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Abstract. In the paper, two families of lazy classification algorithms of
polynomial time complexity are considered. These algorithms are based
on ordinary and inhibitory rules, but the direct generation of rules is not
required. Instead of this, the considered algorithms extract efficiently for
a new object some information on the set of rules which is next used by
a decision-making procedure.

Keywords: rough sets, decision tables, information systems, rules.

1 Introduction

In the paper, the following classification problem is considered: for a given deci-
sion table T and a new object v generate a value of the decision attribute on v
using values of conditional attributes on v.

To this end, we divide the decision table T into a number of information
systems Si, i ∈ D, where D is the set of values of the decision attribute in T .
For i ∈ D, the information system Si contains only objects (rows) of T with the
value of the decision attribute equal to i.

For each information system Si and a given object v, it is constructed (using
polynomial-time algorithm) the so called characteristic table. For any object u
from Si and for any attribute a from Si, the characteristic table contains the
entry encoding information if there exist a rule which (i) is true for each object
from Si; (ii) is realizable for u, (iii) is not true for v, and (iv) has the attribute
a on the right hand side. Based on the characteristic table the decision on the
“degree” to which v belongs to Si is made for any i, and a decision i with the
maximal “degree” is selected.
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Note that in [8] for classifying new objects it was proposed to use rules defined
by conditional attributes in different decision classes.

In this paper, we consider both ordinary and inhibitory rules of the following
form:

a1(x) = b1 ∧ . . . ∧ at(x) = bt ⇒ ak(x) = bk,

a1(x) = b1 ∧ . . . ∧ at(x) = bt ⇒ ak(x) �= bk,

respectively.
Using these two kinds of rules and different evaluation functions a “degree”

to which v belongs to Si is computed by two families of classification algorithms.
In the literature, one can find a number of papers which are based on the

analogous ideas: instead of construction of huge sets of rules it is possible to
extract some information on such sets using algorithms having polynomial time
complexity.

In [2,3,4] it is considered an approach based on decision rules (with decision
attribute in the right hand side). These rules are obtained from the whole decision
table T . The considered algorithms find for a new object v and any decision i
the number of objects u from the information system Si such that there exists
a decision rule r satisfying the following conditions: (i) r is true for the decision
table T , (ii) r is realizable for u and v, and (iii) r has the equality d(x) = i on
the right hand side, where d is the decision attribute.

This approach was generalized by A. Wojna [9] to the case of decision tables
with not only nominal but also numerical attributes.

Note that such algorithms can be considered as a kind of lazy learning algo-
rithms [1].

2 Characteristic Tables

2.1 Information Systems

Let S = (U, A) be an information system, where U = {u1, . . . , un} is a finite non-
empty set of objects and A = {a1, . . . , am} is a finite nonempty set of attributes
(functions defined on U). We assume that for each ui ∈ U and each aj ∈ A
the value aj(ui) belongs to ω, where ω = {0, 1, 2, . . .} is the set of nonnegative
integers.

We also assume that the information system S = (U, A) is given by a tabular
representation, i.e., a table with m columns and n rows. Columns of the table are
labeled by attributes a1, . . . , am. At the intersection of i-th row and j-th column
the value aj(ui) is included. For i = 1, . . . , n we identify any object ui ∈ U with
the tuple (a1(ui), . . . , am(ui)), i.e., the i-th row of the tabular representation of
the information system S.

The set U(S) = ωm is called the universe for the information system S.
Besides objects from U we consider also objects from U(S) \ U . For any object
(tuple) v ∈ U(S) and any attribute aj ∈ A the value aj(v) is equal to j-th integer
in v.
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2.2 Ordinary Characteristic Tables

Let us consider a rule

aj1(x) = b1 ∧ . . . ∧ ajt(x) = bt ⇒ ak(x) = bk, (1)

where t ≥ 0, aj1 , . . . , ajt , ak ∈ A, b1, , . . . , bt, bk ∈ ω, and numbers j1, . . . , jt, k
are pairwise different. Such rules will be called ordinary rules. The rule (1) will
be called realizable for an object u ∈ U(S) if aj1(u) = b1, . . . , ajt(u) = bt. The
rule (1) will be called true for an object u ∈ U(S) if ak(u) = bk or (1) is not
realizable for u. The rule (1) will be called true for S if it is true for any object
from U . The rule (1) will be called realizable for S if it is realizable for at least
one object from U . Denote by Ord(S) the set of all ordinary rules each of which
is true for S and realizable for S.

Let ui ∈ U , v ∈ U(S), ak ∈ A and ak(ui) �= ak(v). We say that a rule (1) from
Ord(S) contradicts v relative to ui and ak (or, (ui, ak)-contradicts v, for short)
if (1) is realizable for ui but is not true for v. Our aim is to recognize for given
objects ui ∈ U and v ∈ U(S), and given attribute ak such that ak(ui) �= ak(v) if
there exist a rule from Ord(S) which (ui, ak)-contradicts v.

Let
M(ui, v) = {aj : aj ∈ A, aj(ui) = aj(v)},

and

P (ui, v, ak) = {ak(u) : u ∈ U, aj(u) = aj(v) for any aj ∈ M(ui, v)}.

Note that |P (ui, v, ak)| ≥ 1.

Proposition 1. Let S = (U, A) be an information system, ui ∈ U , v ∈ U(S),
ak ∈ A and ak(ui) �= ak(v). Then, in Ord(S) there exists a rule (ui, ak)-
contradicting v if and only if |P (ui, v, ak)| = 1.

Proof. Let |P (ui, v, ak)| = 1 and P (ui, v, ak) = {b}. In this case, the rule

∧

aj∈M(ui,v)

aj(x) = aj(v) ⇒ ak(x) = b, (2)

belongs to Ord(S), is realizable for ui, and is not true for v, since ak(v) �=
ak(ui) = b. Therefore, (2) is a rule from Ord(S), which (ui, ak)-contradicts v.

Let us assume that there exists a rule (1) from Ord(S) (ui, ak)-contradicting v.
Since (1) is realizable for ui and is not true for v, we have aj1 , . . . , ajt ∈ M(ui, v).
Also (1) is true for S. Hence, the rule

∧

aj∈M(ui,v)

aj(x) = aj(v) ⇒ ak(x) = bk

is true for S. Therefore, P (ui, v, ak) = {bk} and |P (ui, v, ak)| = 1. ��
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From Proposition 1 it follows that there exists polynomial algorithm recognizing,
for a given information system S = (U, A), given objects ui ∈ U and v ∈ U(S),
and a given attribute ak ∈ A such that ak(ui) �= ak(v), if there exist a rule from
Ord(S) (ui, ak)-contradicting v.

This algorithm constructs the set M(ui, v) and the set P (ui, v, ak). The con-
sidered rule exists if and only if |P (ui, v, ak)| = 1.

We also use the notion of ordinary characteristic table O(S, v), where v ∈
U(S). This is a table with m columns and n rows. The entries of this table are
binary (i.e., from {0, 1}). The number 0 is at the intersection of i-th row and
k-th column if and only if ak(ui) �= ak(v) and there exists a rule from Ord(S)
(ui, ak)-contradicting v.

From Proposition 1 it follows that there exists a polynomial algorithm which
for a given information system S = (U, A) and a given object v ∈ U(S) constructs
the ordinary characteristic table O(S, v).

2.3 Inhibitory Characteristic Tables

Let us consider a rule

aj1(x) = b1 ∧ . . . ∧ ajt(x) = bt ⇒ ak(x) �= bk, (3)

where t ≥ 0, aj1 , . . . , ajt , ak ∈ A, b1, , . . . , bt, bk ∈ ω, and numbers j1, . . . , jt, k
are pairwise different. Such rules are called inhibitory rules. The rule (3) will be
called realizable for an object u ∈ U(S) if aj1(u) = b1, . . . , ajt(u) = bt. The rule
(3) will be called true for an object u ∈ U(S) if ak(u) �= bk or (3) is not realizable
for u. The rule (3) will be called true for S if it is true for any object from U .
The rule (3) will be called realizable for S if it is realizable for at least one object
from U . Denote by Inh(S) the set of all inhibitory rules each of which is true
for S and realizable for S.

Let ui ∈ U , v ∈ U(S), ak ∈ A and ak(ui) �= ak(v). We say that a rule (3) from
Inh(S) contradicts v relative to the object ui and the attribute ak (or (ui, ak)-
contradicts v, for short) if (3) is realizable for ui but is not true for v. Our aim is
to recognize for given objects ui ∈ U and v ∈ U(S), and given attribute ak such
that ak(ui) �= ak(v) if there exist a rule from Inh(S) (ui, ak)-contradicting v.

Proposition 2. Let S = (U, A) be an information system, ui ∈ U , v ∈ U(S),
ak ∈ A and ak(ui) �= ak(v). Then in Inh(S) there is a rule (ui, ak)-contradicting
v if and only if ak(v) /∈ P (ui, v, ak).

Proof. Let ak(v) /∈ P (ui, v, ak). In this case, the rule

∧

aj∈M(ui,v)

aj(x) = aj(v) ⇒ ak(x) �= ak(v), (4)

belongs to Inh(S), is realizable for ui, and is not true for v. Therefore, (4) is a
rule from Inh(S) (ui, ak)-contradicting v.
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Let us assume that there exists a rule (3) from Inh(S), (ui, ak)-contradicting
v. In particular, it means that ak(v) = bk. Since (3) is realizable for ui and is
not true for v, we have aj1 , . . . , ajt ∈ M(ui, v). Since (3) is true for S, the rule

∧

aj∈M(ui,v)

aj(x) = aj(v) ⇒ ak(x) �= bk

is true for S. Therefore, ak(v) /∈ P (ui, v, ak). ��

From Proposition 2 it follows that there exists polynomial algorithm recognizing
for a given information system S = (U, A), given objects ui ∈ U and v ∈ U(S),
and a given attribute ak ∈ A such that ak(ui) �= ak(v) if there exist a rule from
Inh(S) (ui, ak)-contradicting v.

This algorithm constructs the set M(ui, v) and the set P (ui, v, ak). The con-
sidered rule exists if and only if ak(v) /∈ P (ui, v, ak).

In the sequel, we use the notion of inhibitory characteristic table I(S, v), where
v ∈ U(S). This is a table with m columns and n rows. The entries of this table are
binary. The number 0 is at the intersection of i-th row and k-th column if and only
if ak(ui) �= ak(v) and there exists a rule from Inh(S) (ui, ak)-contradicting v.

From Proposition 2 it follows that there exists a polynomial algorithm which
for a given information system S = (U, A) and a given object v ∈ U(S) constructs
the inhibitory characteristic table I(S, v).

2.4 Evaluation Functions

Let us denote by T the set of binary tables, i.e., tables with entries from {0, 1}
and let us consider a partial order 	 on T . Let Q1, Q2 ∈ T . Then Q1 	 Q2 if
and only if Q1 = Q2 or Q1 can be obtained from Q2 by changing some entries
from 1 to 0.

An evaluation function is an arbitrary function W : T → [0, 1] such that
W (Q1) ≤ W (Q2) for any Q1, Q2 ∈ T , Q1 	 Q2. Let us consider three examples
of evaluation functions W1, W2 and Wα

3 , 0 < α ≤ 1. Let Q be a table from T
with m columns and n rows. Let L1(Q) be equal to the number of 1 in Q, L2(Q)
be equal to the number of columns in Q filled by 1 only, and Lα

3 (Q) is defined
as the number of columns in Q with at least α · 100% entries equal to 1. Then

W1(Q) =
L1(Q)
mn

, W2(Q) =
L2(Q)

m
, and Wα

3 (Q) =
Lα

3 (Q)
m

.

It is clear that W2 = W 1
3 . Let S = (U, A) be an information system and v ∈

U(S). Note that if v ∈ U then W1(O(S, v)) = W2(O(S, v)) = Wα
3 (O(S, v)) = 1

and W1(I(S, v)) = W2(I(S, v)) = Wα
3 (I(S, v)) = 1 for any α (0 < α ≤ 1).

3 Algorithms of Classification

A decision table T is a finite table filled by nonnegative integers. Each column of
this table is labeled by a conditional attribute. Rows of the table are interpreted
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as tuples of values of conditional attributes on some objects. Each row is labeled
by a nonnegative integer, which is interpreted as the value of decision attribute.
Let T contain m columns labeled by conditional attributes a1, . . . , am. The set
U(T ) = ωm will be called the universe for the decision table T . For each object
(tuple) v ∈ U(T ) integers in v are interpreted as values of attributes a1, . . . , am

for this object.
We consider the following classification problem: for any object v ∈ U(T ) it

is required to compute a value of decision attribute on v. To this end, we use
O-classification algorithms and I-classification algorithms based on the ordinary
characteristic table and the inhibitory characteristic table.

Let D be the set of values of decision attribute. For each i ∈ D, let us denote
by Si the information system which tabular representation consists of all rows
of T , that are labeled by the decision i. Let W be an evaluation function.

O-algorithm. For a given object v and i ∈ D we construct the ordinary char-
acteristic table O(Si, v). Next, for each i ∈ D we find the value of the evaluation
function W for O(Si, v). For each i ∈ D the value W (O(Si, v)) is interpreted
as the “degree” to which v belongs to Si. As the value of decision attribute for
v we choose i ∈ D such that W (O(Si, v)) has the maximal value. If more than
one such i exists then we choose the minimal i for which W (O(Si, v)) has the
maximal value.

I-algorithm. For a given object v and i ∈ D we construct the inhibitory char-
acteristic table I(Si, v). Next, for each i ∈ D we find the value of the evaluation
function W for I(Si, v). For each i ∈ D the value W (I(Si, v)) is interpreted as
the “degree” to which v belongs to Si. As the value of decision attribute for v
we choose i ∈ D such that W (I(Si, v)) has the maximal value. If more than
one such i exists then we choose the minimal i for which W (I(Si, v)) has the
maximal value.

4 Results of Experiments

We have performed experiments with following algorithms: O-algorithm with
the evaluation functions W1, W2 and Wα

3 , and I-algorithm with the evaluation
functions W1, W2 and Wα

3 . To evaluate error rate of an algorithm on a decision
table we use either train-and-test method or cross-validation method.

The following decision tables from [6] were used in our experiments: monk1
(6 conditional attributes, 124 objects in training set, 432 objects in testing set),
monk2 (6 conditional attributes, 169 objects in training set, 432 objects in testing
set), monk3 (6 conditional attributes, 122 objects in training set, 432 objects
in testing set), lymphography (18 conditional attributes, 148 objects, 10-fold
cross-validation), diabetes (8 conditional attributes, 768 objects, 12-fold cross-
validation, attributes are discretized by an algorithm from RSES2 [7]), breast-
cancer (9 conditional attributes, 286 objects, 10-fold cross-validation), primary-
tumor (17 conditional attributes, 339 objects, 10-fold cross-validation, missing
values are filled by an algorithm from RSES2).

Table 1 contains results of experiments (error rates) for O-algorithm and
I-algorithm with the evaluation functions W1 and W2, and for each of the
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Table 1. Results of experiments with evaluation functions W1 and W2

Decision table O-alg., W1 O-alg., W2 I-alg., W1 I-alg., W2 err. rates [3]
monk1 0.292 0.443 0.114 0.496 0.000–0.240
monk2 0.260 0.311 0.255 0.341 0.000–0.430
monk3 0.267 0.325 0.119 0.322 0.000–0.160
lymphography 0.272 0.922 0.215 0.922 0.157–0.380
diabetes 0.348 0.421 0.320 0.455 0.224–0.335
breast-cancer 0.240 0.261 0.233 0.268 0.220–0.490
primary-tumor 0.634 0.840 0.634 0.846 0.550–0.790
average err. rate 0.330 0.503 0.270 0.521 0.164–0.404

considered tables. The last row contains average error rates. The last column
contains some known results – the best and the worst error rates for algorithms
compared in the survey [3].

The obtained results show that the evaluation function W1 is noticeably better
than the evaluation function W2, and I-algorithm with the evaluation function
W1 is better than O-algorithm with the evaluation function W1. The last result
follows from the fact that the inhibitory rules have much higher chance to have
larger support in the decision tables than the ordinary rules.

The outputs returned by I-algorithm with the evaluation function W1 for each
of decision tables are comparable with the results reported in [3], but are worse
than the best results mentioned in [3].

Table 2 contains results of experiments (error rates) for two types of algo-
rithms: O-algorithm with the evaluation function Wα

3 , and I-algorithm with the
evaluation function Wα

3 , where α ∈ {0.50, 0.55, . . . , 0.95, 1.00}. For each decision
table and for algorithms of each type the best result (with the minimal error
rate) and the corresponding α to this result are presented in the table. The last
row contains average error rates. The last column contains some known results
– the best and the worst error rates for algorithms discussed in [3].

The obtained results show that the use of the parameterized evaluation func-
tions Wα

3 , where α ∈ {0.50, 0.55, . . . , 0.95, 1.00}, makes it possible to improve

Table 2. Results of experiments with evaluation functions W α
3

Decision table O-alg., W α
3 α I-alg., W α

3 α err. rates [3]
monk1 0.172 0.95 0.195 0.85 0.000–0.240
monk2 0.301 0.95 0.283 0.95 0.000–0.430
monk3 0.325 1.00 0.044 0.65 0.000–0.160
lymphography 0.293 0.55 0.272 0.65 0.157–0.380
diabetes 0.421 1.00 0.351 0.95 0.224–0.335
breast-cancer 0.229 0.80 0.225 0.70 0.220–0.490
primary-tumor 0.658 0.75 0.655 0.70 0.550–0.790
average err. rate 0.343 0.289 0.164–0.404
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the performance of I-algorithm with the evaluation function W1 for tables monk3
and breast-cancer.

In experiments the DMES system [5] was used.

5 Conclusions

In the paper, two families of lazy classification algorithms are considered which
are based on the evaluation of the number of types of true rules which give us
“negative” information about new objects. In the further investigations we are
planning to consider also the number of types of true rules which give us “posi-
tive” information about new objects. Also we are planning to consider more wide
parametric families of evaluation functions which will allow to learn classification
algorithms.
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