrefixSpan data 
representation, we obtained a binary file containing plans’ data for the two scenarios. 
This file was sent as input to the rest of the process.  
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Fig. 2. (a) Environment setup for the two               (b) An entry of the plans’ database 
                 experimental scenarios  

The Results. After executing PrefixSpan, the first stage of the experiment consisting 
in finding sequential patterns from the input data, we obtained a total of 76 significant 
patterns (with a support greater that .5). At the second stage, we created a binary con-
text where each row represents a plan data and each column stands for a set of pat-
terns. The goal at this stage was to mine association rules between sequential patterns. 
Using IGB approach, we obtained a PTK of 37 significant meta-rules. These rules 
were then coded and integrated in a new version of CanadarmTutor that uses this 
knowledge base to support tutoring services. An empirical test with this version has 
been conducted with the same users of the system’s version relying on the FADPRM. 
They have been asked to execute the two scenarios. We found that, the system behav-
ior in terms of guiding the user was significantly improved compared to the behavior 
observed in the version relying on the path planner. The system can now recommend 
good and easy-to-follow actions sequences. The system can also recognize users’ 
plans and anticipate failures or successes, thus proactively help them at the earlier 
stage. Using the learned knowledge base, the system can also infer user profiles by 
detecting (analyzing) the path they follow. The PTK produced by our framework is 
sometimes too large and contains non useful rules. However, this is not harmful for 
the tutor behavior but it may slow the performance as the system need to go through 
this huge knowledge base each time the user executes an action. We are now working 
to improve the quality of the PTK. We are also looking for a way of managing unsuc-
cessful plans data. In fact in the actual version of the implemented framework, we do 
not consider plans that fail. We should find a way to integrate these data. We believe 
that this integration may lead to a more powerful behavior of the tutoring agent in the 
sense that it can easily identify sequence patterns that lead to failure or success, hence 
better guiding the learner. 

8   Conclusion 

In this paper, we proposed a KD framework that combines sequential pattern mining 
and association rules discovery techniques. We showed how the proposed framework 
can contribute to enhance an intelligent tutoring system’s knowledge in procedural 

… 
EnterCorridor(CouloirZoneCameraInitiale) 
{SelectCamera(Monitor1,CP8),SelectCamera(Monitor2,CP10),    
   SelectCamera(Monitor3,CP9)} 
SelectJoint(WE) 
bigMove(WE,decrease) 
LeaveCorridor(CouloirZoneCameraInitiale) 
smallMove(WE,decrease) 
SelectJoint(SP) 
bigMove(SP,decrease) 
SelectCamera(Monitor1,CP2) 
smallMove(SP,decrease) 
EnterCorridor(CouloirZoneCameraInitialeBasDroitePresqueTotale) 
mediumMove(SP,decrease) 
LeaveCorridor(CouloirZoneCameraInitialeBasDroitePresqueTotale) 

smallMove(SP,decrease) 
… 
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domain. We used the framework to build a meta-knowledge base of plans from users’ 
traces in CanadarmTutor. The resulting knowledge base enables CanadarmTutor to 
better help the learner. For future works, we plan to find some ways of filtering the 
resulting meta-rules and integrating unsuccessful paths. We will also carry out further 
tests to clearly measure the benefit of the approach in terms of tutoring assistance  
services. 
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Abstract. The point location (neighborhood search) is a significant
problem in several fields like databases and data mining. Neighborhood
graphs are interesting representations of this problem in a multidimen-
sional space. However, several problems related to neighborhood graphs
are under research and require detailed work to solve them. These prob-
lems are mainly related to their high construction costs and to their
updating difficulties. In this article, we deal with the point location prob-
lem by considering neighborhood graphs optimization. We propose and
compare two strategies able to quickly build and update these structures.

1 Introduction

The point location problem1 is a key question in the automatic multidimen-
sional data processing. Indeed, lots of algorithms and techniques in different
domains are based on this concept. We can quote for example k-means [9], Ko-
honen maps [12], and k-NN in data mining or the majority of the databases
indexing techniques [3]. This gives evidence to the interest and the importance
of the neighborhood search concept.

The point location problem can be stated as follows: having a set of data V
with n items in a multidimensional space Rd, the problem is then to find a way
to pre-process the data so that if we have a new query item q, we’ll be able to
find its neighbors within as short as possible time. Among the possible represen-
tations of this problem in a multidimensional space, neighborhood graphs are
very interesting and very popular. Their popularity is due to the fact that the
neighborhood is determined by coherent functions which reflect, in some point of
view, the mechanism of the human intuition for the neighborhood determination.
We will use the following notations throughout this paper.

Let V be a set of points (vertexes) in a multidimensional space Rd. A graph
G(V , E) is composed of a set of vertexes V and a set of edges E. Then, for
1 The ”point location problem” concept is equivalent to ”neighborhood search” in the

rest of this article.
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any graph we can associate a binary relation upon V , in which two points
(v1, v2) ∈ V 2 are in binary relation if and only if the couple (v1, v2) ∈ E.
In an other manner, (v1, v2) are in binary relation (R) if and only if they are
directly connected in the graph G. From that, the neighborhood N(v1) of a
vertex v ∈ V in the graph G can be considered as a set of vertexes which are
directly connected to v.

In this paper, we deal with the point location in a multidimensional space, and
this, in order to find an efficient way for optimizing the construction task of the
neighborhood graphs. We propose two strategies based on an intelligent manner
for locally updating the neighborhood of each point. The first construction strat-
egy, a forward strategy, starts from an empty set of points and adds one point (as
well as its corresponding connexions) at each iteration to the ”graph set”. The
second strategy, backward strategy, as for it starts from an already built structure
(We consider in our case a Delaunay triangulation [10]) and drops the connex-
ions one by one until obtaining the desired neighborhood graph. This second
strategy exploits some inclusion relations between the considered structures.

The rest of this article is organized as follows: Section 2 presents a state
of art on the point location problem, on neighborhood graphs as well as the
problematic. Our proposition, based on the search of an optimal hyper sphere,
is presented in Section 3. Next, we present the performed experiments and the
obtained results. Finally, we conclude and give some future works in Section 5.

2 State of the Art

As pointed in the introduction, the objective of the point location is to find a
way to pre-process the data so that if we have a new query item, we’ll be able to
find its neighbors within as short as possible time. One possible way to represent
such data structure is a neighborhood graph. Neighborhood graphs, or proximity
graphs, are geometrical structures which use the concept of neighborhood to
determine the closest points to another. For that, they are based on the distance
measures [14].

Several possibilities were proposed for building neighborhood graphs. Among
them we can quote the Delaunay triangulation [10], the relative neighborhood
graphs [13], the Gabriel graph [2]. For illustration, we describe hereafter the
relative neighborhood graph (RNG).

In a relative neighborhood graph GRNG(V , E), two points (v1, v2) ∈ V 2 are
neighbors if they check the relative neighborhood property defined as follows:
Let H(v1, v2) be the hyper-sphere of radius d (v1, v2) and centered on v1, and let
H(v2, v1) be the hyper-sphere of radius d(v2, v1) and centered on v2. Note that
d (v1, v2) and d (v2, v1) are the dissimilarity measures between the two points v1

and v2, and d (v1, v2) = d (v2, v1).
So, v1 and v2 are neighbors if and only if the lune A(v1, v2) formed by the

intersection of the two hyper-spheres H(v1, v2) and H(v2, v1) is empty [13].
Formally:

A(v1, v2) =H(v1, v2)∩H(v2, v1) Then (v1, v2) ∈ E iff A(v1, v2)∩ V = φ
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Fig. 1. An illustration of a relative neighborhood graph in a bi-dimensional space. The
relative neighborhood property is the empty of the intersection of two hyper-spheres.

Fig. 1 illustrates the relative neighborhood graph in a bi-dimensional space.
Several algorithms for neighborhood graphs construction were proposed. Since

we are mainly interested in RNG in this paper, the algorithms which we quote
briefly hereafter relate to the construction of RNG. Other algorithms for Delau-
nay triangulation are discussed in detail in [15].

One of the common approaches to the various neighborhood graphs construc-
tion algorithms is the use of the refinement techniques. In this approach, the
graph is built by steps. Each graph is built starting from the previous graph,
containing all connections, by eliminating some edges which do not check the
neighborhood property of the graph to be built. Pruning (edges elimination) is
generally done by taking into account the construction function of the graph or
through geometrical properties.

The construction principle of the neighborhood graphs consists in seeking for
each point if the other points in the space are in its proximity. The cost of
this operation is with a complexity of O

(
n3

)
(n is the number of points in the

space). Toussaint [14] proposed an algorithm of complexity O
(
n2

)
. He deduces

the RNG starting from a Delaunay triangulation [10]. Using the Octant neigh-
bors, Katajainen [7] also proposed an algorithm with the same complexity. Smith
[11] proposed an algorithm of complexity O

(
n23/12

)
which is less significant than

the standard complexity (O
(
n3

)
).

These last algorithms have a low complexity comparing to the standard one
(< O

(
n3

)
), so they are focused on a fast way for building the graph. Unfortu-

nately, these algorithms do not support the updating task. Indeed, if one want
to insert a new point in the graph, the algorithm have to rebuild all the graph.
This can be interesting in a learning task with data samples, generally with few
items, to generate rules. For an indexing task, these algorithms are not suitable.

3 Optimizations on Neighborhood Graphs

Lots of efforts have been carried out in the domain of computational geometry to
optimize topological models. The objective is mainly to reduce the computational
complexity of these structures. We aim to propose efficient strategies able to
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build incrementally and quickly these structures without rebuilding the whole
structure at each modification in the graph. In what follows, we introduce the
core method2 of all the incremental construction strategies discussed in this
article.

3.1 Local Insertion in a Neighborhood Graph

The optimization of the neighborhood graphs construction passes by the location
of the inserted/removed point as well as all the affected edges (update propaga-
tion). To achieve this, we proceed in two main stages : initially, we determine an
optimal space area (a hyper sphere in our case) which can contain a maximum
number of potentially closest points to the query point (the point to locate in
the multidimensional space). The second stage is performed in order to calculate
the updating propagation and effectively applying the modifications. Thus, this
last stage causes the effective updating of the neighborhood relations between
the concerned points.

The main stage in this method is the search area determination. This can
be considered as a question of determining a hyper sphere which maximizes the
chance of containing the neighbors of the query item while minimizing the total
number of items that it contains.

With regard to the first step (determine the radius of an hyper sphere SR
which maximizes the possibility of containing the neighbors of the inserted
point), this radius is the radius of the sphere including all neighbors of the first
nearest neighbor of the query item. We consider this radius as the one formed
by the sum of the distances between the inserted point and its nearest neighbor,
and the one between the nearest neighbor and its further neighbor. That is, let
consider q to be the query point and v1 its nearest neighbor with a distance d1.
Let consider v2 to be the furthest neighbor of v1 with a distance d2. The radius
r of the hyper sphere SR can be then expressed by the following formula:

r = (d1 + d2)(1 + ε)

ε is a relaxation parameter and varies from 0 to 1, it can be initialized ac-
cording to the state of the data (their dispersion for example) or by the domain
knowledge. In what concern us, we have fixed experimentally this parameter to
0.1.

The complexity of the insertion is very low and meets perfectly our starting
aims (locating a point in an as short as possible time). It is expressed by:

O(2n + n′3)

With n(=|V |) representing the number of items in the database, and n’ repre-
senting the number of items in the hyper sphere (<< n).

This complexity includes the two stages described previously, namely, the
search of the radius of the hyper sphere and the recovering of the concerned
points which are in it which corresponds to the term O (2n). The second term
2 A preliminary and basic version of this method has been proposed in [5].
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corresponds to the necessary time for effectively updating the neighborhood re-
lations between the points within the hyper sphere which is very weak taking
into account the number of candidates point turned over beforehand3. This com-
plexity constitutes the maximum complexity and can be optimized by several
ways. The most obvious way is to use a fast nearest neighbor algorithm. We call
this method LocalInsert(G(V , E), vi, ε) which returns a graph by inserting vi
into G(V , E) with parameter ε.

3.2 Local Deletion in a Neighborhood Graph

Removing an item from an existing structure is an important task especially
when we deal with large databases. Indeed, if we consider an information retrieval
system where users interact on line with the indexing structure, the system must
be able to not only insert quickly a new item but also remove another within as
short as possible time.

In our case, removing an item from an existing graph can be performed in a
fast way than the insertion. The principle of this method is rather similar to the
insertion method but we can note two main differences. The first one is the fact
that this algorithm returns the updated graph with a set of points fewer than
the initial one. The second difference (the most important one) is the fact that
for the insertion we need to locate the inserted point according to its nearest
neighbor, so we need to calculate its first nearest neighbor among the whole
dataset which needs O(n) operations. This operation is omitted from deletion
since we know already the necessary information. Thus, the complexity of this
task can be expressed by the following formula.

O(n + n′3)

With n(=|V |) representing the number of items in the database, and n’ repre-
senting the number of items in the hyper sphere (<< n). We call this method
LocalDelete(G(V , E), vi, ε) which returns a graph by deleting vi from G(V , E)
with parameter ε. Figure 2 illustrates the principle of the proposed methods.

Fig. 2. Illustration of the first step of the local updating method(Recovering of the
search Area)

3 The number of candidate points does not exceed a hundred in the worst cases in the
performed experiments.
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3.3 Incremental Neighborhood Graph Construction

As stated in the previous sections, for the incremental construction of neighbor-
hood graphs we propose two different strategies: Forward and Backward. We
detail hereafter these two strategies.

1) Forward strategy. The objective here is to build the graph (Relative neigh-
borhood graph or Gabriel graph) starting from the set of points and an empty
set of edges. That is, the question is how to proceed to build the complete4 graph
quickly using only these information?

To achieve that, the principle of the method is an extension of the local up-
dating method. Indeed, since the proposed method is able to update an existing
structure without information loss, it is then easy to generalize the method for
accelerating the construction task. So, we start from a graph initialized with
two points and one edge, we add one point at each iteration to the graph and
we apply the locally updating method on only the set of points composing the
graph5 for locating the neighborhood propagation and updating it.

Algorithm 1 illustrates the different steps of the forward incremental construc-
tion strategy.

Algorithm 1. Forward Strategy
Require: V ;
Require: ε;
1: if |V | < 2 then
2: return G(V , φ);
3: else
4: v1 = Get an item from V ;
5: v2 = Get an item from V ; //v1 �= v2

6: V = V \{v1, v2}
7: V ′ = {v1, v2}
8: E = {(v1, v2)};
9: for i = 3 to n do

10: vi = Get an item from V ;
11: V = V \{vi}
12: G(V ′ , E) = LocalInsert(G(V ′ , E), vi, ε);
13: end for
14: end if
15: return G(V ′ , E);

The algorithm requires only two elements: A set of points V containing all
the items of the database for which a neighborhood graph will be built, and a
4 With complete graph we mean a graph which has exactly the same neighborhood

than the one we can build with the standard algorithm. In other words, an exact
graph not an approximation of the graph.

5 At this stage, we have two points subsets, the subset containing the points of the
graph and the subset containing the remaining points in V . When we add a point
to the graph, V decreases and the set of points in the graph increases.
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relaxation parameter which is used to set up the enlargement importance of the
search area according to which the neighborhood updating is propagated.

Note that we suppose here that the neighborhood property (relative neigh-
borhood in this case) is already chosen. So, we start by checking the items count
within the provided dataset (Line 1). If the items count is less than two, the
algorithm stops. Otherwise we initialize the set of edges with an edge connecting
two points randomly taken from V (Lines 4 to 7). After that, we apply a local
insertion for all the remaining items in the original dataset V until it becomes
empty. This causes an increasing in the size of the graph as well as in the edges
set (Lines 8 to 12). At the end, the algorithm return a graph with the original
set of point and a complete neighborhood according to the desired neighborhood
property. Note that at the beginning, the algorithm has approximately the same
behavior like the standard one. Indeed, in the first iterations, the radius of the
hyper sphere is large and thus contains all the used items but as the number of
used items is large, the process becomes more interesting and more quickly.

In term of complexity, it is very low and very interesting. it’s expressed by
the following formula:

O(
∑n

i=3(2ni + n′3i ))

With ni representing the number of concerned items at the iteration i, and n′i
representing the number of items in the hyper sphere (<< ni).

2) Backward strategy. The objective here is to propose a method able to build
(or to deduce) a neighborhood graph (relative neighborhood or Gabriel graph)
from an existing structure. To achieve that, let us introduce some preliminaries
about two geometrical structures as well as the used properties for deducing
the concerned neighborhood graphs (Relative neighborhood graph and Gabriel
graph) from a more general structure.

– Delaunay Triangulation (DT): Given a set of point V , the DT is a partic-
ular triangulation, built on V which satisfies the empty circum-circle prop-
erty:The circum-circle (sphere in R3 or Hyper-sphere in Rd) of each simplicial
cell in the triangulation does not contain any input point v ∈ V [1].

– Beta-Skeleton: This type of graph was proposed by Kirkpatrick and Radke
[8][6]. It defines a general shape of neighborhood graphs. The neighborhood
graph Uv1,v2(β) for each value of β given (1 ≤ β ≤ ∞) is defined like the
intersection of two spheres in the following form:

Uv1,v2 = B((1 − β
2 )v1 + β

2 v2,
β
2 δ(v1, v2)) ∩ ((1 − β

2 )v2 + β
2 v1,

β
2 δ(v1, v2))

So, the β-graph of the set of point V is:

Uv1,v2 ∩ V = φ

Note that this structure has the following inclusion property:

Gβ1 ⊂ Gβ2 ⊂ Gβ3 ⊂ ... ⊂ Gβn with β1 > β2 > β3 > ... > βn
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The relative neighborhood graph and the Gabriel graph are a particular struc-
tures of the β-Skeleton. Indeed, a Relative neighborhood graph is a β-graph with
β = 2 and a Gabriel graph is a β-graph with β = 1. In what concern us, the
inclusion properties between the concerned structures are: the neighborhood in
the relative neighborhood graph is included in the neighborhood of the Gabriel
graph and the neighborhood of the Gabriel graph is included in the neighborhood
of the Delaunay Triangulation. This is summarized by the following formula:

RNG(V ) ⊂ GG(V ) ⊂ DT (V )

So, for our backward construction strategy we consider the most general neigh-
borhood structure6 which is the Delaunay triangulation. The main reason is that
the computational complexity of this structure is O(n log n) [15].

That is, the backward strategy uses a deletion function to pass from a more
general structure to a particular substructure. Algorithm 2 summarizes the dif-
ferent steps of this approach.

Algorithm 2. Backward Strategy
Require: DT (V , E);
Require: ε;
1: for i = 1 to n do
2: vi = Get an item from V ;
3: DT (V , E) = LocalDelete(DT (V , E), vi, ε);
4: end for
5: G(V , E) = DT (V , E);
6: return G(V , E);

The algorithm requires two parameters: A Delaunay Triangulation, composed
by a set of point V and a set of edges E, and a relaxation parameter ε. The
algorithm processes all the points composing V by applying a locally deletion
function. So, for each considered point, we calculate the possible propagation of
the neighborhood and we apply a neighborhood property in the recovered area.
Note here that when we apply the LocalDelete function we don’t remove the
concerned items from the dataset but we remove only the edges which do not
satisfy the considered neighborhood property.7

The complexity of the algorithm can be expressed by the following formula:

O(
∑n

i=3(ni + n′3))

With ni representing the number of concerned items at the iteration i, and n’
representing the number of items in the hyper sphere (<< ni).

6 We are concerned into three used structures in this paper (RNG, GG, DT).
7 A function for removing an edge has the same behavior that the one for removing

a point; it is easy to modify LocalDelete and replace the deletion of a point by a
deletion of an edge.
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4 Experiments and Results

4.1 Validity of the Obtained Results

The validity and the utility of the local updating method in its basic version has
been shown in [5] and in [4] in its current version. The objective here is to show
the validity and the utility of the obtained results for the generalization of the
method (the incremental construction of the graph) as well as for the deletion
task. So, the final objective is to show that the graph built using our algorithm
is exactly the same as the one we can build using the classical algorithm.

To achieve that, we have made experiments to check the structural differences
between a classical graph and a graph built with our algorithm. The two graphs
are built and compared on the same dataset at each iteration. We generated
for that different datasets with different items count and different dimensions.
Table 1 summarizes the obtained results.

Table 1. Correspondence between two graphs

Dataset Items count Dimension % corresp. G1 and G2

1 1.000 15 100%

2 1.000 25 100%

3 2.500 25 100%

4 2.500 30 100%

5 5.000 45 100%

6 5.000 60 100%

To calculate the correspondence degree between two graphs, each node in the
graph is identified by a unique identifier. So, for each node in the first graph we
check if all its neighbors are also the neighbors of the same node in the second
graph and if the two nodes have the same nodes count. The obtained results are
satisfactory and show a complete correspondence between the two graphs.

4.2 Scalability of the Method

The execution times of the locally updating method were evaluated in [5]. Here,
we are interested in the evaluation of the scalability of the method since modern
databases have the property to be large. So, we consider here the size of the
database and the objective is to show that the response times are not very
variable when the size of the database grows.

The evaluation protocol is as follows: we generate an artificial dataset with
a dimension d = 40. We start with an initial dataset with 5.000 items. We
increase the number of items with 2.500 items until reaching 40.000 items. In each
iteration, 10 items are taken arbitrary, inserted in the graph and the response
times are recovered. The graphic of Figure 3 illustrates the obtained results
in each iteration by representing the maximum of the execution time of each
experience.
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Fig. 3. Illustration of the scalability of the proposed method

Figure 3 shows the times evolution (maximum) according to a variable number
of items. Times are expressed in milliseconds. The results are very interesting.
Indeed, increasing the volume of the database does not affect considerably the
execution times. We can particularly note that the execution times always re-
mains in values expressed in milliseconds. In addition let us point that we did not
implement any optimization of the k −NN algorithm. Indeed, more optimized
implementation of this algorithm can improve the results considerably. So, with
these results, we can appreciate the proposed method, not only for the quality
of the results and the response times [5], but also for its scalability.

The results shown beforehand illustrate the interest of the locally updating
method8. In order to show the interest of the incremental construction approach
and to illustrate the benefits compared to the standard algorithm we performed
further experiments which we describe hereafter.

We generate artificial datasets with a dimension d = 50 and different items
count 5.000, 10.000, 20.000, 40.000, 50.000, 75.000. We apply the standard algo-
rithm on the datasets to build a relative neighborhood graph and we recover the
execution times. After that we use our incremental algorithm9 to build the same
graph on the same datasets. The obtained results10 are illustrated on Figure 4.

The graphic shows the evolution of the construction time of two methods: The
standard method (dashed line corresponding to the left axis) and our method
(doted line corresponding to right axis). At the beginning, the two methods have
almost the same execution time (Until 10.000 items), but after that, the gain
obtained using our algorithm becomes very important.

These results confirm the interest of the proposed approach. Indeed, in addition
to the scalability of the updating tasks (insert and delete an item in the graph),

8 These results can illustrate also the deleting method since it is also based on the
same principle like the insertion method.

9 We tested here the Forward approach.
10 The represented times on the graphic are a theoretical results, the real results have

exactly the same behavior like these ones. We prefer to represent the theoretical
results because the implementation of the incremental algorithm is not yet optimized.



Incremental Neighborhood Graphs Construction 415

Fig. 4. A comparison of execution times between the standard method and the opti-
mized method

the proposed approach is able to build a graph using large databases within rea-
sonnable time. This point is very important because of the largeness of the today
databases.

5 Conclusion and Future Work

The direct use of neighborhood graphs is not suitable, because their complex-
ity does not make it reasonable to build them starting from great databases.
We proposed in this article an effective graph based index structure and this
by introducing and optimizing all the necessary operations of an index (build
the index, insert an item into the index, delete an item from the index, and
quickly retrieve the index). So, we discussed two optimization strategies: For-
ward and Backward strategies. These strategies are efficient for improving the
performances of the usage of these structures especially in a retrieval context
and in a situation where the databases are large.

As a future work, we plan to fix the problem of the relaxation parameter
determination by setting up an automatic determination function. This can be
done by taking into account some statistical indicators on the data like the
dispersion. Also, we plan to optimize more the computational complexity of the
basic methods (insertion and deletion) for reducing the database scans.
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Abstract. In this paper, we present an approach for recovering a topological map
of the environment using only detection events from a deployed sensor network.
Unlike other solutions to this problem, our technique operates on timestamp free
observational data; i.e. no timing information is exploited by our algorithm except
the ordering. We first give a theoretical analysis of this version of the problem,
and then we show that by considering a sliding window over the observations,
the problem can be re-formulated as a version of set-covering. We present two
heuristics based on this set-covering formulation and evaluate them with numer-
ical simulations. The experiments demonstrate that promising results can be ob-
tained using a greedy algorithm.

Keywords: sensor networks, topology inference, set-covering, mapping.

1 Introduction

In this paper we consider the problem of learning the topology of a network of sensors
through the exploitation of motion in the environment. We assume that an individual
sensor is capable of detecting the passage of an agent through its local region, but is un-
able to generate a reliable signature. Our approach uses the combined observational data
returned from our network to infer the topological relationships between the sensors.

We will illustrate the problem with a simplified example. Figure 1(a) depicts a sen-
sor network distributed within an indoor environment. Let us assume that the network
has been deployed for some purpose, such as surveillance, and requires knowledge of
the inter-node connectivity in order to fulfill its function. During some initial calibration
period the network collects observations of agents passing by each sensor (Figure 1(b)).
The problem we are trying to solve is how to use these collected observations to con-
struct the topological description of the network shown in Figure 1(c). This type of
network might arise if wireless cameras were deployed in a workplace environment.

In this work, we assume not only that the agents moving though the environment
are indistinguishable, but that there are no temporal clues that can be used to aid the
inference process. In other words, the detection events are correctly ordered but are not
time-stamped. Therefore, when our inference algorithm is employed, the time-stamp
data can be discarded or simply not collected in the first place. In order to exploit timing
information in the observational sequence some model of agent motion in the environ-
ment needs to be either constructed based on prior assumptions, or learned from the
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Fig. 1. An example of a sensor network which we wish to calibrate. a) The original ad-hoc de-
ployment. b) An Example of agent motion exploited by the calibration process. c) The desired
topological connectivity map of the network.

data. Our technique, however, allows the correct edges in the graph to be inferred while
avoiding the prior domain knowledge or algorithmic complications involved in con-
structing an adequately accurate motion model. By employing a sliding window over
the observations, we will show that the problem can be re-formulated as a version of
the well understood set-covering problem and accurate results can be obtained without
timing information.

The ability of a surveillance or monitoring system to automatically determine the
connectivity parameters describing its environment is useful for a number of reasons.
Although the topology information can be manually entered during installation, more
detailed parameters such as the relative connectivity strength between links are difficult
to determine, and a change in the environment or network would require re-calibration.
Once calibrated, the connectivity information could aid in conventional target track-
ing and additional monitoring activities. For example, by reconstructing trajectories, a
vehicle monitoring network distributed about a city could help make decisions about
road improvements which might best alleviate congestion. In addition, the topological
information could be combined with relative localization techniques [1] [2] [3] [4] to
recover a more complete representation of the environment.

2 Background

Although the topological mapping problem has been well explored in mobile robotics
[5] [6] [7] [8], most sensor network related investigations have been more recent [9]
[10] [11] [12]. The outcome is generally a graph where vertices represent embedded
sensors in the region and edges indicate navigability.

Ellis, Markis, and Black [9] approached the topology inference problem in the con-
text of camera-based sensing. Their technique exploits temporal correlations in obser-
vations of agents’ movements. They outlined an approach in which they first identified
entrance and exit points in camera fields of view to generate a graph from video data.
They then used a thresholding technique to look for peaks in the temporal distribution
of travel times between entrance-exit pairs; a clear peak suggesting that the cameras
are linked. This approach requires a large number of observations, but does not rely on
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object correlation across specific cameras. Thus, the method can be used to efficiently
produce an approximate network connectivity graph.

Marinakis and Dudek [11] [12] have recently presented a solution to the topological
inference problem that is based on a stochastic version of the Expectation Maximiza-
tion algorithm. Their approach uses only detection events from the deployed sensors and
is based on reconstructing plausible agents trajectories. Results presented from simula-
tions and experimental data suggest that their technique produces accurate results under
a variety of conditions and compares well to other approaches.

When the observation are information-poor, topology inference through trajectory
reconstruction has much in common with the data association problem in multi-object
tracking and similar statistical techniques are employed. For example, in [13], event
detections alone were used for the tracking of multiple targets using Markov Chain
Monte Carlo (MCMC). Similarly, [14] approached a traffic monitoring problem using
limited sensor data observations through a stochastic sampling approach.

A key observation regarding all of the approaches mentioned above is that their per-
formance will suffer if temporal information is removed from the observations. Ellis,
Markis, and Black rely explicitly on this temporal data, while the approaches employ-
ing probabilistic frameworks [11] [13] [14] exploit the delay information to aid in the
data association problem.

In the remainder of this paper, we consider the problem of solving the topology
inference problem, relying only on the ordering of the timing information in the obser-
vational data. We discuss theoretical aspects of this version of the problem and present
an algorithm for its solution. It is our hope that concepts presented here can be incorpo-
rated into more general techniques for topology inference, or used in their own right.

3 Problem Definition

We formulate the problem of learning the network topology as the inference of a di-
rected graph G = (V, E), where the vertices V = vi represent the locations where
sensors are deployed, and the edges E = ei,j represent the connectivity between them;
an edge ei,j denotes a path from the position of sensor vi to the position of sensor vj .
The sources of motion in the sensor network are modeled as some number N of agents
moving asynchronously through the graph. Each agent generates an observation every
time it visits a vertex. This corresponds to an agent passing near a particular sensor
which then detects the presence of motion in its region.

The input to the problem is an ordered list of observations O = {ot}, each of which
is identifiably generated by one of the sensors; i.e. each ot ∈ [1, V ]. The goal is to find
the correct underlying graph G explaining this observational sequence.

4 Algorithm Formulation

4.1 Smallest Graph Is Correct Answer

The key idea behind our approach is to find the smallest1 graph that successfully ex-
plains the observed data. Leaving aside for the moment the actual implementation

1 The graph with the smallest number of edges.
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details, let us consider this idea in more depth by proposing the existence of an al-
gorithm A that takes as an input the assumed number of agents N ′ in the environment
and the observational sequence and returns as an output the smallest graph consistent
with the observations.

Our algorithm A considers each of the possible trajectories that could be taken by
these N ′ agents given the observational sequence and then selects the trajectory set that
requires the smallest number of inter-vertex traversals. The algorithm then returns the
graph populated only with edges that correspond to the inter-vertex traversals required
by this chosen trajectory set.

The concept that the simplest solution explaining the data is probably the correct
solution has been used successfully in a different version of the topology inference
problem [12]. The principle, known as Occam’s razor, states, “if presented with a choice
between indifferent alternatives, then one ought to select the simplest one.” The concept
is a common theme in computer science and underlies a number of approaches in AI;
e.g. hypothesis selection in decision trees and Bayesian classifiers [15]. We will show in
the next section that under certain assumptions, we can prove that an algorithm trying
to find the smallest graph will return the correct answer.

4.2 Correctness of the Smallest Graph Assumption

In this section we present a proof that the smallest graph G consistent with the obser-
vations is the correct solution Gc given the following assumptions:

1. There are an infinite number of observations, O.
2. The motion of each of the agents is random.
3. The true number of agents in the system N is fixed and bounded by the number

assumed by the algorithm A; i.e. N <= N ′.
4. The transit time between nodes is un-bounded.
5. There are no self-referential connections in the true graph Gc; i.e. no agent may

trigger two observations by one passage through the region of a single sensor.

4.3 Proof of Smallest Graph

First, we will prove that there exist no graph smaller than Gc that can explain the ob-
served data, given the above stated assumptions. This is done by showing that it is
possible to have sequences generated by Gc that cannot be explained by this smaller
graph G′c. In other words, G′c is not consistent with the observations, and by definition
cannot be a solution.

Let us consider a graph G′c created by removing a single edge from Gc, as in
figure 2. In this case, we remove the edge AB from graph Gc. Let us now create a valid
observational sub-sequence O = ABABABAB...AB which was created in truth by
a single agent traversing back and forth on the edge AB. The only way agents in a
graph G′c could generate this observational sequence would be if some number of them
were ‘stationed’ at node X , and some number ‘stationed’ at node Z , and alternatively
one agent from X traversed the edge to A, and then one from Z traversed the edge to
B. However, if the length, |O| of the observational sub-sequence O is larger than the
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Fig. 2. Example of removing edge AB from graph Gc, (shown partially on top), to create graph
G′

c, (shown partially below)

Fig. 3. a) The correct graph Gc b) an incorrect graph

maximum possible number of agents N ′, then there will not be enough agents in G′c to
generate O. Therefore, the edge AB must be present in any consistent solution. Apply-
ing this to all the edges in Gc, we see that a solution that can explain all the transitions
must have at least all the edges in Gc. Consequently, the smallest consistent graph is
the correct graph Gc.

Note that this analysis requires that there be both an infinite number of observations
and random motion on the part of the agents in order to allow such very rare observa-
tional sequences to exist. However, this concept holds with less formality to very large
sequences of observations. It becomes less likely for a graph to successfully explain an
observation sequence while missing portions of the real graph as the number of obser-
vations increases.

4.4 Impact of Estimated Number N ≤ N ′ of Agent on Solution G

In the following sections, we will show the impact of the number N of agent used to
find a solution. More precisely, we will show that if an algorithm overestimates the
number N of agents in the system, it will still give the correct answer Gc, but not if it
underestimates it.

Lemma 1. Overestimating the number N of agents while looking for the smallest graph
results in the correct solution.

To prove this lemma, we will show that a path generated by a single agent can be spliced
between two agents using a ‘tag team’ method, and yet will still a yield a the correct
graph Gc. That way, all superflouous agents used in the algorithm can be ‘hidden’ by
splicing a valid path repeatedly.

Let us consider a true sequence of vertex traversals S generated by a single agent.
First, without loss of generality, select any vertex vsplice ∈ S as a splicing node. We
can now pair any two virtual agents together to generate this traversal sequence S in
the following way. Let one of the virtual agent be initially stationed at vsplice. When
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the other virtual agent enters this vertex it will exchange its role with the first agent,
as in a game of tag team wrestling. The other agent will now leave the vertex vsplice,
generating a sub-sequence of S until it re-enters vsplice, where again they will switch
roles.

As an example, let us consider the vertex sequence S = ABCDADCDABCBA
generated by a true agent in Gc of Figure 3(a.). We choose vsplice = C. Now the
vertex sequence S assumed to come from a single agent looks like the following:
ABcdadCDABcba where capital letters are used for the path P1 of agent one, and
small bold letters are used for the path P2 of agent two. The individual virtual sequences
P1 = ABCDAB and P2 = cdadcba are both valid sequences in the correct graph
Gc.

This analysis shows that we can assume the existence of more agents than the num-
ber that actually generated the observation sequence, and still produce paths that are
consistent with the correct graph.

Lemma 2. Underestimating the number of agents can result in an incorrect solution.

To prove this lemma, we will simply show that there exists at least one observational
sequence O such that underestimating the number of agents creates a false solution. Let
us consider again the graph depicted in figure 3(a.) and let us consider the motion of
two agents in this graph. Agent one will follow the path ABCDADC , and agent two
will follow the path db. By combining the two paths, it is possible to get the sequence
of observations: O1=ABdCDAbDC . If we assumed the existence of only one agent,
then the smallest graph that can explain the transitions O1 is displayed in figure 3(b.)
and is incorrect.

Using the above stated two lemma, we arrive at the following theorem (which holds
true given the earlier stated assumptions):

Theorem 1. If the number of assumed agents N ′ in the algorithm is equal or greater
than the true number of agents N that generated the observations, then the smallest
graph consistent with the observations will be the correct graph Gc. If the number of
assumed agent is smaller than the true number, then there are no guarantees that the
smallest graph consistent with the observations will be the correct graph Gc.

In the next section, we draw on this theoretical analysis to motivate a pragmatic
approach for topology inference.

5 The Sliding Window Approach

We now present an algorithm for estimating the smallest possible graph given an obser-
vation sequence. Our approach is based on the following lemma:

Lemma 3. In any given continuous sequence of NS > N observations, at least
(NS − N) transitions between observations correspond to edges in the correct
graph Gc.

For example, let NS = 4 and N = 3 and the recorded observational sequence be
ABCD. The possible transitions between nodes are AB, AC, AD, BC, BD and CD.
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Fig. 4. Example of generating candidate edges for each sliding window position. The window is
moved to the right from a) to d).

Since we have one more observation than the number of agents, (NS − N = 1), it
means that at least one agent must have generated more than one of the observations in
this sequence, and therefore at least one of the transitions listed above must be valid; i.e.
present in Gc. Note that the number of potential transitions generated with a sequence
of NS observations is:

NT =
(NS − 1)NS

2

Our technique is to employ a sliding window of size NS = N + 1 to consider in
turn small continuous subsequences of the entire observation sequence O. Each of these
subsequences gives rise to a list of NT = (N2+N)/2 candidate edges Li, one of which
must be present in the true solution Gc. Once the window has moved over the complete
observation sequence O, there will be K = |O|−NS lists generated. Figure 4 shows an
example of generating candidate edges using the sliding window approach. Motivated
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by Theorem 1, our approach is find the smallest graph that can explain at least one edge
in each in each of these candidate lists: L1, L2, ...LK .

This problem can be shown to be equivalent to the set-covering problem which is NP-
complete, however, several heuristics can be employed to estimate an optimal solution.
We will consider a two heuristic approaches in the next sections.

5.1 A Greedy Approach

One method of obtaining a solution to the sliding window problem posed above, is to
adopt a greedy approach. This is a standard heuristic often used with good results for
set-covering problems. In our domain, the greedy algorithm would work as follows:

1. Begin by marking all candidate lists L1, L2, ...LK unexplained and initialize a list
of edges E to be empty.

2. Find the edge e that is present in the greatest number of currently unexplained
candidate lists.

3. Remove from consideration those candidate lists which contain edge e by marking
them explained, and add e to E.

4. Repeat steps 2 to 3 until all lists are marked explained. Return the graph corre-
sponding to our list of edges E as the final solution.

5.2 A Statistical Approach

A statistical approach could also be used to determine the correct edges in Gc. The
number of times a given edge has been seen in any candidate list could be tallied up.
Those edges that occur with a frequency greater than some threshold T could then be
selected.

Let us consider a suitable value for the threshold T . If Gc corresponded to a fully
connected undirected graph, the average tally of each edge would be:

µ =
KNT

|E|
where NT is the number of candidate edges generated per window, K is the number
of candidate lists (windows), and |E| is the number of potential edges in the graph.
Replacing K with |O| −NS , NT with (N2 + N)/2, and |E| with V (V − 1), we arrive
at:

µ =
(|O| −NS)(NS − 1)NS

V (V − 1)

Since we expect Gc to contain less edges than its fully connected counterpart, T = µ
can be expected to be a suitable threshold.

6 Experiments

6.1 Simulator

We have examined the sliding window approach with a number of experiments conducted
in simulation. We have constructed a simulation tool that takes as input a graph and the
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(a) (b)

Fig. 5. Example of graphs created using the Delaunay triangulation technique: a) 10 node graph
with 12 edges, b) 10 node graph with 20 edges
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Fig. 6. Mean Hamming Error obtained from the two techniques for various numbers of obser-
vations averaged averaged over 50 randomly produced graphs. (Error bars show one standard
deviation). Results obtained from 10 node graphs with: a) 12 edges b) 20 edges.

number of agents in the environment and outputs a list of observations generated by ran-
domly walking the agents through the environment. A number of experiments were run
using this simulator on randomly generated planar, connected graphs (Figure 5). The
graphs were produced by selecting a connected sub-graph of the Delaunay triangulation
of a set of randomly distributed points. For each experiment, the results were obtained
by considering the Hamming error between the true and inferred graph.

6.2 Results

The greedy approach was capable of producing accurate results in moderately sized
graphs with a reasonable number of agents, given an adequate number of observations.
Although not as accurate on average as the greedy approach, the statistical approach was
also capable of producing a solution near the true answer. Figure 6 compares the accu-
racy of theses two approaches over 50 randomly produced graphs of 10 nodes and two
different edge densities. Note that the accuracy of both approaches tended to increase
as the number of observations increased. It also appeared that denser graphs required
larger numbers of observations to obtain the same accuracy level than that obtained in
sparser graphs. Additionally, it was observed that the greedy approach obtained a better
Hamming error on average for less dense graphs. However, when the proportion of the
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Fig. 7. Results obtained by differing the assumed number of agents for graphs of size 10 nodes
and 14 edges. a.) Hamming Error as a function of the assumed number of agents for the greedy
algorithm. Results obtained with 10000 observations generated from 4 agents and averaged over
10 graphs. (Error bars show one standard deviation). b.) Mean Hamming Error as a function of
observations for an accurate assumption of 4 agents and an over-estimate of 5 agents. Results
averaged over 50 graphs.

true graph structure recovered was considered, this effect was lessened. For example,
for the experiment shown in figure 6, the Hamming error divided by the true number
of edges in the graph was approximately double for denser graph, while the Hamming
error alone was approximately triple.

Unsurprisingly, the accuracy of the statistical approach was very sensitive to the
value of the threshold selected. Experiments not shown here verified that the value for T
selected above was generally suitable for graphs of various densities and sizes, although
often better results could be obtained for any specific graph type through careful tuning.
This approach requires relatively little computational effort and might have value as a
bootstrapping technique for more complex approaches such as the one presented in [11].
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Fig. 8. Performance of algorithm as a function of the true number of agents for the greedy al-
gorithm where the assumed number of agents is set to the correct number. Results averaged over
10 graphs of size 10 nodes and 14 edges; (error bars show one standard deviation). a.) Hamming
Error obtained with 10000 observations. b.) Number of observations required to obtain a result
with a Hamming error of 2 or less.
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As predicted by theorem 1, the effect of over-estimating the number of agents in
the environment was indeed less detrimental than that of under-estimating the number
of agents. Figure 7 shows the result of assuming various numbers of agents in one
situation for the greedy approach. As the over-estimation increases, the required number
of observations needed to solve the problem also increases.

The problem of topology inference becomes more difficult as more agents are added
to the system. Figure 8 shows the correspondingly poorer performance obtained with
the greedy approach on the same set of graphs with observations generated from dif-
ferent numbers of agents. Even if the correct number of agents is known, we suspect
that less information is available as the number of agents increases. As the size of the
sliding window increases, so does the number of candidate edges generated by each
sliding window. Therefore, the ratio of known correct to incorrect edges decreases, and
hence, more observations are needed to obtain the same level of error.

7 Conclusion

In this paper, we have described a way of learning the topology of a sensor network, us-
ing only event ordering information. We presented a theoretical analysis of the problem,
and re-formulated it as a set-covering problem. Two methods were presented to solve
this problem, one based on statistics, and one based on a sliding window technique. We
explored the effectiveness of both approaches through numerical simulations for various
test cases. Our work demonstrates the promise of this approach for topology inference.

In future work, we hope to extend some of our theoretical results. We would be in-
terested in furthering our understanding regarding the impact of the number of agents
in the system since this value tends to dilute the information gained per each observa-
tion. This effort would entail deriving a relationship for the information gained in the
context of the sliding window approach. Additionally, it would be of interest to find an
analytical relationship between the number of observations needed to solve a problem
and the corresponding density of agents in the system; i.e. the ratio of agents to edges
in the true graph. On a different level, we would like to apply the findings presented in
this paper to the version of the problem where timing data is available and compare it
to other established methods.

Acknowledgments. We would like to acknowledge Ketan Dalal for his helpful analysis
of this problem.
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Abstract. The field of reinforcement learning (RL) has achieved great
strides in learning control knowledge from closed-loop interaction with
environments. “Classical” RL, based on atomic state space representa-
tions, suffers from an inability to adapt to nonstationarities in the tar-
get Markov decision process (i.e., environment). Relational RL is widely
seen as being a potential solution to this shortcoming. In this paper, we
demonstrate a class of “pseudo-relational” learning methods for nonsta-
tionary navigational RL domains – domains in which the location of the
goal, or even the structure of the environment, can change over time.
Our approach is closely related to deictic representations, which have
previously been found to be troublesome for RL. The key insight of this
paper is that navigational problems are a highly constrained class of
MDP, possessing a strong native topology that relaxes some of the par-
tial observability difficulties arising from deixis. Agents can employ local
information that is relevant to their near-term action choices to act effec-
tively. We demonstrate that, unlike an atomic representation, our agents
can learn to fluidly adapt to changing goal locations and environment
structure.

1 Introduction

The field of reinforcement learning (RL) has made great progress in learning
control knowledge for tasks as diverse as robotic manipulator control, elevator
scheduling, game playing, navigation, network packet routing, and autonomous
flight. Yet there remain a number of large open questions in both theory and
practice of RL. A key problem is dealing with changing tasks – that is, adapt-
ing to changes in the system dynamics or reward functions without needing to
re-learn a model or policy from scratch. This problem can be posed in terms
of environmental nonstationarities – changes in the underlying Markov decision
process (MDP) in which the agent is acting. In this paper, we tackle a limited
form of this problem by examining adaptation to nonstationarity in the context
of autonomous navigation. We claim that the restriction to spatial environments
supports adaptation by allowing the agent to exploit the topology of the envi-
ronment.

The core issue is that “classical” RL algorithms are rooted in an atomic state
space representation: the agent learns a policy mapping from unique state IDs

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 429–440, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



430 T. Lane, M. Ridens, and S. Stevens

onto its action set. This representation ties the policy closely to a specific MDP
and prevents adaptation, because there is no way to translate state IDs between
different MDPs. Recently, there has been great interest in relational represen-
tations to address this problem. We employ a very limited form of relational
representation in which the agent has a bounded number of relations that de-
scribe its immediate surroundings and its relationship to the goal location. This
fairly natural “agent-centric” representation allows the agent to adapt to changes
in goal location and to handle switching among a fixed set of environments. Such
an approach is most closely related to a deictic representation [1], in which the
agent has a bounded number of “pointers” to objects1. Previous authors have
had difficulties with deictic representations because they are fundamentally par-
tially observable and lead to state aliasing – a double-edged sword that both
supports knowledge generalization and can “confuse” the agent by requiring
different actions for the same percept [2].

While Finney et al. found that deixis was ill-suited to a blocks-world do-
main, we find that a deictic-like representation provides substantial benefits in
the navigation problems we examine. We show that our approach can achieve
two different important kinds of adaptation to nonstationarity: handling goal
relocation in a fixed environment and handling changes to the environment.
We attribute this success to the nature of the problems that our agents face –
navigational tasks in worlds with a topology based on a metric that bounds the
possible outcomes of actions and the possible trajectories open to the agent. The
constraints imposed by the metric allow the agent to navigate “well” (albeit not
optimally) with local information.

The goal of this paper is not to introduce a new learning algorithm, but rather
to study the effects of representational choices and the topology of the environ-
ment on an already well-understood RL algorithm. Our contribution is to demon-
strate the strengths and weaknesses of this representation in spatial environments
and to set it in contrast to existing work on deixis in blocks-world environments.
To isolate the effects of our representation, we omit techniques like function ap-
proximation that are necessary for large state-space tasks, thus restricting our
agents to relatively small environments. Nonetheless, the nonstationary environ-
ment problem we study is equivalent to a partially-observable Markov decision
process with one hidden variable and over three hundred thousand states.

2 Background

Adapting in the face of nonstationary Markov decision processes (MDPs) is an
instance of the more general RL knowledge generalization problem. There are two
broad research directions attempting to address this problem: function approx-
imation [3,4,5] and relational representations [1,6,7,8]. In the former approach,
1 A deictic representation is an agent-centric knowledge representation in which the

agent reasons about the world not in terms of an absolute coordinate frame (the thing
at location (x, y)), but in terms of referential pointers (the thing that I am pointing
to or the thing to my forward right). This limits the agent’s representational power
in favor of focusing attention on a small number of important outcomes.
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an agent learns a nonlinear function approximator that provides a mapping from
the atomic state IDs to action-value (“Q function”) estimates. In this paper we
are concerned with the latter approach, in which the agent is provided with a
relational language – a set of logical predicates and constants that describes the
state space in terms of objects, their properties, and relationships among them.
This language provides an abstraction between atomic states and the agent’s
action-value function, allowing the agent to generalize across classes of related
states.

In the relational approach, unary predicates describe properties of objects,
while n-ary predicates describe relationships among objects. If the state con-
junct is incomplete (either because it does not contain enough terms to uniquely
identify the state or because some constants are replaced by variables) then the
state representation is abstract – it refers to a set of atomic states. Formally,
these atomic states are aliased and the agent assigns the same action-value to
all members of the set. When these states are, in fact, value-equivalent, this
aliasing is advantageous and allows the agent to apply experience from a single
atomic state/action pair to all elements of the relational set. (Sufficient con-
ditions for this equivalence are developed by algebraic equivalence theories for
MDPs [9,10,11], which provide theoretical justification for this approach.) When
the atomic states in the relational set are not value-equivalent, however, disaster
can ensue – the agent’s policy may oscillate, diverge, or converge to an incorrect
value, because it is trying to assign one policy when more than one is needed.

The difficulty, then, is ensuring that the relational representation captures
enough of the state description to function effectively, while discarding enough
to generalize well. The approach we adopt here is based on state envelopes :
the agent maintains an explicit representation of some set of states “near” it
(the envelope) and disregards anything beyond that set [12,13,14]. The intuition
is that the agent can (often) act well with only local information, so it need
not spend time or memory planning on distant states that it is unlikely to en-
counter. Traditionally, the envelope is seen as a subset of the state space, and
the decision-theoretic problem has been deciding which states should be kept
within the envelope. In this work, we view the envelope as a description of the
local space around the agent, encoding the locations that it is likely to encounter
within only a few steps. We can do this by virtue of a metric on the environ-
ment that allows the agent to analytically determine reachable locations without
exploration. Rather than dynamically expanding the envelope over time, we in-
stead keep a fixed envelope, centered on the agent. The envelope moves with
the agent, adding new elements and discarding old as the agent moves through
the environment. The intuition here is that local information is often sufficient
for navigation. By remembering previous experience with isomorphic envelopes,
the agent can generalize experience across local problems. An example of this is:
“There is a tree directly in front of me. I already know from a similar task that I
should not attempt to go through this tree – I will instead go around.” There are,
of course, environments in which rich global information is critical to navigation,
but we focus here on tasks in which only limited global information (direction
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to the goal) is necessary for strong performance. For example, the hiker in the
forest may need to know only the direction to the campsite in order to reach it.

This representation is close to deictic in that the agent is reasoning in terms
of “the terrain right in front of me; the terrain to my right; the terrain two
units to my front-left;” and so on. For a fixed envelope size, this representation
is formally less powerful than a full relational state description (e.g., it can be
propositionalized), but a relational language provides a convenient mechanism
for abstracting away from atomic state IDs. The local knowledge aspects of this
representation are also similar to chart-based topological RL methods [15].

3 Navigational MDPs and Envelopes

In this paper, we restrict our attention to (discrete) spatial navigation tasks.
First, we will describe the full MDP in which the agent is executing and the
corresponding atomic-state representation. Then we will describe the envelope-
based representation that the relational agent uses.

Both agents use the same action space: A = {FWD, TURNL, TURNR}, denoting
“move forward”, “turn counter-clockwise”, and “turn clockwise”, respectively.
The agents move through a world consisting of a set of locations, L ⊆ � ×
�, specified via Cartesian coordinates. Each location is assigned a terrain type
property; for example, WALL(l) or GRASS(l) denotes that location l ∈ L is a
wall segment or a patch of grass, respectively. The complete set of terrain type
properties is denoted P . Locations are laid out on a square grid and each location
is reachable from its eight neighbors. The agent’s transition function depends
on the terrain type of the locations it is moving from and to and on other
surrounding terrain. The complete set of terrain types we use in our experiments,
and their corresponding dynamics, are given in Section 3.1. Note that transition
dynamics depend only on the properties of locations and not on the absolute
coordinates of locations. Altogether, the set of terrain types for all locations in
L is the terrain map, M : L → P .

Further, the environment is endowed with a metric given by the relation
d(li, lj), which specifies distances between locations, and a direction, φ(li, lj),
which gives orientation between them (with respect to an arbitrary fixed refer-
ence direction). Together, d and φ establish a coordinate frame and provide a
set of relations that allow the agent to reason about “the location immediately
to my right” or “the location 10 units to my northeast.” In the experiments
reported here, we use a Manhattan distance d, with respect to the 8-neighbor
connectivity, and a discretized angle φ, Φ = {NORTH, NORTHWEST, WEST, . . .}, but
other distance/angle relations are possible. At any instant, the agent’s (atomic)
state, satom, is given by its current location, la ∈ L, and its facing, fa ∈ Φ; the
set of all such pairs is the atomic state space, Satom = L × Φ.

We say that an environment is the tuple E = 〈L,P , M, d, φ〉. Together with
the transition dynamics for the terrain types, TP , the environment captures
the transition function of a Markov decision process. In addition, there is a
distinguished goal location, lg ∈ L. The reward function, R, is 1 at the goal
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location (regardless of facing) and 0 elsewhere. The full MDP, then, is given
by M = 〈Satom,A, TP(M), R〉. An agent that uses atomic states for its repre-
sentation is executing directly in M and, in principle, can learn a stationary,
deterministic policy for that environment [16].

Unfortunately, the atomic state representation does not handle nonstationary
MDPs well – absolute coordinates and directions become meaningless if the goal
location or environment changes. Thus, the relational agent uses an envelope
representation that captures only the properties of locations “near” the agent,
as well as some information about the (relative) location of the goal.

Fig. 1. Two envelopes, each with an envelope radius of 3. The shaded area represents
the envelope, while A represents the agent, and G represents the goal. The envelopes
are different shapes because the agent must be able to reach every location in the
envelope in 3 steps or less.

For an agent at location la, the agent-centric envelope about la is e(la) ⊂ L.
A simple e(la) would be a disk of radius r: e(la) = {li ∈ L : d(la, li) ≤ r}. We
have found, however, that a more complex envelope geometry (Fig. 1) is more
effective in these environments. This configuration is roughly a quarter-disk arc
of radius r pointing toward the goal, plus the locations immediately adjacent to
the agent. The agent can perceive the terrain type property of all locations in
its envelope as an ordered tuple, P (e(la)) = (M(li))li∈e(la), but cannot directly
perceive the location coordinates themselves. Thus, the envelope representation
is independent of absolute location. This is an attempt to exploit “translation
invariance” – a special case of MDP homeomorphism [11]. Translation invariance,
in turn, depends on homogeneity of the transition function (provided by the
terrain type properties) and invariance of the metric d.

The relational agent also perceives the direction and the distance to the goal.
The distance is quantized such that for some fixed distance, dquant, if d(la, lg) ≤
dquant then the agent perceives d̂ = d(la, lg). However, for all d(la, lg) > dquant,
the agent perceives only the symbol d̂ = FAR AWAY. The direction and quantized
distance provides a small amount of global information and helps alleviate some
aliasing difficulties by allowing the agent to make different decisions depend-
ing on the relative position of the goal. The relational agent’s state represen-
tation, then, is srel(la) = 〈P (e(la)), φ(la, lg), d̂, fa〉, and the set of all such state
representations is Srel.
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Note that srel contains some information about lg, while satom does not. This
is analogous to our hiker in the woods knowing “I need to head roughly North
and my destination is still too far to see.” Once the hiker draws close to the goal,
it becomes visible. This representation “cheats” a bit by giving some information
to the relational agent that is unavailable to the atomic agent. In Section 4.2
we demonstrate that the relational agent still has an advantage, even after
controlling for this extra information.

3.1 Agent Dynamics

Our agent dynamics roughly simulate a “noisy” robot that has to cope with
varied terrains and some global structure.

An agent learns the task of finding a single goal in simulated, stochastic,
21x21 indoor and outdoor environments. Indoor environments consist of FLOOR
and WALL terrain types, with fixed WALL elements at the boundaries so the agent
cannot move beyond the edges of the environment. Outdoor worlds consist of
GRASS, BUSH, MUD, and ROCK terrain types with a toroidal topology; when an
agent attempts to move past a boundary it appears on the opposite edge of the
environment. The environments are randomly generated according to a terrain
generation distribution designed to produce roughly realistic terrain maps. The
indoor terrain generator produces room-like structures and doorways (guaran-
teed to prevent unreachable locations); the outdoor terrain generator distributes
blocks of each terrain type so as to create varied regions of terrain. Examples of
each environment type are shown in Fig. 2.

(a) (b)

Fig. 2. Examples of randomly generated (a) outdoor and (b) indoor environments

Each terrain type has several attributes determining the outcome of an at-
tempted move into or within that terrain. These attributes are summarized in
Table 1.

The enter attribute is the probability that the FWD action will be success-
ful – that the agent will enter the target location of the FWD action. That is,
Pr[enter|GRASS] is the probability that the agent will move into the GRASS cell
that it is facing when it invokes the FWD action. When FWD fails, the agent might
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Table 1. Transition dynamics for P . Each cell of the table gives Pr[Outcome|Terrain].

Target Terrain Type
FLOOR WALL GRASS BUSH MUD

ROCK

enter 0.95 0.0 0.85 0.3 0.9
slideRight 0.05 0.15 0.1 0.2 0.25
slideLeft 0.05 0.15 0.1 0.2 0.25

Outcome moveOvershoot 0.05 0.0 0.05 0.001 0.2
turnRight 0.95 0.0 0.9 0.4 0.7
turnLeft 0.95 0.0 0.9 0.4 0.7
turnOvershoot 0.05 0.0 0.05 0.001 0.35

slideRight or slideLeft of the target location, with probability given by the re-
spective attribute of the target location’s terrain type. The result of slideRight
is an attempt to enter the location to the right (with respect to the agent’s cur-
rent facing) of the target location (which may, itself, result in a slideRight,
etc.). When the FWD action succeeds, the agent may moveOvershoot the target
location, attempting to enter the next location in its direction of movement. The
agent changes its facing with the TURNR (TURNL) action, which succeeds with prob-
ability turnRight (turnLeft) of the terrain type of the agent’s current location.
When the agent successfully turns, there is some chance of a turnOvershoot,
leading to a successive turn∗ attempt. Any probability mass not otherwise ac-
counted for leaves the agent’s state unchanged.

3.2 Learning Algorithm and Parameters

Both agents use a standard tabular Q-learning algorithm [17]; the only difference
between them is their state representation. The atomic agent learns the state-
action value function Q : Satom × A → �, while the relational agent learns the
function Q : Srel ×A → �.

We set the Q-learning parameters, α, γ, and ε, empirically from initial ex-
periments in indoor environments. We found that the values α = 0.1, γ = 0.7,
and ε = 0.01, while not universally optimal, appear to work adequately in all
tested environments. The relational state representations use an r = 3 and a
dquant = 6, which performed well in simple initial indoor and outdoor tests. Per-
formance does not appear to be strongly sensitive to these parameters but, for
consistency, we use these fixed values in all of our experiments.

4 Experiments

Our experiments are designed to demonstrate the adaptation capacity of the re-
lational agent in the face of two kinds of nonstationarity: changes in the location
of the goal (lg) and changes in the environment (E).

We have experimented with fixed goals, fixed environments, random goals, and
random environments. In all configurations a trial runs until the agent reaches
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lg, at which point the agent is rewarded and relocated to a random starting
location in L, and a new trial begins. If a single trial reaches 10,000 steps, it is
truncated and the agent is restarted.

In a fixed environment (FE) experiment, E does not change throughout the
experiment. In a random environment (RE) experiment, E changes every 10 trials
by drawing M from a set of 100 pre-generated maps (which are, in turn, drawn
according to the appropriate terrain generation distribution – Section 3.1). In a
fixed goal (FG) experiment, lg is held unchanged at the center of L throughout the
experiment. In a random goal (RG) experiment, lg is drawn uniformly at random
from L after each trial. The pseudorandom number generators are synchronized
for the atomic and relational agents, so they both experience the same sequences
of start locations, goal locations, and environments.

In all experiments, the agent is trained for a total of 200,000 trials. Every 100
trials, its policy is frozen and its performance is evaluated for 50 trials; we report
mean performance for the 50 evaluation trials.

4.1 Nonstationary Goal Locations

We first examined the agents’ robustness to changes in lg with a FE, RG exper-
iment. Results for both agent types in indoor and outdoor environments are
shown in Fig. 3 (a) and (b).

The agent with the atomic state representation does poorly in both environ-
ments, while the envelope-based relational agent exhibits much stronger perfor-
mance. The relational agent converges to a stable policy with low performance
variance within roughly 60,000 trials, while the atomic agent never converges
and continues to have wildly varying performance for the entire 200,000 trials.

These findings are, perhaps, not surprising – Q-learning is guaranteed to con-
verge only for a stationary MDP. By changing lg, the atomic agent’s value func-
tion gradients become essentially meaningless – its only long-term strategy can
be a random walk. The relational agent, on the other hand, knows the relative
location of lg and can build stable value functions whose gradients always indi-
cate the direction to the goal. In spite of the partial observability imposed by
the envelope, the relational representation maps the nonstationary MDP into a
(nearly) stationary representation, allowing the policy to converge.

4.2 Nonstationary Environments

We next studied the agents’ robustness to changes in E with a RE, FG experiment.
Note that fixing the goal location across all terrain maps controls for the extra
“location of goal” information that the relational agent possesses, because the
goal is at the same atomic state in all trials. Thus, any performance differences
here are because the relational agent is better able to adapt to changing environ-
ments and not because it has an informational advantage over the atomic agent.
Results for both agent types in outdoor and indoor environments are shown in
Fig. 3 (c) and (d).

The relational agent finds a stable policy in both indoor and outdoor worlds,
though convergence is slower here than in the FE, RG scenario. The atomic agent
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Fig. 3. Learning performance for both atomic and relational agents. (a) and (b) display
fixed-environment, random-goal results (FE, RG); (c) and (d) give random-environment,
fixed-goal (RE, FG). Performance in outdoor environments is given in (a) and (c), while
indoor environments are shown in (b) and (d). The horizontal axes of all plots give
number of trials, while the vertical axes show per-trial steps-to-goal, averaged over pol-
icy evaluation trials. Circles denote relational agent performance; plusses show atomic
performance. Note that trials were truncated at 10,000 steps if the agent had not yet
located lg.

performs substantially better here, finding a reasonable policy, but it never con-
verges to performance as strong as relational’s. Further, its performance con-
tinues to be high-variance for the duration of the experiment, while relational’s
variance declines over time. Over the last 25,000 trials, the atomic agent’s mean
performance is 216.5 steps to goal in the outdoor environments and 323.2 in
the indoor (standard deviation of 557.8 and 732.2, respectively). The relational
agent, on the other hand, achieves means of 77.6 and 125.4 steps in outdoor and
indoor environments (standard deviation of 117.0 and 364.3, respectively).

These results show that the relational agent is successfully accumulating
knowledge about the different worlds over time. More importantly, the rela-
tional agent is essentially learning to quickly recognize which environment it is
currently running in and is executing a reasonable policy for that environment.
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This is fairly strong performance, given that this scenario is equivalent to a
single POMDP consisting of 100 · |L × Φ| = 352, 800 states, including a single
hidden variable (current environment).

More surprising is how well the atomic agent does fare in this case. As we
argued in Section 4.1, we might expect nonstationarity to upset Q-learning in
general, and we saw that goal nonstationarity did overwhelm the atomic agent.
Here, however, the goal location always maps to the same absolute lg, so absolute
coordinate value gradients remain (roughly) consistent over time. Still, if the
environment changed radically enough, it should still disrupt the atomic agent
(imagine a series of complex mazes in which the correct action at any location
changes on every change of M).

It appears that environmental homogeneity arising from the terrain gener-
ation distribution is helping the atomic agent here. The best direction to the
goal is likely to remain roughly the same across many environments, so the op-
timal value function gradients are approximately stable. However, the atomic
agent has no real knowledge of the local structure of the environment – when a
draw from the terrain generator produces significantly different terrain, requiring
different local navigation policies, the atomic agent experiences a setback and
must re-learn that environment. The relational agent, on the other hand, can
often find an envelope that provides precedent information on how to handle
this terrain. Thus, in the long-run, the relational agent is learning about the
terrain generation distribution itself and achieving a more stable policy, while
the atomic agent is successful only to the extent that the terrain generator tends
to produce similar terrain in the same absolute states.

It also appears that indoor environments are more difficult than outdoor –
both agents reach worse mean and standard deviation performance in indoor
than out. We believe that this is a function of the global topology of the envi-
ronment. In the outdoor worlds, “head toward the center of the map” is usually
the roughly correct policy. In indoor worlds, however, there may be room con-
figurations that force the agent to go “the long way around” to get to the goal.
Such configurations are beyond the agent’s perception (envelope) so it cannot
learn to do the right thing. Still, the relational agent has learned to do fairly
well given only local information.

We have also experimented with RE, RG scenarios and found the results to be
consistent with the FE, RG scenario, indicating that the changes in goal states
dominate changes in environment for the atomic agent.

5 Conclusion

Overall, we believe that the success of the envelope-based navigation is due to
the spatial nature of these environments. Unlike a blocks-world domain, there is
a strong metric here that allows the agent to define an envelope of locations that
it is likely to encounter in the next few steps. Indeed, the shape of the envelopes
we use (Fig. 1) excludes locations that are unlikely to be encountered in the short
term. Thus, the partial observability of the relational representation penalizes us
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far less than the deictic representation hurt Finney et al.’s blocks-world agents
[2002].

We had hoped to demonstrate that the relational agent could use its knowl-
edge of the terrain generation distribution to generalize to novel (previously
unexperienced) environments. It turns out to be difficult to experience enough
distinct envelope configurations to achieve strong generalization performance,
however – our agents began to overflow system memory before achieving con-
vincing generalization. Still, few, if any, other RL algorithms have demonstrated
successful control learning in rapidly changing sets of environments. This type of
control learning might be useful to an agent that needs to function in any of a set
of different buildings or different cities. We believe that the addition of function
approximation will allow the relational agent to achieve task generalization. We
also intend to exploit additional symmetries and invariances (e.g., rotational) in
future implementations.

We are also interested in the local vs. global topology issue that we observed
in Section 4.2. These results reflect the tradeoff between purely local/reactive
control and global/planning-based control that has been debated for years in
robotics. We believe that a hybrid method, that exploits both local, RL-based
navigation and global, planning-based navigation will be successful here, but
such an approach remains future work for the moment.
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Abstract. Stability and bias-variance analysis are two powerful tools
to understand learning algorithms better. We use these tools to ana-
lyze learning the kernel matrix (LKM) algorithm. The motivation comes
from: (i) LKM works in the transductive setting where both training
and test data points are to be given apriori. Hence, it is worth knowing
the stability of LKM under small variations in the data set and (ii) It
has been argued that LKMs overfit the given data set. In particular we
are interested in answering the following questions: (a) Is LKM a stable
algorithm? (b) do they overfit (c) what is the bias behavior with differ-
ent optimal kernels?. Our experimental results show that LKMs do not
overfit the given data set. The stability analysis reveals that LKMs are
unstable algorithms.

Keywords: Kernel matrix learning, stability, bias-variance, error esti-
mation, bootstrap, overfitting.

1 Introduction

A support vector machine (SVM) is a powerful learning algorithm for binary
classification tasks. It is based on the principle of structural risk minimization
[3,5,11]. SVMs attracted researchers due to their promising generalization per-
formance [11]. This has lead to much work on error analysis for SVMs. The
leave-one-out (LOO) technique is the most widely used for error estimation [12],
[13]. Stability analysis for SVMs has been carried out by Buciu et al., [2] and they
show experimentally that SVMs are stable. That is bagging [1] based strategies
do not improve performance of SVMs. For a learning algorithm, if small changes
in the training data set lead to large variations in the performance of the learnt
classifier, then the algorithm is said to be unstable otherwise it is said to be
stable.

Bias-variance analysis has been used to study a learning algorithm and it is
useful in understanding relationships between the free parameters viz., C and
σ on error, bias and variance. An experimental study of the bias-variance has
been carried out by [10] for SVMs. The experimentation has thrown light on
several questions; in particular how to use bias-variance analysis for developing
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ensemble methods in which SVMs are one of the base learners, predicting low
error region using variation in number of support vectors and relation between
bias, variance and VC dimension. The key idea in both stability and bias-variance
analysis is to decompose the error into bias and variance terms and analyze them
independently.

These tools are also useful in the analysis of focused methods aimed at im-
proving the performance of SVMs. In particular the parameter tuning/LKM al-
gorithm [4,7]. In the present work, we analyze LKM empirically using the tools
viz., stability and bias-variance. Motivation for analyzing the LKM comes from
two directions (i) LKM works in the transductive setting where both training
and test data points are to be given apriori; this is of particular importance as
LKM depend on test data points as well and (ii) It has been argued that LKMs
overfit the given data set [8].

The performance of SVMs depends completely on the kernel function choice.
Therefore choosing a good kernel function is at the heart of improving SVMs
performance on test data points. The best choice of a kernel function for a
given problem has been addressed very recently in [7]. The central idea in this
is to express the kernel matrix as a weighted linear combination of a set of a
priori chosen kernels (K =

∑m
i=1 μiKi) which are positive semidefinite with a

bound on the trace of the resulting kernel matrix. The objective is to learn
the optimal kernel matrix by learning weights associated with individual kernel
matrices. This optimization problem is posed as a semidefinite programming
problem (SDP).

We have conducted experiments on 5 real world and artificial data sets. Ex-
perimentally we observe the following: (i) LKMs do not overfit. This contradicts
what has been said in the literature about LKMs [8] and (ii) they are unstable
algorithms.

This paper is organized as follows: learning the kernel matrix (LKM) algo-
rithm is presented in the next section. Bootstrap re-sampling and error estima-
tion using bootstrap is discussed in section 3. Section 4 discusses stability of a
learning algorithm. Bias-variance, error decomposition is presented in section 5.
Experimental results of stability and bias-variance for the LKM are presented
in section 6. We conclude with a summary.

2 Learning the Kernel Matrix

In [7], the optimal kernel matrix is expressed as a weighted linear combination
of kernels chosen from an a priori set K = {K1, K2, . . . , Km} (which is a convex
subset of positive semidefinite matrices) with bounded trace. That is: (1) K =∑m

i=1 μiKi (2) K � 0 (3) trace(K) ≤ c. Note that kernel matrix learning is done
in the transductive setting wherein the kernel matrix has entries corresponding
to both training as well as test data points. The aim is to find optimal μis. This
in turn is achieved by solving the following semidefinite programming (SDP)
problem [7].
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Convex Optimization Formulation 1. Given a training set X , the optimum
kernel matrix K can be found by solving the following convex optimization
problem:

minμ,λ,ν,δ t
subject to trace (

∑m
i=1 μiKi) = c∑m

i=1 μiKi � 0(
G(
∑m

i=1 μiKi,tr) (e + ν − δ + λy)
(e + ν − δ + λy)T t− 2CδTe

)
� 0

ν ≥ 0, δ ≥ 0

(1)

Minimizing t is equivalent to maximizing the dual formulation of SVM. e is a vec-
tor of all ones. G(K) is defined as Gij(K) = yiyjk(Xi,Xj). ν, δ, λ are the La-
grangian multipliers associated with the constraints. X � 0 denotes that matrix X
should be positive semidefinite. The optimal kernel matrix K is obtained using the
optimal weights μ∗i s by solving equation (1). For classifying a test data point X,
the following equation is used: y = f(x) = sign

(∑m
i=1

∑N
j=1 μ∗iαjyjki(Xj ,X)

)
.

3 Bootstrap Error Estimation

Both stability and bias-variance analysis requires perturbed data set generated
from the original training data set. This is achieved through the Bootstrap, a
well known re-sampling technique in the statistical literature. In this re-sampling
technique, B independent data sets viz., T1, T2, · · · , TB each of size N are drawn
from the original training data set X = {(Xi, yi)}Ni=1. From these independent
data sets, test data points for bth realization are obtained as T tstb = X − Tb.
Let Ibi be an indicator function denoting whether ith data point in bth bootstrap
realization is a test point or not.

Ibi =
{

1 if Xi ∈ T tstb

0 Otherwise

The estimated generalization error is computed using the leave-one-out boot-
strap as follows [2]:

êrr(C) =
1
N

N∑
i=1

∑B
b=1 Ibi �(yi, f

b
i )∑B

b=1 Ibi
(2)

where �(a, b) is a 0/1 loss function. It assumes a value 1 if a �= b and a value 0
if a = b. f b is a decision function built using bth bootstrap realization and f bi
stands for the decision given by f b on a data point Xi.

4 Stability Analysis

The stability of a learning algorithm is quantified in terms of ratio of the average
prediction error (equation 2) and average aggregate error [2]. For the ith data
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point, the aggregate error is the decision obtained by considering a voting scheme
on all the B classifiers built using bootstrap realizations. The aggregate error
is computed as follows: Construct classifiers, f b, for all bootstrap realizations
b = 1, · · · , B. For classifying ith(Xi) data point, compute f bi (that is f b(Xi)) for
all b = 1, · · · , B and a decision is made based on voting. For voting, we count
votes only when Xi ∈ T tstb , ∀ b = 1, · · · , B. This is given in equation 3.

sign

{∑B
b=1 Ibi f

b
i∑B

b=1 Ibi

}
(3)

The average aggregate error is computed over all data points and is given in
equation 4 [2].

êrr(Ca) =
1
N

N∑
i=1

⎧⎪⎪⎨
⎪⎪⎩

∑B
b1=1 Ib1i �

(
yi, sign

{∑B
b2=1 I

b2
i f

b2
i∑

B
b2=1 I

b2
i

})
∑B

b1=1 Ib1i

⎫⎪⎪⎬
⎪⎪⎭

(4)

An algorithm is said to be stable if the stability factor δ̂ ≤ 1 and is given by:

δ̂ =
êrr(C)
êrr(Ca)

≤ 1. (5)

Otherwise the algorithm is considered to be unstable. Equation 5 tells us that
if δ̂ > 1, then êrr(Ca) < êrr(C). This means that for small perturbations in the
training data (bootstrap realizations in the present context), bagging improves
the performance leading to instability. Using this notion, [2] has shown SVMs to
be stable algorithms experimentally.

5 Bias-Variance Analysis

Giorgio et al., [10] decomposed the error into bias and variance. Further, variance
is divided into two components (i) biased-variance and (ii) unbiased-variance.
We use the definitions given in [10] for the above terms. Assuming a two-class
classification problem, bias for data point Xi, denoted as B(Xi), is a loss function
between main prediction (ym) and the true label and is given as:

B(Xi) = �(ym, yi) (6)

where ym = arg max(p1, p−1) is the main prediction and

p1 =
1∑B
b=1 Iib

B∑
b=1

||Ibi and f bi = 1|| (7)

p−1 =
1∑B
b=1 Iib

B∑
b=1

||Ibi and f bi = −1|| (8)
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Variance of Xi is the variation in decisions across all B classifiers relative to
the main prediction and is computed as:

V (Xi) =
1∑B
b=1 Iib

B∑
b=1

||Ibi and ym �= f bi || (9)

Un-biased variance and biased variance are computed as given below:

Vu(Xi) =
1∑B
b=1 Iib

B∑
b=1

||Ibi and ym �= f bi and B(Xi) = 0|| (10)

Vb(Xi) =
1∑B
b=1 Iib

B∑
b=1

||Ibi and ym �= f bi and B(Xi) = 1|| (11)

Net variance is the difference between unbiased variance and biased variance.
That is Vn(Xi) = Vu(Xi)− Vb(Xi).

In the bias-variance analysis, the behavior of these five quantities (bias, vari-
ance, unbiased variance, biased variance and net variance) are characterized with
respect to the free parameters in the LKM.

6 Experimental Results

In our experiments, we considered four real world data sets namely heart,
titanic, thyroid and waveform [9] and an artificial data set, P2 [10]. Char-
acteristics of each data set are given in table 1. We considered the first 100
test data points for titanic and waveform data. We solve equation (1) using self
dual minimization package SeDuMi [6]. For all the data sets, 100 independent
realizations were generated (that is B = 100). We have experimented with the
optimal kernel matrix composed of (1) only Gaussian functions (2) only polyno-
mial functions and (3) mixture of Gaussian and polynomial functions. The free
parameter, C, takes the values (0.01, 0.1, 1.0, 10.0 and 100.0). We have solved
7500 SDPs (3× 5× 100× 5 = 7500; 3 different optimal kernel types, 5 different
values for C, 100 independent realizations and 5 data sets) in total and report
results based on these experiments for both stability analysis and bias-variance
analysis.

In the case of stability analysis, we have computed the average prediction er-
ror and average aggregation error (êrr(C) and êrr(Ca)) and the stability factor
δ̂. We analyse the relationship between average error, bias, unbiased-variance,
biased-variance, number of support vectors, training error and the user parame-
ter C. The following combination of the optimal kernels were considered in our
experiments:

1. Only Gaussian kernels: We have considered three Gaussian kernel func-
tions with varying spread widths such that one of the spread widths (σ1) is
the optimal parameter for SVMs and rest of the spread widths are ten times
the optimal value and 1

10

th of the optimal value.
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Table 1. Data sets considered for experimentation

Data Set # features # of trg. # of test
samples samples

P2 2 100 100

heart 13 170 100

thyroid 5 140 75

titanic 3 150 2050

waveform 21 400 4600

2. Only polynomial kernels: In this case, we have considered three polyno-
mial kernel functions with varying degrees (d1 = 3, d2 = 5 and d3 = 7).

3. Mixture of Gaussian and Polynomial kernels: We considered two
Gaussian kernel functions and one polynomial kernel function. The σ’s in
the case of Gaussian kernel function are the optimal σ1 obtained for SVMs
for the data set under consideration and σ2 = 10×σ1. For polynomial kernel
function, we use degree as d1 = 3.

6.1 Stability Analysis

For different values of C and for all the three cases of the optimal kernel, stability
analysis was carried out and the results are given in table 2. Each experiment is
done as follows: for case (1) optimal kernel, for a particular value of C and for a
data set, 100 LKMs are solved corresponding to the 100 bootstrap realizations
and the following three quantities êrr(C), êrr(Ca) and δ̂ are computed. Stability
of LKMs is decided based on equation 5. Table 2 shows how many times LKM
is found to be unstable for 5 different values of the user parameter C. Figures 1
(a) to (d) and 2 (e) shows the variation in error for different values of C. We
note from these plots that the variance is high under small perturbations of the
data set. For example, in the case of heart data set and with an optimal kernel
of purely Gaussian kernel functions, LKM improved performance with bagging.
This is given in table 3. From table 2, we observe that the stability factor is
greater than 1 a majority of times.

Stability analysis in the case of SVMs has been carried out in [2]. It is shown
experimentally that SVMs do not improve performance with bagging leading to
stable algorithm behavior. Variance in the case of SVMs is reported close to 0
indicating that SVMs are stable algorithms.

6.2 Bias Variance Analysis

In bias-variance analysis, we study the following four points:

1. overfitting problem
2. comparison of bias, variance, un-biased variance, biased-variance, net-variance

and number of support vectors between the three cases for the optimal kernel
3. average prediction error and
4. comparison of learning behavior between SVMs and LKMs.
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Fig. 1. Variance behavior on heart, titanic, thyroid and waveform

1. Overfitting: In all the three cases for the optimal kernel and for differ-
ent values of C, the bias, variance, unbiased-variance, biased-variance, net-
variance and the number of support vectors were analyzed. The number of
support vectors were observed to be high (figures 3 (d) and 4 (d)) and the
averaged training error to be close to 0 and the bias is close to the error.
From this we infer that LKMs do not overfit the given data set. In the
literature it is argued that LKMs overfit the given data set [8]. In the case
of SVMs, the experiments conducted by [10] show that overfitting occurs
for small values of σ in the case of Gaussian kernels. For small values of
C, LKMs have low bias and variance (as well as net variance) indicating
that the learning of LKMs is not directly influenced by the user parameter.
This is primarily due to the composition of the optimal kernel. This can be
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Table 2. Stability analysis results for different optimal kernel cases

Data set Optimal kernel case
(1) (2) (3)

Heart 5/5∗ 2/5 3/5

Titanic 3/5 2/5 3/5

Thyroid 3/5 5/5 3/5

Waveform 2/5 5/5 4/5

p2 5/5 3/5 5/5

* : Refer to Table 3 for details

Table 3. Stability analysis for Heart data set. Optimal kernel case (i).

C value
0.01 0.1 1.0 10.0 100.0

êrr(C) 0.123 0.124 0.138 0.149 0.153

êrr(Ca) 0.111 0.112 0.112 0.135 0.135

δ̂ 1.100 1.113 1.232 1.104 1.128

LKM stable? unstable unstable unstable unstable unstable
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Fig. 2. Variance behavior on p2 data set

observed through the bias plots given in figures 3 (a) to (c) and 4 (a) to (c).
In the case of SVMs, for small values of C, large bias is observed leading to
the observation that SVMs do not learn for small values of C. The averaged
bias values for all data sets closely follows the averaged error estimates of
the respective data sets across all the three cases for the optimal kernel. At
the same time, the averaged net-variance is close to 0, indicating that both
unbiased-variance and biased-variance are close to each other. This is not
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Fig. 3. Bias-Variance analysis for Heart data set

surprising as LKMs work in the transductive setting and the optimal kernel
entries corresponding to the test data points are obtained for the given test
data set.

2. Comparing Three Cases of the Optimal Kernel: Comparing the bias
behavior across the different cases of the optimal kernel, in most instances a
purely Gaussian kernel function combination has low bias compared to the
other types of optimal kernel combinations. This is shown in figures 3 (a)
to (c) and 4 (a) to (c). In the case of heart and p2 data sets, there is a
significant difference across different optimal kernel combinations. For rest
of the data sets, no significant difference in bias is observed. We attribute
the method of normalization in polynomial kernels as the primary reason.
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Fig. 4. Bias-Variance analysis for Waveform data set

We observe large variations in biased-variance, unbiased-variance and net-
variance for the above two data sets. On the number of support vectors front,
purely polynomial kernel function case has more support vectors compared
to other combinations of the optimal kernel and as shown in figures 3 (d)
and 4 (d).

3. Averaged Prediction Error: The averaged prediction error for all the
three cases of optimal kernel is shown in figures 3 (a) to (c) and 4 (a) to
(c). From these graphs, we observe that the case (1) optimal kernel has
smaller averaged prediction error compared to other cases in majority of
experiments. This indicates that the Gaussian kernel combination is a better
mixture for the data set at hand.
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4. SVMs Vs LKMs: In the case of SVMs, bias behavior for the Gaussian
kernels has three different regions (1) high bias region, (2) transition region
and (3) low bias region as observed by [10]. However no such clear trend is
observed in the case of LKMs. Similarly for polynomial kernels an ‘U’ shaped
trend is observed for SVMs for the bias behavior [10] but no such trend is
observed for LKMs.

7 Summary

In this work, we studied the stability and bias-variance of LKM algorithms
through extensive experimentation carried out on 5 data sets with different
types of optimal kernel combinations and compared the results for both sta-
bility and bias-variance. We observe that LKMs are unstable algorithms. They
do not overfit the given data set as argued in the literature.
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Département d’informatique et de recherche opérationnelle

Université de Montréal
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Abstract. We describe an architecture for organizing and summarizing
consumer reviews about products that have been posted on specialized
web sites. The core technology is based on the automatic extraction
of product features for which we report experiments on two types of
corpora. We thus show that NLP techniques can be fruitfully used in this
context for helping consumers sort out the mass of information displayed
in such contexts.

1 Introduction

There are now many web sites that gather comments, written by customers,
about certain products and services. These web sites are usually maintained
either by manufacturers, by sellers (e.g. amazon.com) or by independent peo-
ple (epinions.com) who (hope to?) make money by selling advertisement space
that appears near the comments they display. These sites are quite useful for
consumers because they provide real users’ comments about products. These
comments are often summarized by means of global scores or tables of features
but the real information is still within texts for which there are yet few appro-
priate processing tools. The users’ comments, being written by many different
people, are often too numerous, repetitive and unclassified so finding informa-
tion in this mass of diverse facts and anecdotes is quite an endeavor. As it often
happens in our modern world, too much information is worse than not enough,
and the time taken by many concerned users to write these comments is thus
wasted because few people read and analyze them.

The goal of this paper is to show that it is possible to use NLP technology for
organizing and summarizing these comments in order to better help potential
buyers. We first describe the architecture of the system based on the automatic
identification and merging of product features and then we present the exper-
iments we have carried out and the results we have obtained. More detailed
results are described in Feiguina [1].
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2 Related Work

Customer reviews have received a lot of attention in the recent years. Re-
search has mainly focused on extracting product features, identifying sentences
commenting on them, and classifying reviews or sentences by attitude (posi-
tive/negative/neutral). Although our system builds on results obtained in sen-
timent classification research, we did not work on this aspect of processing
customer reviews and focused instead on feature extraction and summarization.

Hu & Liu [2] proposed to summarize customer reviews for a given product
by presenting a list of product features with the corresponding counts of posi-
tive/negative comments about them. When a user wants more detail, a long list
of often repetitive sentences is returned and one of our goals was to solve this
problem with our summarization approach. Hu & Liu [2] also worked on feature
extraction using an association rule mining algorithm in conjunction with some
frequency and overlapping based heuristics to extract the main product features.
These features are then used to extract adjacent adjectives which are assumed
to be opinion adjectives, which are in turn used to find features that were men-
tioned only once or several times. As Hu & Liu published their corpus, we could
use it to develop some of our ideas.

Also using Hu & Liu’s annotated corpus, Popescu and Etzioni [3] worked on
feature extraction from reviews within the framework of KnowItAll [4]. They
calculated point-wise mutual information (PMI) between all noun phrases found
in customer reviews and phrases such as scanner, scanner has, etc. The PMI
scores were then fed to a Naive Bayes classifier trained to decide if a given
noun phrase is a product feature or not. PMI was calculated using the corpus
of reviews as well as using the World Wide Web. The latter gave very good
performance: 94% precision, 22% better than Hu and Liu [2], and 77% recall,
3% better than Hu and Liu [2].

These works both relied on a syntactic analysis of the reviews; one of our
goals was to limit ourselves to a shallow analysis in order to make the method
more language independent. Hu and Liu used a small corpus of reviews while
Popescu and Etzioni used the whole Web; our other goal was to strike a middle
ground by using an unannotated corpus of reviews which is more controlled than
the Web but while being able to gather more data than a manually annotated
corpus.

Finally, Carenini [5] worked on mapping product features onto an existing
taxonomy using various WordNet-based measures of semantic similarity [6]. We
used his observations in our experiments on semantic grouping of automatically
extracted features that will be presented in section 6.

3 Application Architecture

Figure 1 presents the architecture of our application that summarizes collections
of customer reviews based on a query. We now give an overview of the modules
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Architecture

Corpus
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Fig. 1. Architecture of the customer comments summarizing application

with a simple example and show the output of our prototype at every stage. The
application is invoked once a user enters a query, here nokia speakerphone.

Identification of product, company, model. Identify, based on the query,
what product the user is talking about. In order to do this, we compiled a
small database that links company names to products and models of prod-
ucts. Entries of the database are triples of the form {company, product,
model} (e.g. {Canon, digital camera, Powershot SD300} for which we al-
low slight variations such as Cannon for Canon, etc. Having a pre-compiled
list of associated companies, products and models allows for some consis-
tency checks that ensure the user is not mixed up about what a certain
company manufactures, what products exist or what product comes in what
models. For our example, we extract nokia as the company name and no
product or model. What remains of the query is speakerphone.

Identification of product features. Having identified as much as possible
the product, company and model information, we use our lists of features
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(their creation will be described in Section 5) to identify the ones the user is
interested in. For example, given the query nokia cellphone charger, we
first identify nokia as the company, cellphone as the product, and then use
the list of cellphone features to identify the feature charger. In our example,
we extract speakerphone.

Extraction of relevant sentences. We assume that customer reviews are
already labeled with the company, product and model they describe. Us-
ing the information extracted from the query, we identify the relevant re-
views. From them, we extract not only sentences containing features as
stated in the query, but also their synonyms. For example, in the electron-
ics domain, for the query screen, sentences mentioning display are also
relevant.

Classification of sentences by attitude. The next step is to classify rele-
vant sentences as being either positive or negative. In our prototype, we
used a very simple minded approach to this problem: we only label a sen-
tence as positive or negative if the annotation (to be presented in section 4)
of a sentence labels it as entirely positive or negative.

Elimination of redundant sentences. We define two sentences as redundant
if they describe the same features with the same attitude. For example,
the speakerphone works better than any speakerphone i’ve ever
had . and this phone has a very cool and useful feature - the
speakerphone . are both positive and talk about the speakerphone, so we
would consider them redundant. Of course some information is lost through
the elimination of sentences, but the essence of the feature being commented
on positively is preserved and expressed in natural language.

Often, several features are commented upon in the same sentence. Al-
though the user may not be interested in features not mentioned in the
query, we keep the other features. In order to judge if the relevant sentences
obtained thus far contain redundant sets, we first extract features other
than those mentioned in the query from each sentence. This is done using
our pre-compiled list of features via simple pattern matching. Given two re-
dundant sentences, we keep the longer one, unless one of them has already
been judged redundant with another sentence and kept, in which case we
keep it again.

Re-ordering of the remaining sentences. The remaining sentences form
the summary. We group sentences by their attitudes (positive or negative)
and we first present sentences that cover more aspects, i.e. more senten-
ces are redundant with those. The result for our example is presented in
Figure 3.

Within this overall architecture of a system that summarizes customer reviews
based on a query, we mainly focused on the automatic feature extraction that
we describe in sections 5 and 6. The next section presents the corpora used in
the experiments.
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Speakerphone - loud and clear has some nice extra features like currency

converter and a stopwatch. My favorite features, although there are

many, are the speaker phone, the radio and the infrared. The speaker

phone is very functional and I use the phone in the car, very audible

even with freeway noise. [...] The phone book is very user-friendly

and the speakerphone is excellent. The phone has great battery life, fm

radio, excellent signal, hands free speakerphone (which I have to say is

probably my favorite function) and downloadable java apps. [...] Only one

complaint about the speakerphone, you can only activate the speakerphone

feature once the person you are calling answers the phone, not while the

phone is ringing. Great speakerphone and great reception !! recommend!

The speakerphone: People I talk to on the speakerphone are shocked when

the phone comes out at times that I’m even using a speakerphone.

Fig. 2. Excerpts from a summary produced from the query Nokia speakerphone

4 Corpora and Annotation

In our experiments, we used two corpora, see Table 1.

HL corpus created and annotated by Hu&Liu [2] described in Section 2.
SK corpus was compiled for us by Shahzad Khan (PhD candidate at Cam-

bridge University) who wrote a crawler for www.epinions.com. Those re-
views were manually sorted by product.

We first relied on the annotation of the HL corpus and we will present results
of our experiments using it in the next section. Unfortunately, we noted a series

Table 1. The HL and SK corpora: statistics on their size and the description of the
annotations in the HL corpus

Product HL corpus SK
# reviews ≈ # words # reviews ≈ # words

Digital camera 79 235 10605 340
Cellphone 41 235 4511 460
MP3 player 95 340 4042 370
DVD player 99 130 3266 280

314 235 22424 360

Annotation Description

[t] review titles

xxxx[+|−n] xxxx is a product feature
+|− : positive or negative opinion
n strength of the opinion

xxxx[u] the product feature xxxx is not explicitly mentioned

xxxx[p] anaphora resolution is necessary to determine the feature
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of issues in their annotation that interfered with our approach. Some of them
are illustrated by the following examples, all from the first 72 lines of the MP3
player section of the corpus:

– Although implicit features are supposed to be labeled with [u], this is not al-
ways the case: size[-1]##it could be a little bit bigger , but it
’s easy to get used to .

– Sometimes non-features (looking) are extracted: looking[+2]##by the way
, it looks nice also . In this example, looking is not in the sentence
but is not marked [u].

– Features that do not exist are not extracted: ##( i would have apprecia-
ted having a firewire plug , however ). Although future and desired
features have a different status, if people comment on them, they need to be
on the list of features the system knows about.

– Features are sometimes omitted, so if our extractor found them, they would
be counted as errors if we were using this annotation to evaluate it: ##i
probably would have liked to have a player in something other
than silver / metallic ... like the battery adapters on their usb
thumbdrive ( muvo nx ) MP3 player models . (battery adapters not
extracted)
##since the front plate is removable to access the battery com-
partment , aftermarket alternate covers would not be difficult
or expensive to make . (front plate not extracted)

Because of these problems, we also compiled our own list of product features.
We extracted them from the first 777 sentences of the MP3 section of the HL
corpus. Our total was 221 features that we will call the FL (Feiguina and La-
palme) set, as opposed to the HL set extracted from Hu and Liu’s annotation.
To give a numerical comparison, in the HL set, the total number of features
extracted from the whole MP3 section of the corpus (1811 sentences) was only
181.

5 Feature Extraction

The goal of our feature extraction experiments was to extract a set of product
features, as complete and noise-free as possible, from a set of customer reviews
describing a certain product (cellphones, MP3 players, etc).

5.1 Method

Our method is based on the observation that patterns can be found in the way
customers comment on product features. One common pattern is the feature

is adjective (e.g. the speakerphone is great). This approach is intuitive,
requires only a shallow parsing and can make use of large unannotated corpora.

In order to identify useful patterns automatically, we used our annotation
of the MP3 section of the HL corpus presented in section 4 and a terminology
extractor.
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Our terminology extractor, written by Patry and Langlais [7], takes a training
text, a set of term examples extracted from this text by a human and a corpus
to extract new terms from. It then executes the following steps:

1. Perform part-of-speech tagging of the training text, the training terms and
the corpus.

2. Convert the training text to a stream of part-of-speech tags.
3. Learn a language model of terms which represents the most likely part-of-

speech sequences within terms.
4. Use the language model for extracting new term candidates from an unseen

corpus.
5. Score the terms using AdaBoost on other features such as length, frequency

in the corpus, etc.

We used this terminology extractor with the MP3 section of the HL corpus
as training text. We used both the features we extracted manually and the HL
annotation as training terms. In addition to the term, we used the words around
the extracted features.

For example, if from The silver screen is one of the best screens
I’ve ever had. we extracted the feature screen, we would feed to the ter-
minology extractor silver screen or screen is one or silver screen is as
an example of a term depending on the type of context we’re considering. The
corpus to extract from was the unannotated SK corpus for a given product.

The extracted terms were then cleaned from the context. For example, if the
context was WORD TERM WORD (silver screen is), and clear sound is were
extracted, we would then remove the context to get sound. Olga:vérifier le
premier exemple...

5.2 Results

In our experiments, we were limited by the need to evaluate manually the
terms extracted, so we worked with just three types of context: TERM WORD WORD

(screen is one), WORD TERM WORD WORD (silver screen is one), and WORD

WORD TERM (the silver screen) and just one product: (Nokia) cellphones.
The extracted terms were evaluated by the first author only, so the scores

given in table 2 are approximations of the true precision. For some large sets
of terms, we did not evaluate the whole set if the precision stayed the same or
got worse as evaluation went on. Our examination of scores produced by the
terminology extractor showed that they do not help eliminate the non-features
from the list of results.

Our experiments show the potential value of context for feature identification.
We have shown that more elaborate contexts (word term word word give good
accuracy but very low recall; perhaps multiple elaborate contexts can be com-
bined to give a better performance. Of the less restrictive contexts, term word
word performed the best; patterns like term is adj were very fruitful, like we
expected.
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Table 2. Terminology extraction experiments

Training # extracted estimated
corpus context terms precision

HL 12 000 30%
HL word term word 430 55%
HL term word word 810 65%
HL word term word word 53 85%
FL word term word 1200 10%
FL term word word 800 80%
FL word term word word 26 88%

5.3 Future Work

Our experiments show that the approach is promising, but much remains to be
explored. In particular, it would be interesting to try different types of context
and to study the generality of acquired patterns by verifying if patterns learned
from a MP3 player customer reviews can be useful for non-electronics products.
We should also use stricter annotation and evaluation procedures with multiple
people so that inter-annotator and evaluator agreement can be measured.

6 Semantic Grouping of Features

Having extracted product features, it is desirable to group them by semantic
similarity. For example, features related to the screen should be grouped with
the ones related to the display. Moreover, it would be interesting to identify
more distant similarity such as email and messaging. Feature grouping is es-
pecially important given our approach to feature extraction, where features like
color screen and outer screen are extracted: the price for extracting com-
plete features is that there is a multitude of them and many of them are similar.

6.1 Grouping by Salient Words

We carried out two types of preliminary experiments. A first approach was to
group extracted features by words they contain, considering only the words
salient for the domain. We used TF·IDF (Score(word) = frequency in SK corpus
/ frequency in Hansard) to determine the salient words, those whose score was
above an empirically set threshold. Of the 242 words thus found, 100 were in
at least one extracted feature; we will call them ’keywords’. Using keywords to
group the features resulted in groups presented in Table 3.

These groups show that our method allows to group related features such as
color screen and outer screen. Our next goal is to establish links between
groups based on synonymous words, such as screen and display.
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Table 3. Some groupings of features

email email, email feature, short emails, email client, writing

emails

battery battery door, battery time, battery power, battery capacity,

life battery, battery consumption, battery cover, battery

use, battery indicator, rechargeable battery, lithium

battery, battery line, battery meter, actual battery,

polymer battery, big battery, battery life, battery quality,

battery compartment, standard battery, battery level

id id display, caller id, picture id, id screen, id, id feature

favorite personal favorite

microphone external microphone, microphone combo, microphone gain,

microphone quality

ericsson ericsson

charger extra charger, desktop charger, charger connector, car

charger, top charger, charger device, base charger, charger

input, travel charger

6.2 Grouping by Semantic Similarity

To this end, we attemped to use WordNet-based measures of semantic similarity.
We used path, lin, and res similarity measures [6].

As usual when dealing with lexical resources, the first problem to solve was
word sense disambiguation. We implemented a simple algorithm for choosing a
word sense based on its similarity with a set of domain keywords. From the list
of 100 words with high TF·IDF scores that occur in at least one extracted fea-
ture, 12 had only one WordNet sense. They were: {keypad, speakerphone, pda
(personal digital assistant), phonebook, headset, handset, facepl-
ate, voicemail, email, earpiece, messaging, modem}.

The quality of this WSD algorithm, evaluated using 125 words disambiguated
manually, is shown in Table 4.

Table 4. The performance of our word sense disambiguation (WSD) algorithm us-
ing three different measures of semantic similarity, evaluated on 125 words with high
TF·IDF scores

Sim measure WSD precision

path 51%
res 47%
lin 55%

Using this WSD module, we used the following algorithm after having com-
puted the semantic similarity of all feature pairs (if a feature consists of multiple
words, an average over the semantic similarity of all pairs of words is taken).
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– If two keywords have semantic similarity greater than an empirically deter-
mined threshold T , we merge the feature groups of these keywords.

– If a non-grouped feature has semantic similarity greater than T with a key-
word, add it to that keyword’s group.

– If a feature has semantic similarity greater than T with another grouped
feature, add it to all of that feature’s groups.

– If two non-grouped features have semantic similarity greater than T , create
a new group with those features in it.

We iterate over these steps until no further changes are made to maximize
the grouping. The resulting grouping steps were evaluated manually by the first
author. The best performance of about 67% was observed when the measure of
similarity path was used; of the 55 proposed groupings, 27 seemed good to us.
Some examples of the groupings we judged good/bad are as follows:

– Good groupings:
• switch, button (two keywords)
• interior panel, inside panel (two ungrouped features)
• net access, internet (an ungrouped feature and a keyword)
• message system, voice message (an ungrouped feature and a grouped

feature)
– Bad groupings:

• device, alarm (two keywords)
• list, menu (an ungrouped feature and a keyword)
• input system, message system (an ungrouped feature and a grouped

feature)

Although the good groupings look promising, there is a number of necessary
improvements to eliminate the bad ones. Many bad groupings are the result of
hyponyms and hypernyms getting high semantic similarity scores (e.g. device
and alarm). As neither path nor res/lin take into account this issue, they all
do poorly at grouping features. The fact that path is somewhat better does not
seem related to its ability to take into account hypernym/hyponym relationships.
These bad groupings could be handled by creating a special measure of semantic
similarity where such relationships between words receive a lower score. Alter-
natively, a clustering algorithm more sophisticated than our threshold-based one
should be investigated. Although the groupings generated by our algorithm are
not enough for automatic ontology construction, they offer a great start to a
human ontology engineer.

7 Future Work

An interesting extension to add to our architecture would be a cooperative anal-
ysis such as the one proposed by Benamara and St-Dizier [8] to ensure that
the initial query is coherent, i.e. that the product or the features really relate
to the right manufacturer. This would imply some consistency checks with a
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database of products with their set of features and their manufacturer. This
type of database is already present for other aspects of these types of customer
sites.

We have done experiments only with electronics related products for which
our patterns seemed to apply, but it would be interesting to apply them to
comments on other types of products or on bigger corpora to see how such
an approach would scale up. It would be even more challenging to test these
summaries with humans or compare them with the current types of summaries
found on consumer web sites.

8 Conclusion

We have shown in this paper how to organize consumers’ comments based on an
automatic term extraction mechanism and a grouping around issues that were
deemed relevant in these comments. Of course, it remains to be seen if such
a type of organization is really useful for consumers. To our knowledge, this
work is the first attempt to produce natural language summaries for this type
of texts. We have shown that although these free comments are written by non
specialists, they seem to use similar text pattern that allowed us to identify the
mains points described by these texts, to regroup similar texts while removing
the ones that merely repeat already reported information.
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Abstract. This paper continues the line of research on the representa-
tion and compilation of propositional knowledge bases with propositional
directed acyclic graphs (PDAG), negation normal forms (NNF), and bi-
nary decision diagrams (BDD). The idea is to permit variables with more
than two states and to explicitly represent them in their most natural
way. The resulting representation languages are analyzed according to
their succinctness, supported queries, and supported transformations.
The paper shows that most results from PDAGs, NNFs, and BDDs can
be generalized to their corresponding multi-state extension. This implies
that the entire knowledge compilation map is extensible from proposi-
tional to multi-state variables.

1 Introduction

Boolean functions play a crucial role in many areas of computer science and
mathematics, most notably in Artificial Intelligence, digital system design, for-
mal verification, mathematical logic, reliability theory, and combinatorial
optimization. They are fundamental whenever knowledge is represented by prop-
ositional variables, i.e. through a set of possible states in the corresponding
multi-dimensional Boolean space.

In practice, working with Boolean functions presupposes efficient ways to rep-
resent them. Among the existing approaches for representing Boolean functions
are truth tables, Karnaugh maps, sum-of-products such as DNFs or prime im-
plicants, product-of-sums such as CNFs or prime implicates, and most notably
binary decision diagrams (BDD) [1,2,3], negation normal forms (NNF) [4,5],
propositional directed acyclic graphs (PDAG) [6], and all their derivatives. Some
of these forms are known to be impractical, as they impose representations of
exponential size for most possible r-ary functions [7], but many BDD, NNF, and
PDAG forms provide polynomial representations at least for many functions.

The restriction of these techniques to propositional variables does not en-
tirely meet the requirements of real-world models, which are often not limited
to Boolean variables. For example, the possible states of a traffic light (in most
parts of the world) are red, yellow, and green. At a particular time, the traffic
light is in exactly one of these states. We will use the following terminology to
distinguish the different types of variables: propositional, Boolean, or binary vari-
ables have exactly two states, non-binary variables have more than two states,
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and multi-state variables have two or more states.1 In addition, we suppose that
each (binary, non-binary, or multi-state) variable has a unique (but typically
unknown) true state.

Multi-state variables have been discussed in the literature of decision diagrams
[10], where multivalued decision diagrams (MDD) arise as an extension of BDDs
to multi-state variables. They are an alternative to the usual replacement of
multi-state variables by �log2 �� Boolean variables, where � denotes the number
of possible states. In this way, MDDs can be transformed into BDDs with a linear
growth in size, which relativizes the benefits of MDDs over BDDs, especially if
� is small. The conclusion in [10] is the following:

“MDDs are useful if the considered function has a natural description
with multivalued variables.” [10, Section 9.1, page 216]

In applications of NNFs, especially in the contexts of probabilistic reasoning,
Bayesian networks, and model counting [11,12,13], it is common to use similar
Boolean encodings for multi-state variables. These encodings typically use � (or
�−1) auxiliary Boolean variables, i.e. one for each state (except for the last one).
The exclusivity and exhaustiveness of these auxiliary variables requires explicit
representations of corresponding exclusive ORs, which is a non-negligible over-
head, especially if � is large. Another problem of these Boolean encodings is the
computation of probabilities, if independent probability mass functions are given
for all multi-state variables. The core of the problem is the fact, that the auxil-
iary Boolean variables are no longer independent. It is possible to overcome this
difficulty by transforming the given probabilities into conditional probabilities
[11,12], but the existing solutions are rather cumbersome.

If we decide to work with multi-state variables from the beginning, these
problems all disappear, including the one of selecting an appropriate Boolean
encoding. The goal of this paper is thus to modify the existing PDAG, NNF,
and BDD languages to multi-state variables (unless it is not yet done elsewhere).
We will show that most theoretical results remain valid. In this way, we add an
additional dimension to the knowledge compilation map promoted in [5,6].

The remainder of this paper is organized as follows. In Sect. 2, we extend the
definition of PDAGs to multi-state variables, compare the resulting multi-state
directed acyclic graphs (MDAG) with PDAGs, and finally define different MDAG
sub-languages. In Sect. 3, some theoretical results about the succinctness, the
supported queries, and the supported transformations of PDAGs are generalized
to MDAGs. Section 4 concludes the paper.

2 Multi-state Directed Acyclic Graph

Let V = {V1, . . . , Vr} be a set of r variables and suppose that ΩVi denotes the
finite set of states of Vi. A finite indicator function f is defined by f : ΩV → B,
1 To outline the difference to multivalued or many-valued logics, where logical sen-

tences are mapped into more than two truth values [8,9], we prefer to use the term
’multi-state’ instead of ’multivalued’ or ’many-valued’.
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where ΩV = ΩV1 × · · · × ΩVr and B = {0, 1}. To emphasize the fact that f is a
mapping from the Cartesian product ΩV1 × · · · ×ΩVr to {0, 1}, we will call it a
Cartesian indicator function (CIF). The so-called satisfying set Sf = {x ∈ ΩV :
f(x) = 1} = f−1(1) of f is the set of r-dimensional vectors x ∈ ΩV for which
f evaluates to 1. Special cases of finite CIFs are Boolean functions (BF), where
ΩVi = B, and therefore ΩV = B

r.
The most general forms for representing BFs are PDAGs. As shown in [6],

the well-known NNFs, BDDs, and their derivatives correspond to subsets of
PDAGs. While multivalued decision diagrams (MDD) have been proposed as an
extension of BDDs to multi-state variables in the context of decision diagrams
[10], there is no such extension for NNFs or PDAGs. PDAGs, and therewith
NNFs, will be extended to multi-state variables below. We will see that the
resulting language also includes the existing MDDs. As in the case of PDAGs and
NNFs, the representation we propose here is based on directed acyclic graphs,
but now we impose some particularities.

Definition 1. A multi-state DAG (MDAG) is a rooted directed acyclic graph,
where:

1. Leaves are represented by � and labeled with � (true), ⊥ (false), or X=x,
where X ∈ V is a variable and x ∈ ΩX is one of its states;

2. Non-leaves are represented by � (logical and), � (logical or), or ♦ (logical
not). �- and �-nodes have at least one child, ♦-nodes have exactly one child.

In a MDAG, each node α represents a finite CIF fα by

fα =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∧
i=1

fβi =
t

min
i=1

fβi , if α is an �-node with children β1, . . . , βt,

t∨
i=1

fβi =
t

max
i=1

fβi , if α is an �-node with children β1, . . . , βt,

¬fψ = 1− fψ, if α is a ♦-node with the child ψ,
1, if α is a �-node labeled with �,
0, if α is a �-node labeled with ⊥,

fX=x, if α is a �-node labeled with X=x,

where fX=x(x) with x ∈ ΩV is defined by

fX=x(x) =

{
1, if x is the corresponding value of X in x,

0, otherwise.

The MDAG depicted in Fig. 1 represents the finite CIF f = ([Y =y1]∧ [X=x1])∨
([Y =y2] ∧ ¬[X=x2]) ∨ ([X=x2] ∧ [Y =y3]). Note that with this, ΩX and ΩY are
not necessarily restricted to {x1, x2} and {y1, y2, y3} from the beginning.

Formally, we will write MDAGV for the set of all possible MDAGs with respect to
V. We follow the view from [5,6] and call MDAGV a language. When no confusion
is anticipated, we omit the reference to the set V, i.e. we simply write MDAG
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Y =y3X=x1Y =y1 Y =y2 X=x2

ϕ

Fig. 1. The finite CIF f represented as the MDAG ϕ

instead of MDAGV and Ω instead of ΩV. Our convention is to denote MDAGs
by lower-case Greek letters such as ϕ, ψ, or the like. Remember that any node
α included in a MDAG ϕ defines its own (sub-) MDAG, and is thus another
element of MDAG.

The number of edges of ϕ ∈ MDAG is called its size and is denoted by |ϕ|.
MDAGs are called binary, if no �- or �-node has more than two children. The
set of variables included in a sub-MDAG α of ϕ is denoted by vars(α). The
path-length of a path from the root to a leave is the number of edges minus
the number of ♦-nodes along the path. The height of ϕ, denoted by h(ϕ), is its
maximal path-length. Note that these concepts (size, binary, vars, path-length,
height) have the same meaning for PDAGs.

Any finite CIF can be represented by a MDAG, so the MDAG language is
complete. On the other hand, MDAGs are not canonical, i.e. we may have several
equivalent MDAGs representing the same finite CIF. Two MDAGs ϕ, ψ ∈ MDAG
are equivalent, denoted by ϕ ≡ ψ, iff fϕ(x) = fψ(x) for all x ∈ Ω. Furthermore,
ϕ entails ψ, denoted by ϕ |= ψ, iff fϕ(x) ≤ fψ(x) for all x ∈ Ω. In terms of their
satisfying sets, Sfϕ = Sfψ

means equivalence and Sfϕ ⊆ Sfψ
entailment. Again,

both equivalence and entailment have the same meaning for PDAGs.

2.1 Sub-languages

We will now turn our attention to some sub-languages of MDAG. The classification
of sub-languages is done according to the following properties, which are based
on the ones given in [5,6]:

1. Decomposability: the sets of variables of the children of each �-node α in ϕ
are pairwise disjoint (i.e. if β1, . . . , βn are the children of α, then vars(βi) ∩
vars(βj) = ∅ for all i �= j);

2. Determinism: the children of each �-node α in ϕ are pairwise logically con-
tradictory (i.e. if β1, . . . , βn are the children of α, then Sfβi

∩ Sfβj
= ∅ for

all i �= j);

3. No-Negation:2 ϕ does not contain any ♦-node;
2 No-negation corresponds to simple-ngeation in [5,6].
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ν1 νtX=x1 X=xt

X

x1 xt

ν1 νt

· · ·

· · ·

· · ·

· · ·

MDAG
DD

Fig. 2. A decision node X with ΩX = {x1, . . . , xt} and its decision structure. νi are
further nodes of the DD, resp. MDAG.

4. Flatness : h(ϕ) ≤ 2;

5. Simple-Conjunction: the children of each �-node α in ϕ are leaves without
any common variable (i.e. α is a proper term),

6. Simple-Disjunction: the children of each �-node α in ϕ are leaves without
any common variable (i.e. α is a proper clause);

7. Smoothness : the children of each �-node α in ϕ include the same set of
variables (i.e. if β1, . . . , βn are the children of α, then vars(βi) = vars(βj)
for all i �= j).

Note that smoothness is not that important from a complexity viewpoint, unless
we have flatness [5]. We will not further discuss smoothness in this paper. Simple-
disjunction and simple-conjunction are characteristic for classical forms such as
CNFs, DNFs, prime implicates, etc.

In addition to the basic properties above, we also consider some properties
of decision diagrams (DD). According to [10,14], a decision diagram consists
of non-leaves, so-called decision nodes, and leaves, so-called terminals. Decision
nodes are represented by ©, labeled with X ∈ V, and have outdegree |ΩX |, see
left part of Fig. 2. In addition, Fig. 2 shows the one-to-one mapping between a
decision node and its MDAG representation, called decision structure. Terminals
are represented by � and labeled with 1 or 0 in decision diagrams, resp. with �
or ⊥ in MDAGs.

8. Decision: ϕ contains only decision structures and terminals.

9. Read-once: each path from the root to a terminal contains at most one
decision node/structure for each variable X ∈ V;

10. Ordering: on each path from the root to a leaf, the occurrence of decision
structures respects a total ordering on V;

11. π-Ordering: on each path from the root to a leaf, the occurrence of decision
structures respects the globally specified ordering π on V.

The sub-languages of MDAG are defined via these properties in the same way as
sub-languages are defined for PDAG [6]. Table 1 shows MDAG and some of its most
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MDAG

c-MDAGd-MDAG n-MDAG f-MDAG

fn-MDAGdn-MDAGcd-MDAG cn-MDAG

cdn-MDAG

MDNF

d-MDNF

MCNF

MPIMIP

MMODS

MDD

FMDD

OMDD

π-OMDD

Fig. 3. Sub-language relationships for MDAG. An edge L1 → L2 indicates that L1 is a
sub-language of L2.

important sub-languages. Note that this table is far from being complete. We
use c, d, f, and n to indicate that the properties decomposability, determinism,
flatness, and no-negation hold. Figure 3 shows how the languages are related in
terms of set inclusion.

2.2 MDAGs vs. PDAGs

In this subsection, the usage of MDAGs and PDAGs will be compared. For this
purpose, we will first examine the special case of BFs, before considering the
general case of finite CIFs. The reader may skip this subsection, if the interest
is primarily on MDAGs.

Formally, PDAGs are almost like MDAGs, except that leaves are represented
by © and labeled with � (true), ⊥ (false), or X , where X ∈ V is a Boolean
variable with ΩX = {0, 1} [6]. The language of all possible PDAGs is denoted
by PDAG. The left hand side of Fig. 4 depicts a PDAG ψ with fψ = (¬[X=1] ∧
[Y =1]]∨([X=1]∧¬[Y =1]). Leaves labeled with � (⊥) represent the constant BF
which always evaluates to 1 (0). A leaf labeled with the propositional symbol X
is interpreted as the assignment X=1, i.e. it represents the BF which evaluates
to 1 iff X = 1. All other nodes (�, �, ♦) have the same meaning as for MDAGs.

From a PDAG ψ representing a BF f , we obtain an MDAG ϕ representing the
same BF f by simply replacing ©-nodes labeled with X by �-nodes labeled with
X=1, as shown in Fig. 4. Conversely, i.e. to obtain a PDAG ψ from a MDAG
ϕ, �-nodes labeled with X=1 are replaced by ©-nodes labeled with X , and
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YX

ψ

X=1 Y =1

ϕ

Fig. 4. The BF f represented by a PDAG ψ and a MDAG ϕ

�-nodes labeled with X=0 are replaced by ♦-nodes, whose children are ©-nodes
labeled with X .

Proposition 1. For every PDAG ψ, there is an equivalent MDAG ϕ with
|ψ| = |ϕ|. Similarly, for every MDAG ϕ representing a Boolean function, there
is an equivalent PDAG ψ with |ϕ| ≤ |ψ| ≤ |ϕ|+ r.

To represent CIFs by PDAGs, we need ways to transform them into BFs, i.e.
each multi-state variable has to be replaced by auxiliary Boolean variables.

Decision Diagrams: Each multi-state variable can be replaced by d = �log2 ��
auxiliary Boolean variables, where � denotes the number of possible states
[10]. For each decision node in the MDD, this replacement induces a tree-
shaped decision diagram of depth d and with l − 1 binary decision nodes.
Figure 5 depicts the decision diagram for the multi-state variable X with
ΩX = {x1, x2, x3, x4} and its replacement with the auxiliary variables X1

and X2, i.e. for d = 2 and � = 3.
In [10], it is argued that this encoding corresponds to a linear transforma-

tion with a small constant. This argument is used to put the usefulness of
MDDs into question. Such a conclusion is partly valid from a purely logical
point of view and for small �, but it does no longer hold when � is large
or when MDAGs are used to compute probabilities. In the latter case, the
Boolean variables used to replace a multi-state variable are no longer inde-
pendent, which disallows the classical method of probability computation.
One way to overcome this is to derive respective conditional probabilities
and to attach them to the edges as depicted in Fig. 5. This shows that the
variable X2 depends on X1. Since the outgoing edges of the X2 node have
different probabilities, this is like using �− 1 new variables.

PDAGs and NNFs: In this context, the probabilities are attached to the vari-
ables. In our example, we would have to attach two different conditional
probabilities to X2, which is impossible. An obvious alternative replacement
considers each decision node of the decision diagram as an auxiliary variable,
i.e. l−1 variables in total, where the probabilities of the variables correspond
to the probabilities attached to the edges. This is essentially the replacement
proposed in [13].
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X=x1 X=x2 X=x3 X=x4

p1 + p2

p1

p1 + p2

p2

p1 + p2

p3

p3 + p4

p4

p3 + p4

p3 + p4

X=x1 X=x2 X=x3 X=x4

X

p1 p2 p3 p4

x3 x4x2x1

X1

X2 X2

1 0

1 0 1 0

Fig. 5. Decision diagram for variable X and its replacement. The labels of the edges
correspond to states and (conditional) probabilities.

An alternative replacement considers each state of a multi-state variable
as a binary variable. This requires the explicit inclusion of an exclusive or
over these auxiliary variables [11,12]. In this way, the switch to conditional
probabilities is not necessary, but still the computation of probabilities be-
comes more difficult. A possible solution is to do some sort of weighted model
counting, where the probabilities are attached to the leaves only, and their
negations get the constant value 1.

The size of the different replacements and the additional effort strengthens our
conclusion, namely that multi-state variables are useful and should be used, not
encoded.

3 Succinctness, Queries and Transformations

The crucial properties of a language are its succinctness and the sets of queries
and transformations supported in polynomial time. Depending on the applica-
tion, we may come up with a set of queries and transformations, which the
chosen language should support in polynomial time. If more than one language
qualifies, the most succinct language provides the most compact representation.
This is then the most appropriate language for the considered application.

In the following analysis of the MDAG language family, we will try to generalize
as many results as possible from corresponding PDAG languages.

3.1 Succinctness

With respect to two languages L1 and L2, the intuitive idea of succinctness is to
figure out whether finite CIFs are represented more compactly by elements of
L1 or by elements of L2. The following definition corresponds to the one given in
[5,6].

Definition 2. Let L1 and L2 be two languages. L1 is equally or more succinct
than L2 (or L1 is at least as succinct as L2), denoted by L1 � L2 iff for every
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ϕ2 ∈ L2, there is a ϕ1 ∈ L1 such that ϕ1 ≡ ϕ2 and |ϕ1|,the size of ϕ1, is
polynomial in |ϕ2|, the size of ϕ2.

The relation � is clearly reflexive, anti-symmetric, and transitive, i.e. it defines
a partial order over all possible subsets of MDAG. Two languages L1 and L2 are
called equally succinct, denoted by L1 ≡ L2, iff L1 � L2 and L2 � L1. The language
L1 is called strictly more succinct than L2, denoted by L1 ≺ L2, iff L1 � L2 and
L2 �� L1. They are incomparable, iff L1 �� L2 and L2 �� L1.

To generalize the succinctness results of PDAGs to MDAGs, let LP1, L
P
2 be

two different PDAG sub-languages and let LM1, LM2 be their corresponding MDAG
sub-languages (see Table 1). The following proposition is direct consequence of
Proposition 1.

Proposition 2. LP1 �� LP2 ⇒ LM1 �� LM2 (≡ LM1 � LM2 ⇒ LP1 � LP2).

Proving the converse, i.e. LP1 � LP2 ⇒ LM1 � LM2, is more difficult. Although this
proof is missing in general, most of the results can be transfered, since only two
methods are used to proof LP1 � LP2:

– Sub-language relationships: if LP2 is a sub-language of LP1, then LP1 � LP2 holds
trivially. The corresponding languages LM1, L

M
2 have of course the same sub-

language relationship. Thus, LM1 � LM2 holds.
– Providing an algorithm that obtains ϕP1 ∈ LP1 from ϕP2 ∈ LP2 while meeting

the size restriction. Taking a closer look at these algorithms reveals that
they can be adapted to multi-state variables, i.e. ϕM1 ∈ LM1 is obtainable from
ϕM2 ∈ LM2 while meeting the size restriction. Thus, LM1 � LM2 holds.

In this sense the succinctness relation between LM1, L
M
2 matches the succinctness

relation between LP1, LP2 as given in [5,6].

3.2 Queries

A query is an operation that returns information about a MDAG represent-
ing a finite CIF without changing it. Among the important queries for finite
CIFs are: consistency (CO) or satisfiability (SAT), validity (VA), clause entail-
ment (CE), term implication (IM), sentential entailment (SE), equivalence (EQ),
model counting (CT), model enumeration (ME), counter-model enumeration (MEC),
probabilistic equivalence (PEQ), and probability computation (PR).

If a language supports a query in polynomial time with respect to the size of
the PDAG(s)/MDAG(s) (in the case of model or counter-model enumeration,
the reference size is both the size of the PDAG/MDAG and size of the satisfying
set or its compliment), we simply say that it supports this query. In the following,
let LM be a MDAG sub-language, LP be the corresponding PDAG sub-language, and
Q be a query. A direct consequence of Proposition 1 is: If Q is supported by LM,
then Q is supported by LP. Or equivalently:

Proposition 3. If Q is not supported by LP, then Q is not supported by LM.
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Unfortunately, the converse, i.e. (LP supports Q)⇒ (LM supports Q), is not proofed
in general. However, it is easy to proof it for the languages given in Table 1. If Q
is supported by a language L, it is also supported by the sub-languages of L, i.e.
it is enough to consider the algorithms of the super-languages. Furthermore, it
is sufficient to consider Q ∈ {CO, IM, CT, EQ, SE} due to the correlations between
the queries, see [6] for details.

In this sense the supported queries of LM matches the supported queries of LP

as given in [5,6].

3.3 Transformations

A transformation is an operation that returns a MDAG representing a modified
finite CIF. The new MDAG is supposed to satisfy the same properties as the
language in use. Let’s consider the following transformations: term conditioning
(TC), forgetting (FO), singleton forgetting (SFO), conjunction (AND), binary con-
junction (AND2), disjunction (OR), binary disjunction (OR2), and negation (NOT).

Note that conditioning, denoted by ϕ|[X=xi], includes the implicit exclusive
or. This means the leaf labeled with X=xi is replaced by the leaf labeled with
� and, in addition, leaves labeled with X=xj , j �= i, are replaced by the leaf
labeled with ⊥.

If a language supports a transformation in polynomial time with respect to
the size of the PDAG(s)/MDAG(s), we simply say that it supports this transfor-
mation. In the following, let LM be a MDAG sub-language, LP be the corresponding
PDAG sub-language, and T be a transformation. Another direct consequence of
Proposition 1 is: If T is supported by LM, then T is supported by LP. This is
equivalent to:

Proposition 4. If T is not supported by LP, then T is not supported by LM.

Once more, proving the converse, i.e. (LP supports T) ⇒ (LM supports T), is an
open task. Nevertheless, the results can be generalized, since the proof for LP

supporting T can be adapted to LM. Therefore, we have to consider the proof
of Proposition 5.1 in [5], but only the parts were a language LP supports a
transformation T. These proofs can be extended to hold also for LM. In this sense
the set of transformations supported by LM matches the set of transformations
supported by LP as given in [5,6].

4 Conclusion

By allowing multi-state variables, this paper extends the family of graph-based
languages for representing BFs to the corresponding family of graph-based lan-
guages for representing finite CIFs. Our main result is the observation, that
properties w.r.t. succinctness, supported queries, and supported transformation
are inherited, i.e. the mostly entire knowledge compilation map is extensible from
propositional to multi-state variables. This allows us to avoid the usual approach
of transforming the given CIF into a BF and the resulting linear growth.
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Abstract. Large document collections, such as those delivered by Inter-
net search engines, are difficult and time-consuming for users to read and
analyse. The detection of common and distinctive topics within a docu-
ment set, together with the generation of multi-document summaries, can
greatly ease the burden of information management. We show how this
can be achieved with a clustering algorithm based on fuzzy set theory,
which (i) is easy to implement and integrate into a personal information
system, (ii) generates a highly flexible data structure for topic analysis
and summarization, and (iii) also delivers excellent performance.

1 Introduction

Information seekers nowadays are typically overwhelmed with the multitude of
documents available for any given topic online. Whereas information retrieval
(IR) is adequately covered by modern Internet search engines, the user is mostly
left alone with the task of sifting through the resulting set of documents. Deliv-
ering automated tools for the analysis, filtering, and pre-processing of natural
language texts is an important next step in personal information management.

In this paper, we provide a fuzzy clustering algorithm for the analysis of doc-
ument collections, as they could have resulted from a query posed to an Internet
search engine or an intranet document server. We show how both common and
distinctive topics of such a document set can be detected, which is far more infor-
mative than simple keyword extracts. Additionally, the data structure computed
by our algorithm allows for the generation of several types of multi-document
summaries, including a context-sensitive one. Such summaries, typically between
100 and 350 words, are more easily scanned by a human; cross-linked with the
original documents they further aid a user in quickly determining relevant topics
and help in deciding which documents are a good candidate to read in full.

Our research is significant for several reasons: (1) We provide a flexible, adap-
tive, context-sensitive algorithm for the analysis of natural language document
collections, which is easy to implement and integrate into information systems,
thereby substantially improving information management for users; (2) We show
how fuzzy set theory can be applied to natural language processing (NLP), which
adds robustness, ease of deployment, and flexibility to our approach, while at
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c© Springer-Verlag Berlin Heidelberg 2007



Fuzzy Clustering for Topic Analysis and Summarization 477

the same time allowing for further transfer of ideas and algorithms from the field
of soft computing to information management; (3) We show how to generate a
highly flexible data structure that can be used to generate multiples types of
condensed information displays that can also adapt to a user’s current context;
and (4) Results from large-scale evaluations on data from the international Doc-
ument Understanding Conference (DUC) competition prove our approach to be
highly competitive with current summarization systems.

The remainder of this paper is structured as follows: in the next section,
we describe the preprocessing needed to provide the input required by our algo-
rithm. Section 3 describes our contribution, the cluster algorithm. Some possible
applications of the generated data structure, including topic detection and sum-
marization, are outlined in Section 4. An evaluation of our approach, based on
data and methods from the NIST-sponsored DUC competition, is presented in
Section 5. Section 6 discusses related work, followed by conclusions in Section 7.

2 Preprocessing

Before we can describe our main fuzzy clustering technique, we have have to
discuss some preprocessing steps needed to generate the required input data
structures: noun phrase (NP) chunks and fuzzy coreference chains. Additionally,
this section provides a first introduction to the idea of applying fuzzy set theory
[1] to natural language processing.

2.1 Noun Phrases

All documents first undergo basic NLP preprocessing, including tokenization,
sentence splitting, and part-of-speech (POS) tagging, which in our implementa-
tion is performed within the open source GATE (General Architecture for Text
Engineering) framework.1

Noun phrases, i.e., determiner/modifier/head triples, are then computed as
the main input to the following coreference resolution step. Here, we assume
minimal (base) NPs, without prepositional or other attachments. Our NPs are
computed by the MuNPEx chunker2 based on part-of-speech tags and additional
entity-specific grammar rules. However, since for the purpose of cluster-based
coreference resolution it does not matter how NPs have been computed, an
algorithm based on a full parse would work equally well.

2.2 Fuzzy Coreferences

Our technique is based on grouping NPs into fuzzy coreference chains. Our ap-
proach for coreference resolution is based on fuzzy set theory as the underlying

1 For more detail on these steps, we refer the reader to the GATE user’s guide at
http://gate.ac.uk/sale/tao/index.html

2 Multi-lingual Noun Phrase Extractor (MuNPEx), http://www.ipd.uka.de/

~durm/tm/munpex
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formal representation. For the purpose of this paper, we will only give a brief
outline of fuzzy coreference resolution. A detailed description of our algorithm
is available in [2, 3].3

Fuzzy coreference resolution groups entities (typically NPs) into fuzzy coref-
erence chains. Each chain contains all textual descriptions that refer to the same
entity (e.g., in a text, the three descriptions “Luke Skywalker,” “he,” and “the
young Jedi” might refer to the same person). The central idea behind using
fuzzy set theory is the uncertainty inherent in natural language processing: even
for a human reader, it is not always certain whether two NPs really refer to
the same entity; employing fuzzy sets allows a soft computing approach where
this uncertainty is represented explicitly, rather than making decisions based on
(often arbitrary) hard thresholds.

Fuzzy Coreference Chains. Fuzzy coreference chains link entities, which are
typically represented by noun phrases (NPs). In this paper, we denote the set
of all noun phrases within a text with the (crisp) set NP = {np1, . . . , npm}, i.e.,
there are m noun phrases within a document. A single fuzzy chain C is then
represented by a fuzzy set μC , which maps the domain of all noun phrases NP
to the [0, 1]-interval: μC : NP → [0, 1]. Thus, each noun phrase npi ∈ NP has
a membership degree μC(npi), indicating how certain this NP is a member of
chain C. The membership degree for a single noun phrase μC(npi) ∈ [0, 1] is
interpreted in a possibilistic fashion: a value of 0.0 (“impossible”) indicates that
the NP cannot be a member of chain C, a value of 1.0 (“100% possibility” or
“certain”) means that none of the available information indicates that the NP is
not in the chain, intermediate values represent different degrees of compatibility
of a noun phrase with the chain.
Example (fuzzy coreference chain). Fig. 1 shows an example for a fuzzy corefer-
ence chain Ci. Here, the noun phrases np3 and np6 have a very high possibility
for belonging to the chain, np1 only a medium possibility, and the remaining
NPs are most likely not chain members.

Fuzzy Coreference Chain Ci
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Fig. 1. Fuzzy chain Ci with membership grades for each noun phrase

The output of a fuzzy coreference algorithm is a set of fuzzy coreference chains,
similarly to classical coreference resolution systems. Each chain holds all noun
3 Additionally, [4] provides an overview of different coreference algorithms, including

an independent implementation and evaluation of our approach (albeit not using
fuzzy sets, i.e., a crisp implementation).
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phrases that refer to the same conceptual entity. However, unlike for classical,
crisp chains, we do not have to reject inconsistent information out of hand, so
we can admit a noun phrase as a member of more than one chain, with different
degrees of certainty for each. This provides an explicit representation of the
uncertainty that is so common in natural language analysis.

Fuzzy chains can be converted to crisp chains using a defuzzification function,
which allows downstream language analysis components that are not fuzzy-aware
to use results of a fuzzy algorithm.

Fuzzy Coreference Resolution. Fuzzy chains are constructed through (usu-
ally knowledge-poor) fuzzy heuristics. Typical features used within our heuristics
are head noun, gender, or position.

Our fuzzy coreference algorithm is essentially a single-link hierarchical clus-
tering strategy. It initially creates one fuzzy chain for each NP, which forms its
medoid (for example, in Fig. 1, np6 is the chain’s medoid). We then compute the
degree of coreference between all NP pairs within a text, each degree normalized
to a fuzzy value in the [0, 1]-interval. Each fuzzy degree can be interpreted as a
distance between the medoid and the co-refering NP; it is added to every chain
using standard fuzzy set operators. For example, in Fig. 1, at least one fuzzy
heuristic must have determined a fuzzy coreference degree of 0.8 for (np6, np3).

Finally, all chains are merged using a prescribed consistency degree γ. Merg-
ing combines compatible chains into merged chains (or NP clusters) using the
coreference properties of symmetry and transitivity. The merge degree γ influ-
ences the size of the chains, and in effect, their precision and recall. A degree
of 0 would merge all NPs into a single (yet useless) chain, while a value of 1
would lead to chains of the best possible precision, leaving out uncertain links
and thereby resulting in more singletons (and lower recall).

The process of merging is now repeated for each possible value of γ ∈
{γ1, . . . , γn},4 leading to a family of coreference chains, a set of sets of chains:
C = {Cγ1

1 , . . . , Cγn
n }. Note that a similar result can be obtained with a non-fuzzy

coreference clustering strategy.
For the purpose of our algorithm described in the next section it is important

that the individual chains exhibit monotonicity, that is, if two entities are linked
within a chain of a specific certainty γi, they must also be linked in all chains of
lower certainty γj ≤ γi.

We use the same algorithm to create both inter- and intra-document corefer-
ence chains, only the number of enabled heuristics and various parameters differ
for each. The end results are two families of coreference chains, one for intra-
and one for inter-document coreferences.5

4 Since fuzzy sets are stored in horizontal representation through a set of α-cuts,
with [μ]α = {ω ∈ Ω|μ(ω) ≥ α}, the merge degree γ can only assume a finite
number of different values, which typically correspond to the α-cut levels (e.g., α ∈
{0.2, 0.4, 0.6, 0.8, 1.0}).

5 Cross-document chains do not contain links between NPs of the same document,
since these links have already been computed by the intra-document step.
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3 Fuzzy Coreference Graph Clustering

In this section, we describe our main contribution, a fuzzy coreference cluster
graph algorithm that builds the data structure needed for identifying topics in
document sets and constructing various types of summaries. This algorithm takes
as input the intra- and inter-document coreference chain families computed by a
coreference algorithm under different (fuzzy) clustering thresholds as described
in the previous section.

The first step is the construction of an initial fuzzy coreference cluster graph,
as described in Section 3.1 below. Our clustering algorithm, described in Sec-
tion 3.2, then works on this data structure, computing clusters that can be
used to create several kinds of condensed information displays, including multi-
document summaries (Section 4).

Essentially, two kinds of clusters are created by our algorithm: common clus-
ters that contain NPs from two or more documents, and distinctive clusters that
contain NPs from one document only. In other words, each cluster determines
a topic that can be tracked through the different documents: some topics span
all documents (common topic), some topics only occur in a subset or a single
document (contrastive/distinctive topic).

3.1 Cluster Graph Initialization

A fuzzy coreference cluster graph is an undirected, weighted graph with entities
(typically NPs) as nodes and weighted coreferences between these entities as
edges. Essentially, it folds both inter- and intra-document coreference chains into
one data structure that can then be traversed by the clustering algorithm. Thus,
the algorithm’s input are the intra- and inter-document coreference families,
computed by one of the standard coreference clustering algorithms:

Input (cluster graph initialization). Input to the cluster initialization step is a
set of sets of coreference chains C = Cinter ∪ Cintra with the inter-document chains
Cinter = {Cγ1

1 , . . . , Cγn
n } and the intra-document chains Cintra = {Cγ1

n+1, . . . , C
γn

2n}.
Note that each coreference chain Cγ

i contains again a set of sets of NPs, where
all NPs within a subset c ∈ C corefer with a fuzzy certainty degree of γ. We can
now create the initial cluster graph.

Definition (initial cluster graph). An initial cluster graph G = (V, E) is con-
structed from the intra- and inter-document coreference families as follows. The
set of graph nodes V is given by the set containing all NPs from all documents.
The set of edges is derived from the set C containing both intra- and inter-
document coreference families by iterating through all coreferences C ∈ C. For
each chain c ∈ C, we then iterate through all the entities (npi, npj) within that
chain and create one edge of weight γ between them. The complete algorithm is
shown in Fig. 2. Note that we treat coreferences as links, that is, for a coreference
chain cγi = {np1, np2, np3} we add two edges with weight γ to the graph, one
between np1 and np2 and one between np2 and np3.
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Require: Set of coreference families C,
graph G

1: for all C ∈ C do
2: for all c ∈ C do
3: for i=1 to |c| − 1 do
4: npi ← c.get(i);
5: npj ← c.get(i+1);
6: if e=(npi, npj) ∈ E then
7: γ ′ ← max(Cγ , eγ);
8: updateEdge(npi, npj , γ ′);
9: else

10: addEdge(npi, npj , Cγ);

Fig. 2. Cluster Graph Initialization Fig. 3. Initialized fuzzy cluster graph

Example (initial cluster graph). Consider three documents d1, d2, d3 with two
coreference families (inter- and intra-document), containing three coreference
sets each for γ ∈ {0.6, 0.8, 1.0}:6

Cinter = {C1, C2, C3}, Cintra = {C4, C5, C6}
With the inter-document chains C1, C2, C3:

C1 = {{np3, np6}, {np1, np4, np7}, {np2, np9}}
C2 = {{np3, np6}, {np1, np4}, {np2, np9}}
C3 = {{np1, np4}, {np2, np9}}

and the intra-document chains C4, C5, C6:
C4 = {{np3, np4, np5}, {np8, np9}}
C5 = {{np3, np4, np5}, {np8, np9}}
C6 = {}

Fig. 3 shows the resulting initial cluster graph. Intra-document coreference chains
are drawn horizontally (in red), while cross-document chains (in black) are dis-
played from top to bottom. Each edge in the graph is labeled with the fuzzy
certainty value of the coreference; in the example, np4 and np5 corefer with a
certainty of 0.8, while np4 and np7 corefer with a certainty of 0.6.

3.2 The Clustering Algorithm

We can now describe the main clustering algorithm that works on the initial
data structure described above. Similarly to chain merging, graph clustering is
controlled by a threshold θ. In general, the lower the clustering threshold, the
more entities are clustered together, resulting in fewer, but larger, clusters.

The key idea is to use the degree of coreference between entities, represented
by an edge’s weight, as the inverse distance between those entities: entities linked
by an edge of weight 1.0 are closest, whereas entities with an edge of weight
0.0 (i.e., no edge) are infinitely far apart. We can now apply an agglomerative
hierarchical clustering strategy, creating a dendogram data structure.
6 Singletons are omitted for brevity.
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Require: Initialized cluster graph G =
(V, E)

1: for all np ∈ V do
2: createCluster( np ); {create initial

clusters}
3: for all e ∈ E do
4: if eγ ≥ θ then {join clusters?}
5: c1 ← getCluster( estart );
6: c2 ← getCluster( eend );
7: mergeClusters( c1, c2 );

Fig. 4. Fuzzy Clustering Algorithm Fig. 5. Graph after running the cluster-
ing algorithm with θ = 0.8

Definition (coreference graph clustering). The clustering process starts with clus-
ters containing individual entities, i.e., each node V in the initialized graph G
represents a cluster by itself. We now apply a hierarchical clustering strategy,
where we progressively merge clusters until the algorithm terminates. Two clus-
ters are merged if a direct edge exists between them of weight γ ≥ θ. If multiple
edges exist between two clusters, we evaluate the one with the highest weight,
i.e., we use a single-linkage clustering strategy. The algorithm terminates when
no more edges exist between clusters. Fig. 4 shows the complete algorithm.

When the cluster algorithm terminates, the cluster graph contains clusters
spanning multiple documents (common topics), as well as clusters that contain
entities from a single document (distinctive topics). Of course, either set may be
empty, depending on the input document set and the threshold setting.

Example (final cluster graph). Fig. 5 shows the result after running the clustering
algorithm on the graph in Fig. 3 with θ = 0.8. This results in two large common
NP clusters and the distinctive topic np7 in document d3 (documents d1 and d2

do not have any distinctive topics). For θ = 0.6, however, np7 would have been
added to cluster 1, whereas a larger θ value would have created smaller clusters
and more singletons.

Note that we can repeat the clustering process for each fuzzy value of θ, which
results in a cluster family (or one multi-dimensional cluster). However, within
this paper, we will only discuss single clusters.

4 Topic Analysis and Automatic Summarization

In this section, we discuss a number of applications for our cluster graph data
structure for the analysis of document collections, including topic detection and
multi-document summarization.

4.1 Common Topic Detection

The first application we discuss is the detection of a common topic within a
collection of documents. This allows a user to easily identify the most salient
information with a set of texts.
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Fig. 6. Initial cluster graph for a DUC ten-document set: 2779 nodes (NPs), 3822 edges
(co-references). Intra-document links (red) are aligned horizontally and cross-document
links (blue) vertically (enlarge electronic version for details).

Common clusters
Hurricane Mitch in Central America (31) – Honduras (21) – the country’s central coast (15) – last
week’s storm (12)

Fig. 7. Common topic clusters for a set of ten documents on “Hurricane Mitch” (num-
ber of NPs for common clusters in parentheses)

This kind of information can be immediately generated from the cluster graph
data structure: Topics are identified by clusters, so by extracting clusters that
span all documents (or a sufficiently large subset thereof), a system can obtain
the common themes of all documents. In order to rank the topics by relevance,
the size of each cluster can be additionally evaluated: the larger a cluster, the
more important the topic contained within (we give empirical evidence for this
in Section 5).
Example (common topic detection). We give a real-world example based on the
DUC 2004 [5] data set d30002, which contains ten documents discussing Hurri-
cane Mitch. Fig. 6 shows the initial cluster graph generated for this document
set; after clustering, the common topics can be identified as shown in Fig. 7.

As can be seen, for a specific clustering threshold, four topic clusters have been
identified, which are addressed in all ten documents. Changing the fuzzy thresh-
old results in different clusters, either more discriminative (more and smaller
clusters) for larger θ values or more lenient (fewer and larger clusters). However,
we cannot show these here due to space constraints.

4.2 Multi-document Summarization

The list of common topic identifiers presented in Fig. 7 provides a highly con-
densed view of a document collection. If a user is interested in obtaining more
detail, but without reading each of the documents involved, he may opt to view
a multi-document summary.

Multi-document summarization attempts to identify the most salient (shared)
topics within a collection of documents. The summary, typically sentences (or
sentence parts) extracted from the documents, should reflect as many common
topics as space permits. Current systems (see the DUC Proceedings [6, 5]) typ-
ically achieve this by ranking sentences within a document collection, either
through statistical means or (shallow) linguistic analysis and subsequent rele-
vance scoring.
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Common Topic Summary

The Honduran president closed schools and public offices on the coast Monday and ordered all air force planes
and helicopters to evacuate people from the Islas de la Bahia, a string of small islands off the country’s central
coast. National police spokesman Ivan Mejia said the Coco, Segovia and Cruta rivers all overflowed their banks
Monday along Honduras’ eastern coast. The European Union on Tuesday approved 6.4 million European currency
units (dlrs 7.7 million) in aid for thousands of victims of the devastation caused by Hurricane Mitch in Central
America. The greatest losses were reported in Honduras, where an estimated 5,000 people died and 600,000
people – 10 percent of the population – were forced to flee their homes after last week’s storm.

Fig. 8. Cluster graph generated multi-document summary

As shown above, our cluster graph data structure already represents common
topics in a document set. We implemented a summarization component that
generates a multi-document summary by selecting (at least) one candidate noun
phrase from each cluster, in decreasing order of importance (cluster size), until
a prescribed length limit has been reached or all clusters are exhausted. The
candidate NPs, in turn, can be used to select the sentences they appear in as a
candidate text extract.
Example (multi-document summary). Fig. 8 shows an example for a (roughly)
100-word summary generated with our approach [7, 8].

Extractive sentence-based summarization typically involves additional tech-
niques, i.e., replacing dangling pronominal references, eliminating duplicate noun
phrases, or removing relative clauses. However, within the scope of this paper
we are not concerned with this kind of post-processing, which is already widely
discussed in the literature (see e.g. [9] and the DUC proceedings).

4.3 Differential Topic Analysis

So far, we concentrated on the most important, common topics within a document
collection. Often, a user is also interested in what additional, unique information
a document contains, i.e., knowledge that cannot be found in other texts.

This requires a differential topic analysis. For this, we inspect the distinctive
clusters generated by our algorithm. These are clusters that span only a single
document, or a (configurable) subset of all texts in a set. Each of these clusters
represents a topic of a document subset that is distinctive from common topics
across all documents.
Example (differential topic analysis). Fig. 9 shows an example for a differential
topic analysis, on the same document set as before. For each document, a rep-
resentative phrase from each of its distinctive clusters is displayed. Note that
for D1–D3 and D5–D7, these topics identify a country that is distinctively dis-
cussed in this document only. D9 quite clearly focuses on the ensuing medical
emergency. Within a user interface, these clusters could again be hyperlinked
to expand into a summary of the document set, similarly to the common topic
summary discussed above.

4.4 Context-Based Summarization

The last type of application we address here are focused summaries, which are
not concerned with summarizing a document (set), but rather with collecting
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Common clusters
Hurricane Mitch in Central America (31) – Honduras (21) – the country’s central coast (15) – last
week’s storm (12)

Distinctive clusters
D1 Gen. Mario Hung Pacheco – the shelves of some stores and some gasoline stations – mayor of Utila –

a hurricane warning – the northwest Caribbean for five days
D2 the western Caribbean on Wednesday – 165 kms – Honduras with 120 – west at only 2 mph – a resident

of Guanaja Island
D3 the center – emergency measures on the Caribbean coast of the Yucatan Peninsula – a boat – hotels –

The storm’s power
D4 the storm’s death toll in the region to 357 – 231 people have been confirmed dead
D5 floods – the Guatemalan border – a state of emergency – 50 kph – late Sunday
D6 area – the slopes of the Casita volcano in northern Nicaragua – Sunday night – a 32-square mile –

addition
D7 homes – The greatest losses – affiliate in San Miguel province – a statement – the EU
D8 the audience – all public and private institutions and all men – the pope – a gift – six Russian cosmonauts
D9 access to places – other countries – the recovery effort – More help – at least 300 children at the shelter

for diarrhea, conjunctivitis and bacterial infections
D10 Taiwan – aid and pledges of assistance – Residents – Cuba’s offer – the saddest thing

Fig. 9. Differential topic analysis results based on the cluster graph generated for a set
of ten documents on the “Hurricane Mitch” topic

“Who is Stephen Hawking?”

Hawking, 56, is the Lucasian Professor of Mathematics at Cambridge, a post once held by Sir Isaac Newton.
Hawking, 56, suffers from Lou Gehrig’s Disease, which affects his motor skills, and speaks by touching a computer
screen that translates his words through an electronic synthesizers. Stephen Hawking, the Cambridge University
physicist, is renowned for his brains. Hawking, a professor of physics an mathematics at Cambridge University
in England, has gained immense celebrity, written a best-selling book, fathered three children, and done a huge
amount for the public image of disability. Hawking, Mr. Big Bang Theory, has devoted his life to solving the
mystery of how the universe started and where it’s headed.

Fig. 10. Focused summary of ten documents based on a question, generated from a
cluster graph

information on an explicit interest expressed through context information. For
example, a user might work on a report and needs information concerning a
number of questions; or he might write an email reply and would like to see
existing information relevant to the emails he is answering.

Indeed, the cluster graph also allows us to generate focused summaries by
including the context information as an additional document D0 when creat-
ing and clustering the fuzzy coreference chains. Then, all clusters that over-
lap with document D0 also contain information relevant to this context. All
other clusters, even if they are bigger, are discarded for this kind of
summary.
Example (differential topic analysis). An example for a context-based summary
is shown in Fig. 10. Here, the user stated an explicit question “Who is Stephen
Hawking?”. The focused summary is then generated from a document set using
the cluster graph data structure as discussed above. As before, elements within
the clusters have to be further ranked, extracted, and post-processed to create
the final summary.
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Fig. 11. Performance of the cluster graph algorithm on the DUC data 2003–2006

5 Evaluation

We evaluated our fuzzy coreference cluster graph algorithm using the data from
the DUC competition on summarization. This involved both multi-document
summaries (2003/2004) and focused summaries (2005/2006) of sets between 10
and 50 documents in size. To allow a comparison with all other systems that
participated in the competition, we computed the ROUGE-1 score [10] for all
years. The results of our system ERSS, compared with the best, worst, baseline,
and average system of each year and task is shown in Fig. 11.

In general, our algorithm performs well above the average, in some cases within
a statistically insignificant difference from the top system. More detailed results,
including experiments with different fuzzy values, different evaluation measures
like Basic Elements (BE), as well as a comparison of our cluster algorithm with
baseline ranking strategies like TF∗IDF,7 can be found in [7, 8].

6 Related Work and Discussion

In [11] the authors define the problem of “comparative text mining” (CTM) for
a given text collection as “(1) discovering the different common themes across all
the collections; (2) for each discovered theme, characterize what is in common
among all the collections and what is unique to each collection.” They also apply
a clustering strategy based on a cross-collection mixture model, but using only
simple word-level statistics, which we believe is much less useful for creating
summaries than our entity-based clustering approach.8

7 The results obtained through the cluster graph significantly outperform TF∗IDF-
based ranking.

8 A typical example cluster in [11] is the topic list “port, jack, ports, will, your, warm,
keep, down”.
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Similar work is done in the Web Mining community, however, they are more
concerned with the static and dynamic structure of web pages (i.e., inbound/
outbound links), making work like [12] more suited to information retrieval than
summarization. The research area of change summarization is concerned with
tracking a single document (or a document collection) over time and extracting
new/fading topics. [13] evaluate such changes, providing the result in form of
web page ranking lists.

Clustering approacheshave long been applied to document analysis (see e.g. [14]
for an overview), including summarization (e.g., [15]), but our work differs in that
we cluster coreferences rather than individual (TF∗IDF-weighted) words.

7 Summary and Conclusions

Delivering tools for the automated analysis, structuring, and compression of in-
formation contained in natural language texts is an important need of end users
overwhelmed with the task of manually filtering through search engine results.
For the system engineer developing appropriate solutions, features such as ro-
bustness, flexibility, context-sensitivity and adaptability are essential properties.
In this paper, we present the fuzzy coreference cluster graph algorithm as a
possible solution that exhibits robustness and adaptability due to its reliance
on fuzzy sets. It creates the highly flexible cluster graph data structure, which
can also be employed for context-sensitive information filtering. It is also easy
to implement and outperforms many existing summarization systems, most of
which are in addition highly specific to a single task.

More work is needed on integrating information analysis and summarization
algorithms, such as ours, into the desktop environments of knowledge workers.
We present some ideas on this in [16], where the algorithm proposed here is
implemented within a semantic desktop for building historians and architects
analysing a 19th century encyclopedia written in German.
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Abstract. We present a system capable of modeling human newspa-
per readers. It is based on the extraction of reported speech, which is
subsequently converted into a fuzzy theory-based representation of sin-
gle statements. A domain analysis then assigns statements to topics. A
number of fuzzy set operators, including fuzzy belief revision, are applied
to model different belief strategies. At the end, our system holds certain
beliefs while rejecting others.

1 Introduction

With the huge success of the internet, the natural language processing (NLP)
research community has developed whole branches that deal explicitly with vast
amounts of unstructured information encoded in written natural language. One
goal is to gain knowledge about hard facts like “The number of inhabitants of
city X” or the “name of the president of country Y .” But a lot of information,
especially within newspaper articles, are not hard facts, which could be easily
proven right or wrong. Often newspaper articles contain different views of the
same event, or state controversial opinions about a certain topic. In this case the
notion of belief becomes relevant.

For humans, this is a daily task. Depending on context information and back-
ground knowledge, together with other belief structures, humans tend to believe
certain statements while other statements are rejected. The process of believing
also varies between different humans, not only depending on their different back-
ground knowledge, but also on different attitudes towards a coherent worldview
or importance and their ability of logic thinking.

For a computational system simulating a human newspaper reader by imitat-
ing his belief processing, this involves not only the extraction of beliefs stated in
an article, but also their comparison to existing beliefs held by the system. Such
an artificial believer [1] must have different belief strategies to model different
human approaches.

The application area of an artificial believer is large. Potential users include:
– Companies interested in customers’ opinions about their own products or

products from a competitor.

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 489–501, 2007.
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– Governments interested in the opinions of people about their country or the
goverment’s work.

– Individuals, who wish to have a personalized news digest compiled
automatically.

Our system is designed for the last group of users, but is not limited to this
application.

The system we present in this paper addresses various problems within the
NLP domain. Our main contributions are: 1. Developing rules to identify and
extract reported speech from newspaper articles; 2. processing the gained in-
formation by applying fuzzy set theory to natural language processing; 3. cre-
ating a working implementation of these ideas, together with an evaluation
environment.

The remainder of this paper is structured as follows: In the next section,
we give an overview of our fuzzy believer system, followed by a more detailed
description of the individual components in Section 2. An evaluation of our ap-
proach, using different corpora and evaluation methods, is presented in Section 3.
Section 4 discusses related work, followed by conclusions in Section 5.

2 Design and Implementation

The core concept embodied in our approach is the application of fuzzy set theory
to the NLP domain. This allows for an explicit modeling of fuzziness inherent
to natural languages and enables the user to control the system’s behaviour by
varying various runtime parameters responsible for the fuzzy processing. Re-
ported speech statements present the basic set of beliefs for our system. These
kinds of statements usually express a belief held by the source of the statement
and allows a clear attribution of the statement to this source. The extracted
reported speech structures are further processed and the output of external se-
mantic parsers is utilized to identify predicate-argument structures (PAS) within
the reported speech content. Each PAS defines a statement, which the system

Components
Standard

NLP

Belief
Computation

Reported Speech
Extraction

Generation

Profile

Believed Statement

Believed Statement

Believed Statement

Newspaper Article
Parser

Fig. 1. Fuzzy Believer System Architecture Overview
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eventually either believes or rejects. They also form the foundation for the fuzzy
processing and the basis for our heuristics to process beliefs.

To mirror the different processing steps, our fuzzy believer system consists
of a set of components running consecutively. It is implemented using GATE
(General Architecture for Text Engineering) [2], which offers a framework for
developing NLP applications. For preprocessing, we use a number of standard
components shipped with GATE, for high-level processing we developed our
own components. An overview of the system’s structure is shown in Figure 1,
indicating the four main components constituting our system: (1) Reported
speech extraction; (2) Profile generation; (3) PAS extraction; (4) Belief
computation.

2.1 Previous Work

A similar system extracting reported speech from newspaper articles together
with its source and reporting verb is presented in [3] and [4]. The system passes
the extracted information through evidential analysis and processes the results
to different profiles.

In detail, to evolve profiles out of basic profiles, which consist of a state-
ment and its source, an intermediate step (merged profiles) is needed. In this
step, the exploitation of coreference information becomes necessary. For this
reasen, a noun phrase coreferencer [5] is used to identify same sources of dif-
ferent statements. These statements are then merged into a single merged
profile.

Evidential chains are generated and a percolation algorithm is used, see [6].
The merged statements are grouped according to the reporter who uttered the
reported speech. This allows to model different degrees of confidence into a cer-
tain newspaper, a certain reporter, and a certain source. To encode the different
confidences in the resulting profile, a dichotomy of held beliefs and potential
beliefs is introduced.

In contrast to our fuzzy believer, this system is limited to handling beliefs
without considering their content, solely based on information about the source
of a reported clause and the reporter of the article. Apart from improving the
extraction of reported speech, the system presented in this paper is capable of
identifying the topic of the reported speech and for each topic the polarity of
individual statements concerning the topic. On top of this information, an artifi-
cial believer is implemented simulating knowledge acquisition through different
strategies.

2.2 Extracting Reported Speech

The main source for our fuzzy believer stems from reported speech in newspa-
per articles. This allows us to explicitly attribute statements to sources. Ad-
ditional information that can be analyzed and therefore has to be identified
by the extracting component comprise the reporting verb and circumstantial
information.
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Newspaper A

Reporter A Reporter B

Source 1 (2.2.04)

Mr. Preisig worked for Cilag

T?

Source 2 (1.1.04)

Preisig never worked for Cilag

T?

Source 3 (5.8.04)

The President took money

T?

Source 4 (3.1.04)

Preisig worked as a consultant

T?

Source 5 (4.3.04)

Nobody got money

T?

Source 6 (4.3.04)

The Professor had a job at Cilag

T?

Fig. 2. Information after extracting reported speech – sources are isolated and topics
(T) not yet identified

To find reported speech structures, we identified six patterns around 50 verbs
[7] that are often used within reported speech constructs. Example 1 shows a
typical reported speech structure and identifies the different elements.

circumstances︷ ︸︸ ︷
Last October ,

source︷ ︸︸ ︷
his brother Hubert

rverb︷︸︸︷
told

addressee︷ ︸︸ ︷
the bankruptcy court︸ ︷︷ ︸

reporting clause

thatPaul was very ill︸ ︷︷ ︸
reported clause

.1 (1)

This information can be utilized to perform evidential analysis [8], thereby as-
signing different degrees of confidence in a statement according to the reliability
of the source and the reporting verb used.

Figure 2 shows the results of the reported speech extraction component assum-
ing 6 fictitious newpaper articles2 dealing with two different topics. We adapted
a presentation scheme for beliefs proposed by Ballim and Wilks [1], using nested
boxes to visualize the held beliefs of different actors. Each box contains a state-
ment together with its source and the publishing date. Every statement is as-
signed to the reporter who wrote the article containing the statement, and finally
the newspaper who published the article is named.

2.3 Generating Profiles

The profile generation component assembles the reported speech fragments and
prepares them for the next processing step. A profile assigns each statement to a
source, reporter, and newspaper. Basically, the component extracts the reported
speech clauses, which can then be further processed by a parser. It also adds
coreference information for each source by traversing the data structure created
by our fuzzy coreference resolution system [5]. Figure 3 shows our example with
the added coreference information.

1 Sentence from Wall Street Journal 03.03.88.
2 Inspired by articles in WSJ 12.03.86.
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Newspaper A

Reporter A Reporter B

Source B (2.2.04)

Mr. Preisig worked for Cilag

T?

Source C (1.1.04)

Preisig never worked for Cilag

T?

Source A (5.8.04)

The President took money

T?

Source C (3.1.04)

Preisig worked as a consultant

T?

Source D (4.3.04)

Nobody got money

T?

Source B (4.3.04)

The Professor had a job at Cilag

T?

Fig. 3. The different statements after identifying the source entities

Newspaper A

Reporter A Reporter B

Source B (2.2.04)
Mr. Preisig worked for Cilag
(Preisig-worked-Cilag)

T?

Source C (1.1.04)
Preisig never worked for Cila
(Preisig-worked-Cilag)

T?

Source A (5.8.04)
The President took money
(President-took-money)

T?

Source C (3.1.04)
Preisig worked as a consultant
(Preisig-worked-consultant)

T?

Source D (4.3.04)
Nobody got money
(Nobody-got-money)

T?

Source B (4.3.04)
The Professor had a job at Cilag
(Professor-had-cilag)

T?

Fig. 4. The different extracted predicate-argument structures

2.4 Extracting Predicate-Argument Structures

To decide whether a sentence has the same topic as another one, we need to
find a way to compare sentences with each other. To facilitate this task, we
do not compare whole sentences, but their predicate-argument structures, con-
sisting of “subject,” “verb,” and “object.” Because one sentence might contain
more than one statement, a correct syntactic analysis is paramount for predicate-
argument structure (PAS) generation. Our experiments showed that no single
parser is consistently reliable enough for PAS extraction. Thus, our PAS extrac-
tion component can work with the results of three different parsers: RASP [9],
MiniPar [10], and SUPPLE [11].

The PAS extractor applies a custom rule set for each of these parsers in order
to determine subject, verb, and object of a statement.

The extracted predicate-argument structures for our example can be seen in
Fig. 4. To demonstrate the system, we chose rather simple sentences contain-
ing only one PAS each but the algorithm can handle more complex structures
as well.
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2.5 Computing Beliefs

The core of our system is the fuzzy believer component. Its tasks are:

1. Identify a topic for each statement.
2. Compute the fuzzy representation for each statement to identify polarity.
3. Process fuzzy information for each topic according to a strategy.
4. Generate a graphical view of the result.

Identifying Domains. The first step is to group the statements into domains
according to their topics. These domains constitute the basic sets for the fuzzy
operations performed later on; basically, they partition the statement space into
individual domains, which can be processed independently. Every domain rep-
resents one topic identified by the extracted PASs.

To determine if a statement fits into an existing domain, we use heuristics
to measure the semantic proximity of each new statement with the statements
in all existing domains. For this, the system applies two main heuristics: (1) A
WordNet [12] related heuristic, and (2) a substring heuristic.

These heuristics compare the PAS elements of one statement with the elements
of the other statements in one domain and return a value representing how
similar the heuristics consider the two PAS elements. A runtime option defines
if strict matching is neccessary to include a new statement in a domain, or if
a more lenient matching is sufficient. For a strict match, the new statement’s
PAS must be similar to all existing statements within a domain. In case of a
lenient match, the new statement needs only to be similar to one statement of a
domain, essentially implementing a transitive relation on the domain elements.

To cause a match between two statements, at least two parts of their corre-
sponding PAS structures must be similar enough. That means, the value assigned
by a heuristic must exceed the defined threshold for either subject and object,
subject and verb, or verb and object.

This approach permits assigning a statement to more than one domain. If a
new statement does not fit into any of the existing domains, a new domain is
dynamically created, initially containing this statement.

Each domain contains all statements that have the same or opposite meaning.
In other words, we try to identify each fact in the world and arrange all state-
ments concerning this fact in one domain. The example in Fig. 5 should contain
two domains after the classification process: T1 “Someone taking money” and
T2 “Preisig working as consultant at Cilag.” The different statements are as-
signed a label identifying the topic.

Identifying Polarity. In the next step, the statements gathered for each domain
have to be evaluated by identifying their polarity. The goal is to identify opposing
statements by using different fuzzy heuristics. The fuzzy representation µSi of a
statement Si contains the degrees of similarity of this statement with all other
statements within the same domain. Each degree is normalized to a fuzzy value
in the [0, 1]-interval and can be interpreted as the semantic distance between
two statements. Fig. 6 shows the fuzzy representation of a statement S1 within a
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Newspaper A

Reporter A Reporter B

Source B (2.2.04)

Mr. Preisig worked for Cilag

T1

Source C (1.1.04)

Preisig never worked for Cilag

T1

Source A (5.8.04)

The President took money

T2

Source C (3.1.04)

Preisig worked as a consultant

T1

Source D (4.3.04)

Nobody got money

T2

Source B (4.3.04)

The Professor had a job at Cilag

T1

Fig. 5. The different topics after identifying the domains
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Fig. 6. Statement AS1,j with correlation grades for all statements in the domain
(S1, . . . , S5) as computed by heuristic H1

domain containing five statements (S1, . . . , S5). The fuzzy sets are interpreted in
a possibilistic fashion: A fuzzy value of 0 indicates no possible semantic similarity
between the two statements, while a value of 1.0 indicates the highest possibility
of similarity between them. In the current implementation, only one heuristic
is used. It compares the verbs of two statements using their WordNet semantic
distance to find synonyms and antonyms.

Computing Beliefs. One of the crucial parts of the fuzzy believer system is to
decide which of the collected statements to believe and which to reject. For this,
each domain is processed independently. The system implements the following
strategies: (1) Believe majority, (2) believe old news, (3) believe new news, (4)
believe certain source/reporter/newspaper, and (5) believe weighted majority.
The strategies are based on fuzzy processing. Three fuzzy operations are essential
to implement the strategies: Merging, expanding, and revising. These operations
are computed directly on the fuzzy set representation of each statement, which
has been generated as described above.

Based on the fuzzy representation, the merge operation groups all statements
into one class, if a threshold of semantic similarity is reached. Usually, merging all
statements leads to two classes within each domain, one containing statements
about a topic and the other one containing opposing statements about this topic.
The majority strategy picks the class with the most statements and marks them
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Newspaper A

Reporter A Reporter B

Source B (2.2.04)

Mr. Preisig worked for Cilag

T1

Source C (1.1.04)

Preisig never worked for Cilag

T1

Source A (5.8.04)

The President took money

T2

Source C (3.1.04)

Preisig worked as a consultant

T1

Source D (4.3.04)

Nobody got money

T2

Source B (4.3.04)

The Professor had a job at Cilag

T1

Fig. 7. Believe Majority: The system believes statements with grey background

as belief. Fig. 7 shows the result of this strategy for our example. For topic T2
there is no majority, in this case the system chooses either of the statements.

The expansion operator initially believes the first statement in a domain
and each new statement becomes included only if it is compatible with all the
ones existing in a domain. Expansion [13] can be used to implement the “Be-
lieve old news” strategy by ordering the processing according to the publishing
date.

For the fuzzy belief revision process [14], new statements are always believed
and only those of the existing statements that are not in conflict with the new
ones are kept. This is exactly what we need for the “Believe new news” strategy.
For the weighted majority strategy, we use information of the majority strat-
egy and combine it with information about the reliability of the newspaper, the
reporter, and the source of the statement. To believe in a certain source, re-
porter, or newspaper, fuzzy processing is not necessary and this strategy can be
implemented utilizing the profile generator information.

2.6 Summary

Our fuzzy believer system processes natural language articles and identifies the
topics discussed in a text. Statements are extracted from the texts based on re-
ported speech structures and assigned to domains, which form the formal basis
for automatic processing using fuzzy operators. The main believer component
can simulate different reading strategies, like a reader accepting all new infor-
mation (and erasing conflicting old knowledge), or a stubborn reader clinging to
old beliefs while rejecting all incompatible new information.

The output of the fuzzy believer system is a set of held beliefs and rejected
beliefs acquired from “reading” a document collection. Presently, we export this
result into a graphical representation using the LaTeX-format similar to the
presentation of the examples in this paper.
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Table 1. Domain Classification: Recall and Precision for different parsers

Configuration
Recall Precision

Rasp Minipar Manual Rasp Minipar Manual

3-3-3-lenient 0.59 0.54 0.56 0.57 0.63 0.78
3-3-3-strict 0.59 0.50 0.55 0.63 0.75 0.85

5-5-5-lenient 0.70 0.60 0.62 0.29 0.39 0.29
5-5-5-strict 0.52 0.52 0.52 0.41 0.53 0.54

5-3-5-lenient 0.65 0.51 0.59 0.31 0.57 0.45
5-3-5-strict 0.59 0.58 0.52 0.56 0.41 0.61

3 Evaluation

The system we present here is complex and attempts a novel analysis. Therefore
no Gold standard corpora are available. In order to evaluate our system we
have thus chosen to evaluate its components separately on standard reference
resources in related domains.

Extracting Reported Speech. In order to evaluate the reported speech extrac-
tion component, we randomly picked 7 newspaper articles from the Wall Street
Journal corpus. The articles contain about 400 sentences (∼6100 words), among
them 133 reported speech constructs. For the detection of reporting verb and
source, our system achieved a recall value of 0.83 and a precision value of 0.98.
This results in an f-measure of 0.90.

Identifying Domains. The domain finding task is quite hard and error-prone. Re-
member that the domain classification is solely based on the predicate-argument
structures extracted from the output of one of the three deployed parsers. The
evaluation of the domain finding component includes a comparison of the results
obtained with RASP, MiniPar, and manually annotated predicate-argument
structures (gold standard). The conservative strategy of SUPPLE, which only
marks relations that are considered to be 100% correct, proved to be not appli-
cable, as it creates too few extractable PAS.

The test data we used is taken from the MSR corpus [15] and comprised 300
paraphrase pairs. We assumed all sentences were reported clauses to skip the
reported speech extraction part from distorting the domain finding evaluation
results. The special layout of the test corpus, containing pairs of paraphrases and
thus two statements per topic, made it necessary to develop a method to measure
the performance accurately. The fact that one sentence can contain more than
one statement, represented as different predicate-argument structures, made the
evaluation scenario more complex. We conducted a test with a test set of 116
paraphrase pairs, which was additionally annotated by hand with predicate-
argument structures. This allows an estimation on the influence of the parser
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and the parser extraction component on the domain classification process. The
results can be found in Table 1.3

Identifying Polarity. To test the sense detection or opinion grouping function, we
would need a special corpus containing test data with opposing and supporting
statements for a special opinion, which are semantically close enough to fulfill
the requirement of belonging to the same domain. The data that comes closest to
these conditions are the entailment pairs of the PASCAL challenge corpus [16].
There are some minor drawbacks, though.

Firstly, the positive entailment examples are rather easy to evaluate, because
if one sentence entails another, the senses of the two sentences must have the
same direction. But non-entailment between two sentences doesn’t necessary
imply opposing opinions in these sentences. But fortunately this is often the
case for the PASCAL-2 challenge corpus we used. A second problem is the fact
that sentence pairs, especially without entailment, would not be assigned the
same domain by our domain classification algorithm, therefore it is not possible
to evaluate the data using only the polarity identification component.

We solved these problems by checking the non-entailing examples manually for
opposing sentences and developing a scheme to measure the performance of the
sense detection algorithm without influence from the domain finding component.
This scheme comprises the consideration of only those statement pairs that are
correctly assigned to the same domain.

We tested different configurations and computed accuracy for two different
settings. For one experiment, we included all results in the evaluation, counting
the entailment pairs that were not grouped into the same domain by the do-
main classification as non-entailing. In the table, this is refered to as “Sense &
Domain.” The other test setting only considered the sentence pairs that were
actually grouped into the same domain by the domain classification component.
That way, we limited the influence of the domain classification algorithm on the
sense detection. An overview of the achieved perfomance is shown in Table 23

with the additional configuration parameter showing the threshold for assigning
the same polarity to a statement.

4 Related Work and Discussion

The extraction of opinions from newspaper articles [17] or customers reviews [18,
19] has become an active research field. Those approaches are usually only con-
cerned with the identification and extraction of information without processing
it further, except for binary classification within a clearly specified domain.

In the wake of the PASCAL challenge [20,16], systems have been developed to
deal with the relation of sentences to each other. The different approaches include

3 The configuration settings in the table mean, from left to right: Maximum WordNet
Distance between (1) subjects, (2) verbs, (3) objects of two statements. And (4)
indicates whether a new statement has to match with one (lenient) or all (strict)
statements within one domain.
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Table 2. Polarity Identification: Accuracy values for different parse methods

Configuration
Accuracy

Sense & Domain Only Sense
Rasp Minipar Rasp Minipar

3-3-3-strict-0.7 0.52 0.55 0.53 0.58
5-5-5-lenient-0.7 0.51 0.53 0.51 0.53
5-5-5-strict-0.3 0.52 0.53 0.55 0.51
5-5-5-strict-0.7 0.51 0.54 0.50 0.56
7-7-7-strict-0.7 0.51 0.52 0.51 0.52

the recognition of false entailement [21], or learning entailement [22]. Others are
concerned with relatedness between words and how to measure it [23]. We were
not interested in concentrating on one of these areas but rather to develop an
all-embracing system incorporating different aspects.

The results our system achieved for extracting reported speech is highly com-
petitive. Doandes [24], using a different subset of the WSJ-corpus, reports a
recall of 0.44 and a precision of 0.92 for their system compared to 0.83 and 0.98
our system obtained.

For the domain classification, our best results for 300 paraphrase pairs from
the MSR-corpus are: Precision 38%, Recall 81% and Precision 52%, Recall 58%.
These values can probably be improved by using more sophisticated heuristics,
although there will be a ceiling set by the parser and by the use of language
in general. The same meaning can be expressed by various different sentences
whose words are not in close relations to each other and therefore hard to detect
by current NLP tools. Keeping these facts in mind, the obtained numbers are
rather satisfactory and promising for future development.

The rather shallow semantic approach sets a practical limit to the achievable
results. This can be infered by comparing the numbers obtained using manually
parsed predicate-argument structures with the numbers obtained by the parsers.
It shows that there is space for improvement on the side of the parsers, as well as
on the side of the PAS extractor. Combining the results of different parsers could
also lead to better results, but a precision of 55% and a recall of 85%, as obtained
for the best configuration of the system using manually parsed PASes, shows that
it needs more and/or better heuristics to get a really significant improvement.

The polarity identification task was expectedly the hardest one. This is illus-
trated by the rather poor results we obtained by trying to find different opinions
within one domain. Best accuracy values were obtained using Minipar and were
around 58%. This task is very hard for computational systems. But with more
elaborated heuristics it is possible to increase these numbers, comparable to the
Pascal challenge [20, 16], where systems also started with around 50% accuracy
and improved over time.

Testing of the different strategies revealed that the fuzzy processing operators
perform in accordance to their assigned tasks. Further evaluation of the results
would need some kind of measure to get quantitative, comparable results. This
is beyond the scope of this paper and deferred to future work.
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5 Summary and Conclusions

We presented a fuzzy believer system, which is capable of differentiating between
different topics and different polarity of statements and decides what to believe
based on configurable strategies. The system was applied to processing reported
speech information, generating a belief set containing the knowledge obtained
from “reading” different newspaper articles. Our approach is based on the ap-
plication of fuzzy set theory to natural language processing resulting in a fuzzy
believer with variable belief strategies.

The results for the individual subtasks are promising but the development of a
measure to evaluate the system as a whole is still pending. The growing number
of available news sources, blogs, and webpages makes it necessary to facilitate
the information gathering for humans. Our fuzzy believer was designed to deal
with huge amounts of information and supports a user’s opinion finding process.
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Abstract. Complex Nominals (CNs) have simple syntactic structure that 
conceals non-trivial semantic characteristics. While speakers of natural 
languages combine noun(s)/adjective(s) with a head noun to indicate existing or 
novel concepts with ease, formalizing such a semantic process, however, has 
proven to be a daunting task. In this paper, we present a unified semantic 
approach for constructions involving a head-noun and modifier(s), i.e., 
adjective(s)/noun(s). Based on a rigorous typing system, this approach uses set 
intersection as the only underlying semantic rule. We argue that this novel 
approach is compositional and warrants consistent inferences. 

1   Introduction  

A CN is a sequence of one or more nouns or adjectives preceding a head noun.1  
Instances of such a construction include apple pie, information retrieval system, 
computer book sale, former political activist, etc.  CNs have been investigated in 
many fields: linguistics (e.g., [3, 12, 19, 16, 5, 17]), cognitive science (e.g., [4, 8, 18]), 
and AI ([2, 11, 7]), among others. The bulk of such research in AI and linguistics is 
concerned with identification and classification of the semantic relations in noun-
noun constructions. Other problems such as adjective-noun combinations and 
bracketing are treated separately. Each field, understandably, uses different tools to 
address the respective concerns. Corpus analysis is by far AI’s most commonly used 
tool in the treatment of CNs.   

Although corpus-based systems have met some successes, a more systematic 
approach to CNs is yet to emerge. Such a semantic approach must address two 
fundamental questions: what are the semantic values of common nouns, and 
adjectives? And what are the semantic values of their combinations?  

What makes the semantic analysis of CNs difficult is that some modifiers are 
reference-modifying (i.e., intensional), some are referent-modifying (i.e., extensional), 
and some can be both. The difficulty of analysis increases when modification involves 
multiple modifiers.  

We address these issues and present a formal system that, we argue, is capable of 
overcoming limitations posed to corpus-based approaches. In addition, as AI workers, 
we take the issue of machine-implementability seriously into consideration, without 
compromising the philosophical and linguistic concerns.  
                                                           
1 This use of the term “complex nominal” is more general than is commonly used in the 

literature, e.g., in [17] modifiers are limited to nouns and non-predicating adjectives. 
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2   On Compositionality  

Also known as Frege’s Principle, compositionality is informally stated2 as:  the 
meaning of a whole expression is a function of the meaning of its constituents and 
their syntactic mode of combination. In formal languages this principle is taken for 
granted. In computer programming, it is implicitly assumed when proving some 
aspects of programs such as correctness and termination.  Within natural languages, 
however, it is debatable. While the bulk of language expressions seem to adhere to 
compositionality, it is obvious that some expressions such as idioms and lexicalized 
expressions, e.g., white wine, potential energy, etc. deviate from it. However, 
generally speaking, idioms and lexicalized expressions are very limited in number 
within a language and are normally listed as entries in a conventional dictionary. 
Thus, they are treated as lexemes and consequently pose no threat to 
compositionality. However, as [13] points out, what remains controversial is where to 
draw the line between compositional expressions, on one side, and 
lexicalized/idiomatic expressions, on the other side.  

In Richard Montague’s highly formalized semantic theory, compositionality 
occupies centre stage. It is expressed as rule-to-rule correspondence between the 
syntax and semantics. That is, for every rule of the syntax, there is a corresponding 
semantic rule for computing its meaning. For example, given the syntactic rule (1), in 
BNF notation, a possible corresponding semantic rule is (2): 

1) CN ::= M N , where M stands for a modifier         2) || CN || = F (|| M ||, || N||) 

That is, given a CN, its meaning is determined by the meanings of the modifier and 
noun involved, whatever they might be, plus the way they are linearly organized, 
namely a head noun preceded by a modifier.  

Our views regarding compositionality parallel that of Frege’s and Montague’s. For 
a non-compositional approach would face numerous problems, see [10] for examples 
of non-compositional semantic approaches. In section (6) we show how to account for 
compositionality by taking the semantic values of the parts to be typed sets, and the 
function F a set intersection. 

3   On the Semantic Theory 

Lexical categories such as nouns and adjectives belong to the set of linguistic realm. 
They acquire meanings when they correlate to entities in the world or model. Thus, 
the semantics of a language can be thought of as a process by which a link between 
the linguistic and the extra-linguistic is established.  This is the approach taken by 
extensional semantic theories. 

In a purely-extensional semantic theory, the meaning of a term in a language is 
taken to be the denotation of that term within a world or a model. Based on such a 
theory, co-extensive terms can be (counter-intuitively) interpreted to have the same 
meaning. For example, the terms the largest integer, dragon and unicorn are 
interpreted to mean the same thing. 
                                                           
2 See [13, p 135] on suggestions as to how to make this definition precise. 
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Intensional semantics overcomes this difficulty by taking meaning to be composed 
of intensions as well as extensions. Intensions are considered as functions with indices 
as domains. One of the indices can be possible worlds. It is then said that intensions 
determine extensions. With the inclusion of intensions, a semantic theory will not 
admit the terms the largest integer and unicorn as having the same meaning. For in 
some other world the set of unicorns might not be empty.   

Thus, a semantic framework that invokes notions such as possible worlds seems to 
be ideal for CNs, e.g., Montague took the meanings of adjectives to be functions from 
intension to extension, see [13] and [22]. Yet, as [10] points out NLU systems based 
on Montague semantics with its use of infinite sets and functions to functions render 
developing such systems impossible.  

We will show that the formalism we are proposing in this paper is capable of 
capturing intensions, in some sense, and yet is still machine-implementable. 

4   On the Semantic Values of Nouns and Adjectives 

In the previous section, we pointed out that our goal is a compositional account of 
CNs. We hinted that this can be achieved via the function F. However, we have not 
provided any characterization of its arguments. That is, the values of the objects ||M|| 
and ||N||. This brings up the question regarding the nature of the denotations of 
adjectives and nouns. Jespersen [12] (see also [21]) provides the following account 
regarding adjectives and nouns (termed ‘substantives’ by Jespersen): 

On the whole, substantives are more special than adjectives, they are applicable 
to fewer objects than adjectives, in the parlance of logicians, the extension of a 
substantive is less, and its intension is greater than that of an adjective. 

The difference between adjectives and that of common nouns has also been 
expressed by Strawson (see, [9]) as that between sortal and nonsortal predicates. 
Strawson states that a sortal predicate, “supplies a principle for distinguishing and 
counting individual particulars which it collects”, while a nonsortal predicate 
“supplies such a principle only for particulars already distinguished, or 
distinguishable, in accordance with some antecedent principle or method”. 

Jespersen’s and Strawson’s accounts shed some light into the possible semantic 
values for both nouns and adjectives. Jerspersen’s suggests, among other things, that 
adjectives have wider “applicability” and Strawson suggests, among other things, that 
adjectives denote properties. Both analyses seem to be in accord and are plausible in 
adjective-noun constructions. The formalism we propose next takes these 
observations into consideration. 

5   On Modification 

Despite the ontological differences between nouns and adjectives, they have a 
common functionality of interest: modification of head nouns. This functionality is 
evident at both the syntactic and semantic levels. In the case of the former, both nouns 
and adjectives can occupy the attributive position, i.e., preceding a head noun. At the 
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semantic level, although a noun and an adjective modifier may contribute differently 
to the meaning of the compound, a near-universal truism is that the denotation of the 
compound is a subset of the denotation of its constituent head noun. Expressions 
admitting such reading are called subsectives. In some special cases, the denotation of 
the compound is a subset of both the denotation of the head noun and the denotation 
of the modifier. This is called the intersective reading. Modifiers that allow 
intersective reading are, also, referred to as referent-modifying (i.e., extensional), 
while those that do not allow such a reading are called reference-modifying, i.e., 
intensional, see [22] for details. Table 1, where ‘M’ and ‘H’ stand, respectively, for 
modifier and head noun, illustrates by example the points raised in this paragraph.  

Table 1. Similarity of modification in nouns and adjectives 

Noun-Noun  example ||M H|| 
⊆ ||H|| 

||M H|| 
⊆ ||M|| 

Modifier: 
int/ext 

Adjective-
Noun example 

player coach, child murderer3  Y Y Ext Canadian coach 
soccer game Y N Int competitive game 
Glass cup Y Y Ext red car 
elephant chocolate Y N int toy store4 

We believe that such a common behavior warrants a uniform semantic treatment 
that takes into account the intensional and extensional behavior of modifiers. This, as 
compositionality demands, should be expressed by providing a single semantic rule 
that mirrors the syntactic one.  In our system, such a rule is set intersection. 

6   The Formalism 

In this section we present a formal system for CNs. It starts by introducing typed-sets: 
the semantic values for the parts in a complex expression. Next, it defines rules, 
axioms, and the typing system for handling complex compounds. In devising the 
formalism, we have taken the following factors into considerations: 

• The duality of the semantic behavior of nouns: a noun can be in the head or the 
modifier positions of a CN, e.g., boat house and house boat. 

•  The bracketing problem.  
• The general applicability of adjectives.   
• The desire to strike a balance between simplicity and machine- implementability 

of extensional semantics and the sophistication of intensional ones. 

The resulting system, we argue, has the following characteristics: 

1) Captures meanings’ two aspects, i.e., intension and extension.  
2) Is machine-implementable. 
3) Can fit within logical frameworks such as that of Montague’s.  

                                                           
3 This expression can mean “one who murders children” or “a child who commits murder”. It is 

the latter reading that is considered here. 
4 For discussion of subsective reading of privatives, see [1] and for linguistic evidence see [20]. 
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4) Is Russell-Paradox-free. 
5) Is an extension to and/or modification of set theory or lambda calculus 

notations, which are well studied and used. 

6.1   The Case for Typed-Sets 

The Cantorian notion of a set has been affectionately embraced by mathematicians: 
"No one shall expel us from the paradise which Cantor created for us", as David 
Hilbert succinctly puts it. While it is hard to disagree with Hilbert wholesale, one can 
argue that a set, as conceived and defined by Cantor, makes rather simplistic 
assumptions. One can identify at least two shortcomings: an element is either in the 
set or not, that is, a world with sharp boundaries; an element once in a set is 
completely identified with it. That is, the only property that a member has is its 
membership in the respective set, all other properties are “lost”—individuality is 
sacrificed for plurality. The former, was addressed by fuzzy sets. The latter we 
address here by adding types for both members of the set and the set itself. This newly 
conceived set is termed a “typed-set”. We argue that one application of such an 
abstract typed-set is to model modification in CNs. We argue that this modification 
allows an extensional representation of terms usually described as intensional while at 
the same time preserving the original Cantorian conception of the set. We will show 
that this augmentation of the classical set allows representations of terms that are 
“normally” hard to represent such as frequency terms, e.g., occasional, and non-
committal terms, e.g., alleged. Such a representation is not possible using the classical 
set or the fuzzy one. This is accomplished while maintaining the original classical set 
properties, i.e., typed sets can be seen as a generalization of classical sets. 

(Typed Sets) A typed set is a set-theoretic set that has the following form: 

M ={e: α,…}: β                      (1) 

Here, M is a set of type β. Its member e is of type α. It should be noted here that the 
set member and its type are one integral whole.5 In lambda notation, this can be 
expressed as in (2), where Γ is a context or environment: 

Γ, e :α ├ e:α                   Γ,  M:β├ M:β              (2) 
                                   (λx.M(x)) (e: α) 

From (1) and (2), it should be obvious that set members are first-order elements, i.e. 
individuals. Thus, a set cannot be a member of another set of the same order, 
including itself. 

6.2   The Semantic Values of Complex Expressions 

It is assumed that the types α and β in (1) range over types in a type hierarchy, where 
each node in the hierarchy represents a type. A fully-fledged system will need such a 
hierarchy. However, for our illustrative purpose we will be using the following subset 
of types: 

                                                           
5 One may think of this as an approximation of the Aristotelian view of a universal inhering in a 

particular. 
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• The type “┬”, assigned to extensional6 terms, e.g., red, Canadian, etc. 
• The type “ ⊥ ”, the absurd type, is assigned to “non-committal” terms, e.g., 

potential, alleged, presumed, etc. 
• The type “role”, is assigned to common nouns denoting roles, e.g., senator, 

employee, manager, dancer, etc. 

Given a type ┬ that is assigned to extensional terms, then, we can define the 
classical set to be of that type. 

(Classical Set) A classical set is a typed set which is of type ┬ and all its members, if 
any, are of type ┬. 

(Subtype Relation «) Types in the hierarchy are constrained by the partial-order 
subtype relation indicated by «. The expression α«β is read “α is a subtype of β.” 

For example the subtyping relation that holds between the types employee and 
manager and role can be expressed as follows: 

manager « employee « role 

(Complex Type) The type hierarchy contains the simple types. To handle cases 
where more than one modifier is involved in a CN, we need a systematic way to 
assign types that mirrors the complexity of the expressions.   

Definition (Types). Assume a (non-empty) set of simple types τ. Define the set Τ of 
types as follows:  

i) τ  ⊂  T 
ii) if α and β ∈  T then (α:(β)) ∈  T  

According to these type-forming rules, the expression deep blue sea, will be 
assigned the types (deep:(blue:(sea))) and ((deep:(blue)):( sea)) 
or by removing redundant parentheses deep:(blue: sea) and (deep: 
blue): sea. These complex types correspond, respectively, to the wide- and 
narrow-scope readings of the adjective deep. 

6.3   Operations on Typed Sets 

In this subsection, we define the basic set operations and related axioms necessary to 
compute the meaning of CNs. This includes set intersection, equality of sets, and 
equality of particulars (or set members). 

(Convention) Greek letters stand for types, lower-case letter for members, and upper-
case letters for sets. 

(The most specialized types)                     ⊥  « α     ( ⊥  is the lower-most type) 

(Type of complex expressions) The type of a complex expression is the right-most: 

Given set X: α: 

                                                           
6 For classification of adjectives, see [1] and [13]. 
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X:α 
---------- 
X: ℑ (α) 

Where ℑ  is a function defined as follows: 

⎩
⎨
⎧

ℑ
∈

=ℑ
otherwise

if

),(

,
))(:(

β
τββ

βα where τ  is the set of simple types. 

(Particulars) Since a particular (or a set member) and its type are an integral whole, 
we define equality between them using the symbol ’≡’. Given particulars e1:α and e2:β  

e1 ≡ e2  ⇔ e1 = e2 ∧  [(α = β) ∨ ( α « β)]  (particular equality) 

Using this rule, we can say that a cat is an animal, but not the other way around. 

(Subset)  X:α ⊆ Y:β ⇔   

 ( ∀ e: σ) e: σ ∈  X: α ⇒ [ (e: σ ∈  Y:β)  \/ ( ∃ ρ) ρ∈  T ∧ e: ρ∈  Y:β∧  (σ « ρ) )]  

(Set equality)   X:α = Y:β  ⇔  [(X:α ⊆  Y:β ∧  Y:β ⊆  X:α) ∧  (α =β)] 

    (e1: ┬) ∈  X: α         (e2: α) ∈  Y: β               e1=e2    
(Extensional intersection)              ----------------------------------------------------------- 

                 Z = X ∩Y s.t.   (e1: α) ∈  Z: α:( β) 

Where s.t. stands for such that. This rule is used with extensional modifiers. Using 
this rule, we can validly deduce that Mary is a Canadian dancer from Mary is 
beautiful dancer and Mary is Canadian. For the adjective Canadian is extensional.  

     (e1: ρ) ∈  X: α      (e2: σ) ∈  Y: β      e1≡ e2    
(non-extensional intersection)                  --------------------------------------------------- 

                     Z = X ∩Y s.t   (e1: σ) ∈  Z: α:( β) 

This rule blocks wrong inferences due to reference-modifying modifiers. Examples of 
this rule are in the next section. 

                       X: α       Y: β       Z = X ∩Y = Ø 
(Ø-Intersection)                                              ------------------------------------------------ 

                                            Z: α:( β) 
This rule allows us to speak about predicates with empty extensions, e.g., white 
unicorn. An empty set, Z, can be formed with the appropriate type. 

6.4   Computing the Meaning of Compounds 

Now that typed-sets and operations on them have been defined, in this section we will 
demonstrate how to compositionally compute the meaning of CNs. Since CNs are 
instances of one syntactic rule that states that a head noun can be preceded by some 
modifier(s), we argue, as compositionality demands, that a single semantic rule, F, 
corresponding to a single syntactic rule can be defined in terms of typed-sets and set 
intersection. For the simplest case where a head noun is modified by a single 
modifier, F can be defined as follows: 



 Rethinking the Semantics of Complex Nominals 509 

F( M N) = ||M|| ∩ ||N||, where ||M|| and ||N|| are  typed-set-valued functions 

Since the modifier ‘M’ may involve more than one adjective or noun, the definition 
of F is refined to the following:7 

⎪
⎪
⎩

⎪
⎪
⎨

⎧
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otherwiseNFMF
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where T is the set of   types 
The domain of F is a bracketed expression. Such an expression can be obtained 

from a parse tree. For instance, the expression liberal party scholarship scandal can 
have the parse tree depicted in Fig. 1. This corresponds to the reading [[[ liberal party] 
scholarship] scandal].  

                   

Fig. 1. Tree representation of liberal party scholarship scandal 

Eliminating the outermost brackets, such an input can have one of the   three 
forms: M [N], i.e., ‘M’ is single word and ‘N’ multiple-words, [M][N], i.e., both ‘M’ 
and ‘N’ contains multiple words, and [M] N, i.e., ‘M’ contains multiple words and 
‘N’ is a single word. 

To demonstrate how compounds can be represented and computed, consider the 
utterances Fido is a dog, Fido is clever, John is a man, and John is clever. The 
adjective clever and the nouns dog and man can be represented, given some state of 
affairs where John is the only man and Fido is the only dog, as follows: 

M = {j:man}:man               D = {f:dog}:dog  
C = {j: man, f:dog}:clever 

Where:   M, D, and C denote, respectively, the sets of men, dogs, and clever things 
           || John|| = j, and || Fido|| = f 

It should be noted how Jesperson’s definition is captured in the case of the 
adjective clever. The set C contains in its extension things that are said to have 
something in common: John is clever as a man, while Fido is clever as a dog. What 
they have in common is “cleverness”.  

Given the data regarding Fido and John, we can provide truth-conditions for the 
utterance Fido is a clever dog. This statement is true if, and only if, the following 
boolean expression is true: 

(f:dog) ∈  || clever dog|| 
               = F (clever [dog]) = ||clever|| ∩ F (dog) = ||clever|| ∩ ||dog|| 

                                                           
7 In fact F can be abbreviated to 

⎩
⎨
⎧

∩
=

=
otherwiseNFMF

nullMifN
MNF

),()(

)(||,||
)( .

 

 liberal      party      scholarship    scandal  



510 N. Abdullah and R.A. Frost 

            = {j: man, f:dog}:clever∩{f:dog}:dog 
                        = {f:dog}:clever:(dog)  (by the non-extensional intersection rule)

              True   

Now, assume that Fido is a veteran shepherd. This can be represented as follows: 

|| shepherd ||  = {f: shepherd}: shepherd             ||veteran || = {f: shepherd}: veteran  

It should be noted that a wrong inference such as Fido is a clever shepherd cannot 
be deduced, as desired. To further demonstrate our approach, consider the following 
utterances John is a bank manger and John is an excellent employee. A representation 
of these utterances results in the sets: 

      ||bank|| = {j:manager, …}:bank                           
   ||manager|| = {j:manager}:manager 
||excellent || = {j:employee, …}:excellent          
 ||employee || = {j:employee }:employee 

Next, we try to get answers to the following questions: Is John an excellent 
manger? Is John a bank employee? These can be translated, respectively, into the 
following forms, numbered (1) and (2): 

(1) 
(j:manager) ∈  || excellent manager|| = F (excellent [manager]) 

                                = ||excellent|| ∩ F (manager) = ||excellent|| ∩ ||manager|| 
               = {j:employee,…}:excellent∩{j:manager}:manager 

                                = { }:excellent: manager (by Ø-Intersection) 
                         False 

(2) 
(j:employee) ∈  || bank employee|| = F (bank [employee]) 
                                  = ||bank|| ∩ F (employee) = ||bank|| ∩ ||employee|| 
                      ={j:manager}:bank∩{j:employee}:employee 
          ={j:employee }: bank :employee  

(by non-extensional intersection, by ≡, and because manager « employee) 
       True    

In these examples, it should be clear how the inference and typing rules are 
working in tandem in the semantic evaluation process. 

6.5   Capturing Non-committal Set Membership  

One advantage of using typed-sets is the representation of entities that are associated 
with some predicate but which do not fall within its extension. In other words, 
referents of such a predicate have a “pending” membership in the set denoted by the 
predicate.  Terms of modal import possess such a phenomenon: e.g., potential, 
possible, presumed, etc. fall into this category. To illustrate, consider the utterances 
Hillary Clinton is a popular senator and a potential president and George Bush is a 
popular president. These utterances can be represented as follows: 

      || senator || ={h:senator,..}:senator 

 ||potential || ={h: ⊥ }:potential 
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  ||president|| ={ h: ⊥ , g: president}:president  
||popular|| ={g: president, h :senator}:popular 

where 

|| Hillary Clinton|| = h, ||George Bush||= g, and “ ⊥ ” is the subtype of every type 

Looking at the set representation of the president predicate, we notice that the 
individuals h and g have different associations with the set. The latter has a full 
membership, for its type matches that of the set. This is not the case with the other 
individual. Since the type ⊥  is a subtype of every type in the type hierarchy, nothing 
commits us to believe that h is a member of the set. More formally, h:president 
∉||president||, for h:president is not equal to h:⊥ by the definition of 
≡. Also, a negative answer is obtained for the question, Is Hilary Clinton a popular 
president? Because h:president∉||popular||∩ ||president||. But 
affirmative answers to the questions Is Hilary Clinton a potential president? or Is 
Hilary Clinton a potential official? are always obtained. 

Thus, by assigning the type ⊥ to the adjective potential we were able to represent 
the non-committal membership notion formally. An ad hoc approach would require a 
non-compositional, non-practical hand-coding of phrases such as presumed dead, 
alleged thief, and so on. 

7   Comparison with Other Approaches  

We will compare our approach to CN analysis of modification with that of   
Montague’s and Davidson’s approaches. In Montague semantics, modifiers are 
syntactically analyzed as functions from predicates to predicates, and semantically as 
functions from predicate intensions to predicate extensions.  This approach, in line 
with Montague’s doctrine of generalizing to the hardest case, provides a uniform 
treatment of modification.  However, this generalization, as [14] notes, “blurs” the 
fact that when an extensional modifier is applied to a predicate the compound is 
interpreted as the conjunction of the two predicates8, as in (a). For work regarding 
CNs within Montague’s framework, see [22] and [6]. 

In the Davidson approach, as in the work of [15], on the other hand, the 
constituents of a CN are analyzed as conjunctions of a number of predicates, whose 
domains range over the set of individuals. Such an analysis is simple and 
straightforward with regard to extensional modifiers such as red and event-indicating, 
non-extensional modifiers such as former. Thus, the expressions in (a) and (c), from 
[15], are, respectively, represented as in (b) and (d): 

a) That is a red rose                 b) ∃ x red(x) ∧  rose(x) 
c) Jerry is a former president  d) ∃ e[ presidency(e) ∧ Theme(jerry,e) ∧  former(e)] 

As these examples show, predicates are of first-order nature, which is an advantage 
over Montague’s, which invokes, as seen by some people, ontologically dubious 
notions such as possible worlds. However, things get complicated for the Davidsonian 

                                                           
8 This conjunctive reading can be accounted for with additional semantic rule to the grammar. 
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analysis when non-committal modifiers are involved. It is difficult to see how a 
uniform approach can be obtained, where the syntactic and semantic functions stay in 
close correspondence as compositionality demands and as demonstrated in 
Montague’s. Thus, uniformity is seriously compromised by simplicity. 

Our approach, on the other hand, avoids the difficulty encountered by the two 
approaches. We obtained uniformity not by generalizing to the hardest case, as 
Montague did, but to the simplest case, conjunction or intersection. This, of course, 
has been achieved at the expense of adding types to both sets and their elements. Thus, 
in our approach, as in Davidson, (a) is interpreted as conjunction of the modifier red, 
given the type ┬, and the noun rose. Also, as demonstrated in (6.5), we were able to 
represent non-subsective modifiers; something that Davidson’s approach has difficulty 
accounting for.  This is, of course, in addition to our approach’s capability of 
accommodating bracketed expressions and its machine-implementability. The latter is 
the case since our predicates, as in Davidson’s approach, are first-order with some extra 
overhead computation to work out types.   

8   Conclusion 

We have presented a unified semantic approach to complex nominals. We started by 
providing an analysis of the ontological nature of the constituents of complex 
nominals, the adjectives and common nouns. We argued that typed sets are capable of 
capturing the semantic aspects of extensional and intensional terms, using first-order 
predication. We argued that typed sets can, without resorting to notions such as 
possible worlds, show that co-extensive terms have different meanings. Then, we 
presented the rules and axioms, as well as typing rules, for handling complex 
expressions. We demonstrated the new approach by applying it to several examples. 
In particular, we showed how typed set could capture the semantic values of 
otherwise hard to represent terms such as presumed. We then compared our approach 
to the way CNs are analyzed within two well studied semantic frameworks, Montague 
and Davidson. We argued that our approach is as general as Montague and is as first-
order-predication-oriented as Davidson. We argued that this feature is of significant 
importance for machine-implementability.   
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Abstract. In many domains, automated speech recognition (ASR) de-
mands highly robust and accurate recognition software. Unfortunately,
in such domains, even a 99% accurate recognizer is inadequate, and
other methods for increasing the reliability and performance of ASR
must be considered. As a possible solution to this problem, post-speech-
recognition error detection can assist in proofreading more efficiently. To
this end, we have developed a multi-heuristic algorithm using natural
language processing to detect recognition errors. As a proof of concept,
we have applied this algorithm to the radiology domain. The results are
encouraging, showing a 22% increase in the recall performance, and a 6%
increase in the precision performance, over the best individual technique.

1 Introduction

The increasing accuracy of automated speech recognition (ASR) technology, as
well as the many benefits, have prompted the introduction of ASR systems in a
wide variety of venues. For example, in medicine ASR can offer improved patient
care and resource management in the form of reduced report turnaround times,
reduced staffing needs, and the efficient completion and distribution of reports
[1,2]. In some domains, however, the accuracy remains too low, making ASR a
poor choice. This becomes apparent if we consider that even a supposedly 99%-
accurate speech recogniser still averages one error out of every hundred words1,
with no guarantees as to the seriousness of such errors2.

While directly increasing ASR accuracy beyond 99% is not likely in the near
future, we can improve matters through post-ASR error detection. By applying
natural language processing techniques, in the form of heuristics, we can cre-
ate a system that quickly identifies ASR errors (and ultimately corrects them),
streamlining the process of proofreading and restoring much of the efficiency
of ASR.

Current research in post-ASR error detection has been applied mostly to
conversational systems. Statistical methods such as word co-occurrences [3,4,5]
1 When considering the standard word-error rate (WER).
2 The average accuracy in a domain such as radiology is typically between 80-85%.
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are popular since ASR errors “are found to occur in regular patterns rather
than at random” [6]. Unfortunately, the variety of potential recognition errors
is inadequately captured by statistical methods alone. Hybrid methods, how-
ever, attempt to complement the weaknesses of an individual approach with
the strengths of others. Thus, we have developed a hybrid method for post-
recognition detection that uses both statistical and non-statistical techniques.
By employing both techniques in the form of multiple heuristics, it is possible to
overcome many of the inherent limitations of single techniques, while detecting
errors of any type. As a proof of concept, we implement the hybrid, post-ASR
detection method in the domain of radiology reporting.

1.1 On the Nature of Recognition Errors

As outlined in Kukich [7], there are five levels of text-based errors, namely lexi-
cal/structural3, syntactic, semantic, discourse, and pragmatic.

In addition, there are six recognition error types that can cause errors at some
of these levels:4

Stop Word Errors. Any error involving a stop word (i.e. words with low se-
mantic load, such as prepositions or determiners). In general, stop words can
result in errors at the syntactic or semantic level.

Merge Errors. Two or more words are erroneously recognised as a single word
[8]. E.g. “wreck a nice” → “recognise”.

Split Errors. A single word erroneously recognised as two or more words [8].
E.g. “recognise” → “wreck a nice”.

Substitution Errors. The replacement of one word by another [9].
Insertion Errors. The insertion of a word that is not part of the original ut-

terance [9].
Deletion Errors. A word in the original utterance that does not appear in the

final ASR output.

Deletion errors are difficult to detect as words typically leave little record
of their absence. Similarly, the detection of stop word errors is also difficult
due to their prevalence in the language and the small semantic role they play.
Consequently, many error detection systems focus on the remaining four error
types. By developing a hybrid method, however, we have been able to integrate
weaker methods–that detect deletions but not much else–with stronger methods
for detecting other error types, thus creating a wide-coverage error-detection
system for assigning post-recognition confidence scores to a text.
3 Depending on the domain, the misrecognition of specially formatted lexical items

may arise. This is frequently seen in the interpretation of radiology reports where
complex lexical items such as “L4/5” are misinterpreted as “L for/five”. To represent
such instances, we have introduced the error level, “structural”, that sits parallel to
the lexical level.

4 Note that it is impossible for the recogniser to introduce errors at the discourse or
pragmatic level (except those which may follow as side effects of other errors) since no
recogniser-based processing occurs at these levels. Furthermore, since all recognised
words are produced from a pre-defined lexicon, lexical errors are not possible.
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2 Error Detection in Restricted Domains

When working in a limited domain, such as radiology, one can identify fea-
tures specific to radiology reports. For example, by examining the context of
the various sections of a standard radiology report, certain features emerge that
represent the expected features of words occurring in a particular section. Thus,
a “Procedures” section will contain those concepts relating to radiological pro-
cedures with a higher probability than those relating to other areas. Similarly,
if a report is discussing an examination of the knee, concepts relating to the
other parts of the body will have a lower probability. When these and other
heuristics are combined together it is possible to generate a characterization of
the “correctness” of a particular word or phrase in the report.

3 A Hybrid Approach to Error Detection

By observing that the individual heuristics each detect a limited subset of the
error types listed above, when combining them together it is possible to create
a hybrid error-detection algorithm that covers all error types. Our intent with
the hybrid method is to complement the weaknesses of one approach with the
strengths of another.

Objective. To develop a mapping from the individual words of a dictation to
a confidence score or error tag set.

To achieve this mapping, the desired system must have some means for assigning
confidence scores and ultimately identifying recognition errors within in a text.
This requires the identification of features whose values can be combined to form
a single confidence ranking for a word or phrase. In this way it is possible to define
different error-detection algorithms that may rely on different sets of features.

The ultimate goal of an error-detection system is a mapping that, when ap-
plied to a text such as a radiology report, will output a list of errors detected.
This list can be expressed superficially as a tag indicating a word is “correct”
or “incorrect”, where “incorrect” means that a word can be described according
to one of the error types outlined in Section 1.1. Thus, all words are mapped to
the error tag set, {correct, incorrect} (irrespective of their error type).

In a hybrid method, however, this mapping relies on the interaction of the
various error-detection heuristics. There are two possibilities for arriving at the
word-level tag map. In the direct method, the indication of an erroneous word by
at least one heuristic is sufficient to trigger an “incorrect” tag on that word. Thus
individual confidence scores are evaluated on the basis of a threshold and the
combined result of each error-detection heuristic is a binary tag (as above). In
the indirect method, the output from each heuristic is taken as input to a meta-
level heuristic such that each word is provided with a confidence score based
upon the weighted aggregation of any scores from the individual heuristics. As
an initial proof of concept, we employ the direct method in our calculations.
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Observation 1. No single error-detection technique is sufficient to detect all
potential errors in a dictation.

The goal in any post-recognition error-detection system is 100% coverage of all
error types and 100% accuracy in identifying errors. While the various statistical
and non-statistical methods of error-detection are each sensitive to a particular
subset of error types, none provide complete coverage, nor have any implemen-
tations achieved 100% or near-100% accuracy [3,10,6,5,8]. In some cases, such as
the use of stop lists5 in statistical techniques, complete coverage is impossible.

Observation 2. By combining those methods of error detection that are com-
plementary in their coverage of error types, it is possible to achieve greater
sensitivity to errors within radiology reports.

Although individual error-detection techniques may be insufficient, if their cov-
erage of error types is shown to be complementary, then the combination of
multiple heuristics will result in a higher coverage of error types. In addition,
overlapping areas of coverage will increase the reliability of the final confidence
score or error mapping.

Conclusion. A hybrid approach is the best choice for post-recognition error-
detection.

4 The Error Detection System

To demonstrate the efficacy of the proposed hybrid, post-ASR methodology,
we present a proof of concept in the radiology domain with three component
heuristics: two statistical heuristics using word-occurrence probabilities, namely
co-occurrence relations and pointwise mutual information (PMI), and one non-
statistical heuristic, a constraint-handling-rules parser.

4.1 Materials

Corpora. The Canada Diagnostic Centre (CDC) in Vancouver, BC, has pro-
vided over 2700 corrected and de-identified radiology reports (using the Dragon
NaturallySpeaking speech-recognition system, version 7.3) as well as an addi-
tional corpus of 30 raw, uncorrected radiology reports paired with their corrected
versions.

Out of these test reports, there is an average of 11.9 errors per report, with
an average report length of 80.8 words. This represents an average word-error
rate (WER) of 15%.

4.2 Methods

To find the actual errors in our test reports, we align the corrected and un-
corrected reports, determine any differences and tag them as errors. We then
5 A list of words excluded from an analysis.
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compare these to the flagged errors from our program output to obtain our re-
sults: a match is considered a correct detection, or true positive; a flagged error
that does not correspond to an actual error is considered a false positive; an
error not flagged is considered a false negative.

In calculating all results, Recall is a measure of the number of errors correctly
detected over the total number of errors actually present; Precision is a measure
of the number of errors correctly detected over the total number detected.

As a final note, all tools were designed and run on a Mac G4, 1.5 GHz, OS X
10.3.9.

The Statistical Heuristics

Observation 4. The probability of a misrecognised term is lower than the prob-
ability of a correctly recognised term.

We used two probabilistic heuristics: co-occurrence relations and PMI. Under-
lying both is the notion that in identifying patterns common to error-free reports,
we can automatically detect inaccuracies within novel reports. By choosing two
statistical algorithms, the results can be combined to smooth out any anomalies
within the calculations themselves to produce more reliable results, as well as to
provide a comparative evaluation of the two techniques.

As part of the setup for both co-occurrence analysis and PMI, the co-occurrence
statistics of varying window sizes have been compiled for the 2700, anonymised
MRI reports.6

The first heuristic is based on the work in Voll [11,12] in which co-occurrence
relations [4,13,10] were found to have a high recall in detecting errors in radiology
reports. Given a sufficiently representative training corpus, we can associate
words with particular contexts based on that corpus. We can then apply these
word-context statistics to determine the probability of a word occurring in a
given context in a report. This probability represents a measure of the confidence
of that word; if it falls below a certain threshold the word will be flagged as a
possible error.

For each uncorrected report we determine the context of each word, calcu-
late the co-occurrences and apply the appropriate collection of co-occurrence
statistics from the training data.

Given a word, w, occurring in a document, d, a context window, C(w, d, n),
is defined as the n words occurring to either side of w in d. 7

6 It is important to note that in co-occurrence analysis, stop words are usually omitted
since their overabundance in a text can affect the resulting probabilities dispropor-
tionately. This immediately limits the maximum error detection.

7 For example, consider the incorrect sentence fragment in Sentence 1:

...possible spondylolysis eye laterally of L5... (Sentence 1)

We can generate the following co-occurrences for the target word, “eye”, with a
context window of 2 (up to 2 words to either side of “eye”, ignoring stop words):
{eye possible, eye spondylolysis, eye laterally, eye L5}.
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Using Bayes’ Theorem (Equation 1), we then combine the probability of each
word that occurs within the context window of the target word, and the proba-
bility of the target word itself.

P (t|C) =
P (t) ∗ P (C|t)

P (C)
(1)

In general, we use the following calculation for each word (where win repre-
sents the size of the context window being used):

P (wi|wi−win, · · · , wi−1, wi+1, · · · , wi+win) =
P (wi)P (wi−win, · · · , wi−1, wi+1, · · · , wi+win)

(2)

While Bayes’ Theorem is a straightforward approach to determining the prob-
ability of a word given its context, other methods of aggregation could be easily
applied here.

The second heuristic is based on the work of Inkpen and Désilets who sug-
gest similar results using PMI. They also discuss other techniques previously
employed, but conclude that PMI performs the best, in part because of the po-
tential to scale up well to larger databases (which is ultimately desired for bet-
ter characterization of radiology reports) [14,15]. Like the co-occurrence method
above, given a sufficiently representative training corpus, it is possible to derive
word probabilities based on the probability of occurrence within that corpus.
Similarly, the probability of a word co-occurring with another word within a
particular context window can be determined by the frequency of such a co-
occurrence within the training corpus. The probability of two words occurring
independently versus the rate at which they occur together, provides a measure
of independence that can be used as a measure of the likelihood of a word oc-
curring in a given context in a report. If that probability falls below a certain
threshold the word will be flagged as a possible error.

As described in Inkpen and Désilets [14], a semantic similarity score between
two words, w1 and w2 is based on the shared information load of both words.
Equation 3 shows the calculation of PMI for two words. Here C(w1, w2), C(w1)
and C(w2) represent the frequency of occurrence (in the training corpus) while n
is the total number of words in the corpus [14]. Thus the PMI semantic similarity
measure is a reflection of probability of two words occurring together, where
“together” is limited by the defined context-window size, and the individual
probability of each word occurring in the training corpus [14].

PMI(w1, w2) = log
P (w1, w2)

P (w1) · P (w2)
= log

C(w1, w2) · n
C(w1) · C(w2)

(3)

The basic PMI calculation in Equation 3 is applied to two individual words. In
the case of a document, however, the desired outcome is the semantic similarity
of an individual word to the context in which it occurs.
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Results
In both heuristics, to find the actual errors in our test reports, we align the
corrected and uncorrected reports, determine any differences, and tag them as
errors. We then compare these to the flagged errors from our program output to
obtain our results, where “true positive”, “false positive” and “false negative”
are defined as in Section 5.2.3.

The system is able to identify error candidates in under a minute in all cases,
underscoring its viability for real-time use8.

The results obtained are shown in Table 1 while the results for the PMI
calculation on our test corpus are shown in Table 2. Corpus Size:Training is the
the number of reports in the training set, while Corpus Size:Test is the number
of test cases on which the system was run. In the Sensitivity, “Salient Words
Only” means errors involving words with little or no semantic load (such as
prepositions) were not considered.

Table 1. Co-occurrence analysis on speech-recognised reports with windowsize=1,
threshold=0

Accuracy Corpus Size
Sensitivity Recall Precision f-measure Training Test
All Errors 52% 36% 42% 2751 30

Salient Words Only 86% 29% 44% 2751 30

Table 2. PMI analysis on speech-recognised reports with windowsize=10, thresh-
old=100

Accuracy Corpus Size
Sensitivity Recall Precision f-measure Training Test
All Errors 35% 34% 34% 2751 30

Salient Words Only 73% 35% 47% 2751 30

Discussion. The recall reflects a high sensitivity to errors and a low rate of false
negatives when only salient words are considered. This is especially important
in medicine as errors missed could have serious ramifications. In contrast, the
precision is low, indicating a high rate of false positives. Although still important
overall, false positives are nonetheless identifiable by the radiologist and do not
affect report quality. In most cases these false positives are generated by word-
context pairs that were not previously encountered in the training data. Thus
we have P (C|T ) = 0, which results in P (T |C) = 0 by Equation 1. By increasing
the number of reports in the training corpus, however, we can ensure a greater
8 There is a one-time overhead cost associated with generating the co-occurrence

statistics for the training sets. Once generated, however, the database is simply
stored and referenced. Re-generation would only occur if new training data were
added.
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coverage of the terms that typically occur in a radiology report. This will cause
the rate of false positives to drop and improve the precision. Although the ideal
training corpus would contain every possible context of every possible word in a
radiology report, radiology nonetheless does not exhibit a wide variation within
reports. A fairly accurate depiction of the possible patterns within a report
is feasible with a large enough training set. Interestingly, though, some false
positives may be advantageous, indicating rare occurrences that merit closer
inspection by the radiologist to ensure there are no mistakes.

The rate of error detection, or filtering, is affected by the threshold value, K.
Higher values of K, mean less filtering and a higher WER, while lower values of
K, mean greater filtering and a lower WER. In this way it is possible to increase
the recall level to near 100%, however, there is a corresponding loss of precision.
Nonetheless, this does allow for some flexibility in balancing between the recall
and precision measurements9.

Note that the PMI results shown here do not reflect the same degree of success
that was seen in Inkpen and Désilets [14]. This is likely a reflection of the signifi-
cantly smaller training set used. If a word is not found in the training data, then
its probability and the probability of it occurring in any co-occurrence tuples
will be zero, resulting in an incalculable PMI value. By default, the system sets
these values to zero, indicating no semantic similarity.

Syntactic Analysis

Observation 5. The points of failure in a syntactic parse can be used to identify
likely error candidates.

Although statistical methods have dominated error detection in ASR, their
use of stop lists and surface-level analysis prevents such systems from achieving
100% accuracy. To fill this gap, non-statistical methods can offer a more in-depth
analysis of the features within a text.

Syntactic recognition-errors include words or phrases that are out-of-place
with respect to their syntactic placement. In a misrecognised text, for instance,
a verb may occur in the text where the syntactic analysis would predict a noun.
It is possible to identify these syntax errors and apply a weight to determine a
confidence score for words within the text. Thus, as a component of the hybrid
approach to error detection, a syntactic parser can be used to identify syntactic
errors, including those which involve stop words and deletions.

With this in mind, a parser was developed to analyse radiology reports. In
the interest of rapid prototyping sufficient for proof of concept, the parser was
built upon a constraint handling rules grammar, or CHRG [16] and inspired by
Property Grammars [17]. Unique to property grammars, the properties defining
the allowable constructs within the grammar can be tagged as “relaxable” [18].

9 The decision of the threshold value was one of trial and error. In the end, keeping
the threshold at zero (i.e. no effect on the amount of error filtering) gave us the
best results in light of the already low precision scores. If a larger training corpus
improves the precision score, a more appropriate threshold could be chosen.
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While needing to relax a property is likely to indicate an error (i.e. an incorrect
term or an incomplete phrase), the parse is able to continue and information
regarding the nature of the error is collected (i.e. those properties that were not
met). The result is a robust parser that can detect and locate errors within the
text. What’s more, by characterizing the grammar as a series of properties, the
properties constraining the language within radiology reports are easily captured.

During the parse, a series of property checks are performed determine the
phrases and the type of each phrase. Each phrase type has its own rule set defin-
ing its specific properties. If those properties are met (or labeled “relaxable”)
then a constraint representing a constituent of that phrase type is added to the
constraint store. Otherwise the phrase is labeled and added to the constraint
store as “unknown”.

The grammar is comprised of constraint handling rules describing the com-
bination of constituents when certain constraints are observed in the constraint
store. After each change in the constraint store, these constraint handling rules
are consulted and whenever possible constraints are combined to form new con-
straints which are then used to update the constraint store. In this way, the parse
is completed conjoining sub-phrases wherever permitted by the constraint defi-
nitions. When no further changes are possible, the system is “settled” and the
current contents of the constraint store are output. During the parse, the system
maintains a list of all “unknown” constituents. These are output separately at
the end of the parse.

The interpretation of the results for error detection is currently performed
manually. Errors can take three forms given the parser output: phrases tagged
as “unknown”, unsatisfied property lists, and incomplete parse segments. “Un-
known” tags represent words or phrases that could not be assigned a phrase type
by the parser (or were not recognized by the pre-processor).

Results

Table 3. CHR parser results on all error types

Accuracy Corpus Size
Report Type Recall Precision f-measure Test
All Errors 29% 34% 32% 30

Syntactic Errors Only 71% 17% 27% 30

The drop in precision in the second set is because the total number of errors
returned by the parser is the same, regardless of error type being considered.
In Table 3 this caused a drop in the precision since a smaller number of errors
were considered “correct”, that is actual syntactic errors. In addition, while the
parser takes longer than the statistical techniques (up to three minutes in some
cases), there is no overhead cost associated with generating the co-occurrence
statistics. Also, in all cases the slow run time was attributable to the preliminary
nature of the parser and will improve with future iterations.
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Discussion. Since a syntactic parser is capable only of finding errors relating to
the syntax of the input text, it naturally performs poorly when measured against
all errors within a report. However, when limited to only the syntactic errors, we
see that the system performs well above chance, motivating continued research.

5 A Hybrid Approach

As a proof of concept of the proposed hybrid error-detection method, the above
heuristics have been applied in combination to the test corpus. The results in
Table 4 do show that post-recognition error-detection can improve speech recog-
nition output. Furthermore, the combined application of these heuristics shows
a 22% increase over the best single heuristic technique, favouring the hybrid
method over previous, independent applications of error-detection methods in
ASR when applied to radiology reports. In addition, since these reports were
part of an ongoing collection by the CDC, they were produced only when time
was available, and include all scan types, unlike the training data, which is lim-
ited to MRI. Thus, the results shown here show extensibility beyond the training
data to broader divisions of reports.

An important aspect of this analysis is the omission of stop words, or low-
information-bearing words. These words are ignored because it is often observed
that a mis-recognised stop word rarely entails a shift in the intended semantics.
Exceptions exist, however, such as a substitution of “and” for “at the”, that may
have more serious consequences in medicine, and may prove difficult for human
editors to detect. As a result, a more detailed analysis of stop words is currently
undergoing.

Table 4. Results from the individual algorithms on all errors (and all words) and the
combined results on all errors

Accuracy Corpus Size
Report Type Recall Precision f-measure Training Test

Best Co-Occur 52% 36% 42% 2751 30
Best PMI 35% 34% 34% 2751 30

Parser 29% 34% 32% 2751 30
Combined 74% 42% 54% 2751 30

6 Future Work

This research is ongoing, including experiments with innovative, non-stochastic
methods that rely on syntactic as well as semantic analysis of the text itself, such
as conceptual similarity [19,20]. Such techniques will make it possible to evolve
beyond just detection to the much harder problem of automated correction. This
can include semi-automated correction, whereby the radiologist is presented with
intelligent suggestions for correction of recognition errors.
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Since the error coverage differs with each error-detection method, not all words
may have numerical scores assigned from all algorithms. If the output from each
algorithm is a measure of confidence in the recognizer output, then the combined
result of applying all heuristics via the hybrid algorithm to the text will result in
a complex confidence score for each word. These results can be combined beyond
the näıve direct method, with the choice of meta-level heuristic affecting the final
confidence rankings and thus the overall performance of the system.

Finally, this technique could easily be extended to other areas of medicine that
share the same properties of restricted vocabulary seen in radiology, provided
an adequate training corpus is available.

7 Conclusion

Despite the trend toward automated speech recognition, in some domains the
accuracy of ASR remains a limiting factor. By incorporating a hybrid approach
to post-recognition error detection using NLP, however, these errors can be effi-
ciently detected, restoring the benefits of ASR in many cases.
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Planning in Multiagent Expedition with

Collaborative Design Networks
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Abstract. DEC-POMDPs provide formal models of many cooperative
multiagent problems, but their complexity is NEXP-complete in general.
We investigate a sub-class of DEC-POMDPs termed multiagent expedi-
tion. A typical instance consists of an area populated by mobile agents.
Agents have no prior knowledge of the area, have limited sensing and
communication, and effects of their actions are uncertain. Success relies
on planing actions that result in high accumulated rewards. We solve an
instance of multiagent expedition based on collaborative design network,
a decision theoretic multiagent graphical model. We present a number
of techniques employed in knowledge representation and demonstrate
the superior performance of our system in comparison to greedy agents
experimentally.

1 Introduction

Decentralized partially observable Markov decision processes (DEC-POMDPs)
(e.g., [1]) extend POMDPs to multiagent systems. DEC-POMDPs provide formal
models of many cooperative multiagent problems. However, in general, their
complexity is nondeterministic exponential time complete (NEXP-complete) [2].

We consider a sub-class of DEC-POMDPs which we term as multiagent expe-
dition. A typical instance consists of a large area populated by objects as well
as mobile agents. Activities of agents include moving around the area, avoid-
ing dangerous objects, locating objects of interests, and manipulating objects in
various ways depending on the nature of application. The effect of an action is
generally uncertain. Agents have no prior knowledge on the area. That is, they do
not know, a priori, where dangerous or interesting objects are located. Instead,
they try to identify nearby objects based on limited sensing of the local envi-
ronment. Successful manipulation of an interesting object sometimes requires
proper actions of a single agent and sometimes requires cooperation of multiple
agents through limited communication. The success of an agent team depends
on the number of objects successfully manipulated as well as the quality of each
manipulation. Practical examples of multiagent expedition include undersea ad-
venture, planet expedition, disaster rescue, anti-air defense, etc. In this paper, we
specify precisely the instance of multiagent expedition used in this investigation.

Our knowledge representation is based on collaborative design networks
(CDNs) originally proposed [10,11] as a decision-theoretic framework for multia-
gent, optimal industrial design. The expressive power of the framework, however,

Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 526–538, 2007.
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goes beyond design. As long as domain dependencies can be encoded into sparse
and distributed graphical structures, the framework supports autonomous, opti-
mal, and efficient multiagent decision making. To further explore its generality,
this work investigates the application of CDNs to multiagent expedition.

Section 2 introduces background on CDNs. The instance of multiagent expedi-
tion that we investigate is specified in Section 3. How we approach this generally
intractable problem computationally is detailed in Section 4 and our experimen-
tal results are reported in Section 5. Additional related work is discussed in
Section 6 after presenting ours, to facilitate comparison.

2 Background on CDNs

We briefly review background on CDNs, whose full technical details can be
found in [10,11]. CDNs are motivated by collaborative industrial design in supply
chains. An agent responsible for the design of a component encodes its design
knowledge and preference into a design network (DN) S = (V, G, P ). The domain
is a set of discrete variables V = D ∪ T ∪M ∪U , where D, T, M, U are disjoint.
D is a set of design parameters. T is a set of environmental factors (working
conditions) of the product under design. M is a set of objective performance
measures and U is a set of subjective utility functions of the agent’s principal.

The dependence structure G = (V, E) is a directed acyclic graph (DAG) whose
nodes are mapped to elements of V and whose set E of arcs is from the follow-
ing legal types: Arc (d, d′) (d, d′ ∈ D) signifies a design constraint. Arc (d, m)
(m ∈ M) represents dependency of performance on design. Arc (t, t′) (t, t′ ∈
T ) represents dependency between environmental factors. Arc (t, m) signifies
dependency of performance on environment. Arc (m, m′) defines a composite
performance measure. Arc (m, u) (u ∈ U) signifies dependency of utility on
performance. Fig. 1 (a) shows a trivial DN.

(a)d_c_voltage u_perf

d_memory

u_cost
d_b_chipset

d_io_controler
m_cost

u_io_perf
m_io_perf

d_12vm_stability

t_humidity

u_stability
m_perf

d_c_chipsett_temperature (b)

PC Video CardPower Supply

CPU
Motherboard

Monitor

Fig. 1. (a) A trivial DN for PC motherboard. First letter of a node label indicates its
type. (b) Hypertree of a simple CDN.

P is a set of potentials, one for each node x, and each is formulated as a
probability distribution P (x|π(x)), where π(x) is the parent nodes of x, but its
semantics depends on x. P (d|π(d)) encodes a design constraint. P (t|π(t)) and
P (m|π(m)) are typical probability distributions. Each utility variable has the
domain {y, n}. P (u = y|π(u)) is a utility function u(π(u)) whose values range
in [0, 1]. P (u = n|π(u)) is assigned 1 − P (u = y|π(u)). Each node u is assigned
a weight k ∈ [0, 1] such that weights of all utility nodes sum to one.
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With P thus defined,
∏

x∈V \U P (x|π(x)) is a joint probability distribution
over D∪T∪M . With the assumption of additive independence among utility vari-
ables, the expected utility of a design d is EU(d) =

∑
i ki (

∑
m ui(m) P (m|d)),

where d (bold) is a configuration of D, i indexes utility nodes in U , m (bold) is
a configuration of parents of ui, and ki is the weight of ui.

Each supplier in a supply chain is a designer of the supplied component.
Agents, one per supplier, form a collaborative design system. Each agent em-
bodies a design network called a design subnet and agents are organized into
a hypertree: Each hypernode corresponds to an agent and its subnet. Each hy-
perlink (called agent interface) corresponds to design parameters shared by the
two subnets (referred to as public variables). Hypertree organization specifies
to whom an agent can communicate directly. Each subnet is assigned a weight
wi, representing a compromise of preferences among agents, and

∑
i wi = 1.

The collection of subnets {Si = (Vi, Gi, Pi)} forms a CDN. Fig. 1 (b) shows
the hypertree of a simple CDN for customized PC design, where the subnet on
motherboard is shown in (a).

The product
∏

x∈V \∪iUi
P (x|π(x)) is a joint probability distribution over

∪i(Di∪Ti∪Mi), where P (x|π(x)) is associated with node x in a subnet. The ex-
pected utility of a design d is EU(d) =

∑
i wi (

∑
j kij (

∑
m uij(m) P (m|d))),

where d is a configuration of ∪iDi, i indexes subnets, j indexes utility nodes
{uij} in ith subnet, m is a configuration of parents of uij , and kij is the weight
associated with uij . Through communication along the hypertree, agents can
determine the optimal design d∗ that has the maximum EU(d) [11].

3 The Multiagent Expedition Testbed

The following instance of multiagent expedition is used in our investigation:
The area is abstracted as a grid of cells. At any cell, an agent has five possible
actions: moving to an adjacent cell along one of four directions (referred to as
north, south, east, west) or remaining in the current cell (referred to as halt). The
effect of an action is, however, uncertain. That is, the action north may cause
the agent to land on each of four unintended cells.

The desirability of an object (located at a cell) is indicated by a numerical
reward. For simplicity, we abstract away the object and associate the reward
with the cell. A cell that is neither interesting nor harmful has a reward of
a base value. The reward at a harmful cell is lower than the base value. The
reward at an interesting cell is higher than the base value and can be further
increased through agent cooperation. When a physical object at a given location
is to be manipulated (e.g., digging, lifting, pushing, etc.), cooperation is often
most effective when a certain number of agents are involved, and the per-agent
productivity is reduced when less or more agents are involved. We set the most
effective level at 2, although other levels can also be used. For instance, the
reward that can be collected by a single agent from a given cell may be 0.3.
However, if two agents cooperate and meet at the cell, each receives 0.4. If three
or more agents meet at the cell, two of them each receives 0.4 and the other
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agents receive the base value. This feature promotes effective cooperations and
discourages unproductive ones. It is encoded by associating each cell with a
reward pair (r1, r2), where r1 is the reward collected by a single agent and
r2 is the total reward collected by two cooperating agents. Hence, the above
mentioned cell has the reward (0.3, 0.8). After a cell has been visited by any
agent, its reward is decreased to the base value. As a result of this feature,
wandering within a neighborhood will not be productive and agents must move
around strategically.

Agents have no prior knowledge about the area on how the rewards are dis-
tributed. Instead, at any cell, an agent can perceive the cell’s absolute location
(e.g., through GPS on Earth or triangulation with two base stations on Mars).
It can also perceive the reward distribution in its neighborhood. We set the
neighborhood to be the 13 cells shown in Fig. 2 (a), although different settings
are also possible. An agent can also perceive the location of another agent if the
latter is within a 10 step radius. It can communicate with agents within this
radius as well. The objective of agents is to move around the area, cooperate as
needed, and maximize the team reward over a finite horizon. They must do so
based on local observations and limited interagent communication.

This instance of multiagent expedition is a DEC-POMDP. The state of the
environment is described by the location of all agents as well as the distribution of
rewards. It is stochastic since the effect of actions are uncertain. It is Markovian
as the new state is conditionally independent of the history given the current
state and the joint action of agents. It is partially observable because each agent
can only perceive its neighborhood, but not the distribution of rewards and
agents beyond.

Because an agent can perceive its own location and agents nearby, a sig-
nificant amont of relevant information in the environmental state is obtained
through observation. On the other hand, not all relevant information has been
obtained, because knowing the reward distribution beyond the neighborhood
will allow the agent to plan better. To capture this difference from the case
where agents cannot perceive its own location reliably, we refer to the stochastic
process as a decentralized weakly partially observable Markov decision process
(DEC-W-POMDP).

4 A Decision-Theoretic Graphical Models Approach

Consider the general case of the problem instance with n agents and horizon k.
Given the current positions of agents, each agent has five possible actions. Hence,
there are 5n joint actions and 5nk joint plans of horizon k. Since each action
has five possible effects, a joint action has 5n possible effects, a joint plan has
5nk possible effects, and the 5nk joint plans have a total of 52nk possible effects.
Each automonous agent needs to evaluate these effects, identify the optimal joint
plan, and obtain its own optimal action sequence. For six agents and horizon 2,
each agent needs to evaluate 524 ≈ 6 × 1016 possible effects. To carry out the
computation more efficiently, we take the following measures:



530 Y. Xiang and F. Hanshar

Splitting Agent Team into Groups. We divide n agents into smaller groups
to allow high inner-group interaction and low inter-group interaction. Grouping
has no negative effect on scaling up. It allows group members to stay closely so
that they can cooperate effectively, as long as the group size is no smaller than
the number of agents to be involved in a most effective cooperation. It allows
different groups to stay away from each other, which not only allows the team
to explore the area more effectively, but also allows reduction of computation
by reducing inter-group interaction. In this work, we consider group size of 3,
although larger sizes can also be used. We present inner-group interaction first
and inter-group interaction later. We also limit horizon to 2. These two measures
allow the per-agent evaluation to be reduced to 512 ≈ 2.4× 108 possible effects.

Graphical Modeling. These effects are evaluated by agents using a CDN. We
denote the three agents in a group by A, B and C. The subnet dependence
structure for B is shown in Fig. 2 (b). The subnets for A and C have the same
structure. In the subnet, each decision variable mvx,i has 5 possible values. Each

BG
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B

A,2ps

C,2ps

B
B

C,1B,1
A,1 psBps

ps mv

(b)(a)

C,2
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Brw

B,2
Bps

mv B,2
A,2mv

C,1mvB,1mvA,1mv

Fig. 2. (a) The 13 neighborhood cells whose rewards are perceivable by the agent.
(b) Subnet structure for agent B. Design parameter mvA,1 denotes first movement
decision of agent A and is a public variable. Performance measure psA,1

B denotes position
of A after first movement and is a private variable in B. The utility variable rwABC,2

B

denotes reward received by B after second movement due to interaction with A and C.

position variable psx,1 has five possible values and each position variable psx,2 has
13 possible values. Each reward variable rwABC,i

B is binary. After compilation,
its runtime representation is a cluster tree of 8 clusters (see Fig. 5 (a) for an
alternative cluster tree). The size of total state space of this cluster tree (the total
number of probability potential values) is 619244. For each round of planing,
agent B must process this state space once for each of the 56 = 15625 joint
plans. Agents A and C incur the same amount of computation. The entire round
of group planing takes 7380 seconds (2 hours and 3 minutes) running in IBM
ThinkPad 2GHz Core Duo (Java implementation without runtime optimization).

Restricting Inner-Group Interaction. To speed up the computation, we
restrict inner-group agent interaction to pairwise. We only allow direct coop-
eration between A and B and between B and C. This essentially imposes an
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organizational structure A−B−C for the group. This restriction will not jeop-
ardize the effectiveness of agent cooperation because the number of agents who
can cooperate equals the most effective level of cooperation of the environment
(see Section 3).

The subnets for agents A and B in the resultant CDN are shown in Fig. 3.
The subnet for C is similar to that of A. From (a), it can be seen that variables
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Fig. 3. (a) Subnet for agent A. (b) Subnet for agent B.

corresponding to agent C have disappeared from GA (the similar occurs with
GC). In (b), the rewards due to B’s cooperations with the other agents have
now been decomposed.

The group organization A − B − C does not, by itself, prevent interactions
between A and C as they could still meet even though the meeting is not planed.
In fact, the group could behave such that all three are trying to meet: an unpro-
ductive cooperation. To prevent such behavior, the planning computation steers
A and C away from each other. How to achieve this is presented below.

Guiding Agents with Group Direction. To reduce the state space of agent
cluster trees, we require that agents’ movements be guided by a group direction.
If the current group direction is north, then A and C are not allowed to attempt
south.

Adopting the group direction allows reduction of the space for variables mvA,i

and mvC,i by one alternative action, thus reducing the state space of agent
cluster trees. Furthermore, this restriction allows the agent group to move less
randomly and more strategically because the movements of A and C are better
coordinated. Note that even though A and C are not allowed to attempt south
in the above scenario, they may still move to south due to the uncertain effect
of their movement actions.

Because group direction affects the spaces of public variables mvA,i and mvC,i,
at any time, the three agents must agree on what is the current group direction.
This is achieved by two measures: First of all, group members are required to
stay within the 10 step radius to each other. We elaborate later how agents can
achieve this through planning with CDN. The consequence is that it allows group
members to perceive each other’s position. Second, a common algorithm is used
by group members to compute the group direction based on their positions.
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B

(a) (b) (c)

C BA

B C

A

A

C

Fig. 4. Determine group directions based on agent positions

The algorithm handles a given situation depending on whether there is a meet-
ing. As mentioned above, the planning computation preventsmeeting of the group.
Hence, a meeting can occur only between A and B or between B and C. In such a
case, the group direction is pointing from A to C. If there is no meeting, the group
direction is determined according to the maximum angle in the agent triangle, as
illustrated in Fig. 4 (a). Given positions of group members, a triangle is formed
with angles, ∠A, ∠B and ∠C. If a maximum angle exists, it must be either ∠B
as in (a), or ∠A as in (b), or ∠C as in (c). The dashed arrow indicates the group
direction in each case. If a maximum angle does not exist, a default direction can
be used. We omit computational details here due to space limitations.

The method enforces the following properties: First, it steers the group to
move in formation A − B − C. Agent B is positioned between A and C, and
three of them tend to arrange into a straight line. This helps prevent unwanted
direct interaction between A and C. Second, it steers the group to move in
the direction pointing from A to C. Therefore, the group direction will not
change dramatically from move to move, promoting strategic group movement
and avoiding wandering around in a small confined region. Third, the group
direction does not dictate individual agent movement rigidly. Each agent still
has enough flexibility to choose its action. For instance, suppose that bottom
right cell in Fig. 4 (c) has a high r2 value. Then, B can plan to go south twice
and C can plan to halt first and then go east.

To further reduce the state space of agent cluster trees, we do not allow agents
to attempt halt in the second movement. Action halt is necessary for two agents
to meet when they are in certain relative positions such as that of Fig. 4 (c).
Our stipulation will force C to halt in the first step. This requirement, combined
with the previous measures, reduces the space of variables mvA,2 and mvC,2 to
size 3 and that of mvB,2 to size 4.

The resultant cluster trees for agents A and B are shown in Fig. 5. The
cluster tree for C is similar to TA. The size of total state space of TB is 48169:
about 12-fold reduction. The size of total state space of TA is 10152: about 61-
fold reduction. One round of group planing takes 135 sec (Java implementation
without runtime optimization): about a 55-fold speed up.

Enforcing Desirable Behavior Through Utility. As mentioned above,
within a group, we expect cooperation between A and B and between B and C,
but avoidance of direct interaction between A and C. We also expect different
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Fig. 5. (a) Cluster tree TA for agent A. (b) Cluster tree TB for agent B.

groups to avoid each other. We would like to achieve such desirable behavior of
agents through reasoning within CDN. To do so, we replace each reward variable
rwx,i

y by a new utility variable utx,i
y . Recall that rwx,i

y is a binary variable and
distribution P (rwx,i

y = y|π(rwx,i
y )) associated with rwx,i

y encodes utility function
u(π(rwx,i

y )), where π(rwx,i
y ) is the parent nodes of rwx,i

y and consists of position
variables psz,i

y . The distribution P (utx,i
y = y|π(rwx,i

y )) associated with utx,i
y is

obtained by modifying u(π(rwx,i
y )) as follows:

If π(rwx,i
y ) corresponds to a group configuration where either A and B are

too far away (according to a distance threshold), or B and C are too far away,
or A and C are too close, or agent y is too close to any other agent outside
the group, P (utx,i

y = y|π(rwx,i
y )) is set to 0. Otherwise, P (utx,i

y = y|π(rwx,i
y )) =

u(π(rwx,i
y )).

Jumping in Barren Area. When a group moves into a barren area where all
cells have the reward at or below base value, any movement not causing danger
will be regarded by the agents just as good as any other. The group movement
will then be dominated by danger avoidance and the group could wander around
the barren area forever: an unproductive behavior.

To avoid being so trapped, agents could follow an exception rule outside CDN-
based planning and move in the group direction for a number of steps. However,
such blind jump, combined with the uncertain effect of actions, may violate intra
and inter-group formation or enter dangerous cells.

We have instead let agents plan their jump through CDN. Jumping is triggered
by the inference computation with CDN when the optimal group plan has a
utility at or below the base value. In the next step, each agent checks the observed
rewards for the next two cells in the group direction. If their reward values do
not correspond to danger, the cells will be treated as if their reward values are
1 (the highest value) during planning with CDN.

This solution has the following advantages: First, the jumping behavior is pro-
duced in the uniform computational framework of normal movement, which



534 Y. Xiang and F. Hanshar

facilitates analysis and implementation. Second, danger avoidance is enabled.
Third, if the target cells do not correspond to danger, the high reward values will
be used in the distributions associated with variables rwx,i

y . Because these distri-
butions are subject to the modification into those associated with utx,i

y , as men-
tioned above, desirable behavior regarding intra and inter-group formation will be
enforced during jumping. In short, this solution implements jumping along group
direction as a soft guideline and combines it with other criteria naturally.

5 Experimental Results

To empirically verify the effectiveness of our method, an Environment Simulator
is implemented as well as the agents. The Simulator models the grid, reward
distribution and effect of agent actions (the probability of intended effect of
an action is set at 0.9). It feeds agents with observations and updates environ-
mental state according to agent actions. Each agent communicates with group
members according to CDN hypertree and with Simulator on observations and
action decisions. Agent performance is measured by rewards collected over a
finite horizon.

To test the robustness of our method under different environments, three types
of reward distributions were used. In a dense distribution, every 10× 10 region
has at least one high reward cell. In a barren distribution, high reward cells are
located in clusters. Each cluster is no larger than a 6× 6 region and two clusters
are at least 20 cells apart. In a path distribution, some high reward cells form
a pathway and, along the pathway, a high reward cell is no less than two cells
away from another one. Examples distributions are shown in Fig. 6. For each
distribution type, the initial locations of agents are identical in all runs.

To compare our CDN agents with simpler but non-trivial alternatives, we im-
plemented two types of greedy agents. The domain of decisions mv1 and mv2

is {north, south, east, west, halt}. The first type (GRD) is based on unilateral
reward rwu and maximizes rwu(mv1)+rwu(mv2), where rwu(mvi) is the unilat-
eral reward of the i’th movement. The second (GRDB) considers bilateral reward

21 21 1 c)b)a) 2

Fig. 6. Example distributions. Left: barren (120 by 120); middle: dense (60 by 60);
right: path (80 by 80). Each arrow indicates the starting locations of three agents.
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rwb as well and maximizes rwu(mv1) + rwu(mv2) + rwb(mv1) + rwb(mv2). For
both types, each agent acts independently and there is no direct communication
between agents.

Table 1 shows the experimental results. A team of six agents of the same type
is used for each run which lasts for 80 time-steps. Each type of agents have five
runs for each type of distribution.

Table 1. Experimental results. Mean rewards µ, as well as max and min, are obtained
from 5 runs. Highest means for each distribution is shown as bold.

CDN GRD GRDB
µ max min µ max min µ max min

barren 51.82 53.9 48.3 49.42 49.8 48.8 49.28 49.8 48.4
dense 72.46 81.5 59.8 60.52 62.4 58.4 68.56 76.5 58.1
path 96.48 100.5 91.1 72.56 78.2 65.2 74.44 84.6 68.7

On average, CDN agents collected highest rewards across all three types of
distributions. Results for barren distribution were the closest among the three
types of agents. As high reward clusters were far apart, agents’ observation range
is far below minimal distance between such clusters, and agents were started far
from any such clusters, performance of a single run is more subject to chance.
As a result, the minimal reward collected by CDN agents were lower than the
minimal collected by greedy agents, even though on average CDN agents still
outperform. For dense and path distributions, CDN agents outperform greedy
agents on every run. For path distribution, the lowest reward collected by CDN
agents was higher than the highest reward collected by greedy agents. The su-
perior CDN performance may be attributed to at least two properties. First,
CDN agents can plan bilateral visiting of a cell, whereas greedy agents have no
direct coordination. Second, CDN agents keep groups apart and thus can explore
different regions of the environment and avoid revisiting cells. Of two types of
greedy agents, GRDB type outperforms GRD in dense and path distributions
since it considered bilateral actions whereas GRD did not.

6 Other Related Work

The space precludes an extensive literature review and we discuss only a small
subset which is considered the most relevant.

Mazes have been abstracted from office delivery applications and used in em-
pirical study of centralized POMDP algorithms, e.g. [5]. A typical maze consists
of walls, hallways, rooms and a single agent. The agent must travel to a goal
location through a long sequence of movements. The agent knows the topol-
ogy of the maze but may not know its starting location. Its sensors can per-
ceive nearby walls but are noisy. In multiagent expedition, at any time, multiple
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alternative goals (of different reward) exist for each agent and each requires
a short sequence of movements. The objective of planning is to choose among
these goals wisely. Agents have no prior knowledge of the environment and the
environment is multiagent.

Also abstracting from office delivery applications, Pollack and Ringuette [7]
proposed Tileworld multiagent testbed, where agents’ goals are to push tiles into
holes. As multiagent expedition, a Tileworld agent can pursue one of multiple
alternative goals at any time; but unlike multiagent expedition, each goal requires
a long sequence of movements. The environment is fully observable (agents can
perceive tiles, holes and other agents) and deterministic (actions have intended
effects). In contrast, the environment of multiagent expedition is weakly partially
observable (agents cannot perceive beyond local region) and stochastic (effects
of actions are uncertain).

Tiles and holes in Tileworld dynamically appear and disappear. The fea-
ture is reasonable in office delivery applications but insensible in the expedi-
tion environment. In multiagent expedition, after being visited by any agent,
a cell’s reward is reduced to the base value. As a consequence, wandering in
the same neighborhood is unproductive and agents must move around
strategically.

Work on independent DEC-MDPs [1] shares some features with multiagent
expedition. It assumes that actions of one agent cannot affect other’s observation
and state, and an agent cannot observe other agent’s state and communicate with
them. In multiagent expedition, agents can observe the state of others if they are
close by, they must plan to meet to maximize reward, and CDN utilizes limited
inter-agent communication to achieve optimal joint plan.

Noh and Gmytrasiewicz [6] applied the recursive modeling method (RMM)
to agents cooperating in anti-missile defense. In their environment, incoming
missiles are fully observable. Uncertainty originates from the unknown state of
other agents as well as the effect of intercept action.

Artificial birds [8] display formation behavior somewhat similar to the group
formation presented in this work. The formation can be viewed as the ends of
their birds and the behavior is generated by following simple rules. The formation
of agents in expedition is the means to serve the ends. It is generated as part of
the desirable behavior through decision-theoretical planning.

Multiagent expedition differs from exploration. As commonly referred, e.g.,
[4,9], the main task of exploration is to produce a map in an unknown environ-
ment by moving around and sensing. The map produced can then be used for
navigation as in mazes described above. Multiagent expedition, as we presented,
does not require a map.

In posing the challenge of Mars rover operations [3], the need to take resource
constraints and concurrent actions into account in planning is emphasized. CDNs
encode constraints explicitly through design parameters and address concurrent
actions through multiagent planning. Hence, CDN based planning provides a
promising research direction towards meeting the challenge.
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7 Conclusion

Multiagent expedition forms a class of DEC-W-POMDPs and captures a number
of practical applications. In this work, we solve one instance of DEC-W-POMDP.
The knowledge representation is based on CDN, a formal decision theoretic
graphical model that supports autonomous, optimal, and efficient multiagent
decision making. The generality of CDN allows incorporation of grouping, group
direction, jumping and comprehensive preference encoding to achieve efficiency
while maintaining optimality. Experiment shows superior performance of CDN
agents over greedy agents. Our method can easily scale up to a larger number of
agents by employing more groups as well as a larger group size. The addition of
groups essentially has no impact on complexity. Large group size with the hy-
perchain group organization maintained will cause increase of complexity linear
on the group size.

Theoretical and experimental comparison of our approach to RMM [6] is un-
derway, through which we hope to gain a better understanding of the pros and
cons of our tightly-coupled agent architecture and their loosely-coupled one.
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Abstract. Pathfinding on large maps is time-consuming. Classical
search algorithms such as Dijkstra’s and A* algorithms may solve dif-
ficult problems in polynomial time. However, in real-world pathfinding
examples where the search space increases dramatically, these algorithms
are not appropriate. Hierarchical pathfinding algorithms that provide
abstract plans of future routing, such as HPA* and PRA*, have been
explored by previous researchers based on classical ones. Although the
two hierarchical algorithms show improvement in efficiency, they only
obtain near optimal solutions. In this paper, we introduce the Hierar-
chical Shortest Path algorithm (HSP) and a hybrid of the HSP and A*
(HSPA*) algorithms, which find optimal solutions in logarithmic time for
numerous examples. Our empirical study shows that HSP and HSPA*
are superior to the classical algorithms on realistic examples, and our ex-
perimental results illustrate the efficiency of the two algorithms. We also
demonstrate their applicability by providing an overview of our Route
Planner project that applies the two algorithms proposed in this paper.

1 Introduction

The population of wheelchair users is very significant and increasing dramatically
[13]. Therefore, finding accessible wheelchair routes is an important problem. In
developed countries, most buildings and public transportation are accessible,
making the lives of people in wheelchairs easier. However, the routes to the
closest elevator in a new building, temporary road conditions and bus schedules
may be unknown to wheelchair users. Therefore, we were motivated to create
route-planning software that can be installed on a small device to give wheelchair
users route accessibility information while they are travelling. Besides a route
planner, our software contains a simple scheduler that synchronizes with the
route planner to provide more accurate commuting information for clients. After
obtaining the destination from the scheduler, the route planner establishes some
possible paths and displays the best one to the client.

The first stage of our project is to implement an algorithm to hierarchically
find paths and obtain multiple levels of detail. Since an abstract high-level path
can provide a general plan, the client can have an impression of future routing.
Instead of being presented with a cumbersome and lengthy low-level path, peo-
ple, especially the elderly, would prefer a cognitively visible path. In the next
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stage, the software accommodates our scheduler and real-world maps, including
indoor and outdoor applications.

1.1 Problem Statement

The notation used in this section is described here. A map is represented by a
graph G = (N, E, l), where N is the set of nodes, E is the set of edges, and l is
the number of hierarchical levels. Hierarchical levels denote inclusion (containing
relation). For example, a building is an ancestor of rooms in it. The cardinalities
of N and E are denoted by n and e. Each node ∈ N contains a set of neighbours
neigh(node) and is assigned to a level. Each edge (i, j) ∈ E is associated with
another pair of nodes (exit, entrance) where exit and entrance are nodes of one
level lower, or they may be null. The weight on an edge (i, j) is denoted by
w(i, j), and the weight of a path P is w(P ) =

∑
(i,j)∈P w(i, j). We want to find

the shortest path P that has the minimum weight w(P ) from a node s to another
node d in a graph G.

Definition 1: Search on a graph G: The process of finding a path P ={s, i, ..., d},
a sequence of nodes on G, from the start s to the destination d.

Human beings may approach complex problems by dividing them into easier
sub-problems, each of which can be further divided into smaller problems or
solved by a quicker search. More than forty years ago, Minsky realized that
a successful division of a complex problem will greatly reduce the search time
by a fractional exponent [1]. Such divisions can be considered as “islands” in
the search space, where these islands can be abstracted from groups of nodes.
In this section, an abstraction of a group of nodes is found when these nodes
are at the same level and within the same enclosure. The abstraction then
is their enclosure. For example, a building is an abstraction of the rooms in
it. Conversely, details at the room level constitute the refinement of the
building.

Definition 2: Hierarchical Pathfinding: The process of finding a sequence of
paths {Pm, Pm−1, ..., P0}, m ≤ l, where Pi contains nodes of i-th level and that
are an abstraction of nodes on Pi−1.

The maximum length of an abstract path then is defined as maxlength(Pi) =
w(Pi) +

∑
node∈Pi

upperbound(node), and the minimum length of the path is
minlength(Pi)=w(Pi)+

∑
node∈Pi

lowerbound(node), where upperbound(node)
is the maximum of shortest distances between any pair of places within the
node and lowerbound(node) is the minimum distance from the entrance to
the exit. The upper bound of a node can be overestimated, whereas the lower
bound can be underestimated. Hence, upperbound(node) can be the total of
low-level edge lengths in an abstracted node, node, and lowerbound(node) can
be zero.
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1.2 Previous Work

One of the well-known search algorithms is Dijkstra’s, a non-heuristic version
of A*. However, it is not as efficient as some A* algorithms with good heuris-
tics. A* [5] and IDA* [6] are both heuristic and complete algorithms on locally
finite graphs (graphs with a finite branching factor), but neither of these two
algorithms is well-suited into a dynamic environment.

Hierarchical pathfinding has been explored since the mid-nineties, and sev-
eral excellent algorithms have been developed. In [4], Rabin provides a high-
level description on path-finding using a two-level hierarchy. This algorithm uses
only two levels of abstraction, but real world maps are divided into numerous
levels. In [3], Holte et al. explain how abstraction could lead to speedup on
finding a solution for a graph-oriented problem. Similar to their work, Hierar-
chical Pathfinding A* (HPA*) [9] and Partial-Refinement A* (PRA*) [8] both
construct multi-level abstractions using grid-based representation, and greatly
reduce the amount of time required to find a near-optimal solution. Instead of
estimating a near-optimal solution, our algorithm finds all possible candidates
and keeps them until some are proven to be non-optimal.

If the number of sub-level nodes of each node is fixed, the size of the map
increases exponentially as the number of levels increases. The running times
of existing search algorithms grow exponentially as well, so they may not be
practical in reality. In this section, we propose the Hierarchical Shortest Path
(HSP) algorithm, as well as a hybrid of the HSP and A* (HSPA*) algorithms.
HSP finds a threshold that is the least upper-bound of the length of a high-
level path, and refines the paths that may be shorter than this threshold. It
stops refining a path when the path length exceeds the threshold, and finally
returns the shortest path among those that remain. HSPA* works in a similar
way, except that it uses A* for refinement as soon as it reaches a specific level.
The experimental results show that HSP and HSPA* are suitable for various
applications.

2 Hierarchical Shortest Path

The hierarchical approach taken in this section involves multi-level representa-
tion of a real-life map. For example, these levels can be campuses, buildings,

Fig. 1. Examples: (a) and (b) are maps of campuses comprising three and four build-
ings, respectively, where each building contains a number of rooms
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floors and rooms. Assume that a person wants to travel from room R1 in build-
ing B1 to room R2 in building B2 in the world of Fig. 1 (a). If the person begins
his pathfinding from B1 to B2, then he could easily find the shortest path from
B1 to B2 with one edge. If the walking distances within these buildings are negli-
gible, then the person can take the shortest path between B1 and B2, and needs
only to refine the path from R1 to the exit of B1 and the path from the entrance
of B2 to R2. Hence, the person does not need to search paths within B3.

Therefore, in order to save time in planning, we can search for short paths
between high-level sites first, and then refine the paths within the selected sites
for more details. However, the high-level shortest path does not guarantee the
shortest overall path, because the paths within each site can vary in length.
Consider the previous example, where the walking distance within buildings B1

and B2 is significant. Then, a path from R1 to the exit of B1, and a path from
the entrance of B2 to R2, may increase the length of the overall path by a large
amount. As a result, we can prune away a path P only when it is guaranteed
to be non-optimal, i.e., the minimum length of the path exceeds the maximum
length of another path:

∃P ′ : minlength(P ) > maxlength(P ′). (1)

2.1 The Algorithm

The main algorithm, 1.1, consists of four major steps: first, find the topmost level
abstract nodes wherein the start node and the destination node are different, and
abstract the graph G to that level (line:1,2); second, find a high-level shortest
path between ancestors of s and d at the l̂-th level, based on which a threshold
is obtained (line:3,4); third, find all possible high-level paths with minimum
lengths less than the threshold (line:5); finally, refine each high-level path to the
lowest level and return the one with minimum length (line:6,7). This algorithm
is complete since it maintains all possible paths and ignores a path only when
it is definitely longer than another possible path. The following will explain the
algorithm in further detail.

Algorithm 1.1. main (G, s, d)
Input: A graph G = (N, E, l), the start node s and the destination node d
Output: A shortest path P from s to d
1: l̂ := sameAncestorLevel(s, d) − 1
2: Ĝ := abstract(G, l̂)
3: P̂ := A∗(Ĝ, ancestor(s, l̂), ancestor(d, l̂))
4: threshold := maxlength(P̂ )
5: S := possiblePaths(Ĝ, ancestor(s, l̂), ancestor(d, l̂), threshold)
6: Ŝ := refine(S, l, threshold)
7: Return P := min{Ŝ}



Hierarchical Shortest Pathfinding Applied to Route-Planning 543

Abstract of a Graph. As mentioned above, the desired level in the first step is
needed for abstracting the graph. For example, if a person travels from a room
in a city to another room in another city within a country, the two cities are
the topmost places he should consider. In other words, we seek out the first
same ancestor of the two places to find the one level below that ancestor that is
desired. Algorithm 1.2 presents the procedure for finding the first same ancestor
of two places and returning the level of that ancestor. Note that pathfinding
between different level architectures is also allowed. After the desired level l̂ is
found, the graph G is abstracted to that level:

Ĝ := (N̂ , Ê), (2)

where N̂ and Ê are subsets of N and E, respectively, and the nodes node ∈ N̂
and i, j : (i, j) ∈ Ê are only those at level l̂.

Algorithm 1.2. sameAncestorLevel (s, d)
Input: The start node s and the destination node d
Output: The level l′ of the first same ancestor of s and d
1: lower = lowerLevelNode(s, d)
2: higher = higherLevelNode(s, d)
3: while lower is not at the same level as higher do
4: lower = parent(lower)
5: end while
6: while lower is not a sibling of higher do
7: lower = parent(lower)
8: higher = parent(higher)
9: end while

10: Return l′ := level(lower)

A High-level Shortest Path and a Threshold. Either Dijkstra’s or the A* algo-
rithm is used on Ĝ to find the shortest path P̂ between the ancestors of s and d
at the l̂-th level. Then, maxlength(P̂ ) is the threshold that we are looking for.
The time required to find the high-level path and the threshold is insignificant if
the number of high-level nodes is relatively much smaller than that of low-level
nodes.

High-level Possible Paths. After a threshold is obtained, we could search on Ĝ
for all possible high-level paths and prune away those with minimum lengths
exceeding the threshold. This process is shown in Algorithm 1.3.

Hierarchical Refinement on High-level Short Paths. After high-level paths are
found, a refinement step is executed, as shown in Algorithm 1.4. It refines each
possible high-level path to one level lower each time by recursively finding the
shortest path from the entrance to the exit of each node on the high-level path.
Then, the lowest level path is constructed by concatenating all partially refined
paths. The refinement step ceases if the length of the current path exceeds the
threshold.
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Algorithm 1.3. possiblePaths (Ĝ, ancestor(s, l̂), ancestor(d, l̂))

Input: The abstract graph Ĝ, the ancestors of s and d at level l̂,
and the threshold t

Output: A set of paths at level l̂ with minimum lengths less than t
1: CurrentPaths ← {{ancestor(s, l̂)} }
2: Output ← { }
3: while CurrentPaths changes do
4: for each P ∈ CurrentPaths do
5: if last node ln of P is ancestor(d, l̂) then
6: Output ← Output ∪ {P}
7: PossiblePaths ← PossiblePaths ∪ {P}
8: else
9: for each nb ∈ neigh(ln) do

10: P̂ = P ∪ {nb}
11: if minlength(P̂ ) is smaller than t then
12: PossiblePaths ← PossiblePaths ∪ {P̂}
13: end if
14: end for
15: end if
16: end for
17: CurrentPaths ← PossiblePaths
18: end while
19: Return Output

2.2 A Hybrid of HSP and A* (HSPA*)

Note that there may be more than one high-level path of shorter length than
the threshold, but that is unusual in many realistic cases. The refinement step is
fast, if the number of possible short paths is small. Otherwise, the time spent on
refining these paths may be excessive. Hence, we could refine our algorithm to
select between HSP and A* depending on the number (α) of these paths. Fur-
thermore, from the experimental results shown in the next section, it is evident
that HSP is not as fast as A* if the number of levels is small and the number of
sub-nodes is not significantly large. Therefore, we could use A* algorithm when
a high-level path is refined to a specific low-level (β).

2.3 Analysis of Running Time

Let b be the number of sub-nodes within an abstract node. If b is fixed, then the
total number of lowest-level nodes is n = b l, where l is the number of levels. A*
and IDA* with good heuristics can solve difficult problems in polynomial time
[2,7], i.e., O(nc) = O(b cl) where c is a constant. Therefore, the algorithms are
exponential to the order of l. On the other hand, HSP only executes searches on
O(b) nodes on each level if there is only one abstract path found. In this case,
HSP has a running time of O(bc l). Even if there is more than one abstract path,
say d paths, the running time of HSP is O(bc d l). As long as d� b, HSP is still
much more efficient than A* or IDA*. In reality, where distances within a site



Hierarchical Shortest Pathfinding Applied to Route-Planning 545

Algorithm 1.4. refinement (S, l, t)
Input: A set S of high-level paths, the lowest level l and the threshold t
Output: A set Ŝ of low-level paths at level l
1: Ŝ = { }
2: for each hierarchical high-level path P ∈ S do
3: P̂ = {s}
4: for each node ∈ P do
5: find the edge from last node of P̂ to the entrance of node
6: if level(entrance) ≥ l then
7: P ′ = HSP (entrance, exit) where entrance and exit are within node
8: P̂ = P̂ ∪ P ′

9: end if
10: if minlength(P̂ ) > t then
11: ignore P̂ and continue the outer loop
12: end if
13: end for
14: Ŝ = Ŝ ∪ {P̂}
15: end for
16: Return Ŝ

are usually considered insignificant, one high-level abstract path is expected to
appear. Hence, the running time is O(bc l) for the HSP algorithm in real-world
examples versus O(b cl) for A* and IDA*, i.e., linear in l versus exponential in
l. Moreover, l is usually small while b is large. Thus, O(bc l) or O(bc d l) should
be relative smaller than O(b cl).

2.4 Experiments and Results

In real life, each site is connected to its neighbours from exits to entrances. For
example, if two buildings are adjacent, then we can exit from a door of one
building, and enter through a door of the other building. Hierarchical maps in
our experiments are constructed with this connection in mind. Weights of the
edges and the upper bound of the shortest distances between any pair of places
within an site are included in the map, which is created in XML form. One of
the reasons that we use XML form is due to its consistency and flexibility; i.e.,
you have to define each element with an opening and an ending tag, while you
can use an arbitrary tag name. Another reason is that nested tags in XML can
represent hierarchical relations easily.

All experiments described in this section were run on a Linux Intel(R) Pentium
4 machine running at 3.20GHz with 2 GB of RAM, using Eclipse version 3.1.

Examples. First, we analyze the algorithms using the example shown in Fig. 1
(a). Each building contains three floors, while each floor contains three rooms,
and so on. In reality, the number of nodes at one level lower is usually much
more than three, where the time saved from pruning away unnecessary high-level
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paths is more obvious. Here we use this example because of its simplicity in
building a XML file and its simulation of a simple world. The total number
of lowest level nodes is n0 = 3l, and since it grows exponentially to the order
of l, Dijkstra’s and A* algorithms are inefficient here. The A* heuristic used
in our experiments is the Euclidean distance, which is popular to use in real-
world route-finding problems. However, this heuristic may not be useful for a
multilevel structure, since the heuristic values for low-level nodes may be similar.
For example, the Euclidean distances from nearby rooms in one city to a room
in another city may be indistinguishable. In contrast, HSP, which prunes away
most insignificant high-level paths, runs well in these examples.

As shown in Fig. 2 (a) and (b), both multi-level representation running times
of Dijkstra’s and A* algorithms blow up quickly, while the HSP running time
grows slowly. A semi-log graph of the three algorithms’ running times is drawn
in Fig. 1 (c). We can observe that the slope of the HSP curve is significantly
less steep than that of the other two curves. A further observation from Fig. 2
(c) is that HSP is not superior among the three algorithms all the time. When
the number of levels is small, HSP wastes time on recursive calls. Therefore, it
is better to use a hybrid of HSP and A*, the HSPA* (as described in Sect. 2.2).
The running-time results for HSPA* are compared with those of the other three
algorithms in Fig. 2 (d). Note that HSP and HSPA* have similar performances
in these examples, although HSPA* is more stable.

Table 1 shows the running times of the four algorithms in the example where
every abstract node has four sub-nodes, as shown in Fig. 2 (b). In this example,
more than one abstract high-level path is found at each level, but the running
times of HSP and HSPA* are still promisingly good. Examples with larger num-
ber of sub-nodes (b) are also explored, and the outcomes are shown in Table 1
as well.
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Fig. 2. Running time plots: (a), (b): the running times of three algorithms; (c): the
running times of three algorithms in log-scale; (d): the running times of four algorithms
in log-scale
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Table 1. Running times: The running times (in milliseconds) of four algorithms using
examples where every abstract node has four or more sub-nodes (b)

(b) : (4) (5)

Level: 1 2 3 4 1 2 3 4

Dijkstra 2 6 35 295 2 11 94 1278

A* 1 4 22 149 1 10 56 717

HSP 1 8 23 130 2 12 42 97

HSPA* 1 8 24 174 1 11 35 88

(b) : (6) (7)

Level: 1 2 3 4 1 2 3 4

Dijkstra 3 24 350 7817 3 25 466 15601

A* 2 23 218 3462 2 21 231 8368

HSP 2 28 131 354 2 31 137 368

HSPA* 2 24 99 296 2 28 116 316

2.5 Application

Several existing projects, such as the Assistant Cognition and the Aphasia proj-
ects, have been helping physically challenged people to better perform daily ac-
tivities [10,12]. The usefulness of these projects motivates us to build a cognitive
assisted system for people with disabilities.

Route Planner for People with Disabilities. Our route planner, which shows ac-
cessible routes for wheelchair users contains the data of several buildings at the
University of British Columbia (UBC): ICICS, the X building and Dempster,
the three main buildings in our department. This system is based on a sched-
uler system, which can be Microsoft Outlook, ESI Planner II [11], or others.
We used Microsoft Outlook for our system because of its ease of use and com-
patibility with other systems. Based on an accurate schedule, the destination
can be easily estimated. Then, the route planner computes the possible paths
to the destination using HSPA* and shows both high-level path and low-level
paths to the client. The system is installed on a small device, such as a tablet
PC, so that users can carry the device and find a path to destination while they
are travelling. For example, if a client is heading to class, then Fig. 3 shows a
high-level path from ICICS to Dempster, where most classes are held. After the
user acquires an overview of the whole path, he/she clicks the “Detail” button.
Then, the low-level path corresponding to the high-level path is shown, as in
Fig. 4. (See Appendix A for more details.)

3 Conclusion and Future Work

In this paper, the Hierarchical Shortest Pathfinding (HSP) algorithm is pre-
sented and its running time analyzed. The speedup from eliminating unnecessary
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high-level paths is remarkable, and good performances of HSP is expected in real-
world pathfinding problems. There are a few directions that this research could
be extended beyond the work shown in this paper. First, more examples are
anticipated to analyze the performances of the four algorithms. We analyzed the
running times of the HSP and HSPA* algorithms based on artificial examples.
We shall apply the algorithms on more actual examples, such as the whole UBC
campus. Second, as described in Sect. 2.2, the HSPA* algorithm contains two
parameters, namely α and β. The best-fit values of these two parameters may
vary depending on different problems. Therefore, it may be worthwhile learning
well-suited values for these two parameters using stochastic local search methods.
Third, comparison of HSP, HSPA* and other hierarchical pathfinding algorithms
could be further investigated in terms of their running times and performance.
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A Screen Shots

Users can select one of the events from the event list on the left hand side of the
main frame to view the event information. If a path is found for that event, then
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the high-level path is shown, as in Fig. 4. Note that the buttons that represent
the corresponding (sub)destinations are located where the (sub)destinations are.
The “YOU” button represents the current position of the client. Clicking on one
of the buttons that represents (sub)destinations will display useful information
regarding the desired (sub)destination on the left-hand pane. The whole path
with specific steps (nodes on the path) is shown on the left-hand as well. Since
nodes are not able to show on the same picture, buttons for each picture should
be added so that users can view any portion or the whole path. These buttons
are placed on the left bottom corner, as shown in Fig. 3 to 4. To view the detailed
path, the user can click the “Detail” button, and then Fig. 4 will show.

Fig. 3. A screen shot of the Route Planner when a high level path is shown
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Fig. 4. A screen shot of the Route Planner when a low level path is shown
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