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Developing methods for approximation of compound concepts expressing the
result of perception belongs to the main challenges of Perception Based Com-
puting (PBC) [70]. The perceived concepts are expressed in natural language.
We discuss the rough-granular approach to approximation of such concepts from
sensory data and domain knowledge. This additional knowledge, represented by
ontology of concepts, is used to make it feasible searching for features (condition
attributes) relevant for the approximation of concepts on different levels of the
concept hierarchy defined by a given ontology. We report several experiments
of the proposed methodology for approximation of compound concepts from
sensory data and domain knowledge. The approach is illustrated by examples
relative to interactions of agents, ontology approximation, adaptive hierarchi-
cal learning of compound concepts and skills, behavioral pattern identification,
planning, conflict analysis and negotiations, and perception-based reasoning. The
presented results seem to justify the following claim of Lotfi A. Zadeh: “In com-
ing years, granular computing is likely to play an increasingly important role
in scientific theories-especially in human-centric theories in which human judge-
ment, perception and emotions are of pivotal importance”. The question of how
ontologies of concepts can be discovered from sensory data remains as one of the
greatest challenges for many interdisciplinary projects on learning of concepts.

The concept approximation problem is the basic problem investigated in ma-
chine learning, pattern recognition and data mining [24]. It is necessary to induce
approximations of concepts (models of concepts) consistent (or almost consis-
tent) with some constraints. In the most typical case, constraints are defined
by a training sample. For more compound concepts, we consider constraints de-
fined by domain ontology consisting of vague concepts and dependencies between
them. Information about the classified objects and concepts is partial. In the
most general case, the adaptive approximation of concepts is performed under
interaction with dynamically changing environment. In all these cases, search-
ing for sub-optimal models relative to the minimal length principle (MLP) is

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 A. Jankowski and A. Skowron

performed. Notice that in adaptive concept approximation one of the compo-
nents of the model should be the adaptation strategy. Components involved in
construction of concept approximation which are tuned in searching for sub-
optimal models relative to MLP are called information granules. In rough gran-
ular computing (RGC), information granule calculi are used for construction
of components of classifiers and classifiers themselves (see, e.g., [60]) satisfying
given constraints. An important mechanism in RGC is related to generaliza-
tion schemes making it possible to construct more compound patterns from less
compound patters. Generalization degrees of schemes are tuned using, e.g., some
evolutionary strategies.

Rough set theory due to Zdzis�law Pawlak [43,44,45,46,17] is a mathematical
approach to imperfect knowledge. The problem of imperfect knowledge has been
tackled for a long time by philosophers, logicians and mathematicians. Recently
it became also a crucial issue for computer scientists, particularly in the area
of artificial intelligence. There are many approaches to the problem of how to
understand and manipulate imperfect knowledge. The most successful one is, no
doubt, the fuzzy set theory proposed by Lotfi A. Zadeh [69]. Rough set theory
presents still another attempt to solve this problem. It is based on an assumption
that objects and concepts are perceived by partial information about them. Due
to this some objects can be indiscernible. From this fact it follows that some
sets can not be exactly described by available information about objects; they
are rough not crisp. Any rough set is characterized by its (lower and upper)
approximations. The difference between the upper and lower approximation of a
given set is called its boundary. Rough set theory expresses vagueness relative to
the boundary region of a set. If the boundary region of a set is empty, it means
that the set is crisp; otherwise, the set is rough (inexact). A nonempty boundary
region of a set indicates that our knowledge about the set is not sufficient to
define the set precisely. One can recognize that rough set theory is, in a sense, a
formalization of the idea presented by Gotlob Frege [23].

One of the consequences of perceiving objects using only available information
about them is that for some objects one cannot decide if they belong to a given
set or not. However, one can estimate the degree to which objects belong to sets.
This is another crucial observation in building the foundations for approximate
reasoning. In dealing with imperfect knowledge, one can only characterize satis-
fiability of relations between objects to a degree, not precisely. Among relations
on objects, the rough inclusion relation plays a special role in describing to what
degree objects are parts of other objects. A rough mereological approach (see,
e.g., [52,59,42]) is an extension of the Leśniewski mereology [31] and is based on
the relation to be a part to a degree. It will be interesting to note here that Jan
�Lukasiewicz was the first who started to investigate the inclusion to a degree
of concepts in his discussion on relationships between probability and logical
calculi [35].

The very successful technique for rough set methods has been Boolean rea-
soning [12]. The idea of Boolean reasoning is based on construction for a given
problem P a corresponding Boolean function fP with the following property:
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the solutions for the problem P can be decoded from prime implicants of the
Boolean function fP . It is worth while to mention that to solve real-life prob-
lems, it is necessary to deal with Boolean functions having a large number of
variables.

A successful methodology based on the discernibility of objects and Boolean
reasoning has been developed in rough set theory for computing of many key con-
structs like reducts and their approximations, decision rules, association rules,
discretization of real valued attributes, symbolic value grouping, searching for
new features defined by oblique hyperplanes or higher order surfaces, pattern ex-
traction from data as well as conflict resolution or negotiation [55,38,46]. Most
of the problems involving the computation of these entities are NP-complete
or NP-hard. However, we have been successful in developing efficient heuristics
yielding sub-optimal solutions for these problems. The results of experiments
on many data sets are very promising. They show very good quality solutions
generated by the heuristics in comparison with other methods reported in litera-
ture (e.g., with respect to the classification quality of unseen objects). Moreover,
they are very time-efficient. It is important to note that the methodology makes
it possible to construct heuristics having a very important approximation prop-
erty. Namely, expressions generated by heuristics (i.e., implicants) close to prime
implicants define approximate solutions for the problem (see, e.g., [1]).

The rough set approach offers tools for approximate reasoning in multiagent
systems (MAS). The typical example is the approximation by one agent of con-
cepts of another agent. The approximation of a concept is based on a decision
table representing information about objects perceived by both agents.

The strategies for inducing data models developed so far are often not sat-
isfactory for approximation of compound concepts that occur in the perception
process. Researchers from the different areas have recognized the necessity to
work on new methods for concept approximation (see, e.g., [11,68]). The main
reason for this is that these compound concepts are, in a sense, too far from mea-
surements which makes the searching for relevant features infeasible in a very
huge space. There are several research directions aiming at overcoming this diffi-
culty. One of them is based on the interdisciplinary research where the knowledge
pertaining to perception in psychology or neuroscience is used to help to deal
with compound concepts (see, e.g., [37,22,21]). There is a great effort in neu-
roscience towards understanding the hierarchical structures of neural networks
in living organisms [20,51,37]. Also mathematicians are recognizing problems of
learning as the main problem of the current century [51]. These problems are
closely related to complex system modeling as well. In such systems again the
problem of concept approximation and its role in reasoning about perceptions
is one of the challenges nowadays. One should take into account that modeling
complex phenomena entails the use of local models (captured by local agents,
if one would like to use the multi-agent terminology [34,65,19]) that should be
fused afterwards. This process involves negotiations between agents [34,65,19] to
resolve contradictions and conflicts in local modeling. This kind of modeling is
becoming more and more important in dealing with complex real-life phenomena
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which we are unable to model using traditional analytical approaches. The latter
approaches lead to exact models. However, the necessary assumptions used to
develop them result in solutions that are too far from reality to be accepted.
New methods or even a new science therefore should be developed for such mod-
eling [25].

One of the possible approaches in developing methods for compound concept
approximations can be based on the layered (hierarchical) learning [62,9]. In-
ducing concept approximation should be developed hierarchically starting from
concepts that can be directly approximated using sensor measurements toward
compound target concepts related to perception. This general idea can be re-
alized using additional domain knowledge represented in natural language. For
example, one can use some rules of behavior on the roads, expressed in nat-
ural language, to assess from recordings (made, e.g., by camera and other sen-
sors) of actual traffic situations, if a particular situation is safe or not (see, e.g.,
[39,8,7,17]). Hierarchical learning has been also used for identification of risk
patterns in medical data and extended for therapy planning (see, e.g. [5,4]). An-
other application of hierarchical learning for sunspot classification is reported
in [40]. To deal with such problems, one should develop methods for concept
approximations together with methods aiming at approximation of reasoning
schemes (over such concepts) expressed in natural language. The foundations of
such an approach, creating a core of perception logic, are based on rough set
theory [43,44,45,46,17] and its extension called rough mereology [52,59,42]. Ap-
proximate Boolean reasoning methods can be scaled to the case of compound
concept approximation.

Let us consider more examples.
The prediction of behavioral patterns of a compound object evaluated over

time is usually based on some historical knowledge representation used to store
information about changes in relevant features or parameters. This information
is usually represented as a data set and has to be collected during long-term
observation of a complex dynamic system. For example, in case of road traffic,
we associate the object-vehicle parameters with the readouts of different mea-
suring devices or technical equipment placed inside the vehicle or in the outside
environment (e.g., alongside the road, in a helicopter observing the situation on
the road, in a traffic patrol vehicle). Many monitoring devices serve as informa-
tive sensors such as GPS, laser scanners, thermometers, range finders, digital
cameras, radar, image and sound converters (see, e.g. [66]). Hence, many vehicle
features serve as models of physical sensors. Here are some exemplary sensors:
location, speed, current acceleration or deceleration, visibility, humidity (slip-
periness) of the road. By analogy to this example, many features of compound
objects are often dubbed sensors. In the lecture, we discuss (see also [7]) some
rough set tools for perception modelling that make it possible to recognize be-
havioral patterns of objects and their parts changing over time. More complex
behavior of compound objects or groups of compound objects can be presented
in the form of behavioral graphs. Any behavioral graph can be interpreted as
a behavioral pattern and can be used as a complex classifier for recognition of
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complex behaviours. The complete approach to the perception of behavioral
patterns, that is based on behavioral graphs and the dynamic elimination of
behavioral patterns, is presented in [7]. The tools for dynamic elimination of
behavioral patterns are used for switching-off in the system attention procedures
searching for identification of some behavioral patterns. The developed rough
set tools for perception modeling are used to model networks of classifiers. Such
networks make it possible to recognize behavioral patterns of objects changing
over time. They are constructed using an ontology of concepts provided by ex-
perts that engage in approximate reasoning on concepts embedded in such an
ontology. Experiments on data from a vehicular traffic simulator [3] show that
the developed methods are useful in the identification of behavioral patterns.

The following example concerns human computer-interfaces that allow for a
dialog with experts to transfer to the system their knowledge about structurally
compound objects. For pattern recognition systems [18], e.g., for Optical Char-
acter Recognition (OCR) systems it will be helpful to transfer to the system a
certain knowledge about the expert view on border line cases. The central issue
in such pattern recognition systems is the construction of classifiers within vast
and poorly understood search spaces, which is a very difficult task. Nonetheless,
this process can be greatly enhanced with knowledge about the investigated ob-
jects provided by an human expert. We developed a framework for the transfer
of such knowledge from the expert and for incorporating it into the learning
process of a recognition system using methods based on rough mereology (see,
e.g., [41]). Is is also demonstrated how this knowledge acquisition can be con-
ducted in an interactive manner, with a large dataset of handwritten digits as
an example.

The next two examples are related to approximation of compound concepts
in reinforcement learning and planning.

Intemporaldifferencereinforcementlearning[63,16,36,28,60,47,48,50,49,71,72],
the main task is to learn the approximation of the function Q(s, a), where s, a
denotes a global state of the system and an action performed by an agent ag
and, respectively and the real value of Q(s, a) describes the reward for executing
the action a in the state s. In approximation of the function Q(s, a), probabilis-
tic methods are used. However, for compound real-life problems it may be hard
to build such models for such a compound concept as Q(s, a) [68]. We propose
another approach to the approximation of Q(s, a) based on ontology approxima-
tion. The approach is based on the assumption that in a dialog with experts an
additional knowledge can be acquired making it possible to create a ranking of
values Q(s, a) for different actions a in a given state s. In the explanation given
by expert about possible values of Q(s, a) concepts from a special ontology are
used. Then, using this ontology one can follow hierarchical learning methods
to learn approximations of concepts from ontology. Such concepts can have a
temporal character too. This means that the ranking of actions may depend not
only on the actual action and the state but also on actions performed in the past
and changes caused by these actions.
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In [5,4] a computer tool based on rough sets for supporting automated plan-
ning of the medical treatment (see, e.g., [26,67]) is discussed. In this approach,
a given patient is treated as an investigated complex dynamical system, whilst
diseases of this patient (RDS, PDA, sepsis, Ureaplasma and respiratory failure)
are treated as compound objects changing and interacting over time. As a mea-
sure of planning success (or failure) in experiments, we use a special hierarchical
classifier that can predict the similarity between two plans as a number between
0.0 and 1.0. This classifier has been constructed on the basis of the special on-
tology specified by human experts and data sets. It is important to mention that
besides the ontology, experts provided the exemplary data (values of attributes)
for the purpose of concepts approximation from the ontology. The methods of
construction such classifiers are based on approximate reasoning schemes (AR
schemes, for short) and were described, e.g., in [8,39,8,7]. We applied this method
for approximation of similarity between plans generated in automated planning
and plans proposed be human experts during the realistic clinical treatment.

Further radical changes in the design of intelligent systems depend on the
advancement of technology to acquire, represent, store, process, discover, com-
municate and learn wisdom. We call this technology wisdom technology (or wis-
tech, for short) [27]. The term wisdom commonly means “judging rightly”. This
common notion can be refined. By wisdom, we understand an adaptive ability
to make judgements correctly to a satisfactory degree (in particular, correct
decisions) having in mind real-life constraints.

One of the basic objectives is to indicate the methods for potential directions
for the design and implementation of wistech computation models. An important
aspect of wistech is that the complexity and uncertainty of real-life constraints
mean that in practise we must reconcile ourselves to the fact that our judgements
are based on non-crisp concepts and which do not take into account all the
knowledge accumulated and available to us. This is also why consequences of our
judgements are usually imperfect. But as a consolation, we also learn to improve
the quality of our judgements via observation and analysis of our experience
during interaction with the environment. Satisfactory decision-making levels can
be achieved as a result of improved judgements.

The intuitive nature of wisdom understood in this way can be expressed
metaphorically as shown in wisdom equation (1)

wisdom = KSN + AJ + IP, (1)

where KSN, AJ, IP denote knowledge sources network, adaptive judgement, and
interactive processes, respectively. The combination of the technologies repre-
sented in (1) offers an intuitive starting point for a variety of approaches to
designing and implementing computational models for wistech. We focus in the
research on an adaptive RGC approach.

The issues we discuss on wistech are relevant for the other reported current
research directions (see, e.g., [14,13,21,22,30,54,64] and the literature cited in
these articles).

Wistech can be perceived as the integration of three technologies (correspond-
ing to three components in the wisdom equation (1)). At the current stage the



Toward Rough-Granular Computing 7

following two of them seem to be conceptually relatively clear: (i) knowledge
sources network – by knowledge we traditionally understand every organized set
of information along with the inference rules; (ii) interactive processes – interac-
tion is understood here as a sequence of stimuli and reactions over time. Far more
difficult conceptually seems to be the concept of (iii) adaptive judgement distin-
guishing wisdom from the general concept of problem solving. Adaptive judge-
ment is understood here as mechanisms in a metalanguage (meta-reasoning)
which on the basis of selection of available sources of knowledge and on the basis
of understanding of history of interactive processes and their current status are
enable to perform the following activities under real life constraints: (i) iden-
tification and judgement of importance (for future judgement) of phenomena
available for observation in the surrounding environment; (ii) planning current
priorities for actions to be taken (in particular, on the basis of understanding
of history of interactive processes and their current status) toward making op-
timal judgements; (iii) selection of fragments of ordered knowledge (hierarchies
of information and judgement strategies) satisfactory for making decision at the
planned time (a decision here is understood as a commencing interaction with
the environment or as selecting the future course to make judgements); (iv)
prediction of important consequences of the planned interaction of processes;
(v) learning and, in particular, reaching conclusions from experience leading to
adaptive improvement in the adaptive judgement process.

One of the main barriers hindering an acceleration in the development of wis-
tech applications lies in developing satisfactory computation models implement-
ing the functioning of “adaptive judgement”. This difficulty primarily consists
of overcoming the complexity of the process of integrating the local assimilation
and processing of changing non-crisp and incomplete concepts necessary to make
correct judgements. In other words, we are only able to model tested phenom-
ena using local (subjective) models and interactions between them. In practical
applications, usually, we are not able to give global models of analyzed phe-
nomena (give quotes from MAS and complex adaptive systems (CAS); see, e.g.,
[65,32,33,19,15]). However, we one can approximate global models by integrating
the various incomplete perspectives of problem perception. One of the potential
computation models for “adaptive judgement” might be the RGC approach.

The research on the foundations on wistech is based on a continuation of
approaches to computational models of approximate reasoning developed by
Rasiowa (see [53]), Pawlak (see [43]) and their students. In some sense, it is
a continuation of ideas initiated by Leibniz, Boole and currently continued in
a variety of forms. Of course, the Rasiowa - Pawlak school is also some kind
continuation of the Polish School of Mathematics and Logics which led to the
development of the modern understanding of the basic computational aspects of
logic, epistemology, ontology, foundations of mathematics and natural deduction.
The two fundamental tools of the Rasiowa - Pawlak school are the following: (i)
Computation models of logical concept (especially such concepts as deduction or
algebraic many-valued models for classical, modal, and constructive mathemat-
ics) - based on the method of treating the sets of logically equivalent statements
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(or formulas) as abstract algebras known as Lindebaum - Tarski algebras; (ii)
Computation models of vague concept- originally �Lukasiewicz has proposed to
treat uncertainty (or vague concepts) as concepts of many valued logic. The
rough set concept, due to Pawlak [43], developed in the Rasiowa-Pawlak school
is based on classical two valued logic. The rough set approach has been devel-
oped to deal with uncertainty and vagueness. The approach makes it possible
to reason precisely about approximations of vague concepts. These approxima-
tions are temporary, subjective, and are adaptively changing with changes in
environments [6,57,60].

Solving complex problems by multi-agent systems requires new approximate
reasoning methods based on new computing paradigms. One such recently
emerging computing paradigm is RGC. Computations in RGC are performed on
information granules representing often vague, partially specified, and compound
concepts delivered by agents engaged in tasks such as knowledge representation,
communication with other agents, and reasoning.

One of the RGC challenges is to develop approximate reasoning techniques for
reasoning about dynamics of distributed systems of judges, i.e., agents judging
rightly. These techniques should be based on systems of evolving local perception
logics rather than on a global logic [56,58]. The approximate reasoning about
global behavior of judge’s system is infeasible without methods for approxima-
tion of compound vague concepts and approximate reasoning about them. One
can observe here an analogy to phenomena related to the emergent patters in
complex adaptive systems [15]. Let us observe that judges can be organized into
a hierarchical structure, i.e., one judge can represent a coalition of judges in
interaction with other agents existing in the environment [2,29,32]. Such judges
representing coalitions play an important role in hierarchical reasoning about
behavior of judges populations. Strategies for coalition formation and cooper-
ation [2,32,33] are of critical importance in designing systems of judges with
dynamics satisfying to a satisfactory degree the given specification. Developing
strategies for discovery of information granules representing relevant coalitions
and cooperation protocols is another challenge for RGC.

All these problems can be treated as problems of searching for information
granules satisfying vague requirements. The strategies for construction of infor-
mation granules should be adaptive. It means that the adaptive strategies should
make it possible to construct information granules satisfying constraints under
dynamically changing environment. This requires reconstruction or tuning of al-
ready constructed information granules which are used as components of data
models, e.g., classifiers. In the adaptive process, the construction of information
granules generalizing some constructed so far information granules plays a special
role. The mechanism for relevant generalization here is crucial. One can imagine
for this task many different strategies, e.g., based on adaptive feedback control
for tuning the generalization. Cooperation with specialists from different areas
such as neuroscience (see, e.g., [37] for visual objects recognition), psychology
(see, e.g., [51] for discovery of mechanisms for hierarchical perception), biology
(see, e.g., [10] for cooperation based on swarm intelligence), adaptive learning
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based on ethology and approximation spaces [48,50] or social science (see, e.g.,
[32] for modeling of agents behavior) can help to discover such adaptive strategies
for extracting sub-optimal (relative to the minimal length principle) data models
satisfying soft constraints. This research may also help us to develop strategies
for discovery of ontologies relevant for compound concept approximation.

In the current projects, we are developing rough set based methods in com-
bination with other soft computing and statistical methods for RGC on which
wistech can be based. The developed methods are used to construct wisdom
engines. By wisdom engine we understand a system which implements the con-
cept of wisdom. We plan to design specific systems for some tasks such as (1)
Intelligent Document Manager; (2) Job Market Search; (3) Brand Monitoring;
(4) Decision Support for global management systems (e.g., World Forex, Stock
Market, World Tourist); (5) Intelligent Assistant (e.g., Physician, Lawyer); (6)
Discovery of Processes from Data (e.g., Gene Expression Networks); (7) Rescue
System (for more details see [27,19]).
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61. D. Ślȩzak, J. T. Yao, J. F. Peters, W. Ziarko, and X. Hu, editors. Proceedings of
the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing (RSFDGrC’2005), Regina, Canada, August 31-September 3,
2005, Part II, volume 3642 of LNAI. Springer, Heidelberg, 2005.

62. P. Stone. Layered Learning in Multi-Agent Systems: A Winning Approach to
Robotic Soccer. The MIT Press, Cambridge, MA, 2000.

63. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, Cambridge, MA, 1998.

64. W. Swartout, J. Gratch, R. W. Hill, E. Hovy, S. Marsella, J. Rickel, and D. Traum.
Towards virtual humans. AI Magazine, 27:96–108, 2006.

65. K. Sycara. Multiagent systems. AI Magazine, pages 79–92, Summer 1998.
66. C. Urmson, J. Anhalt, M. Clark, T. Galatali, J. P. Gonzalez, J. Gowdy, A. Gutier-

rez, S. Harbaugh, M. Johnson-Roberson, H. Kato, P. L. Koon, K. Peterson, B. K.
Smith, S. Spiker, E. Tryzelaar, and W. R. L. Whittaker. High speed navigation
of unrehearsed terrain: Red team technology for grand challenge 2004. Technical
Report CMU-RI-TR-04-37, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, June 2004.

67. W. Van Wezel, R. Jorna, and A. Meystel. Planning in Intelligent Systems: Aspects,
Motivations, and Methods. John Wiley & Sons, Hoboken, New Jersey, 2006.

68. V. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, NY, 1998.
69. L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.
70. L. A. Zadeh, A new direction in AI: Toward a computational theory of perceptions,

AI Magazine 22 (1) (2001) 73-84.
71. C.J.C.H. Watkins. Learning from Delayed Rewards, Ph.D. Thesis, supervisor:

Richard Young, King’s College, University of Cambridge, UK, May, 1989.
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