
Classifier Ensembles for Vector Space
Embedding of Graphs

Kaspar Riesen and Horst Bunke

Department of Computer Science, University of Bern,
Neubrückstrasse 10, CH-3012 Bern, Switzerland

{riesen,bunke}@iam.unibe.ch

Abstract. Classifier ensembles aim at a more accurate classification
than single classifiers. Different approaches to building classifier ensem-
bles have been proposed in the statistical pattern recognition literature.
However, in structural pattern recognition, classifier ensembles have been
rarely used. In this paper we introduce a general methodology for creat-
ing structural classifier ensembles. Our representation formalism is based
on graphs and includes strings and trees as special cases. In the proposed
approach we make use of graph embedding in real vector spaces by means
of prototype selection. Since we use randomized prototype selection, it
is possible to generate n different vector sets out of the same underly-
ing graph set. Thus, one can train an individual base classifier for each
vector set und combine the results of the classifiers in an appropriate
way. We use extended support vector machines for classification and
combine them by means of three different methods. In experiments on
semi-artificial and real data we show that it is possible to outperform
the classification accuracy obtained by single classifier systems in the
original graph domain as well as in the embedding vector spaces.

1 Introduction

The key idea in multiple classifier systems is to combine several classifiers such
that the resulting combined system achieves a higher classification accuracy than
the original classifiers individually [1]. In the case of statistical patterns, that is,
patterns represented by feature vectors, a large number of methods for the cre-
ation and combination of classifiers have been developed over the past few years.
Bagging, for instance, creates classifiers by randomly selecting the set of train-
ing examples to be used for each classifier [2]. A similar idea is that of random
feature subset selection [3]. In this method, one randomly selects the features
(dimensions) to be used for each feature vector to create a group of classifiers. A
third prominent example of classifier creation methods is boosting, where classi-
fiers are created sequentially out of a single base classifier by giving successively
higher weights to those training samples that have been misclassified [4].

Structural pattern recognition is characterizedby the use of symbolic data struc-
tures, such as strings, trees, or graphs, for pattern representation. Such represen-
tations have a number of advantages over feature vectors used in the statistical

M. Haindl, J. Kittler, and F. Roli (Eds.): MCS 2007, LNCS 4472, pp. 220–230, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Classifier Ensembles for Vector Space Embedding of Graphs 221

approach. For example, a string may consist of an arbitrary number of symbols.
This is in contrast to a feature vectorwhere one is confined to alwaysusing the same
number of features, regardless of the size or the complexity of the individual pat-
terns to be represented. Furthermore, if one uses graphs, structural relationships
between individual pattern components can be conveniently represented. There is
no direct way to represent such relations in a feature vector. In fact, there are many
applications in pattern recognition and related areas, including computational bi-
ology and chemistry, where such representations are essential [5].

One disadvantage of the structural approach is that the space of strings, trees or
graphs has very little mathematical structure. This means that elementary opera-
tions, such as computing the average, the covariance, or the product of two object
representations, do not exist. Therefore, up to a few exceptions [6,7,8], mostly clas-
sifiers of the nearest neighbor type have been applied to structural pattern repre-
sentations. Consequently, there has been little work on multiple classifier systems
based on structural pattern representations. A pioneering paper is [9] where it was
shown that by the use of statistical and structural classifiers in a multiple classifier
system the accuracy of a fingerprint recognition system can be improved. In [10] an
approach has been proposed where several graph representations of the same pat-
tern are derived and merged into a single representation format. Then the single
graph resulting from the merging operation is input to a nearest neighbor classi-
fier based on graph edit distance. In [11], random node selection on graphs has been
used in order to derive ensembles of graph-based classifiers.But still, only classifiers
of the nearest neighbor type are applied in this work.

In the current paper we propose a new method that is based on two funda-
mental ideas. The first idea is the embedding of graphs into the n-dimensional
real space by means of prototype selection and edit distance computation. Such
a procedure has been originally proposed in [12] in order to embed feature vec-
tors in a dissimilarity space. In subsequent work a similar procedure has been
used for the embedding of strings and graphs [13,14]. By means of this proce-
dure any set of graphs can be mapped to a set of feature vectors. Consequently,
any pattern recognition method that has ever been developed for feature vector
representations becomes applicable to graphs. The second fundamental idea in
this paper is based on the observation that mapping a population of graphs into
a vector space is controlled by a set of prototypes. One possible procedure to
actually get these prototypes is by random selection from the given training set
of graph. Obviously, if we repeat the process of random selection a number of
times, we can derive different graph sets that all can be used in order to train
a classifier. As a result, we get a classifier ensemble for structural input data.
The classifier we adopted for the work described in this paper is Support Vector
Machine (SVM). However, any other type of classifier can be used as well.

2 Graph Embedding in Real Vector Spaces

In [15] an approach to graph embedding in vector spaces has been introduced.
This method is based on algebraic graph theory and utilizes spectral matrix

222 K. Riesen and H. Bunke

decomposition. Another approach for graph embedding has been proposed in
[16]. It makes use of the relationship between the Laplace-Beltrami operator
and the graph Laplacian to embed a graph onto a Riemannian manifold. Our
embedding method makes explicitly use of graph edit distance [17,18]. The key
idea of graph edit distance is to define the dissimilarity, or distance, of graphs
by the amount of distortion that is needed to transform one graph into another.
A sequence of edit operations that transforms a graph g1 into another graph g2
is called an edit path between g1 and g2. Costs are assigned to each edit path,
representing the strength of the distortions of this edit sequence. Consequently,
the edit distance of two graphs is defined as the minimum cost, taken over all
edit paths between two graphs under consideration. Typically, the edit distance
is used to classify an input graph by computing its distance to a number of
training graphs and feeding the resulting distance values into a nearest-neighbor
classifier. In our approach we make use of edit distances to construct a vecto-
rial description of a given graph. Our method was originally developed for the
problem of embedding sets of feature vectors in a dissimilarity space [12,19]. The
embedding of strings and graphs has been studied in [13,14]. Assume we have
a labeled set of training graphs, T = {g1, . . . , gt}, and a dissimilarity measure
d(gi, gj). After having selected a set P = {p1, . . . , pm} of m < t prototypes from
T , i.e. P ⊆ T , we compute the dissimilarity of a graph g ∈ T to each prototype
p ∈ P . This leads to m dissimilarities, d1 = d(g, p1), . . . , dm = d(g, pm), which
can be interpreted as an m-dimensional vector (d1, . . . , dm). In this way we can
transform any graph from the training set, as well as any other graph from a
validation or testing set, into a vector of real numbers. Note that whenever a
graph from the training set, which has been choosen as a prototype before, is
transformed into a vector x = (x1, . . . , xm) one of the vector components is zero.

Different methods for selecting the m prototypes needed for embedding have
been proposed in the literature [12,13,14]. The intention of all methods is the
same, that is, finding a selection of m prototypes that lead to a good performance

Algorithm 1. Generating n prototype sets out of one graph set.
Input: Training graphs T = {g1, . . . , gt}, number of required prototype sets n,

and dimensionality of the resulting feature vectors m
Output: Set PROTO consisting of n different prototype sets of size m each

1: initialize TABU to the empty set {}
2: initialize PROTO to the empty set {}
3: for i = {1, . . . , n} do
4: Pi = {}
5: for j = {1, . . . , m} do
6: if |TABU| == t then
7: reset TABU to the empty set {}
8: else
9: select p randomly out of T \ TABU
10: Pi = Pi ∪ {p}
11: TABU = TABU ∪ {p}
12: end if
13: end for
14: PROTO = PROTO ∪ {Pi}
15: end for
16: return PROTO

Classifier Ensembles for Vector Space Embedding of Graphs 223

of the resulting classifier in the vector space. Since in this paper we want to
generate not only one, but a number of vector sets out of the same graph set,
we make use of the random method described in Algorithm 1. Output of this
procedure is a set consisting of n different prototype sets of size m each. To build
such a set, the method described in Alg. 1 randomly picks n times m graphs from
the training set T . After picking a graph from T , the selected graph becomes
temporarily unavailable for further selection. Once all training graphs from T
have been selected, all training graphs become available again. This procedure
is very interesting in that it naturally lends itself to a method for the automatic
generation of classifier ensembles.

3 Extended Support Vector Machine

In Sect. 2 we have introduced a general methodology for embedding graphs in
real vector spaces. Clearly, one can build arbitrarily many different vector sets
out of the same graph set. Assume a given graph set has been embedded n times
with different prototypes. Hence, we have n different vector sets available all
representing the same graphs. Obviously, it is possible to train a classifier on
each vector set seperately. Therefore, we obtain n classifers L1, . . . , Ln whose
results can be combined to one output. In the following we assume that we deal
with a problem involving k different classes {C1, . . . , Ck}. As any classifier com-
bination method necessarily depends on the type of the n underlying classifiers,
we distinguish three types of classifiers:

– Type-1 classifiers: Output of these classifiers is exactly one class Ci.
– Type-2 classifers: Output is a ranking list, i.e. an ordered list (Ci1, . . . , Cik)

including all classes, where Ci1 is the class with the highest and Cik the class
with the lowest plausibility.

– Type-3 classifiers: Output is a plausibility value p(Ci) for each class Ci.
This plausibility value corresponds with the probability that a test element
under consideration belongs to the respective class. Thus, each classifer Lj

outputs a vector of size k, {(pj(C1), . . . , pj(Ck))}1�j�n.

Pattern classification by means of support vector machines (SVMs) has become
very popular recently [20,21]. The basic idea of SVM is to seperate classes of
patterns by hyperplanes. Intuitively, one would choose a hyperplane such that
its distance to the closest pattern of either class is maximal. Such hyperplanes
are expected to perform best on an independent test set. SVMs are able to find
such optimal hyperplanes. Originally, SVMs have been developed to handle two
class problems. To generalize SVM to problems with more than two classes one
can use the 1-to-1 method. In this approach all pairs of classes (Ci, Cj)1�i<j�k

are considered seperately, and for each pair an individual SVM is trained. This
leads to k(k − 1)/2 different SVMs. An unseen test element is assigned to the
class Ci that occurs the most frequently among the k(k − 1)/2 SVM decisions.
Output of a traditional SVM is one class and thus SVMs are typically type-1 clas-
sifiers. Since we want to use not only combiners depending on type-1 but also on

224 K. Riesen and H. Bunke

type-2 and type-3 classifers, one has to generalize SVM appropriately. The first
generalization, which leads to a type-2 classifier, is simple and straightforward.
Instead of returning only the most frequent class Ci among the k(k − 1)/2 SVM
decisions, one can extend the i-th SVM to return an ordered list (Ci1, . . . , Cik).
Ci1 stands for the most frequent class and Cik represents the class that has won
the fewest SVM decisions. To get a type-3 classifier out of a standard SVM one
can use the information about the distance f of a test sample to the hyper-
plane of the current SVM. These distances f are used to obtain pairwise class
probabilities by feeding them into a sigmoid function:

rij = 1
1+exp(αf+β) ,

where α and β are parameters that have to be estimated. To obtain one prob-
ability p(Ci) per class out of the rij values one has to to solve an optimization
problem. The probabilistic SVM resulting from this procedure is described in
more detail in [22,23].

4 Classifier Ensembles

Let us summarize the whole procedure discussed so far. Starting point are pat-
terns given by graph-based representations. With random prototype selection
and graph edit distance computation, we embed these graphs in real vector
spaces. Since we use randomized prototype selection, this step leads to n differ-
ent vectorial descriptions of the same graph set. Based on these n vector sets
one can train n different SVMs. Hence, from an unknown test pattern, we get
n different classification results. Output of i-th SVM is either a single class Ci1
(type-1 classifier), a vector with all possible classes (Ci1, . . . , Cik) ordered by the
frequency of all SVM decisions (type-2 classifier), or a list with plausibility val-
ues (pj(C1), . . . , pj(Ck)), where pj(Ci) is derived from the distances of the test
elements to the hyperplanes of the individual SVMs (type-3 classifier). Based
on these three different output formats of the n SVMs, one can use different
combination strategies to obtain the final result. In this work we use a Voting
algorithm for type-1 SVMs, a ranking sum method for type-2 SVMs (Borda
count) and Bayes’ combination using the plausibility values obtained by type-3
SVMs.

– Voting: The class Ci1 output by classifier Li (1 � i � n) is regarded as one
vote for Ci1 ∈ {C1, . . . , Ck}. The class that receives the plurality of the votes
is choosen by the combiner. This method is often termed plurality voting [1].
Of course, one can use more restrictive voting methods with rejection (e.g.
majority voting [1]).

– Borda Count: Assume that each classifier Li outputs an ordered list in-
cluding all classes {Cj}1�j�k. To combine the results of type-2 classifiers one
can introduce rank functions ri(Cij) for each classifer Li. Function ri(Cij)
delivers the position of the class Cij in the ordered list given by classifier
Li, i.e. ri(Cij) = j. Hence, for each class {Ci}1�i�k the sum of all ranks can

Classifier Ensembles for Vector Space Embedding of Graphs 225

be computed, R(Ci) =
∑n

j=1 rj(Ci). Subsequently, the combiner chooses the
class {Ci}1�i�k with the minimum value of R(Ci). This combination method
is known as Borda count.

– Bayes’ Combination: In this approach the individual plausibility values
{pj(Ci)}1�j�n are combined to get one plausibility value Pi per Ci. Common
strategies to combine the plausibility values are given below [24]:

• Pi = max(p1(Ci), . . . , pn(Ci))
• Pi = min(p1(Ci), . . . , pn(Ci))
• Pi = 1

n

∑n
j=1 pj(Ci)

• Pi =
∏n

j=1 pj(Ci)
Regardless which of these formulas is used, the ensemble eventually chooses
the class Ci with the maximum value of the corresponding Pi. In the present
paper we use the last approach based on the product, which is known as
Bayes’ combination.

A crucial question is how many classifiers should be included in an ensemble.
With Alg. 1 we have the possibility to build n vector sets, and thus we have
n classifiers available. To determine the size of the final ensemble we propose a
sequential floating search selection according to Algorithm 2 [25]. First the best
individual classifier in terms of classification accuracy is added to the ensemble
in line 2. Then, the best fitting classifier, i.e. the classifier that complements
the ensemble generated so far the best, is added incrementally (line 5 and 6).
After each forward step a number of backward steps are applied as long as
the resulting subsets are better than the evaluated ones at that level (line 11
and 12). Obviously, this procedure generates n subsets of the classfier set L =
{L1, . . . , Ln} with size 1 to n. The best performing subset, i.e. the ensemble Ei

with the lowest classification error on an independent validation set is used as
the final ensemble (line 19). This strategy is also known as overproduce-and-
select [1].

5 Experimental Results

The purpose of the experiments described in this section is to compare the clas-
sification accuracy of the ensembles obtained by the proposed method with two
reference systems. The first reference system is a traditional nearest-neighbor
classifier in the graph domain, while a single SVM in the vector domain is used
as the second reference system. The first reference system, the nearest-neighbor
classifier, has proved to be suitable for the classification task in graph domains
for many different applications. Basically, this classifier assigns the label of the
nearest neighbor in a training set in terms of edit distance to an unknown test-
element. Note that as of today – up to few exceptions, e.g. [6] – there exist
no other classifiers for general graphs that can be directly applied in the graph
domain. The second reference system is obtained through picking the best indi-
vidual classfier Li out of L, i.e. the classifier that leads to the best classification
accuracy on the validation set. In each of our experiments we make use of three

226 K. Riesen and H. Bunke

Algorithm 2. Determine the best performing classifier ensemble.
Input: A set of n classifiers L = {L1, . . . , Ln} sorted in order of their

individual classification accuracy. (L1 has the highest and Ln

the lowest classification accuracy)
Output: The best performing classifier ensemble Emax

1: Initialize n empty ensembles E = {E1, . . . , En}
2: add the best individual classifier to the ensemble: E1 = {L1}
3: intitalize k := 1
4: while k < n do
5: L+ = argmaxLi∈L\Ek

accuracy(Ek ∪ {Li})
6: add the classifier L+ to the ensemble: Ek+1 = Ek ∪ {�L+}
7: k := k + 1
8: initialize removed := false
9: repeat
10: removed := false
11: L− = argmaxLi∈Ek

accuracy(Ek \ {Li})
12: if accuracy(Ek \ {Li}) > accuracy(Ek−1) then
13: Ek−1 = Ek \ {Li}
14: k := k − 1
15: removed = true
16: end if
17: until removed = false
18: end while
19: return the best performing ensemble Emax = argmaxEi∈Eaccuracy(Ei)

disjoint graph sets, the validation set, the test set and the training set. The
validation set is used to determine optimal parameter values for multiple graph
embeddings and classification. The embedding parameters to be validated con-
sist of the number of prototypes, i.e. the dimensionality of the resulting feature
vector spaces, and the best performing ensemble, i.e. the best combination of
ensemble members in terms of classification accuracy (see Alg. 1 and Alg. 2).
Parameters for classification consist of different parameters for the SVM and
depend on the kernel function [21,26]. The parameter values and the ensemble
that result in the lowest classification error on the validation set are then applied
to the independent test set.

5.1 Letter Database

The first database used in the experiments consists of graphs representing dis-
torted letter drawings. In this experiment we consider the 15 capital letters of the
Roman alphabet that consists of straight lines only (A, E, F, ...). For each class,
a prototype line drawing is manually constructed. To obtain aribtrarily large
sample sets of drawings with arbitrarily strong distortions, distortion operators
are applied to the prototype line drawings. This results in randomly shifted,
removed, and added lines. These drawings are then converted into graphs in a
simple manner by representing lines by edges and ending points of lines by nodes.
Each node is labeled with a two-dimensional attribute giving its position. The
graph database used in our experiments consists of a training set, a validation
set, and a test set, each of size 750 for each of a total of five different distor-
tion levels. The results of the experiments on the letter database are given in
Table 1. First of all, the single SVM classifier in the vector domain improves the

Classifier Ensembles for Vector Space Embedding of Graphs 227

classification accuracy compared to the reference system in the graph domain on
all distortion levels. Note that two out of five improvements are statistically sig-
nificant. Similar results have been reported in [14]. Despite these good results,
the ensemble methods obtains further improvements. Especially on distortion
levels 0.3, 0.5, 0.7 and 0.9, the ensemble methods achieve better results. Note
that 8 out of 12 improvements compared to the single SVM are statistically sig-
nificant. Compared to the first reference system, there are even 11 statistically
significantly improvements. Only at distortion level 0.1 the single SVM is su-
perior to the voting and Borda count method. The optimal parameters for this
experiment, found on the validation set, are 150 prototypes per embedding and
12 ensemble members on average for voting, 13 ensemble members on average
for Borda count and an ensemble of size 8 on average for Bayes’ combiner.

Table 1. Letter Database: Classification accuracy in the graph and vector space

Ref. Systems Classifier Ensembles

Distortion k-NN (graph) single SVM Plurality Voting Borda Count Bayes’ Combiner

0.1 98.27 98.53 98.27 98.13 98.67
0.3 97.60 98.00 98.27 98.53 � 98.67 �
0.5 94.00 96.53 ◦ 97.07 ◦ 96.93 ◦ 97.07 ◦
0.7 94.27 94.53 96.00 � 95.87 � 96.00 �
0.9 90.13 93.33 ◦ 94.27 � 94.40 � 94.53 �

◦ Statistically significant improvement over the first reference system (Z-test, α = 0.05)
� Statistically significant improvement over both reference systems (Z-test, α = 0.05)

5.2 Real World Data

For a more thorough evaluation of the proposed methods we additonally use
three real world data sets. First we apply the proposed method to the problem
of image classification. Images are converted in graphs by segmenting them into
regions, eliminating regions that are irrelevant for classification, and representing
the remaining regions by nodes and the adjacency of regions by edges [27]. The
Le Saux image database consists of five classes (city, countryside, people, streets,
snowy) and is split into a training set, a validation set and a test set of size 54
each. The classification accuracies obtained by the different methods are given
in the first row of Table 2. Although the single SVM improves the accuracy
by 5.6%, this improvement is not statistically significant. The further improved
result achieved by the Borda count method – which actually corresponds to an
improvement by 7.4% – obtains no statistical significance, either. Neither are the
superior results of the reference systems compared to the other ensemble methods
statistically significant. All this is due to the small size of the Le Saux database.
We used 20 prototypes for embedding and 27 (voting), 7 (Borda count) and 31
(Bayes’ combiner) ensemble members for classification. The second real world
dataset is given by the NIST-4 fingerprint database [28]. We construct graphs
from fingerprint images by extracting characteristic regions in fingerprints and
converting the results into attributed graphs [29]. We use a validation set of size
300 and a test and training set of size 500 each. In this experiment we address

228 K. Riesen and H. Bunke

Table 2. Fingerprint-, Image- and Molecules Database: Classification accuracy in the
graph and vector space

Ref. Systems Classifier Ensembles

Database k-NN (graph) single SVM Plurality Voting Borda Count Bayes’ Combiner

Le Saux 57.4 63.0 61.1 64.8 55.6
NIST-4 82.6 84.8 ◦ 85.2 ◦ 85.0 ◦ 84.8 ◦
Molecules 97.1 98.1 ◦ 98.3 � 98.3 � 97.7

◦ Statistically significant improvement over the first reference system (Z-test, α = 0.05)
� Statistically significant improvement over both reference systems (Z-test, α = 0.05)

the 4-class problem (arch, left-loop, right-loop, whorl). The single SVM and all
ensemble methods achieve statistically significantly better results than the first
reference system. However, there is no significant difference between the single
SVM and the proposed classifier ensembles. Nevertheless, note that the ensemble
obtains two improvements and one equal result compared to the second reference
system. On this data set a configuration with 100 prototypes for embedding and
11 (voting and Borda count) and 2 (Bayes’ combiner) ensemble members obtains
the best result on the validation set and is therefore used on the test set.

Finally, we apply the proposed method of graph embedding and subsequent
SVM classification to the problem of molecule classification. To this end, we con-
struct graphs from the AIDS Antiviral Screen Database of Active Compounds
[30]. Our molecule database consists of two classes (active, inactive), which rep-
resent molecules with activity against HIV or not. We use a validation set of size
250, a test set of size 1500 and training set of size 250. Thus, there are 2000 el-
ements totally (1600 inactive elements and 400 active elements). The molecules
are converted into graphs in a straightforward manner by representing atoms
as nodes and the covalent bonds as edges. Nodes are labeled with the corre-
sponding chemical symbol and edges by the valence of the linkage. Although
the accuracy of the reference system in the graph domain is quite high, it can
be statistically significantly improved by the single SVM. The voting and the
Borda count methods outperform the reference system in the graph domain,
too. Actually, the good result achieved in vector domain by a single SVM can
be further improved by these ensemble methods with statistical significance. We
used 150 prototypes for embedding, and 14 (voting and Borda count) and 23
(Bayes’ combiner) ensemble members for classification.

6 Conclusions

While many methods for building classifier ensembles based on feature vector
representations of the underlying data have been proposed, little work has been
done for structural representations. In this paper we propose a general approach
to graph based classifier ensembles. Our approach makes use of graph embedding
in real vector spaces. The key idea is to map graphs to the m-dimensional real
space by means of graph edit distance and prototype selection. To this end, we
discuss a randomized prototype selector with the objective of finding n different
prototype sets. With these sets, one can map a set of graphs n times to different

Classifier Ensembles for Vector Space Embedding of Graphs 229

vector sets, such that we obtain n different vector sets all representing the same
graph set, i.e. the same pattern elements. For each vector set an individual SVM
is trained and thus one gets n different classifiers. Hence, a number of methods
become available for combining the results of individual ensemble members. The
proposed methods were tested on a number of graph datasets with different
characteristics, comming from various application domains. From the results
of our experiments, one can conclude that the classification accuracy can be
enhanced by most ensemble methods on almost all data sets.

Acknowledgements

This work has been supported by the Swiss National Science Foundation (Project
200021-113198/1). Furthermore, we would like to thank R. Duin and E. Pekalska
for valuable discussions and hints regarding the embedding method. Finally, we
thank B. Le Saux for making the Le Saux database available to us.

References

1. L. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. John Wiley,
2004.

2. L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.
3. T.K. Ho. The random subspace method for constructing decision forests. IEEE

Trans. on Pattern Analysis ans Machine Intelligence, 20(8):832–844, 1998.
4. Y. Freund and R.E. Shapire. A decision theoretic generalization of online learning

and application to boosting. Journal of Computer and Systems Sciences, 55:119–
139, 1997.

5. D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in
pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelligence,
18(3):265–298, 2004.

6. M. Bianchini, M. Gori, L. Sarti, and F. Scarselli. Recursive processing of cyclic
graphs. IEEE Transactions on Neural Networks, 17(1):10–18, January 2006.

7. M. Neuhaus and H. Bunke. Edit distance based kernel functions for structural
pattern classification. In Pattern Recognition, pages 1852 – 1863, 2006.

8. T. Gärtner, J. Lloyd, and P. Flach. Kernels and distances for structured data.
Machine Learning, 57(3):205–232, 2004.

9. G.L. Marcialis, F. Roli, and A. Serrau. Fusion of statistical and structural fin-
gerprint classifiers. In J. Kittler and M.S. Nixon, editors, 4th Int. Conf. Audio-
and Video-Based Biometric Person Authentication, LNCS 2688, pages 310–317.
Springer, 2003.

10. M. Neuhaus and H. Bunke. Graph-based multiple classifier systems – a data level
fusion approach. Lecture Notes in Computer Science, 3617:479–487, 2005.

11. A. Schenker, H. Bunke, M. Last, and A. Kandel. Building graph-based classifier
ensembles by random node selection. In F. Roli, J. Kittler, and T. Windeatt,
editors, Proc. 5th Int. Workshop on Multiple Classifier Systems, LNCS 3077, pages
214–222. Springer, 2004.

12. E. Pekalska, R. Duin, and P. Paclik. Prototype selection for dissimilarity-based
classifiers. Pattern Recognition, 39(2):189–208, 2006.

230 K. Riesen and H. Bunke

13. B. Spillmann, M. Neuhaus, H. Bunke, E. Pekalska, and R. Duin. Transforming
strings to vector spaces using prototype selection. In Proc. 11.th int. Workshop on
Strucural and Syntactic Pattern Recognition, LNCS 4109, pages 287–296. Springer,
2006.

14. K. Riesen, M. Neuhaus, and H. Bunke. Graph embedding in vector spaces by
means of prototype selection. Submitted.

15. R.C. Wilson, E.R. Hancock, and B. Luo. Pattern vectors from algebraic graph
theory. IEEE Trans. on Pattern Analysis ans Machine Intelligence, 27(7):1112–
1124, 2005.

16. A. Robles-Kelly and E.R. Hancock. A riemannian approach to graph embedding.
Pattern Recognition, 40:1024–1056, 2007.

17. A. Sanfeliu and K.S. Fu. A distance measure between attributed relational graphs
for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics
(Part B), 13(3):353–363, 1983.

18. H. Bunke and G. Allermann. Inexact graph matching for structural pattern recog-
nition. Pattern Recognition Letters, 1:245–253, 1983.

19. R. Duin and E. Pekalska. The Dissimilarity Representations for Pattern
Recognition: Foundations and Applications. World Scientific, 2005.

20. C. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2):121–167, 1998.

21. J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

22. C.C. Chang and C.J. Lin. LIBSVM: A Library for Support Vector Machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

23. C.F.J. Wu, C.J. Lin, and R.C. Weng. Probability estimates for multi-class classi-
fication by pairwise coupling. Journal of Machine Learning Research, 5:975–1005,
2004.

24. J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining classifiers. IEEE Trans.
on Pattern Analysis ans Machine Intelligence, 20(3):226–239, 1998.

25. P. Pudil, J. Novovicova, and J. Kittler. Floating search methods in feature-
selection. PRL, 15(11):1119–1125, November 1994.

26. B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.
27. B. Le Saux and H. Bunke. Feature selection for graph-based image classifiers. In

Proc. 2nd Iberian Conf. on Pattern Recognition and Image Analysis, LNCS 3523,
pages 147–154. Springer, 2005.

28. C.I. Watson and C.L. Wilson. NIST special database 4, fingerprint database.
National Institute of Standards and Technology, March 1992.

29. M. Neuhaus and H. Bunke. A graph matching based approach to fingerprint
classification using directional variance. In Proc. 5th Int. Conf. on Audio-
and Video-Based Biometric Person Authentication, LNCS 3546, pages 191–200.
Springer, 2005.

30. Development Therapeutics Program DTP. Aids antiviral screen, 2004.
http://dtp.nci.nih.gov/docs/aids/aids data.html.

	Introduction
	Graph Embedding in Real Vector Spaces
	Extended Support Vector Machine
	Classifier Ensembles
	Experimental Results
	Letter Database
	Real World Data

	Conclusions

