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Abstract. In the present paper, parallel preconditioning methods with selective 
fill-ins and selective overlapping for contact problems have been developed and 
evaluated on PC clusters with 64 cores. The proposed methods provide robust 
convergence with efficiency. Finally, the proposed methods have been applied 
to ill-conditioned problems with heterogeneity and robustness, and their effi-
ciency has been evaluated on TSUBAME super-cluster with up to 512 cores.  

1   Introduction 

Contact phenomenon is one of the most important and critical issues in various types 
of science and engineering applications. The author has been developing precondi-
tioning methods for contact problems in geophysics, in which stress accumulation on 
plate boundaries (faults) is computed for estimating the earthquake generation cycle 
[1,2]. In [1,2], the augmented Lagrangian method (ALM) and the penalty method are 
implemented, and a large penalty number λ is introduced for constraint conditions 
around faults. The nonlinear process is solved iteratively by the Newton-Raphson 
(NR) method. A large λ (~104) can provide an accurate solution and fast nonlinear 
convergence for NR processes, but the condition number of the coefficient matrices 
for linear equations is large, and several iterations are required for the convergence of 
iterative solvers. Therefore, a robust preconditioning method is essential for such ill-
conditioned problems. 
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Fig. 1. Matrix operation of nodes in contact group for selective blocking preconditioning 
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Selective blocking is a special preconditioning method developed for this type of 
application by the author [1]. In this method, finite element nodes in the same contact 
group coupled through penalty constraints are placed into a large block (selective 
block or super node) (Fig. 1). For symmetric positive definite matrices, precondition-
ing with block incomplete Cholesky factorization using selective blocking (SB-BIC) 
shows excellent performance and robustness [1, 2]. In previous studies [1, 2], the 
number and location of nodes on both sides of the contact surface are identical. This 
is not flexible and cannot be applied to fault contact simulations with large 
slip/deformation, in which the number and location of nodes in contact groups might 
be inconsistent. 

In the present study, new parallel preconditioning methods for this type of general 
contact problem have been developed. One remedy is a preconditioning method with 
selective fill-ins, in which fill-ins of higher order are introduced only for nodes con-
nected to special elements for contact conditions [1, 2]. Another remedy is extension 
of overlapped elements between domains. In the present study, the selective overlap-
ping method has been proposed, which extends the layers of overlapped elements 
according to the information of the special elements for contact conditions. Both 
methods are based on the idea of selective blocking, but are more general and flexible. 

In the remainder of this paper, algorithms of parallel preconditioning methods with 
selective fill-ins and selective overlapping will be described, and the results of exam-
ple problems with contact conditions are shown. Finally, the developed methods are 
applied to general ill-conditioned problems with the heterogeneous material property, 
and parallel performance up to 512 cores is evaluated.  

2   Parallel Preconditioning Methods 

2.1   Selective Fill-Ins 

The selective blocking preconditioning method [1, 2] is a very robust and efficient 
preconditioning method for contact problems. However, it can be applied to a very 
limited number of situations. ILU(p) (Incomplete LU factorization with p-th-order 
fill-ins) preconditioning methods are widely used for various types of applications [3]. 
If the order of fill-ins (p) is higher, the preconditioner is more robust, but is usually 
more expensive. The required memory for coefficient matrices increases by a factor 
of from 2 to 5, if the order of fill-ins (p) increases from 0 to 1 or from 1 to 2 [1, 2].   
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Fig. 2. Example of ILU(1+) 



 Parallel Preconditioning Methods with Selective Fill-Ins 1087 

In the present study, new preconditioning methods for general contact problems 
have been developed. The first approach is a preconditioning method with selective 
fill-ins, called ILU(p+). Figure 2 describes the idea of ILU(p+). In ILU(p+), (p+1)-th 
order fill-ins are allowed for mij, which represents the component of preconditioned 
matrices, if both the i-th and j-th nodes are connected to special elements for contact 
conditions, such as master-slave type elements [2]. In Fig. 2, second-order fill-ins can 
be allowed for all three i-j pairs, according to graphical connectivity information. 
However, only the white circles are allowed to generate second-order fill-ins. 

This approach is very similar to that of selective blocking, in which full LU factori-
zation is applied to nodes in contact groups, but is much more general and flexible. 
Since the constraint conditions through penalty terms are applied to the nodes that are 
connected to special elements, selective ILU factorization with higher order fill-ins 
for these nodes is expected to provide robust convergence with efficiency. In [4], a 
preconditioning method with block ILU factorization is proposed for coupled equa-
tions of incompressible fluid flow and solid structure. Different orders of fill-ins are 
applied to velocity and pressure components for generating block ILU factorization of 
coefficient matrices. ILU(p+) is very similar to this idea. 

2.2   Selective Overlapping 

Another approach is the extension of overlapped zones between domains for parallel 
computing. In previous studies [1, 2], the GeoFEM local data structure has been ap-
plied. This data structure is node-based with a single layer of overlapped elements(the 
depth of overlapping is 1) and is appropriate for parallel iterative solvers with block 
Jacobi-type localized preconditioning methods [1, 2]. Figure 3 shows an example of 
the local data for contact problems, in which the depth of overlapping is 1. 
 

 
 

Fig. 3. Example of GeoFEM local data struc-
ture for contact problems 

Fig. 4. Example of selective overlapping. Pre 
cedence for extensions of overlapped layers is 
taken over nodes connected to special ele-
ments for contact conditions 
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In the present study, a greater number of layers of overlapped elements are consid-
ered for the robustness of parallel preconditioners. Generally speaking, a larger depth 
of overlapped layers provides faster convergence in block Jacobi-type localized pre-
conditioning methods, but the cost for computation and communications is more 
expensive [1,2,5]. 

In the present study, the selective overlapping method is proposed. This method 
provides priority over nodes connected to special elements for contact conditions, 
when extensions of overlapped layers are applied, as shown in Fig. 4. In selective 
overlapping, extension of overlapping for nodes that are not connected to special 
elements for contact conditions is delayed. Hatched elements in Fig. 4 are to be in-
cluded as extended overlapped elements in normal extension cases. However, in se-
lective overlapping, extension of overlapping for these elements is performed in the 
next stage of overlapping. Thus, the increase in cost for computation and communica-
tion by extension of overlapped elements is suppressed. 

This idea is also an extension of the idea of selective blocking, and is also based on 
the idea of special partitioning strategy for contact problems, developed in [1, 2]. The 
convergence rate of parallel iterative solvers with block Jacobi-type localized precon-
ditioning is generally bad, because the edge-cut may occur at inter-domain boundary 
edges that are included in contact groups [1, 2]. All nodes in the same contact group 
should be in the same domain in order to avoid such edge-cuts [1, 2]. Because the 
constraint conditions through penalty terms are applied to those nodes that are con-
nected to special elements, selective extension of overlapping for these nodes is ex-
pected to provide robust convergence with efficiency. 

3   Examples 

3.1   Problem Description 

Figure 5 describes the model for validation of the developed preconditioning meth-
ods. This problem simulates general contact conditions, in which the positions and 
number of nodes on contact surfaces are inconsistent. There are four blocks with 
elastic material that are discretized into cubic tri-linear type finite-elements. Each 
block is connected through elastic truss elements generated at each node on contact 
surfaces. Truss elements are in the form of a cross, as shown in Fig. 5. In this case, the 
elastic coefficient of the truss elements is set to 104 times that of the solid elements, 
which corresponds to the coefficient λ (=104) for constraint conditions of the aug-
mented Lagrangian method (ALM). Poisson’s ratio for cubic elements is set to 0.25. 

 

Fig. 5. Elastic blocks connected through truss elements 
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Symmetric boundary conditions are applied to x = 0 and y = 0 surfaces, and the 
Dirichlet fixed condition for deformation in the direction of the z-axis is applied to z = 
0 surfaces. Finally, a uniform distributed load in the direction of the z-axis is applied 
to z = Zmax surfaces. This problem is linear-elastic, but the coefficient matrices are 
very ill-conditioned and simulate those for nonlinear contact problems very well [2]. 

3.2   Serial Cases with a Single CPU 

Each chart in Fig. 6 shows the results of linear-elastic computation on the model in 
Fig. 5 using a single core of AMD Opteron 275 (2.2 GHz) with PGI compiler. Each 
block in Fig. 5 has 8,192 (=16×16×32) cubes, where the total problem size is 117,708 
DOF (=degrees of freedom) (38,148 cubes, 39,236 nodes). GPBi-CG (Generalized 
Product-type methods based on Bi-CG) [6] for general coefficient matrices have been 
applied as an iterative method, although the coefficient matrices of this problems are 
positive indefinite. Each node has three DOF in each axis in 3D solid mechanics; 
therefore, block ILU (BILU) type preconditioning [1,2] has been applied.  

BILU(1+), in which additional selective fill-ins have been applied for nodes con-
nected to special elements (elastic truss elements in Fig. 5) to BILU(1), provides the 
most robust and efficient convergence. BILU(p) provides faster convergence if p is 
larger, as shown in Fig. 6, but the cost for computation is more expensive. BILU(1) 
and BILU(1+) are competitive, but BILU(1+) provides a better convergence rate. 
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(a) Computation time        (b) Iterations for convergence    (c) Off-diagonal component # 
(320 for BILU(0))                       of preconditioned matrix 

Fig. 6. Results of linear-elastic problem in Fig.5 with a single core of AMD Opteron 275 (2.2 
GHz) with PGI compiler. 117,708 DOF (38,148 cubes, 39,236 nodes) 

3.3   Parallel Cases with Multiple CPU’s 

Each chart in Fig. 7 shows the results of linear-elastic computation on the model 
shown in Fig. 5 using 64 cores of AMD Opteron 275 cluster with PGI compiler and 
MPICH connected through Infiniband network. Each block in Fig. 5 has 250,000 
(=50×50×100) cubes, where the total problem size is 3,152,412 DOF (1,000,000 
cubes, 1,050,804 nodes). The effect of the extension of overlapping is evaluated for 
BILU(1), BILU(1+), and BILU(2), respectively. BILU(p)-(d) means BILU(p) pre-
conditioning, where the depth of overlapping is equal to d. Partitioning was applied in 
an RCB (recursive coordinate bisection) manner [2]. 

Generally speaking, the convergence rate is improved by the extension of overlap-
ping (Fig. 7(a)). This is significant, when the depth of overlapping (d) is increased 
from (d = 1) to (d = 1+) because edge-cuts may occur at truss elements for contact 
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conditions, if the depth of overlapping is 1. However, the decrease in the number of 
iterations for convergence is very slight if the depth of overlapping is greater than 2.  

The number of off-diagonal components of preconditioned matrices increases, as 
the depth of overlapping is larger (Fig. 7(c)). Finally, computation with a larger depth 
of overlapping is more expensive. Therefore, the computation time increases, because 
the depth of overlapping is greater than 2 (Fig. 7(a)). BILU(1)-(1+) and BILU(1+)-
(1+) are the best cases and they are competitive. 
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Fig. 7. Results of linear-elastic problem in Fig.5 with 64 cores of AMD Opteron 275 (2.2 GHz) 
cluster. 3,152,412 DOF (1,000,000 cubes, 1,050,804 nodes) 

4   Applications to Problems with Heterogeneous Material Property  

Parallel preconditioning methods with selective fill-ins and selective overlapping 
(BILU(p)-(d) approach), which are developed in the present study, provide robust 
and efficient convergence in ill-conditioned problems with contact conditions. In this 
section, this BILU(p)-(d) is extended to BILU(p+,ω)-(d+,α) for ill-conditioned prob-
lems with heterogeneous material property, where ω and α are threshold parameters 
for the extension of fill-ins and overlapping. In applications for a heterogeneous dis-
tribution of material property, coefficient matrices for linear solvers are generally ill-
conditioned and the rate of convergence is poor.   

In this section, linear-elastic problems for simple cube geometries with heterogene-
ity are solved. Poisson’s ratio is set to 0.25 for all elements, and the heterogeneous 
distribution of Young’s modulus in each tri-linear element is calculated by a sequen-
tial Gauss algorithm, which is widely used in the area of geo-statistics [7]. The mini-
mum and maximum values of Young’s modulus are 10-2 and 102, respectively, where 
the average value is 1.0. Boundary conditions in Section 3.1 have been applied. Each 
chart of Fig. 8 shows the results of linear-elastic computation on the model with het-
erogeneity using 64 cores of AMD Opteron 275 cluster. The total problem size is 
3,090,903 DOF (1,000,000 cubes). In BILU(p+,ω)-(d+,α), (p+1)-th-order fill-ins are 
allowed for pairs of nodes if both nodes are connected to elements for which the 
Young’s modulus is greater than ω, and selective overlapping is applied to nodes if 
the nodes are connected to elements for which the Young’s modulus is greater than α. 
In this case, BILU(1) generally requires more iterations for convergence than 
BILU(1+,ω) and BILU(2). BILU(1+,5) and BILU(1+,10) are competitive, but 
BILU(1+,5)-(1+,10) (ω = 5, α = 10) provides the best performance. In BILU(2) and 
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BILU(1+,ω), the effect of the convergence rate by selective overlapping is similar to 
that in the previous cases for contact problems. Finally, the parallel performance of 
BILU(1+,5)-(1+,10) has been evaluated using between 32 and 512 cores of 
TSUBAME super-cluster [8] at the Tokyo Institute of Technology. In this evaluation, 
a strong scaling test has been applied, where the entire problem size is fixed as 
3,090,903 DOF (1,000,000 cubes). Figure 9 shows parallel performance. Usually, the 
convergence rate for block Jacobi-type localized parallel preconditioning in strong 
scaling cases becomes worse as the number of domains increases [1,2]. However, 
selective overlapping provides an almost constant number of iterations up to 512 
cores, as shown in Fig. 9(a), and excellent parallel performance, as shown in Fig. 
9(b). 
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Fig. 8. Results of linear-elastic problem with heterogeneity using 64 cores of AMD Opteron 
275 (2.2 GHz) cluster. 3,090,903 DOF (1,000,000 cubes, 1,030,301 nodes) 
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α

0.0E+00

1.0E-06

2.0E-06

3.0E-06

4.0E-06

10 100 1000

core #

ov
er

he
ad

/D
O

F/
co

re
 (s

ec
.)

 
Fig. 10. Overhead for weak scaling test on TSBUME cluster using BILU(1,+5) 
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Figure 10 shows the results of the weak scaling test, in which the problem size per 
core is fixed. The obtained results correspond to the overhead by communications and 
additional computations per iteration divided by the problem size per core. If the 
problem size per each core is sufficiently large, the additional overhead by selective 
overlapping ((d=1) and (d+,α)= (1+,10)) is negligible. 

5   Concluding Remarks 

In the present paper, parallel preconditioning methods with selective fill-ins and selec-
tive overlapping for contact problems have been developed and evaluated on PC clus-
ters. The proposed methods are based on the concept of selective blocking in previous 
studies, but are much more flexible and provide robust convergence with efficiency. 
The proposed methods have also been applied to ill-conditioned problems with het-
erogeneity and were found to be robust and efficient on TSUBAME super-cluster 
with up to 512 cores. Generally speaking, BILU(1+)-(1+) or BILU(1+,ω)-(1+,α), 
with selective fill-in (p = 1+) and selective overlapping (d = 1+), provides the best 
performance with robustness. The effect of selective overlapping is very significant, if 
the depth of overlapping increases from (d = 1) to (d = 1+).  In future studies, the 
proposed methods will be evaluated in various types of real applications with differ-
ent parameters on massively parallel computers. 
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