
Y. Shi et al. (Eds.): ICCS 2007, Part III, LNCS 4489, pp. 1085–1092, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Parallel Preconditioning Methods with Selective Fill-Ins
and Selective Overlapping for Ill-Conditioned Problems

in Finite-Element Methods

Kengo Nakajima

Department of Earth and Planetary Science, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 112-0002, Japan

nakajima@eps.s.u-tokyo.ac.jp
http://www-solid.eps.s.u-tokyo.ac.jp/~nakajima

Abstract. In the present paper, parallel preconditioning methods with selective
fill-ins and selective overlapping for contact problems have been developed and
evaluated on PC clusters with 64 cores. The proposed methods provide robust
convergence with efficiency. Finally, the proposed methods have been applied
to ill-conditioned problems with heterogeneity and robustness, and their effi-
ciency has been evaluated on TSUBAME super-cluster with up to 512 cores.

1 Introduction

Contact phenomenon is one of the most important and critical issues in various types
of science and engineering applications. The author has been developing precondi-
tioning methods for contact problems in geophysics, in which stress accumulation on
plate boundaries (faults) is computed for estimating the earthquake generation cycle
[1,2]. In [1,2], the augmented Lagrangian method (ALM) and the penalty method are
implemented, and a large penalty number λ is introduced for constraint conditions
around faults. The nonlinear process is solved iteratively by the Newton-Raphson
(NR) method. A large λ (~104) can provide an accurate solution and fast nonlinear
convergence for NR processes, but the condition number of the coefficient matrices
for linear equations is large, and several iterations are required for the convergence of
iterative solvers. Therefore, a robust preconditioning method is essential for such ill-
conditioned problems.

2λux0= λux1 + λux2
2λuy0= λuy1 + λuy2
2λuz0= λuz1 + λuz2

λux0= λux1
λuy0= λuy1
λuz0= λuz1

2λux0= λux1 + λux2
2λuy0= λuy1 + λuy2
2λuz0= λuz1 + λuz2

λux0= λux1
λuy0= λuy1
λuz0= λuz1

2λux0= λux1 + λux2
2λuy0= λuy1 + λuy2
2λuz0= λuz1 + λuz2

λux0= λux1
λuy0= λuy1
λuz0= λuz1

Fig. 1. Matrix operation of nodes in contact group for selective blocking preconditioning

1086 K. Nakajima

Selective blocking is a special preconditioning method developed for this type of
application by the author [1]. In this method, finite element nodes in the same contact
group coupled through penalty constraints are placed into a large block (selective
block or super node) (Fig. 1). For symmetric positive definite matrices, precondition-
ing with block incomplete Cholesky factorization using selective blocking (SB-BIC)
shows excellent performance and robustness [1, 2]. In previous studies [1, 2], the
number and location of nodes on both sides of the contact surface are identical. This
is not flexible and cannot be applied to fault contact simulations with large
slip/deformation, in which the number and location of nodes in contact groups might
be inconsistent.

In the present study, new parallel preconditioning methods for this type of general
contact problem have been developed. One remedy is a preconditioning method with
selective fill-ins, in which fill-ins of higher order are introduced only for nodes con-
nected to special elements for contact conditions [1, 2]. Another remedy is extension
of overlapped elements between domains. In the present study, the selective overlap-
ping method has been proposed, which extends the layers of overlapped elements
according to the information of the special elements for contact conditions. Both
methods are based on the idea of selective blocking, but are more general and flexible.

In the remainder of this paper, algorithms of parallel preconditioning methods with
selective fill-ins and selective overlapping will be described, and the results of exam-
ple problems with contact conditions are shown. Finally, the developed methods are
applied to general ill-conditioned problems with the heterogeneous material property,
and parallel performance up to 512 cores is evaluated.

2 Parallel Preconditioning Methods

2.1 Selective Fill-Ins

The selective blocking preconditioning method [1, 2] is a very robust and efficient
preconditioning method for contact problems. However, it can be applied to a very
limited number of situations. ILU(p) (Incomplete LU factorization with p-th-order
fill-ins) preconditioning methods are widely used for various types of applications [3].
If the order of fill-ins (p) is higher, the preconditioner is more robust, but is usually
more expensive. The required memory for coefficient matrices increases by a factor
of from 2 to 5, if the order of fill-ins (p) increases from 0 to 1 or from 1 to 2 [1, 2].

i

j

i

i

j

j

i

j

i

i

j

j

Fig. 2. Example of ILU(1+)

 Parallel Preconditioning Methods with Selective Fill-Ins 1087

In the present study, new preconditioning methods for general contact problems
have been developed. The first approach is a preconditioning method with selective
fill-ins, called ILU(p+). Figure 2 describes the idea of ILU(p+). In ILU(p+), (p+1)-th
order fill-ins are allowed for mij, which represents the component of preconditioned
matrices, if both the i-th and j-th nodes are connected to special elements for contact
conditions, such as master-slave type elements [2]. In Fig. 2, second-order fill-ins can
be allowed for all three i-j pairs, according to graphical connectivity information.
However, only the white circles are allowed to generate second-order fill-ins.

This approach is very similar to that of selective blocking, in which full LU factori-
zation is applied to nodes in contact groups, but is much more general and flexible.
Since the constraint conditions through penalty terms are applied to the nodes that are
connected to special elements, selective ILU factorization with higher order fill-ins
for these nodes is expected to provide robust convergence with efficiency. In [4], a
preconditioning method with block ILU factorization is proposed for coupled equa-
tions of incompressible fluid flow and solid structure. Different orders of fill-ins are
applied to velocity and pressure components for generating block ILU factorization of
coefficient matrices. ILU(p+) is very similar to this idea.

2.2 Selective Overlapping

Another approach is the extension of overlapped zones between domains for parallel
computing. In previous studies [1, 2], the GeoFEM local data structure has been ap-
plied. This data structure is node-based with a single layer of overlapped elements(the
depth of overlapping is 1) and is appropriate for parallel iterative solvers with block
Jacobi-type localized preconditioning methods [1, 2]. Figure 3 shows an example of
the local data for contact problems, in which the depth of overlapping is 1.

Fig. 3. Example of GeoFEM local data struc-
ture for contact problems

Fig. 4. Example of selective overlapping. Pre
cedence for extensions of overlapped layers is
taken over nodes connected to special ele-
ments for contact conditions

1088 K. Nakajima

In the present study, a greater number of layers of overlapped elements are consid-
ered for the robustness of parallel preconditioners. Generally speaking, a larger depth
of overlapped layers provides faster convergence in block Jacobi-type localized pre-
conditioning methods, but the cost for computation and communications is more
expensive [1,2,5].

In the present study, the selective overlapping method is proposed. This method
provides priority over nodes connected to special elements for contact conditions,
when extensions of overlapped layers are applied, as shown in Fig. 4. In selective
overlapping, extension of overlapping for nodes that are not connected to special
elements for contact conditions is delayed. Hatched elements in Fig. 4 are to be in-
cluded as extended overlapped elements in normal extension cases. However, in se-
lective overlapping, extension of overlapping for these elements is performed in the
next stage of overlapping. Thus, the increase in cost for computation and communica-
tion by extension of overlapped elements is suppressed.

This idea is also an extension of the idea of selective blocking, and is also based on
the idea of special partitioning strategy for contact problems, developed in [1, 2]. The
convergence rate of parallel iterative solvers with block Jacobi-type localized precon-
ditioning is generally bad, because the edge-cut may occur at inter-domain boundary
edges that are included in contact groups [1, 2]. All nodes in the same contact group
should be in the same domain in order to avoid such edge-cuts [1, 2]. Because the
constraint conditions through penalty terms are applied to those nodes that are con-
nected to special elements, selective extension of overlapping for these nodes is ex-
pected to provide robust convergence with efficiency.

3 Examples

3.1 Problem Description

Figure 5 describes the model for validation of the developed preconditioning meth-
ods. This problem simulates general contact conditions, in which the positions and
number of nodes on contact surfaces are inconsistent. There are four blocks with
elastic material that are discretized into cubic tri-linear type finite-elements. Each
block is connected through elastic truss elements generated at each node on contact
surfaces. Truss elements are in the form of a cross, as shown in Fig. 5. In this case, the
elastic coefficient of the truss elements is set to 104 times that of the solid elements,
which corresponds to the coefficient λ (=104) for constraint conditions of the aug-
mented Lagrangian method (ALM). Poisson’s ratio for cubic elements is set to 0.25.

Fig. 5. Elastic blocks connected through truss elements

 Parallel Preconditioning Methods with Selective Fill-Ins 1089

Symmetric boundary conditions are applied to x = 0 and y = 0 surfaces, and the
Dirichlet fixed condition for deformation in the direction of the z-axis is applied to z =
0 surfaces. Finally, a uniform distributed load in the direction of the z-axis is applied
to z = Zmax surfaces. This problem is linear-elastic, but the coefficient matrices are
very ill-conditioned and simulate those for nonlinear contact problems very well [2].

3.2 Serial Cases with a Single CPU

Each chart in Fig. 6 shows the results of linear-elastic computation on the model in
Fig. 5 using a single core of AMD Opteron 275 (2.2 GHz) with PGI compiler. Each
block in Fig. 5 has 8,192 (=16×16×32) cubes, where the total problem size is 117,708
DOF (=degrees of freedom) (38,148 cubes, 39,236 nodes). GPBi-CG (Generalized
Product-type methods based on Bi-CG) [6] for general coefficient matrices have been
applied as an iterative method, although the coefficient matrices of this problems are
positive indefinite. Each node has three DOF in each axis in 3D solid mechanics;
therefore, block ILU (BILU) type preconditioning [1,2] has been applied.

BILU(1+), in which additional selective fill-ins have been applied for nodes con-
nected to special elements (elastic truss elements in Fig. 5) to BILU(1), provides the
most robust and efficient convergence. BILU(p) provides faster convergence if p is
larger, as shown in Fig. 6, but the cost for computation is more expensive. BILU(1)
and BILU(1+) are competitive, but BILU(1+) provides a better convergence rate.

0

10

20

30

40

50

60

se
c.

0

20

40

60

80

IT
ER

A
TI

O
N

S

0.E + 00

1.E +06

2.E +06

3.E +06

4.E +06

O
ff-

D
ia

go
na

l C
om

po
ne

nt
 #

Order of Fill-ins Order of Fill-ins Order of Fill-ins
BILU(0) BILU(1) BILU(1+) BILU(2) BILU(0) BILU(1) BILU(1+) BILU(2) BILU(1) BILU(1+) BILU(2)

(a) Computation time (b) Iterations for convergence (c) Off-diagonal component #
(320 for BILU(0)) of preconditioned matrix

Fig. 6. Results of linear-elastic problem in Fig.5 with a single core of AMD Opteron 275 (2.2
GHz) with PGI compiler. 117,708 DOF (38,148 cubes, 39,236 nodes)

3.3 Parallel Cases with Multiple CPU’s

Each chart in Fig. 7 shows the results of linear-elastic computation on the model
shown in Fig. 5 using 64 cores of AMD Opteron 275 cluster with PGI compiler and
MPICH connected through Infiniband network. Each block in Fig. 5 has 250,000
(=50×50×100) cubes, where the total problem size is 3,152,412 DOF (1,000,000
cubes, 1,050,804 nodes). The effect of the extension of overlapping is evaluated for
BILU(1), BILU(1+), and BILU(2), respectively. BILU(p)-(d) means BILU(p) pre-
conditioning, where the depth of overlapping is equal to d. Partitioning was applied in
an RCB (recursive coordinate bisection) manner [2].

Generally speaking, the convergence rate is improved by the extension of overlap-
ping (Fig. 7(a)). This is significant, when the depth of overlapping (d) is increased
from (d = 1) to (d = 1+) because edge-cuts may occur at truss elements for contact

1090 K. Nakajima

conditions, if the depth of overlapping is 1. However, the decrease in the number of
iterations for convergence is very slight if the depth of overlapping is greater than 2.

The number of off-diagonal components of preconditioned matrices increases, as
the depth of overlapping is larger (Fig. 7(c)). Finally, computation with a larger depth
of overlapping is more expensive. Therefore, the computation time increases, because
the depth of overlapping is greater than 2 (Fig. 7(a)). BILU(1)-(1+) and BILU(1+)-
(1+) are the best cases and they are competitive.

0

50

100

150

1 1+ 2 2+ 3

s
ec

.

0

100

200

300

400

500

600

1 1+ 2 2+ 3

IT
ER

R
A

TI
O

N
S

0.E+00

1.E+06

2.E+06

3.E+06

1 1+ 2 2+ 3

Depth of Overlapping Depth of Overlapping Depth of Overlapping

A
ve

. O
ff-

D
ia

go
na

l C
om

po
ne

nt
 #

(a) Computation time (b) Iterations for convergence (c) Off-diagonal component #
 of precond. mat. per core

Fig. 7. Results of linear-elastic problem in Fig.5 with 64 cores of AMD Opteron 275 (2.2 GHz)
cluster. 3,152,412 DOF (1,000,000 cubes, 1,050,804 nodes)

4 Applications to Problems with Heterogeneous Material Property

Parallel preconditioning methods with selective fill-ins and selective overlapping
(BILU(p)-(d) approach), which are developed in the present study, provide robust
and efficient convergence in ill-conditioned problems with contact conditions. In this
section, this BILU(p)-(d) is extended to BILU(p+,ω)-(d+,α) for ill-conditioned prob-
lems with heterogeneous material property, where ω and α are threshold parameters
for the extension of fill-ins and overlapping. In applications for a heterogeneous dis-
tribution of material property, coefficient matrices for linear solvers are generally ill-
conditioned and the rate of convergence is poor.

In this section, linear-elastic problems for simple cube geometries with heterogene-
ity are solved. Poisson’s ratio is set to 0.25 for all elements, and the heterogeneous
distribution of Young’s modulus in each tri-linear element is calculated by a sequen-
tial Gauss algorithm, which is widely used in the area of geo-statistics [7]. The mini-
mum and maximum values of Young’s modulus are 10-2 and 102, respectively, where
the average value is 1.0. Boundary conditions in Section 3.1 have been applied. Each
chart of Fig. 8 shows the results of linear-elastic computation on the model with het-
erogeneity using 64 cores of AMD Opteron 275 cluster. The total problem size is
3,090,903 DOF (1,000,000 cubes). In BILU(p+,ω)-(d+,α), (p+1)-th-order fill-ins are
allowed for pairs of nodes if both nodes are connected to elements for which the
Young’s modulus is greater than ω, and selective overlapping is applied to nodes if
the nodes are connected to elements for which the Young’s modulus is greater than α.
In this case, BILU(1) generally requires more iterations for convergence than
BILU(1+,ω) and BILU(2). BILU(1+,5) and BILU(1+,10) are competitive, but
BILU(1+,5)-(1+,10) (ω = 5, α = 10) provides the best performance. In BILU(2) and

 Parallel Preconditioning Methods with Selective Fill-Ins 1091

BILU(1+,ω), the effect of the convergence rate by selective overlapping is similar to
that in the previous cases for contact problems. Finally, the parallel performance of
BILU(1+,5)-(1+,10) has been evaluated using between 32 and 512 cores of
TSUBAME super-cluster [8] at the Tokyo Institute of Technology. In this evaluation,
a strong scaling test has been applied, where the entire problem size is fixed as
3,090,903 DOF (1,000,000 cubes). Figure 9 shows parallel performance. Usually, the
convergence rate for block Jacobi-type localized parallel preconditioning in strong
scaling cases becomes worse as the number of domains increases [1,2]. However,
selective overlapping provides an almost constant number of iterations up to 512
cores, as shown in Fig. 9(a), and excellent parallel performance, as shown in Fig.
9(b).

40

50

60

70

80

90

(1) (1+,20) (1+,10) (1+,5) (2) (2+,20) (2+,10) (2+,5) (3)

(d), (d+,α)

se
c.

0

100

200

300

400

500

(1) (1+,20) (1+,10) (1+,5) (2) (2+,20) (2+,10) (2+,5) (3)

(d), (d+,α)

α

α

IT
ER

A
TI

O
N

S

(a) Computation time (b) Iterations for convergence

Fig. 8. Results of linear-elastic problem with heterogeneity using 64 cores of AMD Opteron
275 (2.2 GHz) cluster. 3,090,903 DOF (1,000,000 cubes, 1,030,301 nodes)

10

100

1000

10 100 1000

sp
ee

d
-u

p

100

125

150

175

200

10 100 1000

IT
E

R
A

TI
O

N
S

core# core#

 (a) Iterations for convergence (b) Parallel Speed-Up

Fig. 9. Parallel performance of BILU(1+,5)-(1+,10) for linear-elastic problem with heterogene-
ity using TSUBAME super-cluster using up to 512 cores (3,152,412 DOF)

α

0.0E+00

1.0E-06

2.0E-06

3.0E-06

4.0E-06

10 100 1000

core #

ov
er

he
ad

/D
O

F/
co

re
 (s

ec
.)

Fig. 10. Overhead for weak scaling test on TSBUME cluster using BILU(1,+5)

1092 K. Nakajima

Figure 10 shows the results of the weak scaling test, in which the problem size per
core is fixed. The obtained results correspond to the overhead by communications and
additional computations per iteration divided by the problem size per core. If the
problem size per each core is sufficiently large, the additional overhead by selective
overlapping ((d=1) and (d+,α)= (1+,10)) is negligible.

5 Concluding Remarks

In the present paper, parallel preconditioning methods with selective fill-ins and selec-
tive overlapping for contact problems have been developed and evaluated on PC clus-
ters. The proposed methods are based on the concept of selective blocking in previous
studies, but are much more flexible and provide robust convergence with efficiency.
The proposed methods have also been applied to ill-conditioned problems with het-
erogeneity and were found to be robust and efficient on TSUBAME super-cluster
with up to 512 cores. Generally speaking, BILU(1+)-(1+) or BILU(1+,ω)-(1+,α),
with selective fill-in (p = 1+) and selective overlapping (d = 1+), provides the best
performance with robustness. The effect of selective overlapping is very significant, if
the depth of overlapping increases from (d = 1) to (d = 1+). In future studies, the
proposed methods will be evaluated in various types of real applications with differ-
ent parameters on massively parallel computers.

Acknowledgements

This work is supported by the 21st Century Earth Science COE Program at the Uni-
versity of Tokyo, and CREST/Japan Science and Technology Agency. The author
would like to thank Professor Satoshi Matsuoka and members of the Global Scientific
Information and Computing Center, Tokyo Institute of Technology, for use of
TSUBAME super-cluster.

References

1. Nakajima, K. (2003), Parallel Iterative Solvers of GeoFEM with Selective Blocking Pre-
conditioning for Nonlinear Contact Problems on the Earth Simulator, ACM/IEEE Proceed-
ings of SC2003.

2. http://geofem.tokyo.rist.or.jp/
3. Saad, Y. (2003), Iterative Methods for Sparse Linear Systems (2nd Edition), SIAM.
4. Washio, T., Hisada, T., Watanabe, H., and Tezduyar, T.E. (2005), A Robust and Efficient

Iterative Linear Solver for Strongly Coupled Fluid-Structure Interaction Problems, Com-
puter Methods in Applied Mechanics and Engineering, 194, 4027-4047.

5. Smith, B., Bjφrstad, P. and Gropp, W. (1996), Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations, Cambridge University Press.

6. Zhang, S.L. (1997), GPBi-CG: Generalized Product-type methods based on Bi-CG for solv-
ing nonsymmetric linear systems, SIAM Journal of Scientific Computing, 18, 537-551.

7. Deutsch, C.V. and Journel, A.G. (1998), GSLIB Geostatistical Software Library and User’s
Guide, Second Edition, Oxford University Press.

8. http://www.gsic.titech.ac.jp/

	Introduction
	Parallel Preconditioning Methods
	Selective Fill-Ins
	Selective Overlapping

	Examples
	Problem Description
	Serial Cases with a Single CPU
	Parallel Cases with Multiple CPU’s

	Applications to Problems with Heterogeneous Material Property
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

