
Constraint Based Action Rule Discovery with
Single Classification Rules

Angelina Tzacheva1 and Zbigniew W. Raś2,3

1 University of South Carolina Upstate, Department of Informatics,
Spartanburg, SC 29303

2 University of North Carolina at Charlotte, Department of Computer Science,
Charlotte, N.C. 28223

3 Polish-Japanese Institute of Information Technology, 02-008 Warsaw, Poland

Abstract. Action rules can be seen as an answer to the question: what
one can do with results of data mining and knowledge discovery? Some
applications include: medical field, e-commerce, market basket analysis,
customer satisfaction, and risk analysis. Action rules are logical terms
describing knowledge about possible actions associated with objects,
which is hidden in a decision system. Classical strategy for discover-
ing them from a database requires prior extraction of classification rules
which next are evaluated pair by pair with a goal to suggest an action,
based on condition features in order to get a desired effect on a decision
feature. An actionable strategy is represented as a term r = [(ω) ∧ (α →
β)] ⇒ [φ → ψ], where ω, α, β, φ, and ψ are descriptions of objects or
events. The term r states that when the fixed condition ω is satisfied
and the changeable behavior (α → β) occurs in objects represented as
tuples from a database so does the expectation (φ → ψ). With each ob-
ject a number of actionable strategies can be associated and each one
of them may lead to different expectations and the same to different re-
classifications of objects. In this paper we will focus on a new strategy of
constructing action rules directly from single classification rules instead
of pairs of classification rules. It presents a gain on the simplicity of the
method of action rules construction, as well as on its time complexity. We
present A*-type heuristic strategy for discovering only interesting action
rules, which satisfy user-defined constraints such as: feasibility, maximal
cost, and minimal confidence. We, therefore, propose a new method for
fast discovery of interesting action rules.

1 Introduction

There are two aspects of interestingness of rules that have been studied in data
mining literature, objective and subjective measures [1], [5]. Objective mea-
sures are data-driven and domain-independent. Generally, they evaluate the
rules based on their quality and similarity between them. Subjective measures,
including unexpectedness, novelty and actionability, are user-driven and domain-
dependent.

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 322–329, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Constraint Based Action Rule Discovery with Single Classification Rules 323

Action rules, introduced in [6] and investigated further in [10], [11], [8], are
constructed from certain pairs of association rules. Interventions, defined in [3],
are conceptually very similar to action rules.

The notion of a cost of an action rule, which is a subjective measure, was
introduced in [11]. It is associated with changes of values of classification at-
tributes in a rule. The strategy for replacing the initially extracted action rule
by a composition of new action rules, dynamically built and leading to the same
reclassification goal, was proposed in [11]. This composition of rules uniquely de-
fines a new action rule. Objects supporting the new action rule also support the
initial action rule but the cost of reclassifying them is lower or even much lower
for the new rule. In [8] authors propose a new simplified strategy for constructing
action rules. This paper presents a heuristic strategy for discovering interesting
action rules which satisfy user-defined constraints such as: feasibility, maximal
cost, and minimal confidence. There is a similarity between the rules generated
by Tree-Based Strategy [10] and rules constructed by this new method.

2 Action Rules

In the paper by [6], the notion of an action rule was introduced. The main idea
was to generate, from a database, special type of rules which basically form a hint
to users showing a way to re-classify objects with respect to some distinguished
attribute (called a decision attribute). Values of some attributes, used to describe
objects stored in a database, can be changed and this change can be influenced
and controlled by user. However, some of these changes (for instance profit can
not be done directly to a decision attribute. In such a case, definitions of this
decision attribute in terms of other attributes (called classification attributes)
have to be learned. These new definitions are used to construct action rules
showing what changes in values of some attributes, for a given class of objects,
are needed to re-classify these objects the way users want. But, users may still
be either unable or unwilling to proceed with actions leading to such changes.
In all such cases, we may search for definitions of a value of any classification
attribute listed in an action rule. By replacing this value of attribute by its
definition extracted either locally or at remote sites (if system is distributed),
we construct new action rules which might be of more interest to users than the
initial rule [11]. We start with a definition of an information system given in [4].

By an information system we mean a pair S = (U, A), where:

1. U is a nonempty, finite set of objects (object identifiers),
2. A is a nonempty, finite set of attributes i.e. a : U → Va for a ∈ A, where Va

is called the domain of a.

Information systems can be seen as decision tables. In any decision table
together with the set of attributes a partition of that set into conditions and de-
cisions is given. Additionally, we assume that the set of conditions is partitioned
into stable and flexible [6].

Attribute a ∈ A is called stable for the set U if its values assigned to objects
from U can not be changed in time. Otherwise, it is called flexible. Place of birth

324 A. Tzacheva and Z.W. Raś

is an example of a stable attribute. Interest rate on any customer account is an
example of a flexible attribute. For simplicity reason, we consider decision tables
with only one decision. We adopt the following definition of a decision table:

By a decision table we mean an information system S = (U, ASt ∪AFl ∪{d}),
where d /∈ ASt∪AFl is a distinguished attribute called the decision. The elements
of ASt are called stable conditions, whereas the elements of AFl ∪ {d} are called
flexible. Our goal is to change values of attributes in AFl for some objects in
U so the values of attribute d for these objects may change as well. Certain
relationships between attributes from ASt ∪AFl and the attribute d will have to
be discovered first.

By Dom(r) we mean all attributes listed in the IF part of a rule r extracted
from S. For example, if r = [(a1, 3) ∧ (a2, 4) → (d, 3)] is a rule, then Dom(r) =
{a1, a2}. By d(r) we denote the decision value of rule r. In our example d(r) = 3.

If r1, r2 are rules and B ⊆ AFl ∪ ASt is a set of attributes, then r1/B = r2/B
means that the conditional parts of rules r1, r2 restricted to attributes B are the
same. For example if r1 = [(a1, 3) → (d, 3)], then r1/{a1} = r/{a1}.

We assume that (a, v → w) denotes the fact that the value of attribute a has
been changed from v to w. Similarly, the term (a, v → w)(x) means that the
property (a, v) of an object x has been changed to property (a, w).

Assume now that rules r1, r2 are extracted from S and
r1/[Dom(r1) ∩ Dom(r2) ∩ ASt] = r2/[Dom(r1) ∩ Dom(r2) ∩ ASt], d(r1) =

k1, d(r2) = k2. Also, assume that (b1, b2, . . ., bp) is a list of all attributes in
Dom(r1)∩Dom(r2)∩AFl on which r1, r2 differ and r1(b1) = v1, r1(b2) = v2,. . . ,
r1(bp) = vp, r2(b1) = w1, r2(b2) = w2,. . . , r2(bp) = wp.

By (r1, r2)-action rule we mean statement r:
[r2/ASt ∧ (b1, v1 → w1)∧ (b2, v2 → w2)∧ . . . ∧ (bp, vp → wp)] ⇒ [(d, k1 → k2)].
Object x ∈ U supports action rule r, if x supports the description [r2/ASt ∧

(b1, v1) ∧ (b2, v2) ∧ . . . ∧ (bp, vp) ∧ (d, k1)]. The set of all objects in U supporting
r is denoted by U<r>. The term r2/ASt is called the header of action rule.

Extended action rules, introduced in [10], form a special subclass of action
rules. We construct them by extending headers of action rules in a way that
their confidence is getting increased. The support of extended action rules is
usually lower than the support of the corresponding action rules.

3 Action Rule Discovery from Single Classification Rule

Let us assume that S = (U, ASt ∪ AFl ∪ {d}) is a decision system, where d /∈
ASt ∪ AFl is a distinguished attribute called the decision. Assume also that
d1 ∈ Vd and x ∈ U . We say that x is a d1-object if d(x) = d1. Finally, we
assume that {a1, a2, ..., ap} ⊆ AFl, {b1, b2, ..., bq} ⊆ ASt, a[i,j] denotes a value of
attribute ai, b[i,j] denotes a value of attribute bi, for any i, j and that

r = [[a[1,1] ∧ a[2,1] ∧ ... ∧ a[p,1]] ∧ [b[1,1] ∧ b[2,1] ∧ ∧ b[q,1]] → d1]
is a classification rule extracted from S supporting some d1-objects in S. By

sup(r) and conf(r) we mean support and confidence of r, respectively. Class d1
is a preferable class and our goal is to reclassify d2-objects into d1 class, where
d2 ∈ Vd.

Constraint Based Action Rule Discovery with Single Classification Rules 325

By an action rule r[d2→d1] associated with r and the reclassification task
(d, d2 → d1) we mean the following expression [8]:

r[d2→d1] = [[a[1,1] ∧ a[2,1] ∧ ... ∧ a[p,1]]∧
[(b1, → b[1,1]) ∧ (b2, → b[2,1]) ∧ ∧ (bq, → b[q,1])] ⇒ (d, d2 → d1)].
In a similar way, by an action rule r = [→ d1] associated with r and the

reclassification task (d, → d1) we mean the following expression:
r[→d1] = [[a[1,1] ∧ a[2,1] ∧ ... ∧ a[p,1]]∧
[(b1, → b[1,1]) ∧ (b2, → b[2,1]) ∧ ∧ (bq, → b[q,1])] ⇒ (d, → d1)].
The term [a[1,1] ∧ a[2,1] ∧ ... ∧ a[p,1]], built from values of stable attributes, is

called the header of action rule and its values can not be changed.
The support set of the action rule r[d2→d1] is defined as:
Sup(r[d2→d1]) = {x ∈ U : (a1(x) = a[1,1]) ∧ (a2(x) = a[2,1]) ∧ ... ∧ (ap(x) =

a[p,1]) ∧ (d(x) = d2)}.
In the following paragraph we show how to calculate the confidence of action

rules. Let r[d2→d1], r
′
[d2→d3] are two action rules extracted from S. We say that

these rules are p-equivalent (≈), if the condition given below holds for every
bi ∈ AFl ∪ ASt:

if r/bi, r′/bi are both defined, then r/bi = r′/bi.

Let us take d2-object x ∈ Sup(r[d2→d1]). We say that x positively supports
r[d2→d1] if there is no classification rule r′ extracted from S and describing
d3 ∈ Vd, d3
= d1, which is p-equivalent to r, such that x ∈ Sup(r′[d2→d3]).
The corresponding subset of Sup(r[d2→d1]) is denoted by Sup+(r[d2→d1]). Oth-
erwise, we say that x negatively supports r[d2→d1]. The corresponding subset of
Sup(r[d2→d1]) is denoted by Sup−(r[d2→d1]). By the confidence of r[d2→d1] in S
we mean:

Conf(r [d2→d1]) = [card[Sup+(r[d2→d1])]/card[Sup(r [d2→d1])]]· conf(r).

4 Cost and Feasibility of Action Rules

Depending on the cost of actions associated with the classification part of action
rules, business user may be unable or unwilling to proceed with them.

Assume that S = (X, A, V) is an information system. Let Y ⊆ X , b ∈ A
is a flexible attribute in S and b1, b2 ∈ Vb are its two values. By ℘S(b1, b2) we
mean a number from (0, +∞] which describes the average cost of changing the
attribute value b1 to b2 for any of the qualifying objects in Y . These numbers
are provided by experts. Object x ∈ Y qualifies for the change from b1 to b2, if
b(x) = b1. If the above change is not feasible, then we write ℘S(b1, b2) = +∞.
Also, if ℘S(b1, b2) < ℘S(b3, b4), then we say that the change of values from b1 to
b2 is more feasible than the change from b3 to b4.

Let us assume that
r = [(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ . . . ∧ (bp, vp → wp)] ⇒ (d, k1 → k2)
is an action rule.
By the cost of r in S, denoted by cost(r), we mean the value

∑
{℘S(vk, wk) :

1 ≤ k ≤ p}. We say that r is feasible, if cost(r) < ℘S(k1, k2).

326 A. Tzacheva and Z.W. Raś

Now, let us assume that RS [(d, k1→ k2)] denotes the set of action rules in
S having the term (d, k1→ k2) on their decision side. Sometimes, for simplicity
reason, attribute d will be omitted. An action rule in RS [(d, k1→ k2)] which has
the lowest cost value may still be too expensive to be of any help. Let us notice
that the cost of an action rule r = [(b1, v1 → w1)∧ (b2, v2 → w2)∧ . . .∧ (bp, vp →
wp)] ⇒ (d, k1 → k2) might be high because of the high cost value of one of its
sub-terms in the conditional part of the rule. Let us assume that (bj , vj → w j)
is that term. In such a case, we may look for an action rule in RS [(bj , vj →
w j)], which has the smallest cost value. Assume that

r1 = [[(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ . . . ∧ (bjq, vjq → wjq)] ⇒
(bj , vj → wj)] is such a rule which is also feasible in S.
Now, we can compose r with r1 getting a new feasible action rule:
[(b1, v1 → w1) ∧ . . . ∧ [(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ . . .∧
(bjq , vjq → wjq)] ∧ . . . ∧ (bp, vp → wp)] ⇒ (d, k1 → k2).
Clearly, the cost of this new rule is lower than the cost of r. However, if its

support in S gets too low, then such a rule has no value to the user. Otherwise,
we may recursively follow this strategy trying to lower the cost of re-classifying
objects from the group k1 into the group k2. Each successful step will produce a
new action rule which cost is lower than the cost of the current rule. Obviously,
this heuristic strategy always ends.

5 A∗-Type Algorithm for Action Rules Construction

Let us assume that we wish to reclassify objects in S from the class described
by value k1 of the attribute d to the class k2.

The term k1→ k2 jointly with its cost ℘S(k1, k2) is stored in the initial node n0
of the search graph G built from nodes generated recursively by feasible action
rules taken initially from RS [(d, k1→ k2)] .

For instance, the rule
r = [[(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ . . . ∧ (bp, vp → wp)] ⇒ (d, k1 → k2)]
applied to the node n0 = {[k1 → k2, ℘S(k1, k2)]} generates the node
n1 = {[v1 → w1, ℘S(v1, w1)], [v2 → w2, ℘S(v2, w2)], . . ., [vp → wp, ℘S(vp, wp)]}
and from n1 we can generate the node n2 = {[v1 → w1, ℘S(v1, w1)],
[v2 → w2, ℘S(v2, w2)], . . ., [vj1 → wj1, ℘S(vj1, wj1)], [vj2 → wj2, ℘S(vj2, wj2)],
. . ., [vjq → wjq , ℘S(vjq , wjq)], . . ., [vp → wp, ℘S(vp, wp)]}
assuming that the action rule
r1 = [[(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ . . . ∧ (bjq, vjq → wjq)] ⇒
(bj , vj → wj)] from RS [(bj , vj → wj)] is applied to n1.
This information can be written equivalently as:
r(n0) = n1, r1(n1) = n2, [r1 ◦ r](n0) = r1(r(n0)) = n2.
By DomS(r) we mean the set of objects in S supporting r.
Search graph G is dynamically built by applying action rules to its nodes. Its

initial node n0 contains information given by the user. Any other node n in G
shows an alternative way to achieve the same reclassification with a cost that is
lower than the cost assigned to all nodes which are preceding n in G. Clearly, the

Constraint Based Action Rule Discovery with Single Classification Rules 327

confidence of action rules labelling the path from the initial node to the node
n is as much important as the information about reclassification and its cost
stored in node n.

The A�-type strategy for identifying a node in G, built for a desired reclas-
sification of objects in S, with a cost possibly the lowest among all the nodes
reachable from the node n, was given in [11]. This strategy was controlled by
three threshold values: λ1 - minimum confidence of action rules, λ2 - maximum
cost of action rules, and λ3 - feasibility of action rules. The last threshold was
introduced to control the minimal acceptable decrease in the cost of action rule
to be constructed. If the search is stopped by threshold λ1, then we do not con-
tinue the search along that path. If the search is stopped by threshold λ2, then
we can either stop or continue the search till it is stopped by threshold λ1.

Assume that N is the set of nodes in graph G for S and n0 is its initial node.
For any node n ∈ N , by F (n) = (Yn, {[vn,j → wn,j , ℘S(vn,j , wn,j , Yn)]}j∈In)

we mean its domain (set of objects in S supporting r, the reclassification steps
for objects in Yn and their cost, all assigned by reclassification function F to the
node n, where Yn ⊆ X .

The cost of node n is defined as: cost(n) = Σ{℘S(vn,j , wn,j , Yn) : j ∈ In}.
We say that action rule r is applicable to a node n if:
[Yn ∩ DomS(r)
= Ø] and [(∃k ∈ In)[r ∈ RS [vn,kj → wn,k]]].
If node n1 is a successor of node n in G obtained by applying the action rule

r to n, then Yn1 = Yn ∩ DomS(r).
We assume here that the cost function h(ni) = �[cost(n, Yi) − λ2]/λ3� is

associated with any node ni in G. It shows the maximal number of steps that
might be needed to reach the goal from the node ni.

By conf(n), we mean the confidence of action rule associated with node n.
A search node in a graph G associated with node m is a pair
p(m) = ([conf(m), f(m)], [m, n1, n2, no]), where f(m) = g(m) + h(m) and

g(m) is the cost function defined as the length of the path [m, n1, n2, no] in G
(without loops) from the initial state no to the state m.

The search node associated with the initial node no of G is defined as
([conf(no), f(no)], [no]). It is easy to show that f(m) is admissible and never
overestimates the cost of a solution through the node m.

6 New A∗-Type Algorithm for Action Rules Construction

In this section we propose a modified version of A*-type heuristic strategy dis-
cussed in Section 5 which is based on the method of constructing action rules
directly from single classification rules instead of their pairs [8]. It presents a
gain on the simplicity of the method of action rules construction, as well as on
its time complexity.

First, we introduce the notion of a cost linked with the attribute value itself
as ℘S(b1), where b1∈V b, which again is a number from (0, +∞] describing the
average cost associated with changing any value of attribute b to value b1.

328 A. Tzacheva and Z.W. Raś

Next, assume that
R = [[(a, a1) ∧ (b, b1) ∧ (c, c1) ∧ (e, e1) ∧ (m, m1) ∧ (k, k1) ∧ (n, n1) ∧ (r, r1)] →

(d, d1)] is a classification rule extracted from S:
Assume that attributes in St(R) = {a, b, c, e} are stable and in Fl(R) =

{m, k, n, r} flexible. Also, assume that class d1 ∈ Vd is of highest preference. The
rule R defines the concept d1. Assume that Vd = {d1, d2, d3, d4}.

Clearly, there may be other classification rules that define concept d1. We pick
the rule which has the lowest total cost on the flexible part, i.e. the sum of cost
of all flexible attributes

∑
{℘S(Fl(R)i) : i = m, k, . . ., r} is minimal.

Next, we are picking objects from X which have property, let’s say, d2 i.e.
objects of class d2, which satisfy the header of stable attribute values in R:

Y = {x : a(x) = a1, b(x) = b1, c(x) = c1, e(x) = e1, d(x) = d2}
In order to ‘grab’ these objects into d1, we construct action rule:
[(a1 ∧ b1 ∧ c1 ∧ e1] ∧ [(m, → m1) ∧ (k, → k1) ∧ (r, → r1)] ⇒ (d, d2 → d1)
In other words, if we make the specified changes to the attributes in Fl(R), the

expectation is that the objects in Y will move to the desired class d1. Looking
at the changes needed, the user may notice that the change (k, → k1) is the
worst, i.e. it has the highest cost, and it contributes most to the cost of the
sum (total cost) of all changes. Therefore, we may search for new classification
rules, which define the concept k1, and compose the feasible action rule R1 =
[St(R1)] ∧ [Fl(R1)] which suggests the reclassification to k1 at the lowest cost,
where St(R) ⊆ St(R1). As defined earlier, such action rule will be feasible if the
sum (total cost) of all changes on the left hand side of the rule is lower, than the
right side. Therefore, the action rule R1 will specify an alternative way to achieve
the reclassification to k1 at a cost lower than the currently known cost to the
user. Next, we concatenate the two action rules R and R1 by replacing (k, → k1)
in R, with [Fl(R1)], and modifying the header to include St(R) ∪ St(R1).

[(a1 ∧b1∧c1∧e1)∧St(R1)]∧ [(m, → m1)∧Fl(R1)∧(r, → r1)] ⇒ (D, d2 → d1).
Clearly, there may be many classification rules that we can choose from. We

only consider the ones which stable part does not contradict with St(R). Among
them, we choose rules with a minimal number of new stable attributes, as each
time we add a new stable attribute to the current rule we may decrease the total
number of objects in Y which can be moved to the desired class d1. In relation
to flexible attributes, they have to be the same on the overlapping part of a
new classification rule and the rule R. This may further decrease the number of
potential objects in Y which can be moved to the desired class d1.

Therefore, we need a heuristic strategy, similar to the one presented in the
previous section for classical action rules, to look for classification rules to be
concatenated with R and which have the minimal number of new stable at-
tributes in relation to R and minimal number of new flexible attributes jointly
with flexible attributes related to the overlapping part with R.

We propose a modified version of A�-algorithm we saw in the previous section.
Again, we assume that user will provide the following thresholds related to action
rules: λ1 - minimum confidence, λ2 - maximum cost, and λ3 - feasibility.

Constraint Based Action Rule Discovery with Single Classification Rules 329

Clearly, it is expensive to build the complete graph G and next search for a
node of the lowest cost satisfying both thresholds λ1, λ2. The heuristic value
associated with a node n in G is defined as h(n) = �[cost(n) − λ2]/λ3�. It shows
the maximal number of steps that might be needed to reach the goal. The cost
function g(m) is defined as the length of the path in G (without loops) from the
initial state no to the state m. It is easy to show that f(m) = g(m) + h(m) is
admissible and never overestimates the cost of a solution through the node m.

7 Conclusion and Acknowledgements

The new algorithm for constructing action rules of the lowest cost is a signif-
icant improvement of the algorithm presented in [11] because of its simplicity
in constructing headers of action rules and because the concatenation of action
rules is replaced by concatenation of classification rules.

This research was partially supported by the National Science Foundation under
grant IIS-0414815.

References

1. Adomavicius, G., Tuzhilin, A. (1997) Discovery of actionable patterns in data-
bases: the action hierarchy approach, in Proceedings of KDD′97 Conference,
Newport Beach, CA, AAAI Press

2. Hilderman, R.J., Hamilton, H.J. (2001) Knowledge Discovery and Measures
of Interest, Kluwer

3. Greco, S., Matarazzo, B., Pappalardo, N., Slowiński, R. (2005) Measuring expected
effects of interventions based on decision rules, in Journal of Experimental and
Theoretical Artificial Intelligence, Taylor Francis, Vol. 17, No. 1-2

4. Pawlak, Z., (1991) Information systems - theoretical foundations, in Information
Systems Journal, Vol. 6, 205-218

5. Silberschatz, A., Tuzhilin, A., (1995) On subjective measures of interestingness in
knowledge discovery, in Proceedings of KDD′95 Conference, AAAI Press

6. Raś, Z., Wieczorkowska, A. (2000) Action Rules: how to increase profit of a com-
pany, in Principles of Data Mining and Knowledge Discovery, LNAI, No.
1910, Springer, 587-592

7. Raś, Z.W., Tzacheva, A., Tsay, L.-S. (2005) Action rules, in Encyclopedia of
Data Warehousing and Mining, (Ed. J. Wang), Idea Group Inc., 1-5

8. Raś, Z.W., Dardzińska, A. (2006) Action rules discovery, a new simplified strategy,
in Foundations of Intelligent Systems, F. Esposito et al. (Eds.), LNAI, No.
4203, Springer, 445-453

9. Tsay, L.-S., Raś, Z.W. (2005) Action rules discovery system DEAR, method and
experiments, in Journal of Experimental and Theoretical Artificial Intel-
ligence, Taylor & Francis, Vol. 17, No. 1-2, 119-128

10. Tsay, L.-S., Raś, Z.W. (2006) Action rules discovery system DEAR3, in Founda-
tions of Intelligent Systems, LNAI, No. 4203, Springer, 483-492

11. Tzacheva, A., Raś, Z.W. (2005) Action rules mining, in International Journal
of Intelligent Systems, Wiley, Vol. 20, No. 7, 719-736

	Constraint Based Action Rule Discovery with Single Classification Rules
	Introduction
	Action Rules
	Action Rule Discovery from Single Classification Rule
	Cost and Feasibility of Action Rules
	A*-Type Algorithm for Action Rules Construction
	New A*-Type Algorithm for Action Rules Construction
	Conclusion and Acknowledgements
	References

