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Preface

This volume contains the papers selected for presentation at the 11th Inter-
national Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular
Computing (RSFDGrC 2007), a part of the Joint Rough Set Symposium (JRS
2007) organized by Infobright Inc. and York University. JRS 2007 was held for
the first time during May 14–16, 2007 in MaRS Discovery District, Toronto,
Canada. It consisted of two conferences: RSFDGrC 2007 and the Second Inter-
national Conference on Rough Sets and Knowledge Technology (RSKT 2007).

The two conferences that constituted JRS 2007 investigated rough sets as an
emerging methodology established more than 25 years ago by Zdzis�law Pawlak.
Rough set theory has become an integral part of diverse hybrid research streams.
In keeping with this trend, JRS 2007 encompassed rough and fuzzy sets, knowl-
edge technology and discovery, soft and granular computing, data processing and
mining, while maintaining an emphasis on foundations and applications.

RSFDGrC 2007 followed in the footsteps of well-established international
initiatives devoted to the dissemination of rough sets research, held so far in
Canada, China, Japan, Poland, Sweden, and the USA. RSFDGrC was first or-
ganized as the 7th International Workshop on Rough Sets, Data Mining and
Granular Computing held in Yamaguchi, Japan in 1999. Its key feature was to
stress the role of integrating intelligent information methods to solve real-world,
large, complex problems concerned with uncertainty and fuzziness. RSFDGrC
achieved the status of a bi-annual international conference, starting from 2003
in Chongqing, China.

In RSFDGrC 2007, a special effort was made to include research spanning a
broad range of theory and applications. This was achieved by including in the
conference program a number of special sessions, invited talks, and tutorials.

Overall, we received 319 submissions to the Joint Rough Set Symposium.
Every paper was examined by at least two reviewers. The submission and review
processes were performed jointly for both conferences that together constituted
JRS 2007, i.e., RSFDGrC 2007 and RSKT 2007.

Out of the papers initially selected, some were approved subject to revision
and then additionally evaluated. Finally, 139 papers were accepted for JRS 2007.
This gives an acceptance ratio slightly over 43% for the joint conferences.

Accepted papers were distributed between the two conferences on the basis
of their relevance to the conference themes.

The JRS 2007 conference papers are split into two volumes (LNAI 4481 for
RSKT 2007 and LNAI 4482 for RSFDGrC 2007). The regular, invited, and
special session papers selected for presentation at RSFDGrC 2007 are included
within 12 chapters and grouped under specific conference topics.

This volume contains 69 papers, including 4 invited papers presented in
Chap. 1. The remaining 65 papers are presented in 11 chapters related to
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fuzzy-rough hybridization, fuzzy sets, soft computing in medical image process-
ing, soft computing in information retrieval, clustering, text and Web mining,
learning, data mining and rough classifiers, granular computing, soft computing
in multimedia processing, soft computing applications, and rough and complex
concepts.

We wish to thank all of the authors who contributed to this volume. We
are very grateful to the chairs, advisory board members, Program Committee
members, and other reviewers not listed in the conference committee for their
help in the acceptance process.

We are grateful to our Honorary Chairs, Setsuo Ohsuga and Lotfi Zadeh,
for their support and visionary leadership. We also acknowledge the scientists
who kindly agreed to give the keynote, plenary, and tutorial lectures: Andrzej
Bargiela, Mihir K. Chakraborty, Bernhard Ganter, Sushmita Mitra, Sadaaki
Miyamoto, James F. Peters, Andrzej Skowron, Domenico Talia, Xindong Wu,
Yiyu Yao, Chengqi Zhang, and Wojciech Ziarko. We also wish to express our
deep appreciation to all special session organizers.

We greatly appreciate the co-operation, support, and sponsorship of vari-
ous companies, institutions and organizations, including: Infobright Inc., MaRS
Discovery District, Springer, York University, International Rough Set Society,
International Fuzzy Systems Association, Rough Sets and Soft Computation So-
ciety of the Chinese Association for Artificial Intelligence, and National Research
Council of Canada.

We wish to thank several people whose hard work made the organization
of JRS 2007 possible. In particular, we acknowledge the generous help received
from: Tokuyo Mizuhara, Clara Masaro, Christopher Henry, Julio V. Valdes, April
Dunford, Sandy Hsu, Lora Zuech, Bonnie Barbayanis, and Allen Gelberg.

Last but not least, we are thankful to Alfred Hofmann of Springer for support
and co-operation during preparation of this volume.

May 2007 Aijun An
Jerzy Stefanowski
Sheela Ramanna

Cory Butz
Witold Pedrycz

Guoyin Wang
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Jakub Wróblewski



VIII Organization

Dan Wu
Xindong Wu
Justin Zhan

Chengqi Zhang
Qingfu Zhang
Qiangfu Zhao

Xueyuan Zhou
Zhi-Hua Zhou
Constantin Zopounidis

Non-committee Reviewers

Haider Banka
Klaas Bosteels
Yaohua Chen
Piotr Dalka
Alicja Grużdż
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Toward Rough-Granular Computing

Extended Abstract

Andrzej Jankowski1 and Andrzej Skowron2

1 Institute of Decision Processes Support
and

AdgaM Solutions Sp. z o.o.
Wa̧wozowa 9 lok. 64, 02-796 Warsaw, Poland

andrzejj@adgam.com.pl
2 Institute of Mathematics,

Warsaw University
Banacha 2, 02-097 Warsaw, Poland

skowron@mimuw.edu.pl

Developing methods for approximation of compound concepts expressing the
result of perception belongs to the main challenges of Perception Based Com-
puting (PBC) [70]. The perceived concepts are expressed in natural language.
We discuss the rough-granular approach to approximation of such concepts from
sensory data and domain knowledge. This additional knowledge, represented by
ontology of concepts, is used to make it feasible searching for features (condition
attributes) relevant for the approximation of concepts on different levels of the
concept hierarchy defined by a given ontology. We report several experiments
of the proposed methodology for approximation of compound concepts from
sensory data and domain knowledge. The approach is illustrated by examples
relative to interactions of agents, ontology approximation, adaptive hierarchi-
cal learning of compound concepts and skills, behavioral pattern identification,
planning, conflict analysis and negotiations, and perception-based reasoning. The
presented results seem to justify the following claim of Lotfi A. Zadeh: “In com-
ing years, granular computing is likely to play an increasingly important role
in scientific theories-especially in human-centric theories in which human judge-
ment, perception and emotions are of pivotal importance”. The question of how
ontologies of concepts can be discovered from sensory data remains as one of the
greatest challenges for many interdisciplinary projects on learning of concepts.

The concept approximation problem is the basic problem investigated in ma-
chine learning, pattern recognition and data mining [24]. It is necessary to induce
approximations of concepts (models of concepts) consistent (or almost consis-
tent) with some constraints. In the most typical case, constraints are defined
by a training sample. For more compound concepts, we consider constraints de-
fined by domain ontology consisting of vague concepts and dependencies between
them. Information about the classified objects and concepts is partial. In the
most general case, the adaptive approximation of concepts is performed under
interaction with dynamically changing environment. In all these cases, search-
ing for sub-optimal models relative to the minimal length principle (MLP) is

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 1–12, 2007.
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performed. Notice that in adaptive concept approximation one of the compo-
nents of the model should be the adaptation strategy. Components involved in
construction of concept approximation which are tuned in searching for sub-
optimal models relative to MLP are called information granules. In rough gran-
ular computing (RGC), information granule calculi are used for construction
of components of classifiers and classifiers themselves (see, e.g., [60]) satisfying
given constraints. An important mechanism in RGC is related to generaliza-
tion schemes making it possible to construct more compound patterns from less
compound patters. Generalization degrees of schemes are tuned using, e.g., some
evolutionary strategies.

Rough set theory due to Zdzis�law Pawlak [43,44,45,46,17] is a mathematical
approach to imperfect knowledge. The problem of imperfect knowledge has been
tackled for a long time by philosophers, logicians and mathematicians. Recently
it became also a crucial issue for computer scientists, particularly in the area
of artificial intelligence. There are many approaches to the problem of how to
understand and manipulate imperfect knowledge. The most successful one is, no
doubt, the fuzzy set theory proposed by Lotfi A. Zadeh [69]. Rough set theory
presents still another attempt to solve this problem. It is based on an assumption
that objects and concepts are perceived by partial information about them. Due
to this some objects can be indiscernible. From this fact it follows that some
sets can not be exactly described by available information about objects; they
are rough not crisp. Any rough set is characterized by its (lower and upper)
approximations. The difference between the upper and lower approximation of a
given set is called its boundary. Rough set theory expresses vagueness relative to
the boundary region of a set. If the boundary region of a set is empty, it means
that the set is crisp; otherwise, the set is rough (inexact). A nonempty boundary
region of a set indicates that our knowledge about the set is not sufficient to
define the set precisely. One can recognize that rough set theory is, in a sense, a
formalization of the idea presented by Gotlob Frege [23].

One of the consequences of perceiving objects using only available information
about them is that for some objects one cannot decide if they belong to a given
set or not. However, one can estimate the degree to which objects belong to sets.
This is another crucial observation in building the foundations for approximate
reasoning. In dealing with imperfect knowledge, one can only characterize satis-
fiability of relations between objects to a degree, not precisely. Among relations
on objects, the rough inclusion relation plays a special role in describing to what
degree objects are parts of other objects. A rough mereological approach (see,
e.g., [52,59,42]) is an extension of the Leśniewski mereology [31] and is based on
the relation to be a part to a degree. It will be interesting to note here that Jan
�Lukasiewicz was the first who started to investigate the inclusion to a degree
of concepts in his discussion on relationships between probability and logical
calculi [35].

The very successful technique for rough set methods has been Boolean rea-
soning [12]. The idea of Boolean reasoning is based on construction for a given
problem P a corresponding Boolean function fP with the following property:
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the solutions for the problem P can be decoded from prime implicants of the
Boolean function fP . It is worth while to mention that to solve real-life prob-
lems, it is necessary to deal with Boolean functions having a large number of
variables.

A successful methodology based on the discernibility of objects and Boolean
reasoning has been developed in rough set theory for computing of many key con-
structs like reducts and their approximations, decision rules, association rules,
discretization of real valued attributes, symbolic value grouping, searching for
new features defined by oblique hyperplanes or higher order surfaces, pattern ex-
traction from data as well as conflict resolution or negotiation [55,38,46]. Most
of the problems involving the computation of these entities are NP-complete
or NP-hard. However, we have been successful in developing efficient heuristics
yielding sub-optimal solutions for these problems. The results of experiments
on many data sets are very promising. They show very good quality solutions
generated by the heuristics in comparison with other methods reported in litera-
ture (e.g., with respect to the classification quality of unseen objects). Moreover,
they are very time-efficient. It is important to note that the methodology makes
it possible to construct heuristics having a very important approximation prop-
erty. Namely, expressions generated by heuristics (i.e., implicants) close to prime
implicants define approximate solutions for the problem (see, e.g., [1]).

The rough set approach offers tools for approximate reasoning in multiagent
systems (MAS). The typical example is the approximation by one agent of con-
cepts of another agent. The approximation of a concept is based on a decision
table representing information about objects perceived by both agents.

The strategies for inducing data models developed so far are often not sat-
isfactory for approximation of compound concepts that occur in the perception
process. Researchers from the different areas have recognized the necessity to
work on new methods for concept approximation (see, e.g., [11,68]). The main
reason for this is that these compound concepts are, in a sense, too far from mea-
surements which makes the searching for relevant features infeasible in a very
huge space. There are several research directions aiming at overcoming this diffi-
culty. One of them is based on the interdisciplinary research where the knowledge
pertaining to perception in psychology or neuroscience is used to help to deal
with compound concepts (see, e.g., [37,22,21]). There is a great effort in neu-
roscience towards understanding the hierarchical structures of neural networks
in living organisms [20,51,37]. Also mathematicians are recognizing problems of
learning as the main problem of the current century [51]. These problems are
closely related to complex system modeling as well. In such systems again the
problem of concept approximation and its role in reasoning about perceptions
is one of the challenges nowadays. One should take into account that modeling
complex phenomena entails the use of local models (captured by local agents,
if one would like to use the multi-agent terminology [34,65,19]) that should be
fused afterwards. This process involves negotiations between agents [34,65,19] to
resolve contradictions and conflicts in local modeling. This kind of modeling is
becoming more and more important in dealing with complex real-life phenomena
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which we are unable to model using traditional analytical approaches. The latter
approaches lead to exact models. However, the necessary assumptions used to
develop them result in solutions that are too far from reality to be accepted.
New methods or even a new science therefore should be developed for such mod-
eling [25].

One of the possible approaches in developing methods for compound concept
approximations can be based on the layered (hierarchical) learning [62,9]. In-
ducing concept approximation should be developed hierarchically starting from
concepts that can be directly approximated using sensor measurements toward
compound target concepts related to perception. This general idea can be re-
alized using additional domain knowledge represented in natural language. For
example, one can use some rules of behavior on the roads, expressed in nat-
ural language, to assess from recordings (made, e.g., by camera and other sen-
sors) of actual traffic situations, if a particular situation is safe or not (see, e.g.,
[39,8,7,17]). Hierarchical learning has been also used for identification of risk
patterns in medical data and extended for therapy planning (see, e.g. [5,4]). An-
other application of hierarchical learning for sunspot classification is reported
in [40]. To deal with such problems, one should develop methods for concept
approximations together with methods aiming at approximation of reasoning
schemes (over such concepts) expressed in natural language. The foundations of
such an approach, creating a core of perception logic, are based on rough set
theory [43,44,45,46,17] and its extension called rough mereology [52,59,42]. Ap-
proximate Boolean reasoning methods can be scaled to the case of compound
concept approximation.

Let us consider more examples.
The prediction of behavioral patterns of a compound object evaluated over

time is usually based on some historical knowledge representation used to store
information about changes in relevant features or parameters. This information
is usually represented as a data set and has to be collected during long-term
observation of a complex dynamic system. For example, in case of road traffic,
we associate the object-vehicle parameters with the readouts of different mea-
suring devices or technical equipment placed inside the vehicle or in the outside
environment (e.g., alongside the road, in a helicopter observing the situation on
the road, in a traffic patrol vehicle). Many monitoring devices serve as informa-
tive sensors such as GPS, laser scanners, thermometers, range finders, digital
cameras, radar, image and sound converters (see, e.g. [66]). Hence, many vehicle
features serve as models of physical sensors. Here are some exemplary sensors:
location, speed, current acceleration or deceleration, visibility, humidity (slip-
periness) of the road. By analogy to this example, many features of compound
objects are often dubbed sensors. In the lecture, we discuss (see also [7]) some
rough set tools for perception modelling that make it possible to recognize be-
havioral patterns of objects and their parts changing over time. More complex
behavior of compound objects or groups of compound objects can be presented
in the form of behavioral graphs. Any behavioral graph can be interpreted as
a behavioral pattern and can be used as a complex classifier for recognition of
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complex behaviours. The complete approach to the perception of behavioral
patterns, that is based on behavioral graphs and the dynamic elimination of
behavioral patterns, is presented in [7]. The tools for dynamic elimination of
behavioral patterns are used for switching-off in the system attention procedures
searching for identification of some behavioral patterns. The developed rough
set tools for perception modeling are used to model networks of classifiers. Such
networks make it possible to recognize behavioral patterns of objects changing
over time. They are constructed using an ontology of concepts provided by ex-
perts that engage in approximate reasoning on concepts embedded in such an
ontology. Experiments on data from a vehicular traffic simulator [3] show that
the developed methods are useful in the identification of behavioral patterns.

The following example concerns human computer-interfaces that allow for a
dialog with experts to transfer to the system their knowledge about structurally
compound objects. For pattern recognition systems [18], e.g., for Optical Char-
acter Recognition (OCR) systems it will be helpful to transfer to the system a
certain knowledge about the expert view on border line cases. The central issue
in such pattern recognition systems is the construction of classifiers within vast
and poorly understood search spaces, which is a very difficult task. Nonetheless,
this process can be greatly enhanced with knowledge about the investigated ob-
jects provided by an human expert. We developed a framework for the transfer
of such knowledge from the expert and for incorporating it into the learning
process of a recognition system using methods based on rough mereology (see,
e.g., [41]). Is is also demonstrated how this knowledge acquisition can be con-
ducted in an interactive manner, with a large dataset of handwritten digits as
an example.

The next two examples are related to approximation of compound concepts
in reinforcement learning and planning.

Intemporaldifferencereinforcementlearning [63,16,36,28,60,47,48,50,49,71,72],
the main task is to learn the approximation of the function Q(s, a), where s, a
denotes a global state of the system and an action performed by an agent ag
and, respectively and the real value of Q(s, a) describes the reward for executing
the action a in the state s. In approximation of the function Q(s, a), probabilis-
tic methods are used. However, for compound real-life problems it may be hard
to build such models for such a compound concept as Q(s, a) [68]. We propose
another approach to the approximation of Q(s, a) based on ontology approxima-
tion. The approach is based on the assumption that in a dialog with experts an
additional knowledge can be acquired making it possible to create a ranking of
values Q(s, a) for different actions a in a given state s. In the explanation given
by expert about possible values of Q(s, a) concepts from a special ontology are
used. Then, using this ontology one can follow hierarchical learning methods
to learn approximations of concepts from ontology. Such concepts can have a
temporal character too. This means that the ranking of actions may depend not
only on the actual action and the state but also on actions performed in the past
and changes caused by these actions.
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In [5,4] a computer tool based on rough sets for supporting automated plan-
ning of the medical treatment (see, e.g., [26,67]) is discussed. In this approach,
a given patient is treated as an investigated complex dynamical system, whilst
diseases of this patient (RDS, PDA, sepsis, Ureaplasma and respiratory failure)
are treated as compound objects changing and interacting over time. As a mea-
sure of planning success (or failure) in experiments, we use a special hierarchical
classifier that can predict the similarity between two plans as a number between
0.0 and 1.0. This classifier has been constructed on the basis of the special on-
tology specified by human experts and data sets. It is important to mention that
besides the ontology, experts provided the exemplary data (values of attributes)
for the purpose of concepts approximation from the ontology. The methods of
construction such classifiers are based on approximate reasoning schemes (AR
schemes, for short) and were described, e.g., in [8,39,8,7]. We applied this method
for approximation of similarity between plans generated in automated planning
and plans proposed be human experts during the realistic clinical treatment.

Further radical changes in the design of intelligent systems depend on the
advancement of technology to acquire, represent, store, process, discover, com-
municate and learn wisdom. We call this technology wisdom technology (or wis-
tech, for short) [27]. The term wisdom commonly means “judging rightly”. This
common notion can be refined. By wisdom, we understand an adaptive ability
to make judgements correctly to a satisfactory degree (in particular, correct
decisions) having in mind real-life constraints.

One of the basic objectives is to indicate the methods for potential directions
for the design and implementation of wistech computation models. An important
aspect of wistech is that the complexity and uncertainty of real-life constraints
mean that in practise we must reconcile ourselves to the fact that our judgements
are based on non-crisp concepts and which do not take into account all the
knowledge accumulated and available to us. This is also why consequences of our
judgements are usually imperfect. But as a consolation, we also learn to improve
the quality of our judgements via observation and analysis of our experience
during interaction with the environment. Satisfactory decision-making levels can
be achieved as a result of improved judgements.

The intuitive nature of wisdom understood in this way can be expressed
metaphorically as shown in wisdom equation (1)

wisdom = KSN + AJ + IP, (1)

where KSN, AJ, IP denote knowledge sources network, adaptive judgement, and
interactive processes, respectively. The combination of the technologies repre-
sented in (1) offers an intuitive starting point for a variety of approaches to
designing and implementing computational models for wistech. We focus in the
research on an adaptive RGC approach.

The issues we discuss on wistech are relevant for the other reported current
research directions (see, e.g., [14,13,21,22,30,54,64] and the literature cited in
these articles).

Wistech can be perceived as the integration of three technologies (correspond-
ing to three components in the wisdom equation (1)). At the current stage the
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following two of them seem to be conceptually relatively clear: (i) knowledge
sources network – by knowledge we traditionally understand every organized set
of information along with the inference rules; (ii) interactive processes – interac-
tion is understood here as a sequence of stimuli and reactions over time. Far more
difficult conceptually seems to be the concept of (iii) adaptive judgement distin-
guishing wisdom from the general concept of problem solving. Adaptive judge-
ment is understood here as mechanisms in a metalanguage (meta-reasoning)
which on the basis of selection of available sources of knowledge and on the basis
of understanding of history of interactive processes and their current status are
enable to perform the following activities under real life constraints: (i) iden-
tification and judgement of importance (for future judgement) of phenomena
available for observation in the surrounding environment; (ii) planning current
priorities for actions to be taken (in particular, on the basis of understanding
of history of interactive processes and their current status) toward making op-
timal judgements; (iii) selection of fragments of ordered knowledge (hierarchies
of information and judgement strategies) satisfactory for making decision at the
planned time (a decision here is understood as a commencing interaction with
the environment or as selecting the future course to make judgements); (iv)
prediction of important consequences of the planned interaction of processes;
(v) learning and, in particular, reaching conclusions from experience leading to
adaptive improvement in the adaptive judgement process.

One of the main barriers hindering an acceleration in the development of wis-
tech applications lies in developing satisfactory computation models implement-
ing the functioning of “adaptive judgement”. This difficulty primarily consists
of overcoming the complexity of the process of integrating the local assimilation
and processing of changing non-crisp and incomplete concepts necessary to make
correct judgements. In other words, we are only able to model tested phenom-
ena using local (subjective) models and interactions between them. In practical
applications, usually, we are not able to give global models of analyzed phe-
nomena (give quotes from MAS and complex adaptive systems (CAS); see, e.g.,
[65,32,33,19,15]). However, we one can approximate global models by integrating
the various incomplete perspectives of problem perception. One of the potential
computation models for “adaptive judgement” might be the RGC approach.

The research on the foundations on wistech is based on a continuation of
approaches to computational models of approximate reasoning developed by
Rasiowa (see [53]), Pawlak (see [43]) and their students. In some sense, it is
a continuation of ideas initiated by Leibniz, Boole and currently continued in
a variety of forms. Of course, the Rasiowa - Pawlak school is also some kind
continuation of the Polish School of Mathematics and Logics which led to the
development of the modern understanding of the basic computational aspects of
logic, epistemology, ontology, foundations of mathematics and natural deduction.
The two fundamental tools of the Rasiowa - Pawlak school are the following: (i)
Computation models of logical concept (especially such concepts as deduction or
algebraic many-valued models for classical, modal, and constructive mathemat-
ics) - based on the method of treating the sets of logically equivalent statements
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(or formulas) as abstract algebras known as Lindebaum - Tarski algebras; (ii)
Computation models of vague concept- originally �Lukasiewicz has proposed to
treat uncertainty (or vague concepts) as concepts of many valued logic. The
rough set concept, due to Pawlak [43], developed in the Rasiowa-Pawlak school
is based on classical two valued logic. The rough set approach has been devel-
oped to deal with uncertainty and vagueness. The approach makes it possible
to reason precisely about approximations of vague concepts. These approxima-
tions are temporary, subjective, and are adaptively changing with changes in
environments [6,57,60].

Solving complex problems by multi-agent systems requires new approximate
reasoning methods based on new computing paradigms. One such recently
emerging computing paradigm is RGC. Computations in RGC are performed on
information granules representing often vague, partially specified, and compound
concepts delivered by agents engaged in tasks such as knowledge representation,
communication with other agents, and reasoning.

One of the RGC challenges is to develop approximate reasoning techniques for
reasoning about dynamics of distributed systems of judges, i.e., agents judging
rightly. These techniques should be based on systems of evolving local perception
logics rather than on a global logic [56,58]. The approximate reasoning about
global behavior of judge’s system is infeasible without methods for approxima-
tion of compound vague concepts and approximate reasoning about them. One
can observe here an analogy to phenomena related to the emergent patters in
complex adaptive systems [15]. Let us observe that judges can be organized into
a hierarchical structure, i.e., one judge can represent a coalition of judges in
interaction with other agents existing in the environment [2,29,32]. Such judges
representing coalitions play an important role in hierarchical reasoning about
behavior of judges populations. Strategies for coalition formation and cooper-
ation [2,32,33] are of critical importance in designing systems of judges with
dynamics satisfying to a satisfactory degree the given specification. Developing
strategies for discovery of information granules representing relevant coalitions
and cooperation protocols is another challenge for RGC.

All these problems can be treated as problems of searching for information
granules satisfying vague requirements. The strategies for construction of infor-
mation granules should be adaptive. It means that the adaptive strategies should
make it possible to construct information granules satisfying constraints under
dynamically changing environment. This requires reconstruction or tuning of al-
ready constructed information granules which are used as components of data
models, e.g., classifiers. In the adaptive process, the construction of information
granules generalizing some constructed so far information granules plays a special
role. The mechanism for relevant generalization here is crucial. One can imagine
for this task many different strategies, e.g., based on adaptive feedback control
for tuning the generalization. Cooperation with specialists from different areas
such as neuroscience (see, e.g., [37] for visual objects recognition), psychology
(see, e.g., [51] for discovery of mechanisms for hierarchical perception), biology
(see, e.g., [10] for cooperation based on swarm intelligence), adaptive learning



Toward Rough-Granular Computing 9

based on ethology and approximation spaces [48,50] or social science (see, e.g.,
[32] for modeling of agents behavior) can help to discover such adaptive strategies
for extracting sub-optimal (relative to the minimal length principle) data models
satisfying soft constraints. This research may also help us to develop strategies
for discovery of ontologies relevant for compound concept approximation.

In the current projects, we are developing rough set based methods in com-
bination with other soft computing and statistical methods for RGC on which
wistech can be based. The developed methods are used to construct wisdom
engines. By wisdom engine we understand a system which implements the con-
cept of wisdom. We plan to design specific systems for some tasks such as (1)
Intelligent Document Manager; (2) Job Market Search; (3) Brand Monitoring;
(4) Decision Support for global management systems (e.g., World Forex, Stock
Market, World Tourist); (5) Intelligent Assistant (e.g., Physician, Lawyer); (6)
Discovery of Processes from Data (e.g., Gene Expression Networks); (7) Rescue
System (for more details see [27,19]).
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In Dunin-Kȩplicz et al. [19], pages 191–202.

9. S. Behnke. Hierarchical Neural Networks for Image Interpretation, volume 2766 of
LNCS. Springer, Heidelberg, 2003.



10 A. Jankowski and A. Skowron

10. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence. From Natural to
Artificial Systems. Oxford University Press, Oxford, UK, 1999.

11. L. Breiman. Statistical modeling: The two cultures. Statistical Science, 16(3):199–
231, 2001.

12. F. Brown. Boolean Reasoning. Kluwer Academic Publishers, Dordrecht, 1990.
13. N. L. Cassimatis. A cognitive substrate for achievinbg human-level intelligence.

AI Magazine, 27:45–56, 2006.
14. N. L. Cassimatis, E. T. Mueller, and P. H. Winston. Achieving human-level intel-

ligence through integrated systems and research. AI Magazine, 27:12–14, 2006.
15. A. Desai. Adaptive complex enterprices. Comm. ACM, 48:32–35, 2005.
16. T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value func-

tion decomposition. Artificial Intelligence, 13(5):227–303, 2000.
17. P. Doherty, W. �Lukaszewicz, A. Skowron, and A. Sza�las. Knowledge Representation

Techniques : A Rough Set Approach, volume 202 of Studies in Fuzziness and Soft
Computing. Springer, Heidelberg, Germany, 2006.

18. R. Duda, P. Hart, and R. Stork. Pattern Classification. John Wiley & Sons, New
York, NY, 2002.
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models, In: B.D.-Kepliçz, A. Jankowski, A. Skowron, M. Szczuka (Eds.), Moni-
toring, Security and Rescue Techniques in Multiagent Systems, Advances in Soft
Computing, pages 13–30, Physica-Verlag, Heidelberg, 2004.

48. J. F. Peters. Rough ethology: Towards a biologically-inspired study of collective
behaviour in intelligent systems with approximation spaces. Transactions on Rough
Sets III: LNCS Journal Subline, Springer, Heidleberg, LNCS 3400:153–174, 2005.

49. J.F. Peters, C. Henry, S. Ramanna. Rough ethograms: A study of intelligent sys-
tem behavior. In: Mieczyslaw A. K�lopotek, S�lawomir Wierzchoń, Krzystof Tro-
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Abstract. Although the approaches are fundamentally different, the
derivation of decision rules from information systems in the form of ta-
bles can be compared to supervised classification in pattern recognition;
in the latter case classification rules should be derived from the classes
of given points in a feature space. We also notice that methods of unsu-
pervised classification (in other words, data clustering) in pattern recog-
nition are closely related to supervised classification techniques. This
observation leads us to the discussion of clustering for information sys-
tems by investigating relations between the two methods in the pattern
classification. We thus discuss a number of methods of data clustering of
information tables without decision attributes on the basis of rough set
approach in this paper. Current clustering algorithms using rough sets as
well as new algorithms motivated from pattern classification techniques
are considered. Agglomerative clustering are generalized into a method of
poset-valued clustering for discussing structures of information systems
using new notations in relational databases. On the other hand K-means
algorithms are developed using the kernel function approach. Illustrative
examples are given.

Keywords: Information system; agglomerative clustering; K-means al-
gorithms; kernel function.

1 Introduction

Although rough sets [20,21,22] have been studied as a new methodology to in-
vestigate uncertainties with applications to classification rules for information
systems, there is an important feature that is left unnoticed by many researchers,
that is, clustering of information systems and related techniques. To understand
a motivation for this subject, consider methods [4] of pattern classification for
the moment, where many algorithms of automatic classification have been de-
veloped. Although many methods therein are for supervised classification, there
is another class of unsupervised classification that is also called clustering. We
moreover observe a loose coupling between a method of supervised classification
and an algorithm of clustering. For example, the nearest neighbor classification
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is related to the single link clustering [5] and a nearest prototype classification
can be associated with the K-means clustering [1,4].

A problem in rough set studies is thus to investigate whether and/or how
methods in pattern clustering can be applied to unsupervised classification in
rough sets or information systems, or to obtain new algorithms in rough sets by
observing features in methods of pattern classification.

In this paper we will see a number of existing and new methods of clustering
for information systems. Agglomerative clustering are generalized into a method
of poset-valued clustering for discussing structures of information systems. More-
over different K-means algorithms are developed; one of them uses the kernel
function approach in support vector machines [25,26,3].

2 Existing Studies of Clustering in Rough Sets

We assume the set of objects for clustering is denoted by X = {x1, . . . , xn} and
a generic object in X is also denoted by x ∈ X .

We notice two types of foregoing studies of clustering in the presence of rough
sets, that is, a series of studies in rough K-means [8] and rough K-medoids [23],
and algorithms for rough clustering [6].

To describe the methods below, we first show a generalized K-means algorithm
in which the distance between two objects is denoted by d(x, y).

GKM: A generalized algorithm of K-means clustering.
GKM1. Give initial cluster centers v1, . . . , vK . Let the cluster represented by

vi be Gi or G(vi).
GKM2 (nearest prototype classification). Reallocate each object x to the

nearest center vi:
i = arg min

1≤j≤K
d(x, vj).

GKM3. After all objects are reallocated, update the cluster center:

vi = arg min
v

∑

xk∈Gi

d(xk, v). (1)

GKM4. Check the convergence criterion. If not convergent, go to GKM2.
End of GKM.

The criterion for the convergence is omitted here. They are given in standard
literature [1,9,12].

Notice that in the case of the Eulidean distance d(x, y) = ‖x−y‖2, equation (1)
is reduced to the centroid

vi =
1

|Gi|
∑

xk∈Gi

xk, (2)

where |Gi| is the number of elements in Gi.
The method of rough K-means [8] is an adaptation of the ordinary K-means

to rough approximations. It has the next two features:
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1. The upper bound and the lower bound of a cluster represented by a center
are defined using a threshold : if v is the nearest center to object x and if
there is another center v′ such that d(x, v′) − d(x, v) ≤ threshold then x
belong to the upper approximations of the two clusters represented by v and
v′ (i.e. x ∈ G(v) and x ∈ G(v′)); if there is no such v′, then x belongs to the
lower approximation of v (i.e., x ∈ G(v)).

2. The calculation of v takes two weight parameters wlower and wupper for the
objects in the lower and upper approximations.

The rough medoids [23] is another adaptation of the ordinary K-medoids al-
gorithm [7] to rough sets. Note that a K-medoids technique is similar to the
K-means in the sense that the nearest prototype classification in GKM2 is
used, but instead of the centroid (2), an object x̂i represents a cluster Gi, i.e.,

x̂i = arg min
x∈X

∑

x′∈Gi

d(x′, x). (3)

An advantage of the K-medoids is that the representative object summarizes
information for the cluster and hence useful in many applications; on the other
hand a drawback is that computation of the medoids is much more complex than
the K-means. Notice also that the Euclidean distance is assumed in the rough
K-means.

The method of rough medoids [23] is thus the combination of the idea of
the K-medoids and the rough K-means. It uses the nearest medoid alloca-
tion with the threshold that determines the upper approximation G(x̂) and
the lower approximation G(x̂), and moreover the weights wlower and wupper
are introduced. We omit the details of the algorithm [23], as the idea is now
clear.

The rough clustering [19,6] begins with a number of initial equivalence re-
lations Ri (1 ≤ i ≤ n) that consists of two classes Pi and X − Pi where Pi

consists of those objects of which the distance to xi is less than a given thresh-

old. The intersection
n⋂

i=1

Ri of the initial relations defines initial clusters and

then a merging procedure to coarser classes starts using a indiscernibility degree
γ(x, x′) defined between an arbitrary pair of objects of which the definition is
omitted here (see [6]). Then a new class P ′

i is defined: P ′
i consists of those objects

of which the indiscernibility degree to xi is above a given threshold. This method
is different from K-means or K-medoids; it is more similar to, but still different
from, agglomerative hierarchical clustering. A drawback is that the computation
is more complicated than K-means and K-medoids.

The above two types of the algorithms have been applied to a set of objects in
a Euclidean space, and do not assume the information system, while the methods
below are designed for analyzing an information table in which a value may be
numerical or non-numerical.
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3 A Method of Poset-Valued Clustering

A generalization of agglomerative hierarchical clustering that is adapted to infor-
mation systems has been proposed by the author [17]. In this paper we describe
this method with an extension and new notations. We begin with a notation in
relational databases [24], as an information system can be regarded as a relation.

Let A = {a1, a2, . . . , am} be a relational schema in which a1, a2, . . . , am are
attributes. For each attribute ai, we have the corresponding domain Di. An
information system or in other words, information table T is a finite subset of
the product D1 × · · · × Dm, or in other words, T is a relation [24]. An element
t ∈ T is called a tuple using the term in relational database. Let us assume

T = {t1, . . . , tn}

and an attribute value of t with respect to ai is denoted by t(ai). Thus,

t = (t(a1), . . . , t(am)).

3.1 A Generalization of Agglomerative Clustering

Let us briefly review a generalization of hierarchical classification that the author
has proposed [17]. Note that a family of clusters G = {G1, . . . , GK} is a partition
of X :

K⋃

i=1

Gi = X, Gi ∩ Gj = ∅ (i �= j).

Assume that an inter-cluster distance is denoted by d(Gi, Gj). Furthermore, we
consider a family of clusters that depends on a parameter α,

G(α) = {G1(α), . . . , GK(α)}.

Accordingly the inter-cluster distance is d(Gi(α), Gj(α)).
A general procedure of agglomerative clustering is as follows.

1. Let the initial clusters be individual objects. Define inter-cluster distances as
the distance between the corresponding objects. Let the number of clusters
be K = n.

2. Merge two clusters of the minimum distance. Reduce the number of clusters
by 1: K ← K − 1. The minimum value is stored as the level of the merge
mK .

3. If K = 1, stop, else update the distances between the merged cluster and
other clusters. Go to step 2.

There are different ways to update the distances in step 3, and accordingly
we have various methods of agglomerative clustering such as the single link, the
complete link, etc. [5], which we omit here. We notice, however, that the level
mK is monotone increasing for most well-known methods except the centroid
method [11]:

mn−1 ≤ mn−2 ≤ · · · ≤ m2 ≤ m1.

Assume α = mK . Then the next property is valid.
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Proposition 1. For every α ≤ α′ and for each Gi(α′) ∈ G(α′) there exists
Gj(α) ∈ G(α) such that Gj(α) ⊆ Gi(α′).

The proof is easy and omitted. The above property states that the parameter-
dependent clusters forms a hierarchical classification. More generally we define
a poset-valued hierarchical cluster as follows.

Definition 1. Let P is a poset [10] of which the preorder is defined by 
. We say
G(α) = {G1(α), . . . , GK(α)} (α ∈ P ) is a poset-valued hierarchical classification
if for every α 
 α′ and for each Gi(α′) ∈ G(α′) there exists Gj(α) ∈ G(α) such
that

Gj(α) ⊆ Gi(α′).

We write G(α) � G(α′) if this property holds.
Moreover if the poset has the structure of a lattice [2,10], we say G(α) is a

lattice-valued hierarchical classification.

Such a poset-valued classification is closely related to information systems. Let
us return to the consideration of the information table.

For a given subset A = (ai1 , . . . , air ) of the attribute set A, define

t(A) = (t(ai1 ), . . . , t(air )).

For a given set T (⊂ T ) of tuples, we define

T (A) = { t(A) : t ∈ T }.

We hence have
t ∈ T ⇒ t(A) ∈ T (A),

while the converse ⇐ is not true in general.
For a given subset A(⊆ A) of attributes, we define a relation RA:

tRAt′ ⇐⇒ t(A) = t′(A).

It is easy to see that RA is an equivalence relation.
Note that A is a lattice in which the natural inclusion of subsets is the pre-

ordering of the poset and the union and the intersection are respectively sup and
inf operation of the lattice [2,10]: sup(A, A′) = A ∪ A′ and inf(A, A′) = A ∩ A′.

We have the quotient set, in other words, a classification

G(A) = T /RA = { [t]RA : t ∈ T } (4)

where
[t]RA = {t′ ∈ T : tRAt′} = {t′ ∈ T : t(A) = t′(A)}.

We have the next proposition.

Proposition 2. The above defined equivalence relation RA generates a hierar-
chical classification. That is, for every pair of subsets B ⊇ A, we have G(B) �
G(A).
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Table 1. An example of an information table

T D E F

t1 a1 b1 c1

t2 a1 b1 c2

t3 a1 b2 c1

t4 a1 b2 c2

t5 a2 b1 c1

t6 a2 b1 c2

t7 a2 b2 c1

}{ 7654321 ttttttt

},...,{ 71 tt

DEF

},,,{ 7654321 ttttttt

DE

},{ 7654321 ttttttt

D

},{ 7436521 ttttttt

E

},{ 6427531 ttttttt

F

},,,{ 6754231 ttttttt

DF

},,,{ 4736251 ttttttt

EF

Fig. 1. An example of the lattice-valued clustering

Let us consider a simple example.

Example 1. Consider seven tuples shown in Table 1 with the schema A =
(D, E, F ). Here these three letters are attributes. The lattice is Λ = 2A =
{∅, D, E, F, DE, DF, FE, DEF} where the abbreviated symbol DE implies
{D, E}, and so on. We have

G(DEF ) = T /RDEF = {t1, . . . , t7},

G(DE) = T /RDE = {t1t2, t3t4, t5t6, t7}

etc. where titj is an abbreviated symbol for {ti, tj}.
Figure 1 shows the Hasse diagram of Λ = 2A together with the partitions

attached to each element of the lattice.
Proposition 2 and Example 1 show a relation between the generalized hier-

archical clustering and an information system. A cluster in a lattice diagram
shows a class of indistinguishable objects (tuples) given the corresponding sub-
set of attributes. Although the diagram with the clusters are without a decision
attribute, we can extend the diagram to the case of a decision table.
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Example 2. Consider the same information table except that a decision attribute
d is added. The lattice-valued clusters are shown in Fig. 2 in which the underline
shows those objects with the positive mark. We easily observe the exact decision
rule: [D = a1 ⇒ d = 1].

Table 2. An information table with the decision attribute d

T D E F d

t1 a1 b1 c1 1
t2 a1 b1 c2 1
t3 a1 b2 c1 1
t4 a1 b2 c2 1
t5 a2 b1 c1 0
t6 a2 b1 c2 0
t7 a2 b2 c1 0

}{ 7654321 ttttttt

},...,{ 71 tt

DEF

},,,{ 7654321 ttttttt

DE

},{ 7654321 ttttttt

D

},{ 7436521 ttttttt

E

},{ 6427531 ttttttt

F

},,,{ 6754231 ttttttt

DF

},,,{ 4736251 ttttttt

EF

Fig. 2. Lattice-valued clustering with underlines to the positive class

In real applications, a Hasse diagram is huge and a figure like Figures 1 and 2
cannot be written. In such cases, a part of the Hasse diagram should be observed
of which the detail are given in [17].

3.2 Distance and the Poset-Valued Clustering

As most clustering algorithms are based on a distance or similarity measure be-
tween two objects, we introduce a distance into attribute values in an information
table. We assume a distance measure di(x, y) for x, y ∈ Di, and accordingly the
distance between two objects as tuples is defined for a given B ∈ A:

d(t, t′; B) =
∑

Ai∈B

di(t(Ai), t′(Ai)). (5)
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A simple method based on a distance is to use connected components gener-
ated from the network of the vertices T and with the weight d(t, t′; B) on the
edge {t, t′}, and the threshold ε > 0, which is defined as follows.

1. Consider first the complete graph whose vertices are all tuples of T . Put the
value d(t, t′; B) on the edge {t, t′}.

2. Delete all those edges {t, t′} which satisfy d(t, t′; B) > ε .
3. Let the obtained connected components be Gε

1(B), . . . , Gε
K(B) of which the

set of vertices are V (Gε
1(B)), . . . , V (Gε

K(B)), respectively.

We define the equivalence relation:

tRε
Bt′ ⇐⇒ t, t′ ∈ V (Gε

j).

It is obvious that equivalence classes are generated from this definition [11], in
other words, we are considering

G(B) = {V (Gε
1(B)), . . . , V (Gε

K(B))}.

We have the following properties of which the proofs are omitted here [17].

Proposition 3. The equivalence relation Rε
B generates a hierarchical classifi-

cation. That is, we have

B ⊇ A ⇒ G(B) � G(A).

Proposition 4
Let

di(t(ai), t′(ai)) =

{
0 (t(ai) = t′(ai)),
1 (t(ai) �= t′(ai)).

(6)

and assume 0 < ε < 1. Then the generated hierarchical classification is the same
as (4).

4 K-Means Algorithms for Information Systems

The method in the last section is comparable to the rough clustering in that a
cluster center is not used therein, while we consider a family of K-means type
methods for an information system as a table.

The basic algorithm GKM of K-means works with adequate modifications.
Note first that the K-medoids algorithm can be used without a modification,
since equation (3) is applicable for any distance.

We proceed to consider K-means algorithm. Since a distance is not Euclidean
in general, the centroid solution (2) cannot be used for (1). We assume that the
values t(a) are non-numerical, i.e., Di consists of finite symbols. We have two
methods for a general distance d(x, y). First is a K-mode calculation instead of
the K-means; the second is the use of a kernel function [25].



Data Clustering Algorithms for Information Systems 21

4.1 K-Mode Algorithm

Assume that the distance is given by (6). Then the idea of the K-means is
reduced to a K-mode algorithm. Let #(z, B) be the number of the symbol z in
B, in other words,

#(z, B) = |{x ∈
n⋃

i=1

Di : x = z} ∩ B|,

where |A| is the number of elements in A. We moreover put

md(B; Di) = max
z∈Di

#(z, B).

We have the next proposition of which the proof is easy and omitted.

Proposition 5 Let us apply the algorithm GKM to the information table where
the distance is defined by (6). Then vi = (v1

i , . . . , vm
i ) in GKM3 is given by

vj
i = md(Gi, Dj).

4.2 Kernel-Based Algorithm

A reason why the Euclidean space is useful is that it is an inner product space.
Although the distance d(x, y) for tuples is not a Euclidean distance, there is a
way to define an inner product space by using kernel functions [25], in other
words, an implicit mapping x �→ Φ(x) into a high-dimensional feature space
which has the inner product represented by a kernel

K(x, y) = 〈Φ(x), Φ(y)〉.

There are many studies on the use of kernel functions for data analysis [3,25,26].
Note that the mapping Φ(x) itself is unknown but the form of the kernel K(x, y)
is assumed to be given.

We consider if the method of a kernel function can be used for the information
table with non-numerical values.

To this end we define a distance-preserving embedding of the attribute values
into a Euclidean space. Assume Di = {z1

i , . . . , zq
i } and note that the distance is

given by di(z, z′) for z, z′ ∈ Di.

Definition 2. We say the space (Di, di) has an exact Euclidean embedding if
there exists a Euclidean space RL and a mapping Ψ : Di → RL such that

‖Ψ(z) − Ψ(z′)‖ = di(z, z′)

for all z, z′ ∈ Di.

Di with the distance (6) has an exact Euclidean embedding with L = q. To see
this, let

Ψ(z1
i ) =

1√
2
(1, 0, . . . , 0), Ψ(z2

i ) =
1√
2
(0, 1, 0, . . . , 0), · · ·
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When the space (Di, di) (1 ≤ i ≤ n) has an exact Euclidean embedding, then
the kernel-based methods are applicable. To see this, note first that

K(x, y) = exp(−λ‖x − y‖β)

is a kernel for λ > 0 and 0 ≤ β ≤ 2 and that if Ki(x, y) (1 ≤ i ≤ n) is a kernel,

then K(x, y) =
n∏

i=1

Ki(x, y) is also a kernel [25].

If (Di, di) (1 ≤ i ≤ n) has an exact Euclidean embedding, we can assume that
all z ∈ Di are on a Euclidean space, and hence Ki(z, z′) = exp(−λdi(z, z′)β) is
a kernel. Hence

K(t, t′) =
n∏

i=1

Ki(x, y) = exp(−λ

n∑

i=1

di(z, z′)β) (7)

is a kernel function.
When a kernel function (7) is used for the K-means, we have the following

algorithm [14].

Algorithm KKM: Kernel-based K-means clustering.
KKM1. Choose K different objects y1, . . . , yK ∈ Di randomly. Let the initial

cluster centers be v1 = y1, . . . , vK = yK and

d(xk, vi) = K(xk, xk) + K(vi, vi) − 2K(xk, vi).

KKM2. Reallocate each object x to the nearest center vi:

i = arg min
1≤j≤K

d(x, vj).

KKM3. Update the distance:

d(xk, vi) = K(xk, xk) − 2
|Gi|

∑

y∈Gi

K(xk, y) +
1

|Gi|2
∑

y,y′∈Gi

K(y, y′).

for all xk and vi.
KKM4. Check the convergence criterion. If not convergent, go to KKM2.
End of KKM.

Kernel-based fuzzy c-means clustering algorithms can moreover be derived with-
out difficulty. We omit the detail (see [13,15]).

5 Conclusion

We have overviewed current methods of clustering related to rough sets and
proposed new clustering algorithms to analyze information systems in the form
of a table. The fundamental idea is how the basic methods of agglomerative
clustering and the K-means algorithms are adapted to the information systems.
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We thus have the poset-valued clustering, the K-mode clustering, and kernel-
based algorithms. The last approach of the kernel function is especially interest-
ing in the sense that it connects three different areas of rough sets, clustering,
and support vector machines.

These methods are basic and there are many problems to be studied. For
example the method of lattice-valued clustering requires simplification of an
output display; we should check if the condition of the exact embedding property
is satisfied before a kernel-based method of K-means is used. We thus have many
rooms for further consideration and development.

Applications to a variety of real problems should also be studied. A promising
application area is a model of document retrieval, where the present approach
is applicable [16,18].
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Abstract. Data mining often is a compute intensive and time requiring
process. For this reason, several data mining systems have been imple-
mented on parallel computing platforms to achieve high performance in
the analysis of large data sets. Moreover, when large data repositories are
coupled with geographical distribution of data, users and systems, more
sophisticated technologies are needed to implement high-performance
distributed KDD systems. Recently computational Grids emerged as
privileged platforms for distributed computing and a growing number
of Grid-based KDD systems have been designed. In this paper we first
outline different ways to exploit parallelism in the main data mining
techniques and algorithms, then we discuss Grid-based KDD systems.

Keywords: Rough Set, Parallel Data Mining, Distributed Data Mining,
Grid.

1 Introduction

In our daily activities we often deal with flows of data much larger than we
can understand and use. Thus we need a way to sift those data for extracting
what is interesting and relevant for our activities. Knowledge discovery in large
data repositories can find what is interesting in them representing it in an un-
derstandable way. Data mining is the automated analysis of large volumes of
data looking for relationships and knowledge that are implicit in data and are
interesting in the sense of impacting an organization’s practice.

Mining large data sets requires powerful computational resources. A major
issue in data mining is scalability with respect to the very large size of current-
generation and next-generation databases, given the excessively long processing
time taken by (sequential) data mining algorithms on realistic volumes of data.
In fact, data mining algorithms working on very large data sets take a very long
time on conventional computers to get results. It is not uncommon to have se-
quential data mining applications that require several days or weeks to complete
their task. To mention just two examples, [1] estimates that C4.5 with rule prun-
ing would take 79 years on a 150-MHz processor in order to mine a database
with 500, 000 tuples. [2] reports that a sequential version of the RL algorithm is
impractical (i.e. takes too long to run) on databases of more than 70, 000 tuples.

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 25–36, 2007.
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A first approach to reduce response time is sampling, that is the reduction
of the original data set in a ”less large data set” composed only of a portion of
data considered representative of he whole data set. Nevertheless, in some cases
reducing data might result in inaccurate models, in some other cases it is not
useful (e.g., outliers identification). For such reasons, sampling techniques can
not be considered an effective way to tackle a long computation time.

A second approach is the parallel computing, that is the choice to process
and analyze data sets by parallel algorithms. Under a data mining perspective,
such a field is known as Parallel Data Mining. High performance computers
and parallel data mining algorithms can offer a very efficient way to mine very
large data sets [3], [4] by analyzing them in parallel. Parallel computing systems
can bring significant benefits in the implementation of data mining and knowl-
edge discovery applications by means of the exploitation of inherent parallelism
of data mining algorithms. Benefits consist in both performance improvement
and in quality of data selection. When data mining tools are implemented on
high-performance parallel computers, they can analyze massive databases in a
reasonable time. Faster processing also means that users can experiment with
more models to understand complex data.

Beyond the development of knowledge discovery systems based on parallel
computing platforms to achieve high performance in the analysis of large data
sets stored in a single site, a lot of work has been devoted to design systems able
to handle and analyze multi-site data repositories. Data mining in large settings
like virtual organization networks, the Internet, corporate intranets, sensor net-
works, and the emerging world of ubiquitous computing questions the suitability
of centralized architectures for large-scale knowledge discovery in a networked
environment. Under this perspective, the field of Distributed Data Mining of-
fers an alternative approach. It works by analyzing data in a distributed fashion
and pays particular attention to the trade-off between centralized collection and
distributed analysis of data. Knowledge discovery is speeded up by executing in
a distributed way a number of data mining processes on different data subsets
and then combining the results through meta-learning. This technology is par-
ticularly suitable for applications that typically deal with very large amount of
data (e.g., transaction data, scientific simulation and telecommunication data),
which cannot be analyzed in a single site on traditional machines in acceptable
times. Moreover, parallel data mining algorithms can be a component of dis-
tributed data mining applications, that can exploit both parallelism and data
distribution.

Grid technology integrates both distributed and parallel computing, thus it
represents a critical infrastructure for high-performance distributed knowledge
discovery. Grid computing is receiving an increasing attention both from the
research community and from industry and governments, watching at this new
computing infrastructure as a key technology for solving complex problems and
implementing distributed high-performance applications [5]. The term Grid de-
fines a global distributed computing platform through which - like in a power
grid - users gain ubiquitous access to a range of services, computing and data
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resources. The driving Grid applications are traditional high-performance appli-
cations, such as high-energy particle physics, and astronomy and environmental
modeling, in which experimental devices create large quantities of data that re-
quire scientific analysis. Grid computing differs from conventional distributed
computing because it focuses on large-scale resource sharing, offers innovative
applications, and, in some cases, it is geared toward high-performance systems.
Although originally intended for advanced science and engineering applications,
Grid computing has emerged as a paradigm for coordinated resource sharing
and problem solving in dynamic, multi-institutional virtual organizations in in-
dustry and business. For these reasons, Grids can offer an effective support to
the implementation and use of knowledge discovery systems.

The rest of the paper is organized as follows. Section 2 introduces Parallel and
Distributed data mining, and shows by a trivial example how parallel strategies
can be applied in data mining techniques based on rough set theory. Section 3
analyzes the Grid-based data mining approach. Section 4 introduces the Knowl-
edge Grid, a reference software architecture for geographically distributed PDKD
systems. The Section 5 gives concluding remarks.

2 Parallel and Distributed Data Mining

In this section Parallel Data Mining and Distributed Data Mining approaches
are discussed.

2.1 Parallel Data Mining

Parallel Data Mining is the field concerning the study and application of data
mining analysis by parallel algorithms. The key idea underlying such a field is
that parallel computing can give significant benefits in the implementation of
data mining and knowledge discovery applications, by means of the exploita-
tion of inherent parallelism of data mining algorithms. Main goals of the use
of parallel computing technologies in the data mining field are: (i) performance
improvements of existing techniques, (ii) implementation of new (parallel) tech-
niques and algorithms, and (iii) concurrent analysis using different data mining
techniques in parallel and result integration to get a better model (i.e., more
accurate results).

As observed in [6], three main strategies can be identified in the exploitation of
parallelism in data mining algorithms: Independent Parallelism, Task Parallelism
and Single Program Multiple Data (SPMD) Parallelism. A brief description of
the underlying idea of such strategies follows.

Independent Parallelism. It is exploited when processes are executed in par-
allel in an independent way. Generally, each process has access to the whole data
set and does not communicate or synchronize with other processes. Such a strat-
egy, for example, is applied when p different instances of the same algorithm are
executed on the whole data set, but each one with a different setting of input
parameters. In this way, the computation finds out p different models, each one
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determined by a different setting of input parameters. A validation step should
learn which one of the p predictive models is the most reliable for the topic un-
der investigation. This strategy often requires commutations among the parallel
activities.

Task Parallelism. In some scientific communities it is known also as Control
Parallelism. It supposes that each process executes different operations on (a
different partition of) the data set. The application of such a strategy in deci-
sion tree learning, for example, leads to have p different processes running, each
one associated to a particular subtree of the decision tree to be built. The search
goes parallely on in each subtree and, as soon as all the p processes finish their
executions, the whole final decision tree is composed by joining the various sub-
trees obtained by the processes.

SPMD Parallelism. It is exploited when a set of processes execute in parallel
the same algorithm on different partitions of a data set, and processes cooperate
to exchange partial results. According to this strategy, the dataset is initially
partitioned in p parts, if p is the apriori-fixed parallelism degree (i.e., the num-
ber of processes running in parallel). Then, the p processes search in parallel
a predictive model for the subset associated to it. Finally, the global result is
obtained by exchanging all the local models information.

These three strategies for parallelizing data mining algorithms are not neces-
sarily alternative. In fact, they can be combined to improve both performance
and accuracy of results. For completeness, we say also that in combination with
strategies for parallelization, different data partition strategies may be used :
(i) sequential partitioning (separate partitions are defined without overlapping
among them), (ii) cover-based partitioning (some data can be replicated on dif-
ferent partitions) and (iii) range-based query partitioning (partitions are defined
on the basis of some queries that select data according to attribute values).

Now, we have to notice that architectural issues are a fundamental aspect
for the goodness of a parallel data mining algorithm. In fact, interconnection
topology of processors, communication strategies, memory usage, I/O impact
on algorithm performance, load balancing of the processors are strongly related
to the efficiency and effectiveness of the parallel algorithm. For lack of space,
we can just cite those. The mentioned issues (and others) must be taken into
account in the parallel implementation of data mining techniques. The archi-
tectural issues are strongly related to the parallelization strategies and there is
a mutual influence between knowledge extraction strategies and architectural
features. For instance, increasing the parallelism degree in some cases corre-
sponds to an increment of the communication overhead among the processors.
However, communication costs can be also balanced by the improved knowledge
that a data mining algorithm can get from parallelization. At each iteration
the processors share the approximated models produced by each of them. Thus
each processor executes a next iteration using its own previous work and also the
knowledge produced by the other processors. This approach can improve the rate
at which a data mining algorithm finds a model for data (knowledge) and make
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up for lost time in communication. Parallel execution of different data mining
algorithms and techniques can be integrated not just to get high performance
but also high accuracy.

Parallel Rough Set Computation. In this section we discuss, as an example,
how parallel strategies can be applied in data mining techniques based on rough
set theory. Rough Set data analysis (RSDA), first developed by Z. Pawlak and
his co-workers in [7], has become a promising research topic for the scientific
community. Main thrust in current applications of rough set theory are attribute
reduction, rule generation, prediction.

RSDA offers purely structural methods to discovery data dependencies and
to reduce the number of attributes of an information system I. Let us suppose
a dataset U of objects, described by a set Ω of attributes. Two basic tasks
concerning the rough set theory are the computation of the reduct and the core
of I. A set P ⊆ Q ⊆ Ω is a reduct of Q, i.e. reduct(Q), if P is minimal among
all subsets of Q which generate the same classification as Q. In other words,
all the attributes in P are indispensable and none of them can be omitted for
distinguishing objects as they are distinguished by the set Q. Obviously, it is not
hard to see that each Q ⊆ Ω has a reduct, though this is usually not unique.
The intersection of all reducts of Q is called the core of Q, i.e. core(Q), and the
elements of the core of Q are called indispensable for Q. As pointed out in [8], the
problem of finding a reduct of minimal cardinality is NP-hard, and finding all the
reducts has exponential complexity. An interesting method to find the core and
the reducts of an information system I is given in [9], where authors propose to
compute the |U |×|U | discernibility matrix D, where the generic element D(x, y)
is constituted by the set of attributes in Ω for which x and y assume different
values. Authors demonstrate that the core of I can be computed by the union
of singleton elements in D.

Let us describe the application of such a method by a trivial example. Let
us suppose the set U = {o1, o2, o3, o4} of objects, described on the set Ω =
{q1, q2, q3, q4} of attributes. Figure 1(a) shows such a dataset. Figure 1(b) shows
the corresponding discernibility matrix, obtained as a natural result of the ap-
plication of a discernibility function (for all the attributes in Ω) to each pair of
objects. In this example, the discernibility matrix points out that the objects
o2, o3 can be distinguished by attributes q2, q4 (because they assume different
values w.r.t. such attributes), while the objects o3, o4 can be distinguished by the
only attribute q1. The entries < o1, o2 >, < o1, o3 >, < o1, o4 > and < o3, o4 >
show that the core of the system I is core(I) = {q1, q2, q4}. As it is really evi-
dent, the time and space complexity of the core computation by such a method
could be very expensive, if we consider a large number of objects described by
a large number of attributes (high-dimensional data) are involved in. Let us
observe that having a O(|Ω| · |U |2) space and time complexity, this method is
not suitable for large data sets (e.g. with over 10,000 objects) even on powerful
workstations. A parallel and distributed approach to such a topic could be very
useful. For example, let us describe how parallelism can be applied and which
benefits it could give in a such scenario.
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Fig. 1. Original Data Set and Discernibility Matrix

Let us first describe the scenario when an independent parallelism is applied.
Let us suppose to have N different and independent processes, with N ≤ |U |,
and that each one is able to access to the whole data set (i.e., by replicating it for
each process, or providing a shared repository). In this way, each process takes
in charge to compute only the rows of the discernibility matrix corresponding
to some objects in the dataset. As a limit case, if N = |U |, each process could
compute only one raw, corresponding to a particular objects. As a final task, the
whole result is naturally obtained by unifying partial results obtained by all the
processes.

A further parallelism method consists in applying the SPMD strategy, man-
aged by N processors. In this case, the whole data set U can be splitted in N
partitions, each one composed of |U |/N objects1. Now, each process computes
the rows of the discernibility matrix corresponding to the objects within the
partition assigned to it. It is clear that, in this way, each process is not able to
compute an entire row of the matrix, but just the columns corresponding to ob-
jects it contains. For this reason, the final result can be obtained by aggregating
partial results obtained by the processes. Indeed, this final task can be managed
in different ways. A first way is that, as soon as a processor finishes its execution,
it sends its results to all the other processors: such a solution guarantees that
each node, when all the computations are finished, holds the final and complete
result. A second way is that as soon as a processor finishes its computation,
it sends local results to an aggregator node being in charge to join the various
results: in this case, the only aggregator node manages the join step and holds
the final result.

As a final consideration, it is clear that the parallelism for the core computa-
tion scenario is very useful, and the largest the dataset size and its dimensionality
are, the most appreciable are their benefits. Moreover, we point out that the net-
work load due to the transmission of the partial results could be very low because
processors need to communicate not the entire matrix, but just the attributes
contained in singleton elements.

1 As a variant, we notice that the dataset could be partitioned with respect attributes,
and in similar way the computation goes on.
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2.2 Distributed Data Mining

Traditional warehouse-based architectures for data mining suppose to have cen-
tralized data repository. Such a centralized approach is fundamentally inappro-
priate for most of the distributed and ubiquitous data mining applications. In
fact, the long response time, lack of proper use of distributed resource, and the
fundamental characteristic of centralized data mining algorithms do not work
well in distributed environments. A scalable solution for distributed applications
calls for distributed processing of data, controlled by the available resources and
human factors. For example, let us suppose an ad hoc wireless sensor network
where the different sensor nodes are monitoring some time-critical events. Cen-
tral collection of data from every sensor node may create traffic over the limited
bandwidth wireless channels and this may also drain a lot of power from the
devices. A distributed architecture for data mining is likely aimed to reduce the
communication load and also to reduce the battery power more evenly across the
different nodes in the sensor network. One can easily imagine similar needs for
distributed computation of data mining primitives in ad hoc wireless networks of
mobile devices like PDAs, cellphones, and wearable computers [10]. The wireless
domain is not the only example. In fact, most of the applications that deal with
time-critical distributed data are likely to benefit by paying careful attention
to the distributed resources for computation, storage, and the cost of communi-
cation. As an other example, let us consider the World Wide Web: it contains
distributed data and computing resources. An increasing number of databases
(e.g., weather databases, oceanographic data, etc.) and data streams (e.g., fi-
nancial data, emerging disease information, etc.) are currently made on-line,
and many of them change frequently. It is easy to think of many applications
that require regular monitoring of these diverse and distributed sources of data.
A distributed approach to analyze this data is likely to be more scalable and
practical particularly when the application involves a large number of data sites.
Hence, in this case we need data mining architectures that pay careful attention
to the distribution of data, computing and communication, in order to access
and use them in a near optimal fashion. Distributed Data Mining (sometimes
referred by the acronym DDM ) considers data mining in this broader context.

DDM may also be useful in environments with multiple compute nodes con-
nected over high speed networks. Even if the data can be quickly centralized
using the relatively fast network, proper balancing of computational load among
a cluster of nodes may require a distributed approach. The privacy issue is play-
ing an increasingly important role in the emerging data mining applications.
For example, let us suppose a consortium of different banks collaborating for
detecting frauds. If a centralized solution was adopted, all the data from every
bank should be collected in a single location, to be processed by a data mining
system. Nevertheless, in such a case a Distributed Data Mining system should
be the natural technological choice: both it is able to learn models from distrib-
uted data without exchanging the raw data between different repository, and
it allows detection of fraud by preserving the privacy of every bank’s customer
transaction data.
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For what concerns techniques and architecture, it is worth noticing that many
several other fields influence Distributed Data Mining systems concepts. First,
many DDM systems adopt the Multi-Agent System (MAS) architecture, which
finds its root in the Distributed Artificial Intelligence (DAI). Second, altough
Parallel Data Mining often assumes the presence of high speed metwork con-
nections among the computing nodes, the development of DDM has also been
influenced by the PDM literature. Most DDM algorithms are designed upon
the potential parallelism they can apply over the given distributed data. Typ-
ically, the same algorithm operates on each distributed data site concurrently,
producing one local model per site. Subsequently, all local models are aggre-
gated to produce the final model. In figure 2 a general Distributed Data Mining
framework is presented. In essence, the success of DDM algorithms lies in the
aggregation. Each local model represents locally coherent patterns, but lacks
details that may be required to induce globally meaningful knowledge. For this
reason, many DDM algorithms require a centralization of a subset of local data
to compensate it. The ensemble approach has been applied in various domains
to increase the accuracy of the predictive model to be learnt. It produces multi-
ple models and combines them to enhance accuracy. Typically, voting (weighted
or un-weighted) schema are employed to aggregate base model for obtaining a
global model. As we have discussed above, minimum data transfer is another
key attribute of the successful DDM algorithm.

Data Source 1

Data Mining
Algorithm

Local Model 1

Data Source 2

Data Mining
Algorithm

Local Model 2

Data Source n

Data Mining
Algorithm

Local Model n

Local Model 
Aggregator

Global Model

Fig. 2. General Distributed Data Mining Framework

3 Grid-Based Data Mining

In the last years, Grid computing is receiving an increasing attention both from
the research community and from industry and governments, watching at this
new computing infrastructure as a key technology for solving complex problems
and implementing distributed high-performance applications. Grid technology
integrates both distributed and parallel computing, thus it represents a criti-
cal infrastructure for high-performance distributed knowledge discovery. Grid
computing differs from conventional distributed computing because it focuses
on large-scale dynamic resource sharing, offers innovative applications, and, in
some cases, it is geared toward high-performance systems. The Grid emerged as
a privileged computing infrastructure to develop applications over geographically
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distributed sites, providing for protocols and services enabling the integrated and
seamless use of remote computing power, storage, software, and data, managed
and shared by different organizations.

Basic Grid protocols and services are provided by toolkits such as Globus
Toolkit (www.globus.org/toolkit), Condor (www.cs.wisc.edu/condor), Le-
gion (legion.virginia.edu), and Unicore (www.unicore.org). In particular,
the Globus Toolkit is the most widely used middleware in scientific and data-
intensive Grid applications, and is becoming a de facto standard for implement-
ing Grid systems. The toolkit addresses security, information discovery, resource
and data management, communication, fault-detection, and portability issues.
It does so through mechanisms, composed as bags of services, that execute op-
erations in Grid applications. A wide set of applications is being developed for
the exploitation of Grid platforms. Since application areas range from scien-
tific computing to industry and business, specialized services are required to
meet needs in different application contexts. In particular, data Grids have been
designed to easily store, move, and manage large data sets in distributed data-
intensive applications. Besides core data management services, knowledge-based
Grids, built on top of computational and data Grid environments, are needed
to offer higher-level services for data analysis, inference, and discovery in scien-
tific and business areas [11]. In many recent papers [12],[13], [14] is claimed that
the creation of knowledge Grids is the enabling condition for developing high-
performance knowledge discovery processes and meeting the challenges posed by
the increasing demand of power and abstractness coming from complex problem
solving environments.

4 The Knowledge Grid

The Knowledge Grid [15] is an environment providing knowledge discovery ser-
vices for a wide range of high performance distributed applications. Data sets
and analysis tools used in such applications are increasingly becoming available
as stand-alone packages and as remote services on the Internet. Examples include
gene and DNA databases, network access and intrusion data, drug features and
effects data repositories, astronomy data files, and data about web usage, con-
tent, and structure. Knowledge discovery procedures in all these applications
typically require the creation and management of complex, dynamic, multi-step
workflows. At each step, data from various sources can be moved, filtered, and
integrated and fed into a data mining tool. Based on the output results, the
developer chooses which other data sets and mining components can be inte-
grated in the workflow, or how to iterate the process to get a knowledge model.
Workflows are mapped on a Grid by assigning nodes to the Grid hosts and using
interconnections for implementing communication among the workflow nodes.

The Knowledge Grid supports such activities by providing mechanisms and
higher level services for searching resources, representing, creating, and managing
knowledge discovery processes, and for composing existing data services and
data mining services in a structured manner, allowing designers to plan, store,
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document, verify, share and re-execute their workflows as well as manage their
output results. The Knowledge Grid architecture is composed of a set of services
divided in two layers: the Core K-Grid layer and the High-level K-Grid layer.
The first interfaces the basic and generic Grid middleware services, while the
second interfaces the user by offering a set of services for the design and execution
of knowledge discovery applications. Both layers make use of repositories that
provide information about resource metadata, execution plans, and knowledge
obtained as result of knowledge discovery applications.

In the Knowledge Grid environment, discovery processes are represented as
workflows that a user may compose using both concrete and abstract Grid re-
sources. Knowledge discovery workflows are defined using a visual interface that
shows resources (data, tools, and hosts) to the user and offers mechanisms for in-
tegrating them in a workflow. Information about single resources and workflows
are stored using an XML-based notation that represents a workflow (called exe-
cution plan in the Knowledge Grid terminology) as a data-flow graph of nodes,
each one representing either a data mining service or a data transfer service. The
XML representation allows the workflows for discovery processes to be easily val-
idated, shared, translated in executable scripts, and stored for future executions.
Figure 3 shows the main steps of the composition and execution processes of a
knowledge discovery application on the Knowledge Grid.

As an application scenario, in [6] a simple meta-learning process over the
Knowledge Grid is presented. Meta-learning is aimed to generate a number of
independent classifiers by applying learning programs to a collection of distrib-
uted data sets in parallel. The classifiers computed by learning programs are
then collected and combined to obtain a global classifier. Figure 4 shows a dis-
tributed meta-learning scenario, in which a global classifier GC is obtained on
NodeZ starting from the original data set DS stored on NodeA. This process
can be described through the following steps:

1. On NodeA, training sets TR1, . . . , TRn, testing set TS and validation set
V S are extracted from DS by the partitioner P . Then TR1, . . . , TRn, TS
and V S are respectively moved from NodeA to Node1, . . . , Noden, and to
NodeZ .
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2. On each Nodei(i = 1, ..., n) the classifier Ci is trained from TRi by the
learner Li. Then each Ci is moved from Nodei to NodeZ .

3. On NodeZ , the C1, . . . , Cn classifiers are combined and tested on TS and
validated on V S by the combiner/tester CT to produce the global classifier
GC.

Being the Knowledge Grid an oriented service architecture, a Knowledge Grid
user interacts with some services to design and execute such an application.
More in detail, she/he can interacts with the DAS (Data Access Service) and
TAAS (Tools and Algorithms Access Service) services to find data and mining
software and with the EPMS (Execution Plan Management Service) service to
compose a workflow (execution plane) describing at a high level the needed ac-
tivities involved in the overall data mining computation. Through the execution
plan, computing, software and data resources are specified along with a set of
requirements on them. The execution plan is then processed by the RAEMS
(Resource Allocation and Execution Management Service), which takes care of
its allocation. In particular, it first finds appropriate resources matching user re-
quirements (i.e., a set of concrete hosts Node1, . . . , Noden, offering the software
L, and a node NodeZ providing the CT software), then manages the execution
of overall application, enforcing dependencies among data extraction, transfer,
and mining steps. Finally, the RAEMS manages results retrieving, and visualize
them by the RPS (Results Presentation Service) service.

Data Set
DS

Partitioner
P

Node A

Combiner/Tester
CT

Node Z

Training Set
TR1

Learner
L1

Node 1

Training Set
TR2

Learner
L2

Node 2

Training Set
TRn

Learner
Ln

Node n

Classifier
C1

Classifier
C2

Classifier
Cn

Validation Set
VS Test Set

TS

Global
Classifier

GC

Fig. 4. A distributed meta-learning scenario

5 Conclusion

This paper discussed main issues and approaches in parallel and distributed data
mining. Both this research areas are critical for the development of efficient, scal-
able and accurate knowledge discovery applications that deal with large data
sources and distributed data repositories. In the last decade Grid computing
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systems have been developed as parallel and distributed platforms for complex
distributed applications. In this paper we discussed as Grids can be exploited
in parallel and distributed data mining and outlined the main features of the
Knowledge Grid as an example of Grid-aware environment for distributed knowl-
edge discovery applications. This is a very promising research area that should
be further investigated looking for efficient solutions for high-performance KDD.
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Abstract. This paper presents a new attribute reduction algorithm, ARIMC, for 
both consistent and inconsistent decision tables. ARIMC eliminates all 
redundant and inconsistent objects in a decision table, extracts the core 
attributes when they exist in the decision table in an efficient way, and utilizes 
the core attributes and their absorptivity as the optimization condition to 
construct items of the discernibility matrix. Compared with Skowron et al's 
reduction algorithm [2], ARIMC shows its advantages in simplicity, 
practicability and time efficiency.  

Keywords: Rough Set; Attribute Reduction; Decision Table. 

1   Introduction 

Rough set theory was proposed by Z. Pawlak in 1982. It is a mathematical tool for 
vague and uncertain problems, and has been widely used in artificial intelligence, data 
mining, pattern recognition, failure detection and other related fields. Compared with 
statistics, evidence theory and other mathematical tools that can also solve vague and 
uncertain problems, rough set theory does not need background knowledge of the 
given data, and it defines knowledge as a family of indiscernibility relations so that it 
can give knowledge clear mathematical meanings. Rough set theory applies definite 
mathematical methods to solve uncertain problems, and provides an effective way for 
further data analysis.  

A decision table is an important knowledge representation system that consists of 
both condition and decision attribute sets. Reduction is an important technique in 
rough set theory. The key part of attribute reduction in a decision table is to keep the 
indispensable attributes of the decision table by eliminating the redundant attributes in 
order to improve the efficiency and effectiveness of data analysis in the decision 
table. Attribute reduction plays an important role in Machine Learning and Data 
Mining. Because calculating all possible reductions of a decision table is an NP-hard 
problem, seeking efficient and effective algorithms has become an active research 
topic in the rough set community. 

There have been several attribute reduction methods [1,2,4,8,10,5,11]. According 
to the classical algorithm proposed by Skowron et al [2], a discernibility matrix 
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should be constructed at first and then a discernibility function can be built on the 
discernibility matrix. Absorptivity can be applied to simplify the discernibility 
function so that every conjunctive sub-expression in a disjunctive normal form (DNF) 
is a reduction. The classical method can find all reductions; however, it works only in 
small datasets, because the simplification is a time-consuming process. In an 
algorithm based on a frequency function, Hu [8] proposed that the importance of an 
attribute can be computed by the appearing times in the discernibility matrix. Dai and 
Li [9] also developed a method based on attribute frequency. Both [8] and [9] can 
only be used in consistent decision systems. In [6], Wang pointed out the 
inconsistency of the decision table in [3], which affects reduction results.     

This paper presents an algorithm called ARIMC (Attribute Reduction based on an 
Improved Matrix and the Core), based on an improved discernibility matrix (IDM) 
and the optimization of matrix construction using core attributes and absorptivity. 
During the IDM construction, redundant and inconsistent data in a decision table are 
dealt with at the same time, and therefore, the construction method can be applied to 
both consistent and inconsistent systems. Absorptivity controls the entries of the IDM 
and the core attributes speed up the IDM construction. Attribute reduction is 
conducted efficiently by a frequency function.  

The rest of the paper is organized as follows. Section 2 introduces relevant 
concepts and algorithms in related work. Section 3 presents a detailed description of 
the ARIMC algorithm with an analysis, an example and a comparison with the 
classical method by Skowron et al [2].  The paper is concluded with a summary in 
Section 4. 

2   Related Work 

Definition 1: An approximation space is a pair AS = (U, R), where U is a non-empty 
and finite set, called the universe, and R is an equivalence relation family.  

Definition 2: Given a pair S = (U, A), where U is the universe, and A is a set of 
attributes, with every attribute a ∈ A, there is a set V of associated values, called the 
domain of a. Any subset B of A determines a binary relation IND (B) on U, which is 
called an indiscernibility relation, and defined as follows: (x, y) ∈ IND (B) if and only 
if a (x)= a (y), for every a ∈ A, where a (x) denotes the value of attribute a of an given 
object x.  

Definition 3: Let C and D be subsets of A, such that D∩C= ∅  and D U C=A. D 
depends on C in a degree k (0 ≤ k ≤ 1), denoted C=> k D, if 

/

( ( ))
( , ) .

( )x U D

card C X
k C D

card U
γ ∗

∈

= = ∑  (1) 

where card (X) is the cardinality of X.  

Definition 4: Let C and D⊆A be the sets of condition and decision attributes 
respectively. C’ ⊆C is a D-reduct of C, if C’ is a minimal subset of C such that 
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( , ) ( ', ).C D C Dγ γ=  (2) 

Definition 5: Let R be an equivalence relation family, R∈R, and IND (B) denote an 
indiscernibility relation. If I (R)=I (R-{R}), then R can be omitted in R; otherwise R 
can not be omitted in R. If none of the relations in R can be omitted, R is 
independent; otherwise R is dependent.  

Definition 6: Let C⊆A be the set of condition attributes. The set of all the relations 
that cannot be omitted in C is called the core of C, denoted as CORE (C).  

Obviously, there may be many possible reductions of C. If RED (C) is used to express 
all the reductions of C, below is a theorem. 

Theorem 1: The core of an equivalence relation family C is equal to the intersection 
of all the reductions of C, that is CORE(C)=∩RED(C).  

Definition 7: Tables with distinguished condition and decision attributes are referred 
to as decision tables.  

Definition 8: Every dependency, C=> k D, can be described by a set of decision rules 
in the form “If . . . then”. Given any y≠x, if dx|C=dy|C implicates that dx|D=dy|D, 
the decision rule is consistent; otherwise the rule is inconsistent. If all the decision 
rules in a decision table are consistent, this table is consistent; otherwise the table is 
inconsistent.  

2.1   Traditional Discernibility Matrix and Attribute Reduction 

The classical discernibility matrix of a decision table proposed by Skowron et al. [2] 
is an n-rank symmetrical matrix. The elements are defined as below (where ‘a’ is a 
condition attribute, and xi, xj are two objects) : 

{ | C (xi) (xj)},  D(xi) D(xj)

Cij 0 ,                                     D(xi)=D(xj) .

-1 ,                                    (xi) (xj),D(xi) D(xj)

a a a a

a a

∈ ∧ ≠ ≠⎧
⎪= ⎨
⎪ = ≠⎩

 (3) 

This definition will be revised in our IDM in Section 3.  
The core set of the whole discernibility matrix is the union of every single attribute 

in the matrix.  

DCORE (C)={a C|cij={a} 1 i,j n}.∈ ≤ ≤  (4) 

The discernibility function is defined as follows: 

{ }.cijρ = ∧ ∨  (5) 

Based on the above definitions, the steps of the classical algorithm are given below: 
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1. Construct the discernibility matrix according to Equation (3); 
2. Generate the discernibility function according to Equation (5); 
3. Use absorptivity to simplify the discernibility function; 
4. Perform attribute reduction. Every conjunctive sub-expression in the disjunctive 

normal form (DNF) is a reduction.  

The above traditional attribute reduction algorithm constructs the matrix at first, 
and then applies absorptivity to generate the discernibility function. This means that 
this algorithm allows many unnecessary data items to enter into the matrix and so it 
takes a lot of time to calculate the discernibility function and perform the reduction. 
Therefore, it is only suitable for small datasets.  

2.2   Other Improved Matrix and Attribute Reduction Algorithms 

Another kind of matrix, named improved difference matrix, proposed by Hu and other 
scholars [3] is as follows:  

{a| a C a(xi) a(xj)}  D(xi) D(xj)
Cij .

                                     Otherwise

∈ ∧ ≠ ≠⎧
= ⎨∅⎩

 (6) 

The algorithm in [9] adopts this matrix. It first constructs the matrix according to 
Equation (6), computes each attribute’s appearing times as a way to judge the 
importance of the attribute, sorts the attributes by their importance, and finally adds 
the attributes in turns until a reduction is completed. This method made a progress in 
time complexity, but still takes a significant time to construct the difference matrix 
and can not deal with inconsistent data either.  

3   The ARIMC Algorithm 

ARIMC first constructs an improved discernibility matrix (IDM) to deal with 
redundant and inconsistent objects in the given decision table and get the core 
attributes, and then takes the core attribute set as the initial reduction set to calculate 
the appearing times of the condition attributes in the IDM. This process is repeated 
until all elements of the IDM are processed. 

3.1   The Improved Discernibility Matrix (IDM) 

The j>i items, Cij, of the IDM can be divided into two parts, Cij1 and Cij2, and they are 
constructed by Equations (7) and (8) respectively (where ‘b’ is a decision attribute).  

1

{a| a C f(xi,a) f(xj,a)}
Cij .

0      a C f(xi,a)=f(xj,a)

∃ ∈ ∧ ≠⎧
= ⎨ ∀ ∈ ∧⎩

 (7) 

2

1       b D f(xi,b) f(xj,b)
Cij .

0      b D f(xi,b)=f(xj,b)

∃ ∈ ∧ ≠⎧
= ⎨ ∀ ∈ ∧⎩

 (8) 
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Through the above definitions of the matrix, we can obtain the following 
properties: 

1. If Cij1=0 and Cij2=0， then xi and xj are duplicate objects， and so row j can be 
deleted from the original data table; 

2. If Cij1=0 and Cij2=1， then xi and xj are inconsistent objects， and so rows i and j 
should be deleted to maintain the consistency in the decision table.  

3. If Cij1 is a single attribute and Cij2=0， then this single attribute is a reductive 
attribute and can be eliminated；  

4. If Cij1 is a single attribute and Cij2=1， then this single attribute is a core attribute 
and must be added to the core attribute set.  

Properties 1, 2, and 3 are obvious. We prove Property 4 as follows.  

Proof of Property 4: Let C and D be the condition and decision attribute sets of a 
decision table respectively, and xi and xj be two random objects from the table. The 
classical construction of the discernibility matrix elements is given in Equation (3).  

According to Equation (4), if objects xi and xj are different only in one condition 
attribute, this attribute must be a core attribute, in order to make them distinguishable 
in D. 

In the IDM, Cij1 takes charge of the condition attributes, and Cij2 takes charge of 
decision attributes.  

If Cij1 is a single attribute and Cij2=1 
⇔ Objects xi and xj have only one different condition attribute value so that 

(xi，xj) ∉IND (D) 
Therefore, this attribute is also a core attribute.  

3.2   Description of the ARIMC Algorithm 

In the following algorithm, Step 1 adopts the IDM and eliminates redundant and 
inconsistent data in the decision table. This step can compress the decision table in a 
significant way, and the compression is not available in the classical algorithms by 
Skowron et al [2] or by any other authors.  

Also, the ARIMC algorithm uses core attributes as the optimization information, 
and accelerates the construction of the IDM. It scans the existing items in the IDM 
immediately when a core attribute appears, and deletes those of them that include the 
core attributes, so that the remaining construction of the matrix is optimized. The 
reason is that if two objects have different values on the same core attribute, then this 
attribute is recorded in Cij1 and all the items of Cij1 including the core attributes will 
be deleted (according to absorptivity), and therefore these items cannot be added onto 
the IDM. Compared with the algorithm in [9], ARIMC can deal with redundant and 
inconsistent data in the input decision tables, and is more efficient in both time and 
space because there are fewer items in the IDM. Step 2 evaluates the importance of 
each attribute by the frequency information. Because of the decrease of the IDM 
items, the calculation of the frequency function is faster and simpler. Step 3 keeps 
selecting attributes for the reduction set until all the elements in the IDM have been 
processed, which guarantees a correct completion of the attribute reduction.  
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Algorithm 1: Algorithm for ARIMC 

Input: a decision table S=(U,C ∪D,V,f).  
Output: the attribute reduction table S’=（ U,R ∪D,V’,f’） of S, R is a D-reduct of 
C.  

Step 1:  
CORE←∅ ; R←∅ ; Temp ←∅ ; 
for i:=1 to card(U) do 
{for j:=1 to card(U) do            
  {while (CORE≠∅ )           
    {for (every core attribute ∈CORE) 
        {if (∃ c∈CORE and (c(xi)≠c(xj)))         
           {skip xij (denoted by ‘@’); j←j+1} 
          else construct the IDM of S and take proper action on redundant or 
          inconsistent data}}; 
If (Cij1 is a core attribute) 
 {CORE←CORE ∪Cij1; 
  Go back to delete all the foregoing items in the IDM which contain this new core 
Cij1 (denoted by ‘@’)}}} 
Step 2: 
P←{all the items (Cij1) which are not ‘00’, ‘01’, ‘@’ or core attributes in the 
IDM}; 
M←{a1,a2,…,an，n ≤card(C)， ai is a single attribute};  
  //M is a set of single attributes which appear in P; 
Calculate w(ai) by the number of items which contain ai in P;   // w(ai) is the 
weight of ai; 
Sort attributes by w(ai); 
Step 3: 
while (! all the items in P are ‘@’) do 
{R←CORE; 
 R←R ∪{a1}, M←M-{a1};// select a1 which has the largest weight; 
 Temp←{all the other attributes which appear in the items that contain a1 in P }; 
 All the weights of attributes that appear in ‘Temp’ are decreased by 1; 
 Delete all the items which contain a1 in P (denoted by ‘@’) 
}; 
R ∪D is a D-reduct of C.  

3.3   An Example 

Table 1 provides a decision table S= (U, A), where U={x1,x2,x3,x4,x5,x6,x7} is the 
set of objects, A=C∪ D is the set of attributes, C={a,b,c,d} is the set of condition 
attributes, and D={e} is the decision attribute.  

We run both Skowron et al’s algorithm [2] and our ARIMC algorithm in Section 3.2 
on Table 1 in this subsection, to demonstrate ARIMC’s simplicity, practicability and 
time efficiency. With Skowron et al’s classical algorithm, 
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Table 1. A decision table 

        R 
U 

  a   b   c   d   e 

X1 1 0 2 1 1 
X2 1 0 2 0 1 
X3 1 2 0 0 2 
X4 1 2 2 1 0 
X5 2 1 0 0 2 
X6 2 1 1 0 2 
X7 2 1 2 1 1 

Step 1: Construct the discernibility matrix in Table 2.  

Table 2. The Discernibility Matrix of Table 1 by [2] 

U X1 X2 X3 X4 X5 X6 X7 
X1        
X2 0       
X3 bcd bc      
X4 b bd cd     
X5 abcd abc 0 abcd    
X6 abcd abc 0 abcd 0   
X7 0 0 abcd ab cd cd  

 
Steps 2 and 3: Construct the discernibility function and simplify it. 

( ) ( )( )( )( )( )( )

( )( )( )( )( )( )( )

( )

b c d b a b c d a b c d b c b d a b c a b c

c d a b c d a b c d a b c d a b c d c d

b c d

bc bd

ρ = ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨
∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

= ∧ ∨
= ∨

      

Step 4: Get the D-reduct of C: {b, c} or {b, d}. 

With our proposed ARIMC algorithm, 

Step 1: Construct the IDM in Table 3: 

Table 3. The IDM of Table 1 by ARIMC 

U X2  X3  X4  X5  X6 X7 
X1 d0 bcd1 (@) b1 (@) abcd1 (@) abcd1 (@) ab0 (@) 
X2  bc1 (@) bd1 (@) abc1 (@) abc1 (@) abd0 (@) 
X3   cd1 ab0 (@) abc0 (@) abcd1 (@) 
X4    abcd1 (@) abcd1 (@) ab1 (@) 
X5     c0 cd1 
X6      cd1 
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The items without the ‘(@)’ suffix are the results according to Equations (7) and 
(8), and the ‘@’ for each of them is the actual result from the ARIMC algorithm in 
Section 3.2. This is how ARIMC has improved the time efficiency. Obviously, the 
core attribute here is ‘b’.  

Step 2: P = {cd} and M = {c,d}. Then the weights: w(a) = w(b) = 0，w (c) = w(d) 
= 3; 

Step 3: First, initialize R: R={b}. Then, select attribute c into R and R={b, 
c}，M={d}, Temp={d}, w (d)=2; P={@}. Because all the items in P are ‘@’, 
meaning that all these items in the matrix have been processed, the looping can now 
be stopped.  

The attribute reduction of Table 1 after the above 2 steps is R={b,c}. If attribute ‘d’ 
is first selected into R, not ‘c’, another reduction of the table, R={b, d} can be 
obtained following the same steps. As there is no redundant or inconsistent data in 
this decision table, there are no items like ‘00’ or ‘01’ in the IDM.  

3.4   Experimental Results and Analysis 

Our experiments are conducted on a P4 2.4G, 512M RAM computer, with Java 1.4.2 
and the Windows 2000 operating system. The initial data sets are from the UCI 
Machine Learning Database Repository. The experimental results between our 
ARIMC and the classical algorithm in [2] are given in Table 4. From this table, 
ARIMC has demonstrated its advantage over the classical algorithm in time 
efficiency. The efficiency gain comes from the fact that ARIMC does not include 
core-embodied items when constructing the IDM, hence simplifies the calculation of 
the frequency function and saves a considerable amount of time. On the contrary, the 
classical algorithm spends much time in the construction and reduction of its 
discernibility matrix. If the set of the core attributes is empty or comes at the very end 
of the reduction process, the performance difference of the two algorithms may not be 
very significant. Assuming the universe of a decision table is U， the number of 
objects is |U|， and the set of condition attributes is C， the time complexity of ARIMC 
is O（ |C|× |U|2） . In practice, the actual running time is usually much less than this  
 

Table 4. A time comparison between ARIMC and the classical algorithm 

 
 

Data set 

Number  
of initial 
attributes 

Number 
of 

 attributes 
after 

reduction 

 
Number  

of  
records 

Time 
consumption 
of classical 
algorithm 
（ ）seconds  

Time 
consumption  
of ARIMC 
（ ）seconds  

Balloons 5 4 20 0. 094 0. 063 
Zoo 17 15 101 17. 592 0. 641 

Mushrooms 22 8 100 8. 973 0. 766 
Iris 5 4 150 1. 797 1. 203 

Breast-cancer 10 9 286 3. 977 2. 625 
Liver-disorders 7 4 345 6. 114 6. 328 

Letter 17 14 800 902. 936 64. 703 
Vehicle 19 4 1046 3669. 157 168. 594 



 A New Algorithm for Attribute Reduction in Decision Tables 45 

 

Fig. 1. Another time comparison with the increase of data records 

time complexity. We have also taken some data from the ‘Letter’ data set from the 
UCI Database Repository and processed them using the two algorithms. Their 
comparative results are shown in Figure 1.   

4   Conclusion 

The ARIMC algorithm proposed in this paper can find the core attributes efficiently 
and take the core attributes as the optimization condition for the construction of the 
improved discernibility matrix. It improves the time performance over the classical 
attribute reduction algorithm. Furthermore, ARIMC can eliminate redundant and 
inconsistent data in the given decision table during the construction of the improved 
discernibility matrix, and a frequency function is employed as the evaluation measure 
of attribute importance. The example and experimental results in this paper have 
verified the simplicity, practicability and time efficiency of ARIMC. Due to the 
limitations of the discernibility matrix, the space performance is still an open research 
issue in existing attribute reduction algorithms. For the future work, we plan to apply 
the ARIMC algorithm to large-scale database systems to further explore its efficiency 
in both time and space.  
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Abstract. A fuzzy rough set is a fuzzy generalization of rough set. There
are already several definitions for it, and most of them are given with ref-
erence to a t-norm ∗, a fuzzy (∗-)similarity relation and the duality prin-
ciple. In this paper, a generalization of fuzzy rough sets is investigated
regarding a general fuzzy relation and a lower semi-continuous fuzzy con-
junction logical operator in its second argument. The generalized fuzzy
rough approximation operators are established by using the adjunction
between the fuzzy conjunction operator and a fuzzy implication opera-
tor. Algebraic properties of the generalized fuzzy rough approximation
operators are discussed. It has been shown that information with much
more necessity measure and with less probability measure for a fuzzy set
can be mined in comparison with existing methods of fuzzy rough sets.

Keywords: Fuzzy logic, adjunction, fuzzy relation, fuzzy rough sets,
necessity measure, probability measure.

1 Introduction

The theory of rough sets, initiated by Pawlak [13,14], is an excellent tool to
handle granularity of data by revealing knowledge hidden in information systems
with two sets called rough lower approximation and rough upper approximation.
It has become a very active research theme in information and computer sciences,
and has attracted wide attention of many researchers.

Since the values of attributes of data in a knowledge representation system
usually involve vagueness and uncertainty, rough sets have been combined with
fuzzy sets to deal data with fuzzy natures. One of the first work to fuzzify rough
sets was contributed by Dubois and Prade [6]. Dubois and Prade modeled the
concept of fuzzy rough sets by using a pair of fuzzy sets called fuzzy rough
lower approximation and fuzzy rough upper approximation. The fuzzy rough
approximations are generated by replacing the equivalence relation in the Pawlak
rough universe with a fuzzy similarity relation. Meanwhile, the Zadeh min and

1 This work was supported by the postdoctoral science-research developmental
foundation of Heilongjiang province (LBH-Q05047) and the fundamental research
foundation of Harbin Engineering University (HEUFT05087).
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max operators are used for characterizing the intersection and union of fuzzy
sets. Radzikowska and Kerre [16] extended the Zadeh operators to a t-norm
and a fuzzy implication, and studied three classes of fuzzy rough sets by taking
into account three classes of particular implications. Morsi and Yakout [11] also
developed a generalized definition of fuzzy rough sets within the framework
of a lower semi-continuous t-norm ∗ and a fuzzy ∗-similarity relation. Other
fuzzifications of rough sets and comparative studies on them [1,2,7,10,15,18,20]
have been investigated. Most of classical fuzzy rough sets are generated based
on the notions of fuzzy similarity relations and t-norms.

This paper presents an approach to fuzzy rough sets regarding a general fuzzy
relation on an arbitrary universe, a lower semi-continuous fuzzy conjunction
operator and its adjunctional implication operator. It will be shown that the
presented fuzzy rough sets can be considered as a fuzzy generalization of Pawlak
rough sets and as an extension of classical fuzzy rough sets.

The rest of this paper is organized as follows. In Section 2, some elementary
concepts and operations from fuzzy logic are summarized. A generalized defi-
nition of fuzzy rough sets is introduced and basic algebraic properties of the
generalized fuzzy rough approximation operators are comparatively investigated
in Section 3. Section 4 studies the generalized fuzzy rough sets on special fuzzy
rough universes and conclusions are given in Section 5.

2 Preliminaries

Let I denotes the unit interval [0 , 1] and I2 = I × I.

Definition 1. A binary operator ∗ : I2 → I is called a fuzzy logical conjunction
(conjunction, in short) if it is non-decreasing in both arguments satisfying 0∗1 =
1 ∗ 0 = 0 and 1 ∗ 1 = 1. Let a binary operator →: I2 → I be non-increasing
in its first argument, non-decreasing in its second, and satisfy the conditions
0 → 0 = 1 → 1 = 1 and 1 → 0 = 0, then → is called a fuzzy logical implication
(implication, in short). A t-norm ∗ is a commutative and associative conjunction
satisfying 1 ∗ s = s for all s ∈ I.

If ∗ is a conjunction and → an implication, then s ∗ 0 = 0 ∗ s = s and 0 → s =
s → 1 = 1 for all s ∈ I. When I reduces to {0 , 1}, ∗ and → will be replaced by
the corresponding two-valued logical operators characterized by their boundary
conditions.

Definition 2. An implication → and a conjunction ∗ on I are said to be an
adjunction if

s ∗ t ≤ r ⇐⇒ t ≤ s → r (1)

for all s , t , r ∈ I. In which case, the pair (→ , ∗) is called an adjunction.

From Definition 2, if (→ , ∗) is an adjunction, then the equivalence 1∗s = s ⇐⇒
1 → s = s holds for all s ∈ I. Furthermore, substituting s∗ t for r in (1) leads to
t ≤ s → (s ∗ t) for all s , t ∈ I. If ∗ is a t-norm, then the implication → is called
the adjunctional implication or R-implication of ∗.
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Proposition 1. If (→ , ∗) is an adjunction on I, then for each s ∈ I, the unary
operator s ∗ • is lower semi-continuous on I, whereas s → • is upper semi-
continuous on I. Therefore, for any collection of points {ti} ⊆ I,

s ∗ ∨iti = ∨i(s ∗ ti) , s → ∧iti = ∧i(s → ti) , (2)

where ∧ and ∨ denote the infimum (minimum) and supremum (maximum).

3 Generalized Fuzzy Rough Sets

Let E be an arbitrary nonempty universe and R be a fuzzy relation on E, the
pair (F(E) , R) is called a fuzzy rough universe, where F(E) = {F | F : E → I}.

Definition 3. Let (→ , ∗) be an adjunction on I and (F(E) , R) be a fuzzy rough
universe. For a fuzzy set F ∈ F(E), its generalized fuzzy rough approxima-
tions are defined by the pair FR(F ) = (LR(F ) , UR(F )). LR(F ) and UR(F ) are
called the generalized fuzzy rough lower approximation and the upper one of F
in (F(E) , R), respectively, defined by, x ∈ E,

LR(F )(x) = ∨y∈E(R(x , y) ∗ ∧z∈E(R(z , y) → F (z))) ,
UR(F )(x) = ∧y∈E(R(y , x) → ∨z∈E(R(y , z) ∗ F (z))) . (3)

If LR(F ) = UR(F ), then F is called definable or exact.

If a fuzzy set F is interpreted to be the probability distribution of a fuzzy object
(or a fuzzy case), or a probability distribution can be derived from F for a fuzzy
case, then LR(F ) and UR(F ) are referred to as the necessity measure and the
probability measure, respectively, of the fuzzy data F in the theory of random
sets [6,8,9,12,19].

Proposition 2. Let (→ , ∗) be an adjunction on I, and let (F(E) , R) be an
arbitrary fuzzy rough universe, then for arbitrary F , G ∈ F(E),

(1) LR(F ) ⊆ LR(G) and UR(F ) ⊆ UR(G) if F ⊆ G;
(2) LR(F ) ⊆ F ⊆ UR(F );
(3) LR(1∅) = 1∅ , UR(1E) = 1E;
(4) LRLR(F ) = LR(F ), URUR(F ) = UR(F );
(5) LR(F ) ⊆ URLR(F ) ⊆ UR(F ), LR(F ) ⊆ LRUR(F ) ⊆ UR(F ).

Proof. (1) Evidently.
(2) Let F ∈ F(E) and x ∈ E, then

LR(F )(x) = ∨y∈E(R(x , y) ∗ ∧z∈E(R(z , y) → F (z)))
≤ ∨y∈E ∧z∈E (R(x , y) ∗ ∨{r ∈ I | R(z , y) ∗ r ≤ F (z)})
= ∨y∈E ∧z∈E ∨r∈I{R(x , y) ∗ r | R(z , y) ∗ r ≤ F (z)}
≤ ∨y∈E ∨r∈I {R(x , y) ∗ r | R(x , y) ∗ r ≤ F (x)} ≤ F (x) ,

and

UR(F )(x) = ∧y∈E(R(y , x) → ∨z∈E(R(y , z) ∗ F (z)))
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≥ ∧y∈E ∨z∈E ∨{r ∈ I | R(y , x) ∗ r ≤ R(y , z) ∗ F (z)}
≥ ∧y∈E ∨ {r ∈ I | R(y , x) ∗ r ≤ R(y , x) ∗ F (x)} ≥ F (x) .

(3) They are straightforward from (2).
(4) Let R(F )(x) = ∧y∈E(R(y , x) → F (y)) and R(F )(x) = ∨y∈E(R(x , y) ∗

F (y)), then LR = RR and UR = RR. Thus LR ⊆ LRLR and URUR ⊆ UR.
On the other hand, the inclusions LRLR(F ) ⊆ LR(F ) and UR(F ) ⊆ URUR(F )

are obvious. Therefore, LR(F ) = LRLR(F ) and URUR(F ) = UR(F ).
(5) Obviously.

4 Generalized Fuzzy Rough Approximation Operators in
Special Fuzzy Rough Universes

From Definition 3, if E is a translation-invariant additive group and G ∈ F(E) is
an arbitrary non-null fuzzy set, let R(x , y) = Gy(x) (x , y ∈ E), then (F(E) , R)
is a fuzzy rough universe, and LR(F ) = (F �→ G) ⊕∗ G and UR(F ) = (F ⊕∗
G) �→ G, where (H ⊕∗ G)(x) = ∨y∈E(G(x − y) ∗ H(y)) and (H �→ G)(x) =
∧y∈E(G(y − x) → H(y)). Note that a lower semi-continuous conjunction in its
second argument is necessary to ensure that the generalized fuzzy rough approx-
imation operators share attractive fundamental properties and to keep link of
the generalized fuzzy rough sets with fundamental morphological operators [5].

In terms of the relationship between adjunctional implication and
ν-implication →ν (s →ν t = ν(s ∗ ν(t)), ν(s) = 1 − s) of a conjunction ∗ [4], we
have the following consequence.

Proposition 3. Let (→ , ∗) be an adjunction satisfying →=→ν on I. If R is a
symmetric fuzzy relation on E, then LR and UR are dual.

Proof. It is evident that s ∗ ν(t) = ν(s → t) and s → ν(t) = ν(s ∗ t) for all
s , t ∈ I. From which, the conclusion is implied.

Proposition 4. Let (→ , ∗) be an adjunction on I, if R is a reflexive fuzzy
relation on E, then

(1) LR(1E) = 1E, UR(1∅) = 1∅.

Furthermore, if ∗ satisfies the boundary condition 1 ∗ s = s (∀ s ∈ I), then

(2) R(F ) ⊆ LR(F ) ⊆ F ⊆ UR(F ) ⊆ R(F ) for all F ∈ F(E);
(3) For arbitrary r ∈ I, r̄ is definable, where r̄ ∈ F(E) is a constant fuzzy set,

defined by r̄(x) ≡ r for all x ∈ E.

Proof. (1) It suffices to prove that LR(1E)(x) ≥ 1 and UR(1∅)(x) ≤ 0 (∀ x ∈ E).
Let x ∈ E, LR(1E)(x)=∨y∈E(R(x , y)∗∧z∈E(R(z , y) → 1)) = ∨y∈E(R(x , y)∗

1) ≥ R(x , x) ∗ 1 = 1. And, UR(1∅)(x) = ∧y∈E(R(y , x) → ∨z∈E(R(y , z) ∗ 0)) =
∧y∈E(R(y , x) → 0) ≤ R(x , x) → 0 = 0.

(2) It is clear that R(F ) ⊆ F ⊆ R(F ). The results R(F ) ⊆ LR(F ) and
UR(F ) ⊆ R(F ) follow from the monotone of R and R.
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(3) We need to prove the inclusions UR(r̄) ⊆ r̄ ⊆ LR(r̄).
Let x ∈ E, then UR(r̄)(x) = ∧y∈E(R(y , x) → ∨z∈E(R(y , z)∗r)) ≤ R(x , x) →

∨z∈E(R(x , z) ∗ r) = ∨z∈E(R(x , z) ∗ r) ≤ ∨z∈E(1 ∗ r) = r.
LR(r̄)(x) = ∨y∈E(R(x , y) ∗ ∧z∈E(R(z , y) → r)) ≥ R(x , x) ∗ ∧z∈E(R(z , x) →

r) = ∧z∈E(R(z , x) → r) ≥ ∧z∈E(1 → r) = r.

This proposition indicates that the fuzzy rough boundary UR −LR, which means
UR(F )(x) − LR(F )(x) for all x ∈ E, is ‘smaller’ than R − R. Therefore, the ne-
cessity measure of a given fuzzy data increases, whereas the probability measure
decreases. Alternatively, the concept of proximity of degree [3,17,21,22] of two
fuzzy sets may be used for characterizing the close-degree between the fuzzy
rough approximations. Thus, D(R(F ) , R(F )) ≤ D(LR(F ) , UR(F )) whatever
the definition of the degree of proximity D(· , ·) is. The performance of data
analysis is therefore enhanced.

Proposition 5. Let ∗ be an associative conjunction on I satisfying 1 ∗ s =
s (∀ s ∈ I), and (→ , ∗) be an adjunction. If R is a reflexive and ∗-transitive fuzzy
relation on E, then the generalized fuzzy rough approximations of an arbitrary
fuzzy set are definable.

Proof. From Proposition 4, it suffices to verify the inclusions LR(F ) ⊆ R(F )
and R(F ) ⊆ UR(F ) for all F ∈ F(E). Let x ∈ E, then

LR(F )(x) = ∨y∈E(R(x , y) ∗ ∧z∈E(R(z , y) → F (z)))
≤ ∨y∈E ∧z∈E (R(x , y) ∗ (∨u∈E(R(z , u) ∗ R(u , y)) → F (z)))
≤ ∨y∈E ∧z∈E ∧u∈E(R(x , y) ∗ ((R(z , u) ∗ R(u , y)) → F (z)))
≤ ∨y∈E ∧z∈E (R(x , y) ∗ ((R(z , x) ∗ R(x , y)) → F (z)))
≤ ∨y∈E ∧z∈E (R(z , x) → F (z)) = R(F )(x),

UR(F )(x) = ∧y∈E(R(y , x) → ∨z∈E(R(y , z) ∗ F (z)))
≥ ∧y∈E ∨z∈E (R(y , x) → (R(y , x) ∗ R(x , z) ∗ F (z)))
≥ ∧y∈E ∨z∈E (R(x , z) ∗ F (z)) = R(F )(x) .

Therefore, LR = R, UR = R, and so URLR = LR and LRUR = UR.

Proposition 5 tells us that the presented fuzzy rough sets preserve the definability
of fuzzy rough approximations. In which case, they reduce to the existing fuzzy
rough sets in the literature [6,10,11,15,16,18,20]. The generalized fuzzy rough
approximation operators can also be interpreted as the generalized opening and
closure operators with respect to arbitrary fuzzy relations [1,2].

The definability of granularity is also preserved from the following proposition.

Proposition 6. Let ∗ be a commutative conjunction on I satisfying 1 ∗ s =
s (∀ s ∈ I), and (→ , ∗) be an adjunction, if R is a fuzzy ∗-similarity relation on
E, then for any x ∈ E, [x]R is definable, where [x]R(y) = R(x , y).

Proof. By the ∗-similarity of R, it follows that R(x , y) = ∨z∈E(R(x , z)∗R(z , y))
and R(x , y) = ∧z∈E(R(z , x) → R(z , y)) for all x , y ∈ E.

Let u ∈ E, then LR([x]R)(u) = ∨y∈E(R(u , y) ∗ ∧z∈E(R(z , y) → R(x , z))) =
∨y∈E(R(u , y)∗R(y , x))=R(u , x)=[x]R(u). And, UR([x]R)(u)=∧y∈E(R(y , u) →
∨z∈E(R(y , z) ∗ R(x , z))) = ∧y∈E(R(y , u) → R(y , x)) = R(u , x) = [x]R(u).
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Proposition 7. Let ∗ be a conjunction on I satisfying s∗1 = 1∗s = s (∀ s ∈ I),
and (→ , ∗) be an adjunction, if R is a reflexive and ∗-transitive fuzzy relation
on E, then UR(1y)(x) = R(x , y), x , y ∈ E.

Proof. Let x , y ∈ E, then UR(1y)(x)=∧u∈E(R(u , x) → ∨v∈E(R(u , v)∗1y(v))) =
∧u∈E(R(u , x) → (R(u , y) ∗ 1)) = ∧u∈E(R(u , x) → R(u , y)) = R(x , y).

Proposition 8. Let ∗ be a commutative conjunction on I satisfying 1 ∗ s =
s (∀ s ∈ I), and (→ , ∗) be an adjunction such that →=→ν . If R is a fuzzy ∗-
similarity relation on E, then LR(1{x}c)(y) = LR(1{y}c)(x) = ν(R(x , y)) for all
x , y ∈ E.

Proof. Clearly, LR and UR are dual. Thus LR(1{x}c)(y) = ν(UR(ν(1{x}c))(y)) =
ν(UR(1{x})(y)) = ν(UR(1x)(y)) = ν(R(y , x)) = ν(R(x , y)).

The equality LR(1{y}c)(x) = ν(R(x , y)) can be proved in the same way.

Proposition 9. Let ∗ be a conjunction on I satisfying 1 ∗ s = s (∀ s ∈ I),
and (→ , ∗) be an adjunction, if R is the identity relation on E, then LR(F ) =
UR(F ) = F for all F ∈ F(E).

Proof. Let F ∈ F(E) and x ∈ E,
LR(F )(x) = ∨y∈E(R(x , y) ∗ ∧z∈E(R(z , y) → F (z))) = ∨y∈E(R(x , y) ∗ (1 →

F (y))) = ∨y∈E(R(x , y) ∗ F (y)) = 1 ∗ F (x) = F (x).
The equality UR(F ) = F can be proved in the same manner.

Proposition 7–Proposition 9 lay down algebraic foundations of axiomatic char-
acterization of generalized fuzzy rough sets.

Proposition 10. Let ∗ be a conjunction on I satisfying 1 ∗ s = s (∀ s ∈ I), and
(→ , ∗) be an adjunction, if R is a crisp symmetric relation on E, then

LR(F )(x) = ∨y∈C(x) ∧z∈C(y) F (z) , UR(F )(x) = ∧y∈C(x) ∨z∈C(y) F (z) . (4)

for any F ∈ F(E) and x ∈ E, where C(x) = {y | (x , y) ∈ R}.

Proof. Let x ∈ E, then y ∈ C(x) ⇐⇒ (x , y) ∈ R ⇐⇒ 1R(x , y) = 1. Thus

LR(F )(x) = ∨y∈E(1R(x , y) ∗ ∧z∈E(1R(z , y) → F (z)))
= ∨y∈C(x)(1R(x , y) ∗ ∧z∈C(y)(1R(z , y) → F (z)))
= ∨y∈C(x) ∧z∈C(y) (1R(z , y) → F (z)) = ∨y∈C(x) ∧z∈C(y) F (z) .

The second can be proved in the same way.

In particular, if R ∈ P(E × E) is an equivalence relation, then LR(F )(x) =
∧y∈[x]RF (y) and UR(F )(x) = ∨y∈[x]RF (y).

In the case that both the relation R and the set F are crisp, the following
proposition indicates that the generalized fuzzy rough sets reduce to the gener-
alized rough sets.
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Proposition 11. Let R ∈ P(E × E) be a symmetry relation, then for any con-
junction ∗ and implication → on I, LR(1X) = 1LR(X) and UR(1X) = 1UR(X),
where LR(X) = ∪{C(u) | C(u) ⊆ X , u ∈ E} and UR(X) = (LR(Xc))c are
called the generalized rough approximations of X ∈ P(E).

Proof. Evidently, LR and UR are dual. It suffices to prove the equality LR(1X) =
1LR(X) for any X ∈ P(E).

Let x ∈ E and LR(1X)(x) = 1, then there exists u ∈ E such that 1R(x , u) = 1
and 1R(v , u) → 1X(v) = 1 for all v ∈ E. So C(u) �= ∅ since x ∈ C(u). For every
z ∈ C(u), we have that 1R(u , z) = 1R(z , u) = 1. If z ∈ Xc, then 1X(z) = 0. A
contradiction arises. Thus z ∈ X , and so C(u) ⊆ X . Therefore x ∈ LR(X) =
∪{C(u) | C(u) ⊆ X , u ∈ E}.

On the other hand, let x ∈ LR(X), then there exists y ∈ E such that x ∈ C(y)
and C(y) ⊆ X . So 1R(x , y) = 1R(y , x) = 1, and 1X(v) = 1 for all v ∈ C(y).

LR(1X)(x) = ∨u∈E(1R(x , u) ∗ ∧v∈E(1R(v , u) → 1X(v)))
≥ 1R(x , y) ∗ ∧v∈E(1R(v , y) → 1X(v))
= ∧v∈E(1R(v , y) → 1X(v))
= ∧v∈C(y)(1R(v , y) → 1) ∧ ∧v/∈C(y)(0 → 1X(v)) = 1 .

Thus LR(1X)(x) = 1, and therefore LR(1X) = 1LR(X).

From Proposition 11, if R is an equivalence relation, then C(x) is exactly the
[x]R. In which case, the generalized fuzzy rough sets are in agreement with the
Pawlak rough sets.

5 Conclusions

Necessity measure and probability measure are two important concepts in the
theory of random sets and probability theory. Both of which can be used for
characterizing the degree of beliefs of knowledge in data analysis and process-
ing. Through replacing a t-norm and its t-conorm with a lower semi-continuous
conjunction and its adjunctional implication, the presented approach to fuzzy
rough sets is a fuzzy generalization of Pawlak rough sets in an arbitrary fuzzy
rough universe (i.e., an arbitrary nonempty universe with a general fuzzy rela-
tion on it). A ‘smaller’ rough boundary and higher proximity degree between
the generalized fuzzy rough approximations, as well as more necessity measures
and less probability measures of fuzzy data are implied. Particularly, it has been
proved that the main properties of the Pawlak rough sets have been preserved
for the generalized fuzzy rough sets.

If the fuzzy rough universe for the study of generalized fuzzy rough sets is with
a translation-invariant additive group structure, which is an appropriate one for
image and signal analysis, the generalized fuzzy rough approximation operators
have their special expressions that are closely linked with fundamental morpho-
logical operators. Much characterization of fuzzy rough sets with mathematical
morphology theory is under consideration.
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Abstract. This paper presents a general framework for the study of covering-
based fuzzy approximation operators in which a fuzzy set can be approximated
by some elements in a crisp or a fuzzy covering of the universe of discourse. Two
types of approximation operators, crisp-covering-based rough fuzzy approxima-
tion operators and fuzzy-covering-based fuzzy rough approximation operators,
are defined, their properties are examined in detail. Finally, the comparison of
these new approximation operators is done, a sufficient and necessary condition
is given under which some operators are equivalent, and approximation operator
characterization of fuzzy partitions of the universe is obtained.

Keywords: Crisp coverings, fuzzy coverings, fuzzy-covering-based fuzzy rough
approximation operators, fuzzy partitions, fuzzy sets.

1 Introduction

The theory of rough sets is proposed by Pawlak in 1982 [9], it is a new mathematical
approach to deal with intelligent systems characterized by insufficient and incomplete
information, and has been found very successful in many domains.

The establishment of Pawlak rough set model is based on a partition or an equiva-
lence relation of the universe. However, in practical applications the knowledge of the
domains can’t be always described by partitions, so Pawlak model limited the appli-
cations of rough set theory. To address this issue, many researchers proposed several
interesting and meaningful extensions of equivalence relation in the literature such as
general binary relation [12,15], neighborhood system [13,16], covering and its general-
ization [1,3,6,10,18]. Particularly, Based on covering of the universe Pomykala [10,11]
put forward a suggestion, and obtained two pairs of dual approximation operators. In ad-
dition, Yao [16,17] discussed this kind of extension by the notion of neighborhood and
with granulated view respectively. On the other hand, another research topic to which
many researchers payed attention is the fuzzy generalization of rough sets. Dubois and
Prade [4], Chakrabarty et al. [2] introduced lower and upper approximations in fuzzy
set theory to obtain an extended notions called rough fuzzy set and fuzzy rough set. By
an axiomatic approach Morsi and Yakout [8] studied the fuzzy rough sets based on a
fuzzy partition of the universe. In [7,14] Wu, Zhang and Mi defined generalized fuzzy
rough approximation operators based on general binary fuzzy relations, which can be

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 55–62, 2007.
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viewed as a fuzzy generalization of the approximation operator defined in [16]. Feng
et al. [5] proposed the notion of covering-based generalized rough fuzzy sets in which
fuzzy sets can be approximated by some elements in a covering of the universe.

This paper extends Pawlak rough set model on the basis of a crisp or a fuzzy cov-
ering of the universe. In the next section, we review two types of crisp-covering-based
rough approximation operators and their interrelationships. In Section 3, four pairs of
approximation operators are proposed, the two pairs defined in crisp-covering approxi-
mation space are called crisp-covering-based rough fuzzy approximation operators and
the other two pairs defined in fuzzy-covering approximation space are called fuzzy-
covering-based fuzzy rough approximation operators. Some basic properties of these
approximation operators are examined. In Section 4, we compare the new approxima-
tion operators, and find that some conclusions w.r.t. the approximation operators in
crisp-covering approximation space do not hold in the fuzzy-covering approximation
space. To address this issue, we investigate the sufficient and necessary condition for
the equivalence of two pairs of fuzzy-covering-based fuzzy rough approximation oper-
ators and the approximation operator characterization of fuzzy partition of the universe.
We then conclude the paper with a summary in Section 5.

2 Preliminaries

Let U be a finite and nonempty universe. By a covering of U, denoted by C, we mean
a finite family of nonempty subsets of U such that the union of all elements of it is U.
Then (U,C) is called a crisp-covering approximation space. Specially, if C consists of
pairwise disjoint subsets then it is called a crisp partition of U, and (U,C) change into
Pawlak approximation space. For X ⊆ U, the lower and upper rough approximations of
X, C(X) and C(X), are defined by Pawlak as follows:

C(X) = ∪ {C ∈ C | C ⊆ X}, C(X) = ∪ {C ∈ C | C ∩ X � ∅}.

Let (U,C) be a crisp-covering approximation space. In order to extend Pawlak rough
set model in (U,C), a natural approach is to replace the equivalence classes in the de-
finition above with the elements in C. However, the obtained lower and upper rough
approximation operators are not dual, i.e. the following properties may not be satisfied:

C(X) =∼ C(∼ X), C(X) =∼ C(∼ X), ∀X ⊆ U.

Where ∼ X denotes the complement of X ⊆ U. To resolve this problem, many authors
[10,16,17] propose a scheme from which two pairs of dual approximation operators are
obtained: ∀X ⊆ U,

C′(X) = ∪ {C ∈ C | C ⊆ X} = {x ∈ U | ∃C ∈ C(x ∈ C,C ⊆ X)},
C′(X) = ∼ C′(∼ X) = {x ∈ U | ∀C ∈ C(x ∈ C ⇒ C ∩ X � ∅)}; (1)

C′′(X) = ∪ {C ∈ C | C ∩ X � ∅} = {x ∈ U | ∃C ∈ C(x ∈ C,C ∩ X � ∅)},
C′′(X) = ∼ C′′(∼ X) = {x ∈ U | ∀C ∈ C(x ∈ C ⇒ C ⊆ X)}. (2)
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We simply call C′ and C′′ : P(U) → P(U) the lower rough approximation operators
of (U,C), and C′ and C′′ : P(U) → P(U) the upper rough approximation operators of
(U,C) respectively.

The following two propositions follow from [16, Theorems 7 and 8].

Proposition 1. Let (U,C) be a crisp-covering approximation space. For X ⊆ U,

C′′(X) ⊆ C′(X) ⊆ X ⊆ C′(X) ⊆ C′′(X).

Proposition 2. The two pairs of the lower and upper rough approximation operators
defined by (1) and (2) are equivalent if and only if C is a crisp partition of U.

3 Fuzzy Approximation Operators Based on Coverings

Let U be a finite and nonempty universe. By fuzzy sets in U we mean Zadeh fuzzy sets,
and denote the family of all fuzzy sets in U by F (U). 1x denote the fuzzy singleton with
value 1 at x and 0 elsewhere. The denotations ∪, ∩ and ∼ mean Zadeh’s fuzzy union,
intersection and complement respectively. ∨ and ∧ denote max and min respectively.

A fuzzy relation R on U (i.e. R ∈ IU×U ) is said to be a fuzzy similarity relation [8]
if satisfies for x, y, z ∈ U the following conditions: R(x, x) = 1; R(x, y) = R(y, x) ;
R(x, z) ∧ R(z, y) ≤ R(x, y).

Let C = {C1, · · · ,Ck} be a finite family of nonempty fuzzy sets in U. Denote {1, ..., k}
by K. If ∪k

i=1Ci = U, then we call C a fuzzy covering of U, and (U,C) a fuzzy-covering
approximation space. If for every Ci ∈ C (i ∈ K), Ci is normalized (i.e ∨x∈UCi(x) = 1),
then we call the fuzzy covering C a normal fuzzy covering of U. Fuzzy covering C of
U is said to be a fuzzy partition of U [8] if it satisfies the following conditions: Every
fuzzy set in C is normalized; For any x ∈ U there is exactly one i ∈ K with Ci(x) = 1;
If i, j ∈ K such that Ci(x) = C j(y) = 1, then Ci(y) = C j(x) = ∨z∈U[Ci(z) ∧ C j(z)]. It can
be known from [8, Proposition 2.3] that there is a canonical one to one correspondence
between fuzzy similarity relations on U and fuzzy partitions of U.

In fuzzy-covering approximation space (U,C), by (1) and (2) we can define two pairs
of approximation operators as follows: ∀X ∈ F (U), x ∈ U,

C ′FR(X)(x) = ∨k
i=1{Ci(x) ∧ ∧y∈U[(1 −Ci(y)) ∨ X(y)]},

C ′FR(X)(x) = ∧k
i=1{(1 −Ci(x)) ∨ ∨y∈U[Ci(y) ∧ X(y)]}; (3)

C′′FR(X)(x) = ∧k
i=1{(1 −Ci(x)) ∨ ∧y∈U [(1 −Ci(y)) ∨ X(y)]},

C′′FR(X)(x) = ∨k
i=1{Ci(x) ∧ ∨y∈U[Ci(y) ∧ X(y)]}. (4)

C ′FR and C′′FR : F (U) → F (U) are referred to as the fuzzy-covering-based lower fuzzy

rough approximation operators on (U,C), and C ′FR and C′′FR : F (U)→ F (U) the fuzzy-
covering-based upper fuzzy rough approximation operators on (U,C) respectively.

If fuzzy covering C is degenerated to a crisp covering then the fuzzy rough approxi-
mation operators defined by (3) and (4) will degenerated to the following approximation
operators: ∀X ∈ F (U),

C ′RF(X)(x) = ∨x∈Ci ∧y∈Ci X(y), C ′RF(X)(x) = ∧x∈Ci ∨y∈Ci X(y); (5)
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C′′RF(X)(x) = ∧x∈Ci ∧y∈Ci X(y), C′′RF(X)(x) = ∨x∈Ci ∨y∈Ci X(y). (6)

Then C ′RF and C′′RF : F (U) → F (U) are referred to as the crisp-covering-based lower

rough fuzzy approximation operators on (U,C), and C ′RF and C′′RF : F (U) → F (U)
the crisp-covering-based upper rough fuzzy approximation operators on (U,C) respev-
tively.

In sequel, to simplify, we call both of fuzzy rough approximation operators and rough
fuzzy approximation operators the fuzzy approximation operators.

It can be verified that if the fuzzy covering C degenerate to a crisp covering and
X ⊆ U, then C ′FR(X) and C ′FR(X) degenerate to C′(X) and C′(X), and C′′FR(X) and

C′′FR(X) degenerate to C′′(X) and C′′(X) respectively. Hence the fuzzy approximation
operators defined by (3)-(6) are a kind of fuzzy generalizations of the rough approxi-
mation operators defined by (1) and (2). In addition, it is also easy to verify that for any
X ∈ F (U) the crisp-covering-based lower rough fuzzy approximationC ′RF(X) equals to
X∗ defined in [5] and called the covering-based fuzzy lower approximation of X. Hence,
the covering-based fuzzy lower approximation operator defined by Feng et al. [5] is a
special case of the lower fuzzy rough approximation operator defined by (3).

Theorem 1. Let (U,C) be a crisp-covering approximation space. C ′RF and C ′RF satisfy

the following properties: ∀X, Y ∈ F (U),
(1) C ′RF(∅) = ∅, C ′RF(U) = U,

(2) C ′RF(X) =∼ C ′RF(∼ X), C ′RF(X) =∼ C ′RF(∼ X),

(3) C ′RF(U) = U, C ′RF(∅) = ∅,
(3′) C ′RF(∅) = ∅, C ′RF(U) = U,

(4) X ⊆ Y ⇒ C ′RF(X) ⊆ C ′RF(Y), C ′RF(X) ⊆ C ′RF(Y),

(5) C ′RF(X) ⊆ X, X ⊆ C ′RF(X),

(6) C ′RF(C ′RF(X)) ⊇ C ′RF(X), C ′RF(X) ⊇ C ′RF(C ′RF(X)).
Generally, in fuzzy-covering approximation space (U,C), except (3′), (5) and (6),

C ′FR and C ′FR satisfy the other properties listed above. Specially if C is a normal fuzzy

covering of U then the property (3′) w.r.t. C ′FR and C ′FR holds.

By Theorem 1 we know that the properties satisfied by C ′RF and C ′RF are more than

those satisfied by C ′FR and C ′FR. In addition, we must note that neither C ′RF and C ′RF

nor C ′FR and C ′FR satisfy the following property:

C ′FR(X ∩ Y) = C ′FR(X) ∩ C ′FR(Y), C ′FR(X ∪ Y) = C ′FR(X) ∪ C ′FR(Y). (7)

On account of the restriction of pages we only give an example to illustrate (5) and
Eq. (7) w.r.t. C ′FR and C ′FR.

Example 1. Let U = {1, 2, 3},C = {{0.1/1, 1/2, 0.7/3}, {1/1, 0.6/2, 0.3/3}, {0.5/1, 0.9/2,
1/3}}. Then (U,C) is a fuzzy-covering approximation space. Given X1 = {1/1, 1/2, 0/3}
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and X2 = {0/1, 1/2, 1/3}, we can figure out C ′FR(X1 ∪ X2) = C ′FR(U) = U = {1/1, 1/2,
1/3}, C ′FR(X1) = {0.9/1, 0.9/2, 0.9/3} and C ′FR(X2) = {0.6/1, 0.6/2, 0.7/3}. Thus X1 �

C ′FR(X1) and C ′FR(X1)∪C ′FR(X2) = {0.9/1, 0.9/2, 0.9/3} � {1/1, 1/2, 1/3} = C ′FR(X1∪
X2). By the duality we have C ′FR(∼ X1) �∼ X1 and C ′FR(∼ X1∩ ∼ X2) � C ′FR(∼
X1) ∩ C ′FR(∼ X2). Thus the property (5) and Eq. (7) w.r.t. C ′FR and C ′FR do not hold.

A fuzzy relation on U can be induced from a fuzzy-covering approximation space
(U,C) which is connected with approximation operators C ′′FR and C ′′FR and defined by:

Rcom(x, y) = ∨k
i=1[Ci(x) ∧ Ci(y)], ∀x, y ∈ U.

Obviously Rcom is reflexive and symmetric, but it may not be transitive.

Theorem 2. Let (U,C) be a fuzzy-covering approximation space. For X ∈ F (U),

C ′′FR(X) = Rcom(X), C ′′FR(X) = Rcom(X).

Where for x ∈ U,

Rcom(X)(x) = ∧y∈U [(1 − Rcom(x, y)) ∨ X(y)], Rcom(X)(x) = ∨y∈U [Rcom(x, y) ∧ X(y)].

Proof. ∀X ∈ F (U), x ∈ U, C ′′FR(X)(x) = ∨k
i=1{Ci(x) ∧ ∨y∈U [Ci(y) ∧ X(y)]} = ∨k

i=1{∨y∈U
[Ci(x) ∧Ci(y) ∧ X(y)]} = ∨y∈U ∨k

i=1 [Ci(x) ∧Ci(y) ∧ X(y)] = ∨y∈U{∨k
i=1[Ci(x) ∧Ci(y)]∧

X(y)} = ∨y∈U[Rcom(x, y) ∧ X(y)] = Rcom(X)(x), that is, C ′′FR(X) = Rcom(X). The another
equation can be proved similarly. �

By Theorem 2 and [14, Theorems 5 and 7] we can gain the following theorem.

Theorem 3. Let (U,C) be a fuzzy-covering approximation space. C ′′FR and C ′′FR satisfy

the following properties: ∀X, Y ∈ F (U), x, y ∈ U,
(1) C ′′FR(X) =∼ C ′′FR(∼ X), C ′′FR(X) =∼ C ′′FR(∼ X),

(2) C ′′FR(U) = U, C ′′FR(∅) = ∅,
(3) C ′′FR(X) ⊆ X ⊆ C ′′FR(X),

(4) X ⊆ Y ⇒ C ′′FR(X) ⊆ C ′′FR(Y), C ′′FR(X) ⊆ C ′′FR(Y),

(5) C ′′FR(X ∩ Y) = C ′′FR(X) ∩ C ′′FR(Y), C ′′FR(X ∪ Y) = C ′′FR(X) ∪ C ′′FR(Y),

(6) C ′′FR(1U−{x})(y) = C ′′FR(1U−{y})(x), C ′′FR(1x)(y) = C ′′FR(1y)(x),

(7) if C is a normal fuzzy covering of U, then C ′′FR(∅) = ∅, C ′′FR(U) = U.

4 Comparison of Fuzzy Approximation Operators

Theorem 4. Let (U,C) be a fuzzy-covering approximation space. For X ∈ F (U),

C ′′FR(X) ⊆ C ′FR(X), C ′FR(X) ⊆ C ′′FR(X).

In special, if (U,C) is a crisp-covering approximation space, we have

C ′′RF(X) ⊆ C ′RF(X) ⊆ X ⊆ C ′RF(X) ⊆ C ′′RF(X), X ∈ F (U).
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Proof. Since C is a fuzzy covering of U, we have that for every x ∈ U there exists
a Cix ∈ C(ix ∈ K) such that Cix (x) = 1. So for X ∈ F (U), we have C ′′FR(X)(x) =

∧k
i=1{(1−Ci(x))∨∧y∈U[(1−Ci(y))∨ X(y)]} ≤ (1−Cix (x))∨∧y∈U[(1−Cix (y))∨ X(y)] =
∧y∈U[(1−Cix (y))∨ X(y)] = Cix (x)∧∧y∈U[(1−Cix (y))∨ X(y)] ≤ ∨k

i=1{Ci(x)∧∧y∈U[(1−
Ci(y)) ∨ X(y)]} = C ′FR(X)(x), that is, C ′′FR(X) ≤ C ′FR(X). By the duality, C ′FR(X) ⊆
C ′′FR(X) for all X ∈ F (U). Furthermore, since fuzzy rough approximation operators are
extension of rough fuzzy approximation operators, combining Theorem 1 (5) we can
gain another formula. �

Proposition 2 shows that the two pairs of rough approximation operators defined by (1)
and (2) are equivalent if and only if C is a crisp partition of U. Now a natural question is
that as their fuzzy extensions, whether the fuzzy rough approximation operators defined
by (3) and (4) are equivalent when the fuzzy covering C is a fuzzy partition of U?
Consider the next example.

Example 2. Let U = {x1, x2}, and C = {{1.0/x1, 0.3/x2}, {0.3/x1, 1.0/x2}} ⊆ F (U).
Then C is a fuzzy covering on U. Clearly C is a fuzzy partition of U. For the fuzzy
singleton 1x1 we have C ′FR(1x1) = {0.7/x1, 0.3/x2} and C ′′FR(1x1) = {1.0/x1, 0.3/x2}.
Thus C ′FR(1x1) � C ′′FR(1x1), which shows that C ′FR = C ′′FR does not hold.

Example 2 illuminates that in a fuzzy-covering approximation space (U,C), when C is
a fuzzy partition, the two pairs of approximation operators C ′FR, C ′FR and C ′′FR and C ′′FR

are unnecessarily identical respectively! Thus the next question is what the conditions
for their equivalence are? Furthermore, when C is a fuzzy partition, what properties
must be satisfied by these approximation operators? The two theorems below can an-
swer these questions.

Theorem 5. Let (U,C) be a fuzzy-covering approximation space. Then C is a fuzzy
partition of U if and only if the equation {C ′′FR(1x) | x ∈ U} = C holds.

Proof. “⇒” Assume that C is a fuzzy partition of U. Let Di = {x ∈ U | Ci(x) = 1} (i ∈
K). By the definition of fuzzy partition we have that D = {D1,D2, · · · ,Dk} is a crisp
partition of U. For Ci ∈ C and x ∈ U there exists a j ∈ K such that x ∈ D j and for any
y ∈ Di, Ci(x) = C j(y) holds. Then for any x, y ∈ U and Ci ∈ C, there exist j, l ∈ K such
that x ∈ D j and y ∈ Dl, Furthermore, we can gain Ci(x) ∧ Ci(y) = ∨z∈Di [C j(z) ∧ Cl(z)].
Hence, by the definition of fuzzy partition we have C ′′FR(1x)(y) = ∨i∈K[Ci(x) ∧Ci(y)] =

∨i∈K ∨z∈Di [C j(z)∧Cl(z)] = ∨z∈U[C j(z)∧Cl(z)] = C j(y), that is, C ′′FR(1x) = C j. Noticing
that C ia a fuzzy partition of U we can conclude that {C ′′FR(1x) | x ∈ U} = C.

“⇐” Suppose that {C ′′FR(1x) | x ∈ U} = C. Let R(x, y) = C ′′FR(1x)(y) for x, y ∈ U.
Then R is a fuzzy relation on U, according to [8, Proposition 2.3], in order to prove that
C is a fuzzy partition, it suffices to prove that R ia a fuzzy similarity relation on U.

The reflexivity of R follows from R(x, x) = C ′′FR(1x)(x) = ∨i∈KCi(x) = 1 for all x ∈
U. For any x, y ∈ U, R(x, y) = ∨i∈K[Ci(x) ∧ Ci(y)], which implies that R ia symmetric.
For any x, y, z ∈ U, by the symmetry of R and the supposition we have ∨z∈U[R(x, z) ∧
R(z, y)] = ∨z∈U[R(z, x) ∧ R(z, y)] = ∨z∈U[C ′′FR(1z)(x) ∧ C ′′FR(1z)(y)] = ∨i∈K[Ci(x) ∧
Ci(y)] = R(x, y), that is, R(x, z) ∧ R(z, y) ≤ R(x, y), which indicate that R is transitive.
Finally, we can conclude that R is a fuzzy similarity relation on U. �



Fuzzy Approximation Operators Based on Coverings 61

From [8, Proposition 2.3], Theorem 5 and its proof we can know that when C is a fuzzy
partition, Rcom is just a fuzzy similarity relation determined by C and C ′′FR coincides
with the T -upper approximation operator, given in [8] for T=Min.

Theorem 6. Let (U,C) be a fuzzy-covering approximation space. Two pairs of the
lower and upper fuzzy approximation operators defined by (3) and (4) are equivalent if
and only if C is a crisp partition of U.

Proof. “⇒” Assume that C ′FR(X) = C ′′FR(X) and C ′FR(X) = C ′′FR(X) for all X ∈ F (U).

Then∀x ∈ U, C ′FR(1x)(x) = ∧k
i=1[(1−Ci(x))∨Ci(x)] andC ′′RF(1x)(x) = ∨k

i=1Ci(x).Noting
that C is a fuzzy covering of U we have ∧k

i=1[(1 − Ci(x)) ∨ Ci(x)] = ∨k
i=1Ci(x) = 1, i.e.

1 − Ci(x) = 1 or Ci(x) = 1 for all x ∈ U, which implies that the covering C is a crisp
covering of U. Furthermore, from Proposition 2 we can deduce that C is a crisp partition
of U.

“⇐” Suppose that C be a crisp partition of U. Then (U,C) is a crisp approximation
space, the fuzzy rough approximation operators defined by (3) and (4) degenerate to the
rough fuzzy approximation operators defined by (5) and (6) respectively. Then it is only
needed to prove that C ′RF = C ′′RF and C ′RF = C ′′RF .

For every x ∈ U, there exists a Cix ∈ C such that x ∈ Cix , and for Ci,C j ∈ C with
x ∈ Ci and x ∈ C j, we have Ci = C j. By (5) and (6), for any X ∈ F (U) and x ∈ U we
have C ′RF(X)(x) = ∨x∈Ci ∧y∈Ci X(y) = ∧y∈Cix

X(y) and C ′′RF (X)(x) = ∧x∈Ci ∧y∈Ci X(y) =

∧y∈Cix
X(y). Thus C ′RF(X) = C ′′RF(X) for all X ∈ F (U), By the duality we also have

C ′RF(X) = C ′′RF(X) for all X ∈ F (U). �

5 Conclusion

In this paper, we have developed a general framework of the study of covering-based
fuzzy approximation operators. With the proposed approximation operators, fuzzy sets
can be approximated by a crisp or a fuzzy covering of the universe. The crisp-covering-
based rough fuzzy approximation operators and fuzzy-covering-based fuzzy rough ap-
proximation operators are all fuzzy extensions of some existing rough approximation
operators based on crisp covering of the universe, and the crisp-covering-based lower
rough fuzzy approximation operator coincides with the lower rough fuzzy approxima-
tion operator defined in [5]. The properties of new defined approximation operators
have been studied in detail. We have compared two types of fuzzy-covering-based fuzzy
rough approximation operator, and given a sufficient and necessary condition for their
equivalence which need the covering must be a crisp partition and not a fuzzy partition
of the universe, with which we gained an approximation operator characterization of
fuzzy partitions of the universe. The fuzzy approximation operators proposed here may
be used to unravel knowledge hidden in fuzzy decision systems.
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Abstract. Rough set theory has become well-established as a mecha-
nism for uncertainty management in a wide variety of applications. This
paper studies the measurement of uncertainty in generalized fuzzy rough
sets determined by a triangular norm. Based on information theory, the
entropy of a generalized fuzzy approximation space is introduced, which
is similar to Shannon’s entropy. To measure uncertainty in generalized
fuzzy rough sets, a notion of fuzziness is introduced. Some basic proper-
ties of this measure are examined. For a special triangular norm T = min,
it is proved that the measure of fuzziness of a generalized fuzzy rough
set is equal to zero if and only if the set is crisp and definable.

Keywords: Approximation operators, fuzzy sets, fuzzy rough sets, tri-
angular norm, uncertainty.

1 Introduction

Rough set theory [1], proposed by Pawlak in 1982, is a generalization of the classi-
cal set theory for describing and modeling of vagueness in ill defined environment.
The research has recently roused great interest in the theoretical and application
fronts to deal with inexact, uncertain or vague knowledge. Many authors have
extended Pawlak’s concept of rough sets in various aspects [2,3,4], especially in
the fuzzy environment [5,6,7,8,9,10,11,12]. As a natural need, Dubois and Prade
[5] combined fuzzy sets and rough sets in a fruitful way by defining rough fuzzy
sets and fuzzy rough sets. Later, various extensions of generalized fuzzy rough
sets have been made by introducing some logic operators [6,7,8,9,10,11,12].

Information theory, originally developed by Shannon [13] for communication
theory, has been a useful mechanism for characterizing the information con-
tent in various models and applications in many diverse fields. Attempts have
been made to use Shannon’s entropy to measure uncertainty in rough set theory
[14,15,16,17]. Recently, Chakrabarty et al. [18] introduced a measure of fuzzi-
ness in rough sets. Their measure based on a special index of fuzziness of a
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fuzzy set. Wierman [16], Liang et al. [19] introduced measures of uncertainty for
Pawlak’s rough set theory. Mi et al. [20] proposed an uncertainty measure in
partition-based fuzzy rough sets.

The purpose of this paper is to study the information-theoretic measure of
uncertainty in generalized fuzzy rough sets. In the next section, we give some
basic notions and properties related to generalized fuzzy rough sets defined by a
triangular norm. Based on information theory, the entropy of a generalized fuzzy
approximation space is introduced in Section 3, which is similar to Shannon’s
entropy. In Section 4, a notion of fuzziness of a generalized fuzzy rough sets
is defined as the entropy of rough belongingness. Some basic properties of this
uncertainty measure are examined. We then conclude the paper with a summary
in Section 5.

2 Generalized Fuzzy Rough Sets

In this section, we recall some basic notions and properties of generalized fuzzy
rough sets determined by a triangular norm.

A triangular norm, or shortly t-norm, is an increasing, associative and com-
mutative mapping T : I2 → I (where I = [0, 1] is the unit interval) that satisfies
the boundary condition: for all a ∈ I, T (a, 1) = a. The most popular continuous
t-norms are:

• the standard min operator TM(a, b) = min{a, b}, ∀a, b ∈ I;
• the algebraic product TP(a, b) = a ∗ b, ∀a, b ∈ I;
• the �Lukasiewicz t-norm TL(a, b) = max{0, a + b − 1}, ∀a, b ∈ I.
A binary operation S on the unit interval I is said to be the dual of a triangular

norm T , if ∀a, b ∈ I, S(a, b) = 1 − T (1 − a, 1 − b). S is also called a triangular
conorm of T (or shortly t-conorm) in the literature.

Let U and W be two nonempty sets. The Cartesian product of U with W is
denoted by U × W . The class of all crisp (fuzzy, respectively) subsets of U is
denoted by P(U) (F(U), respectively).

Definition 1. A fuzzy subset R ∈ F(U × W ) is referred to as a fuzzy binary
relation from U to W , R(x, y) is the degree of relation between x and y, where
(x, y) ∈ U × W . In particular, if U = W , we call R a fuzzy relation on U . R is
referred to as a reflexive fuzzy relation if R(x, x) = 1 for all x ∈ U ; R is referred
to as a symmetric fuzzy relation if R(x, y) = R(y, x) for all x, y ∈ U ; R is
referred to as a T -transitive fuzzy relation if R(x, z) ≥ ∨y∈UT (R(x, y), R(y, z))
for all x, z ∈ U . R is referred to as a T -similarity fuzzy relation if it is a reflexive,
symmetric, and T -transitive fuzzy relation.

In the sequel, T will be a lower semi-continuous triangular norm, therefore its
dual S is upper semi-continuous.

Definition 2. Let U and W be two finite nonempty sets called the universes,
and R be a fuzzy relation from U to W . The triple (U, W, R) is called a generalized
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fuzzy approximation space. If U = W , then it can be written as (U, R). We define
two fuzzy set-theoretic operators from F(W ) to F(U): ∀A ∈ F(W ),

R(A)(u) =
∨

y∈W

T (R(u, y), A(y)), u ∈ U,

R(A)(u) =
∧

y∈W

S(1 − R(u, y), A(y)), u ∈ U.

R and R are called generalized fuzzy lower and upper approximation operators.
The pair (R(A), R(A)) is called the generalized fuzzy rough set of A. If R(A) =
A = R(A), we say that A is definable, otherwise it is undefinable.

From the definition, the following theorem can be easily proved [9].

Proposition 1. Let R be an arbitrary fuzzy relation from U to W . Then the
generalized fuzzy lower and upper approximation operators, R and R, satisfy:
∀A, B ∈ F(W ), ∀α ∈ I, x ∈ U, y ∈ W ,

(FTL1) R(A) =∼ R(∼ A), (FTU1) R(A) =∼ R(∼ A);

(FTL2) R(W ) = U, (FTU2) R(∅) = ∅;

(FTL3) A ⊆ B =⇒ R(A) ⊆ R(B), (FTU3) A ⊆ B =⇒ R(A) ⊆ R(B);

(FTL4) S(R(A), α̂) = R(S(A, α̂)), (FTU4) T (R(A), α̂) = R(T (A, α̂));

(FTL5) R(1W\{y})(x) = 1 − R(x, y), (FTU5) R(1y)(x) = R(x, y).

Furthermore, if R is reflexive on U , then

(FTL6) R(A) ⊆ A, ∀A ∈ F(U), (FTU6) R(A) ⊇ A, ∀A ∈ F(U).

If R is symmetric on U , then ∀x, y ∈ U ,

(FTL7) R(1U\{y})(x) = R(1U\{x})(y), (FTU7) R(1y)(x) = R(1x)(y).

If R is T transitive on U , then ∀A ∈ F(U),

(FTL8) R(A) ⊆ R(R(A)), (FTU8) R(R(A)) ⊆ R(A).

Where ∼ A is the complement of A, α̂ is the constant fuzzy set with its mem-
bership function α̂(x) = α, ∀x ∈ U . S(A, B)(y) = S(A(y), B(y)), 1y is the char-
acteristic function of {y}.

3 Entropy of a Generalized Fuzzy Approximation Space

In Pawlak’s rough set theory, uncertainty may be arisen from the indiscernibility
(or equivalence) relation which is imposed on the universe, partitioning all values
into a finite set of equivalence classes. If every equivalence class contains only
one value, then there is no loss of information caused by the partitioning. In any
coarser partitioning, however, there are fewer classes, and each class will contain
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a larger number of members. Our knowledge, or information, about a particular
value decreases as the granularity of the partitioning becomes coarser. Based on
this idea, Wierman [16] defined the entropy of Pawlak’s approximation space
(U, R) as follows.

Let R be a crisp equivalence relation on U , {X1, . . . , Xk} be the equivalence
classes partitioned by, R. The entropy of R is then defined by

E(R) = −
k∑

i=1

|Xi|
|U | log2

|Xi|
|U |

Inspired by this definition, we introduce a kind of entropy for a generalized
fuzzy approximation space.

Let U = {x1, x2, . . . , xn} be the universal set, R be an arbitrary fuzzy relation
on U . Denoted by xR the fuzzy set with its membership function xR(y) =
R(x, y). For a fuzzy set A ∈ F(U), the cardinality of A is defined by |A| =∑
x∈U

A(x). Thus we have |xR| =
∑

y∈U

xR(y) =
∑

y∈U

R(x, y).

Definition 3. The entropy of a generalized fuzzy approximation space (U, R) is
defined by

F (R) = −
n∑

i=1

1
|U | log2

|xiR|
|U | ,

where we assume that log2 0 = 0. F (R) is the information gained by performing
the experiment R.

Proposition 2. Let R be a reflexive fuzzy relation on U , then
(1) The maximum value of F (R) is log2 |U |. Furthermore, F (R) = log2 |U | ⇐⇒

xiR = 1xi , ∀i ≤ n;
(2) The minimum value of F (R) is 0. Furthermore, F (R) = 0 ⇐⇒ xiR = U ,

∀i ≤ n.

Proof. It follows immediately from Definition 3.

Proposition 3. If R is a crisp equivalence relation on U , then F (R) = E(R).

Proof. Let R be a crisp equal relation on U , U/R = {X1, . . . , Xk} is the equiv-
alence classes partitioned by R. Then for each x ∈ U , there exists an Xx ∈ U/R
such that xR = 1Xx . Thus we have, |xR| = |Xx|. Therefore,

F (R) = −
∑

x∈U

1
|U| log2

|xR|
|U| = −

∑
x∈U

1
|U| log2

|xR|
|U|

= −
k∑

j=1

1
|U| |Xj | log2

|Xj |
|U| = E(R).

Proposition 3 implies that the entropy defined in Definition 3 is a generalization
of the same concept defined in [16].
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Proposition 4. Let P , Q be two arbitrary fuzzy relations on U . If P is finer
than Q, that is P ⊆ Q, then F (P ) ≥ F (Q).

Proof. Because the function f(x) = log2(x) is monotonous increasing, and

|xiP | =
n∑

j=1

P (xi, xj) ≤
n∑

j=1

Q(xi, xj) = |xiQ|,

we have

F (P ) = log2 |U | − 1
|U |

n∑

i=1

log2 |xiP | ≥ log2 |U | − 1
|U |

n∑

i=1

log2 |xiQ| = F (Q).

4 Uncertainty in Generalized Fuzzy Rough Sets

Let R be a reflexive fuzzy relation on the universal set U , T be a lower semi-
continuous triangular norm. ∀A ∈ F(U), the lower and upper approximations of
A are R(A) and R(A), respectively. For an element x ∈ U , the degree of rough
belongingness of x in A is defined by

b(A)(x) =

∑
u∈U

T (R(x, u), A(u))
∑

u∈U

R(u, x)
.

Clearly, ∀x ∈ U , 0 ≤ b(A)(x) ≤ 1. This immediately induced a fuzzy set b(A)
of U . If R is a crisp equivalence relation on U , A is a crisp subset of U , and
T = min, then b(R)(x) reduces the same concept made by [1].

Rough set theory inherently models two types of uncertainty. The first type
of uncertainty arises from the approximation space. If every equivalence class
contains only one object, then there is no loss of information caused by the par-
titioning. In any coarser partitioning, however, our knowledge about a particular
object decreases as the granularity of the partitioning becomes coarser. Uncer-
tainty is also modeled through the approximation regions of rough sets where
elements of the lower approximation region have total participation in the rough
set and those of the upper approximation region have uncertain participation in
the rough set. Equivalently, the lower approximation is the certain region and
the boundary area of the upper approximation region is the possible region.

Using the function of rough belongingness, we can define the information-
theoretic measure of uncertainty in generalized fuzzy rough sets as following.

Definition 4. The measure of fuzziness in a generalized fuzzy rough set (RA,
R(A)) is denoted by FR(A) and is defined by the entropy of the fuzzy set b(A).
That is

FR(A) = − 2
|U |

∑

x∈U

b(A)(x) log2 b(A)(x)
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It is evidence that even if R is a classical relation and A is a crisp subset of U ,
the rough set (R(A), R(A)) may still have some fuzziness.

Proposition 5. Let (U, R) be a generalized fuzzy approximation space, then for
every definable crisp set A, FR(A) = 0.

Proof. We first prove that: if x ∈ A, y /∈ A, then R(x, y) = R(y, x) = 0.
In fact, as A is definable, we have by the definition of definable set that

RA = A = RA. Then 1 = A(x) = RA(x) = min
u∈U

S(1 − R(x, u), A(u)) ≤ S(1 −
R(x, y), A(y)) = 1 − R(x, y). Which implies that R(x, y) = 0.

Recalling that 0 = A(y) = RA(y) = max
u∈U

T (R(y, u), A(u)) ≥ T (R(y, x),

A(x)) = R(y, x), we get R(y, x) = 0.
If u ∈ A, then

b(A)(u) =

∑
x∈U

T (R(u, x), A(x))
∑

x∈U

R(u, x)
=

∑
x∈A

T (R(u, x), 1)
∑

x∈A

R(u, x)
= 1.

Similarly, If u /∈ A, then b(A)(u) =

�

x∈U

T (R(u,x),A(x))
�

x∈U

R(u,x) = 0.

We conclude that FR(A) = − 2
|U|

∑
x∈U

b(A)(x) log2 b(A)(x) = 0.

Proposition 6. If R is reflexive, then FR(U) = FR(φ) = 0.

Proof: By Proposition 1 we know that U and φ are all definable. Thus FR(U) =
FR(φ) = 0 by Proposition 5.

Proposition 7. Let R be a reflexive relation on U , T = min. If FR(A) = 0,
A ∈ F(U), then A is a definable crisp set.

Proof. Suppose FR(A) = 0, by the definition of FR(A), we have for each x ∈ U
either b(A)(x) = 0 or b(A)(x) = 1.

(1) ∀x ∈ U with b(A)(x) = 0, from the definition of b(A) we obtain for all
u ∈ U , R(x, u) = 0 or A(u) = 0. But R is reflexive we have R(x, x) = 1, therefore,
A(x) = 0.

(2) ∀x ∈ U with b(A)(x) = 1, from the definition of b(A), the inequality
R(x, u) ≤ A(u) must hold for all u ∈ U . Especially, we have 1 = R(x, x) ≤ A(x),
then A(x) = 1.

Combining (1) and (2) we conclude that A is a crisp set.
We are now proving that A is definable, that is, R(A) = A = R(A).
Because A is crisp and T = min, by Definition 2 we have for all x ∈ U ,

R(A)(x) =
∨

y∈A

R(x, y), R(A)(x) =
∧

y �∈A

(1 − R(x, y).

(3) If x �∈ A, then R(A)(x) ≤ 1 − R(x, x) = 0 = A(x). Since A(x) = 0, we
have

b(A)(x) =

∑
u�=x

min(R(x, u), A(u))
∑

u�=x

R(u, x) + 1
< 1.
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Noticing that FR(A) = 0, it must happen that b(A)(x) = 0. Then by (1) for all
u ∈ U , either R(x, u) = 0 or A(u) = 0. Hence, R(x, y) = 0, ∀y ∈ A. Thus we
obtain R(A)(x) = 0 = A(x).

(4) If x ∈ A, then A(x) = 1. From the definition of b(A) we have b(A)(x) �= 0.
Noticing that FR(A) = 0 we have b(A)(x) = 1. By (2) we obtain R(x, y) ≤ A(y),
∀y ∈ U . Which implies that R(x, y) = 0, ∀y �∈ A. Hence R(A)(x) = 1 = A(x).

It is easy to see that R(A)(x) =
∨

y∈A

R(x, y) ≥ R(x, x) = 1. Therefore,

R(A)(x) = 1 = A(x).
Combining (3) and (4) we conclude that R(A) = A = R(A), which implies

that A is definable.

Proposition 8. Let R be a reflexive relation on U , T = min. Then for each
A ∈ F(U), FR(A) = 0 if and only if A is a definable crisp set.

Proof. It follows immediately from Propositions 5 and 7.

5 Conclusion

Rough set theory and fuzzy set theory are two important mathematical tools to
deal with inexact, vague, uncertain information. There are closed relationships
between the two notions. Every fuzzy set can be approximated by two approxi-
mation sets. Every rough set can introduce a fuzzy set automatically. Thus rough
sets have some fuzziness too. In the present paper, we studied the information-
theoretic measure of uncertainty in generalized fuzzy rough sets defined by a
triangular norm. Based on information theory, we introduced a concept of en-
tropy of a generalized fuzzy approximation space, some properties have been
examined which are similar to Shannon’s entropy. A measure of fuzziness of a
generalized fuzzy rough set was also defined by the entropy of the fuzzy set of
rough belongingness. This measure can be used to understand the essence of
rough set data analysis.
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Abstract. This paper discusses the problems arising in applications of
the unified rough and fuzzy rough set approach to analysis of inconsistent
information systems. The unified approach constitutes a parameterized
generalization of the variable precision rough set model. It bases on a sin-
gle notion of parameterized ε-approximation. As a necessary extension,
a method suitable for a correct determination of attributes’ significance
is proposed. In particular, the notions of positive ε-classification region
and ε-approximation quality are considered. A criterion for reduction of
condition attributes is given. Furthermore, a generalized definition of the
fuzzy extension ω is proposed.

1 Introduction

Noise and errors, which are inevitably present in data obtained from real decision
processes, can significantly bias results and conclusions obtained in applications
of the original rough set concept. In order to avoid this kind of problem, the
idea of admitting of a misclassification level was introduced by Ziarko [14], in
the form of a variable precision rough set (VPRS) model.

Fuzzy-rough hybridization is another important interdisciplinary area which
combines the crisp rough set theory with the theory of fuzzy sets. The idea of
fuzzy rough sets, given by Dubois and Prade [2], has attracted interest of many
researchers (see, e.g., [3,4,5,10,13]).

In our previous work, we recognized the need for using both the VPRS model
together with the concept of fuzzy rough approximation [7,8]. Developing such
a combined approach was motivated by the kind of decision system that we
have investigated. The considered decision process was performed by a human
operator, during control of a complex dynamic plant. Firstly, modelling control
actions of a human operator, in the form of a fuzzy inference system (FIS), is a
well established procedure elaborated in the framework of the fuzzy set theory.
The obtained fuzzy information system can be analyzed with the help of fuzzy
rough approximations. Secondly, due to a large amount of data obtained from a
dynamic system, it was also necessary to admit of some misclassification level.

In [8], we proposed unified parameterized crisp rough set and fuzzy rough set
models, which are based on a single notion of ε-approximation. In this way, we
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were able to avoid problems of constructing a consistent variable precision fuzzy
rough set (VPFRS) approach, caused by the use of different fuzzy connectives
in the lower and upper fuzzy rough approximations, respectively.

In the present paper, we propose a further development of our parameterized
rough set concept, aiming at its correct application to data analysis. The main
problem, we focus on, is the determination of attributes’ significance. A notion
of the positive ε-classification region is given and properties of ε-approximation
quality are considered. It is shown that a change of the ε-approximation qual-
ity measure cannot be used as a reliable indicator for detecting superfluous
attributes. Therefore, we introduce a new criterion for reduction of condition at-
tributes. In the case of the unified fuzzy rough set model, we propose a general
form of the fuzzy extension ω, in order to decide how the fuzzy ε-approximation
is mapped from the domain of the quotient set into the domain of the universe.

We start by recalling the basics of the unified parameterized approach to
approximation of crisp and fuzzy sets.

2 Unified Crisp Rough Set Model

The fundamental idea of the rough set theory consists in describing crisp subsets
of an universe U by means of a lower and upper approximation [9].

The lower approximation R(A) and upper approximation R(A) of a crisp set
A by an indiscernibility relation R are defined as follows

R(A) = {x ∈ U : [x]R ⊆ A} , (1)

R(A) = {x ∈ U : [x]R ∩ A �= ∅} , (2)

where [x]R denotes an indiscernibility (equivalence) class which contains an ele-
ment x ∈ U .

A modified relation of set inclusion was introduced by Ziarko [14], with the aim
of improving results of approximation, in the case of large information systems.
It can be explained using the notion of inclusion degree incl(A, B), of a nonempty
(crisp) set A in a (crisp) set B, defined as follows

incl(A, B) =
card(A ∩ B)

card(A)
. (3)

By applying a lower limit l and an upper limit u, introduced in [6], satisfy-
ing the condition 0 ≤ l < u ≤ 1, we can define the u-lower and the l-upper
approximation of any subset A ∈ U by an indiscernibility relation R.

The u-lower approximation Ru(A) and l-upper approximation Rl(A) of A by
R are defined as follows

Ru(A) = {x ∈ U : incl([x]R, A) ≥ u} , (4)

Rl(A) = {x ∈ U : incl([x]R, A) > l} , (5)

where [x]R denotes an indiscernibility class of R containing an element x.
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In order to obtain a new form of a parameterized rough set model, we adapt
the notion of rough inclusion function ν, given in [11], which is defined on the
Cartesian product of the powersets P(U) of the universe U

ν : P(U) × P(U) → [0, 1] . (6)

We assume that the first parameter represents a nonempty set, and the rough
inclusion function should be monotonic with respect to the second parameter

ν(X, Y ) ≤ ν(X, Z) for any Y ⊆ Z, where X, Y, Z ⊆ U .

The inclusion degree (3), proposed by Ziarko in the framework of the VPRS
model, constitutes a rough inclusion function.

We introduce a unified crisp rough set approach by proposing a parameterized
single form of approximation of crisp sets. Given an indiscernibility relation R,
the ε-approximation Rε(A) of a crisp set A is defined as follows

Rε(A) = {x ∈ U : ν([x]R, A) ≥ ε} , (7)

where ε ∈ (0, 1].
The ε-approximation Rε has the following properties:

(P1) Rε(A) = R(A) for ε = 1 ,

(P2) Rε(A) = R(A) for ε = 0+ ,

(P3) Rε(A) = Ru(A) for ε = u ,

(P4) Rε(A) = Rl(A) for ε = l+ ,

where 0+ and l+ denote numbers infinitesimally exceeding 0 and l, respectively.
Using a single form of approximation is especially important for defining a

fuzzy generalization of parameterized rough set model.

3 Unified Fuzzy Rough Set Model

The well-known and widely used concept of fuzzy rough sets was introduced
by Dubois and Prade [2]. For a given fuzzy set A ⊆ U and a fuzzy partition
Φ = {F1, F2, . . . , Fn} on the universe U , the membership functions of the lower
and upper approximations of A by Φ are defined as follows

μΦ(A)(Fi) = inf
x∈U

I(μFi(x), μA(x)) , (8)

μΦ(A)(Fi) = sup
x∈U

T(μFi(x), μA(x)) , (9)

where T and I denote a T-norm operator and an implicator, respectively.
In order to get a parameterized fuzzy rough set model, we must consider an

important problem of determining the degree of inclusion of one fuzzy set into
another. Many different measures of fuzzy set inclusion were proposed, (see, e.g.,
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[1,3]). The novelty of our approach consists in describing inclusion of sets, by
a fuzzy set rather than a number. Therefore, we introduce [8] a notion of a
fuzzy inclusion set, denoted by INCL(A, B), which expresses the inclusion of a
fuzzy set A in a fuzzy set B. The set INCL(A, B) is determined with respect to
particular elements (or singletons) of the set A.

The notions of power, support and α-cut, defined for a finite fuzzy set A ∈ U
with n elements, will be applied in our considerations: power(A) =

∑n
i=1 μA(xi);

supp(A) = {x : μA(xi) > 0}; Aα = {x ∈ U : μA(x) ≥ α}, for α ∈ [0, 1].
First, we propose a fuzzy counterpart of the rough inclusion function (6),

which is defined on the Cartesian product of the families F(U) of all fuzzy subsets
of the universe U

να : F(U) × F(U) → [0, 1] . (10)

The fuzzy rough α-inclusion function να(A, B) of any nonempty fuzzy set A
in a fuzzy set B is defined as follows

να(A, B) =
power(A ∩ INCL(A, B)α)

power(A)
. (11)

The value να(A, B) is needed to expresses how many elements of the nonempty
fuzzy set A belong, at least to the degree α, to the fuzzy set B.

Furthermore, we introduce a function called res, defined on the Cartesian
product P(U) × F(U), where P(U) denotes the powerset of the universe U , and
F(U) the family of all fuzzy subsets of the universe U , respectively

res : P(U) × F(U) → [0, 1] . (12)

We require that

res(∅, Y ) = 0 ,
res(X, Y ) ∈ {0, 1}, if Y is a crisp set ,
res(X, Y ) ≤ res(X, Z) for any Y ⊆ Z, where X ∈ P(U), and Y, Z ∈ F(U) .

The value of res(X, Y ) represents the resulting membership degree in a given
fuzzy set Y , determined by taking into account only the elements of a given crisp
set X . Various definitions of res are possible. If we want to be in accordance
with the limit-based approach of Dubois and Prade, we can assume the following
form of res

res(X, Y ) = inf
x∈X

μY (x) . (13)

For ε ∈ (0, 1], the ε-approximation Φε(A) of a fuzzy set A, by a fuzzy partition
Φ = {F1, F2, . . . , Fn}, is a fuzzy set on the domain Φ with membership function
expressed by

μΦε(A)(Fi) = res(Sε(Fi, A), INCL(Fi, A)) , (14)

where
Sε(Fi, A) = supp(Fi ∩ INCL(Fi, A)αε) ,

αε = sup{α ∈ [0, 1] : να(Fi, A) ≥ ε} .
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The set Sε(Fi, A) contains those elements of the approximating class Fi that
are included in A, at least to the degree αε. The resulting membership μΦε(A)(Fi)
is determined using only elements from Sε(Fi, A) instead of the whole class Fi.

It can be shown that applying the definition (13) of the function res leads to
a simple form of (14): μΦε(A)(Fi) = sup{α ∈ [0, 1] : να(Fi, A) ≥ ε}.

By a unified definition of fuzzy rough ε-approximation, we avoid the use of
two different fuzzy connectives, in contrast to the approximations (8) and (9).

4 Analysis of Decision Tables

Let us begin our consideration with the simpler case of a crisp decision table. We
have a finite universe U with N elements: U = {x1, x2, . . . , xN}. Each element x
of the universe U is described by a combination of values of n condition attributes
C = {c1, c2, . . . , cn} and m decision attributes D = {d1, d2, . . . , dm}.

We can determine a family of classes C̃ = {C1, C2, . . . , C�n} containing in-
discernible elements with respect to condition attributes C, and a family of in-
discernibility classes D̃ = {D1, D2, . . . , D�m}, generated with respect to decision
attributes D.

For determining the consistence of a crisp decision table, a notion of positive
ε-classification region of D̃ by C̃ can be used [7]. We take into account only
those elements of the approximating classes which are in accordance with the
approximated classes

Pos
�Cε

(D̃) =
�m⋃

i=1

C̃ε(Di) ∩ Di . (15)

Thus, we get a measure of ε-approximation quality, denoted by γ
�Cε

(D̃)

γ
�Cε

(D̃) =
card(Pos

�Cε
(D̃))

card(U)
=

∑
�n
i=1

∑
�m
j=1 δijcard(Ci ∩ Dj)

card(U)
(16)

where

δij =
{

1 if ν(Ci, Dj) ≥ ε
0 otherwise

Now, we consider a simple example, which will demonstrate the problem with
applying the above measure of ε-approximation quality for determination of
attributes’ significance.

Example 1. Given a family D̃ = {D1, D2} of indiscernibility classes obtained
with respect to the decision attribute d:

D1 = { x1, x3, x4, x5, x8, x9, x11, x13, x15, x17, x19 },
D2 = { x2, x6, x7, x10, x12, x14, x16, x18, x20 },

and a family C̃ = {C1, C2, C3} of indiscernibility classes obtained with respect
to all condition attributes:
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C1 = { x1, x3, x5, x7, x9, x11, x13, x15, x17, x19 },
C2 = { x2, x4, x6, x8 },
C3 = { x10, x12, x14, x16, x18, x20 }.

The inclusion degrees are obtained as follows:

ν(C1, D1) = 0.9, ν(C2, D1) = 0.5, ν(C3, D1) = 0, ν(C1, D2) = 0,
ν(C2, D2) = 0.5, ν(C3, D2) = 1.0.

For ε = 1, we obtain Pos
�Cε

(D̃) = C3, and γ
�Cε

(D̃) = card(C3)
card(U) = 0.3. Admitting

of a misclassification level, by assuming ε = 0.8, leads to Pos
�Cε

(D̃)) = (C1 ∩
D1) ∪ C3 and γ

�Cε
(D̃) = 0.75.

In the original rough set theory (ε = 1), the measure of approximation quality
can be used for determining significance of particular condition attributes in
the decision process. Removing a condition attribute from information system
can cause merging of some indiscernibility classes. In that case, a decrease of
approximation quality means that the removed attribute is indispensable. We
can discard an attribute, only if the approximation quality retains its previous
value. However, we show now that the ε-approximation quality (16) can not be
used as an entirely reliable indicator for making conclusion about significance of
attributes in the variable precision rough set framework (for ε < 1).

Assume the required inclusion degree ε = 0.8. First, let us remove a single
condition attribute, such that indiscernibility classes C2 and C3 merge into one
class denoted by C2&3. We obtain the inclusion degree ν(C2&3, D2) = 0.8. Since
the condition for inclusion of the class C2&3 in the ε-approximation of D2 is
satisfied, C2&3 will be included in the positive region of ε-approximation. Fi-
nally, we get Pos

�Cε
(D̃) = (C1 ∩D1)∪ (C2&3 ∩D2). The ε-approximation quality

γ
�Cε

(D̃) = 0.85. After removing an attribute, we paradoxically obtain an in-
creased value of the ε-approximation quality, which is rather expected to be
decreasing.

The results obtained in the above example can be explained by the properties of
the ε-approximation. For ε = 1, taking a subset of condition attributes C′ ⊂ C,
and a subset A ⊆ U , we have

C̃′
ε(A) ⊆ C̃ε(A) . (17)

This relation does not hold in general, for ε < 1. Even in the case, when the
value of ε-approximation quality does not change, after removing some condition
attribute, we cannot be sure, whether the considered attribute may be discarded.
It is possible that we encounter a local increase of ε-approximation of one ap-
proximated class and a local decrease of ε-approximation of one another, in such
a way that the total change of cardinality of the positive ε-classification region
remains unchanged.

Thus, it is necessary to inspect a change in the positive ε-classification region,
instead of observing the change Δγ

�C′
ε
(D̃) = γ

�Cε
(D̃) − γ

�C′
ε
(D̃), before deciding

whether to remove an attribute.
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Definition 1. For a subset of condition attributes C′ ⊂ C, the change in the
positive ε-classification region, denoted by ΔPos

�C′
ε
(D̃), is defined as follows

ΔPos
�C′

ε
(D̃) = (Pos

�Cε
(D̃) ∪ Pos

�C′
ε
(D̃)) − (Pos

�Cε
(D̃) ∩ Pos

�C′
ε
(D̃)) . (18)

Criterion 1. A condition attribute c ∈ C is dispensable: C′ = C − {c}, iff
card(ΔPos

�C′
ε
(D̃)) = 0.

To consider the problem of determining the consistency of fuzzy decision tables
and significance of fuzzy attributes, we should apply a generalized measure of
ε-approximation quality [7]. For the families of fuzzy similarity classes D̃ and C̃,
the ε-approximation quality of D̃ by C̃ is defined as follows

γ
�Cε

(D̃) =
power(Pos

�Cε
(D̃))

card(U)
, (19)

where
Pos

�Cε
(D̃) =

⋃

Dj∈ �D
ω(C̃ε(Dj)) ∩ Dj . (20)

Since the fuzzy rough ε-approximation is expressed in the domain of C̃, we
use in (20) a fuzzy extension ω for mapping the ε-approximation into the domain
of the universe U . Let us introduce a general form of the fuzzy extension ω.

Definition 2. The fuzzy extension ω(X), for any fuzzy set X on the domain
C̃, denotes a mapping from C̃ into the domain of the universe U

μω(X)(x) = ref(μX(C1), μX(C2), . . . , μX(C
�n), μC1(x), μC2 (x), . . . , μC

�n
(x)) ,

(21)
where ref denotes a function : [0, 1]2�n → [0, 1] .

Various definitions of the fuzzy extension ω are possible. In the fuzzy rough set
approach of Dubois and Prade [2], the following form of the fuzzy extension ω
is used

μω(X)(x) = μX(Ci), if μCi(x) = 1 . (22)

In the definition of fuzzy ε-classification region, we take into account only
those elements of the ε-approximation, for which there is no contradiction be-
tween the approximated and the approximating similarity classes.

In the case of determining the significance of condition attributes with fuzzy
values, we should inspect a change in the fuzzy positive ε-classification region
(20), according to Definition 1. A fuzzy counterpart of Criterion 1, with power
instead of card should be used.

5 Conclusions

Reduction of attributes in an information system is an important issue in ap-
plications of the rough set theory. The problem of a correct determination of
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attributes’ significance in the parameterized (fuzzy) rough set approach requires
a detailed inspection of changes in the positive region of classification, after re-
moving particular condition attributes. Using only a value of the ε-approximation
quality can be misleading because that measure preserves the monotonicity prop-
erty only in the special case for ε = 1 (original rough sets). Therefore, we propose
an additional criterion for reduction of condition attributes. In future research,
the properties of the unified fuzzy rough set model should be investigated, with
respect to various form of the function res of resulting membership and the
fuzzy extension ω.
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Abstract. Knowledge discovery methods used to find relationships
among software engineering data and the extraction of rules have gained
increasing importance in recent years. These methods have become nec-
essary for improvements in the quality of the software product and the
process. The focus of this paper is a first attempt towards combining
strengths of rough set theory and neuro-fuzzy decision trees in classifying
software defect data. We compare classification results for four methods:
rough sets, neuro-fuzzy decision trees, partial decision trees, rough-neuro-
fuzzy decision trees. The analysis of the results include a family-wise 10
fold paired t-test for accuracy and number of rules. The contribution of
this paper is the application of a hybrid rough-neuro-fuzzy decision tree
method in classifying software defect data.

Keywords: Classification, Neuro-Fuzzy-Decision Trees, Rough Sets,
Software Defects.

1 Introduction

This paper presents approaches to classification of software defect data using
data mining methods from rough set theory [9], fuzzy decision trees [15] and
neuro-fuzzy decision trees [1]. In the context of software defect classification, the
term data mining refers to knowledge-discovery methods used to find relation-
ships among defect data and the extraction of rules useful in making decisions
about defective modules either during development or during post-deployment
of a software system. A software defect is a product anomaly (e.g, omission of a
required feature or imperfection in the software product) [11]. As a result, defects
have a direct bearing on the quality of the software product and the allocation
of project resources to program modules. Software metrics make it possible for
software engineers to measure and predict quality of both the product and the
process [11]. In this work, the defect data consists of product metrics.
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There have been several studies in applying computational intelligence tech-
niques such as rough sets [10], fuzzy clustering [5,16], neural networks [7] to
software quality data. Statistical predictive models correlate quality metrics to
number of changes to the software. The predicted value is a numeric value that
gives the number of changes (or defects) to each module. However, in practice,
it is more useful to have information about modules that are highly defective
rather than knowing the exact number of defects for each module. This has led to
the application of machine learning methods to software quality data. It should
also be mentioned that the software quality data used in several of the above
mentioned studies were derived from non object-oriented programs. The focus
of this paper is a first attempt towards combining strengths of rough set theory
and neuro-fuzzy decision trees. Neuro-fuzzy decision trees (N-FDT) include a
fuzzy decision tree (FDT) structure with parameter adaptation strategy based
on neural networks [1]. The contribution of this paper is the presentation of
software defect classification results using several methods based on rough set
theory and a hybrid method that includes rough-neuro-fuzzy decision tree.

This paper is organized as follows. In Sect. 2, we give a brief overview of
neuro-fuzzy decision tree algorithm. The details of the defect data and classifi-
cation methods are presented in Sect. 3. This is followed by an analysis of the
classification results in Sect. 4.

2 Neuro-fuzzy Decision Trees

Fuzzy decision trees are powerful, top-down, hierarchical search methodology to
extract easily interpretable classification rules [2]. However, they are often criti-
cized for poor learning accuracy [13]. In [1] an N-FDT algorithm was proposed
to improve the learning accuracy of fuzzy decision trees. In the forward cycle,
N-FDT constructs a fuzzy decision tree using the standard FDT induction al-
gorithm fuzzy ID3 [15]. In the feedback cycle, parameters of fuzzy decision trees
(FDT) have been adapted using stochastic gradient descent algorithm by travers-
ing back from each leaf to root nodes. During the parameter adaptation stage,
N-FDT retains the hierarchical structure of fuzzy decision trees. A detailed dis-
cussion of N-FDT algorithm with computational experiments using real-world
datasets and analysis of results are available in [1].

2.1 Brief Overview of N-FDT

Fig. 1 shows an exemplary N-FDT with two summing nodes to carry out the
inference process. There are five paths starting from root node to five leaf nodes.
Leaf nodes are shown by dots and indexed as m = 1, 2, , 5. Certainty factor
corresponding to mth leaf node and lth class is indicated by βml. From all the
leaf nodes, certainty corresponding to class-l are summed up to calculate yl.
For an arbitrary pattern (or say ith pattern), the firing strength of pathm with
respect to lth class as defined by (1)

μi
pathm

× βml, (1)
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Fig. 1. Exemplary Neuro-Fuzzy Decision Tree

where μi
pathm

is the membership degree of ith pattern to pathm and can be
calculated as shown in (2)

μi
pathm

=
∏

j

μF m
j

(
xi

j

)
. (2)

Here xj is the jth input attribute and μF m
j

(
xi

j

)
is the degree of membership of xi

j

into Fm
j and Fm

j is fuzzy membership function for xj on pathm. Firing strengths
of all the paths for a particular class-l are summed up to calculate the prediction
certainty yi

l (l = 1, ..., q) of ith pattern through fuzzy decision tree as shown in (3)

yi
l =

M∑

m=1

μi
pathm

× βml, (3)

where 0 ≤ yi
l ≤ 1 and q is total number of classes. When classification to a

unique class is desired, the class with the highest membership degree needs to
be selected, i.e., classify given pattern to class l0, where

l0 = arg max
l=1,...,q

{
yi

l

}
. (4)

To fuzzify input attributes, we have selected Gaussian membership functions
out of many alternatives due to its differentiability property. For ith pattern,
membership degree of pathm can be calculated as shown in (5)

μi
pathm

=
∏

j

μF m
j

(
xi

j

)
=

∏

j

exp

((
xi

j − cjm

)2

2σ2
jm

)
, (5)

where cjm and σjmare center and standard deviation (width) of Gaussian mem-
bership function of jth input attribute xj on pathm, i.e., of Fm

j . We now briefly
outline the strategy of N-FDT by performing an adaptation of all types of para-
meters (centers, widths, and certainty factors) simultaneously on the structure
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shown in Fig. 1. We define as the error function of the fuzzy decision tree, the
mean-square-error defined by (6)

E =
1
2n

q∑

l=1

n∑

i=1

(
di

l − yi
l

)2
, (6)

where n is the total number of training patterns and di
l and yi

l are the de-
sired prediction certainty and the actual prediction certainty of lth class for
ith pattern, respectively. At each epoch (iteration), the complete parameter
P = {cjm, σjm, βml | m = 1, ..., M ; l = 1, ..., q} is moved by a small distance η
in the direction in which E decreases most rapidly, i.e., in the direction of the
negative gradient − ∂E

∂θ where θ is the parameter vector constituted from the
set P. This leads to the parameter update rule shown in (7)

θτ+1 = θτ − η
∂E

∂θ
, (7)

where τ is the iteration index and η is the learning rate. The update equations for
centers, widths, and certainty factors can be found in [1]. Parameter adaptation
continues until error goes below certain small positive error goal ε or the specified
number of training epochs has been completed.

3 Defect Data Classification

The PROMISE1 Software Engineering Repository data set was used for our
experiments. The data set includes a set of static software metrics about the
product as a predictor of defects in the software. There are a total of 94 at-
tributes and one decision attribute (indicator of defect level). The defect level
attribute value is TRUE if the class contains one or more defects and FALSE
otherwise. The metrics at the method level are primarily drawn from Halstead’s
Software Science metrics [6] and McCabe’s Complexity metrics [8]. The metrics
at the class level, include such standard measurements as Weighted Methods per
Class (WMC), Depth of Inheritance Tree (DIT), Number of Children (NOC),
Response For a Class (RFC), Coupling Between Object Classes (CBO), and
Lack of Cohesion of Methods (LCOM) [4]. The data includes measurements for
145 modules (objects).

3.1 Neuro-fuzzy Decision Tree Method

All the attributes have been fuzzified using fuzzy c-means algorithm [3] into three
fuzzy clusters. From the clustered row data, Gaussian membership functions have
been approximated by introducing the width control parameter λ. The center of
each gaussian membership function has been initialized by fuzzy cluster centers
generated by the fuzzy c-means algorithm. To initialize standard deviations,
1 http://promise.site.uottawa.ca/SERepository
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we have used a value proportional to the minimum distance between centers of
fuzzy clusters. For each numerical attribute xj and for each gaussian membership
function, the Euclidean distance between the center of Fjk and the center of
any other membership function Fjh is given by dc (cjk, cjh), where h �= k. For
each kth membership function, after calculating dcmin (cjk, cjh), the standard
deviation σjk has been obtained by (8)

σjk = λ × dcmin (cjk, cjh) ; 0 < λ ≤ 1, (8)

where λ is the width control parameter. For the computational experiments
reported here, we have selected various values of λ ∈ (0, 1] to introduce variations
in the standard deviations of initial fuzzy partitions. After attribute fuzzification,
we run the fuzzy ID3 algorithm with cut α = 0 and leaf selection threshold βth =
0.75. These fuzzy decision trees have been tuned using the N-FDT algorithm for
500 epochs with the target MSE value 0.001.

3.2 Rough-Hybrid Methods

Experiments reported were performed with RSES2 using rule-based and tree-
based methods. The RSES tool is based on rough set methods. Only the rule-
based method which uses genetic algorithms in rule derivation [14] is reported
in this paper. Experiments with non-rough set based methods were performed
with WEKA3 using a partial decision tree-based method (DecisionTree) which
is a variant of the well-known C4.5 revision 8 algorithm [12]. The experiments
were conducted using 10-fold cross-validation technique. The accuracy results
with ROSE (another rough-set based tool) using a basic minimal covering algo-
rithm was 79%. However, since ROSE4 uses an internal 10-fold cross-validation
technique, we have not included the experimental results in our pair-wise t-
statistic test. The attributes were discretized in the case of rough set methods.
The Rough-Neuro-FDT method included i) generating reducts from rough set
methods ii) using the data from the reduced set of attributes to run the NFDT
algorithm.

4 Analysis of Classification Results

Tables 1 and 2 give a summary of computational experiments using four different
classification methods. Percentage classification accuracy has been calculated
by nc

n × 100%, where n is the total number of test patterns, and nc is the
number of test patterns classified correctly. A family wise t-test was performed
for the six pairs to compare whether significant differences exist between the
four classification algorithms in terms of accuracy and the number of rules. The
t-statistic has a student’s t-distribution with n − 1 degrees of freedom5.
2 http://logic.mimuw.edu.pl/∼rses
3 http://www.cs.waikato.ac.nz/ml/weka
4 http://idss.cs.put.poznan.pl/site/rose.html
5 R.V. Hogg and E.A. Tanis, E.A: Probability and Statistical Inference. Macmillan

Publishing Co., Inc., New York, 1977.
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Table 1. Defect Data Classification I

10CV Accuracy% Results

Run Neuro-FDT Rough-Neuro-FDT Rough Methods DecisionTree

1 85.71 71.42 92.9 71.43
2 85.71 92.85 78.6 85.71
3 64.28 67.58 57.1 64.29
4 71.42 71.42 57.1 71.43
5 64.28 57.14 50 71.43
6 78.57 78.57 78.6 64.29
7 85.71 71.42 71.4 85.71
8 71.42 78.57 71.4 57.14
9 92.85 100 78.6 78.57
10 89.47 89.47 84.2 84.21

Avg.Acc 78.94 77.84 71.99 73.42

Table 2. Defect Data Classification II

10CV Results - Number of Rules

Run Neuro-FDT Rough-Neuro-FDT Rough Methods DecisionTree

1 3 2 231 9
2 14 18 399 12
3 4 3 330 8
4 2 5 282 8
5 6 1 308 8
6 6 4 249 7
7 6 7 124 12
8 2 6 292 10
9 10 7 351 14
10 4 4 235 9

Avg.#ofrules 5.7 5.7 280 9.7

Probability distribution (Pr) values for tn−1,α/2∗6 were obtained from a standard
t-distribution table. In what follows, α = 0.05 and n − 1 = 9 relative to 10
different training-testing runs. With 9 degrees of freedom, and significance level
of 0.995, we find that Pr = 3.25. The paired t-test results for all combinations
(6 pairs) in Table 3 shows that there is no significant difference between any of
the methods in terms of accuracy.

In terms of the t-test for number of rules shown in Table 3, the results show
that there is no significant difference between i) Neuro-FDT and Rough-Neuro-
FDT and ii) Rough-Neuro-FDT and DecisionTree. The reason being that the
average number of rules used by these classifiers are similar and few. The other
interesting observation is that there is a slight difference in the performance of the
Neuro-FDT and DecisionTree algorithms. However, the genetic algorithm-based
classifier in RSES induces a large set of rules. As a result, there is a significant
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Table 3. T-test Results

Accuracy Number of Rules

Pairs Avg Std. Deviation t-stat Avg Std. Deviation t-stat

R − NFDT/NFDT −1.10 8.24 −0.42 0.00 3.02 0.00
R − NFDT/Rough 5.85 11.67 1.59 −274.00 74.36 −11.67

R − NFDT/DT 4.42 12.58 1.11 −4.00 3.83 −3.30
NFDT/Rough 6.95 7.57 2.91 −274.40 74.42 −11.66

NFDT/DT 5.52 8.09 2.16 −4.00 2.94 −4.30
Rough/DT −1.43 14.22 −0.32 270 75.96 11.26

difference when classifiers are compared with the rough classifier on the basis
of number of rules. The other important observation is the role that reducts
play in defect data classification. On an average, only 10 attributes (out of 95)
were used by the rough set method with no significant reduction in classification
accuracy. In fact, the Rough-Neuro-FDT (hybrid) method results in a minimal
number of rules with comparable accuracy. The average number of attributes
(over 10 runs) is about 4. The metrics that are most significant on the class-level
include: DIT, RFC, CBO and LCOM. At the method level, the metrics that are
most significant include: i) Halstead’s metric of content where the complexity of
a given algorithm independent of the language used to express the algorithm ii)
Halstead’s metric of level which is level at which the program can be understood
iii) Halstead’s metric of number of unique operands which includes variables
and identifiers, constants (numeric literal or string) function names when used
during calls iv) total lines of code v) branch − count is the number of branches
for each module. Branches are defined as those edges that exit from a decision
node.

5 Conclusion

This paper presents approaches to classification of software defect data using
rough set algorithms, neuro-fuzzy decision trees and partial decision tree meth-
ods. We present classification results in terms of accuracy and number of rules
applied to a software quality data set available in the public domain. The analy-
sis includes a family-wise 10 fold paired t-test for the four different methods. The
t-test shows that there is no significant difference between any of the methods
in terms of accuracy. However, in terms of rules, there is a marked difference.
The hybrid approach that combines rough set method with neuro-fuzzy deci-
sion trees has the most potential. This is particularly promising in the case of
process metrics such as efficacy of review procedures, change control procedures
and risk management. In contrast to product metrics which are easily obtained
with automated metric tools, process metrics are harder to collect and project
teams are reluctant to spend time gathering such data.



86 S. Ramanna, R. Bhatt, and P. Biernot

References

1. Bhatt, R. B., Gopal, M.: Neuro-fuzzy decision trees, International Journal of
Neural Systems, 16 (1)(2006) 63-78.

2. Bhatt, R. B.: Fuzzy-Rough Approach to Pattern Classification- Hybrid Algorithms
and Optimization, Ph.D. Dissertation, Electrical Engineering Department, Indian
Institute of Technology Delhi, India (2006)

3. Bezdek, J.C: Pattern Recognition with Fuzzy Objective Function Algorithms. New
York: Plenum (1981)

4. Chidamber, S. R., Kemerer, F.C.: A metrics suite for object-oriented design. IEEE
Trans. Soft. Eng., v. 20 no. 6, (June 1994) 476-493.

5. Dick, S., Meeks, A., Last, M, Bunke, H, Kandel, A: Data mining in software metrics
databases, Fuzzy Sets and Systems 145 (2004) 81110.

6. Halstead, M.H.: Elements of Software Science. Elsevier, New York, (1977)
7. Khoshgoftaar, T.M., Allen, E.B.: Neural networks for software quality prediction.

In: Pedrycz, W., Peters, J.F.(Eds.), Computational Intelligence in Software Engi-
neering, World Scientific, River Edge, NJ (1998) 3363.

8. McCabe, T.: A complexity measure. IEEE Trans. on Software Engineering SE-2(4),
(1976) 308-320.

9. Pawlak, Z.: Rough sets. International J. Comp. Information Science, 11(3)(1982)
341–356.

10. Peters, J.F., Ramanna, S: Towards a software change classification system: A rough
set approach. Software Quality Journal, 11 (2003) 121-147.

11. Peters, J.F. Pedrycz, W.: Software Engineering: An Engineering Approach. John
Wiley and Sons, New York (2000)

12. Quinlan, J.R: Induction of decision trees. Machine Learning 1(1), 1986, 81-106.
13. Tsang, E.C.C., Yeung, D.S., Lee, J.W.T., Huang,D.M., Wang, X.Z.: Refinement of

generated fuzzy production rules by using a fuzzy neural network. IEEE Trans. on
SMC-B, 34 (1)(2004) 409-418.
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Abstract. The hybridization of rough sets and fuzzy sets has focused
on creating an end product that extends both contributing computing
paradigms in a conservative way. As a result, the hybrid theory inherits
their respective strengths, but also exhibits some weaknesses. In partic-
ular, although they allow for gradual membership, fuzzy rough sets are
still abrupt in a sense that adding or omitting a single element may dras-
tically alter the outcome of the approximations. In this paper, we revisit
the hybridization process by introducing vague quantifiers like “some”
or “most” into the definition of upper and lower approximation. The re-
sulting vaguely quantified rough set (VQRS) model is closely related to
Ziarko’s variable precision rough set (VPRS) model.

Keywords: vague quantifiers, fuzzy sets, rough sets, VPRS model.

1 Introduction

In rough set theory, an object belongs to the upper approximation of a set as soon
as it is related to one of the elements in the set, while the lower approximation
only retains those objects related to all the elements in the set. This is due
to the use of an existential quantifier in the definition of upper approximation,
and of a universal quantifier for the lower approximation. In applications that
use real-life data (which is usually noisy to some extent, and hence prone to
classification errors and inconsistency), the definition of upper approximation
might be too loose (easily resulting in very large sets), while the definition of
lower approximation might be too strict (easily resulting in the empty set). A
similar phenomenon can be observed at the level of fuzzy rough set theory, where
the ∃ and ∀ quantifiers are replaced by the sup and inf operations (see e.g. [1,6]),
which prove just as susceptible to noise as their crisp counterparts.

In his variable precision rough set (VPRS) model, Ziarko [8,9] introduced
thresholds to deal with these problems in the crisp case. In general, given 0 ≤
l < u ≤ 1, an element y is added to the lower approximation of a set A if at least
100 ∗ u percent of the elements related to y are in A. Likewise, y belongs to the
upper approximation of A if more than 100∗l percent of the elements related to y

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 87–94, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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are in A. This can be interpreted as a generalization of the rough set model using
crisp quantifiers at least 100 ∗ u percent and more than 100 ∗ l percent to replace
the universal quantifier (which corresponds to “at least 100 percent”) and the
existential quantifier (which corresponds to “more than 0 percent”). Also, some
attempts have been made to pursue this approach within the fuzzy rough set
model, having in common that they still rely on the use of crisp thresholds l and
u (see e.g. [2,4]).

In this paper, we go one step further by introducing vague quantifiers like
most and some into the model. In this way, an element y belongs to the lower
approximation of A if most of the elements related to y are included in A. Like-
wise, an element belongs to the upper approximation of A if some of the elements
related to y are included in A. Mathematically, we model vague quantifiers in
terms of Zadeh’s notion of fuzzy quantifiers [7]. As such, the new model inherits
both the flexibility of VPRSs for dealing with classification errors (by relaxing
the membership conditions for the lower approximation, and tightening those for
the upper approximation) and that of fuzzy sets for expressing partial constraint
satisfaction (by distinguishing different levels of membership to the upper/lower
approximation). Moreover, we illustrate that the model can be used in a mean-
ingful way, regardless of whether the relation R and the set A to be approximated
are crisp or fuzzy. In each case, the outcome of the approximations will be a pair
of fuzzy sets delineating A in a flexible way.

The remainder of this paper is structured as follows. In Section 2, we review
basic notions of classical rough sets and VPRSs, while Section 3 introduces
vaguely quantified rough sets in the crisp case, and illustrates their relevance in
the context of information retrieval. In Section 4, we lift the VQRS paradigm to
the level of fuzzy rough set theory, distinguish it from related work that combines
VPRSs with fuzzy sets and detail an experiment on a benchmark dataset to show
the performance of the proposed extension vis-à-vis the classical approach in a
rough data analysis problem. Finally, in Section 5, we conclude.

2 Variable Precision Rough Sets

Recall that the traditional upper and lower approximation [5] of a set A in the
approximation space (X, R) are defined by

y ∈ R↑A iff A ∩ Ry 	= ∅ (1)
y ∈ R↓A iff Ry ⊆ A (2)

in which Ry is used to denote the equivalence class (also called R-foreset) of y.
Furthermore, the rough membership function RA of A is defined by

RA(y) =
|Ry ∩ A|

|Ry| (3)

RA(y) quantifies the degree of inclusion of Ry into A, and can be interpreted
as the conditional probability that y belongs to A, given knowledge about the
equivalence class Ry that y belongs to. One can easily verify that
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y ∈ R↑A iff RA(y) > 0 (4)
y ∈ R↓A iff RA(y) = 1 (5)

In other words, y is added to the upper approximation as soon as Ry overlaps
with A, while even a small inclusion error of Ry in A results in the rejection of
the whole class from the lower approximation.

Example 1. Consider a document collection D = {d1, . . . , d20} in which the doc-
uments are arranged according to topic into four categories : D1 = {d1, . . . , d5},
D2 = {d6, . . . , d10}, D3 = {d11, . . . , d15} and D4 = {d15, . . . , d20}. Hence, the
categorization defines an equivalence relation R on X . Suppose now that a user
launches a query, and that the relevant documents turn out to be (automati-
cally determined) the set A = {d2, . . . , d12}. This suggests that the information
retrieval system simply might have missed d1 since all other documents from
D1 are in A. Furthermore, the fact that only d11 and d12 are retrieved from D3
might indicate that these documents are less relevant to the query than the doc-
uments of D2, which all belong to A. Pawlak’s original rough set approach does
not allow to reflect these nuances, since R↓A = D2 and R↑A = D1 ∪ D2 ∪ D3,
treating D1 and D3 in the same way.

Since in real life, data may be affected by classification errors caused by humans
or noise, Ziarko [9] relaxes the constraints in (4) and (5) to obtain the following
parameterized definitions:

y ∈ R↑lA iff RA(y) > l (6)
y ∈ R↓uA iff RA(y) ≥ u (7)

Formulas (4)–(7) can also be read in terms of quantifiers, i.e.

y ∈ R↑A iff (∃x ∈ X)((x, y) ∈ R ∧ x ∈ A) (8)
y ∈ R↓A iff (∀x ∈ X)((x, y) ∈ R ⇒ x ∈ A) (9)
y ∈ R↑lA iff more than 100 ∗ l% elements of Ry are in A (10)
y ∈ R↓uA iff at least 100 ∗ u% elements of Ry are in A (11)

Note that the quantifiers used above are all crisp: the existential quantifier ∃,
the universal quantifier ∀, as well as two threshold quantifiers > 100 ∗ l% and
≥ 100∗u%. As such, although the VPRS model warrants a measure of tolerance
towards problematic elements, it still treats them in a black-or-white fashion:
depending on the specific choice of l and u, an element either fully belongs, or
does not belong to the upper or lower approximation.

Example 2. Let us return to the document retrieval problem from Example 1.
Ziarko’s model offers more flexibility to distinguish the roles of D1 and D3, but
the choice of the thresholds is crucial. In a symmetric VPRS model, l is chosen
equal to 1−u [9]. For u = 0.8 we obtain R↓.8 = D1∪D2 and R↑.2 = D1∪D2∪D3.
For u = 0.9, however, we obtain the same results as in Example 1.
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3 Vaguely Quantified Rough Sets

The VPRS definitions for upper and lower approximation from the previous sec-
tion can be softened by introducing vague quantifiers, to express that y belongs
to the upper approximation of A to the extent that some elements of Ry are in
A, and y belongs the lower approximation of A to the extent that most elements
of Ry are in A. In this approach, it is implicitly assumed that the approximations
are fuzzy sets, i.e., mappings from X to [0, 1], that evaluate to what degree the
associated condition is fulfilled.

To model the quantifiers appropriately, we use Zadeh’s concept of a fuzzy
quantifier [7], i.e. a [0, 1] → [0, 1] mapping Q. Q is called regularly increasing if
it is increasing and it satisfies the boundary conditions Q(0) = 0 and Q(1) = 1.

Example 3. Possible choices for Q are the existential and the universal quantifier

Q∃(x) =
{

0, x = 0
1, x > 0 Q∀(x) =

{
0, x < 1
1, x = 1

for x in [0, 1], that will lead us to (4) and (5); or the quantifiers

Q>l(x) =
{

0, x ≤ l
1, x > l

Q≥u(x) =
{

0, x < u
1, x ≥ u

for x in [0, 1], that will lead us to (6) and (7).

Example 4. The quantifiers in Example 3 are crisp, in the sense that the outcome
is either 0 or 1. An example of a fuzzy quantifier taking on also intermediate
values is the following parametrized formula, for 0 ≤ α < β ≤ 1, and x in [0, 1],

Q(α,β)(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x ≤ α
2(x−α)2

(β−α)2 , α ≤ x ≤ α+β
2

1 − 2(x−β)2

(β−α)2 , α+β
2 ≤ x ≤ β

1, β ≤ x

For example, Q(0.1,0.6) and Q(0.2,1) could be used respectively to reflect the vague
quantifiers some and most from natural language.

Given sets A1 and A2 in X and a fuzzy quantifier Q, Zadeh [7] computes the
truth value of the statement “Q A1’s are also A2’s” by the formula

Q

(
|A1 ∩ A2|

|A1|

)
(12)

Once we have fixed a couple (Ql, Qu) of fuzzy quantifiers, we can formally
define the Ql-upper and Qu-lower approximation of A by

R↑Ql
A(y) = Ql

(
|Ry ∩ A|

|Ry|

)
= Ql(RA(y)) (13)

R↓QuA(y) = Qu

(
|Ry ∩ A|

|Ry|

)
= Qu(RA(y)) (14)
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for all y in X . It is straightforward to verify that R↑Q∃A = R↑A and R↓Q∀A =
R↓A, and that R↑Q>l

A = R↑lA and R↓Q≥u
A = R↓uA. Moreover, if Qu ⊆ Ql,

i.e., Qu(x) ≤ Ql(x) for all x in [0, 1], then R↓QuA ⊆ R↑Ql
A.

Example 5. Let us return once more to the document retrieval problem discussed
in Example 1 and 2. In our VQRS model with fuzzy quantifiers Qu = Q(0.2,1)
and Ql = Q(0.1,0.6) the lower approximation R↓QuA equals

{(x6, 1), . . . , (x10, 1), (x1, 0.875), . . . , (x5, 0.875), (x11, 0.125), . . . , (x15, 0.125)}

In this weighted list a document ranks higher if most of the elements in its topic
category are in A. The gradations reflect the different roles of the categories in a
desirable way. For example, category D3 is not excluded but its documents are
presented only at the bottom of the list. A similar phenomenon occurs with the
upper approximation R↑Ql

A = {(x1, 1), . . . , (x10, 1), (x11, 0.68), . . . , (x15, 0.68)}.

4 Vaguely Quantified Fuzzy Rough Sets

As the definition of vaguely quantified rough sets brings together ideas from fuzzy
sets and rough sets, it is instructive to examine their relationship to, and combine
them with existing work on fuzzy-rough hybridization. Throughout this section,
we assume that T is a triangular norm (t-norm for short), i.e., any increasing,
commutative and associative [0, 1]2 → [0, 1] mapping satisfying T (1, x) = x, for
all x in [0, 1], and that I is an implicator, i.e. any [0, 1]2 → [0, 1]-mapping I
that is decreasing in its first, and increasing in its second component and that
satisfies I(0, 0) = 1, I(1, x) = x, for all x in [0, 1]. We also assume that the upper
and lower approximation of a fuzzy set A in X under a fuzzy relation R in X
are defined by [6]

R↑A(y) = sup
x∈X

T (R(x, y), A(x)) (15)

R↓A(y) = inf
x∈X

I(R(x, y), A(x)) (16)

for y in X . Note how these formulas paraphrase the definitions (8) and (9) which
hold in the crisp case. In particular, the sup and inf operations play the same
role as the ∃ and ∀ quantifiers, and as such a change in a single element can still
have a large impact on (15) and (16).

This observation has inspired some researchers to propose altered definitions
of fuzzy-rough approximations in the spirit of the VPRS model. For example,
Mieszkowicz-Rolka and Rolka [4] used the concept of a fuzzy inclusion set (based
on an implicator) and the notion of α-inclusion error (based on α-level sets),
while Fernández-Salido and Murakami [2] defined new approximations based on
the so-called β-precision quasi minimum minβ and maximum maxβ (aggregation
operators dependent on a parameter β in [0, 1]). A serious drawback of these
models is that they still rely on crisp thresholds l and u like Ziarko’s model, which
requires a fairly complex and not wholly intuitive mathematical apparatus.
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The VQRS approach, on the other hand, lends itself to a much smoother
and more elegant fuzzification. In fact, formulas (13) and (14) can simply be
maintained in the fuzzy case, i.e., for y in X we have

R↑Ql
A(y) = Ql

(
|Ry ∩ A|

|Ry|

)
(17)

R↓QuA(y) = Qu

(
|Ry ∩ A|

|Ry|

)
(18)

with the conventions that the R-foreset Ry is defined by Ry(x) = R(x, y) for
x in X , the intersection A ∩ B of two fuzzy sets A and B in X is defined by
(A ∩ B)(x) = min(A(x), B(x)) and the cardinality |A| of a fuzzy set A in X is
defined by

∑
x∈X

A(x).

It is interesting that no implicator appears inside the VQRS lower approxima-
tion (18), as opposed to (16). In fact, |Ry∩A|/|Ry| and inf

x∈X
I(R(x, y), A(x)) are

considered in fuzzy set literature as two alternatives, to compute the inclusion
degree of Ry into A, the former set- or frequency-based and the latter logic-based
(see e.g. [3]).

To demonstrate that the VQRS construct offers a worthwhile alternative to
the traditional “logic”-based operations of fuzzy rough set theory in the con-
text of rough data analysis, we ran an experiment on the housing benchmark
dataset1. This dataset concerns housing prices in suburbs of Boston; it has 506
instances, 13 conditional attributes (12 continuous, one binary) and a continuous
class attribute called MEDV (median value of owner-occupied homes in $1000s).

The setup of our experiment is as follows. Based on the distribution of the
data, we defined a fuzzy partition on the universe of MEDV, containing three
fuzzy classes low, medium and high in the range [0,50] as shown in Figure 1a. We
also defined a fuzzy relation R in the universe X of instances expressing indis-
tinguishability between instances x1 and x2 based on the conditional attributes:

R(x1, x2) =
13

min
i=1

max
(

0, min
(

1, 1.2 − α
|ci(x1) − ci(x2)|

l(ci)

))
(19)

in which ci denotes the ith conditional attribute, l(ci) is its range, and α is a
parameter ≥ 1.2 that determines the granularity of R (the higher α, the finer-
grained the R-foresets).

We divided the instances into 11 folds for cross validation: in each step, we se-
lected one fold as test set and used the remaining folds as training set X ′ to com-
pute the lower approximation of each decision class. For traditional fuzzy rough
sets, we used formula (16), with three popular implicators IL (Lukasiewicz),
IKD ( Kleene-Dienes), and IG (Gödel) defined in Table 1. For the VQRS model,
we used formula (18), with a fixed quantifier Qu = Q(0.2,1) (shown in Figure
1b). We then predicted the membership of each test instance y to each class A

1 Available at http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Fig. 1. a) Fuzzy partition of class attribute b) Fuzzy quantifier Q(0.2,1) for “most”

as the extent to which there exists a similar training instance x belonging to the
previously learned lower approximation C of A:

sup
x∈X′

T (R(x, y), C(x)) (20)

In this formula, T is a t-norm; in our experiments, we used TM (minimum) and
TL (Lukasiewicz), which are also shown in Table 1.2

The average absolute error between the predicted and the actual membership
values of the test instances was used as a metric for comparing the approaches.
Also, we let α in (19) range from 2 to 8. From the results in Table 2, we observe
that all approaches perform better for increasing values of α. This corresponds to
the idea that a finer-grained relation allows for better approximation. However,

Table 1. Implicators and t-norms used in the experiment

IL(x, y) = min(1 − x + y, 1) TL(x, y) = max(0, x + y − 1)
IKD(x, y) = max(1 − x, y) TM (x, y) = min(x, y)

IG(x, y) =

�
1, if x ≤ y
y, otherwise

Table 2. Experimental results for 11-fold cross-validation

α IL-TL IKD-TM IG-TM VQRS-TL VQRS-TM

2 0.276 0.320 0.321 0.257 0298
3 0.264 0.301 0.315 0.238 0.280
4 0.258 0.288 0.299 0.236 0.265
5 0.263 0.268 0.274 0.246 0.256
6 0.272 0.264 0.270 0.261 0.258
7 0.282 0.269 0.271 0.274 0.266
8 0.291 0.280 0.280 0.286 0.279

2 IKD and IG are, respectively, the S-implicator and R-implicator of TM , while the
S- and R-implicator of TL coincide in IL.
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for a too fine-grained relation, the average errors start increasing again, indicat-
ing an overfit of the model.

Comparing IL-TL with VQRS-TL, we notice that in both cases the smallest
error is obtained for α = 4. The corresponding relation is still relatively coarse-
grained. We observe that our VQRS-TL approach is least hampered by this: it
in fact achieves the lowest average error of all approaches displayed in the table.
The approaches with TM score worse in general, but again the smallest error is
obtained with our VQRS-TM model.

5 Conclusion

In the VQRS model introduced in this paper, an element y belongs to the lower
approximation of a set A to the extent that most elements related to y are in
A. Likewise, y belongs to the upper approximation to the extent that some el-
ements related to y are in A. The use of vague quantifiers “most” and “some”,
as opposed to the traditionally used crisp quantifiers “all” and “at least one”
makes the model more robust in the presence of classification errors. Experimen-
tal results on the housing dataset show that VQRS consistently outperforms the
classical approach.
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Abstract. Each search engine queried by a metasearch engine returns results in 
the form of a result list of documents. The key issue is to combine these lists to 
achieve the best performance. The salient contribution of this paper is a result 
merging model that applies Yager's fuzzy aggregation Ordered Weight 
Average, OWA, operator in combination with the concept of importance guided 
aggregation to extend the OWA-based result merging model proposed by Diaz. 
Our result merging model, IGOWA, (Importance Guided OWA) improves upon 
the OWA model proposed by Diaz so as to allow weights to be applied to 
search engine result lists. To support our model we also explore a scheme for 
computing search engine weights. We call the weights obtained from our 
scheme Query-System Weights and we compare this with the scheme for 
computing search engine weights proposed by Aslam and Montague. We refer 
to Aslam’s scheme as System Weights. 

Keywords: Data Fusion, Metasearch engines, Metasearching, OWA, IGOWA. 

1   Introduction 

Metasearching is an application of standard data fusion techniques in the field of 
information retrieval. A metasearch engine is an Internet search tool that allows a user 
access to multiple search engines. It passes a query to multiple search engines, 
retrieves results from each of them in the form of a result list, and then combines 
these result lists into a single result list.  Two key components of a metasearch engine 
are the query dispatcher and the result merger. The query dispatcher selects search 
engines to which the query is sent and the result merger merges the results from 
multiple search engines. In this paper we propose a fuzzy result-merging model 
(IGOWA) for metasearch, which extends the OWA model for result merging 
proposed by Diaz [3, 4] so as to allow us to give different weights to different search 
engine result lists prior to merging. Since our model needs search engine weights we 
also propose a scheme to compute search engine weights. We call the weights 
computed using this scheme Query System Weights. Aslam and Montague [2] 
suggest a simplistic scheme to compute search engine weights. Subsequently, we shall 
refer to weights computed using this scheme as System Weights. In our experiments 
we compare the performance of IGOWA model with the OWA model when System 
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Weights and Query System Weights are used as inputs to the IGOWA model. The rest 
of the paper is organized in four sections. Section 2 describes a summary of related 
work. Section 3 describes our merging approach by using IGOWA. Section 4 
discusses how to compute the weights by IGOWA. Section 5 presents experimental 
results achieved by using IGOWA, and compares them with OWA. Experimental data   
comes from TREC (Text Retrieval Conference). 

2   Related Work 

Data fusion techniques have been applied to develop result merging models in the 
past. Early research in this field can be attributed to Thompson [9], Fox & Shaw [5], 
Alvarez [1] have all explored this area. Other models include the Logistic Regression 
Model [6], and the Linear Combination Model. 

Based on the political election strategy, Borda Count, Aslam and Montague [2] 
proposed two models. The first of these, the Borda-Fuse, works by assigning points to 
each document in each of the lists to be merged. Documents are ranked in descending 
order of total points accumulated by virtue of its rank in each result list.  The second 
is the Weighted Board-Fuse model. This is a weighted version of the Borda-Fuse 
model and ranks documents in descending order of the linear combination of the 
product of points earned in each result list and the weight of the search engine who 
returns the result list. For the latter model, Aslam and Montague [2] proposed a 
scheme to learn search engine weights, based on the prior performance of the search 
engine.  

A major shortcoming of the Borda-Count based models is the handling of missing 
documents. In these models every document, based on its position/rank in each result 
list, gets a certain number of points. However some documents appear in some but not 
all result lists. Reasons for missing documents have been discussed by Diaz [3, 4]. 
Borda-Fuse model assigns no points for these missing documents. This results in 
missing documents being ranked at the bottom of the list. According to Meng [7, 8] 
missing documents pose a major challenge to result merging as they make the content 
of the result lists heterogeneous.  Diaz [3, 4] develops a fuzzy result merging model 
OWA which is based on the fuzzy aggregation OWA operator by Yager [11, 12]. The 
OWA model uses a measure similar to Borda points, called positional values. The 
positional value (PV) of a document di in the result list lk returned by a search engine 
sk is defined as (n – rik + 1) where, rik is the rank of di in search engine sk and n is the 
total number of documents in the result.  Thus, higher the rank of a document in a 
result list, the larger the positional value of the document in that list. One key feature 
of the OWA model is that it provides two heuristics (H1 and H2) for handling missing 
documents. This is done by computing the positional value of a missing document in 
the result list and thereby effectively inserting the document in the result list in which 
it is missing. Diaz in [3] shows that the heuristic H1 provides the most effective way 
to handle missing documents.  Let PVi be the positional values for a document d in the 
ith search engine. Let m be the total number of search engines. Let r be the number of 
search engines in which d appears. Let j denote a search engine not among the r 
search engines where d appears.  In heuristic H1 PVj for all j is denoted by the 
average of the positional values of the documents in r search engines. In heuristic H2 
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PVj for all j is denoted by the average of the positional values of the documents in all 
m search engines. 

3   Merging Approach 

In this section we discuss our IGOWA result merging model that is the extension of 
the OWA model for metasearch. Let us define the OWA operator, F, of dimension n 
as a mapping F: Rn -> R which has an associated weighting vector, W = [w1, w2, ... 
wn] 

T  given by: 

wj  ε [0,1]  and ∑
=

n

j 1

wj  = 1   (1) 

F(a1, a2,..., an) = ∑
=

n

j 1

wj bj, where  bj  is  the jth largest ai.   (2) 

From equations (1) and (2) it can be seen that the OWA weights are key to the 
orness of the fuzzy aggregation. If w1 = 1 and the other weights are all set to 0, then 
the maximum ai is selected. This is a case of high orness. In the same way is wn = 1 
and all other weights are set to zero then the minimum ai is selected. This is a case of 
low orness or high andness. Yager [11] characterizes the orness of the fuzzy 
aggregation in equation (3). 

orness (w) = ∑
=

n

i 1 1-n 

1
  (n-i)wi.   (3) 

The concept of Importance Guided Aggregation was introduced by Yager [10, 11, 
12] in the context of multi-criteria decision making. Looking at Importance Guided 
Aggregation from the multi-criteria decision making perspective, we can define the 
multi-criteria decision making problem to along the lists of n criteria that have 
importance weights attached to them. For each criterion, there is a set of alternatives. 
We can move to define the ith criterion as Ai, where Ai(x) is the degree or extent to 
which the alternative x satisfies the criterion. When we use a RIM linguistic quantifier 
based aggregation model, we create an overall decision function that in effect models 
the phrase “Q criteria are satisfied by x” where Q is our quantifier. A RIM quantifier 
is of the form Q(r) = rα, where α is the order of the polynomial. Yager shows that the 
orness of the RIM quantifier is of the form: 

orness(Q) = 
α1

1

+
 (4) 

So when α < 1, we observe a condition of high orness. When α = 1, the result is that 
of balanced orness and when α > 1 the condition is that of low orness or high andness. 

Let the importance weight attached to the ith criterion be Vi. The importance weight 
Vi can be normalized to lie in the interval [0, 1].  Next we can proceed to evaluate the 
satisfaction of the alternative x. For the alternative x we can form n  pairs  (Vi, Ai(x)). 
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We now proceed to sort the Ai(x)s in descending order. Let bj be the jth largest Ai(x). 
Let uj be the importance weight attached to the criterion that alternative x satisfies jth 
most. Thus, if A3(x) is the largest, then b1 = A3(x) and u1 = V3. We can now associate, 
with alternative x, a collection of n (uj, bj) pairs, where the bj s are degrees to which x 
satisfies the n criteria in descending order. We can now proceed to obtain the ordered 
weights by:  
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where 

∑
=

=
n

1k
kuT  (6) 

Once we have obtained the ordered weights we can now calculate a composite 
value of how well the alternative x satisfies the criteria using the following equation: 

∑
=

=
n

1j
jj (x)wbD(x)  (7) 

Here bj is the jth greatest Ai(x). Our proposed model for metasearch is based on the 
principle of Importance Guided aggregation using the OWA operator described 
earlier. In this model each search engine is thought of as a criterion. Each document is 
said to be an alternative. Each search engine (criterion) returns results in the form of 
result lists of documents. Based on how high each document is ranked  by a search 
engine, we compute the positional value of each document with respect to the search 
engine as described in the previous chapter. This measure is analogous to the degree 
to which an alternative (in our case a document) satisfies the criterion (search engine). 
However in this case each search engine (or search engine result list) has an 
importance weight attached to it. Let us illustrate the working of this model with an 
example. We start with four search engines SE1 , SE2 , SE3 and SE4 that have 
importance weights of 0.9, 0.6, 0.5 and 0.4 respectively and a set of 5 documents, 
some or all of which are returned by the search engines. Table 1 shows the result list 
of documents returned by each search engine. We use a quantifier Q(r) = rα. 

Table 1. Result List from the four search engines 

 Rank 1 Rank 2  Rank 3 Rank 4  Rank 5 
SE1 D2 D1 D3 D4 D5 
SE2 D2 D3 D4   
SE3 D2 D5 D4 D1  
SE4 D5 D3 D2 D4 D1 
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From this we can calculate the positional values of the documents with respect to 
the search engines. Using the heuristic H1 proposed by Diaz [3] missing documents is 
inserted into the ranked lists. Table 2 shows the positional values. 

Table 2. Positional Values of the documents as returned by the search engines 

 D1 D2 D3 D4 D5 
SE1 4 5 3 2 1 
SE2 2 3 2 1 3 
SE3 1 4 3 2 3 
SE4 1 3 4 2 5 

 
Let us proceed to compute the final score for document D1. We evaluate T to be 

2.4 (0.9+0.6+0.5+0.4). The weights can be calculated using equation (5) based on the 
uj information in table 3. It should be noted that the rows in table 3 are sorted by bj 
values. With weights computed we can compute the score of document D(x) as in 
equation 8 where x=D1. Similarly the scores for other documents can be calculated 
and the documents can be ranked in the final result list based by descending order of 
score.  

Table 3. Positional Values and Importances for D1 

 bj uj 
SE1 4 0.9 
SE2 2 0.6 
SE3 1 0.5 
SE4 1 0.4 

 

1.65687(x)wbD(x)
4

1j
jj == ∑

=

 (8) 

4   Computing Search Engine Weights 

The IGOWA model for metasearch requires search engine weights. So let us compare 
our scheme for computing search engine weights with that used by Aslam and 
Montague [2]. 

4.1   System Weights 

Aslam and Montague [2] proposed a scheme for computing the importance weights 
for search engine result lists based on the performance of search engines over a set of 
queries. A set of queries are passed to each search engine being covered by the 
metasearch engine. For each query, the search engine returns results in the form of a 
result list. For each search engine, the result list for each query is evaluated and the 
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average precision is computed. These are then averaged out to give a measure of the 
performance of the search engine. Correspondingly search engines importance 
weights can be determined according the performance measure over all queries.  

4.2   Query System Weights 

In the above approach, importance weights for search engine result lists are computed 
based on an overall performance of a search engine over a set of training queries. 
However, search engines respond to different queries in different ways. Thus a search 
engine that does poorly for one specific query or a group/cluster of similar queries 
might do better for another query or group of queries. In this work, we propose a 
scheme for computing importance weights that can assign different set of weights to 
the search engines based on the type of query being processed. We call these 
importance weights Query System weights or QSW for short. 

Computing Query System Weights would be in two phases. The first would be a 
training phase to determine search engine importance weights for each cluster/group 
of queries. The second phase would be to fit an incoming query to a cluster. Let us 
say we have a set of search engines SE-SET = {sei, for all i, 1≤ i≤ n}. Let us say we 
have a set of queries QUERY-SET = {qi, 1≤ i≤ m}.  Let us consider a subset SUB-
SE-SET of k randomly picked search engines SUB-SE-SET = {sei, for all i, 1≤ i≤ k 
and k < n}. The following steps are executed in phase 1 (training phase): 

1. Pass all queries in QUERY-SET to search engines in SUB-SE-SET, and retrieve 
search results in the form of a result list. Evaluate the average precision of the 
result list. 

2. So for a query qi in QUERY-SET for search engine SEj in SUB-SE-SET, we get 
result list rij. The average precision of the result list rij is pij.  

3. So for query qi, we get a set of result lists {rij, for all j, 1≤ j≤ k}. For each list we 
can obtain an average precision. Thus we can form a precision vector qvi  = { pij, 
for all j, 1≤ j≤ k } for the query qi. 

4. We use the k-means algorithm to form the cluster of queries. For each cluster we 
pass all queries to all search engines in SE-SET, retrieve result lists, and compute 
average precision of result lists. For a search engine sej in SE-SET the average of 
the average precision can be computed as shown in equation 16. 

5. We can compute importance weights for search engines for each cluster of queries 
based on the average performance of the search engine for all queries in the cluster. 

The second phase is the testing phase. In this phase a new query q is made by the 
user. We pass the query to search engines in SE-SUB-SET. We obtain result lists for 
each search engine, compute the average precision for each result list, and form a 
feature vector qv = { pj, for all j, 1≤ j≤ k }. We then establish query membership. 
Once membership to a cluster is established, we can use the importance weights for 
the cluster. 

5   Experiments and Results 

In our experiments we used the data sets from the Text Retrieval Conference (TREC). 
We used the data sets TREC 3, TREC 5 and TREC 9. Each of the three data sets has a 
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set of 50 topics or queries and a number of systems or search engines. For each topic 
(query) and each system (search engine) a result list of documents retrieved is 
returned. Each data set also provided relevance information for each document with 
respect to a query. We use this relevance information to compute the average 
precision of the merged result list. 

In order to learn search engine Query System Weights (QSW) and System Weights 
(SW), we use odd queries in the data sets. We used even queries for evaluating our 
result merging model IGOWA and comparing the average precision of the merged list 
returned by our IGOWA model with the average precision of the merged list returned 
by Diaz [3] OWA model. 

In our experiments we pick a query at random and pick a certain number of search 
engines being merged. The number of search engines being merged varies from 2 to 
12. We then pick the determined number of search engines randomly and merge the 
result lists returned by them for a query using the IGOWA model and the OWA 
model. We compute the average precision of the merged result list returned by each of 
the models. Both the OWA and the IGOWA models use a RIM quantifier of the form 
Q(r) = rα. In our experiments we vary the α parameter from high orness conditions of 
0.25 and 0.5 through to balanced orness condition of 1.0 and low orness condition of 
2.0, 2.5 and 5. The figures below show the graphical results for TREC 3, TREC 5 and 
TREC 9. We measure the effects of the quantifier parameter α (x-axis on the graphs) 
on the average precision (y-axis) of the merged list. 
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Fig. 1. Experimental Results showing a comparison of TREC3, TREC5 and TREC9 

From the results of the experiments we can observe that the IGOWA model for 
metasearch outperforms the OWA model for metasearch irrespective of whether our 
scheme to compute Query System weights or Aslam’s scheme to compute System 
weights is used. However, the IGOWA model for metasearch yields better 
performance in terms of average precision when the scheme to compute Query 
System Weights is employed over when the scheme to compute System Weights.  

Previously we discussed how values of α < 1, denotes a condition of high orness 
and values of α > 1 shows conditions of low orness. In our experiments we use values 
of α = 0.25, 0.5, 1, 2, 2.5 and 5. In our experiments we observe that when α is 
increased from 0.25 to 1 the performance, in terms of average precision of the merged 
list, of each of the models IGOWA with Query System Weights, IGOWA with 
System Weights and OWA all go down somewhat. When α is increased from 1 to 5, 
however there is a steady increase in the performance for all three models. For each of 
the models the average precision is the lowest when α = 1. We also observe that the 
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fuzzy result merging models perform well under low or high orness condition, but not 
under balanced orness condition. Also from the experiments we can observe that the 
performance is best for high orness condition. 
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Abstract. This paper develops a comprehensive but simple methodology for 
valuating IT investment using real options theory under the fuzzy group 
decision making environment. The proposed approach has the following 
advantages: (1) It does not need to formulate the distribution of expected 
payoffs, thus complex estimation tasks can be avoided. (2) It allows multiple 
stakeholders be involved in the estimation of real option value, therefore could 
alleviate the bias from particular evaluator’s personal preference and could help 
decision makers achieve a more reliable valuation of the target investment. The 
author provides numerical illustration on the procedures mentioned above and 
discusses the strengths and possible extensions of this hybrid approach to IT 
investment analysis. 

Keywords: fuzzy sets, real options analysis, information technology 
investment. 

1   Introduction 

Real options are developed from the concept of financial options. Financial options is 
a kind of contract, it gives its holders a right, but not the obligation, to buy or sell a 
specific quantity of financial assets with a fixed price. Later, it is recognized that the 
concept of options can also be extended to real (not financial) assets. Real options are 
often oriented to the right to invest on future possible opportunities. Thinking of 
future investment opportunities as “real options” has provided powerful new analysis 
tools that in many ways revolutionized modern corporate resource allocation. Real 
options analysis (ROA) is proved suitable for modeling IT investment involving an 
option, and its strengths have been illustrated by plenty of literatures [1-3]. However, 
there still exist some gaps between ROA and what is needed to effectively evaluate 
real world IT investment[4]. The lack of the knowledge about real options and several 
challenging preliminary requirements has prevented managers from utilizing this 
salient tool. For example, classical option pricing model require the variance per 
period of rate of return on the asset must be estimated. In fact, obtaining such a 
reliable estimation of the variance is usually very difficult[5]. Furthermore, option 
pricing model generally assumes that the expected payoffs are characterized by 
certain probably distributions, geometric Brownian motion, for instance. This 



104 C. Tao et al. 

assumption could be a rather strong one to make, and the misuse of probability would 
bring about a misleading level of precision. 

In this paper, we propose a new methodology to value IT investment using the real 
options theory under the fuzzy group decision making environment. The valuation 
model we present is based on the assumption that the uncertainty of the expected 
payoffs from IT investments is not merely stochastic but also vague in nature. Fuzzy 
group decision-making theory is able to well formulate the uncertainty of the 
expected payoffs from an investment, and in addition it will alleviate the bias of 
possible personal preference or discrimination. This approach will help IT managers 
acquire a more objective and efficient valuation of the target investment. 

2   Classical Real Option Pricing Model 

There is a variety of real option pricing models that suits for different situations. 
Black–Scholes option pricing model is the most often used approach to price simple 
European growth option, which takes on the following form: 

)()(VC 21 dNeXdN rT−−=  

Where Tdd
T

TrXVIn σ
σ

σ −=++= 12

2

1 ,
)2/()/(

d  

(1) 

Where C denotes the real option value (ROV) of the target projects, V is the present 
value of expected payoffs that is assumed to be log normally distributed, X is the 
expected costs, σ  is the volatility of the expected revenue, r is risk-free rate of 
interest, T represents maximum investment deferral time, and ( )N • denotes the 

cumulative normal distribution function.  
While expected costs and option’s time are relatively straightforward to estimate, 

the expected payoffs and its deviation are usually very challenging to obtain. In the 
classical option valuation methods, this problem could be solved by seeking a “twin 
security”—a traded security the price of which is perfectly or highly correlated with 
the price of the target investment under consideration. However, in many cases, such 
a traded security does not exit and the reference price is not observable. The other 
way is to represent the uncertain payoffs expected using a probably distribution, 
geometric Brownian motion, for instance. This assumption may be defended for 
financial options, for which there could be an efficient market with numerous player 
and numerous stocks for trading. The law of large could apply to this efficient market, 
thus justify the use of probability theory[6]. Nevertheless, the situation for real 
options is rather different, especially for IT investment valuation. As to IT investment, 
the number of players producing the consequence is usually quite small. Moreover, 
decision makers cannot obtain historic date of past revenues and costs to formulate 
the distribution of expected payoffs. Therefore, the use of assumption on purely 
stochastic phenomena is not well-substantiated for IT investment valuation.  
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3   A Fuzzy Group Decision Making Approach to Real Option 
Valuation 

In this section, we present a new real option approach using the tool of fuzzy group 
decision making. The investment valuation process consists of four steps as follows: 

Step 1: estimate the expected payoffs 
Each evaluator will give fuzzy estimation individually to the parameter of the 
expected payoffs, which will be not only the basis of calculation of real option value, 
but also the determination to the weight of each evaluator, which is how the model 
alleviates the bias of evaluators additionally. For simplicity of formulation, we adopt 
triangular fuzzy numbers to characterize the estimation of the payoffs. Supposing 
there are n evaluators in all, evaluator k estimates the expected payoffs by using a 
triangular possibility distribution of the form 

k k
1 M 2,V , Vk kV V＝＝ ＝      k=1, 2, …, n (2) 

i.e. the most possible value of the payoffs is k
MV , and 1

kV  is the downward potential 

and k
2V  is the upward potential for the expected payoffs. 

Step 2: calculate the weight of each evaluator 
In the group decision making literature, the relative weight of each evaluator has been 
largely ignored. It is usually assumed that all members have the same importance. 
However, in many real life settings, specific members have recognized abilities and 
attributes, or privileged positions of power[7]. Thus, it is necessary to find the weights 
to be assigned to the members of the group. This is often a difficult task, especially 
when the target value is quite uncertain. These situations need an objective method to 
derive members' weights. This paper employs a simple and intuitively appealing 
eigenvector based method to determine the weights for group members using their 
own subjective opinions [8], which could help to avoid serious bias from particular 
evaluator’s personal preference. The weight of each evaluator will be calculated 
through the distance from each other. 

 After each member gives estimation to the expected payoffs, the distance between 
evaluator k and l can be calculated as:  

[ ]2
22

22
11 )()()(

2

1
),( lkl
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M
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In order to reflect the difference between each evaluator and others, construct the 
distance matrix as:  
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Let 
1

( , )
n

k j
k

j

D d V V
=

=∑ , which reflects the difference between the evaluation of 

evaluator k and those of others. The less is kD , the nearer the evaluation of evaluator k 

to those of others. Thus the weight of evaluator k will be 
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Step 3: fuzzy assessment aggregation 
After obtaining the fuzzy assessment and the weight of each evaluator, we start to 
formulate the expected payoffs of the IT investment under consideration. Fuzzy 
weighted average (FWA) is a commonly used operation in decision analysis, and of 

the form: 1

1

n
i

i
i

n

i
i

W V
V

W

=

=

×
=
∑

∑
. The result of the calculated fuzzy weighted average is a 

fuzzy number 1 2( , , )MV V V V= , which represents the expected payoffs of the IT 

investment under consideration. Since our purpose is to valuate the real option value 
of the investment, it’s required to estimate the standard deviation of the expected 
payoffs.  

Let A  be a fuzzy number with  1 2[A] [ ( ), ( )], [0,1]a aγ γ γ γ= ∈ . [6] introduced the 

possibilistic expected value of triangular fuzzy number 1 2( , , )MA a a a= as 

1 2

2 1
E( ) ( )

3 6MA a a a= + +  (5) 

And the possibilistic variance of fuzzy figure A as 

1
2 2

1 2

0

1
( ) ( ( ) ( ))

2
A a a dσ γ γ γ γ= −∫  (6) 

i.e. 2 ( )Aσ  is defined as the expected value of the squared deviation between the 

arithmetic mean and the endpoints of its level sets. Thus, the possibilistic variance of 
the triangular fuzzy number V can be easily formulated  
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12
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dVV
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(7) 

Step 4: the real option valuation of the investment 
In the last step, we can assess the real option value of the investment based on the 
result obtained above. For the purpose of simplicity, we assume that only the expected 
payoff is uncertain and utilize the fuzzy term of the Black-Scholes pricing formula 
presented by Carlson etc. [9]. Then the fuzzy real option value of an investment is 

1 2V ( ) ( )rTFROV N d X e N d−= −  (8) 
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Where 
2

1 2 1

( ( ) / ) ( / 2)
d ,

In E V X r T
d d T

T

σ σ
σ

+ += = −  

Only V is fuzzy numbers. E(V) and σ represent respectively the possibilistic 
expected value and the standard deviation of fuzzy figure V. The computing result 
FROV is also a fuzzy number, representing the real option value of the investment 
under consideration. 

4   Numerical Examples 

Benaroch and Kauffman [3] used Black-Scholes model to examine the decision to 
defer the deployment of point-of-case (POS) debit services at the Yankee 24 shared 
electronic banking network of New England . A series of interviews with decision 
makers of the company are conducted to determine the volatility of the expected 
revenues, and it was estimated to be between 50%-100%. In terms of costs, an initial 
investment of $400,000 was needed to develop the network, and there are an 
operational marketing cost of $40,000 per year. The firm was assumed to capture the 
revenues resulting from the market size 1 year after the initial investment, and the 
time horizon of the project was considered to be 5.5 years. Finally, 50% was used to 
compute the investment opportunity. The analysis results showed that the value of 
Yankee’s American deferral option is $152,955. This value corresponds to the Europe 
option value at optimal deferral time, which is three years.  

In this section, we apply the fuzzy real option valuation approach to analyze this 
case using the data provided by Benaroch and Kauffman. Since we do not have the 
firsthand data about this case, and out purpose is only to provide an illustration on 
calculating process, we simply assume there would be five evaluators involved in this 
decision making process. They give the following estimation for the expected cash 
flow from the projects when the deferral time is T=3: 

Table 1.  The assessment of the expected payoffs by each evaluator 

The 
expected 
payoffs 

Evaluator 

1 

Evaluator  

2 

Evaluator  

3 

Evaluator 

4 

Evaluator  

5 

The 
downward 
potential 

$376,000 $355,000 $400,000 $368,000 $400,000 

The most 
possible 

value 
$387,166 $400,000 $420,000 $412,000 $450,000 

The 
upward 

potential 
$398,332 $445,000 $440,000 $456,000 $500,000 

 
After each member gives estimation to the expected payoffs, the weight of each 

evaluator will be calculated through the distance from each other. The distance 
between evaluator 1 and 2 is: 
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1 2 1 2 2 1 2 2 1 2 2
1 1 2 2

2 2 2

1
( , ) ( ) ( ) ( )

2

1
(376000 355000) (387166 400000) (398332 445000)

2
37307
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Similarly, all the distance between evaluators can be calculated and the distance 
matrix D is 

0 37307 41172 44757 86199

37307 0 35000 14731 61441

41172 35000 0 25923 47434

44757 14731 25923 0 46925

86199 61441 47434 46925 0

D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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The difference between the evaluation of evaluator 1 and all those of others is 

 209435861994475741172373070),(
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=
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(11) 

And D2=148479, D3=149529, D4=132336, D5=242000. 
Then the weight of each evaluator is 
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Similarly, W2=0.2254, W3=0.2238, W4=0.2528, W5=0.1383，  

Using the equation 1

1

n
i

i
i

n

i
i

W V
V

W

=

=

×
=
∑

∑
, we can aggregate all the evaluators’ judgments 

to obtain the final estimation of the expected payoffs, which is  

1 2( , , )MV V V V= = ($377,934, $412,372, $446,811) 

2 1
( ) 412372 (377934 446811 $412,372

3 6
E V × + × +＝ ＝ ＝  

(13) 

The standard deviation of expected payoffs can be calculate as  

40601
24

)377934446811(

24

)(
)V(

22
12

＝＝

−−
=

VVσ
 

(14) 

i.e. (V)σ =14060/412372= 3.4% 

The last step is to valuate the investment using real option pricing model. We set 
the other parameters required by Black-Scholes formula as the same as the data 
provided by Benaroch and Kauffman, e.g. T = 3, X = $400,000, r = 7%.  
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1 2V ( ) ( )rTFROV N d Xe N d−= −  

Where       
2

1

(412372/ 400000) 3(0.07 0.034 / 2)
d 4.113

0.034 3

In + += =  

2 1 4.054d d Tσ= − =  

(15) 

Thus, we can calculated that the fuzzy value of the real option is 
FROV = ($53,701, $88,138, $122,577) 

5   Concluding Remarks 

The information technology investment are characterized by highly uncertainty, thus 
has imposed pressure on management to take into account the risks and payoffs in 
making their investment decision. Real option analysis is a tool well suited to evaluate 
the investment in uncertain environment. However, several minor limitations of ROA 
has prevented its application in practice, even could lead to incorrect valuation.  

This paper developed a comprehensive but easy-to-use methodology based on 
fuzzy group decision-making theory to solve the complicated evaluation problem of 
IT investment. Fuzzy sets theory is not only able to well formulate the uncertainty of 
the expected payoffs from an investment, but also simplify the real option model in 
certain degree. Besides, option value calculation is sensitive to parameters. It is 
therefore necessary that multiple stakeholders be involved in the estimation of real 
option value [10]. By utilizing a simple and intuitively appealing eigenvector based 
method, we can intrinsically determine the weights for group members using their 
own subjective opinions, which is how the model avoid serious bias from particular 
evaluator’s personal preference. Then it in turn provides a basis for a better evaluating 
and justifying of the target IT investment, and avoid complex estimation task at the 
same time. We are confident that this method is valuable to help IT managers produce 
a more well-structured and unbiased assessment. 
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Abstract. A fuzzifying closure system is introduced as a fuzzy set on the
collection of subsets of a nonempty set. It is proved that this structure is a
particular fuzzy lattice ordered poset. Conversely, every lattice ordered
poset is isomorphic to a fuzzifying closure system. In particular, each
complete fuzzy lattice is representable by a fuzzifying closure system.
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1 Introduction

Fuzzy closure systems and related concepts have been investigated by many
authors. These notions appear within the framework of various fields: fuzzy
topology, fuzzified relational structures, fuzzy algebras etc. As it is the case with
other set-theoretic notions, fuzzy generalizations of closure systems differ. We
mention some papers in which these are investigated as lattice valued structures.
The list of papers is not at all complete, still each of these papers is relevant in
some sense to our approach.

Back in 1988, Achache [1] fuzzified a crisp closure space by means of Galois
connections, using a complete lattice as the co-domain of fuzzy sets. In 1991,
Swamy and Raju ([2]) introduced L-valued closure systems, L being a com-
plete Brouwerian lattice. In many recent approaches, L-fuzzy closure systems
are investigated as particular fuzzy structures whose co-domain L is a com-
plete residuated lattice. Namely, in a series of papers (starting with [3]) Ying
introduced and developed the framework of fuzzified topology. Gerla ([4,5]) and
Bělohlávek ([6] and his book [7]) deal with fuzzy closure operators, considering
fuzzy structures as mappings whose co-domain is a complete (residuated) lattice.

In the foregoing investigations, fuzzy closure systems and related structures
are mostly considered to be collections of fuzzy sets, satisfying particular
properties.

Our present investigation is focused on a different fuzzification of the notion
of a closure system. Intuitively, we fuzzify the degree of closedness of a subset
� This research was partially supported by Serbian Ministry of Science and Environ-

ment, Grant No. 144011 and by the Provincial Secretariat for Science and Techno-
logical Development, Autonomous Province of Vojvodina, grant “Lattice methods
and applications”.
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belonging to a family. The framework are lattice valued structures, i.e., the co-
domains of mappings considered here are complete lattices. Our approach is
cutworthy, in the sense that the cut sets of introduced structures are supposed
to possess crisp properties being fuzzified. Therefore, we use complete lattices,
since arbitrary infima and suprima support this cutworthy approach. We do not
use additional operations (like those in e.g. residuated lattices), simply because
they do not guarantee this transfer of properties to cuts.

We introduce a fuzzifying closure systems as a lattice valued (fuzzy) set defined
on the crisp power set or crisp closure system. We prove that cut sets of a
fuzzifying closure system are crisp closure systems on the same set. We also
show that fuzzifying closure systems are so called fuzzy lattice-ordered posets.
Conversely, we prove that every lattice ordered fuzzy poset is isomorphic to a
particular fuzzifying closure system. Our construction, as well as the obtained
structures and properties, are analogue to the corresponding crisp ones1.

2 Preliminaries

Throughout the paper, (L, ∧, ∨, ≤) is a complete lattice, denoted usually by L,
in which the top and the bottom element are 1 and 0 respectively (sometimes
denoted by 1L and 0L). All claims are valid also in a particular case when L is
the real interval [0, 1].

If x is an element of the complete lattice L, then ↓x is the principal ideal
generated by x:

↓x := {y ∈ L | y ≤ x} . (1)

Recall that a closure system S on a nonempty set S is a collection of subsets
of S, closed under arbitrary (hence also empty) set intersections.

We use the following known results.

Lemma 1. (i) Every closure system is a complete lattice under the set inclusion.
(ii) Every complete lattice M is isomorphic to a closure system SM consisting

of all principal ideals generated by elements of M .

A fuzzy set on a nonempty set S is a mapping μ : S → L. A cut set (briefly
cut), of a fuzzy set μ on S is defined for every p ∈ L, as the subset μp of S, such
that x ∈ μp if and only if μ(x) ≥ p in L.

As defined in [8], a classical (crisp) property or a notion which is generalized
to fuzzy structures is said to be cutworthy if it is preserved by all cuts of the
fuzzified structure.

Here we also use the notion of a fuzzy lattice as a fuzzy algebra. If M is a
lattice and L a complete lattice, then μ : M → L is a fuzzy lattice on M (fuzzy
sublattice of M) if for al x, y ∈ L we have that μ(x ∧ y) ≥ μ(x) ∧ μ(y) and
μ(x ∨ y) ≥ μ(x) ∧ μ(y). Operations ∧ and ∨ on the left are respectively meet
and join in M , and on the right by ∧ is denoted meet in L; obviously, relation
1 A third notion connected with lattices and closure systems are closure operators,

which are not mentioned in the present article, due to the paper page limit.
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≥ is the order in L. The notion of a fuzzy lattice as a particular fuzzy ordered
set and the connection among algebraic and relational approach to fuzzy lattices
are investigated in [9]. In the next section we introduce the notion of a fuzzy
lattice ordered poset, as a fuzzy generalization of a complete lattice. We recall
that the notion of fuzzy lattice (more general, fuzzy (sub)algebra) is cutworthy:
every cut set of a fuzzy sublattice of M is a crisp sublattice of M .

We also use the notion of a complete fuzzy lattice, which we define to be
a mapping μ from a complete lattice M into another complete lattice L, so that
for every family {xi | i ∈ I} ⊆ M , the following holds:

μ(
∧

{xi | i ∈ I}) ≥
∧

i∈I

μ(xi) and μ(
∨

{xi | i ∈ I}) ≥
∧

i∈I

μ(xi).

In addition, since
∧

∅ = 1, we have that μ(1) ≥ 1, and hence μ(1) = 1 in any
complete fuzzy lattice.

As for other fuzzified crisp structures, μ can be called a complete fuzzy sub-
lattice of M .

We conclude with the following fuzzy topological notion, introduced in [3] for
real-interval valued fuzzy sets. Let S be a nonempty set and T a mapping from
the power set P(S) into a complete lattice L. Then T is said to be a fuzzifying
topology if the following conditions are fulfilled:

(i) T (S) = 1;
(ii) for any X1, X2 ∈ P(S), T (X1 ∩ X2) ≥ T (X1) ∧ T (X2);
(iii) for a family {Xi | i ∈ I} ⊆ P(S), T (

⋃
{Xi | i ∈ I}) ≥

∧
i∈I T (Xi).

The fuzzifying topology is a special case of the smooth topology [10], since a
smooth topology is a mapping from the fuzzy power set to a complete lattice
(here we have a mapping from the crisp power set to a complete lattice).

3 Results

Let S be a nonempty set and L a complete lattice.
A fuzzifying closure system on S is a mapping C : P(S) −→ L, such that

for every family {Xi | i ∈ I} of subsets of S,

∧

i∈I

C(Xi) ≤ C(
⋂

i∈I

Xi) . (2)

Lemma 2. C(S) = 1, where 1 is the top element of L.

Proof. Indeed, when we consider the empty family, the infimum on the left side
is infimum of empty family and it is equal to the top element of the lattice. On
the other hand, the intersection of the empty family on the right is equal to S,
so we obtain 1 ≤ C(S).
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If S is a crisp closure system on a set S, and L a complete lattice, then a
fuzzifying closure subsystem of S is a mapping σ from S to L, such that
for every family {Xi | i ∈ I} of subsets from S,

∧

i∈I

σ(Xi) ≤ σ(
⋂

i∈I

Xi) . (3)

As in Lemma 2, we can prove that for a fuzzyfying closure subsystem σ of S,
we have σ(S) = 1.

Obviously, a fuzzifying closure system on S is a fuzzifying closure subsystem
of P(S).

Theorem 1. A mapping C : P(S) −→ L is a fuzzifying closure system if and
only if for every p ∈ L, the cut Cp is a crisp closure system on S.

Proof. Let C : P(S) −→ L be a fuzzifying closure system. Let p ∈ P . We have
to prove that the cut Cp is a crisp closure system. Since C(S) = 1, we have
that S ∈ Cp for every p. Further, let {Xi | i ∈ I} be a nonempty family of
subsets belonging to Cp, i.e., C(Xi) ≥ p for each i ∈ I. Hence, p ≤

∧
i∈I C(Xi) ≤

C(
⋂

i∈I Xi). Therefore, C(
⋂

i∈I Xi) ≥ p, and thus
⋂

i∈I Xi ∈ Cp.
On the other hand, suppose that all cuts of the fuzzy set C : P(S) −→ L are

crisp closure systems. Therefore, S belongs to all cuts, in particular to 1-cut,
and thus C(S) = 1.

Let {Xi | i ∈ I} be a nonempty family of subsets of S. Denote
∧

i∈I C(Xi) by
p. Since C(Xi) ≥ p for all i ∈ I, we have that Xi ∈ Cp for all i ∈ I. Since Cp

is a crisp closure system, it is closed under intersection, and thus
⋂

i∈I Xi ∈ Cp.
Hence C(

⋂
i∈I Xi) ≥ p =

∧
i∈I C(Xi) and the theorem is proved.

It is straightforward that the same property holds for fuzzifying closure subsys-
tems of an arbitrary closure system on S, as follows.

Theorem 2. Let S be a crisp closure system on S. Then a mapping σ : S −→ L
is a fuzzifying closure subsystem of S if and only if for every p ∈ L, the cut Cp

is a crisp closure subsystem of S.

Example 1. Let L be a lattice in Figure 1, and S = {a, b, c}.
The mapping

C =
(

∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
1 t s t p p q 1

)
(4)

is a fuzzifying closure system on S by Theorem 1, since its cuts are crisp closure
systems on the same set:

C1 = {∅, {a, b, c}}
Cp = {∅, {a}, {c}, {a, b}, {a, c}, {a, b, c}}
Cq = {∅, {b}, {b, c}, {a, b, c}}
Cr = {∅, {a}, {b}, {c}, {a, b, c}}
Cs = {∅, {b}, {a, b, c}}
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Ct = {∅, {a}, {c}, {a, b, c}}
C0 = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
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Fig. 1.

The following is the Synthesis theorem for fuzzifying closure systems. The proof
is similar to the Theorem of synthesis of any fuzzy structure (fuzzy set, fuzzy
(sub)group, fuzzy equivalence relation etc., see e.g., [11,12]) by crisp structures
of the domain; we present it for the readers convenience.

Theorem 3. Let F be a family of closure systems on the same set S which is
closed under intersections, and such that P(S) ∈ F .

Then, there is a lattice L and a fuzzifying closure system C : P(S) → L, such
that the family F is the family of cuts of C.

Proof. Let L be the poset (F , ≤), where ≤ denotes the dual of set inclusion.
L is a complete lattice, since its dual is by the assumption (it is closed under
set intersection and contains the greatest element - P(S)). Now we define C :
P(S) → L, so that for X ⊆ S

C(X) =
⋂

{g ∈ F | X ∈ g} . (5)

C is a fuzzy set on S. We prove that its family of cut sets is precisely F . Indeed,
let f ∈ F and let Ff be the corresponding cut set of C. Now, for an arbitrary
Y ⊆ S, we have

Y ∈ Ff if and only if C(Y ) ≥ f if and only if C(Y ) ⊆ f if and only if⋂
{g ∈ F | Y ∈ g} ⊆ f if and only if Y ∈ f , proving that the cut Ff is equal to

f . Hence the family of cut set of C is F . Therefore, the fuzzy set C is a fuzzyfying
closure system by Theorem 1, since all its cuts are crisp closure systems.

In an analogue way (using the same construction) one can prove the following
Synthesis theorem for a fuzzifying closure subsystem of a crisp closure system S.
The proof is (being similar to the previous one) omitted. Observe that a closure
system S1 on S is a subsystem of a closure system S2 on S if S1 ⊆ S2.

Theorem 4. Let S be a closure system on a nonempty set S and F a family
of its subsystems which is closed under intersections, and such that S ∈ F .

Then, there is a lattice L and a fuzzifying closure system C : S → L, such
that F is the family of cuts of C.
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Next we investigate a connection between fuzzifying closure systems and fuzzy
lattices.

We advance the following definition.
Let (M, ≤) be a lattice, (L, ≤) a complete lattices and

μ : M → L

a map such that for every p ∈ L the cut set μp is a lattice under the order
inherited from M . Then we say that μ is a lattice-ordered fuzzy subposet
of M . If the lattices M and Mp, for every p ∈ L are all complete, then the
lattice-ordered fuzzy subposet μ is said to be complete.

Observe that any fuzzy sublattice of a lattice M (as defined in Preliminaries)
is a lattice-ordered fuzzy subposet of M . In addition, the above notion is defined
in purely set theoretic terms, like a lattice as an ordered set in the crisp case.
Consequently, we do not require cut sets to be sublattices of μ (a sublattice is
an algebraic notion, not a set-theoretic one). Therefore, a lattice-ordered fuzzy
subposet is not generally a fuzzy sublattice of the same crisp lattice.

Theorem 5. Let S be a nonempty set, S a closure system on S and (L, ≤) a
complete lattice. Then the following are satisfied.

(i) Any fuzzifying closure system C : P(S) −→ L on S is a complete
lattice-ordered fuzzy subposet of the Boolean lattice (P (S), ⊆).

(ii) Any fuzzifying closure subsystem σ : S → L of S is a complete
lattice-ordered fuzzy subposet of the lattice (S, ⊆).

Proof. This is a direct consequence of Theorems 1 and 2, since every crisp closure
system is a complete lattice under set inclusion.

It is easy to check that every cut of the fuzzifying closure system C in Example
1 is a lattice. Hence, (C, ⊆) is a lattice-ordered fuzzy subposet of the Boolean
lattice P(S). Still C is not its fuzzy sublattice, since not all cut lattices are crisp
sublattices of P(S).

Conditions under which a closure system is a fuzzy lattice are given in the
following theorem. The proof is straightforward, by the definitions of a complete
fuzzy lattice and a fuzzifying topology.

Proposition 1. A fuzzifying closure system C : P(A) −→ L is a fuzzy complete
lattice if and only if it is a fuzzifying topology.

Next we define the notion of isomorphism among introduced fuzzy ordered
structures.

Let (M, ≤), (N, ≤) and (L, ≤) be lattices, L being complete. Let also μ : M →
L and ν : N → L be lattice-ordered fuzzy subposets of M and N respectively.
Then we say that μ and ν are isomorphic if there is an isomorphism f from
M onto N , such that for every p ∈ L the restriction of f to the cut lattice μp is
an isomorphism from μp onto νp.

Since a fuzzy lattice is a particular lattice-ordered fuzzy poset, the above
notion of isomorphism includes also the case of fuzzy lattices.
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In the following, if f is a function from A to B, and C ⊆ A, then the restriction
of f to C is denoted by f |C .

Theorem 6. Let (M, ≤), (L, ≤) be complete lattices and SM the closure system
consisting of all principal ideals generated by elements of M (as in Lemma 1).
Further, let μ : M → L be an L–fuzzy complete lattice. Then the mapping
C : SM → L, defined by

C(↓x) := μ(x), for every x ∈ M,

is a fuzzifying closure subsystem of SM .
In addition, C is isomorphic with the fuzzy lattice μ.

Proof. The mapping C is well defined, since from ↓x = ↓y it follows that x = y.
Let {Xi | i ∈ I} be a family of elements of SM . Obviously, Xi = ↓xi, for a

family {xi | i ∈ I} ⊆ M . Then,∧
i∈I C(Xi) =

∧
i∈I μ(xi) ≤ μ(

∧
i∈I xi) = C(

⋂
i∈I Xi),

by the fact that
⋂

i∈I ↓xi = ↓(
∧

i∈I xi).
Also, in a fuzzy complete lattice, since μ(1M ) = 1L, we have that C(↓1M ) =

μ(1M ) = C(M) = 1L.
To prove the second part, observe that the mapping f : x �→ ↓x, x ∈ M ,

is an isomorphism from the lattice M onto the closure system SM , which is
a lattice under inclusion. For p ∈ L, the restriction of f to the cut lattice μp

is an isomorphism from μp onto the cut Cp. Indeed, if x, y ∈ μp, x = y, then
↓x = ↓y, hence f |μp is an injection. It is obviously surjective, since ↓x ∈ Cp

implies C(x) = μ(x) ≥ p, and thus we have that x ∈ μp, proving that f |μp

is a surjection. This restriction is obviously compatible with the order in both
directions, hence it is an isomorphism.

Theorem 6 directly implies the following Representation Theorem for fuzzy
lattices.

Corollary 1. For every complete fuzzy lattice μ there is a closure system S
such that μ is isomorphic to a fuzzifying closure subsystem of S.

4 Conclusion

Let us conclude with some comments concerning future investigations in this
field.

As mentioned above, our approach is cutworthy and therefore the co-domains
of considered fuzzy structures are complete lattices. Due to widely used T -norms
in applications of fuzzy systems, it would be important to investigate analogously
defined structures as mappings from a power set to a residuated lattice. In ad-
dition, our approach could be generalized to systems connected with smooth
topologies ([10]), with both mentioned lattices as co-domains.

This investigation would be our task in the future.
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Abstract. Fuzzy System Models (FSM), as one of the constituents of soft 
computing methods, are used for mining implicit or unknown knowledge by 
approximating systems using fuzzy set theory. The undeniable merit of FSM is 
its inherent ability of dealing with uncertain, imprecise, and incomplete data 
and still being able to make powerful inferences. This paper provides an 
overview of FSM techniques with an emphasis on new approaches on 
improving the prediction performances of system models. A short introduction 
to soft computing methods is provided and new improvements in FSMs, 
namely, Improved Fuzzy Functions (IFF) approaches is reviewed. IFF 
techniques are an alternate representation and reasoning schema to Fuzzy Rule 
Base (FRB) approaches. Advantages of the new improvements are discussed.   

Keywords: Fuzzy systems, soft computing, data mining, knowledge discovery. 

1   Introduction 

Knowledge discovery (KD) is commonly viewed as the general process of 
discovering valid, novel, understandable, and useful knowledge about a system 
domain from empirical data and background knowledge where the discovered 
knowledge is implicit or previously unknown. Data mining is the most important step 
in KD, which involves the application of data analysis and discovery algorithms that, 
under acceptable computational efficiency limitations, produce a particular 
enumeration of patterns over the given data.  

Zadeh’s pioneering work [20] in mid 1960s, in which he introduced fuzzy sets to 
replace non-probabilistic uncertainties, opened a new window in the area of KD. 
Since then, fuzzy sets and logic have started to be employed in system modeling 
applications. In recent years, there have been major developments in fuzzy system 
modeling (FSM) approaches, which have been applied to solve many different 
scientific and engineering problems. FSMs have been the main constituents of the soft 
computing (SC) methods along with neural networks, probabilistic modeling, 
evolutionary computing such as genetic algorithms, and learning theory [7]. Soft 
computing, unlike hard computing, treats the concepts such as imprecision, 
uncertainty, partial truth, and approximation. In order to achieve robustness, 
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interpretability, and low cost solutions, soft computing methods exploit the tolerance 
for such concepts.  

This paper briefly overviews some of the well-known soft computing techniques 
including fuzzy logic, neural networks, and genetic algorithms. Then, FSM models 
are reviewed with an emphasis on the new developments, their advantages, and 
possible drawbacks. Finally conclusions are drawn. 

2   Soft Computing for Knowledge Discovery 

SC, unlike classical methods, is an area of computing with imprecision, uncertainty 
and partial truth, which can achieve robustness and low cost solutions. Among many 
fields of soft computing, fuzzy logic, neural networks, and genetic algorithms of 
evolutionary computing techniques are the top three commonly preferred methods in 
scientific research. Fuzzy systems [7],[13],[15], as the central component of the soft 
computing methods which implement fuzzy sets and logic theory, provide 
methodology to capture valid patterns from the data. They also allow integration of 
expert knowledge during knowledge discovery. From this point of view, FSM models 
are considered as gray box approaches. In traditional rule-base formulation, a system 
is represented with sequence of rules that describe the relationships between the input 
and output variables, which are expressed as a collection if-then rules that utilize 
linguistic labels, i.e., fuzzy sets. The general FRB structure is represented as: 

Ri : IF antecedentsi THEN consequentsi. (1) 

where i represents each fuzzy rule, R. To derive conclusions from a fuzzy rule set an 
inference procedure must be determined with approximate reasoning [21].  

Neural networks (NN) [10], on the other hand, are popularly known as black-box 
function approximates. They allow a system to learn from examples through the 
process of training. The learning process in a NN implies the adjustment of weights of 
the network in an attempt to minimize an error function. Generic algorithms (GA), 
[5],  most widely known evolutionary algorithms, are theoretically and empirically 
proven to provide the means for efficient search and optimization in complex space. 
GA has the power of finding the global minim of the defined objective function. 
Support Vector Machines [18] have recently been accepted as soft computing 
methods by some researchers.  

Recent research emphasizes the capabilities of fuzzy function approximations by 
training with neural networks as a good decision support tool [8],[10]. Utilization of 
genetic algorithms in evolutionary fuzzy systems has been a powerful global 
optimization tool due to its success in several problem domains [7]. Due to the 
complementarities of neural networks, fuzzy systems, and evolutionary computation, 
the recent trend is to fuse various systems to form a more powerful integrated system, 
to overcome their individual weaknesses [22], e.g. hybridization (Fig. 2). 

The rest of the paper briefly reviews our recent FSM approaches based on Fuzzy 
Function (FF)s for structure identification of fuzzy models and reasoning with them 
[2],[3],[16],[17]. The proposed FFs approach is a new branch of FSM, which is an 
alternate modeling to hybridization.  
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Fig. 1. Evolution in Data Mining Techniques of Knowledge Discovery 

2   A New Fuzzy System Model Approach  

Traditional FSMs are rule-based systems that use fuzzy logic, rather than Boolean 
logic, to reason with expert knowledge and available data. Based on the Zadeh’s 
fuzzy logic foundations [21], FSM with fuzzy rule bases has been the most prominent 
method to date to simulate the actual systems of various domains, e.g., engineering, 
business, financial problems, etc.  

Traditional FSMs are knowledge based system models structured with linguistic if-
then rules, which can be constructed using either an expert knowledge of the system 
that we want to model or system data acquired through experimentation [7]. FSM 
family is classified mainly upon structure of the antecedent (if) and consequent (then) 
part of the rules, known as “Fuzzy Rule Bases (FRB)”. They can be roughly 
categorized into three parts: 
(i)   linguistic fuzzy models, where both parts are linguistic variables, e.g., [14],[21], 
(ii)  fuzzy relational models, where the mapping from antecedent fuzzy sets, Ai, to the 
consequent fuzzy sets Bi is represented with a fuzzy relation, e.g., [12],  
(iii)  Takagi-Sugeno models, where the antecedents are fuzzy sets but the consequents 
are represented with crisp functions such as, i.e., if x is  Ai, then yi=f(x)., e.g., [15]. 

Typical traditional FSM development steps include; data preparation, similarity 
based supervised or unsupervised learning to determine the FRB structure, and fine-
tuning of the FRB parameters by minimization of approximation error [7]. There are 
different methods to identify the fuzzy model structure such as neural learning 
methods, least squares, inductive learning, or fuzzy clustering (FC). The most 
commonly used FRB models based on FC is the zero or first order Takagi-Sugeno 
(TS) models [15]. Recently, we presented a different structure identification method 
for FSM, called the Fuzzy Functions (FF)s approaches, which do not fall into any of 
the FSM categories listed above. The FF approaches are new methods for 
identification of system structure, which are proposed to be alternatives to FRB 
approaches. They are more easily interpretable and easily understandable by 
engineers, system modelers, business people, etc. The foundations of the FFs 
approaches were introduced by Türkşen [16] and Çelikyılmaz & Türkşen [2]. The 
framework for the generalization of the FSM with FFs is shown in Fig. 3.  

FSM with FFs and the traditional FSM approaches based on FRB structures share 
similar system design steps [17], but they differ in structure identification. FFs do not 
require most of the learning and inference steps that are needed in the FRB. FFs only 
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Fig. 3. Evolution of Fuzzy System Models 

require two well-known learning algorithms, i.e., any type of FC to discover the 
hidden structures associated with membership values in the given dataset and a 
function estimation method. 

FRB approaches approximate the given non-linear system behavior by local 
(non)linear models structured with either heuristic expert knowledge or a type of FC 
method. Thus, essentially the FFs and FRB approaches differ in structure 
identification process of the system modeling.  

3   Fuzzy Functions (FFs)   

In fuzzy logic theory, the FFs are defined as fuzzy relations, which can map both crisp 
and approximate values and they allow us to describe relationships between 
approximate objects approximately [4],[11], e.g. If…THEN rules. The FFs of the new 
FSM with FFs approach also map the fuzzy data to a non-fuzzy output value. The 
novelty of the FF approaches is that the membership values of each input data vector 
from a FC approach e.g., generally standard Fuzzy c-Means Clustering (FCM) [1], are 
used as additional predictors of the system model along with the original input 
variables to estimate the local relations of the input-output data. For each local model 
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captured from the FC, we use a linear regression method [16] as simple and 
interpretable as least squares estimation (LSE), or a non-linear regression method 
such as non-linear polynomial function. In order to obtain more powerful FFs, while 
sacrificing the interpretability of the models, we propose using other soft computing 
algorithms such as neural networks or support vector regression methods [2] with 
kernel functions, to model local input-output relations. In short, in the FFs methods, 
[2],[16],[17], there are as many regression methods as the number of clusters 
identified by the FC approach and the input variables of each regression method 
include membership values for a given cluster as well as the original scalar input 
variables. This is equal to mapping the original input space, x, of nv dimensions, ℜnv, 
onto a higher dimensional feature space, ℜnv+nm, and searching for regression models 
in this new feature space identified by the number of membership values, nm, i.e., 
x Φi(x,μi). Hence, each data vector is represented in (nv+nm) feature space. The 
decision boundary is sought in this new space. Let μi represent the column vector of 
membership values of the input vectors, x, in ith cluster. For each cluster i, a different 
dataset is structured by using membership values (μi) and/or their transformations as 
additional dimensions. The structure of the input matrix of the ith cluster for a special 
case (Fig. 4) using one-dimensional input matrix and only membership values as 
additional dimensions is: 

Φi(x,μi) =  

1 1i

nd i nd

x

x

μ

μ

×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∈ℜnv+nm   

1

nd

y

y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∈ℜ (2) 

where y represents the output variable. The proposed FF approaches are a variation of 
FFs defined in [4]. Each FF corresponds to a fuzzy rule in any FRB.  

During approximation of FFs, one only needs to determine a FC algorithm and a 
function estimation method. Hence, it can be easily structured and easily understood 
if simple function estimation methods are used to find the parameters of such 
functions. Our recent studies indicate that [2],[16],[17], FFs applications, outperform 
the FRB approaches as well as the standard regression methods. 

Some of the major challenges and issues of classical FSMs based on FRBs (if-then 
rules) [16] are: identification of membership functions, identification of most suitable 
combination operator (t-norm or t-conorm), choosing between fuzzy or non-fuzzy 
conjunctions, disjunction and implication operators to capture the uncertainty 
associated with the linguistic “AND”, “OR” and “IMP” for the representation of rules 
as well as for reasoning with them, defuzzification. Thus, to overcome these 
challenges, the FFs approaches [2],[16],[17] are developed  to estimate regression and 
classification models, which do not require construction of if-then rules. The system 
modeling with FFs approach consequently requires training and inference engines. 
During the training step of the system models for the determination of FFs 
approaches, the data is fuzzy partitioned into c number of fuzzy clusters and one FF is 
approximated for each fuzzy cluster using membership values as 
additionaldimensions of the input space. The inference algorithms of the FFs 
approaches are used to infer about the output values of new data vectors using the 
optimum model parameters, which are captured during the learning (training) 
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Fig. 4. Graphical Representation of the fuzzy functions of each cluster using the data mapped 
onto each individual cluster using individual membership values for a single input-single output 
artificial dataset 

exercises. Before FFs of each cluster is applied on the new data to estimate their 
output values in each cluster, the membership values of each new data in each cluster 
is calculated using the membership function of the FC algorithm that is implemented 
during the training algorithm of the FSM with FFs approach. To calculate a single 
output value for each data vector, in a sense defuzzify the output value, the output 
values from each cluster is weighted with their corresponding membership values and 
are summed up. 

4   Improved Fuzzy Clustering with Fuzzy Functions 

In the new FSM with FFs approaches the membership values from a FCM clustering 
method are used as additional predictors [2],[16] in each cluster. In this regard, one 
might argue that, the FCM [1] algorithm is not designed to find optimal membership 
values, which are at the same time good predictors for the FF models. In response, we 
introduced a new FC algorithm, namely the Improved Fuzzy Clustering (IFC) 
algorithm, [3] which carries out two objectives:  

(i) to find good representation of the partition matrix which captures the fuzzy 
model structure of the given system by identifying the hidden overlapping 
patterns,  

(ii) to find the membership values, which are good predictors of the regression 
models (FFs) of each cluster.  

Therefore the objective function of the new IFC, 

( )22

1 1 1 1

( ) , 1,.., , 1,..,
c nd c nd

IFC m m
m ik ik ik k i ik

i k i k

FCM FirstTerm Fuzzy

J d y f k nd i cμ μ
= = = =

−

= + − = =∑ ∑ ∑ ∑
Second term-  Function

τ   
(3) 

will be minimized by balancing two terms: (first term) the distance of kth data vector 
to ith cluster center, dik

2, and at the same time, (second term) the residual error, which 
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is the difference between the actual given output, yk and the approximated output from 
the fuzzy functions of each cluster, ŷi= ( )i ikf τ , i=1,..,c, where c represents the total 

number of clusters. In this sense, the new IFC combines the FC methods and the 
regression methods within one clustering-optimization model. During the 
optimization of IFC, the regression models, to be approximated for each cluster, will 
use only the membership values and their user defined transformations calculated at 
particular iteration and form the matrix τi of each cluster i, e.g., τi = [μi μi

2 eμi], but not 
the original input variables. Alienating the original input variables and building 
regression models with membership values will only shape the membership values 
into candidate inputs during IFC to explain the output variable for each local model.  

The convergence of the new IFC depends on how well these membership values 
are shaped to explain the output variable at each local fuzzy model. These 
membership values will be candidate input variables for the system modeling with 
FFs approaches. Therefore, in the proposed IFC, it is hypothesized that the calculated 
membership values can increase prediction power of the system modeling with FFs.  

5   Conclusion 

This paper briefly presented the evolution of Fuzzy System Models with an emphasis 
on the recent Fuzzy Functions (FFs) methods and reviewed new improvements. 
Comparisons to earlier rule base methods and advantages are discussed. The FFs 
method is a new approach to fuzzy system modeling in which different traditional 
learning algorithms are combined for system identification, e.g., FCM, or IFC and 
rule generation e.g., LSE, SVM, NN, etc. FFs are unique structures, which utilize 
membership values as additional predictors to form approximate relation between the 
inputs and output at each local model. To improve the approximation accuracy of 
these FFs, an improved clustering algorithm is used in FSM with FFs approach. Our 
new research is based on capturing the uncertainties in identification of the IFC 
parameters including degree of fuzziness (m), structure of the fuzzy functions, etc.  
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Abstract. In this paper, first, the main problems of some cluster validity indices 
when they have been applied to Gustafson and Kessel (GK) clustering approach 
are review. It is shown that most of these cluster validity indices have serious 
shortcomings to validate Gustafson Kessel algorithm. Then, a new cluster 
validity index based on a similarity measure of fuzzy clusters for validation of 
GK algorithm is presented. This new index is not based on a geometric distance 
and can determine the degree of correlation of the clusters. Finally, the 
proposed cluster validity index is tested and validated by using five sets of 
artificially generated data. The results show that the proposed cluster validity 
index is more efficient and realistic than the former traditional indices.  

Keywords: Fuzzy cluster analysis, similarity measure, cluster validity index.  

1   Introduction 

The objective of a fuzzy clustering approach is to partition a data set into c 
homogeneous fuzzy clusters. The most widely used fuzzy clustering algorithm is the 
fuzzy c-means (FCM) algorithm proposed by Bezdek [1]. The FCM detects clusters 
having centroid prototypes of a roughly same size. The Gustafson–Kessel (GK) 
algorithm is an extension of the FCM, which can detect clusters of different 
orientation and shape in a data set by employing norm-inducing matrix for each 
cluster [9]. Both FCM and GK algorithms require the number of clusters as an input, 
and the analysis result can vary greatly depending on the value chosen for this 
variable. However, in many cases the exact number of the clusters in a data set is not 
known. Both FCM and GK algorithm may lead to undesired results if a wrong cluster 
number is given. It is necessary to validate each of the fuzzy c-partitions once they are 
found [2]. This validation is carried out by a cluster validity index, which evaluates 
each of the fuzzy c-partitions and determines the optimal partition or the optimal 
number of the clusters (c). Many validation criteria have been proposed for evaluating 
fuzzy c-partitions [1–14]. In particular, Bezdek’s partition coefficient (PC) [3] and 
partition entropy (PE) [4], and Xie-Beni’s index [5] have been frequently used in 
recent research. Cluster properties such as compactness (or variation) and separation 
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(or isolation) are often considered as major characteristics by which to validate 
clusters. Compactness is an indicator of the variation or scattering of the data within a 
cluster and separation is an indicator of the isolation of the clusters from one another. 
However, conventional approaches to measuring compactness suffer from a tendency 
to monotonically decrease when the number of the clusters approaches to the number 
of data points [2, 7]. In addition, conventional separation measures have a limited 
capacity to differentiate the geometric structures of the clusters because the 
calculation is based only on the centroid information and does not consider the overall 
cluster shape. 

In the case of the GK algorithm, there are only a few validation indices found in 
the literature [11,12] with poor performance, and most validation indices proposed for 
the FCM cannot be applied to the GK clustering directly because they highly depend 
on the centroid information of the clusters and they do not use the covariance 
information of the  clusters. Most of the validity indices proposed for the FCM [1, 3–
8] measure intra-cluster compactness and inter cluster separation using cluster 
centroids. However, interpretation of inter cluster separation of these indices is 
problematic because such indices quantify cluster separation based on only the 
distance between cluster centroids. Thus, they are not appropriate for the clusters 
found by the GK algorithms which often are in the shape of hyper ellipsoids of 
different orientation and shapes [20]. 

This paper presents a new cluster validity index based on a similarity measure. 
This similarity measure can quantify the degree of overlap between fuzzy clusters by 
computing an inter-cluster overlap. Here the similarity between fuzzy sets can be 
defined as the degree to which the fuzzy clusters are more similar. 

The organization of the paper is as follows: section 2 reviews the GK algorithm, 
some cluster validity indices and their main problems when they are applied to 
validate the GK algorithm. In section 3 we propose a new cluster validity index based 
on a similarity measure for fuzzy clustering. In section 4, the performance of the new 
validity index is tested by applying it to 5 data sets and comparing the results with 
those obtained using traditional validity indices. 

2   Backgrounds 

In this section, we briefly review the GK algorithm and some traditional cluster 
validity indices. 

2.1   The Gustafson-Kessel Algorithm 

Assume the vector xk , k=1,2, …, N, contained in the columns of data matrix X, will be 
partitioned into c clusters, represented by their prototypical vectors vi=[vi,1, 
vi,2,…,vi,n]

T∈ Rn , i=1,2,…,c. Denote V∈Rn×c the matrix having vi in its i-th column. 
This matrix is called the prototype matrix. The fuzzy partitioning of data among the c 
clusters is represented as the fuzzy partition matrix U∈Rn×c whose element μi,k∈[0,1] 
are the membership degree of the data vector xk in the i-th cluster. A class of 
clustering algorithms searches for the partition matrix and the cluster prototypes such 
that following objective function is minimized: 
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where, m>1 is a parameter that controls the fuzziness of the clusters. The function 
d(xk, vi) is the distance of the data vector xk from the cluster prototype vi. 
Gustafson and Kessel (1979) extended the fuzzy c-mean algorithm for an inter-
product matrix norm: 

d2 (x k, vi) = (x k-vi)
T Mi ( x k -vi) (2) 

where, Mi is a positive definite matrix adapted according to the actual shapes of the 
individual clusters, described approximately by the cluster covariance matrices Fi : 
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The objective of GK algorithm is to obtain a fuzzy c-partition and its corresponding 
norm-inducing matrices (Mi) by minimizing the evaluation function J [10]. 

2.2   Traditional Cluster Validity Indices 

Cluster validity indices are used to establish which partition best explains the unknown 
cluster structure in a given data set [17]. A fuzzy clustering algorithm is run over a range 
of c values, 2,...,cmax and the resulting fuzzy partition is evaluated with the validity 
indices to identify the optimal number of the clusters. Bezdek proposed two cluster 
validity indices for fuzzy clustering [3, 4]. These indices, which are referred to as the 
Partition Coefficient (VPC) and Partition Entropy (VPE), are defined as: 
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The optimal fuzzy partition is obtained by maximizing VPC (or minimizing VPE) with 
respect to c = 2; . . . ; cmax. 

Partition Index VSC which is presented by Bensaid and Hall [19] is the ratio of the 
sum of compactness and separation of the clusters. It is a sum of individual cluster 
validity measures normalized through division by the fuzzy cardinality of each cluster: 

( )
∑

∑

∑
=

=

=

−

−
=

c

i
c

k
iki

n

j
ij

m
ij

SC

vvn

vx

V
1

1

2

1

2
μ

 
(7) 



RETRACTED A
RTIC

LE

130 M.H. Fazel Zarandi, E. Neshat, and I.B. Türkşen  

 

VSC is useful when comparing different partitions having equal number of clusters. A 
lower value of VSC indicates a better partition. 

Xie and Beni proposed a validity index (VXB) that focuses on two properties: 
compactness and separation [5]. VXB is defined as: 

}){min(
2

2

1 1

2

ji
ji

c

i
ki

n

k
ik

XB
vvn

vx
V

−

−
=

≠

= =
∑∑ μ

 (8) 

In this equation, the numerator is the sum of the compactness of each fuzzy cluster 
and the denominator is the minimal separation between fuzzy clusters. The optimal 
fuzzy partition is obtained by minimizing VXB with respect to c = 2,…,cmax, VXB 
decreases monotonically as c→n. Kwon extended VXB to eliminate this decreasing 
trend [7] by adding a penalty value to the numerator of VXB. Kwon’s index is as 
follows: 
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Most validity indices shown above focus only on the compactness and the variation of 
the intra-cluster distance [5–8]. Fuzzy hyper volume and density criteria use the hyper 
volume to assess the density of the resulting clusters measuring mainly compactness 
of the given fuzzy partition [13]. Some indices, for example VXB and VK, use the 
strength of separation between clusters; however, interpretation of these indices is 
problematic because they quantify cluster separation based only on the distance 
between cluster centriods. Since the GK clustering involves Mahalanobis distance 
norm for each cluster, validity indices like VXB, VK, cannot discriminate the separation 
of two different pairs of clusters with different clusters and with different orientation.  

 

Fig. 1.  Two different fuzzy partitions (U(a), V(a))and(U(b) ,V(b)), with the same distance between 
cluster centroids with different orientations for the same data 

In Fig.1 even though the pair (U(a),V
(a))provides a better partitioning than the pair 

(U(b) ,V(b)), this cannot be reflected properly in VXB, and VK because they calculate the 
separation between clusters using only centroid distances. 
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2.3   Similarity 

The concept of similarity is interpreted in different ways depending on the context. 
The interpretation of similarity in everyday language is “having characteristics in 
common” or “not different in shape, but in size or position”. This interpretation of 
similarity differs from the one we use. We define similarity between fuzzy sets as the 
degree to which the fuzzy sets are equal. This definition is related to the concepts 
represented by the fuzzy sets. 

Different similarity measures have been proposed for fuzzy sets, and a study of 
some measures can be found in [15] and [16]. In general, they can be divided into two 
main groups: 1) geometric similarity measures, 2) set-theoretic similarity measures. 

The proposed similarity measure is not based on a geometric distance such as the 
Minkowski distance, and it provides answers for the following question: at what 
degree can two clusters (or groups) be co-related? 

The similarity measure satisfies the following properties [18]: 

Property1. ( )qp AAS ,  is the maximum degree of similarity between 
PA and 

qA . 

Property2. The similarity degree is bounded, ( ) 1,0 ≤≤ qp AAS  

Property3. If Ap and Aq are normalized and Ap and Aq, ( ) 1, =qp AAS . If   A A qp φ=∩ , 

( ) 0, =qp AAS . 

Property4. The measure is commutative, i.e. S(Ap ,Aq)= S(Aq ,Ap) 
Property5. When Ap and Aq are crisp, S = 0 if φ=  A A qp ∩ , S = 1 if φ≠  A A qp ∩ . 

Thus, when the similarity between fuzzy clusters Ap and Aq is, for example, S(Ap ,Aq) 

=0.4, then the interpretation is that the clusters Ap and Aq are similar or co-related with 
a degree of at least 0.4. Conversely, we can say that the two fuzzy cluster sets are 
unrelated or isolated with a degree of 0.6. 

3   Cluster Validity Based on Fuzzy Similarity 

Let Ap and Aq be two fuzzy clusters belonging to a fuzzy partition ( )VU , and c be the 

number of clusters. 

Definition 1. The relative similarity between two fuzzy sets Ap and Aq at xj is defined 
as: 

( )
) - A : A f ( x) - A : Af ( x  ) A  : Af ( x
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∧=∩  where, ∧ is minimum. Moreover: 
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and 

( ) ))()(,0(A A : pq jAjAj xxMaxxf
pq
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Definition 2. The relative similarity between two fuzzy sets Ap and Aq is defined as: 

( ) ) h(x  )  , A (xj : ASAAS j
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Here, h(xj) is the entropy of datum xj and )( jA xμ
P

is the membership value with which 

xj belongs to the cluster Ap. in (13), h(xj) measures how vaguely (unclearly) the datum 
xj is classified over c different clusters. h(xj) is introduced to assign a weight for vague 
data. Vague data are given more weight than clearly classified data. h(xj) also reflects 
the dependency of )( jA xμ

P
with respect to different c values. This approach makes it 

possible to focus more on the highly-overlapped data in the computation of the 
validity index than other indices do. 

Definition 3. The proposed validity index is as follows: 

( ) ∑
≠−

=
C

qp
qprelFNT AAS

cc
XVUV ),(

)1(
2

;,  (15) 

The optimal number of the clusters is obtained by minimizing ( )XVUVFNT ;, over the 

range of c values: 2,…,cmax. 
Thus, VFNT is defined as the average value of the relative similarity between 

2)1( −cc  pairs of clusters, where the relative similarity between each cluster pair is 

defined as the weighted sum of the relative similarity at xj between two clusters in the 
pair. Hence, the less overlap there is in a fuzzy partition, and the less vague the data 
points in that overlap, the lower the value of ( )XVUVFNT ;, is resulted. 

4   Numerical Examples 

To test the performance of VFNT, we use it to determine the optimal number of clusters 
in six artificially generated data sets and compared the results with those obtained 
using VPC, VPE , VSC, VXB , VK. 

VXB, VK and VSC are modified to accommodate Mahalanobis distance norm instead 
of Euclidean norm in calculating the distance from each data point to the cluster 
centers. The parameters of the GK algorithm were set as follows: termination criterion 
ε =10-5, weighting exponent m = 2, cmax= 12 and the initial cluster centers were 
selected by the FCM. Figures 2–6 show scatter plots of the seven artificially 
generated data sets used in the experiments. 

Table 1 summarizes the optimal cluster numbers identified by each validity index. 
For example for Data set 5 all validity indices VPC, VPE, VSC, VXB and VK incorrectly 
identified the optimal cluster number and only VFNT identified it correctly. This result 
indicates that the proposed validity index is very reliable. 
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Fig. 2. Data set 1 (c*= 3.) 
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Fig. 3. Data set 2 (c*=2.) 
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Fig. 4. Data set 3 (c*=5.) 
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Fig. 5. Data set 4 (c*=6.) 

0

100

200

300

400

500

600

700

0 200 400 600 800

 

Fig. 6. Data set 5 (c*=6.) 

Table 1. Optimal cluster number for 5 data sets 

VPC VPE VSC VXB VK VFNT c

Data set 1 3 3 8 11 11 3 3

Data set 2 2 2 12 4 4 2 2

Data set 3 5 3 11 10 4 5 5

Data set 4 6 2 10 8 3 6 6

Data set 5 2 2 12 12 3 8 8  
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5   Conclusions 

In this paper, the problems of some traditional validity indices when applied to the 
GK clustering are reviewed. A new cluster validity index for the GK algorithm based 
on similarity measure is proposed. This validity index is defined as the average value 
of the relative degrees of sharing of all possible pairs of fuzzy clusters in the system. 
The optimal number of clusters is obtained by minimizing the validity index. Finally, 
the performance of the proposed validity index was tested by applying it to 7 data sets 
and comparing the results with those obtained using several other validity indices. 
The results indicate that the proposed validity index is reliable. 
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Abstract. This paper presents a new fuzzy classifier design, which constructs 
one classifier for each fuzzy partition of a given system. The new approach, 
namely Fuzzy Classifier Functions (FCF), is an adaptation of our generic design 
on Fuzzy Functions to classification problems. This approach couples any fuzzy 
clustering algorithm with any classification method, in a unique way. The 
presented model derives fuzzy functions (rules) from data to classify patterns 
into number of classes. Fuzzy c-means clustering is used to capture hidden 
fuzzy patterns and a linear or a non-linear classifier function is used to build 
one classifier model for each pattern identified. The performance of each 
classifier is enhanced by using corresponding membership values of the data 
vectors as additional input variables. FCF is proposed as an alternate 
representation and reasoning schema to fuzzy rule base classifiers. The 
proposed method is evaluated by the comparison of experiments with the 
standard classifier methods using cross validation on test patterns.  

Keywords: Fuzzy classification, fuzzy c-means clustering, SVM. 

1   Introduction 

Numerous classical classifiers such as logistic regression (LR), support vector 
machines (SVM) [9, 13, 23], etc., are widely used to approximate linear or non-linear 
decision boundaries of the system under study. The main assumption in these 
classification methods and their possible drawback is that, the data with possible 
multi-model structure is classified using a single classifier. More recently, fuzzy 
classifier methods based on if-then rules have been applied to solve classification 
problems by constructing multi-model structures, which yield a class label for each 
vector in the given space. Some examples of well known fuzzy classifiers are fuzzy 
clustering methods [1, 19], adaptive neuro-fuzzy inference system (ANFIS) for 
classification [12], evolutionary algorithms [34,11], etc., which have been employed 
to automatically learn fuzzy if-then rules from the data.     

Classical fuzzy system models based on fuzzy rule bases (FRB) (if-then rules) have 
some challenges [20], e.g., identification of membership functions, and most suitable 
combination operator (t-norm or t-conorm), the choice between fuzzy or non-fuzzy 
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conjunctions, defuzzification and implication operators to capture the uncertainty 
associated with the linguistic “AND”, “OR” and “IMP” for the representation of 
rules, reasoning with them, defuzzification, etc. Hence, to overcome these challenges, 
we present a new Fuzzy Classifier Function (FCF) approach to estimate decision 
boundaries, which does not require construction of if-then rules. The proposed FCF 
approach, based on our previous novel “Fuzzy Functions” approaches for regression 
problems [6, 20, 21], is an alternative approach to Fuzzy Classifiers with “Fuzzy Rule 
Base” approaches [15].  

The presented FCF first clusters the given data into several overlapping fuzzy 
clusters, each of which is used to define a separate decision boundary. Our approach 
is unique because during fuzzy classifier design, the similarity of the objects is 
enhanced with additional fuzzy identifiers, i.e., the membership values, by utilizing 
them as additional input variables. Thus, the membership values and their possible 
transformations are augmented to the original training dataset as new dimensions to 
structure different datasets for each cluster. With this approach, during training 
algorithm, the classifier employs valuable information such that the objects that are 
closer to each other with opposite labels are assigned different membership values in 
the same cluster. The proposed approach builds one classifier for each cluster (see 
Figure 1). Any classifier method to build a linear or a non-linear classifier can be used 
depending on the structure of the dataset. Hence, we used Logistic Regression to 
represent a linear classifier and SVM to build non-linear fuzzy classifiers to observe 
their affects on the models.  

The remainder of this paper is organized as follows. First, we present description 
about the idea and formulation of FCF algorithm. Next, the discussion and 
conclusions on the empirical analysis of the proposed FCF models using various 
datasets in comparison to well-known classifier methods is presented. Finally, 
conclusions are drawn. 

2   Proposed Fuzzy Classifier Function (FCF) Approach 

In the novel FCF approach, the given dataset is first fuzzy partitioned using fuzzy c-
means clustering (FCM) [2] algorithm, so that each cluster can be represented by a 
separate decision boundary using classification methods. FCM clustering algorithm 
enables to apply supervised partitioning of the dataset based on the given class labels. 
Therefore, membership values encapsulate the class label information as well as 
spatial relationships between the input data vectors and they are used as additional 
dimensions to structure different datasets for each cluster i, i=1,..,c.  

Let the given dataset contains nd data points, XY={(xk, yk)}
nd, where xk represents 

input data vectors of nv features, xk=(xk,1,…, xk,nv)∈X⊆ℜnv, k=1,..,nd, and class labels 
yk∈{0,1}∈Y.  

We first find hidden structures in the given training dataset with FCM [2] 
clustering algorithm, where m is the level of fuzziness (m >1), and c is the number of 
clusters (c≥2). FCM clustering algorithm computes partition matrix U⊆ℜnd×c of 
membership values 0 ≤ µik∈U ≤ 1 of every data sample k in each cluster i, using the 
following membership function for a given pair of (m,c) parameters:  
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using the cluster centers;  

υ(xy)i
(m,c)={x1,i,…, xnv,i , yi}, i=1,…,c. (2) 

Then, we identify the cluster centers of the “input space” for given (m,c) as : 

υ(x)i
(m,c)={x1,i,…, xnv,i }. (3) 

We compute membership values of the x-input domain, µik(x), using the 
membership function in (1) and their cluster centers υ(x)i

(m,c) in input domain and then 
normalize them to interval [0,1]. The γi(x)’s are the normalized membership values of 
x-domain as column vectors of ith cluster, which in turn indicate the membership 
values that will constitute as new input variables in our proposed scheme of classifier 
identification for the representation of ith cluster.  

For each cluster i, a different dataset is structured by using membership values (γi) 
and their transformations as additional dimensions. This is same as mapping the 
original input space, ℜnv, onto a higher dimensional feature space ℜnv+nm, i.e., 
x Φi(x, γi). Hence, each data vector is represented in (nv+nm) feature space. nm is 
the number of dimensions added to the original input space. The decision boundary is 
sought in this new space, see Fig. 1. The structure of the input matrix of the ith cluster 
for a special case using one dimensional input matrix and only membership values as 
additional dimensions is as follows: 

Φi(x, γi) =  
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∈ℜ. (4) 

Intercept is encapsulated in x-domain. Then, depending on the system, a linear or a 
non-linear classifier, e.g.,  LR or SVM for classification, etc., is build for each cluster 
in (nv+nm) space, i.e., ℜnv ℜnv+nm. The new augmented input matrices, Φi(xi,γi) for 
each ith cluster as in (4), could take on several forms depending on which 
transformation of membership values we want/need to include in our system structure 
identification. Possible examples would include; logit transformations, log((1-γik)/γik), 
or exponential transformations, exp(γik) of the membership values. A prominent 
feature of the novel FCF is that, a linearly inseparable data in the original input space 
can be separated in the ℜnv+nm space with the additional information induced by the 
membership values. Hence, data points with opposite class labels, which are closer in 
the input space, will be farther away pointing separate directions in the feature space 
after mapping is employed.  

The membership values also affect the design of the classifier of each cluster in the 
following way. The data points, which are closer to the cluster center have larger μi’s 
(μi ∈[0,1] | μi>0.5, i=1,..,c≥2) than those that are farther away from the cluster center. 
Data points around the cluster center would have more impact on their corresponding 
cluster decision surface. 
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Fig. 1. Fuzzy Classifier Function (FCF) of a system with c-models 

In order to estimate the posterior probability Pi(yi=1∈Yi|Φi) of the binary output for 
each cluster, we use logistic regression or support vector machine for classification 
(SVC) to represent one linear or non-linear classifier function of a cluster. Here we 
show SVC implementation. The optimal SVC hyperplane is found for each cluster 
and dual optimization problem of SVC is represented as follows: 

( ) ( )( )1

0 0 1 1

 x x

        

nd nd

i ik ik il ik il k ik ik l il ilk k ,l

nd

ik ik ik ik

Max Q y y K , , ,

s.t . y , C , k ,...,nd ,i ,..,c

=
= β − β β Φ γ Φ γ

β = ≤ β ≤ = =

∑ ∑
∑

. (5) 

where K(Φik(Xik,γik), Φil(Xil,γil)) is a kernel function between two vectors, Φik(Xik,γik) 
and Φil(Xil,γil), of ith cluster in feature space, β are Lagrange multipliers, which are 
introduced to solve SVC optimization algorithm. The kernel is used to determine the 
level of proximity between any two points. We used three most popular kernel 
functions, i.e., linear(FCFLin): K(xk ,xj)= xk

T
 xj, polynomial kernel:(FCFPol) : 

K(xk,xj)= (xk
Txj+1)d, d>0 and radial basis kernel (FCFRbf): K(xk,xj)= exp(-δ||xk-xj||

2), 
δ>0, where d, and δ are user defined kernel parameters. In this paper, default values 
of kernel parameters, (d=2,δ=1/nv), are used.   

User defined penalty term, Ci, which may or may not be same for each cluster, 
determines the complexity of the classifier and it bounds the βik ,which represents the 
Lagrange multiplier assigned to kth train vector for ith cluster, Ci≥βik ≥0. The decision 
hyperplane for each cluster, i, is given below: 

( )( )( ) ( ) ( )( )x x x
nd

i i i i i ik ik ik ik ik i i ik
ŷ sign f , y K , , ,= Φ γ = β Φ γ Φ γ∑ .  (6) 

The learning problem in expression (6) is only expressed in terms of unknown 
Lagrange multipliers βik, the known mapped inputs vectors, Φi(Xi,γi) of each cluster, 
and their output values. Hence, these vectors with βik>0 are called the support vectors. 
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Since the classifiers estimated for each cluster make some part of the overall decision, 
we calculate the posterior probabilities using improved Platt probability method [16, 
18], which is based on the approximation of the ŷi with the sigmoid function as:   

ˆ
iP (ŷi =1|Φi(Xi,γi))= 1/(1+exp(a1 fi + a2)) (7) 

where the parameters a1 and a2 are found by maximum likelihood estimation [16, 18].  
Since the aim of the algorithm is find a crisp probability output, each probability 
output ˆ

iP from each cluster is weighted with their membership values as:   

( ) ( )1 1

c c

i i ii i
ˆ ˆP P /

= =
= ∑ ∑γ γ . (8) 

The common way of finding the optimum cluster size is through suitable validity 
index measures. In this paper, the optimal pair, (m*,c*), is determined through an  
exhaustive search technique as follows: For each given (m,c) pair, one FCF model is 
build using the training dataset and its performance is evaluated based on maximum 
AUC (Area under the ROC curve). The FCF model parameter set with the best 
performance are set as the optimum parameters. In this paper, we optimized the FCF 
parameters, through cross validation method. Next, we illustrate the application of our 
algorithm to various benchmark and real life data. 

3   Numerical Experiments 

We used 5 classification data from UCI repository [17] including breast-cancer, 
pima-diabetes, liver-disorders, ionosphere, and credit-application and a real life bank 
failure data to build an early warning system (EWS). For benchmark datasets, 
approximately 45% of observations from each dataset are randomly selected for 
training, %35 to optimize the parameters (validation) and 20% observation, which has 
not been used in training or validation data, is used for testing the model performance. 
Experiments are repeated 10 times with the above combinations.  

The real-life bank failure sparse dataset [8] consists of 27 financial ratios of 42 
Turkish banks based on 1998-2002 period. The binary output variable, y∈{0,1}, is 1 
if the bank was bankrupted at the 4th year (2002). Since each financial ratio from three 
prior years before 2002, i.e., (t-1), (t-2) and (t-3), are used to estimate the 4th year 
output variable, the model comprised a total of 81 input variables, i.e., (27X3=81) 
[78]. Based on series of feature selection methods 6 input variables are selected from 
three different years: x1

(t-1), x2
(t-2), x3

(t-2)
, x2

(t-3), x3
(t-1), x4

(t-3) (x1:liquid_assets; 
x2:net_income/paid_in_capital; x3:interest_revenue/interest_expense; x4:interest_income/ 
#employees). We applied 6 fold cv by dividing the data into 6 mutually exclusive sub-
samples, each containing 7 observations, preserving the overall fail/success ratio as 
much as possible. Then we built a classification model using 5 sub-samples (35 
observations) as training and the remaining sub-sample as validation. Each sub-
sample is used once as validation dataset and average cv performance over 10 
repetitions are calculated.  

As it is usually difficult to identify single best algorithm reliably, it a good practice 
to provide a rank ordering of different algorithms applied on the set of datasets [3]. 
AUC is closely related to Wilcoxon-Mann-Whitney [10] statistic to measure the 
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performance of the models, which is much preferred to simple accuracy measure [7]. 
SVC and LR classifier functions are separately used to build 4 different types of 
proposed FCF models, namely, FCFLin, FCFPol, FCFRbf, FCFLR. Their 
performances are evaluated in comparison to the model results of FRB based 
classifier, ANFIS [1114], a single model approach with standard LR, SVC models [5] 
with three different kernels: Linear (SVCLin), polynomial (SVCPol), RBF kernel 
(SVCRBF), and multi-layer perceptron Neural Networks (NN) of Matlab 7.0.1 
toolbox. 

For each experiment, we evaluated AUC using different SVC cost parameters, 
C=[27,26,…,2-4] for FCF models which implement SVC during structure 
identification, and FCM parameters, m=[1.3, 1.4, …,2.4] and c=[2,3,…,8]. For the 
construction of fuzzy functions, membership values and their exponential 
transformations are used as additional inputs.  

Average ranking method [3], inspired by Freidman, is used to compare different 
classification algorithms. For each dataset, we order the algorithms according to 
average AUC and assign ranks accordingly. Let rj

q be the rank of algorithm 
j(j=1,..,10) on dataset q(1,..,n=6). Average Rank (AR) for each algorithm is 
calculated as r j=(∑qrj

q)/n. Table 1 displays the AUC and AR results as follows:  

Table 1. Classfication Performances based on average test AUC of 10 repetitions. The ranks in 
parenthesis are used in computation of Freidman’s’ rank test.  

Method Diabet CreditS Liver BreastC IonSp. Bank AR Rank 
LR 0.848(9) 0.925(7.5) 0.752(7) 0.560(6) 0.895(9) 0.902(10) 8.1 10 
ANFIS 0.82(10) 0.91(10) 0.72(10) 0.665(1) 0.935(6) 0.928(7.5) 7.4 9 
NN 0.854(8) 0.928(3) 0.746(8) 0.558(7) 0.932(8) 0.930(5.5) 6.6 6 
SVCLin 0.860(5) 0.926(5.5) 0.745(9) 0.540(8) 0.88(10) 0.930(5.5) 7.2 7 
SVCPol 0.858(6) 0.920(9) 0.759(6) 0.52(10) 0.950(4) 0.919(9) 7.3 8 
SVCRbf 0.865(3) 0.927(4) 0.777(5) 0.519(9) 0.976(2) 0.928(7.5) 5.1 5 
FCFLR 0.857(7) 0.940(1) 0.778(4) 0.567(5) 0.940(5) 0.945(2) 4.0 3 
FCFLin 0.864(4) 0.926(5.5) 0.788(2) 0.593(3) 0.933(7) 0.936(4) 4.3 4 
FCFPol 0.866(2) 0.925(7.5) 0.794(1) 0.581(4) 0.965(3) 0.937(3) 3.4 2 
FCFRbf 0.875(1) 0.932(2) 0.786(3) 0.639(2) 0.984(1) 0.962(1) 1.7 1 

4   Discussions 

On average, the proposed model using non-linear SVC (FCFRbf) ranked the first. Our 
proposed models outperform the traditional classifiers in all datasets. For bank failure 
system, the single model approach, LR, is not as accurate as the Fuzzy Classifier 
models, where there are as many fuzzy functions as the optimum number of clusters. 
ANFIS models have the highest AUC for the breast cancer data only. Traditional non-
linear SVM models have high AUC for all data; however, proposed FCF models can 
separate non-linear cases better in feature spaces within granular structures. Using 
fuzzy membership values as new predictors for local fuzzy classifiers, we can create 
better models with higher generalization ability. In the experiments we used one type 
of fuzzy classifier function structure, the membership values and their exponential 
transformations. Further research with different combinations of fuzzy function 



142 A. Çelikyılmaz et al. 

structures and different model approximators within one model will be investigated 
for possible performance improvements. Furthermore, with the application of the 
proposed method and the comparison methods on various other empirical datasets, we 
will conduct statistical significance tests 3] to measure the level of improvement of 
the proposed approach as opposed to other classifiers.  

5   Conclusions 

We presented a novel classifier design, the Fuzzy Classifier Functions (FCF) 
methodology, which is an adaptation of our earlier Fuzzy System Modeling with 
Fuzzy Functions for regression approaches to classification problems. The novel FCF 
couple fuzzy clustering and traditional classifier algorithms to represent systems with 
multi-models. Firstly, the membership values from the FCM are used to map the 
original input matrix to a user defined feature space by augmenting the membership 
values and their transformations to the original input variables. Then, a separate 
classifier function approximation technique, i.e., logistic regression or support vector 
classification, is applied on this new space for each cluster. The multi-model system 
identification approach of FCF enables to design local classifiers, which uses the 
information on natural grouping of data samples, i.e., the membership values, as 
explanatory variables. Empirical comparisons using one real world problem and five 
benchmark data indicate that the proposed FCF is a robust method in terms of 
yielding more accurate results than the traditional classification methods. FCF can be 
considered as a new perspective for the applications of Fuzzy Functions on real world 
problems.  

References 

1. Abe, S., Thawonmas, R.: A fuzzy classifier with ellipsoidal regions. IEEE Trans. Fuzzy 
Syst. 5 (1997) 358-368 

2. Bezdek, J.-C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum 
Press (1981) 

3. Bradzil, P.B., Soares, C.: A Comparison of Ranking Methods for Classification Algorithm 
Selection. In Machine Learning: ECML 2000, 11th European Conference on Machine 
Learning, ECML 2000, LNAI 1810, Springer Verlag (2000) 

4. Chang, X., Lilly, J.H.: Evolutionary Design of a fuzzy classifier from data. IEEE Trans. 
On System, Man and Cyber. B. 34 (2004) 1894-1906 

5. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines (2001). 
Software available http://www.csie.ntu.edu.tw/~cjlin/libsvm 

6. Çelikyilmaz, A., Türkşen, I.B.: Fuzzy Functions with Support Vector Machines. 
Information Sciences  (2007) 

7. Demsar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of 
Machine Learning Research 7 (2006) 1-30 

8. Doganay, M.M, Ceylan, N.B., Aktas, R.: Predicting Financial Failure of the Turkish 
Banks, Annals of Financial Economics 2 (forthcoming)  

9. Ducker, H.D, Wu, D., Vapnik, V.: Support Vector Machines for spam categorization. 
IEEE Transaction on Neural Networks 10 (5) (1999) 1048-1054 



 A New Classifier Design with Fuzzy Functions 143 

10. Hanley, J.A., McNeil, B.J.: The meaning and use of area under a receiver operating 
characteristic (ROC) curve. Radiology (1992) 

11. Huerta, E.B., Duval, B., Hao, J.-K.: A Hybrid Bayesian Optimal Classifier Based on 
Neuro-fuzzy Logic. Applications of Evolutionary Computing Vol. 3907. Springer-Verlag, 
Berlin Heidelberg New York (2000) 34-77 

12. Huang, M.-L., Chen, H.-Y., Huang, J.-J.: Glaucoma detection using adaptive neuro-fuzzy 
inference system. Expert Systems with Applications 32 (2007) 458-468 

13. Kecman, V.: Learning and Soft Computing: Support Vector Machines. Neural Networks, 
and Fuzzy Logic Models, Cambridge, Mass. MIT Press (2001) 

14. Klawonn, F., Nauck, D., Kruse, R.: Generating rules from data by fuzzy and neuro-fuzzy 
methods. In Proc. Fuzzy Neuro-System (1995) 223-230 

15. Kuncheva, L.I.: Fuzzy Classifier Design. Studies in Fuzziness and Soft Computing (2000) 
16. Lin, H.-T., Lin, C.-J., Weng R.C.: A note on Platt’s probabilistic outputs for support vector 

machines. Technical report (2003) 
17. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning 

databases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of 
California, Department of Information and Computer Science (1998)  

18. Platt, J.: Probabilistic outputs for support vector machines and comparison to regularized 
likelihood methods. MIT Press, Cambridge, MA (2000) 

19. Setnes, M., Babuska, R.: Fuzzy relational classifier trained by fuzzy clustering. IEEE 
Trans. Syst. Man, Cybern. B. 29 (1999) 619-625 

20. Türkşen, I.B., Çelikyılmaz, A.: Comparison of Fuzzy Functions with Fuzzy Rule Base 
Approaches. Int. Journal of Fuzzy Systems 8 (3) (2006) 137-149 

21. Türkşen, I.B.: Fuzzy Functions with LSE. Applied Soft Computing (forthcoming) 
22. Wang, L.P. (ed.): Support Vector Machines: Theory and Application. Springer, Berlin 

Heidelberg New York (2005) 
23. Vapnik, V.: Statistical Learning Theory. New York, Wiley (1998) 

 



Image Analysis of Ductal Proliferative Lesions of

Breast Using Architectural Features

Haegil Hwang, Hyekyoung Yoon, Hyunju Choi, Myounghee Kim,
and Heungkook Choi

School of Computer Engineerng, Inje University, Gimhae, 621-749, Korea
Dept. of Pathology, Inje University, Gimhae, 621-749, Korea

Dept. of Computer Engineering, Ewha Womans University, Seoul 120-170, Korea
{seaload,pathyoon,hjchoi}@mitl.inje.ac.kr, mhkim@mm.ewha.ac.kr,

cschk@inje.ac.kr

Abstract. We propose a method to classify breast lesions of ducatal
origin. The materials were tissue sections of the intraductal proliferative
lesions of the breast: benign(DH:ductal hyperplasia), ductal carcinoma
in situ(DCIS). The total 40 images from 70 samples of ducts were dig-
itally captured from 15 cases of DCIS and 25 cases of DH diagnosed
by pathologist. To assess the correlation between computerized images
analysis and visual analysis by a pathologist, we extracted the total lu-
men area/gland area, to segment the gland(duct) area used a snake al-
gorithm, to segment the lumen used multilevel Otsus method in the duct
from 20x images for distinguishing DH and DCIS. In duct image, we ex-
tracted the five texture features (correlation, entropy, contrast, angular
second moment, and inverse difference moment) using the co-occurrence
matrix for a distribution pattern of cells and pleomorphism of the nu-
cleus. In the present study, we obtained classification accuracy rates of
91.33%, the architectural features of breast ducts has been advanced as
a useful features in the classification for distiguishing DH and DCIS. We
expect that the proposed method in this paper could be used as a useful
diagnostic tool to differentiate the intraductal proliferative lesions of the
breast.

Keywords: Intraductal proliferative lesions of the breast, Texture fea-
tures, Gray level co-occurrence matrix(GLCM), Sanke algorithm, Mul-
tilevel Ostus method, Architectural features of breast ducts.

1 Introduction

The breast cancer is a malignant-tumour that can develop metastatic tumours
in women. The diagnosis of ductal hyperplasia (DH) and ductal carcinoma in
situ (DCIS) still remains a problem in the histological diagnosis of breast lesions.
Image analysis of tissue sections holds promise for diagnosing cancer and track-
ing the progression of the disease. In traditional cancer diagnosis, pathologists
use histopathological images of biopsy samples taken from patients, examine
them under a microscope, and make judgments based on their personal expe-
rience. However, intra- and interobserver variability(considerable variability) is
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c© Springer-Verlag Berlin Heidelberg 2007



Image Analysis of Ductal Proliferative Lesions of Breast 145

presented in some situation[1], and it is difficult to accurately reproduce descrip-
tions of tissue texture[2]. Therefore, we attempted to create a more objective and
highly reproducible system for the morphological classification of breast diseases.

To create an optimized classifier for breast lesions, significant features that
accurately describe the order/disorder of nuclear details must be extracted from
images. The cancer cells show pleomorphism of the nucleus, and mitotic cell
division[3], [4], [5]. In addition, nuclear features such as granularity and regularity
of chromatin, irregularity of nuclear size and shape, distance between nuclei, and
the change in the distribution of the cells across the tissue, are important for
determining or predicting the progress of cancer[6],[7]. Histology-based statistical
analyses of textural features are frequently based on a gray level co-occurrence
matrix(GLCM)[8], [9]. Structural analysis methods describe the properties of
texture elements as well as the placement of the texture elements.

The established criteria for distinguishing DH from DCIS are subjective and
include features such as the architectural pattern of ducts. Anderson et al[10]
used disciminat analysis of the duct characteristics for DH and DCIS groups
selected the lumen/duct area ration and the duct area as significant discrimina-
tory variables. We extracted the gland area, the ration of total lumen area/gland
area, the average of the lumen area, the major axis, the minor axis, the number
of the lumen in the duct. To segment the gland(duct) area used a snake algo-
rithm, to segment the lumen used multilevel Otsus method. In duct image, we
extracted the five texture features(correlation, entropy, contrast, angular second
moment, and inverse difference moment) using the co-occurrence matrix for a
distribution pattern of cells. We were interested in architecture the glands and
the shape of individual lumen not the information of individual cell. Figure 1
show the structure diagram of the image classification system. It is clear that
ductal characteristics carry useful diagnostic information for the discrimination
with DH and DCIS. DH and DCIS.

Fig. 1. The structure diagram of the image classification system

2 Materials and Methods

2.1 Tissue Samples and Image Acquistion

The samples of breast tissue were obtained from breast cancer patients at Busan
Paik Hospital, Inje University in Korea. The breast tissue was stained with
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hematoxylin and eosin (H&E) using an autostainer XL (Leica, UK). The digital
images of the sections were acquired by a pathologist at a magnification of 20×
with a 0.3 NA objective using a digital camera (Olympus C-3000) that was
attached to a microscope (Olympus BX-51), and we obtained a total of 40 from
70 samples (25 images(DH), 15 images(DCIS) of tissue). A region of interest
(ROI)-duct of in each digital image (1280×960, 20x) was selected by a pathologist
(see the Fig. 2).

2.2 Segmentation of Duct and Lumen

The permitted duct profiles and intraduct lumen to be identified and their size[9]
and texture features computed. It is clear that these groups form a spectrum
of histological change; a proportion of cases fall into the intermediate category
of atypical ductal hyperplasia (ADH). Once the segmented components of the
histological scene are identified, they are recombined to form identifiable archi-
tectural structures such as glands.

(a) (b)

Fig. 2. Representative images of histological sections of breast tissue used in the present
study (20x). Images correspond to selected regions of interest (ROI) ; (a) DH and (b)
DCIS.

The segmentation requires higher magnification images to resolve the exact
details of objects and the success of the next steps becomes more sensitive to
the success of the segmentation. In segmentation, one difficulty is the complex
nature of image scenes e.g., a typical tissue consists of touching and overlapping
cells, lumen and ducts.

There are mainly two different approaches in object segmentation: the region-
based (ex.thresholding) and boundary-based(ex.snakes[11]) approaches. The
region- based approach is based on determining whether a pixel belongs to a duct
(or lumen in the duct) or not, whereas the boundary based approach is based
on finding the boundary points of a duct. The segmentation method should be
chosen depending on the type of the features to be extracted. For example, in
the case of morphological feature extraction, determining the exact locations of
cells is more important, boundary-based approaches are more suitable than the
region-based approaches[12].

Thresholding is an important technique for image segmentation that tries to
identify and extract a target from its background on the basis of the distribution
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of gray levels or texture in image objects. But, thresholding can not work well if
a histogram valley is narrow or wide, or if a histogram is not bimodal. To obtain
the optimal threshold, we used the Otsu method[13] for automatic threshold
selection. The Otsu method is based on the relationship of variances derived
from probability theory and determines an optimal threshold which minimizes
the within-class variance or which maximizes the between-class variance[14]. For
a given image with L different gray levels, the Otsu method computes the within-
class variance for a threshold T as follows ;

σ2
w(T ) = ω0σ

2
0 + ω1σ

2
1 (1)

where σ2
0 and σ2

1 are the variances of the pixels below and above the threshold, re-
spectively. The Sahoo et al. study on global thresholding[15], concluded that the
Otsu method was one of the better threshold selection methods for general real
world images with regard to uniformity and shape measures. However, the Otsu
method uses an exhaustive search to evaluate the criterion for maximizing. For
bi-level thresholding, the Otsu verified that the optimal threshold t∗ is chosen so
that the between-class variance σ2

B is maximized, t∗ = Arg Max
{
σ2

B (t)
}

, 1 ≤
t ≤ L. Assuming that there are M − 1 thresholds, {t1, t2, . . . , tM−1}, which di-
vide the original image into M classes, the optimal thresholds

{
t•1, t•2, . . . , t•M−1

}

are chosen by maximizing σ2
B as follows;

{
t∗1, t

∗
2, . . . , t

∗
M−1

}
= Arg Max

{
σ2

B ({t1, t2, . . . , tM−1})
}

, 1 ≤ t1 < . . . < tM−1 < L

where σ2
B =

M∑
k=1

ωk (μk − μr)
2

with ωk =
T−1∑
i∈Ck

p (i), μk =
T−1∑
i∈Ck

ip (i) /ω (k).

(2)

This method were tested on 30 of the images; Fig. 3 shows the thresholding
images when we used the multilevel (five-level) Otsus method[16].

To find the total lumen area and gland area, it is necessary to segment
the lumen and gland(duct). We used the region-based approaches (‘multilevel
Otsu’ method’) and then, boundary-based approaches (active contour models
(‘snakes’)[17]) for the duct segmentation (Fig. 4(b)). Filled duct area (Fig. 4(c))
and account the gland area. To segment each lumen, we processed the ‘arith-
metic operation(morphological operators-ADD)’ to the applied multilevel Otsu’
method images and the segmented duct image (Fig. 4(d)) and filling small holes
in the lumen, and each the lumen was labeled (Fig. 4(e)), the lumen size(area)
was added for the lumina area.

2.3 Extraction of Texture Features in Duct Image

In duct the texture features extracted (correlation, entropy, contrast, angular sec-
ond moment, and inverse difference moment) using the gray-level co-occurrence
matrix (GLCM) for a distribution pattern of cell. The five features used that were
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(a) (b)

(c) (d) (e) (f)

Fig. 3. The result image using the Otsu method for automatic threshold selection; (a)
Green image of original. (b) Image histogram of (a). (c) bi-level of (a). (d) tri-level of
(a). (e) four-level of (a). and (f) five-level of (a).

(a) (b) (c)

(d) (e) (f)

Fig. 4. To segment the lumen and gland(duct); (a) The result image using the multi-
level Otsus method for automatic threshold selection (Green image of original 4 level).
(b)using snakes algorithm, (c)duct segmentation of (a). (d) arithmetic operation(ADD)
of (a) and (c). (e) each the lumen was labeling. and (f) the calculated result table.



Image Analysis of Ductal Proliferative Lesions of Breast 149

a correlation function to calculate the linearity of the gray-level dependencies,
entropy to measure randomness, contrast function to measure local variation,
angular second moment(energy) to characterize the homogeneity of the image
and inverse difference moment to identify the local homogeneity of the image. A
region of interest (ROI) of in each duct image (20x) was selected 128×128 image
for processing. To ensure that the co-occurrence matrices were calculated from
major changes in grayscale, the images were scaled linearly from 256 gray levels
to 32 gray levels. This had the added advantage of minimizing the calculation
time of the co-occurrence matrices and reducing the size of the matrices.

We calculated five texture features from GLCM[8], [9], as follows

Correlation =
N−1∑

i=0

N−1∑

j=0

[(i − μx) (i − μy)PM ]
(σxσy)

(3)

Entropy =
N−1∑

i=0

N−1∑

j=0

PM log (PM) (4)

Contrast =
N−1∑

i=0

N−1∑

j=0

(i − j)2 PM (5)

Angular Second Moment =
N−1∑

i=0

N−1∑

j=0

PM2 (6)

Inverse Difference Moment =
N−1∑

i=0

N−1∑

j=0

PM[
1 + (i − j)2

] (7)

in where PM denotes the GLCM that contains the probability, i = integer pixel
number along a row (1 to N − 1), j = integer pixel number along a column
(1 to N − 1), μx = mean of row sums, μy = mean of column sums(with square
matrix μx = μy), σx = standard deviation of row sums, σy = standard deviation
of column sums, and N − 1 = total number of pixels in row or column.

3 Results

We extracted the gland area(feature 1), the ratio of total lumen area/gland
area(feature 2), the average of the lumen area(feature 3), the major axis(feature
4), the minor axis(feature 5), the number of the lumen in the duct(feature
6) and the five texture features(correlation(feature 7), entropy(feature 8), con-
trast(feature 9), angular second moment(feature 10), and inverse difference mo-
ment(feature 11)) in the duct from 20x images for distinguishing DH and DCIS.
The image resolution was 1280×960(20x) pixels and 24 bits per pixel. We ob-
tained a total of 40 from 70 samples (25 images (DH), 15 images (DCIS) of
tissue).
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To evaluate what quantitative features of the DH and DCIS could contribute
to separate information and how it could increase the accuracy, we analyzed the
statistical difference of eleven features between the DH and DCIS. The analysis
of variance (ANOVA) was used to determine the levels of statistical significance
in the differences in distribution. Te best feature will have the largest F-value
and the smaller the p-value, the greater the inconsistency. Traditionally, the p-
value is less than 0.05, we were given p-value (<0.005). So seven features were
selected in Feature 1,2,3,4,5,6 and 11.

To find the vector of features that best characterized the difference in distrib-
ution, sequential stepwise selection was applied. The results are shown in Table
1, where, Wilks Lambda is the ratio of the determinants of the within-class and
total covariance matrices[18].

We created the three classifiers using discriminant analysis: one is using the
total features (eleven), the other is using the seven feature, other is using the two
features(feature 1 and 2). Table 2, 3 and 4 shows the correct classification rate,
91.33%, 89.33% and 86.00%, respectively, and columns is the computer-based
classification and rows is subjective classification by a pathologist.

Table 1. Stepwise discriminant analysis

Step Entered Partial R-Square F Value Pr > F Wilks Lambda Pr < Lambda

1 Feature 2 0.4047 25.83 <.0001 0.59533863 <.0001

2 Feature 1 0.2335 11.27 0.0018 0.4563069 <.0001

Table 2. The classification result using the total eleven features

DH DCIS Total(%)

DH 24 1 96.00

DCIS 2 13 86.67

Total 26 14 91.33

Table 3. The classification result using the seven features (feature 1,2,3,4,5,6 and 11)

DH DCIS Total(%)

DH 23 2 92.00

DCIS 2 13 86.67

Total 25 15 89.33

Table 4. The classification result using the two features (feature 1 and 2)

DH DCIS Total(%)

DH 23 2 92.00

DCIS 2 12 80.00

Total 26 14 86.00
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4 Conclusion

We extracted the gland area, the ration of total lumen area/gland area, the av-
erage of the lumen area, the major axis, the minor axis, the number of the lumen
in the duct and the five texture features (correlation, entropy, contrast, angular,
second moment, and inverse difference moment) in the duct from 20x images
for distinguishing DH and DCIS. Varying architectural features (the ration of
total lumen area, gland area and duct area) can be associated with both DH
and DCIS ducts and even visually the basic gland/lumen shape is not sufficient
to distinguish clearly between DH and DCIS lesions.

It is clear that ductal characteristics carry useful diagnostic information for
the discrimination with DH and DCIS. However, duct architecture alone is not
sufficient to identify and discriminate DH and DCIS, and it is necessary to
identify the more reliable features to discriminant them. Hitopathologically, the
presence of swirls, necrosis, and Roman Bridges are conventionally used as ad-
ditional clues in the differentiation between DH and DCIS[10]. We expected the
efforts to derive additional quantitative data from these segmented glands which
provide data on nuclear orientation and spatial distribution which can be com-
bined with architectural features of the duct. An addition, we make an estimate
that the misclassified data fall into the intermediate category of atypical ductal
hyperplasia (ADH). To improve the accuracy, we will find the significant dis-
criminatory variables of duct characteristics for distinguishing among the DH,
DCIS and ADH. A Compartive analysis with neural network and SVM(Support
Vector Machine) will be studied to evalute the classification result.
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Abstract. The classification of the background and cell areas is very
important but difficult problem due to the ambiguity of boundaries. In
this paper, the cell region is extracted from an image of uterine cervi-
cal cytodiagnosis using the region growing method. Segmented images
from background and cell areas are binarized using a threshold value.
And the 8-directional tracking algorithm for contour lines is applied to
extract the cell area. Each extracted nucleus is transformed to the orig-
inal RGB space. Then the K-Means clustering algorithm is employed to
classify RGB pixels to the R, G, and B channels, respectively. Finally,
the Hue information of nucleus is extracted from the HSI models that
are transformed using the clustering values in R, G, and B channels. The
fuzzy RBF Network is then applied to classify and identify the normal
or abnormal nucleus. The result shows that the accuracy of our method
is 80% overall and 66% in 5-class problem according to the Bethesda
system.

1 Introduction

Cervical cancer is one of the most frequently found genital diseases in Korean
women but is curable if it is diagnosed early enough. Previous researches show
that cervical cancer occupies 16.4 ∼ 49.6% of malignant tumors and especially
occupies 26.3 ∼ 68.2% in Korean women [1][2]. The best method to completely
cure cervical cancer is to prevent the cell from developing into cervical can-
cer. For this purpose, there have been many efforts to automate the process of
cytodiagnosis at least partially during the last 40 years[3].

Diagnosis of the region of interest in a medical image consists of area seg-
mentation, feature extraction and characteristic analysis. In area segmentation,
a medical specialist detects abnormal regions of a medical image based on his
expertise. In feature extraction, features are extracted from the separated ab-
normal region. A medical doctor diagnoses a disease by using character analysis
which deciphers the extracted features to analyze and compare clinical informa-
tion. Area segmentation methods can be taxonomized to the pixel-based methods
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and the region-based methods[3][4]. Pixel-based methods assign an independent
meaning to each pixel according to a predefined criterion. Pixel-based methods
can use global features[3]. Meanwhile, region-based methods catch the mean-
ing of the region by analyzing neighbour pixels with local characteristics but
typically require more calculations[4].

In this paper, we propose a new nucleus segmentation and recognition of
uterine cervical pap-smears with region growing technique and neural network.
Segmented images from background and cell areas are binarized using a threshold
value. And then the 8-directional tracking algorithm for contour lines is applied
to extract the cell area[5]. Each extracted nucleus is transformed to the original
RGB space. Then the K-Means clustering algorithm is employed to classify RGB
pixels to the R, G, and B channels, respectively. Finally, the Hue information
of nucleus is extracted from the HSI models that are transformed using the
clustering values in R, G, and B channels. The fuzzy RBF network is then
applied to classify and identify the normal or abnormal nucleus.

2 Segmentation of Nucleus Area

Fig. 1 shows the process of extracting the nucleus of cervix uteri cytodiagnosis.

Fig. 1. Extracting the nucleus of cervix uteri cytodiagnosis

2.1 Region Growing Technique

Region growing technique used in this paper expands or segments the area by
analyzing pixel similarity. First, we set a center area and check the neighbor
pixels if they belong to the center area. The decision criterion of area membership
is shown in formula (1) where G(A), G(B) denote the gray level brightness of
pixel A and B and T is a threshold.
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Fig. 2. Cell binarization

G(A) − G(B) < T (1)

The center area is expanded including pixel A and B if the formula (1) holds.
The area is expanded until there does not exist any neighbor pixels whose
dissimilarity is less than the threshold T. Figure 2 shows the results of bina-
rized images with and without the region growing technique. One can easily see
that Fig. 2(b) has more damage in cell area than (a).

2.2 Image Binarization and Cell Area Extraction with Thresholding
Technique

Thresholding technique is simple and fast image binarization technique with
fixed threshold but has difficulty in area segmentation of complex images. How-
ever, we can find the center coordinates by extracting part of nucleus area with
this technique since the brightness histogram of cell image can differentiate nu-
cleus, cytoplasm, and background shown as fig. 3.

Fig. 3. Histogram and threshold
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Fig. 4. Area and circularity of a cell

Fig. 5. Segmented cell image

We assume that the pixels that have up to 0.5% higher intensity from the
minimum and 0.5% lower intensity from the maximum value are noises and set
the new maximum and minimum (fig. 3 (c) and (d)). The center of the new limits
becomes the threshold of the binarization. Next, 8-directional tracking algorithm
is applied to extract the cell area. We compute the area and the circularity as
features of the classification of the normality of cells.

The circularity is computed by equation (2) and the result is shown as fig. 4.
where, perimeter in equation (2) means the perimeter of the nucleus.

Circularity =
Perimeter2

4πArea
, perimeter = 2πr (2)

The extracted cell is divided to nucleus, cytoplasm, and background shown
as fig. 5.

2.3 Nucleus Feature Extractions Using K-Means Clustering
Algorithm

Both the cells and the nuclei characteristically display pleomorphism - varia-
tion in size and shape. Cells are often many times larger than their neighbors,
and other cells may be extremely small and primitive appearing. Characteristi-
cally the nuclei contain an abundance of DNA and are extremely dark staining
(hyperchromatic). The nuclei are disproportionately large for the cell, and the
nuclear-cytoplasmic ratio may approach 1:1 instead of the normal 1: 4 or 1: 6.
The nuclear shape is extremely variable, and the chromatin is often coarsely
clumped and distributed along the nuclear membrane. Large nucleoli are usu-
ally present in these nuclei.
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We can extract morphometric features, densitometric features, colorimetric
features, and a textural feature from cervix cell. Each extracted nucleus is trans-
formed to the original RGB space. Then the K-Means clustering algorithm is
employed to classify RGB pixels to the R, G, and B channels, respectively.
Finally, the Hue information of nucleus is extracted from the HSI models that
are transformed using the clustering values in R, G, and B channels.

The main reason that we use the color model and hue information as the basis
of classification is by the observation that the nucleous of cancer cell is much
larger in size and more pachychromatic than normal cells.

K-Means is a well-known clustering algorithm that classifies the input into
K groups of similar groups. We perform clustering to the R, G, and B chan-
nels, which are composed of R, G, and B values of pixels in each block. In our
experiment, K = 10 and for 25 blocks, the codebook of 9 blocks in the center
which composes a nucleus are created. Then, we transform the cluster values of
codebook into HSI model with equation (3) and the Hue information becomes
the input pattern of the fuzzy RBF network in order to recognize and classify
nucleuses.

H = cos−1

[
1
2 [(R − G) + (R − B)]√

(R − G)2 + (R − B)(G − B)

]
(3)

2.4 Nucleus Recognition and Classification Using Fuzzy RBF
Network

We apply the fuzzy RBF network in classifying normal and abnormal cells using
normalized Hue information obtained through the process explained in section 2.3.

Our system uses the fuzzy C-Means algorithm[6] to generate the middle layer. It
is often criticized by consuming too much time when applied to character recogni-
tion. In character recognition, a binary pattern is usually used as the input pattern.

The fuzzy RBF networks can be summarized as follows.
1. The connection structure of input layer and middle layer is the same as in the
fuzzy C-Means algorithm whose output layer is the middle layer of the proposed
learning structure.
2. The node of middle layer denotes a class. Thus, though being a complete
connection structure as a whole, we adopts the winner node method which
back-propagates the weight connected with the representative class in terms
of comparing the target vector with the actual output vector.
3. The fuzzy C-Means algorithm selects the node of middle layer with the highest
membership degree as the winner node.
4. The generalized delta learning method is applied to the learning structure of
middle layer and output layer in terms of supervised learning.

3 Experiment

The environment of the experiment is embodied by Visual C++ 6.0 in Pentium
IV PC of IBM compatible. The specimen was 20 samples of 640*480 cervix uteri
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Fig. 6. Fuzzy RBF network

Fig. 7. Extraction of cervix uteri cytodiagnosis

cytodiagnosis image size. The nucleus result of cervix uteri cytodiagnosis image
by proposed method is shown as fig. 7.

Table 1 shows the result of extracting nucleus by proposed method. Overall,
the extraction rate is 85% , which is fairly good in practice.
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Table 1. Extraction rate of nucleus

Population Extracted by our method Extraction rate

Number of nucleus 316 259 85

Table 2. Training and test data

Cell class Training set Test set

WNL 60 94
ASCUS 60 78
LSIL 60 65
HSIL 20 25
SCC 10 7

Total 210 269

Table 3. Result of the classification

Overall- Class-
WNL ASCUS LSIL HSIL SCC accuracy accuracy

WNL 73 9 10 2 0 77.6% 77.6%
ASCUS 21 43 5 9 0 55.1% 73.0%
LSIL 13 5 39 7 1 60.0% 80.0%
HSIL 1 2 2 17 3 68.0% 96.0%
SCC 0 0 0 1 6 85.7% 100.0%

Table 2 shows the training and test data distribution for the fuzzy RBF net-
work. We follow the Bethesda system classification in that cells are classified
into five classes such as WNL, ASCUS, LSIL, HSIL, and SCC where WNL is
normal and others are abnormal (2-class problem) and SCC is the cancer cell.
The total size of training data is 210 and test data is 269. The training data is
obtained by medical experts of Pusan National University Hospital.

The neural net used in this experiment has 90 input nodes, 20 middle layer
nodes, and 3 output nodes. The number of training repetition is 1102 and the
learning rate is 0.65. The evaluation of our method is done in two ways. Overall
accuracy is the result of 2-class problem that discriminates normal (WNL) vs.
abnormal (all others). The class accuracy denotes the recognition accuracy over
five classes defined by the Bethesda system (5-class problem). Table 3 summa-
rizes the experimental result.

In summary, our approach shows 80% overall accuracy (2-class problem) and
66% class accuracy by the Bethesda system (5-class problem). The source of mis-
classification might be the training data obtained by human expert’s judgment.
Since the previous study[7] shows that the performance of human expert is just
as good as that of a fuzzy clustering method in clinical data.
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4 Conclusions

Cervix uteri cytodiagnosis is complicated and varies differently so that it is dif-
ficult to extract and identify cell nucleus efficiently by existing image processing
methods. In this paper, we proposed a region-growing technique to segment cell
area efficiently and a fuzzy RBF network to identify abnormal cells. In order to
provide informative input to the neural network, we applied K-Means clustering
algorithm and transformed that information to HSI model. The Hue information
obtained in that process played an important role in abnormal cell recognition.
The fuzzy RBF Network is then applied to classify and identify the normal or
abnormal nucleus. The result seems to be acceptable for the practioner’s view-
point.

In the future, we will try to analyze more morphometric features such as
structural change and color change of abnormal cells to improve our algorithm
in nucleus cell segmentation and will try to compare it with real world clinical
data.
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Abstract. This paper demonstrates a study on lateral ventricles seg-
mentation in brain Magnetic Resonance Imaging (MRI). The method
applies Gaussian smoothed image data as additional features into the
feature space of Fuzzy C-Means (FCM) algorithm. With the aid of the
smoothing effect from Gaussian filters, FCM is able to segment lateral
ventricular compartments by reducing inappropriate clustering caused
by noise and inhomogeneous intensity distribution. The results demon-
strate both noise insensitivity and more homogeneous clustering.

Keywords: Fuzzy C-Means, Clustering, Gaussian Smoothing, Segmen-
tation, Validity Functions, brain MRI, Lateral Ventricles

1 Introduction

Image segmentation is the process of assigning pixels to regions sharing com-
mon properties. It is one fundamental process in computer vision and pattern
recognition because further processing steps have to rely on the segmentation
results. Despite the numerous segmentation techniques, image segmentation is
still a subject requiring intensive exploration due to the diversity within each
application[1-5].

In brain Magnetic Resonance Imaging (MRI), noise, spurious blobs, inhomo-
geneous pixel intensity distribution and blunt region boundary in the ventricular
compartments are the main challenges for lateral ventricles segmentation[1,2].
As a consequence, selecting an appropriate segmentation method is of utmost
importance.

Fuzzy C-Means (FCM) clustering[1,6,12] is an unsupervised method that has
been effectively applied to several application areas including image segmenta-
tion. In applying FCM algorithm to image segmentation, images represented in
feature space are classified by FCM through grouping data points with similar
property, e.g., intensity value in MRI application. With iterative minimization
of the cost function that is dependent on distances between pixels and group
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centers, its membership function and the cluster centers are updated until a
termination criterion is reached.

Gaussian 2-dimensional convolution operator can be used to smooth images
and remove detail and noise. The smoothing degree is determined by the stan-
dard deviation of the Gaussian[13,14]. The Gaussian smoothed image data can
be added into the feature space associated with the original image and used as
input feature space data in FCM algorithm. The cost function in FCM algorithm
will be updated according to the distance between pixels in multiple dimensions,
as a result of combining all the feature data into the multiple feature space. Clus-
tering will be affected by both the original image and the smoothed image data
which leads to better clustering results.

The aim of this study is to find a more appropriate method to apply FCM
clustering in brain MRI lateral ventricle segmentation. The experimental re-
sults demonstrate that this approach performs better than that of FCM without
Gaussian combination.

2 Methods

2.1 FCM Clustering

The FCM algorithm groups one piece of data to two or more clusters, where
data is represented by image pixels. Let X(x1, x2,..., xN ) denotes an image
with N pixels to be partitioned into c clusters, where xi represents multi-feature
data. The algorithm is an iterative optimization that minimizes the cost function
defined as follows:

Jm =
N∑

i=1

c∑

j=1

μm
ij ‖xi − cj‖2

, 1 ≤ m < ∞ (1)

where μij represents the degree of membership of xi in the jth cluster, xi is
the ith measured data, cj is the jth cluster center, ‖ ∗ ‖ is any norm expressing
the similarity between any measured data and the cluster center[3,6,12], where
standard Euclidean distance metric is generally applied for the multi-feature
data, and m is a real constant greater than 1 which controls the fuzziness of the
resulting partition.

When pixels close to the center of their clusters are assigned high membership
values, and low membership values are assigned to pixels with data far from
the center, cost function is minimized. The membership function represents the
probability that a pixel belongs to a specific cluster. For each pixel, the sum of
probabilities in each cluster will remain the same constant as ’1’ in this study. In
the FCM algorithm, the probability is dependent on the distances between the
pixel and each individual cluster centers in the feature domain. The membership
functions and cluster centers are iteratively updated as follows:

μij =
1

∑c
k=1

( ‖xi−cj‖
‖xi−ck‖

) 2
m−1

(2)
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and

Cj =

∑N
i=1 μm

ij xi
∑N

i=1 μm
ij

(3)

The iteration will stop when max{|μ(k+1)
ij − μ

(k)
ij |} < σ, where σ is a termi-

nation criterion between 0 and 1, and k is the iteration step. This procedure
converges to a local minimum or a saddle point of Jm in equation (1).

2.2 Applying Gaussian Smoothing Operator into FCM

The Gaussian image smoothing operator is a widely used 2-Dimension convolu-
tion operator that is used to blur or smooth image and remove detail and noise.
A 2-D circularly symmetric Gaussian has the form:

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (4)

In its blurring action, Gaussian filter provides gentler smoothing and preserves
edges better than a similarly sized mean filter because Gaussian function outputs
a ’weighted average’ of each pixel neighborhood, with the average weighted more
towards the value of the central pixels[14].

With the fact that the standard FCM algorithm supports multiple feature
inputs, the original image and its Gaussian filtered image pixel values can be
combined as a multi-dimensional matrix. These are used as input data for the
FCM algorithm. The cost function in an FCM algorithm will be updated ac-
cording to the distance between pixels in multiple dimensions. As a result of
combining all the features into the multi-dimensional space, clustering will be
affected by both the original image and the smoothed image data, leading to
more noise-insensitive and more homogeneous clustering results.

Because of the fact that Gaussian smoothing can preserve edges better, the
boundary in the region of interest (ROI) will remain, though Gaussian filtered
data feature has a blurring effect on the clustering results.

2.3 Cluster Validity Functions

In this study, fuzzy partition is used to evaluate the performance of clustering.
The representative functions for the fuzzy partition are partition coefficient Vpc[7]
and partition entropy Vpe[8]. They are defined as follows:

Vpc =

∑N
j

∑c
i μ2

ij

N
(5)

and

Vpe =
−

∑N
j

∑c
i [μij log μij ]
N

(6)

The idea of these validity functions is that the partition with less fuzziness
means better performance. In both equation (5) and (6), μij(i = 1, 2, ...c; j =
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1, 2, ...N) is the membership of data point j in cluster i. The closer this value
is to unity the better the data are classified. As a result, the best clustering is
achieved when Vpe is minimal and Vpc is maximal[6].

To quantify the ratio of total variation within clusters and the separation of
clusters, another validity function Vxb[9,10] is used as:

Vxb,m =

∑N
j=1

∑c
i=1(μij)m ‖xj − vi‖2

N ∗
(

mini,k

{
‖vk − vi‖2

}) (7)

where ‖xj − vi‖ denotes the Euclidean distance between the pattern, xj and the

cluster center, vi, and mini,k

{
‖vk − vi‖2

}
represents the minimum Euclidean

distance between cluster centers, vi �= vk.
An optimal clustering result generates samples that are within one cluster and

samples that are separated between different clusters. Minimized Vxb represents
a good clustering result.

2.4 Image Data

For this study, the images were collected from the Internet MRI atlas [11]. To
focus on ventricle segmentation, one pair of T1-weighted and T2-weighted MRIs
in the trans-axial view with the same slice number (which indicates they were
taken from the same area of the brain) and displaying the most noticeable lateral
ventricular compartments were selected. To demonstrate the effect of noise on
the segmentation process, noisy images have been created by adding Gaussian
white noise with different SNR to the original images.

Fig. 1. (a) T1 and (b) T2 original images. (c) T1 and (d) T2 images added with noise
of SNR=10.

3 Results and Discussion

Fig. 1(a) and (b) illustrate the T1 and T2 original images selected for this study,
respectively. Fig. 2(a) and (b) show the segmentation results obtained by using a
standard FCM with T1 and T2 image data under 3 and 5 clusters, respectively.
Fig. 2(c) and (d) show the segmentation results obtained by applying combined



Segmentation of Lateral Ventricles in Brain MRI Using FCM Clustering 165

Fig. 2. Segmented images of MRI images using FCM with features of (a) T1 + T2
images under 3 clusters; (b) T1+ T2 images under 5 clusters; (c) T1+ its Gaussian
smoothed images under 3 clusters, Gaussian filter kernel in size of 5 and sigma of 5;
(d) T2 + its Gaussian smoothed images under 5 clusters, Gaussian filter kernel in size
of 5 and sigma of 5; (e) T2 + its Gaussian smoothed images under 5 clusters, Gaussian
filter kernel in size of 5 and sigma of 10; (f) T2 + its Gaussian smoothed images under
5 clusters, Gaussian filter kernel in size of 10 and sigma of 5.

features of T1 image and its Gaussian smoothed image under 3 clusters and T2
image with its Gaussian smoothed image under 5 clusters, respectively. Fig. 3
illustrates and compares the extracted ventricular compartments segmentation
results from clusters after FCM with different feature inputs and cluster number.

Conventional FCM with the combined features of T1 and T2 images is able to
classify MRI images. However, the two parts of the lateral ventricular compart-
ments are joined together in different levels; by combining the original image and
the Gaussian smoothed image features, its counterpart shows the two fully sepa-
rated compartments. Adding Gaussian smoothed image data into FCM reduces
the number of spurious blobs, and the segmented images are more homogeneous.
The possible disadvantage of applying Gaussian smoothing filters is the blurring
effect on some fine details, especially when the Gaussian filter is of bigger fil-
ter kernel size. In Fig. 2(f) the two compartments are again joined together
while the clustering result shows further removals of small spurious blobs when
a Gaussian filter kernel size of 10 is applied. In Fig. 2(e), the clustering result
does not change much when compared to Fig. 2(d), although a doubled sigma
value has been used.
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Fig. 3. Extracted lateral ventricular compartments after FCM clustering with features
of (a) T1 + T2 images under 3 clusters; (b) T1+ its Gaussian smoothed images under
3 clusters, Gaussian filter kernel in size of 5 and sigma of 5; (c) T1+ T2 images under
5 clusters; (d) T2 + its Gaussian smoothed images under 5 clusters, Gaussian filter
kernel in size of 5 and sigma of 5.

Fig.1(c) and 1(d) show the T1 and T2 added with a noise of SNR=10. Fig. 4
shows the segmented result of applying noisy T1 + T2 image data and T2 +
Gaussian smoothed image data into FCM, respectively.

As can be seen, the standard FCM technique misclassifies ventricular com-
partments at numerous places because the added noise changes the location
of pixels inside the ventricular compartments in the feature space, causing the
misclassification of these noisy pixels. When the T1 image data is replaced by
the Gaussian smoothed image as input feature, the weight of the noisy cluster is

Fig. 4. Segmented images of noisy MR images using FCM with features of (a) T1+
T2 images under 5 clusters; (b) T2 + its Gaussian smoothed images under 5 clusters
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Fig. 5. The calculated centroids ( ) of cluster in the feature domain (where two
features pixel values are coordinates) for FCM with features of (a) original T1 and T2
images; (b) noisy T1 and T2 images; (c) original T2 image and its Gaussian smoothed
image; (d) noisy T2 image and its Gaussian smoothed image; (e) original T1 image and
its Gaussian smoothed image; (f) noisy T1 image and its Gaussian smoothed image

greatly reduced. Furthermore, the membership of the correct cluster is enhanced
by the cluster distribution in the combined feature spaces. As a result, image as
feature input effectively corrects misclassifications caused by noise.

Fig. 5 shows the segmentation results of MRI images in the feature domain
for FCM using different features. Fig. 5(a) shows the result of using T1 and T2
images without added noise as a feature input. Fig. 5(b) shows the result of
using T1 and T2 images with added noise of SNR=5 as an input feature. Fig.
5(c) shows the result by using T2 image and its respective Gaussian smoothed
image without added noise as the input features. Fig. 5(d) shows the result of
using T2 image and its respective Gaussian smoothed image with added noise of
SNR=5 as an input feature. As can be seen, the center distribution pattern in
FCM with Gaussian smoothed image is less changed than that in the FCM with
two original images as the input data. The techniques of input features combined
with original image data and its Gaussian smoothed image successfully correct
the misclassified pixels and kept the cluster centers less affected by noise.

Table 1 tabulates the standard deviations of the clustering centroids direction
change rate caused by noise. As can be seen in Fig. 6, each cluster center direction
can be represented by the ratio of two coordinate differences that are calculated
by the coordinates of the current centroid to its previous cluster centroid, e.g.,
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Fig. 6. An illustration of FCM clustering centroids direction distribution under input
features of (a) original T2 + Gaussian smoothed image; (b) noisy T2 + Gaussian
smoothed image

Table 1. Standard deviations of the clustering center direction change rate

Cluster
Number

SNR of
Noise
Added

STDEV on direction change ra-
tio of T1 + T2 images clustering
centers

STDEV on direction change ratio
of T1/T2 + Gaussian smoothed
image clustering centers

3 5 0.431897641 0.0356923166
10 0.164503921 0.093785356
20 0.006078361 0.014945789

5 5 0.514171017 0.393363852
10 0.603437368 0.371229271
20 0.058867462 0.044899522

α32 and β32 represents the direction from FCM clustering centroid number 3
to centroid number 2 under input features of original image and noisy image,
respectively. After calculation the ratio for each respective α and β, we get a
dataset of direction change ratios. Finally the standard deviation (STDEV) of
this dataset is used to represent the cluster centers distribution change pattern
by the effect of added noise. The effect of wrong clustering from noise input
will be minimized when the cluster centers distribution change pattern value
approaches 0. In Table 1, most of the results in the cases when T1 or T2 together
its Gaussian smoothed image are applied in the feature domain are less than that
when T1 and T2 images without Gaussian are applied. This further explains that
adding the Gaussian smoothed image into the FCM algorithm leads to more
noise-insensitive clustering results.

Table 2 tabulates the validity functions used to evaluate the performance of
FCM clustering for six images. In all cases, the validity functions based on the
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Table 2. The clustering results of six images using FCM with different feature data

Images Cluster
Number

Features used in
FCM

Vpc Vpe Vxb

Original MR images 3 T1 + T2 0.8400 0.1234 9.5464
T1+Gaussian 0.8872 0.0894 4.8160

5 T1+T2 0.7967 0.1789 6.6535
T1+Gaussian 0.8438 0.1323 4.0191

Noise added MR images 3 T1 + T2 0.7119 0.2252 16.2653
SNR=5 T1+Gaussian 0.7906 0.1672 9.3009

5 T1+T2 0.6198 0.3349 11.7261
T1+Gaussian 0.6914 0.2646 7.4524

Noise added MR images 3 T1 + T2 0.7787 0.1769 12.9993
SNR=10 T1+Gaussian 0.8408 0.1302 7.2333

5 T1+T2 0.6557 0.2962 13.3426
T1+Gaussian 0.7457 0.2164 7.4782

fuzzy partition were better for the FCM with Gaussian smoothed image feature
than the conventional FCM with features of T1 and T2 images.

4 Summary

FCM clustering is an unsupervised clustering technique to segment images into
clusters with similar spectral properties. It utilizes the distance between pixels
and cluster centers in the spectral domain to compute the membership func-
tion. With the capacity of multi-feature support in FCM algorithm, Gaussian
smoothed images can be added into the feature domain as an additional feature
to affect the clustering and to lead to more homogeneous and noise-insensitive
segmentation results.

In this paper, focusing on brain ventricular compartments segmentation, we
did an intensive study on applying Gaussian smoothing into FCM and attempt-
ing to incorporate the smoothed image as an additional feature for the FCM
algorithm in order to improve the segmentation results. This correlation be-
tween Gaussian smoothed image and original image in the membership and cost
function of FCM algorithm reduces the number of spurious blobs and biases the
solution toward homogeneous labeling. The method was tested on MRI images
and evaluated by using various cluster validity functions. Preliminary results
showed that the effect of noise in segmentation was less with the approach we
proposed than with the FCM without additional Gaussian smoothed image.
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Abstract. Multiscale extraction of the subtlest signs of hypodensity,
which were often undetected in standard CT scan review was the sub-
ject of our research. Proposed method is as follows: evidence-based de-
scription of hypodense changes, the investigation of hypodensity across
scales, basing on a set of over 20 hyperacute stroke exams, the improve-
ment of wavelet-based display of ischemic stroke. Considered problems
were: –extension of the brain tissues for marginal and missing space after
deskulling and segmenting of unusual areas; –best basis selection;–non-
perfect reconstruction across scales as an extraction of hypo-attenuating
tendency. Increased visibility of hypodense signs on CT scans performed
in patients with hyperacute stroke was noticed in subjective rating. In
opinion of radiologists and image processing experts, enhanced percep-
tion of hypodense area was noticed for all test exams. The rate of unique,
clear and doubtless extraction of hypodense area was 92% in 13 tested
cases of hyperacute ischemic stroke.

Keywords: Ischemic stroke detection, wavelet-based image processing,
medical image perception.

1 Introduction

Stroke is the clinical syndrome of rapid onset of focal, or sometimes global,
cerebral deficit with a vascular cause, lasting more than 24 hours or leading to
death. Infarction may occur in any area of the brain following vascular territory
or watershed distribution. Brain imaging is required to guide the selection of
acute interventions to treat patients with a stroke, which is very important for the
stroke emergency centers. The recent advent of thrombolytic therapy for acute
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stroke treatment makes as early as possible detection of areas of hypoattenuating
ischemic parenchyma exceedingly important [1,2,3,4].

For most cases, CT remains the most important brain imaging test. Irre-
versible ischemic injury would be represented by a focal hypodense area, in cor-
tical, subcortical, or deep gray or white matter. A hypodense area is defined as
any area in the brain with density lower than normal brain tissues. On the initial
CT-scan, performed during the hyperacute phase of stroke (0-6h), the mentioned
hypodensity does not have to be seen. Early indirect findings, like obscuration
of gray/white matter differentiation and effacement of sulci, or ”insular ribbon”,
may be noticed instead.

Focal hypodense changes were found to be the most frequent and reliable
signs of early ischemia. A decline in cerebral blood flow causes the brain tis-
sue to take up water immediately. Thus, in the early stage of cerebral ischemia,
the tissue changes consist mainly in alteration of water and electrolyte content.
Parallel intracellular increase of sodium and a decrease of potassium concentra-
tion occur. A 2-4% increase in brain tissue water within 4 h of MCA occlusion
was noticed in several experiments [3,5,6]. Increase of water content causes the
lowering of brain attenuation coefficients in acute ischemia, which leads to a
discrepant decrease of about 1.3-2.6 HU for 1% change in water content [1,7,6].
The discrepancy of water uptake and density changes might suggest an incom-
pleteness of ischemic physiology model and unclear impact of other factors, e.g.
decreased lipids, increased protein and electrolyte changes.

However, subtle hypodense changes are often masked due to artifacts, noise
and other tissue abnormalites. The attenuation coefficients of brain parenchyma
vary, mainly due to the differing thickness of the cranial vault. Dense bone lowers
the energy of the beam and thus, increases attenuation. M. Bendszus et al. [7]
found inter-individual differences, i.e. bone artifacts, of up to 14 HU in brain
parenchyma at comparable scan levels. The CT number (HU) for water should
ideally be zero, but the actual value changes because of variations in the stability
of the detector system or x-ray source. Normally, these variations (i.e. standard
deviation of the water value) are very small and most scanners should be able
to stay within 2HU of zero for water. The mean CT number measured over the
central test ROI (region of interests) should be in the range of 4HU [8], which
is close to the early changes within ischemic region.

It is evident that the early changes with ischemia occur, but may vary within
the limited range of HU scale depending on cerebral infarct case, discrepant
patient characteristics, and acquisition conditioning. The hypodense changes are
slight, and ischemic area is not well-outlined or contrasted (with slow edges
characterized by low-frequency spectrum). Because of the human eye limitations,
these first ischemic signs can often be out of that range. Typical preview window
of width 80 HU gives maximum noticeable change of 1-2 grey shade within the
first 4 h of ischemia. Diffusely interspersed changes in grey shade can hardly be
distinguished in noisy areas because of low brightness contrast, bone artifacts,
non-optimum scanning.
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Display of ischemic stroke as a kind of computer aided interpretation tool was
designed to uncover, model and exploit hyposensity as a signature of pathology.
We investigated multiscale wavelet-like methods for identifying the signatures
of hypodensity. Signal and noise separation based on spatially distributed prop-
erties over different scales and subbands is usually much more effective than in
image domain. Lower frequency parts offer distinguished information about poor
textures and mean value estimates in regions. A correlation of high frequency
information across scales, portrays even very weak edges and region distinction
[9,10]. Therefore, noise and artifacts may effectively be reduced in multi-scale
data processing [11,10,9]. Post-processing in wavelet domain was less susceptible
to local perturbations, and beneficial noise suppression and selective contrast
enhancement was possible. Especially, wavelet-based algorithms with adaptive
histogram equalization were investigated as a method of automatic simultane-
ous display of the full dynamic contrast range of CT images (chest exams with
lymph nodes, pericardial disease, air cysts) [12]. However, we found the adaptive
histogram equalization in multi-scale data domain too coarse a method to en-
hance subtle distinction of attenuation coefficients because of high level of noise
and artifacts presence in brain images.

The purpose of our study was to improve the diagnosis of hyperacute ischemic
brain parenchyma on emergency CT scans. The method was the enhanced vis-
ibility of more distinguished or extracted subtle and hidden hypodense signs.
Suggested wavelet-based post-processing algorithm was based on –extension of
the brain for marginal (border effects) and missing space after deskulling and
segmenting of unusual areas (e.g. sulci); –best basis selection; –non-perfect data
reconstruction across scales to extract hypo-attenuating tendency.

2 Materials and Methods

Multiscale hypodensity modeling was based on the following data processing
stages: –the initial gray-to-white tissue segmentation; –the next segmentation of
potentially hypodense areas (e.g. sulci or the aged lesions); –noise suppression in
selected ROIs through the non-perfect signal reconstruction in successive scales,
basing on middle band suppressing orthogonal filter bank; – successively scaled
orthogonal filtering with adaptive soft thresholding in a set of middle-frequency
subbands for increasing the local mean data variability. Local contrast of the
processed images was additionally improved by adaptive histogram equalization.

The proposed method was based on a concept of stroke display [13] implied
as a kind of intelligent data visualization method that communicates selected,
extracted, and enhanced ischemic hypodensity signs to the observers, especially
for ”radiologically silent” cases (really difficult to diagnose). It complements
conventional CT display with additional display highly specific in infarct cases.

Initial two-stage segmentation of the regions susceptible to ischemic density
changes was used to eliminate false diagnostic indications. Tissue features mask-
ing ischemic changes such as density distinctions caused by non-ischemic reasons
unfavorably effecting diagnosis, may be suppressed by post-processing. False
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positives have to be avoided, since treating ineligible patients with intravenous
thrombolysis is associated with an unacceptable risk of hemorrhage and death.
3D region growing methods with interactively controlled distribution of the seeds
was applied. Significant improvement of brain tissue segmentation over all slices,
in comparison to the adaptive threshold methods [13] was noticed. Next, the
susceptible-to-stroke ROI was detected in successive slices, through local adap-
tive thresholding based on the gray-to-white tissue histogram models.

Modeling of hypodense regions over successive scales and subbands with in-
creased distinction from noisy background, was the subject of theoretical and
experimental study. Decomposition scheme was firstly optimized in order to per-
ceptually extract hypodense regions including orthogonal, biorthogonal, integer
bases, undecimated wavelets, contourlets and data grid converters (i.e. hexagonal
2D kernels). Noise suppression and contrast enhancement was obtained by ad-
justing multi-scale coefficients of interests at some particular spatial-frequency
locations, by modeling a distribution of their magnitudes in a context of sur-
rounding data. Distortions caused by wavelet transform implementation with de-
signed non-perfect reconstruction filter banks, shaped noised hypodensity signs
in multiscale domain more effectively than typical denoising methods. Additional
soft thresholding of the wavelet coefficients over scales was applied, in order to
achieve sharper, non-spread outline of hypodense regions.

Preliminary subjective tests were performed to maximize hypodense signs
extraction according to diagnostic performance criteria. Firstly, the subjective
rating of over 30 test CT exams was used to select the most effective wavelet
bases and multiresolution schemes. Next, the mentioned elements of proposed
algorithm were designed and optimized basing on common neurological, radio-
logical, and engineering consultations. Uniqueness and clearance of hypodensity
determining was the most important optimization criterion of wavelet-based im-
age post-processing as much as avoiding false indications. Four radiologists and
two neurologists participated in that process, which resulted in proposed detailed
algorithm of multiscale extraction of the signs of hypodensity.

2.1 Non-perfect Multiscale Image Processing

Although wavelet analysis possesses many attractive features, its numerical im-
plementation is not as straightforward as that of FFT, STFT or e.g. DCT.
However, wavelet transform in dyadic, 2D form can be implemented with spe-
cific types of digital filter banks known as two- channel perfect reconstruction
(PR) filter banks (fig. 1).

Filters are associated with scaling functions and the wavelets of the transform
kernel according to the following two equations (scaling and wavelet, respec-
tively):

φ(t) =
√

2
∑

n

hnφ(2t − n) (1)

and
ψ(t) =

√
2
∑

n

gnφ(2t − n) =
∑

n

(−1)1−nh1−nφ(2t − n) (2)
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Fig. 1. Two-channel filter bank (FB) used with wavelet-based data analysis, processing
and signature recognition. The signal X is decomposed, processed and reconstructed
to form Y with low-pass and high-pass filters for analysis(h̃, g̃) and synthesis (g, h),
respectively. Downsampling and upsampling operators are ↓ 2 and ↑ 2, respectively.

Conditions of the perfect reconstructions (Y is almost, i.e. according to the
assumed precision, equal to X) with l delays for two-channel FB are as follows:

h(z)h̃(−z) + g(z)g̃(−z) = 0 (3a)

h(z)h̃(z) + g(z)g̃(z) = 2z−l (3b)

It often requires the filters from eq. 3 to be FIR (finite impulse response),
linearly phased and form orthogonal FBs. The first term (eq. 3a) traditionally
called the alias (cancellation) term is often fulfilled by using quadrature mir-
ror filters (QMFs) with conditions: h(z) = g̃(−z) and g(z) = −h̃(−z), as we
did. However, the second term (eq. 3b) called the distortion (elimination) term
was used to control the distortion introduced in data processing to denoise and
differentiate signal features. Magnitude responses of applied 3 taps spline FB,
non–PR, called TSpline2 and 8 taps symmetric (almost PR) FB, called Atrial
were presented in Fig. 2.

2.2 Algorithm of Hypodensity Extraction

The proposed algorithm is as follows:

1. Segmentation of susceptible-to-stroke ROI to be processed in successive slices
– the brain extraction to remove non-brain tissue from a CT volume (to

de-skull the brain in the image) through region growing, arranged in
3D space of successive slices; interactively controlled distribution of the
seeds in order to control any irregular, untypical cases was applied;

– selection of the only tissue regions which are probable to include ischemic
stroke with adaptively set range of [water + 18, ROImean + 15] HU to
extract the brain tissue of gray matter to low white matter density and
to get rid of clear brain sulci, old ischemic scars and other structures
useless in early stroke detection; all pixels out of stroke tissue ROI are
set to adaptively computed ROImean.
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Fig. 2. Characteristics of two applied filter banks: magnitude responses, associated
wavelets and scaling functions of short spline FB TSpline2 (top) and longer symmetric
FB Atrial (bottom)

2. Wavelet-based image enhancement
Two subsequent dyadic wavelet decompositions with 6 scales were imple-
mented with symmetric wavelet basis because of the minimized distortions
caused by the necessary extension of the ROIs to regular domain of data
processing
– controlled distortions propagated across scales for coarse denoising;

TSpline2 transform kernel defined by h̃ = [1/4, 2/4, 1/4] was applied;
– adaptive soft thresholding for subtle denoising and increasing the local

mean data variability; shrinkage of detailed scales data with Atrail FB
defined by h̃ = [0.01995, −0.04271, −0.05224, 0.29271, 0.56458, 0.29271,
−0.05224, −0.04271, 0.01995];

3. Visualization of processed image
Conditions of data visualization were set to increase the perception of tissue
density distinction. Window of HU values including only the susceptible-to-
hypodensity tissue was rescaled to 8 bit display with contrast enhancement
by histogram equalization. Useless soft brain tissue was set to 255 level in
order to increase contrast resolution. Non-brain tissue was reconstructed
according to a conventional bone window of source image.
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2.3 Experimental Study

Preliminary subjective tests were performed to maximize hypodense signs ex-
traction according to clearly defined diagnostic performance criteria. Presence
and location of ischemic changes were determined according to follow-up CT
scan. Thus, the extracted hypodense areas could be simply verified even by en-
gineers with the aim of optimization of processing procedure.

A set of over 30 test CT exams (including 18 hyperacute stroke cases, non-
ischemic changes, normal CT) was subjectively rated in preliminary experiments
due to the selection of the most effective wavelet bases and multiresolution
schemes. Next, a set of selected 13 test CT exams of brain, including clini-
cally confirmed cases of acute stroke appearance which contained a variety of
ischemic abnormalities, was used for the assessment of hypodensity extraction
suggestiveness. The exams of 13 patients aged 55-84 (mean 75.6) including an
hyperacute MCA territory and pons infarct were used. Mostly, the cases of stroke
which was difficult to detect (i.e. ”silent” cases of acute stroke) were selected.
The time between the onset of symptoms and the early CT examination ranged
from 1 to 5 hours (mean 2.9 hours). Follow-up CT (from 1 to 10 days after the
ictus) was used to determine the location and size of the infarct.

3 Results

Firstly, the subjective rating of over 30 processed test CT exams (over 600 im-
ages) was used to select the most effective wavelet bases and multiresolution
schemes. Transform kernel impact on hypodensity enhancement was verified to
optimize the algorithm presented in p. 2.2. Two experts in image processing and
interpretation methods and a radiologist took part in the experiment. Relative
scale of 1 to 5 was used where ”1” indicated definite disappearance of hypodense
signs in comparison to source exam, ”2” indicated slight disappearance of hypo-
dense signs, ”3” indicated the same perception of hypodense signs, ”4” indicated
the enhancement of hypodensity, ”5” indicated definite extraction of hypoden-
sity. Close to 70 multiscale decomposition schemes with 1D and 2D kernels were
rated. The best scored FBs were TSpline31 (mean score of 4.39), TSpline2 (4.36),
TBi25 152 (4.32) and well-known Antonini 7 9 FB (4.28)[14] while the lowest
FB score was under 3. The superiority of experimentally modified, non-PR FBs
(the three first) was confirmed by observers’ consensus. Thus, we decided to
apply them in the proposed algorithm. The example of a diversified degree of
hypodensity enhancement was given in Fig. 3).
1 h̃ = [.125, .375, .375, .125].
2 h̃ = [0.0010535,-0.0011583,-0.0135193,0.0139009,0.0812568,-0.066076,-0.2573154,

0.2590495, 0.04798992, -1.0713295, -0.8579303, 4.4011473, 8.2041789, 4.4011473,
-0.8579303, -1.0713295, 0.4798992, 0.2590495, -0.2573154, -0.0660760, 0.0812568,
0.0139009, -0.0135193, -0.0011583, 0.0010535]∗10−1

h = [−0.0335799, -0.0369214, 0.2415515, 0.2348697, 0.8380562, -0.3530644,
4.1656185, 7.3813001, 4.1656185, -0.3530644, 0.8380562, 0.2348697, 0.2415515,
-0.0369214,-0.00335799]∗10−1 .
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Fig. 3. Different displays of ischemic stroke cases. Source image of hyperacute stroke
exam with unperceptable hypodensity (left), processed images with Antonini 7 9 FB
(middle–left) or TBi25 15 (middle–right) filtering and denoising (soft thresholding),
and follow–up CT scan that confirms stroke with clear location (right).

Fig. 4. Extraction of hypodensity in a line of hyperacute stroke exam. It contains noisy
selected row of CT exam with hidden hypodense changes in the right site of the signal
(top), subsequent processing stages of the first and second denoising steps, and smooth
local data variability (middle), the resulting denoised approximation of signal extended
to source signal range with clearly enhanced hypodensity, a hole between 100 and 190
samples (bottom).
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Fig. 5. The examples of improved perception of hypodensity, in sequence: acute stroke
with undetectable hypodensity, four images processed with different FB and denois-
ing (Antonini, TSpline2, TBi25 15 and Atrial, respectively), two images processed
with stroke display (according to proposed algorithm with TSpline2 and alternative
TSpline3, respectively), and follow-up CT scans.

Next, the mentioned elements of the proposed algorithm were designed and
optimized basing on common neurological, radiological, and engineering con-
sultations. Uniqueness and clearance of hypodensity determining was the most
important optimization criterion of wavelet-based image post-processing as much
as avoiding false indications. Four radiologists and two neurologists participated
in that process, which resulted in proposed detailed algorithm of multiscale ex-
traction of the signs of hypodensity. Subjective rating, according to the above
mentioned procedure, was done on subsequent steps of the algorithm optimiza-
tion. Finally, the set of 13 test stroke cases was used to determine the unique-
ness and suggestiveness of hypodensity area indication. The effect of hypodense
change extraction ”in microscale” was shown in Fig. 4. The examples of the
use of stroke display with improved, suggestive perception of hypodensity in the
images were presented in Fig. 5.

According to subjective rating, stroke display improved the diagnosis of early
ischemic changes because of the increased visibility of hypodense signs in 100% of
test exams. Enhanced perception of the hypodense area through signal denoising
as well as the increased local contrast resolution were noticed in the opinion
of radiologists and image processing experts. Additionally, the rate of unique,
clear and doubtless extraction of hypodense area was estimated. The rate of
92%(12/13) in 13 cases of acute ischemic stroke was noticed.
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4 Conclusions

Reported results indicate that hypodensity-oriented enhancement based on im-
age processing in wavelet domain may facilitate the interpretation of CT scans
in hyperacute infarction. Improved segmentation of processed ROIs and control-
ling of the introduced distortions, reduced the possibility of false positives and
significantly reduced the number of false negatives. However, the interactive ver-
ification of automated display, user-defined binarization of indications and work
experience related to stoke display are necessary to eliminate any false indication
and to make hypodensity extraction most useful for diagnosis.

Therefore, the reliable display of hypodense signs can considerably acceler-
ate the diagnosis of hyperacute ischemic stroke with increased sensitivity and
minimized possibility of false positives. Further optimization of automatic un-
derstanding of hypodensity phenomenon, modeling and detection of hyperacute
cases is possible and desired. Clinical tests are necessary to consider the display
as possible to be accepted for medical practice.
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Abstract. Reading and literature exploration are important tasks of
scientific research. However, conventional retrieval systems provide lim-
ited support for these tasks by concentrating on identifying relevant ma-
terials. New generation systems should provide additional support func-
tionality by focusing on analyzing and organizing the retrieved materi-
als. A framework of literature exploration support systems is proposed.
Techniques of granular computing are used to construct granular knowl-
edge structures from the contents, structures, and usages of scientific
documents. The granular knowledge structures provide a high level un-
derstanding of scientific literature and hints regarding what has been
done and what needs to be done. As a demonstration, we examine gran-
ular knowledge structures obtained from an analysis of papers from two
rough sets related conferences.

Keywords: Granular computing, research support systems, research
methods, literature exploration, granular knowledge structures.

1 Introduction

Literature exploration plays an important role in scientific research. Many sci-
entists devote much of their valuable time exploring and digesting the scientific
literature. With the over-increasing volume of scientific documents, the study
and analysis of them becomes a real challenge for any scientist. Solso envisioned
an intelligent system that “may tell us what research has been done, so we can
avoid redundant studies, and it also may tell us what needs to be done, so we can
put our valuable time to good use” [8]. Mjolsness and DeCoste suggested that
machine learning can be used to support every phase of the research process [3].

Traditional information retrieval systems and Web search engines support the
basic tasks of browsing and retrieval, so that a scientist can easily navigate the
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Web, browse digital libraries, and find relevant documents. They normally do
not support the knowledge intensive tasks of analyzing, organizing and digesting
the retrieved documents. Although many authors have pointed out the ineffec-
tiveness of retrieval systems and Web search engines, the real problems may not
lie on the classical issue of “retrieval”. That is, the real problems are no longer
retrieval, but post-processing of retrieved results.

In order to resolve the difficulties of current retrieval systems and to better
support scientists, many proposals of next generation intelligent systems have
been made, including information retrieval support systems [9,10] and research
support systems [11]. The main objective of this paper is to propose a frame-
work of literature exploration support systems, as a sub-system of a research
support system. Such systems help scientists understand scientific literature in
a structured and knowledgeable way.

Many authors have studied the problem of supporting literature exploration
from different perspectives. Robert and Alfonso examined the connection and
relation among different literature by domain characteristics [7]. Kuznetsov an-
alyzed literature from its content view using concept lattice [2].

Based on these studies, we introduce the notion of literature exploration sup-
port systems. Such a system needs to analyze and organize scientific literature in
multiple views. It supports a scientist to make explicit the granular knowledge
structures embedded in scientific literature from its contents, structures, and us-
ages perspectives. Techniques of granular computing are used to construct and
represent granular knowledge structures.

2 An Overview

This section introduces the notion of literature exploration support systems and
two important technologies for building such systems.

2.1 Literature Exploration Support Systems

Knowledge structures play a central role in problem solving [1,6]. They may
help scientists to see the contributions of a particular study and its relationships
to other studies. One of the objectives of reading and literature exploration is
to construct these knowledge structures or concept maps. This is evident from
many survey papers and literature review sections in many scientific writings.

A set of documents from different sources (e.g., digital libraries, conference
proceedings, journal databases, results from retrieval systems or Web search
engines, etc.) may be viewed as the space of exploration. Through multi-view
analysis of its contents, structures and usages, a literature support helps a scien-
tist to organize the literature into a structured and knowledgeable way so that
it can be better understood and used in future research. The results may be
represented as granular knowledge structures.

A literature exploration support system may be viewed as a sub-system of
a research support system. Such a system can be seamlessly integrated with a
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retrieval system or a Web search engine, by treating the retrieved results as a
collection of scientific documents. Thus, a literature exploration support system
may also be viewed as a sub-system of an information retrieval support system.

2.2 Granular Computing

Knowledge of a well-established field can normally be organized in a hierarchical
way [6]. More abstract knowledge can be built upon more concrete knowledge.
Knowledge at different levels represents differing granularity. Furthermore, at
each level of the hierarchical structure, one associates rules regarding how to
apply such knowledge [6]. It becomes clear that a literature exploration support
system must help us to construct such granular knowledge structures.

As an emerging field of study, Granular Computing (GrC) is consistent with
human problem solving based on knowledge structures [13]. Granular computing
covers theories, methodologies, and tools that explore data granules, informa-
tion granules and knowledge granules in problem solving. By viewing literature
exploration as a problem solving task, one can immediately apply granular com-
puting to literature exploration support systems. The three perspectives of gran-
ular computing are very relevant to literature exploration. In the philosophical
perspective, it leads to structured thinking for understanding and organizing
scientific literature. In the methodological perspective, it offers language and
methods to build and represent granular knowledge structures from the liter-
ature. In the computational perspective, it deals with structured processing of
granular knowledge structures.

2.3 Multi-view and Multi-level Exploration

Different views provide various unique understanding of the literature. By draw-
ing results from Web mining, we propose to support literature exploration in
multiple views and at multiple levels, based on the contents, structures, and
usages of the literature.

The contents of literature can be organized based on different levels of granu-
larity. Each granule represents a specific level of details of the literature. By com-
paring different levels of granules, the system can find the relationships among
different papers or between a specific paper and a given topic.

Scientific literature is closely linked together by cross references. Such struc-
tural information needs to be explored when generating knowledge structures.
For example, citation information has long been used in many studies of the
structures of the literature.

Literature usage is another source that may be useful for building knowledge
structures. The relationships among different documents could be investigated
through user access behaviors. For example, if some papers are always viewed
or studied together, one may establish a connection between them.

Based on the multi-view and multi-level in each view, a literature exploration
support system can provide visualization for knowledge navigation and browsing.
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3 Granular Knowledge Structures Generation

The essential issue in implementing a literature exploration support system is
the generation of granular knowledge structures.

3.1 Granular Knowledge Structures

Knowledge structures can be built based on concepts. A concept is considered
to be the basic unit of human thought and knowledge. A concept can be con-
veniently interpreted as a granule, namely, the extension of the concept. The
representation, interpretation, connection and organization of concepts lead to
granular knowledge structures [12].

We can use an information table and a language with respect to the table to
represent knowledge. Consider a generalized decision logic language [14], GDL-
language, which is an extension of a decision logic language used by Pawlak [4].
A specific information granule is represented by an atomic formula (a, r, l), where
r denotes a particular relationship between an attribute value and a label. Let
La be the set of labels for all granules on the domain of attribute a. We have
the relation set Ra = {=, ∈}. Thus, the atomic formulas are of the two forms,
(a, =, l) and (a, ∈, l).

A concept in an information table can be jointly represented as (φ, m(φ)).
The formula φ represents the intension of the concept, while the set m(φ) con-
sists of those objects satisfying the formula and represents the extension of the
concept [14].

Knowledge granules can be defined as relations on concepts:

G({�i|i ∈ I+}, {(φn, m(φn))|n ∈ I+}), (1)

where �i denotes the relations between concept granules and I+ the set of pos-
itive integers. Different levels of relations among concepts induce a hierarchical
structure called a granular knowledge structure. In particular, we need to con-
sider three levels of structures, namely, internal structure of a granule, collective
structure of a family of granules, and hierarchical structure of a web of gran-
ules [13]. They form the integrated knowledge structures of the literature.

3.2 A Granular Knowledge Structures Generation Process

Building knowledge structures based on isolated papers by using traditional
Web mining methods may not be satisfactory. They may not be able to repre-
sent the connections between different levels of granules, such as subtopics and
disciplines [5]. As a knowledge intensive system, a literature exploration support
system must consider semantic information and user involvement.

One issue is the weights of different documents in the literature. It is a well
known fact that some scientific papers are more important than others, because
they have major impact on later research. Therefore, those documents should
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Fig. 1. Main Steps for Granular Knowledge Structures Generation

play a major role in forming the knowledge structures. A set of such documents
may be easily obtained from citation information. A related issue is the defini-
tion of semantic relations between concepts, documents, and sets of documents.
Typically, a scientific document has a well defined granular structure, consisting
of title, abstract, section titles, and subsection titles. Such in formation may
be incorporated. In other words, we can associate different weights to different
concepts in a document.

A literature exploration support system must incorporate domain knowledge
and user background knowledge. Although the construction process is the same,
the knowledge base used is domain specific and personalized. We take a human-
centric approach that allows a scientist to add new, to improve existing knowl-
edge, and to refine granular knowledge structures. A support system needs to
seek for the right balance between automation and user intervention [15].

Figure 1 shows the main steps for generating granular knowledge structures:

– In the literature selection step, the system or a user collects a set of docu-
ments to be explored.

– In the view selection step, a user selects a particular view for building multi-
view based granular knowledge structures.

– In the structure generation step, the system generates different granular
structures.

– In the user-centric result refinement step, a user can refine the results from
the previous steps.

For exploration from content view, we build the general granular structures
according to information about a single document and a sub-collection of doc-
uments, as well as domain knowledge. For exploration from structure view, we
focus on building citation relation structure. For exploration from usage perspec-
tive, we find the connections and external structures of relevant papers based on
literature access logs and domain knowledge.



Supporting Literature Exploration with Granular Knowledge Structures 187

Table 1. A Partial Information Table for Generating Figure 2

Paper Initial Page Theory Application Domain

No.05 p1-94 Rough-Algebra – Rough Set

No.12 p1-345 Rough-Fuzzy Hybridization – Rough Set

No.25 p2-342 Logics and Reasoning Medical Science Rough Set

No.21 p2-263 Data Reduction Image Processing Rough Set

No.29 p2-383 Logics and Reasoning Bioinformatics Rough Set

No.97 p3-522 Formal Concepts – Rough Set

No.30 p2-430 Data Reduction Bioinformatics Rough Set

4 An Illustrative Example

To demonstrate the proposed framework, we extract related information from
RSFDGrC 2005 and RSKT 2006 proceedings to form the granular knowledge
structures of Rough Sets.

The diagram shown in Figure 2 is formed based on information granules at
different level of granularities from the two proceedings. Table 1 contains some
examples of the information table used to construct Figure 2.

Examples of information granules from Table 1 are given as:

G(Theory, =, Formal Concepts) = {No.97},

G(Application,∈, l1) = {No.25, No.29, No.30},

G((Theory, =, Data Reduction) ∧ (Application,∈, l1)) = {No.30},

G((Page, =, 2 − 383) ⇒ (Application,=, Bioinformatics)) = {No.29}.

The label l1 is the granule containing {Medical Science, Bioinformatics}. The
symbol ⇒ denotes the connection between two granules [14]. The concept gran-
ules for the first two formulas can be represented as:

((Theory, =, Formal Concepts), m(Theory, =, Formal Concepts),
((Application,∈, l1), m(Application,∈, l1)).

An example of granular knowledge structure based on the partial ordering is
given as:

((Theory, =, Formal Concepts), m(Theory, =, Formal Concepts)
⊆ ((Domain, =, Rough Sets), m(Domain, =, Rough Sets)).

Figure 2 shows a multi-level granular structure from the content view. For ex-
ample, the coarsest granule is “Rough Sets”, finer granules are subtopics related
to “Rough Sets”, and papers falling under each subtopic form the basic gran-
ules. The fact that “Nine theory subtopics are related to Rough Sets” reflects a
coarser knowledge structure. The fact that “Bioinformatics and Data Reduction
are related” reflects a finer knowledge structure. Figure 3 provides a structural
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view of a single paper’s citations. Other views of granular structures could be
further investigated.

The granular knowledge structures not only provide a relation diagram of
specified discipline, but also help researchers to find the contribution of each
study and possible future research topics. For example, as shown in Figure 1,
many studies concentrate on data reduction and rough set approximations, and
research of applications does not receive much attention. It can also be concluded
that one may apply some of the theoretical studies (e.g., Rough-Algebra).

5 Conclusion

This paper proposes a framework of literature exploration support systems. Such
a system constructs granular knowledge structures of the literature by using the
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theory and techniques of granular computing. This enables scientists to explore
literature in multiple views and at multiple levels, in order to see the contribu-
tions of a particular study and its relationships to other studies.

Literature exploration support systems focus on the post-processing of re-
trieved results of current retrieval systems and search engines. These systems
may have great impact in helping scientists to meet the challenge of over-
increasing literature growth.
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Abstract. The Data Credibility Analysis is a computer science domain aimed at 
discovering universal algorithms for identifying improper or unusual data. It is 
done by calculating credibility coefficients for individual records. In recent 
years many different methods of computing these coefficients were presented. 
In the paper we propose a transformation of credibility coefficients to ordinal 
credibility coefficients. By developing this idea we propose another credibility 
coefficient computing algorithm, which benefits from incorporating arbitrary 
many other credibility coefficient computing methods. The preliminary tests 
showed that this approach leads to better results. 

Keywords: credibility coefficients, information system, classification, 
emerging patterns. 

1   Introduction 

Data credibility analysis [1] is a computer science research area in a domain of 
knowledge acquisition. It focuses on the problem of detecting improper or somehow 
outlying data in arbitrary data sets. As it is usually hard to make difference between 
invalid and valid but outlying data, these cases should be filtered out and indicated to 
domain experts. On the other hand the data set without such data should give better 
results when inferring general knowledge or processing with general rules. 

The main goal of the research is estimating credibility of individual records of 
analyzed datasets. Evaluation of credibility of data is done by specialized heuristic 
algorithms. Some of them were described in [2] [3] [4]. The most important aspect of 
these algorithms is unawareness on meaning of the processed data. This makes them 
general, universal and ready to operate on any data. For a given dataset they assign to 
each data record a relative credibility estimation known as a credibility coefficient [1]. 
This is just a real number from range [0, 1]. The intention of the proposed data 
credibility assessment is to assign lower credibility values to less typical record, as 
lesser typicality is obviously associated with higher risk that data is improper or 
outlying. 
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Assuming that credibility coefficient computing algorithm is able to distinguish 
data typicality, records with lower credibility coefficients are commonly invalid, 
outlying or abnormal data. In any of these cases it is good to identify such records. 
Invalid data are obviously incredible and outlying data do not match well to typical 
schemes, so should not be used to infer a general knowledge. For example, if in a 
medical application an outlying patient record denotes a special case, it probably 
should be treated with some extra care and likely will require different remedies. 

Values of credibility coefficients are relative to the analyzed data set. Obtained 
coefficients would be probably a bit different if the considered data set would have 
some records changed, added or removed. It is a consequence of the approach when a 
data set is the only input and having no additional information about the data domain. 
Thus for one data set a single credibility coefficient of 0.5 could mean a relatively 
high credibility while for the other one it could be one of lowest coefficients. This is 
the reason, why the credibility analysis system cannot itself decide how low 
coefficient value denotes an incredible record. Nevertheless, an expert can revise a 
chosen number of records (e.g. 10% of the data set), which were given the lowest 
credibility coefficients. Then the expert should decide how significant are the records 
and what to do with them (e.g. neglect, correct, start thorough investigation of cases). 

It is important to notice how ordinary credibility coefficients are used. Assuming 
we do not focus on certain coefficients calculating algorithm's properties or, in other 
words, assuming credibility coefficients are produces just by some “black box” 
absolute values of these coefficients have no meaning. We use credibility coefficients 
to order records of the data set to focus on the least credible ones. Probably it would 
be common to inspect from 1% to 10% of such records. Hence record's credibility is 
really represented by the record's ordering position not by the value of the coefficient 
itself. A record is less credible if there are many records with higher position. As a 
consequence we do not use obtained credibility coefficients separately. Sorting 
operation requires all coefficients to be already calculated and each coefficient's value 
is important because it influences ordering positions of other data records. 

2   Motivation 

There were designed at least five different methods of computing credibility 
coefficients. In chronological order these are: 

1. Statistical/Frequency Method [1][2] –based on number of objects having the same 
value for each attribute individually; 

2. Method Based on Class Approximation [1][2] – based on rough set theory [5]. The 
value of coefficient is calculated using measures of positive and negative regions 
of each decision class; 

3. Method Based on Frequent Set [3]– applies contribution of objects to frequent sets; 
4. Method Based on Decision Rules [4] – applies relations of objects to decision rules 

inferred from decision system; 
5. Voting Classifier Method – based on any voting classifier (like Bayesian classifier, 

k-NN, neural network, SVM); a classifier CAEP [6] (Classification by Aggregating 
Emerging Patterns) is a voting one and was implemented in KT Data Analysis 
System [7] to employ Emerging Patterns [8] to the data credibility investigation. 
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It can be expected that the number of these algorithms will increase in near future. So 
many diverse approaches are considered, because it is not obvious how to estimate 
data credibility, especially in a way independent on data meaning and/or their domain.  

As could be expected there is no the best algorithm of computing credibility 
coefficients, although wide experiments comparing all of these approaches with the 
same objective criteria still have to be done. Such criteria are briefly described in 
section 4. Currently we can state that each of the calculating method of credibility 
coefficient has some advantages and behaves well in certain cases. 

Because any algorithm calculating credibility coefficients is perfect, probably one 
would not like to stop after performing data credibility analysis using only one 
method. It would be reasonable to repeat the analysis using one or two methods more. 
However this is inconvenient and unpractical. Although this is possible to support this 
procedure by computer program such a scheme has its flaws. It would only acquire 
not one but few coefficients for each record and the conclusions would be left to an 
expert anyway. 

It would be desirable to benefit simultaneously from a whole set of arbitrary 
chosen coefficients computing algorithms. Such a procedure should generate a single 
coefficient for each record and this coefficient should be a result of a “smart” 
aggregation of credibility coefficients obtained for the record from all chosen basic 
algorithms. The trivial aggregation like average or median cannot be applied because 
coefficients coming from different algorithms are hardly comparable. 

3   Proposition 

3.1   Ordinal Credibility Coefficient 

We propose a new kind of credibility coefficient, namely ordinal credibility 
coefficient. Its values are not computed directly from the input data set but they are 
rather based on credibility coefficient's values obtained for the data set from an 
arbitrary chosen calculating method, for example one of listed above. 

Let us have a non-empty data set D and a method of calculating credibility 
coefficients. For a data record x∈D let cred(x) mean the value of credibility 
coefficient obtained from a given method for x. A value: 

{ }
D

)x(cred)y(cred:Dy ≤∈
 (1) 

for x∈D is named ordinal credibility coefficient for record x relative to data set D. We 
will denote it as credORD(x). 

As defined above ordinal credibility coefficient for a given record from a given 
data set with use of a given coefficient computing method expresses the relative 
amount of records with credibility coefficients less or equal to the credibility 
coefficient for this record. To obtain ordinal credibility coefficients for all data 
records we perform this transformation to each record. 
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Example 
Let us consider a data set with six objects identified by letters from a to f. Let us 
assume some credibility coefficient calculating method produced values, denoted as 
cred(x), as shown in Table 1. Following columns of the table show sets of objects 
with coefficients less or equal to the given object, cardinalities of these sets and 
values of ordinal credibility coefficient. 

Table 1. Calculation of ordinal credibility coefficients 

x cred(x) Yx = { y:  cred(y) ≤ cred(x) } | Yx | credORD(x) 

a 1.00 { a, b, c, d, e, f } 6    6/6 = 1 
b 1.00 { a, b, c, d, e, f } 6    6/6 = 1 
c 0.99 { c, d, e, f } 4    4/6 = 0.67 
d 0.98 { d, e, f } 3    3/6 = 0.5 
e 0.80 { e, f } 2    2/6 = 0.33 
f 0.78 { f } 1    1/6 = 0.17 

Properties 
Ordinal credibility coefficients have the following properties. 

1. The range of their values is (0, 1]. 
2. Credibility coefficient values and their ordinal counterparts introduce the same data 

set object ordering. 
3. Ordinal credibility coefficient has a well defined interpretation. For a given 

credibility coefficient calculating method and dataset D, value credORD(x), for x∈D, 
shows what part of dataset D has estimated credibility less or equal to the estimated 
credibility of object x. Value 1-credORD(x) shows what part of dataset D has 
estimated credibility grater then estimated credibility of object x. Thus ordinal 
credibility coefficient can be expressed by percentage. 

As a result of the two first properties ordinal credibility coefficient is credibility 
coefficient itself. Thus it is possible to use ordinal credibility coefficients as base 
coefficients to obtain ordinal credibility coefficients again (of the next degree). Such 
transformation leads to exactly same values of ordinal credibility coefficient. 

As a result of the third property we can aggregate ordinal credibility coefficient's 
values. For example, we have two ordinal credibility coefficients for object x∈D. The 
first one was obtained from credibility coefficients for dataset D computed by method 
M1, and the second derived from credibility coefficients for D computed by M2. It is 
possible to take average of these two ordinal credibility coefficient values. The 
obtained average is meaningful. It denotes an average part of data set D with 
credibility less or equal to the credibility estimated for object x while considering both 
computing methods M1 and M2. Finally, thanks to the definition of ordinal credibility 
coefficient, its value for a single record provides useful information itself without a 
need of referencing to credibility coefficients for other objects. This is not a case for 
an “ordinary” credibility coefficient, where its value for an individual record is 
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meaningful only in the context of the other coefficient values or if certain properties 
of used computing method are known and can be interpreted. 

3.2   Multi Credibility Coefficient Method 

So far no methodology of coincident cooperation of many methods of computing 
credibility coefficients was proposed. Here we propose a new approach of combining 
a number of credibility calculation algorithms using the notion of ordinal credibility 
coefficient to obtain an aggregate outcome. 

Let us have a non-empty data set D. Let M1, ... , MN denote N arbitrary chosen 
methods of computing credibility coefficients. Let cred(i)(x), 1 ≤ i ≤ N denotes a 
credibility coefficient for object x∈D obtained by applying method Mi to dataset D. 
Let cred(i)

ORD(x), 1 ≤ i ≤ N denotes an ordinal credibility coefficient for object x∈D 
derived from all values cred(i)(y), y∈D. The Multi Credibility Coefficient Method 
evaluates credibility coefficient for object x∈D as the value: 

)x(
ORD

)i(
cred

N

1 N

1i
∑

=

 (2) 

Although values computed by Multi Credibility Coefficient Method are results of 
aggregating ordinal credibility coefficients, these values are not ordinal credibility 
coefficients themselves. Of course they can be transformed to ordinal coefficients. 

 

Fig. 1. Symbolic scheme for Multi Credibility Coefficient Method 
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In Fig. 1 a symbolic scheme for the proposed method is presented. Symbol “T” 
denotes transformation from credibility coefficients to ordinal credibility coefficients. 
As the result of this process one obtains credibility coefficient for each record of input 
data set and this coefficient is influenced by each “base” coefficient's computing 
algorithm used. As it was previously mentioned, the main idea of proposing such 
solution was to combine all advantages of various methods. 

4   Results 

The Multi Credibility Coefficient Method was implemented on an entirely new 
platform (KT Data Analysis System [7]) and it could be tested only with two variants 
of the Voting Classifier Method using Emerging Patterns [6] based classifier. The two 
variants (denoted further as I and II) were differing in a way Emerging Patterns were 
discovered in input data set. The first version employed methodology of frequent set 
and the second used decision tree approach. As it was hard to predict or evaluate 
which one Emerging Patterns discovering algorithm gives better results it was 
interesting to use them both. 

We have performed experiments of two types, both innovative and never used 
before in the domain of data credibility analysis. In both cases input data were 
randomly modified/generated so each test configuration was repeated from 30 to 50 
times to get averaged results. 

Experiments of the first type used publicly available data sets Iris, Heart and Glass 
[9]. At first we have cleaned these data sets by removing 10% to 30% of the least 
credible records. For each run of the experiment we have injected synthetic, randomly 
generated falsified records to a given data set, such that there were always 10% of 
false records. They were generated by randomly choosing two records and copying 
values of a given number of attributes from the second one to the first one. Thus 
obtained false records were not so simple to detect. After computing credibility 
coefficients we were selecting at least 10% of all records having the least credibility 
coefficients – it was a subset of records considered as improper (falsified) by the 
tested method. Then we were evaluating two measures defined by us, namely 
perfection and precision. Perfection and precision for method M computing credibility 
coefficients for objects from data set D are defined respectively as 

B

BA
perfM

∩
=                    

A

BA
precM

∩
=  (3) 

where B⊂D denotes a subset of all improper objects, and A⊂D is set identified by the 
credibility coefficients that 

))x(cred(min))x(cred(maxBA
ADxAx −∈∈

<∧≥  

Perfection is a ratio of number of false objects detected to the number of all false 
objects. Precision is a ratio of number of false objects detected to the number of all 
objects identified by credibility coefficients as improper. For both perfection and 
precision higher values means better results. Although similar experiments were 
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performed previously they never made use of such measures. Results from these 
experiments for two variants of the Voting Classifier Method and the Multi 
Credibility Coefficient Method are shown in Tables 2, and 3.  

Table 2. False record detection for Iris dataset 

Number of modified 
attributes. 

1 2 3 4  

perfection 22,20% 46,40% 81,30% 93,10%
precision 22,20% 46,40% 81,30% 93,10%

Variant I 

perfection 45,80% 70,00% 90,00% 99,30%
precision 36,80% 67,50% 87,50% 99,00%

Variant II 

perfection 43,30% 76,20% 92,00% 98,70%
precision 42,90% 75,80% 91,20% 98,20%

Multi Credibility 
Coefficient M 

Table 3. False record detection for Heart dataset 

Number of modified 
attributes. 

1 2 3 4  

perfection 11,90% 30,10% 64,90% 86,50%
precision 11,80% 30,10% 64,90% 86,50%

Variant I 

perfection 10,20% 34,30% 57,60% 80,70%
precision 10,20% 34,30% 57,60% 80,70%

Variant II 

perfection 13,70% 35,40% 65,30% 85,30%
precision 13,70% 35,20% 64,40% 85,10%

Multi Credibility 
Coefficient M 

 
Experiments of the second type used synthetic, randomly generated data sets. Data 

sets were generated along with multidimensional normal distribution randomly 
parameterized for each run. Each data set contained two decision classes with its own 
distribution. We have performed this experiment with number of attributes set to 2 
and to 5. Having a probability distribution for a data set it is possible to assess a 
probability of appearance of a given object. The credibility coefficients should be in 
close correlation with the probability values. We have measured a divergence  
 

Table 4. Mean absolute error and linear correlation coefficient between probability and 
credibility coefficients 

Dimensions 2 5  

MAE 0,27 0,27
LCC 0,35 0,3

Variant I 

MAE 0,31 0,29
LCC 0,25 0,23

Variant II 

MAE 0,26 0,27
LCC 0,37 0,32

Multi Credibility 
Coefficient M. 
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between them with the mean absolute error (MAE) and the linear correlation 
coefficient (LCC). MAE should strive to 0.0 and LCC should be positive with higher 
values meaning better correlation. Results of these experiments are shown in Table 4. 

As could be seen in Tables 2 and 3 the Multi Credibility Coefficient Method 
produced better results in most cases. From the Table 4 we can conclude that the 
Multi Credibility Coefficient Method calculated coefficients are closest to probability 
values although its superiority was rather slight. 

5   Conclusions 

The paper presents a concept of ordinal credibility coefficient. It is derived from 
values of basic credibility coefficients calculated by one of the available algorithms. 
Ordinal credibility coefficient of a given record defines its relative position within the 
data set according to ranking given by the values of the basic credibility coefficients. 
Thus ordinal credibility coefficients preserves and emphasizes the sorting of objects 
of the data set according to their estimated credibility. One of the possible 
applications is identification of data considered as doubtful. This is of course the main 
goal of basic credibility coefficient, but their data are meaningful only in context of 
all other credibility coefficients. In contrary the value of the ordinal credibility 
coefficient explicitly demonstrates if an object belongs to the least credible records. 

The “worst” objects can be removed to improve the quality of the remaining data 
or they can be inspected with a special care (to understand why they are exceptions) – 
both concepts are appealing for research and can find many reasonable applications.  

The ordinal credibility coefficient was a mechanism used to combine a number of 
different algorithms evaluating credibility coefficients. The proposed Multi 
Credibility Coefficient Method can produce a synthetic measure of different 
approaches. We hope that for most cases single information on data credibility would 
be desired. 

The credibility coefficients were aimed to aid in automatic detection of improper 
data without using any interpretation of the analyzed data. The methodology is 
general one and can be applied to any data set. Ordinal credibility coefficients enable 
incorporating many credibility assessment methods to produce a compound signature. 

References 

[1] Podraza R., Walkiewicz M., A. Dominik A.: Credibility Coefficients in ARES Rough Set 
Exploration System. Proc. 10th Int. Conf. on Rough Sets, Fuzzy Sets, Data Mining, and 
Granular Computing, RSFDGrC 2005, Regina, Canada, Lecture Notes in Artificial 
Intelligence, LNAI 3642, Part II. Springer-Verlag, Berlin Heidelberg New York (2005)  
29-38. 

[2] Podraza R., Dominik A.: Problem of Data Reliability in Decision Tables. Int. J. of 
Information Technology and Intelligent Computing (IT&IC), Vol. 1 No. 1, (2006)  
103-112. 

[3] Podraza R., Walkiewicz M., A. Dominik A.: Credibility Coefficients Based on Frequent 
Sets”, Conf. on Comp. Sci.– Research and Applications, Kazimierz Dolny, Poland, 2006, 
to be published in Annales UMCS, AI Informatica, Lublin, Poland. 



198 R. Podraza and K. Tomaszewski 

[4] Podraza R., Walkiewicz M., Dominik A.: Credibility Coefficients Based on Decision 
Rules. Proceedings of the Int. Multiconference on Comp. Sci. and Inf. Technology, Vol. 1, 
XXII Autumn Meeting of Polish Information Processing Society, Wisła, Poland, (2006) 
179-187. 

[5] Pawlak Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer, (1991). 
[6] Dong G., Zhang X., Wong L., Li J.:CAEP: Classification by Aggregating Emerging 

Patterns. Proc. of 2nd Int. Conf. on Discovery Science, Tokyo, Japan, (1999) 30-42. 
[7] Podraza R., Tomaszewski K.: KTDA: Emerging Patterns Based Data Analysis System. 

Annales UMCS, Informatica, AI, Vol.4, Lublin, Poland, (2006) 279-290. 
[8] Dong G., Li J.: Efficient Mining of Emerging Patterns: Discovering Trends and 

Differences. Proc. of the SIGKDD (5th ACM Int. Conf. on Knowledge Discovery and 
Data Mining), San Diego, USA, (1999) 43-52. 

[9] Blake C.L., Merz, C.J.: UCI Repository of machine learning databases, Irvine, University 
of California, (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html 



FuzzyPR: An Effective Passage Retrieval

System for QAS

Hans Ulrich Christensen and Daniel Ortiz-Arroyo

Computer Science Department
Aalborg University Esbjerg

Niels Bohrs Vej 8, 6700 Denmark
huc1405@student.aaue.dk, do@cs.aaue.dk

Abstract. In this paper we present FuzzyPR, a novel fuzzy logic based
passage retrieval system for Question Answering Systems (QAS).
FuzzyPR employs a fuzzy logic based similarity measure that includes
the best performing models to implement the question reformulation in-
tuition. Our experiments show that FuzzyPR achieves consistently better
performance in terms of coverage than JIRS on the TREC corpora and
slightly better on the CLEF corpora.
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1 Introduction

A Question Answering System (QAS) is one type of information retrieval (IR)
system that attempts to find exact answers to user’s questions expressed in
natural language. In an Open-Domain Question Answering System (ODQAS),
questions are not restricted to certain domains and answers have to be found
within an unstructured document collection. The Passage Retrieval (PR) system,
one component of a QAS, extracts text segments from a group of retrieved
documents and ranks these passages in decreasing order of computed likelihood
for containing the correct answer to a question. Typically, such text segments
are referred to as candidate passages.

A QAS is bound by the performance of its PR component. A PR system that
fails to retrieve any answering passages to a question or returns many, large
candidate passages will have a negative impact on the effectiveness of a QAS [1].

Previous research has proposed to use the question reformulation intuition:
”frequently, an answer to a (factoid) question can be found as a reformulation
of the same question” to build QAS. An example of the application of the refor-
mulation intuition is the question “How much is the international space station
expected to cost?” of QA@TREC 11 (QID: 1645)1. The answering passage con-
tains the snippet: “(...)United States and Russia, are working together to build

1 TREC’s Question Answering collections are available from:
http://trec.nist.gov/data/qa.html

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 199–207, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://trec.nist.gov/data/qa.html
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the space station, which is expected to cost between $40 billion and $60
billion.(...)”.

This paper presents FuzzyPR, a language-independent PR system for ODQAS.
FuzzyPR includes a fuzzy logic based implementation of the reformulation intu-
ition. The paper is organized as follows. Section 2 briefly describes related work
on passage retrieval systems. Section 3 describes and analyzes the main com-
ponent mechanisms of a PR system. Section 4 describes FuzzyPR and presents
its performance results. Finally, Section 5 presents some conclusions and future
work.

2 Related Work

JIRS [2] is a PR system that employs a n-gram model. JIRS supports two ex-
tensions to the basic n-gram matching mechanism (called Simple Model): term
weights (called Term Weight) and both term weights and a distance measure
(called Distance Model). JIRS basically ranks higher passages containing larger
sequences of the terms contained in the questions. Brill et al.’s Web QAS [3]
builds queries constructed as permutations of the terms employed in the ques-
tion. Kong et al. [4] use fuzzy aggregation operators in a passage-based retrieval
system for documents, where the relevance of a document is re-calculated taking
into account the retrieved passages. Other research [?] [4] has also explored the
application of fuzzy logic in a QAS.

Although the application of the reformulation intuition has been previously
explored to build QAS [2] [3] to our knowledge we are the first to propose a
fuzzy logic question-passage similarity measure to model such intuition.

3 Analysis of Main Component Mechanisms in a Passage
Retrieval System

The reformulation intuition can be modeled using two characteristics of a can-
didate passage: “most (important) question terms” and “close proximity”. The
feature “most (important) question terms” is modeled by the fuzzy subset: The
degree to which candidate passages contain all question terms. The degree of
membership varies from 1 when all important question terms occur within a
candidate passage to 0 if no question terms occur within the passage. “Close
proximity” is modeled by the fuzzy subset: The degree to which the question
terms contained in a candidate passage are juxtaposed. If all question terms of
the passage are juxtaposed, then the passage’s membership degree in this fuzzy
subset is 1. Otherwise, the more distributed the terms are, the lower the degree
of proximity approaching 0.

The third vague concept that can be used in the reformulation intuition is
term matching. In ODQAS, questions and documents commonly suffer from
grammatical inflections and typos that have a negative impact on performance.
The fuzzy logic interpretation of binary term similarity is the fuzzy subset: The
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degree to which two terms are identical yielding 1 if the two terms are identical,
a value in ]0, 1[ if they have some letters in common, and 0 if they are very differ-
ent. In the following subsections we briefly analyze fuzzy models to implement:
proximity of question terms occurring in a passage and automatic detection of
term variations. Further details can be found in [5].

3.1 Proximity of Question Terms Occurring in a Passage

Fuzzy proximity measures calculate the degree of proximity within a document
of two or more question terms, based on the following two intuitions: 1) if all
matching document terms are juxtaposed then the measure yields 1, and 2)
the farther away the matching document terms occur, the lower the degree of
proximity.

We evaluated three different fuzzy proximity measures as to their ability in
finding answering passages for the first 50 questions of TREC11’s question set
using the AQUAINT corpus. We used the standard QAS evaluation metrics
Mean Reciprocal Rank (MRR) and coverage. MRR is defined as the average of
the reciprocal rank ri of the first hit to each question within the top 5 candidate
passages:

MRR =
1

|Q|

|Q|∑

i=1

RRi . (1)

where RRi = 1
ri

if ri ≤ 5 or 0 otherwise and Q is the set of questions. As is
done in the JIRS system [2], we measured coverage on the first top 20 passages.
Coverage is defined as the proportion of questions for which an answer can be
found within the n top-ranked passages:

cov(Q, D, n) ≡ |{q ∈ Q|RD,q,n ∩ AD,q �= ∅}|
|Q| . (2)

where Q is the set of questions, D is the passage collection, AD,q the subset of
D containing correct answers for q ∈ Q and RD,q,n the n top ranked passages.

Fig. 1 shows that Mercier and Beigbeder’s Fuzzy Proximity Measure [6]
achieves the same level of coverage at ranks 1-20 as the Extended Distance
Factor [5], but performs 7.2% better in terms of MRR.

3.2 Automatic Detection of Term Variations

Term variations are lexical differences—in terms of meaning and spelling—
between a word of the question typed by a user and an equivalent word contained
in a document in the corpus. Reasons for term variations include grammatical
inflection and spelling mistakes. Two main features are needed in a mechanism to
handle term variations effectively: 1) language-independence and 2) effectiveness,
measured as tolerance toward common misspellings and grammatical inflections,
which are interpreted as a type of misspelling.

Fuzzy term similarity algorithms determine the degree of similarity between
two strings. Reflexivity and symmetry are desired properties of these algorithms.
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(a)

(b)

Fig. 1. The MRRs (a) and coverages (b) of the 3 fuzzy proximity measures

We performed a comparative evaluation on the effectiveness of six different al-
gorithms when set to calculate the similarity between 300 English homophone2

pairs. The average of the similarity computations yields the score of the fuzzy
term matching algorithm.

Table 1. Average similarity scores of 8 Fuzzy similarity algorithms (sorted in decreas-
ing order)

Algorithm Average similarity score
Normalized longest common subsequence 0.5984

Inverse normalized DD 0.5569

Inverse normalized LD 0.5513

Szczepaniak and Gil 0.4395

Reciprocal DD 0.3751

Reciprocal LD 0.3720

Improved trigram algorithm 0.2477

Trigram algorithm 0.1691

Table 1 shows that the normalized longest common subsequence (nLCS) [5]
performed best, giving an average homophone pair similarity rate of 0.5984.
2 A homophone pair is two terms pronounced the same but differing in meaning and

spelling, thus reflecting misspellings and typos. Examples include ”advice vs. advise”
and ”cite vs. site”.
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4 FuzzyPR System and Performance Results

FuzzyPR consists of two components: 1) a question–passage similarity measure
module and 2) a passage identification and extraction mechanism adapted to
the special needs of QAS. The following subsections describe these components.

4.1 Similarity Measure

The similarity measure we propose is the fuzzy logic-based interpretation of the
reformulation intuition: ”a passage p is relevant to the user’s question q if many
question terms or variations of these question terms occur in close proximity”
described by Equation 3.

μrel(p, q) = wMin ((v1, μf (p, q)), (v2, μp(p, q))) . (3)

This similarity measure combines lexical and statistical data extracted at
term-level into the two fuzzy measures: μf (p, q) the weighted fraction of question
terms q occurring in the passage p and μp(p, q) the proximity of question terms
q within the passage. Using the results of the performance analysis described in
Section 3, μf (p, q) and μp(p, q) are defined in equations 4 and 5.

μf (p, q) = hαf

(
(vf

1 , sat(tq1 , p)) . . . (vf
n, sat(tqn , p))

)
. (4)

where h is the AIWA importance weighted averaging operator [7] with an AND-
ness of αf = 0.65, tqi is a question term, vf

i = NIDF (tqi) = 1 − log(ni)
1+log(N)

3,
n=frequency of tqi in Ω the set of documents, N = |Ω|. sat(p, tqi) measures
the degree to which p contains tqi using the normalized longest common subse-
quence (nLCS), i.e. sat(p, tqi) = max

∀tp∈p

(
μnLCS

sim (tp, tqi)
)
, where μnLCS

sim (tp, tqi) =

|LCS(tp,tqi
)|

max(|tp|,|tqi
|) , LCS being the longest common subsequence. Finally,

μp(p, q) =
s(p, q)

max
∀pi∈Ω

s(pi, q)
. (5)

where μp(p, q) is a max-normalization of Mercier and Beigbeder’s fuzzy proximity
method [6] described by s(p, q) =

∫ n

1 μp
t (x)dx, t ∈ q with the term influence func-

tion μp
t (x) = max

i∈Occ(t,p)

(
max

(
k − |x − i|

k
, 0

))
, where the parameter adjusting

the support k = 70. The values of v1, v2, αf and k are determined experimen-
tally. Aggregating these two fuzzy measures using the weighted minimum gives
the overall relevance score wMin, which is defined as:

wMin(v1, v2, μf , μp) = min (max(1 − v1, μf (p, q)), max(1 − v2, μp(p, q))) . (6)

with the importance weights v1 = 1, v2 = 1 and both the passage p and the
question q represented as sets of terms: {tp1 , tp2 , ..., tpn} and {tq1 , tq2 , ..., tqm},
3 NIDF is an abbreviation of normalized inverse document frequency.
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respectively. wMin aggregates μf (p, q) and μp(p, q) into a single fuzzy value
μrel(p, q) as described by Equation 3. μrel(p, q) is the fuzzy subset of passages
providing a correct answer to the question q, where p is a specific passage.
μrel(p, q) has the advantage of being language-independent.

4.2 Mechanism for Passage Identification and Extraction

A fuzzified variation of the concept arbitrary passages4 is employed in FuzzyPR.
An arbitrary passage is modeled as its membership function in the ideal set of
passage sizes as stated in equation 7.

μIdeal passage size(x) =

⎧
⎨

⎩

1 if 0 ≤ x ≤ d
x−b
d−b if d < x < b

0 if x ≥ b
. (7)

x is a term’s location in the passages and d and b adjust the crisp support
and the fuzzy support respectively. Due to efficiency concerns, the membership
function of the ideal passage size set is transformed into an equivalent symmetric
membership function, where the center term of a passage is required to have a
question term similarity greater than α and a normalized IDF greater than β.
This restriction is justified by the intuition that a passage containing none or
very few of the question’s terms is unlikely to provide an answer to the question.

4.3 Performance Results

We measured the effectiveness of FuzzyPR by comparing its ability to find correct
answers to questions in a document corpora with both an adapted PR system
that we have integrated within Lucene—a popular vector space search engine—
and the JIRS PR system [2]. We decided to evaluate the simple model and the
distance model of JIRS, because we found that the term weighted model and
the simple model perform almost identically.

Both JIRS and the PR system implement an index of 3 sentence passages with
1 sentence overlapping. Llopis et al. in [8] report that this approach achieves good
results. The PR system allows Lucene to be used as a PR module in a QAS by
employing a simple query expansion method. In this method the question term
with the lowest IDF is removed until ≥ 20 passages are retrieved from the index
of 3 sentence passages.

Because FuzzyPR defines a passage as a number of consecutive terms, we
computed and used the arithmetic mean of the average passage sizes of the top
100 passages retrieved by both Lucene, JIRS Distance Model and JIRS Simple
Model. In table 2 the numbers in parenthesis are the actual passage sizes used
by FuzzyPR.

As test data we used TREC12’s set of 495 questions and the corpus called
AQUAINT consisting of 1, 033, 461 documents of English news text and
4 Arbitrary passages are defined as: ”any sequence of words of any length starting at

any word in the document”.



FuzzyPR: An Effective Passage Retrieval System for QAS 205

Table 2. The average passage sizes of the PR systems used for comparison

PR system Test data TREC12 CLEF04
Lucene 55.91 74.74

JIRS Distance Model 132.23 105.87

JIRS Simple Model 166.96 111.48

Arithmetic mean 118.37 (119) 97.36 (98)

CLEF04’s 180 question and the AgenciaEFE corpus of 454, 045 Spanish newswire
documents. To answer questions automatically for TREC12 we used Ken
Litkowsky’s regular expression patterns of correct answers5 and for CLEF4 we
used the patterns supplied with JIRS6

The TREC12 question set was reduced to 380, since 115 questions do not
have a recognizable pattern. As evaluation metrics we used Mean Reciprocal
Rank (MRR) and coverage defined in Section 3. %impr. is the improvement
(or worsening) FuzzyPR achieves compared to a PR system expressed as an
percentage.

Table 3. MRRs obtained with TREC12’s and CLEF04’s QA test data

PR system / QA test data TREC12 %impr. CLEF04 %impr.
FuzzyPR 0.3394 - 0.3726 -

JIRS Distance Model 0.3180 6.73% 0.3721 0.13%

JIRS Simple Model 0.2724 24.60% 0.3771 −1.19%

Lucene 0.2910 16.63% 0.3399 9.62%

Tables 3 and 4 show that FuzzyPR consistently performs better than Lucene’s
vector space PR system independently of the number of top-ranked passages con-
sulted tested with both TREC12 and CLEF04 QA test data. MRR is improved
at least 9.62% and coverage@20 at least 14.47%.

Comparing the performance of FuzzyPR and the two variations of JIRS shows
that for TREC12 QA test data in terms of both MRR and coverage FuzzyPR
performs consistently better. Compared to the second best PR system: JIRS
Distance Model, MRR is improved by 6.73% and coverage@20 by 4.15%. As
Table 4(b) shows, FuzzyPR tested with CLEF04 QA test data in general (18
out of 20 cases) achieves slightly better coverage than JIRS. Table 4 reveals
that although FuzzyPR fails to boost coverage at the ranks 1 to 3, at ranks 4
to 20 it achieves a 0%-7.87% higher coverage than number two: JIRS Distance
Model.

5 Ken Litkowsky’s patterns are available from the TREC website:
http://trec.nist.gov.

6 Patterns of correct answers to CLEF QA test data are available from JIRS’ web site:
http://jirs.dsic.upv.es/.

http://trec.nist.gov
http://jirs.dsic.upv.es/
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Table 4. The PR systems’ coverages tested with (a) TREC12 and (b) CLEF04 data

(a) (b)

However, in terms of MRR, JIRS Simple Model achieves a MRR of 0.3771,
which is 1.2% better than FuzzyPR. This indicates that sometimes answer-
ing passages in this collection do not conform to the reformulation intuition.
However, this only seems to affect the ability to boost answering passages to
higher ranks because JIRS Simple Model falls behind JIRS Distance Model and
FuzzyPR for coverage@4–20.

FuzzyPR has been optimized using TREC11 QA test data, which might bias
the TREC12 results. However, table 4(b) shows that FuzzyPR achieves the high-
est coverage at ranks 4 to 20 for CLEF04 QA test data, too. Because Gómez-
Soriano et al. [2] evaluated JIRS with CLEF’s Spanish, Italian, and French QA
test data it is reasonable to assume that JIRS’ system parameters have been
optimized for these languages. FuzzyPR performs better than JIRS due to the
incorporation of two additional fuzzy concept besides those included in the JIRS
Distance Model: 1) terms are importance-weighted using inverse document fre-
quencies and 2) instead of n-grams the similarity method uses subsequences of
n question terms together with a proximity method yielding the highest similar-
ity when the terms are juxtaposed. Furthermore, compared to JIRS’s Distance
Model FuzzyPR also fuzzifies 3) the definition of passage size and 4) question
terms’ occurrences in a passage. A last difference is that FuzzyPR computes the
proximity of the question terms occurring in a passage rather than relying on
n-gram or subsequence matching.

5 Conclusions and Future Work

In this paper we presented FuzzyPR. FuzzyPR implements a fuzzy logic based
interpretation of the reformulation intuition. FuzzyPR has three main advan-
tages: 1) its passage identification and extraction methods that enables it to
retrieve candidate passages from documents at retrieval time thus avoiding the
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time-consuming indexing process7 2) its language-independence property, and 3)
its ability to handling spelling errors and grammatical inflections.

Our experiments show that FuzzyPR achieves a consistently higher MRR and
coverage than Lucene’s PR system and JIRS on TREC corpora. Furthermore it
performs better in terms of coverage than JIRS on the CLEF corpora at ranks
4 to 20. In future work we plan to evaluate FuzzyPR with CLEF’s French and
Italian corpora to test its performance when compared to JIRS.

References

1. Gaizauskas R., Greenwood M., Hepple M., and Roberts I.: The university of
sheffields trec 2003 q&a experiments. Proceedings of the 12th Text REtrieval Con-
ference, 2003.
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Abstract. When samples number, classification and dimension of clus-
tering are much more, traditional clustering algorithm usually leads to
unharmonious character between clustering and transcendent knowledge.
Therefore, a new clustering algorithm is proposed, which is parallel artifi-
cial immune clustering algorithm based on granular computing. Artificial
immune system model has the characteristics, such as parallel, random
searching and maintaining diversity, which can solve premature problem
in latter evolution and converge to a global optimization solution faster.
Besides, we unite it to dynamic granulation model and apply granulation
description to clustering. In the process of granulation changing, we can
choose appropriate granulation size by adjusting to ensure clustering ef-
ficiency and quality. Tests show that the algorithm is more effective and
more reasonable when we handle clustering of some data with it.

Keywords: Granular computing, artificial immune algorithm, cluster-
ing, harmony degree.

1 Introduction

Clustering is an important research topic in machine learning [1]. Clustering can
divide a set into a several of classes. Objects of similar characters are involved
in one class. There are many traditional methods, for example K-means based
clustering, leveling clustering and fuzzy clustering. In essence, these methods
are local searching optimization, in which climbing strategy is adopted. There-
fore, When dealing with problems of multi-samples, multi-properties and multi-
classification, we easily get into local solutions other than global ones. If initial
values of clustering are chosen incorrectly, it easily leads to different results and
not reflects clustering character.

Artificial immune algorithm is illuminated by body cell theory and network
theory, and is a developed algorithm based on natural immune system. It sim-
ulates to realize excellent function of antigen recognition, cell division, memory
� Project supported by Special Foundation of Doctor’s Subject for Colleges and Uni-

versities (2006112005), National Natural Science Foundation of China (60374029),
Visiting Scholar Foundation of Shanxi Province, P.R.C. (2004-18).

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 208–215, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Parallel Artificial Immune Clustering Algorithm Based on GrC 209

and self-adjustment. By repeated evolution process, the algorithm maintains the
superior individuals to keep diversity and obtain optimal antibodies in the end
[2]. The introduction of artificial immune model into clustering not only solves
latter premature, which often occurred in conventional clustering algorithm, but
also converge to global optimization quickly. Especially in the occasion of par-
allel computing, it shows superior advantage. However, clustering results are
objective and transcendent knowledge directed by respects is subjective. There
is no correspondence between them. So we can not deal with the problem only
by artificial immune algorithm.

In the paper, by the advantage of these characters of artificial immune algo-
rithm, we combine it to dynamic granular model. In the point of information
granularity [3], we construct a new clustering algorithm, which can eliminate
inharmonious degree between clustering results and transcendent knowledge. In
the new algorithm, we can adjust granularity size by synthesis computing. On
each granularity layer, we can get their correspondence. If inharmonious char-
acter between them still exists, we continue to generate new granularity size in
partial order relation until we achieve ideal clustering. Finally, we take two ex-
amples to test its validity comparing with other algorithms, and tests show that
it is more effective and superior than others.

2 Clustering Algorithm Analysis Based on Dynamic
Granularity

2.1 Clustering Harmony Degree in Meaning of Uniform Granularity

Clustering defines equivalence relation among samples. It means that two sam-
ples belonging to a class are considered as equivalent. They have resembling
characters and have no difference under the same threshold. An equivalence
relation is respondent to a division of a set. According to feature space and simi-
larity function, samples belonging to a class described in transcendent knowledge
should be grouped. However, in most cases, we can not achieve the ideal con-
clusion. It often happens that for those samples classified into a category by
experts, their distance in feature space is far. While for those belonging to dif-
ferent classes, their distance is near. That is to say, there exists unharmonious
character between clustering results and transcendent knowledge.

Therefore, we should abandon the thoughts of uniform granularity [4] and con-
struct a dynamic granularity. For a problem, we adopt multiply granularity size
in analysis. Clustering spectrum figure defines an equivalence relation sequence
in which granularity size is changing. Choosing a threshold is equal to choosing
an equivalence relation R

′
. Then quotient set is obtained, which is knowledge

structure U/R
′

[5]. If the class X described in transcendent knowledge can be
precisely expressed by present knowledge structure, we can say that it is harmony
between them. But if the upper approximation and the lower approximation are
not the same, there is inharmonious.
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2.2 Clustering Algorithm Based on Dynamic Granularity

Clustering aims to search a knowledge structure, which not only precisely de-
scribes the class X defined in transcendent knowledge, but also further reveals its
rules. Therefore, we should abandon the thoughts of uniform or average gran-
ularity, and adopt the knowledge system of dynamic granularity. In another
words, we can construct granularity layers in which different granularity sizes
are involved. In the changing of granularity layers, there exist coarser size and
finer size. When problem is described too roughly which leads to some charac-
ters are lost, we should adopt finer granularity layer. On the other hand, if we
describe problem too delicately and each sample is involved in itself class, we
should adopt coarser granularity layer. In conclusion, we should choose proper
granularity size to the problem.

The introduction of granularity theory leads to cluster efficiently. If granularity
size is too fine, each sample constitutes a class and we can not mining rules of
samples. If granularity size is too rough, some characters of samples are omitted.
Therefore the key to clustering is to choose a proper granularity size. In order
to transform among different granularity size conveniently, granularity synthesis
method is given following.

Definition 1. Suppose R1 and R2 represent two equivalence relation on uni-
verse X respectively. If two following conditions are satisfied, we call R product
of R1 and R2, denoted as R = R1 ⊗ R2.

(1) R < R1 and R < R2
(2) There exists R

′
. Let R

′
< R1 and R

′
< R2, and R

′
< R.

Definition 2. Suppose R1 and R2 represent two equivalence relation on uni-
verse X respectively. If two following conditions are satisfied, we call R sum of
R1 and R2, denoted as R = R1 ⊕ R2.

(1) R < R1 and R < R2
(2) There exists R

′
. Let R

′
< R1 and R

′
< R2, and R

′
< R.

Above all, R1 ⊗R2 is the coarsest division which can subdivide R1 and R2, while
R1 ⊕ R2 is the finest division which is divided by R1 and R2. That is to say,
R1 ⊗ R2 is the coarsest upper boundary which divide R1 and R2, while R1 ⊕R2
is the finest lower boundary which divide R1 and R2.

For clustering problem, firstly we set an equivalence relation R0 beforehand
to divide sample points, whose corresponding granularity is Δ0. Then quotient
space S0 and clustering result A0 are obtained. If it satisfies the requirement of
classification, it shows that clustering granularity is proper. Otherwise, we can
adjust granularity size according to following rules. Its theory figure is showed
in Fig.1.

(1) Comparing with Δ0, if granularity is coarser, we should adopt a finer equiv-
alence relation R

′

0 and set R1 = R0 ⊗ R
′

0. Then we can analyze further on
R1 and get result A1 and granularity Δ1. If A1 is still coarser, we can repeat
the process above until granularity become finer enough.
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(2) Comparing with Δ0, if granularity is finer, we should adopt a coarser equiv-
alence relation R

′

0, and set R1 = R0 ⊕ R
′

0. Then we can analyze further on
R1 and get result A1 and granularity Δ1. If A1 is still finer, we can repeat
the process above until granularity become coarser enough.

R outputInitial
Granularity

Values

Choosing
Reference
Parameter

Granularity
Identification

Clustering
Granularity

Analysis
Mehod

0R

'R

Fig. 1. Theory figure of granularity synthesis method

By the method, we can get an equivalence relation family P = {R1, R2, · · · , Rn},
which satisfy partial order relation R1 ≤ R2 ≤ · · · ≤ Rn. Then corresponding
quotient set order is obtained, which is knowledge system family U/Ri (i =
1, 2, · · · , k). The class X defined in transcendent knowledge can be expressed
by knowledge system U/R1 firstly, and we take its information granularity sets
as new research objects. Then it is expressed by U/R2, and so on until we reach
the most precision degree and X is expressed precisely by current knowledge
system.

Definition 3. As for K = (U, R) and ∀X ⊆ U , an equivalence relation family
of partial order relation P = {R1, R2, · · · , Rn} is given which satisfy R1 ≤ R2 ≤
· · · ≤ Rn. From it harmony degree between clustering results and X is

H(P, X) =
|P (X)|

|X | (1)

Where | · | denotes the cardinal of the sets.

Obviously, here H(P, X) ∈ [0, 1]. When H(P, X) = 0 is satisfied, it shows there
does not exist harmony between results and transcendent knowledge. However,
when H(P, X) = 1 is satisfied, it shows that there is the most harmonious
between them, that is to say, the current knowledge system can describe tran-
scendent knowledge precisely.

2.3 Defects of the Algorithm

Clustering algorithm based on dynamic granularity not only diminishes inconsis-
tence, but also improve correct ratio of clustering. However, there are still some
defects. (1) It mainly depends on initial classification. If initial classification is
severely far away from global optimization, it easily leads to local optimization.
(2) Whether the choice of feature is correct or not and clustering dimension
directly affect clustering results. (3) It is not available in data mining of large
scale.
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3 Parallel Immune Clustering Algorithm Based on
Dynamic Granularity

In the paper, we introduce parallel immune model into clustering analysis based
on dynamic granularity, and propose a developed clustering algorithm. It takes
advantage of dynamic granularity to get harmony, and parallel artificial immune
to improve efficiency in data mining of large scale.

3.1 Clustering Algorithm Based on Parallel Artificial Immune
Algorithm

The application of immune algorithm to clustering analysis can solve the prob-
lem of low efficiency, high initial sensitive degree and easily dipping into local
optimization [6]. Here, some operators involved in new algorithm are introduced
in detail.

(1) Evaluation of antibody. In order to improve clustering effect, we take
distance between clusters and within clusters as factors to construct fitness
function. Bigger is fitness value of an antibody, larger is its choice probabil-
ity. It ensures to maintain antibodies of larger fitness value and accelerate
convergence of the algorithm.

N samples xj (j = 1, 2, · · · , n) are grouped into c classes Gi (i = 1, 2, · · · , c).
Therefore each antibody in the population responds to c centers. We take Euclid
distance as similar index between vector xk and center zj in group j. Its fitness
function is defined as

J =
c∑

i=1

Ji =
c∑

i=1

n∑

j=1

uij ||xj − zi||2 (2)

Where uij denotes the degree of xj belonging to Gi, and its value is 0 or 1.
For c centers, we can group sets into c classes. Distance within Gi is defined

as
Si =

1
|Gi|

∑

x∈ci

|x − ci| (3)

Where ci is average value of Gi. We define dij = ||ci − cj || as distance between
Gi and Gj . Clustering index is defined as

DB =
1
C

C∑

i=1

Ri (4)

Where Ri = max{ (Si+Sj)
dij

}.
Fitness function of an antibody is defined as

f(c) =
1

DB
(5)
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(2) Selection operator. In evolution process, when the scale of the antibodies
reach some degree, which is not yet optimization individuals, we confine
them in order to avoid premature. Antibody concentration is proposed to
limit antibodies which is in large scale but not optimization solution.

Antibody concentration denotes the scale of the antibodies with similar char-
acter, which is defined as

Density(ci) =
1

ρ(ci)
=

1
∑N

j=1 |f(ci) − f(cj)|
(6)

Choice probability of an antibody is defined as

PS(ci) =
ρ(ci)∑n
i=1 ρ(ci)

=

∑N
j=1 |f(ci) − f(cj)|

∑N
i=1

∑N
j=1 |f(ci) − f(cj)|

(7)

Supposing initial population is A(k), We calculate each antibody’s concentration
in the population. According formula 6, we select m ones as memory antibodies
to constitute population B(k), whose has the largest selection probability. From
above, we know that the larger is concentration of an antibody, the smaller is
selection probability. It ensures diversity of antibodies in evolution and avoid pre-
mature, which make antibodies of lower fitness value have reproduction choice.

(3) Similar-taxis operator. the operator is produced within sub-population.
The individuals within a group compete each other until winner individual
comes forth. Antibodies of B(k) is operated by similar-taxis operator within
radius RQ to generate new population C(k).

(4) Dissimilation operator. As a sub-population easily get into balance state
after several generations, in order to break the balance, we should select the
optimization individuals representive of their sub-population respectively,
and make them compete each other. By this, we can exchange optimization
information among sub-population to generate new population D(k).

(5) Optimization Heritage operator. In the algorithm, it can maintain
and take advantage of optimization antibodies in each sub-population to
supervise searching. When the algorithm is carried out every k generations,
by the operator we can distribute the optimization individuals into other
sub-populations to realize evolution in span.

3.2 Artificial Immune Clustering Algorithm Based on Dynamic
Granularity

We combine the operators above with dynamic granularity model to produce a
new clustering algorithm. In the changing of granularity size, we choose proper
granularity by adjusting its size. Algorithm is described as following:

Step 1: Firstly all samples are classified according to transcendent experience.
Step 2: Initialize the parameters of clustering model: ε, N , RQ, centers. Cen-

ters represent gravity data point of classes, which are continuously adjusted
dynamically in the clustering process.
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Step 3: According to formula 5 6 7, we select antibodies of high fitness based
on concentration. By similar-taxis, dissimilation and optimization operators,
we can obtain the optimization antibodies.

Step 4: According to encoding and decoding theory, we can decode the optimiza-
tion antibodies get by parallel immune algorithm to obtain new clustering
centers.

Step 5: According to new clustering centers by decoding, we adjust centers
population. If data points within a class belong to a group by testifying, we
turn to step 6. Otherwise we turn to step 3.

Step 6: After clustering, we get clustering spectrum figure and a series of thresh-
old. To choose a threshold is responding to choose a equivalence relation fam-
ily. According to definition 1 and definition 2, we can synthesize granularity
to search for proper size and get a equivalence family P = {R1, R2, · · · , Rn},
which satisfy partial order relation R1 ≤ R2 ≤ · · · ≤ Rn.

Step 7: i = 1
Step 8: Calculate the harmony degree between clustering results and X , which

is Hi(P, X) = |P i(X)|
|X| .

Step 9: If there exists Hi(P, X) = 1, then clustering results is output. Otherwise
set i = i + 1 and turn to step 6.

4 Tests and Analysis

We testify the two following examples by traditional artificial immune clustering
algorithm (AI), clustering algorithm based on dynamic granularity (DG), parallel
artificial immune clustering based on dynamic granularity (DGAI).

(1) Test 1 Choose criterion data of IRIS as test samples, which are composed
of 150 points of four dimension space. It includes three classes, which are
Setosa, Versicolor and Virginica. Each class has 50 samples. We carry out 10
times tests. The comparison of the minimum of value function J by different
clustering algorithm is showed in Table 1.

Table 1. comparison of clustering conclusion by different algorithm

algorithm J Error classification Correct classification percent

AI 6259.21 16 89.33
DG 6147.53 12 92.00

DGAI 6013.04 10 93.33

Owing to the application of dynamic granularity theory and parallel artificial
immune to clustering, it make value function J by DGAI is smaller than by AI
and DG. It is obvious that correct classification percent of DGAI is higher.

(2) Test 2 The data in reference [7] is the samples of stones in iron mine district,
which has eleven indexes. After several times of clustering by AI, we get value
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function J = 160.24. However, the value of J was reached by DGAI in high
speed. Only by DG, quantity of calculation is easily caused, while by DGAI
we can obtain global optimization classification quickly. When samples and
classification is in large scale, the developed algorithm shows its advantage.

5 Conclusion

In the paper, we combine parallel artificial immune algorithm with dynamic
granularity, and produce evolution clustering algorithm based on granularity.
We introduce granularity adjustment strategy to choose proper size quickly. Be-
sides, owing to the character of parallel and searching at random in artificial
immune algorithm, we apply it to dynamic granularity to construct new clus-
tering algorithm. Tests show that the algorithm’s superiority is obvious when
dealing with data clustering problem in large scale.
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Abstract. Density-based clustering methods are of particular interest for ap-
plications where the anticipated groups of data instances are expected to dif-
fer in size or shape, arbitrary shapes are possible and the number of clusters is
not known a priori. In such applications, background knowledge about group-
membership or non-membership of some instances may be available and its
exploitation so interesting. Recently, such knowledge is being expressed as con-
straints and exploited in constraint-based clustering. In this paper, we enhance the
density-based algorithm DBSCAN with constraints upon data instances – “Must-
Link” and “Cannot-Link” constraints. We test the new algorithm C-DBSCAN on
artificial and real datasets and show that C-DBSCAN has superior performance
to DBSCAN, even when only a small number of constraints is available.

Keywords: constraint-based clustering, semi-supervised clustering, instance-
level constraints, clustering with constraints, background knowledge.

1 Introduction

In the last years, clustering with instance-level constraints has received a lot of attention,
because it allows the incorporation of domain knowledge to the knowledge discovery
process [1]. Constraint-based clustering exploits the fact that many applications deliver
background information in the form of a small set of labeled data, i.e. records that
should belong to the same cluster or be in distinct clusters. Such information can be
exploited to guide the clustering of the non-labeled data. Examples of constraint-based
clustering include the detection of road lanes from GPS data [2] and helping the nav-
igation of a Sony Aibo Robot [3]. Constraints improve clustering quality [2], enhance
computational performance [3] and prevent the construction of empty clusters [4].

Most works on constraint-based clustering have been designed for partitioning al-
gorithms [2] and hierarchical algorithms [5]. In this study, we apply the principle of
constraint-driven cluster formation upon density-based clustering and show that in-
stance-level constraints enhance performance with respect to cluster quality.

Density-based algorithms identify dense data areas of separated by sparse areas.
“Density” may refer to a high concentration of proximal data points or to the closeness
of a data point to the mean of a Gaussian. We concentrate on one prominent example of
density-based clustering, DBSCAN [6], which discovers neighbourhoods of proximal
points in a metric space. DBSCAN requires no background knowledge on the number
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Fig. 1. (a) DS1 (b) DS2 (c) DS3 (d) DS4. Samples where DBSCAN does not perform well.

or shape of clusters nor on the data distribution. However, it performs poorly if the clus-
ters are diffuse, partially overlapping, connected by “bridges” or having very different
densities. These shortcomings are depicted in the examples of Fig 1 (artificial data).

We extend DBSCAN into Constraint-driven DBSCAN “C-DBSCAN”. We first par-
tition the data space into subspaces and then enforce “instance-level constraints” on the
data, i.e. constraints that dictate whether some points may appear in the same cluster
or not. We use these constraints to drive cluster construction and show experimentally,
that the clusterings produced are of higher quality than DBSCAN clusters.

The rest of the paper is organized as follows: Section 2 discusses related literature.
We describe C-DBSCAN in Section 3. Section 4 contains our first experiments that
compare C-DBSCAN with the DBSCAN for various datasets and sets of constraints.
Section 5 summarizes our results and proposes directions for further research.

2 Related Work

Clustering with constraints [7,8], also referred to as semi-supervised clustering [9], is
a relatively new research direction, in which background knowledge in the form of
constraints is used to enhance the clustering process. An overview of the types of con-
straints proposed in literature can be found in [7]. In this study, we focus on “instance-
level constraints”: They express background knowledge on the cluster membership of
some data instances, i.e. that some instances must appear in the same cluster (“Must-
Link” constraints) or in separate clausters (“Cannot-Link” constraints) [2].

There are two approaches for constraint enforcement. In the first one, the objective
function is modified into one that satisfies as many constraints as possible [2,10,11,3,5].
In the second one, sometimes called “distance-based”, the algorithm is trained on the
data involved in constraints, learns a new metric and uses it for clustering [12,13,14].

A challenging aspect is the interplay between achieving a feasible solution (i.e. en-
suring convergence) and satisfying all constraints. Davidson et al have proven in [3] that
the satisfaction of all Must-Link and Cannot-Link constraints when clustering with K-
means is an NP-complete problem; Cannot-Link constraints may prevent the algorithm
from converging. When hierarchical clustering is used instead, constraint satisfaction
becomes a P-complete problem [5]. In this study, we enhance a density-based algo-
rithm with constraints, i.e. an algorithm that focusses on local optima, similarly to a
hierarchical algorithm. This allows us to build clusters that satisfy all constraints.

A number of successful density-based clustering algorithms can be found in the lit-
erature, starting with DBSCAN in 1996 [6]. DBSCAN has been designed for large and
noisy datasets and is able to discover clusters of arbitrary shapes: DBSCAN introduced



218 C. Ruiz, M. Spiliopoulou, and E. Menasalvas

the concept of “neighbourhood” as a region of given radius (i.e. a sphere) and containing
a minimum number of data points. Connected neighbourhoods form clusters, thus de-
parting from the notion of spherical cluster [6]. The idea of dense neighbourhood has
inspired further research on density-based clustering algorithms, including [15,16,17].
In this study, we have opted for the DBSCAN as a reference representative.

3 Instance-Level Constraints for Density-Based Clustering

Our constraint-based algorithm builds upon DBSCAN [6]. DBSCAN identifies neigh-
bourhoods around core points, i.e. points having at least MinPts neighbours within
a radius Eps. Points within the same neighbourhood are density-reachable, those in
overlapping neighbourhoods are density-connected. A cluster is a maximal group of
overlapping neighbourhoods.

C-DBSCAN extends DBSCAN in three steps: We first apply a KD-Tree [18] to
divide the data space into dense partitions, similarly to DESCRY [17]. We enforce
Cannot-Link constraints within each tree leaf, thus producing “local clusters”. Next,
we merge adjacent local clusters, thereby enforcing the Must-Link constraints. Finally,
we merge adjacent clusters hierarchically, while enforcing the remaining Cannot-Link
constraints.

3.1 Partitioning the Data Space

For the partitioning step (cf. Algorithm 1), we use the KD-Tree construction algorithm
[18], which divides the data space iteratively into cubes by splitting planes that are
perpendicular to the axes. Each cube becomes a node and is further partitioned, as long
as it contains a minimum number of data points (the MinPts threshold of DBSCAN).
The result is an unbalanced tree: small leaves capture locally dense subareas while large
ones cover the less dense subareas. With this partitioning, thin bridges between dense
subareas are avoided. Instead of connecting arbitrary adjacent neighbourhoods to build
clusters, only neighbourhoods within the same node are considered at first. They are
merged into “local clusters”, subject to the instance-level concstraints described below.

3.2 Introducing Instance-Level Constraints

C-DBSCAN supports two types of constraints among data instances/points: A Must-
Link constraint for the data points x and y states that they must be assigned to the same
cluster. A Cannot-Link constraint states that they must be assigned to different clusters.

Creating Local Clusters under Cannot-Link Constraints. Step 2 of C-DBSCAN (cf. Al-
gorithm 1) groups density-reachable points into “local clusters” while enforcing
Cannot-Link constraints. The leaf nodes of the KD-Tree are traversed: If there is a
Cannot-Link constraint involving data points within the same leaf, then each data point
of the leaf becomes a singleton local cluster. If there is no Cannot-Link constraints,
the conventional DBSCAN is invoked for each data point p in the leaf: It is checked
whether there is a neighbourhood with at least MinPts points in a radius Eps around p.



C-DBSCAN: Density-Based Clustering with Constraints 219

Algorithm 1. C-DBSCAN
Data:
A set of instances, D.
A set of must-link constraints, ML, and a set of cannot-link constraints, CL.
Result: The set D partitioned into clusters that satisfy ML and CL.
begin

Step 1: Partitioning the data space. kdtree := BuildKDTree(D).

Step 2: Creating local clusters under Cannot-Link constraints.
repeat

for (all unlabeled points in a leaf X) do
Select an arbitrary point pi from X.
Xpi ← all points in X that are within Eps radius of pi.
if (Xpi contains less than MinPts points) then

Label pi as NOISE.
else if (exists a Cannot-Link constraint in CL among points in Xpi ) then

Create a local cluster for each point in X. Break.
else

Label pi as CORE. Label Xpi as LOCAL CLUSTER.

until (all leaves of the kdtree have been processed)

Step 3a: Merging local clusters under Must-Link constraints.
for (each constraint m ∈ ML) do

Join clusters involved in constraint m into cluster Y .
Label Y as CORE LOCAL CLUSTER.

Step 3b: Merging clusters under Cannot-Link constraints.
for (each core (local) cluster Y) do

while (number of local clusters NLC decreases) do
closestCluster← closest local cluster to Y .
if (� Cannot-Link constraint in CL between points of Y and closestCluster)
then

Y ← Y ∪ closestCluster. Label Y as CORE CLUSTER.
NLC-=1.

end

If the neighbourhood has too few points, then p is a noise point and is ignored. Oth-
erwise, all data points that are density-reachable from it become members of the same
local cluster.

Merging Local Clusters under Must-Link Constraints. Must-Link constraints are en-
forced in Step 3a (cf. Algorithm 1). If the data points involved in a Must-Link constraint
belong to different local clusters, the clusters are merged into a “core local cluster”. At
the end of Step 3a, points that should appear together belong either to the same core lo-
cal cluster (by constraint enforcement) or are already members of the same local cluster
– one of the data points is a core point and the other is density-reachable from it.

Merging Clusters under Cannot-Link Constraints. In Step 3b (cf. Algorithm 1), we
further merge local clusters (also: singleton local clusters and core local clusters output
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by Step 3a) to enforce Cannot-Link constraints that are not satisfied yet. For cluster
merging, we use hierarchical agglomerative clustering with single linkage, but only
consider density-reachable data points when we compute distances. Moreover, we let
the core local clusters drive the merging process, in the sense that we do not consider
arbitrary clusters as candidates but only the local clusters that are close to each core
local cluster. For each such pair of candidates, we check whether they contain data
points involved in a Cannot-Link constraint. If this is the case, the clusters are not
merged. The algorithm stops when the number of clusters does not change any more.

Discussion on Constraint Enforcement. Most constraint-based clustering algorithms
make a best effort to enforce all constraints. C-DBSCAN ensures that all constraints
are satisfied: Step 3a enforces all Must-Link constraints; Step 2 enforces Cannot-Link
constraints within the same KD-tree node; Step 3b enforces the remaining Cannot-
Link constraints by preventing the merging of clusters. This is achieved at the cost of
building many small clusters, since each Cannot-Link constraint results in a singleton
local cluster. We believe that some of those singleton clusters can be merged with other
ones without constraint violation, so we intend to work on heuristics to this purpose.

4 Experimental Results

We have studied the impact of constraints on the clustering results by applying C-
DBSCAN and the original DBSCAN on four artificial and three real datasets with
a priori known clusters. The artificial datasets contain data, for which DBSCAN is
known to perform poorly (cf. Section 1 and Fig. 1). The real datasets are from the Ma-
chine Learning Repository UCI [19]. They are depicted in Fig. 2 and summarized in
Table 1.

In a real scenario, constraints are derived by studying a small subset of the data; they
are the result of human insight. Our datasets do not contain such constraints, so we have
generated some randomly. We show that even random constraints do increase cluster
quality. For each dataset, we have generated a percentage x% = 5%, 10%, 15% . . .100%
of records involved in Must-Link constraints. The Cannot-Link constraints were derived
from the Must-Link constraints and are thus interdependent. However, this only means
that the percentage of independent constraints is smaller than x%.

4.1 Evaluation method

The datasets we use are labeled, so we can compute cluster quality towards the known
classes. For this, we use the Rand Index measure [22], which takes as input two

Table 1. Data sets used in the experiments

Artificial data sets Real data sets
DS1 (2 classes, bridge between clusters) Iris [19] (3 classes, 2 overlapped)
DS2 (3 classes, 2 overlapped, bridge) Cure [20] (5 classes, 4 overlapped, 2 by 2)
DS3 (2 classes, bridge) Chameleon [21] (2 classes, bridge)
DS4 (7 gaussian clusters, 4 overlapped, 2 by 2,
bridge, different notions of density
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Fig. 2. (a) IRIS (b) CURE (c) CHAMELEON

partitionings ζ1 and ζ2 , computes the number of “agreements” and “disagreements”
among them, and takes the highest value 1 if the partitionings are identical. The “agree-
ments” are the number a of data points that appear together in the same partition for
both ζ1 and in ζ2 plus the number b of data points that appear in different partition for
both ζ1 and ζ2. The “disagreements” are the number c of data points that appear in the
same partition of ζ1 and in different partitions of ζ2 plus the number d of data points
that appear in the same partition of ζ2 and in different partitions of ζ1. Then:

Rand(ζ1, ζ2) =
agreements

agreements + disagreements
=

a + b
a + b + c + d

4.2 Results Using Artificial and Known Data Sets

We show the performance of C-DBSCAN for the artificial datasets DS1,. . . ,DS4 in
Fig. 3 and for the datasets IRIS, CURE and CHAMELEON in Fig. 4. In both figures,
the horizontal axis depicts the percentage of data points involved in constraints. The
vertical axis shows the Rand Index value of each clustering towards the classes (the
true partitioning). The Rand Index for DBSCAN is constant. We have placed this value
at point Zero of the axes: Deviations from this point reflect the impact of the con-
straints. The curves show that C-DBSCAN improves DBSCAN and achieves very good
partitionings, reaching RandIndex values of more than 0.8 for all datasets. We see that
a small number of arbitrary, labeled records suffices to guide C-DBSCAN towards a
good partitioning and that no more constraints are necessary (saturation at 10%). This
result strengthens the findings of [2,10] that a small amount of domain information is
sufficient to achieve high performance.

Fig. 3. Rand Index values for C-DBSCAN with different constraint-sets - Artificial datasets
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Fig. 4. Rand Index values for C-DBSCAN with different constraint-sets - Real datasets

5 Conclusions

Constraint-based clustering methods exploit background knowledge to guide the group-
ing of data into clusters. We have presented C-DBSCAN, a constraint-based extension
of the density-based algorithm DBSCAN [6]. C-DBSCAN enforces Must-Link and
Cannot-Link constraints among data points and, Differently from best-effort constraint-
based clustering algorithms, it guarantees that all constraints are satisfied. Our first
experiments show that even constraints improve the clustering quality substantially, no-
tably on datasets where the original DBSCAN performs poorly.

We have observed that few constraints suffice to improve quality. We intend to study
next the impact of constraint type (Must-Link vs Cannot-Link) on quality and the in-
terplay of constraint type and number of constraints, using larger and more complex
datasets. Further, we want to design heuristics that minimize the number of singleton
clusters built by C-DBSCAN by merging clusters, while still satisfying all constraints.

A direct comparison of C-DBSCAN to other algorithms, like constraint-based K-
means, would not be informative, since the relative behaviour of the basic algorithms
for different data distributions is already well studied. However, we plan to study
whether C-DBSCAN exploits constraints more effectively than other constraint-based
algorithms.
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Abstract. This paper proposes a fuzzy model tree, so-called c-fuzzy model tree, 
consisting of local linear models using fuzzy cluster for data modeling. Cluster 
centers are calculated by fuzzy clustering method using all input and output 
attributes. And then, linear models are constructed at internal nodes with fuzzy 
membership grades between centers and input attributes. The expansion of 
internal node is determined by comparing the error calculated at the parent node 
with the sum of ones at the child nodes. On the other hand, data prediction is 
performed with the linear model having the highest fuzzy membership value 
between input attributes and cluster centers at the leaf nodes. To show the 
effectiveness of the proposed method, we have applied this method to real 
world data set. We found that the proposed method showed better performance 
than the widely used methods, such as model tree and artificial neural networks.  

Keywords: Model Tree, Fuzzy Clustering, Data Modeling. 

1   Introduction 

In recent years there has been a growing tendency of using the data-driven modeling 
to complement or even replace deterministic models, especially for forecasting. The 
basic idea of data-driven modeling is to work with real world data of the domain 
where they are given, and to find a form of relationship that properly explains the 
specific data sets. Relationships can be derived between parameters that may have 
little or nothing to do with the physical principles of the underlying processes. A 
simple example of data-driven model is a linear regression model. However, more 
complex data-driven models are usually highly non-linear and require sophisticated 
techniques. Nowadays the data-driven modeling borrows techniques developed in 
such various areas as statistics, computer science, artificial intelligence, and soft 
computing. Among them, the neural networks often predict with higher accuracy than 
the other techniques because of the capability of approximating any continuous 
function. However, one major drawback often associated with neural networks is their 
lack of explanation power. It is difficult to explain how the networks arrive at their 
solutions due to the complex nonlinear mapping of the input data by the networks [1]. 
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In many applications, it is required to extract knowledge from trained networks for 
users to gain better understanding of the problems.  

On the other hand, a model tree based decision method has been applied widely in 
the field of machine learning and data mining. One noticeable advantage is that the 
model tree mechanism is transparent. Thus, one can follow a tree structure easily to 
explain how a decision is made [2]-[4]. For building model tree, however, one should 
consider three major conditions such as choosing the best partition of a region of the 
feature space, determining the leaves of the tree and choosing a model for each leaf 
[5] [6]. In design procedure to choose the best attribute, one attribute is chosen at a 
time in design procedure to choose the best splitting of a region of the feature space. 
More specifically, one selects the most “discriminative” attribute and expands the tree 
by adding the node whose attribute’s values are located at the branches originating 
from this node. The growth of the tree relying on a choice of a single attribute can be 
also considered as a drawback. While being quite simple and transparent, considering 
two or more attributes as a individual group of variables occurring as the 
discrimination condition located at some node of the tree may lead to the better tree. 
In addition, the problem of overall tree optimization can be computationally costly 
since each attribute should be tested across a number of possible split values [7]-[9]. 

To alleviate these problems, we propose a cluster based fuzzy model tree(c-fuzzy 
model tree) which makes it possible to split the input space into several subspaces by 
taking all input and output attributes rather than an input attribute. More specifically, 
the subspace (each cluster center) is determined by fuzzy clustering method 
considering all input and output attributes. And then, linear models are constructed in 
each subspace at internal nodes having fuzzy membership values between predefined 
centers and input attributes. The expansion of internal node is determined by 
comparing errors calculated at the parent node with the sum of ones at the child 
nodes. And then, data prediction is performed with the linear model having the 
highest fuzzy membership value between input attributes and cluster centers at the 
leaf nodes.  

The rest of the paper is organized as follows. In section 2, we introduce the 
proposed method named c-fuzzy mode tree in detail. In section 3, we present our 
results and compare them with those from other methods for regression. Finally, some 
concluding remarks are given in Section 4. 

2   Cluster-Based Fuzzy Model Tree 

The architecture of the cluster-based fuzzy model tree develops around fuzzy clusters 
that are treated as generic building blocks of the tree. The training data set X is 
clustered into c clusters so that the similar data points are put together. These clusters 
are completely characterized by their prototypes [6]. We start with them positioned at 
c top nodes of the tree structure. The way of building the clusters implies a specific 
way in which we allocate elements of X to each of them. In other words, each cluster 
comes with a subset of X, namely X1, . . . , Xc. The process of growing the tree is 
guided by a certain heterogeneity criterion that quantifies a diversity of the data (with 
respect to the output variable y) falling under the given cluster (node). In growth 
(splitting) process, an intuitive appealing criterion takes into account of the 
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performance improvement obtained by comparing performance before partition with 
it after partition. The growth process will terminate if performance improvement 
varies only slightly or only a few instances remain. In the regression problem, the 
simplest performance criterion is the root mean square (RMS) of the output error with 
respect to an independent set of testing data [10]. The essence of diversity 
(performance improvement) criterion is to quantify a dispersion of the data 
“allocated” to the given clusters so that higher dispersion of data results in higher 
value of criterion. Recall that individual data points belong to the clusters with 
different membership grades; however, for each data, there is a dominant cluster to 
which they exhibit the highest degree of membership. 

As mentioned before, we use the split criterion based on the performance 
improvement. In addition, we consider the split criterions presented in Table 1. As 
seen in Table 1, the performance (RMS) is calculated in the parent node prior to 
splitting and then splitting procedure is actually performed if the performance is 
higher than the predefined threshold, otherwise goes next procedure and then 
produces tree structure with child nodes by fuzzy clustering. In the splitting tree, we 
should consider not only performance with respect to least square error but also the 
number of instances after splitting and depth since a few instances and long depth 
lead to inaccurate liner coefficient and overfitting, respectively.  

Table 1. Node splitting criterion considered in c-fuzzy model tree 

- S1: RMS errors in the candidate parent node before splitting 
- S2: minimum instance numbers remained in each candidate child node after splitting 
- S3: performance improvement  
- S4: the depth of tree  

 
The proposed c-fuzzy model tree algorithm is summarized as follows. 

[Step 1] Select the parameters (S1, S2, S3, S4) for node splitting as shown in Table 1.  
[Step 2] Linear coefficients are calculated by least square method (LSE) for input-
output pairs {X, Y} with h (h ≥ S2) instances in a candidate parent node and then we 
obtained RMS error (Eb) as Eq. (2). Stop if the Eb is below the predefined threshold 
S1, otherwise go next step. 
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[Step 3] Create c candidate child nodes by FCM. Each child node contains input-
output pair {Xi, Yi}. For simplicity, let us denote the ith node of tree Ni as Ni ={Xi, 
Yi} where, Xi denotes all elements of the data set belonging to this node in virtue of 
the highest membership grade. 
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where the index “j” pertains to the nodes originating from the same parent. 
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The second set Yi collects the output coordinates of the elements assigned to Xi as 
follows. 
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[Step 4] Compute the number of instances (n1, n2, . . . nc) remained in the candidate 
child nodes (N1, N2, . . . Nc). Stop if the smallest instance number is below S2, and 
then candidate parent node is considered as leaf node. Otherwise, go next step.  
[Step 5] Computer performance improvement δ obtained by comparing performance 
(Eb) before partition with it (Ef) after partition. Stop if the performance improvement 
varies only slightly as S3. In case of stopping, candidate parent node is considered as 
leaf node with no child node. Otherwise, go next step. In case of that, the candidate 
parent and child nodes are considered as parent node and internal nodes, respectively.  

δ = Eb - Ef (5) 

where  
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[Step 6] Stop if the depth of tree is deeper than S4. Otherwise, go back [Step 1] so the 
growth process of the tree is repeated for internal nodes satisfying the splitting 
criterion in Table 1. We consider these nodes as candidate parent nodes for next 
depth.  

3   Experimental Studies 

3.1   Illustrative Examples with Regression Problems 

To illustrate the regression problem with one dimensional input data, let us consider 
the data set plotted in Fig. 1. We obtain linear coefficients from the least mean square 
error (RMS error) at the root node. After the first expansion, we create two linear 
models described as LM1 and LM2 by fuzzy clustering, and then one can see that the 
error is decreased from 0.8468 to 0.5098. Fig. 2(a) shows the predicted value in each 
model and (b) shows actual and predicted values according to the input value.  

With LM2 among the two linear models (After partitioning for LM1, a child node 
is not satisfied with the splitting criterion, thus we do not consider the LM1 for 
growth procedure), we repeated the growing procedure and obtained better 
performance than one before splitting. More specifically, the error is decreased from 
0.5452 to 0.5275 after splitting for LM2. Fig. 3(a) shows the predicted value in each 
model and Fig. 3(b) shows the actual and predicted values after the second expansion. 
Fig 4 presents overall structure of the constructed c-fuzzy model tree. As shown in 
these figures, performances are dramatically improved according to the splitting 
model.  
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(a) Input and output                                         (b) predicted error 

Fig. 1. Linear model at a root node 

 
(a) Input and output                                           (b) predicted error 

Fig. 2. Linear models after the first expansion 

 
  (a) Input and output                                              (b) predicted error 

Fig. 3. Linear models after the second expansion 
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7659.26333.0ˆ:LM21 +×−= xy 4610.45544.1ˆ:LM22 +×−= xy

3461.15633.1ˆ:LM1 +×= xy 0023.38573.0ˆ:2LM +×−= xy

 

Fig. 4. c-fuzzy model tree after the second expansion (E: RMS error, n: instance number, V: 
cluster center) 

3.2   Real World Regression Problems 

The performance of the proposed c-fuzzy model tree algorithm is compared with the 
well-known algorithms such as M5’ and neural networks. For building the M5’ 
models, a popular date mining software WEKA was used [11]. For the neural 
networks modeling, related experiments were executed by the BP algorithm called 
Levenberg-Marquardt algorithm which shows faster running speed than the other 
methods [12]. On the other hand, all simulations for c-fuzzy model tree algorithm are 
performed in the MATLAB environment. The performance of C-fuzzy model tree, 
M5’ and BP are compared with 5 real world benchmark data set taken from the site of 
system HTL(http://www. niaad.liacc.up.pt/~ltorgo/Regression/ds_menu.html). They 
have a continuous variable to be predicted and have been used as benchmarks in 
various studies on regression tree and model tree. The specifications of the data set 
are listed in Table 2. For each experiment, the data set is obtained by randomly 
generated training and testing data set from its whole data set. 

The overall experimental results are shown in Table 3. Here the comparing 
performance index is the root mean square error. The values of the training and 
testing data were normalized into a range of 0-1. For simulation, the number of nodes 
was selected as 10 except for Delta elevator having five for BP [12]. For M5’, the 
minimum number of instances to create a node was set to four and smoothed linear 
model and pruned option were used. On the other hands, the parameters used in 
splitting nodes are presented in Table 4. As one can see in Table 5, tree based method 
such as M5’ and proposed method shows better performance than BP, especially, for 
“Machine CPU” data set. For c-fuzzy model tree, we described the predicted errors 
obtained at root node (before splitting) and leaf node (after splitting), respectively. As 
seen in Table 5, the performance was improved according to growing procedures. 
Comparing with proposed method with M5’, it shows better performance than M5’. 
In particular, the proposed method outperformed the M5’ for “Computer activity” 
data set. From the experimental results, we confirmed that the proposed method make 
it possible to minimize the predicted errors than the other methods for various data 
sets. 
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Table 2. Specification of benchmark data sets 

# Observations # Attributes Output properties 
Data sets 

Training Test Continuous Nominal Max Min Mean Std 

Machine 
CPU 

100 109 6 0 1150 6 105.6 160.8 

Abalone 2000 2177 7 1 29 1 9.933 3.224 

Delta 
ailerons 

3000 4129 6 0 0.002 -0.002 -7e-6 3.0e-4 

Delta 
elevator 

4000 5517 6 0 0.013 -0.014 -1e-4 0.002 

Table 3. Experimental results for benchmark data sets 

Proposed method 
BP M5’ 

Root node Leaf node Data sets 

Training Testing Training Testing Training Testing Training Testing 

Machine 
CPU 

0.0030 0.0919 0.0245 0.0441 0.0340 0.0546 0.0152 0.0333 

Abalone 0.0715 0.0779 0.0774 0.0764 0.0811 0.0781 0.0769 0.0762 

Delta  
ailerons 

0.0340 0.0411 0.0367 0.0402 0.0386 0.0411 0.0374 0.0399 

Delta 
elevators 

0.0506 0.0545 0.0536 0.0528 0.0544 0.0531 0.0537 0.0528 

Computer 
activity 

0.1565 0.1742 0.1728 0.1566 0.0434 0.0445 0.0410 0.0428 

Table 4. Parameters used at splitting nodes for c-fuzzy model tree 

FCM Node spitting criterion presented in Table 1 
Data sets 

Max iteration S1 S2 S3 S4 

Machine CPU 15 0.01 20 0.001 2 

Abalone 10 0.01 300 0.001 2 

Delta ailerons 30 0.01 300 0.001 3 

Delta elevator 10 0.01 1000 0.001 2 

4   Concluding Remarks 

This paper proposed a c-fuzzy model tree which makes it possible to split input space 
into several subspaces by taking all input and output attributes rather than an input 
attribute as decision tree. In particular, the subspace was determined by the cluster 
centers calculated by the fuzzy clustering method, and then a linear model was 
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constructed in each partitioning space at the internal nodes having fuzzy membership 
values between the predefined centers and input attributes. The expansion of internal 
node was determined by comparing errors calculated at the parent node with the sum 
of ones at the child nodes. Finally, data prediction was performed with the linear 
model having the highest fuzzy membership value between input attributes and 
cluster centers at the leaf nodes. To show the effectiveness of the proposed method, 
we have applied our method to various fields observed data sets. Under various 
experiments, the proposed method showed better performance than the widely used 
method, such as model tree and neural networks. From these, we confirm that the 
proposed method can be applied to dramatically reduce the prediction errors than the 
other methods for various real world data sets. 
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Abstract. Clustering is a technique for grouping items in a dataset that
are similar, while separating those items that are dissimilar. The use of
concept lattices, from Formal Concept Analysis, for disjoint clustering is
a recently studied problem. We develop an algorithm for disjoint cluster-
ing of transactional databases using concept lattices. Several heuristics
are developed for tuning the support parameters used in this algorithm.
Additionally, we discuss the application of this algorithm to Location
Learning. In location learning, an object (for example an employee) to
be tracked and localized carries an electronic tag, such as an RFID, ca-
pable of communicating with some access points that are in the range of
the tag. Clustering can then be used to estimate the location of the tag
given the signal strengths that can be heard.

Keywords: Clustering, Concept Lattice, Data Mining, Formal Concept
Analysis, Frequent Itemsets, Location Learning, Parameter Tuning.

1 Introduction

Data Mining is a discipline concerned with extracting information from large
sets of data. This research in data mining deals specifically with clustering of
the data in a transactional database and seeks to improve the clustering process
on transactional databases through parameter learning for a specialized clus-
tering algorithm that uses concept lattices found in formal concept analysis. In
clustering, objects are divided into groups based on some properties. Thus, these
groups represent a relationship that the objects within it hold. Objects within a
group are more closely related to one another than to objects in other groups.

Formal Concept Analysis (FCA) provides several tools for data mining and
clustering. FCA is primarily concerned with contexts, concepts and conceptual
hierarchies [1]. A context is essentially a table of items and item values. A concept
is a group of items that share common attribute values. The concept lattice is a
lattice structure where each node represents a concept in a hierarchical structure.
Clusters can easily be formed from a fully constructed concept lattice. The use
of concept lattices for disjoint clustering is a problem that has recently been
studied by Saquer [2].

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 232–239, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The approach to disjoint clustering with concept lattices in [2] is based on
finding Frequent Closed Feature Sets (FCFS) in the transactional database being
clustered. Tools such as [3] generate FCFSs from transactional databases. Each
FCFS becomes an initial cluster candidate and each transaction is assigned to one
or more of these cluster candidates. The clusters are then made disjoint through a
scoring function. In this research, we develop an algorithm for disjoint clustering
based on the approach given in [2]. We study how the algorithms parameters can
be tuned to facilitate finding “better clusters” for a given transactional database.

Our clustering technique can be extended to additional problem domains.
Specifically, the problem of location learning. In the location learning problem
an area, say an office building, has a grid of beacons deployed that transmit
data such as location using radio frequency (RF). An object (for example an
employee) to be localized and tracked carries a reader capable of measuring
signal strengths of some or all of these beacons that are in the range of the
reader. Clustering can then be used to identify the location of a reader given the
signal strengths that can be heard.

2 Related Works

Frequent itemsets provide an attractive solution to document clustering because
of their ability to reduce the dimensionality of the vocabulary. Fung et al. present
a hierarchical document clustering algorithm using frequent itemsets in [4]. Their
approach differs from our approach in a couple ways. First, [4] utilize frequent
itemsets, while we utilize frequent closed itemsets, a subset of frequent itemsets.
This is important, as frequent closed itemsets contain all dataset information
necessary for clustering. Second, in our approach a document would only be
assigned to a cluster that represents the maximal frequent closed itemset in that
document.

Frequent term-based text clustering is studied by Beil et al. in [5]. This clus-
tering approach accomplishes the goal of providing interactive exploration of
document spaces, such as the world wide web. Like [4] Beil utilizes frequent
itemsets to minimize the dimensionality of large sets of text and hypertext doc-
uments. Conceptual clustering utilizes concept lattices to discover additional
insight about datasets. The combination of Formal Concept Analysis and Con-
ceptual Clustering is studied in [6, 7, 8].

3 Methods

Formal Concept Analysis (FCA) [1] provides mathematical views of contexts,
concepts and conceptual hierarchies. A context is a view of a set of objects and
their attributes. A formal context is the triple T = (G, M, I) where G and M
are two sets and I is a binary relation between them. The set G represents the
objects in a context. The set M represents the attributes of the objects in G.

The attributes that are common to a set of objects A ⊆ G are defined as
β(A) = {m ∈ M | gIm ∀ g ∈ A}. The set of objects that all contain the set
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of attributes B ∈ M are defined as α(B) = {g ∈ G | gIm ∀ m ∈ B}. A set of
objects that share a set of attributes B can be described as a formal concept
(A, B) where A ⊆ G, B ⊆ M , β(A) = B and α(B) = A. The set A is the extent
of the concept and B is the intent of the concept. We can define K as the set of
all concepts in the context (G, M, I).

Concepts of a context have a hierarchical relationship, that is, if (A1, B1) and
(A2, B2) are concepts of a context and A1 ⊆ A2 (equivalently B2 ⊆ B1), we say
(A1, B1) is a subconcept of (A2, B2), and (A2, B2) is a superconcept of (A1, B1).
We then write (A1, B1) ≤ (A2, B2). The ≤ symbols represents the order of the
concepts. This order of the concepts is used to form the concept lattice.

The concept lattice is a Hasse diagram where each concept is a node. An edge
exists between nodes representing concept C1 and C2 if and only if C1 ≤ C2 and
there is no other concept C3 such that C1 ≤ C3 ≤ C2. The intent and extent of
a concept representing a node in the graph are used as the labels of the node.

A closed feature set has the property β(α(B)) = B for a set of features
B ⊆ M . A closed feature set is thus the maximal set of features shared by a set
of objects. As mentioned, each node of a concept lattice is a concept, and we
observe for a concept (A, B) that β(A) = B and α(B) = A, thus by substitution
β(α(B)) = B. Following this observation it is clear that the intents of the concept
lattice are closed feature sets.

The support of an individual feature in a transactional database is calculated
as the percent of objects that contain that feature. Similarly, the support of
a set of features B is the percentage of objects that contain all the features
in B. Formally, support(B) = |α(B)|

|G| . In clustering transactions we are only
interested in sets of features that meet a user-specified minimum support level,
minSupport. Thus, a feature set B is only frequent if support(B) ≥ minSupport
holds for the transactional database. A closed feature set that is frequent is called
a frequent closed feature set (FCFS).

3.1 Generating Initial Clusters

The clustering of the transactional database is based on FCFSs from FCA. For
clustering we consider each transaction of the database to be an object. The
transactional database T , that is to be clustered, contains a set of objects G =
{g1, g2, g3, ..., gn}. A clustering of G results in a set C = {C1, C2, C3, ..., Ck}
where each Ci ⊆ G and the union of all clusters is

⋃k
i=1 Ci = G. We add an

additional restriction that Ci ∩ Cj ∀i �= j in order to guarantee that clusters are
disjoint, that is to say each object is assigned to only one cluster.

The set of transactions in T are processed by [3] in order to generate a set
S of FCFSs (fcfs), given a minSupport parameter. The number and quality of
FCFSs is controlled by this parameter.

For the purpose of initial cluster generation we assign each fcfs ∈ S as an
initial cluster. Thus, the number of initial clusters |C| = |S|. The label for each
cluster Ci ∈ C is the label of the fcfs, which is a listing of the contained features
providing a clear description of the cluster.
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3.2 Assigning Transactions to Initial Clusters

Each object gi ∈ G must be assigned to initial clusters based on the Maximal
Frequent Closed Feature Sets (MFCFS) it contains. There are several important
characteristics of this process to examine. First, objects may be assigned to
multiple clusters in this initial phase, thus, clusters are not disjoint. Second,
objects contain at least all features described by their cluster, thus, the cluster
labels are descriptive of their objects, allowing simplified interpretation.

3.3 Making Clusters Disjoint

In order to make the initial cluster assignments disjoint, we must find the “best”
cluster for each object gi ∈ G, and remove gi from all other clusters. This process
is accomplished using a scoring function, that measures the goodness of an object
cluster pair, (g, Ci). One metric for determining the goodness of a cluster for an
object is by evaluating how many frequent features the object and cluster share.
A high number of shared frequent features implies a close relationship between
an object and cluster. The function global-support(f) calculates the percentage of
objects in the database containing the feature f . The feature f is then said to be
globally frequent if the percentage exceeds a user specified minimum threshold
globalSupport. Similarly, the function cluster-support(f) calculates the percentage
of objects in cluster Ci containing feature f . The feature f is then said to be
cluster frequent if the percentage exceeds a user specified minimum threshold
clusterSupport.

We assign all global-frequent features from object g to one of two sets: pos or
neg. A feature f ∈ β(g) that is globally-frequent and cluster-frequent is assigned
to the set pos, while a feature f ∈ β(g) that is globally-frequent but not cluster-
frequent is assigned to the set neg. Thus, for cluster Ci we have the sets pos(g, Ci)
and neg(g, Ci). The score function is then defined as:

score(g, Ci) =
∑

f∈pos(g,Ci)

cluster − support(f) −
∑

f∈neg(g,Ci)

global − support(f).

The sum of the cluster-support(f) values for all features in pos(g, Ci) puts em-
phasis on intra-cluster similarity and gives a boost to goodness of cluster Ci

for object g. On the other hand, the sum of the global-support(f) values for all
features in neg(g, Ci) penalizes Ci as these features contribute to inter-cluster
similarity.

The score of object g is calculated for each cluster Ci it is a member of.
The object g is permanently assigned to the cluster with the highest score, and
removed from all other clusters. The ties are broken by assigning g to the cluster
with the longest label. Further ties can be broken randomly.

3.4 Disjoint Clustering with Concept Lattices Algorithm

In the previous sections we have presented algorithms related to components,
initially described in [2], of the disjoint clustering with concept lattices algorithm.
The algorithm developed in this paper is shown in Fig. 1.
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Disjoint Clustering with Concept Lattices Algorithm

1. Input: Database T , minSupport for generating the FCFS.
2. Output: The set of disjoint clusters C.
3. Run [3] on T with minSupport to generate the FCFS, store in cluster set C.
4. Extract all objects from T and store in the set G.
5. For each g ∈ G assign each initial cluster Ci to g if Ci is a MFCFS for g.
6. For each g ∈ G calculate score(g,Ci) for each Ci that g is assigned to. Assign

g to best Ci according to MFCFS, remove g from all others.
7. Return disjoint clusters C.

Fig. 1. Disjoint Clustering with Concept Lattices Algorithm

4 Parameter Learning

Automatic parameter tuning in the Disjoint Clustering with Concept Lattices
Algorithm with Parameter Tuning (CLAPT) is an exploratative process, as the
best combination of globalSupport and clusterSupport is unknown. It is not pos-
sible to use traditional Artificial Intelligence search algorithms, as they require
distance estimates that approximate the distance traveled through the search
space, and the distance still to be traveled to reach the goal node. It is not possi-
ble to estimate these metrics in CLAPT, nor is the goal node known. We propose
two heuristics, that use a Cluster Evaluation Rating (CER) which combines three
metrics: density, distance, and class purity, to perform the exploratative process
of CLAPT.

The most computationally intensive heuristic is k-Granularity. In the k-
Granularity heuristic an exhaustive search of the support space is performed
to k decimal places of support accuracy. For example, with k = 2 there will
be 100 tests. The first run has globalSupport, clusterSupport pair (0.1, 0.1),
the second run is (0.1, 0.2), the 100th run is (1.0, 1.0). The choice of k is in-
fluenced by the size of the dataset. The results of 2-Granularity test show a
landscape of the dataset which can then be used for determing appropriate fur-
ther tests.

The k-DepthFirstSearch (k-DFS) heuristic combines the k-Granularity
heuristic with search space pruning techniques. The k-DFS heuristic begins by
invoking a 2-Granularity search of the support space. Each CLAPT result from
the 2-Granularity search is set as the child of a root node in a tree T . The k-
DFS heuristic then selects the child with the best CER. The selected node then
becomes the current node and a set of child nodes with finer support granularity
are computed. This continues for k levels of the tree.

In order to limit the search space at each level of the tree a 2-Granularity
search is only performed at the root of the tree. At height 1 in the tree a 1-
Granularity search is performed on the clusterSupport parameter. At height 2
in the tree a 1-Granularity search is performed on the globalSupport parameter.
Thus, odd levels of the tree expand the clusterSupport parameter and even
levels of the tree expand the globalSupport parameter.
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4.1 Experiments

To test the CLAPT algorithm we choose several datasets from the UCI Ma-
chine Learning Repository [9]. The experimental results for the datasets of most
interest, Congressional Voting and Breast-Cancer, are presented below.

The k-Granularity heuristic provides a wide view of the dataset being evalu-
ated. We first evaluate the k-Granularity heuristic on the Congressional Voting
dataset. Figure 2 shows that in order to maximize the CER for the Congres-
sional Voting dataset, small minSupport support values should be used. The
parameter space for a minSupport support of 0.3 is primarily flat. This means
that transactions tend to be assigned to few initial clusters, thus, there is little
volatility in the CER for most parameter combinations. The highest CER, 0.766,
was achieved with globalSupport = 0.5, and clusterSupport = 0.5. CLAPT gen-
erated 51 clusters using this parameter tuning. The average cluster density was
1.878, while the average cluster distance was 7.24. In other words, on average
there were fewer than two features that differed between each pair of transactions
in a cluster. Additionally, the clusters were separated by over seven features on
the average.

The evaluation of k-Granularity on the Congressional Voting dataset for larger
minSupport values yields some interesting results. First, the CER volatility
increases as minSupport increases, indicating transactions are being assigned
to many clusters initially.

Congressional Voting: 2-Granularity
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Breast-Cancer: 2-Granularity
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Fig. 2. 2-Granularity results

The Breast-Cancer dataset yields similar results as those seen in the Con-
gressional Voting dataset. Lower minSupport values consistently perform better
in the k-Granularity evaluation of this dataset. The max CER is achieved with
globalSupport = 0.5 and clusterSupport = 0.3. The number of clusters gener-
ated for this parameter configuration was 13. The k-Granularity test had a more
difficult time finding high CER values for the Breast-Cancer dataset than it did
for the Congressional Voting dataset. This suggests that the k-DFS heuristic
may be able to expand the parameter space further and thus be able to find a
more accurate CER.
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Table 1. The k-DFS heuristic was used to search to a depth of k = 5 in the datasets

Congressional Voting Breast-Cancer

Global Cluster Number of Global Cluster Number of
Support Support Clusters CER Support Support Clusters CER

0.5 0.5 51 0.76681 0.5 0.3 13 0.70976
0.5 0.53 51 0.76486 0.5 0.36 13 0.91653
0.56 0.53 50 0.76583 0.51 0.36 13 0.91653
0.56 0.531 50 0.76583 0.51 0.361 13 0.89481
0.561 0.531 50 0.76583 0.511 0.361 13 0.89481

We test k-DFS according to the best minSupport rating for each dataset. Ta-
ble 1 details a 5-DFS test on the Congressional Voting dataset with minSupport
0.3. The best CER found using k-Granularity is detailed in row one. The k-DFS
heuristic searches the parameter space for a better parameter configuration. Each
step through the tree that was made is detailed in Table 1. The k-DFS heuristic
was unable to find a better parameter configuration than globalSupport = 0.5
and clusterSupport = 0.5 for the Congressional Voting dataset. This suggests
that the dataset is not sensitive to increased parameter precision.

The k-DFS heuristic was very successful in finding better parameter configura-
tions for the Breast-Cancer dataset, as shown in Table 1. Notice that a change of
.06 to the clusterSupport parameter increased the CER from 0.70976 to 0.91653.
The number of clusters does not change, but the placement of the transactions
yields clusters that are more dense, and more distant from each other.

5 Location Learning

We apply a relaxed version of the Disjoint Clustering with Concept Lattices
algorithm to the tracking and localization problem. We predict the location of
a reading r by first assigning it to a cluster Ci if Ci is a MFCFS for r. After
r is assigned to all of its initial clusters, score(r, Ci) is calculated for each Ci.
The computed score values are then used as weights in a linear combination of
the clusters C to determine the location of the new reading r. We were able
to predict locations of new readings within a multiplicative constant of 2 or 3
compared to competing methods. Our decreased accuracy is a side effect of using
a reduced set of information available to other learners in order to accomodate
our model. Details of the location learning experiments are omitted because of
space limitations and we are in the process of developing improvements to the
location learning approach. This is the first known application of clustering with
concept lattices applied to the location learning problem.

6 Conclusions and Future Works

We have developed an algorithm CLAPT that finds disjoint clusters for a trans-
actional database using concept lattices, based on results reported in [2]. The
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quality of the clusters generated by CLAPT are dependent on three parameters:
minSupport, globalSupport, and clusterSupport. CLAPT uses the FCFSs gen-
erated by [3] as the initial clusters, and we empirically determine what range of
minSupport values are optimal for a given dataset. We find that support levels
above 0.5 always degrade the quality of disjoint clusters generated by CLAPT.
In the testing of the datasets we find that a minSupport value between 0.1 and
0.3 provides the highest quality frequent closed feature sets.

The tuning mechanism receives the CER through a feedback system, which
allows a search heuristic to further explore the parameter space in order to
optimize the generated clusters. Two search heuristics were developed and tested
in this paper: k-Granularity and k-DFS. Each dataset was tested with each
search heuristic and disjoint clusters found were compared. In some case the k-
Granularity heuristic was able to find parameter combinations at least as good
as those found by k-DFS. The k-DFS heuristic further explores the parameter
space after performing a 2-Granularity search. Thus, k-DFS is able to optimize
clusterings in datasets that are sensitive to increased parameter precision.

This paper, thus, has several main contributions. We contribute an algorithm
for disjoint clustering using concept lattices. A method of evaluating the disjoint
clusters is adopted, and utilized to automatically tune parameters. Finally, we
apply a relaxed version of CLAPT to the location learning problem.
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Abstract. For traditional way of Web document representation in Vec-
tor Space Model, zero-valued similarity problem between vectors occurs
frequently, which decreases classificatory quality when defining the rela-
tion between Web documents. In this paper, a novel Web document rep-
resentation and classification approach based on rough set is proposed.
Firstly, TF*IDF weighting scheme is used to assign weight values for
Web document’s vector. The weights of those terms which do not occur
in a Web document are considered missing information. Then rough set
for incomplete information is introduced to supplement loss and expand
Web document representation. Through generating tolerance classes in
both term space and Web document space, the missing information of
Web document can be complemented by incorporating the corresponding
weights of terms in tolerance classes, which extends the essential informa-
tion to Web document. Finally, Web document classification algorithm
is implemented. Experimental results show that the performance of the
classification is greatly improved.

Keywords: Rough sets, Web document classification, Web mining.

1 Introduction

With the rapid growth of information on the World Wide Web, automatic classi-
fication of Web documents has become important for effective retrieval. As one of
the essential techniques for Web mining, Web document classification has been
studied extensively [1], [2], [3]. Nowadays, many Web document classification
methods are based on the Vector Space Model (VSM), which is a widely used
data model for text mining. In VSM, a Web document is represented as a term
vector. Term weights, contained in each term vector, are assigned by weighting
schemes. Traditionally, the weights of those terms which do not occur in the Web
document are assigned zero value. A single Web document is usually represented
by relatively few terms, thereby the Web document vector is characteristic of
high dimension and sparseness, which results in zero-valued similarity between
vectors. This problem would decrease classificatory quality because the relation
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between Web documents is defined by measuring distance of the corresponding
vectors.

In this paper, a rough set approach to Web document representation and clas-
sification is proposed. Instead of assigning zero to the weights of those terms are
absent in a Web document, these weights are considered missing information.
Thus Web document is represented as an incomplete term vector firstly. Then
through generating tolerance classes in both term space and Web document
space, the missing information of Web page can be complemented by incorpo-
rating the corresponding weights of terms in tolerance classes. Only using a little
heuristics knowledge, the zero-valued similarity problem can be avoided through
complementing the potential missing information and therefore the classification
performance can be improved.

The rest of the paper is organized as follows. Section 2 describes the weight-
ing scheme briefly. Section 3 introduces the extended rough set for incomplete
information. Section 4 presents the novel approach to Web document representa-
tion and classification in detail. Section 5 reports and discusses the experimental
results and section 6 concludes the paper.

2 Weighting Scheme

In VSM, each Web document is viewed as a bag of terms and represented by
a term vector. In this paper, we apply the popular TF*IDF (Term Frequency
times Inverse Document Frequency) weighting scheme to assign weight values
for Web document’s vector. The standard TF*IDF is defined as follows:

wij = tfij × log(N/dfi) . (1)

where tf ij is the frequency of the term t i in Web document d j ; df i is number
of Web documents in which term t i occurs; N is the total number of Web
documents. Normalization by vector’s length is applied to all vectors:

w∗
ij = wij/

√ ∑

tk∈di

(wik)2 . (2)

Assume that there are N Web documents and n different terms in a set of
Web document. Using TF*IDF, each Web document is represented by an n-
dimensional term vector. The N Web documents in the set can be represented
by an N×n matrix, DW = [w

′

ij ], where w
′

ij = w∗
ij , if the term t j occurs in the

Web document d j ; otherwise, w
′

ij = 0. Together with decision attributes, i.e., the
class label of Web documents, the matrix can be considered as a decision table.
According to the weight computation, if the term t j is absent in the Web docu-
ment d i, w

′

ij is equal to zero. This way of assigning the weights to absent terms
brings zero-valued similarity problem between vectors. In this paper, as an ex-
tended rough set, tolerance rough set is preferred to avoid zero-valued similarity
through complementing the incomplete information of Web documents.
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3 Extended Rough Set for Incomplete Information

Rough set theory, introduced by Pawlak, is a formal mathematical tool to deal
with incomplete or imprecise information [4]. It has been successful in many
applications [9] [10]. The classical rough set theory is based on equivalence rela-
tion that divides the universe of objects into disjoint classes [4]. By relaxing the
equivalence relation to a tolerance relation, where transitivity property is not
required, a generalized tolerance space is introduced below [5], [6], [7], [8].

Let S = (U, A, V, f ) be an information system, where U is a nonempty
finite set of objects called universe of discourse, A is a nonempty finite set of
conditional attributes; and for every a∈A, such that f : U→V a , where V a is
called the value set of attribute a.

Definition 1. If some of the precise attribute values in an information system
are not known, i.e., missing or known partially, then such a system is called
an incomplete information system. Otherwise the system is called a complete
information system.

Definition 2. Let S = (U, A, V, f) be an incomplete information system and
the sign * denote null value, a tolerance relation T is defined as:

T(B) = {(x, y) ∈ U × U|∀b ∈ B, b(x) = b(y) ∨ b(x) = ∗ ∨ b(y) = ∗} . (3)

where B⊆A. Obviously, T is reflexive and symmetric, but not transferable. Let
IB(x) = {y ∈ U |(x, y) ∈ T (B)}, and then IB(x) is called the tolerance class of
the object x with respect to the set B ⊆ A.

Definition 3. Let S = (U, A, V, f) be an incomplete information system, X⊆U,
B⊆A, the upper approximation and lower approximation of X with regard to
attribute set B under the tolerance relation T can be defined as:

UB(X) = {x ∈ U |IB(x) ∩ X 	= ∅} . (4)

LB(X) = {x ∈ U |IB(x) ⊆ X} . (5)

4 Web Document Representation and Classification

4.1 Web Document Representation

According to Section 3, here we introduce the corresponding concepts in the
Web document classification domain.

An incomplete information system for a web page set is represented as WS=
(U, TS∪{class}, f ), where U is the set of Web documents, each Web document
is an object d∈U ; TS is the set of total terms which occur in the Web document
set, class is the decision attribute, i.e., the class label of the Web documents. The
weights of those terms which do not occur in a Web document are considered
missing information and denoted by sign * instead of zero.

In Web document space, the tolerance relation and tolerance class of Web
document are defined as:
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Definition 4. For a subset of TS, B⊆TS, a tolerance relation T(B) on U is
defined as:

T(B) = {(dx, dy) ∈ U × U|∀b ∈ B, |b(dx) − b(dy)| ≤ δ ∨ b(dx) = ∗ ∨ b(dy) = ∗} .
(6)

Because weights are real values, the requirement b(dx) = b(dy) is too strict. Here
it is replaced with |b(dx) − b(dy)| ≤ δ, where δ ∈ [0, 1]. Consequently, tolerance
class of a Web document dx with respect to B⊆TS, I B(dx), is the set of Web
documents which are indiscernible to dx, i.e., IB(dx) = {dy ∈ U |(dx, dy) ∈
T (B)}.

On the other hand, correlation between terms is valuable for complementing
missing information. Thus, the tolerance class of term is also defined in term
space. Let U ={d1,. . . ,dM} be a set of Web documents and TS={t1,...,tN} set
of terms for U. The tolerance space of term is defined over a universe of all terms
for U.

Definition 5. Let fU (ti, tj) denotes the number of Web documents in U in
which both terms ti and tj occurs. The uncertainty function I with regards to
co-occurrence threshold θ defined as:

Iθ(ti) = {tj |fU (ti, tj) � θ} ∪ {ti} . (7)

Clearly, the above function satisfies conditions of being reflexive: t i ∈ I θ(t j)
and symmetric: t j ∈ I θ(t i)⇐⇒t i ∈ I θ(t j) for any t i, t j ∈ T. Thus, I θ(t i) is
the tolerance class of term t i. Tolerance class of terms is generated to capture
conceptually related terms into classes. The degree of correlation of terms in
tolerance classes can be controlled by varying the threshold θ.

In tolerance space of term, an expanded representation of Web document can
be acquired by representing Web document as set of tolerance classes of terms
it contains. This can be achieved by simply representing Web document with its
upper approximation, e.g., the Web document d i ∈ U is represented by:

UR(di) = {ti ∈ T|Iθ(ti) ∩ di 	= ∅} . (8)

This approach to Web document representation expands Web document be-
cause it takes into consideration not only terms actually occurring Web document
but also other related terms with similar meanings.

4.2 Missing Weights Complement

The best values of these missing weights are determined by incorporating two
parts, i.e., weights of terms in term’s tolerance class and corresponding term
weight of the most similar vector, which has the same class label in tolerance
class of the Web document. Here, the similarity measure between vectors is
computed based on the distance:

Sim(dx, dy) =
1

1 +
∑M

k=1 |wik − wjk|
. (9)
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After the tolerance classes for both term and Web document are generated,
the essential information (i.e., the similarity between Web documents and the
correlation between terms) is identified. To complement missing weights of terms
in the Web document’s vectors, we produce an improved TF*IDF weighting
scheme based on the traditional TF*IDF. The improved weighting scheme is
defined as below.

wij =

⎧
⎨

⎩

1 + log(fdi(tj)) × log N
fD(tj)

if tj ∈ di,

α × wkj if tj /∈ UR(di),
α × wkj + β × (mintn∈di∧tn∈Iθ(tj) win) if tj ∈ UR(di) ∧ tj /∈ di.

(10)
In above formula, wkj is the weight value of corresponding term of the most

similarity vector with the same class label in Web document tolerance class; α,
β ∈[0, 1], they adjust the relative impact of relevant terms and Web documents
respectively. Here, let parameters α and β be 0.2.

To demonstrate the use of the improved TF*IDF weighting scheme, we detail
an example as follows.

Example: Let Web document set be U ={d1,d2,d3,d4,d5,d6,d7}, term set be
TS={ t1,t2,t3,t4,t5}, B=TS, the class label set be class={C1,C2}, the frequency
data is listed in Table 1.

Table 1. Sample Web document-term frequency array

t1 t2 t3 t4 t5 Class

d1 0 0 6 8 0 C1
d2 1 3 12 0 9 C1
d3 2 3 0 12 14 C1
d4 0 0 5 4 2 C2
d5 10 9 4 0 3 C2
d6 12 14 2 2 0 C2
d7 11 12 0 4 2 C2

Let co-occurrence threshold θ equal 4, tolerance class of each term t i (i=1,2,
. . . ,5) and upper approximations of the Web document d j (j=1,2,. . . ,7) can be
computed as below:

I θ(t1) =I θ(t2) = {t1, t2}; I θ(t3) = {t3}; I θ(t4) =I θ(t4) = {t4, t5}.
U B(d1) =U B(d4) = {t3, t4, t5}; U B(d2) = {t1, t2, t3}; U B(d3) =U B(d7) =

{t1, t2, t4, t5}; U B(d5) =U B(d6) = {t1, t2, t3, t4, t5}.
Note that the Web document d1 and d4 have different class label. We weigh

them with traditional TF*IDF and improved TF*IDF respectively, result is
listed in Table 2.

4.3 Web Document Classification

Firstly, terms are extracted from training set of Web documents, and then toler-
ance classes of Web documents and terms are computed. Secondly, the missing
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Table 2. Weight of normal TF*IDF versus of improved TF*IDF

Traditional TF*IDF Improved TF*IDF

term d1 d4 term d1 d4

t1 0 0 t1 0.067 0.115
t2 0 0 t2 0.072 0.118
t3 0.684 0.636 t3 0.684 0.636
t4 0.731 0.600 t4 0.731 0.600
t5 0 0.487 t5 0.091 0.487

weights of incomplete vectors are complemented. Thirdly, the classifier is con-
structed. Finally, the new Web document is classified into the category where
the similarity measure is the highest among all other categories.

The similarities are computed between the new Web document and each cat-
egory centroid, in which the similarity formula is defined as follows:

Dis(di, cj) =
∑M

k=1 wik × wjk√
(
∑M

k=1 w2
ik) × (

∑M
k=1 w2

jk)
. (11)

where d i is the new Web document, cj is the j th category centroid, M is the
term dimension.

5 Experimental Evaluation

5.1 Experimental Data Sets

To evaluate the proposed approach, we use two popular data collections in
our experiments. The first one is the WebKB data set 1, which contains 8282
Web documents collected from computer science departments of various uni-
versities. The pages were manually classified into the following categories: stu-
dent, faculty, staff, department, course, project, other (respectively abbreviated
here as St, Fa, Sta, De, Co, Pr, Ot). In our experiments, each category is
employed.The second collection is the Reuters-21578 2, which has 21578 doc-
uments collected from the Reuters newswire. Of the 135 categories, only the
most populous eight categories are used, i.e, acq, corn, crude, earn, grain, in-
terest, money and trade (respectively abbreviated here as Ac, Co, Cr, Ea, Gr,
In, Mo, Tr). The construction of each data set for our experiments is done as
follows: Firstly, we randomly select 10% of the Web documents from the each
category, and put them into test set to evaluate the performance of classifier.
Then, the rest are used to create training sets. We extract and select the 100
most frequently occurred keywords from each category. For WebKB data set
and Reuters-21578, the total numbers of all distinct keywords are 463 and 689
respectively.
1 http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
2 http://www.research.att.com/ lewis/reuters21578.html
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5.2 Performance Measures

To analyze the performance of classification, we adopt the popular F1 measure.
F1 measure is combination of recall (re) and precision (pr), F1=2.re.pr/(re+
pr). Precision means the rate of documents classified correctly among the result
of classifier and recall signifies the rate of correct classified documents among
them to be classified correctly. The F1 measure which is the harmonic mean of
precision and recall is used in this study since it takes into account effects of
both quantities.

5.3 Experimental Results and Discussion

The results on WebKB data set are summarized in Table 3. Our approach yields a
higher performance compared to the normal VSM for all categories. For example,
in student category, our approach yields the F1 values of 75.6%, whereas the
normal VSM yields the F1 values of 67.1%.

Table 3. Comparison of classification performance on WebKB

St Fa Sta De Co Pr Ot Avg

VSM 0.671 0.613 0.437 0.468 0.635 0.554 0.725 0.586
RS 0.756 0.734 0.633 0.630 0.691 0.712 0.787 0.710

Table 4. Comparison of classification performance on Reuters-21578

Ac Co Cr Ea Gr In Mo Tr Avg

VSM 0.710 0.575 0.644 0.723 0.681 0.637 0.625 0.612 0.651
RS 0.736 0.673 0.727 0.780 0.769 0.740 0.768 0.694 0.736

In Table 3, avg shows summarized result which is calculated by averaging
the F1 values over all categories. Our approach yields higher average classifica-
tion performance of 12.4% over the normal VSM.We perform the same exper-
iments on the Reuters-21578. The results are shown in Table 4, in which avg
also shows summarized result. Our approach yields higher average classification
performance of 8.5% over the normal VSM for Reuters-21578.

6 Conclusion

In this paper, a novel approach to Web document representation and classifica-
tion based on rough set is proposed. For traditional way of Web document rep-
resentation in the VSM, zero-valued similarity between vectors would decrease
classificatory quality. Instead of assigning zero to the weights of those terms are
absent in a Web page, these weights are considered missing information. Rough
set for incomplete information is applied to discover valuable information, i.e.,
indiscernibility between Web documents and correlation between terms. Then,
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the information is used for expanding representation of Web document to avoid
zero-valued similarity. To validate the proposed approach, we compared our ap-
proach with the VSM. The experimental results show that the proposed approach
yields a considerable improvement of classification performance.
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Abstract. Suffix trees and suffix arrays are two well-known index data
structures for strings. It is known that the latter can be easily trans-
formed into the former: Iliopoulos and Rytter [5] showed two simple
transformation algorithms on the CREW PRAM model. However, the
PRAM model is a theoretical one and we need a practical parallel model.
The Message Passing Interface (MPI) is a standard widely used on both
massively parallel machines and on clusters.

In this paper, we show how to implement the algorithms of Iliopoulos
and Rytter on the MPI environment. Our contribution includes the mod-
ification of algorithms due to the lack of shared memory, small number
of processors, communication costs between processors.

1 Introduction

Index data structures play an important role in various applications related to
text processing. Suffix trees [14,16] and suffix arrays [8,10,11] are an example
of index data structures and they are widely used in theoretical and practical
problems. A lot of algorithms were developed using them to solve problems which
arise from various applications including text processing, data compression, and
Bioinformatics [4].

Suffix arrays are replacing suffix trees in the text processing due to the large
memory requirement of suffix trees. There are some works on enhancing the
power of suffix arrays similar to that of suffix trees [1,2,6,7]. However, suffix
trees are the basic index data structure for solving problems in text processing
and in some cases we need the suffix tree because no algorithm with suffix arrays
is available. Therefore we need the transformation between suffix trees and suffix
arrays. Converting suffix trees into suffix arrays is straightforward: we have only
to traverse the suffix tree from left to right. But converting suffix arrays into suffix
trees is not straightforward. Iliopoulos and Rytter [5] proposed two algorithms
for this problem.

The merits of parallel index data structures are as follows.

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 248–255, 2007.
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– As the size of text data grows bigger, it is better to distribute the data into
several locations than to use one huge storage.

– Parallel index data structures can reduce query processing time when there
are a lot of queries.

Several algorithms were proposed for building suffix arrays in the parallel
environment [3,12,13]. So once we have a parallel transformation algorithm for
converting suffix arrays into suffix trees, we can build parallel suffix trees. Il-
iopoulos and Rytter’s algorithms [5] are motivated by these observations and
their algorithms are based on the Parallel Random Access Machine (PRAM).
Although the PRAM is the basic model for parallel computation, it is a theo-
retical one and suffers from the followings.

– The PRAM model assumes that all the data is stored in shared memory
which can be accessed by processors simultaneously. In real world it is hard,
or impossible to build such an architecture.

– Also, it does not consider the communication cost between processors. There-
fore, theoretically-efficient algorithms on the PRAM can work poorly in prac-
tice, due to the communication overhead.

– We cannot use as many processors as we want. The number of processors is
restricted.

Therefore we need a realistic model of parallel computation. The Message
Passing Interface (MPI) [17] is a de facto standard for writing parallel programs
on the distributed memory system. It has several merits over the traditional
PRAM model:

– MPI is language-independent. APIs for Fortran, C, C++, and Python are
freely available.

– Although the MPI supports only low-level calls for parallel computation, it
is easy to write parallel programs on the MPI. For example, a simple parallel
program can be written using only five MPI function calls.

– There are a few implementations of the MPI standard specification which
can run a single computer as well as clusters of processors. For example,
MPICH2 [18] can simulate parallel computation on a single machine.

In this paper, we show how to transform suffix arrays to suffix trees on MPI.
Especially we will focus on the differences between PRAM and MPI and how to
handle them.

2 Preliminaries

Let T be a string over an alphabet Σ and n = |T |, the length of the string. T [i]
denotes the i-th character of T . T [i..j] is the substring T [i]T [i + 1] · · ·T [j] of T .
For any integer 1 ≤ j ≤ n, we say that T [1..j] is a prefix of T . Also for any
integer 1 ≤ j ≤ n, we say that T [j..n] is a suffix of T .

The suffix tree of a text T is a tree which stores all the suffixes of the string. A
path from the root to one leaf represents a suffix. If two suffix share a common
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i

mississippi$
i

p s

ssi

i$

$ppi$

ssippi$ppi$

ppi$

ssippi$ppi$ ppi$ ssippi$

si

suf lcp

1 11 - i
2 8 1 ippi
3 5 1 issippi
4 2 4 ississippi
5 1 0 mississippi
6 10 0 pi
7 9 1 ppi
8 7 0 sippi
9 4 2 sissippi
10 6 1 ssippi
11 3 3 ssissippi

Fig. 1. The suffix tree and the suffix array for mississippi

prefix, we create an internal node. For example, in Figure 1, two suffixes pi and
ppi share a common prefix p. We create an internal node and the edge between
it and the root represents the common prefix p. We store i and pi at two leaves.
The time and space complexity of building the suffix tree for a string T [1..n] is
O(n), but the constant hidden in O(n) is quite large. More details on the suffix
tree can be found in [14,16].

The suffix array of a text T is a well-known indexed structure for the string.
Basically it is the sorted array suf [1..n] of all the suffixes of T in the lexico-
graphical order. It means that suf [k] = i if and only if T [i..n] is the k-th suffix
of T . The suffix array can be built in O(n) time and space [8,10,11]. We also
define the auxiliary LCP array as an array of the length of the longest common
prefix between each substring in the suffix array and its predecessor: lcp[i+1] is
the length of the common prefix between T [suf [i]..n] and T [suf [i+1]..n]. Given
suf array, lcp array can be calculated in O(n) time [9].

Figure 1 shows an example of the suffix tree and the suffix array for a string
mississippi. Note that $ character is added to each suffix to denote the end
of suffixes in the suffix tree. Otherwise it would be hard to represent the suffix
i. As we said before, suffix trees and suffix arrays are closely related since they
have the same information in different structures.

We assume that we have p processors which have the same computing power.
On the MPI environment, all the communication between processors are mes-
sage-passing: if processor i wants to access processor j’s memory, it has to send a
request to j explicitly and wait for the answer from j. Since the communication is
over TCP/IP, it takes time and is not free. Additionally, we assume that n � p.
Usually the text is quite large and the number of processors is small, so this
assumption makes sense. Our aim is as follows: (a) allocate an equal amount of
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works to each processor, and (b) reduce the communication between processors
as small as possible.

3 Algorithm 1

Algorithm 1 is a very simple recursive algorithm. It is based on the divide-
and-conquer approach. Roughly, we first begin with two neighboring suffixes,
T [suf [i]..n] and T [suf [i + 1]..n]. lcp[suf [i + 1]] tells the common prefix which
two suffixes share. We create an internal node and two leaves as in Figure 3
(b). If we have only one suffix, then we can create a root and a leaf. Next we
merge two neighboring trees into one. We divide the suffix array so that two
neighboring trees share one path in common. More precisely, let us assume that
we have two trees T1 and T2. The suffix obtained by the path from the rightmost
leaf of T1 to the root of T1 is the same as the one obtained by the path from
the leftmost leaf of T2 to the root of T2. We follow these two paths and merge
them into one, as in Figure 3 (c). We obtain one bigger tree and do the same
again. Finally we have one suffix array. The time complexity of Algorithm 1 is
O(log2 n) and the total work is O(n log n) [5].

Algorithm1(i, j)
if (j − i) ≤ 2 then

Compute the partial suffix tree directly;
else

parallel do
T1 =Algorithm1(i, (i + j)/2);
T2 =Algorithm1((i + j)/2, j);
Create T by merging T1 and T2, by joining the rightmost path of T1

and the leftmost path of T2;
od

return T ;

Fig. 2. Algorithm 1: A simple recursive algorithm

The above algorithm does not work directly on the MPI environment. First
of all, there is no notion of shared memory in the MPI standard. Therefore we
need to decide how to store the suffix array among the processors. We divide the
suffix array into p blocks (for simplicity, we assume that n = pk for some inte-
ger k). The first block consists of T [suf [1]..n], T [suf [2]..n], · · · , T [suf [n/p]..n].
The i-th block (2 ≤ i ≤ p) block consists of T [suf [in/p]..n], T [suf [in/p +
1]..n], · · · , T [suf [(i + 1)n/p]..n] so that two neighboring blocks share one suffix.
We allocate the i-th block to the i-th processor. A näıve allocation algorithm
will need O(p) rounds to distribute the suffix arrays to the processors but we can
reduce it to O(log p) rounds: at first processor 1 sends n/2 elements to processor
p/2, then they sends n/4 to processor 1, p/4, p/2, 3p/4 and so on. Note that
p − 1 elements in the suffix array are duplicated in two processors. However, as
we assume that p � n, this overhead is not great.
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For each processor, it first performs the same algorithm we did on the
PRAM model. Then the i-th processor has a partial suffix tree for suffixes
T [suf [in/p]..n], T [suf [in/p+ 1]..n], · · · , T [suf [(i + 1)n/p]..n]. Finally, we merge
these partial suffix trees into one suffix tree. The idea is the same. The first
processor sends the information on the rightmost path of the first partial tree
to the second processor. The last processor sends the information on the left-
most path of the last partial tree to the (p − 1)-th processor. The i-th processor
(2 ≤ i ≤ p − 1) sends the information on the leftmost path of the i-th tree to
the (i − 1)-th and the rightmost path of it to (i + 1)-th processors. Since a path
from the root to one of leaves may include two or more processors, the pointer
of an internal node can be represented by (p, addr): the next node is stored at
processor p’s memory, at the address of addr.

(c)

issippi sippi

s

ssi

ppi ssippi

s

ssippi
issippi

ppi

s s i p p i

s i s s i p p i

s s i s s i p p i

si

(a)

(b)

Fig. 3. Transforming the suffix array of T =mississippi into the suffix tree

Now we analyze our algorithm. Each processor performs the same algorithm
we did with the PRAM algorithm, but the data size is n/p. Each processor sends
and receives at most 2n/p nodes since we make at most one internal node each
time we merge two suffixes and each processor has n/p suffixes. Merging tree
requires O(n/p) time. Therefore, the total time complexity is O(log2(n/p)+n/p).
The total communication cost is p × O(n/p) = O(n).

Note that our resulting tree has additional p − 1 duplicated paths. We should
take care of this property. For example, when we are finding a pattern from the
text, we need to traverse every possible path if there are two or more paths.

4 Algorithm 2

Algorithm 2 is a non-recursive one. For simplicity we assume that n = 2kp for
some integer k. Due to space restriction, we briefly sketch Iliopulos and Rytter’s
algorithm. More details can be found in [5].

We use a few arrays for the transformation. First we set lcp[1] = 0. For 1 ≤
i ≤ n, L[i] = max{j < i : lcp[j] < lcp[i]} and R[i] = min{j > i : lcp[j] < lcp[i]}.
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index 1 2 3 4 5 6 7 8 9 10 11

lcp 0 1 1 4 0 0 1 0 2 1 3

SN - 1 1 3 - - 6 - 8 9 10

Leftmost 1 2 2 4 1 5 7 8 9 10 11

Fig. 4. An example of SN and Leftmost array for the suffix arrays in Figure 1

And we define the nearest smaller neighbor SN . If lcp[L[i]] ≥ lcp[R[i]], then
SN [i] = L[i]. Otherwise, SN [i] = R[i]. We also define Leftmost[i] = min{i ≤
j ≤ i : lcp[j] = lcp[i] and lcp[k] ≥ lcp[i] for each j ≤ k ≤ i}. Put it another
way, SN [i] is the nearest location j where lcp[j] < lcp[i] and Leftmost[i] is the
leftmost location j where lcp[j] = lcp[i].

We explain the key idea of Algorithm 2. If Leftmost[i] = j and i �= j, then
T [suf [j]..n], T [suf [j]+ 1..n], · · · , T [i..n] shares a common prefix of length lcp[i].
We can create one internal node at this point, but there may be another internal
node in the path from this internal node to the root. We use SN array to find
this internal node. Since lcp[SN [j] is smaller than lcp[j] by definition, there are
other suffixes sharing a shorter common prefix.

To represent the suffix tree, we use two different types of nodes. Each suffix
suf [i] makes a leaf node leaf [i]. Additionally we create an array int[1..n] which
stores an internal node int[k] if Leftmost[k] = k.

We use two lemmas here without proof. Proofs can be found in [5].

Lemma 1. If int[s] is the father of an internal node int[k] and r = lcp[k], then
the edge from int[s] to int[k] is T [suf [k] + p..suf [k] + r − 1] where p = lcp[s]. If
int[s] is the father of leaf [k], then the edge represents T [suf [k] + r..n].

Lemma 2. The father of int[k] = int[j] where j=Leftmost[SN [k]]. The father
of leaf [t] = int[j] if lcp[t] ≤ lcp[t+1] or t = n. Otherwise the father of leaf [t] =
int[t + 1].

By Lemma 2 we can find the father of leaves and internal nodes. By Lemma 1
we can find the strings represented by edges. The time complexity is O(logn)
and it takes O(n) space.

The implementation on the MPI environment is straightforward. First we
divide the suffix array into p blocks again, but now no suffix is stored in two
blocks. The i-th block (1 ≤ i ≤ p) block consists of T [suf [in/p]..n], T [suf [in/p+
1]..n], · · · , T [suf [(i + 1)n/p] − 1..n]. Again we allocate the i-th block to the i-th
processor. Then we first compute SN and Leftmost arrays. They can be com-
puted efficiently using the classical prefix computation algorithm. The remain-
ing part is to apply Lemma 2 and 3. Processor i tries to compute leaf [in/p],
leaf [in/p + 1], · · · , leaf [(i + 1)n/p − 1] and int[in/p], int[in/p + 1], · · · , int[(i +
1)n/p − 1], with strings represented by edges linking them. To do so, we need
the values in SN and Leftmost arrays. If they are stored in processor i’s memory
then there is no problem. Processor i can access them directly. But if they are
stored in processor j’s memory, then we need to request them explicitly. First
processor i computes which processor to request, and the number of element
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to ask that processor. Then processor j send the requested data to processor i
back. Our algorithm is rather sequential here: the difference is that the data is
distributed among processors.

Once each processor receives the necessary data, it creates internal nodes and
edges. Since a processor can handle one leaf or internal node at each step, the
time complexity is O(n/p). The space complexity is the same, O(n).

5 Implementation

We used MPICH2 [18] and C++ language to implement these algorithms. The
suffix arrays were generated by Puglisi et al.’s excellent implementation [15]. We
were able to find that these algorithms work correctly.

Since we were unable to find a cluster of processors, the experiment was done
by a DELL Optiplex GX520 machine with one 3.0 GHz Pentium 4 processor and
1GB RAM, running Windows XP. As we mentioned before, MPICH2 provides
the simulation of parallel computing environment. The same implementation can
run on the PC cluster.

6 Conclusion

We showed how to transform suffix arrays into suffix trees on the MPI environ-
ment. Unlike the PRAM model, we were able to implement parallel algorithms
on real machines.
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Abstract. The Web contains massive amount of documents to the point where it 
has become impossible to classify them manually. This project’s goal is to find a 
new method for clustering documents that is as close to humans’ classification as 
possible and at the same time to reduce the size of the documents. This project 
uses a combination of Latent Semantic Indexing (LSI) with Singular Value 
Decomposition (SVD) calculation and Support Vector Machine (SVM) 
classification. Using SVD, data is decomposed and truncated to reduce the data 
size. The reduced data will be clustered into different categories. Using SVM, 
clustered data from SVD calculation is used for training to allow new data to be 
classified based on SVM’s prediction. The project’s result show that the method 
of combining SVD and SVM is able to reduce data size and classifies documents 
reasonably compared to humans’ classification. 

Keywords: SVM, SVD, LSI, clustering, text classification, unsupervised. 

1   Introduction 

Ever since the World Wide Web has become popular, document clustering has 
become increasingly more important. With billions of documents on the Web, it is 
impossible to classify them by humans. The challenge is to find a way to organize this 
massive data in some meaningful structure. This project proposes a method that can 
cluster documents reasonably. 

The project deals with clustering high dimensional data. The data used are processed 
documents organized in a text file that contains category labels and term frequency–
inverse document frequency (tf–idf) values. Data sets used in the research are classified 
by humans and have been processed into tf-idf values.  By using human-classified data 
set, we are able to compare our clustering method with humans’ classification.  

The first few sections of the paper discuss and analyze Support Vector Machine 
(SVM) and Singular Value Decomposition (SVD). This will allow the reader to 
understand how these methods are applied to the project. The last few sections discuss 
the algorithms used and the analysis of the results after applying methods from 
previous sections. 

2   Support Vector Machine 

Vladimir Vapnik and his colleagues first introduced SVM in 1963. Support Vector 
Machine (SVM) is a learning machine that uses supervised learning to perform data 
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classification and regression [10].  In SVM, each line within the data set is given a 
label and SVM learns the data and puts the new data in the group/category that is 
closest to the learned data. 

Beside SVM, there are many other methods for text classification such as Bayes 
and k-Nearest Neighbor.  Based on many research papers [7], SVM outperforms 
many, if not all, popular methods for text classification.  The studies also show that 
SVM is effective, accurate, and can work well with small amount of training data. 

2.1   Understanding SVM 

The concept of SVM is quite intriguing once the reader understands the math behind 
it.  The idea for SVM is to find a boundary (known as a hyperplane) or boundaries 
that separate clusters of data.  SVM does this by taking a set of points and separating 
those points using mathematical formulas.  The process of SVM starts with data that 
are in an input space and can or cannot be separated with a linear hyperplane.  To 
separate the data linearly, points are map to a feature space using a kernel method.  
Once the data in the feature space are separated, the linear hyperplane gets map back 
to the input space and is shown as a curvy non-linear hyperplane.   

The SVM’s algorithm first learns from data that has already been classified, which 
is represented in numerical labels (e.g. 1, 2, 3, etc.) with each number representing a 
category.  SVM then groups the data with the same label in each convex hull.  From 
there, it determines where the hyperplane(s) is by calculating the closest points 
between the convex hulls [1].  Once SVM determines where the hyperplane(s) is, it 
creates a model file that is used to classify new data.  For example, any new data that 
lies on the side of the positive plane is classified with a positive label and any new 
data that lies on the side of the negative plane is classified with a negative label. 

3   Data Preparation Using SVD 

In order to separate the data, SVM requires training data to be in categories.  This 
project’s aim is to cluster data, however, as mentioned above, SVM is a supervised 
learning machine so it does not cluster data.  From our research, we found that there is 
not a proven working method for an unsupervised SVM.  Thus, we use a different 
approach; clustering data using Singular Value Decomposition (SVD) and then using 
SVM, we can predict the category/label of the new data. 

3.1   Singular Value Decomposition (SVD) 

Singular Value Decomposition (SVD) is a method that separates a matrix into three 
parts; left eigenvectors, singular values, and right eigenvectors [5].  It can be used to 
decompose data such as images and text.  Since SVM requires supervised learning, 
SVD is chosen to cluster the data and give the data its label.  

Given a matrix A, we can factor it into three parts: U, S, and VT (V transpose). If 
the matrices, U, S, and VT are multiplied together, the original matrix A is 
reconstructed. One of the nice properties of SVD is that after the matrix is 
decomposed its dimension can be reduced by choosing to keep only the largest 
singular values in the S matrix.  For example, to find rank 2 approximation, the first 2 
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columns of U and V, and the first 2 columns and rows of S are kept.  The rest of the 
columns and rows can be dropped.  Using the truncated V matrix, V’, documents can 
be clustered by calculating cosine similarities between each document.  This will 
return the distance between the documents. 

sim(Ds’, D’)  =  (Ds’• D’) / (|Ds’| |D’|) 

Here Ds’, represents the selected row within the truncated matrix V’ and D’ represents 
another row, also in truncated matrix V’, in which Ds’ is calculated with.  We 
calculate cosine similarities between Ds’ and all other rows.  From the result, the 
highest value is most similar/closest to the selected document.  Doing this procedure 
for each document, we can pair up documents that are most similar to each other to 
form small clusters of documents. 

4   The Project 

This project will use the same methods that were discussed to cluster a good-sized 
data set. The purpose is to see how well the data clusters using SVD and running the 
clustered data (data with labels) using SVM to predict labels for new data.  One might 
wonder why use SVM when SVD can do the same job.  Based on the algorithms, 
SVM is faster and has the ability to separate the data nicely.  With SVM, new data is 
classified without having to process cosine similarities. 

In order to use SVM for this project, the documents need to be represented in 
numerical values.  A way to do this is to calculate the term frequency–inverse 
document frequency (tf–idf) values.   

 

 

The above equations show one way of calculating tf-idf.  Tf stands for term 
frequency with ni as the number of occurrences of a term in a document and ∑k nk as 
the number of occurrences of all terms in the same document.  The tf equation is then 
multiplied by the inverse document frequency (idf) equation.  Idf is the log of |D|, 
which is the total number of all considered documents, divided by | dj  ⊃ ti |, which is 
the number of documents that a term appears [11]. 

Fortunately, there are many data sets in tf-idf format that have already been 
human-classified for the public to use to compare their results [4], [9].  Therefore, it is 
not necessary to compute the tf-idf values for this project. 

Once a matrix of tf-idf values are obtained, it needs to be decomposed using SVD.  
Both data sets that are used for SVM training and predicting need to be truncated with 
SVD by the same ranking approximation value.  There are two ways to do this.  One 
way is perform SVD calculation and then truncate the new data (the data that we want 
to find the labels for using SVM) with the same ranking value as the training data.    
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Another way is to multiply the new data with the U’ and S’-1 matrix of the training 
data as shown below.  This method is used for the project. 

SVM Prediction Data = NewDataMatrix * trainingU’ * trainingS’-1 

4.1   Implementation 

The implementation of this project requires two libraries: JAMA [9] and LIBSVM 
[2].  Given a matrix, JAMA can calculate SVD, which gives the matrix U, S, and V.  
The application truncates U, S, and V based on a user-inputted value.  This value is 
the ranking approximation.  With the truncated matrix, V’, the program selects the 
first row of the matrix and does cosine similarities calculation, which was discussed 
above, with the second row , then the third row, then the forth row, and so forth, until 
it reaches the last row.  The row that returns the highest cosine similarities value is 
clustered with the first row.  Then the application selects the next row and does cosine 
similarities calculation with all other rows.  Doing this for each row will return small 
clusters of 2-4 documents.  These are naturally formed clusters.   

Since having many small clusters is not practical, the application allows user to 
input the desired number of clusters.  With the given number of clusters, the program 
does cosine similarities calculation on each group of clusters and combining clusters 
that are closest together until it reaches to the user-inputted cluster value.  In the final 
step, each document will be assigned to a category label based on which cluster it 
belongs.  Using this information, we can compare our result to what humans’ have 
classified.  We then use this result as training data for SVM. The library, LIBSVM, 
will use the training data to separate the documents with hyperplane(s).  From here, 
SVM can predict the labels for new data by using the given training data.  By using 
SVD to cluster the documents, we are able to achieve clustering documents without 
the need of humans’ classification.  In addition, SVD can reduced the document size 
as well as document noise.  

4.2   Using Larger Data Set 

The previous sections give background research on the approach used to cluster a data 
set. Now we would like to use a good-sized data set to test our method.  The data set 
used is Reuters-21578, which is the most widely used data set for text categorization 
[9]. Reuters-21578 is a collection of newswire articles that have been human-
classified by Carnegie Group, Inc. and Reuters, Ltd.  The data used for this project is 
part of the already processed Reuters-21578 by Joachims [7].  Due to the expensive 
calculation of SVD, the data is further separated into 200 lines (rows) and 9928 terms 
(columns) per data set.  In Table 1 and 2, “SVD Cluster Accuracy” will measure how 
close our SVD clustering method compares to humans classification and “SVM 
Prediction Accuracy” will measure how accurate it is to use the SVD clustered data 
for training and then use it to predict labels on new data.  Please note that a different 
set of Reuters-21578 that is 200 lines by 9928 terms is used as new data for SVM 
prediction.  
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4.3   Result Analysis 

Table 1. Results: Clustering with SVD vs. Humans Classification, First Data Set 

First Data Set from Reuters-21578 (200 x 9928)  
# of Naturally 

Formed Cluster 
using SVD 

SVD Cluster 
Accuracy 

SVM Prediction 
Accuracy 

Rank 002 80 75.0% 65.0% 
Rank 005 66 81.5% 82.0% 
Rank 010 66 60.5% 54.0% 
Rank 015 64 52.0% 51.5% 
Rank 020 67 38.0% 46.5% 
Rank 030 72 60.0% 54.0% 
Rank 040 72 62.5% 58.5% 
Rank 050 73 54.5% 51.5% 
Rank 100 75 45.5% 58.5% 

Table 2.  Results: Clustering with SVD vs. Humans Classification, Second Data Set 

Second Data Set from Reuters-21578 (200 x 9928)  
# of Naturally 

Formed Cluster 
using SVD 

SVD Cluster 
Accuracy 

SVM Prediction 
Accuracy 

Rank 002 76 67.0% 84.5% 
Rank 005 73 67.0% 84.5% 
Rank 010 64 70.0% 85.5% 
Rank 015 64 63.0% 81.0% 
Rank 020 67 59.5% 50.0% 
Rank 030 69 68.5% 83.5% 
Rank 040 69 59.0% 79.0% 
Rank 050 76 44.5% 25.5% 
Rank 100 71 52.0% 47.0% 

 
Based on the results, the highest percentage accuracy for SVD clustering is 81.5% for 
rank 5 approximation (Table 1).  This accuracy percentage is reasonably good.  Based 
on observation, lower ranking approximation values do better than the higher 
approximation values.  This supports many researchers’ claim that truncated SVD 
gives better results.  As for SVM prediction, the results are not surprising, since SVM 
can only predict as well as what is given it to train. Therefore, its prediction accuracy 
is about the same as SVD’s. 

There are several reasons why the highest accuracy is 81.5% and not higher.  When 
calculating SVD and using cosine similarities calculation to cluster, the documents 
form small clusters naturally.  Having too many small clusters is not practical; 
therefore, a new algorithm is needed on top of the clustering algorithm to reduce the 
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clusters to a desirable number.  What the algorithm does is for each small cluster, it 
calculates the average of the vector documents within that cluster and compares it, 
using cosine similarities, to another cluster. The cluster that yields the highest value 
will be combined with the selected cluster.  As the reader can see, reducing the 
number of clusters from 64-80 to just two clusters will reduce the accuracy.  Because 
the data used to test in Table 1 and 2 are classified in only 2 categories, the algorithm 
also needs to reduce the clusters to 2 clusters so that it is possible to compare the 
results. Also, humans’ classification is more subjective than a program so the methods 
used to classify are different from each other. 

5   Conclusion 

The project’s goal is to find a method that can cluster high dimensional data.  After 
our research, we choose to use a combination of SVD and SVM.   In section 2, the 
concept of SVM is discussed.  With the use of kernel methods, SVM can classify data 
in high dimensional space.  Although SVM is an excellent method for data 
classification, it cannot cluster the data.  Because of this, the project goes further into 
researching a method that can cluster and reduce the data.  In section 3, SVD is used 
to accomplish this task.  In section 4, SVD is used with SVM on data sets.  The 
method is then compared with data that are classified by humans.  From the 
experiment and analysis, the results show that the method proposed is able to cluster 
documents reasonably.  However, there are plenty of rooms to improve this method.  
Overall, the result of the project is satisfactory. 

5.1   Future Work 

As mentioned previously, there are still a lot more work that could be done to 
improve this project. One way is to create a method that stores the data sets into a 
database. This way accessing the data each time will be much faster.  In addition, a 
database can store a lot more data. Another way is when calculating the distance 
between vectors using cosine similarities, parallel processing can be used to speed up 
the time. Also, the libraries, LIBSVM and JAMA, used in this project is excellent for 
small size data set, however, these libraries need modification to accommodate larger 
data processing. For example, JAMA cannot process matrices that have m rows less 
than n columns (m < n) and it uses a double matrix array, which limits the size one 
can store.  Lastly, we can look for more efficient kernels to use on SVM.   
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Abstract. Constructing accurate classifier based on association rule is an 
important and challenging task in data mining. In this paper, a novel 
combination strategy based on rough sets (RST) and evidence theory (DST) for 
associative classification (RSETAC) is proposed. In RSETAC, rules are 
regarded as classification experts, after the calculation of the basic probability 
assignments (bpa) according to rule confidences and evidence weights 
employing RST, Yang’s rule of combination is employed to combine the 
distinct evidences to realize an aggregate classification. A numerical example is 
shown to highlight the procedure of the proposed method. The comparison with 
popular methods like CBA, C4.5, RIPPER and MCAR indicates that RSETAC 
is a competitive method for classification based on association rule. 

Keywords: Combination strategy, Associative classification, Evidence theory, 
Rough sets, Evidence weight. 

1   Introduction 

Associative classification (AC) is one of the most important tasks in data mining and 
knowledge discovery. Previous studies have shown that AC is a powerful tool to 
handle unstructured data and often has more accurate classification result than 
conventional techniques [1,2]. 

The first algorithm using association rule for classification is named CBA [2], 
which applies the popular Apriori algorithm to extract association rules with their 
consequents limited to class labels. In the procedure of AC, rule discovery and 
classification are two crucial tasks. In the last few years, many investigations have 
been contributed to discover rules from data, and proposed many methods such as 
CBA, C4.5 [3] and MCAR [4]. However, they may suffer the following weakness.  

On one hand, the majority of research work is to solve single label classification 
problem [5]. In this paper, we named the rules with the same condition but different 
classes conflicting rules. Actually, the ignored rules might play an important role in 
some cases and make their contributions to improve classification accuracy. 

The other intractable problem is that they can not easily identify the most effective 
rule during the process of classifying new cases [6]. In this paper, we named these 
methods selection strategy of rules. The problem of selection strategy lies in the 
difficulty of establishing the optimal rule. To solve this problem, several approaches 



264 Y.-C. Jiang et al. 

have been proposed, such as CMAR [1] and CAEP [6]. They perform classification 
based on a set of rules for predicting new cases. Unfortunately, those methods can just 
only solve the single label classification problem. 

The limitation of the selection strategy and the creation of single class rules is that 
some valuable information is ignored, thus leading to the knowledge hidden in data or 
the information mined through rule discovery methods can not be used effectively.  

In this paper, a novel combination strategy based on rough sets and evidence 
theory (RSETAC) is proposed for multi-class classification based on multiple 
association rules. RSETAC makes use of all the conflicting rules and determines the 
class label of a new case based on a set of matching rules. First, rules are transformed 
to be classification experts, and then evidences given by these experts are calculated 
based on rule confidences. Second, evidence weights are calculated based on rule 
supports and attribute significances from the viewpoint of RST [7]. Finally, distinct 
evidences are combined employing Yang’s rule of combination in DST [8,9] to give 
an aggregated classification. 

The remainder of this paper is organized as follows. The next section gives details 
of the RSETAC algorithm. A numerical example to highlight the procedure of 
RSETAC is included in Section 3. Conclusions are given in Section 4. 

2   RSETAC Algorithm 

2.1   Presentation of the Problem 

Suppose a data set I=(U, A∪{C}), where U is a finite set of objects, A={A1,A2,⋅⋅⋅,An} 
is a finite set of attributes, C is the class attribute, and VC={c1,c2,⋅⋅⋅,c|C|} is the finite 
set of class labels. RSETAC treats attributes in A as discrete ones because many 
discretization methods can be used to map continuous values to categorical ones. For 
any objects in I, there exists a class label ci∈VC associated with it. The aim of AC is 
to associate a new case with a class label. The AC is characterized by the following 
components [4,10]. 

(1)  A condition Pi is defined as a set of attributes together with specific attribute 
values for each attribute, denoted Pi=(<Ai1,ai1>,<Ai2,ai2>,⋅⋅⋅,<Aim,aim>). 

(2)  A rule ri maps a condition to a specific class label, denoted Pi→ci. 
(3)  The actual occurrence Count(Pi) of a condition Pi is the number of rows in I 

that match Pi. The support count SupCount(ri) of rule ri is the number of rows in I that 
match Pi and have class label ci. 

(4)  The rule support and confidence of ri is defined as  

sup(ri)=SupCount(ri)/|I|,   conf (ri)=SupCount(ri)/Count(Pi), (1) 

where |I| is the number of objects in I. 

As mentioned in Section 1, to make a credible and accurate classification, we 
should discover more information from data, retain more useful rules in the procedure 
of rule discovery and handle them properly. Furthermore, a detailed and aggregated 
analysis based on multiple rules may lead to more accurate classifications. 
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RSETAC is a novel method to treat such problems. RSETAC retains conflicting 
rules, classifies new cases based on multiple correlative rules, and takes rule supports 
and the significances of criteria into account to enhance classification accuracy.  

2.2   Discovery of Conflicting Rules 

Discovery of association rule is a crucial procedure in the AC. In the past few years, 
many popular methods have been proposed to mine rules for classification, e.g. CAEP 
and CMAR. However, the majority of them discover only rules with the maximal 
confidences when rules are conflicting. This strategy decreases the complexity of 
classification while pruning some valuable information. 

Actually, we can make some improvement of the conventional methods to retain 
conflicting rules when inconsistency exists. In RSETAC, unlike the conventional 
methods which prune the rules without the maximal confidences, conflicting rules 
that pass a specified confidence threshold are all retained. The advantage of this 
strategy is that it can reduce some confusion caused by noisy and retain adequate 
information especially when the data set is inconsistent.  

To retain conflicting rules introduces another problem into the analysis, that is, 
how to deal with these conflicting rules when employing them to classify new cases. 
In the following section, we employ a DST-based method to transform the conflicting 
rules into classification experts and combine them to give an aggregated 
classification. 

2.3   Prediction of New Cases 

In the classification procedure, RSETAC employs DST to combine the classification 
results of all the matching rules. The following three questions have to be solved if 
DST is employed to build a classifier. The first question is how to get evidences from 
rules. The second issue is whether the weights of evidence sources are equal and how 
to measure them if not. The last one is to choose a proper rule of combination in DST 
to combine distinct evidences in order to get an aggregated classification.  

2.3.1   Evidence Acquisition from Conflicting Rules 
Suppose RS={r1,⋅⋅⋅,ri,⋅⋅⋅,r|RS|} is the rule set based on which classification is made. For 
any subset Ri of  RS, Ri is regarded as an expert if the three constraints are satisfied: 

(1) },,,,{
1 mj iiiiiii cPcPcPR →→→= , where 1≤i1,⋅⋅⋅,ij,⋅⋅⋅,im≤|C|.  

(2)  To any other rules (Pj→c)∈{RS\Ri}, Pj≠Pi. 
(3)  

mj iii ccc ≠≠≠≠
1

. 

That is to say, Ri includes all of the rules which have the same condition but 
distinct class labels. For convenience, we rewrite Ri as follows: 

),(),(),(:
11 mmjj iiiiiiii confcconfcconfcPR ∨∨∨∨→ . (2) 

where 
jiconf is the rule confidence of 

jii cP → . 

Therefore, we can get the basic probability assignment given by expert Ri: 
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},,,,,{
1 θconfconfconfconfm

mj iiii = . 
(3) 

where confθ is the belief degree assigned to the ignorance by expert Ri: 

∑
=

−=→=
m

j
iiii jm

confccCPconfconf
1
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1θ

 (4) 

In this way, a set of classification expert {R1,⋅⋅⋅,Ri,⋅⋅⋅,Rj,⋅⋅⋅,Rt} can be obtained from 
data set I, which satisfies the following constraints:  

(1)  RSR
t

i
i =

=
∪

1

. 

(2)  Ri∩Rj=∅, for any i and j, i≠j. 

That is to say, we can not only utilize all the rules obtained by rule discovery 
methods but also transform them into t independent evidence sources.  

2.3.2   Evidence Weight 
In RST, different attributes have different significances and support our decision 
distinctly. Obviously, decisions based on the observation of crucial attributes are more 
reliable and accurate than those based on the observation of nonsignificant criteria. 

Suppose that the condition of rule Ri consists of Bi, Bi={Ai1,Ai2,⋅⋅⋅,Aim}, RSETAC 
defines the weight of Ri associated with attribute significance from the viewpoint of 
VPRS model [11] as follows: 
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where )(CA
βγ  is the dependency of C on A and )(C

iBA
βγ −  is the dependency of C on A 

without Bi and β is the admissible classification error in the VPRS model[11].  
In addition, RSETAC also takes a horizontal measure, rule support, into account to 

obtain a more credible measure of evidence weight. Intuitively, if a rule has a high 
frequency in data, it would be assigned a large weight and the rule has a high 
possibility to be useful.  

Suppose supi is the set of supports associated with rules in Ri,  

supi={supi1,supi2,⋅⋅⋅,supip}. (6) 

To obtain the maximal support of expert Ri, RSETAC defines the maximal number 
in supi as the weight of Ri associated with rule support: 

impsi=max{supi1,supi2,⋅⋅⋅,supip}. (7) 

If a body of evidence is supported by the majority of cases in data and its condition 
consists of important attributes, it should be considered of more importance and the 
resulting classification should be given more credibility. Therefore, RSETAC defines 
the integrated weight of evidence as follows: 
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where i=1,2,⋅⋅⋅,t, α and γ are two adjustable parameters that control the relative 
influence of  impai and  impsi. 

2.3.3   Evidence Combination and Classification 
In this section, Yang’s rule of combination [12] in DST is used to combine the 
matching evidences of a new case. The final classification will be made according to 
the aggregated bpas. 

In the framework of DST, a crucial role is played by Dempster’s rule which has 
several interesting properties such as commutativity and associativity [9]. However, 
counterintuitive results may be obtained by Dempster’s rule when evidences conflict 
[13]. To avoid counterintuitive results and get more accurate classification, RSETAC 
employs Yang’s rule of combination to combine evidences obtained from rules. 

For a new case o, suppose its matching expert set is RSo={Ro1,⋅⋅⋅,Roi,⋅⋅⋅,Ros}, the 
corresponding evidence weights and bpas are Wo={ωo1,⋅⋅⋅,ωoi,⋅⋅⋅,ωos} and 
Mo={mo1,⋅⋅⋅,moi,⋅⋅⋅,mos},  respectively.  

Trivially, if RSo is not conflicting, i.e. all the rules matching o have the same class 
label, RSETAC just assigns that class label to o. 

If s=1, there is only one expert Ro1 can be employed to classify o, RSETAC assigns 
the class label with the maximal confidence to o. 

If s≥2, i.e. RSo consists of more than one conflicting experts, RSETAC combines 
two evidences every time to get an aggregated classification. The steps of the pairwise 
combination, similar to the Yang’s rule of combination [12], are as follows. 

First, the set of evidence weights Wo is transformed to be W′={ω′1,⋅⋅⋅,ω′i,⋅⋅⋅,ω′s},  
by the following unitary function: 

sis
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Second, with the new weights of evidence W′ and multiple evidences in Mo, we can 
get the integrative belief assignment, denoted m′s, employing the combination steps of 
Yang’s rule. The bpa m′s is the aggregated belief assignment of all the matching 
experts transformed from RSo.  

Third, RSETAC assigns the class label associated with the maximal belief in m′s as 
the final classification result. 

3   Numerical Example 

This numerical example employs a data set, named balance scale database, provided 
by Tim Hume to show the procedure of the proposed method [14]. The database, 
containing 625 examples, is initially generated to model psychological experiments. 
Each example is classified as one of the three class labels, having the balance scale tip 
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to the right (R), tip to the left (L), or be balanced (B). The attributes are the left weight 
(A1), the left distance (A2), the right weight (A3), and the right distance (A4). Of the 
625 cases, 500 cases are random selected to create the training set and the 125 
remained to form the testing set. Only the training set is submitted to rule generation.  

In the procedure of rule generation, the MCAR algorithm is employed to mine 
rules from the training set. To retain other classes and more useful rules, we make two 
aspects of improvement to the MCAR algorithm. First, the conflicting rules that pass 
the minimal confidence threshold are retained. Second, we use a coverage threshold 
to select training set coverage [6] in the procedure of pruning rules based on training  
 

Table 1. Experts generated by the improved MCAR algorithm. The symbol ∗  represents that 
the attribute value is not considered and the θ  represents the ignorance of each expert. 

Expert Expert 
 

ID A1 A2 A3 A4 C sup bpa 

1 * * 1 * {L,θ} 0.156 {0.7959, 0.2041} 

2 * * * 1 {L,θ} 0.164 {0.781, 0.219} 

3 * 1 * * {L,θ} 0.156 {0.78, 0.22} 

4 1 * * * {L,θ} 0.146 {0.7604, 0.2396} 

5 * * 5 * {L,θ} 0.144 {0.7273, 0.2727} 

6 5 * * * {L,θ} 0.142 {0.71, 0.29} 

7 * 5 * * {L,θ} 0.142 {0.703, 0.297} 

8 * * * 5 {L,θ} 0.142 {0.703, 0.297} 

9 4 * * * {L,θ} 0.128 {0.6214, 0.3786} 

10 * * 2 * {L,θ} 0.118 {0.6146, 0.3854} 

11 * 4 * * {L,θ} 0.122 {0.61, 0.39} 

12 * * 4 * {L,θ} 0.13 {0.6075, 0.3925} 

13 * * * 4 {L,θ} 0.118 {0.118, 0.882} 

14 * * * 2 {L,θ} 0.112 {0.112, 0.888} 

15 2 * * * {L,θ} 0.112 {0.112, 0.888} 

16 * 2 * * {L,θ} 0.11 {0.11, 0.89} 

17 * 3 * * {L,θ} 0.1 {0.5102, 0.4898} 

18 * * * 3 {L,R,θ} 0.1 {0.4158, 0.495, 0.0892} 

19 3 * * * {L,R,θ} 0.096 {0.48, 0.43, 0.09} 

20 * * 3 * {L,R,θ} 0.096 {0.43, 0.48, 0.09} 
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set coverage. In our experiment, the coverage threshold is set to be 2, the minimal 
support and confidence threshold is set to be the same as MCAR. From the training 
set, twenty classification experts are obtained using the method proposed in Section 
2.3.1. The experts transformed from the twenty three rules together with their 
supports and bpas are presented in Table 1.   

As can be seen in Table 1, there are three pairs of conflicting rules. The differences 
of confidences between the conflicting rules are not obvious enough to prune any of 
them. However, it is a pity that the rules like <A4, 3>→L, <A1, 3>→R and <A3, 3>→L 
are pruned by the conventional rule discovery methods. The degrees of belief 
assigned to the class label L and R are smaller than those of other experts, but they 
play an important role in the combination in many problems. 

The parameters that control the relative weight associated with attribute 
significance (impa) and rule support (imps) should be different with respect to 
different data sets. For the balance scale database, the relative influence of the two 
parameters (impa/imps) to the classification accuracy is shown in Fig. 1. As shown in 
Fig. 1, the larger the value of impa/imps is, the better the classification accuracy is. 
And the best classification accuracy is 0.8880 when impa/imps is larger than 5/1. This 
means that the attribute significance is more important in the measurement of 
evidence weight for the balance scale database. For the other databases, the influence 
of the relative weight may be contrary and the rule support may play a crucial role.  

For each case in the testing set, our experiment predicts the class label based on 
multiple matching experts in Table 1 employing the combination strategy proposed in 
Section 2.3.3. The best classification accuracy of our method in comparison with 
CBA, C4.5, RIPPER and MCAR is shown in Table 2. 

 

Fig. 1. Influence of the attribute significance and rule support to the classification accuracy 

Table 2. Comparison of CBA, C4.5, RIPPER, MCAR and our method. The classification 
accuracy of CBA, C4.5, RIPPER and MCAR come from [10]. 

Method CBA C4.5 RIPPER MCAR Our method 

Accuracy 0.6566 0.6432 0.7456 0.7754 0.8880 
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The results in Table 2 indicate that RSETAC outperforms the four conventional 
classification methods in terms of accuracy. There are two main reasons result in the 
high accuracy. First, RSETAC can integrate the effects of all the matching rules and 
yield more accurate classification. Second, the definition of evidence weight takes not 
only rule confidence but also rule support and attribute significance into account 
when determining the class labels of new cases. In addition, the conflicting rules, i.e. 
the last three experts in Table 1 are also important to the high classification accuracy.  

4   Conclusions 

In this paper, two challenges in associative classification were investigated: (1) 
extending to multi-class rules classification, and (2) classification based on multiple 
rules. The outcome is a new combination strategy, RSETAC, that has several 
distinguished features over other existing techniques: (1) RSETAC develops a 
strategy to deal with multi-class rules classification and transforms the conflicting 
rules to be classification experts. (2) Distinguished from the conventional methods, 
RSETAC employs all of the matching rules to determine the class label of a new case. 
The evidence theory-based method combines the classification results of all the 
matching rules and provides a collective class label. (3) RSETAC presents a new 
method to measure the weights of evidences.  

To explicate the procedure of RSETAC, a numerical example based on the balance 
scale database from UCI database was presented. The example shows that our method 
can mine and deal with multi-class rules effectively. Particularly, the combination 
method based on multiple rules gets much better classification accuracy in 
comparison with CBA, C4.5, RIPPER and MCAR.  
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Abstract. In this paper, a decision table in rough set theory is classified
into three types according to its consistency. Three parameters α (whole
certainty measure), β (whole consistency measure) and γ (whole sup-
port measure) are introduced to evaluate the performance of a decision
rule set induced from a decision table. For three types of decision tables,
the dependency of the parameters upon condition/decision granulation
is analyzed. The parameters can be used to construct an evaluation func-
tion in favor of selecting a better one from some different rule acquiring
methods for real decision problems.

Keywords: Rough set theory, decision table, decision rule, knowledge
granulation, decision evaluation.

1 Introduction

Recently, rough set theory proposed by Pawlak in [1] has become a popular
mathematical framework for pattern recognition, image processing, feature se-
lection, neuro computing, conflict analysis, decision support, data mining and
knowledge discovery process from large data sets [2-7]. For decision problems,
by various kinds of reduct techniques, a set of decision rules can be generated
from a decision table for classification or prediction [8-10].

In recent years, how to evaluate the performance of a decision rule has been
becoming a very important issue in rough set theory[11-16]. In fact, a set of
decision rules can be generated from a decision table by adopting any kind of
reduction methods. In [11], Yao proposed several evaluation criterions for deci-
sion rules such as the generality, the absolute support, the change of support
and the change of support, and so on. In [13], based on information entropy,
Düntsch suggested some uncertainty measures of a decision rule, and proposed
three criterions for model selection as well. In additional, several other measures
such as certainty measure and support measure are often used to evaluate a de-
cision rule [3, 7, 15]. However, because all of these measures are defined only for
a single decision rule, they are unsuitable for measuring the whole performance
of a rule set. Another two kinds of measures, the approximation accuracy for
decision classes and the consistency degree for a decision table [1, 16], in some
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sense, could be regarded as measures for whole performance of all decision rules
generated from a decision table. Nevertheless, the approximation accuracy and
consistency degree have some limitations. For instance, the certainty and con-
sistency of a rule set could not be well depicted by the approximation accuracy
and consistency degree when their values achieve 0. As we know, the fact that
approximation accuracy/consistency degree is equal to 0 only implies that there
is no decision rule with the certainty 1 in the decision table. So the approxima-
tion accuracy and consistency degree of a decision table cannot give elaborate
depictions of the certainty and consistency to a rule set.

This paper aims to find some criterions for evaluating the whole performance
of a set of decision rules. In Section 2, some preliminary concepts such as indis-
cernibility relation, partition, partial relation of knowledge and decision table are
briefly recalled. In Section 3, three parameters α, β and γ for evaluating a set of
rules are introduced. The dependency of the parameters upon condition/decision
granulation is analyzed. Section 4 concludes the paper.

2 Some Basic Concepts

An information system S is a pair (U, A), where U is a non-empty, finite set of
objects called the universe and A is a non-empty, finite set of attributes, such
that a : U → Va for any a ∈ A, where Va is called the domain of a.

Each non-empty subset B ⊆ A determines an indiscernibility relation RB =
{(x, y) ∈ U × U | a(x) = a(y), ∀a ∈ B}. The relation RB partitions U into some
equivalence classes U/RB = {[x]B | x ∈ U}, where [x]B = {y ∈ U | (x, y) ∈ RB}.

We define a partial relation � on the family {U/B | B ⊆ A} as follows[17]:
U/P � U/Q (or U/Q � U/P ), if and only if, for every Pi ∈ U/P , there exists
Qj ∈ U/Q such that Pi ⊆ Qj, where U/P = {P1, P2, · · · , Pm} and U/Q =
{Q1, Q2, · · · , Qn} are partitions induced by P, Q ⊆ A, respectively. In this case,
we say that Q is coarser than P , or P is finer than Q. If U/P � U/Q and
U/P �= U/Q, we say Q is strictly coarser than P (or P is strictly finer than Q),
denoted by U/P ≺ U/Q (or U/Q 
 U/P ). It is clear that U/P ≺ U/Q, if and
only if, for every X ∈ U/P , there exists Y ∈ U/Q such that X ⊆ Y , and there
exist X0 ∈ U/P , Y0 ∈ U/Q such that X0 ⊂ Y0.

A decision table is an information system S = (U, C ∪ D) with C ∩ D = Ø,
where C is called condition attribute set, and D is called decision attribute set.
If U/C � U/D, then S = (U, C ∪ D) is said to be consistent, otherwise it is
inconsistent.

Definition 1. [1,16] Let S = (U, C∪D) be a decision table, Xi ∈ U/C, Yj ∈ U/D
and Xi ∩ Yj �= Ø. By des(Xi) and des(Yj), we denote the descriptions of the
equivalence classes Xi and Yj in the decision table S. A decision rule is formally
defined as Zij : des(Xi) → des(Yj).

The certainty measure and support measure of a decision rule Zij are defined
as μ(Zij) = |Xi ∩ Yj |/|Xi|, s(Zij) = |Xi ∩ Yj |/|U |, where, by | · |, we denote the
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cardinality of a set. It is clear that the values of μ(Zij) and s(Zij) of a decision
rule Zij fall into the interval [ 1

|U| , 1].
By |Zij |, we denote the cardinality of the set Xi ∩ Yj , which is called the

support number of the rule Zij . For convenience, by a(x) (a ∈ C) and d(x)
(d ∈ D), we denote the values of the object x under the condition attribute a
and the decision attribute d, respectively.

Definition 2. Let S = (U, C∪D) be a decision table, U/C = {X1, X2, · · · , Xm},
U/D = {Y1, Y2, · · · , Yn}. A condition class Xi ∈ U/C is said to be consistent if
d(x) = d(y) for ∀x, y ∈ Xi and ∀d ∈ D; a decision class Yj ∈ U/D is said to be
converse consistent if a(x) = a(y) for ∀x, y ∈ Yj and ∀a ∈ C.

It is easy to see that a decision table S = (U, C ∪ D) is consistent if every
condition class Xi ∈ U/C is consistent.

Definition 3. Let S = (U, C∪D) be a decision table, U/C = {X1, X2, · · · , Xm},
U/D = {Y1, Y2, · · · , Yn}. S is said to be converse consistent, if every decision
class Yj ∈ U/D is converse consistent, i.e., U/D � U/C.

A decision table is called a mixed decision table if it is neither consistent nor
converse consistent.

S = (U, C ∪D) is called to be restrict consistent (restrict converse consistent)
if U/C ≺ U/D (U/D ≺ U/C).

Definition 4. [15,18] Let S = (U, A) be an information system, U/A = {R1, R2,
· · · , Rm}. The knowledge granulation of A is defined as

G(A) =
1

|U |2
m∑

i=1

|Ri|2. (1)

Consequently, G(C), G(D) and G(C∪D) are called as the condition granulation,
decision granulation and granulation of S, respectively.

3 Whole Performance Evaluation for a Rule Set

In rough set theory, several measures for a decision rule Zij : des(Xi) → des(Yj)
have been introduced in [1], such as certainty measure μ(Xi, Yj) = |Xi∩Yj |/|Xi|,
support measure s(Xi, Yj) = |Xi ∩ Yj |/|U |. However, because μ(Xi, Yj) and
s(Xi, Yj) are defined only for a single decision rule, they are unsuitable for mea-
suring the whole performance of a rule set.

In [1], the approximation accuracy of a classification is introduced by Pawlak.
Let F = {Y1, Y2, · · · , Yn} be a classification of the universe U , and C a condition
attribute set. CF = {CY1, CY2, · · · , CYn} and CF = {CY1, CY2, · · · , CYn} are
called C-lower and C-upper approximations of F , where CYi =

⋃
{x ∈ U |

[x]C ⊆ Yi ∈ F}(1 ≤ i ≤ n), CYi =
⋃

{x ∈ U | [x]C ∩ Yi �= Ø, Yi ∈ F}(1 ≤ i ≤ n).

The approximation accuracy of F by C is defined as aC(F ) =
�

Yi∈U/D |CYi|
�

Yi∈U/D |CYi| . The
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approximation accuracy expresses the percentage of possible correct decisions
when classifying objects employing the attribute set C. In a sense, aC(F ) can
be used to measure certainty of a decision table. The consistency degree of a
decision table S = (U, C ∪ D), another measure in rough set theory, is defined
as cC(D) = 1

|U|
∑n

i=1 |CYi|. The consistency degree expresses the percentage of
objects which can be correctly classified to decision classes of U/D by condition
attribute set C. In a sense, cC(D) can be used to measure the consistency of a
decision table.

Nevertheless, the certainty and consistency of a rule set could not be well
depicted by approximation accuracy and consistency degree when their values
achieve 0. Here, three new evaluation parameters α, β and γ are introduced to
solve the problem.

Definition 5. Let S = (U, C ∪ D) be a decision table, RULE = {Zij |Zij :
des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D}. The certainty measure α of S is
defined as

α(S) =
m∑

i=1

n∑

j=1

s(Zij)μ(Zij) =
m∑

i=1

n∑

j=1

|Xi ∩ Yj |2
|U ||Xi|

, (2)

where s(Zij) and μ(Zij) are the certainty measure and support measure of the
rule Zij, respectively.

Although the parameter α is defined in the context of all decision rules from a
decision table, it is also suitable to an arbitrary decision rule set as well.

Theorem 1 (Extremum). Let S = (U, C ∪ D) be a decision table, RULE =
{Zij |Zij : des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D}.

(1) For every Zij ∈ RULE, if μ(Zij) = 1, then the parameter α achieves its
maximum value 1;

(2) If m = 1 and n = |U |, then parameter α achieves its minimum value 1
|U| .

Remark. In fact, a decision table S = (U, C ∪ D) is consistent if and only if
every decision rule from S is certain, i.e., its certainty measure is equal to 1.
So, (1) of Theorem 1 shows that the parameter α achieves its maximum value 1
when S is consistent. (2) of Theorem 1 shows that α achieves its minimum value
1
|U| when we want to distinguish any two objects of U without any condition
information.

Theorem 2. Let S1 = (U, C1 ∪ D1) and S2 = (U, C2 ∪ D2) be two converse
consistent decision tables. If U/C1 = U/C2, U/D2 ≺ U/D1, then α(S1) > α(S2).

Proof. From U/C1 = U/C2 and the converse consistency of S1 and S2, it follows
that there exist Xp ∈ U/C1 and Yq ∈ U/D1 such that Yq ⊆ Xp. By U/D2 ≺
U/D1, there exist Y 1

q , Y 2
q , · · · , Y s

q ∈ U/D2 (s > 1) such that Yq =
⋃s

k=1 Y k
q .

In other words, the rule Zpq in S1 can be decomposed into a family of rules
Z1

pq, Z
2
pq, · · · , Zs

pq in S2. It is clear that |Zpq| =
∑s

k=1 |Zk
pq|. Therefore, |Zpq|2 >∑s

k=1 |Zk
pq|2. Hence, by the definition of α(S), α(S1) > α(S2).

Theorem 2 states that the certainty measure α of a converse consistent deci-
sion table decreases with its decision classes becoming finer.
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Theorem 3. Let S1 = (U, C1 ∪ D1) and S2 = (U, C2 ∪ D2) be two converse
consistent decision tables. If U/D1 = U/D2, U/C2 ≺ U/C1, then α(S1) < α(S2).

Proof. From U/C2 ≺ U/C1, there exists Xl ∈ U/C1 and an integer s > 1 such
that Xl =

⋃s
k=1 Xk

l , where Xk
l ∈ U/C2. It is clear that |Xl| =

∑s
k=1 |Xk

l |, and
therefore, 1

|Xl| < 1
|X1

l |
+ 1

|X2
l |

+ · · · + 1
|Xs

l | .

Noticing that both S1 and S2 are converse consistent, we have |Zlq| = |Zk
lq|

(k = 1, 2, · · · , s). Hence, we have that

α(S1) =
m∑

i=1

n∑
j=1

s(Zij)μ(Zij)

= 1
|U|

l−1∑
i=1

n∑
j=1

|Zij |2
|Xi| + 1

|U|
n∑

j=1

|Zlj |2
|Xl| + 1

|U|
m∑

i=l+1

n∑
j=1

|Zij |2
|Xi|

< 1
|U|

l−1∑
i=1

n∑
j=1

|Zij |2
|Xi| + 1

|U|
s∑

k=1

n∑
j=1

|Zlj |2
|Xk

l | + 1
|U|

m∑
i=l+1

n∑
j=1

|Zij |2
|Xi|

= α(S2).
Theorem 3 states that the certainty measure α of a converse consistent deci-

sion table increases with its condition classes becoming finer.

Definition 6. Let S = (U, C ∪ D) be a decision table, RULE = {Zij |Zij :
des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D}. The consistency measure β of S is
defined as

β(S) =
m∑

i=1

|Xi|
|U | [1 −

Ni∑

j=1

μ(Zij)(1 − μ(Zij))], (3)

where Ni is the number of decision rules determined by the condition class Xi,
μ(Zij) is the certainty measure of the rule Zij.

Although the parameter β is defined in the context of all decision rules from a
decision table, it is also suitable to an arbitrary decision rule set as well.

Theorem 4 (Extremum). Let S = (U, C ∪ D) be a decision table, RULE =
{Zij |Zij : des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D}.

(1) For every Zij ∈ RULE, if μ(Zij) = 1, then the parameter β achieves its
maximum value 1;

(2) For every Zij ∈ RULE, if μ(Zij) = 1
|U| , then the parameter β achieves

its minimum value 1
|U| .

It should be noted that the parameter β achieves its maximum 1 when S =
(U, C ∪ D) be a consistent decision table.

Theorem 5. Let S1 = (U, C1 ∪ D1) and S2 = (U, C2 ∪ D2) be two converse
consistent decision tables or mixed decision tables. If U/C1 = U/C2, U/D2 ≺
U/D1, then β(S1) > β(S2).

Proof. A mixed decision table S can be transformed into a converse consistent
decision table S

′
via deleting all certainty decision rules. And it is clear that
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β(S) = β(S
′
). So, we only need to prove this theorem for converse consistent

tables.
Since U/C1 = U/C2 and the converse consistency of S1 and S2, there exist

Xp ∈ U/C1 and Yq ∈ U/D1 such that Yq ⊆ Xp. By U/D2 ≺ U/D1, there exist
Y 1

q , Y 2
q , · · · , Y s

q ∈ U/D2 (s > 1) such that Yq =
⋃s

k=1 Y k
q . In other words, the

rule Zpq in S1 can be decomposed into a family of rules Z1
pq, Z

2
pq, · · · , Zs

pq in S2.
It is clear that |Zpq| =

∑s
k=1 |Zk

pq|. Hence, we have that

μ(Zpq)(1 − μ(Zpq)) = |Zpq||Xp|−|Zpq|2
|Xp|2

=
|Z1

pq+Z2
pq+···+Zs

pq||Xp|−|Z1
pq+Z2

pq+···+Zs
pq|2

|Xp|2

<
|Z1

pq+Z2
pq+···+Zs

pq||Xp|−(|Z1
pq|2+|Z2

pq|2+···+|Zs
pq|2)

|Xp|2

=
|Z1

pq||Xp|−|Z1
pq|2

|Xp|2 +
|Z2

pq||Xp|−|Z2
pq|2

|Xp|2 + · · · +
|Zs

pq||Xp|−|Zs
pq|2

|Xp|2

=
s∑

k=1
μ(Zk

pq)(1 − μ(Zk
pq)).

Then, we can obtain that

β(S1) =
m∑

i=1

|Xi|
|U| [1 −

Ni∑
j=1

μ(Zij)(1 − μ(Zij))]

=
p−1∑
i=1

|Xi|
|U| [1 −

Ni∑
j=1

μ(Zij)(1 − μ(Zij))] + |Xp|
|U| [1 −

Np∑
j=1

μ(Zpj)(1−

μ(Zpj))] +
m∑

i=p+1

|Xi|
|U| [1 −

Ni∑
j=1

μ(Zij)(1 − μ(Zij))]

>
p−1∑
i=1

|Xi|
|U| [1 −

Ni∑
j=1

μ(Zij)(1 − μ(Zij))] +
m∑

i=p+1

|Xi|
|U| [1 −

Ni∑
j=1

μ(Zij)(1−

μ(Zij))]+
|Xp|
|U| [1−

s∑
k=1

μ(Zk
pq)(1−μ(Zk

pq))−
Ni∑

j=1,j �=q

μ(Zpj)(1−μ(Zpj))]

= β(S2).
Theorem 5 states that the consistency measure β of a mixed (or converse

consistent) decision table decreases with its decision classes becoming finer.

Theorem 6. Let S1 = (U, C1 ∪ D1) and S2 = (U, C2 ∪ D2) be two converse
consistent decision tables or mixed decision tables. If U/D1 = U/D2, U/C2 ≺
U/C1, then β(S1) < β(S2).

Proof. Similar to the proof of Theorem 5, it can be proved.
Theorem 6 states that the consistency measure β of a mixed (or converse

consistent) decision table increases with its condition classes becoming finer.

Definition 7. Let S = (U, C ∪ D) be a decision table, RULE = {Zij |Zij :
des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D}. The support measure γ of S is
defined as

γ(S) =
m∑

i=1

n∑

j=1

s2(Zij) =
m∑

i=1

n∑

j=1

|Xi ∩ Yj |2
|U |2 , (4)

where s(Zij) is the support measure of the rule Zij.



278 Y. Qian and J. Liang

Although the parameter γ is defined in the context of all decision rules from a
decision table, it is suitable to an arbitrary decision rule set as well.

Theorem 7 (Extremum). Let S = (U, C ∪ D) be a decision table, RULE =
{Zij |Zij : des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D}.

(1) If m = n = 1, then the parameter γ achieves its maximum value 1;
(2) If m = |U | or n = |U |, then the parameter γ achieves its minimum value

1
|U| .

Theorem 8. Let S1 = (U, C1 ∪ D1) and S2 = (U, C2 ∪ D2) be two decision
tables, then γ(S1) < γ(S2), if and only if, G(C1 ∪ D1) < G(C2 ∪ D2).

Proof. Suppose U/(C ∪ D) = {Xi ∩ Yj | Xi ∩ Yj �= Ø, Xi ∈ U/C1, Yj ∈ U/D},
RULE = {Zij |Zij : Xi → Yj , Xi ∈ U/C, Yj ∈ U/D}. From Definition 4 and
s(Zij) = |Xi∩Yj|

|U| , it follows that

G(C ∪ D) = 1
|U|2

m∑
i=1

n∑
j=1

|Xi ∩ Yj |2

=
m∑

i=1

n∑
j=1

( |Xi∩Yj|
|U| )2 =

m∑
i=1

n∑
j=1

s2(Zij)

= γ(S).
Therefore, γ(S1) < γ(S2) if and only if G(C1 ∪ D1) < G(C2 ∪ D2).
Theorem 8 states that the support measure γ of a decision table increases

with the granulation of the decision table becoming bigger.

Theorem 9. Let S1 = (U, C1 ∪ D1) and S2 = (U, C2 ∪ D2) be two converse
consistent decision tables. If U/C1 = U/C2, U/D1 ≺ U/D2, then γ(S1) < γ(S2).

Proof. Similar to Theorem 5, it can be proved.
Theorem 9 states that the support measure γ of a decision table decreases

with its decision classes becoming finer.

4 Conclusions

In this paper, the limitations of the traditional measures are exemplified. Three
parameters α, β and γ are introduced to measure the certainty, consistency and
support of a rule set obtained from a decision table, respectively. For three types
of decision tables (consistent, converse consistent and mixed), the dependency
of parameters α, β and γ upon condition/decision granulation is analyzed.
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Abstract. A framework of Non-deterministic Information Systems
(NISs) is known well for handling information incompleteness in Deter-
ministic Information Systems (DISs). Apriori algorithm for the stan-
dard tables or DISs is also known as an algorithm to generate rules,
which are characterized by criteria, support and accuracy. This pa-
per extends Apriori algorithm in DISs to Apriori algorithm in NISs.
This extended Apriori algorithm employs criteria, minimum support
and minimum accuracy in NISs, and generates rules under the worst
condition. A software tool is also implemented.

Keywords: Rough sets, Non-deterministic information, Apriori algo-
rithm, Association rules.

1 Introduction

Rough set theory is seen as a mathematical foundation of soft computing. This
theory usually handles tables with deterministic information. Many applications
of this theory to rule generation, machine learning and knowledge discovery have
been presented [1,2].

We follow rule generation in DISs [1,2], and we cope with rule generation
in NISs. NISs were proposed by Pawlak, Or�lowska and Lipski in order to
handle information incompleteness in DISs, like null values, unknown values,
missing values. From the beginning of the research on incomplete information,
NISs have been recognized to be the most important framework for handling
information incompleteness [3,4].

In [3], Lipski showed a question-answering system besides an axiomatization
of logic. Or�lowska established rough set analysis for incomplete information [4],
and Grzymala-Busse developed a system named LERS, which depends upon
LEM1 and LEM2 algorithms [5]. Stefanowski and Tsoukias also defined non

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 280–288, 2007.
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symmetric similarity relations and valued tolerance relations for analysing in-
complete information [6], and recently Kryszkiewicz proposed a framework of
rules in incomplete information systems [7]. As far as authors know, these are
the most important work for handling incomplete information, especially missing
values. We have also coped with several issues related to NISs, and proposed
a framework Rough Non-deterministic Information Analysis (RNIA) [8].
Apriori algorithm is also known as an algorithm to generate rules in DISs [9],
and we have extended this algorithm to a new algorithm in NISs [10].

This paper enhances the contents in [10], and refers to an implementation of
programs. In reality, we give more comprehensive proofs for two propositions,
then we refer to the prototype system and the computational complexity.

2 Basic Definitions and An Illustrative Example

2.1 Basic Definitions

A Deterministic Information System (DIS) is a quadruplet (OB, AT, {V ALA|
A ∈ AT }, f). Let us consider two sets CON ⊆ AT which we call condition
attributes and DEC ⊆ AT which we call decision attributes. An object x ∈ OB
is consistent (with any distinct object y ∈ OB), if f(x, A)=f(y, A) for every
A ∈ CON implies f(x, A)=f(y, A) for every A ∈ DEC.

A Non-deterministic Information System (NIS) is also a quadruplet (OB,
AT, {V ALA|A ∈ AT }, g), where g : OB × AT → P (∪A∈AT V ALA) (a power set
of ∪A∈AT V ALA). Every set g(x, A) is interpreted as that there is an actual
value in this set but this value is not known. For a NIS=(OB, AT, {V ALA| A ∈
AT }, g) and a set ATR ⊆ AT , we name a DIS=(OB, ATR, {V ALA|A ∈ ATR},
h) satisfying h(x, A) ∈ g(x, A) a derived DIS (for ATR) from NIS.

For a set ATR={A1, · · · , An} ⊆ AT and every x ∈ OB, let PT (x, ATR)
denote the Cartesian product g(x, A1)×· · ·×g(x, An). We name every element a
possible tuple (for ATR) of x. For ζ=(ζ1, · · ·, ζn) ∈ PT (x, ATR), let [ATR, ζ]
denote a formula

∧
1≤i≤n[Ai, ζi]. Let PI(x, CON, DEC) (x ∈ OB) denote a

set {[CON, ζ] ⇒ [DEC, η]|ζ ∈ PT (x, CON), η ∈ PT (x, DEC)}. We name an
element of PI(x, CON, DEC) a possible implication (from CON to DEC) of
x. If PI(x, CON, DEC) is a singleton set {τ}, we say τ (from x) is definite.
Otherwise we say τ (from x) is indefinite.

2.2 An Illustrative Example

Let us consider NIS1 in Table 1. In NIS1, there are four derived DISs, which
are in Table 2. Let us focus on a possible implication τ : [Color, blue] ⇒ [Size, big]
from object 3. This τ is definite, and it is possible to calculate support and
accuracy values of τ in every derived DIS. In reality, both support and accuracy
values are minimum in the derived DIS2. We name such values minimum support
(minsupp(τ)) and minimum accuracy (minacc(τ)), and minsupp(τ)= 1/3 and
minacc(τ)=1/2 hold in NIS1. Both support and accuracy values are maximum
in the derived DIS3. Similarly, maxsupp(τ)=1 and maxacc(τ)=1 hold.
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Table 1. A table of NIS1

OB Color Size

1 {red, blue} {big}
2 {blue} {big, small}
3 {blue} {big}

Table 2. Four derived DISs from NIS1. Tables mean DIS1 to DIS4 sequentially.

OB Color Size

1 red big

2 blue big

3 blue big

OB Color Size

1 red big

2 blue small

3 blue big

OB Color Size

1 blue big

2 blue big

3 blue big

OB Color Size

1 blue big

2 blue small

3 blue big

3 Calculation of Minimum Support and Minimum
Accuracy for Possible Implications

Let us consider how to calculate minsupp(τ) and minacc(τ) for τ : [CON, ζ] ⇒
[DEC, η] from object x. Every object y, which has descriptors [CON, ζ] or
[DEC, η], influences the values minsupp(τ) and minacc(τ). Table 3 shows all
possible implications with descriptors [CON, ζ] or [DEC, η]. For example in
CASE 1, we can obtain just τ from y. However in CASE 2, we can obtain two
kinds of possible implications (C2.1) and (C2.2), which depend upon the selec-
tion of a value in g(y, DEC). This selection specifies some derived DISs from a
NIS.

Table 3. Seven cases of possible implications (related to [CON, ζ] ⇒ [DEC, η] from
object x, η �= η′, ζ �= ζ′) in NISs

Condition : CON Decision : DEC Possible Implications

CASE1 g(y,CON) = {ζ} g(y,DEC) = {η} [CON, ζ] ⇒ [DEC, η](C1.1)

CASE2 g(y,CON) = {ζ} η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η](C2.1)
[CON, ζ] ⇒ [DEC, η′](C2.2)

CASE3 g(y,CON) = {ζ} η �∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η′](C3.1)

CASE4 ζ ∈ g(y,CON) g(y,DEC) = {η} [CON, ζ] ⇒ [DEC, η](C4.1)
[CON, ζ′] ⇒ [DEC, η](C4.2)

CASE5 ζ ∈ g(y,CON) η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η](C5.1)
[CON, ζ] ⇒ [DEC, η′](C5.2)
[CON, ζ′] ⇒ [DEC, η](C5.3)
[CON, ζ′] ⇒ [DEC, η′](C5.4)

CASE6 ζ ∈ g(y,CON) η �∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η′](C6.1)
[CON, ζ′] ⇒ [DEC, η′](C6.2)

CASE7 ζ �∈ g(y,CON) Any [CON, ζ′] ⇒ Decision(C7.1)
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Definition 1. For every descriptor [A, ζ] (A ∈ AT , ζ ∈ V ALA) and every
[ATR, val](= [{A1, · · · , Ak}, (ζ1, · · · , ζk)]) in a NIS, we define the following.
(1) Descinf([A, ζ])={x ∈ OB| g(x, A)={ζ}}.
(2) Descinf([ATR, val])=Descinf(∧i[Ai, ζi])=∩iDescinf([Ai, ζi]).
(3) Descsup([A, ζ])={x ∈ OB| ζ ∈ g(x, A)}.
(4) Descsup([ATR, val])=Descsup(∧i[Ai, ζi])=∩iDescsup([Ai, ζi]).

Clearly, Descinf([CON, ζ]) is a set of objects belonging to either CASE 1, 2
or 3 in Table 3, and Descsup([CON, ζ]) is a set belonging to either CASE 1 to
CASE 6. Descsup([CON, ζ]) − Descinf([CON, ζ]) is a set belonging to either
CASE 4, 5 or 6.

Proposition 1. Let us employ possible implications (C2.2), (C4.2), either (C5.2),
(C5.3) or (C5.4) in Table 3. In derived DISs with this selection, the support
value of τ : [CON, ζ] ⇒ [DEC, η] from x is minimum. If τ is definite, namely τ
belongs to CASE 1,

minsupp(τ)=|Descinf([CON, ζ]) ∩ Descinf([DEC, η])|/|OB|.
If τ is indefinite, namely τ does not belong to CASE 1,

minsupp(τ)=(|Descinf([CON, ζ]) ∩ Descinf([DEC, η])| + 1)/|OB|.

Proof. This selection of attribute values in a NIS excludes every [CON, ζ] ⇒
[DEC, η] from object y except CASE 1. In reality, we remove (C2.1), (C4.1) and
(C5.1) from Table 3. Therefore, the support value of τ is minimum in a derived
DIS with such selection of attribute values. If τ is definite, object x is in a set
Descinf([CON, ζ])∩Descinf([DEC, η]). Otherwise, τ belongs to either (C2.1),
(C4.1) or (C5.1). It is necessary to obtain one τ from either (C2.1), (C4.1) or
(C5.1), thus it is necessary to add 1 to the numerator.

Proposition 2. Let us employ possible implications (C2.2), (C4.2), (C5.2),
(C6.1) in Table 3. In derived DISs with this selection, the accuracy value of τ :
[CON, ζ] ⇒ [DEC, η] from x is minimum. Let OUTACC be [Descsup([CON ,
ζ])−Descinf([CON, ζ])]−Descinf([DEC, η]). If τ is definite, namely τ belongs
to CASE 1,

minacc(τ)= |Descinf([CON,ζ])∩Descinf([DEC,η])|
|Descinf([CON,ζ])|+|OUTACC| .

If τ is indefinite, namely τ does not belong to CASE 1,
minacc(τ)= |Descinf([CON,ζ])∩Descinf([DEC,η])|+1

|Descinf([CON,ζ])∪{x}|+|OUTACC−{x}| .

Proof. Since m/n ≤ (m + k)/(n + k) (0 ≤ m ≤ n, n 
= 0, k > 0) holds,
we excludes every [CON, ζ] ⇒ [DEC, η] from object y except CASE 1, and
we include possible implications [CON, ζ] ⇒ [DEC, η′], which increase the de-
nominator. The accuracy value of τ is minimum in a derived DIS with such
selection of attribute values. The set OUTACC defines objects in either CASE
5 or CASE 6. As for CASE 4 and CASE 7, we can omit them for minacc(τ). If τ
is definite, namely τ belongs to CASE 1, the numerator is |Descinf([CON, ζ])∩
Descinf([DEC, η])| and the denominator is |Descinf([CON, ζ])|+|OUTACC|.
If τ is indefinite, τ belongs to either (C2.1), (C4.1) or (C5.1). In every cases,
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the denominator is |Descinf([CON, ζ]) ∪ {x}| + |OUTACC − {x}|, and the
numerator is |Descinf([CON, ζ]) ∩ Descinf([DEC, η])|+1.

Theorem 3. For a NIS, let us consider a possible implication τ :[CON, ζ] ⇒
[DEC, η] ∈ PI(x, CON, DEC). Let M={ψ|ψ is a derived DIS from NIS, and
support(τ) is minimum in ψ}. Then, accuracy(τ) is minimum in some ψ ∈ M .

Proof. The selection of possible implications in Proposition 2 is a special case
of the selection of possible implications in Proposition 1.

4 A Definition of Rule Generation in NISs

The following problem was solved by employing Apriori algorithm in [9].

Problem 1. [9] In every standard table or every DIS, find every implication τ ,
whose accuracy(τ) is maximum under the condition support(τ) ≥ α for a fixed
value α (0 < α ≤ 1).

This paper extends Problem 1 to Problem 2 in NISs.

Problem 2. (Rule generation based on Min-Max Strategy). In every
NIS, find every possible implication τ , whose minacc(τ) is maximum under the
condition minsupp(τ) ≥ α for a fixed value α (0 < α ≤ 1).

According to Theorem 3, there exist at least one ψ ∈ {ψ|ψ is a derived DIS
from NIS, and support(τ) is minimum in ψ}, which makes minacc(τ) minimum.
Therefore, Problem 2 is well-defined. Intuitively, Problem 2 specifies rules in the
worst condition.

Generally, τ depends upon
∏

x∈OB,A∈AT |g(x, A)| number of derived DISs

and condition attributes CON (CON ∈ 2AT−DEC). Therefore, it will be hard
to pick up every possible implication sequentially. For solving this computational
issue, we focus on descriptors [A, ζ] (A ∈ AT , ζ ∈ V ALA). The number of all
descriptors is usually much smaller than the number of all possible implications.

5 A Real Execution by Implemented Programs in NISs

This section gives real execution of rule generation in NIS2, and we show the
overview of the rule generation.

% ./nis apriori

CAN(1)={[1,2],[1,4],[2,1],[2,3],[3,3],[3,4],[3,5],[4,3],[4,5],
[5,2],[5,5],[6,5],[7,2],[7,4],[8,1],[8,3]} (16)

CAN(2)={[8,1][1,4](0.600),[8,1][4,5](0.750),[8,1][5,2](0.750)} (3)

CAN(3)={[8,1][1,4][4,5](0.750),[8,1][4,5][5,2](1.000)} (2)

[4,5]&[5,2]=>[8,1](minsupp=0.300,minacc=1.000)(INDEF)(from 5)

EXEC TIME=0.000(sec)

The above is the real rule generation(a set of decision attribute:{H}, thresh-
old value α=0.3) by nis apriori command. In reality, we obtained a possible
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Table 4. A Table of NIS2, which we generated by using a random number program

OB A B C D E F G H

1 {3} {1, 3, 4} {3} {2} {5} {5} {2, 4} {3}
2 {2} {3, 4} {1, 3, 4} {4} {1, 2} {2, 4, 5} {2} {2}
3 {4, 5} {5} {1, 5} {5} {2} {5} {1, 2, 5} {1}
4 {1} {3} {4} {3} {1, 2, 3} {1} {2, 5} {1, 2}
5 {4} {1} {2, 3, 5} {5} {2, 3, 4} {1, 5} {4} {1}
6 {4} {1} {5} {1} {4} {2, 4, 5} {2} {1, 2, 3}
7 {2} {4} {3} {4} {3} {2, 4, 5} {4} {1, 2, 3}
8 {4} {5} {4} {2, 3, 5} {5} {3} {1, 2, 3} {1, 2, 3}
9 {2} {3} {5} {3} {1, 3, 5} {4} {2} {3}
10 {4} {2} {1} {5} {2} {4, 5} {3} {1}

implication [D, 5] ∧ [E, 2] ⇒ [H, 1] (minsupp=0.300,minacc=1.000) from object
5. We identify every attribute with its ordinal number in the programs. We show
each procedure in every step.

An Overview of Apriori Algorithm in NISs

(STEP 1: Analysis of the condition)
Since α=0.3, an implication τ must occur more than 3 (=|OB| × 0.3) times
in NIS2. According to Proposition 1, if τ : [CON, ζ] ⇒ [DEC, η] is defi-
nite, |Descinf([CON, ζ]) ∩ Descinf([DEC, η])| ≥ 3. If τ is indefinite, |Descinf
([CON , ζ]) ∩ Descinf([DEC, η])| ≥ 2.

(STEP 2: Generation of Meaningful descriptors, CAN(1))
For every Descinf([A, ζ]) and Descsup([A, ζ]), we pick up descriptors satisfying
either (1) or (2) in the following;
(1) |Descinf([A, ζ])| ≥ 3,
(2) |Descinf([A, ζ])| ≥ 2 and Descsup([A, ζ]) − Descinf([A, ζ]) 
= ∅.
In NIS2, there are 38 descriptors, and 16 descriptors are picked up (CAN(1)
in the real execution). As for a descriptor [1, 3], Descsup([1, 3])=Descinf([1, 3])
={1} holds. Therefore, τ with [1, 3] does not occur more than 3 times, and we
omit such descriptors.

(STEP 3: Combinations of Meaningful descriptors, CAN(2))
Since condition attributes are from A to G and the decision attribute is H , we
examine Descinf([CON, valCON ] ∧ [H, valH ]) and Descsup([CON, valCON ] ∧
[H, valH ]) (CON ∈ {A, B, C, D, E, F, G}). We first pick up the meaningful com-
binations [CON, valCON ]∧ [H, valH ] of descriptors in CAN(1) according to the
same way in STEP 2. Then, we apply Proposition 2 to the meaningful combina-
tions, and we obtain minacc(τ ′) (τ ′ : [CON, valCON ] ⇒ [H, valH ]). The value
of minacc(τ ′) is also displayed in CAN(2) in the real execution.
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(STEP 4: Recursive Steps for Meaningful descriptors, CAN(3))
In order to increase minacc, we recursively employ STEP 3. Since minacc([8, 1]
∧[4, 5]∧[5, 2])=1, we know that an implication [D, 5]∧[E, 2] ⇒ [H, 1] from object
5 satisfies the condition for the rule generation.

(STEP 5: Closing the Steps)
The number of applying recursive steps is less than the number of condition
attributes, becasue just a descriptor is employed for τ in every attribute. There-
fore, the above steps certainly terminate. In the real execution, CAN(4)=∅ is
derived.

The following is other real execution (a set of decision attribute:{H}, threshold
value α=0.2).

% ./nis apriori

CAN(1)={[1,2],[1,4],[2,1],[2,3],[2,4],[2,5],[3,1],[3,3],[3,4],[3,5],
[4,2],[4,3],[4,4],[4,5],[5,2],[5,3],[5,4],[5,5],[6,1],[6,4],[6,5],

[7,2],[7,3],[7,4],[8,1],[8,2],[8,3]} (27)

CAN(2)={[8,1][1,4](0.500),[8,1][2,1](0.667),[8,1][2,5](1.000),
[8,1][3,1](0.667),[8,1][4,5](0.750),[8,1][5,2](0.500),[8,1][6,5](0.333),

[8,1][7,3](1.000),[8,1][7,4](0.667),[8,2][1,2](0.667),[8,2][4,4](1.000),

: : :

[5,5]=>[8,3](minsupp=0.200,minacc=1.000)(INDEF)(from 8,9)

CAN(3)={[8,1][1,4][2,1](1.000),[8,1][1,4][3,1](1.000),[8,1][1,4][4,5](0.667),
[8,1][1,4][5,2](0.667),[8,1][3,1][4,5](1.000),[8,1][3,1][5,2](0.667),

[8,1][4,5][5,2](0.667),[8,1][4,5][6,5](0.667),[8,1][5,2][6,5](0.500),

[8,3][1,2][6,4](0.667),[8,3][2,3][7,2](0.500),[8,3][3,3][6,5](0.500),

[8,3][3,5][6,4](1.000),[8,3][3,5][7,2](0.667),[8,3][4,3][7,2](0.667),

[8,3][6,4][7,2](0.667)} (16)

[1,4]&[2,1]=>[8,1](minsupp=0.200,minacc=1.000)(INDEF)(from 6)

[1,4]&[3,1]=>[8,1](minsupp=0.200,minacc=1.000)(INDEF)(from 3)

[3,1]&[4,5]=>[8,1](minsupp=0.200,minacc=1.000)(INDEF)(from 3)

[3,5]&[6,4]=>[8,3](minsupp=0.200,minacc=1.000)(INDEF)(from 6)

CAN(4)={[8,1][1,4][4,5][5,2](0.667),[8,1][4,5][5,2][6,5](0.667)} (2)

EXEC TIME=0.016(sec)

6 Computational Issues on Apriori Algorithm in NISs

Let us consider some computational issues for every STEP 2 to STEP 4.

(STEP 2)
We first prepare two arrays DescinfA,val[i] and DescsupA,val[i] for every val ∈
V ALA (A ∈ AT ). For every object in OB, we apply (A) or (B) in the following;
(A) If |g(x, A)|={val}, we assign x to DescinfA,val[i].
(B) If val ∈ g(x, A), we assign x to DescsupA,val[i].
Then, we examine conditions (1) and (2) in STEP 2. We include every descriptor
satisfying (1) or (2) into CAN(1). For every A ∈ AT , this procedure is applied,
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and we can obtain meaningful descriptors with Descinf and Descsup informa-
tion. The complexity depends upon |OB| × |AT |.

(STEP 3)
Let us suppose CAN(1) be ∪A∈AT {[A, valA]|A ∈ AT }=∪A∈AT CAN(1, A). For a
decision attribute DEC ∈ AT , we produce [A, valA]∧ [DEC, valDEC ] ([A, valA]
∈ CAN(1), [DEC, valDEC ] ∈ CAN(1)). The number of such combinations is∑

A∈AT−{DEC} |CAN(1, A)|× |CAN(1, DEC)| (∗1). For every combination, we
examine conditions (1) and (2) in STEP 2. Since Descinf([A, valA] ∧ [DEC,
valDEC ])=Descinf([A, valA])∩Descinf([DEC, valDEC ]) holds, and both Desc-
inf([A, valA]) and Descinf([DEC, valDEC ]) are obtained in STEP2, it is pos-
sible to obtain Descinf([A, valA] ∧ [DEC, valDEC ]) by checking |Descinf([A,
valA])|×|Descinf([DEC, valDEC ])| (∗2) cases. As for Descsup([A, valA]∧[DEC,
valDEC ]), we also check |Descsup([A, valA])| × |Descsup([DEC, valDEC ])| (∗3)
cases. In this way, we generate CAN(2), and the complexity to generate CAN(2)
depends upon (∗1) × ((∗2) + (∗3)). According to Proposition 2, we can easily
calculate minacc([A, valA] ⇒ [DEC, valDEC ]) by using Descinf and Descsup.

(STEP 4)
In STEP 4, we recursively employ STEP 3. Let us suppose CAN(n)={[CON, ζ]∧
[DEC, valDEC ]}. For every element in CAN(n), we generate a new combina-
tion [A, valA] ∧ [CON, ζ] ∧ [DEC, valDEC ] ([A, valA] ∈ CAN(1), A 
∈ CON),
and we examine conditions (1) and (2) in STEP 2. By repeating this procedure,
we generate CAN(n + 1).

In every step, the number of derived DISs does not appear. Therefore, this
algorithm does not depend upon the number of derived DISs. The most time-
consuming part is to generate combinations of descriptors. In our algorithms,
two sets Descinf and Descsup are employed, and minsupp() and minacc() are
calculated by using Descinf and Descsup. Other part is almost the same as the
Apriori algorithm [9]. Therefore, the complexity of this algorithm is almost the
same as the original Apriori algorithm.

7 Concluding Remarks

We proposed a framework of Apriori based rule generation in NISs, and clarified
some theoretical properties. This algorithm does not depend upon the number of
derived DISs from a NIS. We also gave comprehensive proofs for Proposition
1, 2 and Theorem 3. The program nis apriori is realized on Windows PC with
Pentium 4 (3.4GHz), and consists of about 1300 lines in C.
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Abstract. This paper presents the results of our experiments on a data
set describing neonatal infection. We used two main tools: the MLEM2
algorithm of rule induction and BeliefSEEKER system for generation of
Bayesian nets and rule sets. Both systems are based on rough set theory.
Our main objective was to compare the quality of diagnosis of cases from
two testing data sets: with an additional attribute called PCT and with-
out this attribute. The PCT attribute was computed using constructive
induction. The best results were associated with the rule set induced by
the MLEM2 algorithm and testing data set enhanced by constructive
induction.

1 Introduction

Severe intrauterine bacterial infection in neonates remains a major diagnostic
problem because of non-specific clinical signs and low sensitivity of the rou-
tine diagnostic tests such as white blood cell (WBC) count, absolute neutrophil
count, thrombocyte count, C-reactive protein (CRP) level, blood cultures and
chest X-rays. These tests do not enable the diagnosis decisively. Furthermore,
blood cultures (the gold standard for diagnosis) are often negative due to low
blood volumes drawn and single cultures as well as the prenatal management of
antibiotics [19].
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The diagnosis of intrauterine bacterial infection plays an important role in
prompt introduction of antibiotic on one hand and avoiding an overtreatment
and toxicity on the other [12,18].

A prospective study was conducted in 2000–2001 in the Department of Ob-
stetrics and Perinatology, Pomeranian Medical University, Szczecin, Poland. A
total 187 newborns participated in the study. The study protocol included an
evaluation of the level of procalcitonin (PCT), a propeptide of the hormone calci-
tonin. PCT is a novel marker of the inflammatory response to infection [13,15].
A neonatal infection was diagnosed on the basis of three or more of the fol-
lowing categories of clinical signs: respiratory, cardiac, neurological, circulatory,
systemic, and gastrointestinal [20]. The final diagnosis was frequently delayed
because of delayed appearance of clinical symptoms. It is very important to find
a method that will allow diagnosis in a short period of time after birth. Rough
set theory and/or other mathematical tools may assist in this goal.

Two groups of patients have been identified: I - non-infected (n = 155) in-
cluding full-term (n = 117) and preterm (n = 38) neonates and II - infected (n
= 32) including full-term (n = 8) and preterm (n = 24) ones. Each newborn was
characterized by the following 13 attributes:

– procalcitonin (PCT) concentration,
– premature rupture of membranes (PROM),
– way of delivery (WoD), i.e., Caesarian section or natural,
– signs of mother’s infection,
– amniotic fluid color,
– Apgar score,
– white blood cell count (WBC),
– presence of respiratory distress syndrome (RDS),
– gender,
– gestational age (Hbd),
– birth weight,
– smoking during pregnancy,
– C-reactive protein (CRP) concentration

The decision was a presence of bacterial infection (group II) or not (group I).
The above set of 187 cases was a training set. Additionally, 30 patients born
in 2005 and 2006 were included as a testing set. There were 12 infected and 18
non-infected newborns. All of them were characterized by the same attributes
except the PCT concentration, which is not a routine test in the neonatal ward
of the Pomeranian Medical University.

Our main objective was to study how a testing data set with an additional
attribute called PCT compares with the same data set without PCT. This addi-
tional attribute was computed for every testing case by rules induced from the
training data set, using a technique called constructive induction.

2 MLEM2

One of the data mining algorithms used for our experiments was the MLEM2
(Modified Learning from Examples Module, version 2) rule induction module of
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the LERS (Learning from Examples based on Rough Sets) data mining system,
[2,3,4,5].

In the first step of processing the input data file, the data mining system
LERS checks if the input data file is consistent (i.e., if the file does not contain
conflicting examples). If the input data file is inconsistent, LERS computes lower
and upper approximations [16,17] of all concepts. Rules induced from the lower
approximation of the concept certainly describe the concept, so they are called
certain [2]. On the other hand, rules induced from the upper approximation of
the concept describe the concept only possibly (or plausibly), so they are called
possible [2].

The MLEM2 algorithm is based on its predecessor called LEM2 (Learning
from Examples Module, version 2). LEM2 learns the smallest set of minimal
rules, describing the concept. LEM2 explores the search space of attribute-value
pairs. Its input data file is a lower or upper approximation of a concept, so its
input data file is always consistent. In general, LEM2 computes a local covering
and then converts it into a rule set. We will quote a few definitions to describe
main ideas of the LEM2 algorithm.

The main notion of the LEM2 algorithm is an attribute-value pair block. For
an attribute-value pair (a, v) = t, a block of t, denoted by [t], is a set of all
cases from U such that for attribute a have value v. For a set T of attribute-
value pairs, the intersection of blocks for all t from T will be denoted by [T ].
Let B be a nonempty lower or upper approximation of a concept represented by
a decision-value pair (d, w). Set B depends on a set T of attribute-value pairs
t = (a, v) if and only if

∅ �= [T ] =
⋂

t∈T

[t] ⊆ B.

Set T is a minimal complex of B if and only if B depends on T and no proper
subset T ′ of T exists such that B depends on T ′. Let T be a nonempty collection
of nonempty sets of attribute-value pairs. Then T is a local covering of B if and
only if the following conditions are satisfied:

(1) each member T of T is a minimal complex of B,
(2)

⋃
t∈T [T ] = B, and

(3) T is minimal, i.e., T has the smallest possible number of members.

In selection for an attribute-value pair t, a future rule condition, the LEM2
algorithm provides the highest priority to t that is the most relevant to a goal
G, G being initially equal to B. If a tie occurs, LEM2 selects an attribute-value
pair t with the smallest cardinality of [t]. For details of the LEM2 algorithm see,
e.g., [3,4].

MLEM2 is a modified version of the algorithm LEM2. The original algorithm
LEM2 needs discretization, a preprocessing, to deal with numerical attributes.
MLEM2 recognizes integer and real numbers as values of attributes, and la-
bels such attributes as numerical. For numerical attributes MLEM2 computes
blocks in a different way than for symbolic attributes. First, it sorts all values
of a numerical attribute. Then it computes cutpoints as averages for any two
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consecutive values of the sorted list. For each cutpoint c MLEM2 creates two
blocks, the first block contains all cases for which values of the numerical at-
tribute are smaller than c, the second block contains remaining cases, i.e., all
cases for which values of the numerical attribute are larger than c. The search
space of MLEM2 is the set of all blocks computed this way, together with blocks
defined by symbolic attributes. Then MLEM2 combines attribute-value pairs rel-
evant to a concept and creates rules describing the concept. In addition, MLEM2
handles missing attribute values during rule induction [5]. The previous version
of MLEM2, LEM2, induced certain rules from incomplete decision tables with
missing attribute values interpreted as lost. Recently, MLEM2 was further ex-
tended to induce both certain and possible rules from a decision table with some
missing attribute values being lost and some missing attribute values being ”do
not care” conditions, while attributes may be numerical.

3 Classification System

The classification system of LERS is a modification of the bucket brigade algo-
rithm [1,10]. The decision to which concept a case belongs is made on the basis
of three factors: strength, specificity, and support. They are defined as follows:
strength is the total number of cases correctly classified by the rule during train-
ing. Specificity is the total number of attribute-value pairs on the left-hand side
of the rule. The matching rules with a larger number of attribute-value pairs
are considered more specific. The third factor, support, is defined as the sum of
scores of all matching rules from the concept, where the score of the rule is the
product of its strength and specificity. The concept C for which the support,
i.e., the following expression

∑

matching rules R describing C

Strength(R) ∗ Specificity(R)

is the largest is the winner and the case is classified as being a member of C.
In the classification system of LERS, if complete matching is impossible, all

partially matching rules are identified. These are rules with at least one attribute-
value pair matching the corresponding attribute-value pair of a case. For any
partially matching rule R, the additional factor, called Matching factor (R), is
computed. Matching factor (R) is defined as the ratio of the number of matched
attribute-value pairs of R with a case to the total number of attribute-value
pairs of R. In partial matching, the concept C for which the following expression
is the largest

∑

partially matching
rules R describing C

Matching factor(R) ∗ Strength(R) ∗ Specificity(R)

is the winner and the case is classified as being a member of C.
Every rule induced by LERS is preceded by three numbers: specificity, strength,

and the rule domain size (the total number of training cases matching the left-hand
side of the rule).
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4 BeliefSEEKER

In our experiments on the neonatal data set we used also a system called Belief-
SEEKER. This system, also based on rough set theory, generates belief networks
and rule sets. Initially, BeliefSEEKER, similarly to LERS, computes lower and
upper approximations for every concept from the original data set. If the original
data set is consistent, the lower approximation of every concept is equal to the
upper approximation of the same concept, and BeliefSEEKER generates certain
belief networks. When the original data set is inconsistent, BeliefSEEKER uses
the upper approximations for every concept to generate possible belief networks.
In the generation of belief networks, BeliefSEEKER uses the Dirichlet process
model [8,11], with a scaling parameter α > 0. BeliefSEEKER outputs an optimal
belief network for any value of the parameter α.

BeliefSEEKER generates not only belief networks but also rule sets. A thresh-
old called certainty factor, denoted by CF, is used in BeliefSEEKER to produce
rules with prescribed certainty. The lower CF, the more rules are induced.

Additionally, BeliefSEEKER is equipped with its own classification scheme
used for classification of unseen cases as well as validation. For more details on
BeliefSEEKER, see, e.g., [7,9,14,21].

5 Experiments

First we determined the significance of all 13 attributes using a typical rough-
set setup. The original training data set, with all 13 attributes, was inconsistent,
with 10 conflicting cases. To determine attribute significance, every attribute, one
attribute at a time, was removed from the data set and the number of conflicting
cases for a data set with 12 remaining attributes was recorded. The larger number
of conflicting cases caused by an attribute removal the greater significance of the
attribute. As follows from Table 1, the most significant attribute is PCT.

Table 1. Significance of attributes

Attributes Number of Attributes Number of

conflicting cases conflicting cases

All 10 All but WBC 11

All but PCT 32 All but RDS 10

All but PROM 14 All but Gender 24

All but WoD 20 All but Hbd 29

All but Mother’s infection 10 All but Birth weight 11

All but Amniotic fluid color 25 All but Smoking 10

All but Agpar score 10 All but CRP 12

Then rule sets were induced, using MLEM2 and BeliefSEEKER, from two
data sets: the original training data set and a data set with all attributes but
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PCT. These rule sets were used for classification of 30 cases from the testing data
set. Results of our experiments are presented in Tables 2 and 3. Note that the
original data set was imbalanced (32 cases of infected neonates and 155 cases of
non-infected). Therefore we used a standard technique of changing rule strength
[6], i.e., multiplying the rule strength for every rule describing infected neonates
(the smaller class) by some number, in our case this number was equal to ten.
Results are presented in Tables 2 and 3 as well.

Table 2. Results of experiments, testing data without PCT

Sensitivity Specificity Accuracy

MLEM2 58.3% 44.4% 50%

MLEM2 with

strength multiplier 50% 33.3% 56.7%

BeliefSEEKER 100% 16.7% 50%

Table 3. Results of experiments, testing data with PCT

Sensitivity Specificity Accuracy

MLEM2 50% 77.8% 66.7%

MLEM2 with

strength multiplier 100% 50% 70%

BeliefSEEKER 75% 11.1% 36.7%

Note that testing cases were characterized by only 12 attributes. Values of
the PCT attribute for these 30 cases were not recorded at all. We computed
values of PCT for testing cases using an additional, third rule set, induced by
MLEM2 from the original training data set by removing the original decision
and the inducing a rule set for PCT from a training data set with the remaining
12 attributes. This technique is called constructive induction. Then the original
testing data set, with 12 attributes, was enhanced by adding the thirteenth
attribute (PCT).

Additionally, results of ten-fold cross validation for the training data set and
LEM2 algorithm were conducted. Results are: an error rate equal to 14.44% for
the data set with PCT and an error rate equal to 16.04% for the data set without
PCT.

Induced rules were analyzed by domain experts. Most of the rules were consis-
tent with diagnosticians’ expertise, but some rules were surprising. An example
of such unexpected rule, in which–relatively–many patients were properly clas-
sified by quite general attributes is
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3, 9, 9
(Weight, 1..3.5) & (WoD, 1.5..2) & (PROM, 0..1.5) -> (Decision, 1),

with the following interpretation: if a neonate’s weight is smaller than 2500 g,
there was a sudden Caesarian section and PROM did not place, or took place
not more than twelve hours before birth, then the neonate is infected. Note that
this rule’s specificity is 3, its strength is 9, and this rule matches 9 cases from
the data set.

6 Conclusions

As follows from Table 1, the attribute PCT is the most significant attribute in
our training data set. The best results (100% sensitivity and the best accuracy
= 70%) was accomplished using constructive induction, i.e., by adding to the
original testing data set a new attribute computed from remaining 12 attributes.
Differences in experimental results between MLEM2 and BeliefSEEKER are
negligible, both systems may reach the level of 100% sensitivity. MLEM2 better
works for data with PCT, on the other hand, BeliefSEEKER was able to produce
100% sensitivity for data without PCT.

Finally, due to our results, diagnostician discovered some unexpected regular-
ities, in the form of rules, hidden in the original training data set.
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Abstract. In the paper, two families of lazy classification algorithms of
polynomial time complexity are considered. These algorithms are based
on ordinary and inhibitory rules, but the direct generation of rules is not
required. Instead of this, the considered algorithms extract efficiently for
a new object some information on the set of rules which is next used by
a decision-making procedure.
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1 Introduction

In the paper, the following classification problem is considered: for a given deci-
sion table T and a new object v generate a value of the decision attribute on v
using values of conditional attributes on v.

To this end, we divide the decision table T into a number of information
systems Si, i ∈ D, where D is the set of values of the decision attribute in T .
For i ∈ D, the information system Si contains only objects (rows) of T with the
value of the decision attribute equal to i.

For each information system Si and a given object v, it is constructed (using
polynomial-time algorithm) the so called characteristic table. For any object u
from Si and for any attribute a from Si, the characteristic table contains the
entry encoding information if there exist a rule which (i) is true for each object
from Si; (ii) is realizable for u, (iii) is not true for v, and (iv) has the attribute
a on the right hand side. Based on the characteristic table the decision on the
“degree” to which v belongs to Si is made for any i, and a decision i with the
maximal “degree” is selected.
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Note that in [8] for classifying new objects it was proposed to use rules defined
by conditional attributes in different decision classes.

In this paper, we consider both ordinary and inhibitory rules of the following
form:

a1(x) = b1 ∧ . . . ∧ at(x) = bt ⇒ ak(x) = bk,

a1(x) = b1 ∧ . . . ∧ at(x) = bt ⇒ ak(x) �= bk,

respectively.
Using these two kinds of rules and different evaluation functions a “degree”

to which v belongs to Si is computed by two families of classification algorithms.
In the literature, one can find a number of papers which are based on the

analogous ideas: instead of construction of huge sets of rules it is possible to
extract some information on such sets using algorithms having polynomial time
complexity.

In [2,3,4] it is considered an approach based on decision rules (with decision
attribute in the right hand side). These rules are obtained from the whole decision
table T . The considered algorithms find for a new object v and any decision i
the number of objects u from the information system Si such that there exists
a decision rule r satisfying the following conditions: (i) r is true for the decision
table T , (ii) r is realizable for u and v, and (iii) r has the equality d(x) = i on
the right hand side, where d is the decision attribute.

This approach was generalized by A. Wojna [9] to the case of decision tables
with not only nominal but also numerical attributes.

Note that such algorithms can be considered as a kind of lazy learning algo-
rithms [1].

2 Characteristic Tables

2.1 Information Systems

Let S = (U, A) be an information system, where U = {u1, . . . , un} is a finite non-
empty set of objects and A = {a1, . . . , am} is a finite nonempty set of attributes
(functions defined on U). We assume that for each ui ∈ U and each aj ∈ A
the value aj(ui) belongs to ω, where ω = {0, 1, 2, . . .} is the set of nonnegative
integers.

We also assume that the information system S = (U, A) is given by a tabular
representation, i.e., a table with m columns and n rows. Columns of the table are
labeled by attributes a1, . . . , am. At the intersection of i-th row and j-th column
the value aj(ui) is included. For i = 1, . . . , n we identify any object ui ∈ U with
the tuple (a1(ui), . . . , am(ui)), i.e., the i-th row of the tabular representation of
the information system S.

The set U(S) = ωm is called the universe for the information system S.
Besides objects from U we consider also objects from U(S) \ U . For any object
(tuple) v ∈ U(S) and any attribute aj ∈ A the value aj(v) is equal to j-th integer
in v.
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2.2 Ordinary Characteristic Tables

Let us consider a rule

aj1(x) = b1 ∧ . . . ∧ ajt(x) = bt ⇒ ak(x) = bk, (1)

where t ≥ 0, aj1 , . . . , ajt , ak ∈ A, b1, , . . . , bt, bk ∈ ω, and numbers j1, . . . , jt, k
are pairwise different. Such rules will be called ordinary rules. The rule (1) will
be called realizable for an object u ∈ U(S) if aj1(u) = b1, . . . , ajt(u) = bt. The
rule (1) will be called true for an object u ∈ U(S) if ak(u) = bk or (1) is not
realizable for u. The rule (1) will be called true for S if it is true for any object
from U . The rule (1) will be called realizable for S if it is realizable for at least
one object from U . Denote by Ord(S) the set of all ordinary rules each of which
is true for S and realizable for S.

Let ui ∈ U , v ∈ U(S), ak ∈ A and ak(ui) �= ak(v). We say that a rule (1) from
Ord(S) contradicts v relative to ui and ak (or, (ui, ak)-contradicts v, for short)
if (1) is realizable for ui but is not true for v. Our aim is to recognize for given
objects ui ∈ U and v ∈ U(S), and given attribute ak such that ak(ui) �= ak(v) if
there exist a rule from Ord(S) which (ui, ak)-contradicts v.

Let
M(ui, v) = {aj : aj ∈ A, aj(ui) = aj(v)},

and

P (ui, v, ak) = {ak(u) : u ∈ U, aj(u) = aj(v) for any aj ∈ M(ui, v)}.

Note that |P (ui, v, ak)| ≥ 1.

Proposition 1. Let S = (U, A) be an information system, ui ∈ U , v ∈ U(S),
ak ∈ A and ak(ui) �= ak(v). Then, in Ord(S) there exists a rule (ui, ak)-
contradicting v if and only if |P (ui, v, ak)| = 1.

Proof. Let |P (ui, v, ak)| = 1 and P (ui, v, ak) = {b}. In this case, the rule

∧

aj∈M(ui,v)

aj(x) = aj(v) ⇒ ak(x) = b, (2)

belongs to Ord(S), is realizable for ui, and is not true for v, since ak(v) �=
ak(ui) = b. Therefore, (2) is a rule from Ord(S), which (ui, ak)-contradicts v.

Let us assume that there exists a rule (1) from Ord(S) (ui, ak)-contradicting v.
Since (1) is realizable for ui and is not true for v, we have aj1 , . . . , ajt ∈ M(ui, v).
Also (1) is true for S. Hence, the rule

∧

aj∈M(ui,v)

aj(x) = aj(v) ⇒ ak(x) = bk

is true for S. Therefore, P (ui, v, ak) = {bk} and |P (ui, v, ak)| = 1. ��
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From Proposition 1 it follows that there exists polynomial algorithm recognizing,
for a given information system S = (U, A), given objects ui ∈ U and v ∈ U(S),
and a given attribute ak ∈ A such that ak(ui) �= ak(v), if there exist a rule from
Ord(S) (ui, ak)-contradicting v.

This algorithm constructs the set M(ui, v) and the set P (ui, v, ak). The con-
sidered rule exists if and only if |P (ui, v, ak)| = 1.

We also use the notion of ordinary characteristic table O(S, v), where v ∈
U(S). This is a table with m columns and n rows. The entries of this table are
binary (i.e., from {0, 1}). The number 0 is at the intersection of i-th row and
k-th column if and only if ak(ui) �= ak(v) and there exists a rule from Ord(S)
(ui, ak)-contradicting v.

From Proposition 1 it follows that there exists a polynomial algorithm which
for a given information system S = (U, A) and a given object v ∈ U(S) constructs
the ordinary characteristic table O(S, v).

2.3 Inhibitory Characteristic Tables

Let us consider a rule

aj1(x) = b1 ∧ . . . ∧ ajt(x) = bt ⇒ ak(x) �= bk, (3)

where t ≥ 0, aj1 , . . . , ajt , ak ∈ A, b1, , . . . , bt, bk ∈ ω, and numbers j1, . . . , jt, k
are pairwise different. Such rules are called inhibitory rules. The rule (3) will be
called realizable for an object u ∈ U(S) if aj1(u) = b1, . . . , ajt(u) = bt. The rule
(3) will be called true for an object u ∈ U(S) if ak(u) �= bk or (3) is not realizable
for u. The rule (3) will be called true for S if it is true for any object from U .
The rule (3) will be called realizable for S if it is realizable for at least one object
from U . Denote by Inh(S) the set of all inhibitory rules each of which is true
for S and realizable for S.

Let ui ∈ U , v ∈ U(S), ak ∈ A and ak(ui) �= ak(v). We say that a rule (3) from
Inh(S) contradicts v relative to the object ui and the attribute ak (or (ui, ak)-
contradicts v, for short) if (3) is realizable for ui but is not true for v. Our aim is
to recognize for given objects ui ∈ U and v ∈ U(S), and given attribute ak such
that ak(ui) �= ak(v) if there exist a rule from Inh(S) (ui, ak)-contradicting v.

Proposition 2. Let S = (U, A) be an information system, ui ∈ U , v ∈ U(S),
ak ∈ A and ak(ui) �= ak(v). Then in Inh(S) there is a rule (ui, ak)-contradicting
v if and only if ak(v) /∈ P (ui, v, ak).

Proof. Let ak(v) /∈ P (ui, v, ak). In this case, the rule

∧

aj∈M(ui,v)

aj(x) = aj(v) ⇒ ak(x) �= ak(v), (4)

belongs to Inh(S), is realizable for ui, and is not true for v. Therefore, (4) is a
rule from Inh(S) (ui, ak)-contradicting v.
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Let us assume that there exists a rule (3) from Inh(S), (ui, ak)-contradicting
v. In particular, it means that ak(v) = bk. Since (3) is realizable for ui and is
not true for v, we have aj1 , . . . , ajt ∈ M(ui, v). Since (3) is true for S, the rule

∧

aj∈M(ui,v)

aj(x) = aj(v) ⇒ ak(x) �= bk

is true for S. Therefore, ak(v) /∈ P (ui, v, ak). ��

From Proposition 2 it follows that there exists polynomial algorithm recognizing
for a given information system S = (U, A), given objects ui ∈ U and v ∈ U(S),
and a given attribute ak ∈ A such that ak(ui) �= ak(v) if there exist a rule from
Inh(S) (ui, ak)-contradicting v.

This algorithm constructs the set M(ui, v) and the set P (ui, v, ak). The con-
sidered rule exists if and only if ak(v) /∈ P (ui, v, ak).

In the sequel, we use the notion of inhibitory characteristic table I(S, v), where
v ∈ U(S). This is a table with m columns and n rows. The entries of this table are
binary. The number 0 is at the intersection of i-th row and k-th column if and only
if ak(ui) �= ak(v) and there exists a rule from Inh(S) (ui, ak)-contradicting v.

From Proposition 2 it follows that there exists a polynomial algorithm which
for a given information system S = (U, A) and a given object v ∈ U(S) constructs
the inhibitory characteristic table I(S, v).

2.4 Evaluation Functions

Let us denote by T the set of binary tables, i.e., tables with entries from {0, 1}
and let us consider a partial order 	 on T . Let Q1, Q2 ∈ T . Then Q1 	 Q2 if
and only if Q1 = Q2 or Q1 can be obtained from Q2 by changing some entries
from 1 to 0.

An evaluation function is an arbitrary function W : T → [0, 1] such that
W (Q1) ≤ W (Q2) for any Q1, Q2 ∈ T , Q1 	 Q2. Let us consider three examples
of evaluation functions W1, W2 and Wα

3 , 0 < α ≤ 1. Let Q be a table from T
with m columns and n rows. Let L1(Q) be equal to the number of 1 in Q, L2(Q)
be equal to the number of columns in Q filled by 1 only, and Lα

3 (Q) is defined
as the number of columns in Q with at least α · 100% entries equal to 1. Then

W1(Q) =
L1(Q)
mn

, W2(Q) =
L2(Q)

m
, and Wα

3 (Q) =
Lα

3 (Q)
m

.

It is clear that W2 = W 1
3 . Let S = (U, A) be an information system and v ∈

U(S). Note that if v ∈ U then W1(O(S, v)) = W2(O(S, v)) = Wα
3 (O(S, v)) = 1

and W1(I(S, v)) = W2(I(S, v)) = Wα
3 (I(S, v)) = 1 for any α (0 < α ≤ 1).

3 Algorithms of Classification

A decision table T is a finite table filled by nonnegative integers. Each column of
this table is labeled by a conditional attribute. Rows of the table are interpreted
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as tuples of values of conditional attributes on some objects. Each row is labeled
by a nonnegative integer, which is interpreted as the value of decision attribute.
Let T contain m columns labeled by conditional attributes a1, . . . , am. The set
U(T ) = ωm will be called the universe for the decision table T . For each object
(tuple) v ∈ U(T ) integers in v are interpreted as values of attributes a1, . . . , am

for this object.
We consider the following classification problem: for any object v ∈ U(T ) it

is required to compute a value of decision attribute on v. To this end, we use
O-classification algorithms and I-classification algorithms based on the ordinary
characteristic table and the inhibitory characteristic table.

Let D be the set of values of decision attribute. For each i ∈ D, let us denote
by Si the information system which tabular representation consists of all rows
of T , that are labeled by the decision i. Let W be an evaluation function.

O-algorithm. For a given object v and i ∈ D we construct the ordinary char-
acteristic table O(Si, v). Next, for each i ∈ D we find the value of the evaluation
function W for O(Si, v). For each i ∈ D the value W (O(Si, v)) is interpreted
as the “degree” to which v belongs to Si. As the value of decision attribute for
v we choose i ∈ D such that W (O(Si, v)) has the maximal value. If more than
one such i exists then we choose the minimal i for which W (O(Si, v)) has the
maximal value.

I-algorithm. For a given object v and i ∈ D we construct the inhibitory char-
acteristic table I(Si, v). Next, for each i ∈ D we find the value of the evaluation
function W for I(Si, v). For each i ∈ D the value W (I(Si, v)) is interpreted as
the “degree” to which v belongs to Si. As the value of decision attribute for v
we choose i ∈ D such that W (I(Si, v)) has the maximal value. If more than
one such i exists then we choose the minimal i for which W (I(Si, v)) has the
maximal value.

4 Results of Experiments

We have performed experiments with following algorithms: O-algorithm with
the evaluation functions W1, W2 and Wα

3 , and I-algorithm with the evaluation
functions W1, W2 and Wα

3 . To evaluate error rate of an algorithm on a decision
table we use either train-and-test method or cross-validation method.

The following decision tables from [6] were used in our experiments: monk1
(6 conditional attributes, 124 objects in training set, 432 objects in testing set),
monk2 (6 conditional attributes, 169 objects in training set, 432 objects in testing
set), monk3 (6 conditional attributes, 122 objects in training set, 432 objects
in testing set), lymphography (18 conditional attributes, 148 objects, 10-fold
cross-validation), diabetes (8 conditional attributes, 768 objects, 12-fold cross-
validation, attributes are discretized by an algorithm from RSES2 [7]), breast-
cancer (9 conditional attributes, 286 objects, 10-fold cross-validation), primary-
tumor (17 conditional attributes, 339 objects, 10-fold cross-validation, missing
values are filled by an algorithm from RSES2).

Table 1 contains results of experiments (error rates) for O-algorithm and
I-algorithm with the evaluation functions W1 and W2, and for each of the
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Table 1. Results of experiments with evaluation functions W1 and W2

Decision table O-alg., W1 O-alg., W2 I-alg., W1 I-alg., W2 err. rates [3]

monk1 0.292 0.443 0.114 0.496 0.000–0.240

monk2 0.260 0.311 0.255 0.341 0.000–0.430

monk3 0.267 0.325 0.119 0.322 0.000–0.160

lymphography 0.272 0.922 0.215 0.922 0.157–0.380

diabetes 0.348 0.421 0.320 0.455 0.224–0.335

breast-cancer 0.240 0.261 0.233 0.268 0.220–0.490

primary-tumor 0.634 0.840 0.634 0.846 0.550–0.790

average err. rate 0.330 0.503 0.270 0.521 0.164–0.404

considered tables. The last row contains average error rates. The last column
contains some known results – the best and the worst error rates for algorithms
compared in the survey [3].

The obtained results show that the evaluation function W1 is noticeably better
than the evaluation function W2, and I-algorithm with the evaluation function
W1 is better than O-algorithm with the evaluation function W1. The last result
follows from the fact that the inhibitory rules have much higher chance to have
larger support in the decision tables than the ordinary rules.

The outputs returned by I-algorithm with the evaluation function W1 for each
of decision tables are comparable with the results reported in [3], but are worse
than the best results mentioned in [3].

Table 2 contains results of experiments (error rates) for two types of algo-
rithms: O-algorithm with the evaluation function Wα

3 , and I-algorithm with the
evaluation function Wα

3 , where α ∈ {0.50, 0.55, . . . , 0.95, 1.00}. For each decision
table and for algorithms of each type the best result (with the minimal error
rate) and the corresponding α to this result are presented in the table. The last
row contains average error rates. The last column contains some known results
– the best and the worst error rates for algorithms discussed in [3].

The obtained results show that the use of the parameterized evaluation func-
tions Wα

3 , where α ∈ {0.50, 0.55, . . . , 0.95, 1.00}, makes it possible to improve

Table 2. Results of experiments with evaluation functions W α
3

Decision table O-alg., W α
3 α I-alg., W α

3 α err. rates [3]

monk1 0.172 0.95 0.195 0.85 0.000–0.240

monk2 0.301 0.95 0.283 0.95 0.000–0.430

monk3 0.325 1.00 0.044 0.65 0.000–0.160

lymphography 0.293 0.55 0.272 0.65 0.157–0.380

diabetes 0.421 1.00 0.351 0.95 0.224–0.335

breast-cancer 0.229 0.80 0.225 0.70 0.220–0.490

primary-tumor 0.658 0.75 0.655 0.70 0.550–0.790

average err. rate 0.343 0.289 0.164–0.404
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the performance of I-algorithm with the evaluation function W1 for tables monk3
and breast-cancer.

In experiments the DMES system [5] was used.

5 Conclusions

In the paper, two families of lazy classification algorithms are considered which
are based on the evaluation of the number of types of true rules which give us
“negative” information about new objects. In the further investigations we are
planning to consider also the number of types of true rules which give us “posi-
tive” information about new objects. Also we are planning to consider more wide
parametric families of evaluation functions which will allow to learn classification
algorithms.
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Abstract. Constructing associative classifier is to use the technique of mining 
association rules to extract attribute-value pairs that are associated with class 
labels. Since too many such kinds of associations may be generated however, 
the existing algorithms to finding associations are usually ineffective. It is well 
known that rough sets theory can be used to select reducts of attributes that 
represent the original data set. In this paper we present an approach of 
combining the rough set theory, the association rules mining technique, and the 
covering method to construct classification rules. With a given decision table, 
the rough set theory is first used to find all reducts of condition attributes of the 
decision table. Then an adapted Apriori algorithm to mining association rules is 
used to find a set of associative classifications from each reduct. And third, all 
association classification rules are ranked according to their importance, 
support, and confidence and selected in sequence to build a classifier with high 
accuracy. An example illustrates how this approach works.  

Keywords: Rough set, association rule, associative classifier, rule coverage. 

1   Introduction 

Constructing an efficient and accurate classifier from a large data set is an important 
topic in data mining and machine learning community. The task of building a 
classifier is to find a small set of classification rules that can well cover the training 
data set and accurately predict future instances. However, since real-application data 
sets may contain many attributes to describe data instances, most classifier building 
algorithms only work well on small data sets. Fortunately, most large data sets contain 
many redundant or noise attributes that not only degrade the efficiency of classifier 
building algorithms but also decrease the accuracy of classifiers that are built upon 
them. In order to reduce the number of attributes, especially removing these 
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redundant and noise attributes, the rough sets theory is commonly used to select 
reducts of attributes that can represent all original attributes.  Rough set theory [15] 
assumes that the given data set is a decision table that consists of condition attributes 
and decision attributes. A reduct of the decision table is a subset of condition 
attributes that can represent the whole data set. Although finding all reducts or a 
minimum reduce is NP-hard [16], researchers have been devoted to develop efficient 
approaches of generating approximately minimum or pseudo-minimum reduct [6], 
[13], [14], [18]. Most reduct generation algorithms are designed to extract important 
condition attributes from a decision table. Since classification data sets are usually a 
special format of decision tables where decision attributes are class labels, the rough 
set theory can also be adapted to find classifiers. 

Mining association rules in large databases has been extensively studied since 1993 
when the algorithm Apriori was developed [1], and many efficient algorithms have 
been proposed to deal with various problems encountered in real-life applications [2], 
[5], [7], [10]. One of the main problems for association rule generation is that the 
number of rules generated is generally quite large, thus rule templates or constrained 
rule patterns have been introduced to guide the algorithm execution and integrated 
into the rule interestingness measures. A special template of constrained association 
rules is the form of classification rules where the right-side of association rules is a 
class label. Some efforts have been made to apply algorithms of mining association 
rules in seeking this kind of classification rules, usually called class association rules 
or associative classification rules [3], [4], [9], [11]. To build an associative classifier 
with a small number of classification rules, the associative classification rules 
generated in such a way should be measured and selected to have a maximum 
coverage of original data set with high accuracy. 

In this paper we present an approach of combining rough set theory [14], [15], 
techniques of mining class association rules [9], [11]., the rule importance 
measurement in [8], and the covering method of Michalski [12] to build classifiers. 
The method consists of four steps with a given decision table. First, the rough set 
theory is used to find all reducts of condition attributes of the decision table [14]; 
second, An adapted Apriori algorithm of mining association rules [11] is applied to 
find a set of associative classification rules from each reduct; third, these rules are 
measured with the rule importance [8]; and fourth, all association classification rules 
are ranked according to their importance, support, and confidence and selected in 
sequence to cover the given data set maximally with the highest accuracy [12].  

The rest of the paper is organized as follows. The related work will be summarized 
and analyzed in the next section. Our approach will be presented and the algorithm 
will be described in Section 3 and an example is illustrated in Section 4. Section 5 is 
the discussion and conclusion. 

2   Related Work 

Rough sets theory was first introduced by Pawlak [15] in the 1980’s and applied in 
knowledge discovery systems to identify and remove redundant variables, and to 
classify imprecise and incomplete information. A reduct of a decision table is a subset 
of condition attributes that suffice to define the decision attributes. More than one 
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reduct for each decision table may exist. The intersection of all the possible reducts is 
called the core, which represents the most important information of the original data 
set. Finding all reducts for a decision table is NP-hard [16] unfortunately, therefore 
approximation algorithms have been proposed and developed to build reducts from a 
decision table either top-down or bottom-up [18]. Some packages like ROSETTA 
[14] have been implemented to support data mining, including a variety of reduct 
generation algorithms.  

Association rule mining has been extensively studied in the field since the original 
Apriori algorithm was proposed by Agrawal et al. in 1993 [1], and more and more 
improved and extended algorithms have been developed [2], [4], [7], [10]. Basically, 
the task of mining association rules is to find all relationships among items in a 
transactional database that satisfy some minimum support and minimum confidence 
constraints. One main drawback of traditional algorithms of mining association rules 
is that too many rules will be generated where most of them are trivial, spurious, and 
even useless. This is because there is no mining target predefined, and the rule 
generation is a blind-search [1]. In order to overcome this problem, some constraints 
have been enforced on the format of association rules, such as the rule template [7] 
where a rule pattern is predefined before the algorithm executes and only those rules 
that match the template will be discovered. A special rule template has been studied to 
constrain the association rules as classification rules where the right-side of rules must 
be a class label [3], [9], [11]. This rule template is called class association rule or 
associative classification rule. With this template, Liu, Hsu, and Ma [11] propose an 
approach to constructing a classifier, which consists of two steps. First the Apriori 
algorithm is adapted to find all class association rules with predetermined minimum 
support and threshold. In the second step, all class association rules are sorted in 
terms of their confidence and support, and are selected in sequence to find a small set 
of rules that has the lowest classification error. The small set of class association rules 
selected in this fashion forms an associative classifier.  

Since classification analysis is independent from association mining, one must 
convert each training instance of classification to a set of items that is represented as 
an attribute-value pair in order to apply the adapted Apriori algorithm of discovering 
association rules. Even though the rule template is exploited in generating class 
association rules, the number of resulting rules is still prohibitive, especially in large 
databases or decision tables with many different values for each attribute. To reduce 
the number of possible attribute-value pairs, Szczuka [17] proposes a method to 
generate reducts from the original data set using rough sets theory, and then construct 
from the reducts generated classification rules with a rule-based system and neural 
networks. Li and Cercone [8] introduce another method of using rough set theory to 
evaluate important association rules. Association rules are generated from a set of 
reducts of original decision table, and importance of these association rules is defined 
according to their occurrence in the set of reducts. A new decision table is constructed 
with association rules being considered as condition attributes and the decision 
attributes being the same as the original decision attributes. They claim that a reduct 
of such a decision table (actually a reduct of association rules) represents the essential 
and the most important rules that fully describe the decision. Both methods in [8] and 
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[17], however, have a fatal problem that keeping the original decision attributes does 
not guarantee the new decision table is consistent with the original decision table. 

Michalski [12] presents a covering method to construct and select classification 
rules in terms of their coverage of the training instances. For each class, it finds the 
best characterization rule for the class and removes those training instances that are 
covered by the rule. An instance is covered by a rule if it satisfies the conditions of 
the rule and has the same class label as the rule. The procedure is then recursively 
applied to the remaining instances in the class until all training instances are covered 
by at lease one classification rule induced from the class. However, the best rules 
constructed and selected this way are local to the class from which the rules are 
induced.  

3   Our Approach 

In this section we present our approach to constructing associative classifiers from a 
decision table. The framework of this approach is a combination of three strategies 
that are described in the previous section: rough set theory, association rules mining, 
and covering method. The four steps of our approach can be described as follows:  
Step 1: Generating all attribute reducts of the decision table by using existing reduct 
finding algorithms such as Genetic Reduct generation algorithm in ROSETTA [14] 
that can find all reducts. 

Step 2: For each reduct, the adapted Apriori algorithm presented by Liu, Hsu, and Ma 
[11] is used to mine a set of class association rules with each being attached a support 
and confidence that are greater than or equal to the predetermined thresholds. The 
support threshold and confidence threshold must be carefully specified for this special 
template of class association rules. Some considerations should be made. On one 
hand, low confidence threshold may degrade performance of the classifier since most 
classification rules should have very high confidence otherwise the classifier induced 
will have very low classification accuracy, for example, Bayardo [4] uses 90% as the 
confidence threshold in the experiment. On the other hand, high support threshold 
may eliminate important rules especially for unbalanced set of training instances since 
some rules with low support are necessary to cover the original decision table. This is 
why Li and Cercone [8] as well as Liu, Hsu, and Ma [11] use 1% as the support 
threshold in their experiments. 

Step 3: Class association rules generated by the adapted Apriori algorithm from all 
reducts of the decision table are ranked in terms of their importance, confidence, and 
support. We take the importance definition of class association rules defined by Li 
and Cercone [8], and restate the definition as follows: 

Definition 1: (Rule Importance) If a rule is generated more frequently from different 
reducts of the original decision table, we say this rule is more important than those 
rules generated less frequently. The rule importance is quantitatively defined as 
follows: Assume a class association rule R is generated from M reducts of the 
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original decision table, and N is the total number of reducts of the original decision 
table, then the importance of R is: Importance(R) = M/N. 

A class association rule is generated from a reduct of the original decision table if all 
the attributes of the attribute-value pairs occurring in the antecedence of the rule are 
contained by the reduct. The intuition behind the rule importance is that each reduct 
contains the most representative and important condition attributes of a decision table. 

One can easily verify the following properties of the rule importance: 

Property 1: For any class association rule R generated in Step 2: 
0 < Importance(R) ≤ 1. 

Property 2: If a class association rule R generated in Step 2 only contains core 
attributes, then Importance(R) = 1, since core attributes are contained by all reducts 
of condition attributes of the original decision table [15]. 

Step 4: Our next step is to adapt the covering method presented by Michalski [12] to 
find a small set of class association rules generated above to induce a classifier. To 
this end, the precedence relationship on class association rules is defined below. 

Definition 2: (Rule Precedence) Given two class association rules R1 and R2 

generated in Step 2, R1 precedes R2 (R1 has a higher precedence than R2), denoted 
Precedence(R1)>Precedence(R1), if  

1)  Importance(R1) > Importance(R2); or 
2)  Importance(R1) = Importance(R2), and Confidence(R1) > Confidence(R2); or 
3)  Importance(R1) = Importance(R2), Confidence(R1) = Confidence(R2), and 

Support(R1) > Support (R2). 
Otherwise R1 and R2 are considered having the same precedence and denoted 

Precedence(R1)=Precedence(R2). 
One can verify the following property of above precedence relationship: 

Property 3: The precedence relationship defined in Definition 2 among class 
association rules generated in Step 2 is a total order relation. Thus, all these rules 
can be sorted. 

With this preparation, the associative classifier can be constructed as follows: sort all 
class association rules; pick the highest precedent rule (if multiple rules have the same 
highest precedence, then arbitrarily choose one of them); check rows of the original 
decision table and remove all matching rows (a row of the decision table matches the 
rule if it satisfies the antecedence of the row); if at least one row is eliminated from 
the decision table, then move the rule to the classifier; pick the next highest precedent 
rule and remove all matching rows from the decision table and move the rule to the 
classifier if at least one row is removed; …; repeat this process until either no more 
rows remain or no more rules remain.  

To summarize, our greedy algorithm of building an associative classifier from a 
decision table is described in the following procedure. 

Procedure: Building an associative classifier from a decision table 
Input: An information system IS = (U, C, D), where U is a decision table with C 

as the set of condition attributes and D a decision (or class) attribute. 
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Output: An association classifier AC consisting of a set of class association rules. 

Step 1: Generate all reducts of condition attributes C from the decision table U 
with respect to the decision attribute D, and save in ALL_REDUCTS: 

ALL_REDUCTS  all reducts as the output of Genetic reducer in 
ROSETTA with each rule attached a support and a 
confidence measure 

Step 2: Generate all class association rules  
CAR  empty 
For each reduct REDU in ALL_REDUCTS Do 

Generate a set of class association rules and save in CAR 
CAR(REDU)  Apply the adapted Apriori algorithm 
CAR  CAR ∪ CAR(REDU) 

Step 3: Compute the importance of class association rules 
For each rule R in CAR Do 

M  Count the number of reducts in ALL_REDUCTS that contain R  
Importance(R)  M / |ALL_REDUCTS| 

Step 4: Construct an associative classifier 
Sort all rules in CAR in terms of their precedence consisting of 

importance, confidence and support 
AC  empty 
While CAR is not empty and U is not delete-marked completely Do 

R  Remove the first rule from CAR 
Delete-flag  false 
For each row d in U that has not been delete-marked Do 

If d matches R Then 
 Delete-mark d 
 Delete-flag  true 

If Delete-flag Then  
AC  AC ∪ {R} 

Step 5: Return AC 

4   An Illustrative Example 

An example is illustrated in this section to demonstrate how our approach works. The 
decision table on car performance is shown in Table 1, which is taken from Li and 
Cercone [8]. The decision table is used to decide the mileage of different cars.  This 
data set contains 14 rows, and 8 conditional attributes. There are no inconsistent or 
incomplete tuples in this data set.  

Using the Genetic reducer in ROSETTA [14], one can find 4 reducts of condition 
attributes with respect to the decision attribute Mileage, which are shown in Table 2. 
Specifying the support threshold = 1% and confidence threshold = 100% and applying 
the adapted Apriori algorithm, one can generate 13 class association rules, as shown 
in Table 3, where all rules have been sorted in the middle column and the last column 
lists the rule importance and absolute support. 
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Table 1. Artificial Car Data Set 

Make-model cyl door displace compress power trans weight mileage 
USA 6 2 Medium High High Auto Medium Medium 
USA 6 4 Medium Medium Medium Manual Medium Medium 
USA 4 2 Small High  Medium Auto Medium Medium 
USA 4 2 Medium Medium Medium Manual Medium Medium 
USA 4 2 Medium Medium High Manual Medium Medium 
USA 6 4 Medium Medium High Auto Medium Medium 
USA 4 2 Medium Medium High Auto Medium Medium 
USA 4 2 Medium High High Manual Light High  
Japan 4 2 Small High Low Manual Light High 
Japan 4 2 Medium Medium Medium Manual Medium High 
Japan 4 2 Small High High Manual Medium High 
Japan 4 2 Small Medium Low Manual Medium High 
Japan 4 2 Small High Medium Manual Medium High 
USA 4 2 Small High Medium Manual Medium High 

Table 2. Reducts generated by Genetic reducer from Table 1 

Reduct # Reduct Attributes 
1 Make, compress, power, trans 
2 make, cyl, compress, trans 
3 make, displace, compress, trans 
4 make, cyl, door, displace, trans, weight 

Table 3. Class Association Rules generated by Apriori algorithm 

# Rules Rule Precedence 

1 
2 
3 
4 
5 
6 
7 
 
8 
9 
10 
11 
12 
13 

(make, Japan) → (Mileage, High) 
(Trans, Auto) → (Mileage, Medium) 
(Compress, High), (Trans, Manual) → (Mileage, High) 
(make, USA), (Compress, Medium) → (Mileage, Medium) 
(Displace, Small), (Trans, Manual) → (Mileage, High) 
(Cyl, 6) → (Mileage, Medium) 
(USA, Car), (Displace, Medium), (Weight, Medium) → 
(Mileage, Medium) 
 (make, USA), (Power, High) → (Mileage, Medium) 
(Compress, Medium), (Power, High) → (Mileage, Medium) 
 (Power, Low) → (Mileage, High) 
 (Door, 4) → (Mileage, Medium) 
(Weight, Light) → (Mileage, High) 
(Displace, Small), (Compress, Medium) → (Mileage, High) 

4/4,   5    
4/4,   4 
3/4    5 
3/4,   5 
2/4,   5 
2/4,   3 
1/4,   6 
 
1/4,   4 
1/4,   3 
1/4,   2 
1/4,   2 
1/4,   2 
1/4,   1 

With the covering method, we first choose Rule 1 and match it with rows of the 
original decision table and find it covers 5 rows 9 through 13.  After these 5 rows are 
deleted and Rule 2 is next chosen to match the decision table and remove two rows 8 
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and 14. One can verify that Rule 3 covers 4 rows 1, 3, 6, and 7 after Rules 1 and 2, 
and Rule 4 covers rows 2, 4 and 5 after Rules 1, 2, and 3.  Since all rows in the 
original decision table have been covered by Rules 1 through 4, the final associative 
classifier contains only these four class association rules. 

5   Conclusion 

An approach of building associative classifiers from decision tables has been 
described and illustrated with an example. The approach consists of four steps: 
generating all reducts using rough set theory; extracting class association rules from 
each reduct using an adapted Apriori algorithm; computing class association rules’ 
importance; and finding a subset of class association rules to form a classifier using 
the covering method. Compared with the methods presented in [3], [4], [9], [11], 
extracting class association rules only from reducts can reduce the number of rules 
prohibitively. While compared with the method proposed in [8] and [17], our method 
can guarantee the classifier generated containing most important rules and cover the 
training instances. Our future work will be focusing on more experiments on real-
application data sets and the improvement of the covering method.    
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Abstract. We propose a new method for evaluating the contribution
that elementary conditions give to a set of rules. It is based on previous
results concerning importance and interaction of elementary conditions
for a confidence of a single rule. The usefulness of the method is shown
on two rule discovery problems.

Keywords: Knowledge Discovery, Rule Evaluation, Fuzzy Measures.

1 Introduction

An evaluation of knowledge discovered from data raises quite different issues
depending on the application perspective. This paper concerns knowledge repre-
sented in a form of “if . . . then . . .” rules. If the rules are applied in a classification
perspective to predict class labels for new objects, then the evaluation refers to
a complete set of rules and its prediction ability is estimated usually by a single
measure, e.g., the classification accuracy. In the other, descriptive perspective,
each rule is evaluated individually as a possible representative of an ‘interesting’
pattern. This is definitely a more difficult task. Depending on the rule induc-
tion algorithm, the user may receive quite a large number of rules to interpret.
Selecting some of them is a non-trivial issue and is partly subjective as it gener-
ally depends on the context of application and on the interests and expertise of
users. To support users, several quantitative measures have been proposed and
studied, each of them capturing different characteristics of rules. Many of these
measures characterize relationships between (condition and decision) parts of
the rule and the data set from which the rule is discovered. Generality, support,
confidence, logical sufficiency or necessity are examples of popular measures. For
their systematic reviews the reader is referred to, e.g., [6,11]. Another class of
interestingness measures, called confirmation measures, is also presented in [4].

Let us notice that in this perspective, the evaluation concerns a complete set of
elementary conditions in the “if ” part of each rule. Yet another but interesting
issue concerns evaluation of the importance of each single condition or even
interactions among conditions in “if ” part of the rule. The question about the
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role of subsets of elementary conditions could also be extended from a single rule
to a set of rules. We already met an attempt to answering this question in some
medical applications, e.g. [9], where the medical experts, first, selected rules and,
then, interpreted their syntax to identify combinations of attribute-values being
the most characteristic for the patient diagnosis classes.

The above problem has not systematically been studied yet in the literature.
To approach it, we focused our attention on special set functions, as Shapley and
Banzhaf indices or the Möbius representation [2,8]. Originally, they were consid-
ered in voting systems, game theory or multiple criteria decision aid. Moreover,
Greco et al. used them within them rough set theory to study the relative value
of information supplied by different attributes to the quality of approximation
of object classification [3]. The first attempt to adapt the above set functions
for evaluating an importance of rule elementary conditions was presented in [5].
However, it was restricted to a confidence measure and to a single rule only.

The aim of this paper is to introduce a method for studying the importance
and the interactions of elementary conditions in a set of decision rules. Moreover,
besides the confidence of rules, their support will be taken into account. The
second aim is to carry out an experimental evaluation of this method on real life
rule discovery problems which were previously analysed by experts.

2 Using Set Indices to Evaluate Rule Conditions

2.1 The Method for Analysing Confidence of a Single Rule

The considered evaluation measures are based on set functions which originally
referred to elements in the finite set X – these elements could be either players in
a game, voters in an election, or criteria in a multiple criteria decision problem.
Let P (X) denote the power set of X , i.e. the set of all subsets of X . In the
following we consider a set function μ: P (X)→ [0,1]. Function μ(·) is a fuzzy
measure (capacity) on X if it satisfies the following requirements: (1) μ(∅) = 0,
μ(X) = 1; (2) A ⊆ B implies μ(A) ≤ μ(B), for all A, B ∈ P (X). In the following
we relax the condition (1) in the part that μ(X) = 1 and condition (2), such
that we consider simply a set function μ: P (X)→ [0,1].

The function μ(A) has a particular interpretation within the respective theory,
e.g. in a multiple criteria decision problem, μ(A) is interpreted as the conjoint
importance of criteria from A ⊆ X . Some specific indices are defined on the basic
functions μ. In previous papers [3,5], it was shown that the most important are
the Shapley and Banzhaf values for single elements i ∈ X , their interaction
indices for subsets of elements A ⊆ X , and the set function m : P (X) → R,
called Möbius representation of μ.

Let us introduce a basic notation. Learning examples are represented in a de-
cision table DT =(U, A∪{d}), where U is a set of objects, A is a set of condition
attributes describing them, and d /∈ A is a decision attribute that partitions
examples into a set of disjoint classes {Kj : j =1,...,k}. We assume that deci-
sion rule r assigning objects to class Kj is represented in the following form:
if P then Q, where P = p1 ∧ p2 ∧ . . . ∧ pn is a condition part of the rule and
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Q is a decision part of the rule indicating that an object should be assigned to
class Kj. The elementary condition pi of the rule r is a test on a value of a given
attribute, e.g. an attribute value is equal to a constant.

While calculating set indices, for given rule r: if (p1 ∧p2∧. . . ∧pn) then Q, one
has to consider additional “sub”-rules if (pj1 ∧pj2 ∧ . . .∧pjm) then Q constructed
by using subsets of its conditions {pj1 , pj2 ,. . . ,pjm} ⊆ {p1, p2,. . . , pn}. Such rules
will be called generalizations of r.

The confidence of the rule was chosen in [5] as the basic function μ. It is one
of the most frequently used rule evaluation measures, specifying the credibility
of the consequence relation represented by the rule [1,11]. The confidence of the
rule r is defined as a ratio of a number of examples satisfying both condition
P and decision Q to a number of examples satisfying P only. Let μ(W, Kj) =
confidence(r), where W is the set of all n conditions in this rule. Let also Y ⊂ W
be a subset of conditions in the rule being a generalization of r. We assume that
the function for the rule with an empty condition part is μ(∅, Kj) = 0. Let us
first present indices for every elementary condition pi ∈ W in a single rule r.
The Shapley value [8] for it is defined as:

φS(pi, r) =
∑

Y ⊆W−{pi}
(n−|Y |−1)!|Y |!

n! · [μ(Y ∪ {pi}, Kj) − μ(Y, Kj)],

where |·| denotes the cardinality of the set. The Banzhaf value [2] is defined as:

φB(pi, r) = 1
2n−1

∑
Y ⊆W−{pi} [μ(Y ∪ {pi}, Kj) − μ(Y, Kj)] .

Both indices are calculated using information about an average contribution of
condition pi to all generalized rules of r constructed by using possible subsets of
its conditions. They can be interpreted as measures of the contribution of elemen-
tary condition pi, i = 1, . . . , n, to the confidence of rule r. In the case of φS(pi, r)
the value of μ(W ) is shared among all elements, i.e.

∑n
i=1 φS(pi, r) = μ(W ),

while an analogous property does not hold for φB(pi, r).
Other indices, as IMR(pi, pj), were introduced to measure the interaction be-

tween pairs of conditions [5]. Their values are interpreted in the following way:
if IMR(pi, pj) > 0 both conditions are complementary, i.e. they interact posi-
tively by increasing the confidence of the rule, while if IMR(pi, pj) < 0, then it
means that they are interchangeable, i.e. putting them together provide partly
redundant information. Below we present their generalized versions for subsets
of conditions in rule r. The Shapley index for a subset V ⊆ W is defined as:

IS(V, r) =
∑

Y ⊆W−V
(n−|Y |−|V |)!|Y |!

(n−|V |+1)!

∑
L⊆V (−1)|V |−|L|μ(Y ∪ L, Kj).

and the Banzhaf index of conditions from V ⊆ W is defined as:

IB(V, r) = 1
2n−|V |

∑
Y ⊆W−V

∑
L⊆V

(−1 )|V |−|L|
μ(Y ∪ L, Kj).

These indices are interpreted as the average conjoint contribution of the subset
of conditions V ⊂ W to the confidence of all rules generalized from rule r such
that V ∪ Z = ∅, where Z is a subset of conditions in the if part of any of these
generalizations.
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Finally, another interpretation of the conjoint contribution of conditions from
the subset V to the confidence of the rule r (i.e. with all conditions from W ) is
provided by the Möbius representation of set function μ, which is defined as:

m(V, r) =
∑

B⊆V

(−1 )|V −B|μ(B, Kj)

2.2 An Example of Analysing a Single Rule Analysis

To evaluate the usefulness of the described method we chose two real applications
of rule induction, where an experts’ interpretation of syntax of many rules and
even the discussion of characteristic attribute values for decision classes were
available. The first problem, described in [10], concerns technical diagnostics
of the homogeneous fleet of buses. The buses were described by 8 diagnostic
symptoms (attributes) and divided into two classes depending on their technical
conditions (good or bad). As described in [10], the continuous valued attributes
were discretized and, among other methods, the algorithm Explore was applied
to induce the set of 28 rules. For each of these rules, we applied our method and
interpret the results. Due to page limit we can show few examples only. In the
following table, for each generalized rule (its use of conditions is represented in
a binary way) we report the appropriate evaluation indices.

Rule no. 4: if (torque = high) ∧ (summer fuel consumption = acceptable) then
(technical condition = good) with confidence = 1 and support = 3 examples.

p1 p2 Mobius Banzhaf Shapley Confidence
0 0 0 0 0 0
0 1 0.1667 0.0942 0.0942 0.1667
1 0 0.978 0.906 0.906 0.978
1 1 -0.1449 -0.1449 -0.1449 1

According to all measures, condition p1 (torque = high) is nearly 10 times
more important than p2 (summer fuel consumption = acceptable). It is consis-
tent with previous results [10] and common sense knowledge saying that a high
value of the engine torque is definitely a better symptom of the good technical
condition of the bus than acceptable buses fuel consumption. Adding both con-
ditions together results in the highest rule confidence. However, there is a kind
of small redundancy provided by putting them together – what is seen by neg-
ative values of indices IS({p1, p2}, r), IB({p1, p2}, r), m({p1, p2}, r). Let us also
consider the other rule:

Rule no. 16: if (torque = high) ∧ (compression pressure = high) then (technical
condition = good with confidence = 1 and support = 46 examples.

p1 p2 Mobius Banzhaf Shapley Confidence
0 0 0 0 0 0
0 1 0.9787 0.5384 0.5384 0.9787
1 0 0.9019 0.4616 0.4616 0.9019
1 1 -0.8807 -0.8807 -0.8807 1
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One can notice that both conditions considerably contribute to the confidence
of this rule. It is consistent with the discussion from [10] where the compression
pressure was identified as the best symptom of the technical state. Moreover, it
was previously noticed that both symptoms were highly correlated (Pearson r
coefficient = 0.93) - what is directly seen by negative values of all indices.

3 Evaluating Conditions in a Set of Rules

Until now, we considered the contribution of elementary conditions to the con-
fidence of the single rule. The choice of the rule could be either an expert’s
decision or a result of a rule filtering method. However, for many data sets one
usually receives a multi-class set of rules. A given condition or a subset of ele-
mentary condition may occur in the condition parts of many of these rules. Thus,
a challenge is to analyse the importance and interaction of elementary conditions
in the entire set of rules. Intuitively, a “good” elementary condition should be
highly evaluated in all, or nearly all, rules containing it, rather than in a single
rule only. Moreover, we should reward these elementary conditions or their sub-
sets which are characteristic for a given class, i.e. they only, or mainly, occur in
rules from this class while being nearly absent in rules from other classes.

As rules are not equally important inside the considered set we should take into
account the other measures to discriminate them. According to literature (see
e.g. [11,1]) the confidence is usually considered together with the rule support.
The rule support, denoted by sup(r), is calculated as a relative ratio of a number
of learning examples satisfying both condition and decision part of a rule to a
total number of examples.

Let R = {r1, r2, . . . , rm} be a set of rules induced from the learning examples
in DT . R =

⋃k
j=1 R(Kj), where R(Kj) includes rules assigning objects to class

Kj, j = 1, . . . , k. Let us assume that we are interested in evaluating a non-
empty subset of conditions, denoted by Γf , occurring in at least one rule rl ∈ R,
l = 1, . . . , m. Let FMrl

(Γf ) denote an evaluation of its contribution to the
confidence of rule rl, calculated according to one of considered indices: Shapley,
Banzhaf or Möbius. The global contribution of Γf in rule set R with respect to
the class Kj is calculated by the following weighted aggregation formula:

GKj (Γf ) =
∑

r∈R(Kj)

FMr(Γf ) · sup(r) −
∑

s∈¬R(Kj)

FMs(Γf ) · sup(s),

where s ∈ ¬R(Kj) denotes rules indicating other classes than Kj . So, value
GKj (Γf ) means the global importance of the set of conditions Γf for class Kj ,
which is decreased by the component corresponding to occurrence of Γf in rules
concerning other classes.

For a given set of rules one gets rankings of elementary conditions or their
subsets for each class Kj , ordered according to the calculated values GKj (Γf ).
The highest positions in these rankings can be interpreted as the characteristic
description of the given class by means of the elementary condition subsets being
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Table 1. Rankings of best conditions according to evaluation measures calculated for
”buses” rules

busses in a good technical condition
Möbius Shapley Banzhaf

condition value condition value condition value

comp-press=high 214.34 comp-press=high 116.91 comp-press=high 116.91
torque=high 163.36 torque=high 163.36 torque=high 163.36
blacking=low 161.33 blacking=low 87.86 blacking=low 87.86
oil cons.=low 132.36 oil cons.=low 70.88 oil cons.=low 70.80

MaxSpeed=high 122.66 MaxSpeed=high 63.71 MaxSpeed=high 63.71

busses in a bad technical condition
Möbius Shapley Banzhaf

condition value condition value condition value

torque=low 48.33 torque=low 29.17 torque=low 29.17
blacking=high 46.70 comp-press=low 29.00 comp-press=low 29.00

comp-press=low 29.00 blacking=high 27.98 blacking=high 28.06
oil-cons.=high 27.00 oil-cons.=high 27.00 oil-cons.=high 27.00

summ-cons.=high 26.67 horsepower=low 26.00 horsepower=low 26.66
horsepower=low 26.66 MaxSpeed=low 25 MaxSpeed=low 25

the most important in rules concerning this class while not contributing too much
to rules concerning other classes.

From the computational point of view, the crucial issue is generating the list of
possible subsets of conditions. They are identified as occurring in rule set R(Kj),
however the number of their possible combinations may be high. Thus, in our
implementation we used a simple heuristic. First, we consider single conditions
only and calculate their values GKj (Γf ). Then, we combine the single conditions
in larger sets (pairs, triples, . . .). However increasing the size of the subset in
the next phase is allowed only if, evaluations from the previous phase are higher
than the user’s defined threshold.

4 Computational Experiments with Sets of Rules

Let us come back to the diagnostic examination of buses [10]. Calculated values
GKj of all three indices for single elementary conditions in the set of rules are
presented in Table 1.

Let us observe that these orders are highly consistent with previous analysis
of single attribute significance. According to [10] (both rough sets and statistical
analysis) the most valuable was the compression pressure, then torque, maximum
speed and engine horsepower. Blacking components in the exhaust gas and oil
consumption were found as more important than fuel consumption. Moreover,
it was mentioned that experts indicated high compression pressure, high torque,
acceptable maximal horsepower to be characteristic for the good technical con-
ditions. Experts also found out that their opposite value were characteristic for
bad technical conditions.

The evaluation of condition pairs are close to 0 or negative. For instance,
one of the best evaluated pairs for good buses is (horsepower=average) ∧ (oil
consumption=low) with Shapley index -0.1662. In the previous analysis, these
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attributes were not correlated, while some others were strongly correlated. This
is also detected by our method, e.g. (blacking=low) ∧ (MaxSpeed=average) with
Shapley index -38.71 – these attributes were correlated in degree 0.9. We did
not analyse triples of conditions as all pairs were low evaluated, which was also
consistent with expert’s previous opinion saying that in this problem single con-
ditions or their pairs were sufficient to diagnose the technical condition of buses.

A similar analysis was performed for a medical problem concerning diagnosing
an anterior cruciate ligament (ACL) rupture in a knee on the basis of magnetic
resonance images [9]. Due to limited size of this paper we have to skip detailed
results and show only the most characteristic conditions for each class (To be
short we show the Shapley value only). For the class “patients with injury” the
best conditions are: (PCL index < 3.225) ΦS = 26.0; (PCL index ∈ [3.225,3.71))
ΦS = 6.04, (age ∈ [16.5,35)) ΦS = 2.68; (sex=male) ΦS = 1.22. While for the
class “patients without injury” the order is: (PCL index ≥ 4.535) ΦS = 75.0;
(age < 16.5)) ΦS = 14.0; (sex=female) ΦS = 9.19.

Again, this result is highly consistent with the previous clinical discussion [9]
indicating that two attributes (PCL index, age) and their specific values should
support a physician in resigning from performing arthroscopy for some patients.
PCL index is a main coefficient constructed from measurements taken from
image and is a crucial one for detecting this kind of knee injury. The role of age
and sex is also justified as ACL is typical injury of male sportsmen. Moreover,
in this problem, the importance of pairs of conditions is higher evaluated than
in the buses problem, although it is still slightly lower than single conditions,
e.g. for healthy patients the best pair is (X1 ∈ [11.75,14.5)) ∧ (Y 1 ∈ [2.75,3.75))
with Shapley value 1.37, where X1 and Y 1 are two basic distances between some
knee parts measured in the image, so they are the basic components inside the
PCL index formula.

5 Discussion and Final Remarks

The novelty of this study consists in focusing a user attention on the role of
subsets of elementary conditions in rules discovered from data, which according
to our best knowledge has not been studied sufficiently yet in the literature
on the knowledge evaluation. We have described the method for evaluating the
contribution that elementary conditions give to a confidence of a single decision
rule. It is based on an adaptation of some fuzzy measures introduced in the
literature in a different context. Moreover, we extend this method in a kind of
aggregation approach to study the importance of conditions in the sets of rules,
where the rule support was also considered.

We summarize results of two applications, where we identified the rankings of
the importance of elementary conditions in the sets of rules. Although we could
show only the main part of obtained results, we claim that they are consistent
with published experts’ conclusions [10,9]. These rankings are useful for con-
structing a characteristic description for each decision class. Three indices were
studied. We carried out more experiments with other rule sets, and it turned
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out that Shapley or Baznhaf values were very similar or the same. Differences
rose for larger rule sets containing rules with more conditions. However, the
highest positions in rankings were usually the same. Comparing them to Möbius
rankings we observed a wider range of their values.

As to disadvantages we should mention the complexity of fuzzy measures cal-
culations. They are burdened by exponential costs as for each subset of conditions
V it is necessary to consider all subsets W −V in generalized rules. Shapley and
Banzhaf indices require even more additional calculations than Möbius index.
Because of these costs, for larger sets of rules one could use the two phase sce-
nario. In the first phase, the user should filter rules and then apply the method
to the reduced number of the most valuable rules only.

Acknowledgement. We are grateful to Bartosz Jȩdrzejczak for the cooperation
and preparing a software implementation of the method in the framework of the
Master Thesis.
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Abstract. Action rules can be seen as an answer to the question: what
one can do with results of data mining and knowledge discovery? Some
applications include: medical field, e-commerce, market basket analysis,
customer satisfaction, and risk analysis. Action rules are logical terms
describing knowledge about possible actions associated with objects,
which is hidden in a decision system. Classical strategy for discover-
ing them from a database requires prior extraction of classification rules
which next are evaluated pair by pair with a goal to suggest an action,
based on condition features in order to get a desired effect on a decision
feature. An actionable strategy is represented as a term r = [(ω) ∧ (α →
β)] ⇒ [φ → ψ], where ω, α, β, φ, and ψ are descriptions of objects or
events. The term r states that when the fixed condition ω is satisfied
and the changeable behavior (α → β) occurs in objects represented as
tuples from a database so does the expectation (φ → ψ). With each ob-
ject a number of actionable strategies can be associated and each one
of them may lead to different expectations and the same to different re-
classifications of objects. In this paper we will focus on a new strategy of
constructing action rules directly from single classification rules instead
of pairs of classification rules. It presents a gain on the simplicity of the
method of action rules construction, as well as on its time complexity. We
present A*-type heuristic strategy for discovering only interesting action
rules, which satisfy user-defined constraints such as: feasibility, maximal
cost, and minimal confidence. We, therefore, propose a new method for
fast discovery of interesting action rules.

1 Introduction

There are two aspects of interestingness of rules that have been studied in data
mining literature, objective and subjective measures [1], [5]. Objective mea-
sures are data-driven and domain-independent. Generally, they evaluate the
rules based on their quality and similarity between them. Subjective measures,
including unexpectedness, novelty and actionability, are user-driven and domain-
dependent.
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Action rules, introduced in [6] and investigated further in [10], [11], [8], are
constructed from certain pairs of association rules. Interventions, defined in [3],
are conceptually very similar to action rules.

The notion of a cost of an action rule, which is a subjective measure, was
introduced in [11]. It is associated with changes of values of classification at-
tributes in a rule. The strategy for replacing the initially extracted action rule
by a composition of new action rules, dynamically built and leading to the same
reclassification goal, was proposed in [11]. This composition of rules uniquely de-
fines a new action rule. Objects supporting the new action rule also support the
initial action rule but the cost of reclassifying them is lower or even much lower
for the new rule. In [8] authors propose a new simplified strategy for constructing
action rules. This paper presents a heuristic strategy for discovering interesting
action rules which satisfy user-defined constraints such as: feasibility, maximal
cost, and minimal confidence. There is a similarity between the rules generated
by Tree-Based Strategy [10] and rules constructed by this new method.

2 Action Rules

In the paper by [6], the notion of an action rule was introduced. The main idea
was to generate, from a database, special type of rules which basically form a hint
to users showing a way to re-classify objects with respect to some distinguished
attribute (called a decision attribute). Values of some attributes, used to describe
objects stored in a database, can be changed and this change can be influenced
and controlled by user. However, some of these changes (for instance profit can
not be done directly to a decision attribute. In such a case, definitions of this
decision attribute in terms of other attributes (called classification attributes)
have to be learned. These new definitions are used to construct action rules
showing what changes in values of some attributes, for a given class of objects,
are needed to re-classify these objects the way users want. But, users may still
be either unable or unwilling to proceed with actions leading to such changes.
In all such cases, we may search for definitions of a value of any classification
attribute listed in an action rule. By replacing this value of attribute by its
definition extracted either locally or at remote sites (if system is distributed),
we construct new action rules which might be of more interest to users than the
initial rule [11]. We start with a definition of an information system given in [4].

By an information system we mean a pair S = (U, A), where:

1. U is a nonempty, finite set of objects (object identifiers),
2. A is a nonempty, finite set of attributes i.e. a : U → Va for a ∈ A, where Va

is called the domain of a.

Information systems can be seen as decision tables. In any decision table
together with the set of attributes a partition of that set into conditions and de-
cisions is given. Additionally, we assume that the set of conditions is partitioned
into stable and flexible [6].

Attribute a ∈ A is called stable for the set U if its values assigned to objects
from U can not be changed in time. Otherwise, it is called flexible. Place of birth
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is an example of a stable attribute. Interest rate on any customer account is an
example of a flexible attribute. For simplicity reason, we consider decision tables
with only one decision. We adopt the following definition of a decision table:

By a decision table we mean an information system S = (U, ASt ∪AFl ∪{d}),
where d /∈ ASt∪AFl is a distinguished attribute called the decision. The elements
of ASt are called stable conditions, whereas the elements of AFl ∪ {d} are called
flexible. Our goal is to change values of attributes in AFl for some objects in
U so the values of attribute d for these objects may change as well. Certain
relationships between attributes from ASt ∪AFl and the attribute d will have to
be discovered first.

By Dom(r) we mean all attributes listed in the IF part of a rule r extracted
from S. For example, if r = [(a1, 3) ∧ (a2, 4) → (d, 3)] is a rule, then Dom(r) =
{a1, a2}. By d(r) we denote the decision value of rule r. In our example d(r) = 3.

If r1, r2 are rules and B ⊆ AFl ∪ ASt is a set of attributes, then r1/B = r2/B
means that the conditional parts of rules r1, r2 restricted to attributes B are the
same. For example if r1 = [(a1, 3) → (d, 3)], then r1/{a1} = r/{a1}.

We assume that (a, v → w) denotes the fact that the value of attribute a has
been changed from v to w. Similarly, the term (a, v → w)(x) means that the
property (a, v) of an object x has been changed to property (a, w).

Assume now that rules r1, r2 are extracted from S and
r1/[Dom(r1) ∩ Dom(r2) ∩ ASt] = r2/[Dom(r1) ∩ Dom(r2) ∩ ASt], d(r1) =

k1, d(r2) = k2. Also, assume that (b1, b2, . . ., bp) is a list of all attributes in
Dom(r1)∩Dom(r2)∩AFl on which r1, r2 differ and r1(b1) = v1, r1(b2) = v2,. . . ,
r1(bp) = vp, r2(b1) = w1, r2(b2) = w2,. . . , r2(bp) = wp.

By (r1, r2)-action rule we mean statement r:
[r2/ASt ∧ (b1, v1 → w1)∧ (b2, v2 → w2)∧ . . . ∧ (bp, vp → wp)] ⇒ [(d, k1 → k2)].
Object x ∈ U supports action rule r, if x supports the description [r2/ASt ∧

(b1, v1) ∧ (b2, v2) ∧ . . . ∧ (bp, vp) ∧ (d, k1)]. The set of all objects in U supporting
r is denoted by U<r>. The term r2/ASt is called the header of action rule.

Extended action rules, introduced in [10], form a special subclass of action
rules. We construct them by extending headers of action rules in a way that
their confidence is getting increased. The support of extended action rules is
usually lower than the support of the corresponding action rules.

3 Action Rule Discovery from Single Classification Rule

Let us assume that S = (U, ASt ∪ AFl ∪ {d}) is a decision system, where d /∈
ASt ∪ AFl is a distinguished attribute called the decision. Assume also that
d1 ∈ Vd and x ∈ U . We say that x is a d1-object if d(x) = d1. Finally, we
assume that {a1, a2, ..., ap} ⊆ AFl, {b1, b2, ..., bq} ⊆ ASt, a[i,j] denotes a value of
attribute ai, b[i,j] denotes a value of attribute bi, for any i, j and that

r = [[a[1,1] ∧ a[2,1] ∧ ... ∧ a[p,1]] ∧ [b[1,1] ∧ b[2,1] ∧ ..... ∧ b[q,1]] → d1]
is a classification rule extracted from S supporting some d1-objects in S. By

sup(r) and conf(r) we mean support and confidence of r, respectively. Class d1
is a preferable class and our goal is to reclassify d2-objects into d1 class, where
d2 ∈ Vd.
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By an action rule r[d2→d1] associated with r and the reclassification task
(d, d2 → d1) we mean the following expression [8]:

r[d2→d1] = [[a[1,1] ∧ a[2,1] ∧ ... ∧ a[p,1]]∧
[(b1, → b[1,1]) ∧ (b2, → b[2,1]) ∧ ..... ∧ (bq, → b[q,1])] ⇒ (d, d2 → d1)].
In a similar way, by an action rule r = [→ d1] associated with r and the

reclassification task (d, → d1) we mean the following expression:
r[→d1] = [[a[1,1] ∧ a[2,1] ∧ ... ∧ a[p,1]]∧
[(b1, → b[1,1]) ∧ (b2, → b[2,1]) ∧ ..... ∧ (bq, → b[q,1])] ⇒ (d, → d1)].
The term [a[1,1] ∧ a[2,1] ∧ ... ∧ a[p,1]], built from values of stable attributes, is

called the header of action rule and its values can not be changed.
The support set of the action rule r[d2→d1] is defined as:
Sup(r[d2→d1]) = {x ∈ U : (a1(x) = a[1,1]) ∧ (a2(x) = a[2,1]) ∧ ... ∧ (ap(x) =

a[p,1]) ∧ (d(x) = d2)}.
In the following paragraph we show how to calculate the confidence of action

rules. Let r[d2→d1], r
′
[d2→d3] are two action rules extracted from S. We say that

these rules are p-equivalent (≈), if the condition given below holds for every
bi ∈ AFl ∪ ASt:

if r/bi, r′/bi are both defined, then r/bi = r′/bi.

Let us take d2-object x ∈ Sup(r[d2→d1]). We say that x positively supports
r[d2→d1] if there is no classification rule r′ extracted from S and describing
d3 ∈ Vd, d3 
= d1, which is p-equivalent to r, such that x ∈ Sup(r′[d2→d3]).
The corresponding subset of Sup(r[d2→d1]) is denoted by Sup+(r[d2→d1]). Oth-
erwise, we say that x negatively supports r[d2→d1]. The corresponding subset of
Sup(r[d2→d1]) is denoted by Sup−(r[d2→d1]). By the confidence of r[d2→d1] in S
we mean:

Conf(r [d2→d1]) = [card[Sup+(r[d2→d1])]/card[Sup(r [d2→d1])]]· conf(r).

4 Cost and Feasibility of Action Rules

Depending on the cost of actions associated with the classification part of action
rules, business user may be unable or unwilling to proceed with them.

Assume that S = (X, A, V ) is an information system. Let Y ⊆ X , b ∈ A
is a flexible attribute in S and b1, b2 ∈ Vb are its two values. By ℘S(b1, b2) we
mean a number from (0, +∞] which describes the average cost of changing the
attribute value b1 to b2 for any of the qualifying objects in Y . These numbers
are provided by experts. Object x ∈ Y qualifies for the change from b1 to b2, if
b(x) = b1. If the above change is not feasible, then we write ℘S(b1, b2) = +∞.
Also, if ℘S(b1, b2) < ℘S(b3, b4), then we say that the change of values from b1 to
b2 is more feasible than the change from b3 to b4.

Let us assume that
r = [(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ . . . ∧ (bp, vp → wp)] ⇒ (d, k1 → k2)
is an action rule.
By the cost of r in S, denoted by cost(r), we mean the value

∑
{℘S(vk, wk) :

1 ≤ k ≤ p}. We say that r is feasible, if cost(r) < ℘S(k1, k2).
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Now, let us assume that RS [(d, k1→ k2)] denotes the set of action rules in
S having the term (d, k1→ k2) on their decision side. Sometimes, for simplicity
reason, attribute d will be omitted. An action rule in RS [(d, k1→ k2)] which has
the lowest cost value may still be too expensive to be of any help. Let us notice
that the cost of an action rule r = [(b1, v1 → w1)∧ (b2, v2 → w2)∧ . . .∧ (bp, vp →
wp)] ⇒ (d, k1 → k2) might be high because of the high cost value of one of its
sub-terms in the conditional part of the rule. Let us assume that (bj , vj → w j)
is that term. In such a case, we may look for an action rule in RS [(bj , vj →
w j)], which has the smallest cost value. Assume that

r1 = [[(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ . . . ∧ (bjq, vjq → wjq)] ⇒
(bj , vj → wj)] is such a rule which is also feasible in S.
Now, we can compose r with r1 getting a new feasible action rule:
[(b1, v1 → w1) ∧ . . . ∧ [(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ . . .∧
(bjq , vjq → wjq)] ∧ . . . ∧ (bp, vp → wp)] ⇒ (d, k1 → k2).
Clearly, the cost of this new rule is lower than the cost of r. However, if its

support in S gets too low, then such a rule has no value to the user. Otherwise,
we may recursively follow this strategy trying to lower the cost of re-classifying
objects from the group k1 into the group k2. Each successful step will produce a
new action rule which cost is lower than the cost of the current rule. Obviously,
this heuristic strategy always ends.

5 A∗-Type Algorithm for Action Rules Construction

Let us assume that we wish to reclassify objects in S from the class described
by value k1 of the attribute d to the class k2.

The term k1→ k2 jointly with its cost ℘S(k1, k2) is stored in the initial node n0
of the search graph G built from nodes generated recursively by feasible action
rules taken initially from RS [(d, k1→ k2)] .

For instance, the rule
r = [[(b1, v1 → w1) ∧ (b2, v2 → w2) ∧ . . . ∧ (bp, vp → wp)] ⇒ (d, k1 → k2)]
applied to the node n0 = {[k1 → k2, ℘S(k1, k2)]} generates the node
n1 = {[v1 → w1, ℘S(v1, w1)], [v2 → w2, ℘S(v2, w2)], . . ., [vp → wp, ℘S(vp, wp)]}
and from n1 we can generate the node n2 = {[v1 → w1, ℘S(v1, w1)],
[v2 → w2, ℘S(v2, w2)], . . ., [vj1 → wj1, ℘S(vj1, wj1)], [vj2 → wj2, ℘S(vj2, wj2)],
. . ., [vjq → wjq , ℘S(vjq , wjq)], . . ., [vp → wp, ℘S(vp, wp)]}
assuming that the action rule
r1 = [[(bj1, vj1 → wj1) ∧ (bj2, vj2 → wj2) ∧ . . . ∧ (bjq, vjq → wjq)] ⇒
(bj , vj → wj)] from RS [(bj , vj → wj)] is applied to n1.
This information can be written equivalently as:
r(n0) = n1, r1(n1) = n2, [r1 ◦ r](n0) = r1(r(n0)) = n2.
By DomS(r) we mean the set of objects in S supporting r.
Search graph G is dynamically built by applying action rules to its nodes. Its

initial node n0 contains information given by the user. Any other node n in G
shows an alternative way to achieve the same reclassification with a cost that is
lower than the cost assigned to all nodes which are preceding n in G. Clearly, the
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confidence of action rules labelling the path from the initial node to the node
n is as much important as the information about reclassification and its cost
stored in node n.

The A�-type strategy for identifying a node in G, built for a desired reclas-
sification of objects in S, with a cost possibly the lowest among all the nodes
reachable from the node n, was given in [11]. This strategy was controlled by
three threshold values: λ1 - minimum confidence of action rules, λ2 - maximum
cost of action rules, and λ3 - feasibility of action rules. The last threshold was
introduced to control the minimal acceptable decrease in the cost of action rule
to be constructed. If the search is stopped by threshold λ1, then we do not con-
tinue the search along that path. If the search is stopped by threshold λ2, then
we can either stop or continue the search till it is stopped by threshold λ1.

Assume that N is the set of nodes in graph G for S and n0 is its initial node.
For any node n ∈ N , by F (n) = (Yn, {[vn,j → wn,j , ℘S(vn,j , wn,j , Yn)]}j∈In)

we mean its domain (set of objects in S supporting r, the reclassification steps
for objects in Yn and their cost, all assigned by reclassification function F to the
node n, where Yn ⊆ X .

The cost of node n is defined as: cost(n) = Σ{℘S(vn,j , wn,j , Yn) : j ∈ In}.
We say that action rule r is applicable to a node n if:
[Yn ∩ DomS(r) 
= Ø] and [(∃k ∈ In)[r ∈ RS [vn,kj → wn,k]]].
If node n1 is a successor of node n in G obtained by applying the action rule

r to n, then Yn1 = Yn ∩ DomS(r).
We assume here that the cost function h(ni) = �[cost(n, Yi) − λ2]/λ3� is

associated with any node ni in G. It shows the maximal number of steps that
might be needed to reach the goal from the node ni.

By conf(n), we mean the confidence of action rule associated with node n.
A search node in a graph G associated with node m is a pair
p(m) = ([conf(m), f(m)], [m, n1, n2, no]), where f(m) = g(m) + h(m) and

g(m) is the cost function defined as the length of the path [m, n1, n2, no] in G
(without loops) from the initial state no to the state m.

The search node associated with the initial node no of G is defined as
([conf(no), f(no)], [no]). It is easy to show that f(m) is admissible and never
overestimates the cost of a solution through the node m.

6 New A∗-Type Algorithm for Action Rules Construction

In this section we propose a modified version of A*-type heuristic strategy dis-
cussed in Section 5 which is based on the method of constructing action rules
directly from single classification rules instead of their pairs [8]. It presents a
gain on the simplicity of the method of action rules construction, as well as on
its time complexity.

First, we introduce the notion of a cost linked with the attribute value itself
as ℘S(b1), where b1∈V b, which again is a number from (0, +∞] describing the
average cost associated with changing any value of attribute b to value b1.
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Next, assume that
R = [[(a, a1) ∧ (b, b1) ∧ (c, c1) ∧ (e, e1) ∧ (m, m1) ∧ (k, k1) ∧ (n, n1) ∧ (r, r1)] →

(d, d1)] is a classification rule extracted from S:
Assume that attributes in St(R) = {a, b, c, e} are stable and in Fl(R) =

{m, k, n, r} flexible. Also, assume that class d1 ∈ Vd is of highest preference. The
rule R defines the concept d1. Assume that Vd = {d1, d2, d3, d4}.

Clearly, there may be other classification rules that define concept d1. We pick
the rule which has the lowest total cost on the flexible part, i.e. the sum of cost
of all flexible attributes

∑
{℘S(Fl(R)i) : i = m, k, . . ., r} is minimal.

Next, we are picking objects from X which have property, let’s say, d2 i.e.
objects of class d2, which satisfy the header of stable attribute values in R:

Y = {x : a(x) = a1, b(x) = b1, c(x) = c1, e(x) = e1, d(x) = d2}
In order to ‘grab’ these objects into d1, we construct action rule:
[(a1 ∧ b1 ∧ c1 ∧ e1] ∧ [(m, → m1) ∧ (k, → k1) ∧ (r, → r1)] ⇒ (d, d2 → d1)
In other words, if we make the specified changes to the attributes in Fl(R), the

expectation is that the objects in Y will move to the desired class d1. Looking
at the changes needed, the user may notice that the change (k, → k1) is the
worst, i.e. it has the highest cost, and it contributes most to the cost of the
sum (total cost) of all changes. Therefore, we may search for new classification
rules, which define the concept k1, and compose the feasible action rule R1 =
[St(R1)] ∧ [Fl(R1)] which suggests the reclassification to k1 at the lowest cost,
where St(R) ⊆ St(R1). As defined earlier, such action rule will be feasible if the
sum (total cost) of all changes on the left hand side of the rule is lower, than the
right side. Therefore, the action rule R1 will specify an alternative way to achieve
the reclassification to k1 at a cost lower than the currently known cost to the
user. Next, we concatenate the two action rules R and R1 by replacing (k, → k1)
in R, with [Fl(R1)], and modifying the header to include St(R) ∪ St(R1).

[(a1 ∧b1∧c1∧e1)∧St(R1)]∧ [(m, → m1)∧Fl(R1)∧(r, → r1)] ⇒ (D, d2 → d1).
Clearly, there may be many classification rules that we can choose from. We

only consider the ones which stable part does not contradict with St(R). Among
them, we choose rules with a minimal number of new stable attributes, as each
time we add a new stable attribute to the current rule we may decrease the total
number of objects in Y which can be moved to the desired class d1. In relation
to flexible attributes, they have to be the same on the overlapping part of a
new classification rule and the rule R. This may further decrease the number of
potential objects in Y which can be moved to the desired class d1.

Therefore, we need a heuristic strategy, similar to the one presented in the
previous section for classical action rules, to look for classification rules to be
concatenated with R and which have the minimal number of new stable at-
tributes in relation to R and minimal number of new flexible attributes jointly
with flexible attributes related to the overlapping part with R.

We propose a modified version of A�-algorithm we saw in the previous section.
Again, we assume that user will provide the following thresholds related to action
rules: λ1 - minimum confidence, λ2 - maximum cost, and λ3 - feasibility.
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Clearly, it is expensive to build the complete graph G and next search for a
node of the lowest cost satisfying both thresholds λ1, λ2. The heuristic value
associated with a node n in G is defined as h(n) = �[cost(n) − λ2]/λ3�. It shows
the maximal number of steps that might be needed to reach the goal. The cost
function g(m) is defined as the length of the path in G (without loops) from the
initial state no to the state m. It is easy to show that f(m) = g(m) + h(m) is
admissible and never overestimates the cost of a solution through the node m.

7 Conclusion and Acknowledgements

The new algorithm for constructing action rules of the lowest cost is a signif-
icant improvement of the algorithm presented in [11] because of its simplicity
in constructing headers of action rules and because the concatenation of action
rules is replaced by concatenation of classification rules.

This research was partially supported by the National Science Foundation under
grant IIS-0414815.
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Abstract. We present a generalization of a strategy, called SCIKD,
proposed in [7] that allows to reduce a disclosure risk of confidential
data in an information system S [10] using methods based on knowledge
discovery. The method proposed in [7] protects confidential data against
Rule-based Chase, the null value imputation algorithm driven by cer-
tain rules [2], [4]. This method identifies a minimal subset of additional
data in S which needs to be hidden to guarantee that the confidential
data are not revealed by Chase. In this paper we propose a bottom-up
strategy which identifies, for each object x in S, a maximal set of values
of attributes which do not have to be hidden and still the information
associated with secure attribute values of x is protected. It is achieved
without examining all possible combinations of values of attributes. Our
method is driven by classification rules extracted from S and takes into
consideration their confidence and support.

1 Introduction

This article discusses an important issue in data mining: how to provide meaning-
ful knowledge without compromising data confidentiality. In conventional data-
base systems, data confidentiality is achieved by hiding sensitive data from unau-
thorized users. However, hiding is not sufficient in knowledge discovery systems
(KDS ) due to null imputation method like rule-based Chase ([2], [4]) which are
designed to predict null or missing values. Suppose that attributes in a database
contain medical information about patients; some portions are not confidential
while others are confidential (they are hidden from users). In this case, part or
all of the confidential data in the attribute may be revealed. In other words, self-
generated rules extracted from non-confidential portions of data can be used to
find secret data.

Security in KDS is studied in many research areas, such as cryptography, sta-
tistics, and data mining. A well known security problem in cryptography area is
how to acquire global knowledge without revealing the data stored in each local
site in a distributed autonomous information system (DAIS). Proposed solu-
tions are based primarily on secure multiparty protocol ([12], [5]) which ensures
that each participant cannot learn more than its own input data and outcome of
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a public function. Various authors expanded the idea. Clifton and Kantarcioglou
employed the protocol for association rule mining for vertically and horizontally
partitioned data [8]. Authors Du and Zhan pursued a similar idea to build a de-
cision tree system [6]. Protection of sensitive rules has been discussed by Oliveira
and Zaiane [9]. Authors suggested a solution to protecting sensitive association
rules in the form of ”sanitization process” that hides selective patterns from fre-
quent itemsets. The data security problem discussed in this article is different
from other researches in the following ways. First, we focus on the accuracy of
existing data or knowledge instead of statistical characteristics of data. Second,
we aim to protect sensitive data in a database instead of sensitive rules.

Our paper takes the definition of an information system proposed by Pawlak
[10] as a simplified model of a database. However, the notion of its incomplete-
ness differs from the classical rough set approach by allowing a set of weighted
attribute values as a value of an attribute. We also assume that the sum of these
weights has to be equal 1. If weights assigned to attribute values have to be
greater than a user specified threshold value λ, then we get information system
of type λ as introduced in [4].

Additionally we assume that one or more attributes in an information system
S of type λ contain confidential data that have to be protected and S is a part
of a distributed autonomous information system (DAIS) which provides a set
of rules applicable at S as a KB [11]. We have to be certain that values of any
confidential attribute can not be revealed from the available data in S and KB
by Chase [2] or any other null value imputation method while minimizing the
changes in the original information system. Also, we assume that we can hide the
precise information about objects from the user but we can not replace existing
data by false data. For instance, if someone is 18 years old, we can say that she
is young or her age is unknown but we can not say that she is 24 years old. In
pursue of such requirements, we propose a protection method named as SCIKD
for information systems of type λ. The method identifies weighted transitive
closure of attribute values involved in confidential data reconstruction, and uses
the result to identify the maximum number of attribute values that can remain
unchanged.

2 Chase as Tool for Revealing Hidden Values

We briefly provide some background on a null value imputation algorithm Chase
based on rule-discovery strategy called ERID [2]. Assume that S = (X, A, V ),
where V =

⋃
{Va : a ∈ A} and each a ∈ A is a partial function from X into

2Va − {∅}. In the first step, Chase algorithm identifies all incomplete attributes
in S. An attribute is incomplete if there is an object in S with incomplete
information on this attribute. The values of all incomplete attributes in S are
treated as concepts to be learned (in a form of rules) either directly from S or
from S and its remote sites (if S is a part of DAIS). The second step of Chase
algorithm is to extract all these rules and store them in a knowledge base D
for S [11]. The next step is to replace incomplete information in S by values
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provided by rules in D. This process is recursively repeated till no new hidden
values in S can be revealed.

Definition
We say that S = (X, A, V ) is a partially incomplete information system of type
λ, if the following four conditions hold:

– X is the set of objects, A is the set of attributes, and V =
⋃

{Va : a ∈ A} is
the set of values of attributes,

– (∀x ∈ X)(∀a ∈ A)[aS(x) ∈ Va or aS(x) = {(vi, pi) : 1 ≤ i ≤ m}] ,

– (∀x ∈ X)(∀a ∈ A)[(aS(x) = {(vi, pi) : 1 ≤ i ≤ m}) →
∑m

i=1 pi = 1],

– (∀x ∈ X)(∀a ∈ A)[(aS(x) = {(vi, pi) : 1 ≤ i ≤ m}) → (∀i)(pi ≥ λ)].

An example of an information system of type λ = 1
5 is given in Table 1.

Table 1. Information System S

X a b c d e f g

x1 (a1,
2
3 )(a2,

1
3 ) b1 c1 d1 e1 f1 g1

x2 (a2,
2
5 )(a3,

3
5 ) (b1,

1
3 )(b2,

2
3 ) d2 e1 f2

x3 a1 b2 (c1,
1
2 )(c3,

1
2 ) d1 e3 f2

x4 a3 c2 d1 (e1,
2
3 )(e2, 13 ) f2

x5 (a1,
2
3 )(a3,

1
3 ) (b1,

1
2 )(b2,

1
2 ) c2 d1 e1 f2 g1

x6 a2 b2 c3 d1 (e2,
1
3 )(e3,

2
3 ) f3

x7 a2 b1 (c1,
1
3 )(c2,

2
3 ) e2 f3

.

.
xi (a3,

1
2 )(a4,

1
2 ) b1 c2 e3 f2

Let us assume that another information system S2 has the same values as
S except a(x1)={(a1,

3
4 ), (a2,

1
4 )} and b(x5)={(b1,

3
4 ), (b2,

1
4 )}. In both cases, an

attribute value assigned to an object in S2 is less general than in S1.
Now, let us assume that S, S2 are partially incomplete information systems,

both of type λ. They provide descriptions of the same set of objects X using the
same set of attributes A. The meaning and granularity of values of attributes
in A for both systems S, S2 is also the same. Additionally, we assume that
aS(x) = {(ai, pi) : i ≤ m} and aS2(x) = {(a2i, p2i) : i ≤ m2}.

Now, we introduce the relation Ψ , called containment relation. We say that
(S, S2) ∈ Ψ , if the following two conditions hold:

– (∀x ∈ X)(∀a ∈ A)[card(aS(x)) ≥ card(aS2(x))],

– (∀x ∈ X)(∀a ∈ A)[[card(aS(x)) = card(aS2 (x))] →
[
∑

i�=j |p2i − p2j| >
∑

i�=j |pi − pj |]].
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Instead of saying that containment relation holds between S and S2, we can
equivalently say that S was transformed into S2 by containment mapping Ψ . Al-
gorithm Chase2, described by Dardzińska and Raś in [2], converts an information
system S of type λ to a new more complete information system Chase2(S) of
the same type. The algorithm differs from other known strategies for chasing
incomplete data in relational tables because of the assumption concerning par-
tial incompleteness of data (sets of weighted attribute values can be assigned by
Chase2 to an object as its new value). This assumption forced authors in [3] to
develop a new discovery algorithm, called ERID, for extracting rules from incom-
plete information systems of type λ. The syntax of classification rules discovered
by ERID is the same as syntax of similar rules discovered by classical methods,
like LERS or RSES. However, the method of computing their confidence and
support is different.

Table 2. Information System Sd

X a b c d e f g

x1 (a1,
2
3 )(a2,

1
3 ) b1 c1 e1 f1 g1

x2 (a2,
2
5 )(a3,

3
5 ) (b1,

1
3 )(b2,

2
3 ) e1 f2

x3 a1 b2 (c1,
1
2 )(c3,

1
2 ) e3 f2

x4 a3 c2 (e1,
2
3 )(e2, 13 ) f2

x5 (a1,
2
3 )(a3,

1
3 ) (b1,

1
2 )(b2,

1
2 ) c2 e1 f2 g1

x6 a2 b2 c3 (e2,
1
3 )(e3,

2
3 ) f3

x7 a2 b1 (c1,
1
3 )(c2,

2
3 ) e2 f3

.

.
xi (a3,

1
2 )(a4,

1
2 ) b1 c2 e3 f2

Algorithm Chase2 based on ERID can be used as a null value imputation tool
to reveal hidden symbolic data. The method proposed in [7] protects confidential
data against Chase2 assuming that it is driven by certain rules. It identifies a
minimal subset of additional data in S which needs to be hidden to guarantee
that the confidential data can not be revealed by Chase. In this paper we gen-
eralize this strategy by proposing an algorithm which protects confidential data
against Chase2 driven by ERID. It is a bottom-up strategy which identifies, for
each object x in S, a maximal set of values of attributes which do not have to be
entirely hidden and still the information associated with secure attribute values
of x is protected.

3 Algorithm Protecting Confidential Data Against
Rule-Based Chase

In this section we present an algorithm which protects values of a hidden at-
tribute over null value imputation Chase2 based on ERID. Suppose we have an
information system S as shown in Table 1 of type λ = 1

5 . S is transformed to



334 Z.W. Raś et al.

Sd by hiding the confidential attribute d as shown in Table 2. The rules in the
knowledge base KB are summarized in Table 3. For instance r1 = [b1 · c1 → a1]
is an example of a rule belonging to KB and its confidence is 1.

Table 3. Rules contained in KB. Values in parenthesis are decision values

Rule Conf a b c d e f g

r1 1 (a1) b1 c1

r2 1 (a1) c1 f1

r3
2
3 (b1) c1

r4 1 (b1) e1

r5 1 a1 (c1) f1

r6 1 a1 c1 (e1)
r7

2
3 (c1) e1 g1

r8 1 a1 c1 (d1)
r9 1 b1 c1 (d1)
r10 1 (d1) f1

To describe the algorithm, first we define the following sets,

– α(x) = {a ∈ A : a(x) �= Null}, the set of attribute values in Sd used to
describe x

– α(t), the set of attribute values used in t, where t is their conjunction
– R(x) = {(t → c) ∈ KB : α(t) ⊆ α(x)}, the set of rules in KB where the

attribute values used in t are contained in α(x)
– β(x) = ∪{α(t) ∪ {c} : [t → c] ∈ R(x)}.

In our example R(x1) = {r1,r2,r3,r4,r5,r6,r7,r8,r9,r10}, and β(x1) =
{a1, b1, c1, d1, e1, f1, g1}. By using Chase2 based on ERID, d1 replaces the hidden
slot d(x1) by rules from {r8, r9, r10}. Rules r9, r10 guarantee the confidence 1
assigned to d1, whereas the rule r8 only guarantees the confidence 2

3 which
is above the threshold value λ = 1

5 . In addition, other rules from R(x1) also
predict attribute values listed in {t8, t9, t10}. These interconnections often build
up a complex chain of inferences. The task of blocking such inference chains
and identifying the minimal set of concealing values is not straightforward [7],
especially that the confidence assigned to rules in KB and the confidence assigned
to attribute values in Sd have to be taken into consideration.

To reduce the complexity and minimize the size of the set of hidden val-
ues, a bottom up approach has been adapted. We check the values that remain
unchanged starting from a singleton set containing attribute value a by using
weighted transitive closure [4] (if a → b and b → c, then a → c, which gives us
the set {a, b, c}). What about computing the weights assigned to a, b, c? Let us
assume that a → b has a confidence λ1 and b → c has a confidence λ2. Then,
weight 1 is assigned to a, weight λ1 is assigned to b, and weight (λ1 · λ2) is
assigned to c. If λ3 is a weight associated with a, then weight (λ3 ·λ1) is assigned
to b, and weight (λ3 ·λ1 ·λ2) is assigned to c. If the weight assigned to any of the
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elements in {a, b, c} is below the threshold value λ, then this element is removed
from {a, b, c}. Our goal is to increase the initial set size as much as possible. Let
us notice that any element of the resulting set can be generated by following
two different paths. Each path assigns a different weight to that element. In all
such cases, the highest weight is chosen by our algorithm. This approach auto-
matically rules out any superset of must-be-hidden values, and minimizes the
computational cost. The justification of this is quite simple. Weighted transitive
closure has the property that the superset of a set s also contains s. Clearly, if
a set of attribute values predicts d1, then the set must be hidden regardless of
the presence/abscence of other attribute values.

To outline the procedure, we start with a set β(x) = {(a1,
2
3 ), b1, c1, e1, f1, g1}

for the object x1 which construction is supported by 10 rules from KB, and
check the transitive closure of each singleton subset δ(x) of that set. If the
transitive closure of δ(x) contains classified attribute value d1 and the weight
associated with d1 is greater than λ, then δ(x) does not sustain, it is marked,
and it is not considered in later steps. Otherwise, the set remains unmarked. In
the second iteration of the algorithm, all two-element subsets of β(x) built only
from unmarked sets are considered. If the transitive closure of any of these sets
does not contain d1 with weight associated to it greater than λ, then such a set
remains unmarked and it is used in the later steps of the algorithm. Otherwise,
the set is getting marked. If either all sets in a currently executed iteration step
are marked or we have reached the set β(x), then the algorithm stops. Since
only subsets of β(x) are considered, the number of iterations will be usually not
large.

So, in our example the following singleton sets are considered:
{(a1,

2
3 )}+ = {(a1,

2
3 )} is unmarked

{b1}+ = {b1, } is unmarked

{c1}+ = {(a1,
2
3 ), (b1,

2
3 ), c1, (e1,

4
9 ), (d1,

4
9 )} contains d1 and 4

9 ≥ λ so it is marked

{e1}+ = {b1, e1} is unmarked

{f1}+ = {d1, f1} contains d1 so it is marked

{g1}+ = {g1} is unmarked

Clearly, c1 and f1 have to be concealed. The next step is to build sets of length
2 and determine which of them can sustain. We take the union of two sets only
if they are both unmarked and one of them is a singleton set.

{(a1,
2
3 ), b1}+ = {(a1,

2
3 ), b1} is unmarked

{(a1,
2
3 ), e1}+ = {(a1,

2
3 ), b1, e1} is unmarked

{(a1,
2
3 ), g1}+ = {(a1,

2
3 ), g1} is unmarked

{b1, e1}+ = {b1, e1} is unmarked

{b1, g1}+ = {b1, g1} is unmarked

{e1, g1}+ = {(a1,
2
3 ), (b1,

2
3 ), (c1,

2
3 ), (d1,

2
3 ), e1, g1} contains d1 and 2

3 ≥ λ so it is

marked

Now we build 3-element sets from previous sets that have not been marked.
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{(a1,
2
3 ), b1, e1}+ = {(a1,

2
3 ), b1, e1} is unmarked

{(a1,
2
3 ), b1, g1}+ = {(a1,

2
3 ), b1, g1} is unmarked

{b1, e1, g1}+ is not considered as a superset of {e1, g1} which was marked.

We have {a1, b1, e1} and {a1, b1, g1} as unmarked sets that contain the max-
imum number of elements and do not have the transitive closure containing d
with associated weight greater than λ. In a similar way, we compute the maximal
sets for any object xi.

The corresponding algorithm, called G-SCIKD, is a generalization of SCIKD
strategy presented in [7]. If an attribute values revealed by G-SCIKD has a
confidence below λ, then this attribute value is removed from consideration.
This constraint is semantically similar to the constraint λ used in ERID [2].

4 Experiment

We implemented G-SCIKD on a PC running Windows XP and Oracle database
version 10g. The code was written in PL/SQL language with PL/SQL Developer
version 6.

The sampling data table containing 4,000 objects with 10 attributes was ex-
tracted randomly from a complete database describing personal income reported
in the Census data [1]. The data table was randomly partitioned into 4 tables
that each have 1,000 tuples. One of these tables is called client and the remain-
ing 3 are called servers. Now, we hide all values of one attribute that includes
income data at the client site. From the servers, 13 rules are extracted by ERID
and stored in KB of the client. Additionally, 75 rules describing incomplete or
partially hidden attributes at the client site are extracted by ERID. All these
rules are used to reveal values of incomplete attributes by Chase algorithm [2]. It
appears that 739 attribute values (7.39% of the total number of attribute values
in client table) have to be additionally hidden. The presented method can easily
be used to protect two or more confidential attributes in an information system.
In this case, a set of attribute values in xi should be hidden if the closure of this
set contains any of the classified data.
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Abstract. In the paper, we present the relationship between loss func-
tions and confirmation measures. We show that population minimizers
for weighted loss functions correspond to confirmation measures. This
result can be used in construction of machine learning methods, partic-
ularly, ensemble methods.

1 Introduction

Let us define the prediction problem in a similar way as in [4]. The aim is to
predict the unknown value of an attribute y (sometimes called output, response
variable or decision attribute) of an object using the known joint values of other
attributes (sometimes called predictors, condition attributes or independent vari-
ables) x = (x1, x2, . . . , xn). We consider binary classification problem, in which
we assume that y ∈ {−1, 1}. All objects for which y = −1 constitute decision
class Cl−1, and all objects for which y = 1 constitute decision class Cl1. The goal
of a learning task is to find a function F (x) (in general, F (x) ∈ �) using a set of
training examples {yi,xi}N

1 that predicts accurately y (in other words, classifies
accurately objects to decision classes). The optimal classification procedure is
given by:

F ∗(x) = arg min
F (x)

EyxL(y, F (x)), (1)

where the expected value Eyx is over joint distribution of all variables (y,x) for
the data to be predicted. L(y, F (x)) is a loss or cost for predicting F (x) when the
actual value is y. EyxL(y, F (x)) is often called prediction risk. Nevertheless, the
learning procedure can use only a set of training examples {yi,xi}N

1 . Using this
set, it tries to construct F (x) to be the best possible approximation of F ∗(x).
The typical loss function in binary classification tasks is, so called, 0-1 loss:

L0−1(y, F (x)) =
{

0 if yF (x) > 0,
1 if yF (x) ≤ 0.

(2)

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 338–345, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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It is possible to use other loss functions than (2). Each of these functions has
some interesting properties. One of them is a population minimizer of prediction
risk. By conditioning (1) on x (i.e., factoring the joint distribution P (y,x) =
P (x)P (y|x)), we obtain:

F ∗(x) = arg min
F (x)

ExEy|xL(y, F (x)). (3)

It is easy to see that it suffices to minimize (3) pointwise:

F ∗(x) = arg min
F (x)

Ey|xL(y, F (x)). (4)

The solution of the above is called population minimizer. In other words, this
is an answer to a question: what does a minimization of expected loss estimate
on a population level? Let us remind that the population minimizer for 0-1 loss
function is:

F ∗(x) =
{

1 if P (y = 1|x) ≥ 1
2 ,

−1 if P (y = −1|x) > 1
2 .

(5)

From the above, it is easy to see that minimizing 0-1 loss function one estimates
a region in predictor space in which class Cl1 is observed with the higher prob-
ability than class Cl−1. Minimization of some other loss functions can be seen
as an estimation of conditional probabilities P (y = 1|x) (see Section 2).
From the other side, Bayesian confirmation measures (see, for example, [5,9])

have paid a special attention in knowledge discovery [7]. Confirmation measure
c(H, E) says in what degree a piece of evidence E confirms (or disconfirms) a
hypothesis H . It is required to satisfy:

c(H, E) =

⎧
⎨

⎩

> 0 if P (H |E) > P (H),
= 0 if P (H |E) = P (H),
< 0 if P (H |E) < P (H),

(6)

where P (H) is the probability of hypothesis H and P (H |E) is the conditional
probability of hypothesis H given evidence E. In Section 3, two confirmation
measures of a particular interest are discussed.
In this paper, we present relationship between loss functions and confirmation

measures. The motivation of this study is a question: what is the form of the loss
function for estimating a region in predictor space in which class Cl1 is observed
with the positive confirmation, or alternatively, for estimating confirmation mea-
sure for a given x and y? In the following, we show that population minimizers
for weighted loss functions correspond to confirmation measures. Weighted loss
functions are often used in the case of imbalanced class distribution, i.e., when
probabilities P (y = 1) and P (y = −1) are substantially different. This result is
described in Section 4. The paper is concluded in the last section.
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Fig. 1. The most popular loss functions (figure prepared in R [10]; similar figure may
be found in [8], also prepared in R)

2 Loss Functions

There are different loss functions used in prediction problems (for a wide discus-
sion see [8]). In this paper, we consider, besides 0-1 loss, the following three loss
functions for binary classification:

– exponential loss:
Lexp(y, F (x)) = exp(−yF (x)), (7)

– binomial negative log-likelihood loss:

Llog(y, F (x)) = log(1 + exp(−2yF (x))), (8)

– squared-error loss:

Lsqr(y, F (x)) = (y − F (x))2 = (1 − yF (x))2. (9)

These loss functions are presented in Figure 1. Exponential loss is used in Ad-
aBoost [6]. Binomial negative log-likelihood loss is common in statistical ap-
proaches. It is also used in Gradient Boosting Machines [3]. The reformulation
of the squared-error loss (9) is possible, because y ∈ {−1, 1}. Squared-error loss
is not a monotone decreasing function of increasing yF (x). For values yF (x) > 1
it increases quadratically. For this reason, one has to use this loss function in
classification task very carefully.
The population minimizers for these loss functions are as follows:

F ∗(x) = arg min
F (x)

Ey|xLexp(y, F (x)) =
1
2

log
P (y = 1|x)

P (y = −1|x)
,
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F ∗(x) = arg min
F (x)

Ey|xLlog(y, F (x)) =
1
2

log
P (y = 1|x)

P (y = −1|x)
,

F ∗(x) = arg min
F (x)

Ey|xLsqr(y, F (x)) = P (y = 1|x) − P (y = −1|x).

From these formulas, it is easy to get values of P (y = 1|x).

3 Confirmation Measures

There are two confirmation measures of a particular interest:

l(H, E) = log
P (E|H)

P (E|¬H)
, (10)

f(H, E) =
P (E|H) − P (E|¬H)
P (E|H) + P (E|¬H)

, (11)

where H is hypothesis, and E is evidence. Measures l and f satisfy two desired
properties that are:

– hypothesis symmetry: c(H, E) = −c(¬H, E) (for details, see for example [5]),
– and monotonicity property M defined in terms of rough set confirmation
measures (for details, see [7]).

Let us remark that in the binary classification problem, one tries for a given
x to predict value y ∈ {−1, 1}. In this case, evidence is x, and hypotheses are
then y = −1 and y = 1. Confirmation measures (10) and (11) take the following
form:

l(y = 1|x) = log
P (x|y = 1)

P (x|y = −1)
, (12)

f(y = 1|x) =
P (x|y = 1) − P (x|y = −1)
P (x|y = 1) + P (x|y = −1)

. (13)

4 Population Minimizers for Weighted Loss Functions

In this section, we present our main results that show relationship between loss
functions and confirmation measures. We prove that population minimizers for
weighted loss functions correspond to confirmation measures. Weighted loss func-
tions are often used in the case of imbalanced class distribution, i.e., when prob-
abilities P (y = 1) and P (y = −1) are substantially different. Weighted loss
function can be defined as follows:

Lw(y, F (x)) = w · L(y, F (x)),

where L(y, F (x)) is one of the loss functions presented above. Assuming that
P (y) is known, one can take w = 1/P (y), and then:

Lw(y, F (x)) =
1

P (y)
· L(y, F (x)). (14)
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In the proofs presented below, we use the following well-known facts: Bayes
theorem: P (y = 1|x) = P (y = 1 ∩ x)/P (x) = P (x|y = 1)P (y = 1)/P (x); and
P (y = 1) = 1 − P (y = −1) and P (y = 1|x) = 1 − P (y = −1|x).
Let us consider the following weighted 0-1 loss function:

Lw
0−1(y, F (x)) =

1
P (y)

·
{

0 if yF (x) > 0,
1 if yF (x) ≤ 0.

(15)

Theorem 1. Population minimizer of Ey|xLw
0−1(y, F (x)) is:

F ∗(x) =
{

1 if P (y = 1|x) ≥ P (y = 1),
−1 if P (y = −1|x) > P (y = −1)

=
{

1 if c(y = 1,x) ≥ 0,
−1 if c(y = −1,x) > 0.

(16)

where c is any confirmation measure.

Proof. We have that

F ∗(x) = arg min
F (x)

Ey|xLw
0−1(y, F (x)).

Prediction risk is then:

Ey|xLw
0−1(y, F (x)) = P (y = 1|x)Lw

0−1(1, F (x)) + P (y = −1|x)Lw
0−1(−1, F (x)),

Ey|xLw
0−1(y, F (x)) =

P (y = 1|x)
P (y = 1)

L0−1(1, F (x)) +
P (y = −1|x)
P (y = −1)

L0−1(−1, F (x)).

This is minimized, if either P (y = 1|x)/P (y = 1) ≥ P (y = −1|x)/P (y = −1)
for any F (x) > 0, or P (y = 1|x)/P (y = 1) < P (y = −1|x)/P (y = −1) for any
F (x) < 0 (in other words, only the sign of F (x) is important). From P (y =
1|x)/P (y = 1) ≥ P (y = −1|x)/P (y = −1), we have that:

P (y = 1|x)
P (y = 1)

≥ 1 − P (y = 1|x)
1 − P (y = 1)

,

which finally gives P (y = 1|x) ≥ P (y = 1) or c(y = 1,x) ≥ 0. Analogously,
from P (y = 1|x)/P (y = 1) < P (y = −1|x)/P (y = −1), we obtain that P (y =
−1|x) > P (y = −1) or c(y = −1,x) > 0. From the above we get the thesis. �

From the above theorem, it is easy to see that minimization of Lw
0−1(y, F (x))

results in estimation of a region in predictor space in which class Cl1 is ob-
served with a positive confirmation. In the following theorems, we show that
minimization of a weighted version of an exponential, a binomial negative log-
likelihood, and a squared-loss error loss function gives an estimate of a particular
confirmation measure, l or f .
Let us consider the following weighted exponential loss function:

Lw
exp(y, F (x)) =

1
P (y)

exp(−y · F (x)). (17)
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Theorem 2. Population minimizer of Ey|xLw
exp(y, F (x)) is:

F ∗(x) =
1
2

log
P (x|y = 1)

P (x|y = −1)
=

1
2
l(y = 1,x). (18)

Proof. We have that

F ∗(x) = arg min
F (x)

Ey|xLw
exp(y, F (x)).

Prediction risk is then:

Ey|xLw
exp(y, F (x)) = P (y = 1|x)Lw

exp(1, F (x)) + P (y = −1|x)Lw
exp(−1, F (x)),

Ey|xLw
exp(y, F (x)) =

P (y = 1|x)
P (y = 1)

exp(−F (x)) +
P (y = −1|x)
P (y = −1)

exp(F (x)).

Let us compute a derivative of the above expression:

∂Ey|xLw
exp(y, F (x))

∂F (x)
= −P (y = 1|x)

P (y = 1)
exp(−F (x)) +

P (y = −1|x)
P (y = −1)

exp(F (x)).

Setting the derivative to zero, we get:

exp(2F (x)) =
P (y = 1|x)P (y = −1)
P (y = 1|x)P (y = 1)

,

F (x) =
1
2

log
P (y = 1|x)P (y = −1)
P (y = 1|x)P (y = 1)

=
1
2
l(y = 1,x). �

Let us consider the following weighted binomial negative log-likelihood loss
function:

Lw
log(y, F (x)) =

1
P (y)

log(1 + exp(−2y · F (x))). (19)

Theorem 3. Population minimizer of Ey|xLw
log(y, F (x)) is:

F ∗(x) =
1
2

log
P (x|y = 1)

P (x|y = −1)
=

1
2
l(y = 1,x). (20)

Proof. We have that

F ∗(x) = arg min
F (x)

Ey|xLw
log(y, F (x)).

Prediction risk is then:

Ey|xLw
log(y, F (x)) = P (y = 1|x)Lw

log(1, F (x)) + P (y = −1|x)Lw
log(−1, F (x))

=
P (y = 1|x)
P (y = 1)

log(1 + exp(−2F (x))) +
P (y = −1|x)
P (y = −1)

log(1 + exp(2F (x))).
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Let us compute a derivative of the above expression:

∂Ey|xLw
log(y, F (x))

∂F (x)
= −2

P (y = 1|x)
P (y = 1)

exp(−2F (x))
1 + exp(−2F (x))

+

+ 2
P (y = −1|x)
P (y = −1)

exp(2F (x))
1 + exp(2F (x))

.

Setting the derivative to zero, we get:

exp(2F (x)) =
P (y = 1|x)P (y = −1)
P (y = −1|x)P (y = 1)

F (x) =
1
2

log
P (y = 1|x)P (y = −1)
P (y = −1|x)P (y = 1)

=
1
2
l(y = 1,x). �

Let us consider the following weighted squared-error loss function:

Lw
sqr(y, F (x)) =

1
P (y)

(y − F (x))2. (21)

Theorem 4. Population minimizer of Ey|xLw
sqr(y, F (x)) is:

F ∗(x) =
P (x|y = 1) − P (x|y = −1)
P (x|y = 1) + P (x|y = −1)

= f(y = 1,x). (22)

Proof. We have that

F ∗(x) = arg min
F (x)

Ey|xLw
sqr(y, F (x)).

Prediction risk is then:

Ey|xLw
sqr(y, F (x)) = P (y = 1|x)Lw

sqr(1, F (x)) + P (y = −1|x)Lw
sqr(−1, F (x)),

Ey|xLw
sqr(y, F (x)) =

P (y = 1|x)
P (y = 1)

(1 − F (x))2 +
P (y = −1|x)
P (y = −1)

(1 + F (x))2.

Let us compute a derivative of the above expression:

∂Ey|xLw
log(y, F (x))

∂F (x)
= −2

P (y = 1|x)
P (y = 1)

(1 − F (x)) + 2
P (y = −1|x)
P (y = −1)

(1 + F (x)).

Setting the derivative to zero, we get:

F (x) =
P (y = 1|x)/P (y = 1) − P (y = −1|x)/P (y = −1)
P (y = 1|x)/P (y = 1) + P (y = −1|x)/P (y = −1)

,

F (x) =
P (x|y = 1) − P (x|y = −1)
P (x|y = 1) + P (x|y = −1)

= f(y = 1,x). �
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5 Conclusions

We have proven that population minimizers for weighted loss functions corre-
spond directly to confirmation measures. This result can be applied in construc-
tion of machine learning methods, for example, ensemble classifiers producing
a linear combination of base classifiers. In particular, considering ensemble of
decision rules [1,2], a sum of outputs of rules that cover x can be interpreted as
an estimate of a confirmation measure for x and a predicted class.
Our future research will concern investigation of general conditions that loss

function has to satisfy to be used in estimation of confirmation measures.

References

1. Błaszczyński, J., Dembczyński, K., Kotłowski, W., Słowiński, R., Szeląg, M.: En-
semble of Decision Rules. Research Report RA-011/06, Poznań University of Tech-
nology (2006)

2. Błaszczyński, J., Dembczyński, K., Kotłowski, W., Słowiński, R., Szeląg, M.: En-
sembles of Decision Rules for Solving Binary Classification Problems with Pres-
ence of Missing Values. In: Greco et al. (eds.): Rough Sets and Current Trends in
Computing, Lecture Notes in Artificial Intelligence, Springer-Verlag 4259 (2006)
318–327

3. Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine.
The Annals of Statistics, 5 29 (2001) 1189–1232

4. Friedman, J. H.: Recent Advances in Predictive (Machine) Learning. Dept. of Sta-
tistics, Stanford University, http://www-stat.stanford.edu/~jhf (2003)

5. Fitelson, B.: Studies in Bayesian Confirmation Theory. Ph.D. Thesis, University
of Wisconsin, Madison (2001)

6. Freund, Y., Schapire, R. E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. System Sci. 55 1997 119–139

7. Greco, S., Pawlak, Z., Słowiński, R.: Can Bayesian confirmation measures be useful
for rough set decision rules? Engineering Applications of Artificial Intelligence 17
(2004) 345–361

8. Hastie, T., Tibshirani, R., Friedman, J. H.: Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer (2003)

9. Kyburg, H.: Recent work in inductive logic. In: Lucey, K.G., Machan, T.R. (eds.):
Recent Work in Philosophy. Rowman and Allanheld, Totowa, NJ, (1983) 89–150

10. R Development Core Team: R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, http://www.R-project.org, Vienna,
(2005)



A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 346–354, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

High Frequent Value Reduct in Very Large Databases 

Tsau Young Lin1 and Jianchao Han2 

1 Department of Computer Science, San Jose State University, 
San Jose, CA 95192, USA 
tylin@cs.sjsu.edu 

2 Department of Computer Science, California State University Dominguez Hills, 
Carson, CA 90747, USA 
jhan@csudh.edu 

Abstract. One of the main contributions of rough set theory to data mining is 
data reduction. There are three reductions: attribute (column) reduction, row 
reduction, and value reduction. Row reduction is merging the duplicate rows. 
Attribute reduction is to find important attributes. Value reduction is to reduce 
the decision rules to a logically equivalent minimal length. Most recent 
attentions have been on finding attribute reducts. Traditionally, the value reduct 
has been searched through the attribute reduct. This paper observes that this 
method may miss the best value reducts. It also revisits an old rudiment idea 
[11], namely, a rough set theory on high frequency data:  The notion of high 
frequency value reduct is extracted in a bottom-up fashion without finding 
attribute reducts. Our method can discover concise and important decision rules 
in large databases, and is described and illustrated by an example.   

Keywords: Rough set theory, high frequency, decision rule, relational database. 

1   Introduction 

Rough set theory (RST) is an elegant and powerful methodology in extracting and 
minimizing rules from decision tables and has been extensively studied in the field 
and applied in real-life applications since the pioneer work by Pawlak in 1982 [12]. 
The essence of RST is to reduce a given decision table small enough so that decision 
rules can be directly extracted [13]. However, due to the complexity, the idea works 
only for small and clean data sets. RST has a fundamental assumption, namely, every 
piece of data is precise and important. For example, every tuple in a decision table is a 
rule [13]. This paper revisits an old rudiment idea in 1996-98 [3], [4], [10], namely, 
adopting RST to high frequency data in very large databases. The underlying 
assumption is high frequent data is important and clean [10], where we had regarded 
that a high support tuple is an important rule from the point of view of case based 
reasoning. 

The reduction in rough set theory can be summarized in three aspects: attribute 
(column) reduction, row (tuple) reduction, and value reduction. Row reduction is only 
merging duplicate rows, attribute reduction is to find important attributes, while value 
reduct simplifies decision rules. Attribute reduction has been paid much attention in 
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finding attribute reducts. The central notions in this research are core, reduct and 
knowledge dependency [12], [13]. An attribute reduct of a decision table is a subset 
of condition attributes that suffice to define the decision attributes. More than one 
reduct for each decision table may exist. The intersection of all the possible reducts is 
called the core, which represents the most important information of the decision table. 
Finding all attribute reducts in a decision table is NP-hard [14] unfortunately, so the 
full power of rough set methodology may only be effective on clean and small sets of 
data. Though approximation algorithms have been proposed to build reducts from a 
decision table either top-down or bottom-up [10], with gigabytes of data in modern 
database applications, direct applications of rough set methodology are prohibitively 
expensive. Additionally, using any attribute reduct may still miss some important 
decision rules. On the other hand, very little effort has been made to find value 
reducts directly without finding minimum attribute reducts. 

We present an approach to extracting a series of interconnected information table 
that represent certain patterns of data. Our method uses the itemset concept exploited 
in mining association rules [1], [2], [6] and applies rough set methodology to such a 
series of information tables. In essence, we integrate relational database techniques 
and rough set methodology into an effective procedure of mining decision rules in 
very large databases. Although some methods that integrate RDBMS capabilities into 
rough set theory have been studied [3], [4], [5], [7], [8], [9], our contribution in this 
paper can be summarized as follows: 1) Unlike traditional rough set theory where 
decision rules are extracted from attribute reducts, we propose an approach to 
inducing decision rules by finding high frequent value reduct directly without finding 
any attribute reducts. A bottom-up algorithm is proposed to generate itemsets which 
are actually sub-decision tables of the original one. 2) The algorithm proposed in this 
paper can be easily implemented in the relational database environment by taking 
advantage of efficient SQL statements, and thus can be used to mine decision rules 
from very large databases. 

The rest of this paper is organized as follows. In Section 2, the rough set theory is 
reviewed with an example to distinguish various reductions. A bottom-up approach to 
finding value reduct without attribute reducts is presented and its implementation in 
RDBMS environments is discussed in Section 3, The approach proposed is illustrated 
in Section 4 with an example, and the conclusion is in Section 5. 

2   Rough Set Methodology 

In this section, we will review rough set methodology as explained by Pawlak [12], 
[13]. We especially demonstrate by an example the attribute reduction, row reduction, 
and value reduction to induce a small set of decision rules. To simplify the problem, 
we assume that the decision table is consistent. Let us consider the decision table 
shown in Table 1: The first column ID# is transaction id. RESULT is the decision 
attribute. TEST, LOW, HIGH, CASE and NEW are conditional attributes.  

(1) Row reduction by merging duplicate rows 

Step 1: An equivalence relation can be defined by RESULT: 
ID-i  ≅  ID-j  iff   ID-i.RESULT = ID-j.RESULT 
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It partitions the transaction into three decision classes: 

 DECISION1={ID-1, ID-2, ID-3, ID-4, ID-5, ID-6, ID-7, ID-8, ID-9}={1}  
 DECISION2={ID-10, ID-11, ID-12, ID-13, ID-14}={2}  
 DECISION3={ID-15, ID-16, ID-17, ID-18}={3} 

Step 2: For the conditional attributes {TEST, LOW, HIGH, CASE, NEW}, we 
have the following condition classes:  CONDITION1 = {ID-1, ID-2};  

 CONDITION2 = {ID-3};        CONDITION3 = {ID-4, …, ID-9}; 
 CONDITION4 = {ID-10};      CONDITION5 = {ID-11, …, ID-14};  
 CONDITION6 = {ID-15};      CONDITION7 = {ID-16, ID-17, ID-18}. 

Table 1. An decision table 

ID# TEST LOW HIGH CASE NEW RESULT 
ID-1. 1 0 0 2 1 1 
ID-2. 1 0 0 2 1 1 
ID-3. 1 1 1 2 1 1 
ID-4. 0 1 1 3 2 1 
ID-5. 0 1 1 3 2 1 
ID-6. 0 1 1 3 2 1 
ID-7. 0 1 1 3 2 1 
ID-8. 0 1 1 3 2 1 
ID-9. 0 1 1 3 2 1 
ID-10. 0 1 1 2 1 2 
ID-11 1 1 0 2 1 2 
ID-12. 1 1 0 2 1 2 
ID-13.  1 1 0 2 1 2 
ID-14.  1 1 0 2 1 2 
ID-15. 0 1 0 2 1 3 
ID-16. 1 0 1 2 1 3 
ID-17. 1 0 1 2 1 3 
ID-18. 1 0 1 2 1 3 

Step 3: Compare condition and decision classes obtained above. We have seven 
inclusions that give us seven decision rules and can be represented in Table 2, where 
the column # of items indicates the number of rows that match the corresponding rule. 

R1: CONDITION1 → DECISION1;       R2: CONDITION2→ DECISION1; 
R3: CONDITION3 → DECISION1;       R4: CONDITION4 → DECISION2; 
R5: CONDITION5 → DECISION2;       R6: CONDITION6 → DECISION3; 
R7: CONDITION7 → DECISION3. 

(2) Attribute reduction by finding the attribute reduct. One can observe that CASE 
and NEW are RESULT-dispensable, but not both together. We can drop either CASE 
or NEW without affecting decision rules. Other attributes are indispensable. Hence 
we have two minimal attribute reducts: {TEST, LOW, HIGH, CASE}, and {TEST, 
LOW, HIGH, NEW}. Without loss of generality, we consider the first attribute 
reduct. 
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Table 2. Decision rules 

Rule# TEST LOW HIGH CASE NEW RESULT # of items 
R1 1 0 0 2 1 1 2 
R2 1 1 1 2 1 1 1 
R3 0 1 1 3 2 1 6 
R4 0 1 1 2 1 2 1 
R5 1 1 0 2 1 2 4 
R6 1 1 0 2 1 3 1 
R7 1 0 0 2 1 3 3 

(3) Value reduction by finding the value reduct for each rule. To illustrate the idea, 
we will compute the value reduct for first rule. Let [R1]TEST denotes the equivalence 

class of rules which are induced from the attribute TEST in Table 2, namely 

[R1]TEST ={R1, R2, R5, R7};  [R1]LOW ={R1, R7}; 

[R1]HIGH ={R1, R5, R6};  [R1]CASE ={R1, R2, R4, R5, R6, R7}. 

F = {[R1]TEST, [R1]LOW, [R1]HIGH, [R1]CASE}. 

∩F = [R1]TEST ∩[R1]LOW ∩ [R1]HIGH ∩ [R1] CASE = {R1}. 

By dropping each component, we find the minimal subfamilies of F, called value 
reduct, such that the following inclusion holds: [R1]

LOW
 ∩ [R1]HIGH ⊆ ∩F. So for rule 

R1, we have a set of minimal conditions. We summarize all the value reducts, shown 
in Table 3, which represents the minimal conditions for all rules R1 through R7. 

Table 3. Value reducts of decision rules 

Rule# TEST LOW HIGH CASE NEW RESULT # of items 
R1  0 0   1 2 
R2 1 1 1   1 1 
R3    3  1 6 
R4 0  1 2  2 1 
R5 1 1 0   2 4 
R6 0  0   3 1 
R7  0 1   3 3 
R3’     2 1 6 
R4’ 0  1  1 2 1 

If the other attribute reduct {TEST, LOW, HIGH, NEW} is chosen, one can find 
two more decision rules, shown as rules R3’ and R4’ in Table 3. 

One can see that no matter which attribute reduct is taken, two decision rules will 
be missing. Though they are equivalent in the table, there is no general way to tell 
from which is more important. Consider two rules R3 and R3’. For a future instance 
that misses the CASE value, R3’ can be applied, while if the instance misses the 
NEW value, R3 can be applied. If we are not interested in rules with low supporting 
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cases, we can drop all the rules with # of items less than a predefined threshold.  
Table 3 shows that rules R2, R4, R6, and R4' have only support of 1, and thus can be 
ignored.   

3   Finding High Frequent Value Reduct  

The method introduced in Section 2 is an elegant approach when data is clean and 
small.  One of the main contributions of rough set theory to data mining is data 
reduction. There are three reductions: attribute (column) reduction, row reduction, and 
value reduction. Value reduction is to reduce the decision rules to a logically 
equivalent minimal subset of minimal length. Row reduction is merging only the 
duplicate rows. Attribute reduction is to find important attributes. Traditionally, the 
value reduct has been searched through the attribute reduct. This method may miss 
important decision rules with any attribute reducts chosen, not to mention, finding all 
or minimum reducts is a NP-hard problem [14].  

On the other hand, if Table 1 is a very large database, then Table 3 is also large. 
One should note that the transaction table is usually sparse; most entries are null. For 
such databases, it is extremely difficult to apply rough set methodology directly.  
Fortunately, in a sparse table, each item can be represented and stored as attribute-
value pair, i.e., (attribute, integer), where the attribute is an encoding of an item name 
and the integer is the number of items purchased. We will refer to its encoding as 
encoded pair, encoded item or simply item. Each customer transaction is a variable 
length record. Each record is a sequence of encoded items. As usual, these data are 
indexed by B+-trees. The total size of non-leaf nodes are small, we can assume the 
tree stays in main memory at all time.  

Adopting the frequent itemset idea from association rules [1] and case based 
reasoning [10], we redevelop/refine a bottom-up approach of rough set methodology 
[11] in this section to find value reduct in very large databases without finding 
attribute reducts. Our method can discover concise and important decision rules.  

Assume a given decision table or information table is stored as a relational table as 
above. As in [1], an itemset consists of encoded items of uniform length, say k, k=2, 
3, ,,,. We distinguish condition items that are formed by condition columns from 
decision items that are generated from decision attribute (column). Each k-item is 
constituted of k-1 condition attributes and 1 decision attribute, thus k-itemsets are 
information tables or sub-decision tables. All itemsets can be constructed iteratively 
until either all items are exhausted or no more interesting itemsets can be generated. 

With the required minimum support of transactions, we can form a sequence of 
information tables. In database mining, we do not know our targets, so information 
tables are more suitable than decision tables. However, we will base our discussions 
on decision tables. Our approach is described in the following algorithm. 

Algorithm: Finding all decision rules in a decision table by value reduction 
Input: A decision table T in a relational table with condition attribute set C, and a 

decision attribute d; a minimum support threshold s 
Output: RB, a set of decision rules 
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Procedure:  
1. RB  empty 
2. For k=1 to |C| Do 
3.     RBk  empty 
4.     For each subset of C, A of size k, Do 
5.         TA  create a subset from T with all columns in A 
6.         Remove all inconsistent and insufficient support tuples from TA 
7.         For each remaining tuple r in TA Do 
8.             If r is not covered by R Then RBk  RBk ∪ {r} 
9.         If RBk = empty Then Return RB 
10.         Else R  R ∪ RBk 
11. Return R 

End 

The main operations in the algorithm are creating a subset of T from a given subset 
A of all condition columns C and removing all inconsistent and insufficient support 
tuples in Lines 5 and 6. In relational databases, these can be easily implemented in 
SQL [4] by creating a view from the relational table, and thus saving storage spaces. 
Assume A = {A1, A2, …, Ap}, then the following SQL statement works: 

CREATE VIEW TA 
SELECT A1, A2, …, Ap, d, sum(support) 
FROM (SELECT A1, A2, … Ap, d, count(*) support 
  FROM T 
  GROUP BY A1, A2, …, Ap, d) 
GROUP BY A1, A2, …, Ap 
HAVING count(*)  = 1 and sum(support) >= s 

The inner SELECT statement groups (merges) all duplicate tuples and count their 
support, while the outer SELECT statement removes all inconsistent tuples which 
have the same conditions but different decisions.   

In Lines 7 and 8, tuples that are covered by current RB is discarded. A tuple is 
covered by RB if it is a super-tuple of a tuple in RB. 

4   An Example 

In this section, let’s reconsider the example in Section 2, shown in Table 1, and 
demonstrate the execution of the algorithm proposed in Section 3. For readers’ sake, 
we represent items by tables, though they should be represented in sequences of 
encoded items. To save the space, each column in the following table represents a k-
item relational table, where sequences in parenthesis are the value sequences of 
attributes listed in the column title, and the numbers after parentheses are supports of 
the preceding items. Assume the support threshold s=1.   

Loop 1: Finding 2-itemset. Table 4 shows all 2-items with one condition item and one 
decision item before removing inconsistent tuples. One can see there are only two 
consistent 2-items in shading, which should be added to RB2 and RB. 
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Table 4. 2-items with one condition item and one decision item 

TEST, 
RESULT 

LOW, 
RESULT 

HIGH, 
RESULT 

CASE, 
RESULT 

NEW, 
RESULT 

(1, 1), 3 (0, 1), 2 (0, 1), 2 (2, 1), 3 (1, 1), 3 
(1, 1), 6 (1, 1), 7 (1, 1,), 7 (3, 1), 6 (2, 1), 6 
(0, 2), 1 (1, 2), 5 (1, 2), 1 (2, 2), 5 (1, 2), 5 

(1, 2), 4 (1, 3), 1 (0, 2), 4 (2, 3), 4 (1, 3), 4 
(0, 3), 1 (0, 3), 3 (0, 3), 1   
(1, 3), 3  (1, 3), 3   

Loop 2: Finding 3-itemset. Table 5 only shows the remaining 3-items after removing 
all inconsistent tuples as well as those tuples that are covered by RB. For example, in 
the third column, (((TEST, 0), (CASE, 3), (RESULT, 1)), 6) is covered by (((CASE, 
3), (RESULT, 1)), 6) in RB and thus is removed. After this loop, RB3 contains three 
3-items and is added to RB. 

Table 5. 3-items with two condition items and one decision item 

TEST,  
LOW, 

RESULT 

TEST, 
HIGH, 

RESULT 

TEST, CASE, 
RESULT 

TEST, NEW, 
RESULT 

LOW, HIGH, 
RESULT 

 (0, 0, 3), 1   (0, 0, 1), 2 
    (0, 1, 3), 3 

LOW, 
CASE, 

RESULT 

LOW, NEW, 
RESULT 

HIGH, CASE, 
RESULT 

HIGH, NEW, 
RESULT 

NEW, CASE, 
RESULT 

Loop 3: Finding 4-items. Table 6 illustrates all consistent 4-items with support 
generated from the original table. RB4 contains four 4-items and is added to RB.   

Table 6. 4-items with three condition items and one decision item 

TEST,  
LOW,  HIGH, 

RESULT 

TEST, LOW, 
CASE, 

RESULT 

TEST, LOW, 
NEW, RESULT 

TEST, HIGH, 
CASE, 

RESULT 

TEST, HIGH, 
NEW, 

RESULT 
(1, 1, 1, 1), 1   (0, 1, 2, 2), 1 (0,1,1,2), 1 
(1, 1, 0, 2), 4     
TEST, NEW, 

CASE, 
RESULT 

LOW, HIGH, 
CASE, 

RESULT 

LOW, HIGH, 
NEW, RESULT 

LOW, NEW, 
CASE, 

RESULT 

HIGH, NEW, 
CASE, 

RESULT 

Loop 4: Finding 5-itemset. One can verify that there are no any 5-items which are 
consistent and not covered by RB. Thus the procedure stops. 
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In summarization, the above procedure outputs 9 decision rules: 

R1’’: CASE = 3  RESULT = 1 with support = 6 
R2’’: NEW = 2  RESULT = 1 with support = 6 
R3’’: TEST = 0, HIGH = 0  RESULT = 3 with support = 1 
R4’’: LOW = 0, HIGH = 0  RESULT = 1 with support = 2 
R5’’: LOW = 0, HIGH = 1  RESULT = 3 with support = 3 
R6’’: TEST = 1, LOW = 1, HIGH = 1  RESULT = 1 with support 1 
R7’’: TEST = 1, LOW = 1, HIGH = 0  RESULT = 2 with support 4 
R8’’: TEST = 0, HIGH = 1, CASE = 2  RESULT = 2 with support 1 
R9’’: TEST = 0, HIGH = 1, NEW = 1  RESULT = 2 with support 1 

Comparing above rules with Table 3, one can find that they are exactly the same. If 
the minimum support threshold is set to 1, then only five items remain, indicating five 
decision rules, also shown in Table 3. 

5   Conclusion 

Traditional rough set theory induces decision rules in a decision table by finding 
attribute reducts first and value reducts second. Unfortunately, generating decision 
rules from any attribute reducts may miss some important rules, and finding all 
attribute reducts is NP-hard. In this paper, we presented an approach to mining 
important decision rules by finding value reducts directly without finding attribute 
reducts. Our approach integrates the itemset idea of mining association rules and can 
be implemented with efficient RDBMS operations, and thus can be applied in very 
large databases. The algorithm was described and illustrated with an example. We 
also discussed the algorithm implementation in SQL statements. 

The approach proposed in this paper mines only fully confident decision rules. Our 
future work is to relax this constraint so that soften decision rules can be discovered.  
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Abstract. In many real-world applications, the costs of different errors are often 
unequal. Therefore, the inclusion of costs into learning, also named cost-
sensitive learning, has been regarded as one of the most relevant topics of future 
machine learning research. Rough set theory is a powerful mathematic tool 
dealing with inconsistent information for attribute dependence analysis, 
knowledge reduction and decision rule extraction. However, it is insensitive to 
the costs of misclassification due to the absence of a mechanism of considering 
the subjective knowledge. This paper discusses problems connected with 
introducing the subjective knowledge into rough set learning and proposes a 
weighted rough set approach for cost-sensitive learning. In this method, weights 
are employed to represent the subjective knowledge of costs and a weighted 
information system is defined firstly. With the introduction of weights, 
weighted attribute dependence analysis is carried out and an index of weighted 
approximate quality is given. Furthermore, weighted attribute reduction 
algorithm and weighted rule extraction algorithm are designed to find the 
reducts and rules with the consideration of weights. Based on the proposed 
weighted rough set, a series of comparing experimentations with several 
familiar general techniques on cost-sensitive learning are constructed. The 
results show that the approach of weighted rough set produces averagely the 
minimum misclassification costs and the lowest high cost errors.  

Keywords: Weighted rough set, knowledge reduction, rule extraction, cost-
sensitive learning. 

1   Introduction 

In many real-world applications, the costs of different errors are often unequal. For 
example, in medical diagnosis, the cost of erroneously diagnosing a patient to be 
healthy may be much bigger than that of mistakenly diagnosing a healthy person as 
being sick, because the former kind of error may result in the loss of a life. Recently, 
these kinds of learning problems have been recognized as a crucial problem in 
machine learning and data mining, and many cost-sensitive learning methods have 
been developed [1]. However, most of the research efforts make decision trees, neural 
networks and SVM cost-sensitive [2,3,4].  

Rough set theory, proposed by Pawlak [5], has been a powerful tool to deal with 
inconsistent information. However, it is insensitive to the costs of misclassification 
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due to the absence of a mechanism of considering the subjective knowledge. Through 
assigning each attribute an appropriate weight in the reduction process, Xu C.-Z. 
introduced some subjective knowledge of experts into attribute reduction [6]. But the 
subjective knowledge of objects related with misclassification costs can’t be 
considered in this method yet. In [7] and [8], probability rough set was introduced and 
each object was associated with a probability p(x), which may include some 
subjective knowledge of objects. However, how to determine the probability in 
applications was not given. What’s more, specific knowledge acquiring algorithms 
were not presented and systemic experimental analyses were not carried out.  

Note that there are some general learning techniques addressing the cost-sensitive 
learning problem outside the realm of rough set. Oversampling and undersampling is 
one kind of these popular methods, which resamples each class until the appearance 
of examples of each class is proportional to its costs. However, many studies have 
shown that oversampling usually increases the training time and may lead to 
overfitting since it involves the exact copies of some examples, and undersampling 
discards potentially useful training examples and the performance of the resulting 
classifier may be degraded[9]. Another method for cost-sensitive learning is to 
employ the minimum expected cost criterion in selecting a predicted class during 
classification [10]. This criterion affects only the classification process, not the 
training process. Since the inconsistent use of costs from training to classification, it 
can’t usually achieve the minimum misclassification costs [2]. 

In order to make rough set cost-sensitive, we propose a weighted rough set 
approach for cost-sensitive learning in this paper. The rests is organized as follows. 
Weighted rough set learning is proposed in section 2. Experiments of cost-sensitive 
learning based on weighted rough set are carried out in section 3. Section 4 concludes. 

2   Weighted Rough Set Learning 

A weighted information system is formally denoted by >=< fVAWUWIS ,,,, , 

where U  is a finite set of objects, W is a weight distribution on U, A  is a finite set 
of attributes, V  is the value domain of A, and f  is an information function 

VAUf →×: . If DCA ∪= , where C is the condition attribute set and D is the 

decision attribute set, WIS  is called a weighted decision table. 
In WIS, weights provide some necessary and additional information about 

applications, which can not be given by data. Since the equivalence class is the 
elementary information granule that expresses knowledge, it is necessary to obtain the 
weight of a set of objects. Let )(Xw  be the weight of UX ⊆ , )(Yw  be the weight 

of UY ⊆  and )( YXw ∪  be the weight of YX ∪ , if ∅=YX ∩ , then 

)(

)()()()(
)(

YXp

YpYwXpXw
YXw

∪
∪ += , (1) 

where )(Xp , )(Yp  and )( YXp ∪  represent respectively the probability of the set of 

objects X , Y  and YX ∪ .  
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After the introduction of weights into an information system, since the family of 
equivalence class associated with the set of attributes A is the same as that in classical 
information system, lower and upper approximation of the decision class don’t vary. 
However, the quality of classification under the subjective knowledge represented by 
weights will be quite different. For >==< fVDCAWUWIS ,,,, ∩ , if CB ⊆  is the 

condition attribute set, D is the decision attribute set and )(DPosB  is the B-positive 

region of classification induced by D, the weighted quality of classification induced 

by D by set of attributes B , denoted by )(DW
Bγ , is defined as 

UUw

DposDposw
D BBW

B )(

)())((
)( =γ . (2) 

If the weight of each object of U is equal, the weighted quality of classification 
degenerates into the classical one. 

Attribute reduction is a core problem in rough set. Based on the weighted quality 
of classification, we design a heuristic attribute reduction algorithm under the 
subjective knowledge as Algorithm 1. In our algorithm, in order to restrain the noise, 
a threshold ε is introduced. This algorithm selects the attribute with the greatest 
weighted quality of classification in sequence until εγγ ≤− )()( DD W

B
W
C , where CB ⊆ . 

Algorithm 1. Weighted attribute reduction under the subjective knowledge 

Input: >==< fVDCAWUWIS ,,,, ∪  and a threshold ε . 
Output: a D-reduct B of C.  
begin 
   compute the maximal weighted quality of  
   classification )(DW

Cγ ; 
   ∅←B ; 
   while CB ⊂  do  
   begin 
      for each BCa −∈  do 

         compute )(}{ DW
aB∪γ ; 

      select maxa  such that )(}{ DW
aB∪γ  is maximum;  

      }{ maxaBB ∪← ; 

      if εγγ ≤− )()( DD W
B

W
C  then exit the loop;  

   end  
   for each Ba ∈  

      if εγγ ≤− − )()( }{ DD W
aB

W
C  then }{aBB −← ; 

   return B;  
end 

One of the most important problems which can be solved using rough set is rule 
extraction. For >=< fVAUIS ,,, , if AB ⊆ and )(/ BINDUE ∈ , 

))((),( EfaBEDes a=∧= , where Ba ∈ , is called the description of class E with 
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respect to B. For a decision table >==< fVDCAUIS ,,, ∩ , if CB ⊆ , 

)(/ BINDUX ∈  and )(/ DINDUY ∈ , a decision rule r , is an assertion of the form  

),(),( DYDesBXDes → , (4) 

where ),( BXDes is the condition part of r and ),( DYDes is the decision part of r . 

Nowadays, there are many known rule extraction algorithms inspired by the rough 
set theory. Among these algorithms, LEM2 algorithm, proposed by Grzymala in [11], 
is one of the most used rough set based rule induction algorithm in real-life 
applications. In LEM2, a generalized decision is defined firstly, which is a decision 
class, or is the union of more than one decision classes. According to the generalized 
decisions, the set of objects is partitioned as a family of several disjoint subsets of 

objects associated with the generalized decisions, denoted by Y
~

. Each of Y
~

 is the 
lower approximation of a decision classification )(/ DINDUY ∈ , or is one of the 

disjoint subsets of the boundary of a decision classification. For instance, let us 
assume that three decision classifications, 321 ,, YYY , are roughly defined in the 

 

Algorithm 2. Weighted rule extraction under the subjective knowledge 

Input: a set of objects YK
~∈ . 

Output: rule set R of K . 
begin 
   KG ← , ∅←R ; 
   while ∅≠G  do 
   begin 
      ∅←Φ , }][:{G ∅≠←Φ Gcc ∩ ; 

      while ( ∅=Φ ) or (not( K⊆Φ][ )) do 
      begin 
         for each GΦ∈c , select maxc  such that 

         |][|)]([ GcGcw ∩∩  is maximum;  

         }{ maxc∪Φ←Φ , GcG max ∩][← ; 

         }][:{G ∅≠←Φ Gcc ∩ , Φ−Φ←Φ GG ; 
      end 
      for each Φ∈c  do 
         if Kc ⊆−Φ ][  then }{c−Φ←Φ ; 

      create rule r  basing on the conjunctionΦ ; 
      }{rRR ∪← , ][rKG Rr∈−← ∪ ; 
   end 
   for each Rr ∈  do 
      if KSrRs =−∈ ][∪  then rRR −← ; 
end 

decision table. The boundary of the class 1Y  consists of three disjoint subsets, i.e. 

)()()()( 3212313211 YBYBYBYBYBYBYBYBYBYBND ∩∩∪∩∪∩ −−= . Obviously, Y
~
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is consistent for every generalized decision. For each YK
~∈ , LEM2 uses a heuristic 

strategy to generate a minimal rule set of K.  
Based on LEM2, we design a rule extraction algorithm under the subjective 

knowledge as Algorithm 2. In Algorithm 2, c is an elementary condition of the 
description of class with respect to the condition attribute set and Φ is a conjunction 
of such elementary conditions being a candidate for condition part of a decision rule. 
Additionally, GΦ denotes the set of elementary conditions currently considered to be 

added to the conjunction Φ and ][Φ  denotes the cover of Φ . 

In order to evaluate discovered rules, the weighted support coefficient and 
confidence coefficient can be defined as follows.  

For a weighted decision table >==< fVDCAWUWIS ,,,, ∩ , if CB ⊆ , 

)(/ BINDUX ∈ and )(/ DINDUY ∈ , the weighted support coefficient and weighted 

confidence coefficient of a decision rule r : ),(),( DYDesBXDes → , respectively 

denoted by )(rW
sμ  and )(rW

cμ , are defined as 

XXw

YXYXw
r

UUw

YXYXw
r W

c
W
s )(

)(
)(   ,

)(

)(
)(

∩∩∩∩
== μμ . (5) 

3   Experiments on Cost-Sensitive Learning 

In order to carry out cost-sensitive learning, the weight of each class associated with 
misclassification cost must be given firstly. Suppose that ),( jiCost  denotes the cost 

of misclassifying an object of the ith class to the jth class and )(iw  denotes the weight 

of the ith class associated with misclassification cost. )(iw  can be usually derived 

from ),( jiCost  and a popular rule of the derivation, where ),( jiCost  is partitioned 

into three types, is defined as follows [2]: 

(a) 0.10),(0.1 ≤< jiCost only for a single value of Jj =  and 

0.1),( =≠ JjiCost  for all ij ≠ . Define ),()( JiCostiw =  for Jj ≠  and 

0.1)( =Jw . 

(b) 0.10),(0.1 ≤=≤ iHjiCost for each ij ≠  and at least one 0.1=iH . Define 

iHiw =)( . 

(c) 0.10),(0.1 ≤≤ jiCost  for all ij ≠  and at least one 0.1),( =jiCost . Define 

∑=
j

jiCostiw ),()( . 

Based on the proposed weighted rough set (WRS), 19 UCI data sets[12], which 
consist of 10 two-class data sets(echocardiogram, Hepatitis, heart_s, breast, horse, 
votes, credit, breast_w, tictoc, german) and 9 multi-class data sets(zoo, 
lymphography, wine, machine, glass, audiology, heart, solar, soybean), are used in the 
empirical study. In these data sets, missing values on continuous attributes are set to 
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the average value while those nominal attributes are set to the majority value, and all 
the continuous attributes in each data set are discretized via entropy (MDLP) [13]. 

Moreover, along with WRS, several familiar general techniques on cost-sensitive 
learning, including oversampling(OS), undersampling(US) and the minimum 
expected cost criterion(MC), are also selected to perform cost-sensitive learning in 
rough set. For every method, some specific configurations are summarized as follows: 

1) WRS: assigning every objects with the weight of misclassification costs, then 
using the proposed weighted rough set to learning and using the majority voting of 
weighted support coefficient to classification. 

2) RS: assigning every objects with the equal weight, then using the proposed 
weighted rough set to learning and using the majority voting of weighted support 
coefficient to classification. 

3) OS: random oversampling the kth class, which have kN training objects, until 

the appearance of training objects of each class is proportional to its weight of 
misclassification costs, then using RS to learning and classification. If the λ -class has 

the smallest number of training objects to be duplicated, then ( kk NN −* ) number of 

training objects of the kth class will be resampled random, where 

⎣ ⎦)(/)(** λλ wkwNNk = [9]. 

4) US: random undersampling the kth class according to the contrary process of 
oversampling, then using RS to learning and classification. 

5) MC: assigning every objects with the equal weight, then using RS to 
learning, and using the minimum expected cost criterion to classification. The 
expected cost for predicting class i with respect to object x is given by 

∑=
j

ji ijtxVotexEC ),(cos)()( , where )(xVote j  denotes the number of votes for 

predicting class j. 

In cost-sensitive learning, three measures are usually used to evaluate the 
performance. They are the total misclassification costs, the number of high cost errors 
and the total number of misclassification on unseen data. The first and the second are 
the most important measures. While the aim of cost-sensitive is to minimize the total 
misclassification costs, it is important to measure the number of high cost errors since 
the aim is achieved through high cost errors minimization.  

Via 10-fold cross-validations with randomly generated cost matrices belonging to 
the same cost type, we carried out experiments on cost-sensitive learning using the 
above five methods. The detailed results on two-class data sets are shown in Table 1 
and the average results under each type of cost matrix on multi-class data sets are 
given in Table 2. The results suggest that WRS achieves averagely the minimum 
misclassification costs and the lowest high cost errors under each type of cost matrix 
on both two-class and multi-class data sets. As compared with WRS, though US 
achieves the minimum misclassification costs on the two-class data sets, it obtains the 
worst results on the multi-class data sets. MC and OS acquire the middle results. 
Additionally, RS, WRS and MC cost the similar learning time, and US needs the 
minimum learning time, and OS costs the maximum learning time.  
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Table 1. Detail results of cost-sensitive learning on two-class data sets 

Misclassification costs No. high cost errors Dataset 
RS WRS MC OS US RS WRS MC OS US 

echo 13.80 0.543 0.558 0.615 0.605 1.8 0.222 0.277 0.388 0.333 
hepa 12.25 0.644 0.844 0.836 0.387 1.3 0.769 0.846 1.000 0.307 

heart_s 16.50 0.848 0.890 0.954 0.806 3.0 0.800 0.833 0.866 0.533 
breast 32.50 0.881 0.920 0.870 0.561 4.2 0.881 0.904 0.857 0.500 
horse 4.65 0.817 0.849 0.763 0.903 0.7 0.714 0.857 0.714 0.428 
votes 6.25 0.920 0.952 0.880 0.584 0.8 0.750 0.875 0.625 0.250 
credit 29.35 0.875 0.836 0.870 0.724 4.3 0.860 0.767 0.860 0.441 

breast_w 13.25 0.637 0.894 0.818 0.773 2.0 0.500 0.800 0.750 0.500 
tictoc 31.00 0.827 0.787 0.830 0.811 5.1 0.823 0.803 0.827 0.490 

german 102.3 0.516 0.517 0.521 0.554 17.8 0.033 0.033 0.043 0.078 
Mean 26.18 0.751 0.805 0.796 0.671 4.1 0.635 0.699 0.693 0.386 

No. errors Time Dataset 
RS WRS MC OS US RS WRS MC OS US 

echo 4.0 1.375 1.400 1.550 1.650 0.353 1.048 1.008 6.789 0.648 
hepa 2.7 0.925 0.963 1.037 1.037 2.559 0.986 1.166 7.324 0.366 

heart_s 6.7 0.970 1.044 1.014 1.358 8.294 1.028 1.128 7.103 0.328 
breast 11.4 0.964 0.991 0.964 1.017 11.72 1.163 1.136 6.608 0.363 
horse 1.6 0.937 0.937 1.125 2.312 3.826 0.993 1.003 42.94 0.333 
votes 2.1 1.238 1.190 1.190 1.428 11.79 1.001 1.012 10.75 0.321 
credit 14.5 1.013 1.006 1.013 1.262 187.8 1.161 1.261 6.470 0.361 

breast_w 4.8 0.958 1.062 0.854 1.520 14.55 0.987 1.178 143.3 0.278 
tictoc 13.4 1.074 1.007 1.091 1.529 162.2 1.013 1.113 35.23 0.463 

german 29.5 1.671 1.674 1.574 1.783 23.80 1.002 1.042 8.928 0.342 
Mean 9.07 1.113 1.127 1.141 1.490 42.70 1.038 1.105 27.55 0.380 

The table entries present the real results of RS or the ratio of other method against RS 

Table 2. Average results under each type of cost matrix on multi-class data sets 

No. errors Data set 
RS WRS MC OS US 

Misclassification costs 10.7165 0.8702 0.9104 0.9311 1.9290 
No. high cost errors 1.8222 0.7118 0.8354 0.9213 1.8931 (a) 

No. errors 6.4333 1.1947 1.2797 1.1989 2.2487 
 Time 44.162 1.1921 1.2307 49.6926 0.4163 

Misclassification costs 30.796 0.8969 0.9862 0.9884 1.9782 
No. high cost errors 4.8556 0.8838 0.9774 0.9874 2.0149 (b) 

No. errors 6.23 1.0751 1.1189 1.3274 2.6128 
 Time 43.0187 1.1373 1.2108 93.7216 0.1752 

Misclassification costs 32.5504 0.9616 0.9992 1.1207 2.0169 
No. high cost errors 5.6222 0.9332 0.9850 1.0939 2.1971 (c) 

No. errors 6.4333 1.1377 1.2218 1.4966 3.0306 
 Time 45.1938 1.0925 1.1937 98.4257 0.1527 

The table entries present the real results of RS or the ratio of other method against RS 
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4   Conclusions 

In this paper, we proposed a weighted rough set learning method for cost-sensitive 
learning. With the introduction of weights of misclassification costs, some basic 
definitions of classical rough set are extended, and weighted attribute reduction 
algorithm and weighted rule extraction algorithm are design to find the reducts and 
rules with the consideration of weights.  

Based on the proposed weighted rough set, a series of comparing experimentations 
with several familiar general techniques on cost-sensitive learning, including 
oversampling, undersampling and the minimum expected cost criterion, are 
constructed. The results show that the approach of weighted rough set produces 
averagely the minimum misclassification costs and the lowest high cost errors on all 
data sets.  
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Abstract. This paper demonstrates how to employ rough set framework
in order to induce JEPs in transactional data. The algorithm employs
local reducts in order to generate desired JEPs and additional EPs. The
number of the latter is decreased by preceding reduct computation with
item aggregation. The preprocessing is reduced to graph coloring and
solved with efficient classical heuristics. Our approach is contrasted with
JEP-Producer, the recommended method for JEP induction. Moreover,
a formal apparatus for classified transactional data has been proposed.
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coloring.

1 Introduction

Transactional patterns are present in various areas of knowledge discovery. As-
sociation rules based on frequent itemsets ([1]) are a common example. However,
also for either clustering or classification tasks many successful approaches have
been already proposed ([2,3]). Due to the size of a search space, efficient induc-
tion and concise representation remain the most important challenges.

On the other hand, classical problems defined for transaction databases have
their analogues in relational approach, where the rough set theory ([4]) provides
a robust and convenient framework. In particular, one can seek associations by
means of association reducts ([5]) or generate classification rules by reducts. Since
transformations between both data representations are trivial, natural questions
emerge about interdependencies among existing methods. As far as original data
is relational, it has been demonstrated that rough set approach tends to be more
efficient in inducing classification rules ([6]) than respective KDD tools. Following
this fact, we check if it can be also a successful alternative for transactional data.

Our paper focuses on classification in transaction databases and extends the
formality introduced for emerging patterns ([2]). A key notion is a jumping
� The research has been partially supported by grant No 3 T11C 002 29 received from

Polish Ministry of Education and Science.
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emerging pattern (JEP), defined as a set of items (over a given item space) that
exists in some of transactions of one class and is absent in transactions of others.
Due to their generality, we are particularly interested in minimal JEPs.

In [6] it has been demonstrated that jumping emerging patterns found for a
transformed relational data refer to local reducts in original database narrowed
to a positive region. Following this fact one could expect a similar association
in our case. However, this intuition is misleading. While values 1 in a respective
binary decision table refer to items that belong to transactions, values 0 refer
to these items which do not exist. In data mining it is equivalent to say that
transactions contain relevant negated items, e.g. the pattern ace is supported
by transactions containing a and not containing c or e. Thus, minimal patterns
obtained by local reducts can contain negated items that are indispensable for
holding discernibility. If negated items are ignored, the residual pattern will be
a regular emerging pattern (EP), i.e. pattern supported in both classes.

Two common features of transactional data are the large size of an itemspace
and sparsity. Although we can obtain the superset of the set of minimal JEPs by
means of local reduct computation, the number of additionally generated EPs is
often too high. Therefore, we propose to perform a certain item aggregation that
do not lead to any information loss on JEPs even for suboptimal aggregations.
This step can be very efficient due to sparsity and can significantly decrease the
number of additionally generated EPs. It is demonstrated that preprocessing can
be reduced to graph coloring and solved with well-known heuristics.

In Section 2 we extend the formal apparatus for emerging patterns and nega-
tive knowledge and give preliminaries on the rough set theory. Section 3 explains
how item aggregation can be employed to rule induction. It also covers reduc-
tion to the graph coloring problem and details of the algorithm. The testing
procedure and the results are given in Sect. 4. The paper is concluded in Sect. 5.

2 Formal Background

Emerging Patterns. Let a transaction system be a pair (D, I), where D is a
finite sequence of transactions (T1, .., Tn) (database) such as Ti ⊆ I for i = 1, .., n
and I is a non-empty set of items (itemspace). A support of an itemset X ⊆ I
in a sequence D = (Ti)i∈K⊆{1,..,n} ⊆ D is defined as suppD(X) = |{i∈K:X⊆Ti}|

|K| .
Let a decision transaction system be a tuple (D, I, Id), where (D, I ∪ Id) is

a transaction system and ∀T∈D|T ∩ Id| = 1. Elements of I and Id are called
condition and decision items, respectively. A support for a decision transaction
system (D, I, Id) is understood as a support in the transaction system (D, I∪Id).

For each decision item c ∈ Id, we define a decision class sequence Cc =
(Ti)i∈K , where K = {k ∈ {1, .., n} : c ∈ Tk}. Notice that each of the transactions
from D belongs to exactly one class sequence. In addition, for a database D =
(Ti)i∈K⊆{1,..,n} ⊆ D, we define a complement database D′ = (Ti)i∈{1,..,n}−K .

Given two databases D1, D2 ⊆ D we define a growth rate grD1→D2(X) = 0, if
suppD1(X) = suppD2(X) = 0; ∞, if suppD1(X) = 0∧suppD2(X) > 0; suppD2 (X)

suppD1 (X) ,
otherwise. An itemset X ⊆ I is a �-emerging pattern (EP) from D1 to D2, if
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grD1→D2(X) > � and a jumping emerging pattern (JEP), if grD1→D2 = ∞. A set
of all JEPs from D1 to D2 is called a JEP space and denoted by JEP (D1, D2).
For the data in Tab. 1, eh is a minimal JEP with suppC1(eh) = 1/3 and ce is
an EP with grC1→C2(ce) = 1.

One of the most useful features of jumping emerging patterns is the possibility
of storing and maintaining a JEP space in a concise manner [2].

Consider a set S. A border is an ordered pair < L, R > such that L, R ⊆ 2S

are antichains and ∀X∈L∃Z∈RX ⊆ Z. L and R are called a left and a right
bound, respectively. A border < L, R > represents a set interval [L, R] = {Y ∈
2S : ∃X∈L∃Z∈RX ⊆ Y ⊆ Z}.

Consider a decision transaction database (D, I, Id) and two databases D1, D2
⊆ D. According to [2], a collection JEP (D1, D2) can be uniquely represented
by a border. For d ∈ Id, we use a border < Ld, Rd > to represent the JEP space
JEP (C′

d, Cd). Members of left bounds are minimal JEPs.

Lemma 1 ([2]). ∀J⊆IJ is minimal (maximal) in JEP (C′
d, Cd)⇐⇒J ∈ Ld(Rd).

Emerging Patterns with Negation. This section introduces the notion of
negation to our study upon JEPs in decision transaction databases.

Consider a decision transaction system (D, I, Id). Let I = {I}I∈I be a neg-
ative itemspace. A set of items and negated items is called an itemset with
negation. The set of all such itemsets is defined as P = {X ⊆ I ∪ I : ∀I∈II ∈
X =⇒ I �∈ X}. For an itemset X ∈ P , we define a positive part Xp = X ∩ I, a
negative part Xn = X ∩ I and a negated pattern X = {i}i∈X , assuming I = I.

An extended support of an itemset X ∈ P in a database D ⊆ D is defined as
exsuppD(X) = |{i∈K:Xp⊆Ti∧Xn⊆I−Ti}|

|K| . An extended growth rate, an emerging
pattern and a jumping emerging pattern with negation (JEPN) from D1 to D2
are defined accordingly by means of an extended support. A set of all JEPNs
from D1 to D2 is called a JEPN space and denoted by JEPN(D1, D2). For the
data in Tab. 1, eg is a minimal JEPN and exsuppC1(eg) = 2/3.

Elements of the Rough Set Theory. Let a decision table be a triple (U , C, d),
where U (universum) is a non-empty, finite set of objects, C is a non-empty finite
set of condition attributes and d is a decision attribute. A set of all attributes is
denoted by A = C ∪{d}. The domain of an attribute a ∈ A is denoted by Va and
its value for an object u ∈ U is denoted by a(u). In particular, Vd = {c1, .., c|Vd|}
and the decision attribute induces a partition of U into decision classes {Ud}c∈Vd

.
Hereinafter, we use the term attribute to denote a condition attribute.

Consider B ⊆ A. An indiscernibility relation IND(B) is defined as IND(B)=
{(u, v) ∈ U × U : ∀a∈B a(u) = a(v)}. Since IND(B) is an equivalence relation
it induces a partition of U denoted by U/IND(B). Let B(u) be a block of the
partition containing u ∈ U . A B-lower approximation of a set X ⊆ U is defined
as follows: B∗(X) = {u ∈ U | B(u) ⊆ X} and a B-positive region with respect
to a decision attribute d is defined as POS(B, d) =

⋃
X∈U/IND({d}) B∗(X).

A local reduct for an object u ∈ U is a minimal attribute set B ⊆ C such that
∀c∈Vd

(C(u) ∩ Uc = ∅ =⇒ B(u) ∩ Uc = ∅). It means that the object u can be
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differentiated by means of B from all the objects from other classes as well as
using C. The set of all local reducts for an object u is denoted by REDLOC(u, d).

Lemma 2 ([7]). B ∈ REDLOC(u, d) for u ∈ POS(C, d) ⇐⇒ B is a minimal
set such that B(u) ⊆ Ud(u).

3 Item Aggregation in JEP Induction

Transactional to Relational Transformation. Hereinafter, we assume that
our data is given by a decision transaction system DTS = (D, I, Id), where
D = (T1, .., Tn), I = {I1, .., Im}, Id = {c1, .., cp}.

A binary decision table for a decision transaction system DTS is a decision
table BDTDTS = (U , C, d) such that U = {u1, .., un}, C = {a1, .., am}, Vd =

{c1, .., cp}; aj(ui) =
{

0, Ij �∈ Ti

1, Ij ∈ Ti
, ∀i∈1..n,j∈1..m; d(ui) = Ti ∩ Id, ∀i∈1..n.

This representation provides distinct values for items which belong to a respec-
tive transaction and which do not. Thus, patterns obtained by rough set meth-
ods can contain negated items. Since negative knowledge introduce a significant
overhead to computation and JEP induction involves only positive patterns, we
propose to condense the database by aggregating its items.

We say that a partition {p1, .., pr} of I is proper iff ∀T∈D∀j∈{1,..,r}|T ∪pj| <=
1. A condensed decision table for DTS, a decision transaction system, P =
{p1, .., pr}, a proper partition of I, F = {f1, .., fr}, where fj : 2pj �→ N and fj

is a bijection for each j ∈ {1, .., r} is a decision table CDTDTS,P,F = (U , C, d)
such that U = {u1, .., un}, C = {a1, .., ar}, Vd = {d1, .., dp}; aj(ui) = fj(Ti ∪
pj), ∀i∈1..n,j∈1..r; d(ui) = Ti ∩ Id, ∀i∈1..n.

For the sake of convenience, we introduce the notation: condPatt(u, B) =⋃
k∈K f−1

k (ak(u)), where u ∈ U , B = {ak}k∈K⊆{1,..,r}.

Table 1. A sample decision transaction system DTS =
{{T1, .., T6}, {a, b, c, d, e, f, g, h}, {c0, c1}}, a respective binary decision table and
a condensed decision table for a proper partition {{a, b, c}, {d, e, f}, {g, h}}

T1 adh c0

T2 afg c0

T3 ceg c0

T4 ce c1

T5 beh c1

T6 bfg c1

=⇒

a b c d e f g h d

u1 1 0 0 1 0 0 0 1 0
u2 1 0 0 0 0 1 1 0 0
u3 0 0 1 0 1 0 1 0 0
u4 0 0 1 0 1 0 0 0 1
u5 0 1 0 0 1 0 0 1 1
u6 0 1 0 0 0 1 1 0 1

=⇒

a1 a2 a3 d

u1 0 0 0 0
u2 0 1 1 0
u3 1 2 1 0
u4 1 2 2 1
u5 2 2 0 1
u6 2 1 1 1

Example 1. In Tab. 1 we have a transformation from a sample transactional
dataset, through a binary table, to a condensed table generated for a proper
partition {{a, b, c}, {d, e, f}, {g, h}}. Each attribute of a condensed table refers
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to a block of a partition and each attribute value to an at most one item. It holds:
condPatt(u4, a3) = ∅, condPatt(u5, a3) = h, condPatt(u6, a3) = g. Note that the
partition {{a, b, c}, {d, e, f, g, h}} is not proper, since |T1∩{d, e, f, g, h}| = 2 > 1.

Let us consider a condensed decision table CDTDTS,P,F = (U , C, d). The follow-
ing theorem demonstrates that an object from a positive region of a condensed
decision table can be used to generate a JEP when one applies an attribute set
with each attribute mapping to some not empty set of items.

Theorem 1. {condPatt(u, R) : u ∈ POS(R, d)∩Ud(u) ∧R = {ak}k∈K⊆{1,..,r}∧
∀k∈Kak(u) �= fk(∅)} = JEP (C′

d(u), Cd(u))

Proof. Let us start with {condPatt(u, R) : u ∈ POS(R, d) ∩ Ud(u) ∧ R =
{ak}k∈K⊆{1,..,r} ∧ ∀k∈Kak(u) �= fk(∅)} ⊆ JEP (C′

d(u), Cd(u)).
Let ug ∈ POS(R, d) ∩ Uc, R = {ak}k∈K , K ⊆ {1, .., r}, c = d(ug), g ∈

{1, .., n}, H = {h ∈ {1, .., n} : uh ∈ U − Uc}.
Note that we have ∀k∈K∅ �= f−1

k (ak(ug)) = (Tg ∩ pk) ∈ condPatt(u, R) (1).
We have ug ∈ R∗(Uc) ⇐⇒ R(ug) ⊆ Uc ⇐⇒ {v ∈ U : ∀k∈Kak(ug) = ak(v)} ⊆

Uc ⇐⇒ ∀h∈H∃k∈Kak(ug) �= ak(uh) ⇐⇒ ∀h∈H∃k∈KTg ∩ pk �= Th ∩ pk ⇐⇒
∀h∈H∃k∈K(Tg ∩ pk) �⊆ Th. According to (1), we have ∀h∈H∃k∈K(Tg ∩ pk) �⊆
Th ⇐⇒ ∀T∈C′

c
condPatt(ug, R) �⊆ T ⇐⇒ suppC′

c
(condPatt(ug, R)) = 0. On the

other hand, condPatt(ug, R) ⊆ Tg ∈ Cc =⇒ suppCc(condPatt(ug, R)) �= 0, thus,
we have condPatt(ug, R) ∈ JEP (C′

c, Cc).
Now, consider the opposite inclusion. Let J={Ij}j∈M⊆{1,..,m} ∈ JEP (C′

c, Cc),
H = {h ∈ {1, .., n} : Th ∈ D′

c}. We have suppCc(J) > 0 ⇐⇒ ∃g∈{1,..,n}J ⊆ Tg.
Since P is a proper partition of I, we have ∀j∈M∃kj∈{1,..,r}Ij ∈ pkj ∧ |pkj ∩

Tg| = 1 (2); let K = {kj}j∈M . Now, we have J = {Ij}j∈M =
⋃

j∈M{Ij}.
According to (2), we have

⋃
j∈M{Ij} =

⋃
j∈M Tg ∩ pkj =

⋃
k∈K Tg ∩ pk =⋃

k∈K f−1
k (ak(ug)) = condPatt(ug, {ak}k∈K).

In addition, we have suppC′
c
(J) = 0 ⇐⇒ ∀h∈HJ �⊆ Th ⇐⇒ ∀h∈H∃j∈MIj �∈

Th ⇐⇒ ∀h∈H∃j∈MTg ∩ pkj �⊆ Th =⇒ ∀h∈H∃k∈KTg ∩ pk �⊆ Th ∩ pk ⇐⇒
∀h∈H∃k∈Kf−1

k (ak(ug)) �= f−1
k (ak(uh)) ⇐⇒ ∀h∈H∃k∈Kak(ug) �= ak(uh) ⇐⇒

{v ∈ U : ∀k∈Kak(ug) = ak(v)} ⊆ Uc ⇐⇒ R(ug) ⊆ Uc ⇐⇒ ug ∈ R∗(Uc) ⇐⇒
ug ∈ POS(R, d) ∩ Uc.

As a continuation, the following theorem states that if this attribute set is a local
reduct, it generates a minimal JEP. We omit the proof due to space limitations.
It uses Theorem 1 and remains analogical to Theorem 1 from [6].

Theorem 2. {condPatt(u, R) : u ∈ POS(C, d)∩Ud(u) ∧R = {ak}k∈K⊆{1,..,r} ∈
REDLOC(u, d) ∧ ∀k∈Kak(u) �= fk(∅)} = Ld(u)

Example 2. The number of additionally generated EPs depends on a chosen par-
tition. For the CDT from Tab. 1, only one additional EP condPatt(u4, a3) = ∅
has been generated. The worst partition is a trivial one-to-one mapping leading
to a binary table. Let us consider a condensed table CDT ′ looking like BTD in
order to show analogy to finding JEPNs in BTD. For example, the pattern for
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the object u3 and the attribute set {f, g} in the BDT can be interpreted as fg ∈
JEPN(C1, C0). When we ignore negations, we have condPatt(u3, {f, g}) = g
that is not a JEP in CDT ′ and has too be pruned. As we can see the spaces
(Tab. 2) contain additional JEPNs for BTD, which become EPs with a not infi-
nite growth rate in CDT ′ after ignoring negated items by a condPatt notation.

Table 2. JEP an JEPN spaces for DTS

Space Border

JEP (D1, D0) < {eg, d, cg, a}, {adh, afg, ceg} >

JEP (D0, D1) < {eh, b}, {ce, beh, bfg} >

JEPN(D1, D0) < {fg, eh, eg, ef, eg, d, cg, bh, bg, bf, be, bc, a},

{abcdefgh, abcdefgh, abcdegh} >

JEPN(D0, D1) < {gh, eh, eg, dh, dg, ce, cdf, cg, b, ah, ag, af, ae, ac},

{abcdefgh, abcdefgh, abcdefgh} >

Problem Reduction to Graph Coloring. It is not obvious which partition is
optimal for a given dataset and a reduct finding algorithm. Since dimensionality
is usually the most significant issue, we have chosen a criterium stating that
higher aggregations lead to better performance. This optimization problem can
be easily reduced to graph coloring. Let us consider an undirected graph (V, E)
such that V = {v1, .., vm}, ∀x,y∈{1,..,m}(vx, vy) ∈ E ⇐⇒ ∀T∈Dix �∈ T ∨ iy �∈
T . Every coloring {w1, .., wr} of this graph defines a proper partition of items
{p1, .., pr} such that ∀j∈{1,..,m}∀k∈{1,..,r}vj ∈ wk ⇐⇒ ij ∈ pk. A respective graph
for the data in Tab. 1 is presented in Fig. 1.

Fig. 1. The graph for the decision transaction system DTS from Tab. 1. Vertices
connected by an edge refer to attributes that cannot be aggregated into one block. The
partitions {{a, b, c}, {d, e, f}, {g, h}} and {{a, e}, {c, d, f}, {g, h}} are proper.

Algorithm Details. Our task is to find JEP spaces for all the classes of a
decision transaction system DTS. The first stage of our method is to find an
aggregation of items with a possibly small number of blocks. For this purpose,
we construct an aforementioned graph and solve a graph coloring problem. A
suboptimal solution is obtained by widely known heuristics, like LF, SLR, RLF,
SR ([8]) and used to build a condensed decision table CDT for DTS.

The most time-consuming step is discovery of minimal patterns for CDT =
{U , C, d}. It involves finding the set REDLOC(u,d) for each object u∈POS(U ,d).
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Table 3. Experimental results

Dataset Obj Items Attr JEP
Other Part. RS1 RS2 JEP-Producer

EPs Time Time Time Time

balance 625 20 4 303 0 0 125 112 691
car 1728 21 6 246 0 0 906 922 4628
cmc 1473 29 9 1943 0 3 1668 1737 1737
dna 500 80 20 444716 0 9 3997162 532440 464803
geo 402 78 10 7361 808 9 893 787 2103

house 435 48 16 6986 0 0 6722 11925 3359
krkopt 28056 43 6 21370 0 371 325525 328472 5474234
lung 32 220 56 203060 13860 25 8353406 2320684 1987296
lymn 148 59 18 6794 0 6 3940 3356 1375

mushroom 8124 117 23 3635 194 868 175196 112881 1271456
nursery 12960 27 8 638 0 15 102153 102865 523959

tic-tac-toe 958 27 9 2858 0 0 2853 3178 2659
vehicle 846 72 19 20180 6162 12 29515 88149 16281

Every local reduct B ⊆ C refers to the pattern condPatt(u, B). We ignore EPs
based on reducts with at least one attribute mapping to an empty itemset. The
rest of patterns for the objects from a particular class constitutes the left bound
of a respective JEP space. Reduct finding algorithm can be chosen arbitrarily.
A detailed discussion of a similar phase for relational data is presented in [6].

4 Experimental Results

An experiment has been performed in order to check the usefulness of the ag-
gregation step and the overall efficiency of the presented method towards JEP-
Producer. Two different methods for reduct computation are taken into account:
finding prime implicants of a monotonous boolean function ([4], RS1) and space
traversing with an attribute set dependence pruning ([9], RS2). Because of space
limitations, we present results (Tab. 3) only for one coloring heuristics, LF.
Datasets originate from the UCI repository ([10], transformed to transactional
form). The results are averaged over several repetitions. To avoid bias of a par-
ticular attribute order, a permutation has been picked up randomly each time.

In most of the cases, the items have been aggregated optimally, greatly re-
ducing the search space. Only for 4 datasets, other EPs have been generated.
At the same time, the coloring stage have not influenced the total computation
time significantly. Rough set approach outperformed JEP-Producer for 3 larger
sets: krkopt, mushroom, nursery, remained comparable for dna, lung, and more
efficient for the majority of smaller sets.

5 Conclusions

In this paper, we have proposed a novel rough set approach for finding jumping
emerging patterns (JEPs) in a decision transaction database. A database can be
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represented by a respective decision table and minimal patterns can be induced
by means of local reduct methods. Unfortunately, this approach generates a
significant overhead of additional EPs and remains inefficient. Therefore, we
have introduced a preprocessing phase, in which a database is transformed to a
relevant condensed decision table by aggregating its items into attributes.

It has been also demonstrated that finding of an optimal aggregation can be
reduced to graph coloring. Since any suboptimal solution still leads to a complete
set of minimal JEPs, we employ heuristics for graph coloring, like LF, SRL etc.

Tests performed on originally relational and transactional datasets show that
the proposed rough set method is an efficient alternative for JEP-Producer,
which operates on borders and is a widely recommended algorithm. Aggregation
phase introduces an almost unnoticeable cost and allow us to reduce the number
of additionally generated EPs and, thus, the total computation time.

We hope that our approach will be a valuable extension for other rough set
algorithms applied to transactional data.
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Abstract. An ability of Pawlak’s Rough Sets Theory to handle impre-
cision and uncertainty without any need of preliminary or additional
information about analyzed data makes this theory very interesting for
analyzing medical data. Using Rough Sets Theory knowledge extracted
from raw data may be stored in form of decision rules. But increasing
number and complexity of decision rules make their analysis and valida-
tion by domain experts difficult. In this paper we focus on this problem
and propose an approach to visualize decision rules in form of decision
trees. Afterwards domain experts validate transformed decision trees and
compare the results with general guidelines proposed by the American
College of Cardiology Foundation and the American Heart Association.

1 Introduction

Visual techniques have a special place in data exploration process because of the
phenomenal abilities of the human visual system to detect structures in images.
This product of aeons of evolution makes learning from visually presented infor-
mation faster and is used by visual methods to present abstract data graphically.
This approach is quite opposite to formal methods of model building and test-
ing but it is ideal for searching through data to find unexpected relationships.
Therefore our research is focused on a vertical solution for analyzing medical
data, which joins advantages of several data mining techniques in one system,
which consist of following parts:

– Import subsystem-responsible for importing data from medical information
systems into storage database

– Data recognition-this subsystem transforms raw data to a form suited for
further data processing. Additionally noise and redundant data are removed
based on a statistical analysis. Partly results were described in [1]

– Feature subset selection - responsible for selecting an optimal set of attributes
for a generation of decision rules.
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– Rule induction subsystem - uses based on Rough Sets [2,3] MLEM2 algo-
rithm proposed by Grzymala-Busse in [4] for generating decision rules. Early
research on this area was described in [5,6].

– Visualization of the collected knowledge in a form easily understandable by
humans. Partly results based on decision trees were published in [7]

In this paper we extend our initial research on the data visualization and
present an implementation of AQDT-2 method proposed by Michalski in [8]
for transforming decision rules into decision trees models. Visualization of tree
models is realized by a renderer class, which is also discussed in this paper.
Generated decision trees are also validated by domain experts and compared with
general guidelines proposed by the American College of Cardiology Foundation
and the American Heart Association [9].

2 Decision Trees

2.1 Transformation of Decision Rules:AQDT-2

Decision trees are an effective tool for describing a decision process but they also
show some limitations if their structure must be adapted for new requirements.
This limitation is attributable to the fact, that decision structure (tree) stores
information in form of procedural representation, which imposes an evaluation
order of tests. In contrary declarative representation of knowledge such as deci-
sion rules can be evaluated in any order, so that it is possible to generate a large
number of logically equivalent decision trees which differ in test ordering. This
way decision rules may be easily modified and adapted for specified requirements
and at the end this declarative knowledge representation may be transformed
into procedural one (decision trees). In this paper we describe our transforma-
tion results achieved with an extended version of AQDT-2 method based on the
idea presented by Michalski in [8]. The core of this method is a selection of the
most suitable attribute from decision rules for further processing based on four
criteria:

– Disjointness - specifies an effectiveness of an attribute in discriminating
among decision rules for different decision classes.

– Importance - this measure gives more ”points” to an attribute which ap-
pears in strong decision rules.

– Value distribution - an attribute which has a smaller number of legal
values scores better.

– Dominance - this criteria prefers attributes which appears in a large number
of rules.

These criteria build the attribute ranking system (LEF) [10] which firstly se-
lects the best attribute based on value of Disjointness. If there are more then
one attribute which have the same maximal value of Disjointness then the next
criteria is checked in the following order: Importance, Value distribution and
Dominance. The algorithm of transforming decision rules into decision tree con-
sist of following steps:
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1. From the given decision rules extract attributes and select the best attribute
using LEF.

2. Create a node of the tree (first node is the root) and assign to its branches
all legal values of the attribute.

3. Associate each branch with rules from the parent node which satisfy condi-
tion for the branch.

4. Remove satisfied condition from rules belonging to the branch.
5. If all rules in the branch belong to the same class create a leaf node and

assign to it that class.
6. If there are no more unprocessed attributes in rules assigned to the branch

create a leaf and assign to it all left decision classes.
7. If all branches were processed stop otherwise repeat steps 1 to 6.

In our research we have extended the initial algorithm to support: a rule filtering,
an interactive attribute selection and an advanced tree generalization and pruning.

2.2 Visualization of Decision Tree Model

For rendering a generated decision tree we implemented an algorithmwhich mostly
follows the esthetics defined in [11,12] for keeping a displayed tree as tight as pos-
sible without compromising its readability. This implementation in contrary to
Bloesch uses a non-recursive algorithm which avoids stack overflowsduring a process-
ing of large tree models. Main steps of the render algorithm are following:

1. Let maximum level be the deepest tree level (starting from 0 for a root node).
2. Create a one dimension table Yfree[maximum level] for storing a next pos-

sible Y position of nodes at each level and initialize it with start values.
3. Starting from the root node find the deepest leaf of its first branch.
4. If the node is a leaf calculate its positions based on its level. Otherwise

calculate its positions based on its level and positions of its child’s nodes.
5. Actualize Yfree table for the node’s level.
6. Go to node’s parent and continue with the next unprocessed branch. If all

branches are processed then repeat the Step 6.
7. Repeat steps 4 to 6. If all root branches are expanded the calculate coordi-

nates for the root node and stop.

An example of tree rendering is presented at figure 1, where numbers displayed
in tree nodes mean node’s draw order starting from 1 and nodes having a dashed
outline symbolize not yet processed nodes. Rendering of a tree model starts with
some initialization (steps 1 and 2) and then the algorithm finds the deepest node
which belongs to the first branch of the root node. This start node is marked
at figure 1 with a number 1 and it belongs to level 1 (marked as ’L:1’ column
at figure 1). During the next step X and Y positions of the node are calculated.
Node’s X position depends on its level and is the same for all nodes belonging
to the same level. Node’s Y position depends on the entry in the Yfree table.
For the first node it will be the initial value saved in the Yfree table during
initialization. Each time X and Y positions for the processed node have been
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Fig. 1. An example of the tree rendering process: a) Subtree (nodes 2 and 3) will be
moved b) Subtree (nodes 2 and 3) has been moved c) Adjusting node 6 and its child
(node 5) d) End result of a tree rendering

assigned the Yfree table is actualized. This step ends a processing for the node
and the algorithm repeats itself for the next unprocessed node. The selection of
a next unprocessed node is done in following order: if the parent node of the
currently processed node has other unprocessed branches then again the deepest
node of the first unprocessed branch is selected for further processing. If all
parent nodes branches have been processed then the algorithm tries to find a
next unprocessed branch of a node one level higher. The calculation stops if all
root’s branches and the root node are processed. If during the processing at some
level a calculated node’s Y position is smaller then a possible Y position stored
in the Yfree table for that level then its position and positions of its children
will be adjusted as shown in cases a), b) and c) of figure 1. Case d) of the figure
1 shows the completely rendered tree.

The presented method was optimized to utilize a horizontal layout of a tree
for saving the space needed for tree rendering. Additionally, as it can be seen at
figure 2, it supports a variable height of tree nodes.

3 Material and Method

3.1 Dataset Preparation

Data used in our research was obtained from the Cardiology Department of Sile-
sian Medical Academy in Katowice-the leading Electrocardiology Department in
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Poland specializing in hospitalization of severe heart diseases (over 1200 pace-
maker implantations yearly). Data of 4318 patients hospitalized in this Depart-
ment between 2003 and 2005 were imported and transformed into 14 grouped
attributes such as: Atrioventricular block, Cardiomyopathy, Chronic ischaemic
heart disease, Sick Sinus Syndrome and Paroxysmal tachycardia. Additionally a
decision attribute (PM DDD, value range:[0,1]) was specified which represents
a decision (0=no, 1=yes) about an implementation of a dual chamber DDD
pace-maker. Decision rules were generated from a testing set (2

3 of the initial
data) using our implementation of Rough Sets MLEM2 algorithm. The rules
were then used as an input for AQDT-2 method.

4 Results

Figure 2 shows a generalized decision tree generated from decision rules achieved
for the training set containing all 14 attributes. Following steps can be used to
simplify a tree structure and thus allow its analysis:

– Limitation of tree depth: Only first four levels of the decision tree were
calculated.

– Automatic selection of strong attributes: We used filter method [13] coped
with χ2 to select the strongest attributes in tree generation phase. It would
be also possible to use a set of user-selected attributes for tree generation.

– Generalization of tree structure: Each tree node was only expanded if the
weakest class in the node reached a defined ratio. This ratio (set in the
presented case at 20%) is calculated as a ratio between the class strength
and the strength of the strongest class in a processed node. Strength of a
class is summarized from decision rules belonging to the class and assigned
to the currently processed node.

Presented at figure 2 decision tree shows, that the decision about implantation
of a DDD pace-maker (Class=1.0) was taken if at least two indicators where
diagnosed: Sick Sinus Syndrome (SSS) were present (values between 1 and
3 depending on disease advance) and Atrial fibrillation and flutter (AFF)
had values: either ’Not diagnosed=value 0.0’ or ’Paroxysmic=value 1.0’. It can be
also seen, that alone the diagnosis about Paroxysmal tachycardia (PTACH)
was not sufficient for decision making. These results validated by domain experts
got a very positive opinion which is deeply rooted in both a common praxis in
the Cardiology Department and a match of ACC/AHA/NSAPE guidelines [9].

From table 1 it can be seen, that a non-reduced data set with 14 attributes
performed very well on the training dataset (above 82%) but on the test dataset
it was able to classify correctly only 71% of new cases. Comparing the true pos-
itive rate (TP) for decision class PM DDD=1 shows, that this rate with 68% is
the lowest in comparison to the other sets of decision rules. Additionally a distri-
bution of coverage ratio for each class and the lowest total number of recognized
cases from the test dataset led us to the conclusion, that these decision rules
demonstrate an overfitting effect. The rules show a good prediction accuracy
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Fig. 2. Decision tree generated for decision rules with all 14 attributes in full dis-
play mode. Format of a node description: 〈decision attribute〉=〈value of the decision
attribute〉 : 〈strength of decision rules in node〉 (〈percentage of the class strength in
compare to strength of all classes in a node〉).

on the training dataset but are less able to recognize new cases. Classification
results achieved for a reduced set of attributes showed a better classification
accuracy on the test dataset (75%) but the accuracy on the training set was
with 76% lower as for the non-reduced dataset. It is worth of mentioning that,
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Table 1. Classification results for PM DDD decision attribute

Decision Correct C:1 C:0 C:1 C:0 Correctly Rules
Rules Classif. TP TP Coverage Coverage classified

Train set 66%, Test set 33% - C:1 619 objects, C:0 839 objects
14 attributes 71.33 68.44 73.06 88.05 108.82 1040 238
4 attributes 75.38 73.13 76.79 90.79 106.79 1099 41
14 attributes (from tree) 75.79 73.33 77.36 92.08 105.84 1105 22

Train set 66% used also as Test set - C:1 1089 objects, C:0 1740 objects
14 attributes 82.15 75.70 86.47 104.32 97.30 2324 238
4 attributes 76.53 68.02 82.61 108.26 94.83 2165 41
14 attributes (from tree) 76.14 67.69 82.10 107.44 95.34 2154 22

these results were achieved with a noticeable reduced number of decision rules.
The best results in terms of classification accuracy and the smallest number of
rules where achieved for decision rules transformed back from the decision tree
shown at figure 2. Prediction accuracy of these rules is comparable with results
achieved for a reduced set of attributes what is attributable to the same subset
of strong attributes used in both cases. A very small number of 22 decision rules
is an effect of a performed indirectly generalization during a transformation de-
cision rules→decision tree. This step simplifies an input concept, as mentioned
by Michalski in [10].

5 Conclusions

In this paper we presented the AQDT-2 method for transformation of decision
rules into decision trees and mentioned our extensions of this method. We also
presented a solution to render the generated tree and thus allow its verification.
In our experiments we generated an tree model from decision rules and then we
compared prediction accuracy of different sets of decision rules. Results of these
experiments shown, that AQDT-2 method has several advantages in medical
domain over methods natively generating decision trees:

1. Knowledge stored as decision rules can be easily transformed to a graphical
format, which is easily understandably and verifiable by domain experts.

2. An order of attributes in a decision tree (tree structure) can be easily changed
according to user preferences. This allows partly decision making in situa-
tions where getting a value of an attribute is impossible, dangerous or costly.

3. Transformation from calculated decision tree back to decision rules simplify
an original concept without a significant loss of a recognition accuracy. Sim-
ilar results were also achieved by Bohanec and Bratko in [14].

4. A possibility to interactively change a structure of a generated tree al-
lows ’what-if’ analysis and can be easily used to reveal new patterns from
processed data.
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Presented methods join data mining techniques implemented in our system into
a complete solution where both analytical methods and human senses are used
for knowledge exploration.
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Abstract. This paper shows problems with combination of rule induc-
tion and attribute-oriented generalization, where if the given hierarchy
includes inconsistencies, then application of hierarchical knowledge gen-
erates inconsistent rules. Then, we introduce two approaches to solve this
problem, one process of which suggests that combination of rule induc-
tion and attribute-oriented generalization can be used to validate concept
hiearchy. Interestingly, fuzzy linguistic variables play an important role
in solving these problems.

1 Introduction

Conventional studies on rule discovery based on rough set methods[1,2,3] mainly
focus on acquisition of rules, the targets of which have mutually exclusive sup-
porting sets. Supporting sets of target concepts form a partition of the universe,
and each method search for sets which covers this partition. Especially, Pawlak’s
rough set theory shows the family of sets can form an approximation of the par-
tition of the universe. These ideas can easily extend into probabilistic contexts,
such as shown in Ziarko’s variable precision rough set model[4]. However, mutual
exclusiveness of the target does not always hold in real-world databases, where
conventional probabilistic approaches cannot be applied.

In this paper, first, we show that these phenomena are easily found in data
mining contexts: when we apply attribute-oriented generalization to attributes
in databases, generalized attributes will have fuzziness for classification, which
causes rule induction methods to generate inconsistent rules. Then, we intro-
duce two solutions. The first one is to introduce aggregation operators to recover
mathematical consistency. The other one is to introduce Zadeh’s linguistic vari-
ables, which describes one way to represent an interaction between lower-level
components in an upper level components and which gives a simple solution
to deal with the inconsistencies. Finally, we briefly discuss the mathematical
generalization of this solution in which context-free fuzzy sets is a key idea.
In this inconsistent problem, we have to take care about the conflicts between
each attributes, which can be viewed as a problem with multiple membership
functions.

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 379–386, 2007.
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2 Attribute-Oriented Generalization and Fuzziness

2.1 Probabilistic Rules

Accuracy and Coverage. In the subsequent sections, we adopt the following
notations, which is introduced in [5].

Let U denote a nonempty, finite set called the universe and A denote a non-
empty, finite set of attributes, i.e., a : U → Va for a ∈ A, where Va is called
the domain of a, respectively.Then, a decision table is defined as an information
system, A = (U, A ∪ {d}).

The atomic formulas over B ⊆ A ∪ {d} and V are expressions of the form
[a = v], called descriptors over B, where a ∈ B and v ∈ Va. The set F (B, V ) of
formulas over B is the least set containing all atomic formulas over B and closed
with respect to disjunction, conjunction and negation.

For each f ∈ F (B, V ), fA denote the meaning of f in A, i.e., the set of all
objects in U with property f , defined inductively as follows.

1. If f is of the form [a = v] then, fA = {s ∈ U |a(s) = v}
2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A = U − fa

By the use of this framework, classification accuracy and coverage, or true
positive rate is defined as follows.

Definition 1
Let R and D denote a formula in F (B, V ) and a set of objects which belong to
a decision d. Classification accuracy and coverage(true positive rate) for R → d
is defined as:

αR(D) =
|RA ∩ D|

|RA| (= P (D|R)), and κR(D) =
|RA ∩ D|

|D| (= P (R|D)),

where |A| denotes the cardinality of a set A, αR(D) denotes a classification
accuracy of R as to classification of D, and κR(D) denotes a coverage, or a true
positive rate of R to D, respectively.

Definition of Rules
By the use of accuracy and coverage, a probabilistic rule is defined as:

R
α,κ→ d s.t. R = ∧j ∨k [aj = vk], αR(D) ≥ δα, κR(D) ≥ δκ.

This rule is a kind of probabilistic proposition with two statistical measures,
which is an extension of Ziarko’s variable precision model(VPRS) [4].

It is also notable that both a positive rule and a negative rule are defined as
special cases of this rule, as shown in the next subsections.
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2.2 Attribute-Oriented Generalization

Rule induction methods regard a database as a decision table[1] and induce rules,
which can be viewed as reduced decision tables. However, those rules extracted
from tables do not include information about attributes and they are too sim-
ple. In practical situation, domain knowledge of attributes is very important to
gain the comprehensiblity of induced knowledge, which is one of the reasons why
databases are implemented as relational-databases[6]. Thus, reinterpretation of
induced rules by using information about attributes is needed to acquire compre-
hensive rules. For example, terolism, cornea, antimongoloid slanting of palpebral
fissures, iris defects and long eyelashes are symptoms around eyes. Thus, those
symptoms can be gathered into a category “eye symptoms” when the location
of symptoms should be focused on. symptoms should be focused on. The rela-
tions among those attributes are hierarchical as shown in Figure 1. This process,
grouping of attributes, is called attribute-oriented generalization[6].

Attribute-oriented generalization can be viewed as transformation of variables
in the context of rule induction. For example, an attribute “iris defects” should
be transformed into an attribute “eye symptoms=yes”.It is notable that the
transformation of attributes in rules correspond to that of a database because a
set of rules is equivalent to a reduced decision table. In this case, the case when
eyes are normal is defined as “eye symptoms=no”. Thus, the transformation rule
for iris defects is defined as:

[iris-defects = yes] → [eye-symptoms = yes] (1)

In general, when [Ak = Vl] is a upper-level concept of [ai = vj ], a transforming
rule is defined as:

[ai = vj ] → [Ak = Vl],

and the supporting set of [Ak = Vl] is:

[Ai = Vl]A =
⋃

i,j

[ai = vj ]a,

where A and a is a set of attributes for upper-level and lower level concepts,
respectively.

2.3 Examples

Let us illustrate how fuzzy contexts is observed when attribute-oriented gener-
alization is applied by using a small table (Table 1). Then, it is easy to see that
a rule of “Aarskog”,

[iris-defects = yes] → Aarskog α = 1.0, κ = 1.0

is obtained from Table 1.
When we apply transforming rules shown in Figure 1 to the dataset of Table

1, the table is transformed into Table 2. Then, by using transformation rule 1,
the above rule is transformed into:

[eye-symptoms = yes] → Aarskog.
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Fig. 1. An Example of Attribute Hierarchy

It is notable that mutual exclusiveness of attributes has been lost by trans-
formation. Since five attributes (telorism, cornea, slanting, iris-defects and eye-
lashes) are generalized into eye-symptoms, the candidates for accuracy and cov-
erage will be (2/4, 2/3), (2/4, 3/3), (3/4, 3/3), (3/4, 3/3), (3/3, 3/3) and (3/4,
3/3), respectively. Then, we have to select which value is suitable for the context
of this analysis.

In [7], Tsumoto selected the minimum value in medical context: accuracy is
equal to 2/4 and coverage is equal to 2/3.

Thus, the rewritten rule becomes the following probabilistic rule:

[eye-symptoms = yes] → Aarskog,

α = 3/4 = 0.75, κ = 2/3 = 0.67.

Table 1. A Small Database on Congenital Disorders

U round telorism cornea slanting iris-defects eyelashes class

1 no normal megalo yes yes long Aarskog
2 yes hyper megalo yes yes long Aarskog
3 yes hypo normal no no normal Down
4 yes hyper normal no no normal Down
5 yes hyper large yes yes long Aarskog
6 no hyper megalo yes no long Cat-cry

Definitions: round: round face, slanting: antimongoloid slanting of
palpebral fissures, Aarskog: Aarskog Syndrome, Down: Down Syndrome,
Cat-cry: Cat Cry Syndrome.
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Table 2. A Small Database on Congenital Disorders (Transformed)

U eye eye eye eye eye eye class

1 no no yes yes yes yes Aarskog
2 yes yes yes yes yes yes Aarskog
3 yes no no no no no Down
4 yes yes no no no no Down
5 yes yes yes yes yes yes Aarskog
6 no yes yes yes no yes Cat-cry

Definitions: eye: eye-symptoms

This examples show that the loss of mutual exclusiveness is directly con-
nected to the emergence of fuziness in a dataset. It it notable that the rule used
for transformation is a deterministic one. When this kind of transformation is
applied, whether applied rule is deterministic or not, fuzziness will be observed.
However, no researchers has pointed out this problem with combination of rule
induction and transformation.

It is also notable that the conflicts between attributes with respect to accuracy
and coverage corresponds to the vector representation of membership functions
shown in Lin’s context-free fuzzy sets[8].

2.4 What Is a Problem ?

The illustrative example in the last subsection shows that simple combination
of rule induction and attribute-oriented generalization easily generates many
inconsistent rules. One of the most important features of this problem is that
simple application of transformation violates mathematical conditions.

Attribute-value pairs can be viewed as a mapping in a mathematical context,
as shown in Section 2. For example, in the case of an attribute “round”, a set of
values in “round”, {yes, no} is equivalent to a domain of “round”. Then, since
the value of round for the first example in a dataset, denoted by “1” is equal to
1, round(1) is equal to no. Thus, an attribute is a mapping from examples to
values. In a reverse way, a set of examples is related to attribute-value pairs:

round−1(no) = {1, 6}.

In the same way, the following relation is obtained:

eyeslashes−1(normal) = {3, 4}.

However, simple transformation will violate this condition on mapping because
transformation rules will change different attributes into the same name of gen-
eralized attributes. For example, if the following four transformation rules are
applied:

round → eye-symptoms,
eyeslashes → eye-symptoms,

normal → no, long → yes,
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then the following relations are obtained:

eye-symptoms−1(no) = {1, 6},

eye-symptoms−1(no) = {3, 4},

which leads to contradiction. Thus, transformed attribute-value pairs are not
mapping because of one to many correspondence.

In this way, violation is observed as generation of logically inconsistent rules,
which is equivalent to mathematical inconsistencies.

3 Solutions

3.1 Join Operators

In Subsection 2.3, since five attributes (telorism, cornea, slanting, iris-defects
and eyelashes) are generalized into eye-symptoms, the candidates for accuracy
and coverage will be (2/4, 2/3), (2/4, 3/3), (3/4, 3/3), (3/4,3/3), (3/3, 3/3),
and (3/4, 3/3), respectively. Then, we show one approach reported in [7]. the
minimum value is selected: accuracy is equal to 2/4 and coverage is equal to 2/3.
This selection of minimum value is a kind of aggregation, or join operator. In join
operators, conflict values will be integrated into one values, which means that one
to many correspondence is again transformed into one to one correspondence,
which will recover consistencies.

Another example of join operators is “average”. In the above example, the
average of accuracy is 0.71, so if the average operator is selected for aggregation,
then the accuracy of the rule is equal to 0.71. This solution can be generalized
into context-free fuzzy sets introduced by Lin[8], which is shown in Section 4.

3.2 Zadeh’s Linguistic Variables

Concept Hierarchy and Information. Another solution is to observe this
problem from the viewpoint of information. After the application of transfor-
mation, it is clear that some information is lost. In other words, transformation
rules from concept hierarchy are kinds of projection and usually projection loses
substantial amounts of information. Intuitively, over-projection is observed as
fuzziness.

For example, let me consider the following three transformation rules:

[Round = yes] → [Eye-symptoms = yes],
[Iris-Defects = yes] → [Eye-symptoms = yes],
[Telorism = hyper] → [Eye-symptoms = yes]

One of the most important questions is whether eyes only contribute to these
symptoms.

Thus, one way to solve this problem is to recover information on the hierarchi-
cal structure for each symptoms. For example, let us summarize the components
of each symptom and corresponding accuracy into Table 3.
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Table 3. Components of Symptoms

Symptoms Components Accuracy

[Round = yes] : [Eye, Nose, Frontal] α = 1/2
[Iris − Defects = yes] : [Substructure of Eye] α = 3/3
[Telorism = hyper] : [Eye, Nose, Frontal] α = 2/3

It is notable that even if components of symptoms are the same, the values of
accuracy are not equal to each other. These phenomena suggest that the degrees
of contribution of components are different in those symptoms. In the above
examples, the degrees of contribution of Eye in [Round = yes], [Iris − Defects]
and [Telorism] are estimated as 1/2 (0.5), 3/3 (1.0) and 2/3(0.67), respectively.

Linguistic Variables and Knowledge Representation. Zadeh proposes lin-
guistic variables to approximate human linguistic reasoning[9]. One of the main
points in his discussion is that when human being reasons hierarchical structure,
he/she implicitly estimates the degree of contribution of each components to the
subject in an upper level.

In the case of a symptom [Round = yes], this symptom should be described
as the combination of Eye, Nose and Frontal part of face. From the value of
accuracy in Aarskog syndromes, since the contribution of Eye in [Round=yes] is
equal to 0.5, the linguistic variable of [Round = yes] is represented as:

[Round = yes] = 0.5 ∗ [Eye] + θ ∗ [Nose] + (0.5 − θ) ∗ [Frontal],

where 0.5 and θ are degrees of contribution of eyes and nose to this symptom,
respectively. It is interesting to see that the real hierarchical structure is recov-
ered by Zadehfs linguistic variable structure, which also suggests that linguistic
variables captures one aspect of human reasoning about hierarchical structure.
Especially, one important issue is that Zadeh’s linguistic variables, although par-
tially, represent the degree of interactions between sub-components in the same
hierarchical level, which cannot be achieved by simple application of object-
oriented approach.

Another important issue is that the degree of contribution, which can be
viewed as a subset of a membership function, can be estimated from data. Es-
timation of membership function is one of the key issues in application of fuzzy
reasoning, but it is a very difficult to extract such membership functions from
data and usually they are given by domain experts[10].

4 Conclusions

This paper shows that combination of attribute-oriented generalization and rule
induction methods generate inconsistent rules and proposes one solution to this
problem. It is surprising that tranformation of attributes will easily generate
this situation in data mining from relation databases: when we apply attribute-
oriented generalization to attributes in databases, generalized attributes will
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have fuzziness for classification. In this case, we have to take care about the con-
flicts between each attributes, which can be viewed as a problem with linguistic
uncertainty or multiple membership functions. Finally, the author pointed out
that these contexts should be analyzed by using two kinds of fuzzy techniques:
one is introduction of aggregation operators, which can viewed as those on mul-
tiple membership functions. The other one is linguistic variables, which captures
the degree of contribution.
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Abstract. Stock market time series are inherently noisy. Although support 
vector machine has the noise-tolerant property, the noised data still affect the 
accuracy of classification. Compared with other studies only classify the 
movements of stock market into up-trend and down-trend which does not 
concern the noised data, this study uses wavelet soft-threshold de-noising model 
to classify the noised data into stochastic trend. In the experiment, we remove 
the stochastic trend data from the SSE Composite Index and get de-noised 
training data for SVM. Then we use the de-noised data to train SVM and to 
forecast the testing data. The hit ratio is 60.12%. Comparing with 54.25% hit 
ratio that is forecasted by noisy training data SVM, we enhance the forecasting 
performance. 

Keywords: Soft-thresholding, De-noise, SVM, Stock market, Financial time 
series. 

1   Introduction 

Stock market trend forecasting gives information on the corresponding risk of the 
investments and it also will influence the trading behavior. Stock market time series 
are inherent noisy, non-stationary, and deterministically chaotic [1]. It has been 
shown that data extrapolated from stock markets are almost corrupted by noise and it 
appears that no useful information can be extracted from such data. Modeling such 
noisy and non-stationary time series is expected to be a challenging task [2].  

In recent years, numerous studies have demonstrated that neural networks are a 
more effective method in describing the dynamics of non-stationary time series due to 
their unique non-parametric, non-assumable, noise-tolerant and adaptive properties 
[3]. However, neural networks still have several limitations.  

SVM originates from Vapnik’s statistical learning theory. Unlike most of the 
traditional methods which implement the empirical risk minimization principal, SVM 
implements the structural risk minimization principal which seeks to minimize an 
upper bound of the generalization error rather than minimize the training error [4]. 
Many applications of the SVM to forecast financial time series have been reported. 
Cao and Tay used the theory of SVM in regression to forecast the S&P 500 Daily 
Index in the Chicago Mercantile. They measured the degree of accuracy and the 
acceptability of certain forecasts by the estimates’ deviations from the observed 
values [3]. Kim forecasted the direction of the change in daily Korea composite stock 
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price index (KOSPI) with the theory of SVM in classification. The best prediction 
performance for the holdout data is 57.83% [5]. Tony Van Gestel designed the LS-
SVM time series model in the evidence framework to predict the daily closing price 
return of the German DAX30 index (Deutscher Aktien Index) [6].Many of the 
previous studies have compared the performance of SVM with BP neural network, 
case-based reasoning (CBR) and so on. All of the results prove that the general 
performance for SVM is better than the traditional methods. 

Many studies had selected optimum parameters of SVM when they would enhance 
the forecasting performance. This study proposes dealing with the noise of the stock 
market in order to enhance the forecasting performance of SVM. According to the 
wavelet de-noising model of soft-thresholding, we classify the stock market short-
term trend into up-trend, stochastic trend and down-trend. We remove the stochastic 
trend data from the original Index data and take the rest data which belong to the up-
trend and down-trend as the training data. Then we use the trained SVM to forecast 
the stock market trends. 

2   Theoretical Backgrounds 

2.1   Soft-Thresholding De-noise Model 

Supposing ( )f i  is the original signal, the polluted image signal is ( )s i , and noise 

signal is ( )e i . Then, the model of the noised imaged is  

( ) ( ) ( )s i f i   e iσ= +  (1) 

whereσ denotes a noise level and ( )e i is a Gauss white noise 

Figure 1 is the block diagram of signal de-noising with wavelet transformation. The 
three blocks in figure 1 represent the three basic steps of de-nosing respectively. 

 

Fig. 1. The block diagram of wavelet de-noising 

Wavelet decomposition is the first step: selecting wavelet and decomposition 
Level, and calculating the coefficients of the transformation from ( )s i to the layer J . 

The second step which is the threshold manipulation step: selecting the threshold and 
dealing with the coefficients according to the equation as follows: 
The soft-threshold de-noising function 
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where ,j kd  denotes the coefficient of the transformation, ,j kd denotes the coefficient 

of the threshold manipulation, 2 log( )t Nσ= ⋅ is the threshold, and N  is the 

total number of the image pixel. The final step is the reconstruction step: 

reconstructing the image with the coefficients ,j kd by inverse wavelet transformation 

[7, 8, 9]. 

2.2   Support Vector Machine in Classification 

In this section, we only briefly introduce the final classification function. For the 
detailed theory of SVM in classification, please refer to [10,11,12]. The final 
classification function is 

( ) ( ) ( ) ( ) ( )
1 0 1

1

j

TN N
T

i i i i j i i i j
i C is

f x Sign y x x y y x x
N α

α ϕ ϕ α ϕ ϕ
= < < =

⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑ ∑  

(3) 

If there is a Kernel function such as ( ) ( ) ( )TT
i j i jK x ,x x xϕ ϕ= , it is usually 

unnecessary to explicitly know what ( )xϕ is, and we only need to work with a 

kernel function in the training algorithm. The non-linear classification function is 

( ) ( ) ( )
0 1

1

1 j

N

j i i i j
C is

N
f x Sign y K x ,x y y K x ,x

i i i Ni α
α α

< < =

⎛ ⎞⎛ ⎞= + −⎜ ∑ ⎟⎜ ⎟⎜ ⎟⎝ ⎠=⎝ ⎠
∑ ∑  

(4) 

There are some different kernels for generating the inner products to construct 
machines with different types of nonlinear decision surfaces in the input space. 
Choosing among different kernels the model that minimizes the estimate, one chooses 
the best model. Common examples of the kernel function are the polynomial kernel 

( ) ( ), 1
d

K x y xy= +  and the Gaussian radial basis function 

( ) ( )( )22, exp 1/K x y x yσ= − −  where d is the degree of the polynomial kernel 

function and σ is the bandwidth of the Gaussian radial basis function kernel. It has 

proved that the upper bound C  and the kernel parameter 2σ  play an important role 
in the performance of SVM. 

3   Experiment Design 

3.1   Data Collection and Preprocessing by De-noice Model 

In our empirical analysis, we set out to examine the five-day moving trend of the 
Shanghai Stock Exchange (SSE) Composite Index. The original data points cover the 
time period from 28/04/1997 up to 12/09/2006 which is 2261 data. We select 1920 
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Fig. 2. SSE composite index 

data from the 2261 data as training data and take the rest 341 data as testing data. As 
shown in Fig. 2, the 1920 data are illustrated. 

Figure 3 illustrate the 1920 smooth SSE Composite Index data which had been de-
noised by soft-thresholding. 
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Fig. 3. Smoothed SSE composite index 
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Based on the soft-threshold which determined by the wavelet de-noise Model, we 
classify the stock market into up-trend, stochastic trend and down-trend which have 
357, 1171,392 data respectively. Figure 4 illustrates the details residual of SSE 
Composite Index and soft-threshold [13]. 

 

Fig. 4. Residual of SSE composite index and soft-thresholds 

We define the noisy data whose five-day SSE Composite Index change value 
between the up and lower soft-threshold as the stochastic trend. In consequence, the 
value of data above the upper soft-threshold is defined as the up-trend and the value of 
data below the lower soft-threshold are defined as the down-trend. Then, we remove 
the 1171 stochastic trend data from the original SSE Composite Index and take the rest 
749 data which belong to the up-trend and down-trend as the training data.  

3.2   The Input Data of SVM 

The input data used in this study is technical indicators and the direction of change in 
the five-day SSE Composite Index. The selected 12 technical indicators are the initial 
attributes which are presented in Table 1. 

1) , ,
t t t

C h l is the closing ，highest and lowest price at time t ,
t

V is trading volume at 

time t ; 2) ( )AU AD 14 days 
t

C up (down) average rang; 3) EMA  is the exponential 

moving average; 4) ,
t t

HH LL  mean highest high and lowest low. 

The forecasting performance  P  is evaluated using the following equation: 

1

1
( 1, 2, , )

m

i
i

P D i m
m =

= =∑  (5) 

where iD is the forecasting result for the i th up-trend and down-trend trading day 

which is not including the stochastic trading day . It is defined by  
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Table 1. Selected technical indicators and their formulas 

Technical indicators Formula 
ALF(Alexander’s Filter) ( / -1) 1005C Ct t ×−                     1)                      

RS(Relative Strong) /AU AD                          2)                      
RSI(Relative Strong Index) 100 100 /( )AD AD AU− × +  
MFI(Money Flow Index) ( ) /(( ) (- )) 100

(-) ( ( ), )

MF MF MF

MF EMA U D n

+ + + ×

+ =
 

%BB(Bollinger’s Band) ( ) /( ) 100

( ) ( ) 2

C LB UB LB

UB LB MA V

− − ×

= + − ×
           

V(Volatility) ( ) 100%, ln( / )1SD Y Y C Ct t× = −  

VB(Volatility Band) UB LB−  
CHO (Chaikin Oscillator) ( , 5) ( , 10)

 ( /(( ) / 2) - 1)

MA A MA A

A C h l Vt t t t

−

= + ×
                    

MACD(Moving Average 
Convergence/Divergence) 

( ,12) ( ,26)EMA C EMA Ct t−                3)         

%K ( - ) /( - ) 100- - -C LL HH LLt t n t n t n ×             4)                

A/D Osc (Accumulation and 
distribution oscillator) 

( - ) /( - )-1H C H Lt t t t  

Williams %R ( - ) /( - ) 100H C H Cn t n n ×  

 

{1 ,
0

i iif PO AO
i otherwiseD ==  (6) 

where 
i

PO  is the forecasting output from the model for the i th trading day, 
i

AO is 

the actual output for the  i th trading day, m is the number of the test examples [5]. 

4   Experiment Result 

In this study, we select the data points covering the time period from 28/04/1997 to 
12/09/2006. There are 2261 data points of Shanghai Stock Exchange (SSE) 
Composite Index. We use the first 1920 data of the 2261 original data as training set 
and take the rest 341 data as testing data.  

We use wavelet soft-threshold de-noise Model to de-noise the 1920 training data. 
As illustrated in Fig.2- Fig.4, we can see the detail process of de-noise. As a result of 
the soft-threshold de-noising, we get 1171 noised data which are classified as the 
stochastic trend data. We remove the 1171stochastic trend data from the original SSE 
Composite Index and take the rest 749 data which belong to the up-trend and down-
trend as the training set for SVM. 

The Gaussian radial basis function is used as the kernel function of the SVM. We 
conduct the experiment with respect to various kernel parameters and the upper 
bound C . The range for kernel parameter is between 1 and 100 and the range for C  
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is between 1 and 100. We use the 749 data mentioned above to train the SVM and 
apply the SVM to classify the 341 test data. For comparison, we also use the 1920 
data mentioned above to train SVM and employ SVM to classify the same 341 test 
data. The forecasting results of two methods are shown in table 2. 

Table 2. Best forecasting results of two methods 

SVM Testing/training data C  σ  Hit ratio 

Testing data 90 20 60.12% De-noise 
Training data 30 10 99.87% 
Testing data 10 100 54.25% Noisy 
Training data 50 10 99.95% 

 
The results in table 2 show that best hit ratio of the de-noise SVM is 60.12% which 

are better than the best hit ratio 54.25% of noisy SVM. 

5   Conclusion  

Many applications of SVM to forecast financial time series have been reported. Most 
of the researches only paid attention to select optimum parameters of SVM when they 
want to enhance forecasting performance. However, as SVM has the noise-tolerant 
property, little study discusses about preprocessing the noisy input data to enhance the 
forecasting performance. In this study, on the condition of selecting optimum 
parameters of SVM, we use soft-thresholding to de-noise the training data and get a 
better optimal hyperplane than the optimal hyperplane learned with noisy training 
data. Consequently, compared with the 54.25% hit ratio of the noisy SVM, the 
forecasting performance of the de-noised SVM is 60.12% hit ratio. The hit ratio is 
also better than Kim’s 57.83%, which is the best prediction performance in 
forecasting the trend of Korea composite stock price index (KOSPI) with SVM [6]. 
This study proves that de-noising the training data can effectively enhance the 
forecasting performance of SVM.  
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Abstract. Granular computing is a basic issue in knowledge representa-
tion and data mining. In this paper, the concept of attribute granules in
formal contexts is introduced. The mathematical structure of attribute
granules is investigated.
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1 Introduction

Ever since the introduction of the concept of “Granular computing” (GrC)
[11,20], we have witnessed a rapid development of and a fast growing interest in
the topic [2,4,9,12,13,14,18,19]. Many models and methods of GrC concentrating
on concrete models in particular contexts have been proposed and studied. A
primitive notion in GrC is called a granule which may be interpreted as one of
the numerous small particles forming a larger unit. The set of granules provide a
representation of the unit with respect to a particular level of granularity. Thus
one of main directions in the study of GrC is to deal with the construction,
interpretation, and representation of granules.

The theory of formal concept analysis, proposed by Wille [16], provides a
framework for the discovery and design of concept hierarchies from relational in-
formation systems. It starts with the notion of a formal context specifying which
objects have what attributes. It is based on the perspective that a concept is
constituted by two parts: its extension and its intension. An important notion
in formal concept analysis is thus a formal concept which is a pair consisting
of a set of objects (the extension) and a set of attributes (the intension) such
that the intension consists of exactly those attributes that the objects in the ex-
tension have in common, and the extension contains exactly those objects that
share all attributes in the intension. All concepts associated with the context
form a complete lattice called the concept lattice. The concept lattice reflects
the relationship of generalization and specialization among concepts. It is thus
an intuitive and effective way to represent, discover and design knowledge struc-
ture. Formal concept analysis is now emerging as a powerful methodology for
information retrieval, machine learning and knowledge discovery [5,8,10,15,17].

Since the basic structure of a concept lattice is the set of attribute-concepts
which we call them attribute granules and every formal concept in the concept
lattice can be represented as a meet of some attribute-concepts, we investigate
in this paper the structure of attribute granules in formal contexts.

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 395–402, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 Formal Contexts and Concept Lattices

Definition 1. A formal context is a triplet (U, A, I), where U = {x1, x2, . . . , xn}
is a non-empty, finite set of objects, A = {a1, a2, . . . , am} is a non-empty, finite
set of attributes, and I ⊆ U ×A is a binary relation between U and A, (x, a) ∈ I
means that object x has attribute a.

In this paper, we assume that the binary relation I is regular, that is, it satisfies
the following conditions: for any (x, a) ∈ U × A,

(1) there exist a1, a2 ∈ A such that (x, a1) ∈ I and (x, a2) �∈ I,
(2) there exist x1, x2 ∈ U such that (x1, a) ∈ I and (x2, a) �∈ I.
For X ⊆ U and B ⊆ A, we define
X∗ = {a ∈ A : (x, a) ∈ I, ∀x ∈ X}, B∗ = {x ∈ U : (x, a) ∈ I, ∀a ∈ B}.

X∗ is the maximal set of attributes shared by all objects in X . Similarly, B∗ is
the maximal set of objects that have all attributes in B. For x ∈ U and a ∈ A,
we denote x∗ = {x}∗ and a∗ = {a}∗.

The pair of ∗ functions induces a Galois connection [1,3] between P(U) (where
P(X) denotes the power set of X) and P(A). The two functions ∗ : P(U) → P(A)
and ∗ : P(A) → P(U) are called derivation operators and satisfy the following
properties [17]:

Property 1. Let (U, A, I) be a formal context. If X, X1, X2 ⊆ U and B, B1, B2 ⊆
A, then

(1) X1 ⊆ X2 =⇒ X∗
1 ⊇ X∗

2 , B1 ⊆ B2 =⇒ B∗
1 ⊇ B∗

2 ,
(2) X ⊆ X∗∗, B ⊆ B∗∗,
(3) X∗ = X∗∗∗, B∗ = B∗∗∗,
(4) (X1 ∪ X2)∗ = X∗

1 ∩ X∗
2 , (B1 ∪ B2)∗ = B∗

1 ∩ B∗
2 ,

(5) X ⊆ B∗ ⇐⇒ B ⊆ X∗ ⇐⇒ X × B ⊆ I.

Definition 2. Let (U, A, I) be a formal context. A pair (X, B), X ⊆ U, B ⊆ A,
is called a formal concept of the context (U, A, I) if X∗ = B and B∗ = X. The
set of objects X and the set of attributes B are respectively called the extension
and the intension of the formal concept (X, B).

Thus in a formal concept (X, B), objects in X share all attributes B, and only
attributes B are possessed by all objects in X . By Property 1(3), for any object
set X ⊆ U , (X∗∗, X∗) is a formal concept, and similarly, and for any attribute set
B ⊆ A, (B∗, B∗∗) is also a formal concept. In particular, (x∗∗, x∗) and (a∗, a∗∗)
are formal concepts for all x ∈ U and a ∈ A, (x∗∗, x∗) and (a∗, a∗∗) are called
an object concept and an attribute concept respectively [7].

The set of all formal concepts forms a complete lattice called a concept lat-
tice [7] and is denoted by L(U, A, I). The meet and join of the lattice are given by:

(X1, B1) ∧ (X2, B2) = (X1 ∩ X2, (B1 ∪ B2)∗∗),
(X1, B1) ∨ (X2, B2) = ((X1 ∪ X2)∗∗, B1 ∩ B2).

(1)

The corresponding partial order relation ≤ in the concept lattice L(U, A, I) is
given as follows: for (X1, B1), (X2, B2) ∈ L(U, A, I),

(X1, B1) ≤ (X2, B2) ⇐⇒ X1 ⊆ X2 ⇐⇒ B1 ⊇ B2.
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Example 1. Table 1 depicts an example of formal context F = (U, A, I), where
U = {1, 2, 3, 4, 5}, A = {a, b, c, d, e, f}, and for each (xi, aj) ∈ U ×A, (xi, aj) ∈ I
if and only if (iff) object xi has value 1 in attribute aj , i.e., aj(xi) = 1. Figure
1 is the Hasse diagram of the concept lattice derived from Table 1.

Table 1. A formal context

U a b c d e f

1 0 1 0 1 0 0
2 1 0 1 0 0 0
3 1 1 0 0 0 0
4 0 1 1 1 1 0
5 1 0 0 0 1 1

Following the standard notions in formal concept analysis, set notions are
separator-free in the sequel to follow, e.g., 235 stands for {2, 3, 5}.

Fig. 1. L(U, A, I) Fig. 2. L(X, A, IX)

3 Characterization of Attribute Granules

Definition 3. Let F = (U, A, I) be a formal context. For any X ⊆ U , we can
obtain a formal context FX = (X, A, IX) which is called a sub-context of F ,
where IX = I ∩ (X × A). We define the functions ∗X : P(A) → P(X) and
∗X : P(X) → P(A) in the sub-context FX = (X, A, IX) as follows:

B∗X = {x ∈ X : (x, a) ∈ I, ∀a ∈ B}, B ⊆ A.
Y ∗X = {a ∈ A : (x, a) ∈ I, ∀x ∈ Y }, Y ⊆ X.

It can easily be observed that B∗X = B∗ ∩ X , and, of course, B∗U = B∗. By
Property 1 we can obtain the following Property 2.
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Property 2. Let (U, A, I) be a formal context and Y ⊆ X ⊆ U . Then
(1) Y ∗X = Y ∗U ,
(2) B∗Y ⊆ B∗X for all B ⊆ A,
(3) a∗Y ⊆ a∗X for all a ∈ A,
(4) B∗X∗X ⊆ B∗Y ∗Y for all B ⊆ A,
(5) a∗X∗X ⊆ a∗Y ∗Y for all a ∈ A.

Combining Properties 1 and 2 we can conclude Property 3.

Property 3. Let (U, A, I) be a formal context, X ⊂ U and Y = U − X . Then
(1) B∗U = B∗X ∪ B∗Y , B ⊆ A,
(2) a∗U = a∗X ∪ a∗Y , a ∈ A,
(3) B∗U∗U = B∗X∗X ∩ B∗Y ∗Y , B ⊆ A,
(4) a∗U∗U = a∗X∗X ∩ a∗Y ∗Y , a ∈ A.

It is well-known that a formal concept (X, B) in the concept lattice L(U, A, I)
can be represented as a meet of the attribute concepts of its intension [7], that
is, (X, B) =

∧
a∈B

(a∗, a∗∗). Thus we can see that the set of all attribute concepts

{(a∗, a∗∗) : a ∈ A} forms a basis of the concept lattice L(U, I, A), i.e., the set of
all attribute concepts in a concept lattice reflects the information granules of the
concept lattice structure. We call the set of attribute concepts {(a∗, a∗∗) : a ∈ A}
the attribute granules of the concept lattice L(U, A, I).

For any X ⊆ U , we define a binary relation RX on A as follows:
RX = {(a, b) ∈ A × A : a∗X ⊆ b∗X }.

Clearly, RX is reflexive and transitive but may not be symmetric. For any a ∈ A,
denote RX(a) = {b ∈ A : (a, b) ∈ RX}.

Property 4. Let (U, A, I) be a formal context, X ⊆ A, and a ∈ A. Then
RX(a)∗X = a∗X . (2)

Proof. Since
RX(a)∗X = {y ∈ X : (y, b) ∈ I, ∀b ∈ RX(a)}

=
⋂

b∈RX(a)
{y ∈ X : (y, b) ∈ I} =

⋂
b∈RX(a)

b∗X ,

note that a∗X ⊆ b∗X for all b ∈ RX(a), we have
⋂

b∈RX(a)
b∗X = a∗X . Therefore

Eq.(2) holds.

Theorem 1. Let F = (U, A, I) be a formal context. Then (RU (a), RU (a)∗) is a
formal concept of F and RU (a) = a∗∗.

Proof. Since from Property 4 we have a∗∗ = RU (a)∗∗, by Property 1(2) we
obtain

RU (a) ⊆ RU (a)∗∗ = a∗∗. (3)

On the other hand, for any b ∈ RU (a)∗∗, that is, {b} ⊆ a∗∗, by Property 1 we
have a∗ = a∗∗∗ ⊆ {b}∗ = b∗. Hence, a∗ ⊆ b∗, that is, b ∈ RU (a), from which we
conclude that

RU (a)∗∗ = a∗∗ ⊆ RU (a). (4)
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It follows from Eqs.(3) and (4) that RU (a)∗∗ = a∗∗ = RU (a). Thus (RU (a)∗,
RU (a)) is a formal concept of F .

Property 5. Let (U, A, I) be a formal context, X ⊂ U , B ⊆ A, and Bi ⊆ A,

i = 1, 2, . . . , k. If B∗U =
k⋂

i=1
B∗U

i , then B∗X =
k⋂

i=1
B∗X

i .

Proof. Let Y = U − X . On one hand, we have

B∗X = B∗U ∩ X, B∗X

i = B∗U

i ∩ X, i = 1, 2, . . . , k.

On the other hand, by Property 3(1) we see that

B∗U = B∗X ∪ B∗Y , B∗U

i = B∗X

i ∪ B∗Y

i , i = 1, 2, . . . , k.

Then by Property 1(4) we conclude

B∗X = B∗U ∩ X = (
k⋂

i=1
B∗U

i ) ∩ X = (
k⋂

i=1
(B∗X

i ∪ B∗Y

i )) ∩ X

=
k⋂

i=1
((B∗X

i ∪ B∗Y

i ) ∩ X) =
k⋂

i=1
B∗X

i .

Property 6. Let (U, A, I) be a formal context, X ⊂ U , a ∈ A, and ai ∈ A,

i = 1, 2, . . . , k. If a∗U =
k⋂

i=1
a∗U

i , then a∗X =
k⋂

i=1
a∗X

i .

Theorem 2. Let (U, A, I) be a formal context, X ⊂ U , B ⊆ A, and Bi ⊆ A,
i = 1, 2, . . . , k. If

(B∗U , B∗U∗U ) =
k∧

i=1

(B∗U

i , B∗U∗U

i ), (5)

then

(B∗X , B∗X∗X ) =
k∧

i=1

(B∗X

i , B∗X∗X

i ). (6)

Proof. From Eqs.(1) and (5) we have B∗U =
k⋂

i=1
B∗U

i . Then by Property 5 we

obtain

B∗X =
k⋂

i=1

B∗X

i . (7)

Hence

(
k⋃

i=1

B∗X∗X

i )∗X∗X = (
k⋂

i=1

B∗X∗X∗X

i )∗X = (
k⋂

i=1

B∗X

i )∗X = (B∗X )∗X = B∗X∗X . (8)

Combining Eq.(7) and Eq.(8), we conclude Eq.(6).
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Remark 1. Theorem 2 tells us that a concept lattice induced from a sub-context
of a formal context F inherits the hierarchical structure of the concept lattice
derived from F . For example, Figure 2 is the Hasse diagram of the concept
lattice derived from sub-context (X, A, IX) of (U, A, I) in Example 1, where
X = {2, 3, 4, 5}.

Theorem 3. Let (U, A, I) be a formal context, X ⊂ U , a ∈ A, and ai ∈ A, i =

1, 2, . . . , k. If (a∗U , a∗U∗U )=
k∧

i=1
(a∗U

i , a∗U∗U

i ), then (a∗X , a∗X∗X )=
k∧

i=1
(a∗X

i , a∗X∗X

i ).

4 Meet-Irreducible Elements in Concept Lattices

Definition 4. [6] Let L be a lattice. An element a ∈ L is said to be meet-
irreducible if a =

∧
x∈X

x implies a ∈ X.

Property 7. [6] Let L be a finite lattice. Every element in L is a meet of some
meet-irreducible elements.

Theorem 4. Let (U, A, I) be a formal context, X ⊂ U , and a ∈ A. If
(a∗X , a∗X∗X ) is a meet-irreducible element in L(X, A, IX), then (a∗U , a∗U∗U ) is
a meet-irreducible element in L(U, A, I).

Proof. If (a∗U , a∗U∗U ) is not a meet-irreducible element in L(U, A, I), then the
attribute concept (a∗U , a∗U∗U ) is a meet of some meet-irreducible elements in
L(U, A, I), i.e., there exist ai ∈ A, i = 1, 2, . . . , k, k ≥ 2, such that (a∗U

i , a∗U∗U

i )
is meet-irreducible in L(U, A, I) for each i = 1, 2, . . . , k and (a∗U , a∗U∗U ) =
k∧

i=1
(a∗U

i , a∗U∗U

i ). By Theorem 3 we then have (a∗X , a∗X∗X ) =
k∧

i=1
(a∗X

i , a∗X∗X

i ).

Since, for each i = 1, 2, . . . , k, (a∗X

i , a∗X∗X

i ) is a meet-irreducible element or can
be represented as a meet of some meet-irreducible elements in L(X, A, IX), we
conclude that (a∗X , a∗X∗X ) can be represented as a meet of some meet-irreducible
elements in L(X, A, IX), which contradicts the assumption that (a∗X , a∗X∗X ) is a
meet-irreducible element in L(X, A, IX). Thus we have proved that (a∗U , a∗U∗U )
is a meet-irreducible element in L(U, A, I).

According to Proposition 13 in [7], we can obtain the following theorem.

Theorem 5. Let (U, A, I) be a formal context and a ∈ A. Then (a∗U , a∗U∗U ) is
a meet-irreducible element in L(U, A, I) iff there is an object x ∈ U such that
(x, a) �∈ I and (x, b) ∈ I for all b ∈ {c ∈ A : c∗U ⊃ a∗U }.

The following theorem can help us to determine whether or not an attribute
concept is meet-irreducible.

Theorem 6. Let (U, A, I) be a formal context and a ∈ A. Then the attribute
concept (a∗U , a∗U∗U ) is a meet-irreducible element in L(U, A, I) iff one of the
following two conditions holds:
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(1) there does not exist b ∈ A such that b∗U ⊃ a∗U , i.e., {b ∈ A : b∗U ⊃
a∗U } = ∅,

(2) {b ∈ A : b∗U ⊃ a∗U } �= ∅ and ∩{b∗U − a∗A : b∗U ⊃ a∗U } �= ∅.

Proof. If there does not exist b ∈ A such that b∗U ⊃ a∗U , then by definition it is
obvious to see that (a∗U , a∗U∗U ) is a meet-irreducible element in L(U, A, I).

Now we assume that {b ∈ A : b∗U ⊃ a∗U } �= ∅.
Case I. ∩{b∗U − a∗U : b∗U ⊃ a∗U } �= ∅.
In such a case, we can find an object x ∈ ∩{b∗U − a∗U : b∗U ⊃ a∗U }. Since

x �∈ a∗U , we have (x, a) �∈ I. On the other hand, for any b ∈ A satisfying
b∗U ⊃ a∗U , we have x ∈ b∗U , that is, (x, b) ∈ I for all b ∈ {c ∈ A : c∗U ⊃ a∗U }.
Consequently, by Theorem 5 we conclude that (a∗U , a∗U∗U ) is a meet-irreducible
element in L(U, A, I).

Case II. ∩{b∗U − a∗U : b∗U ⊃ a∗U } = ∅.
In such a case, we cannot find any object x ∈ U such that x �∈ a∗U and x ∈ b∗U

for all b ∈ A satisfying b∗U ⊃ a∗U . Alternatively, we cannot find any object x ∈ U
such that (x, a) �∈ I and (x, b) ∈ I for all b ∈ A satisfying b∗U ⊃ a∗U . Thus by
Theorem 5 we conclude that (a∗U , a∗U∗U ) is not a meet-irreducible element in
L(U, A, I).

Remark 2. From Theorem 6 we can see that an attribute concept (a∗U , a∗U∗U )
is not a meet-irreducible element in L(U, A, I) iff card({b ∈ A : b∗U ⊃ a∗U }) ≥ 2
and ∩{b∗U − a∗U : b∗U ⊃ a∗U } = ∅.

Example 2. In Example 1, it can easily be verified that (w∗, w∗∗) is a meet-
irreducible element in L(U, A, I) for w ∈ {a, b, c, d, e}. Since {w ∈ A : w∗ ⊃
f∗} = {a, e} �= ∅ and ∩{w∗−f∗ : w∗ ⊃ f∗} = {2, 3}∩{4} = ∅, then by Theorem
6 we conclude that (f∗, f∗∗) is not a meet-irreducible element in L(U, A, I). In
fact, we can observe from Figure 1 that (f∗, f∗∗) = (a∗, a∗∗) ∧ (e∗, e∗∗).

5 Conclusion

Granular computing is a basic issue in knowledge representation and data min-
ing. The class of all attribute concepts are the basic granules of the concept lat-
tice derived from a formal context and each formal concept in a concept lattice
can be represented a meet of some attribute concepts. We have investigated in
this paper the mathematical structure of attribute granules in a concept lattice.
For further study, we will investigate the mathematical structure of granules in
more complex systems such as fuzzy concept lattices derived from fuzzy formal
contexts.
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Abstract. This paper analyzes incremental updating for core comput-
ing in a dominance-based rough set model, which extends previous reduct
studies in capability of dynamic updating and dominance relation. Then
we redefine the dominance discernibility matrix and present an incre-
mental updating algorithm. In this algorithm, when new samples arrive,
the proposed solution only involves a few modifications to relevant rows
and columns in the dominance discernibility matrix instead of recalcula-
tion.Both of theoretical analysis and experimental results show that the
algorithm is effective and efficient in dynamic computation.

Keywords: Rough sets, dominance discernibility matrix, incremental
updating, core.

1 Introduction

As a kind of mathematical tool, Rough sets [1] can be used to deal with imprecise,
incomplete and inconsistent data. Rough set theory has been applied in several
fields as machine learning, data mining and pattern recognition et.al. In practice,
more often than not the attributes domains and classes are preference-ordered.
The attributes with preference-ordered domains are called criteria. As pointed
out in [2,3] the Classical Rough Set Approach(CRSA) cannot be applied to
multiple-criteria decision problems, because it does not consider criteria but only
regular attributes.

For this reason, Greco, Matarazzo and Slowinski [2,4] have proposed an ex-
tension of the rough set theory, called Dominance-based Rough Set Approach
(DRSA). Many contributions on core and reduction had been reported [5,6,7].
Discernibility matrix concept is one of important fundamental concepts, and the
discernibility matrix-based algorithms are an important member in the family of
reduction algorithms. Besides its use in finding the reduct, it can also facilitate
the computation of core. But little is contributed on incremental updating core.
Yang [8] has proposed an incremental updating algorithm of the computation of
a core based on discernibility matrix under CRSA, which inspires our algorithm.

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 403–410, 2007.
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In the paper, an approach to incremental updating for core computation un-
der DRSA is proposed to avoid complete regeneration. The approach involving
only a few modifications to relevant rows and columns in the matrix avoids com-
plete recalculation. Not only does the theoretical analysis prove its correctness
but also experimental results on several UCI data sets show its efficiency and
effectiveness.

Therestofthispaper isorganizedasfollows.Section2brieflyintroducessomepre-
liminary knowledge. Section 3 discusses the elementary relevant notions of
DRSA and core. Section 4 presents the incremental updating algorithmof the com-
putationofacore.Section5reportsontheexperiments.Finally,Section5concludes.

2 Preliminaries

2.1 Dominance-Based Rough Set Approach(DRSA)

Let us assume that learning examples are represented in decision table DT =
(U, C ∪ D), where U is a set of examples(objects), C is a set of condition attribute
describing examples, Let f(x, q) denote the value of attribute q ∈ C taken by
object x ∈ U , Vq is a domain of q [9].

Assuming that all condition attributes q ∈ C are criteria, let Sq be an out-
ranking relation on U with respect to criterion q such that xSqy means “x is
at least as good as y with respect to criterion q”. Furthermore, assuming that
the set of decision attributes D(possibly a singleton {d}) makes a partition of
U into a finite number of classes, let Cl = {Clt, t ∈ T }, T = {1, . . . , n}, be a set
of these classes such that each x ∈ U belongs to one and only one Clt ∈ Cl. We
suppose that the classes are ordered, i.e. for all r, s ∈ T , r > s, such that the
objects from Clr are preferred to the objects from Cls.

The sets to be approximated are upward union and downward union of classes,
respectively: Cl≥t =

⋃
s≥t Cls, Cl≤t =

⋃
s≤t Cls, t = 1, . . . , n. Usually we do not

take Cl≤n and Cl≥1 into consideration because both of their value are U , there is
no real meaning here.

The indiscernibility relation is substituted by a dominance relation. We say
that x dominates y with respect to P ⊆ C, denoted by xDP y, if xSqy for all
q ∈ P . The dominance relation is reflexive and transitive. Given P ⊆ C and
x ∈ U , the “granules of knowledge” used for approximation in DRSA are:

-a set of objects dominating x, called P-dominating set, D+
P (x) = {y ∈ U :

yDP x},
-a set of objects dominated by x, called P-dominated set, D−

P (x) = {y ∈ U :
xDP y}.

Definition 1. Using D+
P (x) sets, P-lower and P-upper approximation of Cl≥t

and Cl≤t are defined as:

P (Cl≥t ) = {x ∈ U : D+
P (x) ⊆ Cl≥t }, P (Cl≥t ) =

⋃

x∈Cl≥t

D+
P (x), for t = 1, . . . , n.
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P (Cl≤t ) = {x ∈ U : D−
P (x) ⊆ Cl≤t }, P (Cl≤t ) =

⋃

x∈Cl≤t

D−
P (x), for t = 1, . . . , n.

Definition 2. The P-boundaries of Cl≥t and Cl≤t are defined as:

BnP (Cl≥t )=P (Cl≥t )−P (Cl≥t ), BnP (Cl≤t )=P (Cl≤t )−P (Cl≤t ), for t = 1, . . . , n.

2.2 Reduct and Core

In the following we will present some definitions of reduct and core.

Definition 3. An information system is an ordered quadruple S = (U, C ∪
D, V, f), where U is a non-empty finite set of objects, C∪D is a non-empty finite
set of attributes, C denotes the set of condition attributes and D denotes the set
of decision attributes. V is the union of attribute domains, f : U×(C∪D) → V is
an information function which associates an unique value of each attribute with
every object belonging to U. f(xi, q) denotes the value of object xi in attribute q.

Definition 4. (See [10]) The quality of approximation of partition Cl by the set

of attributes and criteria P: γP (Cl) =
|U−

N�

n=1
BnP (d≥

n )|
|U| =

|U−
N�

n=1
BnP (d≤

n )|
|U|

The quality of approximation expresses the ratio of all P -correctly sorted actions
to all actions in the table.

Definition 5. (See [10]) Let P ⊆ C, we call P is one reduct of C if it satisfies
γP = γC and γR �= γC for every R ⊂ P . The intersection of all reducts is called
the core and denoted by Core(C).

Definition 6. (See [10]) The attribute a ∈ C is defined as indispensable if it
satisfies γC−{a} < γC , otherwise, it is redundant.

Proposition 1. For every attribute a ∈ C, a ∈ Core(C) ⇔ a is indispensable.

3 Dominance Discernibility Matrix and Core Computing

The use of discernibility matrix is common to compute core. In paper [11], similar
discernibility matrix based on dominance relation is defined. It has been proved
wrong to compute the core using the matrix in some cases by Wu [12]. The error
reason is there exists inconsistent data in decision table. To address this issue,
Wu [12] proposed a new definition of discernibility matrix to compute the core,
called dominance discernibility matrix, but the cost of constructing the matrix
is too high. In what follows we will redefine the matrix to compute the core with
less computing cost.

For further study we will give the following two propositions:

Proposition 2. C(Cl≤i ) ⊆ C(Cl≤j ), C(Cl≥i ) ⊇ C(Cl≥j ), 1 ≤ i ≤ j ≤ n
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Proof. For every x ∈ C(Cl≤i ), so D−
C (x) ⊆ Cl≤i . Since i ≤ j implies Cl≤i ⊆ Cl≤j ,

we have D−
C (x) ⊆ Cl≤j and x ∈ C(Cl≤j ), therefore, C(Cl≤i ) ⊆ C(Cl≤j ). Similarly,

C(Cl≥i ) ⊇ C(Cl≥j ) can be proved correct. End of proof.

Proposition 3. D−
C (x) ⊆ D−

C−{a}(x), D+
C (x) ⊆ D+

C−{a}(x)

Proof. Immediate from the definition of P-dominating set and P-dominated set.
End of proof.

Our redefined notion of dominance discernibility matrix is presented as the fol-
lowing:

Definition 7. For given information system, the dominance discernibility ma-
trix M = {a#(xi, xj)},

a#(xi, xj) =

⎧
⎨

⎩

a∗
1 , xi ∈ U1

a∗
2 , xj ∈ U1

C , otherwise

a∗
1 = {a ∈ C|f(xi, a) > f(xj , a), f(xi, D) > f(xj , D)}

a∗
2 = {a ∈ C|f(xi, a) < f(xj , a), f(xi, D) < f(xj , D)}

U1 = C(Cl≤n−1) ∪ C(Cl≥2 )

where U1 = C(Cl≤n−1)∪C(Cl≥2 ) =
n−1⋃
i=1

C(Cl≤i )∪
n⋃

i=2
C(Cl≥i ) follows from Propo-

sition 2. We do not take C(Cl≤n ) and C(Cl≥1 ) into consideration because both
of their values are U as mentioned above.

Theorem 1. For given information system IS, let IDM(C,M) = {mij |mij ∈
M ∧ |mij | = 1}, then IDM(C,M) = Core(C).

Proof. In this theorem, |mij | = 1 means that mij includes only a single attribute.
(1) First we prove that IDM(C,M) ⊆ Core(C).
For every a ∈ IDM(C,M), we know ∃mij made a∗

1 = {a} or a∗
2 = {a}.

Suppose xi ∈ U1, then xi ∈ C(Cl≤n−1) or xi ∈ C(Cl≥2 ).
(a) Suppose xi ∈ C(Cl≤n−1).
From the definition of P-boundaries and Proposition 2 we can easily get

N⋃
n=1

BnC(Cl≤n ) = C(Cl≤n−1) − C(Cl≤n−1). Since ∀x ∈
N⋃

n=1
BnC(Cl≤n ) implies x ∈

C(Cl≤n−1) and x /∈ C(Cl≤n−1), we have D−
C (x) �⊆ Cl≤n−1, then D−

C−{a}(x) �⊆ Cl≤n−1

and x /∈ C − {a}(Cl≤n−1) follow from proposition 3.
Since x ∈ C(Cl≤n−1) implies D+

C(x)∩Cl≤n−1 �= ∅, then D+
C−{a}(x)∩Cl≤n−1 �= ∅

again follows from proposition 3 and x ∈ C − {a}(Cl≤n−1),

x ∈
N⋃

n−1
BnC−{a}(Cl≤n−1).

N⋃
n−1

BnC(Cl≤n−1) ⊆
N⋃

n−1
BnC−{a}(Cl≤n−1) has been

gotten now.
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We will prove |BnC−{a}| > |BnC | next, |A| means the cardinality of A. For
xi, while if f(xi, D) > f(xj , D), then xi ∈ D−

C−{a}, so xi ∈ C − {a}(Cl≤f(xj ,D)).

Since f(xi, D) > f(xj , D) implies xi /∈ C − {a}(Cl≤f(xj,D)), we have xi ∈
BnC−{a}(Cl≤n−1). We can get xi /∈ BnC(Cl≤n−1) follows from the definition of
xi and |BnC−{a}| > |BnC |. According to the Definition 4 and above result,
γC−{a} < γC can be gotten easily, so a ∈ Core(C).

(b) Suppose xi ∈ C(Cl≥2 ).
Analogously with (a), we can prove a ∈ Core(C).
Analogously for xj ∈ U1 with above process, a ∈ Core(C) can be proved

correct easily. So IDM(C,M) ⊆ Core(C).
(2) Now we will prove that IDM(C,M) ⊇ Core(C).

Disprove: assume each a ∈ Core(C), neither does there exist a∗
1 = {a} nor

a∗
2 = {a}.
(a) First we suppose that there doesn’t exist a∗

1 = {a}.

For every x /∈
N⋃

n=1
BnC(Cl≤n−1) implies x /∈ BnC(Cl≤f(x,D)) and x ∈ C(Cl≤f(x,D)),

so x ∈ C(Cl≤f(x,D)) and D−
C (x) ⊆ Cl≤f(x,D). For every y ∈ D−

C−{a}(x), suppose

y /∈ Cl≤f(x,D), then f(y, D) < f(x, D). Since D−
C (x) ⊆ Cl≤f(x,D) implies y /∈

D−
C (x), we have f(y, q) ≤ f(x, q) and f(y, a) > f(x, a) for every q ∈ C − {a}.

Therefore, according to the definition we get a∗
1 = {a} that is inconsistent with

the assumption. So y ∈ Cl≤f(x,D).

Owing to the arbitrariness of selection, we can get D−
C−{a} ⊆ Cl≤f(x,D), so

x /∈ BnC−{a}(Cl≤n−1). Because x is also selected arbitrarily, BnC−{a} ⊆ BnC .
Since a is belong to the core implies BnC ⊆ BnC−{a}, BnC−a = BnC . This
result is paradoxical with the definition of core.

(b) Analogously with above process, we can prove that its paradox between
not exists a∗

2 = {a} with the definition of core.
With (a) and (b) we can get IDM(C,M) ⊇ Core(C).
So it is also easy to see that IDM(C,M) = Core(C) from (1) and (2). End

of proof.

4 Incremental Updating Algorithm of the Computation
of a Core

4.1 Incremental Updating Algorithm

We will present an incremental updating algorithm of the computation of a core
based on our Definition 7 and Theorem 1.

For simplification, we assume the value domain of decision attribute(s) D are
1, 2, . . . , n when decision table increases dynamically. For object x and object y,
we say they are inconsistent when they have same condition value but different
decision value. Otherwise, we say they are consistent. Let U1 = C(Cl≤n−1) ∪
C(Cl≥2 ), for an added new object x, if ∀y ∈ U1, x and y are consistent, then we
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say x is consistent with U1. While if ∃y ∈ U1, x and y are inconsistent, then x
is inconsistent with U1.

For U1 = C(Cl≤n−1) ∪ C(Cl≥2 ), we can get the dominance discernibility ma-
trix M2 for Definition 7. For the new added object x, we just get the dominance
discernibility matrix(M2(x)) of (U1 ∪ U ∪ {x}) and compute the core based
on Theorem 1. So the incremental updating of core is the updating problem of
dominance discernibility matrix essentially. U2 is the set of inconsistent objects
discovered in computing. The updating of M2 is given as follows:

1) If x is consistent with U1, x /∈ U2 and ∀y ∈ U1 there exists x �= y, then
add a row and a column corresponding to object x, U1 = U1 ∪ {x}.

2) If x is consistent with U1 and either x ∈ U2 or ∃y ∈ U1 there exists x = y,
then M2 remains unchanged.

3) If x is inconsistent with U1, then ∃y ∈ U1, x is inconsistent with y. So delete
the row and remend the column corresponding to object y, U1 = U1−{y}, U2 =
U2 + {x, y}.
Then we give description of the incremental updating algorithm as following:

Algorithm. Incremental Updating Algorithm of the Computation of a Core (IUA)

Input: (1)U1 = C(Cl≤n−1) ∪ C(Cl≥2 ), U2=set of inconsistent objects computed,
dominance discernibility matrix M2.
(2)new object x.

Output: M2(x) and Core(C).
BEGIN

IF x is consistent with U1 THEN
IF ∀y ∈ U1 there exists x �= y and x /∈ U2 THEN

insert a new row and a column into M2, and complete the
matrix according to Definition 7;
U1 = U1 ∪ {x};

ELSE
remains unchanged;

End IF
ELSE

find the inconsistent object y with x in U1;
delete the row corresponding to object y;
remend the column corresponding to object y;
U1 = U1 − {y};U2 = U2 + {x, y};

END IF
compute the core according to Theorem 1;

END BEGIN

Through proposed algorithm IUA, we can get the right core. Suppose U1 =
C(Cl≤n−1) ∪ C(Cl≥2 ), M2 is the dominance discernibility matrix followed from
Definition 7, the added new object is x. For (U1 ∪ U ∪ {x}), the constructed
matrix M2’ according to Definition 7, then we can know that m ∈ M2’ if and
only if m ∈ M2(x) from algorithm IUA. We can get right core according to M2’
and Theorem 1, so algorithm IUA is correct.
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4.2 Computation Complexity Analysis

For U1 = C(Cl≤n−1)∪C(Cl≥2 ) and new object x, we first discuss the computation
complexity of algorithm IUA.

(1)Space Complexity
The dominance discernibility matrix has (|U1| × |U |) elements, so the space

complexity of algorithm IUA is O(|U1| × |U |).
(2)Time Complexity
When adding a new object x, it requires at most (|U1|+ |U |) operations to as-

sert the consistency between x with |U1|. We need at most (|U1|+|U |) operations
when updating the matrix, and at most (|U1| + 1) × (|U | + 1) operations when
scanning the matrix to compute the core. So the time complexity of algorithm
IUA is O(|U1| × |U |).

5 Experiment

The following experiments were conducted on an Pentium(R) D-2.8GHz CPU
with 512MB main memory running Windows XP. All algorithms were imple-
mented in C# and executed on the Visual Studio.NET 2003.

The datasets named iris and mushroom were selected from the UCI Machine
Learning Repository. The dataset iris has 150 objects and 5 attributes with 3
classes. First we compute the dominance discernibility matrix with selected 100
objects from the dataset, then select 20, 50 objects respectively as incremental
added objects. The dataset mushroom has 8124 objects and 22 attributes with
2 classes. We select 800 objects to compute the dominance discernibility matrix
and choose respectively 200, 400 objects as incremental add objects. The results
of computation times are presented in Table 1.

Table 1. The computational time(in seconds) of two algorithms worked in two data
sets.

Data Set iris mushroom
number of objects number of objects

Algorithm 100 120 150 800 1000 1200

Algorithm Wu 0.187 1.093 2.765 276 606 1076

IUA 0 0.015 0.031 0 4.03 9.89

The algorithm followed from Definition 7 was named Algorithm Wu while our
incremental updating algorithm was named IUA.

From Table 1 we can see that our algorithm could save more time than Wu’s
algorithm when adding new objects dynamically.

6 Conclusion

In the paper, We analyze and prove a new method to compute the core based
on the redefinition of dominance discernibility matrix, and then propose an
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incremental updating algorithm based on the definition. In this algorithm, when
new samples arrive, the solution only involves a few modifications to relevant
rows and columns in the dominance discernibility matrix instead of recalcula-
tion. So the running time is less than non-incremental algorithm, both shown by
the theoretical complexity analysis and experimental results. In the future, we
will optimize the algorithm and emphasize the experiments for the applicability.
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Abstract. This paper first presents a brief survey of the existing works
on comparing and ranking any two interval numbers and then, on the
basis of this, gives the inclusion measure approach to compare any two
interval numbers. The monotonic inclusion measure is defined over the
strict partial order set proposed by Moore and illustrate that the possi-
bility degrees in the literature are monotonic inclusion measures defined
in this paper; Then a series of monotonic inclusion measures are con-
structed based on t-norms. Finally, we give illustrations by using the
monotonic inclusion measures and gain good results.

Keywords: Inclusion measure; Ranking of interval number; Multiple-
attribute decision making.

1 Introduction

In reality, interval coefficients are frequently used to describe and treat impre-
cise and uncertain elements present in a decision problem. An interval number
can be thought as an extension of the concept of a real number and also as a
subset of the real line R [6]. An interval signifies the extent of tolerance that
the parameter can possibly take. In the formulation of realistic problems, Set of
intervals may appear as coefficients in the inequality (or equality) constraints of
an optimization problem or in the selection of best alternative in a decision mak-
ing problem [8]. Consequently, the comparison and ranking of any two interval
numbers is one key question.

Moore [6] studied the arithmetic of interval numbers first and gave two tran-
sitive order relations defined over intervals one as an extension of ′ <′ on the
real line and another as an extension of ′ ⊆′, the concept of set inclusion. But
these order relations cannot explain ranking between two partially or fully over-
lapping intervals. Ishibuchi and Tanaka [5] suggested two order relations ′ ≤′

LR

and ′ ≤′
MW . However, there exist a set of pair of intervals for which both the

order relations do not hold. The literature ([1-4], [7], [8]) discussed degree to
which one given interval is higher than another. Xu et.al [3] pointed out that the
possibility degree was same to those proposed in [1] and [2] and gave the basic

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 411–418, 2007.
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properties. Qiu et.al [4] introduced the inclusion measure approach to ranking
of interval number over a partial order set defined in [5]. The inclusion measure
defined in [4] should satisfy I(I1, I2) = 1 when I1 = [a1, b1] ≤ I2 = [a2, b2], where
I1 = [a1, b1] ≤ I2 = [a2, b2] ⇔ a1 ≤ a2, b1 ≤ b2. We think there exists inconsis-
tency in the application of these inclusion measures. Such as I1 = [0.1, 0.6] and
I2 = [0.2, 0.7] I3 = [0.59, 0.9] which satisfy I(I1, I2) = 1, I(I1, I2) = 1, but the
difference between I2 and I3 is ignored evidently.

Inclusion measure is an important concept in the area of fuzzy sets. It is a
generalization of the existed approximate reasoning, such as probability reason-
ing, fuzzy inference, evidential reasoning and so on [9]. It surfaces in knowledge
discovery, tuning rules and determining the coincidence measure of rules in fuzzy
logic. In this paper, a series of more rational inclusion measures are introduced
to rank any two interval numbers.

In section 2, The monotonic inclusion measure is defined over the strict partial
order set proposed by Moore [6]; The possibility degrees in paper [1], [2] and [3]
prove to be monotonic inclusion measures; In section 3, a series of monotonic in-
clusion measures are constructed based on t-norms. We give illustrations by using
the monotonic inclusion measures and gain good results in section 4. section 5,
the conclusion.

2 Preliminaries

By an implicator we mean a function I : I2 → I satisfying I (1, 0) = 0 and
I (1, 1) = I (0, 1) = I (0, 0) = 1.

Remark 1. It is easy to see that I (α, 1) = 1 for all α ∈ I when I is a left
monotonic implicator, and if I is right monotonic then I (0, α) = 1 for all α ∈ I.

Some axioms have been postulated by Smets and Magrez [12] as axiomatically
appropriate for an implicator. Such as Hybrid Monotonicity: ∀(x, y) ∈ [0, 1]2,
I (., y) is decreasing, yet I (x, .) is increasing; Confinement Principle(CP prin-
ciple): ∀(x, y) ∈ [0, 1]2, x ≤ y ⇐⇒ I (x, y) = 1 and Border Principle: ∀x ∈
[0, 1], I (1, x) = x.

An R-implicator [10](residual implicator) based on a left-continuous t-norm
T if for every x, y ∈ [0, 1], I (x, y) = sup{γ ∈ [0, 1], T (x, γ) ≤ y}. The well-
known R-implicators are the �Lukasiewicz implicator IL(x, y) = min(1, 1−x+y),
based on TL, the Gödel implicator IG(x, y) = 1 for x ≤ y and IG(x, y) = y
elsewhere, based on TM , and the Gaines implicator IP (x, y) = 1 for x ≤ y and
IP (x, y) = y

x elsewhere, based on TP .

Proposition 1. [10] Every R-implicator is a Hybrid Monotonic, Border and
CP implicator.

Definition 1. [9] Let ′ ≤′ be a binary relation on a nonempty set X, (X, ≤) is
a partial order set if it satisfies the following conditions:

(1) Reflexivity: x ≤ x, ∀x ∈ X ;
(2) Antisymmetry: x ≤ y, y ≤ x, thenx = y, ∀x, y ∈ X ;
(3) Transitivity: x ≤ y, y ≤ z, thenx = z, ∀x, y, z ∈ X.



Ranking Approach in Interval-Valued Decision Making 413

Definition 2. Let ′ <′ be a binary relation on a nonempty set X, if ′ <′ is
transitive, namely, x < y, y < z ⇒ x < z, then (X, <) is called as strict partial
order set.

3 Monotonic Inclusion Measure

Zadeh[13] gave the definition of fuzzy set subhood first: A is contained in B if
and only if A(x) ≤ B(x) for all x ∈ X . Kosko[14] argued that if the inequality
hold for all just a few x, A can be considered to be a subset of B by some
degree. He generalized Zadeh’s definition by using a popular concept of fuzzy
set inclusion which is a fuzzy analog of conditional probability: |A ∧ B|/|A|. A
variation of this measure and its application appear in [14-17]. [18,19] gave the
knowledge processing method for intelligent systems based on inclusion degree
and rough set. At the same time, many authors argued the axioms (properties)
which a reasonable fuzzy inclusion measure should satisfy. Sinha and Dougherty
[20], the prime work of the axiomatic approach, offered axioms for fuzzy inclusion
(subsethood) measure.

Definition 3. (Sinha-Dougherty[20]) Let I be a mapping I: F (X) × F (X) →
[0, 1], and A, B and C fuzzy sets in a universe X. The Sinha-Dougherty axioms
imposed on I are as follows:

Axiom 1. I(A, B) = 1 ⇔ A ⊆ B, that is A(x) ≤ B(x), for all x ∈ X;
Axiom 2. I(A, B) = 0 ⇔ ∃x ∈ X such that A(x) = 1 and B(x) = 0.
Axiom 3. A ⊆ B ⇒ I(B, C) ≤ I(A, C), i.e. the operator has decreasing first

partial mappings.
Axiom 4. A ⊆ B ⇒ I(C, A) ≤ I(C, B), i.e. the operator has increasing second

partial mappings.
Axiom 5. I(A,B)=I(S(A),S(B)) where S is a F (X)×F (X) mapping defined

by, for every x ∈ X, S(A)(x) = A(s(x)), s denoting an X → X mapping.
Axiom 6. I(A, B) = I(coA, coB)
Axiom 7. I(A ∪ B, C) = min(I(A, C), I(B, C))
Axiom 8. I(A, B ∩ C) = min(I(A, B), I(A, C))

The ninth axiom, I(A, B ∪ C) ≥ max(I(A, B), I(A, C)), was indicated by Frago
[21] that it is redundant because it is equivalent to axiom 4. Young [22] indicated
that one loses much of the relative structure of fuzzy sets A and B by letting one
point determine when I is 0. They gave Axiom 2′ as a substitute for Axiom 2.

Axiom 2′. if [1/2] ⊆ A, then I(A, Ac) = 0 if and only if A = X ;

Definition 4. [9] Let (X, ≤) is a partial order set for all x, y ∈ X, a inclusion
measure is denoted by I(x, y) if it satisfies the following conditions:

(1) 0 ≤ I(x, y) ≤ 1, ∀x, y ∈ X;
(2) x ≤ y ⇔ I(x, y) = 1;
(3) if x ≤ y ≤ z ∈ X, then I(y, z) ≤ I(x, z) and I(z, x) ≤ I(z, y) hold.

So inclusion degree is a measure on the partial order set, namely when x ≤ y,
then S(x, y) = 1, otherwise the degree of x ≤ y is given. So it is important than
the partial relation.
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Let P ([0, 1]) is the set of all the closed subset of [0,1], the strict partial order ≺
is defined as I1 = [a1, b1] ≺ I2 = [a2, b2] ⇔ b1 ≤ a2 by Moore [6]. It obvious that
(P ([0, 1]), ≺) is a strict partial order set.

Now we introduce the monotonic inclusion measure on (P ([0, 1]), ≺) which
possesses some of the axioms postulated by Sina and Dougherty [20].

Definition 5. For all I1 = [a1, b1], I2 = [a2, b2] ∈ (P ([0, 1]), ≺), I(I1, I2) is
called as a monotonic inclusion measure on (P ([0, 1]), ≺) if it satisfies the fol-
lowing conditions:

(1) 0 ≤ I(I1, I2) ≤ 1, ∀I1, I2 ∈ (P ([0, 1]), ≺);
(2) I1 ≺ I2 ⇔ I(I1, I2) = 1;
(3) if I1 ≺ I2, for all I3 = [a3, b3] ∈ (P ([0, 1]), ≺), S(I2, I3) ≤ S(I1, I3) and

S(I3, I1) ≤ S(I3, I2) hold.

The literature [3] mentioned that the possibility degrees in [1],[2] and [3] were
same, so we just show one of them is monotonic inclusion measure.

Lemma 1. If α, β, a, b are all positive number, then

α

α + a
≤ β

β + b
⇔ αb ≤ βa.

Theorem 1. If I1 = [a1, b1], I2 = [a2, b2] ∈ (P ([0, 1]), ≺)then

p(I1, I2) =
max{0, b1 − a1 + b2 − a2 − max{b1 − a2, 0}}

b1 − a1 + b2 − a2
[2]

is a monotonic inclusion measure over(P ([0, 1]), ≺).

Proof. See [3] for details about the proof of conditions (1) and (2), we argue
the third condition holds as follows:

If I1 = [a1, b1] ≺ I2 = [a2, b2], for all I3 = [a3, b3]

p(I3, I1) =
max{0, b1 − a1 + b3 − a3 − max{b3 − a1, 0}}

b1 − a1 + b3 − a3
,

p(I3, I2) =
max{0, b2 − a2 + b3 − a3 − max{b3 − a2, 0}}

b2 − a2 + b3 − a3
,

Since I1 ≺ I2 ⇔ b1 ≤ a2, namely a1 ≤ b1 ≤ a2 ≤ b2. Then we have b3 − a2 ≤
b3 − a1.

It follows that
1) if b3 − a2 ≤ 0, then p(I3, I2) = 1, so p(I3, I1) ≤ p(I3, I2);
2) if 0 < b3 − a2 ≤ b3 − a1, then we have

p(I3, I1) =
max{0, b1 − a3}
b1 − a1 + b3 − a3

, p(I3, I2) =
max{0, b2 − a3}
b2 − a2 + b3 − a3

If b1 −a3 ≤ 0, then p(I3, I1) = 0, we have p(I3, I1) ≤ p(I3, I2). If 0 < b1 −a3 ≤
b2 − a3, then

p(I3, I1) =
b1 − a3

b1 − a3 + b3 − a1
, p(I3, I2) =

b2 − a3

b2 − a3 + b3 − a2
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Since 0 < b3 − a2 ≤ b3 − a1, 0 < b1 − a3 ≤ b2 − a3, then (b1 − a3)(b3 − a2) ≤
(b2 − a3)(b3 − a1). By lemma 3.1, we have

p(I3, I1) =
b1 − a3

b1 − a3 + b3 − a1
≤ p(I3, I2) =

b2 − a3

b2 − a3 + b3 − a2
.

p(I2, I3) ≤ p(I1, I3) can be proved by the same way.
So p(I1, I2) is a partial inclusion measure on (P ([0, 1]), ≺).

Lemma 2. If a1, b1, a2, b2 are positive real number, then

a1 − b1

a1 + b1
≥ a2 − b2

a2 + b2
⇔ a1b2 ≥ a2b1.

Theorem 2. If I1 = [a1, b1], I2 = [a2, b2] ∈ (P ([0, 1]), ≺)then

I(I1, I2) = 0.5(
b2 − a1 + a2 − b1

|b2 − a1| + |a2 − b1|
+ 1),

is a monotonic inclusion measure on (P ([0, 1]), ≺).

Proof. (1)It’s obvious that 0 ≤ I(I1, I2) ≤ 1;
(2) Since

I(I1, I2) = 1 ⇔ 0.5(
b2 − a1 + a2 − b1

|b2 − a1| + |a2 − b1|
+ 1) = 1,

we have b2 − a1 ≥ 0, a2 − b1 ≥ 0 which equals to I1 ≤ I2;
(3) If I1 ≺ I2, namely a1 ≤ b1 ≤ a2 ≤ b2, then

I(I1, I3)= 0.5(
b3 − a1 + a3 − b1

|b3 − a1| + |a3 − b1|
+1), S(I2, I3) = 0.5(

b3 − a2 + a3 − b2

|b3 − a2| + |a3 − b2|
+1);

It follows that
1) if a3 ≥ b1, then I(I1, I3) = 1, so we have I(I1, I3) ≥ I(I2, I3);
2) if a3 < b1, b3 ≤ a2, then I(I2, I3) = 0 ≤ I(I1, I3);
3) if a3 < b1, b3 > a2, then

I(I1, I3) = 0.5(
b3 − a1 − (b1 − a3)
b3 − a1 + b1 − a3

+1), I(I2, I3) = 0.5(
b3 − a2 − (b2 − a3)
b3 − a2 + b2 − a3

+1);

Since a1 ≤ b1 ≤ a2 ≤ b2, a3 < b1, b3 > a2, we have 0 < b3 − a2 ≤ b3 − a1, 0 <
b1 − a3 ≤ b2 − a3, then (b3 − a2)(b1 − a3) ≤ (b3 − a1)(b2 − a3). By Lemma 3.2,
we have

b3 − a2 − (b2 − a3)
b3 − a2 + b2 − a3

≤ b3 − a1 − (b1 − a3)
b3 − a1 + b1 − a3

Namely I(I2, I3) ≤ I(I1, I3); By the same way, we can prove I(I3, I1) ≤ I(I3, I2)
is true. So I(I1, I2) is a monotonic inclusion measure.
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4 Inclusion Measure Based on t-Norm

Theorem 3. I (a, b) is a monotonic inclusion measure over the partial order
set ([0, 1], ≤) where I is a R-implicator.

It is obvious by the properties of R-implicator.

Theorem 4. Let I1 = [a1, b1], I2 = [a2, b2], I1(a, b) and I2(a, b) are monotonic
inclusion measure on ([0, 1], ≤), T is a t-norm on [0,1], then I(I1, I2) =
T (I1(a1, b2), I2(b1, a2)) is a monotonic inclusion measure on (P ([0, 1]), ≺).

Proof. (1)By the definition of t-norm, it is obvious that 0 ≤ I(I1, I2) ≤ 1;
(2) I(I1, I2) = 1 ⇔ T (I1(a1, b2), I2(b1, a2)) = 1 ⇔ I1(a1, b2) = 1, I2(b1, a2) =

1 ⇔ a1 ≤ b2, b1 ≤ a2 ⇔ I1 ≺ I2;
(3)If I1 ≺ I2, then a1 ≤ b1 ≤ a2 ≤ b2. For all I3 = [a3, b3], then

I(I1, I3) = T (I1(a1, b3), I2(b1, a3)), I(I2, I3) = T (I1(a2, b3), I2(b2, a3))

Combined a1 ≤ a2, b1 ≤ b2 with the monotonicity of I1 and I2, we get
I1(a2, b3) ≤ I1(a1, b3), I2(b2, a3) ≤ I2(b1, a3). By the increasing monotonicity
of t-norm, we have I(I2, I3) ≤ I(I1, I3).

By the same way, I(I3, I1) ≤ I(I3, I2). So I(I1, I2) = T (I1(a1, b2), I2(b1, a2))
is a monotonic inclusion measure on (P ([0, 1]), ≺).

According to Theorem 4, We can construct a series of inclusion measure of
interval numbers taking different inclusion measures of real number and t-norms.

5 Illustration

We select a example about evaluation of five colleges in [11]. These five colleges
are represented by A1, A2, A3, A4 and A5 respectively. By integrated weight,
we get the integrative interval evaluation value d1 = [0.1890, 0.1976], d2 =
[0.2022, 0.2154], d3 = [0.2021, 0.2112], d4 = [0.1865, 0.1964], d5 = [0.1888, 0.1983]

Then we compute the comparing matrix [4] by D = (I (di, dj)) and get the
decision value by Di = Σ5

j=1I (di, dj).
Now we make the decision taking the monotonic inclusion measure defined by

t-norm.

(1) Let S1 = S2 =IL, T = TM , we get the ranking order: A4 ≺0.9926 A1 ≺0.9912
A5 ≺1 A3 ≺0.991 A2;

(2) Let S1 = S2 =GL, T = TM , we get A4 ≺0.1888 A5 ≺0.1890 A1 ≺1 A3 ≺0.2022
A2;

(3) Let S1 = S2 =IP , T = TP , we get A4 ≺0.9613 A5 ≺0.9531 A1 ≺1 A3 ≺0.9573
A2.

We get a decision that A2 is the best, while A4 is the worst by taking differ-
ent inclusion measure. This decision is approximately consistent with the order
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A4 ≺0.6 A1 ≺0.5138 A5 ≺1 A3 ≺0.5865 A2 computed by the inclusion mea-
sure in [3]. At the same time, we get that A1 is approximately equal to A5,
because S15 = 0.9912 = S51 = 0.9912, S15 = 0.1888 ≈ S51 = 0.1890 and
S15 = 0.9554 ≈ S51 = 0.9531 respectively. We get S15 = 0.5138 ≈ S51 = 0.4862
by taking the inclusion measure in [3]. So we get approving decision by the
monotonic inclusion measures of interval numbers defined in this paper.

6 Conclusion

A ranking approach with monotonic inclusion measures for interval-valued deci-
sions has been proposed in this paper. A series of inclusion measures based on
t-norm are proposed, which is convenient for the decision-maker’s selection in
different problems. In the future, we will deal with interval-valued information
systems and interval-valued grey systems and so on by the monotonic inclusion
measure.
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Abstract. In this article, the granulation based on the meaning of rough
logical formula in a given information system IS = (U, A) is proposed.
Which is considered the granular formulas of form m(F ), where F is
a rough logical formula on IS. Relative properties of the granulations
are discussed. Deductive reasoning of the granulations and λ-granular
resolution strategies are also studied in this article. The practicability of
the granulations will offer the new idea for studying meaning of classical
logic and the meaning of other nonstandard logic. It could also be a
theoretical development for granular computing.

Keywords: Semantics of rough logical formula, granulation, λ-inclusion,
λ-closeness,granular reasoning.

1 Introduction

Successful applications of Rough Set theory show that the rough sets proposed
by Pawlak are successful, significant and contributive. However rough sets based
on indiscernibility relation are extended necessarily [1 − 4, 17, 18]. The indis-
cernibility relation we defined is difficult in some specialization area, but a bi-
nary relation or general relation is easily defined. So the granulations based
on the binary relation or general relation are also easily generated [9, 10, 16] .
Therefore, the research of granular computing is proposed [4, 17, 18]. We may
also see that granulations based on the meaning of rough logical formulas on
IS could hopefully be the theoretical development of granular computing
studying

Proposed granulation based on the meaning of rough logical formulas is
thought of as granular formulas of form m(F ), where F is a rough logical
formula on IS. We also discuss Skolem granular clause form, granular deduc-
tive reasoning and λ-granular resolution strategies in this article. We have dis-
cussed related properties of the granulations derived from rough logical
formulas.

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 419–426, 2007.
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2 Granulations Based on the Meaning of Rough Logical
Formulas

Rough logic (RL) based on Rough Sets is thought of as a nonstandard logic
defined on IS. Defined domain of formulas in the logic is considered as the
universe U in IS. Predicates in the logic are considered as attributes in the
attribute set A [16, 19 − 22].

Let IR be an interpretation of rough logical formula F , and uR be an assign-
ment symbol to individual variable occurring in F . TIRuR be an united assign-
ment symbol to each constant, variable, function and predicate occurring in F ,
that is,

1. If the term τ occurring in F is a constant, then TIRuR(F ) = IR(τ) = e.
2. If the term τ occurring in F is a variable, then TIRuR(F ) = uR(τ) = e.
3. If the term τ occurring in F is a function symbol of form π(τ1, · · · , τn),

then TIRuR(F ) = IR(τ) = g(x1, · · · , xn), where g is a given function symbol
defined on IS.

4. If the term τ occurring in F is a predicate symbol of form θ(τ1, · · · , τn), then
TIRuR(F ) = IR(τ) = P (x1, · · · , xn), where P is a relation symbol defined on
IS.

The truth value of formula in the logic is denoted by TIRuR(F ), which is defined
as follows:

1. TIRuR(F ) =| m(F ) | / | U |.
2. TIRuR(¬F ) = 1 − TIRuR(F ).
3. TIRuR(F1 ∨ F2) ≥| (m(F1) ∪ m(F2) | / | U |.
4. TIRuR(F1 ∧ F2) ≤| (m(F1) ∩ m(F2) | / | U |.

In particular, the granulation is of the form m(F ), called granular formula.
Value of the granular formula is a set defined on 2U . The value is derived from
rough logical formula F , hence, it depend on the properties of the formulas.
The operation symbols of granular formulas of the form m(F ) are the inclusion
symbol ∝λ to a degree λ and the closeness symbol ∞λ to a degree λ besides
operation symbols in classical set theory [23 − 26].

3 Inclusion and Closeness of Granular Formulas

Definition 1. (Inclusion) Let ϕ and ψ be rough logical formula on IS. The
granular formula m(ϕ) is included in granular formula m(ψ) to degree at least
λ. Formally:

∝λ (m(ϕ), m(ψ)) =
{

Card(m(ϕ) ∩ m(ψ))/Card(m(ϕ)) m(ϕ) 
= ∅
1 m(ϕ) = ∅ (1)
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Definition 2. (Closeness) Let ϕ and ψ be rough logical formula. The granu-
lation m(ϕ) is close to granulation m(ψ) to degree at least λ. Formally, it is
defined as follows:

| TIISuIS (ϕ) − TIISuIS (ψ) |< 1 − λ ∧ m(ϕ) ∝λ m(ψ) ∧ m(ψ) ∝λ m(ϕ) (2)

for short denoted by ∞λ(m(ϕ), m(ψ)), where:

1. ∞λ is called λ-closeness relation, to have m(ϕ) ∞λ m(ψ),
2. TIISuIS is the united assignment symbol defined by

TIISuIS (ϕ) = α (3)

where α ∈ [0, 1],a real number. IIS is an interpretation symbol of granular for-
mula m(ϕ) on IS, and uIS is an evaluation symbol to individual variable occur-
ring in granular formula on IS (to see [24, 30, 31]).

Definition 3. (Operations) Let m(ϕ) and m(ψ) be two granular formulas, the
operations of them with respect to usual logical connectives ¬, ∨, ∧, → and ↔
in the rough logical formula are defined as follows [2, 4 − 8, 20, 32]:

1. m(¬ϕ) = U − m(ϕ);
2. m(ϕ ∨ ψ) = m(ϕ) ∪ m(ψ);
3. m(ϕ ∧ ψ) = m(ϕ) ∩ m(ψ);
4. m(ϕ → ψ) = m(¬ϕ) ∪ m(ψ);
5. m(ϕ ↔ ψ) = (m(¬ϕ) ∩ m(¬ψ)) ∪ (m(ψ) ∩ m(ϕ)).

For ∀ϕ ∈ RLIS, value of m(ϕ) is a subset in U . Which is defined as follows:

m(ϕ) = {x ∈ U : x |≈IS ϕ} (4)

Where |≈IS is a degree satisfiability symbol in IS [12 − 15, 19, 25, 28, 32].

4 Properties of the Granular Formulas

The granulations based on the meaning of rough logical formulas on IS have
following properties [24, 25, 27, 32]:

1. Identity
For ∀F ∈ RLIS , m(F ) ∞λ m(F );

2. Symmetry
For ∀F1, F2 ∈ RLIS, (m(F1) ∞λ m(F2)) → (m(F2) ∞λ m(F1));

3. Transitivety
For ∀F1, F2, F3 ∈ RLIS,
((m(F1) ∞λ m(F2))∧(m(F2) ∞λ m(F3))) → (m(F1) ∞λ′ m(F3)),
where λ

′
= 2λ − 1,λ

′
,λ ∈ [0, 1];

4. Modus Ponens
For ∀F1, F2 ∈ RLIS,
((m(F1 → F2) ∞λ U) ∧ (m(F1) ∞λ U)) → ((m(F1) ∩ m(F1 → F2))
∝λ m(F2) ∝λ m(F1 → F2));



422 Q. Liu, H. Sun, and Y. Wang

5. Absorbance laws
m(F1) ∩ (m(F1) ∪ m(F2)) ∞λ m(F1);
m(F1) ∪ (m(F1) ∩ m(F2)) ∞λ m(F1);

6. Forever true
m(F ) ∪ ¬m(F ) ∞λ U , where U is the universe of objects;

7. Forever false
m(F ) ∩ ¬m(F ) ∞λ ∅, where ∅ is an empty;

8. Substitution
For ∀α, β ∈ RLIS,
(m(α) ∞λ m(β)) → (m(P (α)) ∞λ m(P (β))),
where α,β may be a constant, variable, function item or well-formed formula,
λ ∈ [0, 1].

9. Special properties
Special properties of atomic granules based on the meaning of rough logical
formulas defined on IS.
(1). m(av) ∩ m(au) = ∅, where a ∈ A, v, u ∈ Va, and v 
= u.
(2).

⋃
v∈Va

m(av) = U , for each a ∈ A.
(3). ¬m(au) =

⋃
v∈Va

m(av), for each a ∈ A, v 
= u.

5 Deductive Proof of Granular Formulas

We discuss the reasoning technique called granular deduction. It is similar to the
deductive technique in usually logic [26, 27].

Example 1. We will show that

m(((P ∨ Q) ∧ ¬(¬P ∧ ¬(Q ∧ R))) ∨ ¬(P ∨ Q) ∨ ¬(P ∨ R)) ∞λ U (5)

Where P, Q, R ∈ RLIS , λ ∈ [0, 1], U is the universe of objects.

Proof

1. m(((P ∨ Q) ∧ ¬(¬P ∧ ¬(Q ∧ R))) ∨ ¬(P ∨ Q) ∨ ¬(P ∨ R)) ∞λ m(((P ∨
Q) ∧ (P ∨ (Q ∧ R))) ∨ ¬(P ∨ Q) ∨ ¬(P ∨ R)), by De Morgan’s Laws.

2. m(((P ∨ Q) ∧ (P ∨ (Q ∧ R))) ∨ ¬(P ∨ Q) ∨ ¬(P ∨ R)) ∞λ m(((P ∨ Q) ∧
((P ∨ Q) ∧ (P ∨ R))) ∨ ¬((P ∨ Q) ∧ (P ∨ R))), by distributive laws,De
Morgan’s Laws.

3. m(((P ∨Q)∧ ((P ∨Q)∧ (P ∨ R))) ∨¬((P ∨ Q)∧ (P ∨R))) ∞λ m((((P ∨
Q) ∧ (P ∨ R))) ∨ ¬((P ∨ Q) ∧ (P ∨ R))), by A ∧ (A ∧ B) = A ∧ B.

4. m((((P ∨Q)∧ (P ∨R)))∨¬((P ∨Q)∧ (P ∨R))) ∞λ U , by forever true.

Definition 4. Let F be a rough logical formula on IS, it could be equivalently
transformed into a Skolem standard form F = C1 ∧ · · · ∧Cm, where each Ci is a
disjunction or set of atoms or negation of them [19, 27, 29, 31, 32]. By the granu-
lar operation definition (3) in the above, having m(F ) = m(C1) ∩ · · · ∩ m(Cm),
each m(Ci) = m(Li1) ∪ · · · ∪ m(Lik

), i = 1, · · · , m, we call it Skolem granular
clause form [29, 31].
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Definition 5. Consider ground granular clauses m(C1) and m(C2) specified by
m(C1) : m(C′

1) ∪ m(av) and m(C2) : m(C′
2) ∪ m(bu) respectively. The resolvent

of m(C1) and m(C2), GR(m(C1), m(C2)), is defined as follows: If the ground
granular atoms m(av) in m(C1) and m(bu) in m(C2) are a complement granular
literal pair [25, 29, 31, 32] in the granulations, then resolvent of m(C1) and m(C2)
is defined as follows:

C1 : m(C′
1) ∪ m(av)

C2 : m(C′
2) ∪ m(bu)

C : m(C′
1) ∪ m(C′

2)
(6)

Namely, we have GR(m(C1), m(C2)) = m(C′
1) ∪ m(C′

2).

6 λ-Resolution Strategies in the Granulations

Definition 6. Let m(L1) and m(L2) be granular literal, where m(L1) is close
to U to degree at least λ, m(L2) is close to U to degree at most 1−λ, if λ ≥ 0.5,
TIISuIS (m(L1)) > λ and TIISuIS (m(L2)) ≤ 1 − λ; Or m(L1) is close to U to
degree at most λ, m(L2) is close to U to degree at least 1 − λ, if λ < 0.5,
TIISuIS (m(L1)) < λ and TIISuIS (m(L2)) ≥ 1 − λ, where L1 and L2 are any
description on IS or atom in RL, such as L1 = av, L2 = bu, then m(L1) and
m(L2) is called as λ-complement granular literal pair [24, 31].

Definition 7. Let m(C1) and m(C2) be without common variable granular
clause form, and m(L1) in m(C1) and m(L2) in m(C2) be λ-complement granular
literal, then λ-resolvent of m(C1) and m(C2) is defined as follows:

GRλ(m(C1), m(C2)) = (m(C1) − m(L1)) ∪ (m(C2) − m(L2)) = m(C′
1) ∪ m(C′

2)
(7)

Where m(C′
1) = m(C1) − m(L1), m(C′

2) = m(C2) − m(L2)

Table 1. Information Table

U a b c d e

1 5 4 0 1 1

2 3 4 0 2 1

3 3 4 0 2 2

4 0 2 0 1 2

5 3 2 1 2 2

6 5 2 1 1 0

Example 2. Let IS = (U, A, V, f) be an information system, as show on infor-
mation table 1 in the above. We may construct a granular formula based on the
meaning of rough logical formula on IS [25 − 29, 31, 32]. We extract the formula
ϕ ∈ RLIS as follows:

ϕ(a5, b2, b4, c0, ¬e0) = (a5 ∨ b4) ∧ b2 ∧ (c0∨ ∼ e0) (8)
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Formula (8) may be written as the following granular formula:

m(ϕ(a5, b2, b4, c0, ¬e0)) = (m(a5) ∪ m(b4)) ∩ m(b2) ∩ (m(c0) ∪ m(¬e0)) (9)

This is a granular clause form, where each intersection item is a granular clause.
By Definition 5, the ground granular clause form of the granular formula is
defined as follows:

m(ϕ(a5, b2, b4, c0, ¬e0)) = (a{1,6}
5 ∪b

{1,2,3}
4 )∩b

{4,5,6}
2 ∩(c{1,2,3,4}

0 ∪¬e
{2,3,4,5}
0 ) (10)

where each item is a ground granular clause. When λ is defined as 0.6, obviously,
by definition 7, a

{1,6}
5 and c

{1,2,3,4}
0 is a λ-complement ground granular literal

pair. So, the resolvent GRλ(m(C1), m(C2)) of a
{1,6}
5 ∪ b

{1,2,3}
4 in m(C1) and

c
{1,2,3,4}
0 ∪ ¬e

{2,3,4,5}
0 in m(C2) is defined as follows:

GRλ(m(C1), m(C2))=(a{1,6}
5 ∪b

{1,2,3}
4 −a

{1,6}
5 )∪(c{1,2,3,4}

0 ∪¬e
{2,3,4,5}
0 −c

{1,2,3,4}
0 )

(11)
Hence, the formula (10) could be rewritten as

(b{1,2,3}
4 ∪ ¬e

{1,2,3,4,5}
0 ) ∩ b

{4,5,6}
2 (12)

In face, when λ = 0.6, a
{1,6}
5 and ¬e

{1,2,3,4,5}
0 is also a λ-complement ground

granular literal pair, hence the resolvent GRλ(m(C1), m(C2)) by definition 7
could be obtained as follows:

(b{1,2,3}
4 ∪ c

{1,2,3,4}
0 ) ∩ b

{4,5,6}
2 (13)

7 Conclusion

We define the granulation based on the meaning of rough logical formula on
IS [32]. Based on reference [32], we further proposed a λ-resolution strategies
of granular formula in this article. So the content of this article is an extension
with respect to the references [32].

The granular studying based on the meaning of rough logical formulas will
offer a new idea for studying classical logic and nonstandard logic. Studying of
the granulations of meaning based on rough logical formulas is also an extension
of Rough Logic proposed by Pawlak [20]. The derived granulations from rough
logical formulas are axiomatized to get the deductive systems of granulations. We
could prove some relationships between granulations in the axiomatic systems.
So the theorems and properties of the granulations derived from rough logical
formulas could be proved in the systems and used in theoretical study of granular
computing [25, 32].

Further work will be to study the derived granulations of the meaning based
on other nonstandard logical formulas and classical logical formulas,to study the
related properties and reasoning of the granulations.
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Abstract. The theory of granular computing is accorded a formal math-
ematical basis, by presenting its main features using a category-theoretic
language. A category CG of granulations is proposed. It is shown how two
main operations between granulations, viz. coarsening and refinement,
can be expressed in terms of CG-morphisms. Examples of some special
subcategories of CG and their relationships are given.
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ing and refinement.

1 Introduction

Granular computing is an emerging field of study on human-centered, knowledge-
intensive problem solving using multiple levels of granularity [4,11,13,18,22]. One
of its key notions is hierarchical structures that define levels of differing granular-
ity [19,20]. The study of such structures will play a crucial role in the development
of a theory of granular computing.

Category theory is a general mathematical theory of structures and systems
of structures. With its powerful language, we can easily see the universal compo-
nents of a family of structures of a given kind, and the interrelations of structures
of different kinds [16]. It can be immediately applied to the study of the struc-
tures considered in granular computing. The main objective of this paper is to
present such a category-theoretic basis of granular computing.

In building a category CG of granulations (cf. Section 2), we impose a minimum
requirement. Specifically, a granulation is interpreted as a family of granules.
Each granulation is an object and “similar” granulations constitute a category.
Morphisms reflect interactions between granulations. They may be used to rep-
resent switchings between different levels of granularity. In Section 3, we consider
two typical operations between granulations, coarsening and refinement, and ex-
press them through CG-morphisms. Section 4 highlights a few existing categories
of granulations to show that these are just subcategories of CG .
� The author acknowledges the support of the Department of Computer Science, Uni-

versity of Regina, Canada, and NSERC Canada (through a Discovery Grant to Yiyu
Yao), during a visit to which the work was done.
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Lin [9] studied a slightly different granular structure, consisting of an object
space, a data space, a neighborhood system, and a concept space, and pointed
out that a category of such “granular structures” can be constructed. The ex-
tra requirements are imposed to reflect the physical interpretations of granular
structures in some real world applications. Such a category would fall under the
scheme presented in this paper.

The results from the category-theoretic study provide an abstract level charac-
terization of granular structures and their connections. Moreover, specific models
of granular computing may be interpreted and understood in terms of the cat-
egory introduced in this paper. This has the potential to unify a wide range of
diverse results in the existing studies of granular computing.

2 The Category CG of Granulations

Basic definitions of category theory are briefly introduced as follows [6]. A cat-
egory consists of a collection of entities called objects, and for each pair (X, Y )
of objects, a collection of morphisms with domain X and codomain Y . If f is
such a morphism, we write f : X → Y . Further, if X, Y, Z are objects and
f : X → Y, g : Y → Z are morphisms, then there is a composite morphism
(i.e., composition) g ◦ f : X → Z. The associativity of compositions holds:
h◦ (g ◦f) = (h◦g)◦f , whenever both sides are defined. Finally, with each object
X , is associated an identity morphism iX : X → X , such that the identity laws
hold: for any morphism f : X → Y, iY ◦ f = f = f ◦ iX .

We now present the category CG of granulations.

Definition 1. An object of CG is a non-empty set G of granules.

We put no more conditions on an object. However, one may note that G could be
a collection with some structure (e.g., an order). G may also consist of granules
on a particular domain X (or a part of it), so that members of G are subsets of
X . In this case, we write the object as the pair (X, G) (or (X, GA, A), A ⊆ X).
One can further stipulate properties of G. For instance, the granules of G could
be assumed to cover X . In particular, they could partition X . In this context, the
finest possible granularity on a domain X would be given by G := {{x} : x ∈ X}.
We denote this special object as (X, IdX), where IdX stands for “identity” on X .

Definition 2. If G and G′ are objects of CG, a morphism f : G → G′ is a map
f : G → P(G′), where P(G′) denotes the powerset of G′. For practical purposes,
we shall assume that f(g), g ∈ G, is finite. The composition h ◦ f : G → G′′

of two morphisms f : G → G′ and h : G′ → G′′ is a map h ◦ f : G → P(G′′)
defined for each g ∈ G as:

h ◦ f(g) :=
⋃

h(f(g)).

The identity morphism id : G → G on the object G is the map i : G → P(G)
such that id(g) := {g}, for each g ∈ G.
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Morphisms reflect the process of articulation between granulations [8]. Every
granule in an object G is associated through a morphism with a (possibly empty)
collection of granules in G′. It may be noted that a morphism forms a binary
neighborhood system, in the terminology of [9].

Example 1. Let us consider two granulations G1, G2 on the set R of real num-
bers, representing, say, temperature [8]. For any t ∈ R, we define a granule of G1
as gt := {t′ ∈ R : |t − t′| < 2}, i.e., gt is the open interval (t − 2, t + 2). It is clear
that G1 has overlapping granules, and that it forms a cover of R. On the other
hand, G2 is the collection of semi-open intervals {[10t, 10(t+1)) : t ∈ Z}, where Z
is the set of integers. G2 thus forms a partition of R, and has granules of temper-
atures in 10’s, 20’s etc. One may now define a morphism f : (R, G1) → (R, G2)
in a natural way as follows: for t ∈ R, gt ∈ G1,

f(gt) := {g′ ∈ G2 : gt ∩ g′ �= ∅}.

For any t ∈ R, we observe that the granule gt = (t − 2, t + 2) of G1 either
intersects two “adjacent” granules [10t′, 10(t′ + 1)), [10(t′ + 1), 10(t′ + 2)), or is
completely contained in a granule [10t′, 10(t′ + 1)) of G2. So in the former case,
by definition of f above,

f(gt) = {[10t′, 10(t′ + 1)), [10(t′ + 1), 10(t′ + 2))}.

In the latter,
f(gt) = {[10t′, 10(t′ + 1))}.

A morphism can also be defined from (R, G2) to (R, G1): for g′ ∈ G2,

f ′(g′) := {g ∈ G1 : g′ ∩ g �= ∅},

which is a family of granules in G1.

Morphisms could also represent an order between granulated views (i.e., objects
of CG) [19,20], as we shall see in the next section. Further, different conditions
may be imposed on morphisms. For instance, if the granulations have some
structure (such as an order among component granules), then the morphisms
may be required to preserve the order [23]. In Example 1, it is not difficult to
define order relations among granules in G1 and among collections of granules
in G2 and to find that f in fact preserves the order relations.

Example 2. Let us illustrate through a simple example, the definition of composi-
tion of morphisms. Given three granulations: G0 := {g0}, G1 := {g1, g2}, G2 :=
{g′1, g

′
2, g

′′
1 , g′′2}, consider morphisms f1 : G0 → G1 and f2 : G1 → G2 defined as:

f1(g0) := G1; f2(g1) := {g′1, g
′
2}, f2(g2) := {g′′1}.

By Definition 2, the composition f2 ◦f1 : G0 → G2 is the map from G0 to P(G2)
such that

f2 ◦ f1(g0) =
⋃

f2(f1(g0)) =
⋃

f2({g1, g2}) = f2(g1) ∪ f2(g2) = {g′1, g
′
2, g

′′
1}.
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Based on the definitions of objects and morphisms, we have a category of gran-
ulations.

Proposition 1. CG forms a category.

Various subcategories of CG would be formed by considering (as mentioned ear-
lier) granulations with some structure, or only objects of the kind (X, G), or
objects (X, G) where G satisfies some properties.

3 Coarsening and Refining Granulations

In this section, we consider two typical operations involving granulations, viz.
coarsening and refinement, and show that these are instances of CG-morphisms.

An object G0 may be progressively coarsened to give rise to new objects, say
through a sequence:

G0 −→ G1 −→ ... −→ Gi −→ ... (1)

where Gi+1 is a granulation coarser than Gi. For example, one may like to distin-
guish between a “monitor” and a “printer” at some point, but at another, wish
to erase the distinction – clubbing both together and referring to a “computer”.
So, at each stage, some granules “collapse” into a single granule, while others
remain “unaffected”.

Definition 3. An object G′ is coarser than G, provided there is a morphism
f : G → G′ such that,

(i). For at least one pair of distinct granules g1, g2 ∈ G, f(g1) = f(g2) = {g12},
for some g12 ∈ G′;

(ii). If a granule g of G is not part of any such pair, f(g) = {g′}, for some
g′ ∈ G′ that is distinct from members of f -images obtained as in (i).

G′ and the granule g12 are referred to as coarsened transforms of G and the
granules g1 and g2, respectively. f is called a coarsening of G into G′. A granule
g as in (ii) is said to be unaffected by f .

The images under coarsening are always singletons. In the sequence (1), there
would be a coarsening f i : Gi → Gi+1 at each stage i, ensuring that at least two
granules in Gi collapse into a single granule of Gi+1. Every other granule g of Gi

is “fixed” – it is assigned a single distinct granule of Gi+1. This also ascertains
that only coarsening takes place, and no granule is “split” in the process.

Proposition 2. All objects Gi constituting a sequence (1) are coarsened trans-
forms of the object G0.

Proof. Take any three consecutive objects Gi, Gi+1, Gi+2 in the sequence. We
claim that the composite f i+1 ◦ f i : Gi → Gi+2 is a coarsening of Gi into Gi+2.
For this we observe that there are only two ways in which distinct granules in
Gi, say gi

1, g
i
2, may be transformed by f i+1 ◦ f i into a Gi+2-granule gi+2:
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(a). gi
1, g

i
2 are transformed by f i into a Gi+1-granule gi+1, and f i+1(gi+1) :=

{gi+2}.
(b). Both gi

1, and gi
2 are unaffected by f i, but their (distinct) f i-images are

transformed by f i+1 into gi+2.

Condition (i) of Definition 3 is clearly satisfied. Condition (ii) also holds: due to
(a) and (b) above, if a granule g is unaffected by f i+1 ◦ f i, it must be unaffected
by f i, and the granule in f i(g) (a singleton) must be unaffected by f i+1. It is
then easy to see that f i+1 ◦ f i(g) =

⋃
f i+1(f i(g)) = f i+1(f i(g)) is distinct from

all images of f i+1 ◦ f i-transformed pairs. �

Using Proposition 2, one obtains a subcategory Cc(G0) of CG , that has as objects,
all the coarsened transforms of G0. Morphisms are coarsenings between objects
(if any), apart from the identity morphisms. All objects in sequences such as (1)
become part of Cc(G0). It is not surprising then, that we get

Proposition 3. A granulation G consisting of a single granule, is a terminal
object of Cc(G0), i.e., there can be only one Cc(G0)-morphism with any Cc(G0)-
object as domain and G as codomain.

One can have special cases of Proposition 3, such as in the subcategory of par-
titions: if G0 is a partition on some domain X , it may be coarsened until it
collapses into the terminal object X × X on X .

Refinement, expectedly, is a process reverse to coarsening. Some objects are
“split” into collections of granules, leading to finer granulations. Others remain
unaffected. Moreover, one makes sure that no coarsening takes place during a
refinement.

Definition 4. An object G′ is finer than G, provided there is a morphism f :
G → G′ satisfying the following:

(i). There is some granule g ∈ G such that f(g) contains at least two distinct
granules of G′;

(ii). If g′ in G is not such a granule, f(g′) = {g0}, for some granule g0 of G′

that is distinct from members of the f -images obtained as in (i). Further,
f -images of all granules such as g′, are mutually distinct.

f is called a refinement of G into G′. G′ is also termed as a refinement of G.

Successive refinements reflect an order among granulations, or a transition from
a coarse-grained view to progressively finer views [8,19,20], leading to a hierarchy
of granulations. Any such hierarchy could be represented by a sequence:

G0 −→ G1 −→ ... −→ Gi −→ ... (2)

where each Gi+1 is a refinement of Gi.
A result similar to Proposition 2 can be obtained.

Proposition 4. All objects Gi in the sequence (2) are refinements of the object
G0.
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As in case of coarsening, we obtain a subcategory Cf(G0) of CG , that has as
objects, all refinements of the object G0. Thus, a hierarchy of granulations,
whether based on refinement or coarsening, is just a subcategory of CG .

We now consider a special subcategory Cf (X, G0) of Cf (G0), where the gran-
ulations are on some fixed domain X . Further, in an object (X, G), (i) if a
G-granule g is split by a refinement f ,

⋃
f(g) = g; (ii) if g′ in G is not split,

f(g′) = {g′}. We arrive at the following proposition.

Proposition 5. The finest granulation on X, (X, IdX), is a terminal object of
Cf(X, G0).

Thus the category Cf (X, G0) is, in effect, a network of hierarchies of granulated
views, rooted at the object (X, G0) and terminating at (X, IdX).

4 Some Subcategories of CG and Their Interrelationships

A functor between two categories provides a correspondence between the respec-
tive collections of objects and morphisms. In the present context, functors would
lead to a passage from one category of granulations into another. In [3], a “tree”
of categories is formed with the help of functors. Each category constituting the
tree has as its identity morphism, an “approximate” identity – ranging from the
crisp identity Id, to various fuzzy indistinguishability relations [5,7,12,14,17,21].
Objects of these categories may be regarded as granulations, the component
granules of which are formed on the basis of these indistinguishability relations.
We demonstrate this formally for three of the constituent categories: through a
reformulation, these are shown to be subcategories of CG .

SET : The classical category SET has sets as objects and functions between
sets as morphisms [6]. Any set X can be identified with the CG-object (X, IdX).
A function f : X → Y can be identified with the CG-morphism f ′ : (X, IdX) →
(Y, IdY ), where f ′ : X → P(Y ) is a map defined as: f ′(x) := {f(x)} for any
x ∈ X . If we restrict the collection of CG-morphisms with domain (X, IdX) and
codomain (Y, IdY ) to contain functions f : X → P(Y ) such that range(f) :=
{{y}y∈Y }, a converse identification can directly be made.

Note:The collection {{x}x∈X} of granules is isomorphic to the set X . Any CG-
morphism f ′ : (X, IdX) → (Y, IdY ) may be looked upon as a map f ′ : X →
P(Y ).

Set(E): The category of crisp equivalences Set(E) [1], has objects of the form
(X, GA, A), where GA is a partition on A ⊆ X . A morphism with domain
(X, GA, A) and codomain (Y, GB , B) is a function f from GA to GB. We observe
that the subcategory of CG consisting of objects (X, G) is also a subcategory of
Set(E). Now (X, GA, A) is a CG-object. In a line similar to the exercise done
for SET , we restrict the collection of CG-morphisms with domain (X, GA, A)
and codomain (Y, GB , B) to contain functions f : GA → P(GB) such that
range(f) := {{g}g∈GB}. This enables an identification of Set(E) as a subcate-
gory of CG .
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ROUGH : The objects of ROUGH [2], a category of rough sets, are of the
form (X, G, A), where G is a partition of X , and A ⊆ X . If A and A denote
the collections of classes of G contained in the upper and lower approximations
of A, a morphism in ROUGH with domain (X, G, A) and codomain (Y, G′, B)
is a map f : A → B such that f(A) ⊆ B. Now this can be translated into
the framework of CG as follows. Let us make the identification mentioned in the
Note above, viz. for any set S, the collection {{x}x∈S} is isomorphic to S. We
consider CG-objects of the form (X, G, L, U), where G is a partition on X , and
L ⊆ U ⊆ G. A morphism f in this subcategory, with domain (X, G, L, U) and
codomain (Y, G′, L′, U ′), is a map f : G → P(G′) such that (i) range(f) := G′,
(ii) f(U) ⊆ U ′, (iii) f(L) ⊆ L′, and (iv) f(G \U) := {g′}, for some fixed granule
g′ ∈ G′ \ U ′. This subcategory of CG may be identified with ROUGH .

SET ⊂ Set(E) ⊂ ROUGH : For two categories C and D, C ⊂ D denotes that
there is a functor which is an embedding of C into D i.e., an isomorphism between
C and a subcategory of D. To get the above-mentioned relationships, we define
the required functors as follows. It is easy to see that any object (X, IdX) of
SET can be assigned the Set(E)-object (X, IdX , X). On the other hand, any
Set(E)-object (X, GA, A) can be assigned the object (A, GA) in ROUGH . Note
that one takes L = U = GA for such an object. Images of objects being thus
defined, the morphism images are decided in a natural way. It is clear that these
correspondences suffice for the result that SET ⊂ Set(E) ⊂ ROUGH .

5 Conclusions

A category CG of granulations is proposed that is able to bring under its fold,
a wide variety of granular structures as well as interactions between them. It
is demonstrated how two typical operations involving granulations, viz. coars-
ening and refinement, may be reflected through morphisms of CG . Some special
categories of granulations are shown to be subcategories of CG , and embeddings
between them are pointed out.

The objects of CG may be generalized, by taking not only a single granulation
as done here, but a collection of granulations. Morphisms may then be appropri-
ately defined as well. A complex theory would form such a generalized category,
taking together granulations on various domains such as those of agents, objects,
times, locations etc. The granular structure of [9] could then be accounted for
too.

The study of Section 4 may be extended to categories of granulations in
which component granules are formed on the basis of other indistinguishabil-
ity/similarity/nearness relations. The remaining categories in the tree of [3] may
be considered for this purpose, or for instance, those defined in [10].

As we have seen in Section 3, hierarchies of granulations are subcategories
of CG . Just as morphisms represent an articulation between granulations, at the
next level, functors would represent articulation between hierarchies of granu-
lations. It may be interesting to explore for examples of such articulation, in
specific models of granular computing.
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Abstract. A novel approach to extend the notions of definability and
rough set approximations in information systems with non-equivalence
relations is proposed. The upper approximation is defined as set-theoretic
complement of negative region of a given concept; therefore, it does not
need to be definable. Fundamental properties of new approximation op-
erators are compared with the previous ones reported in literature. The
proposed idea is illustrated within tolerance approximation spaces. In
particular, granulation based on maximal preclasses is considered.

Keywords: Rough Sets, Tolerance Relations, Granular Computing.

1 Introduction

Although rough sets were introduced and originally mainly studied for informa-
tion systems with equivalence relations, corresponding to data tables with crisp,
symbolic values [10,11,12], a lot of research has been devoted to other relations
and value types as well [3,5,6,9,14,15,16,18,21]. As in many other theories, what
is simple and straightforward for equivalence relations, requires much deeper
study for more general cases, beginning with most natural extension onto tol-
erance relations [5,16], ending with non-deterministic, fuzzy relations between
vaguely defined values [1,3,4]. Generalizations are needed both at the level of fun-
damental notions, like those of definability or approximations, and at the level
of derivation of relations from actual data, using discretization, neighborhoods,
application-specific analysis of missing values etc.

We approach the above challenges from both abstract-driven and data-driven
perspectives. Firstly, we reconsider the well-known rough set approximation op-
erators at the level of abstract families of granules – subsets of universe. Com-
paring to the previous approaches, we redefine the upper approximation as a
set-theoretic complement of negative region. We show that such a change im-
proves both interpretation and mathematical properties of the obtained rough
set model. Secondly, we focus on the case study of tolerance relations, as an
example that we may expect while dealing with real-life data. In particular,
granulation based on maximal tolerance preclasses is analyzed. Propositions 2
and 3 illustrate our contribution from the two above-described perspectives.
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2 Preliminaries: Information Systems and Rough Sets

Rough sets were introduced as a tool for analyzing information systems – formal
counterparts of information tables, where rows are labeled by names of objects
and columns – by names of attributes. An information system is a triple S =
〈Ob, At, V ala〉 where Ob is a set of objects, At is a set of attributes, and each
V ala is a value domain of an attribute a ∈ At, where a : Ob −→ P(V ala)
(P(V ala) is a power set of V ala). If a(x) �= ∅ for all x ∈ Ob and a ∈ At, then S
is total. If card(a(x)) = 1 for every x ∈ Ob and a ∈ At, then S is deterministic.
Otherwise S is indeterministic.

Table 1. Example of indeterministic information system

Height (cm) Degrees Height (cm) Degrees

x1 196 {BSc, MSc, PhD} x6 183 {BA, MA}
x2 174 {BSc, BA, MA, PhD} x7 190 {BSc}
x3 173 {BSc, MSc} x8 192 {BSc, MA, PhD}
x4 179 {BA, MA, PhD} x9 187 {BA, MA}
x5 178 {BSc} x10 184 {BSc, MSc, PhD}

According to Pawlak, knowledge is based on ability to discern objects
[11,12,13,14]. In information systems, this ability is presented by indiscernibility
relation. Let S = 〈U, At, V ala〉 be an information system, B ⊆ At and x, y ∈ U .
Indiscernibility relation ind(B) is a relation such that (x, y) ∈ ind(B) ⇔ a(x) =
a(y) for all a ∈ B. ind(B) can be further analyzed from abstract perspective
of approximation spaces [11,12] – ordered pairs (U, R), where R is an equiva-
lence relation on an arbitrary set U called the universe of discourse. Information
system S = 〈Ob, At, V ala〉 determines approximation spaces (Ob, ind(B)) where
B ⊆ At. Originally, Pawlak called the equivalence classes of ind(B) as atoms
[12]. Subsets of U which are unions of atoms are called definable (or composed).
Otherwise they are called rough [11,12,14]. For (U, R) and X ⊆ U , lower and
upper approximations X in (U, R) are defined as follows

R∗(X) =
⋃

{Y ∈ U/R
: Y ⊆ X} R∗(X) =

⋃
{Y ∈ U/R

: Y ∩ X �= ∅}.

Each concept X ⊆ U determines two special definable subsets of the universe:
positive region POS(X) consisting of equivalence classes contained in X and
negative region NEG(X) consisting of equivalence classes disconnected with X
[11,12]. We can present these regions by means of approximation operators:

POS(X) := R∗(X) NEG(X) := R∗(X ′),

where X ′ = U \ X . One can also define a boundary of X :

BN(X) := U \ (R∗(X) ∪ R∗(X ′)) = R∗(X) \ R∗(X).
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Table 2. Well-known properties of R∗ and R∗ [3,11,12,15]

1a. R∗(X) ⊆ X 1b. X ⊆ R∗(X)
2a. X ⊆ Y ⇒ R∗(X) ⊆ R∗(Y ) 2b. X ⊆ Y ⇒ R∗(X) ⊆ R∗(Y )
3a. R∗(∅) = ∅ 4a. R∗(U) = U 3b. R∗(∅) = ∅ 4b. R∗(U) = U
5a. R∗(R∗(X)) = R∗(X) 5b. R∗(R∗(X)) = R∗(X)
6a. R∗(X ∩ Y ) = R∗(X) ∩ R∗(Y ) 6b. R∗(X ∩ Y ) ⊆ R∗(X) ∩ R∗(Y )
7a. R∗(X) ∪ R∗(Y ) ⊆ R∗(X ∪ Y ) 7b. R∗(X) ∪ R∗(Y ) = R∗(X ∪ Y )

8a. R∗(X) = R∗(R∗(X)) 8b. R∗(R
∗(X)) = R∗(X)

9a. R∗(X)′ = R∗(X ′) 9b. R∗(X)′ = R∗(X
′)

10. X is definable ⇔ R∗(X) = X ⇔ R∗(X) = X ⇔ R∗(X) = R∗(X)
11. If X or Y are definable, then

R∗(X) ∪ R∗(Y ) = R∗(X ∪ Y ) and R∗(X ∩ Y ) = R∗(X) ∩ R∗(Y )

A set X ⊆ U is rough if and only if BN(X) �= ∅.1 NEG(X) can be interpreted
as the set of elements certainly not belonging to X , while R∗(X) – the set of
elements possibly belonging to X . One can show that

R∗(X) ∩ NEG(X) = ∅.

Otherwise we would have a problem (paradox ) of overlapped regions: there would
be objects which both possibly belong to X and certainly do not belong to X .

3 General Approach: Granules and Granular Sets

In [14] Pawlak admitted that approximation spaces can be defined over arbitrary
binary relations. Earlier, approximation operators based on tolerance relations
were considered in [16], while [6,21] provide results for arbitrary reflexive rela-
tions. In the mentioned approaches, information atoms are defined generally as
images R(x) := {y ∈ U : (x, y) ∈ R} of elements x ∈ U within approximation
space (U, R). Nowadays, information atoms, among others, are called informa-
tion granules. Various forms of information granules were extensively discussed
in literature (see also e.g. [1,7,13,17,18,22]).

When granules are analyzed at more abstract level, we can overlook their
information ancestry – the way, in which they were derived from information
systems, and consider them as purely abstract objects – the subsets of the uni-
verse. Such granules can be viewed as knowledge granules [13,22]. At this level,
the family of granules of U will be simply denoted by Gr(U) ⊆ P(U). A natural
additional assumption will be that U =

⋃
Gr(U), i.e. Gr(U) covers U . Original

Pawlak’s definitions can be now generalized as follows:

Definition 1. Let U and Gr(U) ⊆ P(U), U =
⋃

Gr(U), be given. For any
X ⊆ U we define lower and upper approximation operators as follows:

Gr∗(X) :=
⋃

{Y ∈ Gr(U) : Y ⊆ X} Gr∗(X) :=
⋃

{Y ∈ Gr(U) : Y ∩ X �= ∅}.

1 But this is not a definition. – Further we keep formulating the definable sets as unions
of atoms/granules, which is not necessarily equivalent to their empty boundaries.
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Subset X ⊆ U is granularly definable, iff there is B ⊆ Gr(U) such that X =
⋃

B.
The family of all granularly definable sets is denoted by DefGr(U).
The new operators preserve the idea of definability of sets by means of atoms-
granules. Regions POSGr(X) := Gr∗(X) and NEGGr(X) := Gr∗(X ′) are gran-
ularly definable. Since granules may overlap now, we can observe that:

Gr∗(X) ∩ NEGGr(X) �= ∅,

which was mentioned in the previous section as not present in the classical case.
One can see that this is not actually a problem of defining positive and negative
regions, but rather the one related to the upper approximation and boundary. We
solve it by introducing a new upper approximation operator. Informally, we may
call it as a bited upper approximation because we use granules in NEGGr(X) to
bite the overlapping parts of granules in Gr∗(X).

Definition 2. For U , Gr(U) ⊆ P(U), U =
⋃

Gr(U), and X ⊆ U , we put:

Gr∗b (X) := Gr∗(X) \ NEGGr(X).

With no change to POSGr(X) and NEGGr(X), we obviously have Gr∗b (X) ∩
NEGGr(X) = ∅. Actually we get Gr∗b (X) = U \ NEGGr(X). We can also put:

BNGr(X) := Gr∗b (X) \ Gr∗(X) = U \ (POSGr(X) ∪ NEGGr(X)).

Our approach follows an idea that the most fundamental notions are the re-
gions gathering positive and negative examples of the concepts. These regions
are generic and should be kept as definable in any generalization of the rough
set model. On the other hand, the boundary as the rest, as well as the upper
approximation as a sum of the positive region and the boundary are derivable
from those generic notions, and not necessarily definable any more. This is a dif-
ference with respect to the previous approaches, where there was a focus rather
on definability of lower and upper approximations. Consequently, while Gr∗(X)
remains comparable to other operators in literature, Gr∗b (X) is entirely new.

In general case of Gr(U), granular definability of X does not imply that its
boundary is empty. This is again because the elements of Gr(U) may overlap
within U . Therefore, we suggest strengthening definability as follows:
Definition 3. Let U and Gr(U) ⊆ P(U), U =

⋃
Gr(U), be given. For any

X ⊆ U , we say that X is granularly crisp, iff both X and X ′ are granularly
definable. The family of all granularly crisp sets is denoted by CriGr(U).
We may say that a given concept is granularly crisp, if the sets of its positive and
negative examples are definable. Obviously, for the classical case of equivalence
relations those two above definitions are the same:
Proposition 1. For arbitrary U and Gr(U) ⊆ P(U) which forms partition of
U , there is DefGr(U) = CriGr(U). For each X ⊆ U , there is Gr∗b (X) = Gr∗(X).
For general case of Gr(U), properties of the proposed model look as follows:
Proposition 2. For arbitrary U and Gr(U) ⊆ P(U) such that U =

⋃
Gr(U),

the properties in Table 3 hold. Besides the cases described by 10,10’,11,11’, one
can construct counterexamples to equalities in 6a,6b,7a,7b,8a,8b in Table 3.
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Table 3. Properties of Gr∗ and Gr∗
b for arbitrary Gr(U) ⊆ P(U), U =

�
Gr(U)

1a. Gr∗(X) ⊆ X 1b. X ⊆ Gr∗
b (X)

2a. X ⊆ Y ⇒ Gr∗(X) ⊆ Gr∗(Y ) 2b. X ⊆ Y ⇒ Gr∗
b (X) ⊆ Gr∗

b (Y )
3a. Gr∗(∅) = ∅ 4a. Gr∗(U) = U 3b. Gr∗

b (∅) = ∅ 4b. Gr∗
b (U) = U

5a. Gr∗(Gr∗(X)) = Gr∗(X) 5b. Gr∗
b (X) = Gr∗

b (Gr∗
b (X))

6a. Gr∗(X ∩ Y ) ⊆ Gr∗(X) ∩ Gr∗(Y ) 6b. Gr∗
b (X ∩ Y ) ⊆ Gr∗

b (X) ∩ Gr∗
b (Y )

7a. Gr∗(X) ∪ Gr∗(Y ) ⊆ Gr∗(X ∪ Y ) 7b. Gr∗
b (X) ∪ Gr∗

b (Y ) ⊆ Gr∗
b (X ∪ Y )

8a. Gr∗(X) ⊆ Gr∗
b (Gr∗(X)) 8b. Gr∗(Gr∗

b (X)) ⊆ Gr∗
b (X)

9a. Gr∗(X)′ = Gr∗
b (X ′) 9b. Gr∗

b (X)′ = Gr∗(X
′)

10. X ∈ DefGr(U) ⇔ X = Gr∗(X) 10’. X ∈ CriGr(U) ⇔ Gr∗(X) = Gr∗
b (X)

11. X, Y ∈ DefGr(U) ⇒ X ∪ Y ∈ DefGr(U) (it also implies ”=” in 7a)
11’. X, Y ∈ CriGr(U) ⇒ X ∩ Y, X ∪ Y ∈ CriGr(U) (”=” in 6a,6b,7a,7b,8a,8b)

Besides the previously mentioned equation Gr∗b (X)∩NEGGr(X) = ∅, let us em-
phasize property 5b. An issue with many rough set extensions is that the upper
approximations are not idempotent. It is also the case of Gr∗, i.e. we may get
Gr∗(X) � Gr∗(Gr∗(X)) and further Gr∗(Gr∗(...(Gr∗(X)))) = U , when iterat-
ing enough many times. Introducing Gr∗b (X) instead of Gr∗(X) eliminates this
problem and provides far more regular properties. In particular, the structure of
CriGr(U) is interesting to study from an algebraic point of view.

4 Illustration: Rough Sets and Tolerance Relations

Tolerance relations are used in information systems in various ways, in case
of, e.g.: numeric attributes, missing values, and in indeterministic information
systems [1,3,4,5,8,9,16]. In such cases, equivalence indiscernibility relations are
often too strict and inadequate. Let S = 〈Ob, At, V ala〉 be given. For a numeric
attribute a ∈ At (V ala ⊆ R) and some parameter ε ≥ 0, we can define relation
ρ(a, ε) ⊆ U × U as (x, y) ∈ ρ(a, ε) :⇔ |a(x) − a(y)| ≤ ε. As another example, if
a ∈ At is indeterministic, then we can consider, e.g., sim(a) ⊆ U × U defined as
(x, y) ∈ sim(a) :⇔ a(x)∩a(y) �= ∅. One can surely imagine further examples for
different attribute types and parameter settings. Further, for B ⊆ At, one can
define tolerance as intersection of ρ(a, ε), sim(a), ind(a), etc., for all a ∈ B.

Given understanding of how tolerances can be defined in information systems,
we follow with recalling two approaches. The first one was introduced in [16]
within the framework of tolerance approximation spaces. Here we refer to its
basic version: Let tolerance τ ⊆ U × U be given. For any X ⊆ U we put:

τ∗(X) := {x ∈ U : τ(x) ⊆ X} τ∗(X) := {x ∈ U : τ(x) ∩ X �= ∅}.

τ∗ and τ∗ do not follow the idea of definability and crispness in terms of the
unions of granules, as they consist of the centers of granules only. When putting
NEGτ (X) := τ∗(X ′), we avoid the problem of overlapping regions, i.e. τ∗(X) ∩
NEGτ (X) = ∅. Operators τ∗ and τ∗ have also quite valuable properties when
compared with those in Table 3. However, we have neither 5a nor 5b, i.e. there
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are cases when τ∗(τ∗(X)) � τ∗(X) and τ∗(X) � τ∗(τ∗(X)). There is no analogy
of biting procedure introduced in Section 3 to get 5a or 5b for τ∗ and τ∗.

The second method was proposed by Pawlak [14]. It follows a general model
introduced in Section 3 for GrP (U) := {τ(x) : x ∈ U}. For X ⊆ U we define:

Pτ (X) :=
⋃

{τ(x) : τ(x) ⊆ X} P τ (X) :=
⋃

{τ(x) : τ(x) ∩ X �= ∅}.

We put POSP (X) := Pτ (X) and NEGP (X) := Pτ (X ′) and we introduce

P τ
b (X) := P τ (X) \ NEGP (X),

in purpose of avoiding overlapping regions and achieving the properties in
Table 3. It is easy to note that

⋃
GrP (U) = U , hence Proposition 2 is applicable.

The third considered approach is more novel, though it could be referred to,
e.g., [2,7,19], where the concepts/granules are defined from different perspectives
as the sets of objects, which are all enough similar to each other. In the framework
of tolerances τ ⊆ U ×U , such sets correspond to preclasses (cliques) Y ⊆ U such
that for any x, y ∈ Y , there is (x, y) ∈ τ . Preclasses maximal with respect to
inclusion are called the tolerance classes of τ . If a relation τ is infinite, then a
statement that classes exist is equivalent to the Axiom of Choice (cf. [20]). The
family of all classes of τ will be denoted by Hτ . Using the model described in
Section 3 for GrH(U) := Hτ , we obtain the following, for any X ⊆ U :

Hτ (X) :=
⋃

{Y ∈ Hτ : Y ⊆ X} Hτ (X) :=
⋃

{Y ∈ Hτ : Y ∩ X �= ∅}.

For the same reason as before, we consider the biting procedure:

Hτ
b (X) := Hτ (X) \ NEGH(X), where NEGH(X) := Hτ (X ′).

Since
⋃

Hτ = U , the operators Hτ and Hτ
b satisfy the properties in Table 3.

The last two approaches are quite comparable at the abstract level, by defining
Gr(U) ⊆ P(U) as equal to {τ(x) : x ∈ U} and Hτ , respectively. One may
claim that the tolerance classes seem to be closer to a general intuition behind
knowledge granules, as it is easier to assign abstract descriptions to the sets of
mutually homogenous elements, than to the neighborhoods τ(x) ⊆ U induced
by their centers x ∈ U . Nevertheless, we would like to emphasize that both
those methods of handling tolerances gain a lot by using the biting procedure.
In particular, they become better comparable to each other:

Proposition 3. For any U , tolerance τ ⊆ U × U , and X ⊆ U , we have:

τ∗(X) ⊆ Pτ (X) ⊆ Hτ (X) ⊆ X ⊆ Hτ
b (X) ⊆ P τ

b (X) ⊆ τ∗(X).

The above inclusions cannot be strengthened, as shown by the following:

Example 1. Let S = 〈Ob, At, V ala〉 be the system defined in Table 1. Consider
tolerance relations ρ(Height, 5) and sim(Degrees). Since they are reflexive and
symmetric, we interpret them in terms of undirected pairs of objects. Relation τ
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over At takes the form ρ(Height, 5)∩sim(Degrees), which corresponds to the fol-
lowing pairs: {x1, x8}, {x2, x3}, {x2, x4}, {x2, x5}, {x3, x5}, {x4, x6}, {x4, x10},
{x6, x9}, {x7, x8}, {x8, x9}. For X := {x1, ..., x6} we obtain:

τ∗(X) = {x2, x3, x5} Hτ
b (X) = {x1, x2, x3, x4, x5, x6, x10}

Pτ (X) = {x2, x4, x3, x5} P τ
b (X) = {x1, x2, x3, x4, x5, x6, x9, x10}

Hτ (X) = {x2, x3, x4, x5, x6} τ∗(X) = {x1, x2, x3, x4, x5, x6, x8, x9, x10}

We can see that τ∗(X) � Pτ (X) � Hτ (X) � X � Hτ
b (X) � P τ

b (X) � τ∗(X).
The operators Hτ and Hτ

b approximate concepts in a finest way, when comparing
to τ∗ and τ∗, or Pτ and P τ

b . The flow of inclusions in Proposition 3 would not
be so clear without biting, i.e. it is not easy to compare operators Hτ , P τ , and
τ∗. On the one hand, for equivalence relations we obtain the following:

Proposition 4. If tolerance τ ⊆ U × U is transitive, then τ∗(X) = Pτ (X) =
Hτ (X) and Hτ

b (X) = Hτ (X) = P τ
b (X) = P τ (X) = τ∗(X), for any X ⊆ U .

On the other hand, for tolerances in general, the approach in Definition 2 pro-
vides a convenient framework for both theoretical and practical analysis.

5 Conclusions

We introduced a new approach to dealing with granular definability and
crispness, as well as to extending the rough set approximations for informa-
tion systems with non-equivalence relations. We analyzed the properties of new
approximation operators and illustrated our general methodology within toler-
ance approximation spaces, adapting methods proposed in [14,16], as well as
defining the approximation operators based on tolerance classes.
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Abstract. We present a unique representation scheme for events in an
area under surveillance, which provides a mechanism to analyze videos
from multiple perspectives for unusual activity analysis. We propose clus-
tering in event component spaces and define algebraic operations on these
clusters to find co-occurrences of event components. A usualness mea-
sure for clusters is proposed that not only gives a measure on how usual
or unusual an activity is, but also a basis for analyzing and predicting
the possibly usual or unusual activities that can occur in the surveillance
region.

Keywords: Clustering, Unsupervised Learning, Unusual Activity Analy-
sis, Event Recognition.

1 Introduction

Automatic learning and detection of anomalous behavior from video sequences
is an important area of research in computer vision, specially in the context of
visual surveillance. Machine learning and probabilistic techniques are widely ap-
plied in this area. Most of the activity recognition systems predefine and model
the anomalous activities so that the system can recognize whether the activi-
ties detected are anomalous or not [1]. Others learn the usual activity patterns
either in supervised or unsupervised manner and then recognize unusual activi-
ties based on their dissimilarity from the usual ones. Supervised learning based
methods not only need large volumes of training data, usually difficult to get for
real world applications, they also suffer from the shortcoming that all activities
in the real world cannot be predefined.

Given a long video sequence and no prior information of the scene, we propose
a representation scheme for events that logically partitions the event feature vec-
tor. This representation allows us to apply different similarity measures on each
of the components and cluster the event components rather than clustering the
monolithic event vector. Therefore, it can be used for both video mining for sim-
ilar events as well as unusual activity analysis. We propose a usualness measure
on clusters that depends on the size of the cluster. As unusual activities are rare
and dissimilar from normal, clusters with low usualness measure depict unusual
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activities. The novelty of our work also comprises of the algebraic operations de-
fined on these clusters, which along with the usualness measure associated with
each cluster allows us to explore the space of all clusters for detecting unusual
events in the video. It gives us a tool for finding co-occurrences of event compo-
nents, thus, allowing analysis of the video from multiple perspectives. Moreover,
these algebraic operations on the clusters of event components allow us to get
back clusters of the monolithic event vectors. Therefore, there is no loss of infor-
mation by clustering in the event component spaces instead of clustering in the
event space. The co-occurrence calculus for clusters is not present in the litera-
ture and therefore, is unique and a novel contribution of our work. This event
representation and clustering scheme can also be used to develop applications
like Intelligent Fast Forward [2], where given a event segment in a video the
system is able to move to the next or all portions of the video where a similar
event occurs.

In the next section, we discuss some of the main techniques that have been
applied for activity recognition. In section 3 we present the event representation
scheme. Section 4 defines the clustering framework. In section 5, we present the
results and conclude in section 6.

2 Related Work

As mentioned above, most activity recognition systems model and learn known
activities. The Hidden Markov Models (HMMs) and its variants are most widely
used for this purpose, [3],[4], [5], [6], [7], [8], [9]. HMMs are used by Starner and
Pentland [6] for modeling hand gestures. Variants of HMMs, Parameterized-
HMM (PHMM) [10], Coupled-HMM(CHMM) [7] are used for recognizing com-
plex activities like interaction between moving objects in the scene. In [11] sto-
chastic context-free grammar is used for computing the probability of temporally
consistent sequences of primitive actions that are recognized by a HMM model.
In [12], a model of stochastic context-free grammar is proposed for recognizing
semantically meaningful behavior over extended periods. The authors in [13]
propose propagation networks for modeling temporal inter-leavings of low level
events which may occur concurrently in multi-object activities. Bayesian net-
works is yet another popular technique used for activity recognition [14], [15],
[1], [16], [4]. In [1], [16], multi-layered FSM model is proposed for activity recogni-
tion where supervised training using Bayesian formulation is used for estimation
of the parameters of their model. In [17], a multi-layered FSM framework is used
for unsupervised learning of usual activities. In this method those activities that
are not recognized as usual are flagged as unusual. Usual activities are learnt
using unsupervised clustering in [18]. Unlike our approach, these two methods
learn usual activity patterns for detection of unusual activities. In our approach,
we cluster all events and based on their usualness measure, events are flagged as
usual or unusual.
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3 Event Representation

Events in a long video sequence are characterized by the position of moving
objects, through time. In general, it is observed that objects tend to move from
one landmark to another. These landmarks include locations from which objects
enter the scene, exit the scene and in general, locations where they stand and
wait. In our terminology, these landmarks are referred to as attractors and a
trajectory is then an attractor sequence.

Thus, an event feature vector is a high-dimensional vector that contains low-
level information about the object in the scene, its positions through time and
the time during which it is visible in the scene. This leads to the problem of
clustering heterogeneous data in high dimensional vector space. Clusters in this
space give a restricted view of similarity of events. For example, if a person Pi

traverses a landmark sequence LSj during a certain time interval and another
person Pj traverses LSj during another time interval, the event vectors will be
dissimilar and shall not be clustered together. Thus, even if it is common for
an object of category individual to traverse landmark sequence LSj , clustering
in the high dimensional event space leads to the loss of this information. We
represent an event as a tuple,

Ti = (OID, OC, LS, T I)

where,

– OID: Object ID is the ID given to an object when it enters the scene.
– OC: Object Category is the category to which the object belongs, for example,

individual or group.
– LS: Landmark Sequence is the sequence of attractors that the object visits

during its presence in the scene.
– TI: Time Interval denotes the time during which the person is visible in the

scene.

This representation logically partitions the event vector into semantically mean-
ingful quantities. Each component is of a different data type, not necessarily nu-
merical, and the components are not comparable among themselves. Therefore,
different similarity measures can be applied on each component and clustering
can be done in the component spaces instead of the event space.

4 Clustering Framework

We define the similarity measure for tuples and the usualness measure for clusters
below:

Definition 1: Similarity measure for tuples. Assume that the data consists of
tuples of the form Ti = (t1i , t2i , . . . , tmi) where each component tk represents a
numeric or semantic data type. The components tk’s for all k need not be compa-
rable among themselves. Let Si be the similarity measure for the ith component,



446 A. Choudhary, S. Chaudhury, and S. Banerjee

ti. Then, S = (S1, S2, . . . , Sm) defines the similarity measure between tuples Ti

and Tj such that, S(Ti) = Tj iff S1(t1i) = t1j , S2(t2i) = t2j , . . . , Sm(tmi) = tmj .
This similarity function defines an equivalence relation on the tuples.

Definition 2: Size of a cluster. The number of items belonging to a cluster
defines the size of the cluster.

Definition 3: Usualness measure associated with a cluster. Let Ω be the set of
all clusters, and C ⊂ Ω be a cluster of size x. The usualness measure function
for a cluster C is defined as:

p(C) =

⎧
⎪⎨

⎪⎩

0 x < Thres1

e−(x−Thres2)2/(2∗σ2) Thres1 ≤ x ≤ Thres2

1 x > Thres2

(1)

where,
σ = (Thres2 − Thres1)/3, Thres1 and Thres2 are thresholds on the rate of
growth of the usualness of a cluster.

A cluster represents an unusual activity if this measure is 0. If the measure is
1, the cluster represents a usual activity. All values of p(C) ∈ (0, 1), denote the
extent to which the cluster represents a usual phenomenon. This is similar to
the membership function defined for a fuzzy set.

4.1 Clustering in Component Spaces

The clustering algorithm is a dynamic incremental clustering algorithm, which
is applied to each component of the event tuple that is formed as the video is
parsed. As the clusters are created, the values of the other components for that
event vector are also stored. A component, denoted by t, is clustered as follows:

– Let Ω be the set of all clusters of a particular component. Initially, Ω = φ,
the empty set.

– When the first tuple is encountered, create a cluster C1, and assign t1 to it.
p(C1) = 0.

– As the tuples are encountered, two possibilities exist:
• If S(tk) = ti ∈ Ci, assign tk to cluster Ci and update p(Ci).
• Otherwise, create a cluster Ck and assign tk to it. p(Ck) = 0.

– Repeat until all the tuples are clustered.

Thus, event components can be clustered without knowing the number of clus-
ters a priori and clusters for each component depicts how usual the occurrence
of that component is. For example, in an airport the sequence of entering the
airport and directly go to the airline desk is a commonly taken path depicting
a usual event, whereas a person going from the entrance to a restricted area
is a rarely traversed path depicting an unusual event. Thus, clustering in the
event component space gives a flexible tool to evaluate the usualness of an event
component without explicitly knowing which events occurred.
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4.2 Properties of usualness Measure

The usualness measure defined on the clusters satisfy the following properties:

– 0 ≤ p(C) ≤ 1
– p(φ) = 0
– p(A ∪ B) = max{p(A), p(B)}
– p(A ∩ B) ≤ min{p(A), p(B)}

where C is any cluster, φ is an empty cluster, and A and B are clusters ei-
ther from the same or different component spaces. The union of two cluster
defines the OR operation and is well defined if both the clusters belong to the
same component space. It defines a commutative monoid on the space of all
clusters.

4.3 Composition of Clusters

When the event component clusters are created or updated, if the tuple in-
formation is also stored, then composition of clusters give an insight into the
co-occurrence of two or more event components. Let Cx∗ be the cluster for the
value x∗ of the first component of the event cluster and Cy∗ be the cluster for
the value y∗ of the second component of the event cluster. Then, a composition
of the clusters will be the set

Cx∗⊗y∗ = {(xi, yj)|Sx(xi) = x∗, (xi, y
∗) ∈ Cy∗andSy(yj) = y∗, (x∗, yj) ∈ Cx∗}

where, Sx and Sy are the similarity measures on the x and y components.
Thus, when the values of the complete tuples are stored while clustering in the

component space, the composition operation gets back the cluster in a higher
dimensional space. This gives a powerful mechanism for getting all the cluster
combinations in higher dimensional spaces from one-dimensional clusters. The
usualness measure of the composite cluster can then be computed from its size.

Composition of clusters across spaces provides a tool to find the usualness
of co-occurrence of two component values. For example, it answers queries of
the form “Is it usual that groups of people traverse landmark sequence LS1,
from the entrance of the airport to the airline desk?” While the clusters in each
component space provide only the knowledge of which component value occurs
often, the composition of clusters gives us a different perspective to the state of
the usual and unusual activities in the system.

In relational databases, a join operation combines records from two or more
tables. The composition of clusters can be seen as a join operation between
clusters, instead of records. This technique of manipulating the clusters gives us
an insight into the state of the system. Moreover, the bounds on the usualness
measure of the resulting clusters gives us an idea of the usualness of the co-
occurrence of two components.

In case, it is desired to find the usualness measure of the composition of Cx

and Cy , without considering whether the (x, y) tuple actually occurred as an
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event component, equation 2 gives the greatest lower bound and the least upper
bound on the usualness measure of the set Cx∗ ∩ Cy∗ = {(xi, yj)|(x∗, yj) ∈
Cx∗and(xi, y

∗) ∈ Cy∗}

p(Cx∗⊗y∗) ≤ p(Cx∗ ∩ Cy∗) ≤ min{p(Cx∗), p(Cy∗)} (2)

These bounds can be used to find the usualness of the event tuples, for event
components that may not have co-occurred. Thus, this also gives an insight into
the usualness of events that may occur in the scene.

The composition of clusters from all four component spaces give back the
usualness of the event tuple in the database. For instance, if an event tuple T =
(P1, P, LS1, T I1) occurred n times. Suppose that P1 belonging to the category P
traversed through landmark sequence LS1 many times later in the video. Thus,
the clusters for P1, P , LS1 each have size > n, while TI1 has size n. Then,

p(CT ) = p(CP1⊗P⊗LS1⊗TI1) ≤ min{p(P1), p(P ), p(LS1), p(TI1)} = p(TI1)

This shows that the composition operation gives back the actual usualness mea-
sure of an event.

Therefore, properties of the usualness measure allow us to define well-defined
operations on the clusters. Without explicitly storing the clusters in different
dimensions, the composition operation gives back the clusters and their true
usualness measure. This allows the user to get the information required for an-
alyzing the activities as well as predicting the possibly unusual events that can
occur in the area under surveillance. Thus, our event representation technique
is powerful enough to give a multi-perspective view of the usual and unusual
events in the scene as well as to find similar events across a long video sequence.

5 Results

In our implementation, adaptive background subtraction is used for detecting
moving objects in the scene and estimating the category to which the object
belongs. Landmark Sequences are found by finding the attractors at which the
object enters the scene and the attractors it visits while it is in the scene. Finally,
when the object exits from the scene, we cluster the event components. We use
equality of components as the similarity measure. Our input video consists of
people walking in a long corridor of a building.The attractors are the entrances
to the corridor and the doors of the various offices. Figure 1 shows frames taken
from the result video. Figure 2 shows a log of the usual and unusual landmark
sequences in the input video, which are consistent with the ground truth. The log
in figure 3 shows composition of clusters for event components: object category
and landmark sequences.

6 Conclusion

We proposed an event representation scheme where each component of the event
vector is a logical entity. We cluster in the component spaces instead of clustering
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Fig. 1. Frames from the input sequence

Fig. 2. The log of the video after clus-
tering in the landmark sequence space

Fig. 3. The log for co-occurrence of
event components

the monolithic event vector. The proposed usualness measure on the clusters
along with the algebraic operations defined on these clusters provide a flexible
and well-defined tool to predict the co-occurrences as well as usualness of events.
This method can be used for a variety of video applications, including unusual
activity analysis and indexing and mining of videos.
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Abstract. In order to address problems of information overload in dig-
ital imagery task domains we have developed an interactive approach to
the capture and reuse of image context information. Our framework mod-
els different aspects of the relationship between images and domain tasks
they support by monitoring the interactive manipulation and annotation
of task-relevant imagery. The approach allows us to gauge a measure of
a user’s intentions as they complete goal-directed image tasks. As users
analyze retrieved imagery their interactions are captured and an expert
task context is dynamically constructed. This human expertise, profi-
ciency, and knowledge can then be leveraged to support other users in
carrying out similar domain tasks. We have applied our techniques to
two multimedia retrieval applications for two different image domains,
namely the geo-spatial and medical imagery domains.

1 Introduction

In the digital image domain, advances in techniques for the capture and storage of
information have caused an explosion in the amount of available data. Domains
that rely on digital image analysis (e.g. geo-sciences, military and medicine)
now have to contend with organizing, indexing, storing, and accessing infor-
mation from huge repositories of heterogeneous data. Current image retrieval
systems are typically characterized by one of two main approaches; they either
support keyword-based indexing or a content-based approach where low level
visual features are automatically extracted. It is, however, recognized that nei-
ther approach is fully adequate for answering the complete range of user queries.
The keyword-based approach depends on images being accompanied by textual
descriptions but indexes for these descriptions are time consuming to create and
maintain, particularly since entries are not grounded in how the collections are
being used. Content-based retrieval also suffers from many disadvantages. Re-
sults can frequently be poor due to the semantic gap and the subjectivity of
human perception. The first is the difference between the high-level concepts
that users search for and the low-level features employed to retrieve the im-
agery. The latter addresses the fact that different people or the same person
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in different situations may judge visual content differently. In this research we
have addressed these problems by developing a context-based approach to image
retrieval. Context-based retrieval relies on knowledge about why image contents
are important in a particular domain and how specific images have been used
to address particular tasks. Our framework models different aspects of the rela-
tionship between images and the domain tasks that they support by monitoring
the interactive querying, manipulation and annotation of task-relevant imagery.
This contrasts with prevalent retrieval and annotation schemes that focus on
what individual images contain but that provide no context for which, if any,
of those aspects are important to users. This research attempts to capture the
knowledge implicit in using imagery to address particular tasks by leveraging
a measure of the user’s intentions with regard to tasks they address. This is
done by situating intelligent support for gathering important expert context in-
side a flexible task environment and by monitoring and recording user actions.
The capture of task-specific knowledge enables us to infer why image contents
are important in a particular context and how specific images have been used
to address particular domain goals. Our algorithms for capturing and reusing
contextual knowledge are implemented using a case-based reasoning (CBR) ap-
proach. The capture of task knowledge allows for the development of a case
base of expert task experiences. These previous experiences form the basis of a
knowledge management system that complements direct image retrieval by pre-
senting it along with other relevant task-based information. The repository of
task-based experiences may be exploited to improve the ability of the application
to make pro-active context-based recommendations. This underlying case-based
engine forms the fundamental architectural framework and is employed by two
developed applications.

In this research we focus on developing case-based knowledge management
support for libraries of digital imagery. This research draws on general work in
case-based knowledge management [1], as well as knowledge management initia-
tives in medicine that promote the collection, integration and distribution of a
single medical modality [2]. In this research we are working with large collec-
tions of experience and user context. As in [3], we believe that user interactions
with everyday productivity applications provide rich contextual information that
can be leveraged to support access to task-relevant information. All contextual
knowledge is gathered by the system using implicit analysis so that users are
shielded from the burden of relevance feedback or other such explicit interest in-
dicators [4]. By situating intelligent tools and support within task environments
we can unobtrusively monitor and interpret user actions concerned with rich task
domains based on a relatively constrained task environment model. Our methods
for annotating multimedia are related to annotation for the semantic web [5] and
multimedia indexing [6] where the focus is on developing annotated descriptions
of media content. Multimedia database approaches such as QBIC [7] provide for
image annotation but use the annotations to contextualize individual images. In
this work we are concerned with a task-centric view of the annotations, where
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we employ annotations to tell us how an image relates to a current domain task
by using image annotations to contextualize task experiences.

The rest of this paper is outlined as follows. In the next section we outline the
two developed image retrieval applications and then continue with a description
of our contextual framework for task-based image annotation and manipulation
in Section 3. Section 4 explains how we combine image interaction information
with more high-level user concepts to retrieve complete knowledge-based user
sessions and in Section 5 we describe our similarity metrics. We conclude in
Section 6 with a discussion.

2 Developed Applications for Task-Based Image Retrieval

We have applied our techniques for the retrieval and management of digital image
data to two application domains. The MAGIK application is a task-based image
retrieval environment that has been designed for the management of geo-spatial
image resources. The MEDIC application integrates digital medical imagery with
electronic patient records in an Electronic Health Record System (EHRS). The
application can be used both as a replacement for paper-based patient records
and to support interacting clinicians by providing clinical decision support at
the point of care.

2.1 The MAGIK Application

In the MAGIK (Managing Geo-Spatial Imagery and Knowledge) application we
have developed storage, indexing, and retrieval tools for geo-spatial image infor-
mation. We describe the system in terms of a typical user task. For example,
an organization that uses geo-spatial data to support architectural development
projects may employ the system to assist in selecting the optimal location for
a new airport servicing an urban area. When a user logs into the image in-
teraction environment, they are directed to an interface that enables them to
search directly for imagery corresponding to their current task needs. A typi-
cal task-based query to our image repository is a straightforward request to a
geo-spatial image database and may consist of any combination of image meta-
data and free-text semantic task information. As the user specifies their query
this information is captured by the system and added to their current context.
For example, the urban planner interested in building the airport might wish
to view recent images of possible construction sites. They could outline specific
image metadata (location, recent dates) and also provide a textual description of
the kind of imagery they would like returned. In this instance they could specify
that they are interested in retrieving images of undeveloped land of low elevation
with good infrastructure on the outskirts of the urban center. Retrieved image
results are displayed as a ranked list with an associated percentage matching
score and are added to the user’s current task context. The user can browse the
images retrieved and select relevant information for further manipulation and
annotation. We will describe our task-based image annotation environment in
Section 3.
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2.2 The MEDIC Application

The MEDIC (MobilE Diagnosis for Improved Care) application is a mobile clin-
ical decision support system that integrates medical imagery with other types of
patient information in an EHRS. The application allows clinicians to efficiently
input, query, update, and compare patient records including associated medical
imagery on mobile and desktop devices. This system will also be described in
terms of a typical interaction. A patient presents at the Emergency Department
with a dislocated thumb. The patient has not previously attended the hospital
and so a new patient record is created in the EHRS. The patient supplies dif-
ferent types of information including demographic data and previous medical
history. The interacting clinician then enters clinical information about the pa-
tient such as the presenting symptoms and a diagnosis. The application may
then be used to order an X-RAY for patient’s dislocated thumb and the patient
is added to the list of waiting patients in the radiography department. Once
an X-Ray has been performed the patient’s images are added to the patient’s
profile in the EHRS. The radiographer can analyze the imagery using a set of
image annotation tools (described in section 3) and update the patient’s status
in the EHRS. The original clinician can then access this information on his or
her mobile device and treat the patient accordingly.

3 Task-Based Image Annotation

Our research is focused on capturing contextual task knowledge to perform more
efficient image retrieval by employing annotations for capturing and recording
aspects of tasks in progress. To this end we have developed tools for direct image
manipulation to assist the user in organizing information about task-relevant im-
agery. When executing a specified task the user needs to be able to tease out the
particular information aspects that support their goal. Ideally, two work products
emerge: first, the actual image information as applied to the task, and second,
a record of the information gathering process that allows for incremental devel-
opment and provides a reference for subsequent justification and refinement. As
users often need to make notes and annotations in order to support the former,
the latter can be supported in a natural way by integrating intelligent annota-
tion tools tailored to the information gathering environment. The environment
supports the user in constructing the most on-point information kernels by al-
lowing the user to locate and define regions of interest in the images. From the
user’s perspective this supports efficient interaction, as it minimizes the need
to divert attention from the information source. The environment forms a lucid
and well-structured foundation for users to report verdicts and conclusions as
may be required of them in a typical work-related situation. However from a sys-
tem perspective, the user-defined regions can then be linked to clarifications and
rationale. These insights capture high level user concepts which allows associa-
tions or relations between images to be made without the need for content-based
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or keyword-based analysis. It is considered imperative that task information be
collected implicitly to shield users from the burden of explicit knowledge en-
gineering. Therefore our techniques for gathering task context employ implicit
methods for knowledge capture. The tools allow us to infer from inherent user
actions and to capture fine-grained task knowledge that subsequently improves
the ability of the application to make pro-active context-based recommenda-
tions to users with similar task goals. We identify three main advantages of
our approach. First by reusing collective knowledge in support of similar tasks
the time required to carry out new tasks can be significantly reduced. Second,
the approach facilitates knowledge sharing by incorporating potentially relevant
knowledge from other experiences. Finally from a knowledge management per-
spective, contextual expert knowledge relating to particular tasks may now be
stored and reused as an additional resource for support, training and preserving
organizational knowledge assets.

The tools for direct image manipulation include filters, transformation, high-
lighting, sketching, post-it type and multimedia annotation tools. We have se-
lected the kinds of manipulations that would be most useful in helping to analyze
and focus on image features. All sketching manipulations can be performed in a
variety of colors and brush styles. The user can add personal media annotations
to the image as a whole or to particular highlighted image aspects. Currently,
the system supports annotation by text, audio and video, though retrieval is
focused on text. The system integrates real-time audio and video capture as well
as compression. A facility is in place that allows users to upload web documents
as annotations which allows further context to be extracted by following HTML
links. The system also supports annotation by cut, copy and paste between a
given image and other images in the dataset, as well as images in any application
that supports clipboard functionality for the given operating system. Returning
to one of the sample interactions, the radiologist has received the sample patient’s
medical imagery and is viewing it through MEDIC’s image viewer component.
The radiologist may immediately annotate the image with a diagnosis and pro-
vide a recommendation for followup treatment. Or they may invoke the decision
support model of the MEDIC application if they require extra information about
the particular patient or injury. For example the radiologist may be having diffi-
culty in diagnosing the problem from the particular image. The X-Ray, however
may remind him of a similar image he viewed previously and he may remember
some of the details of the previous patient. In this scenario the radiologist could
input the details of the previous patient as search parameters to the applica-
tion. The application will then filter this patient’s profile as well as any similar
profiles from the EHRS allowing for comparison between the current image and
images from these previous case histories. If any of the similar images have been
annotated the radiologist may study these notes for extra information regarding
the specific injury. By accessing these additional resources that are not normally
available in the hospital setting the radiologist is able to make a more informed
and confident diagnosis. The radiologist may go on to annotate or manipulate
the image as shown in Figure 1.
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Fig. 1. Medical Image Annotation

Fig. 2. Previous Geo-Spatial Task Contexts
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4 Retrieval of Previous User Contexts

As the systems builds up encapsulated contextualized user interactions, a case
base of previous sessions consisting of both high-level user concepts and ac-
tual image interactions is continuously updated. This knowledge base improves
context-based query processing by enabling the retrieval of entire previous task-
based sessions. This allows a current user to look for previous image analysis
tasks that are most similar to the current task context, both to find relevant im-
agery and to examine decisions and rationale that went into addressing earlier
tasks. Figure 2 shows an example of retrieved sessions for the sample user ad-
dressing the urban planning task with the MAGIK application. The interacting
user can study previous geo-spatial tasks that bear similarity to their own. They
can access previous user sessions that address planning or construction develop-
ments in urban areas and can study the entire work product of the previous user.
The current user can analyze decisions and expertise that went into planning the
previous development and if any of these interactions are appropriate or if any
imagery and/or annotations are relevant to the current task, then these may be
incorporated and integrated into the current task context.

5 Calculating Task Similarity

Our retrieval metrics are focused on text (textual queries and image annota-
tions), using Information Retrieval metrics (e.g. [8]), specifically the Vector Space
Model and Term Frequency-Inverse Term Frequency (TF-IDF) as a basis for sim-
ilarity. Retrieval within both applications is taking place in the context of an
overall workflow. In a geo-spatial context this workflow can include outlining
task queries using a combination of metadata and semantic task descriptions,
retrieving relevant imagery, manipulating and annotating appropriate imagery,
retrieving similar user sessions and incorporating previous contexts into the new
work product. Our task-based image retrieval employs textual indexes in two
separate spaces, an annotation index and an image index. Each retrieved image
must firstly pass a metadata filter using terms extracted from the image meta-
data query, and if it does so successfully, a final image score is computed as the
average matching score of overall image and individual annotation similarities
when matched against the semantic task description. A previous session score is
calculated in a vector space across all retrieved sessions, where the text for each
session is composed of the metadata, task query descriptions and applied anno-
tations for relevant imagery. The total number of images annotated and browsed
in each similar session as a fraction of the total number of images returned is
then computed. The final session score is a weighted sum of session similarity and
the proportion of annotated and browsed images. Some important steps in the
context of a medical workflow are: entering preliminary patient details, recording
results of an initial examination, inputting presenting conditions, uploading and
annotating medical imagery, recording diagnoses and recommending treatments.
Most patient profiles will consist of some if not most of the information described
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above. Given a textual vector space for each constituent segment of a patient
profiles we can match textual queries imputed by a clinician about a current
patient to previous patient contexts. The task-based retrieval system employs
indexes in separate spaces for the constituent segments of the patient profile.
When searching for previous patient imagery or profiles, the clinician is required
to enter a query using a combination of patient information in terms of these
constituent profile segments. Their query and any specified weights are com-
bined and compared to previous patient profiles and a weighted average is used
to compute similarity between the current patient and other patients from the
medical database. These indices are used to calculate similarity in both retrieval
of medical images and retrieval of patient case histories.

6 Conclusions

We have introduced a case-based approach to developing a context-based re-
trieval system for digital imagery. The research emphasizes a task-based ap-
proach to the capture of human expertise and domain knowledge. New image
requests may then be grounded in such knowledge which is reused to support
other system users by leveraging previous task-based context, both in terms of
individual images as well as entire previous task-based sessions. The develop-
ment of two separate applications shows that our task-based approach to image
retrieval is a general one and that our techniques can be scaled to different fields
that rely on image analysis as well as different types of image datasets.

References

1. Becerra-Fernandez, I., Aha, D.: Case-based problem solving for knowledge manage-
ment systems. (1999) 219–223

2. Jadad, A., Haynes, R., Hunt, D., Browman, G.: The internet and evidence-based
decision making: A needed synergy for efficient knowledge management in health
care. Canadian Medical Association Journal 162 (2000)

3. Budzik, J., Hammond, K.: User interactions with everyday applications as context
for just-in-time information access. (2000)

4. Claypool, M., Le, P., Waseda, M., Brown, D.: Implicit interest indicators. ACM
Intelligent User Interfaces Conference, IUI 2001 (2001) 33–40

5. Hollink, L., Schreiber, A., Wielinga, B., Worring, M.: Classification of user image
descriptions. International Journal of Human Computer Studies 66 (2004)

6. Worring, M., Bagdanov, A., Gemerr, J., Geusebroek, J., Hoang, M., Schrieber, A.,
Snoek, C., Vendrig, J., Wielemaker, J., Smuelders, A.: Interactive indexing and
retrieval of multimedia content. (2002) 135–148

7. Flickner, M., Sawhney, H., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner,
J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content:
The QBIC system. IEEE Computer 28 (1995) 23–32

8. Salton, G., McGill, M.: Introduction to modern information retrieval. (1983)



A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 459–466, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Improvement of Moving Image Quality on AC-PDP by 
Rough Set Based Dynamic False Contour Reduction 

Gwanggil Jeon1, Marco Anisetti2, Kyoungjoon Park1, Valerio Bellandi2,  
and Jechang Jeong1 

1 Department of Electronics and Computer Engineering, Hanyang University, 
17 Haengdang-dong, Seongdong-gu, Seoul, Korea 

{windcap315,joony79,jjeong}@ece.hanyang.ac.kr  
2 Department of Information Technology, University of Milan, 

via Bramante, 65 – 26013, Crema (CR), Italy  
{anisetti,bellandi}@dti.unimi.it  

Abstract. Plasma display panel (PDP) has become popular as high-end 
television monitors. In PDPs, gray levels are expressed by the pulse-number 
modulation technique to generate gradation display. Although this method can 
display still image faithfully, it can yield annoying distortions when displaying 
moving images. In order to reduce the dynamic false contour and develop 
moving picture quality, we propose a rough set based effective subfield 
optimization technique. Simulation results show that the dynamic false contour 
can be effectively reduced by rough set based subfield optimization algorithm. 

Keywords: Plasma display panel (PDP), motion picture distortion, dynamic 
false contour (DFC), temporal artifact, gray scale, rough set theory.  

1   Introduction 

Although the mature cathode-ray tube (CRT) technology has provided high quality 
image displays at low costs for the past decades, CRTs are inherently bulky and 
heavy. Thus, a lot of studies have been made to develop various flat-panel displays, 
such as liquid-crystal display (LCD), organic light emitting device (OLED), and PDP. 
On the display device market, the PDP becomes the best candidate in the competition 
for large size (above 40 inches) flat screen, thin wall hanging displays. Furthermore, it 
is assumed that PDP is expected to be the next generation of TV displays, offering the 
possibility of bigger than 70 inches diagonal. Therefore, it is assumed that the PDP 
will quickly gain acceptance for home use replacing the traditional CRT displays. 
However, PDP is facing challenge of LCD, which is about to be expanded to 40~60 
inches. In order to enter and hold the mainstream display market share occupied by 
CRT and LCD, technical advance is highly required not only to improve the picture 
quality but also to lower the power consumption. In order to win and survive in this 
competition, PDP should solve some old problems such as obtaining higher discharge 
efficiency, high picture quality, and low cost. To be honest, compare with LCD, 
picture quality is the most apparent weakness of PDP. In order to improve the picture 
quality, it’s very important to get rid of the dynamic false contour when moving 
picture is reproduced and to increase the contrast ratio and the luminance of the 
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picture reproduced. In order to solve those problems, the picture quality must be 
improved. False contour has been a particular concern for moving picture, and it 
referred to as the dynamic false contour (DFC).   

Many techniques have been presented to solve DFC problem as answering 
following issues [1-3], such as,  

How to dispose the divided subfield?,  
How to divide and partition the frame into multiple subfields?,  
How to select the subfield codeword for each gray level?  

In this paper, finding the optimal subfield pattern and arrangement is beyond our 
scope. And we focus on the last issue which can be represented as “subfield 
optimization.” In fact, selecting the optimal codeword among several candidates is the 
hardest problem.  

The main purpose of this article is designing optimal subfield system, by means of 
rough set theory. Rough set theory is defined by equivalence relations in an 
information system described as a database. A method of reducing attributes in the 
given information system has already been developed by equivalence relations with 
regard to attributes. This paper is organized as follows. In Section 2, we explain the 
DFC briefly. Rough set based subfield optimization technique will be discussed in 
Section 3. Applied example is provided in Section 4. Experiment results will be given 
in Section 5. Finally, we conclude the paper in Section 6. 

2   Dynamic False Contour  

The PDP employs a driving scheme using subfields combination method for gray 
scale representation. Gray scales are represented by modulation of a total number of 
the light radiation pulses of each pixel within a NTSC TV field time of 16.7ms (if the 
TV system is PAL or SECAM, 20.0ms). In order to express 256 gray scale levels, 
PDP utilizes the binary coded light-radiation-period scheme as shown in Fig. 1. Each 
TV frame may be divided into n subfields (in this Section, 8 is assigned as n).  

Each subfield consists of a reset period, an address period and sustain (display) 
period. The widths of the display periods are assigned according to the binary 
sequence 20, 21,…, 2n-1, 2n. 256 gray scale levels can be organized by combining these 
subfields into emit light.  

The most common technique is to divide the subfields having relatively heavier 
weight of luminance information and disperse them in the field. However, if the 
number of subfields becomes larger, then the maximum available brightness of the 
image reproduced decreases. Because the address period is usually fixed depending 
on the number of scan lines. Moreover, the percentage of the sustain period occupied 
in a TV field decreases as well. Therefore, in order to obtain enough peak brightness, 
the address pulse width needs to be shortened. However, shortening the address pulse 
width narrows the voltage margin of the address pulse, and then imperfect address 
will degrade the picture quality.  

Motion picture distortion (MPD) is often illustrated by disorder of average light 
perception over an image, as shown in Fig. 2. This method is quite appropriate to 
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Fig. 1. Binary subfield sequence for [1,2,4,8,16,32,64,128], 8-bit 256 gray scales  

Da Dc

: ON-state SF

: OFF-State SF

Pos 

T
im

e

Db

G
ray level

G
ray level

Position on retina
In case of Dc

Position on retina
In case of Da and Db

Dd

Level=128
Level=127

Level=128
Level=127

Di: direction of i

 

Fig. 2. An example of dynamic false contour: perception of disturbance 

express still images. However, if a picture with motion needs to be reproduced, an 
unwanted distortion looking similar to false contour generated across adjacent pixels. 
Da and Db indicate the cases for still image with no gray scale disturbance, while Dc 
or Dd is the path (direction) along which the radiation is perceived by the trace of the 
eyes in a motion picture. The average light radiation which perceived along the path 
Dc or Dd, becomes quite different from the original perception along Da or Db. The 
perception along the path Dc (or Dd) is almost doubled (or halved). Therefore, we may 
feel brighter or darker pixels than the original picture at the boundaries between the 
127th level and the 128th level due to the effect of DFC.  

3   Proposed Subfield Optimization Algorithm  

A gray level expression of PDP is implemented by a time division of a picture signal 
of one field into a plurality of subfields. Almost all techniques on subfield 
optimization have been based on individual intuition. A subfield pattern (1,2,4,7,11, 
16,32,42,60,80) was proposed in [3], which based on the assumption on the behavior 
of human visual system. In [4], the modified binary code was obtained by dividing 
major subfields 64, 128 of the conventional (1,2,4,8,16, 32,64,128) into four subfields 
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of equal length of 48 as (1,2,4,8,16,32,48,48,48,48). And in [5], the subfield pattern 
(1,2,4,8,16,32,42,44,52,54) was obtained using genetic algorithm. In [6], subfield 
sequence based on twelve-subfield Fibonacci sequence (1,2,3,5,8,13,19,25,32,40,49, 
58) was proposed. This sequence is well employed by the most PDP makers today. 
The numbers inform the subfield weightings, which are used to judge any video level 
independently of the picture content and energy. Table 1 shows the number of 
possible codeword, according to the gray scale value. 

Table 1. Fibonacci sequence based subfield and MPD distribution; Left: gray level value, 
Right: number of possible codeword   

0 1 32 6 64 15 96 24 128 30 160 27 192 15 224 4 
1 1 33 7 65 18 97 28 129 31 161 26 193 17 225 6 
2 1 34 5 66 15 98 28 130 32 162 24 194 14 226 5 
3 2 35 8 67 19 99 28 131 32 163 27 195 15 227 5 
4 1 36 6 68 19 100 30 132 31 164 24 196 15 228 6 
5 2 37 6 69 15 101 27 133 32 165 25 197 13 229 4 
6 2 38 8 70 19 102 28 134 31 166 25 198 13 230 4 
7 1 39 5 71 17 103 29 135 31 167 22 199 12 231 5 
8 3 40 9 72 18 104 27 136 31 168 24 200 11 232 3 
9 2 41 9 73 22 105 30 137 30 169 24 201 13 233 4 
10 2 42 7 74 18 106 29 138 31 170 22 202 11 234 4 
11 3 43 11 75 21 107 30 139 32 171 23 203 10 235 2 
12 1 44 7 76 21 108 31 140 30 172 22 204 12 236 4 
13 3 45 9 77 19 109 28 141 30 173 22 205 10 237 3 
14 3 46 11 78 21 110 29 142 30 174 23 206 11 238 2 
15 2 47 8 79 20 111 30 143 29 175 21 207 12 239 4 
16 4 48 12 80 21 112 29 144 30 176 20 208 8 240 2 
17 2 49 11 81 23 113 30 145 29 177 21 209 11 241 3 
18 3 50 10 82 22 114 30 146 28 178 19 210 9 242 3 
19 4 51 12 83 22 115 30 147 31 179 21 211 7 243 1 
20 2 52 10 84 23 116 32 148 30 180 21 212 11 244 3 
21 4 53 11 85 22 117 31 149 29 181 18 213 7 245 2 
22 4 54 13 86 24 118 30 150 30 182 22 214 9 246 2 
23 3 55 11 87 24 119 31 151 27 183 18 215 9 247 3 
24 5 56 12 88 22 120 31 152 29 184 17 216 5 248 1 
25 4 57 13 89 25 121 31 153 28 185 19 217 8 249 2 
26 4 58 13 90 25 122 32 154 27 186 15 218 6 250 2 
27 6 59 15 91 24 123 31 155 30 187 19 219 6 251 1 
28 5 60 15 92 27 124 32 156 28 188 19 220 8 252 2 
29 5 61 14 93 24 125 32 157 28 189 15 221 5 253 1 
30 6 62 17 94 26 126 31 158 28 190 18 222 7 254 1 
31 4 63 15 95 27 127 30 159 24 191 15 223 6 255 1 

 
Above twelve bit gray level data need to be converted to codeword, in order to be 

used to display image data on PDP. We propose hamming distance (HD), which 
measures the amount of MPD between arbitrary two gray levels focusing on 
codeword. Two parameters for gray level expression, subfield vector, and a set of 
codeword should be determined before applying MPD distance for the two gray 
levels. The subfield vector is a set of ratios of sustain pulses for each subfield. A 
subfield vector SF12 which has 256 gray levels and twelve subfields. SF12 should 
satisfy following conditions: (1) SF12=(f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11), (2) each 
intensity fi∈[0,255], (3) for(i=0, sum=0; i<12; i++) sum+=fi, where sum=255. Let us 
consider there exists at least one codeword Ck=[c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, 
c11] such that k=Cγ ·SF12 is true where cγ ∈{0,1}. Then HD is determined between α 
and β is given by HD=(Cα XOR Cβ)·SF12. We can calculate the HD value of each 
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candidate codeword. It is assumed that the codeword with smallest HD will be chosen 
as the best codeword. Above process are conducted with five images (Airplane, 
Baboon, Barbara, Finger, and Lena). Some gray level values can be represented in 
several codeword. For example, gray level values 225, 226, 227, 228, 229, and 230 
are represented in six, five, five, six, four, and four codewords as can be seen in  
Table 2. In order to make rough set based codeword decision rule, we classify the 
codewords into dominant codewords and unnecessary codewords. Table 2 shows all 
codewords ranging from gray scale value 225 to 230. In order to select dominant 
codeword, three rules (R1, R2, and R3) are made.  

R1: If the percentage of any codeword in each gray scale value is bigger than 75%, 
then the codeword is chosen as dominant codeword, and rough set based technique is 
not employed. If this condition is not satisfied, moves to Rule 2.  

R2: If the sum percentage of any of two codewords is bigger than 75%, and bigger 
one is less than two times of smaller one, then both codewords are chosen as the 
dominant codewords. 

R3: Otherwise, the three major codewords are selected as dominant codewords. 

Table 2.  All codewords ranging from gray scale value 225 to 230. The 1st column is gray level; 
the 2nd column is the number of possible codewords. The other columns are possible 
codewords. 

···  
Codeword 
candidate 1 

Codeword 
candidate 2 

Codeword 
candidate 3 

Codeword 
candidate 4 

Codeword 
candidate 5 

Codeword 
candidate 6 

225 6 
111011101111 
88 (50.3%) 

100111101111 
79 (45.1%) 

110101011111 
0 (0%) 

001101011111 
2 (1.1%) 

000011011111 
5 (2.9%) 

010000111111 
1 (0.6%) 

226 5 
010111101111 
55 (79.7%) 

101101011111 
1 (1.4%) 

100011011111 
6 (8.7%) 

110000111111 
5 (7.2%) 

001000111111 
2 (2.9%) 

 

227 5 
110111101111 
21 (45.7%) 

001111101111 
18 (39.1%) 

011101011111 
3 (6.5%) 

010011011111 
1 (2.2%) 

101000111111 
3 (6.5%) 

 

228 6 
101111101111 
49 (89.1%) 

111101011111 
0 (0.0%) 

110011011111 
4 (7.3%) 

001011011111 
0 (0.0%) 

011000111111 
1 (1.8%) 

000100111111 
1 (1.8%) 

229 4 
011111101111 
10 (45.5%) 

101011011111 
11 (50.0%) 

111000111111 
1 (4.5%) 

100100111111 
0 (0.0%) 

  

230 4 
111111101111 
9 (45.0%) 

011011011111 
0 (0.0%) 

000111011111 
10 (50.0%) 

010100111111 
1 (5.0%) 

  

···        

4   Applied Example  

Fig. 3 shows an example to assign a best codeword among many possible candidates. 
If the gray scale value 227 is coded, we may select just one optimal codeword among 
following five candidates; [110111101111], [001111101111], [011101011111], 
[010011011111], or [101000111111]. According to above condition, Table 2 can be 
reduced as Table 3. Let us consider the value of adjacent pixels are 225 (mid left), 225 
(upper left), 228 (upper center), and 230 (upper right). And those adjacent pixels have 
been coded as [111011101111], [100111101111], [101111101111], and 
[111111101111], respectively. If the candidate codeword is just one, then the 
codeword is used to represent the gray value. But if the number of candidate codeword 
is two or more, then the number of occasion is counted and memorized. In order to 
reduce the requirements of computational burden, a lookup table which based on rough 
set theory is designed. Table 4 shows an example of codeword decision problem. 
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Candidate codeword
1: [110111101111]
2: [001111101111]
3: [011101011111]
4: [010011011111]
5: [101000111111]

UR (upper right)
Coded as 
[111111101111]

ML (mid left)
Coded as 
[111011101111]

UL (upper left)
Coded as 
[100111101111]

UC (upper center)
Coded as 
[101111101111]

={[110111101111]XOR[101111101111]}·SF
+{[110111101111]XOR[111111101111]}·SF
+{[110111101111]XOR[100111101111]}·SF
+{[110111101111]XOR[111011101111]}·SF

codeword 1:

={[001111101111]XOR[101111101111]}·SF
+{[001111101111]XOR[111111101111]}·SF
+{[001111101111]XOR[100111101111]}·SF
+{[001111101111]XOR[111011101111]}·SF

codeword 2:

. . .

={[101000111111]XOR[101111101111]}·SF
+{[101000111111]XOR[111111101111]}·SF
+{[101000111111]XOR[100111101111]}·SF
+{[101000111111]XOR[111011101111]}·SF

codeword 5:

=18

=16

=206

227225

225 228 230

codeword 3:
codeword 4:

=224
=208. . .

SF=[1 2 3 5 8 13 19 25 32 40 49 58]  

Fig. 3. An example of codeword decision process 

Table 3. Dominant codewords in each gray scale value 

··· 
# of 

candidate 
Codeword 1 Codeword 2 

225 2 111011101111 100111101111 
226 1 010111101111  
227 2 110111101111 001111101111 
228 1 101111101111  
229 2 011111101111 101011011111 
230 2 111111101111 000111011111 
···    

Table 4.  Set of the selected method corresponding to each pattern. This is an example of 
codeword decision, in case of gray scale value 227.  

U a b c d m U a b c d m 
1 Small Small Small  Small 1 9 Big Small Small  Small 2 
2 Small Small Small Big 1 10 Big Small Small Big 1 
3 Small Small Big Small 1 11 Big Small Big Small 1 
4 Small Small Big Big 1 12 Big Small Big Big 1 
5 Small Big Small Small 2 13 Big Big Small Small 2 
6 Small Big Small Big 1 14 Big Big Small Big 2 
7 Small Big Big Small 1 15 Big Big Big Small 2 
8 Small Big Big Big 1 16 Big Big Big Big 2 

where  
Univese of discourse U={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} 
Conditional attribute a=([110111101111]XOR[CodewordML])·SF12 
Conditional attribute b=([110111101111]XOR[CodewordUC])·SF12 
Conditional attribute c=([001111101111]XOR[CodewordML])·SF12 
Conditional attribute d=([001111101111]XOR[CodewordUC])·SF12 
Decision value Da=Db=Dc=Dd={S, B} here, Small≤80, Big>80. 
Evaluation attribute m={1: [110111101111], 2: [001111101111]} 

 
By the means of [7], Table 4 can be written as minimal decision rule. We can make 

lookup table which based on rough set based decision rule in each gray level value.  

5   Experimental Results  

The proposed techniques for subfield optimization are evaluated using five 512×512 
test images. Fig. 4 shows the simulation results on the Lena image. The proposed 
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technique provides more pleasing visual quality and significantly improves edge and 
noise reduction by accurately optimizing codewords. Fig. 4(a) shows the original 
Lena image. Fig. 4(b) is obtained by the conventional binary coding that uses the 
subfield vector (1,2,4,8,16,32,48,48,48,48), while Fig. 4(c) is obtained by the subfield 
vector (1,2,4,8,16,32,42,44,52,54). In the proposed simulation, it is assumed that the 
subfield pattern and arrangement is given as Fibonacci sequence 
(1,2,3,5,8,13,19,2532,40,49,58). The results image is shown in Fig. 4(d). Table 5 
compares the PSNR performances of the several algorithms.  
 

  
(a) Original 256*256 “Lena” image  (b) Method [4] 

  
(c) Method [5] (d) Proposed method 

Fig. 4. DFC evaluation results for three method with motion of 3 pixels/field: (a) Original 
image “Lena”; (b) Method [4]; (c) Method [5]; (d) Proposed method 

Table 5.  PSNR (dB) results of different subfield optimization methods for various images 

 SF=[1,2,4,8, 
16,32,64,128] 

Method [3] Method [4] Method [5] 
Proposed 
Method 

Airplane 16.913659 dB 17.523938 dB 17.546208 dB 17.572015 dB 18.443768 dB 
Baboon 15.241433 dB 18.661907 dB 18.956357 dB 19.089382 dB 19.856587 dB 
Barbara 16.928961 dB 19.693254 dB 19.714049 dB 19.864809 dB 19.971561 dB 
Finger 13.397256 dB 15.949619 dB 16.221132 dB 16.348113 dB 16.943683 dB 
Lena 17.337039 dB 19.768283 dB 20.006524 dB 20.219052 dB 20.296184 dB 
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6   Conclusion  

In this work, we developed a rough set-based DFC reduction model for gray level 
disturbances in PDPs and showed that the disturbances can be avoided if the 
codeword of every gray level selected adaptively by lookup table. Given the rough set 
based optimal subfield lookup table, which is optimized for each gray level, dynamic 
false contour reduced significantly. Simulation results showed that the dynamic false 
contour can be effectively reduced by rough set based subfield optimization 
algorithm.  
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Abstract. In this paper, we present a novel image digital watermarking 
technique based on Kernel Independent Component Analysis (KICA). Use the 
nice characteristic of the KICA, which can results the blind separation of 
nonlinearly mixed signals, the imperceptibility and robustness requirements of 
watermarks are fulfilled and optimized. In the proposed scheme, the watermark 
image is first transformed by Arnold method, and then embedded into the 
lowest frequency subband in DWT domain. The recovery of owner’s image is 
turning the watermarked image into DWT domains then use KICA to extract 
the watermark. Finally the watermark is transformed by Arnold method again, 
so we can get the original watermark image. Experimental results show that the 
proposed method gains better performance in robustness than that of ICA with 
respect to traditional image processing including cropping, filtering, add noise 
and JPEG image compression. 

Keywords: image digital watermarking, Kernel Independent Component 
Analysis, wavelet transform. 

1   Introduction 

With the development of network and multimedia techniques, the transmission and 
access of digital media production (such as image, audio, etc) become more 
convenient. Although these techniques have brought us lots of benefits, the 
unrestricted copying and manipulation brings new issue of intellectual property rights. 
So the digital watermarking techniques which can solve these problems become very 
important. Generally, the digital watermarking is a technique which the owner via 
embedding a digital marking into a host media orders to verifying the ownership. 
    Recent years many techniques have been proposed, in which digital watermarking 
is quite efficient and promising. Watermarking methods operating in the wavelet 
domain [1] and in the discrete cosine transform (DCT) domain have been proposed 
[2], [3]. The watermark is embedded in the frequency domain more robust. Extensive 
experiment show that the watermark embeds in the discrete wavelet transform (DWT) 
domain is better than the DCT. In [4], the watermark is embedded in DCT domain 
and is obtained by applying Independent Component Analysis (ICA). In [5], digital 
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image watermarking based on the combination of DWT and ICA is proposed. Francis 
R.Bach proposed Kernel Independent Component Analysis (KICA) theory [6]. The 
KICA algorithm outperforms many of presently known algorithms. Recently, Ke-
zhong has proposed a method on KICA-based face recognition. He uses KICA to 
extract nonlinear independent feature. The result shows that KICA algorithm 
outperforms ICA algorithm in face recognition application [7].  

Based on the watermarking techniques above, this paper proposes an image digital 
watermarking based on KICA algorithm. In this scheme, the watermark image is 
transformed by Arnold method then embedded into the lowest frequency subband 
DWT domain. The recovery of owner’s image is turning the watermarked image into 
DWT domains then use KICA to extract the watermark. At last, the watermark is 
transformed by Arnold method again, so we get the original watermark image. 
Experimental results show that the proposed method gains better performance in 
robustness than that of ICA algorithm with respect to traditional image processing 
including cropping, filtering, add noise and JPEG image compression. 

2   Kernel ICA 

The ICA is based on a linear model; this theory is failed in the case of non-linearity. 
So the KICA was proposed in [6]. The main idea of KICA[8] is to map the input data 

into an implicit feature space ( ) FxRx n ∈→∈ φφ :  Via nonlinear mapping，the 

data is converted easy data to analyses. Then we can use kernel function k (), which 
maps the training samples to a higher dimensional feature space. 

( ) ( ) )( jiji xxKXX ,, =ΦΦ  (1) 

Several kinds of kernel functions are commonly adopted in kernel method. In this 

paper，we use Gaussian kernel in the following 

)( )( 22
exp, δxyyxK −−=  (2) 

The method can be summarized as follows: 

Given image data ][
21

, xxX =  

1. Use kernel function )( jiji xxkK ,, =  

2. Calculate the eigenvectors matrix α and eigenvalues matrix ΦΛ of kernel matrix K. 

3. Compute whitened data 

( ) KX T

W
α1−ΦΦ Λ=  (3) 

4. Compute separating matrix Φ

I
W  by whitening transform 

5. For the image y, the feature s can be calculated as 
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( ) )( yxKWs T

l
,

1α−ΦΦ Λ=  (4) 

where K is a kernel function. 
In the above algorithm, we only need to use the kernel function K instead of Φ , but 

selecting an appropriate kernel function for a particular application is difficult. In 
general, the RBF network is preferred to train the classifier, because it is more 
powerful and more efficacious than Polynomial and Two-layer. So, we used 
Gauss kernel function in this paper. Use the nice characteristic of the KICA, which 
can results the blind separation of nonlinearly mixed signals, the imperceptibility and 
robustness requirements of watermarks are fulfilled and optimized. 

3   The Proposed Scheme 

The overview of the proposed watermarking embed and extract process is shown in 
Fig. 1 and Fig.2. The details of the scheme will be described in the following. 

Watermark 

Host image 

Water image

Arnold transform 

Embed  

DWT transform 

Recovery 

 

Fig. 1. The diagram of the watermarking embed 

Water image DWT transform KICA extract 

Water mark Arnold transform 

 

Fig. 2. The diagram of the watermarking extract 

3.1   The Embedding Scheme 

1. Digital image scrambling: In order to improve the security and robustness of the 
watermark, this paper use Arnold transform to scrambling the watermark. The 
transform can be shown as follows 

⎥
⎦

⎤
⎢
⎣

⎡
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⎤
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⎣

⎡
21
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⎢
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x,y ∈  0,1,2,...,N-1. Because the Arnold transform is cycle, so if the watermark image 
transformed n (n<N) times we can get the scrambled image. The scrambled image is 
turned N-n times we can get the original watermark image. 

2. Host image three levels DWT: the decomposition of an image using DWT 
comprises of a chosen low pass and a high pass filter. The low pass and high pass 
filters are applied to each row of data to separate the low frequency and the high 
frequency components. After an one-scale wavelet transform we can decompose an 
image into four finer scale subbands, labeled with LL1, HL1, LH1 and HH1. 
Continuous decomposing the lowest frequency subband, LLk, of each scale, we get 
four coarser scale subbands, LLk+1, HLk+1, LHk+1 and HHk+1. Because the details 
parts can be affect easily by noise so we can embed the watermark into the low-
frequency domain (LL3). 

3. The process of watermark embeds: we use 256x256 images and applied three-
level DWT transform in this paper. We use a gray watermark image ‘ncepu.tif’ 
embedding the 32x32 subbands. The formula (6) is as model of mixture: 

yi WWaW +⋅=  (6) 

where a is a parameter controlling the watermark strength, 
i

W  presents 

watermark,
y

W presents DWT transform domain, and W  Presents the watermarked 

image. We use three levels IDWT on image, so we can get the watermarked image. 

3.2   Watermark Extraction Scheme 

We use KICA to extract the original signal and watermark from the watermarked 
image. Before using KICA, we have to do some work to the watermarked image. 

1. Get average of image signal: First we get the average of the image signal; there 
is an advantage to the watermark extraction. The method as this: X as image signal 
vector. At first, we use formula m=E{X} to get average, then use k=std(X-m) to get 
the result K. last we get the vector X=X/K. The same process is to the host image, so 
we got two signals. 

2. Using two signals above to do KICA extraction, we got the watermark signal. 
Then we can use Arnold transform on the watermark signal to get the mark image. 

4   Experimental Results 

In order to validate the proposed method, we compared the performance of KICA 
with ICA method in this paper. We use four attack methods to test the two methods 
above. In the following experiments, a set of gray images of 256x256, “lena”, “rice”, 
“woman”, “cameraman” are used for host images. The gray image “ncepu.tif” of 
32x32, is used as watermark shown in Fig4. Due to the limitation of paper space, we 
will exhibit here only the experimental results obtained on the standard image 
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“lena.tif” of 256x256 shown in Fig.3, but similar results have been obtained with 
 
other images. In measure exactly, we use Peak Signal to Noise Ratio (PSNR) as a 
criterion which can evaluate the watermark strength. The normalized correlation 
(NC), which describes the correlation between the original watermark and the 
extracted watermark, can evaluate the performance of the proposed method.  

  

Fig. 3. Original image Fig. 4. Watermark 

Test 1: attack free and parameter ‘a’ is equal to 0.26 

   

Fig. 5. Watermarked image 
PSNR=24.7677 

Fig. 6. Extracted watermark 
used by KICA, NC=0.9991 

Fig. 7. Extracted watermark 
used by ICA, NC=0.9972 

Test 2: Gaussian noise attack: strength parameter a is equal to 0.26 and attack 
parameter is 0.01 

   

Fig. 8. Attackted image 
PSNR=17.8694  

Fig. 9. Extracted used by 
KICA, NC=0.9610 

Fig. 10. Extracted used by 
ICA, NC=0.9492 
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Test 3: Gauss filter attack: strength parameter a=0.26 and attack parameter is [3, 1] 
 

   

Fig. 11. Attackted image 
PSNR=21.0362 

Fig. 12. Extracted used by 
KICA, NC=0.8472 

Fig. 13. Extracted used by 
ICA, NC=0.7202 

Test 4: JEPG compression attack: strength parameter a=0.26 and compression 
parameter is 70%. 

   

Fig. 14. Attackted image 
PSNR=22.5579 

Fig. 15. Extracted used by 
KICA, NC=0.9961 

Fig. 16. Extracted used by 
ICA, NC=0.9758 

Test 5: Image cropping attack: strength parameter a is equal to 0.26 image is cropped  
into 3/4 

   

Fig. 17. Attackted image 
PSNR=5.7951 

Fig. 18. Extracted used by 
KICA, NC=0.8603 

Fig. 19. Extracted used by 
ICA, NC=0.0258 

According to the Table 1, when the watermarked image is attacked, the NC shows 
that the KICA method is better than ICA method. Especially when the watermarked 
image is cropped 1/4, the ICA can not extracted the watermark. 
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Table 1. PSNR(dB) and NC results of above attack experiment 

 Attack free Gaussian 
noise  

Gauss 
filter 

JEPG 
compression 

Image crop 

PSNR 24.7677 17.8694 21.0362 22.5579 5.7951 
KICA  NC 0.9991  0.9610 0.8472 0.9961 0.8603 
ICA   NC 0.9972 0.9492 0.7202 0.9758 --------- 

 
In order to compare the performance of KICA and ICA completely, we draw 

curves as show in Fig.20, Fig.21, Fig.22. 
1. Gaussian noise attack: we use Gaussian noise to attack the watermarked image, and 
the parameter is from 0.024 to 0.06. The result is shown as Fig 20. Obviously, the NC 
value of the KICA is higher than ICA after a series Gaussian noise attacks. 

 

Fig. 20. Gaussian noise attack 

2. Gaussian filter attack: the parameters are in range from [3, 0.5] [3, 1] to [3, 5]. The 
result is shown as fig 21. From the curve, we can draw concludes that the KICA is 
better than ICA after a series Gaussian filter attacks. 

  

Fig. 21. Gaussian filter attack                        Fig. 22. JPEG Compression attack 
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3. JPEG compression attack: the parameters are in range 15% to 90%.The result is 
shown as Fig 22. As curves are shown above, there are two points the ICA better than 
KICA. But on the whole the KICA is better than ICA. When compression ratio is less 
than 10%, the ICA can not extract the watermark but KICA can do it. 
4. Image cropped attack: If the watermarked image is cropped more than 1/6, the 
watermark can not be extracted by ICA, whereas the KICA can extract the watermark 
which is cropped by 1/4. When the watermarked image is cropped, it is obvious that 
the performance of the KICA method is better than the ICA. 

5   Conclusion 

This paper proposed a KICA based and DWT domain digital watermarking scheme. 
Extensive experimental results show that the proposed method is comparative with 
the ICA in extracting watermark, but gains better performance in robustness than that 
of ICA algorithm with respect to traditional image processing including cropping, 
filtering, add noise and JPEG image compression. The reason of the results seems that 
the KICA is a nonlinear kernel method, and some of image process attacks are 
nonlinear transform, KICA have the advantage of the ability of extracting nonlinear 
signals compared with the ICA. The shortcoming of the proposed scheme is that the 
KICA spend more time to extract the watermark than the ICA. It will be the work in 
the future. Besides, the paper focuses on applying the presented method to digitized 
images although the same approach can be used for other media, such as music or 
video. 
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Abstract. The problem considered in this paper is how to recognize
similar objects based on the detection of patterns in pairs of images.
This article introduces a new form of classifier based on approximation
spaces in the context of near sets for use in pattern recognition. By way
of introducing the basic approach, nonlinear diffusion is used for edge de-
tection and object contour extraction. This form of image transformation
makes it possible to compare the contours of objects in pairs of images.
Once the contour of an image has been identified, it is then possible to
construct approximation spaces based on vectors of probe function mea-
surements associated with selected image features. In this article, the
only feature considered is contour, which leads to many contour probe
functions. The contribution of this article is a new form of classifier,
based on approximation spaces, for use in image pattern recognition.

Keywords: Approximation space, image, feature extraction, near sets,
nonlinear diffusion, pattern recognition, rough sets.

1 Introduction

The problem considered in this paper is how to recognize similar objects based
on the detection of patterns in pairs of images. The proposed solution to this
problem utilizes approximation spaces introduced by Zdzis�law Pawlak (see, e.g.,
[1,2]), later generalized in [3], and further refined in [4]. In this paper, the ap-
proach to approximation space-based image pattern recognition is strictly limited
to discovering similar objects in images based on object contours. Specifically,
a user creates a template image in the form of a “sketch.” The goal is then to
recognize all images within a set of samples that match the template. The results
reported in this article are limited to three known objects, two that match the
template, and one that does not. Nonlinear diffusion is used for image smooth-
ing and object contour extraction. The traditional approach suggested in [5], for
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recognition of an object in an image I with a suspected match in an image I1 is
performed by comparing probe function values in

I ≈ (I1)T ⇔ |f(I) − f(I1)| < ε, ∀f, ε ∈ [0, 1]

where I is approximately the same as I1 after some transformation T , iff |f(I)−
f(I1)| < ε for all f associated with, e.g., the contour of an object in an image.
In contrast, the approach taken in this article is to match a sketch drawn by a
user with an object contained in an image by recording contour probe function
values of both objects in a data table and constructing an approximation space.
Lower rough coverage values are then used to determine if the template image
is a match to the unknown image. The contribution of this article is a new form
of approximation space-based classifier for use in image pattern recognition.

This article is organized as follows. An approach to edge detection is briefly
presented in Section 2. Sections 3 and 4 briefly present the fundamentals of
approximation spaces with respect to near sets and their application to pattern
recognition, respectively. Finally, sample results of the proposed approach are
presented in Section 5.

2 Edge Detection

Sketches inherently represent edges of the objects we are trying to match. Conse-
quently, a natural place to start is with image segmentation, which is the process
of partitioning an image into regions that are representative of the objects within
the image [6]. This can be accomplished by identifying the edges which are high
contrast regions of an image. This article uses nonlinear diffusion image filter-
ing to achieve segmentation (and subsequently perform edge detection). This
method is based on actual physical processes such as the diffusion of heat in a
metal bar [7,8,9]. The process is considered nonlinear because the diffusivity be-
comes a decreasing function of the magnitude of the gradient, since the gradient
will produce a large value in areas of large contrast (edges within the image) [8].
The result is that uniform (low gradient magnitude) areas within the image un-
dergo more diffusion than areas with high contrast (high gradient magnitude).
An example of nonlinear diffusion is given in Fig. 1 using the nonlinear diffusion
toolbox for Matlab [7].

3 Approximation Spaces

This section introduces a view of approximation spaces defined in a slightly mod-
ified manner in comparison with the original definition in [3]. Any generalized
approximation space (GAS) is a tuple

GAS = (U, A, Nr, νB),

where U is the universe (elements of U may be, for example, objects, behaviours,
or perhaps states), A is a set of probe functions (such that x ∈ U and f(x) ∈ A),
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1.1: Original image 1.2: Segmentation using
nonlinear diffusion

1.3: Binary contour us-
ing nonlinear diffusion

Fig. 1. Results of nonlinear diffusion on an image

Nr is a neighbourhood family function and νB is an overlap function defined by
(1).

νB : P(U) × P(U) −→ [0, 1], (1)

where and P(U) is the powerset of U [4]. Eq. 1 maps a pair of sets to a number in
[0, 1] representing the degree of overlap between the sets of objects with features
defined by B ⊆ A [3]. For each subset B ⊆ A of probe functions, define the
binary relation ∼B= {(x, x′) ∈ U × U : ∀f ∈ B, f(x) = f(x′)}. Since each ∼B,
is an equivalence relation (i.e the IndB indiscernibility relation), for B ⊂ A and
x ∈ U let [x]B denote the equivalence class, or block, containing x, that is,

[x]B = {x′ ∈ U : ∀f ∈ B, f(x′) = f(x)} ⊆ U.

If (x, x′) ∈ ∼B (also written x ∼B x′) then x and x′ are said to be B-indis-
cernible. Then define a family of neighborhoods Nr(A), i.e.,

Nr(A) =
⋃

B⊆Pr(A)

[x]B,

where Pr(A) = {B ⊆ A : |B| = r} for any r such that 1 ≤ r ≤ |A|. That is,
r denotes the number of features used to construct families of neighborhoods.
Information about a sample X ⊆ U can be approximated from information
contained in B by constructing a Nr(B)-lower approximation

Nr(B)∗X =
⋃

x:[x]B⊆X

[x]B ,

and a Nr(B)-upper approximation

Nr(B)∗X =
⋃

x:[x]B∩X �=∅
[x]B .

Then Nr(B)∗X ⊆ Nr(B)∗X and the boundary region BNDNr(B)(X) between
upper and lower approximations of a set X is defined to be the complement of
Nr(B)∗X , i.e.
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BNDNr(B)(X) = Nr(B)∗X\Nr(B)∗X = {x ∈ Nr(B)∗X | x /∈ Nr(B)∗X}.

A family of neighborhoods Nr(B) is near a set X iff |BNDNr(B)(X)| ≥ 0. This
means every rough set is a near set but not every near set is a rough set. Lastly,
use the notation Bj(x) to denote a subset of Nr(B), where j ∈ B. Put

νj(Bj(x), Nr(B)∗X) =

{
|Bj(x)∩Nr(B)∗X|

|Nr(B)∗X| , if Nr(B)∗X �= ∅,

1, if Nr(B)∗X = ∅,

where νj is a specialized form of rough coverage (see, e.g., [10]).

4 Approximation Spaces and Pattern Recognition

It is now possible to formulate a basis for object recognition, which parallels the
traditional formulation of pattern recognition. Let X = D represent a decision
class containing all elements of U obtained from the template image using probe
functions from B. D represents a standard for classifying images. Observe that
a non-zero rough coverage value νj means that Bj(x) contains elements that are
members of the decision class D. Further, a larger number of non-zero coverage
values implies that a significant number of blocks contain elements that are part
of the decision class (the template image). Consequently, the ratio of non-zero
coverage values to total coverage values can be used as a new form of image
classifier. Put,

Cν(GAS) =
|{νj : ∀Bj(x) ∈ Nr(B), νj > 0}|

|{νj : ∀Bj(x) ∈ Nr(B)}| ,

where Cν(GAS) is the ratio of non-zero coverage values to total coverage val-
ues obtained from a specific GAS (for convenience we simply write Cν). Then
recognition of objects that are approximately the same is defined by comparing
non-zero coverage ratios using

O ≈ (Oid)T ⇔ Cν > ε,

where ε ∈ [0, 1]. That is to say, the object O is approximately the same as Oid

after some transformation T whenever Cν is greater than some ε.
By way of an illustration of the utility of approximation spaces, a near set

approach to pattern recognition is briefly considered here. Recall that the goal
of this process is to match a template with an unknown image. Let us define
a decision system as a data table (U, A) such that A contains a distinguished
probe function d representing a decision. Thus the set D ⊆ U consists of all
the elements for which d(x) = 1. The first step in creating a decision system is
to create the data table. Such tables will then be used to set up approximation
spaces to determine the degree that an object in an image resembles the template.
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2.1: Template image
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2.2: Unknown image

Fig. 2. Contour comparison

The approach used in this article is to create a data table from two images
where all elements associated with the template make up the decision class D.
Two such tables are given in Tables 1 and 2 created from the images shown in
Fig. 2. Table 1 represents the ideal case in which the template in Fig. 2.1 is
compared with itself. Similarly, Table 2 contains data obtained from comparing
the template in Fig. 2.1 with the unknown image given in Fig. 2.2.

Table 1. Decision system for Fig. 2.1

xi Probe functions f0 · · · f10 d

x0 0 0 0 0 0 0 0 0 0 0 0 1
x1 0 0 0 0 0 0 0 0 0 0 0 1
x2 0 0 0 0 3 2 3 0 0 0 0 1
x3 0 0 0 3 0 0 0 3 0 0 0 1
x4 0 0 0 2 0 0 0 2 0 0 0 1
x5 0 0 0 3 0 0 0 3 0 0 0 1
x6 0 0 0 0 3 0 3 0 0 0 0 1
x7 0 0 0 0 0 3 0 0 0 0 0 1
x8 0 0 0 0 0 0 0 0 0 0 0 1
x9 0 0 0 0 0 0 0 0 0 0 0 1
x10 0 0 0 0 0 0 0 0 0 0 0 0
x11 0 0 0 0 0 0 0 0 0 0 0 0
x12 0 0 0 0 3 2 3 0 0 0 0 0
x13 0 0 0 3 0 0 0 3 0 0 0 0
x14 0 0 0 2 0 0 0 2 0 0 0 0
x15 0 0 0 3 0 0 0 3 0 0 0 0
x16 0 0 0 0 3 0 3 0 0 0 0 0
x17 0 0 0 0 0 3 0 0 0 0 0 0
x18 0 0 0 0 0 0 0 0 0 0 0 0
x19 0 0 0 0 0 0 0 0 0 0 0 0

Table 2. Dec. sys. for Figs. 2.1 and 2.2

xi Probe functions f0 · · · f10 d

x0 0 0 0 0 0 0 0 0 0 0 0 1
x1 0 0 0 0 0 0 0 0 0 0 0 1
x2 0 0 0 0 3 2 3 0 0 0 0 1
x3 0 0 0 3 0 0 0 3 0 0 0 1
x4 0 0 0 2 0 0 0 2 0 0 0 1
x5 0 0 0 3 0 0 0 3 0 0 0 1
x6 0 0 0 0 3 0 3 0 0 0 0 1
x7 0 0 0 0 0 3 0 0 0 0 0 1
x8 0 0 0 0 0 0 0 0 0 0 0 1
x9 0 0 0 0 0 0 0 0 0 0 0 1
x10 0 0 0 0 0 0 0 0 0 0 0 0
x11 0 0 0 0 0 0 0 0 0 0 0 0
x12 0 0 0 0 4 3 2 3 0 0 0 0
x13 0 0 0 4 0 0 0 0 3 0 0 0
x14 0 0 0 3 0 0 0 0 2 0 0 0
x15 0 0 0 4 0 0 0 0 3 0 0 0
x16 0 0 0 0 4 0 0 0 4 0 0 0
x17 0 0 0 0 0 4 3 4 0 0 0 0
x18 0 0 0 0 0 0 0 0 0 0 0 0
x19 0 0 0 0 0 0 0 0 0 0 0 0

Moreover, to populate the tables, the coordinates of the centroid of each image
are calculated to find the geometric centre of the image (the grey pixels in the
centres of the contours). Next, the distances from the centroid are calculated
using the taxicab metric for each point on the contour of each image. Note,
distances are only reported for points on the contour. Lastly, what follows is an
example showing how to obtain Cν = 1 for Table 1. Similar calculations produce
a value of Cν = 0.592593 for Table 2. Observe that Table 2 produces a lower
value of Cν since Fig. 2.1 and Fig. 2.2 are not identical.



480 C. Henry and J.F. Peters

Decision class: D = {x0, x1, x2, x3, x4, x5, x6, x7, x8, x9}

Bj(x) : {νj}
Bf0(x0) = {x0, x1, x2,
x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19} : {1.0000}
Bf1(x0) = {x0, x1, x2,
x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19} : {1.0000}
Bf2(x0) = {x0, x1, x2,
x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19} : {1.0000}
Bf3(x0) = {x0, x1, x2, x6, x7, x8, x9, x10, x11, x12, x16, x17, x18, x19} : {1.0000}
Bf3(x3) = {x3, x5, x13, x15} : {1.0000}
Bf3(x4) = {x4, x14} : {1.0000}
Bf4(x0) =
{x0, x1, x3, x4, x5, x7, x8, x9, x10, x11, x13, x14, x15, x17, x18, x19} : {1.0000}
Bf4(x2) = {x2, x6, x12, x16} : {1.0000}
Bf5(x0) =
{x0, x1, x3, x4, x5, x6, x8, x9, x10, x11, x13, x14, x15, x16, x18, x19} : {1.0000}
Bf5(x2) = {x2, x12} : {1.0000}
Bf5(x7) = {x7, x17} : {1.0000}
Bf6(x0) =
{x0, x1, x3, x4, x5, x7, x8, x9, x10, x11, x13, x14, x15, x17, x18, x19} : {1.0000}
Bf6(x2) = {x2, x6, x12, x16} : {1.0000}
Bf7(x0) = {x0, x1, x2, x6, x7, x8, x9, x10, x11, x12, x16, x17, x18, x19} : {1.0000}
Bf7(x3) = {x3, x5, x13, x15} : {1.0000}
Bf7(x4) = {x4, x14} : {1.0000}
Bf8(x0) = {x0, x1, x2,
x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19} : {1.0000}
Bf9(x0) = {x0, x1, x2,
x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19} : {1.0000}
Bf10(x0) = {x0, x1, x2,
x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19} : {1.0000}

Nr(B)∗X = {∅}
Cν = 1

5 Results

Again by way of illustration of the approach to recognizing similar objects in
images, template images of tea cups (see Fig. 3) were compared to unknown
sample image contours (see Fig. 4) obtained by nonlinear diffusion. The goal
was to obtain a higher value of Cν when comparing a sketch of a tea cup with
that of a contour obtained from an image of a tea cup. As shown in Table 3, the
template image in both cases produces a higher ratio of non-zero lower coverage
vales when compared to the contour of a tea cup than that of the fire hydrant.

These results are promising, since they show that a lower approximation space
in the context of near sets can be used for pattern recognition. However, there is
still much to be investigated. For instance, observing the effects of translation and
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3.1: Sketch of 1st

tea cup
3.2: Sketch of 2nd

tea cup

Fig. 3. Sample sketches (template images)

4.1: First tea cup 4.2: Second tea cup 4.3: Fire hydrant

Fig. 4. Sample image contours

rotation on the sample images. This method should be translation and rotation
independent (within some small ε) due to the fact that centroid distances that
should not change on rotation or translation of the image as long as the entire
object is still present.

Other problems should be investigated as well. For example, a comparison of
other edge detection techniques and the nonlinear diffusion process is required.
This method was selected because it had already been implemented. However, it
may not be best suited to the task at hand. Also, other edge detection methods
may be more attractive in terms of timing. Currently, the proposed method takes
several minutes to obtain the gradient. This is fine when comparing two images,
but is unrealistic when searching through an archive containing thousands of
them. Similarly, other forms of feature extraction should be explored as well. At
present, only one feature, namely, contour has been considered. Contour probe
function measurements constituting the top five distances from the centroid are
used. It may be that there are better features or a combination of multiple fea-
tures that can be used to provide better results. Also, both ratios were higher for
the tea cup images than the fire hydrant, however, there some difference between
the results obtained for both tea cups. Consequently, thresholding techniques
(such as neural networks) need to also be investigated to determine when it is
sufficient to say a sample image being considered “matches” the sketch drawn
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Table 3. Sample Results

Decision Systems Lower coverage ratios

Template image Fig. 3.1 vs. tea cup contour Fig. 4.1 0.521186
Template image Fig. 3.1 vs. fire hydrant contour Fig. 4.3 0.437100
Template image Fig. 3.2 vs. tea cup contour Fig. 4.2 0.515041
Template image Fig. 3.2 vs. fire hydrant contour Fig. 4.3 0.413616

by a user. Finally, a direct comparison to current image classifiers is needed to
determine if this method is an improvement.

6 Conclusion

This article introduces an approximation space-based classifier for use in image
pattern recognition. Initial results are promising inasmuch as templates (ob-
tained from sketches) of target objects (e.g., tea cups) produce higher non-zero
coverage ratios when compared to objects in test images and low coverage ratios
when compared to other objects (e.g., fire hydrants). However, further insti-
gation is required before definite conclusions can be made about the proposed
image classifier.
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Abstract. This paper presents a method of target tracking for a robotic
vision system employing reinforcement learning with feedback based on
average rough coverage performance values. The application is for a line-
crawling inspection robot (ALiCE II, the second revision of Automated
Line Crawling Equipment) designed to automate the inspection of hydro
electric transmission lines and related equipment. The problem consid-
ered in this paper is how to train the vision system to track targets of
interest and acquire useful images for further analysis. To train the sys-
tem, two versions of Watkins’ Q-learning were implemented, the classical
single-step version and a modified strain using an approximation space-
based form of what we term rough feedback. The robot is briefly described
along with experimental results for the two forms of the Q-learning con-
trol algorithm. The contribution of this article is an introduction to a
modified version of Q-learning control with rough feedback to monitor
and adjust the learning rate during target tracking.

Keywords: Approximation space, target tracking, monocular vision, re-
inforcement learning, rough sets, Q-learning.

1 Introduction

The problem considered in this paper is how to influence a system with a control
algorithm that learns from past experience of actions for any given situation. The
system consists of a robotic platform with a monocular vision apparatus used
to track and acquire images of desired targets. Control of the vision system is
accomplished via the Q-learning algorithm [16,18]. Two versions of this method
are included, Watkins’ single-step approach and a modified version of Watkins’
algorithm that employs a rough set approach.
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Several examples of recent work have been reported for the target tracking
control problem, including [1,2,6,11,12,13]. The robotic platform as well as rein-
forcement learning are a common thread. The contribution of this article is the
implementation and comparison of a rough coverage feedback value for adjusting
the learning rate of a control algorithm versus the classical implementation.

This article is organized as follows. A brief introduction to the robotic plat-
form is provided in Section 2. The rough set and approximation space theory
employed in the control algorithm are briefly discussed in Section 3. Section 4
includes a look at the reinforcement learning control algorithms, followed by the
experimental results in Section 5

2 The ALiCE II Robot

The ALiCE II device is an inspection robot designed to crawl along a 9mm sky
wire that exists at the uppermost part of large transmission and distribution
hydro power lines (see Fig. 1). The bot must function in a harsh environment
buffeted by wind, hampered by electromagnetic fields, rain, and huge swings in
temperature.

1.1: Skywire 1.2: Alice II Bot

Fig. 1. Environment for Target Tracking System

A camera system is attached to the base of ALiCE II to allow for a complete
view of all conductors and the tower structure beneath it partially shown in
Fig. 1.1. Through low-level control, the robot is able to navigate back and forth
along the sky wire and pause as required to acquire images of interest from
the camera. Fig. 1.2 provides a front overhead view and a rear view of the
experimental setup demonstrating the line crawling robot. There are a number
of different types of targets of interest including insulators, pins, conductors, and
tower structures. Once a target has been sighted, tracking is used to help gather
the best images by maximizing the surface area and compensating for external
influences like wind speed. The camera mounted on the underside of the robot’s
platform consists of two servo motors that pan and tilt the camera as required
for positioning.
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3 Rough Sets and an Example Approximation Space

This section includes a brief introduction to rough sets followed by a description
of an approximation space and an associated example. Representation of objects
and features occur in the form of data tables to simplify the processing steps [12].
Let U denote a non-empty finite set called a universe and let P(U) be the
power set of U (i.e. the family of all subsets of U). In this paper, elements of
U correspond to observed behaviors. A feature F of elements in U is measured
by an associated probe function f = fF whose range is denoted by Vf , called
the value set of f ; that is, f : U → Vf . There may be more than one probe
function for each feature. For example, a feature of a behavior may be the reward
obtained for performing an action. The similarity or equivalence of objects can be
investigated quantitatively by comparing a sufficient number of object features
by means of probes [10]. For present purposes, we identify the set of features
with the set of associated probe functions, and hence we use f rather than fF
and call Vf = VF a set of feature values. If F is a finite set of probe functions for
features of elements in U , the pair (U, F ) is called a data table, or information
system (IS).

For each subset B ⊆ F of probe functions, define the binary relation IndB =
{(x, x′) ∈ U × U : ∀f ∈ B, f(x) = f(x′)}. Since each IndB is an equivalence
relation, for B ⊂ F and x ∈ U let [x]B denote the equivalence class, or block,
containing x, that is,

[x]B = {x′ ∈ U : ∀f ∈ B, f(x′) = f(x)} ⊆ U.

If (x, x′) ∈ [x]B , then x and x′ are said to be indiscernible with respect to
all feature probe functions in B, or simply, B-indiscernible. Information about
a sample X ⊆ U can be approximated from information contained in B by
constructing a B-lower approximation

B∗X =
⋃

{[x]B | [x]B ⊆ X},

and a B-upper approximation

B∗X =
⋃

{[x]B | [x]B ∩ X �= ∅}, .

The B-lower approximation B∗X is a collection of blocks of sample elements
that can be classified with full certainty as members of X using the knowledge
represented by features in B. By contrast, the B-upper approximation B∗X is
a collection of blocks of sample elements representing both certain and possibly
uncertain knowledge about X . Whenever B∗X � B∗X , the sample X has been
classified imperfectly, and is considered a rough set. In this paper, only B-lower
approximations are used.

3.1 Approximation Spaces

The original discussion of approximation spaces was introduced by Pawlak [7]
and has since been expanded to a generalized version [14,15]. Approximation
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spaces provide the basis for a new form of reinforcement learning based on ac-
ceptable patterns of behaviour viewed in the context of a line-crawling robot.
This section briefly introduces approximation spaces and the generalized version
with rough coverage.

The original definition of an approximation space provided by Pawlak [7]
contained the pair (U, Ind). Where U corresponds to a non-empty finite set and
Ind represents an indiscernibility relation on subsets of U (Ind ⊂ U × U) [7].
More recently, a generalized approximation space was introduced by Skowron
and Stepaniuk [14], [15] represented by a triple, (U, I, ν).

• U is a non-empty set of objects, and P(U) is the powerset of U ,
• I : U → P(U) is such that x ∈ I(x) for any x ∈ U ,
• ν : P(U) x P(U) → [0, 1] is an overlap function (inclusion or coverage).

Similar to the classical description, U corresponds to a non-empty, finite set. The
uncertainty function I maps each x ∈ U to a neighbourhood such that a given
object x is associated with a set of objects that are similar in some respects. This
function can also be used to help define a covering of U [12] specialized relative
to B∗X and blocks in the IndB-partition of U . Pertaining to coverage of sets,
ν is a measure of overlap and is referred to as inclusion or coverage depending
upon the configuration of the expression. In this paper, rough coverage is used
as a measure of set overlap as the basis for a measure of Q-learning performance.

ν(X, Y ) =

{
|X∩Y |
|Y | , if Y �= ∅,

1 , if Y = ∅.
(1)

The value of ν represents the degree of coverage, ranging from 1, when the sets
are equal to one another (X = Y ) to the minimum value of 0, when there are
no common elements in X and Y (X ∩ Y = ∅) [15]. Anything in between 0 and
1 represents at least some degree of overlap between the two sets in question.

We used the average rough coverage as a performance metric. Let d denote a
partial function that represents a decision about an object based on evaluation of
D denote the set D = {x ∈ U | d(x) = 1(accept)}. ν is computed by substituting
B∗D or known accepted tracking behaviours for Y and each [x]B substituted for
X in (1). ν̄ (average coverage) is computed by averaging individual ν values, and
provides the backbone for a new form of Q-learning represented by Alg. 1.

4 Reinforcement Learning Control Algorithms

The line crawling robot uses reinforcement learning to discover how to control
the movements of a digital camera used to track randomly moving targets. The
control algorithm selected was single-step Q-learning and it was modified to
incorporate rough coverage as a feedback performance metric and then compared
to the classical algorithm. This section includes a brief overview of Q-learning
and the modification made to provide rough feedback followed by the formal
algorithm.
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The Q-learning algorithm learns based on the action (or Q) value associated
with each state as opposed to using the value function associated with being in a
given state. Q-learning was developed by Watkins, formally reported in 1989 [18].
The Q-learning method in its simplest form is a single step temporal difference
learning method that is capable of maximizing the action value of an agent
regardless of the policy being followed [3,16,18]. The concept of a single step
algorithm is that it looks into the future one step in advance when estimating the
best course of action to take from the current state. The best action is generally
the choice that maximizes the future discounted reward available from all actions
pertaining to the current state. It is important to note that for Q-learning it does
not matter what policy is being followed, it will always maximize the action
value [18]. Q-learning falls into the category of off-policy algorithms [16]. This
implies that the decisions made for selecting a course of action do not necessarily
follow the policy that is exploring the state space [16].

During the initialization of the Q-learning algorithm, a policy must be estab-
lished to determine a preliminary (most likely sub-optimal) mapping from states
to actions. As indicated in Alg. 1, this policy is not greedy, which means that
there is a possibility that it will not always follow the action with the highest
immediate reward. There must be at least a small chance that this policy will
explore alternate actions providing potential visits to sub-optimal actions that
may return greater long term rewards. Throughout the learning process of sin-
gle step Q-learning, state-action pairs are examined one step ahead. Rather than
following the original non-greedy policy that is selecting actions, a greedy policy
is used to determine the best action to take from the current state.

Q(s, a) ←− Q(s, a) + α[r + γ · maxa′Q(s′, a′) − Q(s, a)] (2)

From Eq. 2, we see that although the non-greedy policy is selecting actions, the
update is affected by the maximizing greedy policy inherent in the Q-learning
update rule. The algorithm parameters that can be found in Q-learning are γ,
and α which correspond to the discount factor and the learning rate step size
adjustment, respectively.

The term episode refers to a length or the amount of time steps present in an
episode of analysis for the reinforcement learning process. The difference from
classical Q-learning for the rough feedback version lies in the update rule pre-
sented in Eq. 2, it was modified to include the average rough coverage value to
adjust the value of α. As the average rough coverage value increases, the value
of α decreases, reducing the step size change to prevent overshoot when ap-
proaching a desirable policy. Conversely, for situations where the average rough
coverage is low, the value of α will increase, causing the adjustment to be greater
in the hopes of finding more suitable behaviours.

5 Experimental Results

The experimental work was done using a camera system identical to that found
on the line crawling robot (seen in Fig. 1. Noise was introduced into the
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Algorithm 1. The Q-Learning Method With Rough Feedback
Input : States, s ∈ S, Actions a ∈ A(s), Initialize Q(s,a), ν̄, α, γ, π to an

arbitrary policy (non-greedy);
Output : Optimal action value Q(s,a) for each state-action pair;
while True do

for (i = 0; i ≤ #ofepisodes; i + +) do
Initialize s and data table;
Choose a from s, using policy derived from Q;
for Repeat(for each step of episode): do

Take action a; observe reward, r, and next state, s′;
Record state, action, and associated reward in data table;
Q(s,a) ←− Q(s,a) + (1 − ν)α[r + γmaxaQ(s′, a′) − Q(s, a)];
s ←− s’; a ←− a’;
until s is terminal;

end
Generate ν̄ from results recorded in data table for current episode;
Update new value of ν̄;
Clear data table;

end
end

environment in the form of random movements of the platform, similar to what
would be experienced in light wind conditions. This section includes preliminary
results and a brief discussion of their implications.

The parameters of the Q-learning algorithms were selected as 0.1 for both the
learning and discount rate (α and γ respectively). The length of the experiments
were 5 minutes each and a sample result is included (See Fig. 2). The number
of samples differs between the two methods since the rough feedback method
requires more calculations to generate the rough coverage values. The trade-
off of spending more time processing data is improved results as seen in the
results. The rough-feedback implementation is able to adjust to the movements
of the camera and this can be seen with the reduced RMS error pertaining to
the target location. As the target moves, the algorithms attempt to learn the
best movements in any given situation for tracking. The adjustable learning
rate allows the rough-feedback method to react more quickly or more slowly
depending on how well it performs. The classical method maintained a reasonable
rate of performance but since the environment was somewhat noisy, it was unable
to adjust as quickly and provided a stable error rate around 1 pixel greater than
that of the rough feedback method.

6 Conclusions

The preliminary results are promising for the rough feedback implementation of
the Q-learning algorithm. The error rate recorded was a significant improvement
over the classical implementation. The difference in the number of samples over
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Fig. 2. Plotted results, Samples (x-axis) vs. RMS pixel error (y-axis)

a five minute period was 125 extra samples for the classical method over the
rough feedback method. This was expected since creating the data tables and
the required processing to generate the average rough coverage values is more
work.

The performance boost is significant enough that it is worth considering as an
alternative approach to target tracking in our environment. The only drawback
is the amount of processing and extra time required which necessitates more
battery power for an autonomous robot and the extra time weakens the tracking
capabilities, since it pauses during heavy computations to preserve power. An
attempted possible solution was to reduce the episode sizes when generating
data tables. This resulted in less computational power and time but at the
cost of reducing the sample size of behaviours drawn upon when revising the
learning rate. The extra computational cost reduced the number of samples
by 16% and improved the accuracy by an average of 20% over the classical
method. Reducing the sample size did not adversely affect the learning process
as the experimental environment did not have many variables. However, in more
complex environments, reducing the sample size could introduce poorer results
if the selected samples did not reflect the general behaviour.

In conclusion, the preliminary results the new form of Q-learning demonstrate
that adjusting the approximation space-based learning rate based on average
rough coverage provides improved accuracy for the target tracking process. Fur-
ther experimental work is required to verify consistency and an optimal episode
size as well as the time required to generate the rough coverage values. Future
work on Q-learning will include ways to improve the proposed method. This is
definitely possible by hearkening back to the run-and-twiddle adaptive learning
method introduced by Oliver Selfridge in 1984.
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Abstract. We propose a health recommendation system architecture
using rough sets, survival analysis approaches and rule-based expert sys-
tems. Our main goal is to recommend clinical examinations for patients
or physicians from patients’ self reported data. Such data will be treated
as condition attributes, while survival time from a follow-up study will
be treated as the target function. We have amalgamated rough set the-
ory, relational databases, statistics, soft computing and several pertinent
techniques to generate a hybrid intelligent system for survival analysis.
This study represents the completion of our system by adding a recom-
mendation module.

Keywords: Rough sets, Survival analysis, Recommender system.

1 Introduction

Given user profile information, recommender systems attempt to predict items
(e.g., music, books, web pages) in which a user might be interested. Thus, gen-
eral recommender systems were developed for e-commerce. Several studies have
shown that systems predict the target user’s requirement accurately (e.g., movies
[1] and hardware retail [2]).

Motivation and Applications. Our recommendation system was designed
with the goal of providing accurate, low-cost medical recommendations. In coun-
tries where health care costs are prohibitively expensive, this system can provide
a free alternative. While not seeking to be a drop-in replacement or perfect sub-
stitute for professional medical advice, there are many cases where some infor-
mation is better than nothing. Consider the following examples. A patient can
only afford a limited number of tests, but cannot determine which ones should
take priority. There may be an inexperienced, or no doctor available and the
patient would like a second opinion.

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 491–499, 2007.
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Regular check-ups allow doctors to diagnose diseases early, allowing wider
options for treatment. Many patients cannot afford these regular visits, and
instead only are examined when there is a problem. A free recommendation
from our system may allow earlier diagnosis. Rural areas with limited access
to medical professionals can also benefit from more frequent medical advice. To
provide this service, we aim to eventually deploy this system in low-cost public
kiosks. In this paper, we describe the design of a web-based prototype.

We introduce in Sect. 2 preliminaries and notation of some survival analy-
sis, rough sets, recommendation rules, new measurements and recommendation
systems. In Sect. 3 we propose a web based health recommendation system ar-
chitecture. We demonstrate the applicability of a part of our proposed system
on geriatric data set in Sect. 4. In Sect. 5 we provide conclusion and add some
general remarks of what next steps will be taken.

2 Preliminaries and Notation

2.1 Survival Analysis

Survival analysis [3] is a branch of statistics that studies time-to-event data.
Death or failure is called an event in the survival analysis literature. Survival
analysis is called reliability analysis in engineering, and duration analysis in eco-
nomics. Bazan et al. [4] applied the Kaplan-Meier method and the Prognostic
Index to head and neck cancer patients, then used rough sets generate decision
rules. They illustrated that rough sets can contribute to a medical expert sys-
tem. Zaluski et al. applied rough sets to construct decision rules that classify a
binary target function: cancer recurrence [5]. The authors provided a compari-
son of several approaches compared to rough sets. Song et al. analyzed the same
geriatric data (Sect. 4) to evaluate the potential of rough sets, artificial neural
networks and the frailty index in predicting survival time [6]. As reported, the
prediction performance of rules induced by rough sets approaches were compa-
rable with results of using other learning systems [5,6,11]. Survival analysis (see
our previous studies [7,8,9,10,11]) attempts to answer questions such as:

“Is diabetes (or others) a significant risk factor for geriatric patients?”
“What are the rules for survival time predictions of geriatric patients?”

In this paper, we present the novel approach to answer this question:
“According to the analysis of risk factors and survival time prediction, what

are the recommending clinical examinations for prolonging the survival time?”

Kaplan-Meier Survival Analysis. [3] The proportion of the population of
patients who would survive a given length of time under the same circumstances
is given by the Kaplan-Meier method as shown in (1). S is based on the proba-
bility that each patient survives at the end of a time interval, on the condition
that the patient was present at the start of the time interval.

Ŝ(t) =
∏

ti≤t

(
1 − di

ni

)
(1)
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where ti is the period of study at point i, di is number of events up to point i
and ni is number of patients at risk prior to ti.

While the Kaplan-Meier method focused on a single risk factor, the Cox pro-
portional hazard model is used for multiple attributes. Our previous study ap-
plied the Cox proportional hazard model to analyze multiple attributes [10].

2.2 Rough Set Theory

In the early 1980s, rough set theory was developed by Pawlak [12]. Rough sets
were redefined using database operations, the computing times were improved
remarkably by using the database system directly [7,8,9,10,11]. This is one reason
why rough set theory is a leading approach in soft computing. In addition to
the soft computing ability, rough sets can derive decision rules from a decision
table efficiently and effectively. In general, a decision table S consists of rows
labelled by objects and columns labelled by attributes. The entries in the table are
described by attribute values. There are several ways to represent our knowledge.
If our goal is to express what must happen or what does happen when certain
conditions are met, then we can use decision rules. We usually express each
decision rule as an IF. . . THEN. . . statement. For example, “IF C is c1 THEN
D is d1”, where c1, c2 and d1, d2 are values that correspond to attribute C and
D, respectively. Issues related to preprocessing and derive decision rules from
survival analysis data can be found in [4,7,8,10,11]) and postprocessing in [9]. In
this article, we further analyze the postprocessing step of the acquired rules.

2.3 Recommendation Rules

In general, a decision rule can have more than one antecedent (combined either
by AND or OR logical operations). Similarly, a decision rule can have more than
one consequent. Antecedents or consequents can describe unary relations, e.g.,

Bangkok is raining. Bangkok has a lot of traffic.

Antecedent or consequent can describe binary relations, e.g.,

Bangkok has more traffic than Toronto.

Decision rules can describe relations, e.g.,

IF Bangkok has a lot of traffic THEN travel on the subway.
IF Bangkok is raining THEN bring an umbrella.

Here, we analyzed the relationship within decision rules and added expert knowl-
edge to generate a recommendation rule [13]. The following is an example of a
recommendation rule that takes a set of inputs and gives advice as a result.

IF Bangkok has a lot of traffic AND Bangkok is raining
THEN travel on the subway AND bring an umbrella.

We introduce two measurements that will be used in our system with our
recommendation rules. Given n, the total number of facts in the database, m
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the total number of rules, Ri is rule number i and pij is the priority of each fact
j for rule i, the rule priority is calculated from the value-pair condition attribute
that matched the fact as follows:

RULE PRIORITY (Ri) =
1
n

n∑

j=1

pij (2)

where i runs through 1, 2, . . . , m.
In some cases, a patient’s input might match more than one recommendation

rule and several rules are triggered. Our system will calculate the recommenda-
tion score from the rule quality [14], rule cover and rule priority (2) as follows:

RECOMMENDATION SCORE(Ri) = (RULE QUALITY (Ri)+RULE PRIORITY (Ri))

+
(

RULE COV ER(Ri)

n

)
. (3)

Only one recommendation rule will be fired if the highest recommendation
score exceeds the recommendation threshold, α. Otherwise, multiple recommen-
dation rules will be fired.

2.4 Recommender Systems

A recommender system is a decision support system that provides a person-
alized solution in a brief and clear form from the user’s given information. In
this study, we construct a recommender system based on rule-based systems.
A recommender system consists of three components: (i) a database of rules,
(ii) a database of facts and (iii) an inference engine [13]. First, the knowl-
edge base contains a set of rules that represent the knowledge possessed by
the system (e.g., from previous analysis). Second, the database of facts repre-
sents inputs to the system that are used to cause actions or derive recommen-
dations. Finally, the inference engine is the part of the system that generates a
recommendation. The inference engine uses the rules and facts when inferring
recommendations.

Our system uses deduction to reach a recommendation from a set of an-
tecedents, this is called forward chaining. This approach begins with a set of
facts and rules, and tries to find a way of using those rules and facts to deduce
a recommendation or a suitable action. To apply forward chaining, the first step
is to take the facts from the fact database and check if any (combination) of
these matches all the antecedents of the rules in the rule database. When all
the antecedents of a rule are matched by facts in the database, then this rule is
triggered. The rule is then fired, which means its conclusion is added to the facts
database. If the conclusion of the rule that has fired is an action or a recommen-
dation, then the system makes recommendations or actions take place. In our
study, the only action is to provide recommendations.
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Fig. 1. Our proposed web based recommender system

3 Methodology

3.1 System Design

Our health recommender system architecture is depicted in Fig. 1. In the left
half of Fig. 1, we show the data analysis techniques described and evaluated in
previous work [7,8,9,10,11]. The output is a set of rules, which form the basis
for recommendations. These rules create the fraction of the fact database which
supports the Inference Engine; tasked with providing recommendations based
on the user’s input and the known facts. The fact database also contains the
information required by the explanation system, the part of the system which
helps users understand their recommendation. This user support can take the
form of explanation of symptoms and terminology, side effects of treatments or
contact information of local resources.

Once the rules have been created and the fact database populated, the en-
tire system can be deployed on a single machine (in the case of a kiosk) or a
client-server model may be used (in the case of web-based deployment). Our
first prototype will use a web-based user interface because of the simplicity of
implementation and deployment. The recommendation system can continue to
be provided from a web interface, but public kiosks are required for maximum
accessibility (many of the target users do not own personal computers).

3.2 Privacy and Data Collection

In the prototype phase, collection of data will provide important feedback on
the system’s use, allowing for improvements. Collection of personal data creates
privacy issues, which are magnified when the data describes one’s health. Users
may avoid a system if they are not confident that it protects their private in-
formation. For this reason, privacy (as well as security) should be considered
during the development of any system which stores personal information.
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The exact mechanism used to provide privacy depends on the details of de-
ployment, however the basic strategy will be to collect data anonymously. When
collecting information from the user, the system will not require or store, Iden-
tifying information. Stronger privacy assurance [15] requires the development of
a model, and is outside the scope of this work.

4 A Case Study

In this section, we provide a case study based on a geriatric data set [7,8,9,10,11].
In our previous studies, rough sets approaches and several pertinent techniques
were used to generate reducts and dispensable attributes [7,8,10,11]. Table 1
displays the decision rules, their rule qualities [14] and rule cover [14] from
[7,8,9,10,11]. Attributes {takemed} and {walk} are dispensable attributes [8].

Table 1. Geriatric survival prediction rules database

Decision Rules Rule Rule
Quality Cover

IF (edlevel!=2 or 4) and (0<shopping≤0.5) and (meal≤0)and (trouble>0) and 1.969635 13
(livealo>0) and (sneeze≤0) and (hbp≤0) and (eyetrou≤0) and (feet≤0) and
(nerves≤0) and (sex>1)
THEN (survival time = 7–18 months)
IF (housew>0) and (cough≤0) and (tired≤0) and (hbp≤0) and (eyetrou≤0) and 1.935979 12
(kidney>0) and (bowels≤0) and (nerves≤0) and (2<age6≤4)and (sex>1)
THEN (survival time = 7–18 months)
... ... ...
IF (edlevel!=2) and (eyesi≤0) and (health>0) and (trouble≤0) and (sneeze≤0) 1.012614 1
and (heart≤0) and (arthriti≤0) and (eyetrou>0) and (dental≤0) and (chest≤0)
and (kidney≤0) and (bladder≤0) and (feet≤0) and (skin≤0) and (age6≤1)
THEN (survival time = 7–18 months)

Table 2. Fact database of geriatric

Facts Priority Facts Priority Facts Priority Facts Priority
eyesi < 0.25 0.3 hear < 0.25 0.3 eat = 0 0.1 cough = 0 0.2
tired = 0 0.1 sneeze = 0 0.2 hbp = 0 0.5 heart = 0 1.0
arthriti = 0 1.0 stroke = 0 0.8 parkinso = 0 1.0 eyetrou = 0 0.2
eartrou = 0 0.2 dental = 0 0.4 chest = 0 1.0 stomac = 0 0.9
kidney = 0 0.9 bladder = 0 0.8 bowels = 0 0.8 diabet = 0 1.0
feet = 0 0.1 nerves = 0 0.9 skin = 0 0.6 fracture = 0 0.9
age6 > 3 0.7

The Kaplan-Meier method, p-value, Log-rank, Brewslow and Tarone-Ware
tests [8] were used to generate the life time table and Kaplan-Meier survival
curves. Our system then analyzed the curves together with the results from rough
sets to obtain the risk factors [8,10,11]. ELEM2 by An and Cercone [14] was
successively used to derive survival prediction rules with its heuristic approaches.
Only the rules that have critical survival time (7-18 months) are selected for to
provide recommendations. Table 2 shows our fact database. The priority range
is [0, 1] (where 1 is the highest priority). Please note that, {age} is included in
the fact database but we will not recommend any test for this fact. We then use
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Table 3. Recommendation rules of geriatric in the knowledge base

Recommendation Rules Rule Rule Rule
Quality Cover Priority

IF (edlevel!=2 or 4) and (0<shopping≤0.5) and (meal≤0) and (trouble>0) 1.969635 13 0.076
and (livealo>0) and (sneeze≤0) and (hbp≤0) and (eyetrou≤0) and (feet
≤0) and (nerves≤0) and (sex>1)
THEN (test sneeze) and (test hbp) and (test eyetrou) and (test feet) and
(test nerves)
IF (housew>0) and (cough≤0) and (tired≤0) and (hbp≤0) and (eyetrou 1.935979 12 0.136
≤0) and (kidney>0) and (bowels≤0) and (nerves≤0) and (2<age6≤4)
and (sex>1)
THEN (test cough) and (test tired) and (test hbp) and (test eyetrou) and
(test bowel) and (test nerve)
... ... ... ...
IF (edlevel!=2) and (eyesi≤0) and (health>0) and (trouble≤0) and (sneeze 1.012614 1 0.252
≤0) and (heart≤0) and (arthriti≤0) and (eyetrou>0) and (dental≤0) and
(chest≤0) and (kidney≤0) and (bladder≤0) and (feet≤0) and (skin≤0)
and (age6≤1)
THEN (test eyesi) and (test sneeze) and (test heart) and (test arthriti)
and (test dental) and (test chest) and (test kidney) and (test bladder) and
(test feet) and (test skin)

Table 4. Example input and output

Example input Example output
IF (edlevel!=2 or 4) and (0 < shopping < 0.5)
and (meal≤0) and (trouble≥0) and (livealo ≥0)
and (sneeze≤0) and (hbp≤0) and (eyetrou≤0)
and (feet≤0) and (nerves≤0) and (sex>1)
THEN (survival time = 7-18 months)

Recommended clinical examinations: sneeze,
high blood pressure, eye trouble, feet, nerves

the facts from Table 2 to calculate the rule priority (Sect. 2.3) and add it to
the rules in Table 1. The rules in Table 1 are transformed to decision rules to
recommend tests and stored in our knowledge base (Table 3).

For an example of how the rule priority is calculated, take the first rule in
Table 1. Its rule priority is equal to (0.2 + 0.5 + 0.2 + 0.1 + 0.9)/25 = 0.076
where n = 25. The conclusion (action) of the rule are the tests: (test sneeze),
(test hbp), (test eyetrou), (test feet) and (test nerves) that match the facts in
Table 2. When a user inputs their data into our system, if the prediction is a
critical case (survival time 7–18 months), our recommendation system (right part
of Fig. 1) will start its analysis. For example, suppose input was as in Table 4.
This patient’s input matches the first recommendation rule and does not match
any other rule. We trigger the first recommendation rule and fire the action
of first recommendation rule. The tests recommended to the user are shown in
Table 4.

5 Concluding Remarks and Future Works

We have proposed a health recommendation system architecture using rough
sets, survival analysis and rule-based expert systems. Our system was designed
with the goal of providing accurate, low-cost clinical examination recommen-
dations given patients’ self reported data. In countries where health care costs
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are prohibitively expensive, this system can provide a free alternative. Our sys-
tem generates not only decision rules but also applicable recommendations for
patients. Our future works will complete the implementation of the prototype
system. Heuristics to include clinical examination costs will also be investigated.
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Abstract. At first, we discuss the basic structure of the fuzzy system as a 
simple yet powerful fuzzy modeling technique. Neural networks and fuzzy 
logic models are based on very similar underlying mathematics. The similarity 
between RBF networks and fuzzy models is noted in detail. Then, we propose 
the extension of RBF neural networks by the cloud model. Time series 
approximation and prediction by applying RBF neural networks or fuzzy 
models and comparisons between the various types of RBF networks and 
statistical models are discussed at length. 

Keywords: Probabilistic time-series models, fuzzy system, classic and soft 
RBF network, cloud models, granular computing. 

1   Introduction 

In most studies of identification of processes by using input-output data, it is assumed 
that there exists a functional structure between the input and the output. It is, however, 
very unrealistic to substitute a non-linear process by a simple linear mapping. More 
sophisticated approaches are frequently considered. The fuzzy systems and the fuzzy 
controllers are among them. The fuzzy system consists of series of fuzzy rules each of 
which takes the form of a “if ... then ...” sentence. 

Basically there are two ways for automatic formation of fuzzy relations. The first 
one is based on clustering methods [7]. The second is based on neural networks [4]. 
Neural networks can adaptively generate the fuzzy rules in a fuzzy system by 
supervised or unsupervised competitive learning, which is also in fact the product-
space clustering technique. We have illustrated this approach in [6]. A class of neural 
networks, i. e. the feed-forward networks have been proven to be capable of 
representing various complex nonlinear input-output mappings.  

In this paper, we consider the approximation ability of ARMA models and models 
based on fuzzy systems to “explain” the behaviour of time-series variables. In 
addition, we explore some of the more important specifications associated with 
approximation of time-series variables using RBF networks.  
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The paper is organised into 5 Sections. The main constructs of fuzzy system 
architecture will be briefly introduced in the next Section. In Section 3 we introduce 
the architecture of RBF neural networks with the aim to highlight its mathematical 
similarity to the fuzzy system. In Section 4, we demonstrate the approximation 
abilities of RBF neural networks on an application and compare them with the 
statistical approach. Conclusions are offered in Section 5. 

2   Fuzzy Systems 

Fuzzy systems are structures to estimate input-output functions of modelled systems 
from sample data. This section concentrates on the basic principles of identifying 
input-output functions of systems using fuzzy systems. Fuzzy systems theory have 
been recently consolidated and presented by B. Kosko [5]. 

 

Fig. 1. Fuzzy system architecture 

The basic fuzzy system architecture is shown in Fig. 1. In this architecture the 
fuzzy system maps input fuzzy sets A to output fuzzy sets B. The fuzzy inference 
computes the output fuzzy sets iB′ , weights them with the weights wi, and sums to 

produce the output fuzzy set B, i.e. 

∑ ′=
i

ii BwB  (1) 

The fuzzy system is distributed and consists of a series of a separate fuzzy rules 
(relations) of the type of  if Ai then Bi.  

Centroidal output converts fuzzy sets vector B to a scalar. The most popular 
centroidal defuzzification technique uses all the information in the fuzzy distribution 
B to compute the crisp y value as the centroid y~  or centre of mass of B, i. e. 

∫∫
∞

∞−

∞

∞−

= dyydyyyy BB )(/)(~ μμ  (2) 

where Bμ  represents the union of all clipped output fuzzy sets. When the output 

membership functions are singletons, then, in the case of an kℜ →ℜ  function, Eq. 
(2) becomes 
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∑∑
==

=
n

j
j

n

j
jj xxyy

11

)(/)(~ μμ  (3) 

where jy  stands for the centre of gravidity of the jth output singleton, the notation μ  

is used for a membership function and n denotes the number of rules. 
As mentioned earlier the output fuzzy sets can be calculated if all the separated 

fuzzy rules are known and the weights are determined. As in fuzzy logic systems all 
operations involve sets, the amount of calculation per inference rises dramatically. In 
a fuzzy system, powerful tools for generating fuzzy rules purely from data are neural 
networks. In next section we show, how to obtain fuzzy rules and how to determine 
the weights wi for fuzzy system using RBF networks.  

3   RBF Neural Network Implementation of Fuzzy Logic 

As shown above, fuzzy systems offer methodologies for managing uncertainty in 
a rule-based structure. In this section, RBF neural network structures are used (see 
Fig. 2) as a tools of performing fuzzy logic inference for fuzzy system depicted in Fig. 
1. We propose the neural architecture according to the Fig. 2 whereby the a priori 
knowledge of each rule is embedded directly into the weights of the network. 

The structure of a neural network is defined by its processing units and their 
interconnections, activation functions, methods of learning and so on. In Fig. 2, each 
circle or node represents the neuron. This neural network consists an input layer with 
input vector x  and an output layer with the output value tŷ . The layer between the 

input and output layers is normally referred to as the hidden layer. Here, the input 
layer is not treated as a layer of neural processing units. One important feature of RBF 
networks is the way how output signals are calculated in computational neurons. The 
output signals of the hidden layer are  

)(2 jjo wx −=ψ  (4) 

where x  is a k-dimensional neural input vector, jw  represents the hidden layer 

weights, 2ψ  are radial basis (Gaussian) activation functions. Note that for an RBF 

network, the hidden layer weights jw  represent the centres jc  of activation functions 

2ψ . 

The output layer neuron is linear and has a scalar output given by ŷ  = ∑
=

s

j
jjov

1

 

where jv  are the trainable weights connecting the component of the output vector o . 

Then, the output of the hidden layer neurons are the radial basic functions of 
a proximity of weights and input values. A serious problem is how to determine the 
number of hidden layer (RBF) neurons. The most used selection method is to 
preprocess training (input) data by some clustering algorithm. After choosing the 
cluster centres, the shape parameters jσ  must be determined. These parameters 
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Fig. 2. RBF neural network architecture 

express an overlapping measure of basis functions. For Gaussians, the standard 
deviations jσ  can be selected, i. e. jσ ~ cΔ  where cΔ denotes the average distance 

among the centres. 
To show the similarity of the RBF neural network and the fuzzy system, consider 

again the scalar output ŷ . The RBF network computes the output data set as 

tŷ  = ),,( vcx tG  = ∑
=

s

j
jttjv

1
2, ),( cxψ  = ∑

=

s

j
tjjov

1
, ,       t = 1, 2, ..., N (5) 

where N is the size of data samples, s denotes the number of the hidden layer neurons. 

The hidden layer neurons receive the Euclidian distances )( jcx −  and compute the 

scalar values tjo ,  of the Gaussian function ),(2 jt cxψ  that form the hidden layer 

output vector to . Finally, the single linear output layer neuron computes the weighted 

sum of the Gaussian functions that form the output value of tŷ . 

If the scalar output values tjo ,  from the hidden layer will be normalised, where the 

normalisation means that the sum of the outputs from the hidden layer is equal to 1, 
then the RBF network will compute the “normalised” output data set ty  as follows 

ty  = ),,( vcx tG  =

∑
∑
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ψ
, t = 1, 2, ..., N. (6) 

The similarity of approximation schemes (6) and (3) is obvious. From these 
schemes is shown that the weights tjv ,  in Eq. (6) to be learned correspond to iw  in 

Eq. (1), and .)/(. 2ψ  to )(xjμ  in Eq. (3). Thus, the adaptive fuzzy system depicted in 

Fig. 1 uses neural techniques to abstract fuzzy principles and to choose the weights 

iw , and gradually refine those principles as the system samples new cases. These 
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properties were firstly recognised by V. Kecman [3]. In Fig. 2, the network with one 
hidden layer and normalised output values tjo ,  is the fuzzy logic model or the soft 

RBF network.  
Next, to improve the abstraction ability of soft RBF neural networks with 

architecture depicted in Fig. 2, we replaced the standard Gaussian activation 
(membership) function of RBF neurons with functions based on the normal cloud 
concept.  

Definition: Let U be the universe of discourse. A is a qualitative concept valued on 
U. The certainty degree )(xAμ  of a random sample x of A in U to the concept A is 

a random number with a stable tendency. Then the distribution of x on U is called 
a cloud model and x is called a cloud drop. 

Cloud models are described by three numerical characteristics [2]: Expectation 
(Ex) as most typical sample which represents a qualitative concept, Entropy (En) as 
the uncertainty measurement of the qualitative concept and Hyper Entropy (He) 
which represents the uncertain degree of entropy. En and He represent the granularity 
of the concept, because both the En and He not only represent fuzziness of the 
concept, but also randomness and their relations. This is very important, because in 
economics there are processes where the inherent uncertainty and randomness are 
associated with different time. Then, in the case of soft RBF network, the Gaussian 

membership function .)/(. 2ψ  in Eq. (6) has the form 

),( 2 jt cxψ  = [ ]2)(2/)((exp nEE jt ′−− xx  = [ ]2)(2/)(exp nEjt ′−− cx  (7) 

where nE ′  is a normally distributed random number with mean En  and standard 
deviation He , E is the expectation operator. In order to keep the paper at a desirable 
length, the reader should refer to the references cited in this section for more profound 
theoretical background. 

4   An Application 

We illustrate the classic, fuzzy logic (soft) and cloud (granular) RBF neural networks 
on the input – output function estimation of a sales process. The time plot of the data 
set used in this application (the 724 daily sales for Hansa Flex company, 2004-2005) 
is shown in Fig. 3.  

Statistical models chosen after some experimentation using the Statgraphics 
procedures were  

ttt yy εφ += −71    or (8) 

tttt yy εεθ +=− −− 717 . (9) 

Both statistical models have typical seasonal behavior with the seventh lag. Fitted 
models have the following forms: 71248.0ˆ −−= tt yy  or 77 93868.0 −− =− ttt yy ε  
respectively. The usual diagnostic checking procedures according to Box & Jenkins 
[1] do not reveal any inadequacies in these models. The Box-Jenkins theory was also  
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Fig. 3. Daily sales from January 2004 to December 2005 

used to specify the neural input variables. As shown from Eq. (8) and (9), these 
variables are here 7−ty  and 7−tε  respectively. 

In the RBF neural network framework, the non-linear function f(x) was estimated 
according to the expressions in Eq. (5). In the case of RBF fuzzy logic network, the 
non-linear input – output approximation function was estimated according to the 
formula (6). Next, the fuzzy logic RBF neural network was extended towards 
estimation with (a priori known) noise levels of the entropy. Noise levels are 
indicated by hyper entropy. It is assumed that the noise level is constant over time. 
We select, for practical reasons, that the noise level is a multiple, say 0.015, of 
entropy. In Table 1, we give the achieved results of approximation ability in 
dependence on various number of RBF neurons. The mean square error (MSE) was 
used to measure the approximation ability. 

The mean (centre), standard deviation of the clusters (RBF neurons) are computed 
using K-means algorithm. The data used are the same as used in the previous 
 

Table 1. The MSE´s measures of approximation accuracy of various RBF networks related to 
the different number of clusters (RBF neurons) 

Numb. 
of RBF 
Neurons 

NNW 
Archite-

cture: 

Gausian 
Classic RBF 

Soft 
RBF 

Classic with 
Normal Cloud 
Concept 

Soft with 
Normal Cloud 
Concept 

RBF network representations for model (8): 
3 1.439 0.698 1.503 0.729 
5 0.729 0.693 0.817 0.716 
10 0.687 0.675 0.671 0.678 
15 0.697 0.681 0.681 0.678 
RBF network representations for model (9): 
3 0.783 0.646 0.786 0.647 
5 0.810 0.632 0.803 0.630 
10 0.607 0.571 0.607 0.571 
15 0.582 0.563 0.582 0.563 
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statistical models. As shown in Table 1, models that generate the “best” MSE´s are 
soft RBF networks.  

Comparing both approaches, i. e. the models based on the Box-Jenkins 
methodology (the MSE for model expressed by Eq. (8) is 0.7793 and by Eq. (9) is 
0.74606 respectively), and the models based on RBF networks approaches, we clearly 
see that models based on RBF networks are better approximation models because the 
estimated values are close to the actual values.  

Table 2. The MSE´s measures of ex post forecast accuracy of various RBF networks related to 
the different number of clusters (RBF neurons) 

Numb. 
of RBF 
Neurons 

NNW 
Archite-

cture: 

Gausian 
Classic RBF 

Soft 
RBF 

Classic with 
Normal Cloud 
Concept 

Soft with 
Normal Cloud 
Concept 

RBF network representations for model (8): 
3 1.6634 0.8602 1.6092 0.8488 
5 0.8509 0.8377 0.8489 0.8338 
10 0.8055 0.8359 0.8051 0.8346 
15 0.8433 0.8480 0.8391 0.8026 
RBF network representations for model (9): 
3 0.8452 0.6869 0.8451 0.6879 
5 0.8806 0.6548 0.8801 0.6549 
10 0.6600 0.6241 0.6649 0.6245 
15 0.6307 0.6248 0.8795 0.6052 

 
Next, a forecast model was produced. Forecasts are provided during the ex post 

forecast period ( 525y , …, 724y , i. e. the sample period ends with observation 524y ). 

Table 2 presents the MSE´s measures of ex post forecast accuracy. As can be seen 
from Table 2, the soft RBF networks have indeed a forecasting power: if anything, it 
seems that they manage to forecast better than other RBF network architectures. 

4   Conclusion 

In this article, we have extended RBF neural network methodology to approximate 
the non-linear time series data using normal cloud models in the role of standard 
Gaussian activation (membership) function for RBF neurons. This was done by 
formulating a hyper entropy of standard deviation (entropy) of the Gaussian cloud 
model. 

To approximate the input-output function of a business process, the RBF neural 
network approach was applied on the daily sales data of the Hansa Flex company and 
compared with an approach based on statistical procedures. For the sake of 
approximation abilities we evaluated 34 models. Two models are based on the Box-
Jenkins time series analysis approach, and 32 models are based on the neural (fuzzy 
logic) methodology. Using the disposable data a very appropriate model is the soft 
RBF network with activation functions based on the granular concept. It is also 
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interesting to note that the most computationally intensive models, the model based 
on the Box-Jenkins methodology, is newer considered “best”. 
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Abstract. Support vector machine (SVM) is a class of popular learning 
algorithms for good generalization. However, it is time-consuming in training 
SVM with a large set of samples. How to improve learning efficiency is one of 
the most important research tasks. It is known although there are many 
candidate training samples in learning tasks only the samples near decision 
boundary have influence on classification hyperplane. Finding these samples 
and training SVM with them may greatly decrease time and space complexity 
in training. Based on the observation, we introduce neighborhood based rough 
set model to search boundary samples. With the model, we divide a sample 
space into two subsets: positive region and boundary samples. What’s more, we 
also partition the features into several subsets: strongly relevant features, 
weakly relevant and indispensable features, weakly relevant and superfluous 
features and irrelevant features. We train SVM with the boundary samples in 
the relevant and indispensable feature subspaces, therefore simultaneous feature 
and sample selection is conducted with the proposed model. Some experiments 
are performed to test the proposed method. The results show that the model can 
select very few features and samples for training; and the classification 
performances are kept or improved. 

Keywords: neighborhood rough sets, feature selection, sample selection, SVM. 

1   Introduction 

In last decade, we are witnessing great success of support vector machines (SVM) in a 
lot of theoretic research and practical applications. However, SVM learning 
algorithms suffer from exceeding time and memory requirements if training pattern 
set is very large because the algorithm requires solving a quadratic programming (QP) 
with time complexity )( 3MO  and space complexity )( 2MO , where M  is the 
number of training samples [1].  In order to deal with the large scale quadratic 
programming, one major method is the decomposition based techniques, which 
decompose the large QP problem into a set of smaller problems so that the memory 
difficulty is avoided. However, for huge problems with many support vectors, the 
method still suffers from slow convergence. 

In [2], Cortes and Vapnik showed that the weights of optimal classification 
hyperplane in feature space can be written as linear combination of support vectors, 
which shows optimal hyperplane is independent of other training samples except 
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support vectors. One can select a part of the samples, so-called support vectors, to 
train SVM, rather than the whole training set. In this way, the learning time and space 
complexity may be greatly reduced [3, 4]. Based on this observation, some researches 
were reported to select patterns for SVM. Lee and Mangasarian [5] chose a random 
subset of the original samples and then learning classification plane with the subset. 
However, it is not clear how many samples should be included in the random subset. 
Almeida et al. [6] grouped the training samples into some clusters with k-means 
clustering, and the clusters with homogeneous class are replaced with the centroids of 
the clusters. Obviously, it is difficult to specify the number of clusters with a complex 
learning task. Koggalage and Halgamuge [7] gave a clustering based sample selection 
algorithm for SVM, where they assumed that the cluster centers were known in 
advance. In real-world applications, it is not the case. Shin proposed a neighborhood 
entropy based samples selection algorithm, which uses local information to identify 
those patterns likely to be located near decision boundary. They associated each 
samples with k nearest neighbors, then checked whether the neighbors came from 
multiple classes based on entropy measure [3]. Furthermore, they gave the proof that 
neighborhood relation between training samples in input space is preserved in feature 
space [4].  

In fact, neighborhood relations were used to extend Pawlak’s rough set model 
about twenty years ago [8, 9, 11]. Each object is assigned a subset of objects which 
are near the center object. This subset is called a neighborhood information granule. 
The family of neighborhood granules forms a cover of the object space. Arbitrary 
subset of the universe can be approximated with part of the neighborhood granules. 
Connecting the definition of boundary in neighborhood model and that presented in 
[3], we can find that they refer to the same nature but in different forms. 
Neighborhood rough sets present a more sound and systematical framework about this 
problem. Feature subset selection is an efficient technique to improve generalization 
and reduce classification cost [10, 14]. In this paper, we will introduce neighborhood 
rough set model to simultaneous select features and samples for training support 
vector machines.  

2   Neighborhood Based Rough Set Model 

Both rough sets and SVM deal with learning problems with structural data. Formally, 
the data can be written as a tuple >=< fVAUIS ,,, , where, U is the nonempty set of 

samples },,,{ 21 nxxx , called a universe, A  is the nonempty set of variables 

},,,{ 21 maaa , aV  is the value domain of attribute a; f is the information function: 

VAUf →×: . More specially, >< fVAU ,,,  is also called a decision table if 

DCA ∪= , where C is the set of condition attributes, D  is the decision.  

Definition 1. Given arbitrary Uxi ∈  and CB ⊆ , the neighborhood )( iB xδ  of ix  in 

the subspace B is defined as 
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}),(,|{)( δδ ≤Δ∈= jijjiB xxUxxx ,  

where Δ  is a metric function. 
A neighborhood relation Ν over the universe can be written as a relation matrix 

( )
nnijrM

×
=Ν)(  where 

⎩
⎨
⎧ ≤Δ

=
otherwise

xx
r ji
ij      ,0

),(  ,1 δ
. 

It is easy to show that Ν satisfies 1) reflexivity: 1=iir ; 2) symmetry: jiij rr = . 

Definition 2. Consider a metric space >Δ< ,U , Ν  is a neighborhood relation on U , 

}|)({ Uxx ii ∈δ is the family of neighborhood granules. Then we call >ΝΔ< ,,U  a 

neighborhood approximation space. 

Definition 3. Given neighborhood approximation space >ΝΔ< ,,U , UX ⊆ , two 
subsets of objects, called lower and upper approximations of X, are defined as 

},)(|{ UxXxxX iii ∈⊆=Ν δ , },)(|{ UxXxxX iii ∈∅≠=Ν ∩δ . 

The boundary region of X  in the approximation space is formulated as 

XXBNX Ν−Ν=  

Definition 4. Given a decision table >=< fVDCUNDT ,,, ∪ , NXXX ,,, 21  are 

the object subsets with decisions 1 to N, and )( iB xδ  is the neighborhood information 

granules including ix  and generated by attributes CB ⊆ , Then the lower and upper 

approximations of the decision D with respect to attributes B are defined as 

iB

N

i
B XD Ν=Ν

=1
∪ , iB

N

i
B XD Ν=Ν

=1
∪ . 

The decision boundary region of D with respect to attributes B is defined as  

DDDBN BB Ν−Ν=)( . 

Decision boundary is the object subset whose neighborhoods come from more 
than one decision class and the lower approximation of decision, also called positive 
region of decision, denoted by )(DPOSB , is the subset of objects which 

neighborhoods consistently belong to one of the decision classes. It is easy to show 
UDBNDPOS B =)()( ∪ . Therefore, the neighborhood model divides the samples 

into two groups: positive region and boundary.  

Definition 5. Dependency of D to B is defined as the ratio of consistent objects: 

||

|)(|
)(

U

DPOS
D B

B =γ . 
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Definition 6. Giving >< fVDAU ,,, ∪ , AB ⊆ , we say attribute subset B is a 

relative reduct if  
1) )()( DD AB γγ = ; 2) )()(, DDBa aBB −>∈∀ γγ . 

The first condition guarantees that )()( DPOSDPOS AB = . The second condition 

shows there is no superfluous attribute in the reduct. Therefore, a reduct is the 
minimal subset of attributes which has the same approximating power as the whole 
attribute set. This definition presents a feasible direct to find optimal feature subsets. 

Let >< fVDAU ,,, ∪  be a decision table and }|{ rjB j ≤ is the set of reducts, 

we denote the following attribute subsets: 

j
rj

BCore
≤

= ∩ , CoreBK j
rj

−=
≤
∪ , CoreBK jj −= , j

rj
BAI

≤
−= ∪ . 

Definition 7. Core is the attribute subset of strong relevance, which cannot be 
deleted from any reduct, otherwise the prediction power of the system will decrease. 
Namely, Corea ∈∀ , )()( DD AaA γγ <− . Therefore the core attributes will be in all of 

the reducts. I is the completely irrelevant attribute set. The attribute in I  will not be 
included in any reduct, which means I  is completely useless in the system. jK  is a 

weak relevant attribute set. The union of Core  and jK  forms a reduct of the 

information system. Given a feature subset ikcoreB ∪= , then jka ∈∀ , ij ≠ , is 

said to be redundant. 
Training SVM just with the boundary samples in the reduced attribute subspace 

will speedup the learning process, improve generalization power of trained classifiers 
and reduce the cost in measuring and storing data. The following section will present 
the algorithms to search reducts and discover boundary samples. 

3   Algorithm Design 

In this section we will construct two algorithms for feature selection and boundary 
sample discovery, respectively. First we find a feature subset based on the 
neighborhood rough set model with the proposed algorithm. Then we search 
boundary samples in the reduced subspaces. 

The motivation of rough set based feature selection is to select a minimal attribute 
subset, which has the same characterizing power as the whole attribute set, and 
without any redundant attribute. 

Definition 8.  Given >< DAU ,, , AB ⊆ , Ba ∉ , the significance of an attribute is 
defined as 

)()(),,( DDDBaSIG BaB γγ −= ∪ . 

Considering time complexity, we introduce the forward search strategy to find a 
reduct. 
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Algorithm: Forward Attribute selection based on neighborhood model  
Input: >< dAU ,,  and δ  // δ  is the threshold to control the size of neighborhood 

Output: reduct red  
Step 1: red→∅ ; // red  is the pool to contain the selected attributes 
Step 2: For each redAai −∈ , compute )()(),,( DDDBaSIG rediaredi γγ −= ∪ ,  

Step 3:  select the attribute ka which satisfies: 

)),,((max),,( BredaSIGDBaSIG i
i

k =  

Step 4:  if 0),,( >DBaSIG k , 

redared k →∪   

go to step2 
              else  

return red   
 

Here the algorithm adds an attribute with the great increment of dependence into the 
reduct in each circle until the dependence does not increase, namely, adding any new 
attribute will not increase the dependence in this case. The time complexity of the 
algorithm is )( NN ×Ο , where N is the number of candidate attributes. 

This algorithm finds the positive region samples for evaluating the significance of 
attributes in step 2. According to the property showed in section 2, we know 

)()( DPOSUDBN B−= . So, boundary samples can be computed in this algorithm. 
However, the aim of attribute reducion is to find feature subset which can distinguish 
the samples. It is different from discovering boundary samples. To support separating 
hyper-plane, one requires a set of boundary samples with an appropriate size. Too few 
boundary samples are not enough to support the optimal hyper-plane. Therefore, on 
one hand, we should delete most of the samples in the positive region; on the other 
hand, we should keep enough samples near the decision boundary to support the 
optimal hyper-plane. The value of δ  depends on applications. Generally speaking, if 
the inter-class distance of a learning sample set is large, we should assign δ  with a 
large value to get enough boundary samples to support the optimal hyperplane. 

4   Experimental Analysis 

First, let’s see two toy examples in figure 1. There are two typical classification 
problems. The first one is a binary classification problem with circle classification 
plane. The second one is 4×4 checkerboard problem. Figures 1-1 and 1-5 show the 
raw sample set. Figures 1-2 and 1-6 show the optimal classification planes trained 
with the raw data. While figures 1-3 and 1-7 show the boundary samples found with 
neighborhood rough set model. Finally, 1-4 and 1-8 present the optimal planes trained 
with the boundary samples only. We can see that two kinds of separating planes are 
quite similar although most of learning samples don’t take part in training process in 
the second algorithm. 
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Fig. 1. Illustrative examples 

In order to test the proposed algorithms, some data sets are collected, outlined in 
table 1. 

Table 1. Data description 

 Data set Abbreviation Samples features Classes 

1 Ionosphere Iono 351 34 2 

2 Sonar, Mines vs. Rocks Sonar 208 60 2 

3 Small Soybean Soy 47 35 4 

4 Diagnostic Breast Cancer WDBC 569 31 2 

5 Prognostic Breast Cancer WPBC 198 33 2 

6 Wine recognition Wine 178 13 3 

First, we compare the feature selection algorithms based on neighborhood model 
with other existing methods reported in literatures. Table 2 shows the numbers of 
selected features and classification accuracies based on neighborhood rough set model 
with different distance metrics. Before conduct the reduction, all the numerical 
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attributes are normalized into interval [0, 1]. We use the selected features to train 
RBF-SVM, and find that average classification accuracies of infinite norm 
neighborhood model are better than the other two, and then is 1-norm neighborhood 
model. However, the numbers of features based on 1-norm are half of the features 
selected with ∞ -norm. If we consider the cost of decision in measuring and storing 
the features, sometimes we maybe prefer the solution found with 1-norm model; 
especially, the average number of features in the raw data is 34.17, while there are 
just 4.67 features in the reduced data.  

Table 2. Feature numbers with three definitions of neighborhoods, 125.0=δ  

 1-norm 2-norm Infinite-norm 

 N accuracy N accuracy N accuracy 

Iono 6 0.91±0.05 9 0.93±0.05 12 0.93±0.06 

Sonar 5 0.78±0.11 6 0.75±0.13 7 0.84±0.08 

Soy 2 1.00±0.00 2 1.00±0.00 2 1.00±0.00 

WDBC 6 0.96±0.03 8 0.97±0.02 21 0.98±0.02 

WPBC 5 0.76±0.03 6 0.76±0.03 11 0.78±0.08 

Wine 4 0.96±0.03 5 0.95±0.04 6 0.98±0.04 

Aver. 4.67 0.8969 6 0.8933 9.83 0.9187 

Table 3 shows the comparison of numbers of selected features and accuracies with 
the reduced data, where, the first two columns present the numbers of features in the 
raw data and accuracies; then the second two columns are the numbers of selected 
features with classical rough set algorithm proposed in [15] and the corresponding 
classification accuracies with the reduced data; consistency based algorithm was 
proposed in [16]; while fuzzy entropy based method was introduced in [10]. 
Comparing table 2 and table 3, we can see that the performance of all the feature 
subset selection algorithms is comparable. Although fuzzy entropy based method get 
the best classification accuracy, it requires the most features in these algorithms.  
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Table 3. Numbers of features and accuracies with different feature selection algorithms 

 Raw data Classical rough sets consistency Fuzzy entropy 

Data N Accuracy N Accuracy  N Accuracy N Accuracy 

Iono 34 0.94±0.05 10 0.93±0.05 9 0.95±0.04 13 0.95±0.04 

Sonar 60 0.850±0.09 6 0.71±0.10 6 0.78±0.07 12 0.83±0.09 

Soy 35 0.93±0.11 2 1.00±0.00 2 1.0±0.00 2 1.00±0.00 

Wdbc 30 0.98±0.02 8 0.96±0.02 11 0.96±0.02 17 0.97±0.02 

Wpbc 33 0.78±0.04 7 0.78±0.05 7 0.76±0.03 17 0.81±0.06 

Wine 13 0.99±0.02 4 0.95±0.05 4 0.95±0.05 9 0.98±0.03 

Aver. 34 0.9111 6.17 0.8899 6.5 0.9010 11.67 0.9226 

Table 4. Classification results based on 10-fold cross validation 

1-norm feature 
1-norm feature +1-norm 

boundary 

1-norm feature +2-norm 

boundary 
Data 

B SV accuracy B SV accuracy B SV accuracy 

Iono 351 111 0.91 0.05 217 101 0.92 0.05 171 91 0.91 0.05 

Sonar 208 130 0.78 0.11 120 113 0.75 0.11 142 122 0.78 0.11 

Wdbc 569 104 0.96 0.03 95 89 0.96 0.03 128 95 0.96 0.03 

Wpbc 198 93 0.76 0.03 59 51 0.76 0.03 88 73 0.75 0.03 

Wine 178 70 0.94 0.05 86 65 0.94 0.05 73 61 0.94 0.06  
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In table 4, as to wdbc, wpbc and wine, only a minority of the raw samples are 
selected as boundary (denoted by B), and most of the samples are not involved in 
training. The training process will be greatly speeded up with the reduced data. At the 
same time, we can find that average classification accuracies don’t decrease compared 
with the results trained with the whole sample set, which shows that the boundary 
samples selected with neighborhood model are able to support the optimal 
classification hyperplane. 

5   Conclusion 

 In this paper, we show a neighborhood rough set based algorithm to segment samples 
set into positive region and boundary. And we collect boundary samples to train 
SVM. What’s more, neighborhood model also divides features into four subsets. We 
train SVM with the selected sample subset in the reduced feature subspaces. 
Experimental results show that the proposed method can exactly discover boundary 
samples of complex classification problems and the attribute reduction algorithm 
based on neighborhood rough sets is able to select minority of features and keep the 
similar classification power. So the proposed method reduces the data in terms of 
samples as well as features.  
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Abstract. Influence diagrams have been widely used as knowledge bases
in business and engineering. In conventional influence diagrams, the nu-
merical models of uncertainty are probability distributions associated
with chance nodes and value tables for value nodes. However, when im-
precise knowledge from large-scaled data set is involved in the systems,
the suitability of probability distributions is questioned. This study pro-
poses an alternative numerical model for influence diagrams: rough sets.
In the proposed framework, the causal relationships among the nodes
and the decision rules are expressed with rough sets from information
systems. This study develops rough set-based framework in influence di-
agrams with an illustrative example.

Keywords: Rough sets, decision rules, Bayes’ theorem, influence dia-
grams.

1 Introduction

Influence diagrams are a graphical technique for a decision problem under un-
certainty [1,3,12], which have been widely used as knowledge representation and
decision models [2,3,4,11,12]. Influence diagrams were originally proposed as a
compact representation of decision trees for symmetric decision scenarios, and
now regarded more as an extension of Bayesian networks [10]. Various methods
have been developed for learning or evaluating influence diagrams [2,3,4,11,12].
In previous investigations, the numerical models of the influence diagrams used
to be limited in probability distributions [1,11].

However, when imprecise knowledge from large-scaled data set is involved in
the systems, how to reason from approximate information becomes a core issue
in evaluating influence diagrams effectively. This study proposes an alternative
numerical model for the knowledge in influence diagrams, rough sets. Rough set
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theory was first introduced by Pawlak [5] as a tool dealing with risk and impre-
ciseness in decision-making. The probabilistic approaches have been previously
applied to rough set theory [7,8,9,13].

The purposes of this study are (1) describe how rough sets theory can be
applied to express the dependency in influence diagrams, and (2) develop a
rough set-based influence diagrams which combine rough set decision rules with
the graphical structure of the influence diagrams.

This paper is organized as follows. Section 2 defines the notations and the
framework of influence diagrams. Section 3 describes the concept of rough sets
and decision rules. In section 4 we show how rough set theory establishes the nu-
merical model and decision support in influence diagrams. A numerical example
will be demonstrated. Finally, section 5 gives the concluding remarks.

2 Influence Diagrams

Before illustrating rough set-based influence diagrams, we first present the basic
concept of influence diagrams. Influence diagrams were originally introduced by
Howard and Matheson [1] as a compact representation of decision models. They
may also be thought of as an extension of Bayesian networks [2,10].

An influence diagram is a directed acyclic graph (DAG) with three types
of nodes, decision, chance, and value. A decision node, drawn as a rectangle,
represents choices available to the decision makers. A chance node, shown as a
circle, represents random variables or uncertain quantities. Finally, a value node
or utility node, shown as a diamond, represents the utility or the objective to be
maximized.

An influence diagram (ID) can be defined as.

ID = (V, L, P ) (1)

where V denotes the set of nodes, L denotes the set of links, and P represents
the numerical model. The composition of the node set V can be expressed as (2).

V = VD ∪ VR ∪ VW (2)

where VD denotes the decision node set, VR represents the set of chance nodes,
VW denotes the value node to be optimized. This study uses the uppercase letters
to represent the variables and lowercase letters for the value of a variable.

A simple example of influence diagrams is illustrated in Fig. 1. Fig. 1 de-
scribes the causal relationships of operations management and the performance
indicators, where VD = {T }, VR = {M, N, O, P}, and VW = {Q}. The meaning
and states of the nodes are summarized as below.

– M (Product Management): 1: good, 0: poor.
– N (B.O.M. Accuracy): 1: high, 0: low.
– O (Manufacturing Capacity): 1: high, 0: low.
– P (Schedule Adherence): 1: high, 0: low.
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T

O

Q

P

N

M

Fig. 1. An example of influence diagrams

– T (Capacity Expansion): “take”, “not take” (the action).
– Q (Gain from Order Fulfilment).

In the example, the states of N and O are conditioned on the state of M . The
states of N and O will influence the manifestation of P . Finally, the outcome of P
and the decision on T will determine the value of Q, where the O and P provide
the information prior to decision making. Usually, the causal relationships and
decision rules in influence diagrams are expressed with probability distributions
and a value table.

However, when imprecise knowledge from large-scaled data sets is involved
in the reasoning systems, how to reason from the approximate information ef-
ficiently becomes a core issue to evaluate influence diagrams. Hence, this study
proposes an alternative approach for modeling the causal relationships in influ-
ence diagrams, rough set theory.

3 Rough Sets

In this section we describe the basis and notions related to rough set theory [6].

Information System. Rough set theory starts with information represented
by a table called an information system [6]. An information system is a 4-tuple
S = (U, A, Va, fa), where:

(i) U is the universe, a nonempty finite set of objects.
(ii) A = {a1, a2, . . . , am} is a nonempty finite set of attributes C ∪ D, where C

and D is a finite set of condition and decision attributes, respectively.
(iii)Va is a domain of the attribute a, each attribute a : U → Va for a ∈ A.
(iv)fa : U ×A → Va is the total decision function called the information function

such that f(x, a) ∈ Va for ∀a ∈ A, ∀x ∈ U .

Indiscernibility Relation. Let S = (U, A, Va, fa) be an information system,
B ⊆ A and X ⊆ U . With any subset of attributes B ⊆ A, a binary indiscerni-
bility relation, is called B-indiscernibility relation, which is defined by:

IND(B) = {(x, y) ∈ U × U : a(x) = a(y), ∀a ∈ B} (3)
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For any subset X ⊆ U , the lower and upper approximation can be expressed
as (4) and (5), respectively:

B(x) =
⋃

x∈U

{B(x) : B(x) ⊆ X} (4)

B(x) =
⋃

x∈U

{B(x) : B(x) ∩ X �= ∅} (5)

That is, the elements of B(x) are all the elementary objects certainly belonging
to X . The elements of B(x) are at least one object belonging to X . With the
lower and upper approximation of a set X ⊆ U , the universe can be divided into
three regions, the boundary region BND(x), the positive region POS(x), and
the negative region NEG(x):

BND(x) = B(x) − B(x) (6)
POS(x) = B(x) (7)

NEG(x) = U − B(x) (8)

If the boundary region of X is an empty set, BND(x) = ∅, then X is a crisp set
with respect to B; otherwise, if BND(x) �= ∅, then X is a rough (approximate)
set with respect to B.

Decision Rules. Let |C| denote the set of all objects from U that have the
meaning of C in S where |∗| indicates the cardinality of a (finite) set.

If a decision rule in S is C → D, meaning IF C THEN D, where C =
{c1, c2, . . . , cn} is the condition attribute, and D = {d1, d2, . . . , dm} is the deci-
sion attribute of the decision rule, respectively, then the support of the decision
rule C → D in S will be supp(C, D) = card(C ∩ D).

For any C in S its probability is defined by σ(C) = p(|C|). With the decision
rule C → D in S the conditional probability is σ(D | C) = p(|D| | |C|).

The strength of the decision rule C → D in S, denoted by σ(C, D), is defined
as (9):

σ(C, D) =
supp(C, D)
card(U)

(9)

The certainty factor of the decision rule C → D in S, denoted by cer(C, D),
is defined as (10):

cer(C, D) = σ(D | C) =
supp(C, D)
card(C)

=
σ(C, D)
σ(C)

(10)

The certainty factor is interpreted as a conditional probability that y belongs
to D given y belongs to C. It is easy to see that cer(C, D) ∈ [0, 1]. If cer(C, D) =
1, then the given decision rule is a deterministic or certain decision rule in S.
Otherwise, 0 < cer(C, D) < 1, the given decision rule is a non-deterministic or
uncertain decision rule in S.
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The coverage factor of the decision rule C → D in S, denoted by cov(C, D),
is defined as (11):

cov(C, D) = σ(C | D) =
supp(C, D)
card(D)

=
σ(C, D)
σ(D)

(11)

Probabilistic Properties. Let C → D be the decision rule in S, then the
following properties (12)–(17) are valid [7,8,13]:

∑

C′∈C(x)

cer(C′, D) = 1 (12)

∑

D′∈D(x)

cov(C, D′) = 1 (13)

σ(C) =
∑

D′∈D(x)

cov(C, D′) · σ(D′) =
∑

D′∈D(x)

σ(C, D′) (14)

σ(D) =
∑

C′∈C(x)

cer(C′, D) · σ(C′) =
∑

C′∈C(x)

σ(C′, D) (15)

cer(C, D) =
σ(C, D)
σ(C)

=
σ(C, D)∑

D′∈D(x) σ(C, D′)
=

cov(C, D) · σ(D)
σ(C)

(16)

cov(C, D) =
σ(C, D)
σ(D)

=
σ(C, D)∑

C′∈C(x) σ(C′, D)
=

cer(C, D) · σ(C)
σ(D)

(17)

Note that (14) and (15) are refer to total probability theorem, (16) and (17)
are refer to Bayes’ theorem.

4 Influence Diagrams with Rough Sets

Most literatures on influence diagrams [1,3,10,11] used to describe the depen-
dency and its associated numerical model with probability theory. However,
when impreciseness and large data volume involved in the domain, the decision
makers may need more flexible uncertainty measures for analysis. Rough set
theory can be an alternative measure in such a problem.

Given the influence diagrams structure and the original data set, rough set
theory provides a basis for extracting the knowledge and expressing the depen-
dency among nodes in the influence diagrams. In order to represent the ontol-
ogy, we define that rough set-based influence diagram is a directed acyclic graph
RSID = (U, A, f), where:

(i) U is the universe, a nonempty finite set of objects.
(ii) A ≡ C ∪ D ≡ VD ∪ VR ∪ VU .
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(ii) f is the flow function representing the strength, certainty factor, and coverage
factor of the decision rule. With every branch of (x, y) there is a directed arc
from node x to y, then the strength of branch (x, y) is σ(x, y). The certainty
and coverage of branch (x, y) are defined as cer(x, y) and cov(x, y). That is,
f ≡ L.

In the following, we show the knowledge modeling and decision making in
influence diagrams with rough sets.

Example. Consider the influence diagram in Fig. 1 where A = {M, N, O, P,
Q, T }, C = {M, N, O, P, T }, and D = {N, O, P, Q, T }. An information system
of the diagram is listed in Table 1 and 2, respectively. According to (9), (10),
and (12), the certainty factors can be obtained as in Table 3.

Based on the information from Table 2 and Table 3, the objective of this
problem is to maximize the expected utilities as (18).

max EV (Q = q(p, t))

=
∑

m,n,o,p

q(p, t)σ(p|n, o)σ(n|m)σ(o|m)σ(m) (18)

where EV (∗) stands for the expected value of “*”. Note that the uppercase and
lowercase letter represents the variable and the value of a variable, respectively.

The expected values of Q based on T = “take” and T = “not take” are
computed as follows, respectively.

EV (Q = q(p, t))

=
∑

m,n,o,p

q(p, “take”)σ(p|n, o)σ(n|m)σ(o|m)σ(m) = 110.63

EV (Q = q(p, t))

=
∑

m,n,o,p

q(p, “not take”)σ(p|n, o)σ(n|m)σ(o|m)σ(m) = 87.46

Hence, the optimal decision to maximize the utilities is maxEV (Q = q(p, t)) =
max{110.63, 87.46} = 110.63, where T = “take” (take the action).

5 Conclusions

This study proposes an alternative numerical framework for influence diagrams,
rough sets. Considering the imprecise knowledge from large-scaled data set, this
study formulates the causal relationships and the decision rules among the nodes
(attributes) with rough sets from information systems. The proposed knowledge
model provides a comprehensive way for knowledge representation and decision
support from large-scaled data sets. For future studies, there are some potential
themes: (1) integrated analysis with rough sets in various graphical decision
model, including Bayesian networks, decision trees, influence diagrams, and so
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Table 1. Information system of Fig. 1

U M N O P support strength

1 1 1 1 1 500 0.24
2 1 1 1 0 250 0.12
3 1 1 0 1 190 0.09
4 1 1 0 0 80 0.04
5 1 0 1 1 100 0.05
6 1 0 1 0 60 0.03
7 1 0 0 1 60 0.03
8 1 0 0 0 50 0.02
9 0 1 1 1 100 0.05
10 0 1 1 0 120 0.06
11 0 1 0 1 50 0.02
12 0 1 0 0 80 0.04
13 0 0 1 1 50 0.02
14 0 0 1 0 80 0.04
15 0 0 0 1 50 0.02
16 0 0 0 0 280 0.13

Table 2. Value table of Q in Fig. 1

Q = q(P = 1, T = “take”) = 120
Q = q(P = 0, T = “take”) = 100
Q = q(P = 1, T = “not take”) = 50
Q = q(P = 0, T = “not take”) = 130

Table 3. Certainty factors of Fig. 1

σ(M = 1) = 0.62
cer(M = 1, N = 1) = σ(N = 1|M = 1) = 0.79
cer(M = 0, N = 1) = σ(N = 1|M = 0) = 0.45
cer(M = 1, O = 1) = σ(O = 1|M = 1) = 0.71
cer(M = 0, O = 1) = σ(O = 1|M = 0) = 0.45
cer(N = 1, O = 1, P = 1) = σ(P = 1|N = 1, O = 1) = 0.62
cer(N = 0, O = 1, P = 1) = σ(P = 1|N = 0, O = 1) = 0.50
cer(N = 1, O = 0, P = 1) = σ(P = 1|N = 1, O = 0) = 0.58
cer(N = 0, O = 0, P = 1) = σ(P = 1|N = 0, O = 0) = 0.25

on; (2) hybrid decision analysis with fuzzy sets and rough sets in graphical
decision models; (3) potential applications of intelligent decision support with
rough sets, such as biomedicine, supply chain management, business strategic
analysis, and so on.
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Abstract. In this paper we present a novel method for object class
recognition. A vocabulary of object parts is automatically constructed
from sample images of the object class by AdaBoost. Images are then
represented using parts from this vocabulary. Based on this representa-
tion, the Sparse Network of Winnows (SNoW) learning architecture is
employed to learn to recognize instances of the object class. Experimen-
tal results show that the method achieves high recognition accuracy on
different data sets, and is highly robust to partial occlusion and back-
ground clutter.

Keywords: Object class recognition, part-based representation, SIFT,
part vocabulary, AdaBoost, SNoW.

1 Introduction

Object class recognition is one of the most important and challenging research
topics in machine vision. Different from the recognition of specific objects, object
class recognition must deal with the large intra-class variance that exists in
most visual object categories. The key to solving this problem lies in finding
an appropriate intermediate representation. Recently, part-based representation,
where an object is modeled by a set of representative parts, has gained more and
more attention. Such a representation emerges when an interest point detector
is applied to an image, and then local feature descriptors are extracted from the
patches around interest points highlighted by the detector [1]. This model can
naturally cope with the large intra-class variance, and is also consistent with the
principles of biological vision to a great extent.

Much work has been done on the basis of part-based model. Fergus et al. [2]
used a generative probabilistic model to represent objects as random constella-
tions of parts. The parameters of the model are learned using an EM algorithm.
This model has been tested with great success using the Caltech database, which
has since become a benchmark for other methods of object class recognition.
Crandall et al. [3] presented a class of statistical models that are explicitly para-
meterized according to the degree of spatial structure they can represent. These
models provide a way of relating different spatial priors that have been used for
recognizing generic classes of objects, including joint Gaussian models and tree-
structured models. Opelt et al. [4] proposed a model of object class recognition
that combines four types of local features within the framework of Boosting.
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Our approach was partially motivated by Agarwal and Roth’s work [5]. In
order to detect cars in images, they built a part vocabulary from a set of repre-
sentative images of cars by hierarchical clustering. Images were then represented
using parts from this vocabulary. However, there are some problems in their
method. First, they used all parts extracted from the representative images to
build the vocabulary. Some of these parts that belong to the background are use-
less, even harmful to the classification. There should be some schemes supporting
automatic part selection. Second, the thresholds that measure the similarity be-
tween the image parts and vocabulary parts were determined by experience,
and set to the same value. It’s difficult to choose a single appropriate threshold
for all vocabulary parts. We propose here some substantial improvement to the
vocabulary construction procedure. AdaBoost is used to select those most dis-
criminative parts for the vocabulary, and determine the appropriate thresholds.
A binary feature vector is then formed for each image to indicate which of the
vocabulary parts are present in an image. Due to the sparseness property of
these feature vectors, we train our classifier using the Sparse Network of Win-
nows (SNoW) learning architecture [6, 7]. The rest of this paper is organized as
follows. Section 2 describes the details of our approach. Section 3 presents our
experimental setup and results. Section 4 brings this paper to a conclusion.

2 Approach

2.1 Interest Point Detection

We use the Scale Invariant Feature Transform (SIFT) [8] to detect points of
interest or keypoints in images. SIFT is not only an interest point detector, but
also a local feature descriptor. The features extracted by SIFT are invariant to
image scaling and rotation, and partially invariant to affine distortion, change in
3D viewpoint and change in illumination. Mikolajczyk and Schmid [9] compared
the performance of several local feature descriptors, including SIFT, steerable
filters, differential invariants and moment invariants, and concluded that the
SIFT descriptor performs the best according to several evaluation criteria in [9].
Following are the major stages of computation used to generate the SIFT features
of an image: (1) Select potential interest points by searching scale-space extrema
in the difference-of-Gaussian (DoG) function convolved with the image. (2)Filter
out the points with low contrast or poorly localized along an edge. (3) Assign a
consistent orientation to each keypoint based on local image gradient directions.
(4) Compute a descriptor for the local image region around each keypoint. The
operations in the first three stages assign a location, scale and orientation to each
keypoint. These parameters impose a 2D coordinate system on the local image
region around each keypoint. Therefore, the local feature descriptor computed
relative to the system is invariant to these parameters.

2.2 Vocabulary Construction by AdaBoost

After interest point detection, an image is represented as an unordered set of
image parts. Given such a representation, object class recognition is a problem
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of classification using sets of unordered features as input, which is a rather
nonstandard learning problem, and rarely considered in the literature. One of
the solutions to this problem is to build a part vocabulary, and convert unordered
features into ordered feature vectors in the vocabulary space, for which many
powerful learning algorithms have been developed. Our work was intended to
proceed along this line. First all parts extracted from the training images that
contain relevant objects are put into a common pool of candidate parts. Then
AdaBoost is used to select from this pool those most discriminative parts for the
vocabulary.

The AdaBoost algorithm, introduced by Freund and Schapire [10], is a classi-
cal ensemble learning algorithm that produces a highly accurate hypothesis by
combining many weak hypotheses. Given a training set (Ij , lj) for j = 1, ..., J ,
where Ij is the j’th example and lj is the corresponding label, we would like
to learn a function H : I �→ l̂ which predicts the label of example I. AdaBoost
maintains a set of weights ωj over the training examples, and calls a given weak
learning algorithm repeatedly in a series of rounds n = 1, ..., N . Initially, all
weights are set equally, but in each round, the weights of incorrectly classified
examples are increased so that the weak learner is forced to focus on the hard
examples in the training set. The weak learner’s job is to find a weak hypothesis
hn which has some discriminative power relative to these weights, i.e.

∑

j:h(Ij)=lj

ωj >
∑

j:h(Ij) �=lj

ωj , (1)

such that more examples are correctly classified than misclassified relative to the
weights. The process of putting weights and constructing a weak hypothesis is
iterated for N rounds, and the weak hypotheses hn of each round are combined
into the final hypothesis H .

Let v1, ..., vL be the SIFT features corresponding to the parts in the candidate
pool and d(·, ·) be the Euclidean distance metric. Given the part-based represen-
tations of training images (R(Ij), lj), j = 1, ..., J, R(Ij) = {fj,k : k = 1, ..., Kj},
where fj,k is the k’th SIFT feature of image Ij , lj = +1 if Ij contains a rele-
vant object and lj = −1 if Ij contains no relevant object, we design our weak
learner as suggested by Opelt et al. [4]. Details for the weak learner are as follows:

1. Calculating the minimal distance matrix: For all features vi in the
candidate pool and all images Ij , calculate the minimal distance between vi

and features in Ij ,
di,j = min

1≤k≤Kj

d(vi, fj,k). (2)

2. Sorting: For each i, let pi(1), ..., pi(J) be a permutation such that

di,pi(1) ≤ · · · ≤ di,pi(J). (3)

3. Selecting the most discriminative feature : For all features vi in the
candidate pool, calculate over all images Ij
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scorei = max
s

s∑

q=1

ωpi(q)lpi(q), (4)

and select the feature vm where scorem is maximum.
4. Selecting threshold: With the position s where scorem reached a maxi-

mum sum, the threshold θm is set to

θm =
dm,pm(s) + dm,pm(s+1)

2
. (5)

The weak learner finds the most discriminative feature vm relative to the
current weights and determines its corresponding threshold θm. The feature and
threshold produce a simple weak hypothesis which indicates whether an image
contains a feature that is sufficiently similar to vm. This weak hypothesis is used
to classify the training images, and the weights are updated according to the
classification result. N -round iterations generate N weak hypotheses. We don’t
combine these weak classifiers into a strong classifier, but use those selected
features to build a vocabulary of object parts. There is still a problem in the
process. The update of the weights in each round performs some sort of adaptive
decorrelation of the weak hypotheses: if an image was incorrectly classified in
round n, then its weight is increased and more emphasis is put on this image in
the next round, yielding quite different hypotheses hn and hn+1. However, this
process cannot guarantee these hypotheses are all different, i.e., there may be
some redundant features in the vocabulary. We have to filter out these redundant
features. After selection, we get the final vocabulary , (v1, θ1), ..., (vM , θM ).

2.3 Image Representation

Having constructed the part vocabulary above, images are now represented using
this vocabulary. This is done by determining which of the vocabulary parts are
present (active) in an image, and representing the image as a binary feature
vector based on these detected parts. Each part of the image is compared to the
vocabulary parts using the Euclidean distance metric. If a sufficiently similar
vocabulary part is found, the corresponding element of the feature vector is set
to 1, otherwise 0. Let R(I) = {fk : k = 1, ..., K} be the part-based representation
of an image I, and X = [x1, ..., xM ]T be its binary feature vector. The rule can
be formulated as follows:

xi =
{

1, if ∃fk, d(vi, fk) ≤ θi

0, otherwise
(6)

2.4 Learning Classifier Using SNoW

Given a set of training images labeled as positive (Object) or negative (Non-
object), each image is re-represented as a binary feature vector as described
above. Note that there are many zeros in any feature vector, since only some of
the vocabulary parts are actually present in any single image. Taking advantage
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of this sparseness property, we train our classifier using the SNoW learning
architecture that is especially well-suited for such sparse feature representations.

SNoW learns a sparse network of linear functions over the feature space using a
feature-efficient learning algorithm. In its basic architecture, a two layer network
is maintained. The input layer is the feature layer, and the output layer consists of
target nodes, each of which corresponds to a class label. Target nodes are linked
to input features via weighted edges which are allocated dynamically. SNoW
expects each example to be represented as a list of indices of active features
(possibly associated with a real valued strength). A feature i is allocated and
linked to target node t if and only if i is present in an example labeled t. Let
At = {i1, ..., in} be the set of features that are active in an example e and are
linked to target node t, ωt,i be the weight on the edge connecting the i’th feature
to target node t, si be the real valued strength associated with feature i (For
our task si = 1), and Ωt(e) be t’s activation given e. Then we have the following
equation:

Ωt(e) =
∑

i∈At

ωt,isi. (7)

We say that t predicts positive if and only if Ωt(e) ≥ θt, where θt is t’ threshold.
Let T be the set of all targets defined in the architecture. Example e will be
labeled with

t∗(e) = argmax
t∈T

σ(θt, Ωt(e)), (8)

where σ(θ, Ωt(e)) is a sigmoid function whose transition from an output close to
0 to an output close to 1 centers around θ.

Several learning rules may be used within SNoW. One of them is the classical
Winnow algorithm. Winnow has two update parameters at target node t: a
promotion parameter αt > 1 and a demotion parameter 0 < βt < 1. These
parameters are used to update the set of weights ωt,i only when a mistake in
prediction is made. Let Pt be the true prediction of target node t. Given an
example e, the update rule can be formulated as follows:

∀i ∈ At, ωt,i =
{

ωt,iα
si
t , if Ωt(e) < θt, Pt = +1

ωt,iβ
si
t , if Ωt(e) ≥ θt, Pt = −1 (9)

3 Experiments

We evaluated our method on the database used by Fergus et al. [2]. The database
consists of 4 sets of object classes: Motorbikes, Airplanes, Faces and Cars (side
view). The first three were obtained from the Caltech database 1, and the last
one from the UIUC database 2. Negative examples were also from the above
two databases. The recognition was based on deciding presence or absence of a
relevant object.

1 http://www.robots.ox.ac.uk/˜vgg/data
2 http://l2r.cs.uiuc.edu/˜cogcomp/Data/Car
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(a) Part vocabulary (b) Keypoint detection (c) Image representation

Fig. 1. Image representation using parts from the vocabulary

A limited amount of preprocessing was performed on the data sets. First,
we used Homomorphic Filtering [11] for illumination normalization. Second, im-
ages were rescaled to have a uniform horizontal axis length (200 pixels). This is
mainly because the SIFT detector generates large numbers of parts that densely
cover the image over the full range of scales and locations. A typical image
of size 500×500 pixels will give rise to about 2000 parts (although this num-
ber depends on both image content and choices for various parameters) [8].
The quantity of parts is very important for object recognition. But it also in-
creases the computational complexity. Therefore, we made a compromise on
image sizes.

In each of our experiments, the training set contained 100 positive and 100
negative images. The tests were carried out on 200 new images, half belonging
to the learned object class and half not. First, we constructed a vocabulary of
object parts from the positive images. Fig. 1(a) shows a part vocabulary of Mo-
torbikes. This was obtained by cropping from images those regions where the
most discriminative features are extracted. There are 58 different parts in the
vocabulary, and it is a result of 100-round iterations . Vocabulary construction
is the most time-consuming stage in the whole process. The main computational
burden is the calculation of the distances between vi and fjk. Given these dis-
tances which can be calculated prior to AdaBoost, the remaining calculations
are relatively inexpensive. Second, we represented images using parts from the
vocabulary. Fig. 1(b) is an example image with keypoints shown as squares. The
sizes of the squares correspond to the scales of these keypoints. This image con-
tains a motorbike that is partially occluded by a person, and its background is
cluttered. The SIFT detector totally found 298 keypoints in the image. Many of
them are on the region of background or person. Fig. 1(c) shows the image with
only vocabulary parts left. Most irrelevant parts have been removed. This re-
sult illustrates our method can give a more compact representation to an image.
Finally, we used the SNoW learning architecture 3 to train our classifier.

Fig. 2 shows how the number of AdaBoost iterations affects the number of
parts in the vocabulary, and Fig. 3 shows the recognition rate as a function of
the number of AdaBoost iterations. These curves were obtained by varying the
iteration number from 20 to 400 with an increment of 20. From the two figures
we can see the number of vocabulary parts increases with the growth of the

3 Software for SNoW is freely available at http://l2r.cs.uiuc.edu/˜cogcomp/
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Fig. 2. Number of vocabulary parts as a
function of the number of AdaBoost iter-
ations

Fig. 3. Recognition rate as a function of
the number of AdaBoost iterations

Table 1. Comparison of our method with [2,4]

Data Set Our method Fergus et al. [2] Opelt et al. [4]

Motorbikes 97.5% 92.5% 92.2%

Airplanes 94.0% 90.2% 88.9%

Faces 98.5% 96.4% 93.5%

Cars (Side) 91.0% 88.5% 83.0%

iteration number (more and more slowly), but the increase in the number of
vocabulary parts does not necessarily raise the recognition rate.

For comparison and performance evaluation, Table 1 presents the recognition
rates of the various methods under consideration. Our results were obtained by
selecting the number of AdaBoost iterations as follows: 160 (Motorbikes), 60
(Airplanes), 100 (Faces) and 100 (Cars). We used a validation data set of 100
images to set the iteration number. Note that the results of [2] were obtained
using scale-normalized images, i.e., each object image was manually rescaled so
the objects will be of the same size. Our method can naturally cope with the scale
variation. Amongst the data sets, Motorbikes and Airplanes include significant
scale variation. The experimental results demonstrate our method performs very
well on these data sets.

4 Conclusions and Future Work

In this paper we have presented an approach for part-based object class recog-
nition. Given part-based representation, object class recognition is a problem of
classification using unordered features, which is a rather nonstandard learning
problem. We use AdaBoost to select some most discriminative parts from a pool
of candidate parts, and construct a vocabulary based on these selected parts.
Images are then re-represented using this vocabulary. This is done by determin-
ing which of the vocabulary parts are present in an image , and representing the
image as a binary feature vector based on these detected parts. Finally, SNoW
is employed to train the classifier. Experimental results show that our method
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works successfully on different data sets, and is highly robust to partial occlusion
and background clutter.

Our work can be extended in several directions. First, the computational costs
of the current approach are relatively high, especially in the stage of vocabulary
construction. We are considering to reduce the number of candidate parts by
clustering methods before selecting vocabulary parts using AdaBoost. Second,
we will take into account spatial relations among the parts that can be defined
in terms of the distance and direction between each pair of parts. We may in-
corporate some elements into the binary feature vectors of images to indicate
whether or not specified relations occur in images.

References

1. Bar-Hillel, A., Hertz, T., Weinshall, D.: Object class recognition by boosting a
part-based model. In: Proc. of CVPR. Volume 1. (2005) 702– 709

2. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised
scale-invariant learning. In: Proc. of CVPR. Volume 2. (2003) 264–271

3. Crandall, D., Felzenszwalb, P., Huttenlocher, D.: Spatial priors for part-based
recognition using statistical models. In: Proc. of CVPR. Volume 1. (1998) 10–17

4. Opelt, A., Fussenegger, M., Pinz, A., Auer, P.: Weak hypotheses and boosting for
generic object detection and recognition. In: Proc. of ECCV. Volume 2. (2004)
71–84

5. Agarval, S., Roth, D.: Learning a sparse representation for object detection. In:
Proc. of ECCV. Volume 4. (2002) 113–127

6. Carlson, A.J., Cumby, C.M., Rosen, J.L., Roth, D.: The snow learning architec-
ture. Technical Report UIUCDCS-R-99-2101, UIUC Computer Science Depart-
ment (1999)

7. Roth, D.: Learning to resolve natural language ambiguities: A unified approach.
In: Proc. of National Conference on Artificial Intelligence. (1998) 806–813

8. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60 (2004) 91–110

9. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In:
Proc. of CVPR. Volume 2. (2003) 257–263

10. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55
(1997) 119–139

11. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley (2001)



Coverage in Biomimetic Pattern Recognition�

Wenming Cao1,2 and Guoliang Zhao2

1 Intelligent Information Processing Key Laboratory, Shenzhen University,
Shenzhen 518060, China

2 Institute of Semiconductors of Chinese Academy of Science,
Beijing 100083, China

{wmcao,glzhao}@semi.ac.cn

Abstract. Coverage is a kind of method to cover points of same class
samples in feature space, which is based on Biomimetic Pattern Recogni-
tion. The mathematical description of coverage is given and the discrimi-
nant boundary of coverage is shown. Coverage is tested in face recognition
on ORL database. Both the COVERAGE and SVM networks are used
for covering. The results show that COVERAGE act better than SVM
in generalization, especially for small sample set, which are consonant
with the result of the applications of BPR.

1 Introduction

The problem of finding a minimum covering sphere of smallest radius (equiv-
alently, smallest volume) which contains a given set of n points in 2D space
was firstly proposed by Sylvester[4] in 1857. In a high-dimensional space, convex
hull was often used as a tool to simplify the issue. From a geometrical view,
Hopp and Reeve[5] handled the problem via successively reducing the volume of
the hyper-sphere that contains the set of points step by step with its expected
computing time O(nd2.3).

Coverage algorithm is a kind of method to cover points of same class samples
in feature space, which is based on Biomimetic Pattern Recognition (BPR)[Fig.
1]. Biomimetic pattern recognition was first proposed by Academician Wang
Shoujue[1] in 2002. In this theory, pattern recognition is based on ”cognition”
instead of ”division”. In another word, BPR emphasizes on ”cognition of all
sample classes one by one” rather than ”classification of many kinds of samples”.
The basic idea of BPR is to finding an optimal covering of the same class in the
high dimensional sample space, rather than to model a set of points in a high-
dimensional space by statistical learning as the traditional pattern recognition
methods do. The principle of homology-continuity is the foundation of BPR
and computational information geometry, which is based on high-dimensional
geometry and descriptive geometry, is used as analysis tools to deal with the
practical issues.

Priority Ordered Neural Networks[2] (PONN) and Sequential Learning Ahead
Masking (SLAM) model for pattern recognition[3] have many advantages in
� Supported by The National Natural Science Foundation of China NO.60576055.
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c© Springer-Verlag Berlin Heidelberg 2007



Coverage in Biomimetic Pattern Recognition 535

learning and knowledge renewing. PONN’s learning speed is much faster than
that of the multilayered feed forward neural networks with BP algorithms.
PONN also has the ability to keep previously stored knowledge, when the net
is renewing with new additional training samples. In this paper, PONN is used
for dealing with inseparable sample sets and as the strategy of recognition of
multi-class problems.

In this paper, an algorithm of using coverage same class samples is provided.
The algorithm is based on the theory of BPR and PONN. And discuss its na-
ture by ways of experimenting with ORL face database; verify its advantages
compared with other means.

Fig. 1. Hyper Sausage Neuron chains based Biomimetic Pattern Recognition in com-
parison with BP and RBF networks

2 Definitions and Basic Properties

We assume that the sample nodes are given as a set of n sample points S distrib-
uted inside a n-dimensional domain. Let B be the set of sample points that define
the domain boundary. For simplicity, we assume that the convex hull of the set
of sample S is contained inside the domain. We also assume that every sample
node has the same maximum distance. We always assume that the sample node
is connected. We first give some geometry notations that will be used in the
remainder of this section to mathematically formulate the problems considered.
Let ||x − y|| denote the Euclidean distance of two sample points x and y.

Definition 1. The distance of a point x to a set of sample points V, denoted by
dist(x,V), is the smallest distance of x to all sample points of V. In other words

dist(x, V ) = max
y∈V

||x − y|| (1)

Notice that the point set V may be infinite. For example, V could be all points
lying on a segment uv. We use dist(x,V) to denote the smallest distance from x
to all points on the segment uv.
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Corollary 1. If V is segment uv, then Actively function of Hyper Sausage
Neuron is

f(x) =
{

1 dist(x,V) < ε
0 otherwise

where ε is positive real.

Corollary 2. If V is triangle uvw, then Actively function of multi weight vector
neurons is

f(x) =
{

1 dist(x,V) < ε
0 otherwise

where ε is positive real. Given two point sets U and V , the breach distance
dist(x,V) is defined as minx∈V dist(x,V). In other words, dist(x,V) = minx∈V,y∈V

||x − y||. Usually, the breach distance is called just distance in the literature.

Definition 2. The coverage-distance of a point set U by another point set V,
denoted by cover(U,V), is the maximum distance of every point x ∈ U to V .
That is,

cover(U,V) = max
x∈U

dist(x,V)

Notice that, the breach distance dist(U,V) is symmetric, i.e. dist(U,V) =
dist(V,U), while the coverage distance dist(U,V) is not symmetric. Here, both
point sets U and V can be infinite. For example, U can be a path connecting two
points s and t and V all sample nodes. Given a path Π(s, t) inside connecting s
and t, the coverage-distance maxx∈Π(s,t) dist(x,S) of the path Π(s, t). specifies
how well the path is protected by the samples, while, on the reverse side, the
breach distance specifies how far the path is from all samples. Thus, for samples
set networks, the coverage problem has two folds: the best coverage and the
worst coverage, which are defined as follows:

Definition 3. A path Π(s, t) that achieves the minimum coverage-distance
cover(Π(s, t), S) is called a best-coverage-path. The minimum coverage-distance
cover(Π(s, t), S)x ∈ Π(s, t) of all paths connecting s and t is called the best-
coverage-distance or the support-distance.

Thus, given a set of sample S, a starting point s ∈ S and s ∈ Rn, and an
ending point t ∈ S and t ∈ Rn, we find a path Π(s, t) inside to connect s and
t such that the coverage distance cover(Π(s, t), S) = maxx∈Π(s,t) dist(x, S) is
minimized. In other words, we try to find a path connecting s and t such that
every point x of the path is covered by some sample nodes with small distance.

Definition 4. A path Π(s, t) that achieves the maximum breach distance
dist(Π(s, t), S) is called a worst-coverage-path. The maximum breach-distance
dist(Π(s, t), S) of all paths that connecting s and t is called the worst-coverage-
distance or the breach-distance.



Coverage in Biomimetic Pattern Recognition 537

The Principle of Homology-Continuity(PHC). In feature space Rd, sup-
pose that set A is a point set including all samples in class A. If x, y ∈ A and
ε > 0 are given, there must exist set B.

B = {x1 = x, x2, ..., xn−1, xn = y|(xm, xm+1) < ε, ∀m ∈ [1, n − 1], m ∈ N)} ⊂ A
(2)

The Prioritz Ordered Neural Networks(PONN). In general, the prior-
ity ordered units in a PONN could be neurons or parts of nets or different
modules as shown in [Fig. 2]. The inside of the dotted rectangle is a PONN
with n modules, and output of the module with lower number of footnote
means with higher priority. All the inputs of each module (sub network or sub-
system) are xRd. However, the structures and priorities of different modules
are generally different. The general mathematical description of a PONN is as

Fig. 2. This is the general mathematical ordered architecture of neural networks. The
priority and the output of module k are denoted as pk and yk respectively. The outside
of the dotted rectangle is symbolic presentation for mathematical description of the
ordered priorities of modules.

follows: The mathematical description of each module depending on its struc-
ture, C(y1, y2...yn) is the decision function of the final output for the whole
neural network. Moreover,

y = C(y1, y2...yn) = ys,

s = min i|pi = max pj |Q(yj) = 1,

Where Q is described as the conditional map Q :
⋃∞

j=1 RNj → {0, 1}.

3 Coverage Algorithm

The algorithm first induces a local neighborhood structure on the data, and
then uses this local structure to find a group of minimum covering spheres in
different lower dimensional spaces. The result of the COVERAGE algorithm is
a geometrical representation of a class of samples. The algorithm takes input as
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the sample points in the high-dimensional input space X, and outputs a group of
lower-dimensional subspace’ basis of the sample points. The only free parameter
(k) appears in following steps.

• The training steps of COVERAGE algorithm of single class problem are as
follows:
– Step:
– – 1 Construct neighborhood graph by k-nearest neighbors.
– – 2 Compute the minimum covering subspace of each group of points in
the same k-nearest neighbors. Then get the basis of the sample points and
the subspace.

To cover a set of sample points in feature space has a little difference compar-
ing with COVERAGE (P). In the view of Principle of Homology-Continuity [6]
(PHC) and consider the small disturbances, all points near a sample point ought
to be considered as samples of the same class. So the problem turns to finding
the closed subspace of smallest distance which contains a given set of n closed
subspace which distance is ε in sample space. Fischer and Gärtner[7] proved that
the problem of finding the smallest enclosing subspace of subspace is computa-
tionally equivalent to the problem of finding the minimum-norm point in the
convex hull of a set of subspace.

• The steps of recognition of single class problem are as follows:
– Steps:
– – 1 Transform the signals to a point P in the vector feature space.
– – 2 Compute the distance dist(P,V) from the current sample point P to
every minimum covering Vi and the distance dist(P,V) from the current
sample point P to the hyper plane Si spanned by the basis of the k sample
points (the algorithm calculating the distance of a point and an infinite sub-
space can be found in [11]). Denote the small disturbance as ε. If dist(P, Si) ≤
ε, and dist(P, Si) ≤ ρi, then proved the sample point belongs to this class.

We use covering sphere in this paper.

• The training steps of COVERAGE algorithm of multi classes’ problem are
as follows:
– Steps:
– – 1 The training steps of each class are same to table 1
– – 2 If the distance of two centers c1i, c2j of different classes is too near,
i.e. ||c1i, c2j || < max(ρ1i, ρ2j), PONN algorithm could be used to generate a
priority order in order to deal with the inseparable situation, where c1i, c2j

is radius minimum covering sphere.
• The steps of recognition of multi class problem are as follows:

– Steps:
– – 1 The recognition steps of each class are similar to table 2
– – 2 With the help of PONN, there is no conflict in the multi class recogni-
tion. The current sample point P should belong to class A, if lA = min(lt), t =
A, B, C, ..., t denote the class. Where lt = dist(P,Si)

ρti
with the limitation that

dist(P, Si) ≤ δt as [Fig. 3] and [Fig. 4].
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Fig. 3. If k=2, there are two points as the basis of a minimum covering sphere, and
the actual dimensions of this sphere is only 1. Then hyper sphere only has one degree
of freedom. Considering little disturbances, its shape just like a hyper-sausage.

Fig. 4. If k=3, the minimum covering sphere is actually in a 2 dimensional subspace.
The hyper sphere has two degrees of freedom, Its shape looks like a piece of cake in
one of the 3 dimensional sub-spaces.

4 Applications of Coverage Algorithm

In this section, a face recognition experiment is designed to evaluate the per-
formance of the proposed algorithm. Support vector machines, as one kind of
popularity methods during recent time, was selected as a comparison. With the
same training sets and features extraction, the ratio of correct recognition is
compared. The ORL database is one of the most popular used databases re-
cently. It contains a set of faces taken between April 1992 and April 1994 at
the Olivetti Research Laboratory in Cambridge, UK. The size of each photo is
92*112, black background. The face expression and some other details are all
dissimilarity, e.g. smiling or expressionless, eyes open or closed, with glasses or
without glasses, and different postures. All the photos only subtract a lighting
surface, which is gained by linearity estimation. And their average values and
variances are tuned to 168 and 50. The experiments use each person’s former
5 photos as training data set. Principal Components Analysis technique[10] is
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utilized to extract features. 100 eigenvectors are selected from all the 200s. The
ratio of the sum of the selected eigenvalues to the sum of all the eigenvalues
is 91.72%. All the 400 photos in the database are employed as the testing set.
The support vector machines as the comparison method, use the radial based
kernel, which has the form of : exp(−γ|X(:, i)− X(:, j)|2). The SVM tool box is
OSU SVM 3.00. And the test result is as follows:

Table 1. Experiments Result

Method Ratio of correct

Coverage 81.5

SVM(Gamma=1) 78.75

SVM(Gamma=2) 74

From the above result, it can be seen that Coverage algorithm has better
performance than SVMs.

5 Conclusion and Future Work

With the result of experiments, Coverage algorithm emerges fine potential power
in learning abilities. From above, we conclude that:

1. Coverage Algorithm emphasizes analyzing the distribution of a certain class
samples in feature space firstly.

2. The prior information on the distribution of the sample set can improve
the generalization ability greatly.

3. Coverage Algorithm has obtained better results than traditional pattern
recognition methods, such as SVM in many applications.

4. Coverage Algorithm has more flexibility to fit multidimensional subspace
manifold embedding. The maximum subspace dimension is determined by k.

There is still much room to improve the efficiency of the proposed algorithm.
The minimum volumes of subspace covering methods can be used with more
accurate approach algorithm based on some kinds of monotype.
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7. Kaspar Fischer, Bernd Gärtner: The Smallest Enclosing Ball of Balls: Combinato-
rial Structure and Algorithms. SoCG’03, San Diego, California, USA (2003)

8. E. Welzl: Smallest enclosing disks (balls and ellipsoids). In h. Maurer, editor, New
Results and New Trends in computer Science, Vol. 555 of Lecture Notes Comput.
Sci. Springer-Verlag, Berlin Heidelberg New York (1991) 359-370

9. V. Chvtal: Linear programming. W. H. Freeman, New York, NY (1983)
10. R. O. Duda, P. E. Hart, D. G. Stork: Pattern Classification. New York: John Wiley

Sons (2001)
11. Wang Shoujue, Zhao Guliang: An Algorithm of Analysis Tools On Points Distribu-

tion In High Dimension Space: The Distance of A Point And An Infinite Sub-space.
Proceedings of ICNNB05, Vol. 3. (2005) 1503-1506



A Texture-Based Algorithm for Vehicle Area

Segmentation Using the Support Vector
Machine Method

Ku-Jin Kim1, Sun-Mi Park1, and Nakhoon Baek2,�

1 Dept. of Computer Engineering, Kyungpook National Univ., Daegu 702-701, Korea
kujinkim@yahoo.com, disvogue@graphics.knu.ac.kr

http://graphics.knu.ac.kr
2 School of EECS, Kyungpook National Univ., Daegu 702-701, Korea

oceancru@gmail.com

Abstract. The vehicle area segmentation is important for the vari-
ous applications including ITS (Intelligent Transportation System). We
present a novel approach for segmenting a vehicle area from still images of
vehicles on the asphalt paved road captured from outdoor CCD cameras.
Our algorithm classifies the partitioned grid areas in the input vehicle
image into road or vehicle classes. Texture features are used for repre-
senting each class, and we use SVM (Support Vector Machine) method
for the classification. Our preprocessing process partitions given sample
images into a set of grids, and classifies each grid area into two classes: i)
road class, and ii) vehicle (non- road) class. We use GLCM technique to
extract the feature values for each class, and sample classes are trained
by using the SVM. The SVM constructed in preprocessing step is applied
for each given input image to decide whether the grid in the image be-
longs to the road area or not. After marking the grids as road or vehicle
classes, we find the optimal rectangular grid area containing the vehicle.
The optimal area is found by using a dynamic programming technique.
Our method efficiently achieves high reliability against noises, shadows,
illumination changes, and camera tremors. We experimented on various
vehicle image set, where the images in each set are captured in different
road environment. For the largest set, by using 50 sample images, where
each image with 1280×960 resolution or 13×12 grid areas, our algorithm
shows 94.31% of successful vehicle segmentation from 211 images with
various kinds of shadows and illumination changes.

Keywords: Vehicle area segmentation, Texture-based, Support vector
machine.

1 Introduction

In this paper, we present a method of segmenting the vehicle area from the as-
phalt paved road images. Our vehicle segmentation algorithm assumes that a
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single input image is given. The given image is captured from the stationary
outdoor CCD camera which is mounted on a fixed pole in the air appropriately
high above the road. The segmented vehicle area can be used for the further
various applications. As an example, the license plate recognition and vehicle
classification, which are used in various applications including automatic toll
fee collection systems, traffic monitoring systems, and Intelligent Transporta-
tion Systems(ITS), use the vehicle segmentation as one of their fundamental
operations.

When the input images have a reference frame of background, that is, the
background image without a vehicle is additionally given, the background sub-
traction method is one of the most widely used method for the vehicle segmenta-
tion. It compares a background and a vehicle image in a pixel-by-pixel manner,
to report a set of altered pixels as the vehicle area. Although it is intuitive
and straightforward, it is sensitive to the illumination changes, camera tremors,
shadows and other noises. For the cases where the vehicle color is similar to the
background color or where shadows of the target vehicle itself or other vehicles
exist, it may fail to find the vehicle area. It also has drawbacks that background
images and threshold values should be dynamically updated for deriving correct
results[1,2,3,4].

As one of extensions to the background subtraction methods, Lam et al.[5]
focused on the observation that the road, vehicle, the reflection from the vehicle
surface, and the cast shadow of the vehicle have different texture properties.
They computed the texture features to differentiate the road, vehicle, shadow,
and reflection, and then constructed a texture likelihood map, a luminance like-
lihood map, and a chrominance likelihood map. By combining those maps, they
construct a region mask for the vehicle area.

For the vehicle segmentation, having background reference frame is helpful.
However, to get more accurate vehicle segmentation, the background part in
the vehicle image and the background reference frame should have similar il-
lumination conditions; thus, it is necessary to capture the background image
in a short time before capturing the input vehicle image. Usually, to generate
a background image for each input vehicle image, additional cost is necessary.
Moreover, in some cases, we are not able to get the background image at all.
Therefore there are needs for segmenting a vehicle from the given single vehicle
image without a background reference frame.

Given a single vehicle image, the difficulties of differentiating unnecessary vi-
sual information such as lanes, shadows, and other noises from the vehicle, such
as the reflection from the shiny exterior, are well known. For the vehicle area
segmentation, there is a nice survey paper written by Sun et al[6]. They roughly
classified segmentation approaches into three categories: i) knowledge-based ap-
proaches, ii) stereo-based approaches, and iii) motion-based approaches. While
the knowledge-based approaches require a single vehicle image, other approaches
require two or more images or a video sequence. Though they focused on systems
where the camera is mounted on the vehicle, the knowledge-based approaches are
applicable on our problem. Knowledge-based approaches use a priori knowledge
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to detect vehicle locations. There are representative approaches uses the infor-
mation on vehicles, such as symmetry feature, color, shadow, geometric features
such as vertical/horizontal edges or corner points, vehicle lights, and texture.
Compared to the others, there are only a few researches based on the textural
feature.

Kalinke et al.[7] proposed a vehicle segmentation method based on entropy,
which contains the information of the intensity value distribution for a region.
Entropy is introduced as a measure of expected information for the quantity of
attention for given region[8]. Kalinke et al. found the region of interest having
high entropy, and assumed that region as a vehicle area. The measure of entropy
efficiently estimates the quantity of structure or texture of the region, but it is
known as rather inaccurate compared to the co-occurrence based methods.

In this paper, we present a vehicle segmentation method, aiming to an inte-
grated vehicle recognition system with the capability of license plate recognition,
vehicle classification, and so on. Our method classifies the local regions of input
vehicle images based on the texture feature represented by GLCM(Gray-Level
Co-occurrence Matrix)[9,10]. The SVM(Support Vector Machine) method[11,12]
is used for the classification. Given a vehicle image, our method partitions it into
a set of grids. Each grid is classified as a road or vehicle class. After the clas-
sification, we found the optimal rectangular area containing the vehicle based
on the dynamic programming approach. Our algorithm currently can be applied
for segmenting the area of one vehicle in the image, but it can be extended to
segment two or more vehicle areas by slightly changing the global optimization
part which is implemented by the dynamic programming approach.

We experimented on various vehicle image sets, where the images in each set
are captured in different road environments. For the largest set, by using 50
sample images, where each image with 1280 × 960 resolution or 13 × 12 grid
areas, our algorithm shows 94.31% of successful vehicle segmentation from 211
images with various kinds of shadows and illumination changes. Other small size
sets show the success rate of up to 100%.

This paper is organized as follows. In section 2, details of our vehicle seg-
mentation method will be presented. Section 3 contains the experimental results
from the prototype implementation. Conclusions and remarks on future work
will be followed in Section 4.

2 Vehicle Area Segmentation Method

In this section, we are focusing on the method of segmenting the vehicle area from
the road images. More precisely, we present a method of extracting the moving
vehicle area from a set of images captured from a pre-specified location, through
removing background road areas. During these formulations, to distinguish the
background road areas more systematically, we first divide the image into a set
of grid areas, and introduce a feature vector for each independent grid area.

Our method consists of two stages: the preprocessing stage starts from defining
feature vectors of grid areas, and an SVM is trained with these feature vectors,
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to finally decide whether a given grid area belongs to the background road class
or not. In the main stage, we choose the grid areas belonging to an optimal
vehicle area, based on a dynamic programming technique.

2.1 Feature Vector Construction

An input image is partitioned into a set of axis-aligned rectangular areas with
the size of width W and height H as follows:

Iij = {pxy|i · W ≤ x < (i + 1)W, j · H ≤ y < (j + 1)H} , (1)

where pxy is a pixel at the position (x, y). To analyze the internal texture in-
formation in a grid area, we convert the input image into a grayscale one. And
then, the image is quantized into D grayscale levels to filter unnecessary noises
out. In the next section, we use the parameter values of W = 100, H = 80 and
D = 32, for our experiments. Since we first select a specific set of parameters and
then apply SVM training stage, we can also choose another set of parameters
for another set of images.

For a grid area of W ×H pixels, we need to extract the abstraction of internal
texture information, and we have plenty of previous works for this purpose. We
use GLCM(gray level co-occurrence matrix) method, which is one of widely-used
ones in the field of texture analysis.

In the GLCM method, to abstractly express neighborhood information, we
build up the co-occurrence matrix, which is a two-dimensional square matrix
whose element corresponds to a transition from one pixel to its neighbor pixel.
Since we use D quantized gray levels, our GLCM becomes a D × D square
matrix. When a pixel with the quantized gray level d has a neighbor pixel with
the gray level of d′, we can interpret it as a transition from d to d′ and increase
the corresponding GLCM element by one.

Considering the symmetry conditions, a pixel may have four neighbors: its
south-west(SW ), south(S ), south-east(SE ) and east(E ) pixels. To apply the
GLCM method, we can use any combination of these neighborhood relations. In
the case of artifacts including vehicles, there would be relatively many horizontal
and/or vertical edges and they may act as noises in the texture analysis. As we
can see in the next section, our experiments also show that accumulating the
co-occurrence of S and E neighbors decreases the final success rate. Thus, we
use the SW and SE neighbors in our experiments.

In the case of SE neighboring relations, the matrix element GLCM [d][d′]
equals to the number of transitions from a pixel pxy with the quantized gray
level d to its SE neighboring pixel p(x+1)(y+1) with the quantized gray level d′,
where pxy, p(x+1)(y+1) ∈ Iij . The SW neighboring relations are also handled in
a similar way.

2.2 Decision by Support Vector Machine

Since the SVM method has difficulties to directly handle matrices, we re-arrange
the resulting GLCM matrices in a row-major order, to get 32 × 32 = 1, 024
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dimensional vectors, with assigning D = 32. To apply the SVM method in a
traditional way, we first train the SVM with a set of images. These sample
images are grayscale quantized into D = 32 levels, and partitioned into a set
of grid areas whose size is W × H = 100 × 80. After deciding each grid area
whether it belongs to the background area, which includes asphalt-paved loads,
painted guide lanes, shadows and so on, we put all these information into the
SVM, to train it up. The trained SVM will answer yes or no to the question of
whether the given grid area belongs to the background area or not, for the input
D × D = 1, 024 dimensional vectors resulting from the GLCM method.

2.3 Global Optimization

For an input image, we have a set of grid areas Iij ’s. Through calculating GLCM
matrices for each grid area, we can decide whether it belongs to the background
area or not. Since all these procedures locally focus on the inter-grid information,
there would be noises and/or wrong decisions from a global point of view. Thus,
we need to remove the noises and find a globally optimal solution. Additionally,
we still have no way to decide the final vehicle area, among the scattered non-
background grid areas.

In this paper, we use a dynamic programming approach to find these globally
optimal solutions for the vehicle area segmentation. We assigned the weight
values of Wback and Wfore for background grid areas and non-background (or
foreground) grid areas, respectively. For a grid area Iij , let its weight be wij ,
according to the decision of SVM machine. Now, the total weight of rectangular
m × n grid areas whose top-left grid area is Ipq can be expressed recursively as
follows:

wpqmn =

⎧
⎪⎪⎨

⎪⎪⎩

0, if m = 0 or n = 0
wpq , if m = 1 and n = 1
wpq + w(p+1)q(m−1)1 + wp(q+1)1(n−1)
+ w(p+1)(q+1)(m−1)(n−1), if m > 1 or n > 1.

(2)

Now, we evaluate all the possible wpqnm’s and report the m × n rectangular
region:

{Iij |p ≤ i < p + m, q ≤ j < q + n} . (3)

with the maximum weight. We have results for various Wback and Wfore values
and the final result will be shown in the next section.

3 Experimental Results

We perform the experiments on three different vehicle images sets, where those
sets were generated in three different places. For a specific set, depending on its
size, we choose some training images. The number of training images and grids,
the number of test images, and the rate of successful vehicle segmentation are
shown in Table 1. For each set, training and test images are disjoint.
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Table 1. Statistics on our experiments

image set no. of training images no. of test images no. of successful segmentation(%)

Set A 50 211 199 (94.31%)

Set B 20 37 37 (100.00%)

Set C 17 17 17 (100.00%)

Fig. 1. Training images and grids for Set A

For the image set A, the training images with grids are shown in Fig. 1. We
show the grid areas which are trained as the background road class in dark gray
areas. The grid areas in light gray colors are trained as the non-background (or
vehicle) class. Notice that the grid area containing the boundary of the vehicle
and a part of road is trained as the vehicle class. The road class grid is containing
the shadows, lanes, and the road surfaces. To decide the proper neighbors for
generating GLCM matrix, we tried several combinations. We found that using
the co-occurrences of S and/or E neighbors leads the lower rate of successful
vehicle segmentation than the case of using only SE and/or SW neighbors. For
the set A, we used SW and SE neighbors to generate GLCM matrix. Fig. 2
presents the GLCM elements in row-major order as graphs. Fig. 2(a) shows the
examples of road surface, lane, and shadow textural features. Fig. 2(b) shows
one example of vehicle textural feature.

(a) road class (b) vehicle class

Fig. 2. Texture features represented in graphs

In Fig. 3, we present some test images in the set A, and their segmentation
results. In the resulting images, light and dark gray areas represent that the
corresponding grid is classified as a vehicle class and a road class, respectively.
To check the validity of our method, our test images include various noised ones:
some images have very dark areas around the vehicle boundaries mainly due
to shades, and actually they are hard to decide as the vehicle area even with
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Fig. 3. Test result of Set A: test images(first row), and their corresponding segmenta-
tion results(second row)

Fig. 4. Test images and segmentation results from Sets B and C

human eyes. Thus, we treat the difference of one row or one column from grids
including the exact boundary of the vehicle as the successful cases. Additionally,
we originally aim to use the vehicle segmentation result as the input of the next
stage license plate identification and/or vehicle classification, and they usually
endure one row or one column differences. Though there are some wrong clas-
sifications in the example, the global optimization process segments the vehicle
area successfully. Fig. 4 shows the segmentation results for test images in the
sets B and C, where only SW neighbors are used to construct the GLCM.

4 Conclusion and Future Work

In this paper, we presented a vehicle area segmentation method from the out-
door road images. We classified the partitioned grid areas into two classes as a
background road class and a vehicle (non-background) class. The vehicle images
are partitioned into a set of grids, and the grids which contain the road surface,
lanes, or the cast shadow from the vehicles are classified into a road class. The
grids contain vehicle parts are classified into a vehicle class. For the classifica-
tion, we use the SVM method based on GLCM textures of each grid as feature
values. We experimented on a several sets of vehicle images, where each set was
composed by the captured images in different places with different illumination
and road surface conditions. For different sets, different samples were used for
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training the classes. Depending on the data set, experiments show the rate of
successful vehicle segmentation from 94.31% to 100%.

Currently, the proposed method is restricted to the input images with sunny
or cloudy weather conditions. If the weather condition changes to rainy or snowy,
we may need different feature values. As a future work, we are planning to refine
the classes to include wider types of regions in the vehicle image by using the
multi class SVM.
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Abstract. In this paper, some important theoretical problems about
rough relational database(RRDM) are studied. Firstly, the relationship
between rough relational database and non-deterministic information
systems is analyzed, secondly, the decomposition operator is introduced
based on rough relational operator and its basic properties are discussed.
In addition, the definability of rough relational database and the rough
description of attribute values of rough relational database are investi-
gated respectively. The redundant factor of rough functional dependency
is proposed, as well as rough functional dependency and its inference
rules are mainly studied .

Keywords: RRDM, rough data querying, rough functional dependency,
rough normal forms

1 Introduction

The rough relational database model was introduced by Theresa Beaubouef. In
RRDM, Theresa Beaubouef defined some rough relational operator, studied the
information-theoretic measures of uncertainty measures of rough sets of uncer-
tainty for rough sets and rough relational database, gave the definitions of rough
functional dependencies, rough data querying and investigated the normal forms
of RRDM [1-6].

Non-deterministic information systems (NIS) and incomplete information sys-
tems have been proposed for handling information incompleteness[7].

In this paper, the relationship between RRDM and NIS is firstly analyzed, and
the decomposition operator is introduced. Moreover, the definability of rough
relational database and the rough description of attribute values of RRDM are
investigated respectively. Finally, the redundant factor of rough functional de-
pendencies is proposed, rough functional dependency and its inference rules are
mainly studied.

2 The Relationship Between RRDM and NIS

To all appearances, RRDM and NIS have same expression form, while there are
some differences, which focus on the following issues:

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 550–556, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Study of Some Theoretical Problems for Rough Relational Database 551

1) Data redundancy. Like classical relational database, the reduplicate tuples
are unallowed in RRDM according to rough normal form, whereas the reduplicate
tuples are allowed in NIS.

2) The relationships among the elements of an attribute value. Like informa-
tion system is the generalization of relational database, a NIS is the generaliza-
tion of RRDM. In NIS, the relationship between the elements of an attribute
value is ”or” in general, and in RRDM, the relationship between the elements
of an attribute value are ”or” or ”and”.

3) Their research areas are different. NIS focuses on the definability of a set
in NIS, the consistency of an object, data dependency in NIS, rules in NIS,
reduction of attributes in NIS; whereas RRDM concentrates on rough relational
operation, rough data querying, rough functional dependency and rough normal
forms.

3 Rough Relational Operator and Decomposition
Operator

As we known, Theresa Beaubouef defined some rough relational operators. De-
composition operator is introduced in this paper and some of its properties are
studied.

Definition 1. ([2,8]) An interpretation α = (a1, a2 . . . , am) of a rough tuple
ti = (di1, di2, . . . , dim) is any value assignment such that aj ∈ dij for all 1 ≤ j ≤
m, aj is called a sub-interpretation of dij .

Definition 2. ([8]) Let r1 and r2 be rough relations, and r1 has attribute set
(A1, A2, . . . , Am), its attribute domain is (D1, D2, . . . , Dm), r1(Aij) is one of at-
tribute value of r1, rough relation r2 has same attributes and attributes domain
with r1, and its attribute value is denoted by r2(Aij), if r2(Aij) ⊆ r1(Aij) for all
i, j, then we call rough r2 a decomposition of r1, denote r2 = Γ (r1), we use Γ
stands for the decomposition operator.

Proposition 1. Let (R1, R2, . . . , Rn) be the set of tuples of rough relation r,
α1, α2 . . . , αn be the interpretations of r, then the rough relation s composed by
(α1, α2 . . . , αn) must be a decomposition of r.

Theorem 1. If rough relation s is the unique decomposition of rough relation
r, then Rr = s, Rr = r hold.

Proof. Let rough relation s be the unique decomposition of rough relation r,
and r is composed by (t1, t2, . . . , tn), s is composed by (α1, α2 . . . , αn), kij be
arbitrary attribute value of arbitrary tuple αi of s, vij be arbitrary attribute
value of arbitrary tuple ti of r. Because s is the unique decomposition of r, so
kij ⊆ vij holds, and αi ⊆ ti, αi ⊆ Rti hold, in addition, we only have αi ⊆ Rti
for r(j �= i), so Rti = αi holds. Similarly, we have αj ⊆ Rtj , Rtj = αj , moreover
Rr = {Rt1, Rt2, . . . , Rtn} = {α1, α2 . . . , αn} = s based on rough set theory, and
ti ∩ ti = ti �= ∅ for arbitrary tuple ti. So ti ⊆ Rti, and only Rti = ti, Rr =
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{Rt1, Rt2, . . . , Rtn} = {t1, t2, . . . , tn} = r hold; in conclusion, Rr = s, Rr = r
hold.

Theorem 2. If rough relation s is the arbitrary decomposition of rough relation
r, then Rr = r must be hold.

Proposition 2. Let rough relation s be the arbitrary decomposition of rough re-
lation r, kij be arbitrary attribute value of arbitrary tuple αi of s, vij be arbitrary
attribute value of arbitrary tuple ti of r, if ∃kij ⊂ vij for all αi, then Rs = ∅
must be hold.

Proposition 3. Rough relation s is a decomposition of rough relation r if and
only if kij ⊆ vij (where kij be arbitrary attribute value of arbitrary tuple αi of
s, vij be arbitrary attribute value of arbitrary tuple ti of r).

4 The Definability of RRDM and Rough Description of
Attribute Values

4.1 The Definability of RRDM and Data Querying

Definition 3. For a RRDM S, let X be the result set of rough data querying.
When X can be expressed by these tuples of S, X is accurately definable in S,
RX = RX = {ri|ri ∈ S ∧ ri ∈ X, 1 ≤ i ≤ |U |}, when X can be expressed by
these tuples of S, and can’t be expressed accurately, X is rough definable in S,
X = {ri|∃i(ri ∈ S) ∧ |ri(a)| ≥ 1 ∧ ri(ai) ∩ C �= ∅, 1 ≤ i ≤ |U |, C ∈ X}, RX =
{ri|ri ∈ S ∧ |rj(aj)| = 1 ∧ ri ∈ X, 1 ≤ i ≤ |U |, 1 ≤ j ≤ |A|}, where ri denotes
any tuples of S, and |ri(aj)| denotes the number of sub-interpretation , C is an
attribute value of X.

Here we divide the rough querying into two classes: certain data querying and
possible data querying. Certain data querying is to search these objects fully
matching the querying conditions, possible data querying finds these records
satisfied all possible matching with querying conditions.

Theorem 3. The result of certain data querying is the minimal set that satisfies
querying conditions, X = RX = RX = {ri|ri ∈ S ∧ ri ∈ X ∧ ri(a) = C, 1 ≤ i ≤
|U |} where ri(a) is one of attribute values, and C is the attribute value that user
want to query.

Theorem 4. The result of possible data querying is the maximal set that satis-
fies querying conditions, and we denote its result as follows:

RX = {ri|∃i(ri ∈ S) ∧ |ri(a)| ≥ 1 ∧ Γj(ri(ai)) = C, 1 ≤ i ≤ |U |, 1 ≤ j ≤ K}

where X is the result of rough relation operations, K is the maximal number of
sub-interpretation for an attribute value, and ri(a) is an attribute value based
on attribute a, Γj(ri(ai)) is a sub-interpretation of ri(a), and C is the attribute
value that user want to query.
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4.2 The Rough Representation of Attribute Value of RRDM

According to the point of view of T.Y.Lin [9], each attribute value equal to an
equivalence granule and each attribute equal to an equivalence relation, this the-
ory can be extend to RRDM for studying the representation of attribute value.

Proposition 4. Given a rough relational database R, let t[Aj ] and {x1, x2, . . .,
xn} be R′s arbitrary attribute value and a set of objects respectively. If t[Aj ] ∈
xi ∧ |t[Aj ]| = 1, then xi ⊆ Rt[Aj ]; if t[Aj ] ∈ xi ∧ |t[Aj ]| ≥ 1, then xi ⊆ Rt[Aj ],
where 1 ≤ i ≤ n, 1 ≤ j ≤ m, || is the cardinal number of sub-interpretation.

As can be seen from Table 1, according to proposition 4, the following results
for attribute ”COUNTRY” are obtained:

RUS = {x1, x2, x3, x4, x5}, RUS = {x1, x2, x3, x4, x5, x6}

Proposition 5. The certain data querying results to attribute value t[Ai] is its
lower approximation Rt[Ai], the possible data querying results to attribute value
t[Ai] is its upper approximation Rt[Ai].

Table 1. Subregions

OBJ ID COUNTRY FEATURE

x1 U123 US MARSH, LAKE
x2 U124 US MARSH
x3 U125 USA MARSH, PASTURE, RIVER
x4 U126 US FOREST, RIVER
x5 U147 US SAND, ROAD, URBAN
x6 U157 US, MEXICO SAND, ROAD
x7 M007 MEXICO SAND, ROAD
x8 M008 MEXICO BEACH
x9 M009 MEXICO SAND
x10 CO39 BELIZE JUNGLE
x11 CO40 BELIZE, INT JUNGLE, COAST, SEA

5 Rough Functional Dependency and Its Inference Rules

5.1 Rough Functional Dependency and Redundant Factor

In [2], Beaubouef Theresa gave the definitions of tuples redundant, tuples roughly-
redundant and rough functional dependency, in this paper we introduce the redun-
dant factor and analyze its some properties.

Definition 4. ([2]) A rough functional dependency X −→R Y , for a relation
schema R exists if for all instances T (R),

(1) For any two tuples t, t′ ∈ RT , redundant(t(X), t′(X)) → redundant(t(Y ),
t′(Y )), and

(2) For any two tuples s, s′ ∈ RT, roughly − redundant(s(X), s′(X)) →
roughly − redundant(s(Y ), s′(Y )).
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Definition 5. ([11])(redundant factor) In definition 4, we call the similarity
measure between t(X) and t′(X) antecedent lower redundant factor, denote α , we
call the similarity measure between t(Y ) and t′(Y ) as consequent lower redundant
factor, denote β , then the definition 4 (1) can denote Xα → Yβ.Similarly, we
call the similarity measure between s(X) and s (X) antecedent upper redundant
factor, denoted , the similarity measure between s(Y ) and s′(Y ) call consequent
upper redundant factor, denote β′ , so the definition 4 (2) can denote Xα′ −→ Yβ′

where

α =
card(t(X) ∩ t′(X))
card(t(X) ∪ t′(X))

, β =
card(t(Y ) ∩ t′(Y ))
card(t(Y ) ∪ t′(Y ))

where α, β ∈ [0, 1], card() denote the cardinal number of the set, the definitions
of α′, β′ are similar to α, β.

In this paper, we use X −→R Y stand for rough functional dependency, or
denote Xα → Yβ and Xα′ −→ Yβ′ .

5.2 Rough Functional Dependency and Armstrong Axiom

Proposition 6. For a RRDM, if its arbitrary tuples t = (dx1, dx2, . . . , dxm)
and t′ = (dy1, dy2, . . . , dym) are tuple-redundant, then they must be roughly-
redundant. If t, t′ is roughly-redundant, it’s unnecessary to be tuple-redundant.

Proposition 7. In rough functional dependency Xα → Yβ and Xα′ → Yβ′ , if
α = 1, then β = 1,when α′ = 1, β′ is unnecessarily equal to 1.

Proposition 8. Dissimilar antecedent attributes values don’t influence the de-
pendency.

Theorem 5. Classical functional dependency satisfies rough functional depen-
dency Xα → Yβ, Xα′ −→R Yβ′ .

Let U be the set of attributes, F be a group of rough functional dependency,
< U, F > be the rough relational schema, we obtain following inference rules on
rough functional dependency (about Armstrong axiom).

RFD1: Reflexive rule: if Y ⊆ X ⊆ U holds, then X −→R Y holds in F .
RFD2: Transitivity rule: if X −→R Y, Y −→R Z holds in F , then X −→R Z

holds in F .
RFD3: Augmentation rule: if X −→R Y holds in F , and Z ⊆ U , then

XZ −→R Y Z holds in F .

Theorem 6. The inference rules RFD1, RFD2, RFD3 are sound.

Proof. RFD1: Let t, t′ be arbitrary tuples of RRDM, t, t′ ∈ RT , now Y ⊆
X ⊆ U , so X ∩ Y = Y , if exists redundant(t(X), t′(X)), then according to
the definition of tuple-redundant, t(X) = t′(X) holds. Because attribute Y
is subset of X, Y satisfies t(Y ) = t′(Y ), and redundant(t(Y ), t′(Y )) holds, so
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redundant(t(X), t′(X)) → redundant(t(Y ), t′(Y )) holds; let t, t′ ∈ RT , if exists
roughly − redundant(t(X), t′(X)), then according to the definition of roughly-
redundant, t(X) ∩ t′(X) �= ∅ holds, let k ∈ X , then t(k) ∩ t′(k) �= ∅ , because
attribute Y is a subset of X, so t(Y ) ∩ t′(Y ) �= ∅ holds, and then roughly
- redundant(t(Y ), t′(Y )) holds, namely roughly − redundant(t(X), t′(X)) →
roughly − redundant(t(Y ), t′(Y )) holds, as a result, X −→R Y is included in F ,
RFD1 holds.

RFD2: If rough functional dependency X −→R Y, Y −→R Z holds, for ar-
bitrary tuples t, t′ ∈ RT , redundant(t(X), t′(X)) → redundant(t(Y ), t′(Y )),
redundant(t(Y ), t′(Y )) → redundant(t(Z), t′(Z)) holds, namely t(X) = t′(X)
holds, implies t(Z) = t′(Z) holds, i.e, redundant(t(X), t′(X)) → redundant
(t(Z), t′(Z)) holds—(1); similarly, for arbitrary tuples t, t′ ∈ RT , redundant
(t(X), t′(X)) → redundant(t(Z), t′(Z)) holds—(2); from (1),(2) we obtain
X −→R Z is included in F , RFD2 holds.

RFD3: Let X, Y, Z are the attributes sets on the RRDM, and t, t′ are arbitrary
tuples with the RRDM, t, t′ ∈ RT , if X −→R Y holds, redundant(t(X), t′(X)) →
redundant(t(Y ), t′(Y )) holds, namely t(X) = t′(X) → t(Y ) = t′(Y ) holds; if
t(XZ) = t′(XZ) holds, then t(X) = t′(X), t(Z) = t′(Z) holds, so to t, t′ , we
have t(Y Z) = t′(Y Z) holds, redundant(t(XZ), t′(XZ)) → redundant(t(Y Z),
t′(Y Z)) is included by F ; similarly, for t, t′ ∈ RT , redundant(t(XZ), t′(XZ)) →
redundant(t(Y Z), t′(Y Z)), roughly − redundant(t(XZ), t(XZ)) → roughly −
redundant(t(Y Z), t(Y Z)) holds, so XZ −→R Y Z is included in F , RFD3 holds.

For RFD, we obtain following additional inference rules:
RFD4: Union rule: X −→R Y, X −→R Z |= X −→R Y Z.
RFD5: Decomposition rule: X −→R Y, Z ⊆ Y |= X −→R Z.
RFD4: Pseudo transitivity rule: X −→R Y, WY −→R Z |= XW −→R Z.

Theorem 7. The inference rules RFD4, RFD5, RFD6 are sound.

The proof is similar to rules RFD1-RFD3.
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Abstract. The paper proposes an approach based on Rough Mereology
to approximating hierarchical relationships between imprecise concepts
in knowledge representation systems. The approach employs Interval
Analysis to capture the imprecision caused by the granularity of knowl-
edge. Interval rough inclusion functions are defined. It is demonstrated
that they can be effectively used to compute the IS-A relationships by
measuring the inclusion of one approximated concept into another. It
is shown that the functions are superior to the previously suggested in
literature.

1 Introduction

Representing and reasoning about knowledge is critical in Artificial Intelligence.
There is a distinction between factual and ontological knowledge and the meth-
ods for their representation. Factual knowledge represents set of facts about
individual objects that are known or believed whereas ontological (a.k.a. back-
ground) knowledge represents concepts and relationships that are assumed to
exist in a domain. Ontological knowledge is often represented as a hierarchy
of concepts because splitting things of the real world into categories and sub-
categories is a natural way of human thinking. One example of conceptual hierar-
chies in AI is ontologies that are widely used in such areas as Natural Language
Processing, Semantic Web, etc.

Representation of both types of knowledge (factual and ontological) becomes
difficult when the knowledge is imprecise. This paper investigates the case of
granulated knowledge where not all objects are fully distinguishable. In this
case, knowledge cannot be represented precisely but can be approximated with
respect to granularity of the domain. Approximation of factual knowledge has
been extensively researched and often employs Rough Set Theory [6] for dealing
with indiscernibility of objects. Similar approaches have been applied on ontolog-
ical knowledge, in particular, on hierarchical conceptual structures - ontologies
[3]. The shortcoming of that approach is the insufficient attention is paid to ap-
proximating hierarchical relationships between concepts. To address it, Rough
Mereology [9] complemented by Interval Analysis [5] will be used.

The principal contribution of this paper is to provide rough mereological ap-
proach to approximating hierarchical (”IS-A”) relationships between imprecise
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concepts. In particular, definitions of rough inclusion functions suitable for com-
puting degrees of membership and subsumption will be provided. It will also
be demonstrated how the interval based definitions are superior to previously
suggested in the literature [1]. The remainder of the paper is organized as fol-
lows: Section 2 and 3 give brief introductions into Rough Mereology and Interval
Analysis. Section 4 presents the approach to approximating hierarchical knowl-
edge and Section 5 concludes the paper.

2 Rough Mereology

Rough Mereology is a recently proposed paradigm for approximate reasoning
based on Rough Set Theory. It was developed for ”specifying and analyzing
of a complex structure where the inference engine must take into account the
uncertain character of knowledge about objects and complex structures” [9].

The primitive notion of Rough Mereology is a function called rough inclusion
that defines the extent to which one possibly complex object is a part of another.
Rough inclusion functions give a formal semantics to how complex structures
are constructed from smaller parts. Rough inclusion functions can be used in
knowledge representation [1]. For example, the following problems that often
occur in ontology engineering may be approached by means of rough inclusion
functions:

– Whether the object, say, x belongs to the concept A?
– Whether the concept A ”IS-A” concept B (whether A is subsumed by B)?

The following rough inclusion functions will be defined:

– Degree of membership returns the degree to which the object x belongs to
the concept A.

– Degree of subsumption returns the degree to which concept A is a part of
concept B.

To apply Rough Mereology methods, membership and subsumption functions
should obey certain properties that are mandatory for all rough inclusions [4]:

R0: μ : 2|U| × 2|U| → Ω; ∀X, Y ∈ U ; ε ≤ μ(X, Y ) ≤ γ.
Partial order relation must be defined on the co-domain. Co-domain is
bounded where ε, γ ∈ Ω are the least and greatest elements respectively.

R1: μ(X, Y ) = γ, ∀X, Y ⊆ U
R2: μ(X, Y ) = γ ⇒ μ(Z, X) ≤ μ(Z, Y ), ∀X, Y, Z ⊆ U (monotonicity)
R3: μ(X, Y ) = μ(Y, X) ⇒ μ(Z, X) = μ(Z, Y ), ∀X, Y, Z ⊆ U
R4: There exists μ − null object N such that: μ(N, X) = γ, ∀X ⊆ U

3 Interval Analysis and Computations

Using single real numbers between 0 and 1 is not always satisfactory for repre-
senting imprecision and other certainty domains have been proposed. One such
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domain consists of pairs of real numbers. For example, Dempster-Shafer Theory
uses pairs of belief and plausibility, Theory of Possibility operates with possi-
bility and necessity, interval and intuitionistic fuzzy sets deal with imprecise
membership, etc. The reason of extending certainty domain is that just one real
number often fails to express the imprecision that exists in assessing the uncer-
tainty itself (a.k.a. ”meta-uncertainty”). For example, in the case of rough sets, it
is not possible to compute rough membership values for union and intersections
of sets [7]. Hence single values are inadequate and it is natural to use intervals
to represent the range that the actual uncertainty must fall into.

Important relations and arithmetic operations on intervals are defined in the
area of Interval Analysis and Computations. It was introduced by Moore as a way
of handling inevitable imprecision in scientific computations [5]. In particular, the
following will be used below for dealing with imprecision intervals in knowledge
representation:

– Partial order relation ≤. It is needed to compare certainty values and define
properties of interval functions (such as monotonicity). For the purpose of
handling imprecision the following is appropriate [2]:
Let X = [x, x], Y = [y, y] be real-valued intervals
X ≤ Y ⇔ (∀x ∈ X, ∃y ∈ Y : x ≤ y) and (∀y ∈ Y, ∃x ∈ X : x ≤ y)
This definition allows simple and efficient computation:
X ≤ Y ⇔ x ≤ y and x ≤ y

– Interval X = [x, x] is said to be degenerate iff: x = x
– Arithmetic operations. Let • ∈ {+, −, ×} be the set of allowed arithmetic

operations. Then:

[x, x] • [y, y] = [min(x • y, x • y, x • y, x • y), max(x • y, x • y, x • y, x • y)] (1)

4 Interval Rough Mereology

The goal of this section is to show how Rough Mereology can support formal
approximations of conceptual hierarchies. For that purpose rough inclusion func-
tions to compute degrees of membership and subsumption for approximated con-
cepts will be defined. It will also be shown that the developed functions return
plausible results when previously proposed definitions are inadequate.

4.1 Degree of Membership

First, Rough Mereology can be used to approximate the membership of individ-
ual objects to imprecise concepts. Rough Set Theory provides this approximation
through rough membership function [7]:

μA(x) =
[x]R ∩ A

[x]R
(2)

where R is a crisp equivalence relation, and [x]R is the equivalence class of x
(sometimes called granule). μA(x) is provably a rough inclusion function.
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The problem with the rough membership function in hierarchical knowledge
representation and reasoning, is the computation of membership degrees to in-
tersections and unions of concepts. It is desirable to have explicit formulas for
μA∩B and μA∪B using μA and μB . However, Pawlak showed that it is not possi-
ble in general to compute exact values of rough membership functions for union
and intersection knowing only the values of functions for each set individually
[7]. To formally capture this type of imprecision, it is possible to view rough
membership values as conditional probabilities. Then the following relationships
must hold [10]:

RM0: μAc(x) = 1 − μA(x).
RM1: μA∪B(x) = μA(x) + μB(x) − μA∩B(x)
RM2: max(0, μA(x) + μB(x) − 1) ≤ μA∩B(x) ≤ min(μA(x), μB(x))
RM3: max(μA(x), μB(x)) ≤ μA∪B(x) ≤ min(1, μA(x) + μB(x))

Although exact values for μA∩B and μA∪B and are unknown, they must fall
into intervals that can be precisely computed basing on μA and μB. This property
suggests that instead of using real numbers to represent membership degrees, it
is possible to use intervals and treat exact values as a special case. This is the
kind of imprecision for which Interval Analysis has been originally proposed, and
it is reasonable to use its theoretical machinery.

If a set of all closed intervals that are connected subsets of [0,1], is denoted ν,
interval membership function μ : 2|U| × 2|U| → ν can be defined as an extension
of standard rough membership function [7]:

μA(x) = μ([x]R, A) =
[
[x]R ∩ A

[x]R
,
[x]R ∩ A

[x]R

]
(3)

Then approximate degrees of memberships to union or intersection of concepts
can be computed according to RM2 and RM3:

μA∩B(x) = [max(0, μA(x) + μB(x) − 1), min(μA(x), μB(x))] (4)

μA∪B(x) = [max(μA(x), μB(x)), min(1, μA(x) + μB(x))] (5)

Then property RM1 can be verified using the interval calculus. This demon-
strates that the proposed interval extension of rough membership as a repre-
sentation of imprecision has the mandatory properties for rough membership
functions. It is also straightforward to verify properties R0-R4. This is one of
the two basic functions to be used in approximate knowledge representation.

4.2 Degree of Subsumption

Second common problem in hierarchical knowledge representation is determining
whether or not a concept is more specific/general than another concept. The
problem is often reduced to measuring the inclusion of one possibly imprecise
set into another. In the case of crisp or fuzzy sets, the computation is often
simple - a set is either a subset of another or it is not. This paper is concerned
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with the degree to which a set is a subset of another - i.e. an inclusion function
is required.

The most trivial function is the conventional one that is based on cardinalities
of sets. It trivially obeys the rough inclusion properties R0-R4:

μ(X, Y ) =
|X ∩ Y |

|Y | (6)

However, in the case of approximated concepts, the inclusion function should
be adapted to work with more general rough and rough fuzzy sets. Two such
rough inclusion functions have been recently proposed for rough sets [1]:

ρ(X, Y ) =
|B(X) ∩ B(Y )|
|B(X) ∪ B(Y )| (7)

ϑ(X, Y ) =
1
2

×
(

|X ∩ Y |
|X ∪ Y | +

|X ∩ Y |
|X ∪ Y |

)
(8)

where B(X) and B(Y) are boundary regions of X and Y respectively.
Unfortunately, these functions have some undesirable properties. Consider the

case shown in the Fig. 1 when rough set X is strictly inside rough set Y (cells
represent equivalence classes of the universe).

Fig. 1. Set X is strictly inside rough set Y

Here, upper approximation of X is a subset of lower approximation of Y. In
this case function 7 returns counterintuitive zero because boundary regions do
not overlap. Function 8 gives plausible result, namely 1, but suffers from less
obvious but still important shortcoming. Consider Fig. 2a and 2b:

In both situations function 8 outputs 1
2 despite that the situations are quite

different. The difference is in the imprecision represented by boundary regions of
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Fig. 2. a) Set X is strictly inside rough set Y. b) Sets X and Y have overlapping lower
and upper approximations.

the sets. Recall that boundary region is comprised of those objects that cannot
be certainly classified either as belonging to the set or to its complement. It
is intuitively obvious that in the case shown on Fig. 2a set X can be both
- strictly outside and strictly inside Y, depending on the exact shape of the
boundary region of Y. Indeed, if Y collapses to its lower approximation, X is
always outside of it. Conversely, if Y expands to its upper approximation, X is
always inside. Therefore degree of inclusion X into Y may fluctuate between 0
and 1. The situation on Fig. 2b is different. Here, X can never be strictly outside
of Y because their lower approximations overlap. It is certainly known that there
are objects that are both in X and Y and the share of those objects cannot drop
below certain percentage. However, degree of inclusion of X into Y may or may
not rise up to one depending on whether boundary region of X is or is not fully
contained in Y.

The problem of functions 7 and 8 is their inability to express that the degree
of imprecision certainly falls in an interval and may possibly have any value in
it. An intelligent agent computing those functions cannot distinguish between
situations on Fig. 2a and 2b (and many others similar). This is a significant loss
of information that may hurt the reasoning quality in an imprecise environment.

Analogously to the membership function, imprecision cannot be characterized
precisely, but can be bounded by a pair of real values: η : 2|U| × 2|U| → ν. Com-
puting the inclusion of one rough set into another involves computing inclusion
degree for crisp sets. This is because any rough set is represented as a pair of its
approximations that are crisp sets. Therefore rough inclusion function will be
defined with respect to some crisp inclusion function - ηc. Then the function η
must obey the following properties:
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∀X, Y ⊆ U, η(X, Y ) = [α, β] ⇒ ε ≤ α ≤ minX⊆A⊆X;Y ⊆B⊆Y (ηc(A, B)) (9)

∀X, Y ⊆ U, η(X, Y ) = [α, β] ⇒ maxX⊆A⊆X;Y ⊆B⊆Y (ηc(A, B)) ≤ β ≤ γ (10)

To understand the motivation behind properties 9 and 10, consider a rough set
X as a collection of all sets enclosed between its lower and upper approximations.
If any imprecision were eliminated, it would be possible to say which set in the
collection actually represents X. But as long as imprecision exists, it is assumed
that X can be any set in the collection. Then it is possible to give the following
semantics to [α, β] when formulating properties 9 and 10:

– For any X and Y, degree of inclusion of X into Y cannot drop below α

– For any X and Y, degree of inclusion of X into Y cannot exceed β

Now being equipped with properties 9 and 10, it is possible to propose a sub-
sumption function η to compute the degree of inclusion of one rough set into
another. Although η can be computed directly from 9 and 10, it incurs a signif-
icant overhead. It requires O(2max(|B(X)|,|B(Y )|)) calls of ηc i.e. it is exponential
in cardinality of boundary regions of X and Y.

However, it is possible to compute only the following:

[α, β] = [min(V1, V2, V3, V4), max(V1, V2, V3, V4)] (11)

where: V1 = ηc(X, Y ), V2 = ηc(X, Y ), V3 = ηc(X, Y ), V4 = ηc(X, Y ). It can be
verified that the function 11 is free of the previously described shortcomings.

Note how similar this definition is to the formula 1 that defines arithmetic
operations on intervals. This is not an accident. Rough sets can be viewed as
interval structures. Analogously to how real numbers fall into imprecision inter-
vals, crisp sets fall into intervals induced by approximation spaces. The function
11 can be verified to obey properties R0-R4:

R0: Holds, η is a well-defined function and ν is bounded by [0,0] and [1,1].
R1: For the traditional definition of rough subset [8] - X ⊆ Y ⇔ X ⊆ Y

and X ⊆ Y the property does not hold. The reason is that this definition
of rough subset is inconsistent with the properties 9 and 10. Instead, the
certain inclusion relation defined as: X ≺ Y ⇔ X ⊆ Y and interpreted as:
”all objects that are possibly in X are certainly in Y”, can be used. Then,
the property holds.

R2: Assume η(X, Y ) = γ. For some Z ⊆ U compute η(Z, X) = [min(V ′
i ),

max(V ′
i )] and η(Z, Y ) = [min(V ′′

i ), max(V ′′
i )], i = 1, 2, 3, 4. As long as ηc

obeys R2, V ′
i ≤ V ′′

i , so η(Z, X) ≤ η(Z, Y )
R3: η(X, Y ) = η(Y, X) implies that X = X = Y = Y . Therefore, ∀Z ⊆

U, η(Z, X) = η(Z, Y )
R4: N = 〈�, �〉 may serve as a null-object.

Therefore the subsumption function 11 is a rough inclusion and may be used
together with membership function 3 for approximating hierarchical knowledge.
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5 Conclusion

The paper proposes a rough mereological approach to approximating concepts
and hierarchical relationships for knowledge representation. The principal con-
tribution is the interval based rough inclusion functions that can be used for ap-
proximate representation and reasoning with imprecise conceptual hierarchies.
The functions operate with intervals and can formally capture the imprecision
caused by computing rough membership values for union and intersection of
rough sets.

The approach can be effectively used in knowledge representation systems
that employ Rough Set Theory to handle the granularity of knowledge. Hierar-
chical relationships between concepts can be approximated using the subsump-
tion function that computes the degree of inclusion of one rough concept into
another. This is useful, for example, in ontology engineering where concept hi-
erarchy occupies the central place. Formal ontologies for imprecise domains can
be approximated using the proposed mereological approach and be used by in-
telligent agents for approximate reasoning in the Semantic Web.

The approach can be generalized to use rough and fuzzy methods to handle
different types of imprecision in concepts and relationships. In this case, rough
inclusion functions will be used to compute degrees of membership and sub-
sumption for rough fuzzy sets [10]. Intervals will represent boundaries of fuzzy
membership values computed with respect to approximations spaces.
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Abstract. Integrating the RBAC model in object-oriented systems is
a natural way to describe authorization policies. We extend the RBAC
model for access control in object-oriented systems in the context of the
Access Control List. In this paper, we discuss access control issues cate-
gorizing three cases: subject to object, inter-objects, and intra object. It
may be desirable in some applications to have a fine-grained access con-
trol at the level of the individual attributes or the methods of an object.
We also demonstrate how access control decisions are made using ALCQ
language, a family member of description logics.

Keywords: Role-based access control, object-oriented system, access
control List, description logic.

1 Introduction

All access control problems seek to answer the fundamental question: “Is subject
S allowed to access type A on object O?”. A well known access control principle
known as role-based access control (RBAC), is utilized to organize subjects into
access control groups, based on their roles in an organization [1]. This simplifies
the task to grant and revoke authorizations to entire groups of subjects at a time.

In this paper, we integrate the RBAC model within an object-oriented
paradigm (ORBAC) to describe authorization policies. We argue that autho-
rization mechanisms are needed to restrict access to objects, within a domain,
based on defined access control policies. Since RBAC is not originally designed
for object-oriented systems, we extend it by adding mechanisms for access con-
trol among objects.

Roles and objects automatically obtain permission from the class in which
they are instantiated. They can also inherit permission from superclasses. Al-
though inheritance can reduce the complexity of the permission assignment,
under special cases it is difficult to introduce various permission restrictions.
However, on occasion it is desirable to restrict some users from the given access.
In addition, we may need to assign different permissions for each attribute or
method within an object, rather than applying the assigned permission to all
elements within that object. Therefore, in object-oriented systems, it may be
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desirable, in some applications, to have fine-grained access control at the level
of the individual methods or attributes of an object.

Every object can be further broken down into smaller access units, i.e. the
object’s attributes or methods. Attributes and methods come equipped with
their own Access Control List (ACL). To maintain the secure system, ACLs [2,3]
are created to limit to accesses between the methods and attributes of objects.
In this paper, access control policies are thereby represented by invocation sets
of methods, ACLs of object attributes, ACLs of method variables, and ACLs of
values returned by methods.

Several advancements in authorization specification and enforcement have
been carried out with reference to specific applications and data models. Autho-
rization models proposed for object-oriented systems [4,5,6] exploit the encap-
sulation concept, meaning the fact that access to objects is always carried out
through methods. Each derived function, i.e. method can be specified as support-
ing static or dynamic authorizations [4]. A similar feature is also proposed in [6],
where each method is associated with a principal, and accesses requested during
a method execution are checked against the authorization of the method’s prin-
cipal. McCollum et al. [7] propose a dissemination control system that maintains
access control over one’s data by attaching an access control list that imposes
access restrictions to the data object. The access control list propagates, through
subject and object labels, to all objects into which its content may flow. In [8]
each object has two protection attributes: the current access and the potential
access. The model proposed in [3] controls information flows in object-oriented
systems. It utilizes ACLs of objects to compute ACLs of executions, and then
obtains a secure information flow condition. In spite of research results aforema-
tioned, there is little work that links both object-oriented and DL methodologies.
Research has been published describing roles and permissions, however, few in-
clude the role-object relationship.

We formally define the properties and relationships that should hold in the ac-
cess control specifications using description logics (DLs) [9]. A formal description
of access control policies is necessary in order to check if security requirements
are satisfied or not. We use the DL language ALCQ [10] to define and reason
about authorizations and privileges. In practice, we present an example of rea-
soning on an access control via RACER [11].

The paper is organized as follows. In Section 2, we describe how to integrate
the RBAC model within an object-oriented paradigm. In Section 3, we follow this
by showing how DL can be used to model ORBAC. In Section 4, we illustrate an
example how an access control could be used in a university domain and how a
reasoner is used to evaluate user’s access requests. We conclude with a summary
of the contributions of this paper along with some future work.

2 ORBAC Model

The access control problem has been contained within the framework of sub-
jects, objects, and authorizations. Within this subject-object paradigm of access
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control, an object refers to any entity that holds data. When we discuss access
control in object-oriented systems, we must map this general notion of objects to
class objects in the object-oriented sense. We distinguish between three different
categorizations for structural and behavioral access control issues in terms of
where the access takes place.

– Subject to object: This concerns access control issues if a subject requests to
access an object. We are concerned with how a subject establishes an initial
authorized point of contact with an object;

– Inter-objects: This level of access is concerned with how an object can ac-
cess another object. With an object-oriented paradigm, access control is con-
cerned with issues such as the visibility and propagation of authorizations
from object to object;

– Intra object: This deals with access control within the internal structure and
behavior of individual objects. This issue is thus irrelevant to other objects
in the system.

The RBAC is a rather straightforward approach for subject to object access
control. Using roles for access control generalizes the assignment of permissions.
A subject playing a role possesses the permissions of the role. A major advantage
of the RBAC is that permissions are bound to roles instead of users.

We extend the RBAC model to illustrate how a subject is granted autho-
rization to the given objects. For object to object access, it is required that the
access control mechanisms be flexible enough to support varying granularity of
access units. Access policies are based on inherited authorizations derived along
the class structure hierarchy. Users automatically obtain permissions from the
class they are instantiated and inheritance from superclasses. However, it is oc-
casionally desirable to restrict some users given access. Therefore, it is necessary
to add several mechanisms to handle such situations.

The need for access control can also appear within an object. We consider how
we control visibilities and interactions of elements within objects. If we wish to
control the visibilities of method m, then we should restrict client methods that
can invoke m. Every method m can be associated with a set of methods that
are allowed to invoke m. This set contains the names of methods and classes to
which m is made visible. In this paper, the association of methods is defined via
a method access list of the form: {O1.m1, O2.m2} which allows method O1.m1 to
invoke method O2.m2. Therefore, method access lists, in ORBAC, limit method
invocation.

In the case of a class, m is visible to all methods in the class. Further inves-
tigation is necessary for the inheritance hierarchy. If a method m0 is visible to
class C1, then C1 is part of the invoker set of m0. A locally defined method m1 in
C1 can thus invoke m0. Now we will consider the class C2 which is a subclass of
C1. Class C2 inherits m1 in the class hierarchy and has a locally defined method
m2. Through inheritance, class C2 is automatically placed in the invoker set for
m0. Under some circumstances, we may not want C2 to be placed in the invoker
set, therefore, we need to override the inheritance or add some restrictions to
deny C2 from those privileges.
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It must be recognized that in object-oriented systems, access control and
integrity mechanisms are closely linked. This is because methods modify the
states of objects, i.e. attributes or variables, and we often enforce access control
on method invocations. Integrity is concerned with the improper modification
of data. It may be desirable in some applications to have fine-grained access
control at the level of the individual attributes or methods of an object. In other
words, attributes and methods should be protected independently. It may be
desirable to allow only certain methods in the object to access a local attribute.
An obvious way to accomplish this would be for every attribute to maintain a
list of methods that are allowed access to it.

Within an object, we may want to restrict the visibility of local methods
to each other. Again an obvious way to accomplish this would be to provide
a list for every method. We use the ACL of the access control mechanism in
order to establish meaningful interconnections and visibilities across objects. In
the ACLs, each object is associated with a list indicating the actions that each
subject can exercise on the object. Attributes and methods come equipped with
their own ACL. There are ACLs for object attributes, method variables, and for
method return values. Each one is defined as following:

attACLi = (attName, className, RACLattName, WACLattName)
mdVarACLi = (varName, mdName, className, RACLvarName, WACLvarName)
mdRetACLi = (mdName, className, RACLmdName, WACLmdName)

An ACL in ORBAC is composed of a Read ACL (RACL) and a Write ACL
(WACL). An attribute’s ACL is composed of the attribute’s name, the class
containing the attribute, the methods that are allowed to read the attribute
(RACL), and the methods that are allowed to write to that attribute (WACL).
Similarly, a method variable’s ACL and a method’s return value ACL are defined.
In the list, mdName indicates methods that contain the variable varName. The
definitions of varName, className, RACLvarName, WACLvarName are respectively
similar to those of attName, className, RACLattName, WACLattName.

RACL and WACL lists are used to grant more refined accesses between ele-
ments. As a result, this limits the role’s permission on elements of the class to
which it is given access. By default, we assume that elements within a class (as
well as inter-objects) do not have rights to access each other. These permissions
can only be granted through ACLs.

3 Representation of the ORBAC Model in ALCQ

We conceptualize the ORBAC model and use a DL to represent the character-
istics of the ORBAC. Given an ORBAC model, we first define a DL knowledge
base K. We use atomic concepts and roles to express an access control policy.

An access control policy is composed of classes, a set of methods authorized to
interact with other methods, ACLs of class attributes, ACLs of method variables,
and ACLs of method return values. It is represented in Table 1.
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Table 1. Access control policy roles and description

Roles Description

∃hasClass.Class Classes

∃hasClass.∃hasMd.∃canInvoke.∃grant.Md Method access list

∃hasClass.∃hasAtt.∃hasAttRACL.Md Read ACL of mehtods that can read
an attribute

∃hasClass.∃hasAtt.∃hasAttWACL.Md Write ACL of mehtods that can
write an attribute

∃hasClass.∃hasMd.∃hasMdVar.-
∃hasMdVarRACL.Md

Read ACL of methods that can read
arguments of a method

∃hasClass.∃hasMd.∃hasMdVar.-
∃hasMdVarWACL.Md

Write ACL of methods that can
write arguments of a method

∃hasClass.∃hasMd.∃hasMdRetRACL.Md Read ACL of methods that can read
return value of a method

∃hasClass.∃hasMd.∃hasMdRetWACL.Md Write ACL of methods that can
write return value of a method

A class consists of attributes and methods, which can be local or inherited,
as defined below:

Class � ∃hasAtt.Att � ∃hasMd.Md

The concept description ∃hasAtt.Att indicates a set of classes that have at-
tributes. Similarly, concept ∃hasMd.Md is interpreted as classes that have meth-
ods. A method is composed of an argument list and a return value. This is
represented by the following concept:

Method � ∃hasMdVar.MdVar � ∃hasMdRetVal.MdRetVal

Concept ∃hasMdVar.MdVar gives us methods that have the set of arguments
associated with it. Concept ∃hasMdRetVal.MdRetVal indicates methods that
have return values. A set of arguments are required for other methods that
invoke it. The method return value may also be used by other methods that
invoke it. In this case, authorization is given to read the return value of that
method.

Since classes can inherit behavior from one another, the access control policy
access lists include permissions inherited from superclasses. Therefore, concept
∃hasClass.- ∃hasAtt.∃hasAttRACL.Md includes methods defined in a particular
class as well as the methods which that class inherits which are authorized to
read that attribute. Method access lists are defined as a set of methods which
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can invoke another method. The invoker list of methods is also used to confine
the invocation accesses between methods. Each method has an associated access
list:

∃hasClass.∃hasMd.∃canInvoke.∃grant.Md

This indicates all the methods that are currently granted to invoke method Md.
Now we will describe each ACL. There may be a situation where a child class

wants to override an inherited attribute’s ACL. This can be done at the local
level and can include the inherited ACL as part of the new set. If class C0 inherits
an attribute att from class C1, then this attribute’s ACL can be redefined as:

attACLC0 = attACLC1 ∪ (att, C0, RACLatt, WACLatt)

where attACLC1 is the inherited attribute’s ACL from class C1, and (att, C0,
RACLatt, WACLatt) is the locally defined ACL. An RACL is defined as follows:

∃hasClass.∃hasAtt.∃hasAttRACL.Md

This is described as the list of methods that can read a specific attribute of a
class. Similarly, WACL is defined as:

∃hasClass.∃hasAtt.∃hasAttWACL.Md

This defines the set of methods that can write to a specific attribute in a class.
In the same way, method variables have their own associated RACL and WACL
lists as shown in the following descriptions:

∃hasClass.∃hasMd.∃hasMdVar.∃hasMdVarRACL.Md
∃hasClass.∃hasMd.∃hasMdVar.∃hasMdVarWACL.Md

Method return values also have their own RACL and WACL lists below:

∃hasClass.∃hasMd.∃hasMdRetRACL.Md
∃hasClass.∃hasMd.∃hasMdRetWACL.Md

4 A Case Study

In this section, we illustrate a practical example and demonstrate how to accom-
plish reasoning tasks via RACER. There are four roles: Administrator , Studen-
tAdvisor, FacultyAdministrator , and ForeignStudentAdvisor . Suppose that there
are four classes: Person , Student, ForeignStudent , and Teacher . In our example,
we assume the following accesses for the above role and class hierarchies in our ex-
ample. Teacher can read and write Student ’s grade, but can only read Student ’s
name, ID, course history, and GPA. Teacher can only read ForeignStudent ’s at-
tributes. Student and ForeignStudent can only read Teacher ’s course information.
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The following role inclusion axioms describe the inheritance relations among
roles.

Administrator � StudentAdvisor ,
StudentAdvisor � ForeignStudentAdvisor ,
Administrator � ForeignStudentAdvisor ,
Administrator � FacultyAdministrator .

For each of the roles above, we define permission assignment axioms in (1).
We define authorization axioms in (2). The inheritance relations among classes
are defined by class inclusion axioms in (3). In (4), some of the elements of
each class are defined. For inherited attributes, we refer to child attributes by
prefixing the attribute and method. The prefix “s” is used for Student class, “fs”
for ForeignStudent , and “t” for Teacher . We show examples as we define the
RACL (5) and WACL (6) for some attributes. Method variables are defined in
(7). Method return variables are listed in (8) and their RACL lists are described
in (9).

Administrator � ∃perform.∃execute.Person , (1)
StudentAdvisor � ∃perform.∃execute.Student ,
ForeignStudentAdvisor � ∃perform.∃execute.ForeignStudent ,
FacultyAdministrator � ∃perform.∃execute.Teacher .

∃assign.∃perform.∃execute.Person � ∃authorize.∃execute.Person , (2)
∃assign.∃perform.∃execute.Student � ∃authorize.∃execute.Student ,
∃assign.∃perform.∃execute.Teacher � ∃authorize.∃execute.Teacher ,
∃assign.∃perform.∃execute.ForeignStudent � ∃authorize.-

∃execute.ForeignStudent .

ForeignStudent � Student , Student � Person , Teacher � Person . (3)

Person � ∃hasAtt.name, Person � ∃hasAtt.ID, (4)
Student � ∃hasMd.setGrade, Student � ∃hasMd.getCourseInfo,
Teacher � ∃hasMd.getCourseInfo, Teacher � ∃hasMd.setCourseInfo.

sName � ∃hasAttRACL.sGetName, fsID � ∃hasAttRACL.fsGetID, (5)

sGrade � ∃hasAttWACL.sGetGrade, sGPA � ∃hasAttWACL.sGetGPA, (6)

sSetGrade � ∃hasMdVar.sGrade, fsSetGrade � ∃hasMdVar.fsGrade, (7)

sGetName � ∃hasMdRet.sName, fsGetGrade � ∃hasMdRet.fsGrade, (8)

sGrade � ∃hasMdRetRACL.tSetStudentGrade, (9)
sGPA � ∃hasMdRetRACL.tGetStudentGPA.
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In the following, we show some representation of our DL facts and rules in
RACER. Afterwards, we show some queries to represent how we can check co-
hesion and consistency of our access control policy.

The ABox is used to verify access permissions when requests are made. For ex-
ample, if we have class objects Teacher T1, Student S1, and ForeignStudent FS1,
we can perform authorization checks when requests are made from one object to
another. Suppose T1 wants to obtain a student’s GPA. The local method which
will get this information is T1.getStudentGPA. This local method needs to in-
voke the getGPA method in S1. The reasoner will first check if the local method
can invoke getGPA. This is true due to the assertion: assign(T1.getStudentGPA,
S1.getGPA). The following query asks which objects contain a method that is
grants access to the method sGetName:

(retrieve(?o)(?o (some hasMd (some canInvoke (some grant sGetName)))) )

The return value is “(?O T1)” indicating the Teacher object T1. Next, S1.
getGPA has a return value sGPA from the statement sGetGPA � ∃hasMdRet.
sGPA. After the method is invoked, the reasoner verifies sGPA is checked if it
can be read by the invoking method. This is true from the statement sGPA �
∃hasMdRetRACL.tGetStudentGPA, so sGPA is passed back to tGetStudent-
GPA.

Note that even though class ForeignStudent inherits these RACL from the
Student class, class Teacher is not allowed to get the GPA of FS1. This is
because ForeignStudent creates a new RACL definition for this method, thereby
overriding the inherited RACL and method assignments. The following query
returns all objects that contain the method “tGetStudentName” and this method
belongs to an RACL of some return value:

(retrieve (?o) (?o (some hasMd (some canInvoke

(some grant (some hasMdRet

(some hasMdRetRACL tGetStudentName))))) ))

Not all ACLs need to be overridden. In these cases, the lists are inherited
from the parent and the invoker method will have the access permission on
the child’s attributes or methods. ACLs are required to add a finer level of
security. Otherwise, the object having access to another object will have access
to all of its attributes and methods. For example, Teacher is allowed to obtain
a ForeignStudent ’s Name, but is not allowed get the GPA or Grade.

5 Conclusion and Future Work

In this paper, we demonstrated how to express the RBAC concept in object-
oriented systems using a logical framework called DL. The goal was based on
the fine-grained access control at the level of individual attributes or meth-
ods of an object using access control list. We defined the access control policy,
which consists of classes, methods invocation lists, RACLs and WACLs of class
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attributes, method variables, and method return values. In addition, we illus-
trated how this access control policy may be used in a DL framework to make
authorization decisions between the role hierarchy and the object hierarchy. The
formalization of ORBAC in a logical approach makes it feasible to reason about
a specified policy and verifies its correctness. Future study is required in order
to incorporate role delegation and conflict resolution.
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Abstract. Rough neural networks aim at hierarchical construction of compound
concepts. Although the structure of such concepts is assumed to be more compli-
cated than numbers in case of standard feedforward neural networks, some mech-
anisms can be generalized to achieve efficient propagation and learning. One of
possible generalizations, called the normalizing neural networks, enables to prop-
agate vectors instead of single signals. Neurons take form of multidimensional
functions, which model cross-dependencies among importance of particular vec-
tor components. In this way, we are able to represent some types of compound
concepts using relatively simple neural network structure. As an illustration, we
consider the case study related to the task of magnetic resonance images’ seg-
mentation. We put a special emphasis on how the nature of objects and attributes
in a given decision system influences the network’s architecture. We also com-
pare our model to other rough-neural approaches.

Keywords: Rough Neurons, Multi-Dimensional Neurons, Complex Concepts.

1 Introduction

Rough neural networks and rough neural computing have been studied in literature in
many aspects. First, rough set methodology was considered together with feedforward
neural networks within the framework of KDD – knowledge discovery in databases.
Algorithms for reduction of attributes and simplification of rules were considered by
means of optimizing the inputs to a neural network. Vice versa, neural networks were
also applied to learn from data the definitions of attributes, then treated with the rough
set algorithms. Finally, rough sets and neural networks were considered within hybrid
approaches together with other appropriately defined methods, e.g., fuzzy logic and
domain-specific analytical techniques. The reader is referred to the following papers as
examples of the above-mentioned strategies [9,14].

The second direction of research in this area relates to generalization of neurons
(their transition functions and connections) by means of the theory of rough sets. The
initial concept of rough neuron in [7] – a neuron consisting of sub-neurons responsible
for the lower and upper approximations – was modified in many ways, e.g., in [2] where
lower and upper approximations are replaced by lower approximation and boundary, as
a model of signal analysis, based on the concept of partitioning the signal into the pre-
dictable and random parts. In [13], the model of a multi-dimensional neuron operating

A. An et al. (Eds.): RSFDGrC 2007, LNAI 4482, pp. 574–582, 2007.
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with vectors of signals has been developed. Its relevance to the main stream of the
rough set methodology may be explained by papers [8,11], where dealing with vectors
of memberships to various decision classes is presented as one of the main aspects of
rough sets, confronted to the other methods concentrating on single decision classes in
the classification/prediction process. In the next sections, we will see that comparison
of rough neurons and multi-dimensional neurons becomes quite intriguing, especially
when we further modify rough neurons to let them play with lower approximations and
complements of upper approximations (negative regions).

Generalizations of neurons have been followed by generalizations of the entire net-
work structures and corresponding learning mechanisms. New models of neural net-
works have been studied more and more often as hierarchical structures of complex
concepts (granules), which finally resulted in the methodology of rough-neural com-
puting (RNC) [9]. We focus on RNC’s features analogous to those most commonly
attributed to the classical neural computing:

– Construction of systems performing complex tasks using simple rough neurons and
their straightforward generalizations transforming parameters of concepts

– Hierarchical structure that represents gradual formation of more complex granules
(concepts) modeling complex phenomena or structures, or projection onto simpler
granules (concepts) modeling aggregation of information, conflict resolution etc.

– Flexibility and robustness originating in highly adjustable structure of possibly
generalized rough neurons, their connections, and intermediate transformations en-
abling to vary the structures of granules (concepts) throughout the network

– Ability to learn from examples a desired setting of the network weights, just like
in case of standard neural network models, in particular ability to adapt the mech-
anism of backpropagation for networks involving complex granules and neurons

The paper is organized as follows: In Section 2, we introduce basic notions of rough
sets and possible types of rough neurons. In Section 3, we illustrate how to switch from
basic rough neurons in information systems to multi-dimensional neurons modeling
vectors of decision memberships in decision systems. In Section 4, we show examples
of applications of multi-dimensional neurons to deal with complex concepts and de-
cision processes related to the task of magnetic resonance images’ segmentation (cf.
[15]). Section 5 concludes the paper.

2 Rough Sets and Rough Neurons

Classification systems often attempt to find possibly direct input-output mappings,
which may be not learnable. The target concepts may be by nature complex, consisting
of simpler sub-concepts. The desired solutions should then have an internal structure.
The solutions’ components, as well as the way we combine them, should be able to
take complex forms too. In our research, we addressed neural network models repre-
senting such complex concepts, e.g. by propagating rough membership distributions,
weighted sets of rough-set-based decision rules, etc. [12]. The origins of transmitting
complex, rough-set-related information throughout neural networks are, however, back
to [7], where rough neurons correspond to the lower and upper rough set approxima-
tions, transformed and transmitted as a kind of two-dimensional signals.
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Figure 1 shows some approaches to handling rough set-related information in com-
plex neurons. Let us assume that a set of examples U is given, and every u ∈ U is
represented by a vector of attribute values a(u), where a : U → Va, a ∈ A. A tuple
A = (U, A) is referred to as an information system [10]. Assume that U actually con-
sists of positive and negative examples of some target concept (decision). We represent
positive examples by X ⊆ U . We approximate X by indiscernibility classes of exam-
ples with the same values, i.e. [u]A = {x ∈ U : ∀a∈Aa(x) = a(u)}. We consider the
following lower and upper approximations of X :

Low(X) = {u ∈ U : [u]A ⊆ X} and Upp(X) = {u ∈ U : [u]A ∩ X �= ∅}

as well as the following positive, negative, and boundary regions for X :

Pos(X) = Low(X), Neg(X) = U \ Upp(X), Bnd(X) = Upp(X) \ Low(X)

Pos(X) gathers all cases that certainly satisfy the concept represented by X , Neg(X)
– the cases certainly not satisfying the concept, and Bnd(X) – the undecided ones.
Upp(X) = Pos(X) ∪ Bnd(X) gathers the cases that possibly satisfy the concept.

Input

Neuron for upper approximation.

Neuron for lower approximation. 

Output
++

Output
++

Output
++

Input
Input

Neuron for boundary region.

Neuron for positive region. 

Neuron for negative region.

Neuron for positive region. 

Negative
region

Posititive region - lower approximation

Boundary
region

Fig. 1. Three rough neurons, transmitting information about: Low(X) and Upp(X) [7], Pos(X)
and Bnd(X) [2], as well as Pos(X) and Neg(X) (see next section)

All above regions may take different forms for different sets of attributes and uni-
verses. The usage of different regions while, e.g., classifying new cases requires their
tuning and combining based on, e.g., neural network architecture. As illustrated by
Figure 1, rough neurons may transmit the signals of the form, e.g., (Low, Upp) [7],
(Pos, Bnd) [2], or (Pos, Neg) further analyzed in next section. Signals can be inter-
preted, e.g., as pairs of memberships of analyzed cases to particular regions. The neuron
may receive such degrees basing on different information (sub-)systems. Then it com-
bines, compares, and processes them. This way, the networks of rough neurons are able



Rough Neural Networks for Complex Concepts 577

to learn how to synthesize information from different (rough) classifiers, which is the
topic of permanent interest in the area of machine learning [3].

Ability to compare the signal components inside a rough neuron means that its
transition function is two-dimensional. Relative increase of membership into Pos in
comparison to, e.g., Bnd should result in increase of the Pos-output component on
the cost of decrease of the Bnd-output component. One can imagine such situation
when the underlying data starts to provide more precise information about the pos-
itive examples of a given concept. A similar play could be expected between Pos
and Neg. It is, however, less intuitive in case of Low and Upp because increase of
membership into Low implies that membership into Upp potentially increases too.
This is why it was claimed in [2] that replacement of (Low, Upp) by a pair of dis-
joint, mutually counteractive regions (Pos, Bnd) may improve the model’s
performance.

3 Decision Systems and Normalizing Neural Networks

In the classification tasks we search for a method that labels each given example with
one out of potentially long list of possible decision classes/values. Then, within the
rough set framework, we should not restrict to the sets of positive and negative ex-
amples of a given concept X ⊆ U , but rather consider the sets of positive exam-
ples of many mutually disjoint decision classes. Information systems A = (U, A)
are replaced by decision systems A = (U, A, d), where additional decision attribute
d : U → {1, ..., r} determines decision classes/concepts Xk = {u ∈ U : d(u) = k},
k = 1, ..., r. From the perspective of rough neurons, it is then reasonable to replace
two dimensions – for (Low, Upp), (Pos, Bnd), or (Pos, Neg) – with r dimensions,
one for each decision class. More precisely, this is a straightforward extension of the
(Pos, Neg)-model. – The concept X ⊆ U can be interpreted in terms of two decision
classes: X1 = X and X2 = U \ X . Further, Pos(X) = Low(X1) and Neg(X) =
Pos(U \ X) = Low(X2). Hence, (Pos, Neg) is a special case of multidimensional
model (Low1, ..., Lowr), where Lowk reflects positive examples of decision class Xk,
for k = 1, ..., r, r ≥ 2.

In [13], we considered multidimensional neural network models in terms of the vec-
tors of memberships of the classified objects into particular decision classes. We call
them Normalizing Neural Networks (NNN) given that r-dimensional signals are nor-
malized to the elements of �r−1, i.e. vectors of non-negative numbers summing up
to 1, while their processing through non-linear multidimensional transition functions
φ : R

r → �r−1. The origin and meaning of vectors may obviously differ. Given more
examples in the next section, here we outline basic foundations.

Figure 2 presents NNN with one hidden layer. Vectors xi ∈ R
r correspond to the out-

comes of some (sub-)classifiers. Each j-th neuron in the hidden layer takes as an input
the vector sj ∈ R

r and provides as output yj = φ(sj). The input to the output neuron is
denoted by t ∈ R

r and its output – by h = φ(t). Vectors s1, ..., sm, t are the weighted
sums of outcomes of previous layers, i.e.: t =

∑m
j=1 wjyj and sj =

∑n
i=0 vijxi, for

the real-valued weights vij , wj ∈ R, i = 0, ..., n, j = 1, ..., m.
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Fig. 2. Normalizing neural network: exemplary three-layered structure

Inside neurons, NNN should generalize the classical case, where we use monotone,
mostly sigmoidal transition functions. In [13], we use the following φα : R

r → �r−1,
where parameter α > 0 determines the steepness of transition:

φα(s) =
〈

eαs[1]
∑r

l=1 eαs[l] , . . . ,
eαs[k]

∑r
l=1 eαs[l] , . . . ,

eαs[r]
∑r

l=1 eαs[l]

〉

φα can be compared to the Gibbs’ softmax method [4]. Whenever s[k] > s[l], there is
also φα(s)[k] > φα(s)[l]. Further, increase of s[k] results in increase of φα(s)[k] on the
cost of all other φα(s)[l], l �= k. It is also easily differentiable, which enables to adapt
backpropagation procedure [6]. Let us denote by d = 〈d[1], . . . , d[r]〉 the distribution,
that we would like to obtain. Consider the the normalized Euclidean distance E =
1
2

∑r
k=1(h[k] − d[k])2 [11] as the error function. Vector h = 〈h[1], . . . , h[r]〉 is the

output of NNN, as shown in Figure 2. We use negative gradient of E, treated as a
function of the weight vectors, to tune the network weights:

∂E
∂wj

=
〈
h − d

∣∣∣ ∂h
∂wj

〉
where

[
∂h

∂wj

]T

= Dφα(t) [yj ]
T

∂E
∂vij

=
〈
h − d

∣∣∣ ∂h
∂vij

〉
where

[
∂h

∂vij

]T

= Dφα(t)wjDφα(sj) [xi]
T

and where Dφα is the derivative matrix of φα, given by formula Dφα(s) =

α ·

⎡

⎢⎢⎢⎢⎢⎢⎣

φα(s)[1](1 − φα(s)[1]) . . . −φα(s)[1]φα(s)[k] . . . −φα(s)[1]φα(s)[r]
...

. . .
...

. . .
...

−φα(s)[k]φα(s)[1] . . . φα(s)[k](1 − φα(s)[k]) . . . −φα(s)[k]φα(s)[r]
...

. . .
...

. . .
...

−φα(s)[r]φα(s)[1] . . . −φα(s)[r]φα(s)[k] . . . φα(s)[r](1 − φα(s)[r])

⎤

⎥⎥⎥⎥⎥⎥⎦

The above mechanism was implemented and proved to work efficiently in [12,13].
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4 Handling Complex Concepts – Case Studies

As we mentioned in Section 1, one of the features of many rough set-based classifiers
is that they do not tend to particular decisions immediately, but rather operate with
complete vectors of decision memberships. From this perspective, the neural network
model presented in the previous section fits rough set methodology perfectly. It can
be further applied to more compound hierarchical classification schemes, as reported
in [12]. In this paper, however, we would like to focus on observation that analysis of
such more complex structures, like vectors instead of single values, are often justified
by specification of the decision problem itself.

The major case study in this section relates to segmentation of Magnetic Resonance
Images (MRI). It entails labeling pixels with tissue types. In case of the brain images,
we have usually five of such types: background, bone, white matter, gray matter, and
cerebral spinal fluid [5]. Segmentation may be done by an expert who visually inspects
a series of MRI scans. In a clinical setting, however, the tools analyzing MRI’s in an au-
tomated manner are very valuable. Further, MRI’s can be performed at various levels of
accuracy, involving noise and thickness of horizontal slices. The scans can be generated
per every 1mm, 3mm, etc. across the brain’s volume. This is why we should rather talk
about voxels than pixels in MRI images. For thicker slices, voxels may actually overlap
with multiple tissue types, which is called as Partial Volume Effect (PVE) [15].

Figure 3 illustrates how one can deal with PVE by applying a two-stage process.
First, we identify voxels affected by PVE. We build decision table A = (U, A ∪ {d})
where objects u ∈ U correspond to voxels and attributes a ∈ A – to the voxels’ features
extracted from a given image, usually available in three modalities [5]. Although the
attributes’ values label particular voxels, they are calculated based on information about
the entire images. They can be obtained from, e.g., magnitude frequency histograms and
self-organizing networks applied to cluster the images’ regions (cf. [15]). Decision d /∈
A determines the “PVE” and “NOE” (no PVE) classes of voxels. Further, depending
on the results of the first stage, we classify voxels into the particular tissue type classes
(NOE case), or we estimate (predict) their overlaps with particular tissue types (PVE
case). Such membership-based approach is still valuable for further phases of the MRI
analysis, where the results of segmentation are transformed into higher-level attributes
describing proportions/distributions of tissue types in particular slices.

 

INPUT 

PVE? SEGMENTATION 
FOR NOE (no PVE) 

MEMBERSHIP PRE-
DICTION FOR PVE HIGHER LEVEL 

ATTRIBUTES 

Fig. 3. The scheme for two-stage MRI analysis, involving “PVE” and “no PVE” (NOE) voxels
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The PVE-case involves decisions in form of distributions d = 〈d[1], . . . , d[r]〉, where
r equals to the number of tissue types. Further, given the classifier’s output h, its error
can be measured by E = 1

2

∑r
k=1(h[k]−d[k])2, like in Section 3. Similarly stated deci-

sion problems occur in many applications. As another example, let us mention about the
post-surgery survival analysis [1], where decision rules identify the groups of patients
with specific tendencies (distributions) of tumor reoccurrences. The rule-based method
introduced in [1] is a symbolic counterpart of neural network-based approach studied
in this paper. In both cases, the objects and attributes are quite standard but decisions
take form of compound distributions. These two techniques may be actually combined,
as the rules’ results may feed the input layer of NNN.

Let us continue with the MRI analysis and note that PVE-NOE classification can be
redefined for a different universe of objects. So far, voxels corresponded to the objects
in U . In [15], U actually consisted of voxels taken from various images, with the train-
ing and testing samples based on disjoint sets of slices. Now, we specify each single
training/testing case – and, therefore, an element of U – as the whole slice, and the de-
cision value – as the ordering of voxels from those most to those least affected by PVE.
Such an approach enables the network to compare to each other the atomic concepts
(voxels) while processing the complex ones (whole images).
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Fig. 4. NNN processing the vectors of voxels’ values for the whole MRI slices. The input layer
corresponds to the attributes calculated from three MRI modalities [5]. The output neurons repre-
sent the normalized vector of weights of voxels’ memberships into decision concepts (like “PVE”,
“white matter”, etc.). The network can be learnt using backpropagation described in Section 3,
where the target signal is taken from Phantom – an image segmented by the expert.



Rough Neural Networks for Complex Concepts 581

While comparing Figures 3 and 4, one can see that the network’s architectures are
the same. The difference lays in the signals’ dimensions – the number of tissue types
versus the number of voxels in MRI slices. Further, voxels are labeled by the same val-
ues, though now the attribute values are multi-dimensional themselves, as the objects
correspond to the whole voxels’ collections. It is also interesting to analyze the role of
function φα : R

r → �r−1, now with r equal to the number of voxels. We can see that
voxels compete to each other while being processed through multi-dimensional neu-
rons, with ability to learn the competition’s laws within a backpropagation-like frame-
work. This example shows an important advantage of normalizing neural networks with
respect to more standard models, when applied to complex decision problems.

5 Conclusions

We discussed rough neural networks as handling complex concepts being learnt from
data. As the basic mechanism, we adapted normalizing neural networks [12,13]
equipped with neurons processing multi-dimensional signals. We showed how such
neurons generalize and complement the previously investigated types of rough neurons
[2,7]. We studied real-life examples requiring operating with complex concepts and ap-
propriately defined learning models. As a case study, we considered the tasks related
to segmentation of magnetic resonance images [5,15]. We also discussed how the pro-
posed methodology fits into a more general framework of rough-neural computing [9].
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