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Preface

These proceedings are a record of the Multiple Classifier Systems Workshop,
MCS 2007, held at the Institute of Information Theory and Automation, Czech
Academy of Sciences, Prague in May 2007. Being the seventh in a well-established
series of meetings providing an international forum for the discussion of issues in
multiple classifier system design, the workshop achieved its objective of bringing
together researchers from diverse communities (neural networks, pattern recog-
nition, machine learning and statistics) concerned with this research topic.

From more than 80 submissions, the Programme Committee selected 49 pa-
pers to create an interesting scientific programme. The special focus of MCS 2007
was on the application of multiple classifier systems in biometrics. This partic-
ular application area exercises all aspects of multiple classifier fusion, from in-
tramodal classifier combination, through confidence-based fusion, to multimodal
biometric systems. The sponsorship of MCS 2007 by the European Union Net-
work of Excellence in Biometrics BioSecure and in Multimedia Understanding
through Semantics, Computation and Learning MUSCLE and their assistance
in selecting the contributions to the MCS 2007 programme consistent with this
theme is gratefully acknowledged.

The ‘icing’ on the technical programme, created from the regular submissions,
was provided by the contributions made by invited speakers Samy Bengio from
Google, Pramod Varshney from Syracuse University, USA, and Jon Benediktsson
from the University of Iceland. Written versions of two of these talks are included
in these workshop proceedings. Dr Bengio’s and Professor Varshney’s exper-
tise in multiple biometric system fusion made the discussions on this topic at
MCS 2007 particularly fruitful.

As usual, the workshop would not have been possible without the help of
many individuals and organizations. First of all, our thanks go to the members
of the MCS 2007 Programme Committee, whose expertise and dedication helped
us to create an interesting event that marks the progress made in this field over
the last two years and aspires to chart its future research. The help of James
Field from the University of Surrey, who administered the submitted papers re-
view, and of Ilias Kolonias, also from the University of Surrey, who compiled
the camera-ready manuscripts into a well-structured volume deserve a particu-
lar mention. The co-sponsorship of the event by the International Association
for Pattern Recognition and its Technical Committee TC1: Statistical Pattern
Recognition, the Czech Society for Cybernetics and Informatics (CSKI), the In-
stitute of Information Theory and Automation of the Czech Academy of Sciences,
the University of Cagliari and the University of Surrey is also greatly appreciated.

May 2007 Michal Haindl
Josef Kittler

Fabio Roli
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Combining Pattern Recognition Modalities  
at the Sensor Level Via Kernel Fusion  

Vadim Mottl, Alexander Tatarchuk1,  
Valentina Sulimova, Olga Krasotkina, and Oleg Seredin 2   

1 Computing Center of the Russian Academy of Sciences 
Vavilov St., 40, 117968 Moscow, Russia 

vmottl@yandex.ru, aitech@yandex.ru  
2 Tula State University, Lenin Ave. 92, 300600 Tula, Russia  

vsulimova@yandex.ru, krasotkina@uic.tula.ru, oseredin@yandex.ru  

Abstract. The problem of multi-modal pattern recognition is considered under 
the assumption that the kernel-based approach is applicable within each particu-
lar modality. The Cartesian product of the linear spaces into which the respec-
tive kernels embed the output scales of single sensor is employed as an appro-
priate joint scale corresponding to the idea of combining modalities, actually, at 
the sensor level. From this point of view, the known kernel fusion techniques, 
including Relevance and Support Kernel Machines, offer a toolkit of combining 
pattern recognition modalities. We propose an SVM-based quasi-statistical ap-
proach to multi-modal pattern recognition which covers both of these modes of 
kernel fusion.  

Keywords: Kernel-based pattern recognition; support vector machines, com-
bining modalities, kernel fusion.  

1   Introduction  

It is clear that no physical object can be immediately perceived by a computer. As an 
intermediary between real-world objects ω∈Ω  and the computer, always serves a 
formal variable ( ):x ω Ω → X  which plays the role of some computer-perceptible gen-
eralized feature of objects of a certain kind.  

The space (scale) X  of the generalized feature may have quite a complicated struc-
ture. For instance, the set of biometric traits used for establishing the identity of a person 
[1] includes face image, fingerprints, off-line and on-line signature, iris and retina im-
ages, ear form etc. In medical diagnosis, the typical kinds of information on a patient [2] 
are, in particular, numerical or nominal results of laboratory tests, X-ray, ultrasonic and 
MR images or tomograms, electro- and magneto-encephalograms. In public surveys, 
target properties of population representatives are measured in the form of answers to 
special-purpose questions each of which produces a specific set of possible response 
alternatives X .  

Any specific type of physical, biological, social or other phenomenon which is 
considered as characteristic for some real-world objects and expressed by a formal 
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variable is called the specific modality of object representation in data analysis. In terms 
of the given modality, the original set of objects is substituted for their representations in 
the value space of an appropriate generalized feature ( )x ω ∈X , for instance, in the form 
of signals, images, questionnaire answers, or, in relatively rare simple situations, real-
valued vectors.  

The essence of the pattern recognition problem is extension of the information con-
tained in the training set { }( , ) ( ), ( ), 1,...,j jX Y x y j N= ω ω = , ( )jy ω ∈ =Y  

{ }(1) ( ),..., my y , onto the entire scale of the respective feature ( )ˆ ( ) :y x ω →X Y . In 
many practical cases, no single modality is able to provide the acceptable reliability of 
recognition. The intent to increase the generalization performance of the resulting 
recognition rule has led to the concept of multimodal systems ( )1ˆ ( ),..., ( )ny x xω ω . In 
the comprehensive survey of multimodal biometrics [1], three levels of fusing several 
modalities are considered.  

(a) Sensor or data level implies fusion of signals acquired immediately from sensors 
forming different initial object representations, and final decision making ( )ˆ ( )y x ω  

on the basis of some resulting unified feature ( )( ) ( ), 1,...,ix x i nω = ϕ ω = .  
(b) Classifier score level presupposes fusion of scores of multiple classifiers produced 

by different modalities to be combined. The score of a single classifier usually has 
the meaning of posterior probability vector associated with class-membership hy-
potheses ( ) ( )(1) ( )( ) ,..., ( ) ; 1,...,m

i ip x p x i n⎡ ⎤ω ω =⎣ ⎦ . The final decision is to be made 

from the vector of classifier scores ( )(1) ( )ˆ ,..., , 1,...,m
i iy p p i n= .  

(c) Decision level implies fusing final decisions ( )ˆ ˆ , 1,...,iy y i n=  made separately by 

single classifiers on the basis of each modality ( )ˆ ( ) , 1,...,i iy x i nω =⎡ ⎤⎣ ⎦ .  

Fusing modalities at the decision level (c) is considered in [1] to be rigid. As to the 
sensor (a) and classifier score level (b), the latter one is rated in [1] as the most prefer-
able level of fusing several modalities, because the signals of initial sensors are of dif-
ferent physical nature and hardly lend themselves to combination. Therefore, over a 
long time, the researchers paid the main attention to classifier score fusion [3]. At the 
same time, it is noted in [1] that the sensor level of fusing modalities might yield better 
results, if only there were a chance to algorithmize it. The aim of this paper is studying 
the ways of such algorithmization under the assumption that the kernel-based method-
ology is applied as a means of inferring a recognition rule for each particular modality.  

The essence of the kernel-based methodology [4,5] is expressed by the notion of a 
kernel function ( ', '')K x x  defined in the output scale of a particular sensor × →X X R  

and meant to be the only means of perceiving real-world objects ω∈Ω  by pair-wise 
comparing their generalized features ' ( ')x x= ω , '' ( '')x x= ω . A two-argument function 

( ', '')K x x  is said to be kernel if it forms a positive semidefinite matrix 

( )( ), ( ) , , 1,...,j lK x x j l Nω ω =⎡ ⎤⎣ ⎦  for any finite collection of objects. In this case, it em-

beds the scale of the respective sensor X  into a hypothetical linear space with inner prod-

uct ⊇X X  [6] in which the null element φ∈X  and linear operations ' '':x x+ × →X X X  
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and :xα × →R X X  are defined in a special way. The role of the inner product is played 

by the kernel function ( ', '')K x x , which will be linear with respect to its arguments 

( ' ' '' '', ) ' ( ', ) '' ( '', )K x x x K x x K x xα + α = α + α  and produce the Euclidean metric along with 

Euclidean norm  

 ( ', '') ( ', ') ( '', '') 2 ( ', '')x x K x x K x x K x xρ = + − , || || ( , ) ( , )x x K x x= ρ φ = .  (1) 

If, at least, one kernel is defined in the output scale of each of several  
sensors ( ', '')i i iK x x , ', ''i i ix x ∈X , 1,...,i n= , it appears natural to consider the Cartesian 

product of the respective linear spaces 1 ... n= × ×X X X  and define an appropriate com-

bined kernel (inner product) in it ( ', '')K x x , 1( ,..., )nx x= ∈Xx . The recent progress in 
the methodology of kernel fusion [7,8,9,10 has cleared the way for combining any mo-
dalities, actually, at the sensor level.  

In terms of the kernel-based pattern recognition, the training set has the structure of 
n  matrices of kernel values and N  class-indices of objects:  

 { } { }( , ) ( ), ( ), 1,..., , 1,..., , ( ), 1,...,j j i jX Y y j N i n y j N= ω ω = ⇒ = ω =Kx .  (2) 

In addition, it is required to hold the ability of computing the kernel values 

( )( ), ( )i i i jK x xω ω , 1,...,i n= , for any new real-world object ω∈Ω  and all the objects 

jω  represented in the training set. Thus, the burden of dealing with the initial represen-
tation of objects in terms of the given modalities completely falls on the kernel comput-
ing procedures which are not considered here.  

In this paper, like all the above-cited papers, we restrict our consideration only to the 
two-class patter recognition problem { }1,1= −Y . The common idea of all the known 

kernel fusion methods is the search for a combined kernel as linear combination of the 

particular ones 
1

( ', '') ( '', ') ( ', '')
n

i i i ii
K K K x x

=
= = α∑x x x x , 0iα ≥ . The particular kernel 

fusion methods differ from each other by the choice of the training criterion which es-
sentially affects the coefficients forming the combined kernel.  

The framework proposed in [7] is referred to as Support Kernel Machines (SKM) 
due to the fact that it produces coefficients 1( ,..., )nα α  the most part of which equals 

zero, so that only the remaining positive coefficients 0iα >  indicate the active (sup-

port) kernels. However, this framework leads to the dual quadratically-constrained 
quadratic optimization problem (QCQP), which is essentially more challenging than the 
standard quadratic programming, or, in more detailed characterization, linearly con-
strained quadratic optimization problem (LCQP), which underlies the original SVM 
learning technique.  

Another approach [8] leads to coefficients 1( ,..., )nα α  which tend to zeros at redun-
dant kernels without complete nulling. We propose here to call kernel fusion techniques 
of such a kind Relevance Kernel Machines (RKM) due to their analogy with the idea of 
Relevance Vector Machines (RVM) proposed by Bishop and Tipping in [11] for an-
other purpose, namely, for constructing single-kernel discriminant hyperplanes on a 
different basis than SVM. The technique proposed in [8] results in the so-called semi-
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infinite linear programming procedure (SILP), i.e. an algorithm of minimizing a linear 
function of a finite number of variables under a continuum set of inequality constraints.  

The quasi-statistical approach to the problem of kernel fusion we develop in this pa-
per covers both RKM and SKM modes. Like our earlier publication [9,10], the com-
bined kernel is assumed to be simply the sum of the initial kernels 

( ', '')K =x x
1

( ', '')
n

i i ii
K x x

=∑ . The discriminant hyperplane is sought immediately in the 
linear space of the combined generalized feature 1 ... n= × ×X X X  in the form  

 ( ) ( ) ( ) ( )1 1
( ) ( ),..., ( ) , ( ) , ( ) 0

n

n i i ii
f f x x K b K x b

=
>ω = ω ω = ω + = ϑ ω + <∑x xϑ .  (3) 

It is well seen that if the norm ( , )i i iK ϑ ϑ  of a component of the direction vector 

1( ,..., )n= ϑ ϑ ∈Xϑ  is small in its linear space i iϑ ∈X , the respective kernel ( ', '')i i iK x x  

will little affect the recognition rule.  
We call the approach quasi-statistical, because the improper densities we use may 

have no finite integral over the respective space. Our approach leans upon a quasi-
probabilistic assumption on the a priori distribution of independent random elements of 

the direction vector 1( ,..., )n= ϑ ϑ ∈Xϑ  in (3). Let ( )ψ ϑ  be a basic “spherical” density 

in some linear space, namely, the density with null mathematical expectation E( )ϑ =φ  

and mean-square distance from the null element ( )2E ( , ) 1ρ ϑ φ = . Then, if we assume 

im  to be the dimensionality of a modality-specific linear space iX , the density  

 ( )( | ) 1i i i i i i
imr r rψ ϑ = ψ ϑ   (4) 

will determine, in accordance with (1), the mean-square distance from the respective 
null element ( ) ( )2E ( , ) E ( , )i i i i i i iK rρ ϑ φ = ϑ ϑ = .  

We consider two kinds of basic a priori densities ( )ψ ϑ , namely, the quasi-normal 
and quasi-Laplace density. The kernel fusion problem is formulated as that of estimating 
the spatial variances 1( ,..., )nr r  along with the elementary direction vectors 1( ,..., )nϑ ϑ  
from the given training set (2). The normality assumption on the a priori distribution of 
the hidden direction elements iϑ  leads to the RKM mode of kernel fusion, and the 
assumed Laplace distribution results in the SKM fusion mode.  

We illustrate the proposed kernel fusion framework by its application to the problem 
of multi-kernel on-line signature verification.  

2   The Quasi-statistical Approach to Kernel Fusion  

Let { }( ) , 1,...,i ix i nω ∈ =X  be the given set of generalized features ( )ω =x  

( )1 1( ),..., ( ) ...n nx xω ω ∈ = × ×X X X  defined in a universe of real-world objects ω∈Ω . 
We shall consider the universe ω∈Ω  with its genuine partition into two subsets 

( )y ω ∈ { }1,1= −Y  as probability space producing a probability distribution in the set 

of pairs ( )( ), ( )yω ω ∈ ×X Yx , and treat the training set 
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{ }( , ) ( ), ( ), 1,...,j jX Y y j N= ω ω =x  as result of repeated independent sampling from 

this distribution.  
It is assumed that some kernel ( ', '')i i iK x x  is defined in each scale iX , and, so, all the 

scales as well as its Cartesian product are embedded into respective linear spaces 

i i⊇X X , 1 1... ...n n= × × ⊇ = × ×X X X X X X . So, any choice of a point 1( ,..., )n= ϑ ϑ ∈Xϑ  

and a real number b∈R  defines a discriminant hyperplane in X  (3).  

Let ∈Xϑ  be a fixed point in the Cartesian product of the linear spaces produced by 
the elementary kernels. If we assume this point as the direction vector of the discrimi-
nant hyperplane (3), it will remain to choose the threshold b ∈R . Let the accepted 
training strategy be expressed by the criterion  
 ( ) arg min ( | , , )bb Q b X Y∈= Rϑ ϑ .  (5) 

The main heuristic idea of our approach is treating the function  

( )
[ ]

( )exp ( | , , ) 1
( , | , ) exp ( | , , )

( , )exp ( | , , )

uQ b X Y
b X Y uQ b X Y

D X YuQ b X Y d db
×

−
Φ = = −

′ ′ ′ ′−∫X R

ϑ
ϑ ϑ

ϑ ϑ
,  

where 0u >  is free parameter, as a posteriori joint distribution density of the direction 
vector and threshold value under the assumption that no a priori information is available 
on the direction vector.  

In addition, we assume that a priori information is available only on the direction 

vector ∈Xϑ , so, the respective density will be expressed in the improper form 
( , ) ( )bΨ = Ψϑ ϑ  which is constant with respect to b . Thus, the a posteriori joint prob-

ability density of ϑ  and b  will be the product ( , | , ) ( ) ( , | , )P b X Y b X Y= Ψ Φ =ϑ ϑ ϑ  

( ) ( )1 ( , ) ( )exp ( | , , )D X Y uQ b X YΨ −ϑ ϑ . Under these assumptions, we obtain the train-

ing criterion 
,

ˆˆ( , ) arg max ( , | , )
b

b P b X Y
ϑ∈ ∈

= X Rϑ ϑ , or, in the equivalent form,  

,
ˆˆ( , ) arg min ( , | , )

b
b J b X Y

ϑ∈ ∈
= X Rϑ ϑ ,   ( , | , ) ln ( ) ( | , , )J b X Y uQ b X Y= − Ψ +ϑ ϑ ϑ .  (6) 

3   The General SVM-Based Kernel Fusion Framework  

Let the initial threshold-oriented training criterion (5) that occurs in the resulting crite-
rion (6) be taken in the form  

 ( ){ } ( ){ }( | , , ) 1 , ( ) 1 , ( ) min
b

Q b X Y K b K b⎡ ⎤ ⎡ ⎤= − ω + − + ω + →⎣ ⎦ ⎣ ⎦∑ ∑ϑ ϑ ϑx x ,   

 
 
 

or, what is equivalent,  

 ( ) ( )min , , , ( ) 1 , 0.j j j j j jj
b y K bδ → ∈ δ ∈ ω + ≥ − δ δ ≥⎡ ⎤⎣ ⎦∑ R R ϑ x    

In this case, in accordance with (6), we come to the following general training criterion:  

( )
     : ( ) 1,

, ( ) 1
j

j

j y
K b

ω =
ω + <xϑ  ( )

     : ( ) 1,
, ( ) 1

j

j

j y
K b

ω = −
ω + > −xϑ  
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( )

( )
ln ( ) min , , ,

, ( ) 1 , 0.
j jj

j j j j

u b

y K b

⎧− Ψ + δ → ∈ ∈ δ ∈⎪
⎨ ω + ≥ − δ δ ≥⎡ ⎤⎪ ⎣ ⎦⎩

∑ X R Rϑ ϑ
ϑ x

  (7) 

This training criterion differs from the usual kernel-based SVM [5] only in two aspects. 
First, the direction vector of the sought discriminant hyperplane ϑ  is interpreted as 

element of a hypothetical linear space X  “spanned”, by the accepted kernel ( ', '')K x x , 

over the Cartesian product of the particular scales iX  of single object representation 

modalities. Second, the deflection of this vector from the null is penalized by the a priori 
probability density ln ( )− Ψ ϑ  assumed to have the maximum value if 

1 1( ,..., ) ( ,..., )n n= ϑ ϑ = φ φϑ  instead of the usual squared norm ( , )K ϑ ϑ  (1).  

Kernel ( ', '')K x x  is the inner product in the combined linear space =X  1 ... n× ×X X  

of the object-representation modalities ( )1( ) ( ),..., ( )nx xω = ω ωx . For instance, any 

linear combination of the inner products in the particular modalities, i.e. particular ker-
nels, with nonnegative coefficients will produce a combined kernel 

1
( ', '') ( ', '')

n

i i i ii
K K x x

=
= α∑x x . However, in our case there is no need to consider more 

sophisticated combined kernels than the simple sum 
1

( ', '') ( ', '')
n

i i ii
K K x x

=
=∑x x .  

We restrict our consideration only to independent a priori distributions of the compo-
nents in the combined direction vector 1( ,..., )n= ϑ ϑϑ , assuming that each of them 

( | )i i irψ ϑ  (4) depends on the specific unknown value of the spatial variance ir . Then,  

 ( ) ( )1 1 1 1
( | ,..., ) ( | ) 1

n n n

n i i i i i ii i i
imr r r r r

= = =
Ψ = ψ ϑ = ψ ϑ∏ ∏ ∏ϑ ,   

where the product in the denominator has the meaning of the concentration volume of  
this distribution in X . Estimation of the concentration volume makes no sense in this 

problem, and we shall assume it to be preset, for instance, 
1

1
n

ii
imr

=
=∏ . So,  

 ( )1 1
( | ,..., )

n

n i ii
r r r

=
Ψ = ψ ϑ∏ϑ ,  (8) 

and we shall have in (7) ( )
1

ln ( ) ln
n

i ii
r

=
⎡ ⎤− Ψ = − − ψ ϑ⎣ ⎦∑ϑ  under the additional as-

sumption 
1

ln 0
n

i ii
m r

=
=∑ .  

The unknown variances ir  of kernel-specific a priori distributions will be of crucial 

importance for the result of kernel fusion, therefore, we optimize (7) by 1( ,..., )nr r  along 

with other variables. Thus, we shall use the general kernel fusion criterion having the 
following structure:  

 
( ) ( )

( )
1

1 1

ln ( ) min , , , ( ) ,

ln 0, ( ) , ( ) 1 ( ).

n

i i j i i i ji j
n n

i i j i i i j ji i

r u r b

m r y K x b

+ +
=

= =

⎧ ⎡ ⎤− ψ ϑ + δ ω → ϑ ∈ ∈ ∈ δ ω ∈⎪ ⎣ ⎦⎨ ⎡ ⎤= ω ϑ ω + ≥ − δ ω⎪ ⎣ ⎦⎩

∑ ∑
∑ ∑

X R R R
  (9) 
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Any particular kernel fusion technique will be specified only by the choice of the basic a 
priori density ( )ψ ϑ .  

Generally speaking, it is problematic to evaluate the dimensionalities im  of the kernel-

specific linear spaces iX , which may be infinite. But for the given training set (2), the 

observed dimensionality cannot exceed the number of objects N , and the lower bound 
of im  can be estimated from the respective positive semidefinite kernel matrix i =K  

( ){ }( ), ( ) , , 1,...,i i j i kK x x j k Nω ω =  as the number of its essentially positive eigenvalues.  

4   Quasi-normal a Priori Distributions of Modality-Specific 
Direction Vectors: The Relevance Kernel Machine  

For the standard normal density ( ) ( )2( ) 1 2 exp (1 2)|| ||ψ ϑ = π − ϑ , we have ( )ln i irψ ϑ =  

ln 2 (1 2 ) ( , )i i i ir K− π − ϑ ϑ , and the training criterion (9) gets the form with 2C u= :  

 
( )

( )
1

1 1

(1 ) ( , ) min , , , ,

ln 0, , ( ) 1 , 0.

n

i i i i j i i i ji j

n n

i i j i i i j j ji i

r K C r b

m r y K x b

=

= =

⎧ ϑ ϑ + δ → ϑ ∈ ∈ ∈ δ ∈⎪
⎨ ⎡ ⎤= ϑ ω + ≥ − δ δ ≥⎪ ⎣ ⎦⎩

∑ ∑
∑ ∑

X R R R
  (10) 

Theorem 1. For fixed variances ( , 1,..., )ir i n= , the combined recognition rule follow-

ing from the optimization problem (10) has the structure  

 

( ) ( ) ( )
( )

1 1

1

ˆ: 0

ˆ ˆ:0 2 : 0 : 2

ˆ:0 2

ˆ ˆˆˆ( ) ( ),..., ( ) ( ), ( ) 0,

ˆ ˆ ( ), ( ) ( 2)
ˆ .

ˆ

n

n j j i i i j ii
n

j l l i i i j i l ji

j

j

j jl

j

j

j C l j C

j C

f y x x y r K x x b

y r K x x C y
b

=

=

λ >

<λ < λ > λ =

<λ <

>ω = ω ω = λ ω ω + <

λ λ ω ω +
= −

λ

∑ ∑
∑ ∑ ∑ ∑

∑

x

  (11) 

Here Lagrange multipliers ˆ
jλ  at the inequality constraints in (10) are solutions of the 

dual quadratic programming problem  

 
( )( )1 1 1 1

1

(1 2) ( ), ( ) max,

0, 0 2, 1,..., .

N N N n

j j l i i i j i l j lj j l i

N

j j jj

y y r K x x

y C j N

= = = =

=

⎧ λ − ω ω λ λ →⎪
⎨

λ = ≤ λ ≤ =⎪⎩

∑ ∑ ∑ ∑
∑

  (12) 

The training criterion (10) with fixed variances ir  is a generalization of the well-known 

SVM criterion [5]. The training-set objects jω  whose Lagrange multipliers are positive 

0jλ >  correspond to active constraints and are called support objects. It is easy to show 

that the hypothetical constituents ˆ
i iϑ ∈X  of the direction vectors of the optimal dis-

criminant hyperplane in the combined linear space 1 ... n= × ×X X X  are linear combina-

tions of the support objects in the sense of specific linear operations produced by the 
respective kernels:  
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 ˆ: 0
ˆ ˆ ( )i i j j i j i

jj
r y xλ >ϑ = λ ω ∈∑ X .  (13) 

However, there is no need to deal with these products of mathematical imagination, 
because they do not occur in the final formulas (11).  

For finding the optimal values variances ( , 1,..., )ir i n= , we apply to (10) the Gauss-

Seidel iteration with respect to both groups of variables ( , 1,..., , )i i n bϑ =  and 

( , 1,..., )ir i n= :  

( )( ) ( 1)( , 1,..., ) , 1,...,k k
i jr i n j N+= → λ =  from (12),   

( )( 1) ( 1) ( ) ( 1)
( 1): 0, 1,..., ( )k k k k

j i i j j i jk
jjj N r y x+ + +

+λ >λ = → ϑ = λ ω∑  from (13),   

( )
( 1)

( 1) 1

1

( , 1,..., ) arg min (1 ) ( , ),
, 1,...,

ln 0,

nk
k i i i i ii

ni

i ii

r i n r K
i n

m r

+
+ =

=

⎧ = = ϑ ϑ⎪ϑ = → ⎨ =⎪⎩

∑
∑

 from (10). (14) 

It is easy to show that the solution of the problem (14) is expressed by the formulas  

 
( ){ }

( 1) ( 1)
( 1)

( 1) ( 1)

1 1

( , )

exp ln (1 ) ( , )

k k
k i i i

i n nk k
i l l l l l ll l

K
r

m m m K m

+ +
+

+ +
= =

ϑ ϑ
=

⎡ ⎤ϑ ϑ⎣ ⎦∑ ∑
,  (15) 

where, according to (13),  

 ( )( 1) ( 1) ( ) 2 ( 1) ( 1)( , ) ( ) ( ), ( )k k k k k
i i i i j l j l i i j i lj lK r y y K x x+ + + +ϑ ϑ = λ λ ω ω∑ ∑    

with summation only over the support objects ( 1): 0k
jj +λ > .  

It is well seen from (11) that variances ir  occur in the recognition rule as weights at 

the respective kernels – the greater ir , the greater the contribution of kernel ( , )i i iK x x′ ′′  

to the recognition rule. The iterative process of estimating the variances usually con-
verges in 10-15 steps and displays a tendency to suppressing the weights at “redundant” 
kernels 0ir →  along with emphasizing 0ir  the kernels which are “adequate” to the 

trainer’s data. We name this training mode the Relevance Kernel Machine, because it 
results in soft extraction of a relatively small number of most adequate kernels without 
full suppression of the others.  

5   Quasi-laplace a Priori Distributions of Direction Vectors:  
The Support Kernel Machine  

Let us consider now the standard Laplace density ( )( ) (1 2)exp (1 2)|| ||ψ ϑ = − ϑ . In this 

case, ( ) ( )ln ln 2 (1 2) 1 ( , )i i i i ir r Kψ ϑ = − − ϑ ϑ , and we come to the criterion (9) 

in the following form with 2C u= :  

 
( )

( )
1

1 1

(1 ) ( , ) min , , , ,

ln 0, , ( ) 1 , 0.

n

i i i i j i i i ji j
n n

i i j i i j j ji i

r K C r b

m r y K x b
=

= =

⎧ ϑ ϑ + δ → ϑ ∈ ∈ ∈ δ ∈⎪
⎨ ⎡ ⎤= ϑ ω + ≥ − δ δ ≥⎪ ⎣ ⎦⎩

∑ ∑
∑ ∑

X R R R
  (16) 
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We have come to the formulation of the training problem which differs from the formu-
lation proposed in [7] by the norm of the combined kernel, which is not squared in the 

criterion (16) in contrast to ( )2

1
( , )

n

i i i ii
d K

=
ϑ ϑ∑  in the cited paper. We shall see that this 

distinction results in a considerable simplification of the optimization problem.  

Theorem 2. For fixed variances 1( ,..., )nr r , the combined recognition rule following 
from the optimization problem (16) has the structure  

( ) ( ) ( )1 : 0 ˆ
ˆ ˆˆˆ ˆ( ) ( ),..., ( ) ( ), ( )n j j i i i j i

jj i If y x x y K x x bλ > ∈ω = ω ω = λ μ ω ω +∑ ∑x .  (17) 

Here ˆ
jλ  are the solutions of the first dual optimization problem  

 
( )

1 1

2

1 1

max, 0, 0 , 1,..., ,

( ), ( ) 1 , 1,..., ,

N N

j j j jj j
N N

j l i i j i l j l ij l

y C j N

y y K x x r i n
= =

= =

⎧ λ → λ = ≤ λ ≤ =⎪
⎨

ω ω λ λ ≤ =⎪⎩

∑ ∑
∑ ∑

  (18) 

set { }ˆ 1,...,I n⊆  is the set of active inequality constraints in (18) at the maximum point, 
ˆ

iμ  are the solutions of the system of linear equations  

 
( )

ˆ ˆ: 0 :0

ˆ ˆ:0 :0

ˆ

ˆ ˆ( , ) ( , )

ˆ ˆ ˆ                                                       , : 0 ,

l q i q j i q l l q i

j q q q j

q l

q q

q l C

q C q C

i I

g g K K

g g j C

λ > <λ <

<λ < <λ <

∈

⎡ ⎤
⎢ ⎥ω ω − ω ω λ λ μ =
⎢ ⎥
⎣ ⎦

λ − λ < λ <

∑ ∑ ∑

∑ ∑
  (19) 

and b̂  is determined by the formula  

 
( )ˆ ˆ:0 : 0 :0

ˆ:0

ˆ ˆ ˆ ˆ( , )
ˆ

ˆ

j j l i j l j l i

j j

j j l

j

j C i I j l C

j C

g g K
b

g

<λ < ∈ λ > <λ <

<λ <

λ − ω ω λ λ μ
=

λ

∑ ∑ ∑ ∑
∑

  (20) 

In accordance with the terminology introduced in [7], the kernels { }ˆ( , ),i i iK x x i I′ ′′ ∈  
indicated by the subset of active constraints in (18) are the support kernels for the given 
training set, because only these kernels participate in the recognition rule (17). This is 
an alternative version of Support Kernel Machine first considered in [7].  

The dual optimization problem (18) is that of maximizing a linear function under lin-
ear and quadratic constraints. The problems of this class, let us name it Quadratically 
Constraint Linear Programming (QCLP) is much simpler than those of Quadratically 
Constraint Quadratic Programming (QCQP) resulting from the framework studied in 
[7]. The QCLP problems lend themselves to an easy numerical solution by publicly 
available instruments.  

The abstract constituents ˆ
i iϑ ∈X  of the direction vectors of the optimal discriminant 

hyperplane are linear combinations of the support objects:  
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 ˆ: 0
ˆ ˆˆ ( )i i j j i j i

jj y xλ >ϑ = μ λ ω ∈∑ X .  (21) 

This fact is exploited in the Gauss-Seidel iterative procedure which is applied to the 
training criterion (16) for jointly optimizing it by ( , 1,..., )ir i n=  and ( , 1,..., , )i i n bϑ = :  

( )( ) ( 1)( , 1,..., ) , 1,...,k k
i jr i n j N+= → λ =  and { }( 1)ˆ 1,...,kI n+ ⊆  from (18),   

( )( 1) , 1,...,k
j j N+λ =  and { }( 1)ˆ 1,...,kI n+ ⊆ ( )( 1) ( 1)ˆ ,k k

i i I+ +→ μ ∈  from (19),   

( )( 1) , 1,...,k
j j N+λ =  and ( )( 1) ( 1)ˆ ,k k

i i I+ +μ ∈ ( )( 1) , 1,...,k
i i n+→ ϑ =  from (21),  

( )
( 1) ( 1) ( 1)

( 1) 1

1

( , 1,..., ) argmin (1 ) ( , ),
, 1,...,

ln 0,

nk k k
k i i i i ii

ni

i ii

r i n r K
i n

m r

+ + +
+ =

=

⎧ = = ϑ ϑ⎪ϑ = →⎨
=⎪⎩

∑
∑

from (16). 

The following formulas give the solution of the last optimization problem:  

 
( ){ }

( 1) ( 1)
( 1)

( 1) ( 1)

1 1

( , )

exp ln (1 ) ( , )

k k
i i ik

i
n nk k

i k k k k k kk k

K
r

m m m K m

+ +
+

+ +
= =

ϑ ϑ
=

⎡ ⎤ϑ ϑ⎣ ⎦∑ ∑
,   

where ( )( 1) ( 1) ( 1) 2 ( 1) ( 1)ˆ( , ) ( ) ( ), ( )k k k k k
i i i i j l j l i i j i lj lK y y K x x+ + + + +ϑ ϑ = μ λ λ ω ω∑ ∑  with sum-

mation over the support objects.  

6   Experiments: Multi-kernel On-Line Signature Verification  

The problem of signature verification consists in testing the null hypothesis that the 
given signature belongs to the person who has claimed his/her identity against the alter-
native hypothesis that this is forgery. The approach to on-line signature verification 
presented in [12] is completely based on evaluating one or several kernels on the set of 
“all feasible” signals that may be produced by the pen’s trajectory. Twelve different 
kernels were simultaneously computed for each pair of signature signals.  

In the experiment, we used the database that contains signatures of 40 persons. For 
each person, the training set consists of 800 signatures, namely, 10 signatures of the 
respective person, 10 skilled forgeries (attempts to emulate the signature dynamics of 
this person), and 780 random forgeries formed by 390 original signatures of other 39 
persons and 390 skilled forgeries for them. The test set for each person consists of 59 
signatures, namely, 10 original signatures, 10 skilled forgeries, and 39 random forgeries. 
Thus, the total number of the test signatures for 40 persons amounts to 2360.  

We tested 13 ways of training, namely, based on each of the initial kernels separately 
and RKM principle of fusing all the kernels. The errors rates of single kernels in the 
total test set of 2360 signatures range from 0.51% to 23.81%. The RKM kernel fusion 
technique essentially outperforms each of the single kernels with 0.38% error rate.  

For each of 40 persons whose signatures made the data set, the RKM procedure has 
selected only one relevance kernel which turned out to be most adequate to his/her 
handwriting. In each case, the relevance kernel obtained nonzero weight 1.0ir ≥ , 
whereas the weights at other kernels were assigned negligibly small values 510ir

−≤ .  
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7   Conclusions  

The kernel-based view of the multi-modal pattern recognition problem stems from the 
assumption that, at least, one kernel is defined in the output scale of each of several 
sensors, and, so, each of the scales is embedded into a hypothetical kernel-specific 
linear space with inner product. The Cartesian product of these linear spaces appears 
to be just the expedient joint scale corresponding to the idea of combining modalities 
at the sensor level.  

In these terms, the choice of a particular method of multi-modal pattern recognition 
boils down to the choice of an appropriate kernel in the resulting combined linear space. 
From this point of view, the known kernel fusion techniques, including Relevance and 
Support Kernel Machines, offer an appropriate toolkit of combining patter recognition 
modalities, actually, at the sensor level.  

However, it remains open to question whether the sensor level of fusing modalities is 
really more preferable than the classifier combination level. In the companion paper 
[13], we set out to show that our approach to combining kernels leads, under some 
additional assumptions, to a new method of combining kernel-based classifiers, and 
offers a mathematical basis for comparison of two competing or, maybe, cooperating 
principles of kernel and classifier fusion.  
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Abstract. Multiple modalities present potential difficulties for kernel-based 
pattern recognition in consequence of the lack of inter-modal kernel measures. 
This is particularly apparent when training sets for the differing modalities  are 
disjoint.  Thus, while it is always possible to consider the problem at the classi-
fier fusion level, it is conceptually preferable to approach the matter from a ker-
nel-based perspective. By interpreting the aggregate of disjoint training sets as 
an entire data set with missing inter-modality measurements to be filled in by 
appropriately chosen substitutes, we arrive at a novel kernel-based technique, 
the neutral-point method. On further theoretical analysis, it transpires that the 
method is, in structural terms, a kernel-based analog of the well-known sum 
rule combination scheme. We therefore expect the method to exhibit similar er-
ror-canceling behavior, and thus constitute a robust and conservative strategy 
for the treatment of kernel-based multi-modal data.  

Keywords: Kernel-based pattern recognition; combining modalities; kernel fu-
sion; classifier fusion.  

1   Introduction  

In data analysis and, in particular, pattern recognition, it is common practice to  
employ the term “modality” when speaking about a specific kind of mathematical 
computer-perceptible object representation. In terms of the measured modality, the 
hypothetical set of “all” real-world objects ω∈Ω  is represented by the output of the 
respective sensor ( )x ω ∈X  in the form of signals, images, or, in relatively rare simple 

cases, in the form of one-dimensional numerical features.  
The essence of the training problem in supervised pattern recognition is extrapolation 

of the information contained in the finite training set of the accessible objects 
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∗Ω = { }( , ) ( ) , ( ) {1,..., },j j jX Y x y m ∗= ω ∈ ω ∈ = ω ∈ΩX Y  onto the entire scale of the  
respective object representation ( )ˆ ( ) :y x ω →X Y . The intention of increasing the 
generalization performance of the resulting recognition rule has led to the concept of 
multimodal systems, which combine several object representation modalities 
{ }( ) , 1,...,i ix i nω ∈ =X  into a unified recognition procedure ( )1ˆ ( ),..., ( ) :ny x xω ω  

1 ... n× × →X X Y .  
In the overview of multimodal biometrics given in [1] two principle levels of com-

bining modalities are distinguished: the signal level, when, prior to training the classi-
fier ˆ( )y ω , a unified representation of objects is formed ( )( ) ( ), 1,...,ix x i nω =ϕ ω =  to 

combine all the particular modalities ( )ˆ ˆ( ) ( )y y xω = ω , and the classifier level, when 

what is to be combined are the classifiers ( )ˆ ˆ( ) ( ) , 1,...,i iy y x i nω = γ ω =⎡ ⎤⎣ ⎦ , each trained 

individually by a single modality.  
Until recently, most attention had been paid in the literature to principles of classi-

fier fusion [2,3], because it was assumed that combining modalities of different char-
acter (real numbers and labels, for example) is not straightforward. However, recent 
achievements in the methodology of kernel fusion [4,5,6,7,8] have cleared the way for 
combining any number of modalities at the signal level.  

The aim of this paper is to consider relationships between the two approaches to 
multimodal machine learning, kernel fusion and classifier fusion, under the specific 
assumption that the problem to be solved is that of two-class pattern recognition, and 
that, in addition, the kernel-based approach is applied within each modality.  

Before closely scrutinizing the relationship between kernel and classifier fusion, 
we consider the specificity of a single modality-specific kernel-based classifier. As 
applied to the kernel-based approach, the principle of classifier fusion implies com-
bining several recognition rules inferred from modality-specific data. In this paper, on 
the basis of the kernel fusion methodology considered in [8], we propose a unified 
view on the seemingly different principles of combining modalities at the signal and 
classifier level by, respectively, kernel and classifier fusion.  

2   The Modality-Specific Kernel-Based Classifier  

A two-argument symmetric function ( ', '') ( '', ')i i i i i iK x x K x x=  defined in the output 

scale of a particular sensor { }( ),i ix= ω ω∈ΩX  is said to be kernel function in iX  if it 

forms positive semidefinite matrices ( )( ), ( ) ; , 1,...,i i j i lK x x j l k⎡ ⎤ω ω =⎣ ⎦  for all finite 

subsets of this set [9]. Any kernel ( ', '')i i iK x x  embeds the scale of the respective sen-

sor iX  into a hypothetical linear space with inner product i i⊇X X , in which the null 

element i iφ ∈X  and linear operations ' '':i i i i ix x+ × →X X X  and :i i ixα × →R X X  

are defined in a special way. The role of the inner product is played by the kernel 
function ( ', '')i i iK x x  [10] which will be linear with respect to its arguments 

( ' ' '' '', ) ' ( ', ) '' ( '', )i i i i i i iK x x x K x x K x xα + α = α + α .  
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Thus, in terms of a single modality, a training set { }, 1,...,i j ij N∗Ω = ω =  is completely 

represented by the kernel matrix and class-indices of objects ( ) 1j jy y= ω = ± :  

 ( ){ }( ), ( ) , , , ( ), .i i i i j i l j l i j j iK x x y∗ ∗ ∗⎡ ⎤Ω ⇒ = ω ω ω ω ∈Ω ω ω ∈Ω⎣ ⎦K   (1) 

In addition, it is required to uphold the ability to compute the kernel values 

( )( ), ( )i i i jK x xω ω  for any new real-world object ω∈Ω  and all the objects j i
∗ω ∈Ω  

represented in the training set.  
A commonly adopted kernel-based approach to the two-class pattern recognition 

problem is widely known under the name of Support Vector Machine (SVM) [9]. The 
main concept of this approach is that of the optimal discriminant hyperplane in the 

linear space iX  produced by the respective kernel ( ) ( )ˆ ( ) , ( ) 0i i i i i iy x K x b >ω = ϑ ω + < . 

In our terms, the discriminant hyperplane is defined by a hypothetical element of this 

linear space i iϑ ∈X  and by the threshold ib ∈R . The SVM training criterion follows 

from the idea of maximizing the margin between the points of two classes in iX :  

 
( )

( )
( , ) min , , ,

, ( ) 1 , 0, .

i i i j i i j

j i i j j j j i

j i
K C b

y K x b ∗

∗ω ∈Ω
⎧ ϑ ϑ + δ → ϑ ∈ ∈ δ ∈⎪
⎨

ϑ ω + ≥ − δ δ ≥ ω ∈Ω⎡ ⎤⎪ ⎣ ⎦⎩

∑ X R R
  (2) 

where 0C >  is sufficiently large coefficient. The dual form of this criterion is a quad-
ratic programming problem with respect to the nonnegative Lagrange multipliers 

, 0i jλ ≥  for the inequality constraints:  

 
( ), , ,

, ,

(1 2) ( ), ( ) max,

0, 0 2, .

i j j l i i j i l i j i l

j i j i j j i

j i j i il

j i

y y K x x

y C ∗

∗ ∗ ∗

∗

ω ∈Ω ω ∈Ω ω ∈Ω

ω ∈Ω

⎧ λ − ω ω λ λ →⎡ ⎤⎣ ⎦⎪
⎨

λ = ≤ λ ≤ ω ∈ Ω⎪⎩

∑ ∑ ∑
∑

  (3) 

The direction vector of the optimal discriminant hyperplane is the linear combination 
of the training-set objects with coefficients defined by the Lagrange multipliers found 

as the solution of this problem ,
ˆ ˆ

i j i j j
j i

y∗ω ∈Ωϑ = λ ω∑ . It must be kept in mind that the 

training-set objects occur in this linear combination as elements of the hypothetical 

linear space i i⊇X X  in accordance with the specific linear operations produced by 

the kernel ( ', '')i i iK x x .  

The objects j i
∗ω ∈Ω  whose Lagrange multipliers are positive in the solution of the 

dual problem ,
ˆ 0i jλ >  make the subset of support objects in the full training set:  

 { },
ˆˆ : 0i j i i j i

∗ ∗Ω = ω ∈Ω λ > ⊆ Ω .  (4) 

Only the support objects will form the direction vector of the optimal discriminant 
hyperplane  
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( ) ( ) ( )ˆ:
ˆ ˆˆ ˆ( ) , ( ) 0 ( ) 1i i i i i i i i

j ijf x K x b y xω ∈Ω
>ω = ϑ ω + ⇒ ω =±<∑ , ,ˆ

ˆ ˆ
i j i j j

j i
yω ∈Ωϑ = λ ω∑ ,  (5) 

and only the kernel matrix at the support objects will affect the recognition rule in-
ferred from the training set of the respective modality:  

 
( ) ( )

( )( )
,

, , ,

ˆ:

ˆ ˆ ˆ: : :

ˆ ˆˆ( ) ( ), ( ) 0,

ˆ ˆ ˆ ˆ( ) ( ), ( ) .

i i j i j i i j i i

i i j l i l i i j i l i j

j i

j i i j il

j

j l j

f x y K x x b

b y K x x

ω ∈Ω

ω ∈Ω ω ∈Ω ω ∈Ω

>ω = λ ω ω + <

= − λ ω λ ω ω λ

∑
∑ ∑ ∑

  (6) 

So, the result of training within the bounds of a single modality is completely repre-
sented by the subset of support objects and the positive values of Lagrange multipliers 
at them (4).  

We introduce here a new notion, which will be especially important for the com-
parison of kernel fusion and classifier fusion. If a new object maps into a point strictly 
at the discriminant hyperplane ( )ˆ ( ) 0i iy x ω =  (6), it cannot be attributed to any one of 

the two classes. All these point will be said to be neutral points produced by the train-
ing set and denoted them by special symbol ,

ˆ
ixφ . It is obvious that there exists a con-

tinuum of neutral points for each modality ,iφX  in the respective space iX :  

 , ,
ˆ

i ixφ φ∈X ,  { },
ˆˆ: ( , ) 0i i i i i i ix K x bφ = ∈ ϑ + =X X ,  ,

ˆ ˆ( , )i i i ib K xφ= − ϑ .  (7) 

3   Kernel Fusion: Combining Modalities at the Signal Level from a 
Full Training Set by Kernel Fusion  

Let, at least, one kernel be defined in the output scale of each of several sensors 
( ', '')i i iK x x , ', ''i i ix x ∈X , 1,...,i n= . The union of all the modality-specific training sets 

1

n

ii=
∗ ∗Ω = Ω∪  (1) will be called the unified training set. We shall say the unified train-

ing set ∗Ω  is full if each object j
∗ω ∈Ω  is represented by all the modality-specific 

signals ( )( ) ( ) , 1,...,j i j ix i nω = ω ∈ =Xx , i.e., all the kernel-specific training sets coin-

cide 1 ... n
∗ ∗Ω = = Ω .  

A full training set ∗Ω  allows for immediate combination of several modalities by 
kernel fusion. All the known kernel fusion techniques are based on the idea of con-
structing an appropriate combined kernel (inner product) ( , )K ′ ′′x x , 

1( ,..., )nx x= ∈Xx , in the Cartesian product { }1 ... ( , 1,..., )n i ix i n= × × = = ∈ =X X X Xx  

of the linear spaces i i⊇X X  defined by the respective kernels. The sum of the initial 

kernels 
1

( ', '') ( ', '')
n

i i ii
K K x x

=
=∑x x  will retain all the properties of inner product, i.e., 

be a kernel in X . From this point of view, any choice of a point 

( , 1,..., )i i i n= ϑ ∈ = ∈X Xϑ  and real number b∈R  yields a discriminant hyperplane with 

direction vector in the Cartesian product X   
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 ( ) ( ) ( ) ( )
1

ˆ ˆ( ) ( ), 1,..., , ( ) , ( ) 0
n

i i i ii
f f x i n K b K x b

=
>ω = ω = = ω + = ϑ ω + <∑x xϑ ,  (8) 

and produces, thereby, a kernel fusion technique.  

It is apparent that if the norm ( , )i i iK ϑ ϑ  of a component of the direction vector 

i iϑ ∈X  is small in its linear space, the respective kernel ( , )i i iK x x′ ′′  will little affect 

the recognition rule (8).  
The straightforward application of the SVM training principle to the Cartesian 

product of the particular linear spaces 1 ... n= × ×X X X  [9], namely, finding the opti-

mal discriminant hyperplane in X  with respect to the full training set ∗Ω , results in 
the training criterion  

 
( )

( )
1

1

( , ) min , , ,

, ( ) 1 , 0, .

n

i i i j i i ji

n

j i i i j j j ji

j
K C b

y K x b

=

=
∗

∗ω ∈Ω
⎧ ϑ ϑ + δ → ϑ ∈ ∈ δ ∈⎪
⎨

⎡ ⎤ϑ ω + ≥ − δ δ ≥ ω ∈Ω⎪ ⎣ ⎦⎩

∑ ∑
∑

X R R
  (9) 

This optimization problem leads to the dual quadratic programming problem of the 
analogous structure as the usual SVM dual problem (3):  

 
( )( )1

(1 2) ( ), ( ) max,

0, 0 2, .

n

j j l i i j i l j li

j j j j

jl l

j

y y K x x

y C

=

∗

∗ ∗ ∗

∗

ω ∈Ω ω ∈Ω ω ∈Ω

ω ∈Ω

⎧ λ − ω ω λ λ →⎪
⎨

λ = ≤ λ ≤ ω ∈Ω⎪
⎩

∑ ∑ ∑ ∑
∑

  (10) 

The Lagrange multipliers obtained for the set of support objects  

 { }ˆˆ : 0j j
∗ ∗Ω = ω ∈Ω λ > ⊆ Ω   (11) 

yield the optimal recognition rule:  

 
( ) ( ) ( )

( )( )
1 1

1

ˆ

ˆ ˆ ˆ

ˆ ˆˆˆ( ) ( ),..., ( ) ( ), ( ) 0,

ˆ ˆ ˆ ˆ( ), ( ) .

n

n j j i i j ii

n

j l l i i j i l ji

j

j jl

f y x x y K x x b

b y K x x

=

=

ω ∈Ω

ω ∈Ω ω ∈Ω ω ∈Ω

>ω = ω ω = λ ω ω + <

= − λ λ ω ω λ

∑ ∑
∑ ∑ ∑ ∑

x
  (12) 

This is the simplest but not the only possible way of kernel fusion. The quasi-
statistical approach to the signal-level modality combination considered in [8] covers 
the main kernel fusion principles known at present.  

With the objective function in (9) as 
1
(1 ) ( , )

n

i i i i ji j
r K C

= ∗ω ∈Ωϑ ϑ + δ →∑ ∑  

( )min , , ,i i i jr bϑ ∈ ∈ ∈ δ ∈X R R R  under additional constraint 
1

1
n

ii
r

=
=∏ , the training 

criterion displays a tendency to suppressing the weights at the “redundant” kernels 
ˆ 0ir →  along with emphasizing ˆ 0ir  the kernels which are “adequate” to the 

trainer’s data, and, so, results in soft extraction of a relatively small number of most 
adequate kernels without full suppression of the others. Due to this property, this 
training technique is called in [8] the Relevance Kernel Machine (RKM).  

If 
1

( , )
n

i i i ji j
K C

= ∗ω ∈Ωϑ ϑ + δ →∑ ∑ ( )min , ,i i jbϑ ∈ ∈ δ ∈X R R  is taken as the ob-

jective function in (9), the training technique selects a subset of support kernels 
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{ }ˆ 1,...,I n⊆  with positive norms of the direction vectors ( )ˆ ˆ ˆ( , ) 0,i i iK i Iϑ ϑ > ∈  in con-

trast to the others which get completely suppressed ( )ˆ ˆ ˆ( , ) 0,i i iK i Iϑ ϑ = ∉  [8]. Because 

only the support kernels ˆi I∈  participate in the recognition rule, this is a kind of Sup-

port Kernel Machine (SKM) first considered in [5].  
All of these approaches to kernel fusion techniques are closely related to the prob-

lem of studying the relationship between kernel and classifier fusion as alternative 
strategies for combining pattern recognition modalities at, respectively, signal and 
classifier level. However, in this paper we restrict our consideration only to the sim-
plest kernel fusion technique (9).  

4   The Neutral Point Method of Combining Modalities from 
Disjoint Training Sets  

It is common practice that particular modalities are employed by different expert 
groups, which hence derive their training sets independently of each other. If it is so, 

the training set { }, 1,...,j j N∗Ω = ω =  will consist of disjoint subsets 
1

n

ii=
∗ ∗Ω = Ω∪ , 

i l
∗ ∗Ω Ω = ∅∩ , such that the output signals of only one modality-specific sensor 

( )( ),i j j ix ∗ω ω ∈Ω  are captured within the bounds of each of them.  

With respect to this notation, the kernel fusion criterion (9) may be put in the fol-
lowing equivalent form:  

 
( ) ( )

( ) ( )( )
1

1,

( , ) min , , ,

, ( ) , ( ) 1 , 0, , 1,..., .

n

i i i j i i ji

n

j i i i j l l l j j j j i

j i

l l i

K C b

y K x K x b i n

=

∗
= ≠

∗ω ∈Ω
⎧ ϑ ϑ + δ → ϑ ∈ ∈ δ ∈
⎪
⎨⎡ ⎤ϑ ω + ϑ ω + ≥ −δ δ ≥ ω ∈Ω =⎪⎢ ⎥⎣ ⎦⎩

∑ ∑
∑

X R R
  (13) 

Here, in each group of constraints at the training-set objects { }, 1,...,j i i n∗ω ∈Ω = , for 

any value of the abstract variable i iϑ ∈X , only one of n  summands is defined, 

namely, ( ), ( )i i i jK xϑ ω , whereas the other summands ( ), ( )l l l jK xϑ ω  are not, be-

cause the sensor signals ( )l jx ω  are unknown for l i≠  due to the assumption that the 

particular training sets are disjoint.  
We hence propose a new method of combining modalities in supervised kernel-

based pattern recognition in the case when the training sets for different modalities are 

disjoint. The idea consists in treating the problem (13) as that of learning with  

incomplete data and filling-up the unknown actual values of the sensor signals corre-

sponding to other modalities ( )l jx ω , l i≠ , by one common value being the arbitrary  

neutral point , ,
ˆ

i ixφ φ∈X  (7) of the i th linear space. After this substitution, the prob-

lem (13) takes the following form:  
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( ) ( )

( ) ( )( )
1

,1,

( , ) min , , ,

ˆ, ( ) , 1 , 0, , 1,..., .

n

i i i j i i ji

n

j i i i j l l l j j j i

j i

l l i

K C b

y K x K x b i n

=

φ
∗

= ≠

∗ω ∈Ω
⎧ ϑ ϑ + δ → ϑ ∈ ∈ δ ∈
⎪
⎨⎡ ⎤ϑ ω + ϑ + ≥ − δ δ ≥ ω ∈ Ω =⎪⎢ ⎥⎣ ⎦⎩

∑ ∑
∑

X R R
 (14) 

Theorem. The solution of the optimization problem (13) is the totality of the optimal 

direction elements in the linear spaces of generalized features ˆ
i iϑ ∈X  (5) found as 

the solutions of the training problems (2) independently for each modality 1,...,i n= , 
along with the common threshold value equal to the sum of optimal thresholds for all 

modalities 
1

ˆ ˆn

ii
b b

=
=∑  (6).  

Hence, replacement of the unknown actual values of sensor signals by the neutral 
points of the respective linear spaces leads to the discriminant function (5)  

 ( ) ( ) ( )
1 1 1

ˆ ˆ ˆˆ ˆ( ), 1,..., , ( ) , ( ) 0
n n n

i i i i i i i i ii i i
f x i n K x b K x b

= = =
⎡ ⎤>ω = = ϑ ω + = ϑ ω + <⎣ ⎦∑ ∑ ∑ .  (15) 

Here the expressions in brackets are nothing other than the discriminant functions 

built independently for each modality ( )ˆ ( )i if x ω , thus,  

 ( ) ( )
1

ˆ ˆ( ), 1,..., ( )
n

i i ii
f x i n f x

=
ω = = ω∑ .  (16) 

So, the approach to filling-in the missing values of sensor signals we have adopted 
leads to the indicated recognition rule which, in structural terms, is a technique for 
combining particular classifiers, namely, by summation of particular discriminant 
functions. The neutral point method should therefore exhibit the error-canceling prop-
erties associated with classifier combination and should hence be a robust and safe 
approach to kernel-based classification of disjoint data sets.  

An analogous technique of combining classifiers is known in the literature under the 
name of Sum Rule [2]. The distinction consists in that the known Sum Rule method is 
based on the assumption of the probabilistic output of the particular classifiers in the form 

of posterior class-membership probabilities ( )( ) ( )k
i ip x ω , ( )( )

1
( ) 1

m k
i ik

p x
=

ω =∑ . The 

combination principle consists in computing the unified posterior probabilities of 
classes by way of summing over the particular posterior probabilities: 

( )( ) ( ), 1,...,k
ip x i nω = = ( )( )

1
(1 ) ( )

n k
i ii

n p x
=

ω∑ . When there are only two classes 2m = , 

the posterior probabilities at the output of the i th classifier are completely determined 
by the posterior probability of one of the classes:  

 ( ) ( )
1

( ), 1,..., (1 2) ( )
n

i i ii
p x i n p x

=
ω = = ω∑ .   

The analogy between our classifier fusion rule (16) and the Sum Rule is immediately 
apparent.  

5   Discussion 

At first inspection, it is hardly possible to encompass a generic way of combining 
modalities because of the vast variety of possible object representations. However, the 
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kernel-fusion approach converts, in a natural way, different modalities into a unified 
mathematical language of inner products in linear spaces, which in fact makes such a 
comparison realistic. This is so even if the original modalities are not themselves vec-
tor or scalar quantities: the only scalar constraint is that of the kernel itself. This is 
hence particularly necessary in situations in which only relative distance measures are 
available, such as Genomics. 

Thus in the simplest case, the sensor signals might have the form of scalar numeri-
cal features, i.e. be real numbers. What we have customarily done when learning in a 
multidimensional linear space, which is the Cartesian product of several real-valued 
axes, is thus nothing other than combining several modalities via a form of kernel 
fusion.  

However, any purely kernel-based fusion method exhibits difficulties when the dif-
ferences in modality are accompanied by differences in training set composition: in 
this case straightforward kernel-fusion will not suffice. This difficulty is also apparent 
for conventional classification: in fact it is clear that application of the classifier fu-
sion principle is an inescapable necessity in the case of disjoint training subsets con-
tained within disjoint modalities, since multiple decision confidences are the only 
quantities available for combining in a meaningful manner.  

We have hence, by making certain conservative assumptions about the 'missing' 
kernel values, derived a neutral point method for addressing the above difficulty in a 
Kernel-based context. However, it transpires that the neutral point method has itself 
the exact structural form of a classifier combination scheme (in fact the Sum Rule 
decision scheme).  

At its purest level, though, the principle of combining modalities with disjoint 
training sets via classifier fusion is based on the assumption that the modalities are 
independent (that is, for decision problems in which the individual modalities cannot 
be straightforwardly taken to define a composite Cartesian product space in which 
classification can take place). The principle of kernel-fusion, on the other hand, is not 
attached to this assumption: the fact that it becomes equivalent to one particular com-
bination scheme under the neutral point assumption for missing data should not there-
fore be taken as significant for combination in general, but rather for the Sum Rule, 
specifically.  

The fact that the Sum Rule combination scheme also exhibits ideal error-canceling 
properties [2] is thus a significant bonus, and a considerable further reason for advo-
cating the neutral point method.  

6   Conclusions  

We have set out to address the difficulties that multiple modalities and disjoint train-
ing sets represent for kernel-based pattern recognition due to their absence of intra-
modal kernel information. Though possible to consider the problem at the classifier 
fusion level, we have motivated our work on the basis of the conceptual preferability 
of addressing the issue from a purely kernel-specific perspective. Hence, by interpret-
ing  the aggregate of disjoint training sets as complete data-sets with missing inter-
modality measurements that can be substituted by appropriately-chosen values, we 
have arrived at a novel classification technique, which we have named the neutral-



 The Neutral Point Method for Kernel-Based Combination of Disjoint Training Data  21 

point method. We proceeded to theoretically demonstrate that the neutral-point 
method is a kernel-based analog of the well-known sum rule combination scheme. It 
is thus capable of error-cancellation, and gives strong  backing for our assertion that 
the neutral-point choice of replacements for inter-modality measurements is a conser-
vative and safe one.  
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Abstract. Combining classifiers is to join the strengths of different classifiers
to improve the classification performance. Using rules to combine the outputs of
different classifiers is the basic structure of classifier combination. Fusing models
from different kernel machine classifiers is another strategy for combining models
called kernel combination. Although classifier combination and kernel combina-
tion are very different strategies for combining classifier, they aim to reach the
same goal by very similar fundamental concepts.

We propose here a compositional method for kernel combination. The new
composed kernel matrix is an extension and union of the original kernel matrices.
Generally, kernel combination approaches relied heavily on the training data and
had to learn some weights to indicate the importance of each kernel. Our com-
positional method avoids learning any weight and the importance of the kernel
functions are directly derived in the process of learning kernel machines. The
performance of the proposed kernel combination procedure is illustrated by some
experiments in comparison with classifier combining based on the same kernels.

1 Introduction

Traditional pattern recognition systems use a particular classification procedure to esti-
mate the class of a given pattern. It has been observed that combining the decisions of
different classifiers can be an efficient technique for improving the classification perfor-
mance. If the combination function can take advantage of the strengths of the individual
classifiers and avoid their weaknesses, the overall classification accuracy is expected to
improve. Also, a larger stability for the classification system is highly anticipated. Many
techniques have been proposed in last decade for combining classifiers [1].

A classifier combination system is usually composed of two phases, constructing in-
dividual classifiers and combining different classifiers. In the first phase, various models
can be adopted to construct different classifiers, or the classifiers can be constructed on
different features or from different sample datasets. In the second phase, the classifiers
are combined by fixed or trained rules. This can be done on the basis of classifier out-
puts like posterior probabilities or using the crisp decisions (voting). Nevertheless, there
are possibilities to combine the classifiers in an earlier stage in the classification system.
In fact, the combination of models has attracted more and more attention recently, es-
pecially for kernel machines [2]. In kernel machine classifiers, different models can be
built with different kernel functions. Combining models in kernel machine classifiers is
thereby based on combining their kernels.

M. Haindl, J. Kittler, and F. Roli (Eds.): MCS 2007, LNCS 4472, pp. 22–31, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The support vector machine (SVM) [2,3], motivated by the results of statistical learn-
ing theory, is one of the most popular kernel machines. Most of the kernel combination
research is based on it. In SVM, the decision boundary for pattern recognition problems
is represented by a small subset of training examples, called support vectors. Unlike the
traditional methods that minimize the empirical training errors, support vector machines
implement the structural risk minimization principle. By adopting this principle, SVM
can find the optimal discriminant hyperplane minimizing the risk of an erroneous clas-
sification of unseen test samples. When input data cannot be linearly separated in the
original space, they should be mapped into a high dimensional feature space, where a
linear decision surface separating the training data can be designed. The computation
does not need to be performed in the feature space since SVM depends on the direct
application of the kernel function over the input data. Therefore, the kernel function is a
key component of SVM for solving nonlinear problems, and the performance of SVM
classifiers largely depends on the choice of the kernels.

However, the selection of kernel functions, the model and the parameters, is one of
the most difficult problem of designing a kernel machine. Recently, an interesting de-
velopment seeks to construct a good kernel from a series of kernels. The most simple
way to combine kernels is by averaging them. But not each kernel should receive the
same weight in the decision process, and therefore the main force of the kernel com-
bination study is to determine the optimal weight for each kernel. The criterion for
searching these weights is mainly based on Fisher’s discriminant that maximizes the ra-
tio of the between-class variance and the within-class variance. Optimization methods
and heuristic approaches are also used for obtaining the weights. In [5], the weights of
kernels are derived by optimizing the measure of data separation in the feature space
by the semidefinite programming. Kernel target alignment is used to match the ker-
nels with the data labels. Using boosting, a weighted combination of base kernels is
generated in [4]. Some methods [6,7,8,9] try to find the best weights by maximizing a
class separability criterion. All the approaches above rely heavily on the training data
and some weights have to be learned before the combination of kernels to indicate the
importance of each kernel.

In order to avoid learning any weight, we propose a compositional method for kernel
combination. In this method, the new kernel matrix is composed of the original, differ-
ent kernel matrices, by constructing a larger matrix in which the original ones are still
present. Thereby, the properties of the original kernel functions can be preserved and
the importance of these kernel functions are directly derived in the process of training
support vector machines. Herewith, weights for individual objects with respect to the
base kernels are found integrated in a single classifier optimization procedure. This pro-
cedure will thereby not overfit the training dataset as the weighted kernels methods may
do due to the fact that they use the data twice: for optimising the weights as well as for
training the classifier.

In this paper we experimentally study the differences of our kernel compositional
method with other kernel combination methods, and the differences and influences of
combining models and combining decisions for a classifier combination system. Some
considerations for selecting more suitable strategies under different situations will be
discussed.
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The rest of the paper is organized as follows. In Section 2, some background of sup-
port vector machine is recapitulated. The construction of the discriminant hyperplane
in the feature space and the effect of kernel functions is shown. In Section 3, our kernel
composition method is presented. Simulation results for comparing kernel combina-
tion and classifier combination methods are given in Section 4. Finally, conclusions are
summarized in Section 5.

2 Overview of Support Vector Machine

For convenience, we introduce the support vector classifier with d input variables xi1,
xi2, . . ., xid for 2-class problem with class labels +1 and −1 in this section. xi and yi

represent ith input datum (a vector) and its corresponding class label [2,3]. Extension
to multi-class problems can be achieved by training multiple support vector machines.

2.1 Support Vector Machine

To control both training error and model complexity, the optimization problem of SVM
is formalized as follows:

minimize
1
2

< w,w > +C
n∑

i=1

ξi,

subject to < w · xi > +b ≥ +1 − ξi, for yi = +1
< w · xi > +b ≤ −1 + ξi, for yi = −1

ξi ≥ 0, ∀i. (1)

By using Lagrange multiplier techniques, Eq.(1) could lead to the following dual opti-
mization problem:

maximize
∑n

i=1 αi − ∑n
i=1

∑n
j=1 αiαjyiyj < xi,xj >,

subject to
∑n

i=1 αiyi = 0, αi ∈ [0, C]. (2)

Using Lagrange multipliers, the optimal desired weight vector of the discriminant hy-
perplane is w =

∑n
i=1 αiyixi. Therefore the best discriminant hyperplane can be de-

rived as

f(x) =<

n∑

i=1

αiyixi,x > +b = (
n∑

i=1

αiyi < xi,x >) + b, (3)

where b is the bias of the discriminant hyperplane.

2.2 Kernel Functions

In Eq.(3), the only way in which the data appears is in the form of dot products <
xi,x >. The discriminant hyperplane is thereby linear and can only solve a linearly
separable classification problem. If the problem is nonlinear, instead of trying to fit
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a nonlinear model, the problem can be mapped to a new space by a nonlinear trans-
formation using a suitably chosen kernel function. The linear model used in the new
space corresponds to a nonlinear model in the original space. To make the above model
nonlinear, consider a mapping φ(x) from the input space into some feature space as

φ : R
d → H. (4)

The training algorithm only depends on the data through dot products in H, i.e. on
functions of the form < φ(xi), φ(xj) >. Suppose a kernel function K defined by

K(xi,xj) =< φ(xi), φ(xj) >, (5)

is used in the training algorithm. Explicit knowledge of φ is thereby avoided. The dot
product in the feature space can be expressed as a kernel function. Similar to Eq.(3)
in linear problems, for a nonlinear problem, we will have the following discriminant
function

f(x) =
n∑

i=1

αiyiK(xi,x) + b. (6)

In this paper, we will use the Gaussian radial basis function as the kernel function, and
therefore

K(xi,xj) = e(− ‖xi−xj‖2

σ2 ). (7)

3 Composition of Kernel Matrices

Most kernel combination methods try to average out the kernel matrices in one way
or another [5,4,6,7,8,9]. There is a risk, however, of losing information in the original
kernel matrices. For example, if the dataset has varying local distributions, different ker-
nels will be good for different areas. Averaging the kernel functions of such a dataset
would lose some capability to describe these local distributions. In order to combine
kernel matrices without losing any original information, we develop a kernel composi-
tion method which is an extension and aggregation of all the original kernel matrices.

Suppose the original kernel functions are K1, K2, ..., and Ks and the feature func-
tions of the original kernel functions are φ1(x), φ2(x)..., and φs(x). We would like
to preserve and use all the feature functions to construct a new kernel function, so we
should be able to compute inner products like < φp(x), φp′ (x′) >, where φp(x) and
φp′(x′) are feature functions from different kernel spaces. We will show that this can

be done if we can formulate φp(x) as Kp
1
2 (x, z) which is a function of z and belongs

to the L2 space. 1 Using the definition of inner products in the L2 space, we define the
compositional kernel function as

Kp,p′(x,x′) ≡< φp(x), φp′ (x′) >≡
∫

Kp
1
2 (x, z)Kp′

1
2 (x′, z)dz. (8)

1 Kp
1
2 (x, z) can be computed based on eigenvalue decomposition: it has the same eigenfunc-

tions as Kp(x, z) and its eigenvalues are the square roots of those of Kp(x, z).



26 W.-J. Lee, S. Verzakov, and R.P.W. Duin

Using the self-similarity property of Gaussian distributions, one can show that the
square root of a radial basis kernel function is

Kp
1
2 (x, z) = (

4
πσp

2 )
d
4 e

(−2‖x−z‖2

σp2 )
, (9)

and the mixture of two kernel matrices can be derived as

Kp,p′(x,x′) = (
2σpσp′

σp
2 + σp′2

)
d
2 e

(−2 ‖x−x′‖2

σp2+σ
p′2

)
. (10)

Clearly, Kp,p ≡ Kp. Consequently, the compositional kernel matrix K is of the form

K =

⎛

⎜⎜⎜⎝

K1,1 K1,2 · · · K1,s

K2,1 K2,2 · · · K2,s

...
...

. . .
...

Ks,1 Ks,1 · · · Ks,s

⎞

⎟⎟⎟⎠

s×n,s×n

, (11)

where the original kernel matrices are on the diagonal. The other elements are mixtures
of two different kernel matrices which are defined like (Kp,p′)i,j = Kp,p′(xi,xj). It
is obvious that entries of K are the inner products in L2, and because of this K is
positive semi-definite. The kernel matrix K is called the compositional kernel matrix.
Also, the feature function φ(x) of the compositional kernel matrix can be defined as
φ(x) = [φ1(x), φ2(x), ..., φs(x)]. Note that the size of the compositional kernel matrix
is (s × n) × (s × n) while the sizes of the original kernel matrices are n × n. After
the construction of the compositional kernel matrix, the support vector machine can
proceed the learning of support vectors and their corresponding coefficients. Objects
have to be replicated as the compositional kernel matrix is s times larger than the base
kernels.

With the compositional kernel matrix, we can reformulate the optimization problem
as follows:

minimize
1
2

< w,w > +C
s×n∑

i=1

ξi,

subject to < w · xi > +b ≥ +1 − ξi, for yi = +1
< w · xi > +b ≤ −1 + ξi, for yi = −1

ξi ≥ 0, ∀i. (12)

By using Lagrange multiplier techniques, Eq.(12) could lead to the following dual op-
timization problem:

maximize
∑s×n

i=1 αi − (
∑n

i=1 αiyiφ1(xi) + · · · +
∑s×n

i=(s−1)×n+1 αiyiφs(xi))

(
∑n

j=1 αjyjφ1(xj) + · · · + ∑s×n
j=(s−1)×n+1 αjyjφs(xj)),

subject to
∑s×n

i=1 αiyi = 0, αi ∈ [0, C]. (13)
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After calculating Lagrange multipliers, an optimal weight vector for the discriminant
hyperplane can be found by w =

∑s×n
i=1 αiyixi. Therefore the best discriminant hyper-

plane can be derived as

f(x) = (
n∑

i=1

αiyiφ1(xi) + · · · +
s×n∑

i=(s−1)×n+1

αiyiφs(xi))φ(x) + s × b

=
n∑

i=1

αiyi(K1,1(xi,x) + K1,2(xi,x) + · · · + K1,s(xi,x)) + · · ·

+
s×n∑

i=n×(s−1)+1

αiyi(Ks,1(xi,x) + Ks,2(xi,x) + · · · + Ks,s(xi,x))

+ s × b (14)

where s × b is the bias of the discriminant hyperplane and x can be either a training or
testing data pattern.

4 Experimental Results

In this section, we compare the experimental results obtained by our composition kernel
combination method with those of another kernel combination and a classifier combi-
nation method. The kernel combination method is the weighted kernel for which the
weights of the kernels are optimized by semidefinite programming [5]. The product
rule is used to derive the classifier combiner. One synthetic dataset and three benchmark
datasets [12] are used in the experiments. To test whether kernel combination methods
are more capable of describing data with different local distributions than classifier
combination methods, two of the four datasets used in the experiments are with differ-
ent local distributions, and the other two datasets are regular real datasets. The single
kernel and the combined kernel SVM classifiers in the experiments are implemented by
LIBSVM [10] and the classifier combiners are built with the PRTOOLS [11]. In every
experiment, several single kernel SVM classifiers are constructed, and kernel combina-
tion and classifier combination methods were used to combine these single classifiers.
The sigma’s of these single RBF kernels are assigned heuristically in the following way.
The smallest sigma is the average distance of each data pattern to its nearest neighbor.
The largest sigma is the average distance of each data pattern to its furthest neighbor.
The other sigma’s are determined by linear interpolation.

4.1 Experiment 1: Data with Varying Local Distributions

Banana and sonar datasets are used in experiment 1. The SVM parameter C is set to
1 in all experiments. The banana dataset is a synthetic 2-dimensional dataset with 400
data patterns in 2 classes, and it is rescaled in each dimension with

xij = xij × e(− xij
16 ), for i = 1, 2, ..., 400, and j = 1, 2, (15)

to have a variation of scales in the dataset. The sonar dataset contains information of
208 objects, 60 attributes, and two classes, rock and mine. The attributes represent the
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energy within a particular frequency band integrated over a certain period of time. The
results are averaged over 20 experiments. For the rescaled banana dataset, 2 single ker-
nel classifiers are built and different methods are used to combine these 2 classifiers
in each experiment. As for the sonar dataset, 4 single kernel classifiers are built and
combined in the experiments.

The results for all single kernel classifiers, kernel combination methods and classi-
fier combination methods with rescaled banana dataset are in Figure 1. Moreover, the
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Fig. 1. Experiment results of rescaled banana dataset with our compositional method, weighted
kernel, product combiner and their comparisons with the single kernel classifiers. Standard devi-
ations of the mean error results vary from 0.1112 (left) to 0.0088 (right).

experimental results of the sonar dataset are given in Figure 2. From Figure 1 and Fig-
ure 2, we can see that the compositional method performs better than the weighted ker-
nel, especially when a smaller size of training dataset is given. This is because it avoids
the overtraining problem of the weighted kernel. Also, kernel combination methods out-
perform classifier combination methods when the dataset is composed of different local
distributions. A possible reason is that a combined model is more capable of adapting
to varying data distributions than can be realized by combining decision outputs.

4.2 Experiment 2: Benchmark Data

We use the glass and diabetes datasets in experiment 2. The glass dataset contains
214 instances, 9 features and 6 classes, and diabetes dataset is with 768 instances, 8
features and 2 classes. The SVM parameter C is set to 100 in all experiments. For
both datasets, 4 single kernel classifiers are built and different methods are used to
combine these 4 classifiers in each experiment, and the results are the averages of 20
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Fig. 2. Results of the sonar dataset for the proposed compositional method, weighted kernel, prod-
uct combiner and their comparisons with the single kernel base classifiers. Standard deviations
of the mean error results vary from 0.086 (left) to 0.038 (right).

Table 1. Diabetes dataset: number of support vectors generated with weighted kernel and our
compositional method

number of training data patterns
method 10 50 100 150 200 250 300

number of average support vectors (20 experiments)
weighted kernel 9.7 40.3 65.7 88.2 111.4 133.4 153

compositional method 18.3 97.2 179.5 272.5 369.8 466.5 553.4

repeated experiments. The results of all single kernel classifiers, kernel combination
methods and classifier combination methods with the glass dataset are shown in Fig-
ure 3. The results for the diabetes dataset are given in Figure 4, and the number of
support vectors obtained with the kernel combination methods are given in Table 1. In
Figure 3 and Figure 4, kernel combination methods and classier combination methods
have similar performances if the number of training objects is large. When the size
of the training set is small, kernel combination methods suffer more from overfitting,
and therefore classier combination methods would be a better choice. Nevertheless, the
compositional method performs better than all other methods. The number of support
vectors, however, is about three times of those of the other kernel combination meth-
ods. This is related to the replication of the training set needed to apply the larger kernel
matrix.
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Fig. 3. Results for the glass dataset with the compositional method, weighted kernel, product
combiner and their comparisons with the single kernel classifiers. Standard deviations of the
mean error results vary from 0.13 (left) to 0.034 (right).
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Fig. 4. Results of the diabetes dataset with the compositional method, weighted kernel, product
combiner and their comparisons with the single kernel classifiers. Standard deviations of the mean
error results vary from 0.092 (left) to 0.016 (right).
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5 Conclusions

In this study we compared the performances of kernel combination and classifier
combination methods for different types of data distribution. We also proposed a com-
positional kernel combination method to avoid the overfitting problem of the other
kernel combination methods. When a dataset has a varying local data distributions,
kernel combination methods are preferred. But classifier combination methods are more
stable when the size of the training dataset is small. Nevertheless, the proposed com-
positional method is stable in all cases. If there is, however, a superior single kernel
classifier, it will be very difficult to obtain a better classifier by classifier or kernel
combining.
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Abstract. In this paper we propose a strategy for constructing data–
driven kernels, automatically determined by the training examples. Ba-
sically, their associated Reproducing Kernel Hilbert Spaces arise from
finite sets of linearly independent functions, that can be interpreted as
weak classifiers or regressors, learned from training material. When work-
ing in the Tikhonov regularization framework, the unique free parameter
to be optimized is the regularizer, representing a trade-off between empir-
ical error and smoothness of the solution. A generalization error bound
based on Rademacher complexity is provided, yielding the potential for
controlling overfitting.

1 Introduction

It would be desirable to explore model selection methods that allow kernels to
be chosen in a more automatic way based on data. This statement, taken from
[1], points out a key step when tackling a learning problem by a kernel method:
this would move toward one of the most important goals in the field of Machine
Learning, i.e., to provide learning systems as automatic as possible in order to
minimize the intervention of the human users. In general, recent kernel meth-
ods (for a detailed overview see [2]), e.g., Support Vector Machines (SVM) or
Regularization Networks, require only to choose the optimal kernel for the task
at hand, to select the eventual kernel parameters (for non-linear kernels) and to
optimize the regularization parameter. Although it might be possible to use prior
knowledge for developing an ad hoc kernel, in general there are not a priori jus-
tifications for the use of one kernel instead of another. This is usually dealt with
by user experience and literature knowledge, or by employing statistical model
selection techniques. However, as explained in [3], this step may affect the entire
learning process, since it is well known that kernels other than the standard
choices (Gaussian, polynomial) can improve the accuracy of the resulting solu-
tion in many tasks. The problem of individuating a suitable kernel for a certain
task has been addressed in several recent papers, where different techiques have
been proposed to define specific Reproducing Kernel Hilbert Spaces (RKHS) [4].
In particular, in [1] the authors propose a method for learning the kernel matrix
from data via semidefinite programming techniques, while in [5] the kernel is
chosen as a convex combination of basic kernels and in [6,7] new RKHS are built
on the top of a previously chosen RKHS. In this paper we propose a solution
bypassing the kernel choice by automatically building the kernel itself directly

M. Haindl, J. Kittler, and F. Roli (Eds.): MCS 2007, LNCS 4472, pp. 32–41, 2007.
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by data. Basically, we construct a RKHS starting from a finite set of linearly in-
dependent functions, learned from training material. This solution is inspired by
the work in [8], where a novel kernel for SVM, named Terminated Ramp kernel,
is introduced by explicitely constructing the feature mapping starting from pure
geometrical considerations. In particular, it has been shown that the solution
is equivalent to a MCS obtained by minimizing training error and L2 norm of
the coefficients of the combination. Nevertheless, the approach proposed in this
work has a much wider breath: in fact, its goal is to propose a general tech-
nique to generate data dependent kernel whatever the learning problem, where
the Terminated Ramp kernel can be seen as an explaining example. In fact, the
algorithm is introduced in the more general framework of the regularization the-
ory, and thus it is not restricted only to Support Vector Machines; in particular,
it is not even restricted to classification problems only. The shape of the kernel
is now a metaparameter of the algorithm: the choice of the Terminated Ramp
kernel is intended as an application example. Other classes of basis functions can
be employed, e.g. splines, as well. Both splines and terminated ramp functions
induce a nonparametric kernel: as a remarkable consequence, when working in
the framework of Tikhonov regularization, the only free parameter to deal with
remains the regularizer. This represents a trade-off parameter between empirical
error and smoothness of the solution. A different approach have also been pro-
posed in [9], where a method is introduced for modifying a preselected kernel in
order to improve accuracy. More precisely, the training data are used for modi-
fying a Gaussian kernel on the basis of the Riemannian geometrical structure of
the space induced by the kernel itself. In our method, the kernel is completely
induced by the training data, with no need for a preselected kernel function.

2 RKHS of Finite-Dimensional Classes

Let F : X → Y be an unknown function whose domain is a closed subset of R
n

and Y ⊆ R (Y = {−1, 1} for binary classification). Let D = {pi ≡ (xi, yi)}N
i=1 be

a set of training examples, where xi ∈ X and yi ∈ Y . For a given λ ∈ (0, +∞),
an approximation of the unknown function F can be obtained by minimizing
the Tikhonov regularization functional:

fλ = arg min
f∈HK

1
N

N∑

i=1

V (yi, f(xi)) + λ‖f‖2
HK

, (1)

where V (y, z) is a loss function and ‖f‖HK is the norm of f in the RKHS
HK [10,11]. The parameter λ is called regularizer, and it represents a trade-off
between the empirical risk minimization and the smoothness of the solution:
increasing values of λ lead to smoother solutions. For binary classification pur-
poses a suitable loss function is the hinge loss V (y, f(x)) = max{0, 1 − yf(x)},
leading to SVM, while a typical choice for regression is the L2 loss function
V (y, f(x)) = (y − f(x))2. Let K : X × X → R be a Mercer kernel, i.e., a contin-
uous, symmetric and positive–definite function. Consider now the vector space
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H0 = {f(x) =
∑r

i=1 ciKx̄i(x) | ci ∈ R}, where in general the set {x̄i}r
i=1 can

be different from the training data set {xi}N
i=1. The vector space H0 can be en-

dowed with a scalar product by setting 〈∑r
i=1 ciK(x̄i, x),

∑r
j=1 c′jK(x̄j , x)〉H0 =∑r

i,j=1 cic
′
jK(x̄i, x̄j). The completion HK of H0 is the RKHS. It is a Hilbert

space satisfying the reproducing property 〈f, Kx̄〉HK = f(x̄). In regression prob-
lems, after having chosen a suitable Mercer kernel K(x, x′) and the regularizer
λ ∈ (0, +∞), the solution fλ : X → R of problem (1) with the L2 loss func-
tion is defined as fλ(x) =

∑N
i=1 ciKxi(x). The coefficients c = (c1, . . . , cN ) of

the linear expansion above are the solution of the equation system (NλI +
K)c = y, whose components are the identity matrix I, the square positive–
definite matrix K (the Gram matrix) with entries Kij = K(xi, xj) and the
vector y = (y1, . . . , yN ). As shown in [10] and [12], this can be proved by min-
imizing (1) and then by applying the reproducing property. In classification
problems, the solution of problem (1) with the hinge loss function is given by
fλ(x) =

∑N
i=1 ciKxi(x), where ci = yiαi

2λ and the αi are the solution of the
quadratic problem maxα∈RN

∑N
i=1 αi − 1

4λ2

∑N
i,j=1 yiyjαiαjK(xi, xj), subject to

0 ≤ αi ≤ 1
N for i = 1, . . . , N , equivalent to the original formulation of SVM but

for the constraint
∑N

i=1 αiyi = 0 taking care of the global offset b in the solution
(see [10] and [12] for details). The solution fλ of problem (1) depends on the
specific choice of the Mercer kernel K. Any given finite set of linearly indepen-
dent functions G0 = {k1(x), . . . , kT (x)} gives rise to a family of kernels inducing
a RKHS (see [4] for details). In fact, let G = {f(x) =

∑T
t=1 atkt(x) | at ∈ R}

be the linear span of G0. Any positive–definite T × T matrix A induces a scalar
product on G by setting 〈∑T

t=1 atkt(x),
∑T

s=1 a′
sks(x)〉 =

∑T
s,t=1 asa

′
tAst and

the induced norm is then ‖f‖2 =
∑T

s,t=1 asatAst. It is immediately verified that
the function K(x, x′) =

∑T
s,t=1 ks(x)kt(x′)A−1

st is the reproducing kernel of the
class G0 for the matrix A: define data-dependent kernel every kernel of the above
shape where the functions kj depend on data. In particular, when A is the iden-
tity matrix the resulting norm and kernel are respectively ‖f‖2 =

∑T
t=1 a2

t and
K(x, x′) =

∑T
t=1 kt(x)kt(x′). Although matrices A other than the identity, for

instance diagonal, can be employed to take into account a priori knowledge, in
what follows we assume A = I.

3 Specializing the Set G0

3.1 Penalized Regression

The classical regularized nonparametric regression can be seen as an example of
data–driven kernel method. In regularized nonparametric regression, the solution
fλ(x) is obtained by minimizing the functional

∑N
i=1(yi−f(xi))2 +λJ(f), where

J is a suitable penalization term. This setup can be embedded in the data–driven
kernel framework by looking for solutions of the form f(x) =

∑T
t=1 βtht(x), i.e.

a linear combination of basis functions, with penalization J(f) = βT Ωβ, for
a suitable positive–definite block–diagonal Ω ∈ M(T, R). In this case, we can
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define G0 = {h1, . . . , hT }, thus obtaining a solution fλ with kernel K(x, x′) =∑T
s,t=1 hs(x)ht(x′)Ω−1

st . A standard choice is to consider the union of spline
basis functions for each coordinate function as the set of basis functions [13].
Therefore, this choice leads naturally to a data–driven kernel.

3.2 The Terminated Ramp Kernel

As a further example, we generalize the results obtained in [8], where a novel
kernel for SVM, named terminated ramp kernel, is introduced by explicitely con-
structing the feature mapping starting from pure geometrical considerations. In
particular, we rephrase such construction in terms of RKHS, obtaining a com-
pletely data–driven and therefore parameter–free kernel. The key step is the
explicit definition of the set of functions G0. For each pair of examples (pi, pj)
with yi �= yj it is always possible to consider a function kij(x) = k(x; pi, pj) such
that kij(xi) = yi and kij(xj) = yj . In fact, it is sufficient to consider the following
generalization of the terminated ramp function1. Let 〈wij , x〉 + bij be a generic
hyperplane. By emulating the idea underlying the SVM algorithm formulation,
we impose that the weight vector wij is of the form wij = αij(yixi + yjxj),
corresponding to the expression of the weight vector of the maximal margin hy-
perplane parting pi and pj. The coefficient αij and the offset bij can therefore
be computed by imposing that the hyperplane passes through the two points pi

and pj. Finally, the terminated ramp function passing through pi and pj is ob-
tained by applying a suitable squashing function σij : R → R to the hyperplane:
kij(x) = σij(〈wij , x〉 + bij). The adopted shape for σij is the piecewise-linear
function σij(t) = min t, ymax for t ≥ 0 and σij(t) = max t, ymin for t < 0, where
ymax = max{yi, yj} and ymin = min{yi, yj}. However, differently shaped squash-
ing functions σij , for instance differentiable, may be employed. Summarizing, the
set of functions we adopt is G0 = {1}∪{kij(x) | 1 ≤ i < j ≤ N, yi �= yj}, where
the constant function 1 takes care of the global offset. The computational cost
of a single terminated ramp function kij is O(d), where d is the input dimension.
Consequently the computation cost of evaluating the kernel is O(|G0|d), where
|G0| is O(N2). In the following we propose an heuristic for reducing the number
of terminated ramp functions without relevant loss of information. The idea is
to consider, for each training data pi, the k admissible nearest neighbours, that
is the pairs {(pi, pjl

)}l=1,...,k, where admissible means yi �= yjl
, and to take into

account only the terminated ramp functions determined by these pairs of train-
ing data. In regression, it is possible to relax the constraints of admissible output
values from not identical to a certain degree of difference, i.e. by thresholding
(yi − yjl

)2 > ε . In Section 5 we analyze the accuracy as a function of k. In the
regression case, the number of terminated ramp functions decreases from N(N−1)

2
to Nk. Note that k is not to be interpreted as a parameter of the model but it
has to be preliminarily chosen according to the available computing power.

1 The terminated ramp function r : R → R is defined in literature as follows: r(t) = 0
for t ≤ 0, r(t) = t for 0 < t < 1 and r(t) = 1 for t ≥ 1.
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4 Generalization Error Bound

For γ > 0, we define εγ
D = 1

N

∑N
i=1 I

[
yiF (xi) < γ

]
, where I[P ] returns 1 if

predicate P is true, 0 otherwise. εγ
D is the fraction of training examples in D

classified with margin less than γ, ε0D is the empirical error. In [8], an upper
bound on the generalization error in the classification case was stated:

Proposition 1. Suppose 0 < δ < 1/2 and 0 < γ ≤ 1, then with probability at
least 1 − δ every SVM with the terminated ramp kernel has:

P [yfλ(x) ≤ 0] ≤ εγ
D +

√
z

N

( |G0|2n2
Sd

4N2λ2γ2 log
( |G0|nS

2Nλγ

)
log2 N + log(1/δ)

)

where nS is the number of Suppor Vectors and z is a universal constant.

A similar bound, holding for any given data–driven kernel generated through
the algorithm described in Section 2, can be derived in terms of Rademacher
complexity [14]. We recall that for any function class F , with probability at least

1−δ every f ∈ F satisfies P [yf(x) ≤ 0] ≤ ε0D+R̂N(F)+
√

9 log 2/δ
2N , where R̂N (F)

is the empirical Rademacher complexity of the class F . For kernel methods, i.e.

f(x) =
∑N

i=1 ciKxi(x), the bound R̂N (F) ≤ B
N

√
tr(K) = B

N

√∑N
i=1 K(xi, xi)

holds for a suitable B satisfying cT Kc ≤ B2, where c = (c1, . . . , cN) and K is
the Gram matrix. Suppose that ‖kt‖∞ ≤ 1 for each kt ∈ G0. Then the following
upper bound

∑N
i,j=1 cicjK(xi, xj) ≤ |G0|n2

s

4N2λ2 = B2 holds, where nS is the number
of Support Vectors. Summarizing, we obtain the following:

Proposition 2. Suppose 0 < δ < 1, then with probability at least 1 − δ every
data–driven kernel SVM has:

P [yfλ(x) ≤ 0] ≤ ε0D +

√
|G0|2n2

s

4N3λ2 +

√
9 log 2/δ

2N
,

for any finite set G0 of functions bounded between -1 and 1.

Proposition 1 (which holds only for squashed hyperplanes basis functions kij(x))
and Proposition 2 state that the generalization error is bounded by the sum of
two terms. The former is related to the empirical error. The latter decreases with
λ and, as for standard SVM, increases with the number of Support Vectors. It
increases also with the number of basis functions. However, after having seen the
data, it is always possible to choose a suitable value of λ making it independent
from |G0|. In general, the number of basis functions can be very large, as in
the case of terminated ramp kernel. This makes always possible to lower the
empirical error to zero. Nevertheless, the two propositions above guarantee that
overfitting can be avoided by choosing a suitable λ: according to Eq. (1), the
regularizer λ can be interpreted as a trade-off parameter between empirical error
(which can be lowered to zero for λ → 0) and smoothness of the solution (which
can be increased by increasing λ). We underline again that λ is the only free
parameter of the system.
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5 Experiments

The introduced terminated ramp kernel (TR-K) has been applied in the frame-
workofRegularizationNetworks in three regressionproblemson synthetic datasets
to illustrate its behavior and to compare it with a classical solution obtained by
Gaussian kernels (G-K). Moreover, a classification experiment on a proteomic data
set is carried out comparing performances of TR-K and the linear kernel coupled
with a feature selection process.

5.1 Experiment 1

The first problem consists in approximating the function F (x) = sin(π
x ). The

training set D is built by selecting the relative minima and maxima of the
function in the domain [0.02, 0.7], i.e. D = {( 2

2k+1 , (−1)k) : 1 ≤ k ≤ 50, k ∈ N}.
The points in the dataset D share two key properties: they are the “important”
points of the function F , that it, those where the sign of first derivative changes,
and they are not uniformly distributed on the domain. This last property makes
the approximation quite hard when employing G-K: in fact, for any choice of
the bandwidth h, the function F can be approximated adequately only on a
limited portion of domain. This is not anymore the case when TR-K is used, as
displayed in Fig. 1: for instance, by setting h = 10−6, both kernels are suitable
for reconstructing F in the subset [0.02, 0.1], while in [0.1, 0.7] TR-K still works
properly, but the solution obtained by G-K reduces to spikes on the training
points. On a test set of 5000 points (xt, F (xt)) where the xt are evenly spaced
on [0.02, 0.7], the resulting MSE is 0.049 for TR-K and 0.453 for G-K.

5.2 Experiment 2

The target function for experiment 2 is F (x) = 4.26(e−|x|−4e−2|x|+3e−3|x|). The
experiments consist in approximating the function F by TR-K and G-K when
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Fig. 1. Approximation of the function F (x) = sin(π/x) (dotted line) obtained by
Gaussian kernel (dashed line) and terminated ramp kernel (solid line) in two different
subsets of the domain. Circles represent training data.
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Table 1. MSE (×103) with standard deviation of experiment 2

σ Test Set #1 Test Set #2
TR-K G-K p-value TR-K G-K p-value

0.05 2.8 ± 1.9 4.6 ± 3.2 < 0.001 4.8 ± 1.5 6.8 ± 4.2 < 0.001
0.10 5.3 ± 2.6 8.4 ± 4.7 < 0.001 15.4 ± 2.6 18.2 ± 4.0 < 0.001
0.15 8.6 ± 3.3 11.9 ± 3.6 < 0.001 31.5 ± 3.4 34.7 ± 3.4 < 0.001
0.20 12.4 ± 4.0 18.5 ± 20.0 0.004 53.5 ± 5.0 60.4 ± 23.4 0.005
0.25 16.1 ± 5.8 19.2 ± 5.3 < 0.001 79.9 ± 5.9 82.8 ± 5.6 < 0.001
0.30 19.9 ± 6.5 23.2 ± 6.4 < 0.001 122.5 ± 7.0 126.2 ± 7.3 < 0.001
0.35 25.7 ± 16.9 30.8 ± 28.1 0.083 142.9 ± 16.4 147.1 ± 23.7 0.082
0.40 27.8 ± 13.4 32.2 ± 16.8 0.001 187.7 ± 13.6 191.8 ± 16.3 0.002
0.45 32.2 ± 14.9 37.7 ± 30.4 0.058 225.6 ± 14.9 230.7 ± 26.9 0.040
0.50 33.7 ± 14.7 37.5 ± 15.8 0.004 281.4 ± 16.3 283.1 ± 17.6 0.203

a Gaussian noise ε ∼ N (0, σ2) is injected into the training set D, for increasing
values of the standard deviation σ = 0.05t, t = 1, . . . , 10. For each value of σ, 100
training sets D have been built, each including 150 points (xi, F (xi)+εi)1≤i≤150,
where the xi are uniformly sampled from [−4, 4]. To estimate the optimal value
of the regularizer λ for both kernels (and optimal bandwidth h for the Gaussian
one), we reserved 50 out of the 150 training points as validation set. The parame-
ter λ was chosen among a list of 401 values λ = 1.1t, for −200 ≤ t ≤ 200, while
the 100 values of the Gaussian bandwidth h ranged between 0.001 and 10. The
TestSet #1 consists in 1000 points (xi, F (xi)) without noise, while, for each value
of σ, the TestSet #2 includes 1000 noisy points (xi, F (xi) + εi), all with evenly
spaced xi. After the optimal parameters λ or (λ, h) (respectively for TR-K and
G-K) have been chosen on the validation sets, we assessed performances on the
two test sets by averaging over 100 replicated experiments. Results are reported
in Table 1. The terminated ramp kernel (column TR-K) systematically shows a
smaller MSE with respect to Gaussian kernel (column G-K). The difference is
statistically significant in the majority of the cases (column p-value reports the
p-values of significance t-tests between the MSE associated to the two kernels),
especially in the low noise situations. As shown in Fig. 2a, whatever the noise
level, in average the MSE on the test sets obtained by TR-K is very close to
the validation error corresponding to the optimal value of λ. This indicates that
overfitting can be avoided even though the empirical error can be arbitrarily
lowered. Moreover, as expected, the optimal value of λ increases with the level
of the injected noise. Fig. 2b could explain the shortcomings of G-K: in fact, the
two approximations are in general quite similar, but TR-K behaves better in the
framed region, where there is a gap in the training set. In the high noise level
case, the two approximations are quite similar (Fig. 2c). Fig. 2d shows the MSE
as a function of k (see Sec. 3.2) for three different values of the standard devia-
tion σ of the injected noise. Whatever the noise, when more than 5 to 10 nearest
neighbours are involved in the construction of the terminated ramp functions,
the accuracy does not change significantly. Moreover, according to Propositions
1 and 2, the optimal value of λ (estimated on the validation sets) increases with
k, and thus with |G0|.



Deriving the Kernel from Training Data 39

a) b)

log

M
S

E

0.35

0.45

0.0

0.1

0.2

0.3

0.4

−200 −100 0 100 200

0.1

0.2

0.3

0.25

0.15

0.4

0.5

0.05

1.1
λ

−1.0

−0.5

0.0

0.5

−4 −2 0 2 4

Error Region

c) d)

−1.5

−1.0

−0.5

0.0

0.5

1.0

−4 −2 0 2 4

0
1

2
3

k

M
S

E

0 20 40 60

0.
00

4
0.

00
8

0.
01

2
0.

07
0

0.
08

0
0.

09
0

0.
27

0.
29

0.
31

80

λ
0.0010

0
0.0015

0.06
0.02

0.04
0

σ = 0.25

σ = 0.05

σ = 0.5

Fig. 2. a MSE curves of terminated ramp kernel for experiment 2 are reported as
functions of the regularization parameter λ. MSE are averaged over 100 experiments
and each curve refers to different values of σ. Circles identify the minimum of each
curve, while crosses represents the MSE on the test set #2. b and c panels display the
approximation of the function F (dotted line) obtained by Gaussian kernel (dashed
line) and terminated ramp kernel (solid line) in two experiments with σ = 0.05 and
σ = 0.5 respectively. Circles represent training data. d reduction by k-NN: circles
represent MSE for different values of σ as functions of k (10 replicated experiments);
solid lines represent the optimal values of the regularizer λ as a function of k.

5.3 Experiment 3

The setup for experiment 3 is identical to the previous one, but for the fact that
the training points are evenly spaced and chosen in the domain [0, 4], instead of
uniformly sampled in [−4, 4]. In this case, G-K performs systematically better:
unlike experiments 1 and 2, the distance between the abscissa of each two con-
secutive points is constant and, consequently, the choice of G-K is very likely to
be the optimal one.
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5.4 Experiment 4

In this classification task, the performances are compared of the Terminated
Ramp kernel and the linear kernel when coupled with a feature ranking tech-
nique. In particular, two versions (the original and the non-recursive one) of
the Recursive Feature Elimination algorithm (RFE) [15] are used. In the lin-
ear kernel, for each feature j, the square w2

j of the corresponding weight of the
separating hyperplane can be used as a feature importance indicator, while, as
shown is [8], a feature importance indicator for the TR kernel for feature j is

the function hj =
∑T

t=1 |at| w
(j)
t

‖wt‖ , where w
(j)
t is the j-th component of the vec-

tor wt. In this experiment, the use of TR-K with 1-RFE is compared to linear
SVM with RFE and with 1-RFE on a proteomic dataset. The employed dataset
was produced at Keck Laboratory at Yale by using a Micromass MALDI-L/R
instrument. Detailed description of data and their preprocessing are included in
[16]: 123 peaks are identified as describing features. The classification/ranking
procedure is conducted whitin a complete validation framework as described in
[17]. The whole dataset is split into B = 400 different training/test subsets, then
the classification and the feature ranking procedure are performed on each of
the training splits. The resulting test errors are then averaged over all the B
splits. Moreover, the stability indicator for the produced set of B feature ranked
lists is computed as described in [18] as measure of disarray (thus, the lower
the better). The average test error for the original Ovarian Cancer dataset is
reported in Fig. 3 together with the plot of the stability curves for the ranked
lists produced by the three methods. Both the average test error and the stabil-
ity indicator shows that the Terminated Ramp consistenly displays the smallest
misclassification rate for all feature subsets sizes; moreover, the B ranked lists
emerging by the TR-K task are mutually much more similar than those produced
by the experiments tackled by the linear kernel, both in the recursive and in the
non-recursive feature ranking method.
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Fig. 3. Average test error and stability plot for the Ovarian cancer proteomic dataset.
Dashed line represents TR/1-RFE, solid line represents Linear SVM/1-RFE and dotted
line represents Linear SVM/RFE.
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6 Conclusions

In this paper we propose a strategy for constructing a data–driven kernel, auto-
matically determined by the training examples. We have shown two main exam-
ples of application of this procedure, namely penalized nonparametric regression
and terminated ramp SVM. However, the general framework and the generaliza-
tion error bound based on the Rademacher complexity are independent of the
specific function class G0. For instance, regularized ensembles can be built by
defining G0 as a set of different models, e.g., different versions of the same base
model (like in Bagging) or different experts.
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Abstract. We present an approach for the automatic classification of
Nuclear Magnetic Resonance Spectroscopy data of biofluids with respect
to drug induced organ toxicities. Classification is realized by an Ensemble
of Support Vector Machines, trained on different subspaces according to
a modified version of Random Subspace Sampling. Features most likely
leading to an improved classification accuracy are favored by the deter-
mination of subspaces, resulting in an improved classification accuracy of
base classifiers within the Ensemble. An experimental evaluation based
on a challenging, real task from pharmacology proves the increased classi-
fication accuracy of the proposed Ensemble creation approach compared
to single SVM classification and classical Random Subspace Sampling.

1 Introduction

The reliable detection of drug induced adverse effects which might be considered
toxic for particular organs or regions of organs is a major prerequisite for ef-
fective drug design in pharmacology. Within the research field of Metabonomics
putative toxicities of particular pharmaceuticals are usually indicated by the
change of concentrations of metabolites. For both qualitative and quantitative
measurements of such changes the so-called 1H Nuclear Magnetic Resonance
(NMR) Spectroscopy of biofluids extracted from the treated organism has been
proven very effective [1]. The process of NMR spectroscopy results in (high-
dimensional) spectral data (cf. figure 1) where both positions and intensities of
particular peaks convey the information about particular metabolites.

The process of spectra generation including the treatment of experimental
animals is a very time and cost intensive task which usually results in rather
small sample sets (typically only a few hundred spectra are available each con-
taining several thousand measurement points). In addition to this the manual
analysis of these complex data-sets is very tedious and its results are often of
more or less subjective type. Thus, sophisticated methods for the automatic
classification of NMR spectra dealing with both high dimensionality of the orig-
inal data and small sample sets are required. Surprisingly, so far only very few,
rather straightforward techniques have already been developed for the task of
automatic analysis of NMR spectra.

M. Haindl, J. Kittler, and F. Roli (Eds.): MCS 2007, LNCS 4472, pp. 42–51, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Application of SVM-Ensembles 43

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

In
te

ns
ity

Position [ppm]
0 2 4 6 8 10

Fig. 1. Exemplary NMR spectrum consisting of approx. 130 000 measurements

In previous (internal) investigations we observed that the application of Sup-
port Vector Machines (SVMs) [2] performs best when aiming at the automatic
classification of NMR spectra with respect to certain toxicity classes. However,
for the application of an automatic analysis system in productive pharmacolog-
ical environments its classification rate needs to be improved.

Generally, in order to process small but complex data sets recently approaches
utilizing multiple classifiers have become popular. According to this, we propose
a novel approach for generating SVM Ensembles based on iterative adapted
Random Subspace Sampling (RSS) exploiting small but high-dimensional sam-
ple sets of NMR spectra. Contrary to standard RSS techniques our method is
based on a dimension weighting scheme. According to SVM based classification
results those feature vectors’ components are favoured which are most informa-
tive with respect to the overall analysis. Based on a challenging task examining
real pharmacological data the effectiveness of the new approach is demonstrated.

In the following section the state-of-the-art specifically for automatic classifi-
cation of NMR spectra as well as for the general application of multiple classifier
systems is briefly summarized. In section 3 the proposed approach of SVM En-
sembles based on adapted Random Subspace Sampling is discussed. The results
of the experimental evaluation are presented in section 4. The paper concludes
with a discussion of perspectives and an outlook on future work.

2 Related Work

The determination of pharmaceutical adverse effects is an important prerequisite
for drug design and its automation is highly desirable. However, according to
the literature only few and more or less straightforward techniques have been
developed addressing the automatic classification of NMR spectra.

In order to process (very) high-dimensional raw NMR spectral data, usu-
ally a basic initial abstraction procedure is applied. Therefore, small spectral
regions are aggregated and the corresponding integral value is used for further
processing. By means of this bucketing technique [3] “feature” vectors consisting
of several hundred components (instead of thousands) are created.

The most prominent related work has been pursued within the COMET (Con-
sortium for Metabonomic Toxicity) project [4] aiming at a system for complete
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analysis of (large amounts of non-public) NMR data including their automatic
classification based on CLOUDS (Classification of Unknowns by Density Super-
position [5]). Using CLOUDS toxicity classes are modeled by mixture densities of
Gaussians (with predefined standard deviations) centered on the training sam-
ples used. Inspecting the related literature it is, unfortunately, not clear how the
system performs for small sample sets as addressed by this paper.

For general classification tasks where only small sample sets are available
the application of Support Vector Machines has been proven very effective.
Classification is based on linear separation of data originating from different
classes. Therefore, a discriminating hyperplane is constructed utilizing a subset
of training vectors as support-points and a non-linear transformation into a high-
dimensional feature space allowing for linear separation. For efficient evaluation
usually kernel functions are applied avoiding the actual transformation into the
high-dimensional space. Since linear separability (even in the high-dimensional
space) cannot be guaranteed for all sample data the hyperplane’s optimization
is related to a so-called soft margin defined by slack variables [2].

In the last few years the application of multiple classifier systems has been
proven effective for complex data sets. Therefore, different base classifiers are
estimated either on modified sample sets or on alternative data representations.
Both variations of the training data are derived from the original sample sets.
Applying the set of classifiers to the original task results in multiple decisions
which are aggregated in various ways in order to achieve a final classification.
Compared to single classifiers substantial improvements in the overall classifica-
tion performance of such Classifier Ensembles can be achieved [6].

The principle constraint for base classifiers used for Ensemble techniques is a
classification accuracy of better than random – so-called weak classifiers. How-
ever, the Ensemble approach performs even better when strong base classifiers
like SVMs are deployed (cf. e.g. [7]). Compared to single classifier approaches
substantial improvements in classification performance can be obtained by En-
sembles only when the underlying base classifiers contain substantial mutual
diversity, i.e. modeling different characteristics of the training set.

As one approach for Ensemble creation utilizing a (limited) set of training data
Bagging aggregates classifiers estimated on bootstrap replicates of all training
samples [8]. Sample sets are derived (most likely) avoiding redundant or less in-
formative samples for training and therefore possibly increasing the classification
accuracy of the base classifiers. Alternatively, Boosting focuses on (re-)weighting
of sample data for their consideration in the training procedure. During this it-
erative procedure the focus is concentrated on those samples which are harder
to classify, i.e. causing classification errors.

Alternatively, base classifiers covering sub-spaces of the original feature space
can be integrated into Ensemble approaches. Most prominently the Random Sub-
space Sampling (RSS) technique randomly selects subsets of feature components
for base classifier training [9]. RSS reduces the effect of redundant or less infor-
mative dimensions and (most likely) alleviates the discrepancy between small
sample-set sizes and high dimensionality.
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3 SVM-Ensemble Based on Adapted RSS

The analysis of our first experiments addressing the automatic classification of
NMR-spectra with respect to organ toxicities empirically proved the suitability
of C-SVMs [2], explicitly controlling the sum of slack-variables in soft margin
classification. Thus, they were chosen as starting point for our developments.
Multiple SVM base-classifiers are integrated into an Ensemble aiming for im-
proved classification of NMR-spectra when only small training sets are available.

Even when considering the bucket representation of NMR-spectra it is very un-
likely that every particular dimension of the resulting (high-dimensional) feature
vectors represents a similar amount of information for the overall classification
process. In order to obtain reasonably diverse but relevant sample-sets for the
estimation of the abovementioned base classifiers we propose the application of
(improved) Random Subspace Sampling.

According to our practical experiences standard RSS, unfortunately, does not
guarantee the selection of the most relevant feature components.1 Thus, in our
modified approach the random selection process is based on an underlying prob-
ability distribution assigning weights to every feature component. Exploiting this
distribution multiple sub-spaces are derived from the original 203-dimensional
NMR-bucket space by RSS. By means of the resulting sample-sets SVM base
classifiers are trained and integrated into an Ensemble.

Since the optimal feature components’ weights are not known in advance its
probability distribution is learned in an iterative adaptation procedure. For this
purpose, sub-spaces are created by applying adapted RSS, and SVMs are trained
accordingly. During cross-validation these base classifiers are evaluated and ac-
cording to the classification accuracies the weights of the feature components are
either increased or decreased, thus, propagating the most relevant components.

In addition to the overview of the new approach given above and illustrated
in figure 2, in the following, details regarding SVM training, adaptation of the
actual weights, and the creation of the SVM Ensemble will be described.

3.1 Automated SVM Training

The classification accuracy of C-SVMs is mainly dependent on the choice of a
feasible C value and possibly on additional kernel-specific parameters. A linear
kernel is not parametrized, therefore reducing the complexity and time needed in
the training phase. The C-parameter is optimized by grid search and the linear
kernel is used in all further investigations. Choosing too small C-values leads to
a low classification accuracy and can be improved by selecting larger values up
to an asymptotic behavior (cf. e.g. [10]). This process motivates an automatic
grid selection. A wide and coarse logarithmic grid is defined in a first phase
and the evaluation starts at a reasonable small value, stopping if convergence in
classification accuracy is reached (cf. figure 3). The best classification result γT is

1 Since training / evaluation of SVM based Ensembles is rather time intensive the
number of base classifiers, i.e. RSS guesses, is practically limited.
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Fig. 2. Creation of SVM-Ensembles based on adapted RSS (see text for description)

determined and, based on this, the grid for the second phase is defined. Starting
at the first value exceeding γT

2 up to the point of convergence, the solution
space is divided into M steps equally spaced on a logarithmic scale (cf. figure 4).
Increasing M results in a finer grid, but also in a longer training phase. The best
parameter setting is chosen and used for the classification of test samples.

3.2 Modified Random Subspace Sampling

We propose a modification of Random Subspace Sampling (upper part of figure 2),
specifically selecting the putatively most informative features with higher proba-
bility. Increased classification accuracy of SVMs trained on the resulting
subspaces can be expected due to the explicit adaptation of the probability dis-
tribution “guiding” the underlying random process of RSS towards the selection
of reasonable subsets.
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Fig. 3. Accuracy on a coarse, wide grid
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Fig. 4. Accuracy on an optimized grid

Given a D-dimensional data set, all weights wi for i = 1, . . . , D are initialized
to one and the selection probability pi for each feature is calculated according
to these weights.

pi =
wi∑D

j=1 wj

i = 1, . . . , D

Based on these probabilities K (most likely) different d-dimensional (d < D) sub-
spaces Φk for k = 1, . . . , K are determined based on the actual probability distri-
bution and linear SVMs are trained on every subspace according to the algorithm
described in section 3.1. All SVMs are sorted with respect to their classification ac-
curacy, or an alternative evaluation measure, ranging from the best accuracy γB

to the worst γW . A scaling factor τk is determined for each SVM, dependent on a
free parameter ν and the corresponding classification accuracy γk.

τk =

{
1
ν +

(
2(γk−γW )
γB−γW

) (
1 − 1

ν

)
if γk−γW

γB−γW
< 0.5

(2 − ν) + (2ν−2)(γk−γW )
γB−γW

otherwise
k = 1, . . . , K; ν > 1

The values of every dimension are multiplied by the scaling factor of the SVMs, it
was used within, reducing the weights of dimensions possibly leading to a lower
classification accuracy and vice versa. The iterative reduction of probabilities
corresponding to putatively less informative dimensions leads, after several iter-
ations, to their de-facto exclusion from RSS due to a selection probability close
to zero. Consequently, the classification accuracy of trained SVMs is increased,
and, simultaneously, the diversity of selected subspaces is decreased (see below).

3.3 SVM-Ensemble

The overall principle of our proposed classification system corresponds to an En-
semble of L SVMs as (strong) base classifiers (lower part of figure 2) . Different
SVMs are trained based on RSS, with an adapted random selection of dimensions
for subspaces, and aggregating their classifications into a final decision. All SVMs
within an Ensemble are trained on diverse subspaces Φl for l = 1, . . . , L, deter-
mined according to a probability distribution of the prior adaptation process as
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described in section 3.2. Unlike an increasing classification accuracy, the diver-
sity of SVMs built within the iterative adaptation process decreases and possibly
converges to one final subspace. Therefore, the final probability distribution is
apparently not the optimal choice in order to build an Ensemble of diverse base
classifiers and an optimal intermediate result has to be selected. In addition to
the classification accuracy, several measures of diversity (cf. [11], [12]) are possi-
ble and can be applied for the selection of a feasible probability distribution for
building the SVM-Ensemble.

The selectedprobabilitydistribution is used for thedeterminationof an subspace
for every base SVM and these are trained according to the algorithm described in
section 3.1. A final classification y is achieved by aggregating the base classifier de-
cisions ỹl bymaximumvote.An improvement in theEnsemble accuracy is expected
duetothe improvedbaseclassifier’saccuracyandtheir combination inanEnsemble.

4 ExperimentalEvaluation

In order to demonstrate the effectiveness of the new approach for SVM-Ensembles
based on adapted Random Subspace Sampling as proposed in this paper an ex-
perimental evaluation based on real NMR sample sets has been pursued. In the
following the data-sets used as well as the methodology applied, and the actual
results are briefly summarized.

4.1 Data-Set and Methodology

The sample-setused for experimental evaluation consists ofNMR-spectra analyzed
in a real pharmacological task.Every spectrumoriginally consists of approximately
130 000 measurement points. By means of an initial bucketing step the dimension-
ality is reduced to 203. In summary, thedata-set consists of 530 sampleswhere every
spectrum is assigned either to control (420 samples) or toxic (110), i.e. a two-class
problem is considered.

For training, parameter optimization, and test the data-setwas split intofivedis-
joint sets by randomly selecting samples. Note that the actual random selection re-
spectedtheimbalanceddistributionoftoxicandcontrolspectraasmentionedabove.
Bymeans of afive-fold cross-validationwe ensured that every sample is once treated
as test. In every of the five configurations possible three fifths are selected for train-
ing and one fifth for cross validation. The final classification rates are averaged over
the results achieved on the five test sets (the particularly remaining fifths).

In order to avoid putative statistical artifacts all experiments related to random
subspace sampling have been performed twenty times which (empirically) repre-
sents an upper limit for reasonable turn around times using current personal com-
puters. The results reported correspond to averaging over all experiments.

Throughoutthewholeprocessofparametertraining(SVMestimation,andadap-
tation of feature components’ weights) we considered the Matthews correlation co-
efficient (MC) as optimization criterion:

MC = (TP×TN−FP×FN)((TP+FN)(TP+FP )(TN+FP )(TN+FN))−1/2
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with TP as number of true positive predictions, FP as number of false positives,
TN as number of true negatives, andFN as number of false negatives, respectively.
MC is normalized to [−1 . . .1]. The larger MC the better the overall classification
performance. The Matthews correlation coefficient was chosen because it is hardly
sensitive to imbalanced data-sets. In addition to this, classification rates (overall
(acc), and related to toxic (accT ) and control (accC) samples) are reported which
seems more informative for the actual Metabonomics task.

The experiments have been conducted using Matlab and the libSVM [13] inter-
face, and our own Ensemble classification system.

4.2 Results

WefirstcomparedtheSVM-EnsembleapproachtosingleSVMclassificationinorder
toshowthe improvementsalreadyachievedbyRSSSVM-Ensemble. Inaddition, the
classification results achieved by our proposed method are discussed related to the
single SVM and standard RSS approach.

The single SVM classifier and all further mentioned SVM base classifiers were
trained according to the algorithm described in section 3.1 by cross-validation, as
described insection4.1,usingM =300gridpoints inthesecondtrainingphase.Ran-
domSubspace Samplingwas performedby selecting 70%of the original dimension-
ality randomly and the classification results of all base classifiers were
aggregated according to the maximum vote decision rule. Under variation of L, the
optimal number of base classifierswas assessedby cross-validation(cf. figure 7) and
the classification results on the validation and test-set are shown in table 1. An in-
creasedMCcanbeachievedonthecross-validationset,butnotonthe test-setdue to
the reduced classification rate of toxic samples, which implies a better performance
of the control samples.

The adaptation of prior probabilities for RSS was performed according to the
algorithm described in section 3.2 using K = 20 SVMs in each iteration and scal-
ing factor ν = 2. The process of increasing accuracy and decreasing diversity is
shown infigure5,using theMC for accuracydeterminationandtheKohaviWalpert
Variance, the Entropy Measure [11] and the PercentageCorrect Diversity Measure
(PCDM) [12] as possible rates for the determination of diversity. According to the
MC and the EntropyMeasure, a probability distribution is selected by scaling both
measures to the range [0 - 1] and using the distribution from the iteration closest to
the intersection point as demonstrated in figure 6. The cross-validation classifica-
tion results of the RSS and adapted RSS SVM-Ensemble are illustrated in figure 7
under variation of L.

Table 1. Classification accuracy on the cross-validation and test-set

cross-validation test

Method MC acc[%] accC[%] accT[%] MC acc[%] accC[%] accT[%]

single SVM 0.462 80.9 85.5 63.6 0.422 79.6 84.8 60.0

RSS(L=27) 0.537 86.1 95.1 51.5 0.404 82.4 93.1 41.4

adapted RSS (L=23) 0.623 87.7 92.6 69.1 0.499 82.8 87.7 64.1
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Our proposed method increases nearly all evaluation results compared to single
SVM classification and RSS SVM-Ensemble. The high accC -values of the classical
RSS approach results from the low classification rate of toxic samples, thus predict-
ing most of the test samples as control. However,with the proposed method perfor-
mance can be significantly increased for toxic samples, thus also yielding an overall
improvement in the MC measure.

5 Discussion

WepresentedamodifiedRandomSubspaceSamplingapproachfor theconstruction
of SVM-Ensembles.The randomselection process is based on an underlying proba-
bility distribution, assigning high probabilities to features, regarded as most infor-
mative for classificationbyanprior adaptationphase.Within this adaptationphase
several SVMs are trained, evaluated and the weights for every feature are modified,
proportional to the relative classification accuracy. The improvement of the base
classifiers classification accuracy by using an adapted probability distribution for
subspace sampling leads to an overall improvement in accuracy of the Ensemble.

A further improvement in classification accuracy is expected by the use of alter-
native SVM kernel functions like the radial basis function or sigmoid kernel.But for
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anexperimental evaluationanefficient SVMtraininghas tobedevelopeddue to the
more complex process of parameter optimization.

The bucketing procedure reduces the spectral dimensionality and serves as sim-
ple feature extraction method, but decreases the resolution and correspondence be-
tween features and single peaks.Reducing the sizeof integrated segmentswithin the
bucketing procedure facilitates the interpretation of weights achieved in the adap-
tation phase. If a correspondence of most informative dimensions to peaks of single
metabolites could be achieved, (possibly) newbiomarkers for the detection of organ
toxicities could be discovered.
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Abstract. A new scheme for the optimization of codebook sizes for HMMs and
the generation of HMM ensembles is proposed in this paper. In a discrete HMM,
the vector quantization procedure and the generated codebook are associated
with performance degradation. By using a selected clustering validity index, we
show that the optimization of HMM codebook size can be selected without train-
ing HMM classifiers. Moreover, the proposed scheme yields multiple optimized
HMM classifiers, and each individual HMM is based on a different codebook
size. By using these to construct an ensemble of HMM classifiers, this scheme
can compensate for the degradation of a discrete HMM.

Keywords: Hidden Markov Models, Ensemble of Classifiers, Codebook Size,
Clustering Validity Index, Pattern Recognition.

1 Introduction

The Hidden Markov Model (HMM) is one of the most popular classification meth-
ods for pattern sequence recognition, especially for speech recognition and handwritten
pattern recognition problems [29, 30, 3, 34, 6]. The objective of the HMM is to model a
series of observable signals, and it is this signal modeling ability that makes the use of
HMM a better choice than other classification methods for recognition problems. As a
stochastic process, HMM is constructed with a finite number of states and a set of tran-
sition functions between two states or over the same state [29, 3, 34]. Each state emits
some observation(s), according to a codebook setting out corresponding emission prob-
abilities. Such observations may be either discrete symbols or continuous signals. In a
discrete HMM, a vector-quantization codebook is typically used to map the continuous
input feature vector to the code word.

However, there are some parameters that need to be optimized in HMM, such as the
number of states in the model [35], the structure of the observation emission [6], the
structure of the state transition [14, 15, 1], the order of the state transition [29, 30, 6]
and the optimization of the codebook size [29, 30]. HMM codebook size optimization
is, in general, carried out by constructing a number of HMM classifiers and comparing
their recognition rates on a validation data set. Given the extremely time-consuming
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process of HMM training, HMM codebook size optimization remains a major problem.
But, since discrete symbols in HMM are usually characterized as quantized vectors in
its codebook by clustering, the fitness of the codebook is directly related to the fitness
of the clustering, for which a number of clustering validity indices have been proposed
[2, 27, 18, 19, 26]. This means that codebook size can actually be optimized by using
clustering validity indices.

Another important issue in the research concerning the HMM is that the ensemble of
the HMM (EoHMM) emerges as a promising scheme to improve HMM [10, 11, 12, 13,
14, 15, 1]. This is because an ensemble of classifiers (EoC) is known to be capable of
performing better than its best single classifier [31, 25]. These classifiers can be gener-
ated by changing the training set, the input features or the parameters and architecture
of the base classifiers [15]. The applicable ensemble creation methods include the Bag-
ging, Boosting and Random Subspace methods. There may be other methods for the
creation of HMM classifiers, based on the choice of features [13] for isolated handwrit-
ten images, and both column HMM classifiers and row HMM classifiers can be applied
to enhance performance [4, 5]. The use of various topologies such as left-right HMM,
semi-jump-in, semi-jump-out HMM [14], and circular HMM [1] can also be applied.

Because a data set usually consists of multiple levels of granularity [32, 7, 21], if
clustering validity indices can give multiple optimized codebook sizes for HMM, then
it is possible to construct EoHMMs based on different codebook sizes. This mechanism
will give local optima of a selected clustering validity index. EoHMM are then selected
by various objective functions and combined by different fusion functions. Because
EoHMMs are constructed with multiple codebooks, the degradation associated with a
single vector quantization procedure can be improved by multiple vector quantization
procedures and by then classifier combination methods. The key questions that need to
be addressed are the following:

1. Can the clustering validity index help in the selection of codebook sizes for opti-
mizing HMM?

2. For HMM classifiers based on different codebook sizes selected by a clustering
validity index, is the diversity among them strong enough to yield an EoHMM
which performs well?

To answer these questions, we applied the selected index for EoHMM construction
(Fig. 1). We used the HMM-based handwritten numeral recognizer in [4,5]. It is impor-
tant to note that HMM optimization is a very complex task, and there are still a great
many issues associated with it. In this paper we only deal with the problem related to
HMM codebook size optimization, and the analysis and the method presented therefore
constitute only a small step towards a considerably improved understanding of HMM
and EoHMM.

The paper is organized as follows. In the next section, we introduce the basic con-
cepts of the used clustering index. Section 3 details the process of generation, selection
and combination of HMM classifiers. In section 4, we report on experiments we carried
out on the NIST SD19 handwritten numeral database. A discussion and a conclusion
are presented in the final sections.
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Fig. 1. The EoHMM classification system approach includes: (a) the adequate codebook sizes
searching; (b) codebooks generation and HMM classifiers training (c) EoHMM selection and
combination. Both (a) and (b) were carried out separately on column and row HMM classifiers.

2 Xie-Beni (XB) Index and Clustering Validity Indices

In general, an HMM codebook is generated from a vector quantization procedure, and
each code word can be actually regarded as a centroid of a cluster in feature space. The
fitness of the clustering depends on a number of different factors, such as clustering
methods and the number of clusters. For an adequate HMM codebook, there should be
a means to select a better clustering. A clustering validity index is a measure to evaluate
the results of clustering algorithms and give an indication of a partitioning that best fits
a data set, and a clustering validity index is independent of clustering algorithms and
data sets. We used XB index as the clustering index in this experiment.

XB index [2,27,18,19] was originally a fuzzy clustering validity index. For a fuzzy
clustering scheme, suppose we have the data set X = {xi, 1 ≤ i ≤ N}, where N is the
number of samples and the centroids vj of clusters cj , 1 ≤ j ≤ nc, where nc is the total
number of clusters. We seek to define the matrix of membership U = uij , where uij

denotes the degree of membership of the sample xi in the cluster cj . To define the XB
index, first one must define the sum of squared errors for fuzzy clustering. The sum of
squared errors is defined as

Jm(U, V ) =
N∑

i=1

nc∑

j=1

(uij)m‖xi − vj‖2 (1)

where 1 ≤ m ≤ ∞. In general, we use J1 for the calculation. U is a partition matrix of
fuzzy membership U = uij , and V is the set of cluster centroids V = vi. In addition,
the minimum inter cluster distance dmin must also be defined, as
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dmin = mini,j‖vi − vj‖ (2)

Supposing that we have N samples on the total data, XB index can be defined as

XB =
Jm

N × (dmin)2
(3)

XB index is designed to measure the fitness of fuzzy clustering, but it is also suitable
for crisp clustering. The XB index has been mathematically justified in [36]. In order
to obtain a group of potentially adequate codebook sizes, the clustering validity index
used must have several local optima that can depict a data set at multiple levels of
granularity [32, 7, 21]. This property is important because the best number of clusters
depends on different hierarchical levels. An adequate clustering validity index should
not only offer different clusterings, but also a reasonable distinction among them. When
HMM classifiers are trained with the same features and with the same samples, the
distinction among the codebooks is the only possibility that results in diversity among
classifiers and boosts the EoHMM performance.

The XB index is found to have this desirable property in our problem (Fig. 2). The
plot of XB index values versus the numbers of clusters gives local optima for codebook
sizes and are thus adequate for the construction of an EoHMM. The selected codebook
sizes are used again for the clustering on all samples. We perform the experiment on a
benchmark database in the next section.

3 Experiments with EoHMMs

The experimental data was extracted from NIST SD19 as a 10-class handwritten nu-
meral recognition problem. As a result, there is an HMM model for each class, and 10
HMM models for an HMM classifier. Five databases were used: the training set with
150000 samples (hsf {0 − 3}) was used to create 40 HMM classifiers, 20 of them be-
ing column HMM classifiers and other 20 being row HMM classifiers. For codebook
size selection evaluated by clustering validity indices, due to the extremely large data
set (150000 images are equivalent to 5048907 columns and 6825152 rows, with 47
features per column or per row), we use only the first 10000 images from the training
data set to evaluate the quality of the clustering, and they are equal to 342910 columns
and 461146 rows. Note that, at the clustering evaluation stage, we only examined the
different numbers of clusters with the clustering validity index to select several suitable
codebook sizes for an EoHMM. Then, the codebooks were generated with the whole
training set, according to the previously selected codebook sizes. The training validation
set of 15000 samples was used to stop HMM classifiers training once the optimum had
been achieved. The optimization set containing 15000 samples (hsf {0−3}) was used
for GA searching for ensemble selection. To avoid overfitting during GA searching, the
selection set containing 15000 samples (hsf {0 − 3}) was used to select the best solu-
tion from the current population according to the defined objective function and then to
store it in a separate archive after each generation. The selection set is also used for the
final validation of HMM classifiers. Using the best solution from this archive, the test
set containing 60089 samples (hsf {7}) was used to evaluate the accuracies of EoC.
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Each column HMM used 47 features obtained from each column, and each row used
47 features obtained from each row. The features were extracted by the same means de-
scribed in [4, 5], and K-Means was used for vector-quantization to generate codebooks
for the HMM. The number of HMM states was optimized by the method described
in [35]. The HMMs were trained by Baum-Welch algorithm [29, 30]. The benchmark
HMM classifiers used 47 features, with the codebook size of 256 clusters [4, 5]. For
benchmark column HMM, we have a recognition rate of 97.60%, and for benchmark
row HMM the classification accuracy was about 96.76%, while the combination of the
benchmark column HMM and the benchmark row HMM achieved a rate of 98.00%.

3.1 Behaviors of Clustering Validity Indices in HMM Features

To decide on suitable codebook sizes of HMM, we carried out clusterings on HMM
features. Before we constructed the EoHMM, we performed K-Means clusterings with
different numbers of clusters on HMM features, and showed the properties of clustering
validity indices in this problem. Processing clusterings from 3 clusters to 2048 clusters
for the clustering task, we showed the relationship between the XB index and the num-
ber of clusters for column HMM features, and many local minima can be observed (Fig.
2(a)). A similar tendency can be observed in row HMM features (Fig. 2(b)). This prop-
erty, as we argued, is important to get multiple levels of granularity of the data set, and
it offers codebook sizes for HMMs with the potential to perform well.

Fig. 2. The relationship between XB index and the number of clusters for: (a) HMM column
features; (b) HMM row features. The circled areas indicate the places where the best 40 optima
were found. The arrow indicates the smallest XB value with the respective number of clusters.
Note that clusterings were carried out on the first 10000 images of the training data set.

3.2 Optimum Codebooks Selected by XB Index

Among all clusterings from 3 clusters to 2048 clusters, the best single column HMM
achieved a classification accuracy of 98.42% with a codebook size of 1965, which is
0.82% better than the benchmark column HMM classifier; the best row HMM classifier
had a recognition rate of 97.97%, with a codebook size of 1786, which is 1.21% better
than the benchmark row HMM. Compared with the benchmark column HMM classifier
(97.60%) and with the benchmark row HMM classifier (96.76%), codebooks selected
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by the XB index gave some improvement to performance. Note that performance is not
necessarily proportional to the size of the codebooks. Based on these HMM classifiers,
we then construct the EoHMMs.

3.3 Column-EoHMM and Row-EoHMM

We constructed three ensembles composed entirely of column HMM classifiers (COL-
HMM), entirely of row HMM classifiers (ROW HMM) and of all HMM classifiers
(ALL-HMM) (Table 1). The ensembles were then combined by the SUM rule [22, 38]
and PCM-MAJ rule [24], since these two fusion functions have been shown to be very
effective [22,24]. The ensemble of all HMM classifiers gave the best performance, given
that the obvious diversity between the column HMM classifiers and the row HMM clas-
sifiers. With the PCM-MAJ rule, ALL-HMM performed 0.42% better than the single
best HMM classifier, and achieved the best classification accuracy.

Table 1. Comparison of classification accuracies on test data set with two different fusion func-
tions and on different types of EoHMMs. The number of classifiers is shown in parenthesis.

Fusion Functions → PCM-MAJ SUM

/ EoHMM ↓
COL-HMM (20) 98.56 % 98.55 %

ROW-HMM (20) 98.20 % 98.26 %

ALL-HMM (40) 98.84 % 98.78 %

3.4 Ensemble Selection

For evaluating classifier combinations, another approach is to go through the process
of ensemble selection, because one of the most important requirements of EoCs is the
presence of diverse classifiers in an ensemble. We tested the simple majority voting
error (MVE) and the SUM rule, because of their reputation for being two of the best
objective functions for selecting classifiers for ensembles [31]. We also tested 10 dif-
ferent compound diversity functions (CDFs) [23].

Table 2. Best Performances from 30 GA replications on the test data set. The numbers of classi-
fiers are noted in parenthesis. The SUM was used as the fusion function in EoC.

Recognizers Column HMM classifiers Row HMM classifiers Column & Row HMM classifiers

Benchmark 97.60 % (1 / -) 96.76 % (1 / -) 98.00 % (2 / SUM)
XB Selection 98.40 % (1 / -) 97.97 % (1 / -) 98.70 % (2 / SUM)
Classifier Pool 98.55 % (20 / SUM) 98.26 % (20 / SUM) 98.78 % (40 / SUM)

EoHMM Selection - - 98.80 % (16 / SUM)

These objective functions were evaluated by genetic algorithm (GA) searching. GA
was set up with 128 individuals in the population and with 500 generations, which
means 64, 000 ensembles were evaluated in each experiment. The mutation probability
was set to 0.01, and the crossover probability to 50%. With various objective func-
tions (MVE, SUM, 10 compound diversity functions [23]), and with 30 replications.
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Table 3. Best Performances from 30 GA replications on the test data set. The numbers of classi-
fiers are noted in parenthesis. The PCM-MAJ was used as the fusion function in EoC.

Recognizers Column HMM classifiers Row HMM classifiers Column & Row HMM classifiers

Classifier Pool 98.56 % (20 / PCM-MAJ) 98.20 % (20 / PCM-MAJ) 98.84 % (40 / PCM-MAJ)
EoHMM Selection - - 98.86 % (16 / PCM-MAJ)

A threshold of 3 classifiers was applied as the minimum number of classifiers for an
EoC during the whole searching process. The selected ensembles were then combined
by two types of fusion functions: The SUM rule [22, 38] and the PCM-MAJ rule [23].
Among all objective functions, the best ensemble was selected by the CDF and com-
posed of 16 HMM classifiers. The recognition rate achieved by the selected ensemble
is 98.80% with the SUM rule, and 98.84% with the PCM-MAJ rule. For all replications
of GA searching, the variances are smaller than 0.01%, which indicates that the GA
searching gives quite stable results.

4 Discussion

In this work, we proposed to use the XB index in order to select various codebooks for
the construction of Ensemble of HMMs. HMM classifiers constructed with codebook
sizes selected by the XB index show a clear improvement compared with benchmark
HMM classifiers, in both column HMM classifiers and row HMM classifiers [4,5]. With
an improvement of 0.80% over the benchmark column HMM classifier and 1.21% over
the benchmark row HMM classifier, the usefulness of the XB index in optimizing HMM
is undeniable.

As a by-product, we can also use these HMM classifiers trained with different code-
book sizes to construct an EoHMM. Considering that the best column HMM classifier
already has a classification accuracy of 98.40% and the best row HMM classifier has a
recognition rate of 97.97%, this improvement is significant. Such an improvement also
indicates that the disadvantage of discrete HMM can be compensated by EoHMM based
on various codebook sizes. We also note that, by combining column HMM classifiers and
row HMM classifiers, the single best EoHMM of all the replications can have a classi-
fication accuracy of 98.86%. This is about 0.30% better than COL-HMM, thanks to the
further diversity contributed by row features and column features (Table 2 & Table 3).

The proposed method also has a speed-up advantage over other EoHMM creation
schemes. Suppose we need to construct M HMM classifiers for EoHMM, given S
possible codebook sizes, the proposed scheme evaluates S clusterings using the XB
index and then trains M HMM classifiers. For other ensemble creation methods, such
as Bagging, Boosting, and Random Subspaces, we need to train M ∗S HMM classifiers
and then select among them for the best codebook size. This offers a significant speed-
up in the optimization of the codebook sizes and a new ensemble creation method.

5 Conclusion

A fast codebook size optimization method for HMM and a new scheme of ensem-
ble of discrete HMM were proposed in this paper. The codebook size was selected by
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evaluating the quality of clustering during the construction of codewords. Because the
method does not require any HMM classifiers training, the proposed scheme offers a
significant speed-up for codebook size optimization. In order to fairly evaluate cluster-
ing quality, we used a clustering validity index based on different predefined numbers
of clusters.

Though a number of clustering validity indices were available, we used the XB in-
dex because it has the strong theoretical support [36] and has been shown effective in
clustering [2, 27]. Moreover, the XB index demonstrated the property of discovering
multiple levels of granularity in the data set, which would allow us to select adequate
codebook sizes. In general, the HMM classifiers with codebook sizes selected by the
XB index demonstrated an apparently better performance than benchmark HMM clas-
sifiers. As a by-product, we can construct an EoHMM trained with the full samples
and full features based on different codebook sizes. Because the XB index gives multi-
ple fit codebook sizes, these codebook sizes could result in more accurate and diverse
HMM classifiers, and thus provide us with an EoHMM. The combination of column
HMM classifiers and row HMM classifiers further improve the global performance of
EoHMM.

To conclude, the result suggests that the new EoHMM scheme is applicable. The
degradation associated with vector quantization in discrete HMM is compensated by the
use of EoHMM without the need to deal with a number of optimization of parameters
found in continuous HMM. EoHMM can also explore the advantage of the number of
different ensemble combination methods proposed in the literature.

Future work is planned to further improve the performance of EoHMM by exploring
the issue of the number of states that need to be optimized as well. With EoHMM based
on different numbers of states, it will be possible to obtain further improvement without
adding any parameters optimization problems, which will be of the great interest in the
application of HMM. Furthermore, the codebook pruning will be also an interesting
issue for the decrease of the computation cost for the construction of HMM classifiers.
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Abstract. Five wheat varieties (Bezostaja, Çeşit1252, Dağdaş, Gerek, Kızıltan 
traded in Konya Exchange of Commerce, Turkey), characterized by nine geo-
metric and three colour descriptive features have been classified by multiple 
classier system where pair-wise SLP or SV classifiers served as base experts.  
In addition to standard voting and Hastie and Tibshirani fusion rules, two new 
ones were suggested that allowed reducing the generalization error up to 5%. In 
classifying of kernel lots, we may obtain faultless grain recognition.  

1   Introduction 

Visual product classification is an important operation in food processing industry. 
Determination of wheat varieties is necessary process for growers, processors and 
consumers. Classification of wheat grains plays an important role in determining the 
market value of wheat varieties [1]. Final products which are bread, biscuit, macaroni 
quality are depending on use of specific wheat varieties. Accurate identification of 
that variety is crucial. Variety recognition of bulk wheat samples is necessary for 
standardizing wheat flour or pasta production quality. Identification process is also 
essential for breeders to predict yield and quality [2].  

The size, shape and color of grain are heritable characters, so these characteristic 
can be used for wheat variety recognition. Classification is usually made by experts 
and trained inspectors through visual inspection which is tedious, labor-consuming 
and subjective. Recently, digital image processing techniques are commonly used in 
texture, shape analysis, type recognition and classification applications in grain indus-
try in order to obtain quick and more reliable results. Computer based image analysis 
is a good alternative to visual identification [3].  

The digital image analysis technique is applied to discriminate wheat classes which 
are Hard Red Winter (HRD) and Hard Red Spring (HRS) and varieties [4]. Using 
digital image processing techniques, geometrical properties for 31 bread wheat varie-
ties were obtained and wheat kernels were classified by using statistical filter [1].  
Digital image analysis algorithms were developed to classify bulk samples of Canada 
Western Red Spring (CWRS) wheat, Canada Western Amber Durum (CWAD) wheat, 
barley, oats, and rye using textural features extracted from different colors, and color 
features [5]. Grain shapes of 15 Indian Wheat varieties were investigated by using 
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digital image analysis [2]. In grain classification process, several methods such as 
statistical, fuzzy logic, artificial neural networks (ANN) etc. have been used. A 
method based on orthonormal transformations was proposed in order to discriminate 
digitized wheat cultivars. Bread and durum wheat cultivars were classified by using 
produced discriminate functions [6]. Healthy and defective cereal grains were classi-
fied by using statistical and neural network methods [7]. Classification performances 
of different neural network architectures were compared by using morphological 
features of CWRS wheat, CWAD wheat, barley, oats, and rye [8-11].  

At the beginning, we applied image analysis methods mentioned above in order to 
extract descriptive features of five varieties of wheat kernels cultivated in Konya, 
Turkey (see Section 2.1) and performed classification experiments with standard 
multilayer perceptron (MLP). In dependence on the network architecture, the MLPs 
generalization errors varied between 10% and 12% [11]. This accuracy, however, was 
insufficient to use in practice for intelligent wheat kernel pricing. 

In the ANN training, usually instead of minimization of classification error a mean 
square error is minimized. Moreover, in multi-class (say, K classes) situation, no 
particular attention is paid to obtain classification rules that discriminate pairs of the 
classes in a best possible way [12]. This factor is especially important in automatic 
classification of the wheat varieties. Therefore, in present paper we pay particular 
attention to support vector (SV) and single layer perceptron (SLP) based classifiers 
aimed to solve two-category problems. Here a problem arises how to design K cate-
gory classifier from binary ones. Hsu and Lin [13] compared K “one-against-all” and 
K(K-1)/2 “one-against-one” decision making strategies and found that latter one is 
more preferable. Following their recommendations we consider multiple classifier 
system based on utilization of one-against-one approach. We investigate a wider 
assortment of the base experts and fusion rules. Utilization of specially designed MCS 
allowed minimizing generalization error of each single grain from 10% (Multilayer 
perceptron, MLP) up to 5% (MCS with SLPs used as base experts and kernel dis-
criminant analysis used for fusion). Further increase in accuracy could be obtained if 
instead of classifying singe wheat kernels, we start classify lots of them: in classifying 
kernel lots of grains practically we may obtain faultless classification.  

2   Material and Methods  

In this study, kernel recognition is carried out for five wheat varieties.  For each wheat 
variety 80 kernels were taken from various bulks raised in different regions of Konya, 
Turkey. Totally 400 kernels were taken. Healthy kernels of each variety were selected 
by experts at Konya Exchange of Commerce. Broken, damaged, shrinked, and very 
small kernels were excluded.  

2.1   Image Acquisition and Analysis 

Digital images of each wheat variety were obtained by using HP 5400 A4 desktop 
scanner with 1200*1200 dpi optical resolution. Eighty kernels of each wheat variety 
were placed at the scanner platform as seen in Figure 1. Digital images were obtained 
in 24 bit/pixel, 100 dpi resolution and tiff formats.  
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Digital color images obtained by a desktop scanner were transformed to gray level 
digital images. Noise was eliminated and edges were preserved by using a median 
filtering which is a non-linear filtering technique [14]. Gray level images were con-
verted into binary images by using Otsu’s methods. Segmentation algorithm was used 
in order to detect wheat kernels in the binary digital image and eliminate non kernel 
points by using morphological operations. Each wheat kernel was labeled after nine 
geometrical features: area, major axis, minor axis, perimeter, equivalent diameter, 
eccentricity, shape factor, roundness, and compactness and color information (R, G 
and B) were extracted from the digital images [1], [11]. Thus, the complete dataset for 
five varieties had numerical data for 12 characteristics on the 400 grains. Extracted 
features are shown Table 1.  

                         

                                      (a)                                                                  (b) 

Fig. 1. a) wheat kernel images b) segmented images 

Table 1. Wheat kernel features 

 

Feature Definition Feature Definition 
A Major axis B Minor axis 

Perimeter 2/)(. 22 BA +π  Eccentricity  
).2(/22 ABA −  

Equivalent diameter 
PerimeterArea /.4  Roundness  )/(.4 2pAArea

 

Shape factor  2/..4 PerimeterAreaπ  Compactness ApArea //.4  
Area  Pixels  R, G and B ∑ kxn/1  

2.2   Fuzzy Pre-processing 

In an attempt to increase classification accuracy of MLP, we tested an option where 
fuzzy features were used instead of original ones enumerated in Table 1. At first, the 
dataset obtained from image analysis was normalized into [0, 1] range. Afterwards, a 
fuzzy pre-processing procedure was applied. For each feature, input membership 
functions and output membership functions were defined. These are selected as stan-
dard triangular membership functions used in fuzzy decision making [15]. Input and 
output range [0 1] are divided into 16 equal parts. After determining the membership 
functions, rules were constituted in a following way: 
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                           if   input is   inj,  then output is outj,  (j = 1, 2, … , 17), 
where  inj and outj denote j-th input and output membership functions, respectively. 
Each feature value used as input value cuts two membership functions and forms two 
membership values. These membership values were determined for each of the fea-
ture values. The membership values were taken as a point to form output membership 
functions. Using rules base, on output membership functions, the output values were 
calculated by centroid defuzzification method [15]   
     

 ∫ ∫= dxxdxxxvalueoutput )(/)( _ outout μμ .       (1) 

2.3   Training the Expert Classifiers 

The pair-wise SLPs or SV classifiers served as base experts. Each time final alloca-
tion of unknown vector x to one of the pattern classes was performed by fusing the 
pair-wise decisions of K-1 base classifiers. To train SLPs perfectly for each pair of the 
classes we trained individual SLP in a special manner and stopped training on a right 
time moment. The main two requirements to profit from evolution of non-linear SLP 

classifier in two category situations is to move training data mean, ijμ̂ , of the pair of 

classes, Πi and Πj,  into the centre of coordinates, and start training from the weight 
vector with zero components. To speed up training process and to reduce generaliza-
tion error for each pair of the classes we performed whitening data transformation 

[16]  y = Gij (x - ijμ̂ ), where Gij = Λ-1/2 ΦT, and  Λ, ΦT are eigen-values and eigenvec-

tors of pooled sample covariance matrix, S = ΣNiSi/ΣNi, and Si is sample estimate of 
covariance matrices of class, Πi. 

In finite training sample situation, we suggest using regularized estimate of the co-
variance matrix [16, 17], Sregularized = S + λ I, where I stands for p×p identity matrix, 
and λ is a regularization constant to be selected in experimental way. In this way, we 
improve sample size / dimensionality ratio (for more details about integration of sta-
tistical methods into SLP training see Chapter 5 in [16]). Important phase in SLP 
training is determination of optimal number of iterations. Actually, determination of 
stopping moment in fact is determination of optimal complexity of the classifier.  
 

To determine “optimal” stopping moment we used artificially generated pseudo-
validation set obtained from training vectors by means of a noise injection. A noise 
injection actually introduces additional information that declares that a space be-
tween nearest vectors of a single pattern class is not empty, but instead is filled up 
with vectors of the same category. This can be accomplished by adding random zero 
mean vectors to each training vector. Such procedure, however, distorts a geometry of 
data distribution. Colored k-NN noise injection was suggested to reduce data distor-
tion [18]. To generate such noise, for each single training vector, xsl, one finds its k 
nearest neighbors of the same pattern class and adds a noise only in a subspace 
formed by vector xsl and the k neighboring training vectors, xsl1, xsl2, …, xslk,. Random 

Gaussian, N(0, 2
noiseσ ), noise is added ninn times along k lines connecting xsl and xsl1, 

xsl2, …, xslk. Three parameters are required to realize noise injection procedure: 1) k, 
the number of neighbors, 2) ninn, the number of new, artificial vectors generated 
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around each single training vector, xsl, and 3) σnoise, the noise standard deviation.  

A noise variance, 2
noiseσ , has to be selected as a trade-off between a complexity of 

decision boundary and learning set size.  When working with unknown data, one has 
to test several values of σnoise and select the most suitable one. To speed up calcula-
tions we used “default” values: k = 2; σnoise = 1.0 and ninn = 25. 

To obtain the pair-wise support vector classifiers we used standard methods de-
scribed in Chang and Lin Matlab package [19]. 

3   Multiple Classifier System for Making Final Classification 

After obtaining K(K-1)/2 pair-wise classifications of each unknown vector, x, made 
by K(K-1)/2 SLPs or SV classifiers, we need to make a final categorization. Popular 
methods to combine outputs of the pair-wise classifications are voting and a method 
suggested by Hastie and Tibshirani [13, 20, 21]. Below we propose using two new 
alternative fusion methods. In both of them, we allocate vector x to class Πz, if K-1 
pair-wise classifiers out of K(K-1)/2 ones are allocating this vector to single pattern 
class, Πz. Otherwise, we perform a second stage of decision making.  

In the first fusion algorithm, we perform final categorization by the K-class net of 
SLPs. Here, both the pair-wise decisions and the fusion are performed by the hyper-
planes. It could be a weakness of the method. In order to increase diversity of decision 
making procedure in initial and final classifications, in the second fusion algorithm, 
the final allocation of x is performed by local classification rule, the kernel discrimi-
nant analysis (KDA) [16, 17]. The latter procedure is similar to fusion rule of  
Giacinto et al. ([22] suggested in Multiple classifier systems framework (for recent 
review of fusion rules see e.g. [23]). 

The K-class set of SLPs was considered above. In the KDA we perform classifica-
tion according to nonparametric local estimates of conditional probability density 
functions of input vectors, fKDA(x| λ, Πi), and qi, prior probabilities of the classes i = 1, 
2, … , K,  where λ is a smoothing parameter. In the experiments reported below, we 
used Gaussian kernel and performed classification according to the maximum of 
products qi × fKDA (x |λ, Πi ) (i = 1, 2, … , K). In order to have fair comparison of KDA 
based algorithm with other ones, we used default value, λ = 1.0. In order to obtain 
more reliable results, cross validation procedures were repeated 250 times. Reshuf-
fling of the data vectors in each category was performed each time. 
 

Classification of grain lots. In order to evaluate accuracy of a procedure to be used 
for intelligent pricing practically, we considered two stage MCS where one classifies 
lots of the grain. For example, if in classifying of the lot composed of 21 kernels ran-
domly selected from a sackful of the grain, 16 kernels are recognized as belonging to 
class Π1, three kernels – to class Π3 and two – to class Π5, then simple majority voting 
procedure will allocate this lot to class Π1. 

Below we will consider a modified, decision making procedure of second stage of 
multiple classifier system: we assign a lot of grains to class ΠK   if more than a half of 
the grains in the lot are recognized as belonging to this class, ΠK. Otherwise decision 
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making is assigned to trained inspectors. A question arises: how to evaluate probabil-
ity of correct automatic decision making of this classification procedure.  

Consider a situation where for testing we have ntest grains of class ΠK  and ncorrect 
grains have been classified correctly (ncorrect < ntest). Let nlot grains compose each sin-
gle lot. In principle, we may form 
  
  klots = ntest!/( nlot!( ntest – nlot)!)    (2) 
 
such lots. Among  klots of the lots, we could have  
 

 kj  = ncorrectt!/( j!( ncorrect – j)!) × (ntest-ncorrect)!/(( nlot-j)!(ntest-ncorrect– nlot+j)!)  (3) 
 
lots where j grains in the lot are classified correctly and nlot - j grains are classified 

incorrectly (j = 0, 1, …, nlot). Note klots = .
lot

0 
∑

=

n

j
jk  According to the definition of our 

decision making procedure, we will perform correct lot allocation if in each single lot, 
a number of grains allocated to true pattern class exceeds nlot /2. Therefore, a fre-
quency of correct automatic decision making will be 
 

  Pcorrect  = .lots
 

/
lot

12/lot

kk
n

nj
j∑

+=

  (4) 

 

In computerized intelligent wheat pricing, the combinatory analysis could also be 
used in order to develop criteria to judge about cleanliness of wheat varieties, a frac-
tion of faulty, damaged, broken kernels, etc. 

4   Results and Discussion 

In present paper we concentrated on the evolution of the network of the pair-wise 
perceptrons in the situation where in final stage of learning process, the minimum 
empirical error or support vector (SV) classifiers could be obtained. We compared the 
best classifier obtained of SLP training and standard SV classifier. In evaluation of 
different variants of learning procedures we used two-fold cross validation technique. 
A half of vectors of each pattern class were selected for training. Remaining vectors 
were used for testing of the classification algorithms.  

To determine optimal number of training epochs of K class SLP (KSLP) and two 
variants of pair-wise SLPs (pwSLP+KSLP and pwSLP+KDA) we used artificially 
generated validation set. This set was generated by means of colored noise injection 
as described above. Thus, in each of 500 experiments we used 200 training vectors 
and 25×200 = 5,000 12-dimensional artificial vectors for validation. Average values of 
generalization errors evaluated in 2×250=500 runs of the experiments with randomly 
permuted data are presented in Table 2. In column “KSLP/amb/PW”, we present 
performance estimates of two benchmark procedures:  
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1) average generalization error of K class net of SLPs,     
2) a fraction, amb, of ambiguous vectors where K-1 perceptrons allocated the 

test vectors to more than to one pattern class,  
3) average generalization error of the kernel discriminant analysis.  

We have mentioned already that standard MLP was used as the third benchmark 
method. Its performance was notably lower as the best MCS. Therefore, no details are 
presented in Table 2. In subsequent four columns of Table 2 we present averages of 
generalization errors where pair-wise decisions of K(K-1)/2 SLP (on the left side of each 
column) or SV classifiers (on the right side) were fused by four different techniques: a) 
voting, b) Hastie-Tibshirani method, c) K class net of SLP or d) KDA as described 
above. The best strategies are marked in bold. Wheat variety confusion matrix in one 
single cross-validation experiment with SLP classification and KDA fusion rules is 
presented in Table 3. Average generalization error was 0.05 in this experiment. In Fig. 4 
we present a histogram of distribution of generalization errors in 500 experiments with 
original (non-fuzzy) data, SLPs and KDA used for fusion.  

Experimental investigations advocate that on average all four combinations of pair-
wise classifications represented as MCSs outperform single stage classification algo-
rithms, the K class net of SLPs, Kernel discriminant analysis and the MLPs. In all 
four pair-wise decision fusion methods, optimally stopped SLP as adaptive and more 
flexible method, outperformed MCS composed of maximal margin (support vector) 
classifiers. In all experiments, local fusion (KDA) of the pair-wise decisions outper-
formed the global fusion algorithms realized by the hyperplanes (K class net of SLPs, 
majority voting or H-T method).  

The histogram gives an impression that in a situation where we have 200 vectors 
for training and 200 ones for testing, the results are highly variable. Assume true 
generalization error is 0.051 as indicated in the last column of Table 2. Standard de-

viation of cross validation error estimate, 200/949.0051.0 × = 0.0156, however, 
agrees with a spread of the distribution presented in the histogram: standard deviation 
of 500 generalization error values is even a little bit smaller, 0.013. Thus, rough 
 

 

Table 2. Generalization errors (in %) in 500 experimental runs with different fusion strategies  

   Data set KSLP/amb/KDA SLP/ SVM 
+ Voting 

SLP/ SVM 
+ H-T 

SLP/ SVM 
+ KSLP 

SLP/ SVM  
+ KDA 

Original #exp=500  9.8 / 0.050 /10.4   7.3 / 8.4  6.6 / 8.0   5.2 / 5.4   5.09 / 5.32 

Fuzzy    #exp= 500 10.6 / 0.049 /11.6   7.7 / 9.6  6.6 / 9.1   5.7 / 6.1   5.32 / 5.83 

Table 3. Confusion matrix of classification of the 200 test vectors with KDA used for fusion  
 

Class 1 2 3 4 5 
1 40 0 0 0 0 
2 0 37 0 0 3 
3 0 0 39 1 0 
4 0 0 1 39 0 
5 0 4 1 0 35 
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Fig. 4. A distribution of the generalization errors in 500 experiments with original data 

evaluation using “3 sigma rule” is: that generalization error of the wheat varieties 

recognition method proposed is 0.051±3*0.0156/ 500 , i.e. 5.0 − 5.2%. 
Similar result could be obtained while using the same automatic decision making 

algorithm based of fuzzy features with 17 membership functions. Smaller number of 
membership functions resulted notably lower classification accuracy. Nevertheless, 
relatively high accuracy obtained with fuzzy features advocates that requirements to 
accuracy of feature extraction could be released. It means a speed of intelligent wheat 
kernel pricing could be increased at the expense of utilization of simpler and cheaper 
feature extraction hardware. 

Equations (2), (3) and (4) derived in Section 3 allow evaluating the frequency of 
correct automatic decision making in classification of the lot of grains. Table 2 dem-
onstrates that classification error in five category task is Perror = 0.0509. In our ex-
periments, test set was compose of ntest = 40 kernels in each category.  It means that in 
the set of 40×5=200 grains, on average ten kernels classified are classified incorrectly. 
In order to evaluate upper bound of classification performance in classification the lot 
of nlot = 21 grains, let us consider unfavorable situation where only kernels of one 
class are classified incorrectly. It means that from 40 grains ncorrect = 30 kernels will be 
classified correctly and 10 grains - incorrectly. Calculation according to Eq. (2), (3) 

and (4) gives: upperbound
correctP = 1.000. In the 500 cross-validation experiments, where 

SLPs trained on original features served as base classifiers and KDA was used for 
fusion, a worst case was: 11 kernels of one wheat variety were misclassified. For such 

situation, upperbound
correctP  = 0.9998.  

For fuzzy features, however, the worst case among 500 cross-validation experi-
ments was when nincorrect = 15 grains of one class were classified incorrectly. If nlot = 

21, then probability of correct decision making would be: upperbound
correctP = 0.958, i.e. 

unsatisfactory. The probability of correct decision making could be increased if for 
the same fraction of incorrect classification of single grains, Perror = 15/200, the larger 
number of grains would be used to form the lot. For example, for ntest = 120 kernels of 
each category, nincorrect = 45 and nlot = 75 Equations (2), (3) and (4) result that prob-

ability of correct decision making would be: upperbound
correctP = 0.9999, i.e. fairly good 

result. Classification of 120 grains is tedious and labor-consuming if  
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classification would be performed by humans, however, this tack could be performed 
easily by automatic procedure.   

We stress once more that all algorithms were compared in identical conditions. The 
artificially generated validation sets were used to determine stopping moments, single 
a priori fixed smoothing parameter value was used in KDA.  

5   Concluding Remarks 

Like SV machine, the binary single layer perceptron is very powerful classification 
technique. Here during development of training procedure we can obtain a variety of 
statistical classifiers [16]. In multi-class situation we suggest utilization the multiple 
classifer system where we perform decision making in two stages. At first, we classify 
unknown vector, x, by means of K(K-1)/2 single layer perceptrons optimally stopped 
for each pair of the pattern classes. Thus, for each pair of the classes we have the 
classifier of optimal complexity. We assign unknown vector to the i-th class if K-1 
pair-wise dicriminant functions are classifying this vector to single class, Πi. If the 
first stage classifiers disagree, for final allocation of vector x we suggest using local 
classification method, the kernel discriminant analysis.   

In the wheat variety recognition task, the classification errors could be evaluated in 
terms of the money. So we are obliged to use perfect pair-wise classifiers. Utilization 
of suitable fusion rules is important as well. Testing performance of MCS based 
wheat varieties classification technique, 95% of correct allocations in recognition of 
each single grain and 99.99% in classification of the grain lots, is found to be satisfac-
tory for wheat variety recognition of incoming wheat samples.  

Supported by strong theoretical considerations about optimality of pair-wise deci-
sions and diversity of base (pair-wise) classifiers and the KDA fusion rules, we have 
heavy arguments that two stage decision making strategy described above is promis-
ing and worth practical application and further investigation. In future analysis, more 
flexible fusion rules, small sample effects [24], specific points of the wheat lot classi-
fication could be investigated. No doubt, the experiments with larger number of wheat 
varieties and larger data sets should be conducted. A fraction of strange wheat variety, 
faulty, damaged and broken kernels and percentage of foreign materials at bulk wheat 
samples can be determined for purposes of intelligent pricing.  
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Abstract. This paper investigates the use of multiple classifier meth-
ods for offline handwritten text line recognition. To obtain ensembles
of recognisers we implement a random feature subspace method. The
word sequences returned by the individual ensemble members are first
aligned. Then the final word sequence is produced. For this purpose we
use a voting method and two novel statistical combination methods. The
conducted experiments show that the proposed multiple classifier meth-
ods have the potential to improve the recognition accuracy of single
recognisers.

1 Introduction

After many years of research in the field of handwriting recognition there are
still many open problems. Whereas good performance is achieved for isolated
handwritten characters or digits, the recognition rate usually drops for word
recognition. An even more difficult task is the recognition of unconstrained hand-
written text lines. This problem is among the most challenging tasks in pattern
recognition. There are large differences in individual writing style as well as in
writing instruments, and the lexicon usually contains a huge amount of word
classes to be distinguished (typically more than 10,000). Furthermore, the cor-
rect number of words in a text line is unknown in advance, which often leads to
word segmentation errors. Therefore, a high recognition accuracy is difficult to
achieve. In the literature recognition rates between 50% and 80% are reported,
depending on the experimental setup [1,2,3,4].

In many different pattern recognition fields, ensemble methods have been suc-
cessfully applied [5,6,7]. By the combination of the results of multiple classifiers,
the recognition accuracy can often be improved compared to a single classifier
system. In handwriting recognition, several ensemble methods have been pre-
sented for isolated digit [8,9], character [10], or word [11,12] recognition. How-
ever, the investigation of ensemble methods for unconstrained offline handwritten
text line recognition has started only recently [13,14]. Additional synchronisa-
tion effort is required to combine multiple text line recognition systems because
the number of words in the output returned by the individual recognisers might
differ. In [13] a heuristic approach has been used to align and combine multi-
ple handwritten text line recognisers. Positional information of the recognised
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words is exploited to reduce the search space of the alignment. In [14] multi-
ple recognisers were built by specific integration of a statistical language model.
Alignment and combination was done by means of the ROVER algorithm [15].

In this paper we further investigate ensemble methods for offline handwritten
text line recognition. Our contribution is twofold. First, feature subspace meth-
ods are applied for the first time in offline handwritten text line recognition to
generate individual ensemble members. Secondly, a novel statistical combination
method is proposed.

The remaining part of the paper is organised as follows. Section 2 introduces
the base recogniser and the ensemble generation procedure. Section 3 describes
the combination methods, including an example. Experiments and results are
discussed in Sect. 4 and conclusions are drawn in the last section of this paper.

2 Ensemble Generation

2.1 Hidden Markov Model Based Recogniser

The offline handwritten text line recogniser we use as the base recognition sys-
tem is an enhanced version of the recognition system introduced in [16]. Im-
provements were made at the language model integration level as well as in the
modeling of the characters. Additionally, the lexicon is not closed over the test
set anymore.1 The system can be divided into three major parts: preprocessing,
hidden Markov model (HMM) based recognition, and postprocessing.

To reduce the impact of different writing styles, a handwritten text line image
is normalised with respect to skew, slant, and baseline position in the preprocess-
ing phase. After these normalisation steps, a handwritten text line is converted
into a sequence of feature vectors. For this purpose a sliding window is used which
is moved from left to right, one pixel at each step. Nine geometrical features are
extracted at each position of the sliding window.

In the HMM based recognition phase each character is modelled with a linear
HMM. The number of states is chosen individually for each character [4], and
twelve Gaussian mixture components are used to model the output distribution
in each state. The Baum-Welch algorithm is used for the training of the HMMs,
whereas the recognition is performed by the Viterbi algorithm. A statistical lan-
guage model supports the Viterbi decoding step. The integration of this language
model is optimised on a validation set as described in [4].

A confidence measure cw based on frame normalised likelihoods [17] is com-
puted for each recognised word w. The confidence measure indicates how sure
the recogniser is about its decision.

1 The new setup is more realistic, because it makes less assumptions on the test data.
However, we expect lower recognition rates under this new setup because it can
happen that a word occurring in the test set is not present in the lexicon and
therefore can not be recognised correctly.
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2.2 Feature Subspace Methods

To get ensembles of text line recognition systems we apply the random feature
subspace method [18]. Multiple recognisers are built on different subsets of fea-
tures. These subsets are chosen randomly with a fixed size. The only constraint is
that the same subset must not be used twice. We select 24 subsets each consisting
of six (out of nine) features.

Next, 24 recognisers are trained on the subspaces.2 The same topology is used
for each recogniser. After training, the integration of the statistical language
model is optimised individually for each recogniser on a validation set.

Instead of using all 24 recognisers in one large ensemble we apply an ensemble
member selection strategy. On a validation set, we apply a greedy forward search
to find the optimised ensemble [14]. First, the individual subspace recogniser
which performs best is selected as an ensemble member. Then, we tentatively add
each other ensemble member and measure the performance of the resulting new
ensembles. The best performing ensemble is selected for continuation. Iteratively,
we add the best remaining subspace recogniser to the ensemble. This method is
also known as overproduce-and-select [6].

3 Combination of Word Sequences

3.1 ROVER Combination

The Recogniser Output Voting Error Reduction (ROVER) system [15] was de-
veloped in the field of continuous speech recognition. It became a standard tool
for the combination of multiple continuous speech recognisers. The algorithm
consists of two phases. First, there is an alignment phase, followed by a voting
phase.

ROVER applies an incremental algorithm to align multiple sequences of words
delivered by the individual ensemble members. At the beginning, the first and the
second word sequence are aligned in a single Word Transition Network (WTN).
This WTN is aligned with the next recognised word sequence and so on. Null
transition arcs ε are inserted in the WTN if the length of the input sequences
differ. The final WTN, including each of the n recognised word sequences, does
not guarantee an optimal alignment but in practice the sub-optimal algorithm
often provides an adequate solution for the trade-off between computational
costs and alignment accuracy.

An example of multiple sequence alignment using ROVER is shown in Fig. 1.
Given the image of the handwritten text the mouth-organ, the recognisers R1,
R2, and R3 produce three different results. In the first step the results of R1 and
R2 are aligned in a single WTN. Subsequently, the result of R3 is aligned with
this WTN.

Once the alignment is complete, the best scoring word sequence is extracted
from the WTN by voting. For this purpose, a decision is made individually for
2 As the training of our HMM recognisers is computationally very demanding, it is

not possible to experiment with larger ensembles.
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Fig. 1. Example of an iterative alignment of multiple recognition results

each segment of the WTN. The decision depends on the size n of the ensemble,
of alternatives present in the WTN, on the number of occurrences mw of a word
w in the current segment of the WTN, and on the confidence measure cw of w.
This confidence measure is defined as the maximum confidence measure among
all occurrences of w at the current position in the WTN. For each possible word
class w, the score sw is calculated as follows:

sw = λ
mw

n
+ (1 − λ)cw (1)

Paramter λ weights the influence of the confidence score cw against the number
of occurences mw. The optimised value of λ is found by probing various values
on a validation set. Additionally, because the null transition arcs ε don’t have
confidence measures, a global confidence measure cε has to be determined ex-
perimentally. Finally, the word w with the highest score sw is returned as the
final result for each segment (we refer to [15] for more details about ROVER).

3.2 Statistical Decision

Various statistical decision strategies have been proposed in the literature to
combine the results of the individual members of a multiple classifier system
[8,19,20]. However, if the number of classes is large most of these methods are not
feasible because there is usually not enough training data available to estimate
the required probabilities sufficiently well. In contrast, the statistical decision
method proposed in this paper is able to handle an arbitrarily large number
of classes. It considers not the class label itself, but which recognisers output
a particular class label. The decision method is used as an extension to the
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ROVER combination scheme. It uses the same alignment module, but applies
the novel decision method instead of the voting procedure based on Eq. 1 to find
the final decision.

Once the alignment is complete, we apply the statistical decision method to
each segment of the WTN. A feature vector Xw is extracted for each word
class w that occurs in the considered segment. The feature vector contains the
confidence measures cw of the recognisers that output w:

Xw = (xw,C1 , . . . , xw,Cn) (2)

where

xw,Ci =
{ cw if classifier Ci outputs w

0 else (3)

The feature vector Xw is used as input to a Multi-Layer Perceptron (MLP). The
MLP consists of l input neurons, one hidden layer, and two output neurons. One
of the output neurons represents the score for w being correct, whereas the other
output neuron represents the score for w being incorrect under input Xw. The
score for correctness is used to estimate the probability p(w = correct|Xw).

The final word class ŵ is calculated by

ŵ = argmax
w

p(w = correct|Xw). (4)

A simplified version of this method uses binary feature vectors as input of the
MLP. These feature vectors indicate whether a word is present in the output of
a specific recogniser or not. For this purpose, Eq. 3 is rewritten as follows:

xw,Ci =
{1 if classifier Ci outputs w

0 else (5)

Note, that in contrast to the ROVER combination scheme and the statistical
decision method using the confidence measure cw, the binary decision method
does not require the recognisers to output confidence values. Thus, it is more
generally applicable.

An example of the binary version of the statistical decision method is given
in Fig. 2. The scanned image of the handwritten text leave in the autumn is
shown in (a). In this example three different recognisers R1, R2, R3 are used.
The outputs of these recognisers are aligned in a WTN as shown in (b). Next, a
binary feature vector is built for each word that occurs in a segment according
to Eq. 5. The resulting feature vectors are listed in (c). For each of these vectors
the MLP calculates the score for a correct decision (d). The final combination
result shown in (e) is then derived according to Eq. 4.
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a) Input image of handwritten text:

(b) WTN including the aligned recognition results of R1, R2, R3:

Segment 1 Segment 2 Segment 3 Segment 4

R1: leave is the autumn
R2: leave in that autumn
R3: leave is that august

(c) Input feature vectors:

Segment 1: Xleave = (1, 1, 1)
Segment 2: Xis = (1, 0, 1) Xin = (0, 1, 0)
Segment 3: Xthe = (1, 0, 0) Xthat = (0, 1, 1)
Segment 4: Xautumn = (1, 1, 0) Xaugust = (0, 0, 1)

(d) Estimated probabilities for the correctness of a decision:

Segment 1: p(correct|Xleave) = 0.9
Segment 2: p(correct|Xis) = 0.5 p(correct|Xin) = 0.7
Segment 3: p(correct|Xthe) = 0.7 p(correct|Xthat) = 0.3
Segment 4: p(correct|Xautumn) = 0.6 p(correct|Xaugust) = 0.2

(e) Combination result:

leave in the autumn

Fig. 2. Example of the statistical decision procedure using binary feature vectors

4 Experiments and Results

All experiment reported in this section are conducted on handwritten text lines
from the IAM3 database [21] and make use of the HMM based recogniser de-
scribed in Sect. 2.1.

4.1 Experimental Setup

A writer independent task is considered. Thus, none of the writers in the test
set is represented in the training or validation set of the system. The training
set consists of 6161 text lines written by 283 writers; 56 writers have contributed
920 text lines to the validation set, whereas the test set contains 2781 text lines
by 161 writers.

The statistical language model is based on three different corpora, the LOB
corpus [22], the Brown corpus [23], and the Wellington corpus [24]. A bigram
language model is built for each of the corpora. These bigram models are then
combined linearly with optimised mixture weights [25].

3 The IAM database is publicly available for download at
http://www.iam.unibe.ch/∼fki/iamDB
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Fig. 3. Validation of the number of ensemble member using the ROVER combination
method

The underlying lexicon consists of the 20,000 most frequent words that occur
in the corpora. The lexicon has not been closed over the test set, i.e. there may be
words in the test set that do not occur among the 20,000 most frequent words
included in the lexicon. This scenario is more realistic than a closed lexicon
because the texts in the test set are usually unknown in advance.

For computational reasons, the selection of ensemble members is accomplished
with a greedy forward search on the validation set using the ROVER combination
algorithm only. Figure 3 shows the result of this validation procedure. The best
performing ensemble has n = 18 members. The same ensemble is then used
to test the three combination methods, i.e. ROVER, statistical decision with
confidence measures, and statistical decision with binary vectors.

The MLPs used by the statistical decision methods are trained and opti-
mised on the validation set. We train the weights of the MLP with a standard
back-propagation algorithm. During the validation phase the number of hidden
neurons as well as the number of training iterations are optimised by means of
minimising the mean square error on the validation set. 820 text lines are used
for training. The remaining 100 text lines are used for validation.

4.2 Results

Finally, we measure the performance of the optimised systems on the test set.
As a reference system we train and optimise a single base recogniser which uses
all nine features. This base recogniser achieves a word recognition accuracy of
64.48%. The ROVER algorithm attains an accuracy of 65.29% and the novel
statistical decision method with confidence measures achieves an accuracy of
65.31%. The simplified version that uses only binary input features for the MLP
slightly improves this accuracy to 65.35%. Compared to the base recogniser,
all improvements are statistically significant, whereas the difference between
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Table 1. Recognition accuracies measured on test and validation set

Validation Test

Reference System 69.94% 64.48%
ROVER 71.44% 65.29%
Statistical with Confidence 71.52% 65.31%
Statistical with Binary 71.90% 65.35%

ROVER and the statistical decision methods is not statistically significant. The
significance is computed at the text line level with a significance level of 5%.
The results of the different methods on the validation and on the test set are
summarised in Tab. 1.

One advantage of ensemble methods is that we usually get more stable results
than with a single recogniser. This observation is confirmed in our experiments.
For each system we measure the standard deviation of the recognition accurracies
among the individual text lines in the test set (Tab. 2). As expected the standard
deviation of the single recogniser is higher than the standard deviation among
results of the ensemble methods.

Table 2. Standard deviation of the recognition accuracies of the text lines in the test
set. The standard deviation decreases if ensemble methods are applied indicating that
the results become more stable.

Standard Deviation

Reference System 26.7%
ROVER 25.1%
Statistical with Confidence 25.1%
Statistical with Binary 25.0%

5 Conclusions

In this paper we have investigated the use of multiple classifier methods for offline
handwritten text line recognition. The ensembles are created by means of the
random feature subspace procedure. Three methods, one previously known and
two novel ones, are evaluated to combine the results of the ensemble members.

The handwritten text line recognisers are based on hidden Markov models
using a mixture of Gaussians and an individual number of states for each basic
model. A large lexicon of 20,000 word classes is used, and a statistical language
model trained on three different corpora supports the recognition step. To gen-
erate the ensemble members we implement a random feature subset method. Six
out of nine features are randomly chosen to build the subsets. A greedy forward
search is applied to select the ensemble members.

The ROVER framework is used to combine the results of the ensemble mem-
ber. First, an iterative algorithm is applied to align the results in a word tran-
sition network. Secondly, we extract the best scoring transcription from the
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network to get the final result. Additionally, we use a novel statistical decision
methods as an extension to ROVER. A feature vector is calculated for each oc-
curring word class based on the outputs of the ensemble members. Using this
feature vector, a Multi-Layer Perceptron estimates the probability that an out-
put class is the correct decision. The novel statistical decision method is able to
deal with an arbitrarily large number of classes (in our case 20,000 word classes).

Experiments have been conducted on a large set of text lines from the IAM
database. In terms of word level accuracy the ensemble methods significantly out-
perform the baseline system. The statistical decision methods perform slightly
better than the ROVER decision method. Additionally, we show that the vari-
ance can be reduced by the ensemble methods, which indicates that the results
become more stable.
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Abstract. This paper investigates the use of diverse data fusion meth-
ods to improve the performance of the passage retrieval component in
a question answering system. Our results obtained with 13 data fusion
methods and 8 passage retrieval systems show that data fusion tech-
niques are capable of improving the performance of a passage retrieval
system by 6.43% and 11.32% in terms of the mean reciprocal rank and
coverage measures respectively.

Keywords: DataFusion,QuestionAnsweringSystems,PassageRetrieval.

1 Introduction

A Question Answering System (QAS) is one type of information retrieval (IR)
system that attempts to find exact answers to user’s questions expressed in
natural language. In an Open-Domain Question Answering System (ODQAS),
questions are not restricted to certain topics and answers have to be found in
an unstructured document collection. Passage Retrieval (PR), one component
of a QAS, extracts text segments from a group of retrieved documents and
ranks these passages in decreasing order of computed likelihood for containing
the correct answer. Typically, such text segments are referred to as candidate
passages.

Data Fusion applied to Information Retrieval (IR Data Fusion) is the intelli-
gent combination of a variety of IR system’s opinions on a document’s relevance
to the user’s information need represented in a query. If the combined relevance
estimate of a document is more accurate than any of the individual IR sys-
tem’s estimates, performance will be improved. The findings of several recent
studies on the application of Data Fusion to IR report improvements in perfor-
mance [3] [5] [16]. Using Data Fusion techniques, a QAS will be able to provide
correct answers to more questions.

This paper is organized as follows. Section 2 briefly describes related work on
the application of IR Data Fusion methods to a QAS. Section 3 describes the IR
Data Fusion methods investigated. Section 4 investigates which normalization
schema performs best for IR Data Fusion applied to PR in a QAS. Section 5
describes the evaluation of the Data Fusion methods and the results achieved.
Finally, section 6 presents conclusions and future work.
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c© Springer-Verlag Berlin Heidelberg 2007



Applying Data Fusion Methods to Passage Retrieval in QAS 83

2 Related Work

Although several studies have investigated the application of Data Fusion to
QA systems and in general achieved promising results—e.g. Harabagui et al. [4]
report a consistent improvements in terms of precision as high as 20%—only few
have investigated the potentially beneficial application of Data Fusion to the
task of PR within a QAS. Our contribution in this regard is methodological i.e.
we explore experimentally diverse techniques to fuse effectively an ensemble of
PR systems to improve the overall performance of a QAS.

The internal Data Fusion experiment carried out by Unsunier et al. reported
in [18] achieves a consistent improvement in Coverage@n ranging as high as
119% at Coverage@1. However, the machine learning techniques they employed
are based on the learned features of answering passages; hence requiring an extra
training step.

As part of their evaluation of a number of PR systems, Tellex et. al. [17]
experimentally fuse three PR systems achieving a 6% increase in performance
in terms of Mean Reciprocal Rank (MRR). Several other IR studies on the ap-
plication of Data Fusion for document retrieval (e.g. Lee [9] and Montague [12])
have reported important improvements in performance but on ad-hoc document
retrieval systems and not specifically in PR for QAS. Contrarily to these previ-
ous approaches, the methodology presented in this paper explores what is the
best way to fuse the ranking evaluations produced by diverse PR systems.

3 Descriptions of the Fusion Methods

This section describes with some detail the IR Data Fusion methods we applied
to Passage Retrieval. Table 1 shows the IR Data Fusion methods grouped accord-
ing to Montague’s classification scheme [12], which is based on two characteristics
of the input: (1) whether similarity scores are available or ranks only and (2)
whether training data are available or not. Typically, training data are judged
search results, which are then used for learning IR system specific performance
weights. Accordingly, this schema consists of four classes of Fusion methods:
ranks only (RO), relevance scores (RS ), ranks and training data (R+W), and
relevance scores and training data (RS+W).

Intuitively, the more information a Fusion method uses for fusing n search
results, the better it performs on average. Therefore, we expect an improved
performance in RS+W Fusion methods followed by RO+W, RS, and finally RO
Fusion method, which we expect to perform worst.

3.1 Data Fusion Methods Based on Ranks Only

Based on Social Choice Theory, Montague and Aslam [13] proposed an adapted
version of the Condorcet voting method: the Condorcet-fuse method, which they
found to be just as effective as the CombMNZ Fusion method. The Condorcet-
fuse method is a generalization of the Condorcet election process, where the win-
ner of an election is the candidate that beats or ties with every other candidate in
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Fig. 1. Classification of the 9 IR Data Fusion methods

a pair-wise comparison, such that the result is a ranked list of documents rather
than a single winner. This is accomplished by first executing the Condorcet elec-
tion process for all pairs of IR systems constructing a graph, where documents
are nodes and a directed edge x → y means that x has received at least as
many votes as y and thus must be ranked higher. Then, traversing all nodes of
the graph yields the Fused ranking, where the first node is the highest ranked
document. While the Condorcet-fuse voting method has a time complexity of
O(n2 ∗ k), n being the number of documents and k the number of IR systems,
Montague and Aslam [13] propose an efficient implementation of Condorcet-fuse
using a modified QuickSort method.

In [1], Montague and Aslam also introduce a novel voting Fusion method to
the problem of Data Fusion in IR: Borda-Fuse, which is an adaptation of the
Borda Count election process, where voters give candidates a certain amount
of points and the winner is the one who makes more points. Evaluation showed
that in two of the five tests using TREC test data, Borda-fuse performed better
than the best component IR system in the election [1].

Tellex and colleagues [17] propose a simple yet effective method for fusing the
search results of multiple PR in a QAS systems. The method combines a passages
rank and a simple vote: the total number of passages retrieved by all component
PR systems with a specific document ID into a fused relevance score. Application
of the Fusion methods to the 3 best performing passage retrieval methods of the
PRISE IR system showed that it was able to improve the Mean Reciprocal Rank
by 6% [17]. The method calculates a score for each passage as follows.

score(a, r) =
1
r

+ docScore(docID(a, r)) (1)

Interestingly, Tellex et al.’s method re-ranks the set of top n candidate passages
retrieved by all component PR systems and thus does not fuse identical passages
thereby avoiding the difficulty of identifying identical passages.

Based on the observation that frequently when Tellex et al.’s Fusion method
boosted low ranked passages, those passages in fact were non-relevant, we
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propose in this paper a new Fusion method called Tellex modified, where the
union of top m passages retrieved by all component PR systems is re-ranked.
However, although we restricted Tellex et al.’s Fusion method from including
passages at lower ranks, the document counts are still computed for the top 300
passages retrieved by all component PR systems.

3.2 Data Fusion Methods Based on Relevance Scores

Fox and Shaw [6] introduce and evaluate the 6 simple Fusion methods of table 1.

Table 1. The six Fusion Methods introduced by Fox and Shaw (adapted from [6])

CombMAX rf (di) = max
∀sj∈S

�
rsj (di)

�
CombMIN rf (di) = min

∀sj∈S

�
rsj (di)

�
CombSUM rf (di) =

�
∀sj∈S

�
rsj (di)

�

CombANZ rf (di) = CombSUM/t

CombMNZ rf (di) = CombSUM ∗ t

CombMED rf (di) =

�
rs(n+1)/2(di) if n is odd

(rsn(di) + rs(n+1)(di))/2 if n is even
, rs0(di) ≥ . . . rsn(di)

In table 1, rf (di) is the fused rank of the document di, rsj (di) document di’s
rank at the IR system sj ∈ S, the set of IR systems to be fused, and t the
number of IR systems retrieving di.

Out of the six “comb”-methods, Fox and Shaw provide evidence that Comb-
SUM followed by CombMNZ performs best. They argue that this is because
both methods utilize information about ranking (since highly ranked documents
are preferred) and voting (because documents found by multiple systems are
preferred). Later Lee [10] found that CombMNZ in fact performs relatively bet-
ter. Although these variation in effectiveness may be explained by differences in
document collections and query sets, it seems reasonable to assume that in gen-
eral CombMNZ is superior to CombSUM since more recent Fusion experiments
supports this observation.

3.3 Data Fusion Methods Based on Ranks and Training Data

A weighted Data Fusion method takes into account a component PR system’s
ability to provide answering passages. This way, important component PR sys-
tems have a greater influence on the Fused relevance score.

As suggested by Aslam and Montague [1], Borda-fuse can be extended to a
weighted variant: Weighted Borda-fuse by multiplying the points, which a PR
system Si assigns to a candidate passage with a system weight αi. This is equally
true for passages, which a PR system retrieves and those not retrieved, which
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are given an average score. This way, the relevance assessments of a PR sys-
tem considered good at providing candidate passages is preferred. Experimental
comparison with CombMNZ Fusion method, where non-optimized weights were
used, showed that weighted Condorcet Fuse was able to achieve the same level
of performance. Thus, by using improved performance weights, Weighted Borda-
fuse has the potential of outperforming CombMNZ [13].

Just like Borda-fuse, Condorcet-fuse can be easily extended to take impor-
tance weights into account. In weighted Condorcet-fuse, rather than crisp votes,
each component PR system gives an importance weighted vote. However, this
time the importance weights are used in the binary candidate elections, where
the sum of weights rather than votes is compared giving preference to the high-
est sum. Comparison with the CombMNZ Fusion method showed than weighted
Condorcet Fuse performed best on three of four TREC data sets [13].

3.4 Data Fusion Methods Based on Relevance Scores and Training
Data

Vogt and Cottrell’s Linear combination (LC) Data Fusion method combines the
relevance scores and training data of two or more component IR systems into
a combined relevance score per document [19]. In LC, training data are used
for calculating importance weights based on standard IR metrics thus reflect-
ing the overall ability of an IR system to provide relevant documents. Given
both relevance scores and performance weights the aggregated relevance score is
calculated using equation 2.

sLC(d) =
∑

∀si∈S

αi ∗ si(d) (2)

where SLC(d) is the fused relevance score assigned to the document d, si is the
ith PR system’s of the set of PR systems to be combined S relevance score,
and ai the importance weight assigned to the ith PR systems. In LC, if an IR
system does not retrieve a particular document, then the IR systems is assumed
to consider it non-relevant. Accordingly, such a document is assigned a relevance
score of 0. Although simple, in various experiments LC has performed well often
outperforming the base-line system with a margin of 5% to 10%.

Recently, a number of researchers have investigated the application of the
Ordered-Weighted Averaging (OWA) class of Fuzzy logic averaging operators to
Data Fusion. A desirable property of OWA is that the degree of ANDness can
be adjusted by changing the OWA weights.

OWA(vi, ai) =
n∑

i=1

vi ∗ ai (3)

where v is a vector of OWA weights (v1, v2, ...vn) with
∑

vi = 1 sorted is descend-
ing order and a a vector of Fuzzy satisfaction degrees (a1, a2, ...an), ai ∈ [0, 1].
Diaz et al. investigated the use of the OWA class of Fuzzy averaging operator to
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ad-hoc IR. They found OWA to outperform Borda-fuse when at least 8 IR sys-
tems are combined [3]. In [11] it is reported the use of an adapted version of the
weighted maximum entropy OWA (MEOWA) operator as a weighted classifier
combination method. It was found that the adapted weighted MEOWA operator
improved performance measured by the F1 measure with 6.51% compared to the
best performing classifier [11] in the ensemble.

4 Normalization of Relevance Scores

In general, in Data Fusion applied to IR normalization of relevance scores is
necessary since different IR systems use different scales for relevance scores. For
example, one IR system might chose to use positive real values and another IR
system values in the Unit Interval. Two well-known normalization schemes are
shift-scale normalization and shift-sum normalization of equations 4 and 5.

scoren
sk

(di) =
scoresk

(di) − m
min
j=1

scoresk
(dj)

m
max
j=1

scoresk
(dj) − m

min
j=1

scoresk
(dj)

(4)
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scoresk
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m∑

j=1

scoresk
(dj) − m

min
j=1

scoresk
(dj)

(5)

where scoresk
(di) is the unnormalized score of document di retrieved by the IR

system sk, scoren
sk

(di) is the normalized score, and m the number of documents
retrieved by the IR system in question.

In order to determine which of the 3 normalization schemes including ”no
normalization” performs best for Data Fusion applied to PR, we performed an
experiment, where the three Data Fusion methods utilizing relevance-scores:
CombMNZ, CombSUM and MEOWA are tested with all 238 unique combination
of the 8 PR systems: FuzzyPRS [2], JIRS TW and JIRS DM [7], LucenePRS,
LucenePRS+FuzzyPRS, Terrier in expC2 [14], and Zettair 1 applied to two QA
test sets: CLEF03 and TREC11. Accordingly, 2 ∗ 3 ∗ 238 = 1, 428 runs have to
be performed. Performance is measured using the three standard QA metrics:
Mean Reciprocal Rank (MRR), Coverage@20, and Redundancy@20.

In summary we found that (1) using no normalization consistently performed
worse measured by both Coverage@20 and Redundancy@20 indicating the ne-
cessity of using a normalization scheme in PR Data Fusion, and (2) applied to
PR Data Fusion, in terms of MRR and Coverage@20 shift-max normalization in
general performs better than shift-sum normalization.

1 Zettair and Lucene are popular open source search engines.
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5 Evaluation

Using the methodology employed by Aslam and Montague [1] and Tellex et
al. [17], we performed two experiments to investigate the capability of a number
of Fusion methods’ to improve the performance of the PR module in a QA system
to provide an answer to 5 questions. In both experiments we used the same IR
Data Fusion methods, component PR systems, QA test data and performance
metrics described in subsection 1.

The first experiment, which we denote as brute-force, was designed to explore a
number of PR systems’ ability to improve performance no matter the number and
performances of the component PR systems combined. Ideally, a Fusion method
will be able to consistently improve the performance of the best performing
component PR system. Each of the Fusion methods was tested with all different
component PR system subsets of sizes {2, 3, 4, 5, 6}.

In the second experiment - denoted as best-to-worst - we investigated the
Fusion methods’ ability to improve performance by using knowledge of the past
performances of the PR systems. The i ∈ {1, 2, 3, 4, 5, 6} best performing PR
systems were combined. Since the top 1 to top 6 PR systems amount to 6 different
sets of PR systems, 6 runs with each of the Data Fusion methods had to be
performed.

5.1 Methodology

Besides the 9 Data Fusion methods described in section 3, we applied subclass
weighting to weighted Condorcet-Fuse, weighted Borda-Fuse, LC and weighted
MEOWA (IWMEOWA). Thus, the total number of different Data Fusion meth-
ods with which we experimented was 13.

As importance weights we used the performance weights computed using the
TREC11 and CLEF03 test data. Evaluation of 7 different performance weights
found that max-normalized MRR (nMRR) to perform best.

While the two Fusion experiments were being performed, we found it necessary
to exclude Condorcet-fuse with question type weights because it consistently
worsened performance.

In our experiments we used the following 8 component PR systems: JIRS
[7] using the Distance Model, FuzzyPRS [2], JIRS using the Simple Model,
FuzzyPRS, FuzzyPRS+LucenePRS, LucenePRS, Swish-e, Terrier PL2 [14] using
In expC2 probabilistic model, and Zettair. A component PR system must a) be
able to automatically process a question set and b) for each question produce a
search result, which contains the information on relevance score, document ID
and passage text in the required syntax.

As test data we used TREC12’s set of 495 questions and the corpus
called AQUAINT consisting of 1, 033, 461 documents of English news text
and CLEF04’s 180 question and the AgenciaEFE corpus of 454, 045 Spanish
newswire documents. To answer questions automatically for TREC12 we used
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Ken Litkowsky’s regular expression patterns of correct answers2 and for CLEF4
we used the pattern supplied with JIRS3 The TREC12 question set was reduced
to 380, since 115 questions do not have a recognizable pattern.

As evaluation metrics we used MRR, Coverage, and Redundancy. Mean Recip-
rocal Rank (MRR) is defined at the average of the reciprocal value of the first
hit to each question within the top 5 candidate passages:

MRR =
1

|Q|
|Q|∑

i=1

RRi (6)

where RRi = 1
ri

if ri ≤ 5 or 0 otherwise and Q is the set of questions and ri the
rank of the first answering passage in response to a particular question. As is
done in the JIRS system [8], we measure coverage on the first top 20 passages.
Coverage is defined as the proportion of questions for which an answer can be
found within the n top-ranked passages:

cov(Q, D, n) ≡ |{q ∈ Q|RD,q,n ∩ AD,q �= ∅}|
|Q| (7)

being Q the question set, D the passage collection, AD,q the subset of D which
contains correct answers for q ∈ Q, RD,q,n the n top ranked passages. Redun-
dancy is defined the average number, per question, of the top n passages, which
contain a correct answer [15].

Redundancy(Q, P, n) ≡
∑

q∈Q |RP,q,n ∩ AP,q|
|Q| (8)

where Q is the set of questions, RP,q,n the n top ranked passages and AP,q the
subset of passages P containing correct answers to q ∈ Q.

5.2 Results

When the Data Fusion methods were applied to PR, using 2 different sets of test
data (TREC12 and CLEF04), we were able to improve performance measured by
a maximum of 6.43% in terms of MRR and by 11.32% in terms of Coverage@20.
These results were obtained by fusing 4 PR system and using our modified
version of Tellex et. al.’s [17] Fusion method as shown in table 2.

In general we were not able to improve performance when using Redun-
dancy@20. Somewhat surprisingly, the modified Tellex Fusion method neither
requires relevance scores of passages nor importance weights of the PR systems
to be fused.

We also obtained the results of the brute-force approach employing both
TREC12 and CLEF04 as test data. Comparing the performance results achieved
2 Ken Litkowsky’s patterns are available from the TREC website:
http://trec.nist.gov.

3 Patterns of correct answers to CLEF QA test data are available from JIRS’ website:
http://jirs.dsic.upv.es/.

http://trec.nist.gov
http://jirs.dsic.upv.es/
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Table 2. The MRR and Coverage@20 of Modified Tellex compared to the 2nd best
Fusion methods tested with a) TREC12 (top) and b) CLEF04 (bottom) QA test data

in terms of MRR and Coverage@20 metrics when applying the Fusion methods
to both TREC12 and CLEF04 test data revealed that in general only the mod-
ified version of Tellex et al.’s [17] method was able to improve performance in
terms of these metrics.

For each of the 4 classes of Fusion methods we calculated the average and
maximum of the results achieved when all Fusion methods were applied to both
test sets. We found that the class of Fusion methods, which only takes a ranked
list of candidate passages as input, performed best, contrarily to our expectation
that Fusion methods utilizing more information on relevance perform better.

We used a historical MRR metric computed using CLEF03 and TREC11 sets
of test data to rank the individual PR systems according to their performances,
since we found this metric to perform best. We found that all three performance
metrics were consistently either improved or remained the same compared to
the results of the brute-force experiments for both TREC12 and CLEF04 test
data. Although the results did not reveal a Fusion method, which consistently
benefited the most from fusing the i best performing PR systems, the results
indicated that the combination of the top 2 PR was able to achieve the highest
improvements.

We tested both the unweighted and weighted versions of Condorcet-fuse yield-
ing a total of 4 Fusion methods. While both Fusion methods consistently im-
proved performance for the TREC11 QA test set by a small margin, they fail
doing so when applied to CLEF04 QA test data, where performance measured as
MRR degrades by a maximum of 3.56% thus indicating a need for more advanced
weighting schemes i.e. applying machine learning techniques.

Finally, we tested IWMEOWA, Condorcet-fuse and Linear Combination with
both types of weighting resulting in 6 different Fusion methods applied to both
TREC12 and CLEF04 test data. We found that using weights per question type
instead of overall importance weights did not consistently provide additional
performance improvements.
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6 Conclusions and Future work

This paper investigated the application of a total of 13 Data Fusion methods to
Passage Retrieval in a QAS, eight of these utilize importance weights and impor-
tance weight per subclass of questions. Using 2 sets of QA test data, we found
that the data fusion mechanisms were able to improve MRR by a maximum of
6.43% and Coverage@20 by 11.32%. These results were obtained by fusing 4 PR
in a QAS systems with our proposed modification to Tellex et. al.’s method [17].
Contrarily to our initial expectations, based on the performance improvements
obtained by the use of importance weights in voting systems applied in informa-
tion retrieval systems and [3] patent classification [11], our experiments indicate
that importance weights did not yield significant improvements in performance.
The reason for this may be that we used a too simplistic approach to obtain
the performance weights employed in our experiments and that the proposed
question classification scheme does not generalize well with new questions.

As future work we plan to apply machine learning techniques and advanced
question classification schemes to Data Fusion of PR systems in a QAS to im-
prove performance even further.
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Abstract. In this paper we consider the problem of missing data in
time series analysis. We propose a semi-supervised co-training method
to handle the problem of missing data. We transform the time series
data to set of labeled and unlabeled data. Different predictors are used
to predict the unlabelled data and the most confident labeled patterns
are used to retrain the predictors further to and enhance the overall pre-
diction accuracy. By labeling the unknown patterns the missing data is
compensated for. Experiments were conducted on different time series
data and with varying percentage of missing data using a uniform dis-
tribution. We used KNN base predictors and Fuzzy Inductive Reasoning
(FIR) base predictors and compared their performance using different
confidence measures. Results reveal the effectiveness of the co-training
method to compensate for the missing values and to improve prediction.
The FIR model together with the ”similarity” confidence measures ob-
tained in most cases the best results in our study.

Keywords: Time series prediction, missing data, co-training, semi-
supervised learning, k-nearest neighbor , fuzzy inductive reasoning, en-
semble prediction.

1 Introduction

Missing values, encountered typically in real world data sets, negatively affects
the performance of regression or classification models. Most developed regression
or classification algorithms assume the data is complete. The designer, often not
knowing how to deal with the missing inputs or features, takes the easy route
and simply deletes the corrupted training patterns. This however is detrimental
to classification/ regression performance as it wastes a lot of useful data. The
problem of handling missing values has been studied extensively in the statistics
literature [2].

Time series forecasting is a certain domain of application for statistical regres-
sion and machine learning models whereby the temporal structure and ordering
of the data is utilized in some way. To our knowledge, Limited work has been
done to deal with missing data in time series [1]. Recently, some approaches have
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been introduced in the literature on how to deal with missing data in bench-
mark artificial time series with a limited number of missing points. Among the
successful models used for this particular problem were using recurrent neural
networks, Kalman smoothers, ensemble models, fuzzy logic systems and genetic
optimization [3], [4], [5], [6], [7]. The objective of our research is to look at the
problem of missing data in time series as a problem of semi-supervised learning.
Semi-supervised learning deals with learning using a labeled and an unlabeled
data set [8]. The unlabeled data are considered incomplete or ”missing” because
they do not have class labels. Most semi-supervised learning techniques deal with
classification problems.

In this paper we mainly focus on one class of semi-supervised learning tech-
niques which is the co-training algorithm. A co-training approach to semi-
supervised classification was proposed by Blum and Mitchell in 1998 [9]. Further
variations of the co-training algorithm are proposed in [10], [11], [12], [13]. It is
noteworthy that previous research mainly focuses on classification while regres-
sion remains almost untouched. This is because most classifiers can output a
confidence measure to its classification. A big problem in regression, however, is
the difficulty to calculate the confidence of the estimation of a regressor. Zhou et
al. [14] proposed a co-training style semi-supervised regression algorithm named
COREG. This algorithm mainly employs two K-Nearest Neighbor (KNN) re-
gressors. The labeling confidence is calculated through consulting the influence
of the labeling of unlabeled examples on the labeled examples.

In our study we extend the semi-supervised regression problem to be applied
for improving the accuracy of time series prediction with missing data. In par-
ticular, we first reformulate the problem of missing data in time series into the
problem of semi-supervised learning ; by transforming time series data set into
a set of labeled and unlabeled data. We extend the co-training algorithm in [14]
to be applied to an ensemble of predictors. We also use K-Nearest Neighbors
(KNN) [15] and Fuzzy Inductive Reasoning (FIR) [7] method as base predictors
and with different measures of confidence.

The proposed model was tested on different data sets with varying percentages
of missing data. Experiments show that the proposed approach can effectively
increase the accuracy of the time series prediction model even if missing data
exist in a substantial ratio. The paper is organized as follows; Section 2 formu-
lates the problem of time series prediction into a problem of semi-supervised
learning. Section 3 describes the used co-training algorithm. Section 4, discusses
the base learners and the confidence measures. Section 5, describes the used data
sets, and outlines details of the experiments conducted. In Section 6, results are
summarized and discussed. Finally, the paper is concluded in Section 7.

2 Semi-supervised Approach to the Problem of Missing
Data

Semi-supervised techniques deal with using a set L of labeled data and a set U
of unlabelled data for learning. In this section we describe how to generate L and
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U for time series data with missing values. These data sets will be used to apply
the co-training algorithm as described in section 3 to enhance the prediction
accuracy.

A time series is a sequence of vectors, yt , t = 0, 1, . . . , where t represents
elapsed time. We will consider here only sequences of scalars as we primarily
deal with univariate time series. Theoretically, y may be a value, which varies
continuously with t, such as a temperature. In practice, for any given physical
system, y will be sampled to give a series of discrete data points, equally spaced
in time. The rate at which samples are taken dictates the maximum resolution
of the model. The prediction of time series signals is based on their past values.
Therefore, it is necessary to obtain a data record. Hence, future values of a time
series yt can be predicted as a function of past values yt−1, yt−2, . . . , yt−n.

The problem of time series prediction now becomes a problem of system iden-
tification. The unknown system (model) to be identified is the function f (.) with
input variables are the past values of the time series. We can convert time series
to a set of patterns or observations with inputs and output. The output is con-
catenated to the n past knowledge on the series to form a (n + 1)-dimensional
vector of the following form:

V = [yt−n, . . . , yt−2, yt−1, yt] . (1)

By sliding a window of size n over the whole time series one would obtain
a set of patterns relating past values with the predicted value. As follows is an
example for a window size of 5. The resulting vectors V1, V2, . . . , Vi represent the
available knowledge in the time series that can be used for training.

Now if the time series contains missing values then not all vectors V1, V2, . . . , Vi

Vi = [yi, yi+1, yi+2, yi+3, yi+4] (2)

can be used for training. To link now the training to the semi-supervised
learning, the labeled data set L (i.e. the complete data set that can be used for
training) consists of all observations Vi that contain no missing values either in
their input values yt−n, . . . , yt−1 or in their output value yt. On the other hand,
the unlabelled data U contains only those observations where the missing value
appears only in the output part yt. Observations that have missing values in any
of the input entries compose incomplete data that can be added later to either
L or U as their their entries are filled later with learning as will be described in
the next section.

3 Co-training for Time Series with Missing Data

Figure 1 shows the main steps of our proposed technique to use co-training in
handling missing data in the time series. As described in section 2 the time
series data are converted into observations that are divided into a set of labeled
and unlabeled data. K different predictor models are chosen. In our implemen-
tation we use homogenous predictors that are guaranteed to be diverse through
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initializing them with different parameters. All predictors are initially trained
with the same labeled training data L. A random pool U

′
is chosen from U and

all predictors produce an estimation for all the unlabelled patterns in U
′
. Every

predictor chooses the most confident ui it can find an estimate for among all
patterns of U

′
and augments it to the labeled set of any other predictor. The

incremental data set produced by any predictor i (Πi) contains new estimation
for the label ui in addition to any new labeled pattern that resulted from esti-
mating ui given the original data. The algorithm in Figure 1 guarantees that if
an unlabelled data is estimated by most confidence among one predictor that it
will be removed from U

′
so that other predictors should look for other u′s to

label. Every predictor Predi is then retrained with the new data set Li:

Li = Li

⋃
Πj s.ti �= j . (3)

This indicates that each predictor is retrained with the augmented data that
is a result of the labeling of another predictor. In our implementation we simply
choose j = i + 1 and for i = K , j = 1. The retaining process is repeated by
exploring other patterns from U until Li stops increasing or until there are no
more unlabelled patterns. The final output of the predictors are then tested on a
given test data by calculating the error of the average output of the predictors.

4 Base Predictors and Confidence Measures

To be able to effectively implement the co-training algorithm following factors
should be taken into account:

1. the choice of a predictor that is easily retrainable.
2. guranteeing diversity of the predictor ensemble.
3. the possibility to estimate the confidence of the prediction.

Here we introduce our suggestion of using KNN and FIR base learners and
how the confidence can be calculated in each case. KNN classifiers belong to the
family of instance-based learning algorithms and are popular for their simplicity
to use and implementation, robustness to noisy data and their wide applicability
in a lot of appealing applications [16]. In KNN we get the k nearest neighbors
of the input using any distance measure and the output is the average of the
k outputs [15]. KNN is a lazy learning method which does not hold a sepa-
rate training phase, the refinement (i.e retraining) of the KNN learners can be
efficiently realized [14].

Herrera [7] proposed using Fuzzy Inductive Reasoning in modeling time se-
ries prediction models. Fuzzy Inductive Reasoning (FIR) generate a qualitative
input-output model of a system from training data. FIR is an additive learning
method which can adapt its learning to newly labeled patterns. This is unlike
other models like neural networks that must learn again from scratch if a new
labeled pattern is added to the original labeled pattern. For this reason FIR base
predictor was also found to be suitable for the co-training model proposed.
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– Given:
1. Y = y1, y2, y3, .....yL time series data of length L containing missing

data
2. L, a set of labeled data from Y .
3. U , a set of unlabeled data from Y .
4. K different prediction models pred1, pred2, ...., predi, ..predK

– Creat a pool U
′

by choosing u examples at random from U
– for each predictor predi let Li = L
– Repeat

1. For each predictor predi while size(U
′
) > 0:

• Retrain predi with Li

• Use predi to label all examples from U
′

• Find the most confident predicted unlabeled pattern ui from U
′

and its confidence value ci

• If ci ≥ 0 then
∗ Delete ui from U

′

∗ Replace the corresponding missing value of the unlabeled pat-
tern ui with the label of ui

∗ Find the new labeled pattern(s) Πi due to this replacement
∗ Modify U due to this replacement

Else
∗ Πi = {}

2. Augment Labeled data set Li for each predictor predi :
Li = Li ∪ Πj s.t j �= i

3. Replenish U
′

by randomly picking new examples from U

Until there is no change in all Li

– Output:
• Ensemble of all predictors

Fig. 1. Co-training for time series with missing data

Diversity among the pool of the predictors for co-training is very important.
Here, the diversity among the learners is achieved through utilizing different
distance metrics. In fact, a key issue of KNN learner and FIR learners is how
to determine the distances between different instances. The Minkowsky distance
shown in Eq. 4 is usually used for this purpose. Note that different concrete dis-
tance metrics can be generated through setting different values to the distance
order, p. Therefore, the vicinities identified for a given instance may be different
using the Minkowsky distance with different orders. Thus, the predictors pred1,
pred2, . . . , predi, . . . , predK can be diverse through initializing them with dif-
ferent p values. Such a setting can also bring another profit, that is, since it is
usually difficult to decide which p value is better for the concerned task, the
functions of these learners may be somewhat complementary [14].

Dp (Xr, Xq) ≡
(∑

|xr,l − xq,l|p
) 1

p

. (4)
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A basic step of the co-training algorithm is to find the most confident predicted
unlabeled pattern ui from U

′
and its confidence value ci.(refer to step 1 in Figure

1). Intuitively, the most confident estimation of a missing value should be such
that the error of the predictor on the original set of labeled examples should
decrease the most, if the most confidently estimated missing value is added to
time series. Hence the confidence of the estimation can be calculated as the
difference between the root mean square error (RMSE) of the predictor trained
on the original labeled data and the predictor after it has been trained with
the augmented data set. This method is applicable to any base predictor but
can be computationally expensive. We will refer to it as the ”error confidence
measure” as it depends on the calculation of the RMSE. On the other hand, the
FIR model [6] provides for a confidence measure called ”similarity confidence”
that is directly computable from the output of the FIR model.

5 Data and Experiments

Experiments were conducted on three different data sets. Figure 2 depicts the
data sets used. The first data set is the CATS benchmark data set [17]. This
artificial time series is given with 5,000 points of data. Results on this data set
with 100 missing points is reported in [18]. The second data set is the River Nile
flow data set. This data set consists of 3653 data points and reports the readings
of the average daily flow volume for each ten-day period at the Dongola station,
located in Northern Sudan (south of the High Dam) at the Nile river [19]. The
last data set is the I-Frames time series data which is obtained from a repository
of downloadable MPEG-4 video traces maintained by the Technical University
of Berlin [20]. The time series represents the size of the I-frames portion of
the MPEG-4 encoding. It is available for high-,medium-, or low-quality encoded
video sequences. For our experiments we used 7499 data points of high-quality
traces.

The time series are normalized to [0,1] and the window length used to divide
time series data to set of patterns ”labeled patterns and unlabeled patterns” is
equal 5 ”4 inputs+ 1 output”. For each time series the first 75% of data are used
in training and the last 25% of data are used for testing. Different percentage of
missing data using uniform distribution (10%, 20%, 30%, 40%, 50% and 60%)
was imposed on the original data. For each percentage, runs were repeated 10
times for different positions of the missing data.

For the co-training using KNN learners we used 2 predictor with distance
orders set to p=2 and p=5, and with k=5. We used the ”error confidence”
for the calculation of the confidence. The size of U ′ was chosen to be ≤ 100.
Improvement due to using Co-Training over using the case deletion method,
i.e. method when incomplete data is discarded from learning is calculated on
test data. Similarly, experiments were conducted for two FIR predictors and
confidence was calculated using ”error confidence”’ and ”similarity confidence”.
The following section presents the results.
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Fig. 2. Time series data sets

6 Results and Discussion

Tabels 1, 2 and 3 summarize the results on the CATS Benchmark data set, the
Nile flow data set and the I-frame data set, respectively. For each data set, the
tables list the improvement in the accuracy of the prediction gained by applying
the co-training algorithm over the case deletion method. Results are presented
for using the KNN and FIR predictors in a co-training framework using different
confidence measures. In particular, the results using ”error confidence” (COT-
ERROR) is presented for the KNN, while for the FIR both results using ”error
confidence” (COT-ERROR) and ”similarity confidence” (COT-SIMILAR) are
presented. The improvement in the prediction is calculated for different percent-
ages of the missing data.

Table 1. Summary of results for the CATS benchmark data

CATS Benchmark

KNN Base Predictor

Percentage of Missing Data

10% 20% 30% 40% 50% 60%

COT-ERROR 5.88% 6.4% 9.9% 22.8% 17% 22.8%

FIR Base Predictor

COT-ERROR 0.16% -1.7% 1.1% -0.07% -0.06% 0.03%

COT-SIMILAR 2% -3.6% -2.7% -1.5% 18% 20%
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Table 2. Summary of results for the Nile flow data

Nile flooding
KNN Base Predictor

Percentage of Missing Data

10% 20% 30% 40% 50% 60%

COT-ERROR 5% 11.3% 4.4% 19.3% 30.6% 15.5%

FIR Base Predictor

COT-ERROR 0.5% 2.1% 2.1% 2.8% 2.6% 1.1%

COT-SIMILAR 3.7% 3.2% 10.6% 8.2% 25% 40%

Table 3. Summary of results for the Iframe data

Iframe size
KNN Base Predictor

Percentage of Missing Data

10% 20% 30% 40% 50% 60%

COT-ERROR 1.8% 0.9% 1.7% -0.8% -10.8% -1.7%

FIR Base Predictor

COT-ERROR 1.7% 1.3% 1.4% 3.5% 0.7% -0.7%

COT-SIMILAR 2.6% 6.8% 10% 8.7% 6% 12%

Examining the results of the tables it can be seen that for the CATS bench-
mark data co-training with KNN predictors with ”error confidence” seems to
produce the most consistent improvements in the prediction accuracy among
the tested models for all values of the missing percentages. The co-training with
FIR and ”similarity Confidence” produces also good improvements for higher
percentages of missing data. For the Nile flow data similar results are observed
while the FIR and ”similarity Confidence” performed consistently well for all
percentage of missing data and outperformed the KNN predictors with ”er-
ror confidence” considerably at 60% missing ratio. It is noticeable that on this
data set the co-training algorithm was always able to improve prediction. For
the Iframe data, the FIR and ”similarity Confidence” produced a consistently
better improvement in prediction.

7 Conclusions and Future Work

In this work we have introduced a new approach to handle missing data in time
series prediction using co-training. First the problem of missing data in time
series is formulated as a semi-supervised learning problem. Then, the co-training
algorithm which was basically designed for classification and only recently for
regression, is modified to be applied for the time series prediction problem. We
have suggested the use of different base learners and their ensemble and different
confidence measures. Experiments were conducted on three time data sets with
different characteristics. Results show that in most cases the proposed co-training
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approach can effectively increase the accuracy of the time series prediction model
even if missing data exist in a substantial ratio. The FIR model together with
the ”similarity confidence” measure obtained a most consistent improvement in
the prediction accuracy and achieved the best results in our study.

Currently we are in the process of extending our experiments to multiple pre-
dictors, different data sets and different base predictors. We are also investigating
the effect of different distributions of missing data, in particular when missing
values appear in chunks; as this is realistic in many real world applications; like
applications in which a sensor fails suddenly and several consecutive readings
are lost.
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Abstract. Ensemble learning is one of the principal current directions
in the research of machine learning. In this paper, subspace ensembles for
classification are explored which constitute an ensemble classifier system
by manipulating different feature subspaces. Starting with the nature of
ensemble efficacy, we probe into the microcosmic meaning of ensemble
diversity, and propose to use region partitioning and region weighting to
implement effective subspace ensembles. An improved random subspace
method that integrates this mechanism is presented. Individual classi-
fiers possessing eminent performance on a partitioned region reflected
by high neighborhood accuracies, are deemed to contribute largely to
this region, and are assigned large weights in determining the labels of
instances in this area. The robustness and effectiveness of the proposed
method is shown empirically with the base classifier of linear support
vector machines on the classification problem of EEG signals.

Keywords: ensemble learning, ensemble diversity, random subspace,
EEG signal classification.

1 Introduction

Feature selection that seeks the single feature subset that is most germane for a
certain task is a traditional yet challenging problem in the research of machine
learning and pattern recognition. Although it has some apparent advantages,
such as reducing the measurement and storage demands, decreasing training
and utilizing time, and getting rid of the curse of dimensionality [1], from a
more comprehensive view, it may pretermit some realistic considerations.

Suppose there are many experts intending to solve one and the same pattern
classification task all by themselves. The first phase they confront will be feature
extraction. In the event that they all have rich prior knowledge about the pattern,
the features extracted by different experts would be consistent to a large extent
and these features are probably closely related to the classification task as well.
On the other hand, if they are provided with poor knowledge about the pattern,
the feature sets obtained may differ from one another greatly, which is the case
especially for newly emerging research topics in the fields of machine learning
and data mining. At this time, they often have recourse to some kind of criterion
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to search for important features from the original ones, and consequently realize
the objective of feature selection.

Actually, whatever the true scenario is, as a result, the experts are likely to
adopt different feature sets to train classifiers and carry out later classification.
And each individual feature set can have some kind of performance guarantee
(because it is obtained by an expert). The traditional feature selection ideology
overlooks the existence of different feature subsets for the same pattern, and
the feasibility of improving performance by feature ensembles. It is promising
to achieve high performance under the condition that classification outcomes
from different experts are combined, since each outcome may contain partial
information for the classification task.

Feature selection can be roughly divided into two categories. One is to look
for features in a transformed space, like principal component analysis and Fisher
discriminant analysis [2]. The other is to select features in the original space,
such as the various filter and wrapper methods [1,3]. This paper analyzes how
to effectively combine different feature subsets to improve classification perfor-
mance, namely subspace ensembles methods. In principle, the feature subsets
can be drawn randomly or selected elaborately from the original feature space
or a transformed space. Because it makes no difference in our following analysis,
here the style of random selection from the original space is adopted.

The paper proceeds as follows. In Section 2, we review the historical efforts
other researchers made on the rationality of ensemble learning, and give our own
insights on ensemble diversity. Based on this discussion, in Section 3 we present
our approach for improving the random subspace ensemble [4]. As an application
of the proposed method, Section 4 reports experimental results on performance of
classifying electroencephalogram (EEG) signals. Finally, after discussing related
work in Section 5, we give concluding remarks and future research directions in
Section 6.

2 Ensemble Diversity

2.1 Historical Achievements

In recent years, it is widely acknowledged that an effective ensemble learning
system should consist of individuals that are not only highly accurate, but are
diverse as well, that is, a right balance should hold between diversity and indi-
vidual performance [5,6,7,8,9,10]. The diversity here means complementariness,
namely, data misclassified by some individual classifiers can be correctly classi-
fied by others so that their voted performance tends to outperform any individual
classifier. In other words, individual classifiers make errors on different regions
of the input space [11]. As subspace ensembles reside in the category of ensemble
learning systems, diversity is an equally essential rule for subspace ensembles to
conform to. Study on the meaning of diversity for ensemble learning does make
sense to supervise the design of subspace ensemble methods.

The concept of diversity plays an important role in explaining the efficacy of
ensemble learning. According to the taxonomy given by Kuncheva and Whitaker,
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the diversity measures for classification ensembles can be divided into two cat-
egories, pairwise measures and non-pairwise measures [9]. Pairwise diversity
measures calculate the average of a particular (dis)similarity metric between
all possible pairs of individual classifiers in an ensemble, with examples such
as Q statistic and correlation coefficient. Non-pairwise measures often calculate
a statistic using the notion of entropy or using (dis)similarity metrics between
individual classifiers and the averaged classifier, such as entropy measure and
coincident failure diversity [9]. Kuncheva and Whitaker [9] recommend the pair-
wise Q statistic where classifiers are compared as a function of correctness or
incorrectness with regard to a validation set based on the principle that it is
understandable and relatively easy to implement [12]. Readers can refer to [9,13]
for a survey on all kinds of diversity measures.

For regression ensembles with the objective error criterion of mean squared
error, the regression diversity can be exactly quantified in terms of the am-
biguity decomposition [8] and the bias-variance-covariance decomposition [14].
However, for classification ensembles, there are no such straight theories and
the meaning of diversity is not exactly comprehended especially when individ-
ual classifiers output non-ordinal discrete labels [13]. Sometimes people cannot
help but evaluate the contribution of diversity to ensemble classification empir-
ically. For instance, Dietterich [15] provides an empirical verification from the
relationship between the diversity and accuracy of individual classifiers for the
effectiveness of bagging, boosting and randomization methods. Opitz [11] and
Tsymbal et al. [16] also show the rationality of ensemble feature selection for
classification making use of the notion of diversity.

2.2 Region Partitioning and Region Weighting

The above endeavor contributed to the research of diversity greatly, but the
precise meaning of diversity is still not fully solved. Here we investigate the va-
lidity of ensemble learning from the microcosmic essence of ensemble diversity,
and propose to use the idea of region partitioning and region weighting to im-
prove the ensemble performance. We provide the following example to show the
conception and intuition of region partitioning and region weighting.

Fig. 1 gives a schematic diagram of region partitioning for classification ensem-
bles. The data distributions belong to two different classes, which are respectively
denoted by two elliptical curves. Linear classifiers are trained to implement clas-
sification, two of which (classifier 1 and classifier 2) are shown in the figure. The
regions misclassified by classifier 1 and classifier 2 are respectively marked with
horizontal bars and vertical bars. Obviously, for a test sample to be classified, if
it drops into the area of horizontal bars, it is classifier 2 instead of classifier 1 that
should take over the classification task. On the contrary, if it drops into the area
of vertical bars, classifier 1 should be adopted for classification. On condition
that the sample falls into blank regions, both classifiers can be used since either
of them exhibits ascendant performance on these regions. An ensemble able to
manipulate individual classifiers based on their performance on different regions
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Fig. 1. A schematic diagram of region partitioning for classification ensembles. Classi-
fiers 1 and 2 divide the whole decision space into two parts respectively.

would be meritorious, and implicitly expresses the idea of region partitioning
and region weighting.

The aim of region partitioning is to find the salient regions that are help-
ful in guiding ensemble learning. In this paper, region partitioning is carried out
according to the performance distribution of each individual classifier on its deci-
sion space. Individual classifiers are taken into account with different importance
weights based on their accuracies on the partitioned regions. This idea of region
weighting with respect to partitioned regions is different from the accustomed
weighting approach in ensemble leaning where the weight is proportional to the
total accuracy of an individual classifier. The principle of region partitioning and
region weighting indicates the essence of ensemble diversity from a microcosmic
aspect.

3 The Improved Random Subspace Method

The random subspace ensemble method, recently proposed by Ho [4], constructs
individual classifiers by means of the random selection for feature subsets, and
has shown its effectiveness on a lot of classification problems. In the random
subspace method, feature subsets are picked at random with replacement from
the original feature space, and individual classifiers are created only based on
those attributes in the chosen feature subsets using the whole training set. The
outputs from all individual classifies are combined by uniform majority voting
to give the final prediction.

Based on the above microcosmic interpretation for ensemble diversity, we
present the improved random subspace method to enhance the original random
subspace method. For subspace ensembles, we deem that each individual (sub-
space) classifier also has its own salient regions in its corresponding subspace.
On how to perform region partitioning and region weighting for each subspace
classifier, the idea of local neighborhood accuracy is adopted.
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For a test sample, if an individual classifier in subspace ensembles performs
well in its adjacent area, then the classifier has high confidence on its outputs
in this region, and should maintain a large weight in determining the label of
the sample. To be specific, in this paper we apply k nearest neighbors with
the metric of Euclidean distance to evaluate the confidence of each individual
classifier on its output about the test sample, although other techniques such
as the notion of window functions used in nonparametric density estimation [2]
are also applicable. If an individual classifier classifies the k nearest neighbors of
the test sample with a higher accuracy, then the classifier contributes more in
determining its label, and vice versa.

Suppose M individual classifiers {Cm(·)} (m = 1, ..., M) are constructed from
M feature subspaces, whereas every feature subspace is formed by features taken
from the original feature space. Define the label set as {ωi} (i = 1, ..., L). For
a new test sample x, we first seek its k nearest neighbors from the training set
in each subspace respectively. Then, calculate the correctly classified number of
these k samples using every individual classifier. The number is defined as the
weight value Wm(x) of the individual classifier Cm(·) with respect to the test
sample x. In succession, the output from each individual classifier is obtained,
which is represented as a binary function:

Θm(x ∈ ωi) =
{

1, for Cm(x) = ωi

0, otherwise .
(1)

Finally, all the binary function outputs and weight outputs from individual
classifiers in subspace ensembles for x are combined using the rule of majority
voting [17] to give the final predicted label Ωens(x) as follows,

Ωens(x) = arg max
ωi

M∑

m=1

Wm(x)Θm(x ∈ ωi) . (2)

The detailed flow diagram for the improved random subspace method is given
in Table 1.

4 Case Study

In this section, we do a preliminary case study with a linear base classifier, i.e.
SVM, to evaluate the performance of the improved random subspace method.
The data used for analysis are EEG (electroencephalogram) signals generated
when users are operating brain-computer interfaces [18]. The original random
subspace method is employed for a comparison. As Ho [4] showed that using half
of the feature components usually yielded good accuracy, in the experiments we
fix the size of feature subsets as 50% of the number of original attributes. Since
the ensembles involve random sampling and hence are random algorithms, we
run each ensemble 5 times, and average the results over 5 rounds.
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Table 1. The improved random subspace method

Inputs: {Fm}M
m=1 is an ensemble feature set comprising M feature subsets. C is an

appointed base classifier. S is a training set. k is the number of nearest neighbors.
x is a test sample.
Output: The predicted label of x.
Procedure:
1): Train M individual classifiers {Cm(·)} based on feature sets {Fm}M

m=1, and
obtain their outcomes for each sample in the training set.
2): Find the k nearest neighbors of x in each subspace, calculate their right clas-
sified number by the corresponding individual classifier, and give their weights
{Wm(x)}.
3): Get the outcomes of {Cm(x)} for the test sample x.
4): Combine all the outputs by majority voting using (1) and (2), and give the
final predicted label for x.

4.1 Data Sets

The EEG signals used are recorded from three normal subjects (denoted by S1,
S2, S3 respectively) during three mental imagery tasks for operating a potential
BCI. The tasks are imagination of repetitive self-paced left hand movements
(class ω1), imagination of repetitive self-paced right hand movements (class ω2)
and generation of different words beginning with the same random letter (class
ω3) [19]. The classification task is to classify the signals as corresponding to one
of the three possible tasks. Through feature extraction, an EEG sample becomes
a 96-dimensional vector [20].

In the paper we use these 96-dimensional data as input, and the numbers of
samples in four recording sessions for S1, S2, and S3 are 3488/3472/3568/3504,
3472/3456/3472/3472, and 3424/3424/3440/3488 respectively [20]. For assess-
ment, nine data sets are constructed each with separate training set and test
set from the data of the above subjects S1, S2, and S3. Namely, the first three
data sets are formed using the data of four sessions from S1, and so on, for a
total of nine data sets. Specifically, data sets 1, 2, 3 are respectively composed
of sessions 1 ∼ 2, 2 ∼ 3, 3 ∼ 4 of S1. For each data set, the former session serves
as a training set, and the latter session serves as a test set. Data sets 4 to 9 are
formed similarly with data from subjects S2 and S3.

4.2 Results

First, the ensemble sizes for the random subspace (RS) and the improved random
subspace (IRS) methods are both taken as 25, since it has been shown that for
many ensemble problems, the biggest profit in accuracy is already made with
this number of individual classifiers [16,21]. Then, to investigate the influence of
the ensemble size to the performance of these two ensemble methods, we also
conduct experiments using ensemble size 100 under the same configuration.
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Table 2 gives the test results. In Table 2, IRS-k means the improved random
subspace method with k as the number of nearest neighbors for a test sam-
ple as indicated in Table 1. Different k parameters (3, 5, and 7) are adopted
to comprehensively understand the behavior of the improved random subspace
method. Note that since the present classification problem involves three classes,
the expected accuracy rate by random guess will be 33.33%.

Table 2. Test set accuracy rates (%) of two ensemble classification methods RS and
IRS with ensemble sizes 25 and 100

Data set
Size Method

1 2 3 4 5 6 7 8 9

RS 64.98 72.22 66.22 49.31 57.04 62.98 47.59 34.41 42.04
IRS-3 66.13 73.18 69.26 48.99 57.40 63.28 48.69 35.41 42.99

25
IRS-5 66.01 73.14 69.13 48.91 57.54 63.26 48.71 35.26 42.84
IRS-7 65.88 73.14 69.05 49.00 57.46 63.28 48.67 35.05 42.82

RS 65.03 72.11 65.65 49.22 57.55 63.39 47.58 34.46 42.37
IRS-3 66.24 73.14 69.14 49.06 57.72 63.61 48.93 35.39 43.31

100
IRS-5 66.19 73.18 69.04 49.09 57.88 63.61 48.74 35.45 43.00
IRS-7 66.09 73.08 68.94 49.18 57.76 63.49 48.92 35.33 43.00

4.3 Comparison

To provide a more clear performance comparison for the random subspace and
the improved random subspace methods, from Table 2 win-loss-tie scores are
calculated between these two ensemble methods, which are given in Table 3. A
comparison in bold means the performance difference between the correspond-
ing algorithms is statistically significant at the 95% confidence level evaluated
by the one-tailed paired t-test. For example, when ensemble size is 25, the value
between IRS-3 (56.15) and RS being 8-1-0 means that the win-loss-tie score
between these two methods is 8-1-0, and there exist statistically significant dif-
ferences. As an auxiliary comparison, the averaged accuracy rates are also listed
after the corresponding method. The last column in Table 3 reports the relative
improvements of the averaged accuracy rates in the same row.

From Table 3, we draw the conclusion that the performance of the improved
random subspace method is superior to that of the original random subspace
method, at least on the used EEG signal data. As we can see that under the
same ensemble size the accuracy rate of the improved random subspace method
is statistically significantly better than that of random subspace method, and its
mean performance improvement with respect to different ensemble sizes is also
larger than that of the random subspace method. Further, the robustness of the
improved random subspace method is also manifested because the accuracies
with different k values (3, 5, and 7) are quite similar.
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Table 3. A win-loss-tie comparison between RS and IRS, and their own mean perfor-
mance improvements with different ensemble sizes

Size 25 Size 100

RS RS
Improvement

RS(55.20) RS (55.26) 0.11%
IRS-3 (56.15) 8-1-0 IRS-3 (56.28) 8-1-0 0.23%
IRS-5 (56.09) 8-1-0 IRS-5 (56.24) 8-1-0 0.27%
IRS-7 (56.04) 8-1-0 IRS-7 (56.20) 8-1-0 0.29%

5 Related Work

There are some methods related to but different from our approach in nature,
several of which are discussed below.

In the neural network context, the mixtures of experts [22] train gating net-
works to determine the mixture coefficients of different expert networks. All
the expert networks and gating networks are assumed to be generalized linear
models. The gating networks give mixture coefficients depending on the input
sample.

Ortega [23] develops an approach for combining knowledge from a variety
of individual classifiers. This approach involves learning a “referee” for each
individual classifier, which characterizes the situations where each individual
classifier is able to make correct predictions. For future samples, the referees are
first consulted to select one or more individual classifiers whose predictions are
then returned.

The meta decision trees [24] adopt the idea of ordinary decision trees to com-
bine multiple classifiers. Their leaves specify which individual classifier should
be used. The input for meta decision trees is derived from the class probability
distributions predicted by the individual classifiers for a specific sample.

Considering the problem of dynamic classifier selection, Woods et al. [25] select
one single best classifier evaluated from the neighboring region of a test sample
to carry out classification. In their experiments, five classifiers of different types
are used for switch. If possible, each classifier would be optimized by elaborate
feature and parameter selection. In other words, they uses the switch of few
strong classifiers.

6 Conclusion

In this paper, we investigate the exact microcosmic meaning of ensemble diver-
sity, and propose to use region partitioning and region weighting by neighbor-
hood accuracy to implement effective subspace ensembles. Experimental results
indicate that the proposed improved random subspace method outperforms the
random subspace method, and is robust on the choice of the number of nearest
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neighbors. Furthermore, to carry out a comprehensive evaluation, we run the
random subspace and the improved random subspace methods with different
ensemble sizes as well. And the results show that the performance improvement
of the improved random subspace method is larger than that of the random
subspace method.

In the future, several research directions can be further investigated. For ex-
ample, study the performance of the improved random subspace method with
other base classifiers (e.g. decision trees), and take into account the distances
between nearest neighbors and test samples to amend the calculation of weights.
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Abstract. Bagging, boosting and random subspace are three popular
ensemble learning methods, which have already shown effectiveness in
many practical classification problems. For electroencephalogram (EEG)
signal classification arising in recent brain-computer interface (BCI) re-
search, however, there are almost no reports investigating their feasibili-
ties. This paper systematically evaluates the performance of these three
ensemble methods for their new application on EEG signal classification.
Experiments are conducted on three BCI subjects with k-nearest neigh-
bor and decision tree as base classifiers. Several valuable conclusions are
derived about the feasibility and performance of ensemble methods for
classifying EEG signals.

Keywords: EEG signal classification, ensemble learning, bagging,
boosting, random subspace.

1 Introduction

The research motivation of the current brain-computer interfaces (BCIs) is mainly
to provide those motor-disabled but cognition-intact patients a communication
and control channel directly between the brain and external devices, without the
participation of peripheral nerves and muscles [1,2]. During the last decade, it has
evoked a wide interest among different fields such as neuroscience, biomedical en-
gineering, clinical rehabilitation and computer science [1,2,3,4,5]. Each discipline
therein makes contributions to BCI research with a different emphasis, and the
developments of BCI technology benefit from this interdisciplinary cooperation.

Classification methods, which convert electrophysiological input from users
into their intents which can then correspond to external device commands, are a
core component in the BCI system [5]. In the current paper, we concentrate on
the problem of classifying electroencephalogram (EEG) signals (brain activities
taken from the scalp of the head) for underlying applications in a BCI.

Many single classifiers have already been assessed for EEG signal
classification, such as neural networks, Fisher discriminant analysis, support
vector machines, hidden Markov models, Bayesian classifiers, and source analy-
sis [6,7,8,9,10,11,12]. However, as one of the principal current directions in ma-
chine learning, ensemble learning has not yet been paid enough attention during
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the previous study of BCIs [13]. As far as we know, there are almost no results
systematically reported on EEG signal classification using ensemble methods.
As a consequence, people do not know whether ensemble methods are effective
for EEG signal discrimination, or even if so, to what extent. Simultaneously,
comparisons among different ensemble methods for classifying EEG signals, al-
though they are needed to guide decisions about which one to choose, are still
lacking.

This paper tries to complete this study empirically. Three well-known and
popular ensemble learning methods bagging [14], boosting [15] and random sub-
space [16] are adopted to carry out EEG signal classification. Although they
have demonstrated effectiveness in a variety of application problems, it is not
straightforward to judge generally which is the best [17]. For a specific task, e.g.
the considered problem of EEG signal classification, however, it is possible to
give an evaluation of their relative performance.

The remainder of this paper is organized as follows. In Section 2, we explain
briefly the base classifiers and ensemble classification methods used for classifying
EEG signals. Then in Section 3 we report experimental results of EEG signal
classification on three representative BCI users/subjects, analyze the results and
try to provide an explanation of why some ensemble methods are good or not.
Finally we give concluding remarks and the future work plan in Section 4.

2 Base Classifiers and Ensemble Classification Methods

Two kinds of classifiers k-nearest-neighbor and C4.5 decision tree are espoused
as base classifiers for evaluating ensemble classification methods. In this section,
after giving a simple note for the mentioned base classifiers, we also briefly
review the three ensemble classification methods bagging, boosting and random
subspace.

2.1 Base Classifiers

K-Nearest-Neighbor (KNN). The KNN classifier assigning the label of a
test sample with the majority label of its k nearest neighbors in the training
set is a classical classification rule [18]. To evaluate the performance of ensemble
methods, in this paper we simply set the value of k as 5, i.e. the 5-nearest-
neighbor rule is adopted.

C4.5 Decision Tree. The C4.5 algorithm is the most popular in a series of
tree-growing methods for classification, e.g. CART, ID3 [18]. It is also a prevalent
base classifier for evaluating ensemble methods. In this paper, the Weka software
for C4.5 with the default configuration is used [19].

2.2 Ensemble Classification Methods

Bagging. The Bagging predictor introduced by Breiman is a popular ensem-
ble learning approach which integrates the bootstrap sampling technique to
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manipulate the selection of training data [14]. Every time it selects T samples at
random with replacement from the original training set consisting of T samples
to learn an individual classifier. Prediction of a test sample by an ensemble is
given through uniform majority voting of all individual classifiers. Theoretically,
it is shown that if bootstrap can induce significant differences in the constructed
individual classifiers, the accuracy of bagging will grow to a large extent [14].

Boosting (AdaBoost). The AdaBoost family of algorithms proposed by Fre-
und and Shapire, which is also known as boosting, is another kind of powerful
ensemble method [15]. The basic idea is to explicitly alter the distribution of
training data (weights of each training sample) fed to every individual classi-
fier. Initially the distribution is uniform for all the training samples. During
the boosting procedure, the distribution is adjusted after completing the train-
ing of each classifier. For misclassified samples the weights are increased, while
decreased for correctly classified samples. The final ensemble is constructed by
combining all individual classifiers according to their own accuracies. Among
the many variants for the boosting algorithm, here we employ the AdaBoost.M1
algorithm [15].

Random Subspace (RanSub). The random subspace ensemble method pro-
posed by Ho, utilizes the random selection of feature subspaces to construct in-
dividual classifiers, and has shown efficacy on many classification problems [16].
This method can take advantage of high dimensionality, and is an effective coun-
termeasure for the traditional problem of the curse of dimensionality [16]. Its
merit can be attributed to the high ensemble diversity, which compensates for
the possible deficiency of accuracies in member classifiers [20]. In random sub-
space, feature subspaces are picked at random from the original feature space,
and individual classifiers are created only based on those attributes in the cho-
sen feature subspaces. The outputs from all individual classifies are combined by
uniform majority voting to form the final prediction. As Ho shows that using half
of the feature components usually yields good accuracies, in our experiment we
also fix the size of feature subspaces as half the number of original attributes [16].

3 Experiment and Discussion

3.1 Data Processing and Experimental Results

The data set for analysis contains EEG recordings taken from three normal
subjects (denoted by Sj1, Sj2, Sj3 respectively) during three mental imagery
tasks for operating a potential BCI. The tasks are imagination of repetitive self-
paced left hand movements (class C1), imagination of repetitive self-paced right
hand movements (class C2) and generation of different words beginning with
the same random letter (class C3) [21,22]. For a certain subject, there are four
non-feedback sessions recorded on the same day, each lasting four minutes or so
with breaks of 5-10 minutes in between. The subjects perform a given task for
about 15 seconds and then switch randomly to the next task at the operator’s
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request. The classification task is to give outputs indicating which mental task
the subjects are performing.

The sampling rate for the raw EEG potential signals is 512Hz. The signals
are first spatially filtered by means of a surface Laplacian [21]. Then, every 62.5
ms the power spectral density in the band 8-30 Hz is estimated using the last
second of data with a frequency resolution of 2 Hz for the eight centro-parietal
channels C3, Cz, C4, CP1, CP2, P3, Pz, and P4. The scalp locations of the
eight electrodes as shown in Fig. 1 are closely related to the considered mental
imagery tasks. Resultantly, an EEG sample is a 96-dimensional vector. In the
paper we use these 96-dimensional data as input, and the numbers of samples
in the four sessions for Sj1, Sj2, and Sj3 are respectively 3488/3472/3568/3504,
3472/3456/3472/3472, and 3424/3424/3440/3488 [22]. It was shown that sub-
jects Sj1, Sj2, and Sj3 represent three different levels of mental consistency, which
are respectively consistent, scarcely consistent, and inconsistent [11]. Therefore
the data are representative and in this paper they are employed to evaluate
algorithms.

C3 Cz C4 

Cp1 Cp2

P3 Pz P4 

Fig. 1. The top view of the locations for the eight electrodes where spectral features
are extracted

For the purpose of assessment, nine data sets are constructed each with sep-
arate training set and test set from the data of the above subjects Sj1, Sj2, and
Sj3. The first three data sets are formed using the data of four sessions from
Sj1, and so on, for a total of nine data sets. Specifically, data sets 1, 2, 3 are
respectively composed of sessions 1 ∼ 2, 2 ∼ 3, 3 ∼ 4 of Sj1. For each data set,
the former session serves as a training set, and the latter session serves as a test
set. Data sets 4 to 9 are formed with a similar style from subjects Sj2 and Sj3.

The ensemble sizes for bagging, boosting and random subspace are all taken as
25, since it has been shown that for many ensemble problems, the biggest profit
in accuracy is already made with this number of individual classifiers [20,23].



Ensemble Learning Methods for Classifying EEG Signals 117

Since the ensembles involve random sampling, we run each ensemble 5 times,
and average the results over 5 rounds.

The experimental results of ensembles with different base classifiers for these
nine data sets are shown in Table 1, where ‘single’ means an individual base
classifier trained using all the intact training data. Note that since the present
classification problem involves three classes, the error rate by completely random
classification would be 33.33%.

Table 1. Test set accuracy rates (%) of ensemble classification methods with base
classifiers KNN and C4.5

Data set
Method

1 2 3 4 5 6 7 8 9

Single 64.63 68.33 65.27 45.78 54.23 57.49 43.55 37.24 41.00
Bagging 63.97 68.29 65.16 46.15 54.58 57.94 44.04 36.99 40.96

KNN
AdaBoost 62.59 66.55 62.62 44.40 53.92 55.65 43.55 37.02 40.83
RanSub 67.86 72.95 72.79 46.81 56.47 60.74 46.91 38.37 44.25

Single 56.74 63.54 59.45 49.45 50.84 52.59 41.41 39.53 37.93
Bagging 66.95 72.34 70.79 52.60 58.45 59.56 47.77 38.58 39.75

C4.5
AdaBoost 65.94 71.61 69.17 51.44 57.06 57.93 46.17 39.40 40.71
RanSub 66.39 73.22 72.41 49.40 56.85 60.62 47.21 38.55 40.58

3.2 Comparison and Discussion

Further to provide a general view of the performance of different ensemble clas-
sification methods (‘Single’ can be regarded as a special ensemble), based on
Table 1 a win-loss-tie comparison is constructed between every two ensemble
methods, as given in Table 2. A comparison in bold means the performance dif-
ference between two algorithms is statistically significant at the 95% confidence
level evaluated by the one-tailed paired t-test. For example, when KNN is used
as base classifiers, the value between RanSub and Single is 9-0-0 which means
that the win-loss-tie score between these two methods is 9-0-0, and there ex-
ist statistically significant differences. As an auxiliary comparison, the averaged
accuracy rates for each method are also listed in the second column.

From Table 2, we draw several conclusions about the performance of different
ensemble methods for EEG signal classification as follows. Because the ensemble
performance depends on the selection of base classifiers to a large extent and the
parameters of each base classifier are not tuned to their full potential, here we
don’t assess the relative performance of ensemble methods across different base
classifiers.

Besides, with respect to the effectiveness of ensemble classification meth-
ods, it is widely acknowledged that an effective ensemble classification system
should consist of individuals that are not only highly accurate, but are diverse as
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Table 2. A win-loss-tie comparison between different ensemble methods

Single Bagging AdaBoost

Single (53.06)
Bagging (53.12) 4-5-0KNN
AdaBoost(51.90) 0-8-1 1-8-0
RanSub (56.35) 9-0-0 9-0-0 9-0-0

Single (50.16)
Bagging (56.31) 8-1-0C4.5
AdaBoost(55.49) 8-1-0 2-7-0
RanSub (56.14) 7-2-0 4-5-0 5-4-0

well [24]. In deriving the following conclusions and discussions, this rule will be
used as a guide.

1) For KNN, only random subspace brings significant performance improve-
ments compared to a single classifier. The bagging ensemble does almost not
change the performance, while boosting deteriorates the performance.

The stability of KNN with respect to changes of training sets can accounts for
this phenomenon. KNN is a stable classifier [25], while ensemble methods con-
structed through subsampling the training examples (e.g. bagging and boosting)
don’t work well for stable classifiers [13]. Because high stability means low diver-
sity among individual classifiers, which is harmful to the performance of ensem-
ble methods. However, KNN benefits random subspace, since random subspace
carries out classification in subspaces of much lower dimensionality and this
can diminish the negative influence of noises for the precise determination of
neighbors. The neighbors can be calculated more accurately in a space of low
dimensionality. Thus the performance of individual classifiers would rise, which
can favor the final accuracy of ensemble methods.

2) For C4.5, all the three ensemble methods make great performance improve-
ments compared to a single classifier. Bagging is the best, while boosting brings
comparatively small improvement. The performance of random subspace is in-
between of them.

Since C4.5 decision tree is an unstable classifier [13,25], the diversity among
individual classifiers in ensemble methods is high. Thus the three ensemble meth-
ods tend to improve the classification performance.

3) The performance of ensemble methods differs among different base classifiers.
Depending on the selection of base classifiers, the performance of an ensemble
method can outperform that of a single classifier or suffer a reverse. Generally
speaking, ensemble learning for EEG signal classification is effective, though dif-
ferent ensemble methods would display different performance, and even some
combination of base classifiers and ensemble methods would deteriorate the
performance.
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4 Conclusion

Three ensemble learning methods, bagging, boosting and random subspace are
assessed in the context of EEG signal classification for underlying applications
in BCIs with the base classifiers KNN and C4.5. The effectiveness of ensemble
methods over a single base classifier is shown empirically. Experimental results
also indicate that the capability of ensemble methods is subject to the type of
base classifiers. These findings are helpful in guiding the choice of classification
algorithms for future BCI applications.

As the focus of the paper is to evaluate the performance of ensemble learning
methods, it is beyond the scope of the current research to find the best parameter
configuration for each subject and even on-line methods to further improve the
classification performance. These issues would be investigated in the future.

Acknowledgments. The author would like to thank IDIAP Research Institute
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Abstract. We address the problem of fusing colour information for face
authentication. The performance of a face verification system in differ-
ent colour spaces is experimentally studied first. The verification process
is based on the normalised correlation measure within the LDA feature
space. The confidence level of the measurement made is then calculated
for each colour subspace. Confidence measures are used within the frame-
work of a gating process in order to select a subset of colour space clas-
sifiers. The selected classifiers are finally combined using the voting rule
for decision making. Using the proposed method, the performance of the
verification system is considerably improved as compared to the inten-
sity space. The proposed colour fusion scheme also outperforms the best
colour space in different conditions.

1 Introduction

Recently, in a number of studies, it has been demonstrated that colour infor-
mation can improve the performance of the face recognition and verification
systems. A brief history of different methods of involving colour features in the
face verification systems can be found in [10] where a systematic evaluation of
signal, feature and decision level fusion of data derived from a multispectral
face image has been studied. The authors focused on face verification using the
Normalised Correlation and Gradient Direction metrics in Linear Discriminant
Analysis (LDA) spaces associated with the respective R,G, B colour channels.
The results demonstrated that the most beneficial fusion methods are the de-
cision level and feature level fusion but the decision level fusion was computa-
tionally the simplest. In [6] the underlying physical process of image formation
has been analysed and it has been shown that by adopting the intensity image,
intensity normalised green and opponent colour channels we can separate the
imaging effects of object shape and object albedo, and create complementary
image data channels that lead to face experts with an enhanced degree of di-
versity. It has been demonstrated that the fusion of these experts will result
in significant improvements in performance over the system in which the face
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experts work with the raw R,G,B channel data or other colour spaces such as
H, S, V.

However, as the image formation process is very complicated, some of the
simplifying assumptions may not be valid in practical situations. Our experi-
mental studies show that, in different conditions different colour spaces can lead
to a better performance. Even in the same imaging conditions (lighting condi-
tions etc.), the use of different colour spaces could be beneficial to represent
the skin colour efficiently. Therefore, the main idea behind the current study
is to involve as many colour spaces as possible in the verification process and
then select the best set of colour spaces by training or dynamically. In the latter
case, the best subset of the colour based classifiers is selected by gating of the
colour space experts based on confidence measures derived for each colour space.
Classifiers with an acceptable level of confidence value are combined for decision
making. The proposed method is in principle similar to the approach presented
by Zhou et. al for ensembling neural networks [14]. Surprisingly good results are
obtained using the proposed method. The paper is organised as follows. In the
next section different colour spaces adopted in different machine vision applica-
tions are reviewed. The face verification process is briefly discussed in Section 3.
The proposed method of colour space selection is described in Section 4. The
experimental set up is detailed in Section 5. Section 6 presents the results of the
experiments. Finally, in Section 7 the paper is drawn to conclusion.

2 Colour Spaces

For computer displays, it is most common to describe colour as a set of three
primary colours: Red, Green and Blue. However, it has been demonstrated that
in different applications using different colour spaces could be beneficial. In this
section some of the most important colour spaces are reviewed. Considering the
R,G,B system as the primary colour space, we can classify the other colour
spaces into two main categories: Linear and Nonlinear transformation of the R,
G,B values.

2.1 Linear Combination of R,G,B

CMY -based colour space is commonly used in colour printing systems. The name
CMY refers to cyan, magenta and yellow. The RGB values can be converted to
CMY values using:

C = 255 − R, M = 255 − G, Y = 255 − B (1)

There are several CIE-based colour spaces,but all are derived from the fun-
damental XY Z space:

⎡

⎣
X
Y
Z

⎤

⎦ =

⎡

⎣
0.41 0.36 0.18
0.21 0.72 0.07
0.02 0.02 0.95

⎤

⎦

⎡

⎣
R
G
B

⎤

⎦ (2)
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A number of different colour spaces including Y UV , Y IQ, Y ES and Y CbCr

are based on separating luminance from chrominance (lightness from colour).
These spaces are useful in compression and other image processing applications.
Their formal definition can be found in [2].

I1I2I3 or Ohta’s features [7] were first introduced for segmentation as opti-
mised colour features and are shown in equations:

I1 =
R + G + B

3.0
, I2 = R − B, I3 = 2G − R − B (3)

LEF Colour Space defines a colour model that combines the additivity of the
RGB model with the intuitiveness of the hue-saturation-luminance models by
applying a linear transformation to the RGB cube [8].

2.2 Nonlinear Combination of R,G,B

The chromaticities for the normalised RGB are obtained by normalising the
RGB values with the intensity value, I:

r = R/I, g = G/I, b = B/I (4)

where I = (R + G + B)/3. Similar equations are used for normalising the XY Z
values. The result is a 2D space known as the CIE chromaticity diagram. The
opponent chromaticity space is also defined as

rg = r − g, yb = r + g − 2b (5)

Kawato and Ohya [5] have used the ab space which is derived from NCC rg-
chromaticities as:

a = r + g/2, b =
√

3/(2g) (6)

In [13], two colour spaces namely P1 and P2 have been defined by circulating the
r, g and b values in equation 5. Log-opponent (or Log-opponent chromaticity)
space has been applied to image indexing in [1]. The space is presented by
equations:

Lnrg = ln(R/G) = lnR − ln G

Lnyb = ln(
R.G

B2 ) = lnR + lnG − 2 lnB (7)

TSL (Tint - Saturation - Lightness) colour space is also derived from NCC
rg-chromaticities [12].

l1l2l3 colour space as presented in [4] has been adopted for colour-based object
recognition. Many people find HS-spaces (HSV , HSB, HSI, HSL) intuitive
for colour definition. For more information about the relevant equations used in
this study, the reader is referred to [3].
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3 Face Verification Process

The face verification process consists of three main stages: face image acquisition,
feature extraction, and finally decision making. The first stage involves sensing
and image preprocessing the result of which is a geometrically registered and
photometrically normalised face image. Briefly, the output of a physical sensor
(camera) is analysed by a face detector and once a face instance is detected, the
position of the eyes is determined. This information allows the face part of the
image to be extracted at a given aspect ratio and resampled to a pre-specified
resolution. The extracted face image is finally photometrically normalised to
compensate for illumination changes.

The raw colour camera channel outputs, R, G and B are converted according
to the desired image representation spaces. In this study different colour spaces
reviewed in the previous section were considered.

In the second stage of the face verification process the face image data is
projected into a feature space. The final stage of the face verification process
involves matching and decision making. Basically the features extracted for a
face image to be verified, x, are compared with a stored template, μi, that was
acquired on enrolment. In [11], it was demonstrated that the Gradient Direction
(GD) metric or Normalised Correlation (NC) function in the Linear Discriminant
Analysis (LDA) feature space works effectively in the face verification systems.
In this study we adopted the NC measure in the LDA space. The score, s,
output by the matching process is then compared to a threshold in order to
decide whether the claim is genuine or impostor. If this final stage of processing
is applied to different colour spaces separately, we end up with a number of
scores, sk = s(xk), k = 1, 2, . . . , N which then have to be fused to obtain the
final decision. The adopted fusion method is studied in the next section.

4 Confidence Based Gating of Scores

One of the most exciting research directions in the field of pattern recognition and
computer vision is classifier fusion. Multiple expert fusion aims to make use of
many different classifier designs to improve the classification performance. In the
case considered here, as different colour spaces could be more efficient in different
conditions, it seems reasonable to expect that a better performance could be
obtained by combining classifiers which are based on different colour spaces. In
the previous study [9], we proposed a colour space selection algorithm based on
the sequential search methods of feature selection. The proposed method works
effectively for selecting an optimum subset of colour subspaces. One of the most
important features of the proposed method is that the colour subspaces are
selected adaptively based on the overall quality of the image data used in the
enrolment and test stages. The main idea behind the current study is to select
the most discriminative colour features not only based on the overall quality
of the training and test data but also based on the characteristics of each test
image individually. We expect that by dynamically selecting the experts using
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the respective colour subspaces, the performance of the verification system is
improved.

In order to select the colour features for each test data individually, a con-
fidence level is defined for each measurement. Suppose that for a test sample,
x, si refer to the ith colour space score. Let pe(s) denote probability of error.
Then, if pe(si) < pe(sj) for allj �= i, we can say that the colour space i has the
highest confidence level, i.e.

CL(si) = 1 − pe(si) (8)

Moreover,
pe(s) = pe(s|C)pe(C) + pe(s|I)pe(I) (9)

where pe(s|C)/pe(s|I) refer to the probability of error when x is classified as
client/impostor and pe(C) and pe(I) refer to the probability of client and im-
postor errors respectively.

In the evaluation step, in addition to the threshold(s), the probability density
functions of the distances corresponding to the miss-classified samples, Pe(s|C)
and Pe(s|I), can be estimated. These functions are determined for all subspaces
individually. In this study a simple unimodal exponential function was used for
modelling the density functions. pe(C) and pe(I) are in fact the False Rejection
and False Acceptance error in the evaluation step. Then, in the test step, the
error probabilities of the measured distances are calculated using Equation 9
for all spaces. The CL values of Equation 8 are considered as the confidence
levels of the measurements made. The final decision is made using the scores
corresponding to the measurements with an acceptable level of confidence. The
confidence level threshold is adaptively determined in the evaluation step. The
adopted threshold is then used in the test stage.

5 Experimental Design

The aim of the experiments is to show that by fusing the sensory data used by
component experts, the performance of the multiple classifier system improves
considerably. We use the XM2VTS database 1 and its associated experimental
protocols for this purpose.

The XM2VTS database is a multi-modal database consisting of face images,
video sequences and speech recordings taken of 295 subjects at one month inter-
vals. The database is primarily intended for research and development of personal
identity verification systems where it is reasonable to assume that the client will
be cooperative. Since the data acquisition was distributed over a long period of
time, significant variability of appearance of clients, e.g. changes of hair style,
facial hair, shape and presence or absence of glasses, is present in the recordings.

The XM2VTS database contains 4 sessions. Two shots at each session, with
and without glasses, were acquired for people regularly wearing glasses.

1 http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb/
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For the task of personal verification, a standard protocol for performance
assessment has been defined. The so called Lausanne protocol splits randomly
all subjects into a client and impostor groups. The client group contains 200
subjects, the impostor group is divided into 25 evaluation impostors and 70 test
impostors. Eight images from 4 sessions are used.

From these sets consisting of face images, training set, evaluation set and test
set are built. There exist two configurations that differ by a selection of particular
shots of people into the training, evaluation and test sets. The training set is
used to construct client models. The evaluation set is selected to produce client
and impostor access scores, which are used to find a threshold that determines
if a person is accepted or not. According to the Lausanne protocol the threshold
is set to satisfy certain performance levels (error rates) on the evaluation set.
In this study, the threshold have been determined based on the Equal Error
Rate criterion, i.e. by the operating point where the false rejection rate (FRR) is
equal to the false acceptance rate (FAR). False acceptance is the case where an
impostor, claiming the identity of a client, is accepted. False rejection is the case
where a client, claiming his true identity, is rejected. The evaluation set is also
used in fusion experiments (classifier combination) for training. The sequential
search algorithms pick the best colour spaces using this set of data.

Finally the test set is selected to simulate realistic authentication tests where
impostor’s identity is unknown to the system. The performance measures of a
verification system are the False Acceptance rate and the False Rejection rate.

The original resolution of the image data is 720 × 576. The experiments were
performed with a relatively low resolution face images, namely 64 × 49. The
results reported in this article have been obtained by applying a geometric face
registration based on manually annotated eyes positions. Histogram equalisation
was used to normalise the registered face photometrically.

6 Experimental Results

Table 1 shows the performance of the face verification system using the individual
colour spaces considering the first configuration of the Lausanne protocol. The
values in the table indicate the FAR and FRR in both evaluation and test stages.
As we expect, the best performance is obtained neither in the original RGB
spaces nor in the intensity space. Some other colour spaces such as U in the
YUV space or opponent chromaticities individually can lead to better results.
Table 2 shows some results of the same experiments considering the second
XM2VTS configuration.

In the next step, the proposed confidence based gating approach was used in
order to find an optimum subset of colour spaces. Suppose that we found the
colour spaces with the higher confidence level, the question is how to fuse the
selected classifiers. In this study we fused the classifiers using the simple voting
rule. The other important issue is how to select an appropriate threshold on the
confidence level. We adopted two different methods of gating. In the first group of
experiments, we wanted to optimise the number of colour subspaces. Figures 1(a)
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Table 1. Identity verification results using different colour spaces (configuration 1)

subspace R G B I H Sat Val r g

FAR Eval. 1.94 1.91 2 2.18 2.1 1.72 2.05 1.8125 1.62

FRR Eval. 2.33 2.17 1.667 1.83 1.667 1.83 2.1667 2 1.33

FAR Test 2.13 1.92 2.24 2.24 2.027 1.78 2.34 1.96 1.62

FRR Test 2 1.75 1.5 1.25 0.5 1.25 2 0.75 1

subspace b T(TSL) S(TSL) L(TSL) V(YUV) rg U(YUV) Cr I2

FAR Eval. 1.782 1.425 1.28 2.04 2.38 1.32 2.25 1.56 2.16

FRR Eval. 1.667 1.67 1.33 2.33 2.33 1.67 1.67 2 2.33

FAR Test 1.817 1.258 1.51 2.062 2.36 1.467 2.08 1.94 2.12

FRR Test 1.25 1 1.75 1.5 0.75 1.25 0 1.5 0.75

subspace I3 E(LEF) F(LEF) X(CIE) Y(CIE) Z(CIE) Y(YES) E(YES) S(YES)

FAR Eval. 1.577 2.235 1.49 2.39 2.35 2.08 2.03 2.16 1.95

FRR Eval. 1.83 2 1.67 1.83 1.83 1.83 2.33 1.83 2

FAR Test 1.59 2.36 1.37 2.51 2.43 2.34 2.04 2.033 1.79

FRR Test 0.75 0.5 0.5 1.25 1.5 1.75 1.5 0.75 0.25

subspace I(YIQ) Q(YIQ) a(ab) b(ab) Lnrg Lnyb l1 l2 l3

FAR Eval. 2.13 1.81 1.76 1.58 1.3 1.69 2.41 2.19 1.71

FRR Eval. 2.17 1.833 1.833 1.5 1.67 1.5 1.833 2.5 1.67

FAR Test 2.4 1.7 1.87 1.628 1.4027 1.7973 2.09 2.25 1.58

FRR Test 1.5 0.75 1.5 1 1.75 1.25 1 1.25 1.5

subspace LHSL) Xn Yn Zn C(CMY) M(CMY) Y(CMY) bg

FAR Eval. 2.13 1.79 1.6 1.65 2.22 1.92 2.032 1.47

FRR Eval. 2.33 1.83 1.5 1.667 2.5 2.17 1.67 1.67

FAR Test 2.23 1.892 1.65 1.6902 2.46 1.92 2.28 1.15

FRR Test 1 1 0.5 1.25 2 1.75 1.5 0.75

Table 2. Identity verification results using some of the colour spaces (configuration 2)

subspace R G B I H S V r g b U Yn bg F(LEF)

FAR Eval. 1.19 1.40 1.295 1.225 1.26 1.03 1.003 1.51 0.75 1.00 0.87 0.89 0.82 0.87

FRR Eval. 1.5 1 1.25 1.25 1.25 1.25 1.25 1.25 0.75 1.25 1 1 1 1

FAR Test 1.57 1.82 1.93 1.79 1.15 1.46 1.31 2.16 0.77 1.80 1.06 1.12 1.03 1.24

FRR Test 1.5 1.25 1.5 1.5 0.5 1 1.75 1.25 0.5 0.75 1 0.5 0.75 1.25

and (b) show the error rate versus the number of colour spaces (with the highest
CL values) in the evaluation step considering the first and second experimental
configurations of the database. As one can see,the optimum number of colour
spaces is around 29 for the first and 11 for the second configuration. Therefore,
in the test step, the first 29 (or 11) colour spaces were used for decision making.
The first rows of tables 3 and 4 show the relevant results. Figures 1(c) and (d)
also show the error rate versus the number of colour spaces for the test step. In
the second gating method, in the evaluation step an optimum threshold is deter-
mined. The colour subspaces with a confidence level higher than the threshold
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Fig. 1. Confidence based gating results (method 1)
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Fig. 2. Confidence based gating results (method 2)

can participate in the voting process. Figure 2 contains the associated results.
The upper plots demonstrate that the optimum threshold for the confidence level
is around 96.8% and 98.4% for the first and second configurations respectively.
The second rows of tables 3 and 4 show the relevant results. Apparently, both
methods considerably improve the performance of the face verification system
compared to the intensity space and even the best subspaces in each protocols.
As we mentioned in the previous study [9] a sequential search approach which
is in principle similar to the ”plus L and take away R” algorithm was applied to
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Table 3. Verification results using the proposed colour fusion methods (config. 1)

Evaluation Test
FAR FRR TER FAR FRR TER

Gating (Method 1) 0.71 0.66 1.37 0.83 0.75 1.58
Gating (Method 2) 0.87 0.5 1.37 0.95 0.5 1.45
Plus 2 Take away 1 0.48 0.5 0.98 0.55 1 1.55

Table 4. Verification results using the proposed colour fusion methods (config. 2)

Evaluation Test
FAR FRR TER FAR FRR TER

Gating(Method 1 ) 0.22 0.25 0.47 0.36 0.25 0.61
Gating(Method 2) 0.23 0.25 0.48 0.43 0.25 0.68
Plus 2 Take away 1 0.19 0.25 0.44 0.27 0.25 0.52

find an optimum subset of the colour spaces. The third rows of tables 3 and 4
demonstrate the associated results. As one can see, the results are comparable
with the results using the proposed method. One of the main characteristics of
the XM2VTS database is that the image data has been collected in the controlled
conditions. The comparison of the proposed methods using images collected in
different scenarios is a matter of interest in the future studies.

7 Conclusions

We addressed the problem of fusing colour information for face authentication. In
a face verification system which is based on the normalised correlation measure
in the LDA face space. A confidence base gating approach was proposed in order
to find an optimum subset of the colour spaces for each test data individually.
Using the proposed method, the performance of the verification system was
considerably improved as compared to the intensity space. The proposed colour
fusion scheme also consistently outperforms the best colour space in different
conditions.
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Abstract. We propose a new model for view-independent face recognition, 
which lies under the category of multi-view approaches. We use the so-called 
“mixture of experts”, ME, in which, the problem space is divided into several 
subspaces for the experts, and the outputs of experts are combined by a gating 
network. In the proposed model, instead of allowing ME to partition the face 
space automatically, the ME is directed to adapt to a particular partitioning 
corresponding to predetermined views. In this model, view-dependent 
representations are used to direct the experts towards a specific area of face 
space. The experimental results support our claim that directing the mixture of 
experts to a predetermined partitioning of face space is a more beneficial way of 
using conventional ME for view-independent face recognition. 

1   Introduction 

Recognizing faces from novel viewing directions is a challenging task in computer 
vision, which the human visual system performs efficiently. The major issue in view-
independent face recognition is the ability to identify a familiar face from different 
viewing directions, from which the face was not seen in the past. 

There are different methods for handling pose variations in face recognition. These 
methods are divided into the following three major groups: (a) the invariant features 
methods, (b) the 3D model-based methods, and (c) the multiview methods [1,2].  

Invariant features methods attempt to extract features that do not change when 
faces are seen from novel views, such as geometric invariants [3,4]. A drawback of 
these methods is the unfeasibility of finding sufficient number of invariant features 
for reliable recognition. In addition, there are many informative features that are 
intrinsically view-dependent and are not used in these methods. 

The 3D model-based methods focus on constructing a prototypical view (frontal 
view) from a 3D model which is extracted from the input image. A recent survey of 
approaches to 3D face recognition is provided in [5]. Such methods work well for 
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small rotation angles, but they fail when the angle is large causing some important 
features to be invisible [2]. 

Most proposed methods are based on using a number of multiview samples. In 
multiview methods, an adequate number of different views of a face are used to deal 
with the pose problem [1]. An example is the work by Beymer [6], which models 
faces with templates from 15 views, sampling different poses from the viewing 
sphere. The recognizer consists of two main stages, a geometrical alignment stage 
where the input is registered with the model views and a correlation stage for 
matching.  

Under the category of multiview methods, there are other works in which the 
attempt is made to propose representation schemes that are robust to changes in 
viewpoint. Of such methods, the most famous one is the single-view eigenspaces. The 
concept of single-view eigenspace was first introduced in [7], based on the Principal 
Component Analysis, PCA, (originally proposed in [8] and popularized by [9]). They 
use the face images in five common poses to build five single-view eigenspaces. For a 
test face, the distance to each single-view eigenspace is calculated and the pose class 
with the minimum distance is recognized. The single-view eigenspaces has also been 
used in [10] with three projection spaces of frontal, half profile and profile. The 
alternative solution for view-independent recognition with PCA technique is the 
global eigenspace. The global eigenspace is created from all face images in different 
poses. This method has been used in [11] to simultaneously perform object pose 
estimation and recognition. 

In this paper, we propose a model for view-independent face recognition, based on 
“mixture of experts” (ME), in which the outputs of several classifiers (experts) are 
integrated by a gating network. The gating network decides which of the experts 
should be used for each input image. In our model, instead of allowing the mixture 
network to self-partition the face space, we define particular subspaces and, attempt, 
in some ways, to direct the experts towards them. The proposed model makes use of 
view-based eigenspaces in the representation layer of each expert and helps the 
experts to specialize in a predetermined view of face. The gating network with a 
global eigenspace (made by all the training images) in its input layer learns to find the 
pose of the input face image and so directs more error information (feedback) to the 
expert that performs best. Eventually, expert 1 “specializes” in one view of face, 
expert 2 specializes in another view of the face, and so on.  

The rest of this paper is organized as follows. In section 2, the principles of the 
combining methodology, on which our proposed model is based, are briefly 
described. In section 3, the proposed model, mixture of view-based experts, is 
introduced, followed by descriptions on their training process and the experimental 
results. Section 4 presents a discussion on the function and performance of the 
proposed mixture of view-based experts. And finally, Section 5 draws conclusion and 
summarizes the paper.   

2   Mixture of Experts (ME) 

From a computational point of view, according to the principle of divide and conquer, 
a complex computational task is solved by dividing it into a number of 
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computationally simple tasks and then combining the solutions to those tasks. In 
supervised learning, computational simplicity is achieved by distributing the learning 
task among a number of experts, which in turn divides the input space into a set of 
subspaces. The combination of experts is said to constitute a combination of 
classifiers. 

Mixture of experts is the most famous method in the category of dynamic 
structures of classifier combining, in which the input signal is directly involved in 
actuating the mechanism that integrates the outputs of the individual experts into an 
overall output [12].  

Consider a modular neural network (Fig. 1) in which the learning process proceeds 
by fusing self–organized and supervised forms of learning. The experts are 
technically performing supervised learning in that their individual outputs are 
combined to model the  

 

Fig. 1. The mixture of experts is composed of expert networks and a gating network. The 
experts compete to learn the training patterns and the gating network mediates the competition. 
The gating network is simultaneously trained to combine the experts’ outputs. 

desired response. There is, however, a sense in which the experts are also performing 
self–organized learning; that is they self–organize to find a good partitioning of the 
input space so that each expert does well at modeling its own subspace, and as a 
whole group they model the input space well. The learning algorithm of the mixture 
structure is described in [13]. 

However, in our models, in order to improve the performance of the expert 
networks, and consequently the whole network performance, we use our revised 
version of ME in which MLPs are used as the expert and gating networks. The details 
of the learning rules of ME with MLPs are described in our previous work [14]. 

3   Proposed Model: Mixture of View-Based Experts 

Our proposed model is designed to achieve view-independent face recognition with a 
mixture of view-based experts (Fig. 2). In this model, the face space (spanning from 
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right to left profile along the horizontal plane) is divided into five predetermined 
views (namely -90°, -45°, 0°, +45° and +90° views) and each expert is trained to 
recognize faces of a specific view at an individual level (view-based experts). These 
experts have the ability to recognize faces close to their specific views. This property 
enables the model to use a combination of two or more experts in order to recognize 
 

 

Fig. 2. Sketch of the mixture of view-based experts. This model consists of expert networks 
which have specialization over a specific pose and a gating network which mediates between 
experts by finding the pose of the input face image. Expert modules obtain specialization 
according to the view-dependent representation placed in their input layer. The experts are able 
to recognize faces close to their corresponding views. Combining the outputs of two or more 
experts by the gating network leads to the recognition of faces in intermediate unseen views. 

faces in intermediate unseen views. In this model the gating network contains a global 
eigenspace in its representation layer which is different from that of experts; so it 
differs from the conventional ME which employs a same representation layer for both 
experts and gating network. Thus, the first layer of the gating network with the global 
PCA mapping, reveals information on the view of the input face image, and in the 
second layer, the MLP network, according to the information of the previous layer, 
inhibits or excites one or more experts to produce the final output. The third layer, 
softmax function, preserves the rank order of its input values, and is a differentiable 
generalization of the “winner-takes-all” operation of picking the maximum value.  
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3.1   View-Based Experts 

Each of the five view-based experts of the network structure shown Fig. 2 is 
composed of two sub-layers: representation and identification (Fig. 3). 

To approach a representation layer with a view-based eigenspace, for a given set of 
M  individuals under C  different views, we build a view-based set of C  distinct 
eigenspaces, each capturing the variation of the M  individuals in a common view. 
The view-based eigenspace is essentially an extension of the eigenface technique to 
multiple sets of eigenvectors, one for each combination of orientation. One can view 
this architecture as a set of parallel observers, each trying to explain the image data 
with their set of eigenvectors [7,15]. As shown in Fig. 3, each of those view-based 
eigenspaces is added to the representation layer of each expert network. Therefore, 
each expert network obtains expertise over the view according to which the 
eigenspace of its representation layer is made.  

 

Fig. 3. An expert network is composed of two sub-layers: representation and identification. In 
the representation layer, PCA mapping is carried out and in the identification layer an MLP 
network performs the identification task. 

3.2   Network Training 

In our experiments, the network’s task is to recognize the faces of intermediate 
unseen views as individuals. We use a subset of the PIE database which consists of 10 
identities with 9 different images of 9 different poses spaced evenly from -90 to +90 
with 22.5° steps. Faces with ±45, ±90 and 0° rotations are used to train and those with 
±67.5 and ±22.5° rotations are used to test the networks. Fig. 4 shows examples of 
images used for training and testing the networks. 

As in PIE database there is just one sample of each pose for each identity, we face 
the “small sample size” problem, which exists in high-dimensional pattern recognition 
tasks, where the number of available samples is smaller than the dimensionality of the 
samples. Numerous techniques have been developed to attack this problem; for a 
detailed discussion of these methods see Ref [16], however we try to solve it with the 
basic idea of synthesizing multiple new face images which imitate the corrupted 
images for recognition. The imitation is done by a noise model [17] with three noise 
parameters controlling the degree of contrast, brightness and Gaussian blur, 
respectively. An example of synthesized images is shown in Fig. 5, where, by 
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changing the values of noise parameters, 14 corrupted images corresponding to one 
sample image are imitated, which essentially improves the representative of the given 
sample. 

To form a view-based eigenspace, for instance for the right half profile eigenspace, 
face images of that view including the synthesized images are used. Therefore, we 
have 150 (15×10, 10 identities and 15 images for each training view of each identity) 
images for each view, which by using the efficient technique for PCA described in 
[8], we make a view-based eigenspace formed by the 50 eigenvectors of that training 
view’s covariance matrix. 

 

Fig. 4. Examples of face images, taken from the PIE database, used to train and test our 
proposed model. Faces with ±90°, ±45° and 0° rotations are used to train, and faces in 
intermediate views (with ±68.5° and ±22.5° rotations) are used test the ability of our models to 
perform view-independent face recognition.  

In the training phase, each input image is projected into the five view-based 
eigenspaces and is then fed into its corresponding identification layer of experts. At 
the same time, the input image is projected into the global eigenspace which is placed 
in the input layer of the gating network. Rest of the training process is done according 
to the training rules mentioned in section 3-2. It should be mentioned that after 
searching for network parameter settings which maximize the expertise of each expert 
in its corresponding view and also lets the gating network to select the experts that are 
performing the best at recognizing the input image, we found the optimum values of 

0.01 and 0.05 for eη and gη , respectively. 

 

Fig. 5. Synthesizing new images.  The single image at the top is the original, the images in the 
middle row are generated by changing the contrast and brightness of the original image, and the 
images in the lower row are generated by applying Gaussian blur. 
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3.3   Experimental Results 

To evaluate the performance of mixture of view-based experts and also exhibit the 
advantage of using view-based eigenspaces, we compare it with the ME which has a 
global PCA transform in its input layer. As mentioned before, in our experiment, the 
networks’ task is to recognize the faces of intermediate unseen views as individuals. 
For similar network topologies for the gating and experts in both mixture of view-
based experts and ME, we experiment them on the test set described in the previous 
subsection. The results of this experiment is reported in Table 1, where for a variety 
 

Table 1. Recognition rates of different topologies of mixture of view-based experts and ME. In 
each column, for fixed values of hidden neurons of gating network and expert networks, 
recognition rate, averaged over ten training runs with different random initial weights, is 
reported.  

No. of hidden neurons of gating network 16 18 20 22 24 26 
No. of hidden neurons of experts 45 50 55 60 65 70 

ME with Global Eigenspace 
[14] 

71.02 71.48 75.53 77.14 73.54 69.12 Recognition 
rate (%) 

Proposed Model 78.53 76.57 80.51 78.58 76.50 77.22 

 
of the number of hidden neurons, for gating and expert networks, the performance on 
the test set in terms of recognition rate, which is the average of 10 training runs with 
different initial random weights, is listed. As shown in Table 1, mixture of view-based 
experts outperforms ME with a much better recognition rate. The best result of this 
experiment for mixture of view-based experts is 86.45%, and for ME is 78.26%, with 
22 and 60 hidden neurons in proposed model and 20 and 55 hidden neurons in ME, 
for the gating and experts, respectively.  

4   Discussion 

As shown in Table 1, mixture of view-based experts achieves higher recognition rate 
in comparison with ME. In this subsection we examine the role of expertise and 
specialization of experts in the prominence of proposed model. In order to attain a 
better understanding of the function of experts in mixture of view-based experts, we 
performed an additional experiment involving unseen face images in similar views as 
the training samples which were synthesized by the technique described in subsection 
4-2 and were not used in the training phase of networks. The experiment was carried 
out with 750 face images of -90°, -45°, 0°, 45° and 90° rotations and we observed the 
performance of each expert in the proposed model and ME. Fig. 6 summarizes the 
division of labor performed by each expert of mixture of view-based experts and ME 
over 10 runs with 01.0=eη  and .05.0=gη  The bars denote the recognition rate of 

each of five experts, broken down by input face pose class, and the error bars denote 
standard error. Note that in Fig. 6.b the most left bar in each group corresponds  
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Fig. 6.  Recognition rates of ME and mixture of view-based experts, averaged over ten training 
runs on unseen synthesized images of training views broken down by pose class. Bars denote 
the recognition rate of experts. (a) Modules of ME structures are not biased to prefer one class 
of pose to another as they recognize input images about to the same extent irrespective of their 
pose class. (b) Experts of the proposed model demonstrate expertise over their view of 
specialization as they well recognize faces of their corresponding pose and for faces of other 
pose classes their performance decreases dramatically. See Discussion for details. 

to -90° expert and the next one to -45° expert and so on. Clearly, considering Fig. 6.a, 
for any input face image, irrespective of its pose, the experts reveal almost the same 
recognition rate. In Fig. 6.b, there is strong expertise in experts in their corresponding 
pose class which is noticeably greater than that of ME. As, for instance, the 
performance of -45° expert, shown by the second bar in each bar group, is greater for 
faces with -45° rotation, whereas it degrades  dramatically for faces of other pose 
classes. Therefore, regarding the better performance and the existence of expertise in 
mixture of view-based experts, in comparison with ME, shown in Table 1and Fig. 6a 
and b respectively, we conclude that to achieve view-independent face recognition 
with mixture structure, it is more beneficial to quantize and aggregate the face space 
with respect to pose and then direct each expert towards learning its corresponding 
pose class, instead of allowing the ME to self partition it, like what is done in its 
conventional style. In other words, dividing the face space with respect to pose is a 
helpful solution that ME itself cannot reach, but when it is directed towards such 
solution by means of view-based eigenspaces, the model exhibits robustness to 
variations in pose in terms of high recognition rate for faces of novel views.    

5   Conclusion 

We have presented a computational model, based on mixture of experts, to perform 
view-independent face recognition. Our studies lend support to our claim that there is 
a better way of training a ME for view-independent face recognition when we do not 
rely on ME to partition the face space. The basic idea was to partition the face space 
with respect to pose and direct each expert towards a predefined subspace. In our 
model we used view-dependent representations to direct expert towards their 
corresponding views of face.  
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Note that we do not argue that mixture of experts should always be trained in such 
ways. There might be several applications that the problem space partitioning by ME 
itself is more fitting the task at hand. But in view-independent face recognition, where 
faces of a common view are similar insofar as they form a remarkably homogenous 
category, we observed that our method of partitioning the face space reveals better 
performance than the conventional ME with self-partitioning of space. 

Using mixture structures with view-based experts in view-independent face 
recognition appears to be a promising avenue for future research. In future work, we 
plan to explore more complicated representation mechanisms for experts to lead to 
specialization in supervised computational models that are more biologically 
plausible. As another route to increasing our experts’ specialization, we will also 
make effort to incorporate different methods of teacher-directed learning.     
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Abstract. In this paper we present a fusion technique for Support Vector 
Machine (SVM) scores, obtained after a dimension reduction with Bilateral-
projection-based Two-Dimensional Principal Component Analysis (B2DPCA) 
for Gabor features. We apply this new algorithm to face verification. Several 
experiments have been performed with the public domain FRAV2D face 
database (109 subjects). A total of 40 wavelets (5 frequencies and 8 
orientations) have been used. Each set of wavelet-convolved images is 
considered in parallel for the B2DPCA and the SVM classification. A final 
fusion is performed combining the SVM scores for the 40 wavelets with a raw 
average. The proposed algorithm outperforms the standard dimension reduction 
techniques, such as Principal Component Analysis (PCA) and B2DPCA.  

Keywords: Biometrics, Face Verification, Gabor Wavelet, Principal 
Component Analysis, Bilateral 2D Principal Component Analysis, Parallel 
Gabor Principal Component Analysis, Support Vector Machine. 

1   Introduction 

Since the last decade, face biometrics applications have been found to be feasible, as 
well as user-friendly and privacy-respectful methods. One of the working modes of 
these systems is the so-called face verification, where a user claims an identity, in the 
same way as a person does when writing his/her PIN number at an automated teller 
machine. The user’s biometric data are compared to his/her corresponding biometric 
template in order to verify whether or not the person is who he/she claims to be. 
Therefore face verification is a 1-to-1 problem, much easy to tackle compared to face 
identification (1-to-N problem). 

The huge amount of biometric data makes it mandatory to perform a dimension 
reduction prior to any processing. Turk and Pentland presented the now classical 
Principal Component Analysis method (PCA), which maximizes the variance over the 
data, after converting the images into column vectors [1]. There have been several 
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modifications and improvements of this method. For instance, in [2] the so-called 
2DPCA was proposed, which keeps the 2D information in the images, as every pixel 
is correlated to its neighbours. In fact, this method is equivalent to perform a PCA 
over the rows of the image [3]. Although 2DPCA outperforms PCA in recognition 
rates, it usually needs more projection coefficients. A Bilateral-projection-based Two-
Dimensional Principal Component Analysis (B2DPCA) was developed as an 
alternative to 2DPCA [3]. One of the challenges to achieve with B2DPCA was to 
remove the necessity of more coefficients to represent an image in 2DPCA than in 
PCA. Furthermore, these authors demonstrated the superiority of this method over the 
conventional PCA for face recognition.  

Gabor wavelets [4] are a useful technique because of their resemblance to the 
sensibility of visual cortex in mammals. Their good results when applied to face 
recognition and their robustness to changes of illumination make these wavelets a 
powerful tool in biometrics systems.  

In previous works different strategies have been used to combine Gabor wavelets 
with dimension reduction methods. For example, in [5] the values of the convolutions 
were computed only over a set of fiducial points (eyes, nose and mouth) and then fed 
to a PCA algorithm. Others [6][7][8][9] compute an augmented feature vector via the 
Gabor feature fusion for all the orientations and scales, and then they perform a 
downsampling process to reduce the huge dimensionality of the resulting vector. 
These methods compute all the possible convolutions to build a unique feature vector 
to be fed into a classifier, such as SVM. Up to now, B2DPCA has not been previously 
combined with Gabor wavelets. 

In this paper we propose a new fusion algorithm for Support Vector Machines 
(SVM) scores [10] obtained after a dimension reduction with B2DPCA for Gabor 
features. Recently, we have developed a fusion method based on a dimension 
reduction with PCA [11]. We would like to evaluate the benefits obtained when 
different, and more powerful, dimension reduction methods are employed. We 
compare our methods with B2DPCA and standard PCA.  

The remainder of this paper is organized as follows. In Section 2, we present the 
face database used in this work. In Section 3, we explain the design of our 
experiments, and we detail the proposed method. In Section 4, we present and discuss 
our results. Section 5 summarizes the conclusions. 

2   FRAV2D Face Database 

We have employed a complete facial images database, the public domain FRAV2D 
Face Database [12]. It contains 109 subjects, mainly 18 to 40 years old. There are 32 
images per subject, which is more than the number of images per subject used in other 
usual databases for face verification. It was collected in a year’s time with volunteers 
(students and lecturers) at the Universidad Rey Juan Carlos in Madrid (Spain). Each 
image is a 240×340 colour picture obtained with a CCD video-camera. The face of 
the subject occupies most of the image. 
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Fig. 1. Examples of images from the FRAV2D Database (from left to right: frontal view with 
diffuse illumination, gestures, occlusion, and frontal view with zenithal illumination)  

The images were obtained in a unique session per person. The subject had to sit 
down on a stool at a fixed distance to the camera, although he or she was asked to 
stand up and sit down again between two shots. Only one parameter was changed 
between two pictures. 

The images were taken under several controlled conditions of pose and 
illumination. The distribution of images is as follows: 12 frontal views with neutral 
expression (diffuse light from two focuses was used), 4 images with a 15° turn with 
respect to the camera axis, 4 images with a 30° turn with respect to the camera axis, 4 
images performing different face gestures, such as smiles, expression of surprise, etc., 
4 images with occluded faces features (the subject is looking at the camera occluding 
the left part of his/her face with his/her left hand), and 4 images with zenithal instead 
of diffuse illumination.  

In order to apply face normalization in size and orientation, the position of the eyes 
was found in every image. A window of size 128×128 pixels containing the most 
meaningful part of the face was selected in every image, with the eyes located in the 
same position. For the images with occlusions, only the right eye is visible. In this 
case, the image was cropped so that the right eye is located at the same position as in 
the other images, but no correction in size and orientation was applied. Finally the 
images were stored in equalized grey scale and histogram equalization was performed 
to correct variations in illumination. That is the information to be analyzed (Figure 1). 

3   Design of the Experiments  

In this section, we describe the experiments that have been considered using the 
FRAV2D face database. First, the database was divided into a gallery set with 2 
frontal images with neutral expression and diffuse illumination per subject and a 
unique test set, with 2 disjoint frontal images different to the previous ones. A second 
experiment design was considered with a gallery set with 4 frontal images with 
neutral expression and diffuse illumination per subject and 4 different test sets, all of 
them with 4 images per subject: a disjoint set of frontal images with neutral 
expression diffuse illumination, images with gestures (such as smiles or winks), 
images with the left part of the face occluded, and a set of frontal images with neutral 
expression, but with zenithal illumination. 

We have performed a dimension reduction process with four different methods: 
PCA, B2DPCA, Parallel Gabor PCA and Parallel Gabor B2DPCA, the latter being 
first proposed in this paper. After that, the obtained projection coefficients have been 
used to train a set of SVM classifiers. Finally, the images in the test sets were 
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projected onto the corresponding reduced frameworks and their projections were fed 
into the SVMs in order to perform the classification process devoted to face 
verification. 

In the following subsections, let Ai be the i-th image of size h×w in the face 
database and let Ai’ be the column vector of size hw×1 computed by the transpose of 
the concatenation of all the rows in Ai.  

3.1   Principal Component Analysis (PCA) 

First, we consider a classical dimension reduction method, the standard PCA [1]. The 
basic idea is to consider only the d highest eigenvalues of the covariance matrix 
obtained from the images Ai. The corresponding d eigenvectors are concatenated to 
create the projection matrix P, of size hw×d. The projection coefficients for the image 
Ai are calculated as follows: 

Ci = Ai’ 
T  P , (1) 

where T is the transpose operator. Ci is a row vector of size 1×d that contains the 
projections of the image Ai onto the framework of the most significant eigenvectors. 
As this dimensionality d is much lower than the total amount of pixels in the image 
(hw), there is an important dimension reduction. 

After computing the projection matrix for the gallery database, the projection 
coefficients for each image are calculated. An independent Support Vector Machine 
(SVM) classifier was trained for each person in the database. For each subject, we 
considered his/her images as genuine and everybody else’s as impostors. Therefore 
each SVM was prepared to verify the identity of one subject in the database.  

All the images in the test set were projected onto the PCA framework and their 
coefficients were fed to the previously trained SVMs. With the resulting scores, a 
unique receiver operating characteristic curve (ROC) was computed and the 
corresponding equal error rate (EER), for which the false acceptance rate equals the 
false rejection rate, was derived in order to characterize the verification process 
performance (see Figure 3-a for a summary of the PCA-based classification 
algorithm). 

3.2   Bilateral 2D Principal Component Analysis (B2DPCA) 

Kong et al. [3] suggested a generalization of the 2DPCA method, that consists on 
performing a 2D principal component analysis using two projection matrices, PL and 
PR, which multiply every 2D image from both sides, left and right respectively: 

Ci = PL 
T Ai PR . (2) 

The size of PL is h×l and the size of PR is w×r. Therefore the projection coefficients 
Ci form a matrix of size l×r. Both matrices PL and PR are computed with a very fast-
convergent iterative process [3], based on the minimization of the approximation error 
between the original images and their projection in the B2DPCA framework. 

In our experiments, we considered l equal to r, so that the projections Ci are square 
matrices. We then transformed these projections matrices into 1D vectors via row 
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Fig. 2. Real part of the set of 40 Gabor wavelets ordered by frequency (ν) and orientation (μ) 

concatenation and transposition in order to train a SVM classifier. An overall ROC 
curve and the corresponding EER were computed using the resulting SVM scores (see 
Figure 3-a for a summary of the B2DPCA-based classification algorithm). 

3.3   Parallel Gabor Methods 

Following notation in [13], Gabor wavelets can be defined as the product of a 
complex wave and a Gaussian envelope (Figure 2): 
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where ( )yxr ,= , the σ parameter is equal to 2π, the wave vector is defined as 

( )μμνμν ϕϕ sin,coskk =  with a module equal to to kν = 2(−(ν + 2) / 2)π and an orientation 

ϕμ = μπ/8 radians. Usual values of μ and ν are 0 ≤ μ  ≤ 7 (that represents 8 
orientations) and 0 ≤ ν  ≤ 4 (5 frequencies), respectively.  

The convolution of an image Ai with a wavelet ϕμν  is a complex matrix of size  
h×w. It is usual to consider only the magnitude in further computations, instead of the 
complex value of the convolution. In [11] it was shown that the convolution with a set 
of Gabor wavelets can be performed in parallel. In this scenario, the face database is 
convolved with the first wavelet and the results are fed to a dimension reduction 
algorithm, such as a PCA or a B2DPCA, and then to a classifier, such as SVM. After 
computing the corresponding classification scores,  the whole process is repeated with 
the following wavelet. Once the 40 Gabor wavelets have been used independently, a 
final classifier fusion is performed by considering the average of the scores obtained 
from the SVM for each wavelet. This process can be divided in the following steps 
(Figure 3-b): 

1. The first phase consists on the convolution of the images in the gallery database set 
with the wavelet of orientation μ and frequency ν. Therefore we generate an 
alternative gallery database, where each image has been obtained after a 
convolution with a certain Gabor wavelet.  
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(a) PCA/B2DPCA.  
  

(b) Parallel Gabor. 

Fig. 3.  A schematic view of the PCA/B2DPCA (a), and Parallel Gabor (b) methods. In both 
cases, the black arrows correspond to the training phase, where the gallery database is used to 
train the SVMs and to generate the face model for each subject. The grey arrows correspond to 
the test phase, where the test database is used to perform the SVM classification and the fusion 
of the scores.  

2. Then, a dimension reduction process is applied. We propose to use a B2DPCA or a 
standard PCA. 

3. With the projection coefficients computed in the previous step, a set of SVM 
classifiers are trained, one per each subject in the database. For a certain person, 
the coefficients of his/her images are considered as genuine values, while those of 
the remainder subjects are used as fake values. Each SVM yields a face model for 
every subject in the database. 

4. Next, the images in the test database set, which are different to those in the gallery 
database, are convolved with the wavelet of orientation μ and frequency ν.  These 
convolutions are then projected onto the eigenvector framework (PCA or 
B2DPCA) and the resulting coefficients are evaluated into the set of the previously 
trained SVMs.  

5. Every classifier produces a set of numerical scores: the more positive, the more 
confident is the acceptance, and the more negative, the more confident is the 
rejection. For intermediate values, the classifier is not able to verify the identity of 
the subject. We compute the scores obtained for all subjects in the test set 
considering each SVM face model. The resulting scores for all the SVMs are then 
concatenated to a unique score vector, to be used in the final score fusion. 

6. After repeating the steps 1–5 for each Gabor wavelet (considering every orientation 
μ and every frequency ν), we obtain 40 score vectors. Then we perform the fusion 
of scores by averaging them element-wise. Finally, a unique ROC curve and the 
corresponding EER can be computed.  
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4   Results and Discussion 

4.1   Influence of the Strategy for the Fusion of Scores for Parallel Gabor 
Methods 

First of all, we consider the 2-image training and 2-image test experiment (only 
frontal views with neutral expression and diffuse illumination). We compared the 
Parallel Gabor PCA method with the Parallel Gabor B2DPCA. For every Gabor 
wavelet, there is a set of scores obtained from the SVM classification of the test 
database (step 5 in the Section 3.3).  

We have considered three different strategies for the fusion of the scores of these 
40 sets: an element-wise average of the scores (from now on called “raw average”), a 
previous normalization of the scores into the range 0–1, followed by an element-wise 
average as before (“normalized average”) and a previous standardization of the 
scores, transforming them into zero mean and unit variance and then an element-wise 
average as before (“standardized average”). 

The results obtained for the test database are presented in Table 1. The raw average 
strategy yields the best results in both Parallel Gabor methods compared to the 
normalized average and the standardized average. Parallel Gabor B2DPCA improves 
Parallel Gabor PCA (EER equal to 0.14% vs. 0.15%), but it needs a bigger 
dimensionality for the projection coefficients (22×22 vs. 185).  

Table 1. Best equal error rate and corresponding dimensionality for the Parallel Gabor Methods 
for the 2-image training and 2-image test experiment, considering three types of fusion of 
scores 

Parallel Gabor PCA Parallel Gabor B2DPCA 
Raw

average 
Normalized 

average 
Standardized 

average 
Raw

average 
Normalized 

average 
Standardized 

average 
EER (%) 0.15 0.18 0.19 0.14 0.16 0.18

Dimension 185 205 205 22×22 20×20 18×18  

 

Fig. 4. Evolution of the EER for Parallel Gabor PCA and Parallel Gabor B2DPCA, with a raw 
average of the scores (continuous line), a normalization of scores to the range 0–1 plus an 
average (dashed line) and a standardization of scores to zero mean and unit variance plus an 
average (long dashed line) 
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Figure 4 shows the evolution of the EER for both Parallel Gabor methods, with the 
three strategies of fusion of scores. For Parallel Gabor PCA, the raw average always 
produces the lowest error. However, for Parallel Gabor B2DPCA, the raw average 
and the normalized average alternate to yield the lowest error, depending on the 
dimensionality considered. As a comparison, the best EER for PCA in this experiment 
was 2.98% (dimensionality 150), for B2DPCA it was 2.01% (dimensionality 18×18). 

4.2   Comparison of the Parallel Gabor Methods 

The previous experiment showed that the best EER for both Parallel Gabor methods 
was obtained with the raw average of the scores. Therefore, this will be the fusing 
strategy considered in the 4-image training and 4-image test experiment.  In this case, 
four different test sets were considered: frontal image with diffuse illumination, 
gestures, occlusions and frontal image with zenithal illumination. 

Table 2. EER (%) obtained when the test set contains (a) frontal images with diffuse 
illumination, (b) images with gestures, (c) images with occlusions and (d) frontal images with 
zenithal illumination 

 Dimension PCA 
Parallel 
Gabor 
PCA 

Dimension B2DPCA 
Parallel 
Gabor 

B2DPCA 
20 1.80 0.23 4×4 2.74 0.23 
50 0.69 0.0064 7×7 0.67 0.030 

100 0.46 0.0021 10×10 0.46 0.0021 
(a) 

150 0.46 0.0021 12×12 0.46 0.0021 
20 12.98 7.80 4×4 15.83 8.90 
50 9.40 5.73 7×7 10.76 5.68 

100 8.03 5.15 10×10 8.38 5.28 
(b) 

150 7.34 4.94 12×12 8.72 5.06 
20 41.51 30.73 4×4 47.25 31.48 
50 37.39 24.06 7×7 39.91 25.26 

100 33.79 23.41 10×10 36.38 23.40 
(c) 

150 32.34 23.10 12×12 36.99 22.71 
20 5.28 1.83 4×4 9.19 2.98 
50 3.07 0.46 7×7 2.73 0.69 

100 2.06 0.23 10×10 2.30 0.34 
(d) 

150 1.84 0.23 12×12 1.83 0.23 

Table 2 shows the evolution of the EER for selected dimensions for the four test 
sets and the four methods considered here. For images with gestures, the best results 
are obtained for Parallel Gabor PCA. For images with occlusions, Parallel Gabor 
B2DPCA is the method that produces the lowest error. For the remainder test sets 
(frontal images with diffuse illumination and zenithal illumination, respectively), both 
algorithms draw with the same EER. As a summary, the results obtained for Parallel 
Gabor B2DPCA were similar to those for Parallel Gabor PCA. Therefore, these 
methods seem to be robust regarding the dimension reduction technique.  



 Fusion of Support Vector Classifiers for Parallel Gabor Methods 149 

5   Conclusions  

In this paper, we presented a new method for the fusion of SVM classifiers obtained 
from Parallel Gabor B2DPCA for face verification applications. Up to now, B2DPCA 
had not been previously combined with Gabor wavelets. We developed two 
experiments with the public domain FRAV2D face database.  

In the first one (2-image-per-person training and 2-image-per-person test), the best 
results were obtained when an element-wise average of the SVM scores was applied. 
In this case, the Parallel Gabor B2DPCA obtained a better error than the Parallel 
Gabor PCA (0.14 % vs. 0.15 %).  

In the second experiment (4-image-per-person training and 4-image-per-person 
tests), the Parallel Gabor Methods obtained similar results, outperforming the 
standard dimension reduction techniques (PCA and B2DPCA). Although further 
experiments are needed to draw definitive conclusions, the Parallel Gabor Methods 
proposed here seem to be robust regarding the dimension reduction technique. 

As future work, we will enlarge the battery of tests to take into account other 
dimension reduction methods. Other combination of information techniques for SVM 
will be used [14]. We will also consider the analysis of other public face databases to 
evaluate our methods. 
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Abstract. The serial fusion of multiple biometric traits for personal identity 
verification has been poorly investigated so far. However, this approach 
exhibits some potential advantages, for example, the possibility of reducing the 
verification time for genuine users and the requested degree of user 
cooperation. Moreover, the use of multiple biometrics can discourage 
fraudulent attempts to deceive the system. In this paper, some preliminary 
results on a novel approach to multi-modal serial fusion are reported, with 
comparative results against the commonly used parallel fusion of face and 
fingerprint matchers. 

1   Introduction 

In the last years, fusion of multiple biometric matchers has been widely investigated 
[1-5]. The commonly adopted approach is the so-called score-level parallel fusion. In 
other words, the matching scores obtained from different matchers are combined in 
parallel, and the acceptance threshold is evaluated on the new score interval. 

It has been widely shown that the multi-modal fusion allows obtaining more robust 
results [5-6] against environmental conditions changes and, in the case of multi-
sensor or multiple biometrics fusion, has the potential advantage of discouraging 
fraudulent attempts to deceive the system. Accordingly, among the others, the fusion 
of multiple biometrics obtained a notable interest both in academic and industrial 
communities. 

On the other hand, it can be noted that such a multi-modal approach increases the 
system invasiveness and requires a higher cooperation degree from the users, due to 
the systematic use of more than one biometric. In the following we refer to these 
approaches as “parallel” approaches. Although some genuine users could be accepted 
by using only one biometric trait, the average verification time of parallel fusion is 
always equal to that of the slowest biometric, both in terms of cooperation required 
and matching time. Therefore, it has been recently argued that a different fusion 
scheme, based on the serial processing of multiple biometrics, could be a better trade-
off [5, 7]. In these serial systems, the user submits only one trait (the first one in the 
processing chain), and the system requires further submissions or novel biometrics if 
there is not enough evidence for classifying the subject as genuine user or impostor. 
To the best of our knowledge, only the system proposed in [7] is based on this 
concept, and it uses the Wald test for deciding the subject classification or requiring 
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further biometrics. This method generalizes the Neyman-Pearson approach proposed 
in [8].  

In this paper, we propose a simple approach to the serial fusion of face and 
fingerprint matchers. This approach generalizes the processing architecture commonly 
used in biometric systems for personal identity verification. Preliminary experiments 
with two biometrics, namely, face and fingerprint traits, are reported on well-known 
benchmark data sets. We also report some comparative results against the commonly 
used parallel fusion based on score averaging. 

The paper is organized as follows. Section 2 describes the proposed system. 
Section 3 describes the individual matchers adopted. Section 4 reports the 
experiments. Section  5 draws some preliminary conclusions. 

2   The Proposed Serial Fusion Architecture 

In personal verification systems, based, for example, on fingerprints, the person to be 
authenticated submits to the system her/his fingerprint and identity. The system 
matches the input fingerprint with the one associated to the given identity and stored 
in its database. A degree of similarity, named score, is computed. The score usually 
range in [0,1] interval. If the score is higher than a certain value (the so called 
acceptance threshold), the claimed identity is accepted and the person is classified as 
a genuine user. Otherwise, she/he is classified as an impostor and the access to the 
required resource is denied. It is worth remarking that the score is the similarity 
degree between the input biometric and the related template. 

Given a certain acceptance threshold value, the performance of the matcher is 
assessed in terms of false acceptance rate (FAR) as the percentage of accepted 
impostors, and false rejection rate (FRR) as the percentage of rejected genuine users. 
FAR and FRR derive from the score distributions of impostors and genuine users, 
respectively, as follows: 

∫=
1

*

)|(*)(
s

dsimpostorspsFAR  (1) 

∫=
*

0

)|(*)(
s

dsgenuinespsFRR  (2) 

Where s* is the given acceptance threshold. 
With reference to the above verification scheme, we propose the two-stage serial 

architecture depicted in Figure 1. According to this figure, the subject submits to the 
system the first biometric which is processed and matched against the related 
template. If the resulting score is more than a predefined upper threshold, she/he is 
accepted as a genuine user. If the score is less than a predefined lower threshold, 
she/he is rejected as an impostor. Otherwise, the system requires a second biometric. 
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On the basis of it the subject is finally accepted or rejected. It is easy to see that this 
scheme can be extended to more than two biometrics.  

The rationale behind this triple thresholds approach is similar to that related to the 
“reject option” introduced in other works [9-10]. We exemplified it in Figure 2. Since 
the matching score is a similarity value, we can consider three regions: in the first one 
it is low enough to classify the subject as an impostor, in the second one it is high 
enough to include the subject in the genuine users class, the third one is an 
“uncertainty region”. In this region, the error functions, that is, FAR and FRR, are 
overlapped, thus it is very difficult to assess the reliability of the matcher decision. On 
the other hand, the subject can be classified at once if the related matching score is 
high (or low) enough.  

The crucial issue in this architecture is how to set the lower and upper acceptance 
thresholds. In the following we give a possible solution which derives from practical 
considerations. But it is worth remarking that such solution is not the best one, and 
other solutions can be given as well (e.g. by defining some formal “optimality 
concept”), for example depending on the operative environment (the security degree 
that would be achieved), thus obtaining different ROC curves. In order to easily set 
the lower and upper acceptance thresholds, the first stage matcher should reject or 
“not classify” all impostors, thus requiring the second biometric for all them. On the 
other hand, the first stage matcher should accept all genuine users, or, at most, “not 
classify” them. It is crucial that the first stage matcher rejects no genuine users before 
allowing them to being accepted by the second stage matcher.  

 

*
1

*
ul sss ≤<  

Matcher 1 
*

1
*

1 ; ul ssss >≤  

 
Matcher 2 

*
22

*
22 ; ssss >≤

Additional 
biometric required

User reject/accept User reject/accept 

Subject 

Biometric 1 Biometric 2 

 

Fig. 1. The proposed serial scheme to serial person verification. The subject submits the 

biometric 1 which is used to classify him on the basis of lower and upper thresholds *
ls  and 

*
us . If the score falls into the ( *

ls , *
us ] interval, an additional biometric (“biometric 2”) is 

required and the subject is finally classified. 
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Accordingly, we set the lower threshold to the zeroFRR operational point, which 
assures that genuine users are not rejected with 0% error probability (FRR=0%), and 
the upper threshold to the zeroFAR operational point, which assures that impostor are 
not accepted with 0% error probability (FAR=0%). This is pointed out in Figure 2, 

where the “uncertainty region” corresponds to the ( *
ls , *

us ] interval set between 

zeroFRR and zeroFAR operational points. 

*
ls *

us
 

Fig. 2. FAR and FRR for each score value. The subject classification can be devoted to a 

secondary matcher in the uncertainty region. In the figure we pointed with  *
ls  and *

us  two 

possible lower and upper acceptance thresholds. 

3   Face and Fingerprint Matchers 

The face matcher we used in our experiments is based on the Linear Discriminant 
Analysis transformation. The Linear Discriminant Analysis (also called Fisher 
Discriminant Analysis)  is defined by the transformation [11]: 

xWy t
LDA=  (3) 

Where x is the original face image, and y the transformed pattern. The columns of 

WLDA matrix are the eigenvectors of bw SS 1− , where wS  is the within-class scatter 
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matrix, and bS  is the between-class scatter matrix. It is possible to show that this 

choice maximizes the ratio )det(/)det( wb SS . 

These matrices are computed as follows: 
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Where j
ix  is the i-th pattern of j-th class (subject), and jn  is the number of patterns 

for the j-th class. 
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The eigenvectors of LDA are called “fisherfaces” and the components of the 
transformed space are the most discriminant features. Since the LDA transformation 
cannot be computed if the inequality n >= d + c does not hold, where n is the number 
of samples, d is the original space dimensionality, c is the number of classes, we first 
performed a transformation of the face space to an intermediate feature space with 
reduced dimensionality dintermediate << d. In particular, the PCA transform has been 
used to generate such intermediate space according to the Belhumeur et al.’s idea 
[11]. The matching score between two face image transformed in the LDA space is 
given by the normalized cosine function of the two patterns as follows: 

( )( )1,cos5.0 +⋅= ytscore  (6) 

Where y is the input face image and t is the template face image. 
The fingerprint matcher is based on the well-known String algorithm [12]. The 

String algorithm uses the minutiae-points as a string of features. The so-called 
“minutiae” points correspond to the bifurcations and the terminations of the ridge 
lines. In this paper, minutiae have been extracted from the skeletonised fingerprint 
images obtained by the commonly used enhancement, binarization and post-
processing phases. Two fingerprints are compared by the respective set of minutiae 
points, so generating a matching score. This score is proportional to the number of 
minutiae couples of the two fingerprints which can be considered as “aligned”. 
Briefly, let X be the template minutiae set. Let T be the input minutiae set. For each 
minutia Xx ∈ , the following algorithm is performed. For each Tt ∈ , x is aligned to 
t. After this alignment, x and t match perfectly. Let A(x, t) = 
( ) ( ){ }truetxalignedTtXxtx iiiiii =∈∈ ,:,,,  be the set of other couples of aligned 

minutiae. xi and ti are considered as aligned on the basis of a pre-defined “minutiae 
distance” not exceeding a certain fixed threshold. At the end of these loops, the value 

{ }),(max
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 is converted to the matching score by the formula: 
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4   Experimental Results 

4.1   Data Sets 

We performed experiments by using a “chimerical” data set made up of face images 
coming from the AR data set and fingerprint images coming from the FVC2000-DB2 
data set. It is worth noting that composing artificial data sets is reasonable in this case 
because no correlation has been shown between face and fingerprint images of the 
same subject. 

Therefore, we created our multi-modal data set by combining the AR face data set 
[13] and the FVC-2000 DB2 data set [14]. 

The AR data set is characterised by pictures taken under strictly controlled 
conditions. No restrictions on wear (clothes, glasses, etc.), make-up, hair style, etc. 
were imposed to participants. Each person participated in two sessions, separated by 
two weeks (14 days) time. The same pictures were taken in both sessions. Each 
session is made up of seven images under different environmental conditions. We 
selected 100 subjects (50 males and 50 females) and considered the first session to 
compute the parameters of the LDA transformation and the templates of each subject 
(the average vector was computed). We manually cropped faces and, after histogram 
stretching and equalization, resized them at 80x80 pixels. The FVC2000 data sets are 
made up of 800 fingerprint images. The number of subjects is 100. The DB2 data set 
has been obtained by acquiring fingerprints with a capacitive sensor (256x364 pixel 
per image). The capacitive acquisition source exhibit the following characteristics. 
Briefly, it evaluates the capacitance between the silicon-based acquisition surface and 
the finger skin, being this capacitance different from ridges to valleys. Further details 
about this acquisition principle can be found in [15].  

Examples of face and fingerprint images from FVC2000-DB2 data set are shown 
in Figure 3(b). 

 

  
(a) (b) 

Fig. 3. (a) Example of face images from the AR data set. (b) Example of fingerprint images 
from the FVC2000-DB2 data set. 

The first fingerprint impression of each subject has been considered as the 
template, which was coupled with the related face template. 

The remaining seven fingerprint impressions were randomly coupled with the 
seven face images of the AR second session. The so obtained 700 couples of 
fingerprints and faces were used as “evaluation set”. 

We further subdivided the evaluation set as follows: two couples were used as 
gallery set, in order to compute the thresholds of the serial model. The rest of the data 
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was used as probe set, i.e., to test the algorithms in presence of novel patterns. 
Accordingly, we obtained: 

• 200 genuine matching scores couples and 19,800 impostor matching scores 
couples in the gallery set; 

• 500 genuine matching scores couples and 49,500 impostor matching scores 
couples in the probe set. 

In order to obtain significant results from the artificial multi-modal data set, we 
permutated three times the subjects each other (e.g. fingerprints of subject i were 
couple with faces of subject j) and five times the impressions each others (e.g. the 
face impression h was coupled with the fingerprint impression k). Therefore, the 
performance evaluation is related to the mean of fifteen different coupling of faces 
and fingerprints. 

Performances were assessed and compared in terms of the Receiver Operating 
Characteristic  curves (ROC), which plot the percentage of false acceptances (FAR) 
and false rejections (FRR) in function of a given set of threshold values. 

4.2   Results 

Figure 4 shows the ROC curves of the individual matcher on the gallery set. In 
particular, zeroFAR values for the face and fingerprint matchers are 52.1% and 
20.5%, and zeroFRR values are 38.7% and 35.7%, respectively. They point out that 
the fingerprint matcher performs much better than the face one. Accordingly, the 
fingerprint matcher should be considered at the first stage, because the percentage of 
subjects to be accepted by using the second matcher is reduced.   

By applying to the probe set the thresholds computed on the gallery, we obtained 
the ROC curves shown in Figure 5. In this Figure, we show the performance of the 
 

 

Fig. 4. ROC curves of the individual matchers on the gallery set 
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best individual matcher, the serial fusion using the face or fingerprint matcher at the 
first stage, and the parallel system obtained by averaging face and fingerprint matches 
scores. Figure 5 shows that the serial systems significantly improve the performance 
with respect to the best individual one. 

On average, the serial systems exhibit a performance similar to that of the parallel 
fusion (similar results has been obtained by multiplying matching scores in parallel 
fusion). However, in order to appreciate the obtained performance, it should be 
considered the percentage of subjects accepted by the first stage matcher. These 
values are reported in Table 1 and are related to the probe set. In particular, 74.8% of 
genuine users are accepted when using the fingerprint trait at the first stage, whilst 
this value is 46.6% when using the face trait at the first stage (second column, third 
and fourth rows of Table 1). This has a favourable impact (1) on the acceptability of 
this system, because only one biometric is required to the most of genuine users; (2) 
on the verification time, especially if the first matcher is the fastest one. As an 
example, in our experiments the verification time of face and fingerprint matchers is 
0.1 sec and 3.0 sec, respectively. By considering the face matcher at the first stage, 
the average verification time of genuine users is reduced to 1.5 sec. The parallel 
system verification time is obviously 3.0 sec, thus the verification time reduction is 
about 50%. 

On the other hand, it is easy to see that only 1.0% of impostors are wrongly 
accepted (third column, third and fourth rows of Table 1). This clearly means that 
they are rejected at the first stage or are constrained to submit the second biometric. 

Therefore, the proposed system fitted quite well the trade-off between 
performance, verification time and acceptability, which are practical requirement of 
notable applicative relevance in the design of personal verification systems. 

 

Fig. 5.  ROC curves on the probe set of the best individual matcher, the serial fusion of face and 
fingerprint matchers (Fingerprint-Face and Face-Fingerprint) and the parallel fusion by 
matching scores averaging 
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Table 1. Genuine users ed impostors of the probe set accepted by the first stage matcher. The 
third and fourth rows are related to the face matcher and the fingerprint matcher at the first 
stage, respectively.  

 First stage matcher – Accepted patterns 
 Genuine users Impostors 
Face-Fingerprint 46.6% 1.0% 
Fingerprint-Face 74.8% 1.0% 

5   Conclusions 

Despite of its potential advantages, the serial fusion of multiple matchers has been 
poorly investigated so far. In this paper, we proposed a serial approach for fusion of 
multiple matchers, and investigated, in particular, the case of face and fingerprint 
matchers. 

Reported results on well-known benchmark data sets showed that the proposed 
system performed similarly to commonly used parallel fusion approaches. Moreover, 
the percentage of subject accepted by the first stage matcher showed that it is possible 
to reduce the cooperation degree and the average verification time of genuine users, 
which favourably impacted on the acceptability of multimodal systems. 

The proposed system can be easily extended to more than two biometrics, but some 
issues are still open, among the others, if the parallel fusion of overall matching 
scores at the last stage could be useful for further improving performances, and how 
to decide the collocation of each matcher into the processing chain (in particular, 
which matcher has to be inserted at the first stage?), especially by considering 
different evaluation parameters, as the performance and the average verification time. 
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Abstract. In this paper, we examine ensemble algorithms (Boosting
Lite and Ivoting) that provide accuracy approximating a single classifier,
but which require significantly fewer training examples. Such algorithms
allow ensemble methods to operate on very large data sets or use very
slow learning algorithms. Boosting Lite is compared with Ivoting, stan-
dard boosting, and building a single classifier. Comparisons are done on
11 data sets to which other approaches have been applied. We find that
ensembles of support vector machines can attain higher accuracy with
less data than ensembles of decision trees. We find that Ivoting may re-
sult in higher accuracy ensembles on some data sets, however Boosting
Lite is generally able to indicate when boosting will increase overall ac-
curacy.

Keywords: classifier ensembles, boosting, support vector machines,
decision trees.

1 Introduction

A boosted ensemble of classifiers is typically created to get higher accuracy
for a particular type of base classifier on a particular data set. Here, we are
going to instead examine how boosting may be used to deal with data sets
that have a large number of examples and/or learning algorithms that are very
time-consuming. In [1], Pavlov et. al. examined several methods for speeding
up the learning process for support vector machines. One of those methods
used boosting on a small subset of the data and reported good accuracies and
significantly decreased learning times.

In this paper, we present a learning algorithm along the same lines as in [1],
that we call Boosting Lite. The idea is to build the classifiers in the ensemble with
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small subsets of the available training data. The goal is to obtain approximately
the same accuracy that you would get with a boosted ensemble or from a single
classifier. Obviously, building each classifier with a small subset of the data will
be much faster than using all the data. Hence, we look for a time savings and
therefore the ability to better scale to large data sets.

In [2] Ivoting was shown to provide boosting-like results using a subset of the
overall training data. This idea was further explored in a distributed system con-
text in [3] where the accuracy was shown to be comparable to that of boosting.
The Boosting Lite approach is much closer to standard boosting than is Ivoting.
We will compare it to Ivoting results using eleven data sets. Also, for three data
sets we compare Boosting Lite with SVMs as the base classifier.

2 Related Work

This work is motivated in part by the Boost-SMO algorithm introduced in [4]
and again briefly discussed in [1]. Using linear support vector machines (SVM),
between 1% and 90% of the training data was used in the creation of a boosted
ensemble. The authors do not indicate how large any individual ensemble was,
but indicate it was typically from 10 to 15 classifiers. They do indicate that
they stopped when a specified maximum ensemble size was reached or the error
of the current SVM was within ε of 0.5. Their version of a boosting algorithm
was modified from standard boosting described in [5]. It was unclear whether
a subset was initially selected or new subsets were selected from all the data
for each classifier. From a personal communication [6], we found that a new
subset of size x% was selected from all the re-weighted training data for each
new classifier. On four data sets, they were able to show that it was possible to
obtain the same accuracy as using an SVM-SMO model built on all the data
by using as little as 2-5% of the data to train each classifier. The training time
was from 3 to 400 times faster. However, the factor of 400 time result used 1%
Boost-SMO which did not produce an ensemble classifier that was as accurate
as using all the data (it was 0.6% less accurate in that case).

The Boost-SMO algorithm was not adapted for use with any other base clas-
sifier. The utility of an adaptation to decision trees is explored here. Work on
Ivoting [2,3], which is a boosting-like approach that has been applied to decision
trees, suggests that the adaptation may be useful. Ivoting works as follows. An
example is randomly selected from the full data set with all examples having the
same probability of being selected. If it is incorrectly classified by the classifiers
in the existing ensemble that do not have it in its training set, then it goes into
the training set for the next classifier. Otherwise, it goes into the training set
with probability e(k)

1−e(k) , where e(k) is the error estimate at stage k.
The sizes of the training sets in the original work [2] were one of 100, 200,

400 or 800 examples. Experiments used five data sets that ranged from 2000
examples to 43,500 examples. So, relatively small subsets, from roughly 1.8% to
40% of the data, were used for each training set. Boost-SMO used a percentage of
the total training data size. At 5% of the data, which resulted in good accuracy,
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training sets would range from 100 to 2175 examples, which is slightly larger
than used in [2].

A distributed version of Ivoting called DIvoting has also been introduced [3].
Accuracies were found to approximate Adaboost accuracies in many cases. That
is, they were even higher than for a single classifier in many cases. Further,
DIvoting also showed significant reductions in the time required to build an
Adaboost-equivalent ensemble. Still, DIvoting was not faster than building a
single decision tree. Decision trees typically require O(fn log n) time to build a
single tree, where n is the number of training samples and f is the number of
features. So the time to build an ensemble of size e, each using only 1/kth of the
data, is O(ef n

k log(n
k )). So it scales up linearly with e, but scales down faster

than linearly with k. As a result, it is possible to build an ensemble of decision
trees on 1/kth of the data more quickly than a single tree on all the data, but
it is unlikely unless there is a very large amount of data.

In this paper, we focus on what can be accomplished on a single processor. The
previous work raises the question of whether an adaptation of Adaboost.M1W
[7], which has been shown to be a highly accurate boosting algorithm for more
than two classes, can be effectively applied to small subsets of data for other
types of classifiers. In particular, we will look at decision trees. We will compare
with Ivoting results in terms of accuracy and whether speedups are possible for
decision trees. We will compare with SVMs on 3 data sets, also. The other ques-
tion that we are investigating is whether Ivoting might be effective in providing
fast training for support vector machines.

We compare Boosting Lite experimentally on 11 datasets to (a) regular Ad-
aboost and to (b) a single classifier trained on all the training data, using deci-
sion trees. We compare Boosting Lite using decision trees to Boost-SMO using
SVMs [1,4] on three data sets by using new experimental numbers for Boosting
Lite generated for this paper and published numbers for Boost-SMO on three
datasets. We compare Boosting Lite using decision trees to Ivoting [2,3] using
decision trees on 7 datasets using new experimental numbers for Boosting Lite
generated for this paper and published numbers or approximate numbers from
a graph for Ivoting [3].

3 Boosting Lite

The algorithm we are naming Boosting Lite is based on Adaboost.M1W [7].
The differences in implementation are as follows. While all the training data
is weighted, only a specified x% of it is chosen for the kth training set. The
examples are chosen probabilistically based on their weights, with replacement.
So, it is possible for an example to appear in the training set more than one
time. The algorithm is shown in Figure 1.

We grow the ensemble until a specified number of classifiers have been added
or until the next classifier does not meet the standard boosting criterion for
being added to the ensemble. Each of the classifiers in the ensemble is built on
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Let I(“statement”) = 1 iff “statement” is true, and 0 otherwise.
Let xi be the ith example and ci denote the class of that example.

Input: Let L = {(x1, c1), . . . , (xn, cn) : xi ∈ X and ci ∈ C} with 2 ≤ |C| ≤ n and
|X| = n.
Let h be a classifier that takes in an xi and generates a class in C.
Let T be the number of boosting rounds

Initialize: Di(i) = 1
n
.

For t = 1, . . . , T :

– Train a classifier ht with a subset of size S << n randomly sampled according to
the weighted distribution, Dt, where ht should minimize the weighted error rate:
εt =
�

i Dt(i)I(ht(xi) �= ci).

– Set αt = ln( (|C|−1)(1−εt)
εt

).

– Update D: Dt+1(i) = Dt(i)e
−αtI(ht(xi)=ci)/Zt

where Zt is a normalization factor (chosen so that Dt+1 is a distribution)

Output: Set the final classifier H(x): H(x) = arg maxc∈C f(x, c) =
arg maxc∈C(

�T
t=1 αtI(ht(x) = c))

Fig. 1. Boosting Lite algorithm (a modified version of AdaBoost.M1W)

a rather small subset of the original data set. This enables each classifier to be
built more quickly and creates the potential to scale to very large data sets.

The algorithm was applied with the OpenDT [8] decision tree learning algo-
rithm, which is essentially a public domain re-implementation of C4.5 release
8 [9] without pruning, with the RainForest algorithm for evaluating attributes
[10] and using the median method for handling missing values. The single tree
results come from C4.5 with default pruning (CF=0.25).

4 Data Sets

For comparison purposes we have used all but one of the data sets on which
Ivote and SMO-Boost were evaluated in [1,4]. The Reuters data set was not
used because we could not re-create the train/test data partitions. The data sets
were used with the training and testing sub-divisions from [1,2,3] for compari-
son. We also include two other data sets which have a good number of examples,
pendigits and krk. Table 1 shows the names of the data sets and their charac-
teristics. They come primarily from the UCI repository [11] and statlog project
[12].

The training set sizes range from a modest 4335 examples to 209,529 examples
in 315 dimensions. For the krk data set that was not previously partitioned into a
training and test set, we did a tenfold cross validation to get an average accuracy
and time.
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Table 1. Description of data sets attributes and size

Data Set # attributes # Train ex. # Test ex. # classes

adult 14 30162 1560 2
digit 256 7291 2007 10
dna 60 2000 1186 3
forest cover 54 98884 396257 2
Jones 315 209529 17731 3
krk 6 28056 0 18
letter 16 15000 5000 26
pendigits 16 7494 3498 10
shuttle 9 43500 14500 7
satimage 36 4335 2000 6
web 294 31932 4886 2

5 Experimental Results

There were three data sets, adult, forest cover and web, used in both the
SVM experiments and our experiments. The support vector machine was used
with sequential minimal optimization training (SMO) and 1% of the data. The
first column of Table 2 shows the accuracy from a single tree, and the next three
show the accuracy of ensembles of 100 boosted trees using 1%, 5%, and 100% of
the data. We calculate the difference in accuracy between a single support vector
machine classifier and the boosted SVM ensemble, as well as the single decision
tree accuracy and the 1% Boosting Lite ensemble. The gap between the two
differences is given in the fifth column (BL - SVM). A positive number means
the SVM ensemble is closer to the accuracy of a single SVM than the decision
tree ensemble is to a single tree. For both types of classifier, the ensembles
are less accurate than the single classifier. For each dataset, the difference in
accuracy between an ensemble of decision trees and a single tree is more than
for the ensemble of support vector machines and a single support vector machine.
This suggests that support vector machines may be used to create an accurate
ensemble classifier from less examples than are needed for a decision tree. This
result is particularly striking for the forest cover data set where there is over an
11% difference between a single tree and an ensemble of boosted decision trees
built with 1% of the data. For support vector machines, the difference between
the ensemble and a single support vector machine was only 1%.

However, there are two caveats that arise when examining results from these
three data sets. As can be seen in Table 2, boosting does not increase the accuracy
for two of the three data sets when using all the data, at least for decision tree
classifiers. This suggests that more data sets and more experiments are necessary.
The data sets need to be evaluated to determine if they do in fact benefit from
boosting.

It has been shown, for a relatively small number of data sets, that Ivoting can
result in accuracies that are very close to the accuracy of a boosted ensemble for
CART trees [2] and C4.5 trees [3]. Seven of those data sets are included in this
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Table 2. Boosting Lite (BL) on decision trees compared with SVM’s. The last column
compares the gap in ensemble accuracy and single classifier accuracy with a positive
number meaning the gap was lower for the SVM’s.

Data Set Single tree BL-1% BL-5% Boosting BL - SVM

adult 85.97 83.71 84.26 84.56 1.36
forest cover 76.91 65.58 75.06 81.58 10.16
web 76.16 75.1126 75.5014 74.5395 0.41

study. The best accuracy with Ivoting (as reported in the literature) came with
a bite-size (training set size) of 800 examples, [2]. In Table 3, we show the results
for a single tree and ensembles of size 100 created with 1, 5, and 100% of the
data, as well as the accuracy for an Ivoted ensemble and the most comparable
accuracy from Boosting Lite. The Ivote results are all from the CART decision
tree classifier using bites of 800 examples with three exceptions. The forest
cover, pendigits, and Jones results come from a C4.5 classifier and the Jones
bite size is 818 [3]. We do not show the Ivote results for krk because one cannot
obtain good accuracy when subsets are used, as discussed below.

Table 3. Boosting Lite (BL) on decision trees compared with Ivoting

Data Set Single tree BL-1% BL-5% Boosting BL Comp Ivote (800)

digit 86.85 89.44 92.68 94.37 94.22 94.5
dna 92.66 88.11 94.8567 94.941 95.62 96.2
forest cover 76.91 65.58 75.06 81.58 65.57 73.9
Jones 52.78 61.29 62.04 66.97 61.29 64.2
krk 80.73 45.90 69.66 89.17 - -
letter 81.02 79.96 93.96 97.12 95.88 96.2
pendigits 92.11 94.68 97.03 97.43 96.91 96.97
shuttle 99.95 99.99 99.99 99.99 99.99 99.99
satimage 85.35 82.25 88.05 90.85 90.35 91.3

For Boosting Lite, the results come from a percentage of the training data
which is comparable to that of bites with 800 examples and up to 500 trees in the
ensemble. In each case, we set the number of trees for Boosting Lite to be equal
to the number of iterations Ivoting required to converge to a stable accuracy
[2,3]. With the exception of the two data sets with the same type of decision
tree classifier, it is not possible to directly compare accuracies. However, we can
look at how well the ensemble built with less data per tree did in approximating
the accuracy of an ensemble built with all of the data available for each tree. For
the shuttle data set all types of boosted classifiers are highly accurate. Boosting
Lite is within 0.5% in accuracy for the satellite and digit data sets and exceeds
the accuracy of the full ensemble for the dna data set.

For the forest cover, Jones, and letter data sets, a Boosting Lite ensemble
results in a classifier that is at least 1% less accurate and as much as 16%
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less accurate than Adaboost.M1W on all the data. Ivote (100 trees) is also less
accurate than a fully boosted classifier on each of these data sets. However, it is
almost equivalent to the results from the boosted CART ensemble for the letter
data set. It is only 3% less accurate for forest cover and 2.7% less accurate for
the Jones data set. Ivoting is using just over 0.5% of the data for the forest
cover results and about 0.4% of the data for the Jones results. For both forest
cover and Jones, Ivoting results in a higher accuracy ensemble classifier than
Boosting Lite even though it uses less than half as much data.

The results with the pendigits data set do show a 3% accuracy difference
between boosting at 1% and boosting with the full data set. Using 5% of the data
results in an ensemble within about 0.4% of the boosted ensemble with all the
data. krk involves a chess endgame and suffers significant accuracy degradations
in a tenfold cross validation with less than 10% of the training data available and
up to 500 trees. With 10% of the data available for each tree in the ensemble, it
reaches 80.9% accuracy with 200 trees. The nature of this domain likely causes
the requirement for more data.

Fig. 2. Boosting Lite and Boosting accuracies on the forest cover data

To get an idea of the differences in classifier accuracy for different percentages
of the training data and as more trees are added to a Boosting Lite ensemble,
we show results for the forest cover data set in Figure 2. This data set shows
greater differences for different sized training sets than most. The shape of the
curves for 5% and greater is typical. It is also the largest data set with most of
the data reserved for testing. You can see that with 1% of the data the ensemble
never reaches the accuracy of boosting with all the data. With 5% the accuracy
gets close and for 15% and 20% the accuracies are very close.
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6 Discussion

A question that we were originally interested in was whether there was any
possibility of speeding up decision tree construction for large data sets using
Boosting Lite. OpenDT uses the RainForest algorithm [10] to avoid sorting data
at internal nodes, making it quite a bit faster than older decision tree building
algorithms such as C4.5. To look at timing, we took the time required to build
a single tree in OpenDT and the time required to prune a C4.5 tree built on the
same data and added the two times. This became the time to build a single tree.
This can be compared with the time required to build 100 trees using 1% of the
data. For more trees and/or more data, there is no time reduction from using
the Boosting Lite approach. In fact even with 1% of the data, only for the web,
Jones and digit data sets were there any speedups. In these cases, the speedups
are 6.7, 1.3 and 1.4 times respectively. However, in general there is a slowdown
for the data sets used here under the conditions described. Interestingly, the
accuracies were higher than those obtained with a single tree for the Jones and
digit data sets for which speedups were observed. The accuracy on the third
(web) was higher than boosting with all the data, but 1% lower than a single
decision tree.

Boosting Lite on 5% of the data provides accuracies which are greater than
those obtained from one tree for all data sets where boosting results in a more
accurate ensemble with two exceptions (krk and forest cover). The krk data
set would probably not induce a data miner to try using subsets because the
search space for chess is known to be large. So, Boosting Lite at 5% could be
used to predict whether boosting will help on a data set.

The results indicate that while Boosting Lite is closer to classical boosting
in operation than Ivoting, Ivoting seems often more accurate. Ivoting selects
examples for the next training set randomly, but primarily admits them to the
training set based on error from classifiers that do not have them in their training
data set (this error rate is often called out of bag error). Ivoting’s higher accuracy
in some cases seems to indicate that using out of bag accuracy allows for better
selection of training examples for the boosted classifiers. Given that Boosting
Lite provides significant time savings for support vector machines, this raises
the question of whether Ivoting might generally provide more accurate ensembles
and maintain the time savings for slower classifiers like support vector machines
and potentially neural networks.

7 Summary

In this paper we examined a variant of boosting that was originally introduced
for speeding up support vector machine learning and adapted it to decision
trees. We found that it appears that, when boosted, support vector machines
can learn accurate models from smaller subsamples than decision trees. Boosting
with subsampled data using decision trees as the base classifier was faster for 3
of 11 data sets than building a single tree on all the data. In order to have any
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chance of speeding up the learning on these data sets, the number of trees needed
to be limited to 100 and the training set for each tree needed to be limited to
1% of the total training data set size. This is a function of the speed of decision
trees and indicates that benefits require larger training sets than used here. Still,
Boosting Lite on 5% of the data could be used to predict whether boosting with
all the data will help on a data set.

For two of the three data sets used in the support vector machine work [4,1],
we found that boosting with decision trees and all of the training data did not
result in an increase in accuracy compared to a single decision tree. This result
is somewhat anomalous, and suggests that further investigation on a broader
range of datasets is needed. Also, we compared with an alternative boosting
approach using subsamples, Ivoting. Ivoting was often able to result in a more
accurate ensemble. This is likely due to using an error estimate from only trees
which were not built with a potential training example in the selection process
of examples for succeeding training data sets. Applying Ivoting to SVMs with
large data sets has the potential to build accurate classifiers quickly, and it is an
area for future research.
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Abstract. Combining several classifiers has proved to be an efficient machine
learning technique. We propose a new measure of the goodness of an ensemble
of classifiers in an information theoretic framework. It measures a trade-off be-
tween diversty and individual classifier accuracy. This technique can be directly
used for the selection of an ensemble in a pool of classifiers. We also propose a
variant of AdaBoost for directly training the classifiers by taking into account this
new information theoretic measure.

Keywords: classifier combination, information theory, diversity, AdaBoost.

1 Introduction

In many pattern recognition tasks, combining the decisions of several classifiers has
shown to be an effective technique for improving the classification performances. For
example, training a classifier can become very complex when a large number of fea-
tures or examples are needed. Such a problem can be addressed by splitting it into
lower complexity problems and combine the individual decisions. Dietterich gives in
[1] three main reasons why an ensemble of classifier may be a better choice than a
monolithic classifier. First, when the same learning accuracies can be achieved by sev-
eral classifiers, a good solution is to average all their decisions rather than just picking
one of them randomly. Then, many learning techniques use local searches to converge
toward a solution, with the risk of staying stacked in local optima. Running several
searches and combining the solutions can improve the performances. Finally, from a
representational point of view, it is possible that the class of functions chosen for learn-
ing the classifier does not contain the optimal solution. Combining several functions of
this class allows to reach solutions outside of this class. In [2], Freund and Shapire also
discuss why averaging classifiers can avoid overfitting.

Many techniques have been proposed in the past few years for combining classifiers.
On the first hand, the classifiers can be either trained on different sample subsets or
different feature sets or use various learning algorithms. On the second hand, the com-
bination itself can be performed according to two strategies: non trainable combiners
( majority vote, probability rules: sum, product, mean, median, etc.) and trainable com-
biners (weighted majority vote, classifier as combiner, etc...). More detailed surveys on
classifier combination can be found in [3] and [4].
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The use of an ensemble is only justified if it is better than its best individual member.
To fulfill this requirement, classifiers need to commit errors on different new data. This
concept defines the notion of diversity between classifiers. Diversity and its relevance
in building good ensembles of classifiers will be discussed throughout this paper. An
overview of the different diversity measures is given in [5].

In this paper, we introduce an information theoretic framework to define a new mea-
sure of the goodness of an ensemble. It is based on the trade-off between the individ-
ual accuracies and the diversity between the classifiers. The remaining of the paper is
structured as follows: Section 2 gives a short introduction to information theoretic clas-
sification. Then section 3 introduces the combination of classifiers in this information
theoretic framework. Some experiments and results will be exposed in section 4 and
finally some conclusions will be drawn.

2 Information Theoretic Classification

Information theoretic classification was first introduced by Principe et al. in [6]. We
summarize its concept here: the classification problem is formulated through the fol-
lowing first order Markov chain:

C → Ĉ → E, (1)

where C represents the true class labels defined over the set Ωc, Ĉ models the classifi-
cation steps through the decided class labels and E is the error random variable taking
values into {1, 0}. The probability of making an error during the classification process
is thus:

Pe = P (E = 1) = P (Ĉ �= C). (2)

Fano’s inequality [7] gives a lower bound on this probability of error:

Pe ≥ HS(C|Ĉ) − 1
log |Ωc| =

HS(C) − IS(C; Ĉ) − 1
log |Ωc| , (3)

where HS(C) = − ∑
k∈Ωc

p(Ck) log p(Ck) is Shannon’s entropy [8] of C, IS(C; Ĉ) =

∑
k,j∈Ω2

c

p(Ck, Ĉj) log p(Ck,Ĉj)
p(Ck)p(Ĉj)

is Shannon’s Mutual Information (MI) between C and

Ĉ and |Ωc| is the number of classes.
From this lower bound Erdogmus et al. [9] also derived an upper bound using Jensen’s

inequality described in [8]:

HS(C) − Iα(C; Ĉ) − hS(Pe)
log |Ωc| − 1

≤ Pe ≤ HS(C) − Iβ(C; Ĉ) − hS(Pe)
mink HS(C|e, ĉk)

, (4)

where hS(Pe) = −Pe log Pe − (1 − Pe) log (1 − Pe) is the binary Shannon’s entropy

and Iα(C; Ĉ) represents Renyi’s definition of the mutual information with α ∈ R
+ \

{1}. The tightest bounds are obtained when the Renyi’s entropy coefficients (α, β) tend

to 1 in which case Renyi’s definitions correspond to Shannon’s ones. As the number of
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classes |Ωc| is fixed, HS(C) does not depend on the classification process, bounds in

Eq. 4 point out that maximizing the MI between the two random variables C and Ĉ will

tend to minimize the probability Pe of making an error.
This formulation of the classification problem has been extended to feature extrac-

tion (Fisher et al. [10], Hild et al. [11]) and processing of multimodal signals (Butz et
al. [12]). Sindhwani et al. [13] also proposed a feature selection technique for support
vector machines and neural networks based on similar information theoretic considera-
tions. In the next section we will extend these properties to the framework of multiple
classifiers.

3 Information Theoretic Classifier Combination

In this work, we present a new classifier combination scheme using this information
theoretic framework. Let us consider that we already have a team of given classifiers.
The goal is to find the best combination of members in the sense that it will maximize
IC,Ĉ .

For simplification and without loss of generality, let us consider a two class problem
with labels {−1, 1} and three classifiers to be combined. We denote by Ĉi, i ∈ {1, 2, 3}
the random variables representing the output labels of the classifier i, IC,Ĉi

, the MI
between individual classifier i and the true labels and finally Ii,j = IĈi,Ĉj

, i, j ∈ 1, 2, 3,
j ≥ i the MI between two distinct classifiers. The quantity to be maximized is:

IC,Ĉ =
∑

k=−1,1

∑

j=−1,1

PC,Ĉ(k, j) log
PC,Ĉ(k, j)

PC(k)PĈ(j)
. (5)

In order to be able to derive analytical properties about the combination process, we
need to find probability relationships between the classifiers. The complexity of this
task is that these probabilities depend on the combination rule that is used to combine
the decisions of the ensemble members. In this work we restrict the combination rule to
majority voting. It is not an heavy restriction though, as despite its simplicity, majority
vote has proved to be an efficient rule for many multiple classifiers systems. Moreover,
majority vote can easily be extended to weighted majority vote which is widely used in
the multiple classifiers community. For example, AdaBoost [15] performs a weighted
majority vote of weak classifiers.

Considering a majority voting scheme, the probability PĈ(i) that the final decision
is i is related to each voter classifier:

PĈ(i) ≤ PĈ1,Ĉ2
(i) + PĈ1,Ĉ3

(i) + PĈ2,Ĉ3
(i). (6)

A second usefull property is given by the lemma described in [16]: The probability of
a group of odd size N with any competence structure (p1, p2, . . . , pN ), where pi > 0.5
for each i to reach the correct decision, when utilizing the simple majority rule, is larger
than the probability p = 1

N

∑N
i=1 pi of a random group member to do so.

It is an extension of a the Condorcet Jury theorem (1785). See [3] for details. In our
case this theorem leads to:

PC,Ĉ(i) ≥ 1
3
(PC,Ĉ1

(i) + PC,Ĉ2
(i) + PC,Ĉ3

(i)). (7)
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Note that majority voting improves over the average accuracy but not necessarily
over the best classifier.

Now considering these bounds ( Eq. 6 and Eq. 7) in each term of the mutual in-
formation in Eq. 5, it follows that: minimizing the MI between each pair of classifier
IĈi,Ĉj

, i �= j and maximizing the MI between each single classifier and the true class
labels IC,Ĉi

will maximize IC,Ĉ .
As introduced in section 2, IC,Ĉi

represents the accuracy of classifier i, while IĈi,Ĉj

measures the similarity between the two classifiers i and j. Moreover, minimizing
IĈi,Ĉj

, means maximizing the diversity between the two classifiers. In other words,
for obtaining a good ensemble, we need classifiers that are individually accurate but
that make errors on different examples.

In the remaining of the paper we will refer to similarity or diversity, note that these
two terms represent inverse quantities.

It is important to note that this is a sufficient condition for maximazing I(C, Ĉ),
but it is not a necessary condition. For example, it is possible to have an ensemble
with high accuracy but very low diversity between classifiers. This will be discussed
experimentally in section 4.

3.1 Diversity

Diversity seems to be a key element for obtaining effective ensembles of classifiers.
In the literature there exists different measures of diversity. They can be splitted into
pairwise and non pairwise diversities. The most widespread are the Q statistic [17],
Double fault [18] and the Disagreement Measure [19]. More details about diversity
and how to create diversity in ensemble are given in [20]. Conceptually, forcing di-
versity between classifiers can improve the classification performances by encouraging
the complementarity of the classifiers. However, Kuncheva reported in [3] that the im-
provement over the best individual accuracy by forcing diversity is negligible. In fact
directly maximizing diversity between classifiers will force to decrease the individual
classifiers accuracies. The two extreme cases would be to build random classifiers with
very large diversities but poor accuracies, or train very accurate classifiers with very
low diversity but in this case the combination becomes useless. The goal is thus to find
a good trade-off between average individual accuracy and diversity between members.

3.2 Information Theoretic Score

In this work, we evaluate experimentally the dependency between our information the-
oretic measures of accuracy and diversity.

Outputs of two classifiers (C1, C2) with equal accuracies are iteratively simulated.
We report in Fig. 1 the similarity between output labels I(C1; C2) for each trial as a
function of the average individual accuracy I(C;C1)+I(C;C2)

2 .
According to Fig. 1, we simply approximate the similarity between two classifiers by

a second order polynomial of the average individual accuracies. Fig. 2 gives a graphical
interpretation of this behavior. A classifier is represented by a vector. Its projection
onto the horizontal axis measures its individual accuracy while the difference between
vertical projections of two vectors measures the diversity between them. The dashed
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Fig. 1. The similarity of 2 classifiers I(C1; C2) function of the average individual accuracy
I(C2;C)+I(C1;C)

2 . The 2 classifiers have the same individual accuracy.

*C

di
ve

rs
ity

acuracy

C

Fig. 2. Graphical representation of Accuracy/diversity dilemma

line represents the maximal diversity allowed between two classifiers with identical
accuracy. It appears that two poor classifiers can have large diversity while two accurate
classifiers cannot be so diverse.

In the following, we will consider two terms based on the mutual information be-
tween classifiers: the average accuracy of the K classifiers:

ITA =
∑K

i=1 I(C; Ci)
K

, (8)

and the diversity between the classifiers:

ITD =

(
K
2

)
∑K−1

i=1
∑K

j=i+1 I(Ci; Cj)
. (9)
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Taking into account the second order approximation of the similarity between the
classifiers and the average accuracy, we propose the Information Theoretic Score (ITS)
as:

ITS = (1 + ITA)3.(1 + ITD). (10)

This model is a choice and other similar modeling could be chosen. The next sec-
tion tries to validate this definition in the context of overproduction and selection of
classifiers.

4 Experiments and Results

4.1 Overproduction and Selection

The information theoretic score defined above gives a measure of the goodness of an
ensemble. A first natural approach for taking advantage of this score is thus to over-
produce classifiers and then select the ensemble that maximizes the ITS. We consider
a 2 class toy problem using the Banana dataset available in the Matlab Pattern Recog-
nition Toolbox [21]. We generate 1000 training examples for both classes and we split
this training set into 15 smaller subsets by random sampling. We then train one clas-
sifier with each subset. A first experiment (Fig. 3(a)) consists in training 15 Support
Vector Machines (SVMs) with radial basis kernels (the parameters being evaluated by
cross-validation). The 455 possible combinations of three classifiers (triplets) are ex-
haustively tested. For each triplet, we measure the ITS, the ensemble accuracy on a
large test set and the we also compute the average individual accuracy of the three clas-
sifiers. This mean is represented by the grey level of the circles in Fig. 3(a). In the
second experiment, three different learning algorithm are used. We trained 5 SVMs, 5
linear classifiers and 5 K-nearest neighbors (KNN) and again ITS is measured for each
triplet. Results are reported in Fig. 3(b).

As expected, the triplets of classifiers with low ITA (dark circles) lead to low clas-
sification accuracy. When the three individual classifiers are accurate (light circles in
Fig. 3(a) and Fig. 3(b)), the final classification is generally accurate. However, in both
configuration, the lightest points (which means the 3 best classifiers combined together)
do not give necessarily the best combination. This phenomenon is more visible in the
case of 15-SVMs as they only have slight differences in their individual accuracies. In
any case, the ensembles with high ITS are very accurate. These experiments show that,
at least in toy problems, the ITS can overcome the limitations of diversity as presented
in section 3.1. Howerver, in these experiments, the relation between the size of the train-
ing sets and the complexity of the classifiers may play an important role [14]. This will
be studied in a further work.

4.2 Modified AdaBoost

In many problems, it is not trivial to train a pool of relevant classifiers such that a
good combination can be extracted. Moreover the number of possible ensembles to be
tested varies dramatically with the number of classifiers in the pool and the number of
classifier wanted in the ensemble. We thus propose here to directly learn an ensemble of
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(a) 15 SVMs (b) 5 SVMs, 5 KNN, 5 linear classifiers

Fig. 3. Combination accuracy and ITS for each triplet of classifiers. (a)15 SVMs with RBF kernels
and (b)5 SVMs with RBF kernels, 5 KNN classifiers and 5 linear classifiers. The color of the
circle is proportional the the average accuracy of the ensembles.

classifiers with high ITS. One of the drawbacks of the information theoretic approach is
that the objective function to be optimized is not differentiable. In this paper we propose
a technique for building classifiers ensembles by boosting.

AdaBoost [15] is a learning algorithm which iteratively builds a linear combination
of some basic functions (weak classifiers) by greedily minimizing the risk based on the
exponential loss,

L(y, f(x)) = exp (−yf(x)). (11)

The final decision function has the form

fT (x) = sign

(
β0 +

T∑

k=1

βkhk(x)

)
, (12)

with hk : R
n → {±1} being the weak classifiers. Training in the case of AdaBoost

comes to finding the weak classifiers and their corresponding weights. For a detailed
description of the algorithm see [15]. There are a number of theoretical and practical
advantages in using AdaBoost, of importance here being the fact that by suitably choos-
ing the weak classifiers, one may perform a feature selection implicitely when training
the classifier. Another important feature of AdaBoost is that it converges towards a large
margin classifier with positive impact on its generalization properties. However, in the
presence of high levels of noise, AdaBoost, like the majority of classifiers, may overfit
the training set.

We propose a modified version of it that selects weak classifiers that maximizes a
weighted ITS instead of picking the weak classifier that minimize the weighted training
error. The convergence properties of AdaBoost are not affected by the change as far
as the weighted training error of each selected classifier remains at least slightly better
than random guessing. We test this algorithm in a face class modeling application. We
consider a two class problem with 19×19 pixels face and non face images (see [22]). We
use slightly more than 3700 faces for training and roughly 4300 for testing. Non face
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Fig. 4. Comparison between AdaBoost and its modified version based on the ITS criterion

images were selected by bootstrapping on randomly selected images. We used 5000
images for training and 10000 for testing. Simple decision stumps are used as weak
classifiers. Fig. 4 gives a comparison between default AdaBoost and the ITS-AdaBoost
proposed here. It turns out that the generalization is improved compared to AdaBoost
(even if the training convergence is slower). It can be explained by the fact that we
explicitly add more diversity at each iteration.

5 Conclusions

This paper presents a new ensemble learning technique in an information theoretic
framework. It provides a tool for measuring the goodness of an ensemble by taking
into account a trade-off between individual accuracy and diversity. This information
theoretic criterion has been used in two learning strategies. Selection of overproduced
classifiers, and modified version of AdaBoost. These techniques have been tested in
the face class modeling context showing the improvements brought by this information
theoretic approach.
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Abstract. Traditional boosting method like adaboost, boosts a weak learning 
algorithm by updating the sample weights (the relative importance of the 
training samples) iteratively. In this paper, we propose to integrate feature re-
weighting into boosting scheme, which not only weights the samples but also 
weights the feature elements iteratively. To avoid overfitting problem caused by 
feature re-weighting on a small training data set, we also incorporate relevance 
feedback into boosting and propose an interactive boosting called i.Boosting. It 
merges adaboost, feature re-weighting and relevance feedback into one 
framework and exploits the favorable attributes of these methods. In this paper, 
i.Boosting is implemented using Adaptive Discriminant Analysis (ADA) as 
base classifiers.  It not only enhances but also combines a set of ADA classifiers 
into a more powerful one. A feature re-weighting method for ADA is also 
proposed and integrated in i.Boosting. Extensive experiments on UCI 
benchmark data sets, three facial image data sets and COREL color image data 
sets show the superior performance of i.Boosting over AdaBoost and other 
state-of-the-art projection-based classifiers. 

Keywords: Relevance Feedback, Adaboost, Feature Re-weighting, Multiple 
Classifiers. 

1   Introduction 

Recent years have witnessed an explosion of digital images generated from different 
areas such as commerce, academia and medical institutes. The dramatic increase of 
images demands efficient indexing and retrieval methods, especially for a large image 
database. In image retrieval, an image is represented by its image feature vector as a 
data point in a high-dimensional space. Its dimension ranges from tens to hundreds. 
However, traditional statistical approaches have difficulties in modeling data directly 
in such a high dimensional space. Hence, dimension reduction technique plays a 
critical role in alleviating the high dimensionality problem.  

A good dimension reduction method can map the high dimensional data space to a 
low dimensional space without loss of much useful information. However, any single 
dimension reduction method cannot find the optimal projection. Traditional 
techniques, such as Principal Component Analysis (PCA) [1] and Linear Discriminant 
Analysis (LDA) [2], cannot work well when the data distribution cannot be modeled 
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as Gaussian or mixture of Gaussians. A better solution is to boost a set of projections 
and corresponding classifiers first using boosting algorithms. Then combine these 
boosted classifiers using fusion in the projected space [3]. 

Here, boosting algorithms are designed to construct a “strong” classifier from a 
“weak” learning algorithm and present the superior result given by a thresholded 
linear combination of the weak classifiers. AdaBoost [4] is often regarded as the 
generic boosting algorithm.  The basic idea of AdaBoost is to iteratively re-weight the 
training samples based on the outputs of some weak learners. Misclassified samples 
will receive higher weights in the next iteration. This forces the classifier to focus 
more on the incorrectly classified examples.  

However, during this procedure, only weights of samples are updated. It doesn’t 
update any feature element weight, which is important and very useful especially for 
image databases using high dimensional image features [5]. In this paper, we 
incorporate feature re-weighting into boosting and propose a new feature re-weighting 
approach for Adaptive Discriminant Analysis (ADA) [3].  In addition, considering 
feature re-weighting on small training data set tends to bias to the training set and 
causes overfitting, we integrate user feedback into boosting scheme and propose a 
novel interactive boosting framework (i.Boosting). i.Boosting not only weights the 
samples, but also weights the feature elements iteratively. Besides, in i.Boosting, 
relevance feedback provides boosting with more misclassification information. And 
better than simple relevance feedback, Adaboost forces classifiers to pay more 
attention to wrongfully predicted samples in user feedback.   

In this paper, i.Boosting is implemented using ADA as base classifiers.  It not only 
enhances but also combines multiple ADA classifiers into a more powerful one. 
Extensive experiments on the UCI benchmark data sets, three facial image data sets 
and COREL color image data sets show that the superior performance of i.Boosting.  

In section 2, feature re-weighting and relevance feedback techniques will be briefly 
described. Interactive boosting scheme and i.Boosting with ADA are illustrated in 
section 3. Experimental results and conclusions will be given in section 4 and 5 
respectively.   

2   Feature Re-weighting and Relevance Feedback  

2.1   Classic Feature Re-weighting 

In image database, each image Ii ∈  is represented by its M features T
iM2,i1,i ]ff[f …=if . 

Let the feature of query image q be T
qmq2q1, ],..ff[f=qf , the Euclidean distance between 

query image and the image in the database is 

                                               )qi
T

qi W()(d ffff −−=  

W is the feature weighting matrix indicating the importance of each component of 
features. After relevance feedback, the user provides the relevance of each image to 
the query and the feature weights can be updated to make similar images close to each 
other and dissimilar images far away from each other. Traditional feature  
re-weighting methods are based on distance metric, e.g., generalized Euclidean 
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distance [5]. In this paper, we apply a dynamic feature re-weighting method before 
dimension reduction in order to obtain a better projection after each iteration in 
relevance feedback. 

2.2   Adaptive Discriminant Analysis 

In our paper, we use Adaptive Discriminant Analysis (ADA) [3] as our dimension 
reduction method. It can provide an accurate model of the complex distribution for 
positive and negative samples by finding an optimal projection in the following way: 
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The mP and mN are the means of positive and negative samples, respectively. fP and 
fN are feature element weights of positive and negative samples, respectively. 

∗• stands for Hadamard product operation. PS  (or NS ) is the within-class scatter 

matrix for the positive (or negative) examples. PNS →  (or NPS → ) is the between-class 

scatter matrix from the negative (or positive) examples to the centroid of the positive 
(or negative) examples. The two parameters )1,0(),1,0( ∈∈ ηλ  control the bias between 
positive and negative samples. Proper setting of parameters may fit the real 
distribution of data better than LDA and PCA [3]. 

However, to find an optimal setting, exhaustive searching in 2D parameter 
),( ηλ space is needed and computationally expensive. Boosting can alleviate this 

problem by enhancing and combing a set of weak ADA classifiers into a more 
powerful one. (An ADA classifier is denoted as ADA projection and a base classifier 
in the projected space)  

For each weak ADA classifier, to find a better projection, the ratio of 
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−+ >−>−  need to be maximized. Intuitively, it is to minimize the 

“within-class scatter” and maximize the “between-class scatter”.  Therefore, the 
criterion can be redefined to maximize  

                    
))1()1(()(

))1(())1((

NPNPNP

NPPNNP

SStraceSStrace

SStraceSStrace

ηληλ
ηηλλ
−−−+−=

−+−−+

>−>−

>−>−                                (6) 



 Interactive Boosting for Image Classification 183 

Hence, re-weighting scheme for ADA is to update fP by maximizing 
)( PNP SStrace ηλ −>−  and update fN by maximizing ))1()1(( NPN SStrace ηλ −−− >−  based on 

(2), (3), (4), and (5).  

2.3   Relevance Feedback 

To efficiently incorporate user feedback and enhance the retrieval accuracy, relevance 
feedback can also be integrated in the boosting. 

Relevance Feedback was initially developed in document retrieval [6] and widely 
applied in content-based image retrieval (CBIR) [7, 8].  A challenge in CBIR is the 
semantic gap between the high-level semantics in human mind and the low-level 
computed features (such as color, texture, and shape). In order to bridge the gap 
between low-level features and high-level semantics, relevance feedback is introduced.  

The basic idea of relevance feedback is to get human in the loop. At first, computer 
processing provides initial retrieval results. Users are then asked to evaluate the 
current retrieval results according to degrees that are relevant or irrelevant to his/her 
request. The system then applies the user’s feedback to update the training examples 
to improve performance for the next round. This learning process can be applied 
iteratively if the user desires. Relevance Feedback algorithms have been shown to 
provide dramatic performance improvement in image retrieval systems [8].   

3   Interactive Boosting 

3.1   Methodology 

Motivated by the strength and success of adaboost, dynamic feature re-weighting and 
Relevance Feedback, we propose an interactive boosting framework called i.Boosting. 
It can integrate user relevance feedback, adaboost (sample re-weighting) and  
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Fig. 1. Interactive Boosting framework 
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feature re-weighting in the loop of boosting and better bridge the gap between semantic 
concept and image features. Figure 1 gives an illustration of the basic idea of the 
interactive boosting framework. 

3.2   Interactive Boosting in ADA 

Based on the framework described in section 3.1, the brief algorithm below shows 
how the i.Boosting is implemented with multiple ADA classifiers. 

 
Algorithm: i.Boosting with ADA as weak classifiers  

Input:  Labeled Sample Set X and label Y, Unlabeled Sample Set U 
             Feature vector D and Feature element d  
            K ADA classifiers with different ),( ηλ  

            M: The dimension of feature (feature size), p: positive samples, n: negative samples 
            T: The total number of runs  
Initialization: sample weight )(1, xw tk = =1/|X| and feature weight 1)(,1)( 1,1, == == dfdf tntp  

Boosting 
   For each classifier Kk ,,1…=  do  

           For Tt ,,1…=  

• Train each ADA classifier on labeled samples with weights. Note that 

∑ =
∈Xx

tk xw 1)(, , Mdfdf tn
Dd

tp
Dd

== ∑∑
∈∈

)()( ,,    

• Get the probability-rated prediction on labeled and unlabeled sample.  
• Compute the weights of classifiers based on its classification error rate tk ,ε   on 

labeled samples  )
1

ln(
2

1

,

,
,

tk

tk
tk ε

ε
α

−
=   

 Present samples from the unlabeled data set with their predicted labels to user 
 Obtain user feedback on the ground truth labels 
 Construct new labeled training set by adding data and corresponding labels obtained 

from user feedback 
• Update the weight of all training samples  

))(exp()()( ,,,1, yxhxwxw tktktktk ⋅⋅−=+ α  

• Compute the new || PNP SS ηλ −→ and |)1()1(| NPN SS ηλ −−− →  in eq. (6) 

• Update the weight of features )(),( ,, dfdf tntp accordingly 

         End for t   

End for each classifier                                        

The final prediction ∑=
tk

tktk xhsignxH
,

,, ))(()( α , using sum rule to combine multiple classifiers  

4   Experiments and Analysis 

In this section, we experimentally evaluate the performance of the interactive 
boosting on benchmark dataset, image and face classification. The test data sets 
include UCI benchmark data sets, COREL image data set and three popular face 
image data sets, which cover a wide range of data in computer vision applications. In 
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order to comprehensively evaluate the performance of our proposed method, we 
compare it with AdaBoost, ADA with Relevance Feedback and other state-of-the-art 
projection techniques. In all experiments, our boosted ADA is trained on 36 ADA 
classifiers with ( )ηλ, evenly sampled from 0 to 1 with step size of 0.2. Bayesian 

classifier is used on the projected data for all projection-based methods. In order to have 
statistical analysis of our scheme, we perform a pseudo relevance feedback. At each 
relevance feedback, 5 images are fed to the system automatically based on their ground 
truth labels. In all experiments, average prediction error rate of 50 runs is reported. 

4.1   Interactive Boosting on UCI Data Set 

First, we tested the effectiveness of the proposed i.Boosting on benchmark data sets 
from UCI repository. For comparison purpose, four independent experiments are 
designed and implemented to compare i.Boosting with other related variants.  

Due to the limited space, we only show the results on SPECTF heart databases, 
which describe diagnosing of cardiac Single Proton Emission Computed Tomography 
(SPECT) images. Similar results are obtained on other data sets. This SPECTF data 
set contains 267 instances (patients) and totally 43 attributes. Each of the patients is 
classified into two categories: normal and abnormal. The sizes of the training set and 
testing set are 80 and 187, respectively. The average error rate across five iterations is 
plotted in Fig. 2, where the x-axis denotes the iteration number (between 0 to 5). 0 
stands for the starting status before iterations begin. 

 

Fig. 2. Comparison between i.Boosting and other related variants 
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a) boosting single ADA classifier vs boosting multiple ADA classifiers 
In this experiment, we compare a boosted single best ADA classifier (B.best_ADA) 
with boosted multiple ADA classifiers (B.ADAs). The boosted multiple ADA 
classifiers are trained on 36 ADA classifiers with ( )ηλ, evenly sampled from 0 to 1 

with step size of 0.2.  The single best ADA is the best one chosen from these 36 
classifiers. Showed in Fig. 2 (a), as iteration goes on, the error rates of the 
B.best_ADA classifier and B.ADAs decrease. Although B.ADAs starts with a set of 
weak classifiers, after three iterations (T=3), it outperforms the B.best_ADA. It 
verifies that AdaBoost provides a general way of combining and enhancing a set of 
ADA classifiers in the parametric space.  

b) boosting multiple ADA classifiers with and without relevance feedback  
Secondly, we evaluate the effect of integrating user feedback into boosting scheme. 
From Fig.2 (b), we can find the performance improvement of using AdaBoost alone 
(B. ADAs) is less than that of boosted ADAs with relevance feedback (B.ADAs+RF). 
The performance of B.ADAs+RF is consistently better than that of B.ADAs (w/o 
relevance feedback) by up to 30.4% on SPECTF heart set. Obviously, the reason is 
that user feedback and human judgement could be accumulated iteratively to facilitate 
learning process. 

c) single ADA classifier+RF (w/o boosting) vs boosting multiple ADA classifiers+RF 
The third experiment is designed to verify if the performance improvement of 
B.ADAs+RF is introduced by relevance feedback only. Hence, we compare the single 
best ADA classifier with only relevance feedback (best_ADA+RF) and boosted 
multiple ADA classifiers with relevance feedback (B.ADAs+RF). From the 
experimental result in Fig. 2 (c), we can conclude that: 1) B.ADAs+RF and Relevance 
Feedback only starts with similar performance in iteration 1; 2) After several 
iterations, simple relevance feedback gain less performance improvement than 
B.ADAs+RF. In conclusion, B.ADAs+RF has obvious advantage over the simple 
relevance feedback method in that the classifiers are trained to pay more attention to 
wrongfully predicted samples in user feedback through a reinforcement training 
process. 

d) boosting multiple ADA classifiers+RF( w/o feature re-weighting) vs i.Boosting 
The last experiment is to evaluate the performance of feature re-weighting in 
interactive boosting. In Fig. 2 (d), we can find after two iterations, the i.Boosting 
performed much better than B.ADAs+RF (without feature re-weighting). Besides, 
i.Boosting becomes much steadier after several iterations. It is clear that our method 
i.Boosting boosts not only a set of weak classifiers but also the individual features.      

4.2   Interactive Boosting for Image Classification 

In order to evaluate interactive boosting for image classification, we test i.Boosting on 
COREL image databases. This database contains 1386 color images, which are 
categorized into 14 classes. Each class contains 99 images. Each image is represented 
by 37 feature components including color moments [9], wavelet-based texture [10] 
and water-filling edge-based structure features [11]. For simplicity, we randomly pick 
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Fig. 3. i.Boosting on COREL data set 

up two classes of images for classification. One-third of the images are used for 
training while the rest are used for testing.  

The experimental result showed in Fig. 3 is consistent with the results on the UCI 
data set. i.Boosting, boosted multiple ADA classifiers (without relevance feedback) 
and the best  ADA classifier with relevance feedback start with similar performance 
in iteration 1. But as iteration goes on, i.Boosting gains much better performance 
improvement than the other two. It demonstrates that interactive boosting exploits the 
favorable attributes of adaboost, feature re-weighting and relevance feedback well. 

4.3   Interactive Boosting for Face Classification 

To evaluate interactive boosting for face classification, we tested i.Boosting on three 
well-known face image databases with change of illumination, expression and head 
pose, respectively. The Harvard Face image database contains images from 10 
individuals, each providing total 66 images, which are classified into 10 sets based on 
increasingly changed illumination condition [12]. The AT&T Face Image database 
[13] consists of grayscale images of 40 persons. Each person has 10 images with 
different expressions, open or closed eyes, smiling or non-smiling and wearing 
glasses or no glasses. The UMIST Face Database [14] consists of 564 images of 20 
people, which covers a range of poses from profile to frontal views. Figure 4 gives 
some example images from the databases. Sixty image features are extracted to 
represent these images including histogram, wavelet-based texture and water-filling 
edge-based structure features. 

For each database, we randomly chose one person’s face images as positive and the 
rest face images of others are considered as negative. For comparison purpose, 6 
state-of-the-art projection-based techniques: Eigenface [12], LDA, BDA [15], DEM 
[16], KDEM [16], ADA [3] are tested on the same databases. To be consistent, the 
results for these techniques are obtained after 5 iterations of relevance feedback.  

The results are listed Table 1 with the smallest error rate in bold. It is clear that 
i.Boosting performs best in 4 out of 5 tests and second to the best ADA in one test. It 
is clear that i.Boosting provides more robustness to the changes of illumination, 
expression and pose than other techniques. 
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(a) Change of illumination condition, size is 84×96 

 
(b) Change of expressions, size is 92×112 

 
(c) Change of head pose, size is 92×112 

Fig. 4. Example Face images from three facial databases 

Table 1. Comparison of i.Boosting with state-of-the-art techniques on three different face 
databases 

Harvard Dataset  
 Error Rate (%) 

 Subset 1 Subset 2 Subset 3 

ATT 
Dataset 

UMIST 
Dataset 

Eigenface 6.33 9.1 4.16 0.31 3.81 

LDA 15.06 15.17 15.33 2.07 0.51 

BDA 1.42 4.0 1.43 0.83 1.36 

DEM 14.96 15.18 15.26 3.35 1.28 

KDEM 11.21 13.33 11.18 1.67 2.64 

Best single 
ADA 0.33 2.7 0.84 0.04 0.17 

M
et

ho
ds

 

i.Boosting 0.16 3.0 0.58 0.02 0.11 

5   Conclusion and Future Work 

In this paper, we propose a novel interactive boosting framework to integrate feature 
re-weighting and relevance feedback into standard boosting scheme. Compared to the 
traditional boosting scheme, the proposed method updates both sample weights and 
feature weights iteratively. It obtains more performance improvement from the 
relevance feedback by putting human in the loop to facilitate learning process. It has 
obvious advantage over the simple relevance feedback method in that the classifiers 
are trained to pay more attention to wrongfully predicted samples in user feedback 
through a reinforcement training process. All experimental results show the superior 
performance of the proposed interactive boosting framework. 

Our future work includes testing different user feedback schemes such as active 
learning techniques [17] in the interactive boosting. Different base classifiers and 
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their corresponding feature re-weighting schemes will be implemented. We will also 
evaluate the performance difference among different boosting and fusion schemes. 
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Abstract. The strength of classifier combination lies either in a suitable
averaging over multiple experts/sources or in a beneficial integration of
complementary approaches. In this paper we focus on the latter and
propose the use of group-induced vector spaces (GIVSs) as a way to
combine unsupervised learning with classification. In such an integrated
approach, the data is first modelled by a number of groups, found by
a clustering procedure. Then, a proximity function is used to measure the
(dis)similarity of an object to each group. A GIVS is defined by mapping
an object to a vector of proximity scores, computed with respect to the
given groups. In this study, we focus on a particular aspect of using
GIVSs in a mode of building a trained combiner, namely the integration
of generative and discriminative methods. First, in the generative step,
we model the groups by simple generative models, building the GIVS
space. The classification problem is then mapped in the resulting vector
space, where a discriminative classifier is trained. Our experiments show
that the integrated approach leads to comparable or better results than
the generative methods in the original feature spaces.

1 Introduction

Practice in Multiple Classifier Systems as well as life experience show that
a proper integration of complementary expertise leads to a better understand-
ing of the problem and, usually, to better solutions. In this paper, we combine
the complementary views of unsupervised and supervised learning. One possible
approach is to discover the data structure and to apply different classifiers (or
their combinations) depending on the position of objects in a vector space or
groups they belongs to. Given a set of classifiers, this can be realized in local
neighborhoods, e.g. by a dynamic classifier selection, as discussed in [15,2].

Here, we propose a simpler strategy that builds a group-induced vector space
(GIVS) from the information of group structure. The main idea is to create such
a representation space for the addressed problem such that it is successfully em-
ployed by discriminative approaches also for very small sample size problems
or for non-vectorial data. Therefore, we characterize the problem in terms of
(overlapping) groups determined by a clustering procedure. In principle, groups
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can also be obtained by using label information. Nevertheless, the use of labels
should be avoided, since this prevents the risk of overtraining (re-using the same
information). Additionally, groups may also have different scales (both large and
small groups are permitted) or be detected on different levels of a hierarchical
clustering. Given such (possibly multiple-view) groups, a proximity function is
needed that measures similarity of an object to each group. This is defined in
agreement with the underlying grouping criterion or the property of the cluster-
ing technique, such as the Euclidean distance to the class centre if the K-means
clustering is used or log-likelihood in case of the EM-clustering. In a GIVS, an
object is mapped to a proximity vector, such that each proximity score reflects
a similarity of an object to a group. The construction of this vector space is
a fusion of weak proximity scores which encode in multiple views the grouping
tendencies in the data. A statistical classifier trained in GIVS combines the weak
clustering evidences towards a good solution. Note, however, that such a classi-
fier should be simple in order to avoid overtraining, as the final result is a trained
combiner [4]. A similar idea was also used for image classification in [9].

In general, our approach bears some resemblance to mixtures of local models.
This includes local PCA models utilising either ’hard’ [8] or ’soft’ [6] assignments
in in the partitioning phase, or probabilistic models based on local probabilistic
PCA [14] or mixture of Gaussians [11]. All but first techniques couple both the
partitioning and local model building into a EM approach. As a result, the model
parameters and the mixing weights are optimized simultaneously. There are two
main differences between such mixtures of local models and our approach. First,
we derive a sequentially trained combiner which optimizes both unsupervised
and supervised stages separetely. Secondly, the models are flexible: both local
and global, possibly weak and overlapping and they may be derived by any
clustering procedure, including these without the probabilistic character.

Another related approach is a network of locally tuned RBF units proposed in
[12]. It first uses an unsupervised learning, such as K-means to determine cluster
centers. These are then taken as RBF centers (of a hidden layer), whose widths
are estimated by some nearest-neighbor heuristics. The output layer is a weighted
linear combination of the RBFs. In the supervised setting, it is optimized by
a gradient descent method. While it seems ad-hoc, its good performance may
now be better understood in the light of our proposal, as explained below.

In this paper, we focus on a particular aspect of the proposed approach re-
lated to the integration of generative and discriminative methods, two comple-
mentary learning paradigms [7,13]. Generative methods model class probability
density functions, while discriminative methods directly define the class bound-
aries. Generative techniques better characterize data, while discriminative tech-
niques usually lead to a high performance. The combination of their strengths
by the use of GIVSs seems to be a way for improvement. Here we study to what
extent the simple generative modeling of groups in case of vectorial problems is
beneficial for building GIVSs and training discriminative classifiers there.

The paper is organised as follows. Section 2 describes the proposed method-
ology, while Sections 3 and 4 explain the experimental set-up and analyze the
results. The findings are summarized in Section 5.
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2 Proposed Methodology

This section describes our integrated framework for combing grouping evidence
with supervised learning. The starting point is a C-class classification prob-
lem, defined by a training set X = {x1,x2, ...,xN} with the associated labels
{y1, y2, ..., yN}, and a test set Z = {z1, z2, ..., zM}. The group-induced vector
space (GIVS) classification methodology is defined via the following steps:

1. Grouping: choose or detect groups inside the training set. This can be
achieved either by employing the label information (e.g. groups are chosen
as the original classes) or not. Although the latter choice prevents possible
overtraining from the repetitive usage of labels, both Supervised grouping
and Unsupervised grouping have been used. In the latter case, the groups are
determined by a clustering technique and are assumed to represent natural
clusters inside the training set. Any clustering methodology can be used
here, such as the simple K-means or the complex mode-seeking. Note that
clusters may overlap, which means that examples belong to multiple clusters.
In addition, we also define the Fused Unsupervised Grouping strategy, which
collects sets of groups obtained by the Unsupervised Grouping for a growing
number of clusters from 2 to F . The training set is therefore used multiple
times, each time to find a particular number of groups.

In general, the result of a supervised or unsupervised grouping process is a
group structure G describing the training set with K groups, G1, G2, . . . , GK .
Of course, K = C in Supervised grouping, while K = 2+ . . .+(F −1)+F =
(2+F )(F−1)

2 , in Fused Unsupervised Grouping.
2. Group characterization: in this step, a set of generative one-class mod-

els (such as Gaussian probability densities) are built based on the group
structure G in order to model or describe the elements inside the groups. It
is important to emphasize that each model is trained following a one-class
paradigm, i.e.without any knowledge of the remaining training examples. As
a result, a set of models {Mk} describes the group structure G. In our ex-
perimental study, we used very simple models, namely Gaussian probability
density models with diagonal or spherical covariance matrices.

3. Building Group-Induced Vector Spaces: in this step the GIVS is con-
structed by representing each object by its distance or similarity to each
group Gk. Formally, each object xi is mapped to the Group-Induced Vector
Space by the following function:

givsK(xi) : xi −→ [f(xi, M1), f(xi, M2), . . . , f(xi, MK)]T , (1)

where f(xi, Mk) is a function measuring the relation between the vector xi

and the model Mk of the group Gk. For instance, this is the probability that
xi belongs to the model. In our experiments, we either used the Euclidean
distance between xi and the mean of Gk in case Mk is a spherical Gaussian
model or the log-likelihood when Mk is the a diagonal Gaussian model. The
training set X and the test set Z are then mapped to this new space with the
givsK(·) function. Depending on the grouping used, the resulting spaces are
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called Supervised GIVS, Unsupervised GIVS or Fused Unsupervised GIVS,
while their dimensions equal to C, K and (2+F )(F−1)

2 , correspondingly.
4. Classification in the GIVS: the classification problem is solved in the

new feature space, in which the training set is

GIVS(X ) = {givsK(x1), givsK(x2), ..., givsK(xN )}
with the associated labels {y1, y2, ..., yN} and the test set is

GIVS(Z) = {givsK(z1), givsK(z2), ..., givsK(zM )}.

Any vector-based classification strategy can be used in the GIVS, such as
the KNN (k-nearest neighbor) or SVM (support vector machine).

An important feature of our approach is its applicability to problems in which
a direct feature space cannot easily be extracted. Examples include problems
dealing with sequences, strings, structures or graphs, i.e. problems in which
a vector space is not directly obtainable, and discriminative approaches are
not easily employable. In such cases, the usual option is to apply generative
approaches. The generative models make use of the specific properties of the
non-vectorial representations, but they loose at the same time as the discrimina-
tive approaches typically have a higher discrimination power. In this sense, the
strategy proposed here is a method of combining generative and discriminative
strategies, a very challenging research task [7,10]. Generative models are used to
characterize groups, while the classification is performed in the corresponding
GIVS by discriminative techniques.

3 Experimental Evaluation

This section presents our results. They are obtained by testing different variants
of the combined generative-discriminative approach applied to several classifica-
tion problems. In particular, the general scheme outlined in Section 2 has been
instantiated by the following choices:

1. Grouping: in the supervised case, groups are defined by the given classes,
hence their cardinality equals C, the number of classes. In the unsupervised
cases (standard and fused), a traditional Gaussian Mixture Model (GMM)
for clustering is adopted assuming diagonal covariance matrices. The number
of clusters K varies from 2 to 15. Also F varies from 2 to 15, leading to fused
vector spaces of the dimension in the range of 2 to 119 = 2 + . . . + 14 + 15.

2. Group characterization: two simple models are applied here: a Gaussian
model with a diagonal covariance matrix and a spherical Gaussian model.

3. Building Group-Induced Vector Spaces: theproximitymeasuref(xi,Mk)
is defineddifferently for the twomodels:

(a) Diagonal Covariance Gaussian:

f(xi, Mk) = log N (xi | μk,Σk) (2)
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i.e. the log-likelihood expressing the confidence that xi belongs to the
Gaussian model Mk defined by the mean vector μk and the covariance
matrix Σk. In general, it is the negative square Mahalanobis distance,
which now simplifies to the negative normalized (per feature) square
Euclidean distance due to a diagonal covariance matrix. This choice is
motivated by the traditional use of log-likelihood models in the litera-
ture. The logarithmic transformation is usually applied to probability
estimates. It often simplifies the corresponding expression (when based
on the exponent function) and, more importantly, emphasizes the differ-
ences in small probabilities, leading to better numerical accuracies.

(b) Spherical Gaussian:

f(xi, Mk) = ||xi − μk||2, (3)

i.e. the Euclidean distance of xi to the mean of the Gaussian group Mk,
which is a natural choice for spherical clusters.

4. Classification in the GIVS: here we choose two simple discriminative
classifiers, the K-nearest Neighbor (KNN), with K optimized by the leave-
one-out error on the training set, and the Logistic Linear classifier (LogLC)
[3]. The idea is that we can reduce the complexity of the classifier while
increasing the discrimination power and the complexity of the vector space.

Different versions of the proposed combining scheme are tested on several well-
known data sets from the UCI Repository [5]. These are: Banana, Ecoli, Liver, Di-
abetes, Breast (Wisconsin Breast Cancer), Glass, Wine and Ionosphere data. The
classification accuracy is computed by using the hold-out technique [3]. Here, the
data set is randomly split into two equal and non-overlapping parts, one used for
training and the other for testing. The training set is first normalized (to a unit
variance) and then the KNN and LogLC are trained in supervised and unsuper-
vised GIVSs. The classifiers are then tested on the normalized test set. This process
is repeated 20 times and the results are averaged out. These average performances
are shown in Table 1, for which the average standard deviations are less than 0.8%.
This suggests that the proposed scheme is robust against data partitioning and ini-
tialisations of GMM. Concerning the (Fused) Unsupervised GIVS, only the best
results in the testing set over the different values of K and F are shown. A brief
discussion on how to choose these values is presented in the next section.

We compare our combined scheme to the corresponding generative classifica-
tion methods; see Table 2. In case of the diagonal covariance Gaussian model,
the standard maximum-a-posterior (MAP) approach was used, while for the
spherical Gaussian model, the minimum distance approach was used. Since we
deal with vectorial data sets, we also compare our approach to some standard
discriminative classifiers trained in the original features spaces; see Table 2.

4 Analysis of the Results

Several observations can be made while studying the results from Tables 1 and 2:
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Table 1. Average classification accuracies of the proposed generative-discriminative
integration schemes on different data sets

Group Model Diagonal Gaussian Spherical Gaussian

Measure Log PDF Euclidean distance

Classifier KNN LogLC KNN LogLC

Banana, 2 classes (150-150), 2 features
Supervised GIVS 86.07% 79.30% 91.92% 92.57%
Unsupervised GIVS 97.58% 84.10% 98.07% 97.12%
Fused Unsup. GIVS 97.72% 84.10% 98.08% 95.43%

Ecoli, 3 classes (143-77-52), 5 features
Supervised GIVS 92.34% 93.36% 92.45% 92.55%
Unsupervised GIVS 90.15% 92.55% 92.81% 93.36%
Fused Unsup. GIVS 89.71% 91.02% 92.96% 92.37%

Liver, 2 classes (145-200), 6 features
Supervised GIVS 55.78% 59.08% 56.79% 59.42%
Unsupervised GIVS 58.82% 70.12% 57.86% 65.03%
Fused Unsup. GIVS 59.51% 70.12% 57.17% 66.27%

Diabetes, 2 classes (500-268), 8 features
Supervised GIVS 74.49% 75.59% 64.83% 67.98%
Unsupervised GIVS 67.94% 77.37% 73.16% 76.91%
Fused Unsup. GIVS 66.28% 77.43% 72.46% 76.64%

Breast, 2 classes (444-239), 9 features
Supervised GIVS 95.42% 96.52% 70.13% 69.37%
Unsupervised GIVS 95.38% 96.52% 96.45% 96.71%
Fused Unsup. GIVS 95.28% 96.52% 96.48% 96.58%

Glass, 4 classes (70-76-17-51), 9 features
Supervised GIVS 61.81% 61.62% 62.64% 62.64%
Unsupervised GIVS 60.42% 62.13% 68.98% 65.14%
Fused Unsup. GIVS 60.69% 61.11% 68.52% 64.91%

Wine, 3 classes (59-71-48), 13 features
Supervised GIVS 92.33% 93.50% 70.00% 46.61%
Unsupervised GIVS 90.94% 92.78% 94.83% 95.39%
Fused Unsup. GIVS 90.83% 94.11% 94.94% 94.72%

Ionosphere, 2 classes (225-126), 32 features
Supervised GIVS 88.81% 89.77% 38.78% 87.41%
Unsupervised GIVS 87.93% 90.43% 92.39% 92.64%
Fused Unsup. GIVS 87.53% 91.11% 92.67% 90.77%

1. Classifiers trained in the GIVS perform almost always evidently better than
the corresponding generative approaches. There are two exceptions, the Ecoli
and the Wine data, where there is no significant improvement. This can
however be easily explained by the fact that in the original feature vector
spaces the classes are well described by normal distributions. The original
models are therefore well suited, hence well performing. The other examples
indicate that our integrated method is able to recover from situations in
which generative models are improper either due to wrong assumptions (such
as independently distributed features or Gaussian models for non-Gaussian
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Table 2. Average classification accuracies of the standard discriminative and genera-
tive methods on different data sets

Generative methods Discriminative methods
Data Diag-Gauss (MAP) Sph-Gauss (Min-dist) KNN LogLC SVM

Banana 80.02% 92.05% 97.53% 85.68% 97.99%
Ecoli 92.45% 92.04% 94.22% 94.33% 94.99%
Liver 53.41% 59.28% 61.25% 68.02% 64.65%
Diabetes 75.22% 67.71% 74.19% 76.55% 77.01%
Breast 95.89% 60.37% 96.54% 96.52% 96.86%
Glass 47.41% 47.27% 69.06% 63.11% 67.36%
Wine 94.83% 95.67% 95.40% 96.93% 97.65%
Ionosphere 80.00% 89.01% 85.31% 75.97% 93.22%

classes), or due to estimation errors (e.g. for an unfavourable sample size or
feature size). Our results show that in spite of a wrong model, discriminative
classifiers built in the group-induced spaces lead to good results. In brief, our
sequential generative-discriminative combination, being a trained combining
classification scheme, can recover from initially unsuitable models.

2. When comparing the proposed integrated scheme to the discriminative ap-
proaches in the original feature spaces we can observe that they give al-
most comparable results, except for the Liver and Ionosphere data (except
SVM). In these problems, the corresponding GIVSs are highly discrimina-
tive; the classifiers trained there outperform the classifiers in the original
feature spaces. The Liver problem is very challenging and it seems that by
using the clustering mechanism, the method is able to capture important
groups in the original space to build a discriminative GIVS. With respect to
the Ionosphere set, we should mention that this is a high-dimensional prob-
lem (32 dimensions), in which discriminative approaches could suffer from
the curse of dimensionality (actually SVM, which is less sensitive to this
problem, performs well on these data). By using the GIVS, we can reduce
the dimension to a moderate size, significantly improving the results.

3. By analysing the GIVS approach in depth, we can observe that the Unsuper-
vised GIVS almost always leads to better (or at least equal) results than the
Supervised GIVS. If the classes cannot be characterized by normal distribu-
tions and we fit each class with a single Gaussian, then the resulting model is
very poor. However, natural clusters can be discovered if we fit several (> C)
Gaussian models to the complete data, neglecting the label information. The
more-complex geometry of the classes can be revealed in this way. This fact
is illustrated in Fig. 1. Different groups are shown in subplot (b). Some of
them span both classes and capture the real geometry of the problem.

Concerning the Fused Unsupervised approach, there is no substantial im-
provement over the simple Unsupervised GIVS scheme. The logical explana-
tion is that the dimension of the Fused GIVS is very high and the classifiers
trained there suffer from the curse of dimensionality. Surely, a more clever
fusion strategy is necessary, which is currently under investigation.
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(a) Supervised GIVS. (b) Unsupervised GIVS with K = 10.

Fig. 1. Groups determined for the Banana data

4. With respect to the clustering technique, GMM seems to be a reasonable
choice, since we use Gaussian models. Moreover, typically this technique
is quite accurate and permits overlapping clusters. Some experiments with
K-means and other methodologies were also performed, but the obtained
results were comparable.

5. The twogroupmodels (DiagonalCovarianceGaussianandSphericalGaussian)
showdifferentbehaviours depending on thedata characteristics. In general, the
former leads to better results in low-dimensional feature spaces, while it is out-
performed by the latter in high-dimensional spaces. See Table 1 to compare
the results of the high-dimensional Wine and Ionosphere data with respect to
the other ones. The Diagonal Covariance Gaussian models describe the groups
in a more flexible way than the spherical Gaussian models are capable to, but
they need sufficient data to determine their 2d parameters in the d-dimensional
space. When the dimension of the feature space grows, simpler models are pre-
ferred to avoid bad estimates.

Finally, we emphasize that the used models should relatively be simple to prevent
overtraining. In the current set-up we use the same training data twice: to build
the GIVS and to train the classifier. So, we can only benefit from the sequential
integration if the models are weak (such that we do not adjust to the data noise)
and the final classifier is simple. The use of a complex model in the first stage
can lead to overfitting of the complete classification strategy. To justify this in
practice, we performed the same experiments with a model based on Parzen
windows, hardly obtaining any improvements over the generative approach.

Number of groups for Unsupervised GIVS. To apply the Unsupervised
(Fused) GIVS, we have to a priori set K (or F ), the number of groups. Different
values of K were evaluated in our experiments; we only present the overall best
results. Since K is a free parameter, it should be chosen based on the training
set only. Our experiments suggest, however, that the choice of perfect K is not
crucial, providing that K is sufficiently large. In Fig. 2 we plot the average clas-
sification accuracy reached in the Unsupervised GIVS as a function of K (only
the best classifier in the GIVS space is considered). The results are shown for the
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Fig. 2. Classification accuracy of the best discriminative method in the Unsupervised
GIVS based on the spherical Gaussian model as a function of the number of clusters.
The results are shown for several data sets.

non-Gaussian data sets and the spherical Gaussian model. We can observe that
in almost all cases the performance increases with the growing number of clusters
up to a certain number after which there is no further improvement. The value
of K should also not be too large in order to prevent a decreasing performance
due to the high dimension. Nevertheless, this peaking behavior was not present
in the range we examined. Moreover, we could observe that for difficult prob-
lems (such as Liver, Ionosphere and Diabetes) the performance increase is slow,
asking for a large number of clusters in order to reach a satisfactory accuracy.
A possible solution to the direct computation of K is to determine the best
value using the leave-one-out error on the training set (as typically done in
several other classification contexts). Another approach is to link this value to
the dimension of the problem, in terms of the cardinality of objects and classes,
and the number of features.

5 Summary

In this paper, we propose a general strategy to integrate the strengths of unsu-
pervised learning, which encodes data structure, and supervised learning. This
is realized via group-induced vector spaces in which statistical classifiers are
trained. In our experiments we deal with simple vectorial data and focus on
combination of generative and discriminative approaches. Generative techniques
(here, simple Gaussian models) are used to describe the data structure, while
discriminative techniques (here, the KNN and logistic classifier) combine weak
grouping evidences in a classification setting.

We find out that such an integrated generative-discriminative approach out-
performs the generative techniques and leads to better results than the discrim-
inative techniques in high-dimensional spaces (Ionosphere data) or in the case
of highly-overlapping problems (Liver data). The stability of our scheme relies
on the power of combining weak models: multiple (overlapping) clusters cover



Group-Induced Vector Spaces 199

the data and their evidence is accumulated by a simple final combiner. In such a
case, the discussed method will be robust against structure shifts in future data.

It is important to emphasize that the discussed approach is more general than
the discriminative methods, applicable in vector spaces only. Now, we can also
deal with non-vectorial structures, for which typically only generative models are
fitted, as discriminative techniques are lacking. Since many powerful descriptive
models are available (such as hidden Markov models), the advantage of the
proposed integration lies in its wide applicability to almost any vectorial and
non-vectorial classification problem. Future work will include the study of non-
vectorial structures.

Finally, we also note that another possible employment of our approach is in
the semi-supervised classification context [1]. Additional unlabeled data could
efficiently be exploited in order to create an accurate and representative feature
space, where a discriminant classifier may be trained using labels.
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Abstract. Cluster ensembles are deemed to be better than single clus-
tering algorithms for discovering complex or noisy structures in data.
Various heuristics for constructing such ensembles have been examined
in the literature, e.g., random feature selection, weak clusterers, random
projections, etc. Typically, one heuristic is picked at a time to construct
the ensemble. To increase diversity of the ensemble, several heuristics
may be applied together. However, not any combination may be bene-
ficial. Here we apply a standard genetic algorithm (GA) to select from
7 standard heuristics for k-means cluster ensembles. The ensemble size
is also encoded in the chromosome. In this way the data is forced to
guide the selection of heuristics as well as the ensemble size. Eighteen
moderate-size datasets were used: 4 artificial and 14 real. The results
resonate with our previous findings in that high diversity is not neces-
sarily a prerequisite for high accuracy of the ensemble. No particular
combination of heuristics appeared to be consistently chosen across all
datasets, which justifies the existing variety of cluster ensembles. Among
the most often selected heuristics were random feature extraction, ran-
dom feature selection and random number of clusters assigned for each
ensemble member. Based on the experiments, we recommend that the
current practice of using one or two heuristics for building k-means clus-
ter ensembles should be revised in favour of using 3-5 heuristics.1

Keywords: Pattern recognition; multiple classifier systems; cluster en-
sembles; genetic algorithms; diversifying heuristics.

1 Introduction

Selecting a good clustering algorithm is more difficult than selecting a good
classifier. The difficulty comes from the fact that in clustering there is no super-
vision, i.e., data have no labels against which to match the partition obtained
through the clustering algorithm. Therefore, instead of running the risk of pick-
ing an unsuitable clustering algorithm, a cluster ensemble can be used [13]. The

1 This work was supported by research grant # 15035 under the European Joint
Project scheme, Royal Society, UK.
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presumption is that even a basic off-the-shelf cluster ensemble will outperform a
randomly chosen clustering algorithm. The question then becomes whether we
can guide the selection of a cluster ensemble.

Here we are interested in cluster ensembles. Various heuristics have been pro-
posed for building diverse cluster ensembles. Usually these heuristics are applied
one at a time or at most two. The large majority of the publications on clus-
ter ensembles are devoted to finding a combination method (called sometimes a
consensus function), for example [1, 3, 5, 11, 15, 6, 14, 10], while few papers look
into comparisons between different diversifying heuristics e.g., [8]. In this study
we propose to evaluate combinations of such heuristics by a standard genetic al-
gorithm. Our hypothesis is that better cluster ensembles could be created using
more than one diversifying heuristics at the same time. The objective is to find
out which diversifying heuristics and combinations thereof are being selected
more frequently by a data-guided GA.

Our application is focused on a class of datasets whose common characteristics
are: (1) small number of true classes (often overlapping), which may or may not
correspond to coherent clusters; (2) moderate number of observations (up to
few hundred); (3) moderate number of features (typically 5 to 30). Such data
sets are collected, for example, in clinical medicine for pilot research studies.
In the experiments reported in Section 4 we have used, among others, six such
benchmark data sets from the UCI Machine Learning Repository [2].

The rest of the paper is organized as follows. Section 2 lists the heuristics for
building diverse cluster ensembles and explains the main ensemble algorithm.
Section 3 describes briefly the genetic algorithm. The choice of data sets and the
experimental set-up are detailed in Section 4, where we also present and discuss
the results. Section 5 concludes the study.

2 Cluster Ensembles

We investigate the effect of various design heuristics on the ensemble accuracy.
These heuristics are necessary in order to make sure that the individual clusterers
produce different, yet sensible, partitions of the data.

2.1 Cluster Ensembles

Let P1, . . . , PL be a set of partitions of a data set Z, each one obtained from
applying a clustering algorithm, or a ‘clusterer’. The aim is to find a resultant
partition P ∗ which best represents the structure of Z. We implemented the pair-
wise approach [4] because it has been a popular choice despite its comparatively
large computational complexity. The generic version of the pairwise cluster en-
semble algorithm is outlined below.

1. Given is a data set Z with N elements. Pick the ensemble size L and the
number of clusters c. Usually c is larger than the suspected number of clusters
so there is “overproduction” of clusters.

2. Generate L partitions of Z with c clusters in each partition.



202 S.T. Hadjitodorov and L.I. Kuncheva

3. Form a co-association matrix for each partition, M (k) =
{
m

(k)
ij

}
, of size

N × N , k = 1, . . . , L, where m
(k)
ij = 1, if zi and zj are in the same cluster in

partition k, and m
(k)
ij = 0 otherwise.

4. Form a final co-association matrix M (consensus matrix) from M (k), k =
1, . . . , L, and derive the final clustering using this matrix. A typical choice
for M is the average of the individual matrices M (k).

The consensus matrix M can be regarded as a similarity matrix between the
points of Z. Therefore, it can be used with any clustering algorithm which oper-
ates directly upon a similarity matrix. Viewed in this context, cluster ensemble
is a type of stacked clustering whereby we can generate layers of similarity ma-
trices and apply clustering algorithms on them. Extensive experimentation have
singled out hypergraph methods (HGPA, CSPA and MCLA [13]) and average
linkage as the best consensus functions. In a previous study we found that bet-
ter results were obtained if we used M as a new feature space and ran k-means
on it [9].

The randomisation heuristics come into play in Step 2 where the individual
partitions are formed.

Cluster validation presents a difficult problem with no trivial solution. Here
we assume that this problem has been solved and the “true” number of clusters
is available. This assumption, restrictive as it is, is not unusual for studies like
ours. The focus of this paper is the relative merit of heuristics and combinations
of heuristics compared to one another. We may well pre-set the best possible
scenario where the number of clusters is given as this setup will not disadvantage
any of the heuristics.

The most widely used indices to estimate similarity between partitions are
Rand, Jaccard, adjusted Rand, correlation, mutual information and entropy.
When the number of obtained clusters is the same as the number of known
groups in the data, the apparent accuracy of the cluster ensemble (classification
accuracy) has been used as the most intuitive measure. To calculate classification
accuracy, each cluster is labeled with the class most represented within and the
proportion of correctly labeled objects from the whole of Z is evaluated. This
re-labeling of the clusters guarantees the best classification accuracy.

3 The Genetic Algorithm for Selecting Diversifying
Heuristics

Genetic algorithms (GA) are a popular optimization technique [7]. They pro-
vide a form of guided random search whereby the solution is evolved within a
“population” through subsequent iterations called generations. Each population
consists of “chromosomes” which describe the individuals. In our case, an in-
dividual will be a cluster ensemble encoded as a 12-bit binary string. The first
seven bits encode the heuristics as explained in the next section. A value of 1
means that the respective heuristic is chosen for the ensemble. Bits 8 to 12 encode
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the ensemble size in the following way. These bits are assigned “weights” as [5,
10, 20, 50, 100]. The ensemble size, L, is the sum of the weights of the selected
bits (values 1). For example, [0,0,1,0,1] means L = 120. The fitness function
used to evaluate the merit of a chromosome is the classification accuracy of the
respective ensemble (the accuracy of the resultant partition P ∗). Interestingly,
in this implementation, the same chromosome may get different fitness values if
evaluated twice. This is because only the structure of the ensemble is determined
within the chromosome. The fitness depends upon various random parameters
according to the heuristics in the chromosome. In other words, slightly different
phenotypes may correspond to the same genotype. In order to eliminate part
of this randomness, we take as the fitness of a chromosome, the average of five
evaluation runs.

We use the standard GA with choices as shown below

1. Pick the parameters of the GA:
(a) Population size m (even).
(b) Maximum number of generations Tmax.
(c) Mutation probability Pm.

2. Generate a random population of m chromosomes and calculate their fitness
values.

3. For i = 1 : Tmax,
(a) Assuming that the whole population is the mating set, select m/2 couples

of parents from the current population (repetitions are allowed).
(b) Perform (one-point) crossover to generate m offspring chromosomes.
(c) Mutate the offspring according to the mutation probability.
(d) Calculate the fitness values of the mutated offspring.
(e) Pool the offspring and the current population and select as the next

population the m chromosomes with the highest fitness.
4. End i.

The limit number of generations, population size and mutation probability are
parameters of this GA model. We assume that the whole population is allowed
to reproduce, the crossover probability is set to 1.0, and since elitist selection is
used the generation gap is not fixed. This drives the model closer to a random
search with main emphasis being on exploration.

4 The Experiment

4.1 Data Sets

Figure 1 shows four artificial data sets: difficult-doughnut, easy-doughnut, four-
gauss and two-spirals. The first three datasets were generated in 2-D (as plotted)
and then 10 more dimensions of uniform random noise were appended to each
data set. A total of 100 points were generated from each distribution.2

2 Matlab code for generating these data sets is available at
http://www.informatics.bangor.ac.uk/∼kuncheva/activities/patrec1.html
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Easy doughnut Difficult doughnut Four gauss Two spirals

Fig. 1. The four artificial data sets used in this study. The first three data sets were
generated with 10 additional noise features.

Three benchmark biological datasets were used: crabs [12], iris and soybean-
small from UCI [2]. The parameters of all data sets are summarized in Table 1.
The eleven medical data sets in this study come from two sources. The datasets
breast, heart, liver, lymph, pima diabetes and thyroid are from UCI while the
other five data sets are now available at .http://www.informatics.bangor.ac.
uk/.kuncheva/activities/patrec1.html

These data sets are

contractions (98 objects, 9 features, 2 classses)
weaning (151 objects, 17 features, 2 classes)
respiratory (85 objects, 17 features, 2 classes)
laryngeal (213 objects, 16 features, 2 classes)
voice-3 (238objects, 10 features ,3 classes)

4.2 Experimental Protocol

All real data sets except iris and soybean-small were standardized (all features
were transformed to have mean 0 and standard deviation 1). The standardization
was deemed necessary because the data contained mixed variables and variables
measured in very different scales.

All ensembles used k-means, started from a random initialization, as the base
clusterer. The following heuristics were encoded as the first 7 bits of the chro-
mosome in the GA.

1. Different samples. We used subsampling of size randomly chosen between
the number of clusters and the total number of objects.

2. Weak clustering algorithm. k-means is stopped after the second iteration.
3. Random projections (feature extraction). We form d random projections

where d is the number of relevant principal components obtained from the
correlation matrix of the data (eigenvalues greater than 1).

4. Feature selection. A non-empty random subset of the original feature set is
picked. Each feature has a chance of 0.5 to be included in the set.

5. Label noise. Here we used 5% label noise.
6. Random number of clusters. If this heuristic is selected, the number of over-

produced clusters, c, is picked from the range from 2 to 22.

http://www.informatics.bangor.ac.uk/~kuncheva/activities/patrec1.html
http://www.informatics.bangor.ac.uk/~kuncheva/activities/patrec1.html


Selecting Diversifying Heuristics for Cluster Ensembles 205

7. Hybrid ensembles. This heuristic offers another possibility for incorporating
diversity in a non-uniform way. The hybridization is not done over different
clustering methods but consists in giving each clusterer in the ensemble
the freedom to apply different heuristics. The example below illustrates this
hybridization.

The seven heuristics are represented as the first 7 of the 12 bits of the chromo-
some while the last 5 bits encode the ensemble size. For example, an ensemble
represented by chromosome

0 0 1 1 0 1 0 1 0 0 1 0

will consist of 55 (5+50) clusterers. Each of them will be built using k-means
with random feature selection (heuristic 4) followed by random linear feature
extractions (heuristic 3)3 and a randomly chosen number of overproduced clus-
ters between 2 and 22 (heuristic 6). Consider now the following chromosome,
corresponding to a hybrid ensemble

0 0 1 1 0 1 1 1 0 0 1 0

In this case, each of the 55 clusterers will have a chance to select any com-
bination of the three heuristics (3, 4 and 6) or none of them. This means that
the hybridization opens up a second possibility for further “refined” selection of
the already selected heuristics.

If none of the first 7 bits of the chromosome is switched to 1, only random
initialization of k-means is applied. If none of the last 5 bits of the chromosome
is switched to 1, a default value of L = 5 is assigned.

The GA parameters were chosen as follows: population size m = 10; maximum
number of generations Tmax = 30 and mutation probability Pm = 0.15.

4.3 Results

Table 1 displays the data characteristics, the end results from the GA and the
corresponding accuracies. N denotes the number of objects in the data set, n is
the number of features, c is the number of clusters, L is the ensemble size and
Acc is the classification accuracy of the ensemble. Shown for each data set is
the best chromosome in the last (30th) generation. The classification accuracy
Acc is an average of 5 runs of the ensemble. In the last column we show the
classification accuracy obtained by Greene et al. [8].

Our hypothesis is that the improved ensemble accuracy is owed to the selec-
tion of appropriate heuristics. Figure 2 shows the proportion of times each of the
7 heuristics has been selected. The large error bars give the means and the 95%
confidence intervals of the respective proportions calculated within the last pop-
ulation of the GA. As there are 18 data sets, and each population contains 10
3 The order in which we apply heuristics 3 and 4 is immaterial. We have chosen to

apply 4 before 3 for computational convenience.
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Fig. 2. Mean proportions of individual occurrences of the 7 heuristics with 95% confi-
dence intervals for the mean. The large intervals are derived from the last population
of the GA; the small intervals are derived from the whole run of the GA.

Table 1. Data characteristics and the end results from the GA

Heuristics
Dataset N n c 1 2 3 4 5 6 7 L Acc [8]

difficult doughnut 100 12 2 0 0 0 1 0 1 0 65 0.982
easy doughnut 100 12 2 0 0 0 1 0 1 1 60 1.000

four gauss 100 12 4 1 1 1 1 1 0 0 130 0.982
spirals-2 194 2 2 0 1 1 0 0 1 0 120 0.551 (1.000)

crabs 200 7 2 1 1 1 1 1 0 0 165 0.625
iris 150 4 3 1 0 1 1 1 1 0 165 0.933 (0.893)

soybean-small 47 35 4 1 0 0 1 1 0 0 170 0.915

breast 277 9 2 0 1 1 0 1 1 1 10 0.718 (0.762)
heart 270 13 2 1 1 0 1 1 0 0 150 0.829 (0.600)
liver 345 6 2 1 1 1 0 1 0 1 120 0.602 (0.585)

lymph 148 18 4 1 0 1 0 0 1 1 110 0.488 (0.615)
pima diabetes 768 8 2 1 1 0 1 0 1 0 185 0.698 (0.675)

thyroid 215 5 3 1 0 1 0 1 1 1 170 0.889 (0.793)

contractions 98 27 2 1 0 1 1 0 0 0 65 0.845
intubation 302 17 2 0 0 1 0 0 0 1 170 0.772
laryngeal 213 16 2 0 0 1 1 0 0 1 55 0.822

respiratory 85 17 2 1 1 0 1 0 1 0 155 0.948
voice-3 238 10 3 0 1 1 1 0 0 0 5 0.771

chromosomes, the proportions are calculated from 180 chromosomes. For refer-
ence, we plot the probability of being selected by chance (0.5) with a dashed line.
According to the confidence intervals, heuristics 3, 4 and 6 are selected more of-
ten than chance whereas label noise (heuristic 5) and hybrid ensembles (heuristic
7) are suppressed. The short error bars show the mean and the 95% confidence
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Fig. 3. Histograms of the number of selected heuristics. The overlaid polygon is the
theoretical binomial distribution for n = 7 and p = 0.5.

intervals of the proportions calculated from the whole run of the GA (30 genera-
tions). Thus each proportion is evaluated on 30 × 10 × 18 = 5400 chromosomes.
The heuristics which are picked more often than chance are Subsample, Weak k-
means, Feature extraction, Feature selection and Random c.

Shown in Figure 3 are the histograms of the number of selected heuristics for
an ensemble. The left plot is obtained from the last populations for the 18 data
sets, and the right plot is obtained from the whole run of the GA. If each heuristic
was selected independently and completely by chance, the number of selected
heuristics would follow a binomial distribution with parameters n = 7 and p =
0.5. The polygon for the binomial distribution is overlaid in the two plots. To
check whether the obtained distribution differs from binomial, we carried out a
χ2 test. With significance p < 10−9, both obtained distributions are different
from binomial distribution.

Table 2. Combinations of heuristics with largest frequency of occurrence for a specified
number of selected heuristics

Heuristics Frequency Proportion 95% CI
# selected 1 2 3 4 5 6 7

7 1 1 1 1 1 1 1 6 0.011 0.0020–0.0200
6 1 1 1 1 1 1 0 143 0.0265 0.0222–0.0308
5 1 1 1 1 0 1 0 302 0.0559 0.0498–0.0620
4 1 1 1 0 0 1 0 262 0.0485 0.0428–0.0542
3 0 0 1 1 0 0 1 131 0.0243 0.0202–0.0284
2 0 0 0 1 0 1 0 194 0.0359 0.0310–0.0409
1 0 0 0 1 0 0 0 56 0.0104 0.0077–0.0131
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The most notable difference from the binomial probability is observed for 5
heuristics selected together. Five heuristics have been selected in 33.89% of the
ensembles in the last populations of the GA and in 27.35% of the ensembles
within the whole run. The next largest difference is for 2 selected heuristics in
the last population (23.33%).

Table 2 shows which combinations of heuristics have been encountered most
frequently when different number of heuristics have been selected. For example,
for five selected heuristics, heuristics 1, 2, 3, 4, and 6 appeared in 302 out of 1477
chromosomes. The last column of the table shows the 95% confidence interval
for the mean (averaged on 5400 cases). Knowing that the chance for selecting
a particular combination is 1

27 = 0.0078, the chances of selecting the combina-
tions shown in the table are significantly larger than chance (α = 0.05) for 2 to 6
selected heuristics. The probability of selecting all 7 heuristics is significantly be-
low chance while the probability for selecting only heuristic 4 is not significantly
higher than chance.

No combination of heuristics appeared together consistently. A glance at the
correlation matrix using the whole run of the GA reveals that correlations be-
tween pairs of heuristics are weak, varying between −0.2598 (feature extraction
and feature selection) and 0.2456 (weak k-means and label noise). Therefore, we
can think of the diversifying heuristics as fairly independent.

5 Conclusions

We restricted our study to datasets which one may acquire from pilot studies in
biomedical domain, e.g., pilot clinical trials. Such data sets have small number
of classes (we assume that they correspond to clusters), moderate number of
observations (up to few hundred) and moderate number of features (typically
5 to 30). Our collection for this study consisted of 18 such data sets, among
which artificial, real, benchmark and new medical data. Using a GA to select
combination of heuristics as well as ensemble size we found that: (1) More than
1 heuristic is better. The collection of heuristics being chosen most often by the
GA was {Subsample, Weak k-means, Feature extraction, Feature selection and
Random c} and (2) Too many is not necessarily good. Ensembles with more
than 5 heuristics appeared to be too random to be useful.

We also observed that ensemble sizes of 100+ faredbetter than smaller ensemble
for the typeofproblems in this study.However, it seems that theaccuracy for ensem-
ble sizesbeyond100 starts to level offandensemblesof2000clusterersmayonlyoffer
marginal improvement at the expense of a large increase of the computational cost.

Our experimental results indicated low dependency between heuristics. This
was partly expected because the heuristics come from different ways of handling
the data and setting the clustering procedures. The independence shows that
each heuristic has a specific niche and should not be lightly ignored. This study
was focused on selection of heuristics assuming that the “correct” number of
clusters is known. Evaluating the number of clusters is a challenging problem of
its own, worthy of a separate study.
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Abstract. A novel unsupervised multi-spectral multiple-segmenter tex-
ture segmentation method with unknown number of classes is presented.
The unsupervised segmenter is based on a combination of several un-
supervised segmentation results, each in different resolution, using the
sum rule. Multi-spectral texture mosaics are locally represented by four
causal multi-spectral random field models recursively evaluated for each
pixel. The single-resolution segmentation part of the algorithm is based
on the underlying Gaussian mixture model and starts with an over seg-
mented initial estimation which is adaptively modified until the optimal
number of homogeneous texture segments is reached.

The performance of the presented method is extensively tested on
the Prague segmentation benchmark using the commonest segmentation
criteria and compares favourably with several alternative texture seg-
mentation methods.

1 Introduction

Segmentation is the fundamental process which affects the overall performance of
any automated image analysis system. Image regions, homogeneous with respect
to some usually textural or colour measure, which result from a segmentation
algorithm are analysed in subsequent interpretation steps. Texture-based image
segmentation is area of intense research activity in recent years and many al-
gorithms were published in consequence of all this effort. These methods are
usually categorized [1] as region-based, boundary-based, or as a hybrid of the
two. Different published methods are difficult to compare because of lack of
a comprehensive analysis together with accessible experimental data, however
available results indicate that the ill-defined texture segmentation problem is
still far from being satisfactorily solved. Spatial interaction models and espe-
cially Markov random fields-based models are increasingly popular for texture
representation [2], [1], [3], etc. Several researchers dealt with the difficult prob-
lem of unsupervised segmentation using these models see for example [4], [5], [6],
[7] or [8],[9].

The concept of decision fusion [10] for high-performance pattern recognition
is well known and widely accepted in the area of supervised classification where
(often very diverse) classification technologies, each providing complementary
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sources of information about class membership, can be integrated to provide
more accurate, robust and reliable classification decisions than the single classi-
fier applications. It is also noted [11] that a single classifier with a single feature
set and a single generalized classification strategy often does not comprehensively
capture the large degree of variability and complexity encountered in many appli-
cation domains while multiple decision combination can help to alleviate many
of these problems by acquiring multiple-source information through multiple
features extracted from multiple processes.

Similar advantages can also be expected for the unsupervised segmentation
applications. However, a direct unsupervised application of the supervised clas-
sifiers fusion idea is complicated with unknown number of data hidden classes
and consequently a different number of segmented regions in segmentation re-
sults to be fused. This paper exploits above advantages by combining several
unsupervised segmenters of the same type but with different feature sets.

2 Combination of Multiple Segmenters

The proposed method combines segmentation results from different resolution.
We assume to down-sample input image Y into M different resolutions
Y (m) =↓ιm Y with sampling factors ιm m = 1, . . . , M identical for both
directions and Y (1) = Y . Local texture for each pixel Y

(m)
r is represented the

3D simultaneous causal autoregressive random field model (CAR) parameter
space Θr (4) and modelled by the Gaussian mixture model (5),(6).

2.1 Single-Resolution Texture Model

Static smooth multi-spectral textures require three dimensional models for ad-
equate representation. We assume that single multi-spectral textures can be
locally modelled using a 3D simultaneous causal autoregressive random field
model (CAR). This model can be expressed as a stationary causal uncorrelated
noise driven 3D autoregressive process [12]:

Yr = γXr + er , (1)

where γ = [A1, . . . , Aη] is the d × dη parameter matrix, d is the number of
spectral bands, Ic

r is a causal neighborhood index set with η = card(Ic
r ) and

er is a white Gaussian noise vector with zero mean and a constant but unknown
covariance, Xr is a corresponding vector of the contextual neighbours Yr−s

and r, r − 1, . . . is a chosen direction of movement on the image index lattice I.
The selection of an appropriate CAR model support (Ic

r ) is important to obtain
good texture representation but less important for segmentation. The optimal
neighbourhood as well as the Bayesian parameters estimation of a CAR model
can be found analytically under few additional and acceptable assumptions using
the Bayesian approach ([12]). The recursive Bayesian parameter estimation of
the CAR model is [12]:
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γ̂T
r−1 = γ̂T

r−2 +
V −1

x(r−2)Xr−1(Yr−1 − γ̂r−2Xr−1)T

(1 + XT
r−1V

−1
x(r−2)Xr−1)

, (2)

where Vx(r−1) =
∑r−1

k=1 XkXT
k +Vx(0). Local texture for each pixel is represented

by four parametric vectors. Each vector contains local estimations of the CAR
model parameters. These models have identical contextual neighbourhood Ic

r but
they differ in their major movement direction (top-down, bottom-up, rightward,
leftward), i.e.,

γ̃T
r = {γ̂t

r, γ̂
b
r , γ̂

r
r , γ̂l

r}T . (3)

The parametric space γ̃ is subsequently smooth out, rearranged into a vector
and its dimensionality is reduced using the Karhunen-Loeve feature extraction
(γ̄). Finally we add the average local spectral values ζr to the resulting feature
vector (Θr).

2.2 Mixture Based Segmentation

Multi-spectral texture segmentation is done by clustering in the CAR parameter
space Θ defined on the lattice I where

Θr = [γ̄r, ζr]T (4)

is the modified parameter vector (3) computed for the lattice location r. We as-
sume that this parametric space can be represented using the Gaussian mixture
model (GM) with diagonal covariance matrices due to the previous CAR para-
metric space decorrelation. The Gaussian mixture model for CAR parametric
representation is as follows:

p(Θr) =
K∑

i=1

pi p(Θr | νi, Σi) , (5)

p(Θr | νi, Σi) =
|Σi|− 1

2

(2π)
d
2

e − (Θr −νi)
T Σ

−1
i

(Θr−νi)
2 . (6)

The mixture model equations (5),(6) are solved using a modified EM algorithm.
The algorithm is initialized using νi, Σi statistics estimated from the corre-
sponding rectangular subimages obtained by regular division of the input texture
mosaic. An alternative initialization can be random choice of these statistics. For
each possible couple of rectangles the Kullback Leibler divergence

D (p(Θr | νi, Σi) || p(Θr | νj , Σj)) =
∫

Ω

p(Θr | νi, Σi) log
(

p(Θr | νi, Σi)
p(Θr | νj , Σj)

)
dΘr (7)

is evaluated and the most similar rectangles, i.e.,

{i, j} = argmin
k,l

D (p(Θr | νl, Σl) || p(Θr | νk, Σk))
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are merged together in each step. This initialization results in Kini subimages
and recomputed statistics νi, Σi . Kini > K where K is the optimal number
of textured segments to be found by the algorithm. Two steps of the EM al-
gorithm are repeating after initialization. The components with smaller weights
than a fixed threshold (pj < 0.1

Kini
) are eliminated. For every pair of compo-

nents we estimate their Kullback Leibler divergence (7). From the most similar
couple, the component with the weight smaller than the threshold is merged to
its stronger partner and all statistics are actualized using the EM algorithm.
The algorithm stops when either the likelihood function has negligible increase
(Lt − Lt−1 < 0.05) or the maximum iteration number threshold is reached.

2.3 Resulting Mixture Probabilities

Resulting mixture model probabilities are mapped to the original fine resolution
image space for all m = 1, . . . , M mixture submodels, i.e.,

p(Θ(m)
r ) =

K(m)∑

i=1

p
(m)
i p(Θ(m)

r | ν(m)
i , Σ

(m)
i ) , (8)

p(Θ(m)
r | ν(m)

i , Σ
(m)
i ) =

|Σ(m)
i |− 1

2

(2π)
d
2

e − (Θ(m)
r −ν

(m)
i

)T (Σ(m)
i

)−1(Θ(m)
r −ν

(m)
i

)
2 . (9)

The M cooperating segmenters deliver their class response in the form of
conditional probabilities. Each segmenter produces a preference list based on
the mixture component probabilities of a particular pixel belonging a particular
class, together with a set of confidence measurement values generated in the
original decision-making process.

Single-resolution segmentation results cannot be combined without knowledge
of the mutual correspondence between regions in all different-resolution segmen-
tation probabilistic mixture component maps (K1 ×∑M

m=2 Km combinations).
Mutual assignments of two probabilistic maps are solved by using the Munkre’s
assignment algorithm which finds the minimal cost assignment

g : A �→ B,
∑

α∈A

f(α, g(α))

between sets A, B, |A| = |B| = n given the cost function f(α, β), α ∈ A, β ∈
B. α corresponds to the fine resolution probabilistic maps, β corresponds to
downsampled probabilistic maps and f(α, β) is the Kullback Leibler divergence
between probabilistic maps. The algorithm has polynomial complexity instead
of exponential for the exhaustive search.

The parametric vectors representing texture mosaic pixels are assigned to
the clusters based on our modification of the sum rule according to the highest
component probabilities, i.e., Yr is assigned to the cluster ωj∗ if

πr,j∗ = maxj

∑

s∈Ir

ws

(
M∑

m=1

p(Θ(m)
r−s | ν(m)

j , Σ
(m)
j )

)
,
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where ws are fixed distance-based weights, Ir is a rectangular neighbourhood
and πr,j∗ > πthre (otherwise the pixel is unclassified). The area of single cluster
blobs is evaluated in the post-processing thematic map filtration step. Regions
with similar statistics are merged. Thematic map blobs with area smaller than a
given threshold are attached to its neighbour with the highest similarity value.

3 Experimental Results

The algorithm was tested on natural colour textures mosaics from the Prague
Texture Segmentation Data-Generator and Benchmark [13]. The benchmark test
mosaics layouts and each cell texture membership are randomly generated and
filled with colour textures from the large (more than 1000 high resolution colour
textures) Prague colour texture database. The benchmark ranks segmentation
algorithms according to a chosen criterion. There are implemented three groups
of criteria – region-based [14], pixel-wise [15] and consistency measures [16]. The
region-based [14] performance criteria mutually compare ground truth (GT) im-
age regions with the corresponding machine segmented regions (MS). They are
the correct, oversegmentation, undersegmentation, missed and noise criteria, i.e.,
correct > 75% GT (ground truth) region pixels are correctly assigned, overseg-
mentation > 75% GT pixels are assigned to a union of regions, undersegmen-
tation > 75% pixels from a classified region belong to a union of GT regions,
missed (GT in none of the previous categories) and noise (MS in none of the
previous categories). The pixel-wise criteria group contains the most frequented
classification criteria such as the omission and commission errors, class accuracy,
recall, precision, etc. Finally the last criteria set incorporates the global and local
consistency errors [16].

Tab.1 compares the overall benchmark performance of the proposed algorithm
CAR3D-multi (M = 3, ι1 = 1, ι2 = 1.5, ι3 = 2, segmentation time 14 min/img
on the Athlon 2GHz processor) with the Blobworld [17] (30 min/img), JSEG
[18] (30 s/img), Edison [19] (10 s/img), TFR/KLD [20] and our previously pub-
lished method GMRF [8] (55 min/img), CAR3D [9] (7 min/img), respectively.
These results demonstrate very good pixel-wise and correct region segmenta-
tion properties of our method while the undersegmentation results are slightly
worse and oversegmentation results are only average. For all the pixel-wise cri-
teria or the consistency measures our method is among the best ones. The table
demonstrates improvement of the presented multi-segmenters method over the
single-segmenter version published earlier [9] in most benchmark criteria. Figs.1,2
show four selected 512 × 512 experimental benchmark mosaics created from
four to eleven natural colour textures. The last three or four rows on these fig-
ures demonstrate comparative results from the six alternative algorithms. Hard
natural textures were chosen rather than synthesized (for example using Markov
random field models) ones because they are expected to be more difficult for the
underlying segmentation model. The third row on Fig.1 demonstrates robust
behaviour of our CAR3D-multi algorithm but also infrequent algorithm failures
producing the oversegmented thematic map for some textures. Such failures can
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mosaic

ground truth

CAR3D – multi

CAR3D

TRF / KLD

Fig. 1. Selected experimental texture mosaics, ground truth from the benchmark and
the corresponding segmentation results
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ground truth

GMRF

JSEG

Blobworld

EDISON

Fig. 2. Selected ground truth from the benchmark and the corresponding segmentation
results
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Table 1. Benchmark criteria (×100): CS = correct segmentation; OS = over-
segmentation; US = under-segmentation; ME = missed error; NE = noise error; O
= omission error; C = commission error; CA = class accuracy; CO = recall - correct
assignment; CC = precision - object accuracy; I. = type I error; II. = type II error;
EA = mean class accuracy estimate; MS = mapping score; RM = root mean square
proportion estimation error; CI = comparison index; GCE = Global Consistency Error;
LCE = Local Consistency Error;

Benchmark – Colour
TFR/KLD CAR3D-multi CAR3D GMRF JSEG Blobworld EDISON

CS 51.25 43.45 37.42 31.93 27.47 21.01 12.68
OS 5.84 53.19 59.53 53.27 38.62 7.33 86.91
US 7.16 20.28 8.86 11.24 5.04 9.30 0.00
ME 31.64 9.91 12.54 14.97 35.00 59.55 2.48
NE 31.38 10.51 13.14 16.91 35.50 61.68 4.68
O 23.60 30.24 35.19 36.49 38.19 43.96 68.45
C 22.42 16.03 11.85 12.18 13.35 31.38 0.86
CA 67.45 61.73 59.46 57.91 55.29 46.23 31.19
CO 76.40 69.76 64.81 63.51 61.81 56.04 31.55
CC 81.12 85.89 91.79 89.26 87.70 73.62 98.09
I. 23.60 30.24 35.19 36.49 38.19 43.96 68.45
II. 4.09 4.57 3.39 3.14 3.66 6.72 0.24
EA 75.80 70.86 69.60 68.41 66.74 58.37 41.29
MS 65.19 61.75 58.89 57.42 55.14 40.36 31.13
RM 6.87 4.69 4.66 4.56 4.62 7.52 3.09
CI 77.21 73.58 73.15 71.80 70.27 61.31 50.29
GCE 20.35 15.38 12.13 16.03 18.45 31.16 3.55
LCE 14.36 8.12 6.69 7.31 11.64 23.19 3.44

be reduced by a more elaborate postprocessing step. The GMRF [8], JSEG [18],
Blobworld [17] and Edison [19], algorithms on these data performed mostly worse
as can be seen in their corresponding rows on Figs.1,2 some areas are underseg-
mented while other parts of the mosaics are oversegmented. Fig.1 illustrates also
the improvement of the multi-segmenters version of the algorithm at the cost of
slight increase of computational complexity. This result can be further improved
by more sophisticated postprocessing.

4 Conclusions

We proposed novel multi-segmenter efficient and robust method for unsupervised
texture segmentation with unknown number of classes based on the underlying
CAR and GM texture models. Although the algorithm uses the random field
type model it is relatively fast because it uses efficient recursive parameter esti-
mation of the model and therefore is much faster than the usual Markov chain
Monte Carlo estimation approach. Usual handicap of segmentation methods is
their lot of application dependent parameters to be experimentally estimated.
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Our method requires only a contextual neighbourhood selection and two addi-
tional thresholds. The algorithm’s performance is demonstrated on the extensive
benchmark tests on natural texture mosaics. It performs favorably compared
with six alternative segmentation algorithms. These test results are encouraging
and we proceed with more elaborate postprocessing and some modification of
the texture representation model.
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Abstract. Classifier ensembles aim at a more accurate classification
than single classifiers. Different approaches to building classifier ensem-
bles have been proposed in the statistical pattern recognition literature.
However, in structural pattern recognition, classifier ensembles have been
rarely used. In this paper we introduce a general methodology for creat-
ing structural classifier ensembles. Our representation formalism is based
on graphs and includes strings and trees as special cases. In the proposed
approach we make use of graph embedding in real vector spaces by means
of prototype selection. Since we use randomized prototype selection, it
is possible to generate n different vector sets out of the same underly-
ing graph set. Thus, one can train an individual base classifier for each
vector set und combine the results of the classifiers in an appropriate
way. We use extended support vector machines for classification and
combine them by means of three different methods. In experiments on
semi-artificial and real data we show that it is possible to outperform
the classification accuracy obtained by single classifier systems in the
original graph domain as well as in the embedding vector spaces.

1 Introduction

The key idea in multiple classifier systems is to combine several classifiers such
that the resulting combined system achieves a higher classification accuracy than
the original classifiers individually [1]. In the case of statistical patterns, that is,
patterns represented by feature vectors, a large number of methods for the cre-
ation and combination of classifiers have been developed over the past few years.
Bagging, for instance, creates classifiers by randomly selecting the set of train-
ing examples to be used for each classifier [2]. A similar idea is that of random
feature subset selection [3]. In this method, one randomly selects the features
(dimensions) to be used for each feature vector to create a group of classifiers. A
third prominent example of classifier creation methods is boosting, where classi-
fiers are created sequentially out of a single base classifier by giving successively
higher weights to those training samples that have been misclassified [4].

Structural pattern recognition is characterizedby the use of symbolic data struc-
tures, such as strings, trees, or graphs, for pattern representation. Such represen-
tations have a number of advantages over feature vectors used in the statistical
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approach. For example, a string may consist of an arbitrary number of symbols.
This is in contrast to a feature vectorwhere one is confined to alwaysusing the same
number of features, regardless of the size or the complexity of the individual pat-
terns to be represented. Furthermore, if one uses graphs, structural relationships
between individual pattern components can be conveniently represented. There is
no direct way to represent such relations in a feature vector. In fact, there are many
applications in pattern recognition and related areas, including computational bi-
ology and chemistry, where such representations are essential [5].

One disadvantage of the structural approach is that the space of strings, trees or
graphs has very little mathematical structure. This means that elementary opera-
tions, such as computing the average, the covariance, or the product of two object
representations, do not exist. Therefore, up to a few exceptions [6,7,8], mostly clas-
sifiers of the nearest neighbor type have been applied to structural pattern repre-
sentations. Consequently, there has been little work on multiple classifier systems
based on structural pattern representations. A pioneering paper is [9] where it was
shown that by the use of statistical and structural classifiers in a multiple classifier
system the accuracy of a fingerprint recognition system can be improved. In [10] an
approach has been proposed where several graph representations of the same pat-
tern are derived and merged into a single representation format. Then the single
graph resulting from the merging operation is input to a nearest neighbor classi-
fier based on graph edit distance. In [11], random node selection on graphs has been
used in order to derive ensembles of graph-based classifiers.But still, only classifiers
of the nearest neighbor type are applied in this work.

In the current paper we propose a new method that is based on two funda-
mental ideas. The first idea is the embedding of graphs into the n-dimensional
real space by means of prototype selection and edit distance computation. Such
a procedure has been originally proposed in [12] in order to embed feature vec-
tors in a dissimilarity space. In subsequent work a similar procedure has been
used for the embedding of strings and graphs [13,14]. By means of this proce-
dure any set of graphs can be mapped to a set of feature vectors. Consequently,
any pattern recognition method that has ever been developed for feature vector
representations becomes applicable to graphs. The second fundamental idea in
this paper is based on the observation that mapping a population of graphs into
a vector space is controlled by a set of prototypes. One possible procedure to
actually get these prototypes is by random selection from the given training set
of graph. Obviously, if we repeat the process of random selection a number of
times, we can derive different graph sets that all can be used in order to train
a classifier. As a result, we get a classifier ensemble for structural input data.
The classifier we adopted for the work described in this paper is Support Vector
Machine (SVM). However, any other type of classifier can be used as well.

2 Graph Embedding in Real Vector Spaces

In [15] an approach to graph embedding in vector spaces has been introduced.
This method is based on algebraic graph theory and utilizes spectral matrix
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decomposition. Another approach for graph embedding has been proposed in
[16]. It makes use of the relationship between the Laplace-Beltrami operator
and the graph Laplacian to embed a graph onto a Riemannian manifold. Our
embedding method makes explicitly use of graph edit distance [17,18]. The key
idea of graph edit distance is to define the dissimilarity, or distance, of graphs
by the amount of distortion that is needed to transform one graph into another.
A sequence of edit operations that transforms a graph g1 into another graph g2
is called an edit path between g1 and g2. Costs are assigned to each edit path,
representing the strength of the distortions of this edit sequence. Consequently,
the edit distance of two graphs is defined as the minimum cost, taken over all
edit paths between two graphs under consideration. Typically, the edit distance
is used to classify an input graph by computing its distance to a number of
training graphs and feeding the resulting distance values into a nearest-neighbor
classifier. In our approach we make use of edit distances to construct a vecto-
rial description of a given graph. Our method was originally developed for the
problem of embedding sets of feature vectors in a dissimilarity space [12,19]. The
embedding of strings and graphs has been studied in [13,14]. Assume we have
a labeled set of training graphs, T = {g1, . . . , gt}, and a dissimilarity measure
d(gi, gj). After having selected a set P = {p1, . . . , pm} of m < t prototypes from
T , i.e. P ⊆ T , we compute the dissimilarity of a graph g ∈ T to each prototype
p ∈ P . This leads to m dissimilarities, d1 = d(g, p1), . . . , dm = d(g, pm), which
can be interpreted as an m-dimensional vector (d1, . . . , dm). In this way we can
transform any graph from the training set, as well as any other graph from a
validation or testing set, into a vector of real numbers. Note that whenever a
graph from the training set, which has been choosen as a prototype before, is
transformed into a vector x = (x1, . . . , xm) one of the vector components is zero.

Different methods for selecting the m prototypes needed for embedding have
been proposed in the literature [12,13,14]. The intention of all methods is the
same, that is, finding a selection of m prototypes that lead to a good performance

Algorithm 1. Generating n prototype sets out of one graph set.
Input: Training graphs T = {g1, . . . , gt}, number of required prototype sets n,

and dimensionality of the resulting feature vectors m
Output: Set PROTO consisting of n different prototype sets of size m each

1: initialize TABU to the empty set {}
2: initialize PROTO to the empty set {}
3: for i = {1, . . . , n} do
4: Pi = {}
5: for j = {1, . . . , m} do
6: if |TABU| == t then
7: reset TABU to the empty set {}
8: else
9: select p randomly out of T \ TABU
10: Pi = Pi ∪ {p}
11: TABU = TABU ∪ {p}
12: end if
13: end for
14: PROTO = PROTO ∪ {Pi}
15: end for
16: return PROTO
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of the resulting classifier in the vector space. Since in this paper we want to
generate not only one, but a number of vector sets out of the same graph set,
we make use of the random method described in Algorithm 1. Output of this
procedure is a set consisting of n different prototype sets of size m each. To build
such a set, the method described in Alg. 1 randomly picks n times m graphs from
the training set T . After picking a graph from T , the selected graph becomes
temporarily unavailable for further selection. Once all training graphs from T
have been selected, all training graphs become available again. This procedure
is very interesting in that it naturally lends itself to a method for the automatic
generation of classifier ensembles.

3 Extended Support Vector Machine

In Sect. 2 we have introduced a general methodology for embedding graphs in
real vector spaces. Clearly, one can build arbitrarily many different vector sets
out of the same graph set. Assume a given graph set has been embedded n times
with different prototypes. Hence, we have n different vector sets available all
representing the same graphs. Obviously, it is possible to train a classifier on
each vector set seperately. Therefore, we obtain n classifers L1, . . . , Ln whose
results can be combined to one output. In the following we assume that we deal
with a problem involving k different classes {C1, . . . , Ck}. As any classifier com-
bination method necessarily depends on the type of the n underlying classifiers,
we distinguish three types of classifiers:

– Type-1 classifiers: Output of these classifiers is exactly one class Ci.
– Type-2 classifers: Output is a ranking list, i.e. an ordered list (Ci1, . . . , Cik)

including all classes, where Ci1 is the class with the highest and Cik the class
with the lowest plausibility.

– Type-3 classifiers: Output is a plausibility value p(Ci) for each class Ci.
This plausibility value corresponds with the probability that a test element
under consideration belongs to the respective class. Thus, each classifer Lj

outputs a vector of size k, {(pj(C1), . . . , pj(Ck))}1�j�n.

Pattern classification by means of support vector machines (SVMs) has become
very popular recently [20,21]. The basic idea of SVM is to seperate classes of
patterns by hyperplanes. Intuitively, one would choose a hyperplane such that
its distance to the closest pattern of either class is maximal. Such hyperplanes
are expected to perform best on an independent test set. SVMs are able to find
such optimal hyperplanes. Originally, SVMs have been developed to handle two
class problems. To generalize SVM to problems with more than two classes one
can use the 1-to-1 method. In this approach all pairs of classes (Ci, Cj)1�i<j�k

are considered seperately, and for each pair an individual SVM is trained. This
leads to k(k − 1)/2 different SVMs. An unseen test element is assigned to the
class Ci that occurs the most frequently among the k(k − 1)/2 SVM decisions.
Output of a traditional SVM is one class and thus SVMs are typically type-1 clas-
sifiers. Since we want to use not only combiners depending on type-1 but also on
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type-2 and type-3 classifers, one has to generalize SVM appropriately. The first
generalization, which leads to a type-2 classifier, is simple and straightforward.
Instead of returning only the most frequent class Ci among the k(k − 1)/2 SVM
decisions, one can extend the i-th SVM to return an ordered list (Ci1, . . . , Cik).
Ci1 stands for the most frequent class and Cik represents the class that has won
the fewest SVM decisions. To get a type-3 classifier out of a standard SVM one
can use the information about the distance f of a test sample to the hyper-
plane of the current SVM. These distances f are used to obtain pairwise class
probabilities by feeding them into a sigmoid function:

rij = 1
1+exp(αf+β) ,

where α and β are parameters that have to be estimated. To obtain one prob-
ability p(Ci) per class out of the rij values one has to to solve an optimization
problem. The probabilistic SVM resulting from this procedure is described in
more detail in [22,23].

4 Classifier Ensembles

Let us summarize the whole procedure discussed so far. Starting point are pat-
terns given by graph-based representations. With random prototype selection
and graph edit distance computation, we embed these graphs in real vector
spaces. Since we use randomized prototype selection, this step leads to n differ-
ent vectorial descriptions of the same graph set. Based on these n vector sets
one can train n different SVMs. Hence, from an unknown test pattern, we get
n different classification results. Output of i-th SVM is either a single class Ci1
(type-1 classifier), a vector with all possible classes (Ci1, . . . , Cik) ordered by the
frequency of all SVM decisions (type-2 classifier), or a list with plausibility val-
ues (pj(C1), . . . , pj(Ck)), where pj(Ci) is derived from the distances of the test
elements to the hyperplanes of the individual SVMs (type-3 classifier). Based
on these three different output formats of the n SVMs, one can use different
combination strategies to obtain the final result. In this work we use a Voting
algorithm for type-1 SVMs, a ranking sum method for type-2 SVMs (Borda
count) and Bayes’ combination using the plausibility values obtained by type-3
SVMs.

– Voting: The class Ci1 output by classifier Li (1 � i � n) is regarded as one
vote for Ci1 ∈ {C1, . . . , Ck}. The class that receives the plurality of the votes
is choosen by the combiner. This method is often termed plurality voting [1].
Of course, one can use more restrictive voting methods with rejection (e.g.
majority voting [1]).

– Borda Count: Assume that each classifier Li outputs an ordered list in-
cluding all classes {Cj}1�j�k. To combine the results of type-2 classifiers one
can introduce rank functions ri(Cij) for each classifer Li. Function ri(Cij)
delivers the position of the class Cij in the ordered list given by classifier
Li, i.e. ri(Cij) = j. Hence, for each class {Ci}1�i�k the sum of all ranks can
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be computed, R(Ci) =
∑n

j=1 rj(Ci). Subsequently, the combiner chooses the
class {Ci}1�i�k with the minimum value of R(Ci). This combination method
is known as Borda count.

– Bayes’ Combination: In this approach the individual plausibility values
{pj(Ci)}1�j�n are combined to get one plausibility value Pi per Ci. Common
strategies to combine the plausibility values are given below [24]:

• Pi = max(p1(Ci), . . . , pn(Ci))
• Pi = min(p1(Ci), . . . , pn(Ci))
• Pi = 1

n

∑n
j=1 pj(Ci)

• Pi =
∏n

j=1 pj(Ci)
Regardless which of these formulas is used, the ensemble eventually chooses
the class Ci with the maximum value of the corresponding Pi. In the present
paper we use the last approach based on the product, which is known as
Bayes’ combination.

A crucial question is how many classifiers should be included in an ensemble.
With Alg. 1 we have the possibility to build n vector sets, and thus we have
n classifiers available. To determine the size of the final ensemble we propose a
sequential floating search selection according to Algorithm 2 [25]. First the best
individual classifier in terms of classification accuracy is added to the ensemble
in line 2. Then, the best fitting classifier, i.e. the classifier that complements
the ensemble generated so far the best, is added incrementally (line 5 and 6).
After each forward step a number of backward steps are applied as long as
the resulting subsets are better than the evaluated ones at that level (line 11
and 12). Obviously, this procedure generates n subsets of the classfier set L =
{L1, . . . , Ln} with size 1 to n. The best performing subset, i.e. the ensemble Ei

with the lowest classification error on an independent validation set is used as
the final ensemble (line 19). This strategy is also known as overproduce-and-
select [1].

5 Experimental Results

The purpose of the experiments described in this section is to compare the clas-
sification accuracy of the ensembles obtained by the proposed method with two
reference systems. The first reference system is a traditional nearest-neighbor
classifier in the graph domain, while a single SVM in the vector domain is used
as the second reference system. The first reference system, the nearest-neighbor
classifier, has proved to be suitable for the classification task in graph domains
for many different applications. Basically, this classifier assigns the label of the
nearest neighbor in a training set in terms of edit distance to an unknown test-
element. Note that as of today – up to few exceptions, e.g. [6] – there exist
no other classifiers for general graphs that can be directly applied in the graph
domain. The second reference system is obtained through picking the best indi-
vidual classfier Li out of L, i.e. the classifier that leads to the best classification
accuracy on the validation set. In each of our experiments we make use of three
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Algorithm 2. Determine the best performing classifier ensemble.
Input: A set of n classifiers L = {L1, . . . , Ln} sorted in order of their

individual classification accuracy. (L1 has the highest and Ln

the lowest classification accuracy)
Output: The best performing classifier ensemble Emax

1: Initialize n empty ensembles E = {E1, . . . , En}
2: add the best individual classifier to the ensemble: E1 = {L1}
3: intitalize k := 1
4: while k < n do
5: L+ = argmaxLi∈L\Ek

accuracy(Ek ∪ {Li})
6: add the classifier L+ to the ensemble: Ek+1 = Ek ∪ {�L+}
7: k := k + 1
8: initialize removed := false
9: repeat
10: removed := false
11: L− = argmaxLi∈Ek

accuracy(Ek \ {Li})
12: if accuracy(Ek \ {Li}) > accuracy(Ek−1) then
13: Ek−1 = Ek \ {Li}
14: k := k − 1
15: removed = true
16: end if
17: until removed = false
18: end while
19: return the best performing ensemble Emax = argmaxEi∈Eaccuracy(Ei)

disjoint graph sets, the validation set, the test set and the training set. The
validation set is used to determine optimal parameter values for multiple graph
embeddings and classification. The embedding parameters to be validated con-
sist of the number of prototypes, i.e. the dimensionality of the resulting feature
vector spaces, and the best performing ensemble, i.e. the best combination of
ensemble members in terms of classification accuracy (see Alg. 1 and Alg. 2).
Parameters for classification consist of different parameters for the SVM and
depend on the kernel function [21,26]. The parameter values and the ensemble
that result in the lowest classification error on the validation set are then applied
to the independent test set.

5.1 Letter Database

The first database used in the experiments consists of graphs representing dis-
torted letter drawings. In this experiment we consider the 15 capital letters of the
Roman alphabet that consists of straight lines only (A, E, F, ...). For each class,
a prototype line drawing is manually constructed. To obtain aribtrarily large
sample sets of drawings with arbitrarily strong distortions, distortion operators
are applied to the prototype line drawings. This results in randomly shifted,
removed, and added lines. These drawings are then converted into graphs in a
simple manner by representing lines by edges and ending points of lines by nodes.
Each node is labeled with a two-dimensional attribute giving its position. The
graph database used in our experiments consists of a training set, a validation
set, and a test set, each of size 750 for each of a total of five different distor-
tion levels. The results of the experiments on the letter database are given in
Table 1. First of all, the single SVM classifier in the vector domain improves the
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classification accuracy compared to the reference system in the graph domain on
all distortion levels. Note that two out of five improvements are statistically sig-
nificant. Similar results have been reported in [14]. Despite these good results,
the ensemble methods obtains further improvements. Especially on distortion
levels 0.3, 0.5, 0.7 and 0.9, the ensemble methods achieve better results. Note
that 8 out of 12 improvements compared to the single SVM are statistically sig-
nificant. Compared to the first reference system, there are even 11 statistically
significantly improvements. Only at distortion level 0.1 the single SVM is su-
perior to the voting and Borda count method. The optimal parameters for this
experiment, found on the validation set, are 150 prototypes per embedding and
12 ensemble members on average for voting, 13 ensemble members on average
for Borda count and an ensemble of size 8 on average for Bayes’ combiner.

Table 1. Letter Database: Classification accuracy in the graph and vector space

Ref. Systems Classifier Ensembles

Distortion k-NN (graph) single SVM Plurality Voting Borda Count Bayes’ Combiner

0.1 98.27 98.53 98.27 98.13 98.67
0.3 97.60 98.00 98.27 98.53 � 98.67 �
0.5 94.00 96.53 ◦ 97.07 ◦ 96.93 ◦ 97.07 ◦
0.7 94.27 94.53 96.00 � 95.87 � 96.00 �
0.9 90.13 93.33 ◦ 94.27 � 94.40 � 94.53 �

◦ Statistically significant improvement over the first reference system (Z-test, α = 0.05)
� Statistically significant improvement over both reference systems (Z-test, α = 0.05)

5.2 Real World Data

For a more thorough evaluation of the proposed methods we additonally use
three real world data sets. First we apply the proposed method to the problem
of image classification. Images are converted in graphs by segmenting them into
regions, eliminating regions that are irrelevant for classification, and representing
the remaining regions by nodes and the adjacency of regions by edges [27]. The
Le Saux image database consists of five classes (city, countryside, people, streets,
snowy) and is split into a training set, a validation set and a test set of size 54
each. The classification accuracies obtained by the different methods are given
in the first row of Table 2. Although the single SVM improves the accuracy
by 5.6%, this improvement is not statistically significant. The further improved
result achieved by the Borda count method – which actually corresponds to an
improvement by 7.4% – obtains no statistical significance, either. Neither are the
superior results of the reference systems compared to the other ensemble methods
statistically significant. All this is due to the small size of the Le Saux database.
We used 20 prototypes for embedding and 27 (voting), 7 (Borda count) and 31
(Bayes’ combiner) ensemble members for classification. The second real world
dataset is given by the NIST-4 fingerprint database [28]. We construct graphs
from fingerprint images by extracting characteristic regions in fingerprints and
converting the results into attributed graphs [29]. We use a validation set of size
300 and a test and training set of size 500 each. In this experiment we address
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Table 2. Fingerprint-, Image- and Molecules Database: Classification accuracy in the
graph and vector space

Ref. Systems Classifier Ensembles

Database k-NN (graph) single SVM Plurality Voting Borda Count Bayes’ Combiner

Le Saux 57.4 63.0 61.1 64.8 55.6
NIST-4 82.6 84.8 ◦ 85.2 ◦ 85.0 ◦ 84.8 ◦
Molecules 97.1 98.1 ◦ 98.3 � 98.3 � 97.7

◦ Statistically significant improvement over the first reference system (Z-test, α = 0.05)
� Statistically significant improvement over both reference systems (Z-test, α = 0.05)

the 4-class problem (arch, left-loop, right-loop, whorl). The single SVM and all
ensemble methods achieve statistically significantly better results than the first
reference system. However, there is no significant difference between the single
SVM and the proposed classifier ensembles. Nevertheless, note that the ensemble
obtains two improvements and one equal result compared to the second reference
system. On this data set a configuration with 100 prototypes for embedding and
11 (voting and Borda count) and 2 (Bayes’ combiner) ensemble members obtains
the best result on the validation set and is therefore used on the test set.

Finally, we apply the proposed method of graph embedding and subsequent
SVM classification to the problem of molecule classification. To this end, we con-
struct graphs from the AIDS Antiviral Screen Database of Active Compounds
[30]. Our molecule database consists of two classes (active, inactive), which rep-
resent molecules with activity against HIV or not. We use a validation set of size
250, a test set of size 1500 and training set of size 250. Thus, there are 2000 el-
ements totally (1600 inactive elements and 400 active elements). The molecules
are converted into graphs in a straightforward manner by representing atoms
as nodes and the covalent bonds as edges. Nodes are labeled with the corre-
sponding chemical symbol and edges by the valence of the linkage. Although
the accuracy of the reference system in the graph domain is quite high, it can
be statistically significantly improved by the single SVM. The voting and the
Borda count methods outperform the reference system in the graph domain,
too. Actually, the good result achieved in vector domain by a single SVM can
be further improved by these ensemble methods with statistical significance. We
used 150 prototypes for embedding, and 14 (voting and Borda count) and 23
(Bayes’ combiner) ensemble members for classification.

6 Conclusions

While many methods for building classifier ensembles based on feature vector
representations of the underlying data have been proposed, little work has been
done for structural representations. In this paper we propose a general approach
to graph based classifier ensembles. Our approach makes use of graph embedding
in real vector spaces. The key idea is to map graphs to the m-dimensional real
space by means of graph edit distance and prototype selection. To this end, we
discuss a randomized prototype selector with the objective of finding n different
prototype sets. With these sets, one can map a set of graphs n times to different
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vector sets, such that we obtain n different vector sets all representing the same
graph set, i.e. the same pattern elements. For each vector set an individual SVM
is trained and thus one gets n different classifiers. Hence, a number of methods
become available for combining the results of individual ensemble members. The
proposed methods were tested on a number of graph datasets with different
characteristics, comming from various application domains. From the results
of our experiments, one can conclude that the classification accuracy can be
enhanced by most ensemble methods on almost all data sets.
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Abstract. In pattern recognition many methods need numbers as inputs. Using 
nominal datasets with these methods requires to transform such data into nu-
merical. Usually, this transformation consists in encoding nominal attributes 
into a group of binary attributes (one for each possible nominal value). This ap-
proach, however, can be enhanced for certain methods (e.g., those requiring lin-
ear separable data representations). In this paper, different alternatives are 
evaluated for enhancing SVM (Support Vector Machine) accuracy with nomi-
nal data. Some of these approaches convert nominal into continuous attributes 
using distance metrics (i.e., VDM (Value Difference Metric)). Other approaches 
combine the SVM with other classifier which could work directly with nominal 
data (i.e., a Decision Tree). An experimental validation over 27 datasets shows 
that Cascading with an SVM at Level-2 and a Decision Tree at Level-1 is a very 
interesting solution in comparison with other combinations of these base classi-
fiers, and when compared to VDM. 

Keywords: Ensembles, Nominal Data, Cascade Generalization, Support Vector 
Machines, Decision Trees. 

1   Introduction 

Data can be classified into numerical and qualitative. Qualitative data can only take 
values from a finite, pre-defined set. If no order is assumed between such values, the 
data is referred to as Nominal or Categorical. 

In pattern recognition many methods require numerical inputs, so there is a mis-
match when they are applied to nominal data. One approach for adapting nominal 
data to numerical methods is to transform each nominal feature into n binary features 
(NBF [5]), where n is the number of possible values the nominal feature can take. Fol-
lowing this method, a nominal value is translated into a group of binary attributes, 
where all values are zero, except the one corresponding to the attribute indicating 
such nominal value. 

Fig. 1 shows six samples having two attributes A and B, and a class C, translated 
into binary. Both attributes can take only the following three values: (a1, a2, a3) and 
(b1, b2, b3), respectively. As shown in the example, this transformation can lead to a 
non-linear separable representation of data that is not suitable for applying a linear 
learner. 
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Two approaches will be analyzed in this paper to deal with nominal data. The first 
consists in using another numerical representation of nominal data (i.e., VDM [11], 
[3]), and the second, in constructing new input dimensions that improve classification 
task. These new input dimensions are calculated as the output from another classifier 
that can deal directly with nominal data without any conversion (i.e., a Decision 
Tree). We will test this approach by firstly using SVM as linear classifier and sec-
ondly using different ways of combining Decision Trees and SVMs. 

This paper is structured as follows. Section 2 describes VDM metric for conversion 
of nominal attributes into numerical data. Section 3 presents Cascading and describes 
how it can be used with nominal data. Section 4 extends Cascading scheme to similar 
approaches. Section 5 contains experimental validation. Section 6 discusses experi-
mental results. Finally, Section 7 concludes. 

2   VDM 

An alternative approach to binary conversion is transforming symbolic values into nu-
meric continuous values. VDM (Value Difference Metric) for measuring distances be-
tween symbolic features values is presented in [11]. Dutch [3] uses VDM to transform 
symbolic features into numeric, and then the converted data is applied to a classifier. 

In [3] VDM is tested using FSM networks and k-NN classifiers, and better or simi-
lar results are obtained with VDM conversion than with raw data. 

VDM replaces each nominal value x of an attribute A with a probability vector 
v=(v1,..., vc), where c is the number of classes and vi=P(class=ci|A=x). Thus, VDM 
can significantly augment input dimensionality in multiclass problems. Nominal to 
binary conversion also increases input dimensionality, but, in this case, the increment 
is due to the cardinality of the nominal attribute domains. 

3   Cascading for Nominal Attributes Transformation 

Cascade Generalization (also known as Cascading) [4] is an architecture for design-
ing classification algorithms. Cascading is commonly used at two levels. Level-1 is 
trained with the raw dataset, whereas Level-2 uses all the original features from the 
dataset plus the output of the Level-1 classifier as its inputs. Level-1 outputs are vec-
tors representing a conditional probability distribution (p1, ... , pc), where pi is the 
Level-1 classifier estimated probability that the input data belongs to class i, and c is 
the number of classes in the dataset. Cascading can be extended to n levels. 

Training one classifier with the output of another classifier uses to lead to overfit-
ting. However, Cascading is not degraded by overfitting because the Level-2 classifier 
also uses the original samples as input features. Moreover, the more Level-1 and 
Level-2 classifiers differ, the better Cascading works. In [4] some ideas are presented 
for selecting both classifiers, which are subsequently commented on in Section 6. 

As we have seen, nominal to binary conversion can result in a data representations 
that are not linearly separable. Cascading is presented as a solution to avoid this prob-
lem, because the input space is augmented with new features that transform the non-
linearly separable data representation into another that is likely to avoid the problem. 
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Samples 

( a1, b1, c1) ( a1, b2, c2) 
( a2, b2, c1) ( a3, b1, c2) 
( a3, b3, c1) ( a2, b3, c2) 

Samples Binarized 

( 1, 0, 0, 1, 0, 0, c1) ( 1, 0, 0, 0, 1, 0, c2) 
( 0, 1, 0, 0, 1, 0, c1) ( 0, 0, 1, 1, 0, 0, c2) 
( 0, 0, 1, 0, 0, 1, c1) ( 0, 1, 0, 0, 0, 1, c2) 

Class c1 points
x1+x4+k>0 
x2+x5+k>0 
x3+x6+k>0 

Class c2 points 
x1+x5+k<0 
x3+x4+k<0 
x2+x6+k<0 

Sum of c1 inequations 
x1+x2+x3+x4+x5+x6+2k>0 

Sum of c2 inequations 
x1+x2+x3+x4+x5+x6+2k<0 

=>incompatibility => non linear separability 

Fig. 1. Nominal data conversion into binary can lead to non linear separable regions. The figure 
shows an example where getting an hyperplane of coefficients xi and constant k, to separate 
class c1 points from class c2 points is impossible. 

In our approach, these new features are calculated by a Level-1 classifier, which 
can deal directly with nominal data (i.e., a Decision Tree). Thereby avoiding any mis-
match between the nominal data and the Level-1 classification method. 

On the other hand, Level-2 input consists of the nominal to binary converted at-
tributes plus the Level-1 classifier output. Accordingly, VDM input dimensionality 
grows as the number of nominal attributes rises, whereas the Cascading Level-1 out-
put only adds c new dimensions (where c is the number of classes). However, Level-2 
input dimensionality is also high, because of the nominal to binary conversion. 

4   Stacking and Grading for Nominal Data 

Using a Level-1 Decision Tree for constructing continuous features for another 
method at Level-2 can be achieved using other similar approaches. 

Stacked Generalization, also known as Stacking [13] also uses two levels (and can 
use more). Although levels are numbered in a different way in [13], for the sake of 
simplicity we still assume that Level-1 is used as the base classifier and Level-2 as the 
classifier that receives Level-1 output as input. Stacking uses to work with more than 
one base classifier, and those base classifiers use to be different. 

Let b the number of base classifiers and c the number of classes. n disjoint parti-
tions (or folders) from training data are used for training nxb initial base classifiers. 
So each input is used for testing exactly b times (once through the n folders corre-
sponding to the b base classifiers that we wish to obtain). Then, the Level-2 classifiers 
are trained with a new dataset of cxb dimensionality plus the class attribute. For each 
original instance such cxb features are obtained using the c probability estimations 
from the b classifiers that used the latter instance for testing. Finally, the nxb classifi-
ers are discarded, and a new set of Level-1 b base classifiers is calculated, this time 
using the whole training set. Overfitting is therefore avoided, because Level-1 and 
Level-2 classifiers are different, and because cross-validation means the Level-2 clas-
sifier training set differs from the Level-1 classifiers training set. 

Grading [10] is another two-level method that uses n partitions like Stacking. In 
[10] levels are also numbered in a different way, but again we will still keep our  
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numeration. Just as in Stacking, the set of nxb base classifiers are calculated before-
hand, but are tested this time with cross validation. The output of each base learner is 
a binary attribute that signifies whether the prediction in question is correct or not 
(graded prediction). Subsequently, b Level-2 classifiers (all of the same type) are cal-
culated, each one being trained with the original features plus the graded predictions 
obtained from one group of n base classifiers. Graded predictions are used as Level-2 
class. Finally, the nxb base classifiers are discarded, and b new base classifiers are 
calculated using the whole training set. The final prediction is made by Level-2 classi-
fiers using a voting rule. 

Stacking and Grading can be used for nominal data in the same way we have used 
Cascading (i.e., a single Decision Tree at Level-1). Note that Stacking and Grading 
require computing the discarded base classifiers, so they are computationally more 
expensive than Cascading even when only one Level-1 classifier is required. 

On the other hand, Stacking Level-2 classifiers do not use nominal to binary con-
verted data, so the Level-2 input dimension is not increased and is always equal to the 
number of classes when only one Level-1 classifier is used. However, the Grading 
Level-2 input dimension increases because its Level-2 classifier takes both the graded 
prediction and the nominal to binary converted attributes as their input values, as they 
do in Cascading. 

Obviously, Stacking and Grading were not devised for only one base classifier, but 
we have tested them in order to compare Cascading with other combinations of “one” 
SVM with “one” Decision Tree. 

5   Experimental Validation 

The validation was performed by implementing generalized Cascading and VDM al-
gorithms in Java within WEKA [12]. We tested Cascading with a Decision Tree in 
Level-1, and with an SVM in Level-2 against the following methods, using 27 data-
sets: 

1. A Decision Tree. WEKA J.48 is an implementation of the C4.5 Release 8 Quinlan 
Decision Tree [9]. This implementation was also applied in all methods that use a 
Decision Tree as their Level-1 or Level-2 method. 

2. SMO [8], an implementation of SVM provided by WEKA. Linear kernel was used. 
This implementation was also used in all methods that required an SVM as their 
Level-1 or Level-2 method. 

3. J.48 with VDM and SMO with VDM. In both cases, nominal features were re-
placed by VDM output. 

4. WEKA Stacking implementation, with ten folders using J.48 as Level-1 and SMO 
as Level-2 and vice versa. 

5. WEKA Grading implementation, with ten folders using J.48 as Level-1 and SMO 
as Level-2 and vice versa. 

6. Finally, we inverted our initial Cascading scheme, that is: SMO in Level-1 and J.48 
in Level-2. 
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A 10x10 fold cross validation was applied. The corrected resampled t-test statistic 
from [7] was used (significance level 5%) for comparing the methods. The 100 
(10x10) results for each method and dataset are considered as the input for the test. 

Table 1 shows the used datasets. Most of them are from the UCI repository [1], and 
the rest are from Statlib. All datasets selected have no numerical or ordinal attributes1. 
The only modifications made on datasets were: (i) ID attributes have been removed 
(i.e., in Molecular biology promoters and Splice datasets). (ii) In Monks-1 and Monks-
2, only training set is considered, because testing set is a subset of the training set. (iii) 
In Monks-3 and Spect, a union is made of both training and testing sets. 

Table 1. Datasets used in Experimental Validation. #E = Number of instances, #A = Number of 
attributes included class, #C = Number of classes. (U)=>From UCI, (S)=>From Statlib. 

Dataset #E #A #C  Dataset #E #A #C 
Audiology (U) 226 70 24  Postop. patient (U) 90 9 3 
Boxing1 (S) 120 4 2  Primary tumor (U) 339 18 21 
Boxing2 (S) 132 4 2  Solar flare 1 C (U) 323 11 3 
Breast cancer (U) 286 10 2  Solar flare 1 M (U) 323 11 4 
Car (U) 1728 7 4  Solar flare 1 X (U) 323 11 2 
Dmft (S) 797 5 6  Solar flare 2 C (U) 1066 11 8 
Fraud (S) 42 12 2  Solar flare 2 M (U) 1066 11 6 
Kr-vs-kp (U) 3196 37 2  Solar flare 2 X (U) 1066 11 3 
Mol Biol Prmtrs (U) 106 58 2  Soybean (U) 683 36 19 
Monks-1 (U) 432 7 2  Spect (U) 267 23 2 
Monks-2 (U) 432 7 2  Splice (U) 3190 61 3 
Monks-3 (U) 438 7 2  Tic-tac-toe (U) 958 10 2 
Mushroom (U) 8124 23 2  Vote (U) 435 17 2 
Nursery (U) 12960 9 5     

Accuracy results are shown in Tables 2 and 3. Bold font has been used to mark the 
best method for each dataset. A “●” or a “○”, respectively, indicate a significant loss 
or win with respect to the proposed Cascading configuration (Level-2=SMO, Level-
1=J.48). Hence, our method has only 5 significative losses and 55 significative wins 
when compared with all methods over the 27 datasets. In both tables the last row 
computes the significative wins, ties and losses for each method tested in comparison 
to Cascading Level-2=SMO, Level-1=J.48. 

Table 2 shows that only VDM+J.48 accuracy is comparable to the Cascading con-
figuration, but VDM+SMO only wins once. Table 3 shows Stacking and Grading ac-
curacies. Significant wins and losses against Cascading Level-2=SMO, Level-1=J.48 
are marked in the same way. Neither of the two latter methods shows any significative 
wins. 

Table 4 ranks the methods using the difference between significative wins and losses, 
comparing each method with all the others. It shows that Cascading Level-2=SMO, 

                                                           
1  Some attributes from these datasets are in fact ordinal, but for convenience we have treated 

them as nominal, just as they appear on the Weka web site. Retrieved 3 March 2007 from 
http://www.cs.waikato.ac.nz/ml/weka/. 
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Level-1=J.48 is the best option. There is an important gap between this method and 
the second method in the ranking. Regarding SMO enhancement, Cascading Level-
2=SMO, Level-1=J.48 seems to work much better than VDM+SMO. Third place for 
Cascading Level-2=J.48 Level-1=SMO, is discussed in the next section. 

Table 2. Accuracy of SVM and J.48 alone or combined using Cascading or VDM. Significative 
wins and losses with respect to the 1st method (i.e., Cascading level2=SMO, level1=J.48) are 
marked “○” and “●” respectively. The final row row details significant wins, ties and losses 
against that method. 

Dataset Cascading 
Level2=SMO 
Level1=J.48 

Cascading 
Level2=J.48 

Level1=SMO 
J.48 SMO 

SMO 
+ 

VDM 

J.48 
+ 

VDM 
Audiology 82.65 79.13 77.26● 80,77 80.15 76.73● 
Boxing1 83.67 81.58 87.00 81,58 83.25 81.08 
Boxing2 80.44 82.34 80.44 82,34 80.89 79.91 
Breast C. 74.14 69.83● 74.28 69,52● 69.05● 70.88 
Car 95.14 95.57 92.22● 93,62● 86.74● 97.30○ 
Dmft 19.81 19.17 19.60 21,14 19.71 20.06 
Fraud 73.60 76.10 63.05 76.10 75.00 86.40○ 
Kr-vs-kp 99.44 98.78● 99.44 95,79● 94.09● 99.36 
Molc. B. P. 91.42 91.01 79.04● 91,01 93.13 76.22● 
Monks-1 96.60 99.35 96.60 74,86● 75.00● 76.28● 
Monks-2 67.14 67.14 67.14 67,14 67.14 90.07○ 
Monks-3 98.63 98.63 98.63 96,12● 95.89● 98.63 
Mushroom 100.00 100.00 100.00 100.00 100.00 100.00 
Nursery 98.29 96.71● 97.18● 93,08● 91.80● 99.42○ 
Postop. P 67.22 68.67 69.78 67,33 69.89 69.33 
Primary T. 44.31 43.31 41.39 47.09 44.67 41.22 
Solar f1-C 88.95 89.30 88.95 88.49 88.74 88.15 
Solar f1-M 89.67 89.92 89.98 89.70 90.10 89.61 
Solar f1-X 97.84 97.84 97.84 97.84 97.84 97.84 
Solar f2-C  82.91 82.93 82.93 82.91 82.93 82.89 
Solar f2-M 96.62 96.62 96.62 96.62 96.62 96.62 
Solar f2-X 99.53 99.53 99.53 99.53 99.53 99.53 
Soybean  94.13 91.17● 91.78● 93,10 94.36 92.77 
Spect  81.62 83.68 81.35 83,61 79.30 81.69 
Splice  93.55 92.93 94.17 92,88 96.07○ 94.28 
Tic-tac-toe 97.35 98.33 85.28● 98,33 69.11● 94.28● 
Vote  96.69 95.88 96.57 95,77 95.75 96.57 

wins/ties/losses 0/23/4 0/21/6 0/21/6 1/19/7 4/19/4 

According to [2], a better way to rank the methods is doing a ranking for each 
dataset. A number is assigned to each method and dataset corresponding to its ranking 
position in such dataset. If there were ties, average ranks are assigned. Then, for each 
method, the average ranking is calculated over all datasets, as in first column of  
Table 5. The methods are then ordered increasingly using these values. Once again,  
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Cascading Level-2=SMO Level-1=J.48 is shown as the best method. Regarding SMO 
enhancement, once again Cascading Level-2=SMO Level-1=J.48 works much better 
than VDM+SMO. 

In both rankings we can see that the most computationally expensive options (i.e., 
Stacking and Grading) perform worse even than J.48 on their own. 

Table 3. Accuracy of Stacking and Grading. Significative wins and losses against Cascading 
level2=SMO, level1=J.48 are marked with “○” and “●” respectively. The final row details 
significant wins, ties and losses against such method. 

Dataset Stacking 
Level2=SMO 
Level1=J.48 

Stacking 
Level2=J.48 

Level1= SMO

Grading 
Level2=SMO 
Level1=J.48 

Grading 
Level2=J.48 

Level1=SMO 
Audiology 73.98● 72.70● 70.72● 77.52● 
Boxing1 86.58 81.67 85.17 81.67 
Boxing2 80.67 82.34 79.14 82.34 
Breast C. 72.02 68.83● 73.23 69.20● 
Car 92.47● 93.58● 92.06● 93.67● 
Dmft 19.81 17.72 19.46 21.14 
Fraud 66.10 70.70 64.90 76.40 
Kr-vs-kp 99.44 95.78● 99.44 96.81● 
Molc. B. P. 30.29● 91.01 72.56● 91.01 
Monks-1 96.60 75.00● 96.60 81.79● 
Monks-2 67.14 67.14 67.14 67.14 
Monks-3 98.63 96.12● 98.63 98.10 
Mushroom 100.00 100.00 100.00 100.00 
Nursery 97.18● 93.12● 97.18● 93.05● 
Postop. P 71.11 71.11 71.11 67.67 
Primary T. 40.27 36.20● 32.93● 46.29 
Solar f1-C  88.86 88.86 80.86 88.49 
Solar f1-M 90.10 90.07 90.10 89.83 
Solar f1-X 97.84 97.84 97.84 97.84 
Solar f2-C 82.93 82.86 82.93 82.91 
Solar f2-M 96.62 96.62 96.62 96.62 
Solar f2-X 99.53 99.53 99.53 99.53 
Soybean  91.77● 89.53● 90.29● 93.01 
Spect  79.42 83.45 81.58 83.83 
Splice  94.15 93.10 94.17 92.87 
Tic-tac-toe  85.77● 98.33 85.28● 98.33 
Vote  96.57 95.77 96.57 95.77 
Wins/ties/losses 0/21/6 0/18 /9 0/20/7 0/21/6 

Finally, Cascading and Stacking get better results when J.48 is used in Level-1 than 
when SMO is used in this level. That might confirm our hypothesis that it is better using 
methods that can deal directly with nominal data in Level-1. However, this idea does 
not work with Grading, perhaps because Grading is more influenced by Level-2, so it 
may perform better if the method at that level works well with nominal data. 
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6   Discussion 

Results using Cascading to improve SMO with a method that deals directly with 
nominal attributes (Level-2=SMO, Level-1=J.48) are better than using VDM 
(VDM+SMO). VDM estimates probabilities of how related are symbolic values to 
classes, as does J.48 in Level-1 does. An important difference between both methods 
is that VDM builds c new attributes for each nominal attribute (c = number of 
classes), whereas J.48 always constructs c features independently of the number of 
nominal attributes. Thus, it seems that Cascading Level-1=J.48 performs better and is 
more accurate, even though it calculates fewer attributes. 

Table 4. Difference between significatives wins and losses ranking 

Wins-Losses Wins Losses Method 
50 55 5 Casc. Level-2=SMO, Level-1=J.48 
36 56 20 VDM+J.48 
15 39 24 Casc. Level-2=J.48, Level-1=SMO 
8 33 25 J.48 
-2 30 32 Grading Level-2=J.48, Level-1=SMO 
-11 26 37 Stacking Level-2=SMO, Level-1=J.48 
-11 26 37 SMO 
-19 25 44 Grading Level-2=SMO, Level-1=J.48 
-31 24 55 VDM+SMO 
-35 15 50 Stacking Level-2 J.48, Level-1=SMO 

Table 5. Methods ranked by their average ranking over all datasets 

Average 
Ranking 

Method 

4.52 Cascading Level-2=SMO, Level-1=J.48 
4.98 Cascading Level-2=J.48, Level-1=SMO 
5.07 J.48 
5.13 Stacking Level-2=SMO, Level-1=J.48 
5.54 Grading Level-2=J.48, Level-1=SMO 
5.67 VDM+SMO 
5.67 VDM+J.48 
5.80 Grading Level-2=SMO, Level-1=J.48 
5.80 SMO 
6.48 Stacking Level-2=J.48, Level-1=SMO 

If we have two instances with the same symbolic value for some nominal feature, 
but belonging to a different class, VDM will calculate the same probability vector for 
both of them. In our opinion, however, it is preferable that different values would be 
provided to aid the classification task, for example taking into account the values of 
the rest of attributes of the instance, as Level-1 J.48 does. This issue is of especial in-
terest wherever linear separability is required. 
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Another interesting question related to our experimental results, is that they are ap-
parently contradictory to [4], in which a strategy to choose an appropriate algorithm 
for each Cascading level is provided, based on the following three points: 

• “Combine classifiers with different behavior from a Bias-Variance analysis. 
• At low level use algorithms with low variance. 
• At high level use algorithms with low bias”. 

Variance and Bias are terms from a loss function to measure an algorithm error [6]. 
Bias measures the average guess of the learning algorithm (low Bias means high ac-
curacy), whereas Variance measures how this learning can vary from one dataset to 
another. Thus an unstable algorithm such as a Neural Network or a Decision Tree has 
a high variance, whereas the variance of a more stable one, such as SVM or Boosting, 
will be lower. Increasing Variance commonly leads to decreasing Bias and vice versa 
(for example tuning some parameters of some classifiers). So, the application of Cas-
cading with the above rules is an attempt at combining learners, one with low bias and 
other with low variance, to arrive at a new one with lower values in both measures. 

Note that [4] prefers low variance at low level and low bias at high level, because 
by “selecting learners with low bias for high level, we are able to fit more complex 
decision surfaces, taking into account the 'stable' surfaces drawn by the low level 
learners”. [4] provides an experimental validation over 26 UCI datasets to show it, 
but in this experiment nominal and continuous attributes are mixed in the datasets. 

However, those 'stable surfaces' can be drawn in a inappropriate way when data is 
nominal, especially if the method at the low level can not deal directly with nominal 
data and needs some kind of conversion, as for example SVM. Moreover, SVM used 
in this paper validation is a linear classifier, and feeding it with nominal data con-
verted into binary it can degrade its performance, because the data transformed in this 
way might show a non-linearly separable representation. 

7   Conclusions 

Certain classification methods require their input data to be numerical (e.g., linear 
classifiers). This means that some kind of conversion is required when nominal data is 
applied to them. Usually, such conversion is implemented using a nominal to binary 
translation. We have illustrated that this approach can easily lead to non-linear sepa-
rability, such that an enhancement is required if we want to use nominal data with lin-
ear classifiers. 

Conversion of nominal data into continuous data can avoid this problem. We have 
tested this idea using VDM. Another solution is Cascading Level-2=Linear Classifier, 
Level-1=Decision Tree (or any other method that can deal with nominal data di-
rectly). Level-1 output is concatenated to binaries features from nominal to binary 
conversion, augmenting Level-2 input dimensionality, but working towards enhanced 
linear separability. This approach was tested for Level-2=SVM and Level-1=Decision 
Tree. We also have tested these two classifiers combined with Stacking and Grading. 
We attempted to invert the position of SVM and J.48 to confirm the importance of 
applying a classifier that can work with nominal data without conversion into Level-1. 
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The experimental validation shows that VDM for enhancing an SMO is worse than 
Cascading, perhaps because Cascading constructs the probability vector based on the 
Level-1 output, and takes account of all dataset attributes, whereas VDM only takes 
account of the attribute to be converted and the class. Cascading also shows better re-
sults than other methods, including Stacking and Grading, which require greater com-
putation time. It is worth noting that both for Cascading and for Stacking, it is better 
to put the method that does not need to convert nominal data at Level-1. However, 
experimental results show that VDM+J.48 is an interesting choice, so our next work is 
to test Cascading using VDM. 

References 

1. Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases. 
http://www.ics.uci.edu/mlearn/MLRepository.html. 

2. Demsar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Ma-
chine Learning Research, 7, (2006) 1–30. 

3. Duch W., Grudzinski K., Stawski G.: Symbolic Features in Neural Networks. Proc. 5th 
Conference on Neural Networks and Soft Computing, Zakopane, (2000) 180-185. 

4. Gama, J., Brazdil, P.: Cascade Generalization. Machine Learning, 41(3). (2000) 315-343. 
5. Grabczewski K., Jankowski, N.: Transformations of Symbolic Data for Continuous Data 

Oriented Models. In Artificial Neural Networks and Neural Information Processing, 
ICANN/ICONIP 2003. Springer, Vol. 2714 (2003) 359-366. 

6. Kohavi, R., Wolpert, D. H.: Bias Plus Variance Decomposition for Zero-One Loss Func-
tions. In L. Saitta (Ed.), Machine Learning, Procs 13th International Conference. Morgan 
Kaufmann (1996) 275-283. 

7. Nadeau C., Bengio Y.: Inference for the Generalization Error. Machine Learning, 52 
(2003) 239-281. 

8. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimiza-
tion. In: B. Schoelkopf, C. Burges, and A. Smola, (eds.). Advances in Kernel Methods. 
MIT Press. (1998). 

9. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San 
Mateo, CA. (1993). 

10. Seewald, A.K., Fuernkranz J.: An Evaluation of Grading Classifiers. In: Hoffmann F. et al. 
(eds.). Advances in Intelligent Data Analysis, 4th International Conference, IDA 2001, 
Proceedings, Springer, Berlin/Heidelberg/New York/Tokyo (2001) 115-124. 

11. Stanfill C., Waltz D.: Toward Memory-Based Reasoning. Communication of the ACM, 
29, (1986) 1213-1229. 

12. Witten H., Frank E.: Data Mining: Practical Machine Learning Tools and Techniques. 
Morgan Kaufmann, 2nd edn., (2005). http://www.cs.waikato.ac.nz/ml/weka. 

13. Wolpert, D.: Stacked Generalization. Neural networks. Vol. 5 (1992) 241-260. 



A Combination of Sample Subsets and Feature

Subsets in One-Against-Other Classifiers

Mineichi Kudo1,�, Satoshi Shirai1, and Hiroshi Tenmoto2

1 Division of Computer Science
Graduate School of Information Science and Technology

Hokkaido University, Sapporo 060-0814, Japan
mine@main.ist.hokudai.ac.jp

http://prml.main.ist.hokudai.ac.jp
2 Department of Information Engineering
Kushiro National College of Technology

Otanoshike Nishi 2-32-1, Kushiro, Hokkaido 084-0916, Japan
tenmo@kushiro-ct.ac.jp

Abstract. We investigated a “sample-feature-subset” approach which
is a kind of extension of bagging and the random subspace method. In
the procedure, we collect some subsets of training samples in each class
and then remove the redundant features from those subsets. As a result,
those subsets are represented in different feature spaces. We constructed
one-against-other classifiers as the component classifiers by feeding those
subsets to a base classifier and then combined them in majority voting.
Some experimental results showed that this approach outperformed the
random subspace method.

1 Introduction

Recently, classifier fusion is gathering much attention in pattern recognition. The
main stream is divided into two sub-streams: one is bagging [1] or boosting [2]
that utilizes several subsets of training samples, and the other is the random
subspace method [3] that utilizes several subsets of features (spaces), For classi-
fier fusion/combination, several important facts have been already obtained in
references [4,5,6] such as 1) negatively correlated (component) classifiers much
contribute to the improvement of the combined classifier, 2) even positively cor-
related (component) classifiers work in some cases, 3) randomly selected feature
subsets contribute in other cases, 4) the effectiveness of such a random subspace
method depends on to what degree redundant features exist, and, as a result, 5)
the effectiveness of bagging, boosting and the random subspace method depend
on problems and the ways of combination as well as the base classifiers.

In this paper, we extend these frameworks to a general one in which some
subsets of the training samples are collected in different feature spaces, that
is, a “sample-feature-subset” approach. We investigate the possibility of such
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an approach in some experiments. In this approach, we select some subsets of
the training sample set in one class at a time. Then, for each subset of a class,
we select a feature subset, taking into account all the samples belonging to the
other classes. These subsets can overlap each other and feature subset selection
is optional. In this sense, it can be seen as a variant of bagging where random
sampling with replacement is made (although duplication of a sample is out of
consideration). While, it is also an extension of the random subspace method
where random selection of features is made, while features are selected system-
atically in the proposed method.

2 Majority Vote in One-Against-Other Classifiers

First, let us consider the error rate when we make ready C one-against-other
classifiers Φi (i = 1, 2, . . . , C) for C classes of {ω1, ω2, . . . , ωC}. We assume that
each of Φi(x) outputs 1 for showing that x is assigned to class ωi and −1 for
not-assigned to class ωi. Let us denote the error rate of Φi by

ei = Prob(x ∈ ωi → ωj(j �= i)) + Prob(x ∈ ωj(j �= i) → ωi))
= en

i + ep
i ,

where en
i is called the “negative error” and ep

i is called the “positive error.”
With these C classifiers, we can construct a total classifier Φ in several ways.

The simplest one is as follows:

Φ(x) = arg max
i

Φi(x).

In this Φ, a sample x is assigned to class ωi if Φi(x) = 1 for only one i and is
rejected otherwise. In this paper, we mainly consider another form:

Φ(x) = arg max
i

⎛

⎝Φi(x) − 1
C − 1

∑

j �=i

Φj(x)

⎞

⎠ .

This is a majority vote. The first term means a vote to class ωi from class ωi

and the second term means votes to class ωi from the other classes. It is meant
that a negative vote from class ωj(j �= i) is distributed to the other C −1 classes
evenly. This Φ is equivalent to the simplest one in assignment because

Φi(x) − 1
C − 1

∑

j �=i

Φj(x) ≥ Φk(x) − 1
C − 1

∑

j �=k

Φj(x)

⇐⇒ C

C − 1
(Φi(x) − Φk(x)) ≥ 0 ⇐⇒ Φi(x) − Φk(x) ≥ 0. (1)

The difference is that the latter Φ can distinguish two kinds of rejection in value:
(1) “no-vote” rejection with all (-1)’s or “totally ambiguous vote” rejection with
all 1’s (maxi Φi(x) = 0) and (2) “ambiguous vote” rejection, that is, multiple
assignment to more than one class but not all classes (0 < maxi Φi(x) < 2).
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The error rate e of Φ is upper-bounded by

e ≤
C∑

i=i

ei.

This is because that an error occurs only when at least one component classi-
fier Φi mistakes. Therefore, designing better one-against-other classifiers derives
designing of a better total classifier.

Let us examine this error in detail. Here, by Ri let us denote the class region
determined by Φi such that Ri = {x | Φi(x) = 1}. Then, the universe U is
partitioned into Ri and Ri, where the over-line shows the complementary set.
Here, the error e of the total classifier is written as

e =
∑

i

∑

j �=i

Prob(x ∈ ωi → ωj).

This equation can be expressed in two ways:

e =
∑

i

Prob(x ∈ ωi → ωj(j �= i)), (2)

and
e =

∑

i

Prob(x ∈ ωj(j �= i) → ωi). (3)

These two different expressions mean, respectively,

e =
∑

i

en
i , (4)

and
e =

∑

i

ep
i . (5)

However, these equations do not always hold. Eqs. (2) and (4) hold if the negative
class (mis)assignment is necessarily possible and Eqs. (3) and (5) hold if the
positive class (mis)assignment is necessarily possible.

In general, we can show that

e =
∑

i

en
i + Prob(x ∈

⋂

i

Ri),

=
∑

i

ep
i + Prob(x ∈

⋃

i

Ri).

As special cases, we can see that

Case I: If
⋂

i Ri = ∅, then e =
∑

i en
i . This is the case that every class regions

do not share a common part of the universe, in other words, no totally
ambiguous region exists. In the word of classifiers, the condition holds
when Φi(x) = 1 (i = 1, . . . , C) never happens for every x.
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Fig. 1. Several subsets of an information table

Case II: If
⋃

i Ri = ∅, that is,
⋃

i Ri = U , then e =
∑

i ep
i . This is the case

that no-vote reject region exists. The condition holds when Φi(x) =
−1 (i = 1, . . . , C) never happens for every x.

Case III: If both Case I and Case II hold at the same time, then e =
∑

i en
i =∑

i ep
i . This is the most desirable case. The condition holds when

above two extreme votes never happens for every x.

Among these cases, Case I is most probable. Then, for large C(> 2), a guideline
to improve the total classifier is to suppress the negative error of each component
classifier, that is, to widen the class region as long as the totally ambiguous region⋂

i Ri is not produced. If we remove some redundant features, a region secured
in the original feature space is widen. Thus, such a feature selection depending
on each class region would be effective.

3 Subsets Both in Sample Set and Feature Set

In general, multiple classifiers can be generated from different subsets of training
samples such as being seen in bagging (boosting is its weighted version), or from
different subsets of features such as being seen in the random subspace method.
We can consider both at once (Fig. 1). Here, a subset Ui = Ti × Fi of the
product space T ×F , where T is the training sample (index) space and F is the
feature (index) space, gives one piece of information for designing a (component)
classifier φi. Here, we implicitly assume a “measurement” function x behind such
as

x : T × F → D

(i, j) 
→ xij ∈ Dj,

where xij is the value of ith training sample in jth measurement and the range D
can change according to index j. It should be noted that some subsets can overlap
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in training sample subsets or feature subsets or both. More general formulation
is possible by thinking different probabilities on T × F , but we limit ourselves
to this “hard” layout in this paper.

Then we can have any number of classifiers we want. The problem is how to
choose such subsets. What we know for classifier combination is that it is better
to make φi’s be independent in the output or more hopefully be negatively cor-
related. However, in general, it is difficult to achieve this. Indeed, classifiers with
higher correct recognition rates are naturally more (positively) correlated. This
is the reason why combination of classifiers is most effective for weak learners
(classifiers with a little better performance than the chance level). Nevertheless,
it would be promising to make the component classifiers approach to be inde-
pendent by adopting both independent training sample subsets and independent
feature subsets.

In this paper, therefore, we choose some subsets Ui from the viewpoints: 1)
feature selection is effective for situations in which the dimensionality p is rel-
atively large to the number n of training samples and 2) effective features can
depend on the local area, that is, different feature subsets can be most effective
for different parts of training samples.

4 Subset Selection by Subclass Method

For choosing several subsets over training samples and features, we use the sub-
class method [7]. When the subclass method is applied to the training samples
with correct class labels, some hyper-rectangle regions are found in each class.
The characteristics is told in two-fold: 1) each hyper-rectangle region of a class
does not include any negative sample belonging to the other classes (exclusive-
ness), and 2) such hyper-rectangle regions are maximal among hyper-rectangle
regions keeping exclusiveness (maximalness). Precisely speaking, each hyper-
rectangle is uniquely determined by a subset of positive samples and the hyper-
rectangles are chosen so as to exclude the negative samples and to occupy as
large space as possible. Some hyper-rectangles are gathered so as to cover all the
positive training samples.

In this paper, we pay attention to a smaller feature subset provided that
each of the hyper-rectangles keeps exclusive in the narrowed feature space. We
remove redundant features from each hyper-rectangle as long as it still excludes
the negative samples. This is carried out in a greedy manner. Such an operation
corresponds to removing the both edges in the corresponding axis of the hyper-
rectangle in order. Such a feature selection technique is already proposed [8].

In summary, first we find several subsets Ti (hyper-rectangles in the full feature
set F ) of training samples in a certain class by the subclass method, and then
choose only necessary feature subset Fi by removing redundant features. As a
result, we have Ui = Ti × Fi (a hyper-rectangle in Fi). An example is shown
in Fig. 2. In Fig. 2, a family of subclasses (hyper-rectangles) are chosen first in
each class, then the redundant features are removed from all the subclasses.
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(a) (b)

Fig. 2. Selected subsets by subclass method: (a) original rectangles and (b) feature-
selected rectangles

In Fig. 2, we see that some rectangles infinitely expand their edges to either
direction (axis).

Through this procedure, we have a set of subsets Ui = Ti × Fi having the
following properties: 1) every training sample is included in at least one subset
(one hyper-rectangle), 2) each hyper-rectangle can be regarded as a classifier
that distinguishes a part of the positive samples from all the negative samples,
and 3) different subsets are represented in different feature spaces. Let us denote
Ui ∈ ωk to make clear to which class Ui belongs. With the training sample set
Sk of class ωk, it is noted that Ti ⊆ Sk and Fi ⊆ F for Ui(= Ti × Fi) ∈ ωk.

Now we can construct φi from Ui ∈ ωk. By φk
j , let us denote the jth classifier

of class ωk. For designing φk
j , we use a pair of positive sample set P k

j = Ti(⊆ Sk)
for some i and and the negative sample set Nk

j =
⋃

l �=k Sl both in subspace
F k

j = Fi. Let classifiers φk
j be consistent with (P k

j , Nk
j ) in space F k

j for every j

and k (partly consistent with (Sk, Nk
j )). Then, if we use Φ such as

Φ(x) = arg max
k

(
max

j
φk

j (x)
)

,

then the total classifier Φ is consistent with a whole training sample set T =⋃
i Si. The set of the hyper-rectangles found by the subclass method may be

used as φk
j in this way.

As a result, we have the same number of one-against-other classifiers as the
number of the subsets obtained.
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5 Combination of Subsets

We have the component classifiers such as

φ1
1, φ

1
2, . . . , φ

1
n1

, φ2
1, . . . , φ

2
n2

, . . . , φC
1 , . . . , φC

nC
.

Then, the total classifier in a majority vote becomes

Φ(x) = argmax
k

⎛

⎝
nk∑

i=1

φk
i (x) − 1

C − 1

∑

l �=k

nl∑

j=1

φl
j(x)

⎞

⎠ . (6)

This means that Φk =
∑nk

i=1 φk
i (x). It should be noted that this Φ is not always

consistent with the training samples even if all the φk
i ’s are partly consistent.

This is because, when we compare the votes to two classes ωi and ωk, with (1),
we have

Φi(x) > Φk(x) ⇐⇒
ni∑

j=1

φi
j(x) >

nk∑

j=1

φk
j (x).

Thus, for x ∈ ωi, if (ni + nk)/2 (> ni/2) component classifiers φi
j(x) output -1,

then Φi(x) < Φk(x) can happen. It does not happen if over half of component
classifiers φi

j(x) of ωi always output 1, then Φ is consistent with all the training
samples. To make Φ be consistent, we may replace Φk with Φk = 1

nk

∑nk

i=1 φk
i (x).

6 Experiments

6.1 Conditions

We found Ti’s by the randomized subclass method [9]. Then, some features
were removed to obtain Fi. Last, we constructed φi’s with a base classifier on
the basis of (P k

j , Nk
j ) for Ti ∈ ωk. In the following experiments, we chose the

nearest neighbor classifier as the base classifier. It is noted that the nearest
neighbor classifier is consistent with the given training samples. For comparison,
the hyper-rectangles are also directly chosen as the component classifiers φi.

Used datasets are three of one artificial and two real-world ones taken from
UCI machine learning database [10]. The first dataset is chosen to show the ef-
fectiveness of using different feature subsets depending on some parts of samples.
The remaining two datasets are chosen because the random subspace method
succeeded to improve the classification performance for these datasets.

In the random subspace method, the features were randomly selected. The
number of selected features was about a half �p/2 of the original number p
of features. The number m of component classifiers were chosen to m = 100,
according to reference [3]. To verify another possibility, we also used m = 1, 000.

For calculation of the classification rate, the real-world datasets were randomly
split into two disjoint halves: one for training and another for testing, and vice
versa. In reporting, the two results are distinguished as “1st” and “2nd.”
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Fig. 3. Torus dataset in the first three dimensions.

Theclassificationmethods are six in total:1-NN (thenearestneighbormethod),
Subclasswithout feature selection (thehyper-rectangle rule in the original fea-
ture space),Subclasswith feature selection (the hyper-rectangle rule in the se-
lected feature space), RSubspace (the random subspace method) with randomly
chosen 100 feature subsets, RSubspace with randomly chosen 1,000 feature
subsets, and SFsubset (the proposed method with the selected sample-feature
subsets).

The used datasets are follows:

Torus data (artificial). First, to confirm the effectiveness of feature selection,
we used Torus data. Two rings belonging to distinct classes are orthogonally
placed in an untouched manner in the first three dimensions (Fig. 3). That is,
locally only one or two features are enough for classifying these classes. More
seven features are introduced to make the problem be more practical. They obey
all the standard Gaussian in common to two classes. The number n of training
samples was changed as n = 200, 1000, 2000 (halves for two classes).
Vehicle data (real-world). The task is to classify a given silhouette to one
of four types of vehicle, using 18 features extracted from the silhouette. The
number of training samples is 946.
Letter data (real-world). The task is to identify each of black-and-white
rectangular pixel displays as one of the 26 capital letters in the English alphabet.
The features are 16 primitive numerical attributes including statistical moments
and edge counts. The number of training samples is 20,000 in total.

6.2 Results

The results are summarized in Table 1. We notice several interesting facts:

1. Effectiveness of feature selection: Compare two groups of {1-NN, Sub-
class without feature selection} without feature selection and {Subclass
with feature selection, RSubspace, SFsubset} with feature selection. In
Torus, the advantage of selecting features is clearwhen it is contaminatedwith 7
noise features. In the uncontaminated (pure) case, such advantage is not seen.
This means that hyper-rectangles were not appropriate for capturing such a
ring structure, so that appropriate subsetswere not chosen.Nevertheless,when
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the size of training samples is large (n = 2, 000), the proposed SFsubset suc-
ceeds to improve1-NN (from99.03%to 99.35%).While,RSubspace is rather
inferior to 1-NN in the uncontaminated case. In Vehicle, Subclass without
feature selection is the best. This implies that such hyper-rectangles fit the
true class region, but failed to choose good feature subsets.Thismaybebecause
almost all features contribute to classification evenly. In Letter, both RSub-
space andSFsubsetwere effective. In this dataset, we can imagine that differ-
ent groups of “letters” are distinguished from the remaining groups in different
features.

2. Effectiveness of sample selection: Compare two groups of {1-NN,
RSubspace} without sample selection and {Subclass, SFsubset} with
sample selection. In Vehicle, the advantage of sample subset selection is re-
markable.

3. Effectiveness of sample-feature selection: Compare RSubspace and
SFsubset. Except for one case, SFsubset is superior to RSubspace. This
implies that sophisticated selection of feature subsets can be better than
random selection of feature subsets. In Torus in the contaminated smallest-
sample case (n = 200), RSubspace is better. This implies that SFsub-
set depends on the subsets chosen by the hyper-rectangles but the hyper-
rectangles were not appropriate for this case.

Table 1. Experimental results

Method and Recognition rate (%)
Name 1-NNSubclass SubclassRSubspaceRSubspaceSFsubset
Feature Selection No No Auto A half A half Auto
Sample Selection No Auto Auto No No Auto
Base Classifier Itself Hyp.-rect.Hyp.-rect. 1-NN 1-NN 1-NN
# Component Clfs. 1 Auto Auto 100 1000 Auto
Combination No Eq. (6) Eq. (6) Eq. (6) Eq. (6) Eq. (6)

(pure, p=3)
Torus (n=200) 97.11 96.65 95.25 93.69 93.69 96.86
Torus (n=1000) 98.51 98.62 98.54 94.79 94.79 98.26
Torus (n=2000) 99.03 98.92 98.90 95.19 95.19 99.35
(contaminated, p=10)
Torus (n=200) 84.11 90.85 91.24 90.98 92.78 87.82
Torus (n=1000) 89.98 97.57 97.76 93.51 95.33 97.27
Torus (n=2000) 91.04 98.05 98.25 94.54 96.07 98.59
(p=18, n=423)
Vehicle(1st) 51.30 62.65 61.70 54.85 55.79 56.26
Vehicle(2nd) 47.99 56.26 55.56 52.01 53.66 53.66

(p=16,n=10,000)
Letter (1st) 94.17 89.29 89.28 94.57 94.59 94.72
Letter (2nd) 94.07 89.74 89.21 94.18 94.14 94.62
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7 Conclusion

We investigated the effectiveness of a “sample-feature-subset” approach in which
some parts of information are taken from a given information table. Each subset
is consisting of a subset of the training samples represented in a subset of features.
It differs from the random subspace method in the choice of feature subsets; the
random subspace method chooses them randomly while the proposed approach
chooses them depending on the pre-chosen subsets of samples. It also differs from
bagging or boosting in the choice of sample subsets; the first two choose the
subsets of training samples independently of classes while our approach chooses
some subsets class by class, so that one subset produces a one-against-other
classifier of a certain class.

Through experiments, we confirmed that such a “sample-feature-subset”
framework can be better than the random subspace method. We have not yet
compared it with bagging and boosting. It would be necessary in the future in
order to obtain deeper understanding about the best way to choose such sub-
sets. In this paper, we used the subclass method for choosing the subsets of
training samples and constructed one-against-other classifiers so as to be partly
consistent with the training samples. It is possible to use other ways such as
co-clustering in which the training samples are clustered one class at a time.
This work is in the beginning stage and the results showed only the possibility
of such an approach. It is worth discussing about other ways to choose such
subsets and the other ways to generate the component classifiers with different
base classifiers.
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Abstract. We report on our recent progress in developing an ensemble of clas-
sifiers based algorithm for addressing the missing feature problem. Inspired in 
part by the random subspace method, and in part by an AdaBoost type distribu-
tion update rule for creating a sequence of classifiers, the proposed algorithm 
generates an ensemble of classifiers, each trained on a different subset of the 
available features. Then, an instance with missing features is classified using 
only those classifiers whose training dataset did not include the currently miss-
ing features. Within this framework, we experiment with several bootstrap 
sampling strategies each using a slightly different distribution update rule. We 
also analyze the effect of the algorithm’s primary free parameter (the number of 
features used to train each classifier) on its performance. We show that the al-
gorithm is able to accommodate data with up to 30% missing features, with lit-
tle or no significant performance drop.  

1   Introduction 

One of the most frustrating problems encountered in field implementation of an 
automated decision making system is to get caught unprepared for partial loss of data. 
Unless it was designed to be robust against such a potential loss, there is nothing a 
classifier can do when faced with processing a data instance with missing compo-
nents. The partial loss of field data need not even be catastrophic: e.g. if a single sen-
sor malfunctions (loss of one feature) during data collection, the entire data cannot be 
processed by such classifiers. This problem is hardly rare: bad sensors, failed pixels, 
malfunctioning equipment, signal saturation, data corruption, etc. are all familiar sce-
narios in practical applications.  

 The missing feature problem has been well researched. The oldest, and perhaps 
most commonly used solution is to substitute a meaningful estimate of the missing 
value, such as the k-nearest neighbors of the missing value [1]. However, such data 
imputation techniques require that the training data be sufficiently dense for the esti-
mate to be a faithful representative of the missing value. Such a requirement, how-
ever, is rarely met in practice, even for datasets with modest number of features. 
Other approaches with sound theoretical underpinnings are also available that provide 
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precise performance guarantees under certain conditions. These are typically  
probabilistic approaches, based on density estimation. Therefore, they require that 
certain a priori knowledge regarding the underlying data distributions be known or es-
timated, which also requires a sufficiently dense database. Such knowledge is often 
vague or non-existent, and inaccurate choices may lead to inferior performance, par-
ticularly for large datasets. Classical Bayesian estimation and expectation maximiza-
tion based techniques fall into this category [2].  

Other approaches use neuro-fuzzy algorithms, which provide, perhaps, a more 
natural setting for dealing with the missing data. In such approaches, unknown values 
of the data are either estimated, or a classification is made using the existing features, 
by calculating the fuzzy membership of the data point to its nearest neighbors, clus-
ters, or hyperboxes. The parameters of the clusters and hyperboxes are determined 
from the existing data points. Algorithms based on general fuzzy min-max neural 
networks [3], or ARTMAP and fuzzy c-means clustering [4] are examples of this  
approach. 

More recently, ensemble based approaches have been proposed to address the 
missing feature problem. For example, Melville et al. show that the algorithm DECO-
RATE, which generates artificial data (with no missing values) from existing data 
(with missing values) is quite robust to missing data [5]. On the other hand, Juszczak 
and Duin [6] propose combining an ensemble of one-class classifiers trained on a sin-
gle feature. This approach is capable of handling any combination of missing features, 
with the fewest number of classifiers possible. The approach can be very effective so 
long as single features can reasonably estimate the underlying decision boundaries, 
which is not always plausible.  

We have previously proposed an alternative approach, Learn++.MF, that trains 
multi-class classifiers using a random subset of the feature space, where the number 
of features is a free parameter of the algorithm. Any instance missing a feature is then 
classified as the majority vote of those classifiers whose training data did not include 
the missing features. This approach essentially combines the random feature selection 
in random subspace methods [7], with the distribution update rule of AdaBoost in-
spired Learn++ [8]. The original algorithm built on this premise was crude, but could 
handle up to 10% missing data using a specific feature distribution update rule [9]. In 
this contribution, we formalize the algorithm, and extend our work by i) analyzing the 
effect of different update rules; ii) analyzing the effect of the algorithm’s primary free 
parameter, the number of features used in each subset; and iii) evaluating the algo-
rithm with up to 30% missing features. These analyses provide us with informative 
clues on how such parameters should be selected, and under which conditions the al-
gorithm can be expected to perform well. 

2   Learn++.MF 

Ensemble of classifies hints at a trivially intuitive approach for the missing feature 
problem that can guarantee a reasonable performance for any number and any combi-
nation of missing features: simply create one (or more) classifier(s) with every possi-
ble combination of the available features, and use those classifiers whose training  
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features did not include the missing ones. This exhaustive approach is of course be-
comes practically impossible even for a modest number of features, as the number of  
classifiers grows exponentially with the number of features. However, the probability 
of a particular feature combination being missing also diminishes exponentially as the 
number of features increase. Therefore, trying to account for every possible combina-
tion is hardly an effective use of computing resources. On the other hand, Juszczak 
and Duin’s approach, training one class-classifiers trained with each feature sepa-
rately, sits on the other end of the spectrum, and offers the fewest number of classifi-
ers that can handle any feature combination (at a cost of potential performance drop 
due to single feature training). 

 Learn++.MF, recognizing the inefficiency of trying to accommodate every feature 
combination as well as the difficulty of obtaining a good classifier using a single fea-
ture, offers a compromise: it trains an ensemble of classifiers with a random subset of 
the features, where the number of features is a free parameter of the algorithm. It also 
uses an iterative distribution update rule so that feature combinations not previously 
accounted for are more likely to be selected next (see, however, the effect of using 
different update rules in Section 3).Doing so, Learn++.MF can achieve classification 
performances with little or no loss (compared to a fully intact data) even when large 
portions of data are missing.  

 The pseudocode of the algorithm is given in Figure 1. The inputs to the algorithm 
are the training data, a supervised classification algorithm, a sentinel value sen to rep-
resent missing values, the number of classifiers to be generated, T , and the number of 
features (nof) to be used to train each classifier. The algorithm maintains a distribu-
tion D over the features to determine which features should be more likely to be se-
lected next. This distribution is initialized to be uniform so that each feature has equal 
probability of being selected to train the first classifier. During the tth iteration, the al-
gorithm draws a random bootstrap sample of nof features according to then current 
feature distribution Dt. The indices of these features are then placed in a list, called 
Fselection(t). This list allows the algorithm to keep track of which features have been 
used for each classifier, so that appropriate classifiers can be called during testing de-
pending on the then available set of features. Classifier Ct, is trained using the features 
in Fselection(t).  

The distribution Dt is then updated by reducing the weights of those features that 
have just been used. This gives other features a better chance to be selected into the 
next feature subset. T such classifiers are iteratively generated, each using a different 
subset of nof features. In this current version, we do not check the performance of 
each classifier, since the distribution update rule is applied to features, and not to ac-
tual training data instances (as in AdaBoost). Interleaving two distribution update 
rules, one on features and one on training data, is however being considered as future 
work. 

During testing, a given instance zi is first checked for its missing features M(i), 
which were previously flagged with a sentinel. The algorithm then cross-checks the 
features in M(i) against those available in Fselection(t) for each classifier Ct. Classifiers 
whose feature lists do not include any of those in M(i) are then combined using  
majority voting. 
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Inputs: 
Sentinel value sen.      BaseClassifier and the number of classifiers, T.
Training data set S={(xi, yi) | i=1,…,N} with N instances with f features, each. 
Number of features used to train each classifier, nof.

Initialize 1( ) 1/ , , 1, ,D j f j j f (1)

Do for t = 1, 2,..., T:
1. Normalize Dt so that it is a proper distribution.
2. Draw a bootstrap sample of nof features from Dt to be placed in Fselection(t)
3. Call BaseClassifier to generate classifier Ct using features in Fselection(t)
4. Update the distribution Dt  using a suitable update rule 

Validation / Testing
Given test data Z={zi}, i=1,…,M     

  Do for i = 1,2,...,M:
arg ( )ii j senzM , fjj ,,1, . (2) 

: ( )

arg max
t i

i selection
y Y t C y

i t
z

z M FE  (3) 

 

Fig. 1. Pseudocode of the Learn++.MF algorithm 

The original distribution update rule we had previously used simply reduced the 
distribuion weight of each feature by a factor f , where f is the total number of 
features. While such a distribution update rule certainly makes intuitive sense, it is 
possible to devise other rules as well. For example, is 1/f the correct scaling factor 
to reduce the feature weights? How about 1/nof, since the actual number of features 
used by each classifier is nof? Or f/nof, as the ratio of the two? Or does it really 
matter to have a database specific update rule? How about using a strict bootstrap 
sampling from a uniform distribution? The different distribution update rules can all 
be represented as in Equation (4), where the parameter β is one of 1/f, 1/nof or  
n/nof. 

( )( ) ( )( )1 *t selection t selectionD F t D F tβ+ =  (4)

 The algorithm was implemented with the above mentioned update rules, which was 
also compared to uniform sampling. Furthermore, note that the primary free 
parameter of Learn++.MF is the number of features nof used to train each classifier 
(and to a lesser extend, the number of classifiers T to be generated). In order to 
determine the effect of nof on algorithm behavior, several values of nof were also 
evaluated for each database tested. 

3   Experiemental Results  

We present the implementation results on three datasets: Wisconsin Breast Cancer  
and Wine databases from UCI [10], and the real-world volatile organic compound  
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(VOC) identification database. The wine database was selected for its similarity to the 
VOC database in terms of its feature size. This allows to check for repeatability on 
datasets of similar size. Missing features were simulated by removing a certain 
percetange (% missing features – PMF) of values from the entire dataset and replace 
them with a sentinel. PMF was varied from 0 to 30%. All results are averages of 10 
indepent trials, each randomly splitting the training and test data into two equal 
partitions.  

Table 1 shows the total number of features f, the different values of nof, and the to-
tal number of classifiers generated (T) for each database. Note that for each chosen 
value of nof, the ensemble can accommodate up to f-nof features missing at a time. 
Hence a classifier trained with, say 3 of 12 features, can accommodate any and all of 
1 through 9-way combination of the remaining 9 features being missing. This is how 
Learn++.MF avoids using prohibitively large number of classifiers.  

Table 1.  Number of features (nof) and classifiers (T) used for each dataset 

Dataset f nof1 nof2 nof3 nof4 Nof4 T 
VOC  12 3 4 5 6 --- 200 
WBC  30 10 12 14 16 --- 1000 
WINE 13 3 4 5 6 7 200 

3.1   VOC Database 

The VOC database consists of the responses of 12 quartz crystal microbalances type 
chemical sensors to 12 volatile organic compounds (VOC), including toluene, xylene, 
hexane, octane, methanol, tricholoroethylene (TCE), among others. Figure 2 illus-
trates the performance of the algorithm in four rows, one for each distribution update 
rule of nof/f, 1/nof, 1/f, and uniform selection respectively. For each update rule, we 
provide two plots, classifier performance with respect to percent missing features 
(PMF), and the percent instances processed (PIP – explained below) with respect to 
PMF. Performances for different values of nof are indicated using different line styles 
on each plot.  

From the ensemble performance plots (on the left of Fig. 2), we make the following 
observations. First and foremost, as expected, there is a general decline in the ensem-
ble classification performance as the percentage of missing features increase. How-
ever, this decline is very mild, the worst case being from 96% to 93%. In most cases, 
the differences are not even statistically significant. Hence, the algorithm can easily 
handle as much as 30% (perhaps even higher, but not tested yet) of missing data with 
little or no performance drop. Second, algorithm seems to do better with the first two 
distribution update rules, however, the differences were only significant for certain 
nof values. 

The performance plots tell only half of the story, however. We also need to con-
sider the amount of data that can be processed by the algorithm, on which nof has a  
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Fig. 2. Learn++.MF performance on VOC database 

dramatic impact, which is even more pronounced on higher dimensional data. As pre-
viously mentioned, Learn++.MF does not guarantee that all possible combinations of 
features can be accommodated as missing data. Since features are selected at random, 
there may be certain feature combinations not represented by any of the classifiers 
trained in the ensemble. Instances with those exact feature combinations cannot be 
processed by any of the classifiers in the ensemble, and hence cannot be processed. 
Learn++.MF attempts to minimize the number of such instances. The plots on the right 
side of Figure 2 provide a graphical representation of this issue, as it plots percentage 
of instances that can be processed, for different PMF values. Note that two sets of 
plots are given: the group of curves showing an exponentially decaying characteristic 
on the lower side of the plot represent the average PIP if we were to use a single clas-
sifier, averaged over 10 trials. The group of curves on the upper side of the plot show 
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the PIP when the Learn++.MF ensemble is used. Notice that a substantially larger per-
centage of instances can be processed by the ensemble.  

More interesting to notice, however, is the impact of the nof parameter on PIP. The 
figure indicates that the smaller the nof, the larger the PIP. In fact, for nof=3 and 
nof=4, PIP was 100% even for with 30% of the data missing. For nof=6, PIP was 
100% for up to 20% missing data, but dropped to 85% - 87% for 30% missing data. 
This observation makes sense: when a large number of features are used for training, 
then so many features are required at the time of testing, and hence fewer missing fea-
tures can be accommodated.  

3.2   Wine Database 

The wine database consists of 13 features of various chemical analysis results to pre-
dict three types of wine origins. This database was used due to its similarity in size to 
the VOC database (both in terms of number of features, and total data size), and 
same number of classifiers (200) was generated. This allows us to test for the repeat-
ability of the algorithm’s performance behaviors and trends over different datasets of 
similar size. The results, formatted similar to that of VOC dataset are illustrated in 
Figure 3. 

Tested using five different values of nof, the algorithm shows very similar per-
formance and behavior trends on this database, as it did for the VOC database. Spe-
cifically, we note that the ensemble performance is far more resistant to missing fea-
tures when fewer nof values are used. For example, when only 3 or 4 features are 
used, there is no statistically significant performance drop even when 30% of data are 
missing, particularly for the first two distribution update rules of f/nof and 1/nof. 
There is some performance drop when larger values of nof are used, however, these 
are very modest. We also see similar behavior with the percentage of data that can be 
processed. The ensemble can process 100% of the data for nof=3 and nof=4, even 
when 30% of the data are missing. For nof=7, PIP drops to about 80% when 30% of 
the data are missing. In all cases, however, the algorithm – on average – is capable of 
processing substantially larger portion of the data than a single classifier can process 
alone. Finally, we do observe that the algorithm performs marginally better using the 
f/nof and 1/nof update rules than the original 1/f and the uniform distribution; how-
ever, the differences are rarely statistically significant.  

3.3   WBC Database 

The WBC database includes 30 features used as a diagnostic biomarker for distin-
guishing between benign and malignant tumors. Many of the trends observed for the 
VOC and Wine data can also be seen on this database, which has a larger feature size. 
Specifically, we observe in Figure 4 that the algorithm can accommodate up to 30% 
missing features with practically no loss of performance for nof=10, and only about 
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Fig. 3. Learn++.MF performance on WINE database 

7% loss for nof=16. Hence the selection of nof once again shows its impact: there is 
less of a performance drop for larger PMF values, when fewer features are used for 
training. 

In other words, using fewer features during training, if adequate to model the data, 
generates an ensemble that is more resistant to missing data. 

The PIP plots also display a now familiar trend: using fewer features in training not 
only gives better performance (as seen on performance plots), but also allows the en-
semble to classify a larger percentage of instances as amount of missing data in-
creases. Furthermore, while the drop in PIP is negligible up to 15% missing data for 
all values of nof, the differences becomes more substantial at higher PMF values, due 
to larger feature size of this database. In fact, with nof=16 features, the PIP displays a 
steep drop from 100% for a PMF of 15% to about 35% for a PMF of 30%. On the 
other hand, when fewer features are used for training, for example nof=10, PIP barely 
drops a couple percentage points even for 30% missing data. 
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Fig. 4. Learn++.MF performance on Wisconsin breast cancer database 

4   Conclusions 

In this paper, we described an ensemble based algorithm to address the missing fea-
ture problem in classification applications. The approach consists of generating a 
large number of classifiers using different subsets of the features, and then using only 
those classifiers whose training features did not include the missing features in the test 
instance. We observe that the algorithm works rather well with as much as 30% of the 
data missing. 

The newer distribution update rules f/nof and 1/nof do add some performance gain 
to the algorithm, though the impact of the update rule was at best modest. The impact 
of the number of features used to train the classifiers, however, is quite dramatic: us-
ing fewer features to train the individual classifiers provides a better performance and 
can process a higher portion of the data, particularly when larger percentage of data is 
missing. PIP can be increased by increasing classifier count, T, if computational re-
sources allow to do so. Of course, larger feature sets also require larger number of 
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classifiers to be generated, however reduced dimensionality in using feature sub-
spaces allow faster training of each classifier, and offsets some of the computational 
burden of the algorithm. Based on our empirical observations, the number of classifi-
ers required for good performance is typically on the order of 20-30 per dimensional-
ity (feature) of the original data.  

Notice that we have only considered the case of test data having missing features; 
however, the very nature of the algorithm also allows training with missing data. The 
random feature subsets would then be drawn from the available features only. Finally, 
we should add that the algorithm makes an implicit assumption: there is redundancy 
in the features that is distributed randomly. Of course, the identity of the redundant 
features are unknown to us, since otherwise, they would not have been part of the 
data. This is not an overly restricting assumption, as it is met by many real-world ap-
plications. It is those applications for which this algorithm is expected to perform 
well.  
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Abstract. In feature selection (FS), different strategies usually lead to
different results. Even the same strategy may do so in distinct feature
selection contexts. We propose a feature subspace ensemble method, con-
sisting on the parallel combination of decisions from multiple classifiers.
Each classifier is designed using variations of the feature representation
space, obtained by means of FS. With the proposed approach, relevant
discriminative information contained in features neglected in a single run
of a FS method, may be recovered by the application of multiple FS runs
or algorithms, and contribute to the decision through the classifier com-
bination process. Experimental results on benchmark data show that
the proposed feature subspace ensembles method consistently leads to
improved classification performance.

1 Introduction

In classification systems, patterns are usually represented by d-dimensional mea-
surement vectors, known as feature representation spaces (FRS). In many ap-
plication domains, the dimension d of these spaces is very high, and the curse
of dimensionality problem often arises: the ratio between the number of patterns
and the data dimensionality is very small. Furthermore, some dimensions of the
FRS may not possess relevant pattern discriminative information, and classifiers
are often affected by irrelevant, or even misleading features [1][2].

Feature analysis is therefore an important step in pattern classification sys-
tems design, and two different approaches exist: feature selection (FS), which
consists of determining a subspace of the original FRS containing only the
features with most relevant discriminative information; and feature extraction,
which consists of constructing a different FRS based on the discriminative in-
formation provided by the original one. Although a feature extraction method
(Principal Component Analysis (PCA)) is illustrated in benchmark results for
comparison purposes, our work focuses on FS methods.

A wide range of FS methods with different frameworks is available [3][4][5][6],
usually based on the optimization of some feature subspace evaluation criteria.
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Fig. 1. Illustrative feature histogram for 50 runs of a FS algorithm on the Ionosphere
benchmark data set. The horizontal axis corresponds to each of the dimensions of the
FRS; the vertical axis corresponds to the number of times a given dimension d was
selected. An horizontal line indicates the mean subspace size.

Typically, through FS some features from the original FRS are discarded or ne-
glected. Nevertheless, FS originates some problems: (a) multiplicity of feature
selection contexts (FSCs)1., and consequent diversity of the solutions; (b) over-
fitting of the feature subspaces to a particular FSC ; (c) suboptimality of most FS
methods; (d) relevance of the discriminative information contained in neglected
features, when a single feature subspace is used . Figure 1 illustrates a feature
histogram for 50 runs of a FS algorithm. As we can observe, all of the original
FRS is covered, yet some of the features were more frequently selected than
others. For the same FS method, different FSCs originated a great diversity of
feature subspaces.

In [7], a technique to address the last problem is suggested. Instead of using
a single classifier and feature subspace, the combined decisions of multiple clas-
sifiers, designed on sequentially selected feature subspaces is used. The method
evolves from an initial step where a suboptimal feature subspace is selected; in
each subsequent step it iterates by selecting a suboptimal feature subspace from
the features that were neglected in the previous step, until all features of the orig-
inal FRS are included in a particular feature subspace. However, this approach
may present some difficulties, mainly due to the fact that irrelevant or misleading
features are forced to be taken into account for classification purposes.

We propose a feature subspace ensemble approach (FSE), in which a parallel
classifier combination scheme is used to combine the individual decisions of mul-
tiple classifiers, designed using variations of the FRS obtained by means of FS.
Without forcing the full coverage of the original FRS, our approach attempts to
recover relevant discriminative information contained in neglected features (e.g.,
by a single run of a FS method), by application of multiple FS runs or algo-
rithms. The resulting feature subspaces are used to design multiple classifiers,
contributing to the global decision through the classifier combination process.

The rest of the paper is organized as follows: Section 2 presents notation and
definitions used throughout the rest of the paper. Section 3 describes the FSE

1 The concept of feature selection context (FSC) is later defined in Section 2.
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method. Section 4 presents results of the application of the method to benchmark
data sets. Finally, Section 5 summarizes results and draws the main conclusions.

2 Notation and Definitions

Let X = {x1, · · · , xn} denote a set of n patterns, represented in a d-dimensional
FRS enumerated by F = {f1, · · · , fd}. An individual classifier Cr, performs a
mapping of F into c decision regions, corresponding to a set W = {w1, · · · , wc}
of c categories or classes. According to the adopted decision rule, classifying a
given pattern xi ∈ X within the set W , has an associated error which is typically
used to measure the classifier performance.

As introduced in Section 1, FS consists of analyzing the original FRS, F , with
the purpose of determining which features fj ∈ F are relevant, and which can
potentially be discarded according to some feature subspace evaluation criteria
J . Let F ∗

r ⊂ F denote a subspace of F containing its most relevant features
according to the criteria Jr.

In general, different FS strategies lead to different feature subspaces F ∗
r . Even

the same strategy may do so, if some variation of the criteria J , or the training
data Yr is considered. We define a feature selection context (FSC), Sr(Ar, Jr, Yr)
as the training conditions that lead to a given feature subspace F ∗

r . These com-
prehend the feature selection algorithm Ar, the feature subspace evaluation cri-
teria Jr, and the training data Yr, through which F ∗

r is determined.

3 Feature Subspace Ensembles

FS is an important step in classification systems design to rule out potentially
irrelevant or misleading features. As described in Section 2, FS provides a great
diversity of solutions due to the multiplicity of available FSCs. Generally, a
variation Sr of the FSC leads to a different subspace F ∗

r .
Without any superiority evidence among multiple solutions determined by

FS, it is not clear why a subspace F ∗
a obtained in a given FSC, Sa, should be

considered over a subspace F ∗
b obtained in a different FSC, Sb [8]. Furthermore,

through FS some features from the original FRS may be neglected for several
reasons (e.g., stopping criteria in state space search based FS methods, character
of the training data, among others); an overview of the problems resulting from
this fact was provided in Section 1.

In this section, we propose a more effective method, based on classifier com-
bination rules [2][9]. Unlike other methods [7], our feature subspace ensemble
(FSE) approach does not force the full coverage of the original FRS, F , which
may stand as a problem if F contains irrelevant or misleading features. Instead,
relevant discriminative information contained in neglected features fj ∈ F is
expectedly recovered by application of FS in different FSCs. From this process
multiple feature subspaces F ∗

r are determined, contributing to the classifier de-
cision through parallel classifier combination strategies [2][10].
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Fig. 2. Feature subspace ensemble (FSE) system. A bench of classifiers is trained using
individual feature subspaces F ∗

r obtained for some variation Sr of the FSC. Each clas-
sifier Cr produces an individual decision ŵCr . In the end, all decisions are combined
using a classifier combination strategy to produce a global decision ŵxi .

3.1 Ensemble Strategy

Our feature subspace ensemble approach consists of designing multiple classifiers
usingvariationsF ∗

r oftheFRS,obtainedbymeansofFS.Theclassificationofagiven
patternxi ∈ X is performedbycombining the individual decisions of each classifier.

Instead of using a single classifier Cr and a single feature subspace F ∗
r , a

set F∗ = {F ∗
1 , · · · , F ∗

p } of p feature subspaces is considered, each selected in a
given feature selection context Sr (0 < r ≤ p). Using each subspace F ∗

r ∈ F∗,
a classifier Cr ∈ C is designed, and a set C = {C1, · · · , Cp} of p classifiers is
obtained. A global decision is produced by applying a classifier combination
method to the ensemble C.

Figure 2 depicts a block diagram for a FSE system. Using a set of training
patterns Y , a feature selection context bench S = {S∗

1 , · · · , S∗
p}, of p feature

selection contexts produces a feature subspace ensemble F∗ = {F ∗
1 , · · · , F ∗

p }.
Each resulting feature sub-space F ∗

r ∈ F∗ is used to train a classifier Cr ∈ C.
The classification of a given pattern xi is performed by a two stage process
of p individual decisions ŵC1 , . . . , ŵCp (produced by each classifier Cr ∈ C),
and their combination in order to produce a global decision ŵxi . This way, the
discriminative content of each particular subspace F ∗

r contributes to the global
decision as a result of the classifier combination strategy.

Several classifier combination methods have been studied and proposed over
the years, with the purpose of improving the classification performance, present-
ing positive results [2][10][11][9]. A range of classifier design methods has also been
used, some also exploring variations of the FRS [7][12]. Our focus is not the op-
timization of the process but instead to further enhance how different subspaces,
when used to design individual classifiers, can improve the recognition rate.
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3.2 Improved Classification Performance

On one hand classifier combination strategies are prone to improve the over-
all classification performance. As previously stated, the decision produced by a
given classifier Cr ∈ C may be inadequate due to a particularly inappropriate or
misleading FSC.

In such case, using a classifier combination strategy, the remaining decisions
are likely to overcome it, thus improving or at least not degrading the classifi-
cation performance. On the other hand, one of the purposes of feature selection
is also the improvement the classifier recognition rate [3].

Feature subspace ensembles benefit from both the contribution of classifier
combination methods and feature selection. The advantages result from a mix-
ture of these two in the sense that, from feature subspace selection better indi-
vidual decision ability is to be expected, and if such is not achieved (e.g., due to
the feature selection context), the remaining decisions from classifier ensembles
will most likely overcome the misleading decisions.

3.3 Illustrative Feature Subspace Ensemble Strategy
Implementation

In this section we illustrate the FSE strategy by proposing an instantiation
of it using specific FS and classifier combination strategies. Results with the
proposed framework are presented in Section 4. We adopt a wrapper feature
selection framework [6], since in these methods, the feature subspace evaluation
criteria J is the classification performance of a decision rule. For the particular
feature selection context of each FS run, the feature subspace that optimizes the
recognition rate is selected. A heuristic sequential forward search (SFS) method
[13], which has proven to produce adequate results when compared to more
sophisticated strategies [14][8], is hereafter used.

SFS starts from an empty feature set F ∗
t=0; at each step F ∗

t+1 all possible
super-spaces containing the most relevant feature subspace according to J in
the previous step, F ∗

t , and one from the remaining features fj ∈ F \ F ∗
t are

formed and evaluated by J . The search evolves until a stopping criteria is met,
for which we adopted the degradation of J ; that is, if none of the super-spaces
formed at a given step F ∗

t+1 improves J , the search stops and the subspace F ∗
t

is considered the best for the particular FSC.
We use the k-NN rule classifier with an Euclidean neighborhood metric [2]. A

1-NN neighborhood was adopted, since it is a particular case of the k-NN rule
where ŵxi for a given pattern xi is assigned as the category of the closest pattern
from the training set Y . For all ensemble classifiers, the 1-NN method is used
in the FSC and also for performance evaluation, and a simple majority voting
strategy was chosen as classifier combination rule [15][16][17].

Thus, for a given run, indexed by r, our feature selection context Sr is: (a) SFS
wrapper feature selection algorithm Ar; (b) 1-NN classification performance (on
a validation set), feature subspace evaluation criteria Jr; and (c) a randomly
selected training set Yr.
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4 Experimental Results

The performance of the feature subspace ensemble method was evaluated on
benchmark data from the UCI machine learning repository. The characterization
of the data sets we used is provided in Table 1.

Table 1. Benchmark data summary

id # classes # features # patterns
Breast Cancer 1 2 9 683

House Votes 2 2 16 232

Ionosphere 3 2 34 351

Iris 4 3 4 150

Pima 5 2 8 768

SAT 6 6 36 2000

Wine 7 3 13 178

Yeast Cell Cycle 8 5 17 384

4.1 Methodology

All data sets were preprocessed to ensure the removal of patterns containing
missing values, and nominal values were converted to discrete numerical values.
50 data selection runs were performed for each data set; in each run r two sets
Xr and Yr of randomly selected patterns are selected, and a feature subspace
F ∗

r is determined. Each set exclusively contains 50% of the available patterns.
To compute the results with the FSE method, we adopted the illustrative

framework of Section 3.3. In the FS phase, to compute Jr, we used Yr as training
set for the classifier and Xr as validation set. In the classification performance
evaluation phase, the classifier is designed using the feature subspace F ∗

r ; Xr

is used as training, and Yr is used as testing set. Note that for classification
performance evaluation purposes the testing data is unseen by the classifier.

In each classification performance evaluation run a FSE of size p = 24 is
created, containing 24 randomly selected feature subspaces from the previously
determined during data selection. We evaluated the classification performance
using F (that is, without FS), SFS selected, and randomly selected feature rep-
resentation spaces. For random feature subspace selection, we used the mean
feature subspace size and standard deviation interval obtained with SFS, and
randomly selected from F a random number of features within that interval.

Principal component analysis (PCA), a feature extraction method, was also
evaluated for comparison purposes. For this case, in each data selection run we
applied the PCA algorithm to Yr, and sequentially selected the k < d principal
components with best classification performance using Xr as validation set.

4.2 Results

Figure 3(a) illustrates the results presented in Table 2 of the average classifica-
tion error (and standard deviation), for both individual classifier designed in an
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Table 2. Mean classification error. individual : classifier design using an individual fea-
ture subspace; ensemble: feature subspace ensemble method; all : no feature selection;
sfs: wrapper sequential forward search; rnd : random feature selection; pca: principal
component analysis.

individual ensemble
all sfs rnd pca all sfs rnd

Breast 4.36 4.35 4.85 3.11 4.36 3.24 3.25
Cancer (0.89) (1.15) (1.27) (0.60) (0.89) (0.82) (0.76)
House 9.22 8.90 27.24 7.84 9.22 5.14 26.84
Votes (1.79) (6.74) (11.95) (1.79) (1.79) (1.64) (9.00)

Ionosphere 14.70 11.48 14.69 9.36 14.70 6.30 7.73
(2.10) (2.59) (2.17) (2.06) (2.10) (1.67) (1.73)

Iris 5.17 6.23 10.96 3.55 5.17 4.64 6.45
(1.94) (3.16) (9.85) (1.84) (1.94) (1.85) (2.21)

Pima 33.15 31.47 36.05 31.30 33.15 27.55 29.09
(2.19) (2.13) (3.22) (1.24) (2.19) (1.57) (1.70)

SAT 12.58 12.97 13.34 11.70 12.56 11.29 11.91
(0.87) (0.81) (0.96) (0.73) (0.87) (0.74) (0.85)

Wine 28.11 10.00 23.31 27.50 28.11 5.82 8.96
(3.70) (6.29) (9.56) (3.85) (3.70) (2.09) (4.58)

Yeast Cell 28.39 29.22 30.70 27.60 28.39 25.61 26.90
Cycle (2.24) (3.01) (2.43) (2.07) (2.24) (1.98) (1.93)

individual FRS (labeled with the i prefix), and the feature subspace ensemble
methods (labeled with the e prefix), computed according to the methodology
described in Section 4.1. Figure 3(b) illustrates the average feature subspace
size for each method.

When compared to the individual feature subspace classifier case, feature
subspace ensembles consistently led to improved classification performance, in
terms of error rates, with lower variability (Figure 3(a)), with both SFS and
randomly selected feature subspaces. In most cases, feature subspace ensembles
using FS outperform PCA, holding comparable results when improvements are
not achieved.

Furthermore, from the SFS feature subspace selection process, a reduction
of the original representation space F is also achieved (Figure 3(b)), providing
more compact models. In general, the dimension d of feature subspaces selected
through SFS is lower than the number of principal components that provided
better classification performance using PCA. Feature subspace ensembles fulfill
two of the main objectives of feature selection: (a) improvement of the classifi-
cation performance; and (b) dimensionality reduction[3].

These experimental results corroborate what was stated in Section 3: feature
subspace ensembles benefit from both classifier combination strategies and fea-
ture subspace selection. This is due to the fact that, if a feature selection context
or classifier training process (particularly unsuited), misleads the classifier deci-
sion, the remaining decisions will likely overcome it, improving, or at least not
degrading the results.
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Fig. 3. Mean classification error E, and mean subspace size d, for the benchmark data
listed in Table 1. id: data set order number; all : no feature selection; sfs: wrapper
sequential forward search; rnd : random feature selection; pca: principal component
analysis; the i prefix labels the curves for individual classifier and subspace cases, and
the e labels the curves for the feature subspace ensemble method.
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5 Conclusions

Feature selection techniques, while of great importance for data dimensionality
reduction and improved classification accuracy, present several difficulties. These
include: (a) non uniqueness of an optimal solution; non-optimality of most FS
methods; great diversity of feature spaces produced ; and omission of potentially
relevant features .

In this paper we addressed the above mentioned problems by proposing the
association of FS and classifier combination under a feature subspace ensemble
approach (FSE). The concept of feature selection context was introduced, and
the general FSE approach was defined. Also, we presented an illustrative instan-
tiation of the FSE method using the heuristic sequential forward search (SFS)
method, 1-NN classifier and the majority voting classifier combination rule. We
applied the technique to 8 data sets from the UCI repository, in a comparative
study between the original space (that is, without FS), SFS, random feature
selection, and PCA, feature representation spaces (FRS).

Experimental results have shown, that the proposed FSE method consistently
leads to improved classification performance (in terms of error rates), when
compared to the corresponding average results for an individual classifier de-
signed using a single feature representation space. Furthermore, while the PCA
method performed better in all data sets, when compared the remaining individ-
ual FRS classification cases, it was consistently outperformed by the proposed
FSE method. Ongoing work comprises the extension of the method to other
FS and feature extraction methods, as well as the exploration of combination
techniques involving multiple FS methods and a more extensive validation of
results.
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Abstract. Selecting the optimal number of features in a classifier ensemble 
normally requires a validation set or cross-validation techniques. In this paper, 
feature ranking is combined with Recursive Feature Elimination (RFE), which 
is an effective technique for eliminating irrelevant features when the feature 
dimension is large. Stopping criteria are based on out-of-bootstrap (OOB) 
estimate and class separability, both computed on the training set thereby 
obviating the need for validation. Multi-class problems are solved using the 
Error-Correcting Output Coding (ECOC) method. Experimental investigation 
on natural benchmark data demonstrates the effectiveness of these stopping 
criteria.  

Keywords: RFE, ECOC, Multiple Classifiers, feature selection. 

1   Introduction 

Tuning classifier parameters normally requires a validation set or cross-validation 
techniques. However, there is no guarantee that a pseudo-test set is representative, and 
for many problems there is insufficient data to rely on this approach. For a classifier 
ensemble, there is the additional difficulty that base classifier optimality with respect 
to generalisation does not necessarily imply ensemble optimality (Section 2). The 
class separability measure defined in Section 2.1 was proposed in [1] for tuning base 
classifier parameters. It was shown that the optimal number of training epochs of a 
MLP (Multilayer Perceptron) base classifier was generally different from the number 
for the optimal classifier ensemble. In this paper the ensemble OOB (Out-of-
Bootstrap) estimate is used to select the optimal number of features for classifier 
ensemble. Although the OOB estimate has been documented previously for model 
selection, there has not been any systematic study of its use in feature selection, as 
described in this paper. 

Consider the situation for which patterns consist of a large number of features, 
many of which are suspected to be irrelevant to the classification problem at hand. To 
reduce dimensionality, a decision needs to be taken whether to select or extract 
features. One of the most popular general purpose feature extraction techniques is 
Principal Component Analysis (PCA), which is a mapping or projection on to the 
principal directions and is an effective method of feature space reduction. It is 
particularly important to reduce the number of features for small sample size 
problems (Section 3). In general, feature extraction techniques make use of all the 
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original features when mapping to new features. However, over-fitting may result if 
the dimension space is high. Furthermore, it may not be successful due to complex 
class distributions [2]. Finally, feature extraction methods are difficult to interpret in 
terms of the importance of original features.  

In this paper, feature ranking is combined with Recursive Feature Elimination 
(RFE Section 3). The focus of the paper is on stopping criteria for feature selection 
rather than on feature ranking methods. A simple ranking strategy is chosen in 
Section 3 to demonstrate the effectiveness of the stopping criteria. There have been 
many improvements to feature ranking strategies in recent years, motivated by the 
need to handle large number of features, as required in certain data mining and bio-
informatics applications. The basic approaches in feature subset selection can be 
found in [3] from Pattern Recognition perspective, and in [11] from machine learning 
perspective. Although the motivation for the approach described in this paper is that it 
should scale up to handle hundreds and thousands of features, in Section 4 the 
experimental evidence is presented for datasets up to 100 features.  

2   Ensemble Techniques 

In this paper, we assume a simple parallel MCS architecture with homogenous two-
class base classifiers. For the two-class case, the combining rule is majority vote 
while for multi-class the decision rule is defined in equation (7). Injecting randomness 
into the MCS framework has been found to be a good strategy for improving 
generalisation performance. Random perturbations have been shown to be useful for 
patterns (Bootstrapping), features (Random Subspace Method RSM [4]), Class Labels 
(Error-Correcting Output Coding: ECOC) as well as in base classifiers themselves. Of 
these four types of random perturbation methods, all are used in this paper except 
RSM.  Bootstrapping is a popular ensemble technique and implies that if μ training 
patterns are randomly sampled with replacement, (1-1/μ))μ ≅ 37% are removed with 
remaining patterns occurring one or more times. The OOB estimate uses the patterns 
left out. The individual base classifier OOB should be distinguished from the 
ensemble OOB. For the ensemble OOB, all training patterns contribute to the 
estimate, but the only participating classifiers for each pattern are those that have not 
been used with that pattern for training (that is, approximately thirty-seven percent of 
classifiers).  

Selecting parameters for MCS design should ideally be carried out using only the 
training set, but this is difficult and may result in a biased choice. Model selection 
from training data is known to require a built-in assumption, since realistic learning 
problems are in general ill-posed. The only assumption in this paper is that base 
classifier complexity and number of features are varied over a suitable range. Since 
each base classifier sees only approximately sixty three percent of the training set, 
OOB gives a biased estimate of the absolute value of generalization error [5]. In this 
paper, the estimate of the absolute value is not important, and it is shown 
experimentally in Section 4 that the reduced number of training patterns does not lead 
to an inaccurate estimate of the optimal values of generalization error. Note also that 
the OOB estimate does not require any assumptions regarding underlying probability 
distributions.  
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2.1   Diversity and Class Separability 

Diversity measures have received much attention recently since it is recognized that 
diversity among base classifiers is a necessary condition for improvement in ensemble 
performance. However, there is no general agreement about how to quantify the 
notion of diversity among a set of classifiers. Diversity measures can be categorised 
into two types [6], pair-wise and non-pair-wise.  In order to apply pair-wise measures 
to finding overall diversity of a set of classifiers it is necessary to average over the set. 
Non-pair-wise measures attempt to measure diversity of a set of classifiers directly, 
based for example on variance, entropy or proportion of classifiers that fail on 
randomly selected patterns. The main difficulty with diversity measures is the so-
called accuracy-diversity dilemma. As base classifiers approach the highest levels of 
accuracy, diversity must decrease so that it is expected that there will be a trade-off 
between diversity and accuracy. The Diversity/Accuracy Dilemma leads us to expect 
that ensemble performance may not be optimized when each individual classifier is 
optimized [7]. 

Normally class separability measures rely on a Gaussian assumption and refer to 
the ability to predict separation of patterns into classes using original features. In [1] a 
class separability measure is proposed for MCS that is based on a binary feature 
representation, in which each pattern is represented by its binary MCS classifier 
decisions. It is restricted to two-class problems and the measure is computed from the 
binary-to-binary mapping. The problem with applying conventional class separability 
measures is that the implicit Gaussian assumption is not appropriate for this mapping. 

Let there be μ patterns with the label ωm given to each pattern xm where m = 1,… μ . 
In an MCS framework, the mth pattern may be represented by the B-dimensional vector 
formed from the B base classifier decisions given by 

),,,( 21 mBmmmx ξξξ …=            ξmi, ωm∈ {0,1},    i = 1 …B (1) 

In equation (1) ωm=f(xm) where f is the unknown binary-to-to binary mapping from 
classifier decisions to target label. Following [6], the notation in equation (1) is 
modified so that the classifier decision is 1 if it agrees with the target label and 0 
otherwise 

),,,( 21 mBmmm yyyx …=            ymi , ωm=∈ {0,1},  ymi=1 iff ξmi=ωm        (2) 

Pairwise diversity measures, such as Q statistic, Correlation Coefficient, Double Fault 
and Disagreement measures [6] take no account of class assigned to a pattern. In 
contrast, class separability [8] is computed between classifier decisions (equation (2)) 
over pairs of patterns of opposite class, using four counts defined by logical AND (∧) 
operator  

b
nj

B

j

a
mj

ab
mnN ψψ ∧=∑

=1

~
,  nm ωω ≠     a,b∈{0,1}, yy == 01 ,ψψ  (3) 

The nth pattern for a two-class problem is assigned   
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The motivation for nσ ′  comes from estimation of the first order spectral 

coefficients [1] of the binary-to-binary mapping defined in equation (1). Each pattern 
is compared with all patterns of the other class, and the number of jointly correctly 

( 11~
nN ) and incorrectly ( 00~

nN ) classified patterns are counted. Note that a classifier 

that correctly classifies one pattern but incorrectly classifies the other does not 
contribute. The two terms in equation (4) represent the relative positive and negative 
evidence that the pattern comes from the target class. We sum over patterns with 
positive coefficient to produce a single number between –1 and +1 that represents the 
separability of a set of patterns 
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In our experiments in Section 4 we use the Q diversity measure, as recommended in 
[6]. Diversity Qij between ith and jth classifiers is defined as  
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2.2   Error-Correcting Output Coding ECOC 

To solve a multi-class problem in the ECOC [9] framework we need a set of codes to 
decompose the original problem, a suitable two-class base classifier, and a decision-
making framework. For a K-class problem, each row of the K x B  binary ECOC 
matrix Z acts as a code word for each class. Each of the B columns of Z partitions the 
training data into two super-classes according to the value of the corresponding binary 
element.  

To classify pattern xm, it is applied to the B trained base classifiers forming vector 
[xm1, xm2,  ..., xmB ]  where xmj is the soft output of the jth base classifier. The L1 norm 
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distance Li (where   i = 1…. K) between output vector and code word for each class is 
computed  

∑ =
−=

b

j mjiji xZL
1

 (7) 

and xm is assigned to the class corresponding to closest code word. For the OOB 
estimate, the decision rule in equation (7) is modified. Training pattern xm is classified 
using only those classifiers that are in the set OOBm, defined as the set of classifiers 
for which xm is OOB.  The summation in equation (7) is therefore modified to 

∑
∈ mOOBj

. In this paper, a random code matrix with near equal split of classes 

(approximately equal number of 1’s in each column) is chosen. Issues surrounding 
various coding and decoding strategies were discussed in [9]. 

3   Feature Ranking 

The aim of feature selection is to find a feature subset from the original set of features 
such that an induction algorithm that is run on data containing only those features 
generates a classifier that has the highest possible accuracy [10]. Typically, an 
exhaustive search is computationally prohibitive, and the problem is known to be NP-
hard [10], so that a greedy search scheme is required. For problems with hundreds or 
thousands of features, classical feature selection schemes are not greedy enough, and 
filter, wrapper and embedded approaches have been developed [11]. One-dimensional 
feature ranking methods consider each feature in isolation and rank the features 
according to a scoring function, but are disadvantaged by implicit orthogonality 
assumptions [11]. They are very efficient but in general have been shown to be 
inferior to multi-dimensional methods [11] that consider all features simultaneously.  

The issue of feature relevance, redundancy and irrelevance has been explicitly 
addressed in many papers. As noted in [12] it is possible to think up examples for 
which two features may appear irrelevant in isolation but be relevant when considered 
together. Also adding redundant features can provide the desirable effect of noise 
reduction. It thus appears necessary to do more than consider individual features by 
themselves as with one-dimensional methods. 

The most important problem arises from the relatively small number of patterns 
relative to the number of features. In Pattern Recognition this is known as the small 
sample size problem, that is when the number of patterns is less than or of comparable 
size to the number of features [2]. It means that there is a risk of the classifier over-
fitting the data, and thereby capturing unwanted idiosyncrasies.  

Feature ranking problems have received much attention in the literature. However, 
there has been relatively little work devoted to handling feature ranking explicitly in 
the context of MCS. Most previous work has focused on determining feature subsets 
to combine, but differ in the way the subsets are chosen. The Random Subspace 
Method (RSM) [4] is the best known method, and it was shown that a random choice 
of feature subset, (allowing a single feature to be in more than one subset), improves 
performance for high-dimensional problems. In [2], forward feature and random 
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(without replacement) selection methods are used to sequentially determine disjoint 
optimal subsets. In [13], feature subsets are chosen based on how well a feature 
correlates with a particular class. Ranking subsets of randomly chosen features before 
combining was reported in [14]. 

Recursive Feature Elimination (RFE) [15] is a simple algorithm for eliminating 
irrelevant features and operates recursively as follows: 

1) Rank the features according to a suitable feature ranking method 
2) Identify and remove the r least ranked features  

If r>1, which is usually desirable from an efficiency viewpoint, a feature subset 
ranking is obtained. The main advantage of RFE is that the only requirement to be 
successful is that at each recursion the least ranked subset does not contain a strongly 
relevant feature [12].  

In this paper, we use modulus of neural network weights w for feature ranking, 
given by  

∑ ∗=
j

jiji WWw 21          21)( jij
j i

i WWxSO ∗= ∑ ∑  (8) 

where O is the output of single output single hidden-layer MLP (sigmoid activation 
function S),  i,j are the input and hidden node indices, xi is input feature, W1 is the first 
layer weight matrix and W2 is the output weight vector [16]. The product of weights 
strategy in equation (8) has been found in general not to give a reliable feature 
ranking [17]. However, when used with RFE it is only required to find the least 
relevant features. We have not experimented with any more sophisticated strategies 
based on sensitivity analysis [18]. 

4   Experimental Evidence 

Natural two-class and multi-class benchmark problems have been selected from [19] 
and [20] and are shown in Table 1. For datasets with missing values the scheme 
suggested in [19] is used. All experiments use random training/testing splits, and the 
results are reported as mean over ten runs. Unless otherwise specified, two-class 
problems are split 20/80 and use 100 base classifiers. Multi-class problems are also 
split 20/80 but use 200 base classifiers, one for each two-class decomposition, as 
described in Section 2.2. To test the RFE strategy described in Section 3, the original 
features are normalized to mean 0 std 1 and the number of features increased to one 
hundred by adding noisy features (Gaussian std 0.25). 

The purpose of the initial experiment is to determine generalization performance as 
the number of hidden nodes and number of training epochs of MLP base classifiers 
are systematically varied. Each node-epoch combination is repeated ten times with the 
same number of nodes and epochs used for each MLP. All other parameters of the 
base classifier MLPs are fixed at the same values over all runs. The number of hidden 
nodes is varied over 2-16 and number of training epochs over 1-69 (log scale). 
Random perturbation of the MLP base classifiers is caused by different starting 
weights on each run, combined with bootstrapping (Section 2). The experiment is 
performed with one hundred single hidden-layer MLP base classifiers, using the 
Levenberg-Marquardt training algorithm with default parameters. 



 Stopping Criteria for Ensemble-Based Feature Selection 277 

Table 1. Benchmark Datasets showing numbers of patterns, classes, continuous and discrete 
features 

DATASET #pat #class #con #dis 
cancer 699 2 0 9 
card 690 2 6 9 
credita 690 2 3 11 
dermatology     366 6 1 33 
diabetes 768 2 8 0 
ecoli 336 8 5 2 
glass 214 6 9 0 
heart 920 2 5 30 
iris 150 3 4 0 
ion 351 2 31 3 
segment 2310 7 19 0 
soybean 683 19 0 35 
vehicle 846 4 18 0 
vote 435 2 0 16 
vowel 990 11 10 1 
wave 3000 3 21 0 
yeast 1484 10 7 1 
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Fig. 1. Mean test error rates, OOB estimates, measures σ′ , Q for Yeast 20/80 with [2,4,8,16] 
nodes 



278 T. Windeatt and M. Prior 

A typical set of curves for various node-epoch combinations (Yeast 20/80) is 
shown in Figure 1, with (a) (b) showing base classifier and ensemble test error rates, 
(c) (d) the base classifier and ensemble OOB estimates and (e) (f) the measures σ′, Q 
defined in equations (5) and (6). It may be seen that σ′ and base classifier OOB are 
good predictors of base classifier test error rates as base classifier complexity is 
varied. The correlation between σ′ and test error was thoroughly investigated in [7], 
showing high values of correlation that were significant (95 % confidence when 
compared with random chance). In [7] it was also shown that bootstrapping did not 
significantly change the ensemble error rates, actually improving them slightly on 
average. The class separability measure σ′ shows that the base classifier test error 
rates are optimized when the number of epochs is chosen to maximize class 
separability. Furthermore, at the optimal number of epochs Figure 1 (f) shows that 
diversity is minimized. It appears that MLP base classifiers starting from random 
weights increase correlation (reduce diversity) as complexity is increased and peaks 
as the classifier starts to over-fit the data. A possible explanation of increasing 
diversity with  over-fitting is that classifiers produce different fits of those patterns in 
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Fig. 2. Mean test error rates, OOB estimates, measures σ′, Q for RFE, Yeast with [20/80 10/90 
5/95] train/test split 
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Fig. 3. Mean ensemble test error rate, ensemble OOB estimate, measures σ′ , Q over ten multi-
class 20/80 datasets with [3 5 7 9 11] base classifiers 

the region where classes are overlapped [7]. Note also from Figure 1 that the 
ensemble is more resistant to over-fitting than base classifier, and the ensemble OOB 
accurately predicts this trend. This experiment was performed for all the datasets, and 
in general the ensemble test error was found to be more resistant to over-fitting for 
both two-class and multi-class datasets. Based on these results 8 hidden nodes was 
chosen, with 7 epochs for two-class and 20 epochs for multi-class data.  

Figure 2 shows RFE for Yeast 20/80, 10/90, 5/95 with noisy features added to 
make a total of one hundred features. The recursive step size is chosen using a 
logarithmic scale to start at 100 and finish at 2 features with minimum step size of 1. 
Both base classifier OOB and σ′ are seen to correlate well with base classifier test 
error. Similarly, ensemble OOB achieves minimum error at the same number of 
features as ensemble test error. Note from Figure 2 (b) (d) that the OOB estimate is 
generally a poor indicator of absolute value of generalization error.  

To determine the effect of RFE on a range of two-class and multi-class problems, 
RFE was applied to the datasets shown in Table 1. The RFE curves (not shown) 
appeared similar to Figure 2 achieving a minimum at the number of features predicted 
by OOB. The mean ensemble test error rate over all features and all datasets was 13.9 
% for seven two-class problems and 18.2% for ten multi-class. For comparison, using 
original features (Table 1) the mean error rate was 14.1 % for two-class and 17.8 % 
for multi-class, demonstrating that the RFE strategy effectively eliminates irrelevant 
features. 

A potential problem with bootstrapping is that each base classifier sees only 
approximately 63% training patterns. To determine the effect of the reduced sample 
size, the RFE experiment was repeated without bootstrapping. The number of features 
at which the OOB and the test error started to rise did not change. For seven two-class 
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problems, the mean best error rate was 13.4 % for two-class and 18.2% for multi-
class. 

Finally the effect of a reduced number of base classifiers [3 5 7 9 11] on multi-
class problems is shown in Figure 3, which is the mean over ten datasets. It may be 
seen that the ensemble OOB estimate is not a reliable indicator as number of 
classifiers is reduced, but the peak value of σ′ is still a good predictor of when to stop 
eliminating features. The base classifier OOB (not shown) is also unreliable due to 
too few classifiers. 

5   Conclusion 

It is shown in this paper that the number of features may be selected using an out-of-
bootstrap (OOB) error estimate. The base classifier OOB estimate achieves a 
minimum when the estimate of class separability reaches a maximum. The method is 
extended to multi-class problems using ECOC, and is seen to be less sensitive to over-
fitting when the number of features is reduced below the optimal number. The 
modulus of neural network weights provide a good feature ranking criterion, but for 
large number of features it is better to combine wth RFE to recursively remove 
irrelevant features. Further work is aimed at testing the proposed method on higher 
dimensional datasets and comparing results from different feature ranking strategies 
[12] [11].  
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Abstract. In this paper we propose to face the rejection problem as a
new classification problem. In order to do that, we introduce a trainable
classifier, that we call reject classifier, to distinguish it from the classifier
to which the reject option is applied (termed primary classifier). This
idea yields a reject option that is largely independent of the approach
used for the primary classifier, working also for systems providing as
their only output the guess class.

The whole classification system can be seen as a serial multiple classi-
fier system: given an input patter x, the primary classifier limits to two
the number of possible classes (i.e., its guess class and the reject class),
while the reject classifier attributes x to one out of these two classes.

The proposed reject method has been tested on three different publicly
available databases. We also compared it with other reject rules and the
results demonstrated the effectiveness of the proposed approach.

1 Introduction

It has been a long time since Pattern Recognition researchers understood the
importance, in many mission-critical applications of classification techniques, of
providing the classifier with a reject option, that is the possibility of refusing
to assign the examined pattern to any class, possibly prompting for a further
investigation by another system or by a human supervisor. The first work trying
to cast the reject problem in a formal, theoretically sound framework is a paper
by Chow [1] published 50 years ago. After half a century of experience with
rejection in classification, is there any room left for improvements?

In our opinion there some points that have not yet been solved in a satisfac-
tory way by the reject methods proposed so far. A first issue regards the overly
restrictive assumptions on the classifier outputs. The first reject rule still in use,
the Chow’s rule [2], is based on the hypothesis that the classifier provides a good
estimate of the a posteriori probability of each class. While this hypothesis is
acceptable when a very large training set is available, this is not the case in
many important applications. It should be considered that the post-probability
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estimation is a more general, (and so more difficult) problem than the bare clas-
sification. Hence, a training set that is large enough to train a decision function
to perform a good classification, could be not adequate for obtaining a good
post-probability estimate. In these cases, Chow’s rule could yield a bad rejection
performance.

Some researchers have tried to overcome this limitation by estimating the
expected value of the Bayesian risk as the average cost of the reject decisions
obtained by thresholding the classifier output. The underlying assumption is
that the output is a measure related to the a posteriori probability (and so is
applicable only to type 3 classifiers of the taxonomy by Xu et al. [3]), although
it is not necessarily a direct estimate. While this assumption is more commonly
met in practical applications, it still rules out a significant number of classifiers
that have proved to be effective in some contexts, such as decision trees and
structural classifiers, and also parallel multiple classifier systems (MCS), such
as those based on majority voting [3]. Note that in case of MCS, the evaluation
of the post-probabilities is anyhow much more difficult [5]; in fact, even in the
hypothesis that each base classifier provides a very good estimate of the post-
probabilities, the evaluation of the post-probabilities after the combination can
be correctly achieved only if the classifiers can be assumed independent or the
dependencies among the experts can be statistically characterized.

A second issue is concerned with the lack of generality about the classifica-
tion technique. Several authors, trying to improve the performance of the reject
option over the Chow’s rule and its derivatives, have resorted to methods specif-
ically tailored to a particular classifier or multiple classifier system. In [4] a
maximum margin classifier with reject option is proposed. This led to a Support
Vector Machine (SVM) whose rejection region is determined during the training
phase, that is, a SVM with an embedded reject option. With regard to MCS,
a reject rule devised for Naive Bayes combining rule is proposed in [5], while
a particular combining scheme with reject option is proposed in [6], where the
Behavior Knowledge Space (BKS) is presented. The computation of the reject
threshold is performed in such a way to make the classification, error and re-
ject rates of the system as much as possible close to preassigned values. Since
this is made by using the BKS, this approach cannot be easily extended to
other MCS architectures. While such techniques can indeed improve the reject
performance, the drawback is that the whole system becomes tied to a single
classification technique and is not easy to switch to a more profitable classifier
when it should become available.

Now let us consider a third important issue, i.e. the difficulty in leveraging
the different amounts of information available in different applications of a same
technique. Classifier technology has (since long time) evolved toward the use of
systems based on some more or less complex forms of training or learning. Such
systems have the distinctive advantage of being able to adapt, either automat-
ically or with the help of some hand-tuning of their parameters, to the quite
diverse amount of information available for a given application. For instance,
using a neural network one can choose a small number of neurons, to control



284 P. Foggia et al.

the over-specialization behavior, if the training set is small and not satisfactorily
representative of the pattern variability; on the other hand one can use more
neurons, to follow more closely the boundaries between the classes and improve
classification performance, if an adequate training set is available. The same
classifier can be adapted to very different problems by choosing the appropriate
balancing between its behaviors. Unfortunately, this degree of flexibility is lost
when we consider the current reject systems. The information used to perform
the reject decision is hard-wired into the system itself, and cannot be adapted,
or tuned, to better fit the information at hand except by switching to an entirely
different reject rule.

So, summing up our objectives, we want to develop a reject method that
makes little or no assumption on the structure of the classifier and of its out-
puts, and can adapt to some degree to the training information available in the
application at hand. Our proposed solution is to face the rejection problem as
a new classification problem. In other words, we introduce a trainable classifier
that we call reject classifier, to distinguish it from the classifier to which the
reject option is applied (termed primary classifier). As we will show, this idea
can yield a reject option that is largely independent of the approach used for
the primary classifier, working also for type 1 systems (i.e. systems yielding as
their only output the attributed class). Furthermore, the use of a reject classifier
entails the same adaptability of the reject system to suit the available informa-
tion. Note that the whole classification system can be seen as a serial multiple
classifier system: the primary classifier reduces to two the number of possible
classes (the guess class and the reject class) for each input pattern x, while the
reject classifier attributes x to one out of these two classes.

The rest of the paper is organized as follows: in Section 2, we will present
in detail the proposed method. Then, an experimental comparative evaluation
on some publicly available databases is reported in Section 3. Finally, some
conclusions are drawn.

2 The Proposed Method

As discussed in the introduction, we propose the use of a two-stage system. In
Figure 1, an architectural overview of our system is depicted.

The first block is the primary classifier, that is the object of the reject system.
We assume that the input of this classifier is a vector of n real-valued features;
while this assumption does not hold for all conceivable classifiers (for instance
consider graph-based classifiers), it is applicable to a very broad range of clas-
sification techniques. Furthermore, it is the only restriction that our method
imposes on the primary classifier. As the output of the primary classifier, the re-
ject system requires the index of the attributed class; in other words, it assumes
a type 1 classifier. Since this information can be derived also from classifiers
yielding more information in their output (e.g. classifiers producing a ranking,
or a measure, or a probability), the type 1 assumption poses no restriction on the
primary classifier. The input feature vector, together with the primary classifier
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Fig. 1. Architecture of the proposed reject system

guess, forms the input of the reject classifier. This is made up of two blocks:
the goal of the first one, the reliability evaluator, is to provide a measure of
the reliability ψ of the classification operated by the first stage. This is indeed
a real-valued quantity, with 0 meaning “completely unreliable” and 1 meaning
“absolutely trustworthy”. However, we do not assume that this quantity is a
probability, to avoid putting unnecessary complexity in the reliability evaluator.

The reliability evaluator does not output directly a reject decision. If this
would have been the case, it would have to be trained taking into account also
the costs associated to errors, rejects and correct classifications, in order to
minimize the Bayesian risk. While this is conceptually possible, it would have
required the development of a non-standard, more complex classifier, instead of
a simpler and better understood one. Another alternative would have been to
train the reject classifier so as to output a reject decision by minimizing the error
probability. While this approach could give good results in some applications, it
would not take into account the different, application-dependent costs, yielding
in general a larger expected cost for the proposed answers. As a consequence,
the output of the reliability evaluator has to be thresholded by a reject decisor
in order to obtain the final decision. The determination of the optimal threshold,
say σ∗, is discussed in subsection 2.1.

For the training of the reliability evaluator we have chosen a supervised ap-
proach. Namely, the reliability classifier is trained on a reliability-training set for
which the true class of the patterns is known. The desired output is set to 0
for patterns to which the primary classifier assigns the wrong class, and to 1 for
correctly classified patterns. Our method relies on the generalization ability of
the reliability evaluator to interpolate intermediate values for patterns that are
across regions with good classification results and regions poorly classified.

Notice that, while the task of the reject classifier is itself a full classification
task, it is expected to be simpler than the one faced by the primary classifier.
This can be figured by simply considering that both classifiers operate on the
same input space, but while the reject classifier has to face a two classes problem
(reliable or unreliable patterns), the primary classifier usually has to discriminate
among two or more classes. This means that even in the cases in which the



286 P. Foggia et al.

training set is not adequately representative for obtaining a good classifier or a
good estimate of the a posteriori class probabilities, it is still possible that the
patterns suffice to train a properly working reliability classifier.

2.1 Optimal Values of the Reject Threshold

The rationale of the method used in this paper for fixing the reject threshold
has been presented in [5]. For the sake of completeness, in the following we will
briefly review it; moreover, we will introduce the function used in Section 3 for
comparing different reject rules.

To this regard, it is assumed that an effectiveness function P , taking into
account the requirements of the particular application, evaluates the quality of
the classification in terms of correct recognition, misclassification and rejection
rates. Under this assumption the optimal reject threshold value, determining
the best trade-off between reject rate and misclassification rate, is the one for
which the function P reaches its absolute maximum. The requirements of a given
application domain are specified by attributing costs to misclassifications, rejects
and correct classifications. The cost of an error can be a function of the guess
and of the actual class [7]. To operatively define the function P , let us refer to a
general classification problem. Suppose that the patterns to be classified can be
assigned to one of N+1 classes, labeled with 0, 1, ..., N . Labels 1, ..., N denote
the actual classes, while 0 is a fictitious class collecting the rejected patterns. For
each actual class i, let us call Rii the percentage of patterns correctly classified,
Rij the percentage of patterns erroneously assigned to the class j (with j �= i)
and Ri0 the percentage of rejected patterns.

For the same class i, let R0
ii and R0

ij respectively indicate the percentages of
patterns correctly classified and of patterns erroneously assigned to the class j,
when the classifier is used at 0-reject. If we assume for P a linear dependence
on Rii, Rij and Ri0, its expression is given by:

P =
N∑

i=1

Cii(Rii − R0
ii) −

N∑

i=1

N∑

j=1,j �=i

Cij(Rij − R0
ij) −

N∑

i=1

Ci0Ri0 (1)

In other words, P measures the actual effectiveness improvement when the reject
option is introduced, with respect to the performance of the classifier at 0-reject.
The term Cij denotes the cost of assigning to the class j a pattern belonging
to the class i. Note that, if j = 0, this is the cost of rejecting a pattern coming
from the class i, while, if j = i, Cij actually represents the gain associated to a
correct classification. Obviously, in order that a rejection be convenient, for each
class i, the following relation must hold:

Cij ≥ Ci0 ∀j �= 0, j �= i (2)

Since Rii, Rij and Ri0 depend on the value of the reject threshold σ, P is also
a function of σ. Starting from the results presented in [5], it is possible to show
that the following relation holds:
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P (σ) =
N∑

i=1

N∑

j=1,j �=i

(Cij − Ci0)
∫ σ

0
Dij(ψ)d(ψ) −

N∑

i=1

(Cii + Ci0)
∫ σ

0
Dii(ψ)d(ψ)

(3)
where Dii(ψ) and Dij(ψ) (with j �= i) are, respectively, the occurrence density
curves of correctly classified and misclassified patterns for the class i as a function
of the value of σ. In other words, Dij(ψ)d(ψ) is the fraction of patterns of the
class i assigned to class j with a reliability in the interval [ψ, ψ + dψ].

The optimal value σ∗ of the reject threshold σ is the one for which the function
P gets its maximum value. In practice, the functions Dij(ψ) are not available
in their analytical form and therefore, for evaluating σ∗, they should be exper-
imentally determined in tabular form on a set of labeled patterns, adequately
representative of the target domain. The value of σ∗ can be then determined by
means of an exhaustive search among the tabulated values of P (σ).

3 Experimental Results

The aim of the performed tests is to compare our method with the other classical
reject approaches on real data. In particular, we considered the Chow’s rule [1,2]
and the reject rule proposed by Foggia et al. in [5]. According to the method in [5],
the reliability of the classification can be expressed as a function ψ = ψ (ψa, ψb),
where ψa and ψb account for two different situations which can give rise to
unreliable classifications: (a) there is no class whose output value is sufficiently
high to judge the classification reliable; (b) there is not a clear overwhelming
class. To combine the reliability parameters, we considered the operators (ψmax,
ψmin, ψmed, ψsym) used in [5].

We have considered three different databases coming from the UCI Machine
Learning Repository [8]. The first database (letter) contains the 26 capital letters
in the English alphabet: the character images were based on 20 different fonts,
randomly distorted. The second database (pendigits) contains handwritten digits
obtained by means of a digitizing tablet. The third database (spam) refers to the
problem of determining whether a given email is spam or not. The characteristics
of the considered databases are summarized in Table 1, where we have reported
the number of the classes and the size of the training, validation and test sets. It
is worth noting that while in the pendigits and the letter databases the patterns

Table 1. Characteristics of the employed databases

Data set letter pendigits spam
# classes 26 10 2

# training patterns 5985 3748 1381

# validation patterns 5999 3747 1380

# test patterns 8016 3498 1840
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Table 2. Recognition rates obtained by each primary classifier on the test sets of the
considered databases

Classifier Rec. rate
(letter)

Rec. rate
(pendigits)

Rec. rate
(spam)

MLP10 (10 hidden neurons) 73.13% 90.19% 92.83%

MLP40 (40 hidden neurons) 82.31% 92.82% 93.10%

MLP80 (80 hidden neurons) 86.40% 93.05% 93.21%

NN 92.18% 97.20% 86.30%

are uniformly distributed within the classes, in the spam database the non-
spam patterns outnumber the spam patterns (2788 non-spam vs 1813 spam).
We partitioned the databases in the training, validation and test sets preserving
the original class distribution.

In order to assess the effectiveness of the proposed method with respect to
different paradigms for primary classification, in our experimentation we consid-
ered a statistical classifier, a Nearest Neighbor (NN ), and a neural network, a
Multi-Layer Perceptron (MLP). The employed MLP has a single hidden layer.
Learning has been performed with the standard Back-Propagation algorithm,
with a constant learning rate equal to 0.5. The sigmoidal activation function
was chosen for all the neurons. Tests were carried out employing 10, 40 and 80
neurons in the hidden layer. The validation set was used to avoid overtraining.
The training set has been also used as the reference set of the NN classifier.

The recognition rates obtained by each primary classifier on the considered
databases are shown in Table 2. It is interesting to note the high variability of
the performance obtained by the selected primary classifiers: this allows us to
assess the performance of the proposed method in different situations.

As stated in the previous Section, the rationale of our method does not depend
on the particular technique used for the reliability evaluation. In particular, in
this work we have experimented the use of a Support Vector Machine (SVM)
approach. More precisely, since the goal of the reliability evaluator is to provide a
real-valued measure, we have adopted a variant of SVM known as Support Vector
Regression (ε-SVR). The ε-SVR has been trained by using the validation sets as
reliability-training sets. With regard to the choice of the ε-SVR parameters, we
performed a grid search to obtain their optimal values. The validation sets were
also used to calculate the optimal value of the reject thresholds for the reject
decisor and the rule proposed in [5].

In order to compare the proposed reject rule with respect to the rules in [2]
and [5], we employed the effectiveness improvement index P defined in eq. (1).
The values of ψa and ψb needed by the reject rule described in [5] have been cal-
culated, for each classifier, as proposed in [9]. The Chow’s rule, instead, has been
applied after estimating the a posteriori probability of each class as suggested
in [10] (for the MLP) and in [3] (for the NN classifier).
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Table 3. Performance of the considered reject methods. Each cell of the table shows
the number of occurrences where a given method obtained the highest value of P , over
the 40 devised configurations for each database.

Reject method letter pendigits spam
chow 3 5 15

min 4 1 17

med 2 9 17

max 3 0 16

sym 1 0 15

svr 31 26 26

We assumed that the three considered recognition tasks do not require to
distinguish among the possible kinds of errors (Cii = Cc, Cij = Ce, Ci0 =
Cr, ∀i, ∀j �= i). So, it is possible to define a normalized cost as the ratio
Cn = (Ce − Cr)/(Cc + Cr). In particular, for our tests, we considered Ce ∈
{2.5, 3, 4, 5, 6, 7, 8, 10, 12, 14} and set Cc = 1 and Cr = 2.

In Table 3, we reported the performance of the selected approaches. Each cell
of the table shows the total number of occurrences where a given method ob-
tained the highest value of P over the 40 tests resulting from the ten Cn values
combined with the four primary classifiers considered. In the figure the names
chow, min, med, max, sym and svr stand for the Chow’s rule, the reject rule
in [5] using ψmin, ψmed, ψmax and ψsym, and the proposed reject classifier, re-
spectively. It is worth noting that the sum of the values on each column of the
Table 3 is not constant (and equal to the total number of tests for each database,
i.e. 40) as it would be expected; this is ascribable to the fact that, in the cases in
which n different algorithms have obtained the same best score, we declared n
winners. From the results presented in Table 3, it can be seen that the proposed
approach performs significantly better than the others. This behavior is more
evident when the number of the classes of the primary classifier is higher than
that of the reject classifier. In order to provide a more quantitative insight of
the experimental results, in Figure 2 we have reported the performance of the
considered reject approaches as a function of Cn on the three used databases.
The performance is expressed in terms of P averaged on the four employed clas-
sifiers (MLP10, MLP40, MLP80, NN). For the sake of clarity, among all the
combining operators proposed in [5], we reported only the results obtained by
using ψmed, since it provided in most cases the highest value of P . It is worth
noting that, as it could be expected, the improvements provided by the use of
reject option are more evident in the case of the letter database; in fact, the
average recognition rate obtained by the primary classifiers on this database is
about 10% lower with respect to the results obtained on the pendigits and the
spam databases. From the results reported in Figure 2, it is possible to note that
the proposed reject system performs better than all the other rules on the letter
and the spam databases for all costs configurations; differently, on the pendigits
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(a)

(b)

(c)

Fig. 2. Trends of P versus Cn in case of (a) letter, (b) pendigits, (c) spam database.
In each case P is averaged on the four employed classifiers (MLP10, MLP40, MLP80,
NN).
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database the proposed method provides slightly higher performance only for low
values of Cn, while the rule in [5] is to be preferred in case of high values of Cn.

4 Conclusions

The reject methods proposed so far make restrictive assumptions on the out-
puts provided by the classifier to which the reject option is applied. Moreover,
they lack of generality regarding the choice of classification technique. In order
to overcome these limitations, in this paper we developed a reject method that
makes little or no assumption on the structure of the classifier and of its out-
puts, and can adapt to some degree to the training information available in the
application at hand. We compared our proposal with other less general but well-
known reject rules on three standard databases. Obtained results demonstrated
the effectiveness of the proposed method.
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Abstract. A new theoretical framework for the analysis of linear com-
biners is presented in this paper. This framework extends the scope of
previous analytical models, and provides some new theoretical results
which improve the understanding of linear combiners operation. In par-
ticular, we show that the analytical model developed in seminal works
by Tumer and Ghosh is included in this framework.

1 Introduction

One of the main open problems in the field of multiple classifier systems is the
lack of a general theoretical framework which can give a unifying view of the
large number of classifier combining rules and ensemble construction methods
proposed so far in the literature [6]. With regard to combining rules, some theo-
retical results, with limited scope, are currently available for the majority voting
and the linear combination of classifiers outputs. In particular, a theoretical
framework for linear combiners, which are the focus of this paper, has been de-
veloped in seminal works by Tumer and Ghosh [8, 9], and was then exploited
and extended in [1] and [2]. Theoretical analysis of linear combiners were also
reported in [3,5,4]. The framework by Tumer and Ghosh was the first to provide
useful insights into the behaviour of the linear combination by simple averag-
ing, and some practical guidelines to the design of linearly combined classifier
ensembles [8,9]. Fumera and Roli extended these results to the weighted average
combining rule [2], and derived some guidelines for the choice between simple
and weighted averaging. Although the theoretical predictions of the model by
Tumer and Ghosh are derived under very strict and unrealistic assumptions, the
authors noted that they were confirmed with good accuracy on many real data
sets [2]. This raised an issue about the scope of the model by Tumer and Ghosh.

The work presented in this paper is a by-product of an attempt to provide
an explanation to the above issue. We found that the theoretical analysis of the
misclassification probability of individual and linearly combined classifiers given
by Tumer and Ghosh can be developed under a new theoretical framework, which
is presented in Sect. 2. The new theoretical framework has a broader scope than
the one by Tumer and Ghosh, and includes it as a particular case, as explained
in Sect. 3. We finally show in Sect. 4 that our framework provides some more
insights into the operation of linear combiners, and also provides a partial answer
to the open issue mentioned above about the prediction capability of Tumer and

M. Haindl, J. Kittler, and F. Roli (Eds.): MCS 2007, LNCS 4472, pp. 292–301, 2007.
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Fig. 1. True posteriors (solid lines) around the ideal boundary xopt between ωi and ωj ,
and estimated posteriors (dashed lines) leading to the boundary xb, and to an added
error (dark gray area) over Bayes error (light gray area)

Ghosh model. We believe that the results presented in this paper can be a further
step towards a more general framework for multiple classifier systems.

2 A Bayesian Framework for Generalization Error
Analysis

Consider a given C-class classification problem, and a classifier which provides
estimates fk(x), k = 1, . . . , C, of the a posteriori probabilities P[ωk|x], where
x denotes a feature vector. The fk(x)’s are considered random variables (their
randomness depends for instance on the random choice of the training set). If
Bayes decision rule is applied to the estimated posteriors, x is assigned to the
class ωi such that i = arg maxkfk(x), and non optimal decisions are taken if
arg maxkfk(x) �= arg maxkP[ωk|x]. This causes an additional misclassification
probability (named added error in [8, 9]) over Bayes error. In the following we
consider the case of a one-dimensional feature space: all the results can be ex-
tended to multi-dimensional feature spaces as described in detail in [7].

The framework by Tumer and Ghosh is based on analyzing the added error in
a region of the feature space around an ideal boundary xopt between two classes
ωi and ωj , in the case in which the estimation errors lead to a boundary xb

between the same classes, which can be shifted from the ideal one. An example
is given in Fig. 1. In this case, it is easy to see that the added error is given by

eadd(xb) =
∫ xb

xopt

(P[ωj|x] − P[ωi|x]) P[x]dx. (1)

Note that it depends on the posteriors of classes ωi and ωj only.
Our aim is instead to analyze the added error under more general conditions,

namely in a region of the feature space around any given estimated boundary
xb between two classes ωi and ωj, without making any assumption on the true
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Fig. 2. Two possible realizations of the estimates of the posteriors of classes ωi and
ωj (dashed lines), leading to an estimated class boundary xb. The true posteriors are
shown as solid lines. The difference Δeadd(xref , xb) (xref is the same in both plots)
corresponds to the gray areas: it is positive in the left and negative in the right.

posteriors or on the presence of ideal boundaries in such region. To this aim, con-
sider a given interval [x1, x2] which contains an estimated boundary xb. Assuming
without loss of generality that fi(xb) > fj(xb) for x < xb, so that x is assigned
to ωi, if x < xb, the added error in [x1, x2] can be written as a function of xb,
as eadd(xb) =

∫ xb

x1
(P[ω(x)|x] − P[ωi|x])P[x]dx +

∫ x2

xb
(P[ω(x)|x] − P[ωj |x])P[x]dx,

where ω(x) = arg maxωk
P[ωk|x]. Note that eadd(xb) depends on the maximum of

the posteriors in each x, which does not necessarily coincide with the posterior of
ωi or ωj , contrary to the case considered by Tumer and Ghosh. To the purpose of
our analysis, namely the comparison between the added error of individual classi-
fiers and of their linear combination, it is convenient to remove the above depen-
dence on P[ω(x)|x]. This can be achieved by considering any fixed reference point
xref ∈ [x1, x2], and by rewriting eadd(xb) as eadd(xref) + [eadd(xb) − eadd(xref)],
where eadd(xref) is the added error that one would get if the estimated boundary
xb lay in xref . The term between square brackets is the difference between the
added error when the estimated boundary lies in a point xb, and eadd(xref), and
will be denoted as Δeadd(xref , xb). It is easy to see that

Δeadd(xref , xb) =
∫ xb

xref

(P[ωj |x] − P[ωi|x]) P[x]dx . (2)

An example is given in Fig. 2. Note now that Δeadd(xref , xb) depends on the pos-
teriors of ωi or ωj only, contrary to both eadd(xref) and eadd(xb). The main idea
behind our framework is to express the added error of each individual classifier,
as well as the one of the linear combiner, using the same reference point xref , as
the sum of eadd(xref), which is a constant term identical for each classifier, and
the term Δeadd(xref , ·), which can be different for each classifier. This allows to
evaluate the reduction of the added error which can be attained by the linear
combination by comparing the latter term only.
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We now formalize the main assumption on which our model is based. It is
analogous to the main assumption of Tumer and Ghosh model reported in Sect. 3,
although it was not explicitly phrased in this form in [8, 9].

Assumption 1. Each realization of the random variables fk(x), k = 1, . . . , C,
leads to an estimated boundary xb between ωi and ωj in the considered interval
[x1, x2] of the feature space. No other estimated class boundary lies in [x1, x2].

As a consequence, xb is a random variable whose distribution depends on the
distribution of the fk(x)’s.

2.1 Added Error of a Single Classifier

Following the approach in [8, 9], we start our analysis by writing the estimates
fk(x) as P[ωk|x]+εk(x), where εk(x) denotes the estimation error. An estimated
boundary xb between two classes ωi and ωj is characterized by fi(xb) = fj(xb) >
fk(xb), k �= i, j. We will denote with b the offset xb −xref . As in [8,9], if b is small
enough with respect to the changes in the posteriors and in P[x], a first order
approximations of the posteriors and a zero order approximation of P[x] can be
made around the reference point xref : P[ωk|xref+b] � P[ωk|xref ]+bP′[ωk|xref ], k =
i, j, e P[xref + b] � P[xref ]. Substituting in Eq. 2 we obtain

Δeadd(xref , xb) =
P[xref ]t

2

(
2u

t
b + b2

)
, (3)

where
u = P[ωj|xref ] − P[ωi|xref ], t = P

′[ωj |xref ] − P
′[ωi|xref ] . (4)

The expected value of Δeadd(xref , xb) with respect to b is then

ΔEadd = E[Δeadd(xref , xb)] =
P[xref ]t

2

[
2u

t
βb + β2

b + σ2
b

]
, (5)

where βb and σ2
b denote the expected value and the variance of b.

It is also possible to express b as a function of the estimation errors: this allows
to rewrite Eq. 5 in a form which will be useful to compare the expected added
error of an individual classifier with the one of linearly combined classifiers. From
fi(xb) = fj(xb), rewriting fk(x), k = i, j, as P[ωk|x] + εk(x), and using the first
order approximation of the posteriors, we obtain

b =
εi(xb) − εj(xb)

t
− u

t
. (6)

Assuming as in [8, 9] that the estimation errors on different classes εi(x) and
εj(x) are uncorrelated, from Eq. 6 we obtain

βb =
βi − βj

t
− u

t
, σ2

b =
σ2

i + σ2
j

t2
, (7)
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where βk and σ2
k, k = i, j, denote the expected value (named bias in [8, 9]) and

the variance of εk(xb). Substituting the above expression of βb into Eq. 5 we
obtain

ΔEadd =
P[xref ]t

2

[
−u2

t2
+

1
t2

(βi − βj)2 +
1
t2

(σ2
i + σ2

j )
]

. (8)

The expected added error in [x1, x2] is then given by

Eadd = eadd(xref) + ΔEadd . (9)

It is easy to see that the expected added error is the sum of three terms: a
constant term eadd(xref) − P[xref ]u2

2t , whose value depends only on the choice of
the reference point xref ; a term depending on the bias of estimation errors, and
the other on their variance.

2.2 Added Error of Linearly Combined Classifiers

Consider now a linear combination of the posteriors estimates provided by an en-
semble of N classifiers, fn

k (x), k = 1, . . . , C; n = 1, . . . , N , using positive weights
wn which sum up to 1, as in [2]:

fave
k (x) =

N∑

n=1

wnfn
k (x) = P[ωk|x] + εave

k (x) = P[ωk|x] +
N∑

n=1

wnεn
k (x) . (10)

To proceed with our analysis, we extend the assumption 1 to the estimates of
each individual classifier, and of their linear combination. Now, as in Sect. 2.1,
we rewrite the added error eave

add(xbave) in [x1, x2] as eave
add(xref) + [eave

add(xbave) −
eave
add(xref)], using the same reference point xref as in each individual classifier.

With the same approximations, assumptions and steps as in Sect. 2.1, we obtain:

bave =
εave

i (xbave) − εave
j (xbave)

t
− u

t
, (11)

while the expected value of Δeave
add(xref , xbave) is

ΔEave
add =

P[xref ]t
2

{
−u2

t2
+

1
t2

(βave
i − βave

j )2 +
1
t2

[
(σave

i )2 + (σave
j )2

]}
, (12)

where

βave
k =

N∑

n=1

wnβn
k , (σave

k )2 =
N∑

n=1

w2
n(σn

k )2 +
N∑

n=1

w2
n

∑

m �=n

ρmn
k σm

k σn
k , k = i, j ,

(13)
ρmn

k denotes the correlation coefficient between εm
k (x) and εn

k (x), and σm
k is

the standard deviation of εm
k (x). Finally, the expected added error in [x1, x2] is

Eave
add = eadd(xref) + ΔEave

add. (14)
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Eqs. 14,12 show that the expected added error of the linear combiner, as the one
of individual classifiers (see Eqs. 9 and 8), is given by the same constant term
eadd(xref) − P[xref ]u2

2t , plus a bias term and a variance term. The error reduction
attainable by the linear combination can thus be evaluated taking into account
only the bias and variance terms.

In the next Section we will point out the different scopes of the two frameworks
in their capability of modeling the added error, and show that Tumer and Ghosh
framework is included in ours. In Sect. 4 we will then compare the predictions
about the behaviour of linear combiners which can be obtained from the two
frameworks.

3 Comparison with Tumer and Ghosh Framework

As explained in Sect. 2, Tumer and Ghosh framework differs from ours since
it evaluates the added error in an interval of the feature space containing an
ideal boundary xopt between two classes ωi and ωj , which is characterized by
P[ωi|xopt] = P[ωj|xopt] > P[ωk|xopt], k �= i, j. The main assumption of Tumer
and Ghosh framework can be phrased as follows.

Assumption 2. Each realization of the random variables fn
k (x), k = 1, . . . , C; n

= 1, . . . , N , leads to an estimated boundary between ωi e ωj, in a given interval
[x1, x2] which contains an ideal boundary xopt between the same classes, both for
each individual classifier and for their linear combination. Furthermore, there
are no other estimated or ideal class boundaries in the considered interval.

This is more restrictive than assumption 1 of our framework, which does not
require the presence of such an ideal boundary, and thus allows to model the
added error only for a subset of cases which can be modeled by our framework.
Under assumption 2, the added error in [x1, x2] is given by Eq. 1. Denoting the
offset xb −xopt with b, making a first order approximation of the posteriors and a
zero order approximation of P[x] around xopt, and assuming that the estimation
errors on different classes are uncorrelated as in Sect. 2, it turns out [8, 9] that

bn =
εi(xbn) − εj(xbn)

t
, bave =

εi(xbave) − εj(xbave)
t

, (15)

while the expected added error in [x1, x2] is

En
add = P[xopt]t

2

{ 1
t2 (βn

i − βn
j )2 + 1

t2

[
(σn

i )2 + (σn
j )2

]}
,

Eave
add = P[xopt]t

2

{ 1
t2 (βave

i − βave
j )2 + 1

t2

[
(σave

i )2 + (σave
j )2

]}
,

(16)

where t, εave
k (x), βk and σ2

k, k = i, j, are defined exactly as in Sect. 2. It is worth
noting that the two expressions of the expected added error are the sum of a
bias and a variance term formally identical to the ones derived from our model
(see Eqs. 13 and 8 for an individual classifier, and 13, 12 for a linear combiner):
the only difference is that our model leads to a further constant additive term
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Fig. 3. True (solid lines) and estimated posteriors (dashed lines) for a three-class
problem, leading to an ideal boundary xopt between ω1 and ω2, and to an estimated
boundary xb between ω3 and ω2. The added error corresponds to the light gray plus
the dark gray area in the left panel, while it would be erroneously evaluated by Tumer
and Ghosh framework as the gray area in the right panel (see text for a complete
explanation).

due to the fact that in our model the reference point xref needs not to coincide
with an ideal boundary xopt (which could even not exist in [x1, x2]).

We now show that Tumer and Ghosh framework is included in ours, in the
sense that, under the more restrictive assumption 2, they both lead to the same
expression of the expected added error in the considered interval, provided that
the reference point xref is chosen equal to the ideal boundary xopt between ωi

and ωj . To this aim, it is sufficient to note that in this case the term u =
P[ωj|xopt] − P[ωi|xopt] is null, since the true posteriors are equal in the ideal
boundary xopt, and the term eadd(xopt) is null as well, since, when the estimated
boundary coincides with the ideal one (xb = xopt), the added error vanishes. It
immediately follows that the expressions of b and of the expected added error
given by the two frameworks are identical.

We finally point out that there are cases in which the added error can be
correctly modeled by our framework only. This happens when assumption 1
holds while 2 does not, namely when there is no ideal boundary between ωi and
ωj in the considered interval, or equivalently when the effect of the estimation
errors on the posteriors is not a shift of an ideal class boundary. It is worth
noting that these are cases of practical interest: as pointed out in [6], in complex
pattern recognition problems it is likely that estimation errors cause different
effects besides the shift of ideal boundaries. To clear up this point, we consider
an example taken from [6] for a three-class problem, which is illustrated in Fig. 3,
left. In the considered interval there is an ideal boundary xopt between ω1 and ω2,
while estimation errors lead to a boundary xb between ω3 and ω2. Note that there
is also a point x′ such that f1(x′) = f2(x′), which however is not an estimated
boundary between ω1 and ω2. The true added error corresponds to the light
gray area in Fig. 3, left. Tumer and Ghosh framework would erroneously model
it with reference to the point x′, as the grey area in Fig. 3, right. Consider instead
xref = xopt as the reference point for our framework, for the sake of simplicity
(any other point could be used as well). Our framework correctly models the
added error as the sum of eadd(xref), namely the one corresponding to xb = xref
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(the sum of the light gray and of the intermediate gray areas in Fig. 3, left), and
of Δeadd(xref , xb) (the dark gray area minus the intermediate gray area), which
results in the sum of the light and dark gray areas in Fig. 3, left.

To sum up, our model has a broader scope than the one by Tumer and Ghosh,
since it allows to model the added error under more general conditions. As a
result, one may expect that our framework gives more accurate predictions on
the behaviour of linear combiners, which in turn could provide better guidelines
for their design. This issue is discussed in the next Section.

4 Analysis of Simple and Weighted Averaging

In [8,9] the model by Tumer and Ghosh was exploited to evaluate the reduction
of the added error attainable by the simple average combining rule (from now
on, SA) with respect to individual classifiers. Some further results were pointed
out in [2]. The main results were the following:

1. SA reduces the variance component of the expected added error by an
amount which depends on the correlation between estimation errors ρmn

k of
the different classifiers (see Eqs. 16 and 13); for negatively correlated errors,
the variance component can be reduced up to zero.

2. SA guarantees at least a bias component not greater than the maximum one
exhibited by the individual classifiers.

These results suggested in [8, 9] that the design of individual classifiers should
focus on obtaining low bias and correlation, while the variance can be reduced
by averaging classifiers.

What does the model presented in Sect. 2 add to the above results? Note
first that in our model the bias and variance components of the expected added
error, in Eqs. 8 (P[xref ]t

2 [ 1
t2 (βi − βj)2 + 1

t2 (σ2
i + σ2

j )]) and 12 (P[xref ]t
2 { 1

t2 (βave
i −

βave
j )2 + 1

t2 [(σave
i )2 + (σave

j )2]}), can be either positive or negative depending on
the sign of the term t given by Eq. 4, while t is always positive in Tumer and
Ghosh model. If t > 0, the bias and variance components of the two models
are identical, and thus the above results provided by Tumer and Ghosh model
hold also for ours. Instead, if t < 0, the bias and variance components derived
from our model are negative. This implies that the expected added error of the
SA can even be higher than the one of each individual classifier, and anyway it
can never be lower than that of the best individual classifier. Furthermore, the
reduction in the expected added error increases for increasing correlation between
the estimation errors. Therefore, in presence of different estimated boundaries
characterized by both positive and negative values of the corresponding t, the
net effect of SA will be determined by the counterbalance of the two behaviours
above. In other words, the advantage of SA over individual classifiers could be
lower than the one predicted by Tumer and Ghosh model.

A further exploitation of Tumer and Ghosh model was carried out in [2], to
compare the behaviour of the SA with that of the weighted average (from now
on, WA) combining rule. An analytical comparison was possible only under the
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simplest case of unbiased and uncorrelated errors. The main theoretical results
derived in [2] can be summarized as follows:

1. SA is the optimal linear combining rule, only if the individual classifiers
exhibit the same misclassification rate.

2. WA can always perform at worst as the best classifier of the ensemble.
3. The improvement in misclassification rate which can be attained by WA

over SA depends on the error range of the ensemble, namely on the mis-
classification rates of the best and worst individual classifiers: the broader
the error range, the higher the improvement; being equal the error range,
the improvement strongly depends on the degree of performance imbalance,
namely on the distribution of the misclassification rates of the other indi-
vidual classifiers. In particular, for classifiers exhibiting a narrow error range
(say, below 0.05), the advantage of WA over SA is quite small (say, below
0.01).

This suggested in [2] some new simple guidelines for the choice between SA
and WA in real applications. Basically, it could be worth using WA only if
the individual classifiers exhibit a broad error range (say, above 5%), unless
the weights can be estimated with high reliability; otherwise the small ideal
advantage can be canceled out by weight estimations from small and noisy data
sets. Although the assumption of unbiased and uncorrelated errors, as well as
the main assumption of Tumer and Ghosh model (being the effect of estimation
errors the shift of ideal boundaries) are likely to be violated in practice, it turned
out that the derived predictions about the behaviour of SA and WA, and thus
the validity of the above guidelines, were confirmed by experimental results on
real data sets reported in [2]. It was left as an open problem to understand
why theoretical predictions derived under assumptions which were apparently
very restrictive were confirmed on real data sets. A partial answer can be given
thanks to the new model described in this paper. By carrying out the same
analysis described in detail in [2] for the case of unbiased and uncorrelated
errors, it turns out that our model gives the same predictions above about the
behaviour of WA and SA, for the case in which t > 0. Moreover, for t < 0
only prediction 2 above changes: in this case WA performs at best (instead of
at worst) as the best individual classifier. This is thus an indication that the
predictions derived from Tumer and Ghosh model were confirmed on real data
sets since they actually hold under more general conditions. We point out that
experimental results analogous to [2] (not reported here due to space limits)
were obtained on six more real data sets taken from the UCI repository, namely
Optdigits, DNA, Ionosphere, Satellite, Satimage and Segmentation.

5 Conclusions

In this paper we presented a new theoretical framework for the analysis of the
reduction in misclassification probability which can be attained by linearly com-
bining an ensemble of classifiers which provide estimates of the a posteriori prob-
abilities. Our framework has a broader scope than the one developed in works
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by Tumer and Ghosh, and includes it as a particular case. It allows to analyze
the added error around any class boundary provided by the estimated posteri-
ors, not only around boundaries which are shifted from ideal ones as in [8, 9].
This gives a more general understanding of the operation of linear combiners.
In particular, this allowed us to point out some behaviours of linear combiners
(technically, the cases in which the term t is negative) which were not contem-
plated by Tumer and Ghosh model. Nevertheless, we found that many of the
predictions of our model, in particular the ones from which practical guidelines
for the design of linear combiners can be derived, are nearly identical to the
predictions derived from the previous model: this gives a partial explanation to
an open issue pointed out in [2], raised by the fact that theoretical prediction
derived by Tumer and Ghosh model under strict and unrealistic assumptions
turned out to be experimentally confirmed on real data sets.

To sum up, the main contribution of this paper is the development of a theo-
retical framework which allows a more general understanding of linear combiners.
We are also investigating whether the ideas behind the theoretical frameworks
considered in this work could suggest new theoretical models for other combin-
ing rules, which would be a useful step towards a more general framework for
multiple classifier systems.

Acknowledgment. The authors would like to thank Gavin Brown for his valu-
able comments and suggestions on this work.
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Abstract. We propose a new classifier combination scheme for the ensemble
of classifiers. The Pairwise Fusion Matrix (PFM) constructs confusion matrices
based on classifier pairs and thus offers the estimated probability of each class
based on each classifier pair. These probability outputs can then be combined
and the final outputs of the ensemble of classifiers is reached using various fu-
sion functions. The advantage of this approach is the flexibility of the choice of
the fusion functions, and the experiments suggest that the PFM combined with
the majority voting outperforms the simple majority voting scheme on most of
problems.

Keywords: Fusion Function, Combining Classifiers, Diversity, Confusion Ma-
trix, Pattern Recognition, Majority Voting, Ensemble of Learning Machines.

1 Introduction

Different classifiers usually make different errors on different samples, which means
that we can arrive at an ensemble that makes more accurate decisions by combining
classifiers [10,14,8,18,4,19]. For this purpose, diverse classifiers are grouped together
into what is known as an Ensemble of Classifiers (EoC). There are two problems in
optimizing the performance of an EoC: first, how classifiers are selected, given a pool
of different classifiers, to construct the best ensemble; and second, given all the selected
classifiers, choosing the best rule to combine their outputs. These problems are funda-
mentally different, and should be solved separately to reduce the complexity involved
in optimizing EoCs; the former focuses on ensemble selection [10, 14, 6, 13] and the
latter on ensemble combination, i.e. the choice of fusion functions [15, 8, 13].

Several important factors must be considered for an EoC: (a) find a pertinent objec-
tive function for selecting the classifiers; (b) use a pertinent searching algorithm to apply
this criterion; and (c) use a adequate fusion function to combine classifier outputs. Di-
versity measures are designed as objective functions for ensemble selection [10,5,3,6],
but their performances are not convincing. On the other hand, some different fusion
functions have been suggested for combining classifiers [15, 14, 6, 17, 9, 8, 18, 13], but
they are either based on strong assumptions [1, 11], such as simple fusion functions,
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or required a large data set, such as trained fusion functions [14, 6, 17, 9]. Given insuf-
ficient training samples, simple fusion functions may outperform some trained fusion
functions [11]. Here are the key questions that need to be addressed:

1. Can a trained fusion function be effective without large training samples?
2. Can we take the interaction among classifiers into account in combining classifiers?

To answer these questions, we propose a method for combining classifiers. With the
same fashion, pairwise fusion matrix (PFM) transforms an EoC into an ensemble of
classifier pairs. With the prospect of using classifier pairs, PFM can obtain useful prob-
abilities for classifier combination, transform the crisp class label outputs into class
probability outputs and reduce the number of samples needed for ensemble training.

The paper is organized as follows. In section 2, the traditional fusion functions for
crisp class outputs are discussed, and the proposed pairwise fusion matrix is presented
in section 3. Experimental results of both ensemble selection and classifier combination
are compared in section 4. Discussion and conclusion are presented in the remaining
sections.

2 Fusion Functions for Crisp Output Classifier Combination

2.1 Traditional Fusion Functions

Several simple fusion functions for combining classifiers have been proposed, such as
Maximum Rule (MAX), Minimum Rule (MIN), Sum Rule (SUM), Product Rule (PRO)
and simple Majority Voting Rule (MAJ) [8,18,1,7]. These directly compare the outputs
from all individual classifiers in an ensemble, and do not require any further training.
Some related theoretical studies are presented in [8, 18]. These simple fusion functions
are straightforward. Since they are relatively simple and do not explore the relationships
between classifiers or those between classes, they are suboptimal [1], and, as stated in
[16], these fusion functions rely on the very restrictive assumption of the independence
of estimates. To address this shortcoming, other, more sophisticated strategies have been
proposed which use more available information in combining classifiers [14, 6, 17, 9],
such as Naive Bayes (NB) [14,18], Decision Templates (DT) [9], Behavior-Knowledge
Space (BKS) and Wernecke’s method (WER) [17].

Nevertheless, if classifiers only give crisp label outputs, then a lot of these fusion
functions are useless, because they require the class probability outputs. Traditional
class combination schemes such as MAX, MIN, SUM and PRO cannot apply on clas-
sifiers with only crisp label outputs, and some trained fusion functions such as DT have
the same drawback. Only few fusion functions such as MAJ, NB, BKS or WER can be
used here. We give a short introdution on these fusion functions:

1. Simple Majority Voting Rule (MAJ)
This rule does not require the a posteriori outputs for each class, and each classifier
gives only one crisp class output as a vote for that class. Then, the ensemble output
is assigned to the class with the maximum number of votes among all classes. For
any sample x ∈ X , for a group of L classifiers in a T -class problem, we denote the
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decision of label outputs from classifier f(i) is c(i), 1 ≤ c(i) ≤ T , and we write
di,t = 1 for c(i) = t, 1 ≤ t ≤ T and zero otherwise. Consequently, we calculate
the discriminant function for class l, 1 ≤ l ≤ T as:

g(l|x) =
L∑

i=1

di,l (1)

And the class is selected as the one with the maximum value of g(l|x):

k = arg
T

max
l=1

g(l|x) (2)

2. Naive Bayes (NB)
Among these methods, the simplest is based on the assumption that all classifiers
are mutually independent. Under this precondition, for a group of L classifiers in
a T -class problem, we can calculate the probability P (l|c(i), x) of the class label
being l, 1 ≤ l ≤ T if classifier f(i) gives the class label output c(i) on a sample x.
Then we can use these estimated probabilities for classifying samples in the test set
X :

P̃ (l|x) ∝
L∏

i=1

P (l|c(i), x) (3)

k = arg
T

max
l=1

P̃ (l|x) (4)

This is the so-called naive nayes (NB) combination [14, 18]. However, it is very
unlikely that all classifiers in an ensemble will be mutually independent.

3. Behavior-Knowledge Space (BKS) and Wernecke’s method (WER)
Some authors propose constructing a complex BKS table [17] in order to have full
access to the information on classifier behavior. Given N samples and L classifiers
in a T -class problem, the ideal goal is to obtain the probability
P (l|c(1), · · · , c(i), · · · , c(L), x) for the whole data X , where l is a possible class
label for a sample 1 ≤ l ≤ T , and c(i) is the decision of classifier f(i) over the
sample, with L classifiers 1 ≤ i ≤ L. Each probability can be located in a cell of a
look-up table (BKS table), and then be used by multinomial combination, such as
direct comparison of these probabilities in the BKS table, known as the Behavior-
Knowledge Space (BKS), or considering a 95% confidence interval of the proba-
bilities in the BKS table, known as Wernecke’s method (WER) [17]. For BKS, the
class is assigned by simply comparing the values in each cell in BKS table:

k = arg
T

max
l=1

P (l|c(1), · · · , c(i), · · · , c(L), x) (5)

In reality, however, this probability could be impossible to obtain. With L classi-
fiers in a T -class problem, there are T × T L different situations for this group of
classifiers, and it is not difficult to see that the number of samples N is unlikely to
be sufficient for T L+1 different situations, i.e. in general, N � T L+1. As a result,
obtaining any idea of this probability is also unlikely, and thus it is usually impos-
sible to proceed with BKS or WER, except on low class dimensions with a very
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small number of classifiers in an ensemble and a very large number of samples.
Given the strict limit on the size of the training data set, some authors suggest that
BKS tends to overfit, as well as being too self-assured [9].

We notice that these methods for combining classifiers have their own disadvantages,
even though they are applicable on classifiers with only crisp class outputs. Above all,
we observe that most trained fusion functions tend to explore more information from
the training set. For this reason, most classifier combination strategies need to take the
interaction between classifiers and between classes into consideration. If these elements
are ignored, as with NB, then the performance cannot be satisfactory. If these elements
are fully explored, as with BKS or WER, given the complicated behavior of classifiers in
an ensemble, especially in a high class dimension and with a large number of classifiers,
the number of samples can scarcely be sufficient, and the probabilities obtained will
usually be unreliable.

Herein lies the problem with training ensembles for combining classifiers. The fact
that an ensemble acts in an extremely large space means that we need to use a method
which is both effective and accurate. Given this dilemma, we propose a method which
considers an ensemble of classifier pairs rather than an EoC. The proposed pairwise
fusion matrix (PFM) transformation is a practical solution and is applicable on all ex-
istent fusion functions. First, PFM transforms a group classifiers with only crisp label
outputs into an ensemble of classifier-pairs with class probability outputs. As a result,
it is possible to apply fusion functions such as MAX, MIN, SUM or PRO. Second,
PFM takes into account the pairwise interaction between classifiers on their class la-
bel outputs, and thus offers a more reliable class probability estimation. We detail this
transformation and its use in combining classifiers in the next section.

3 Pairwise Fusion Matrix Transformation (PFM)

The dilemma of EoCs is that, given a limited number of samples, we need to take into
account the interaction among classifiers. PFM makes use of pairwise estimation to
solve this problem. If we only take classifier pairs into account, we need only calculate
the probability P (l|c(i), c(j), x), where c(i) and c(j) are the decisions of classifier f(i)
and classifier f(j) over a sample x respectively. For P (l|c(i), c(j), x), given T classes
there are only T × T 2 = T 3 different situations, and if the number of samples N is
large enough, i.e. N � T 3, we can obtain a reliable estimation of this probability. This
probability can be approximated by calculating PFM:

P (l|c(i), c(j)) = N(x ∈ l, c(i), c(j))/N(c(i), c(j)) (6)

where N(c(i), c(j)) is the total number of samples on which classifier f(i) gives crisp
output c(i), and classifier f(j) gives crisp output c(j), while N(x ∈ l, c(i), c(j)) is
the number of samples the real class label of which is l, 1 ≤ l ≤ T . The probability
P (l|c(i), c(j), x) is, in fact, the concept of a 3-dimensional confusion matrix, where the
decision of classifier c(i), the decision of classifier c(j) and the real class label of sam-
ples represent each dimension. For any sample x with a class label k, PFM provides a
pairwise matrix of classifier f(i) and classifier f(j), with the probability of how likely
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it will be classified as class c(i) by f(i) and as class c(j) by f(j). For any sample x
classified as class l by classifier f(i), PFM provides a partial confusion matrix between
classifier f(j) and the real class labels of samples. All the confusion matrices of clas-
sifier f(j) can be derived quickly from any pairwise confusion matrices concerning
f(j):

P (l|c(j), x) =
T∑

i=1

P (l|c(i), c(j), x) (7)

where c(i) constitutes the class label outputs of classifier f(i). In other words, it is a
cube of T 3 cells with N samples filled in; since L classifiers mean L×(L−1)

2 classifier

pairs, we can obtain L×(L−1)
2 pairwise confusion matrices (PFM).

The probabilities from these pairwise confusion matrices offer several advantages
over the traditional ensemble combination strategies: (a) they do not require the class
probability outputs of each sample but only the class label outputs of each sample from
individual classifiers; (b) they transform the simple class label outputs into the class
probability outputs; and (c) they take into account of the interaction between classifiers.
Note that the use of pairwise confusion matrices is a transformation, not an actual clas-
sifier combination scheme. Based on these pairwise class probabilities, we can apply
other different classifier combination rules. We give two examples of the application of
PFMs in general fusion functions:

1. Pairwise Fusion Matrix using Sum Rule (PFM-SUM)
Assign x → k if

2
L × (L − 1)

L∑

i,j=1,i>j

P (k|c(i), c(j), x) = (8)

T
max
l=1

2
L × (L − 1)

L∑

i,j=1,i>j

P (l|c(i), c(j), x) (9)

2. Pairwise Fusion Matrix using Majority Voting Rule (PFM-MAJ)
This rule is similar to the simple MAJ rule, but uses the pairwise probability
P (l|c(i), c(j), x) from the classifier pair f(i) and f(j) instead of the simple prob-
ability Pi(l|x) from a single classifier f(i) considering class l.

Other fusion functions, such as DT or NB, will require further training, but are ap-
plicable as well. To prove that PFMs are applicable, we carry out the experiments on
classifier combination without ensemble selection in the next section.

4 Experiments on Fusion Functions

To ensure that the PFM is useful for combining classifiers, we tested it on problems ex-
tracted from a UCI machine learning repository. There are several requirements for the
selection of pattern recognition problems. First, the databases must have a large feature
dimension for the Random Subspace method. Second, to avoid the dimensional curse
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during training, each database must have sufficient samples of its feature dimension.
Third, to avoid identical samples being trained in Random Subspace, only databases
without symbolic features are used. Fourth, to simplify the problem, we do not use
databases with missing features. In accordance with the requirements listed above, we
carried out our experiments on 7 databases selected from the UCI data repository (see
Table 1). Among available samples, in general, 50% are used as a training data set,
and 50% are used as a test data set, except for the Image Segmentation dataset, whose
training data set and test data set have been defined on UCI data repository. Of the
training data set, 70% are used for classifier training and 30% are used for validation.
Ensemble-training (including BKS, NB and PFM) used the entire available training data
set. The cardinality of Random Subspace is set under the condition that all classifiers
have recognition rates more than 50%.

Table 1. UCI data for ensembles of classifiers

Database Classes Training Samples Test Samples Features Random Subspace Cardinality

Ionosphere 2 175 175 34 20
Liver-Disorders 2 172 172 6 4
Pima-Diabetes 2 384 384 8 4

Wisconsin Breast-Cancer 2 284 284 30 5
Wine 3 88 88 13 6

Image Segmentation 7 210 2100 19 4
Letter Recogntion 26 10000 10000 16 12

The three different classification algorithms used in our experiments are K-Nearest
Neighbors Classifiers (KNN), Parzen Windows Classifiers (PWC) and Quadratic Dis-
criminant Classifiers (QDC) [2]. For each of 7 databases and for each of 3 classification
algorithms, 10 classifiers were generated as the pool of classifiers. Among these, each
classifier has a 50% chance of being selected from this pool to construct ensembles,
ensembles were thus constructed by different numbers of classifiers, and at least three
classifiers are required for an ensemble. As a result, all ensembles were constructed
from 3 ∼ 8 classifiers. 30 ensembles had been generated for each database, for each
ensemble generation method and for each classification algorithm. Note that each en-
semble can have different number of classifiers. In total, we evaluated 30×7×3 = 630
ensembles. We then combined these ensembles with 5 different fusion functions (Table
2 ∼ 4).

In previous studies, BKS has been shown to be comparatively accurate when an
ensemble of 3 classifiers is involved [14], but the BKS could be outperformed by most
of the other fusion functions when more classifiers are involved [9]. In our study, the
BKS apparently performs very well in 2- and 3-class problems. But when the class
dimension is larger than 6, due to huge data size and limited computer memory we
could not construct the BKS table.

We also observe that PFM-MAJ offers quite stable performance, in general better
than that offered by the simple MAJ rule. The t-statistic test shows that the significance
level is at 2.78%, so there is little chance for simple MAJ to perform as well as PFM-
MAJ. Interestingly, we note that the difference in performance between PFM-MAJ and
simple MAJ is somehow related to classifier diversity. It is not difficult to understand
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Table 2. Comparison of recognition rates of different fusion functions with Random Subspace
on UCI machine learning problems with KNN classifiers. All numbers are in percents (%), the
standard variances are indicated in parenthesis.

Fusion Functions MAJ NB BKS PFM PFM
→ -MAJ -SUM

Ionosphere 78.28 (0.03) 82.04 (0.01) 92.44 (-) 80.58 (0.02) 77.80 (0.02)
Liver-Disorders 68.68 (0.04) 68.08 (0.07) 82.81 (0.03) 69.21 (0.06) 69.07 (0.05)
Pima-Diabetes 96.52 (0.01) 97.27 (-) 95.35 (0.01) 97.40 (-) 96.15 (0.01)

Wisconsin Breast-Cancer 92.51 (0.01) 92.37 (0.01) 89.51 (0.06) 93.12 (0.01) 92.44 (0.01)
Wine 76.82 (0.16) 84.47 (0.31) 92.73 (0.20) 85.27 (0.33) 84.81(0.23)

Image Segmentation 77.10 (0.14) 87.43 (0.08) - 86.02 (0.15) 82.28 (0.15)
Letter Recogntion 81.64 (0.03) 89.31 (0.04) - 89.38 (0.02) 83.51 (0.02)

Table 3. Comparison of recognition rates of different fusion functions with Random Subspace on
UCI machine learning problems with PARZEN classifiers. All numbers are in percents (%), the
standard variances are indicated in parenthesis.

Fusion Functions MAJ NB BKS PFM PFM
→ -MAJ -SUM

Ionosphere 79.79 (0.01) 80.11 (0.01) 93.76 (-) 82.54 (0.02) 79.23 (0.01)
Liver-Disorders 62.89 (0.06) 51.50 (0.15) 81.60 (0.02) 65.23 (0.03) 64.61 (0.02)
Pima-Diabetes 71.45 (0.05) 34.90 (-) 78.64 (0.07) 72.59 (0.04) 70.03 (0.05)

Wisconsin Breast-Cancer 92.25 (-) 92.16 (-) 90.85 (0.04) 92.64 (-) 92.29 (0.01)
Wine 80.72 (0.26) 87.08 (0.36) 92.54 (0.17) 87.80 (0.39) 84.96 (0.28)

Image Segmentation 77.29 (0.26) 84.15 (0.41) - 85.21 (0.20) 82.28 (0.19)
Letter Recogntion 88.41 (0.02) 93.81 (0.03) - 93.72 (0.01) 89.43 (0.01)

Table 4. Comparison of recognition rates of different fusion functions with Random Subspace
on UCI machine learning problems with QDC classifiers. All numbers are in percents (%), the
standard variances are indicated in parenthesis.

Fusion Functions MAJ NB BKS PFM PFM
→ -MAJ -SUM

Ionosphere 86.11 (0.10) 82.28 (0.03) 92.14 (0.01) 86.16 (0.03) 86.24 (0.02)
Liver-Disorders 60.12 (0.03) 50.00 (-) 79.23 (0.01) 61.39 (0.05) 61.20 (0.04)
Pima-Diabetes 68.84 (0.03) 48.52 (2.89) 79.06 (0.04) 71.02 (0.08) 68.71 (0.04)

Wisconsin Breast-Cancer 95.87 (0.01) 96.51 (0.01) 96.15 (0.01) 96.76 (0.01) 95.88 (0.01)
Wine 95.72 (0.02) 98.33 (0.01) 99.02 (0.01) 97.84 (0.01) 96.70 (0.02)

Image Segmentation 73.33 (1.13) 22.76 (8.17) - 84.70 (0.23) 84.37 (0.16)
Letter Recogntion 82.66 (0.02) 89.05 (0.04) - 90.14 (0.01) 83.73 (0.01)

that this property is in some way influenced by the types of classifiers used in exper-
iments, because different classification algorithms lead to different levels of diversity
among classifiers.

5 Discussion

For EoCs, the ideal is to obtain the probability P (l|c(1), · · · , c(i), · · · , c(L), x) for
the whole data set X , where l is the possible class label, and c(1), · · · , c(i), · · · , c(L)
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are decisions of individual classifiers f(1), · · · , f(i), · · · , f(L) respectively. But, in
reality, this approach might not work owing to the limitation with respect to the number
of samples. Instead of estimating P (l|c(1), · · · , c(i), · · · , c(L), x), the proposed PFM
deals with the probability P (l|c(i), c(j), x) from pairwise confusion matrices on an
evaluated class l, and thus is much more applicable, while at the same time taking into
account classifier interaction.

When no class probability outputs are provided, most simple fusion functions, such
as MAX, MIN, SUM and PRO, cannot be applied. The only available simple fusion
function is the simple MAJ. For trained fusion functions, DT requires the class prob-
ability outputs from classifiers, and to deal with a problem involving crisp class label
outputs, only NB or BKS, WER are applicable. However, for high-class dimension
problems and large-size ensembles, there is no way to use BKS or WER. On all se-
lected UCI machine learning problems, PFM-MAJ almost always outperforms simple
MAJ as a fusion function for combining classifiers. Moreover, the difference in per-
formance between PFM-MAJ and simple MAJ is to some extent correlated with the
diversity of ensembles, especially when KNN is used in Random Subspace.

6 Conclusion

In this paper, we use pairwise fusion matrix for classifier combination, which transforms
crisp class label outputs into class probability outputs and thus takes into account the
interaction of classifiers in a pairwise manner. To conclude, the proposed method has
some significant advantages:

1. PFM offers a somewhat performance boosting for ensembles.
2. PFM can apply on all kinds of existent fusion functions.
3. Because of its pairwise nature, it does not need too many samples for training com-

pared with BKS or WER.

The experiment reveals that the performance of PFM is promising. Intuitively, PFM
can also be used for other trained fusion functions, such as NB or DT. This will require
another training data set, but we are interested in investigating the potential use of PFM
in improving the performance of trained fusion functions.

The key element that makes an ensemble of classifier pairs outperform an EoC is that
the use of PFM takes the interaction into consideration. The pairwise manner may still
be sub-optimal, but, if the class dimension is low and we have few classifiers and a large
number of samples, PFM can be upgraded to the third degree, i.e. we can obtain the
probabilities of any class label l by calculating P (l|c(i), c(j), c(h), x) based on three
classifier outputs c(i), c(j), c(h). This would require the construction of 4-dimensional
confusion matrices and allow us to interpret the interaction of three classifiers at the
same time. Another possible improvement scheme would be the use of PFM-MAJ as
an objective function for ensemble selection. In the same way that simple MAJ is used
for ensemble selection (i.e. MVE) and for classifier combination, one can also apply
PFM-MAJ for both ensemble selection and classifier combination.

Given that this exploratory work has been accomplished evaluating millions of en-
sembles, but with a restricted number of classification algorithms, and in a limited
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number of problems, it will be advisable to carry out more experiments on classifier
combination as well as ensemble selection, with more pattern recognition problems
and more classification methods.
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Abstract. Because of the lack of a clear guideline or technique for selecting 
classifiers which maximise diversity and accuracy, the development of 
techniques for analysing classifier relationships and methods for generating 
good constituent classifiers remains an important research direction.  In this 
paper we propose a framework based on the Bayesian Belief Networks (BBN) 
approach to classification. In the proposed approach the multiple-classifier 
system is conceived at a meta-level and the relationships between individual 
classifiers are abstracted using Bayesian structural learning methods. We show 
that relationships revealed by the BBN structures are supported by standard 
correlation and diversity measures. We use the dependency properties obtained 
by the learned Bayesian structure to illustrate that BBNs can be used to explore 
classifier relationships, and for classifier selection.  

Keywords: Multiple Classifier Systems, Bayesian Belief Networks, Diversity. 

1   Introduction 

Theoretical and experimental results have established that to benefit from the use of 
ensemble systems constituent classifiers must be diverse. This has proven to be a 
difficult task as the relationship between combiners’ accuracy and diversity has not 
been clearly established, and have been found to be weak [1]. However correlation 
and diversity properties in ensemble systems remains an area of importance, as there 
is no benefit in combining classifiers which make similar errors. Consequently, proper 
selection of constituent classifiers to use in an ensemble remains an important 
determinant of the overall performance of the ensemble.  Classifier selection can be 
done by exhaustive search, using the performance of the ensemble as a target, but this 
is computationally intensive with an increasing number of constituent classifiers. Roli 
et al [2]have put forward the idea of ‘overproduce and choose’ for selecting 
classifiers.  Genetic Algorithms have been used in [3, 4] for selecting classifiers and 
feature subsets.  A number of measures have been put forward for quantifying the 
relationships between classifiers and using it as a measure of fitness for ensemble 
purposes.  In [1] a number of diversity measures are presented, but their relationship 
with ensemble performance is not clearly established. There have also been proposal 
for explicitly using diversity for selecting classifier ensembles and for classifier 
selection in a meta-learning system [5].  A simulation experiment is presented in [6] 
for classifier selection using correlation measures.  
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Because of the lack of a clear guideline or technique for selecting classifiers which 
maximise diversity and accuracy, the development of techniques for analysing 
classifier relationships and methods for generating good constituent classifiers 
remains an important research direction.  The problem of exploring and utilizing the 
relationship amongst classifier teams, therefore, remains fundamental. Thus we 
believe it is important to perform a structured, systematically designed investigation 
of these relationships. In this paper we propose a framework based on the Bayesian 
Belief Networks (BBN) approach to classification. It has been suggested [7] that a 
meta-framework seems to be needed to describe multi-classifier systems and 
characterize their properties.  The Bayesian theory can be utilized to accommodate 
such ideas as well as offer graphical manipulation and illustration of the concepts. In 
the proposed approach the multiple-classifier system is conceived at a meta-level and 
the relationships between individual classifiers are abstracted. Because the conditional 
probability distribution can be calculated from the joint probability distribution, a 
Bayesian network consisting of a class variable and feature variables is readily 
applicable to the classification tasks, as demonstrated in [8, 9] . 

The Bayesian network classifier [9] is distinguished from other classification 
methods by its ability to portray the probabilistic relationships between class and 
feature variables via a comprehensible graphical format [10]. In particular, key 
classifiers in the ensemble can easily be discriminated from redundant ones based on 
the network structure. Such a property is useful in the analysis of ensemble systems, 
where not only classification performance but also an understanding of the process by 
which the final decision is inferred is important. This will enable exploratory analysis 
for the development of more effective ensemble systems. Knowledge of these 
relationships allows us to make predictions in the presence of interventions; for 
example the effect of losing one data-source or classifier in an ensemble.    

This paper explores the structural relationships of classifiers in a multiple-classifier 
architecture using Bayesian structural learning methods. We present experiments 
which produce graphical illustrations of the classifier relationships implied by various 
combination techniques. We show that relationships revealed by the BBN structures 
are supported by standard correlation and diversity measures. We use the 
dependency/independence properties obtained by the learned Bayesian structure to 
illustrate that BBNs can be used to explore classifier relationships. In the next section 
we give a summary of BBNs. This is followed by a description of the structural 
learning methods used, the composite classifiers and the database. This is followed by 
a description of the experimental work carried out on the use of BNs in modelling 
standard classifier combinations. The next section describes the experimental work 
we carried out on assessing the relationship between BBN structures and diversity. 
We then present a section on classifier selection using BBNs. Finally a discussion and 
a conclusion are presented.  

2   Bayesian Belief Networks 

Bayesian Belief Networks [9, 10] constitute a powerful probabilistic framework for 
reasoning under uncertainty. A Bayesian belief network structure consists a Directed 
Acyclic Graph (DAG) and nodes which represent domain variables and arcs between 
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the nodes representing probabilistic dependency assumptions that must hold between 
the random variables. A variable in the Bayesian belief network structure may be 
continuous or discrete. In this paper, the experiments and results presented are 
focused on discrete variables.  The key feature of belief networks is their explicit 
representation of the conditional independence among events. The concept makes a 
factorization of the probability distribution of the n-dimensional random variable (X1, 
…, Xn) possible. The joint probability of any particular instantiation of all n variables 
in a belief network can be calculated as: 
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Where each xi represents an instantiated variable and pa(xi) an instantiation of  the 
parents of  xi.  A BN is described by specifying its probability distribution.  This is 
done by specifying the prior probability of all root nodes (nodes without predecessor 
or parents), and conditional probabilities for all the other nodes given all possible 
combinations of direct predecessors. It is however possible to learn all these from the 
data, this is discussed in the next section. 

3   Structural Learning  

Many heuristic methods have been proposed to determine the structure of a Bayesian 
network. A number of BN structural learning algorithms have been developed. One 
approach uses heuristic search method to construct a model and evaluates it using a 
scoring method. This process continues until the score of the new model is not 
significantly better than the old one. Different scoring criteria have been applied in 
these algorithms, such as, Bayesian scoring method [11], entropy based method [12], 
and minimum description length method [13]. The other category of algorithms 
constructs Bayesian networks by analyzing dependency relationships among nodes 
[14, 15]. The dependency relationships are measured by using some kind of 
conditional independence test. Successful examples of the later are the K2 [11] and 
MWST [16] algorithms. 

The K2 algorithm [11] is a greedy search algorithm. Initially each node has no 
parents. It then adds incrementally that parent whose addition most increases the score 
of the resulting structure. When the addition of no single parent can increase the 
score, it stops adding parents to the node. The principle of the MWST algorithm [16] 
is rather different. This algorithm determines the best tree that links all the variables.). 
The aim is to find an optimal solution, but in a space limited to trees. The algorithm 
associates a weight (mutual information or BIC score) with each edge.  

4   Composite Classifiers and Database Forms 

In selecting multiple classifiers, the goal is to obtain diversity in their prediction given 
by each individual classifier, as well as good levels of accuracy [1]. In this study we 
used a set of five different classifiers from the PRTools Matlab toolbox [17].  We 
used a linear classifier built on the Karhunen-Loeve expansion of the common 
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covariance matrix, a Parzen density based classifier, the nearest mean classifier, and 
two k-nearest neighbour classifiers (3 and 5 nearest neighbours). A description of 
each of the classifiers and how to apply them using Matlab and the PRTools can be 
found with the PRTools documentation. We deliberately chose k-nearest neighbour 
classifiers with varying parameters for our study in order to examine the effects of 
having potentially correlated classifiers. In this paper the classifiers are numbered as 
follows: nearest mean classifier (1), Parzen density classifier (2), k-nearest neighbour 
classifier with 3 neighbours (3), linear classifier built on the Karhunen-Loeve 
expansion of the covariance matrix (4) and k-nearest neighbour classifier (5 
neighbours) (5). 

The experiments here were carried out using 10 datasets from UCI repository [18].  

Table 1. Characteristics of the datsets used in the study 

Dataset  Samples Classes Dim  

 
Vehicles (VH) 
Wine (WN) 
Iris (IR) 
Heart (HRT) 
Ionosphere (ION) 
Liver (LV) 
Winscon-breast-cancer (WDB) 
Digits(Morphological) (DIGM)  
Digits(Zernike) (DIGM)  
Australian credit (AUS) 

 
846 
178 
150 
270 
351 
345 
569 

1000 
1000 
690 

 
4 
3 
3 
2 
2 
2 
2 

10 
10 
2 

 
18 
13 
4 

13 
34 
6 

30 
47 
6 

14 

5    Modelling Classifier Relationships in Ensembles Using BBN 

Our aim is to find out what are the implied relationships between the classifiers given 
the output obtained by the individual classifiers in the scheme and combination rule, 
what are the implied relationships between the classifiers? To do this, each of the 
nodes (variables) is assigned the outputs obtained from one classifier in the ensemble 
and the root node is assigned the output corresponding to the final decision in each 
case using one of the combination rules. The children nodes in the graphs (Fig. 1) 
correspond to the outputs of the individual constituent classifiers. The structure is first 
induced using the true output labels (groundtruth) of the training data. The same 
individual outputs are then used as the children nodes with the root node being the 
output obtained by using the different combination rules (product, mean, median and 
majority). The structural learning algorithms then induces a BBN structure based on 
the distribution of the constituent classifier outputs, and the corresponding class 
decision based on the groundtruth or a particular combination method. 

The resulting DAGs (shown in Figs 1 and 2) admit different classifier 
dependencies for different combination rules.  While this is not in itself surprising, the 
BBN structures give us an insight in the different ways the same classifier 
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relationships are exploited by different combination methods. After a BBN structure 
is obtained using different classifier and combination outputs for a part of the data 
retained for training, the BBN can be tested (produce classifier decisions) using the 
outputs of the individual classifiers on a separate test set. That is the root node is 
assigned a class label (decision) based on the structure implied relationships of its 
children nodes values. In both datasets presented in Figure 2, the product and mean 
combination rules result in the same classifier dependency structure, similarly the pair 
of the median and majority rule. In both cases when these networks are tested using 
the same dataset, with the combination rules output as targets, the errors obtained are 
exactly the same. 

 

Fig. 1. Classifier relationships modeled by BBNs for different combination rules for the IRIS 
dataset 

 

Fig. 2. Classifier relationships modeled by BBNs for different combination rules for the HRT 
dataset 

6   Bayesian Networks Modelling and Diversity 

Despite the existence of different ways of combining classifiers, both theoretical and 
empirical approaches have established that the vital ingredient for constructing a 
successful ensemble is the incorporation of team members which are both accurate 
and do not make similar errors (i.e. are diverse in their predictions). It is therefore not 
surprising that in order to construct more accurate ensembles, more research is now 
focusing on measures of diversity, similarities or dependencies within classifier 
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teams[1, 5, 19]  Consequently a number of diversity measures have been proposed 
and studied [1].The range of measures employed in ensemble analysis, even though 
targeting some form of diversity quantification, are based on different concepts. Basic 
differences arise from the nature of the measurement, where some are pair-wise 
measures (between classifier pairs), whilst others are non-pairwise (overall measures 
among all base classifiers).   

The Bayesian network framework, described previously, when used in a multiple-
classifier set-up allow us to explore the dependencies between different classifiers. 
They networks give an insight into these dependencies but do not quantify the extent 
of these. This part of our study is therefore aimed at exploring the relationship 
between some diversity measures and the dependencies as modelled by the Bayesian 
networks. Our study focused on calculating pair-wise measures between the different 
possible pairs of the multiple-classifier team. The aim was to examine if there were 
any correlation between the pair-wise diversity values obtained using these measures 
and the inter-classifier dependencies as modelled by the BBNs.  

6.1   Pairwise Diversity Measures 

In the experiments, we have included four measures:  Yule’s Q statistic [20], the 
correlation coefficient [21] the disagreement measure [22] and the double fault 
measure [23]. In our experiments we used all the 10 pairwise combinations possible 
with the 5 classifiers and calculated the corresponding diversities. We then compared 
the results with the relationships depicted by the BBNs. Our aim was to see if the 
relationships depicted by the BBNs were reflected on the measures of diversity; for 
example, if diversity measure ‘A’ shows classifier 1 to be correlated with classifier 2, 
is this reflected by the dependency structure of the BBN? We illustrate our results 
using BBN structures learnt using the MWST_BIC structural learning algorithm on 
eight of the datasets using the ‘groundtruth’ as the root node.  For each dataset the 
dependent classifiers as identified by the BBNs were identified as:  
 
VH(C15,C24,C35); WN(C14,C15,C23,C24); IRIS(C15,C24,C35); HRT(C15,C23,C24,C35); 
ION(C15,C35);LV(C13,C15); WDBC(C15,C35); DIGM(C15,C24,C35); 
DIGZ(C14,C24,C35);  AUST(C15,C24,C35).  
 
In the listing above, for example, C15 means classifier 1 and 5 were shown to have 
some dependency (had arcs linking the two) on the graph etc. for each corresponding 
dataset. 

Figures 3 illustrate the Q statistic diversity measures for each pair of classifiers for 
each of the datasets. For example, for Dataset IRIS has pairs C15, C24 and C35 are 
dependent pairs on the DAG. Our hypothesis is that if the graphical interpretation of 
the multiple-classifier structure is consistent with the diversity measure, these pairs 
should be shown to be the least diverse, with those not dependant being the least 
diverse according to the measure. The Q statistic has the respective values as 0.898, 
1.000 and 1.000 respectively which shows these pairs are not diverse at all, and has 
values of -1 for other pairs , meaning these pairs are highly diverse. In this case the 
dependences depicted by the DAG are consistent with the Q-statistic measure. 
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Q-Statistic Diversity Measures for Classifier Pairs
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Fig. 3. Q –statistic diversity measures for different classifier pairs for each of the datasets 

In few cases, the DAG dependent pairs have less diversity according to the 
measures, than the DAG non-dependent pairs. These are however exceptions rather 
than the norm in the cases we considered. A similar pattern was observed in the 
majority of cases for the other datasets and diversity measures, and illustrations of 
these have thus been omitted here for brevity. These results therefore illustrate that 
the learned DAGs do capture and can be used to explore the diversity in the 
participant classifiers. 

7   Classifier Selection Using Bayesian Models  

The majority of multiple classifier systems are based on the assumption that different 
classifiers make "independent" errors [2, 24]. However, in real pattern recognition 
applications, it is difficult to design a set of classifiers that should satisfy such an 
assumption. However the use of BNs enables us to explore the relationships between 
classifiers and as such it can be used to pursue the idea of selecting ‘independent’ 
classifiers. Having established that the dependencies depicted in DAGs are related to 
some diversity measures, the next step was to see if this could be exploited to select 
classifiers which are not dependent  (diverse), and assess their performance. 

In 5-fold experiments, the MWST_BIC structural learning algorithm was used to 
obtain DAGs for each run. Each DAG was then pruned of all children, leaving only 
nodes which were independent and were children of the root (class) node. Figure 7 
below illustrates an example of how this was done. If all classifiers were descendants 
of one classifier, the result for that classifier was chosen as the final result  
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(for example Figure4.b). The remaining nodes (classifiers) were then selected and 
used in standard combination algorithms, namely, the product, mean, median and 
majority rules. These results were then compared to the use of the same combination 
rules using the whole set of classifiers. The results are shown in Table 2. 

 
Fig. 4.  Example of dependency-based multiple classifier structure pruning 

Table 2.  Classification error results obtained using all classifiers (AC) and selected classifiers 
(SC) with the root node being the output of each combination method 

Dataset Product Mean Median Majority

AC SC AC SC AC SC AC SC

VH 0.28±0.021 0.30±0.016 0.27±0.010 0.30±0.020 0.30±0.021 0.30±0.033 0.33±0.001 0.33±0.001

WN 0.01±0.003 0.01±0.021 0.02±0.003 0.02±0.006 0.17±0.004 0.02±0.004 0.18±0.001 0.05±0.001

IRIS 0.02±0.050 0.03±0.012 0.02±0.001 0.02±0.005 0.02±0.002 0.03±0.007 0.02±0.010 0.02±0.011

HRT 0.22±0.010 0.21±0.012 0.22±0.020 0.21±0.001 0.28±0.003 0.22±0.008 0.28±0.002 0.23±0.001

ION 0.05±0.026 0.05±0.004 0.09±0.006 0.09±0.005 0.13±0.115 0.10±0.102 0.13±0.002 0.10±0.002

LV 0.32±0.010 0.32±0.021 0.32±0.01 0.34±0.023 0.31±0.004 0.35±0.008 0.31±0.004 0.37±0.005

WDBC 0.04±0.002 0.05±0.006 0.04±0.009 0.04±0.007 0.05±0.006 0.05±0.061 0.05±0.041 0.05±0.032

DIGM 0.28±0.101 0.24±0.051 0.28±0.004 0.31±0.005 0.34±0.014 0.31±0.010 0.40±0.017 0.43±0.017

DIGZ 0.18±0.012 0.18±0.007 0.18±0.002 0.18±0.010 0.18±0.018 0.18±0.010 0.19±0.01 0.19±0.01

AUST 0.17±0.024 0.17±0.023 0.18±0.007 0.17±0.011 0.24±0.014 0.19±0.001 0.23±0.034 0.20±0.015  

From the results it was observed that in a significant number of cases (at least 7/10 
datasets, and at most 8/10 datsets), for each combination method considered, the 
performance of the combiners either improved, or did not change when a subset of 
classifiers chosen based on the proposed BN-based classifier selection method was 
used in the combination. This is shown by the highlighted results in Table 2. In such 
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cases therefore, the BN-based selection method has successfully eliminated redundant 
classifiers, without deterioration in performance. In some cases, the performance of 
the combiners consisting the classifiers selected using the proposed selection method 
was not as good as that of the original combiner comprising all classifiers,  and we 
believe there is scope for further investigations of the reason underpinning these 
observations 

8   Conclusions 

Combining different classifiers is an area of great interest in pattern recognition. In 
general, it is difficult to quantify the improvement in performance and robustness 
without a specific task and without specific classifiers at hand. In this paper we have 
carried out experiments using 10 benchmark datasets and applied BNs for exploring 
the relationships between these classifiers. We have also used standard diversity 
measures to analyse these relationships and established that the dependences depicted 
by the resulting BNs were related to some diversity measures. Having established 
this, the knowledge was then used in classifier selection for use with standard 
combiners. From the results it was observed that in at least 70% of the cases the 
performance of the combiners improved or remained the same when the classifiers 
chosen using the BN-based classifier selection method. This implies that a study in 
this direction can make a significant contribution in ensemble classifier selection. 

The study of the relationships between classifier in ensemble systems is important 
for the design of more efficient classifiers. The search for techniques to explicitly use 
these relationships (for example using diversity) to improve the performance is on-
going. In this paper we have shown that Bayesian Theory in the form of Bayesian 
Networks framework, can become a useful tool to implement such ideas, as well as 
offering, means for the graphical manipulation and illustration of these relationships.  
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Abstract. Classifier combining rules are designed for the fusion of the results 
from the component classifiers in a multiple classifier system. In this paper, we 
firstly propose a theoretical explanation of one important classifier combining 
rule, the sum rule, adopting the Bayes viewpoint under some independence 
assumptions. Our explanation is more general than what did in the existed 
previous by Kittler et al. [1]. Then, we present a new combining rule, named 
SumPro rule, which combines the sum rule with the product rule in a weighted 
average way. The weights for combining the two rules are tuned according to 
the development data using a genetic algorithm. The experimental evaluation 
and comparison among some combining rules are reported, which are done on a 
biometric authentication set. The results show that the SumPro rule takes a 
distinct advantage over both the sum rule and the product rule. Moreover, this 
new rule gradually outperforms the other popular trained combining rules when 
the classifier number increases. 

Keywords: Pattern Classification, Multiple Classifier System, Combining 
Rules. 

1   Introduction 

Combining multiple classifiers is a learning method where a collection of a finite 
number of classifiers is trained for the same classification task. Over the past years, 
this method has been considered as a more practical and effective solution for many 
recognition problems than using one individual classifier [1] [2]. 

An important issue in combining classifiers is that of the combining rules which 
are designed to fuse the results from the component classifiers. Generally, the 
combining rules are usually categorized into two categories: fixed rules and trained 
rules. The fixed rules combine the classification results in some fixed mode 
independent of the application tasks, notably the sum rule and the product rule [1]. 
And the trained rules combine the results in a trained way, such as weighted sum rule 
[3], Behavior-Knowledge Space algorithm [4], Decision Template method [5] and 
Dempster-Shafer (DS) [2] [6] method. Some related experimental studies contribute 
                                                           
*  This work has been partially funded by the Natural Science Foundation of China under Grant 

Nos. 60575043 and 60121302. 
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to the comparison between these two kinds of methods [7] [8]. Given their extensive 
experimental results, it is still difficult to draw a consistent conclusion about which 
kind or which particular rule performs better than the others. The difficulty mainly 
lies on the lack of explicit theoretical analysis of these rules. Therefore, some 
theoretical studies on these rules appear with the objective to explain why some 
combination methods work better and in what cases they perform better than the 
others. One important work of Kittler et al. [1] develops a common theoretical 
framework based on the different feature sets, where many fixed combining rules 
such as the product rule, sum rule, min rule, max rule and vote rule are derived. They 
report that the sum rule outperforms the other rules because of its resilience to 
estimation errors. 

Although it is known that the fixed rules are obtained under strong assumptions, 
these assumptions still remain unclear. Furthermore, the sum rule takes favorable 
position in many experimental results, while the assumption for getting this rule is 
reported much stronger than the product rule [1]. In this paper, we focus on the 
combining rules based on the different feature sets. Our objective is to give a new 
explanation to the sum rule. Moreover, we present a new hybrid rule called SumPro 
which combine the sum rule with the product rule in a weighted average way. 

The remainder of this paper is organized as follows. Section 2 presents our 
theoretical framework on the combining rules through the Bayes theorem under 
independence assumptions. In particular, we give the detailed analysis on the sum rule 
and demonstrate that our explanation for the sum rule is more general than that in 
Kittler et al. [1] (fully described in the Appendix A). Then, we propose a new 
combining rule, named as SumPro rule. In Section 3, the experimental study on one 
data set is given to compare some combining rules for evaluating the SumPro rule. 
The conclusions are drawn in Section 4. 

2   Our Theoretical Framework 

In statistical pattern recognition, a given pattern x  is assigned to the i th class iw  

among all the m classes 1{ ,..., }mW w w=  with the maximum posterior probability. In a 

multiple classifier system, when the pattern x  is represented by multiple feature sets, 
i.e., 1 2( , ,..., )Rx x x x= , the pattern belonging to class iw  should satisfy the following 

equation: 

1 2arg max ( | , ,..., )k k Ri p w x x x=                         (1) 

2.1   Product Rule 

According to the Bayes theorem, the posteriori probability can be rewritten as 

1
1

1

( ,..., | ) ( )
( | ,..., )

( ,..., )
R k k

k R
R

p x x w P w
p w x x

p x x
=                     (2) 

where, 1( ,..., )Rp x x is the joint probability density. 

Assume that the feature sets are statistically independent given the class kw , i.e., 
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   1 1
( ,..., | ) ( | )

R

R k l kl
p x x w p x w

=
= ∏                        (3) 

Then the posteriori probability can be rewritten as 

  1
1

1

( ) ( | )
( | ,..., )

( ,..., )

R

k l kl
k R

R

p w p x w
p w x x

p x x
== ∏

                    (4) 

In terms of the posteriori probabilities yielded by the individual classifiers, we 
obtain the decision rule 

( 1) 1
1 1

1

( )
( | ,..., ) ( ) ( | )

( ,..., )

R

R lR l
k R k k ll

R

p x
p w x x p w p w x

p x x
− − =

=
= ⋅ ∏∏             (5) 

Excluding the same factor of 1

1

( )

( ,..., )

R

ll

R

p x

p x x
=∏

 for all the classes, we obtain the product 

rule 

( 1)

1
arg max ( ) ( | )

RR
k k k ll

i p w p w x− −
=

= ∏                    (6) 

2.2   Sum Rule  

In this section, we give the sum rule in two steps. First, we consider the case in which 
the system consists of two classifiers for combining ( 2R = ). 

Note that the posteriori probability 1 2( | , )kp w x x can also be computed by the 

probability of 1 2( | , )kp w x x as follows 

  1 2 1 2( | , ) 1 ( | , ),    { }k k k kp w x x p w x x w W w= − = −                (7) 

Assume that the feature sets are statistically independent given the class set kw , 

i.e., 

      1 1
( ,..., | ) ( | )

R

R k l kl
p x x w p x w

=
= ∏                      (8) 

With the analogous operation for getting formula (5), we get 
1

1 2 1 2 2( | , ) 1 ( ) ( | ) ( | )k k k kp w x x p w p w x p w x λ−= − ⋅            (9) 

Where 1 2
2

1 2

( ) ( )

( , )

p x p x

p x x
λ = .  

Since the sum of ( | )k jp w x  and ( | )k jp w x  equals one, formula (9) becomes 

1 2 2 1 2( | , ) [1 ( )] [1 ( )] [1 ( | )][1 ( | )]k k k k kp w x x p w p w p w x p w xλ⋅ = − −－ － －     (10) 

Applying formula (5), we expand the left of the above formula 

1 2 2 1 2

2 1 2

( | , ) ( | ) ( | )

1 ( ) [1 ( | )][1 ( | )]
k k k

k k k

p w x x p w x p w x

p w p w x p w x

λ
λ= − − −
－

－

               (11) 

With the further simplification, we get 
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1 2 2 2 1 2( | , ) [1 ( ) [ ( | ) ( | )]k k k kp w x x p w p w x p w xλ λ= −－ ]＋ ＋           (12) 

The above formula shows that the combining posterior probability can be 
expressed as the sum of the individual probabilities in the two-classifier case. And the 
assumptions (3) and (8) are used in the deducing process. 

Secondly, let us consider the case that the system consists of more than two 
classifiers ( 2R > ). 

We can regard the ensemble of former 1R −  component classifiers as one 
classifier. Then, according to formula (12), we get  

1 1 1( | ,..., ) [1 ( ) [ ( | ,..., ) ( | )]k R k R R k R k Rp w x x p w p w x x p w xλ λ −= −－ ]＋ ＋       (13) 

Where, 1 1

1

( ,..., ) ( )

( ,..., )
R R

R
R

p x x p x

p x x
λ −= . 

By expanding the above formula, we get the following expression  

1 1
2 2

( | ,..., ) [( ) ( | )] ( | ) .
q R q RR

k R q k l q k
l q l q

p w x x p w x p w x contλ λ
= =

= = =

= ⋅ + ⋅ +∑ ∏ ∏       (14) 

Where, 1 1

1

( ,..., ) ( )

( ,..., )
q q

q
q

p x x p x

p x x
λ −= , and  .cont  is the remaining terms which is only 

related to the class prior probability ( )kp w .  

Formula (14) demonstrates that the classifiers using independent feature sets 
should be combined in a linear weighted way under the two assumptions (3) and (8). 
Since our objective is to get the sum rule, we would cut off the weights. 

We assume that the feature measurements ( 1,2,..., )jx j R=  are statistically 

independent, then the value of ( 1,2,..., )j j Rλ =  equals one, i.e., 

=1 ( 1,2,..., )j j Rλ =                             (15) 

Under this assumption, the sum rule for multiple classifiers can be conclude from 
formula (14) that 

1

arg max { ( 1) ( ) ( | )}
R

k k k l
l

i m p w p w x
=

= − − +∑                  (16) 

This formula implies that the prediction decision can be drawn according to the sum 
of the posterior probabilities yielded by the individual classifiers. This is the same 
sum rule that has been widely used in the multiple classifier system field.  Compared 
to the product rule, two more independent assumptions, (8) and (15), are involved in 
the sum rule. To further understand these assumptions, some comments about these 
two rules are described as follows. 

 The assumptions (3) and (8) are two conditional dependent assumptions and they 
are popularly used in pattern recognition literature (e.g., Naïve Bayes classifier) 
for simplifying the analysis. The difference between these two assumptions lies 
in their different conditions, i.e., one has the given class kw while the other has 

the given class set kw . Note that, in two-class case, when the class set kw  
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merely consists of one class, these two assumptions are equivalent. It is also 
interesting to point out that this special case is a good explanation to one 
conclusion drawn in the previous work of Tax et al. [9], which states that, in a 
two-class problem, the sum rule and the product rule achieve comparable 
performance [9]. 

 Another assumption (15) involved in the sum rule is so strong that it would be 
violated in many applications. However, this independent assumption is actually 
a sufficient condition for the sum rule in our explanation. As shown in (12), in 
two-classifier case, this assumption is needless for the sum rule under equal prior 
assumption. 

 Another important related work have been given by Kittler et al. [1], who also 
deduced the sum rule with a rather strong assumption. This assumption states 
that the posteriori probabilities computed by the respective classifiers will not 
deviate dramatically from the prior probabilities. It is not difficult to prove that 
our explanation is more general than theirs. A detailed proof can be found in the 
Appendix A. 

 We must concede that to satisfy all the assumptions at the same time is really 
difficult in many applications. Nevertheless, the sum rule performs so well in 
error sensitivity that it outperforms other fixed rules in many experimental 
results [1] [10]. 

 Other common fixed rules, such as the max rule, the min rule and the vote rule 
can be easily obtained using the above two basic rules [1]. These rules are 
discussed in detail in Kittler et al. [1]. 

2.3   SumPro Rule 

As mentioned above, the sum rule requires much stronger assumptions than the 
product rule but it takes lower error sensitivity than the product rule. In real problems 
(when approximated posteriors are used), it is interesting to look for a hybrid method 
of these two rules which could combine the strengths of the product and sum rules. In 
this section, we propose a new combining rule called the SumPro rule. 

Firstly, let’s consider the two-classifier case ( 2R = ). 
Under the assumption (3) and (15), we get 

1
1 2 1 2( | , ) ( ) ( | ) ( | )k k k kp w x x p w p w x p w x−=                    (17) 

Under the assumption (15), formula (12) can be simplified as 

1 2 1 2( | , ) ( ) ( | ) ( | )k k k kp w x x p w p w x p w x=－ ＋ ＋                 (18) 

Thus, we have 

1 2 1 2

1
1 2

( | , ) (1 ) [ ( ) ( | ) ( | )]

                      ( ) ( | ) ( | )
k k k k

k k k

p w x x p w p w x p w x

p w p w x p w x

ω
ω −

= − ⋅ − + +

+ ⋅
             (19) 

Where  (0 1)ω ω≤ ≤ , can be regard as a variable varying from zero to one. 

Note that the sum rule and product rule expressions become the special cases when 
0ω =  and 1ω =  respectively. In real applications, it is always possible to find a 

suitable value of ω  under some criterion. 
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As to multiple-classifier case, the posterior probability can be computed by using 
following formula iteratively 

1 1 1 1

1
1 1 1

( | ,..., ) (1 ) [ ( ) ( | ,..., ) ( | )]

                            ( ) ( | ,..., ) ( | )
k R R k k R k R

R k k R k R

p w x x p w p w x x p w x

p w p w x x p w x

ω
ω

− −
−

− −

= − ⋅ − + +

+ ⋅
       (20) 

Then, the SumPro rule can be defined as following 

1 1 1

1
1 1 1

arg max {(1 ) [ ( ) ( | ,..., ) ( | )]

                            ( ) ( | ,..., ) ( | )}
k R k k R k R

R k k R k R

i p w p w x x p w x

p w p w x x p w x

ω
ω
− −

−
− −

= − ⋅ − + +

+ ⋅
         (21) 

In real applications, one essential task is to find a way for training the values 
of  ( 1,..., 1)i i Rω = − . One simple way is an exhaustively search for the optimal values 

on the training set under some criterion. However, this is impracticable when the 
classifier’s number is large. Considering that the genetic algorithm is a good tool for 
optimization problems [11], we apply genetic algorithm to tune the values of 

 ( 1,..., 1)i i Rω = − according to some optimization criterion. 

3   Empirical Study 

In this section, we perform experimental study to compare the combining rules on a 
biometric authentication data set. A biometric authentication system is designed to 
verify the identity of a person based on biometric measures such as the person’s face, 
voice, iris or fingerprints [10]. Use of multiple biometric indicators, known as 
multimodal biometrics, has been shown to increase the authentication accuracy [12]. 
A number of combining rules have been applied to combine the results of the multiple 
biometric indicators, where the sum rule, the DS rule, and the support vector machine 
(SVM) rule are usually reported as the champions [1] [13] [14]. 

Our experimental data set1 is presented by Poh and Bengio [15] to encourage 
researchers to focus on the problem of biometric authentication score-level fusion. 
The scores are taken from the XM2VTS database, which contains video and speech 
data from 295 subjects. There exist two configurations called Lausanne Protocol I 
(LP1) and Protocol II (LP2) in the dataset with different partitioning approaches of 
the training and development sets. In both configurations, the test set is the same [15]. 
In our experiment, we pick the LP1 for our experimental study where eight different 
classifiers are available. 

Two kinds of errors occur in a biometric authentication system, i.e., false 
acceptance of the impostors and false rejection of the clients. Correspondingly, there 
are two measures commonly used for evaluating the system, i.e., false acceptance rate 
( FAR ) and false rejection rate ( FRR ). Generally, FAR  and FRR  are balanced by 
the threshold which is used for determining whether one person is an impostor or a 
client. Another evaluation criteria is defined as the mean value of FAR  and FRR , 
called Half Total Error Rate ( HTER ), i.e., ( ) / 2HTER FAR FRR= +  [15]. 

 

                                                           
1 It is available at http://www.idiap.ch/~norman/fusion/main.php?bodyfile=entry_page.html. 
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Table 1.  Comparison of performances using different combining rules 

Rules N=2 N=3 N=4 N=5 N=6 N=7 N=8 
Product 2.36 1.86 1.56 1.43 1.74 2.54 3.50 

Sum 2.09 1.39 1.08 0.91 0.83 0.78 0.75 
Max 2.51 2.02 1.76 1.52 1.36 1.23 1.13 
Min 3.04 2.83 2.74 2.64 2.51 2.41 2.35 

SumPro 2.03 1.28 0.82 0.74 0.62 0.58 0.31 
wighted sum 1.82 1.15 0.88 0.76 0.70 0.66 0.63 

DS 1.47 1.20 1.07 0.99 0.90 0.82 0.76 
SVM 1.44 0.90 0.74 0.68 0.64 0.60 0.52 

The development set is used to estimate both the threshold value for rejecting and the 
approximate optimal omega values ( 1,..., 1)i i Rω = −  for the SumPro rule by the 
genetic algorithm. In our experiment, the genetic operators, including selection, 
crossover, and mutation are all set to the default values in the GA tool in Matlab 7.0. 
And the optimization criterion is to obtain the best HTER  value in the development set. 

The best and the worst HTER  values over all the single classifiers are 1.53% and 
7.60%. We perform the combining methods by combining all the possible 
combinations of  ( 2,3,...,8)N N =  classifiers taken from the eight ones. The mean 
HTER  values of every aggregate of the N classifiers are shown in Table 1. Below we 
highlight some of our interesting findings from Table 1. 

First, we find that combining classifier can contribute to the overall performance of 
the authentication system since, in the eight-classifier case, results with most 
combining rules are better than the best result of the single classifiers. In general, 
good trained rules usually outperform the fixed rules. In our experiment, the weighted 
sum rule, the DS rule and the SVM rule obtain superior results to the fixed rules, such 
as the product rule, the max rule and the min rule. However, the sum rule, as a fixed 
rule, achieves comparable performance with the trained rules. 

Then, the SumPro rule is consistently preferable than both the sum rule and the 
product rule. This conclusion is encouraging because the sum rule has been reported 
as the best rule in many related studies. Moreover, this new rule gradually 
outperforms the other popular trained combining rules when the classifier number 
increases (when 6,7,8N = ). 

4   Conclusion  

In summary, the contribution of this paper is twofold. At first, we give a theoretical 
analysis on the two fixed rules of the product and the sum rule which are often seen as 
two basic rules in the fixed rules. The proposed assumptions can help us to better 
understand the fixed rules. Second, we present a new combining rule called SumPro 
rule which combines the product rule with the sum rule. Experimental results reveal 
this new rule performs particularly well when the number of the classifiers is large. 
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Appendix A 

In this appendix, we demonstrate that our explanation for the sum rule is more general 
than the explanation in Kittler et al. [1]. In Kittler et al. [1], they presented an 
explanation of sum rule under the assumption that the posteriori probabilities 
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computed by the respective classifiers will not deviate dramatically from the prior 
probabilities, i.e., 

                                              ( | ) ( )(1 )k j k kjp w x p w δ= + ,                                         (22) 

where kjδ satisfies 1kjδ << . First, let us prove the following theorem.  

Theorem 1. Under the assumption (3), the assumption (22) is a sufficient condition 
for the assumption (8) and the assumption (15). 

Proof.  (a) Firstly, we consider the assumption (15). 
Substituting (22) into (3) and applying the Bayes theory, we get 
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Because of the basic character of the probability, we have 
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According to the law of the total probability, 
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Substituting (23) into (27), we find 
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From formula (26), we have 
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⋅ ⋅ =∑ ∑ ∏                                       (29) 

Substituting (29) into (28), we obtain 

                                              1
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( ,..., ) ( )
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r l
l

p x x p x
=

= ∏                                             (30) 

Formula (30) exactly implies that each feature set ( 1,2,..., )jx j R=  is independent 

from each other, thus the assumption (15) can be satisfied.  
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(b) Then, we consider the assumption (8). 
As discussed in Section 2.1, from formula (5) and the assumption (15), we get 

                  1
1 2

1

( | , ,..., ) ( ) ( | )
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k r k k j
j

p w x x x p w p w x−

=

= ∏                                          (31) 

Substituting (22) into the above formula, we obtain 
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= +∑                    (32) 

Thus, 
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On the other hand, when there are two classifiers for combination 
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        (34) 

As to multiple classifiers, it is not difficult to get 

   ( 1)
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From (32) and (35), we find 
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According to the Bayes theorem, the left item and the right item of (36) can be 
expanded as 
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and, 
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              (38) 

From (36), (37) and (38), we get  

1 2 1
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             (39) 

Applying (30) to the above formula, we get 

1 2 1
( , ,..., | ) ( | )

R

n k l kl
p x x x w p x w

=
= ∏                    (40) 

The above expression is exactly the assumption (8). 
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Therefore, we can conclude that the assumption (22) is a sufficient condition for 
the assumption (8) and (15). 

In our explanation, under the equal prior assumption, the sum rule can obtained by 
only using the assumption (3) when there exist two class labels and two classifiers 
(see formula (12) and the assumption (8) is the same as the assumption (3) in two-
class problem). In other words, the assumption (22) is unnecessary for getting the sum 
rule in this special case. 

Considering the Theorem 1 and the special case above, we can conclude that our 
explanation with the independence assumptions is more general than the explanation 
by Kittler et al. [1]. 
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Abstract. Error Correcting Output Coding (ECOC) is an established
technique to face a classification problem with many possible classes
decomposing it into a set of two class subproblems. In this paper, we
propose an ECOC system with a reject option that is performed by
taking into account the confidence degree of the dichotomizers. Such
a scheme makes use of a coding matrix based on Low Density Parity
Check (LDPC) codes that can also be usefully employed to implement
an iterative recovery strategy for the binary rejects. The experimental
results have confirmed the effectiveness of the proposed approach.

Keywords: ECOC, reject option, LDPC, coding theory, multiple clas-
sifier systems.

1 Introduction

Error Correcting Output Coding (ECOC) is an established method to build effec-
tive multiway classifiers. A multiclass classification problem is decomposed into
many binary classification tasks, and the results of the subtasks are combined
to produce a possible solution to the original problem. In short, each multiclass
label is associated to a binary string (codeword) and the defined codewords are
collected in a coding matrix. Each column so defines a two class problem on
which a dichotomizer is trained. The multiway decision is taken by choosing the
codeword having the smallest Hamming distance from the bit string made up of
the outputs of the dichotomizers on the sample to be classified. The effective-
ness of the ECOC approach is related to the choice of the coding matrix, which
is typically defined according to two main requirements [1]: column separa-
tion to reduce the correlation among the dichotomizers and row separation
to achieve a high correction capability against the potential errors made by the
dichotomizers. The ECOC approach is quite unaffected by the errors of the di-
chotomizers as long as the number of wrong bits does not exceed the correction
capability of the code. Unfortunately, this is not the most frequent situation
and much work has been done to improve the performance of ECOC in many
respects. Several approaches have been proposed which focussed on coding and
decoding strategies [2], on design of the coding matrix from the data [3], and on
iterative decoding approach for the multiway decision [4].
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In this paper we propose an alternative approach which aims at decreasing
the wrong decisions forwarded by the dichotomizers toward the decoding stage.
In order to reduce the errors produced by a classifier a well known technique is to
withhold the decision when its reliability is estimated to be not sufficient (reject
option) [5]. In this way the classifier, in addition to the possible outputs, can be
in a state of abstention which is preferable to the wrong decision. For this reason,
the reject option is actually employed in many applications [6] [7] since it can
alleviate or remove the problem of a high misclassification rate. In principle, we
could thus consider an ECOC classification system with dichotomizers provided
with a reject option which decreases the number of errors reaching the decoding
stage. The ECOC decoding algorithms currently used work with the Hamming
distance or more sophisticated distances [2], but, in any case, they do not allow
abstaining dichotomizers. Analyzing the techniques provided by Coding Theory,
we found in the Low Density Parity Check (LDPC) codes a suitable theoretical
framework which allowed us to exploit the redundance of the code for recovering
the rejects provided by the dichotomizers and, ultimately, to define an ECOC
system with abstaining dichotomizers.

The following sections, after a brief look at linear coding basics, present the
method based on LDPC to design ECOC systems which embed abstaining di-
chotomizers. Sect. 5 reports the experimental results obtained, while in sect. 6
some conclusions are drawn.

2 Snooping in Coding Theory

In the usual ECOC approach, each class label is represented by a bit string of
length L, called codeword, with the only requirement that distinct classes are
represented by distinct codewords. If M is the number of the original classes, a
code is a M×L matrix C = {cij} where cij ∈ {0, 1}. Each row of C corresponds
to a codeword for a class, while each column corresponds to a binary problem.
In this way, the multiclass problem is reduced to L binary problems on which
L dichotomizers have to be trained. In the training phase, each dichotomizer is
trained with a finite set of samples. In the operating phase, a sample x to be
classified is fed to all the dichotomizers and each of them produces a binary value:
all such values are collected to make a vector of binary decisions (output vector)
that is compared with the codewords of the coding matrix. The class chosen is
the one with the codeword having the lowest Hamming distance from the output
vector. The minimum Hamming distance d = mini,j DH(ci, cj) between any pair
of codewords is a measure of the quality of the code. In fact, it is possible to have
a correct decision even if some dichotomizer makes a wrong decision, provided
that the single bit errors are no more than �(d − 1)/2�. However this usual setting
in ECOC-based classifiers does not exploit all the typical features of an error
correcting coding provided by Coding Theory. In order to highlight some useful
properties of linear codes, we now introduce some basic concepts.

Let us consider the Galois field GF (2), i.e. a set of two elements {0, 1} where
a sum and a product operations, both mod 2, are defined. Let us further denote
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with GFL(2) the vector space of all L-tuples over the field GF (2). An (L, K, d)
code C over GFL(2) is a K-dimensional vector subspace of GFL(2): the vectors
of the subspace are the codewords of C and d is the minimum Hamming distance
among them. If u = [u0, u1, ..., uK−1] is a K-bit source message to be coded,
it can be associated to a codeword c = [c0, c1, ..., cL−1] of C: therefore, the 2K

possible source messages with length K are associated with 2K codewords with
length L. The difference L − K is called redundancy, while the ratio r = K/L
is the transmission rate of the code C. The relation between the redundancy
and d is regulated by an upper bound d ≤ L − K + 1, which means that, for
a smaller r, d can increase and thus the error correction capability. Since C is
a K-dimensional vector subspace, there exist K linearly independent vectors
belonging to GFL(2), let us call them g0, . . . ,gK−1, which form a basis for C. In
this way, the correspondence between the source message u and the codeword c
can be put in terms of a linear combinations of the basis vectors through u, i.e.

c = uG (1)

where G =
(
g0 . . . gK−1

)T is the K × L matrix having the basis vectors as
rows. G is called the generator matrix of C.

It is clear how this device is different from usual ECOC approach where the set
of the codewords does not necessarily form a vector space and the correspondence
between the class label and the associated codeword is not based on an algebraic
relation. However the structure provided by a linear code C can be usefully
exploited in the decoding phase to decide if a word transmitted by the channel
is actually a codeword. To this aim, let us call C⊥ the orthogonal complement
of C, i.e. the set of vectors belonging to GFL(2) which are orthogonal to the
codewords of C. Moreover let H =

(
h0 . . . hL−K−1

)T be the (L−K)×L matrix
collecting the L − K vectors hi of the basis of C⊥. In this way, each codeword
c = uG of the code satisfies the condition HcT = 0; for this reason, H is called
the parity check matrix of C. In other words, the parity check matrix defines
L − K equations which allow the received word to be checked to verify if it is
actually a codeword of C. In particular, if the received vector o = c + e is given
by a codeword c corrupted by an error pattern e, we get:

s = HoT = HeT �= 0 (2)

where s is a L − K-vector called the syndrome of r. Since to distinct syndromes
correspond distinct errors, it is possible to correct up to �(d − 1)/2� erroneous
bits. This is a general feature of the linear codes and it is the basis for many
different decoding techniques. In the next section we show how the particular
structure of the parity check matrix of the LPDC codes allows an effective uti-
lization of dichotomizers with reject option in an ECOC classification system.

3 Recovering the Rejects

Let us suppose that we can estimate the reliability of the output of each di-
chotomizer in the ECOC system. As an example, let us consider a model for
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the dichotomizer which provides a soft value ranging from 0 to 1. In this case,
we should threshold the soft output to have a crisp response and the typical
threshold value is 0.5. However, it is easy to see that a value for the soft output
falling near the threshold will be much less reliable than a value near 0 or near
1. As a consequence, we can adopt a reject rule for each dichotomizer as:

oj(x, t) =

⎧
⎪⎨

⎪⎩

1 if fj(x) > 0.5 + t

0 if fj(x) < 0.5 − t

? otherwise
(3)

Since in this case the output vector can also contain rejected bits, i.e. oi ∈
{0, 1, ?}, the condition (2) cannot be checked. Nevertheless we can assume that
all the bits not rejected are correct and impose a null syndrome: in this way the
parity check condition becomes a system of linear equations with the rejected
bits as unknowns. In particular, if we denote with E the index set of the rejected
bits and with Ē the index set of the bits not rejected, the parity check condition
HoT = 0 can be written as:

HoT = HEoT
E + HĒoT

Ē = 0 (4)

Since we are working with the arithmetic modulo 2, this is equivalent to:

HEoT
E = HĒoT

Ē (5)

where HĒoT
Ē

is a known term. This system has a unique solution if and only
if the matrix H has a subset of |E| independent rows; in this case, the solution
can be found by performing Gaussian elimination and back substitution.

An useful and intuitive graphical representation to show how each component
of the output vector is involved in the parity check constraints is the Tanner
graph [8]. This is a bipartite graph with L variable nodes, corresponding to
every component of the output vector, and L − K check nodes, corresponding
to the parity check constraints, i.e. to the rows of H. To build the graph, every
check node i is connected to a variable node j if and only if hij = 1. The number
of connections deriving from a node is usually referred as the degree of the node.
An example of a parity check matrix through the corresponding Tanner graph
is shown in fig. 1.

The parity check equations allow the rejects to be eliminated by means of an
iterative procedure (direct recovery algorithm) which is shown in fig. 2 and that
can be summarized this way [9]:

1. Initialize the values of all check nodes to zero;
2. FOR EACH variable node, IF the node has a value in {0, 1} THEN add this value

to the values of all adjacent check nodes and remove all the edges coming
from it;

3. FOR EACH check node, IF the node has degree one THEN substitute its value
into the unique adjacent variable node and remove the edge;

4. IF at least a check node with degree one has been found in the previous step
THEN goto step 2 ELSE exit.
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Fig. 2. An example of the Recovery algorithm applied successfully to the previous
Tanner graph: (a) The variable nodes with no rejects transmit their values to the check
nodes (b) The check nodes of degree one transmit back their values to the adjacent
variable nodes with rejects (c) The recovered variable nodes transmit their values to
the check nodes (d) Every new check node of degree one transmits back its value and
the algorithm ends
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It is worth noting that each check node with degree 1 singled out in step 3 can be
only connected to a variable node with reject whose value is substituted in such a
way to satisfy the constraint. The procedure ends when there are no more check
nodes with degree 1. This means either all the check nodes have degree 0 (and
thus all the rejects have been recovered) or there is some check node with degree
greater than 1, i.e. a check node connected with two or more variable nodes with
rejects which cannot be recovered. This case happens when rank(HE) < |E|. In
order to have a high probability of recovering the rejected bits, the code to be
chosen should have a sparse parity check matrix with the property that HE has
a triangular sub-matrix with high probability when |E| is not too large [10]. In
other words, this makes more practicable to recover the rejects directly through
a back substitution instead of a Gaussian elimination.

Such features are provided by the Low Density Parity Check (LDPC) codes
[11] which are characterized by a sparse pseudorandom matrix H. An (a, b)-
regular LDPC code is defined as a binary linear code such that in its Tanner
graph every variable node has degree a and every check node has degree b. The
term “low density” indicates that the number of edges in the Tanner graph is
aL, where L is the length of the code. As L increases, the number of edges in the
Tanner graph grows linearly in L, while for other codes it grows much faster.

4 From LDPC to LDPC-Based ECOC

Let us now describe how to integrate the LDPC codes into an ECOC framework
provided with a reject option and discuss some issues rising during this process.
The first point is the choice of L and K. If M is the number of the classes in
the original multiclass problem, obviously we have K � �log2 M�; however, for
a fixed L, it is convenient to keep K as low as possible so as to decrease the
transmission rate and thus to increase the MHD d among the codewords. Once
L and K = �log2 M� are determined and the matrices G and H of the code C
have been generated, we have to choose M codewords among the 2K available.
The safest choice is to select the M codewords with the highest MHD among
them; in this way, if IM is the index set of such codewords, the set of rows of
the coding matrix C will be {ci |ci ∈ C, i ∈ IM }. To understand this choice, it is
worth noting that the recovery algorithm does not necessarily output a codeword
belonging to C. In fact, in sec. 3 we made the assumption that all the bits not
rejected were correct, but this is not always true. The recovered codeword c̃ could
thus contain some erroneous bits; moreover such errors could propagate during
the recovery of the rejected bits, even though this problem is sensibly mitigated
by the sparseness of the Tanner graph. As a result, the recovery could produce
a codeword different from the correct one. However, a high MHD among the
codewords of the coding matrix increases the probability that the erroneously
recovered codeword does not represent another class, i.e. that c̃ ∈ C and c̃ /∈ C.
In this case, an effective rule is to decide for the class corresponding to the
codeword c ∈ C with the lowest Hamming distance from the recovered codeword
c̃. Another point to be considered is that the recovery algorithm can fail because
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rank(HE) < |E| and the codeword cannot be recovered. In this case the final
multiway decision cannot be taken and a multiway reject is produced. Therefore,
our multiclass decision rule can be summarized this way:

r(C,x) =

{
argmink∈IM (DH(ck, c̃)) if c̃ has no rejected bits,
reject otherwise,

(6)

where c̃ is the codeword recovered starting from the outputs of the dichotomizers
fed with the sample x.

Let us now consider the coding matrix C produced by the chosen code C which,
depending on the structure of the generator matrix, could contain similar (or
even identical) columns as well as all-zeros or all-ones columns. Unlike the usual
ECOC, in our approach we cannot eliminate such columns unless all the algebraic
properties of the code do not hold and the recovery algorithm cannot be applied.
Actually, the all-zeros/all-ones columns are not a big problem since they can be
neglected during the training of the dichotomizers so that the number of needed
dichotomizers becomes lower than L. The bits corresponding to all-zeros/all-
ones columns can be then inserted within the output vector before the recovery
algorithm starts. As for the similar columns, also this issue is less problematic
than the usual ECOC. In fact, thanks to the sparseness of the parity check
matrix, possible correlated outputs are likely to be forwarded to different check
nodes and this makes the recovery robust to such circumstance. Nevertheless
a further benefit for the robustness of the classification can be gained through
the use of dichotomizers with learning algorithm incorporating some randomness
into their execution.

5 Experimental Results

In order to evaluate the performance of the proposed ECOC classification system
based on LDPC codes, some experiments have been performed on several data
sets publicly available at the UCI Machine Learning Repository [12]; all of them
have numerical input features and a variable number of classes. More details
for each data set are given in table 1. To avoid any bias in the comparison,
12 runs of a multiple hold out procedure have been performed on all the data
sets. In each run, the data set has been split in three subsets: a training set
(containing the 70% of the samples of each class) to train the base classifiers, a
tuning set and a test set (each containing the 15% of the samples of each class)
respectively to normalize the dichotomizers output into the range [0, 1] and to
evaluate the performance for the multiclass classification. As base dichotomizers
in the ECOC framework Modest AdaBoost [13] has been employed. A simple
decision tree has been used as weak learner, with a random number of splits and
a uniformly distributed random weight initialization in every run to provide a
lower correlation among the different classifiers (see section 4).

First, the performance of different LDPC codes have been evaluated to verify
how performance is affected by the code length. The coding matrices have been
randomly generated so as to maximize the mean and minimize the standard de-
viation of the Hamming distance between columns. The first considered LDPC



340 C. Marrocco, P. Simeone, and F. Tortorella

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Reject Rate

E
rr

or
 R

at
e

L=12

L=40
L=30

(a)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Reject Rate

E
rr

or
 R

at
e

L=30

L=40

L=12

(b)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Reject Rate

E
rr

or
 R

at
e

L=12

L=40

L=30

(c)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Reject Rate

E
rr

or
 R

at
e

L=30

L=12

L=40

(d)

Fig. 3. Comparison of the error-reject curves for LDPC codes of different length on
four data sets: (a) Glass, (b) SatImage, (c) Yeast, (d) Vowel

coding matrix has been determined so as to have the maximum code length
without equal columns. For the value of K = 4 chosen for the considered data
sets, a maximum of L = 12 different columns have been found. Successively, we
have considered codes with greater length which could contain highly correlated
columns into the coding matrix (and equal columns too). To this aim, coding
matrices with L = 30 and L = 40 have been generated with K = 3 and K = 4
(we do not report the results obtained for higher values of L that do not give
significant improvement and increase the computational complexity of the sys-
tem). It is worth noting that these codes exhibit a low MHD between rows: a
code with K = 4 and length L = 40 provides an achievable d larger(r = 0.1)
than the MHD obtained by a code with K = 4 and L = 12 (r = 0.33). How-
ever, it is not useful to consider values of r lower than 0.1 since, in this case,
the increasing number of correlated columns leads to lower performance. The
results in terms of error-reject curves relative to LDPC codes of different length
are reported in fig. 3; the curves are produced with the threshold t in eq. (3)
varying in the range [0.5, 1] and evaluating the multiway reject rate according
to eq. (6).

For low values of the reject rate a code with L = 40 has higher performance
with respect to a code with all different columns (L = 12) for its higher error
correcting capability; this behavior holds also for higher values of t except for
the SatImage data set where the shorter code has slightly better performance.
Therefore, the correlation between the columns of the coding matrix does not
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Fig. 4. Comparison of the error rate of DECOC, RECOC, dense and sparse ECOC
and our method on four data sets: (a) Glass, (b) SatImage, (c) Yeast, (d) Vowel

affect the system performance thanks to the decorrelating effects provided by the
sparseness of the parity check matrix (and partly to the employed dichotomizer
with random initialization in the learning algorithm). It is worth noting that
when the reject threshold becomes very high all the codes have quite similar
performance since the sensibly increased number of rejects in the output vector
lower the recovery capability for the longer codes.

For the sake of comparison, we have also contrasted the performance obtained
by our approach with some relevant methods in literature in which the same data
sets were employed for the experiments. In particular, since the reject option has
never been employed, we report the results in terms of the error rate provided
by the other considered methods. The value reported in these experiments are
relative to the results obtained in [2] using a Dense and a Sparse random coding
matrix, built respectively from the set of values {−1, 1} and {−1, 0, 1} and to
the results of DECOC [3] and RECOC [4] approaches. The former introduces a
coding technique derived from data distribution while the latter uses the LDPC
codes with a sum-product algorithm as decoding technique. Fig. 4 shows the
multiway error-reject curves obtained on the data sets. The characteristics of the
LDPC matrix employed for each data set are reported in table 1. The last column
refers to the number of dichotomizers actually employed, because the coding
matrix can eventually include some all-zeros/all-ones columns that are not used
in the training phase, but anyhow included in the final output vector. When the
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Table 1. Data sets and codes used in the experiments

Data Set #Classes #Features #Samples Code Dichotomizers needed
Glass 6 9 214 C(3, 40) 36

SatImage 6 36 6435 C(3, 40) 36

Yeast 10 8 1484 C(4, 40) 35

Vowel 11 10 435 C(4, 40) 35

reject rate is equal to zero the performance of our method are comparable to the
other approaches. In particular, only in five cases the other methods are slightly
better (RECOC on Glass and SatImage, DECOC on Glass and Vowel and Dense
matrix on Yeast data set), but no any other method is definitely better than the
proposed approach. Obviously, when the reject rate increases the error rate of
our method becomes lower (if we accept a reject rate of 0.05 the error rate of the
proposed method is lower than all the others). In other words, our approach gives
the profitable opportunity to tune the error rate provided that a certain reject
rate can be accepted and this is a relevant issue to be considered when using
an ECOC system in real applications dealing with cost-sensitive classification
problems.

6 Conclusions and Future Work

In this paper we have proposed an ECOC classification system based on Low
Density Parity Check (LDPC) codes which allowed us to embed in the ECOC
scheme dichotomizers with the reject option and to define an effective algorithm
for recovering the rejects. Such approach gave us chance to verify that the frame-
work of Coding Theory can be profitably used to design effective ECOC systems
with strong theoretical foundations. There are some practical and theoretical
issues that need to be addressed, however. As an example, a thorough analysis
is required to verify to what extent the available classifier architectures fit the
theoretical transmission channel models. This work hopes to be a first step to-
ward further understanding how to use the results of Coding Theory in ECOC
design.
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Abstract. Face as a biometric is known to be sensitive to different factors, e.g.,
illumination condition and pose. The resultant degradation in face image quality
affects the system performance. To counteract this problem, we investigate the
merit of combining a set of face verification systems incorporating image-related
quality measures. We propose a fusion paradigm where the quality
measures are quantised into a finite set of discrete quality states, e.g., “good
illumination vs. “bad illumination”. For each quality state, we design a fusion
classifier. The outputs of these fusion classifiers are then combined by a weighted
averaging controlled by the a posteriori probability of a quality state given the
observed quality measures. The use of quality states in fusion is compared to the
direct use of quality measures where the density of scores and quality are jointly
estimated. There are two advantages of using quality states. Firstly, much less
training data is needed in the former since the relationship between base clas-
sifier output scores and quality measures is not learnt jointly but separately via
the conditioning quality states. Secondly, the number of quality states provides
an explicit control over the complexity of the resulting fusion classifier. In all our
experiments involving XM2VTS well illuminated and dark face data sets, there is
a systematic improvement in performance over the baseline method (without us-
ing quality information) and the direct use of quality in two types of applications:
as a quality-dependent score normalisation procedure and as a quality-dependent
fusion method (involving several systems).

1 Introduction

Face authentication is a process of verifying an identity claim using captured face im-
ages. While face as a biometric is well accepted by the general public and has already
been in use in many applications using manual authentication, e.g., travel documents,
it is still a very challenging task to replace this manual process by an automated one.
This is because a captured face is inherently affected by the following factors: noise
of the biometric device, e.g., a CCD camera operates slightly differently in different
temperature; the interaction between the user and the device, e.g., a change of pose;
the environmental (external) factors, e.g., the illumination conditions; and the natural
physiological or behavioural change of face images principally originated by the user
himself/herself, e.g., different face expressions. In general, these factors will lead to a
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degradation in the face image quality and this will ultimately compromise the ability of
the automatic face recognition system to verify the claim.

The goal of this paper is to devise a fusion algorithm that uses a set of quality mea-
sures derived from the face images to improve the fusion performance where several
base face authentication systems may operate and exhibit different performance in dif-
ferent conditions. Combining several face verification systems in this context is espe-
cially useful when one baseline face verification system is robust to noise but does not
perform well under good conditions and vice versa. Ideally, a fusion classifier should
give more weight to the more reliable classifier in a given condition. The conventional
fusion algorithm, unfortunately, does not have such a mechanism to do so. For instance,
a linear fusion classifier weighs each base classifier output by the same weight for all the
incoming samples regardless of their quality. It is clear that we should expect a better
performance if the weight associated with each base system output changes dynamically
as a function of image quality.

While several studies have shown that using quality measures as auxiliary informa-
tion can improve the multimodal system performance at the score level, e.g., [1,2,3,4],
as well as at the decision level [5], our experience is that this is not necessarily the case.
This is because directly learning the relationship between base system output scores and
quality measures may result in a more complex classifier, thus having a higher chance
of overfitting the training data. Consequently, the resulting performance may be worse
than the baseline system without using the quality information. Instead, we propose to
first quantise the quality measures into a finite set of discrete quality states and then
learn a fusion classifier for each state. The fused score output is given by a weighted
sum of these fusion classifiers where the weight is the posterior probability of a quality
state given a set of observed quality measures. Our experimental results carried out on
the XM2VTS well illuminated and dark face images show that combining quality mea-
sures in fusion via the quality states generalises systematically better than by directly
using the quality measures themselves. It is also superior to the baseline fusion approach
without using the quality information. In comparison, our proposed fusion approach is
much less likely to overfit on the training data, thus providing a good trade-off between
complexity and generalisation performance.

2 Methodology

The proposed fusion approach via quality state is best explained in terms of a Bayesian
network [6]. Graphical models representing three possible ways of using quality mea-
sures are shown in Figure 1. Model (a) is the conventional fusion without using quality
measures. Model (b) is the state-of-the-art approach with quality measures. Finally,
model (c) is the proposed fusion approach conditioned on quality states. A node in the
graph represents a variable and its associated probability whereas an arrow from vari-
able A to variable B specifies their causal relationship, i.e., the conditional probability
of A given B. In the models just shown, the following variables are used:

– k ∈ {C, I} is the true class label, i.e., being either a genuine user (also known as a
client) or an impostor.
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Fig. 1. (a) A conventional fusion classifier without using quality information. (b) The state-of-
the-art fusion classifier with raw quality measures. (c) The proposed method of incorporating
quantised quality measures via quality states. The dashed arrow in (c) emphasises the removed
casual relationship which is replaced by the newly introduced casual relationships (arrows) from
q to Q and from Q to y. The dashed arrow will simply vanish in a conventional graphical model
diagram.

– q ∈ R
Nq is the vector of quality measures output by Nq quality detectors. A quality

detector is an algorithm designed to assess the quality of an image, e.g., the bit
per pixel ratio, contrast and brightness as defined by the MPEG standards. In our
case, these quality measures deal with face images describing, for instance, the
orientation, illumination and spatial resolution of a face image. Both the general
and face-related quality measures will be used in this paper.

– the quality state Q ∈ {1, . . . , NQ} which signifies one of the NQ discrete events1

each describing a composite combination of quality degrading factors, e.g.,
{wearing glasses, back illumination, smile}, {no glasses, left illumination, neu-
tral}, etc. In this study, we deal only with two quality states, i.e., well illuminated
and side-illuminated face images. These states are obvious from a direct exami-
nation of a face image. However, from a computational point of view, Q is not
observable when a biometric system operates without human intervention.

– y ∈ R
N is the vector of scores output by N base face authentication systems.

The three models shown in Figure 1 each describe the following joint probabilities, in
increasing capability of modelling the quality information:

p(y, k) = p(y|k)p(k) (1)

p(y, k, q) = p(y|k, q)p(k)p(q), (2)

p(y, k, q, Q) = p(y|k, Q, q)p(k)p(Q|q)p(q),
= p(y|k, Q)p(k)p(Q|q)p(q). (3)

Note that in our notation, we do not distinguish between discrete probability that is
usually written with a capital “p” from the continuous one.

The first model does not consider the quality information; the second model uses the
quality measures directly; and the third model uses the quality information via quality
states. Using this Bayesian framework, the state-of-the-art algorithms exploiting quality

1 Note that NQ and Nq are different. We use the small letter “q” to denote a quality measure and
the capital “Q” to denote a cluster of quality measures.



On Combination of Face Authentication Experts by a Mixture of Quality 347

measures, e.g. [1,2,3,4], can be considered as belonging to the second model. In [1,3],
the second model was implemented using discriminative classifiers whereas in [2,4],
generative classifiers (hence approximating some probability density) were used. The
last model thus assumes that the score y is conditionally independent of q given that Q
is known, i.e., if one knows the state of Q, one does not need q. For this reason, we need
to model only p(y|k, Q) instead of p(y|k, q, Q).

Using the first model where q is not considered, a conventional fusion classifier can
be obtained by using the following log-likelihood ratio (LLR) test:

ynorm
bline = log

p(y|C)
p(y|I) (4)

Similarly, for the second and third models, one can realise a quality dependent fusion
classifier as follows:

ynorm = log
p(y|C, q)
p(y|I, q) . (5)

Note that the state Q is not a conditioning variable in (5) because Q is not observed
when inferring using the second and third models.

In (5), it can be assumed that the system outputs in y are dependent of each other. If
one makes the independence assumption, the likelihood function can be written as:

ycom = log
∏

i p(yi|C, q)∏
i p(yi|I, q) =

∑

i

log
p(yi|C, q)
p(yi|I, q) =

∑

i

ynorm
i . (6)

where yi is the i-th system that participates in fusion.
In the discussion that follows, we will consider y as a scalar, i.e., with N = 1. As a

result, (5) can be considered a quality-dependent score normalisation procedure instead
of a quality-dependent fusion classifier2.

When one uses (5) as a quality-dependent score normalisation procedure, the result-
ing decision function should be:

decision(ynorm) =
{

accept if ynorm > Δnorm

reject otherwise,
(7)

where Δnorm is a decision threshold after normalization. The decision function for the
original score y can be written in exactly the same way by replacing ynorm with y.
We argue that in theory, the performance due to ynorm is better than that due to y. In
practice, however, this depends on how well one can estimate p(y|k, q).

2 We have considered both cases in our experiments but only to find that (6) generalises much
better although in theory the vector case of (5) should perform similarly well, if not better.
Since (5) has more parameters to estimate than (6), it is highly probable that (5) overfit the
training data, thus resulting in inaccurate modeling of the dependency which in turn causes
deteriorated generalisation performance. For better consistency with the experimental results
to be presented at the end, we will refer to (5) as a quality-dependent score normalisation
procedure.
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Note that modeling p(y|k, q) is difficult because the output variable y and the input
variable q are continuous. This means that one should use a multivariate regression
procedure since q has Nq dimensions. Fortunately, there are at least two ways to estimate
p(y|k, q) elegantly.

The first approach is to use p(y, q|k) in place of p(y|k, q), where all the continuous
values are no longer in the conditioning set. This corresponds to model (b) shown in
Figure 1. Therefore, p(y, q|k) can be estimated using any multivariate density estimator.
We used a mixture of Gaussian components or the Gaussian mixture model (GMM) [7]
for this purpose. Other alternatives are Parzen windows [7], and the method of Gaussian
Copulas that was first used in combining multimodal biometric systems in [8].

To show that using p(y|k, q) is equivalent to using p(y, q|k), we first note that:

p(y|k, q) =
p(y, q|k)
p(q|k)

.

Using the LLR framework, one obtains the following quality-dependent score normali-
sation procedure:

ynorm
with q

= log
p(y, q|C)
p(y, q|I) (8)

= log
p(y|C, q)
p(y|I, q)

− log
p(q|C)
p(q|I)︸ ︷︷ ︸

Since the quality measures are not expected to have any discriminative power to distin-
guish between the client and the impostor classes, the under-braced term will be zero.
This is consistent with the models presented in Figure 1 where there is no link from k
to q. We will therefore use (8) as the direct approach of quality-dependent score nor-
malization procedure.

The second approach to estimating p(y|k, q) is via the quality state, i.e., the third
model shown in Figure 1. This can be done by computing the following probability:

p(y|k, q) =
∑

Q

p(y|k, Q)p(Q|q) (9)

where p(Q|q) is the posterior probability of Q given q, i.e.,

p(Q|q) =
p(q|Q)∑

Q∗
p(q|Q∗)

. (10)

Using the LLR test in (5), the resulting score is obtained as follows:

ynorm
with Q

= log

∑
Q p(y|C, Q)p(Q|q)

∑
Q p(y|I, Q)p(Q|q) (11)

We will refer to the classifier due to (8) as a joint quality-score (JQS) normalisation
procedure since for each example, the quality measures and scores must be present
during training. The alternative classifier, i.e., due to (11) will be referred to as a quality-
state dependent (QSD) score normalisation procedure since it is dependent on the qual-
ity state but not directly dependent on the quality measures. While these two
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quality-dependent score normalisation procedures are the same in principle, the latter
has a much lower complexity. For instance, maximising the likelihood p(y|k, Q) re-
quires only the cluster index Q and not the actual observation q for each score y. In this
case, p(y|k, Q) has N dimensions, i.e., the number of dimensions in y. On the other
hand, maximising the likelihood p(y, q|k) requires both y and q to be present. Fur-
thermore, p(y, q|k) has N + Nq dimensions. This implies that one may face the curse
of dimensionality [7] when Nq is large. In brief, this curse means that modelling the
increased number of dimensions may be less effective since this is not supported by
the necessarily exponential increased number of training samples. In fact, there is only
a fixed number of training samples to design a quality-dependent score normalisation
procedure (or a fusion classifier). We argue that the higher complexity of p(y, q|k) is not
necessarily an advantage because this may result in overfitting. In contrast, by adjusting
the number of discrete quality states NQ, one can control the desired level of complexity
adequately. As a result, (11) may be better in terms of generalisation performance than
(8) given an appropriately adjusted NQ.

We shall now discuss our particular implementation of the three models shown in
Figure 1, i.e., the baseline system, realised using (4); the JQS approach, i.e., (8); and the
QSD approach, i.e., (11). In all these three models, we have to estimate the probability
distributions: p(y|k), p(y, q|k), p(y|k, Q) and p(q|Q) (from which the posterior p(Q|q)
is estimated via (10)). All these probability densities are multivariate and conditioned
on some discrete variables. In our implementation, we use the Gaussian mixture model
(GMM) [7] to estimate each of the multivariate probability distributions. Its parameters
are estimated using the expectation maximisation algorithm. The number of Gaussian
components is tuned by cross-validation.

3 Database and Experiments

3.1 Hypotheses to Verify

There are several claims in the Section 2 that need to be supported by experiments. The
claims are:

1. The JQS normalisation procedure, i.e., due to (8) may overfit.
2. The QSD normalisation procedure, i.e., (11), achieves better generalisation than the

baseline approach without using quality information.
3. A good estimate of p(Q|q) is crucial to guarantee the success of the QSD score

normalisation procedure.
4. The QSD fusion classifier generalises better than the JQS and the state-of-the-art

fusion classifier which ignores quality information.

The first three hypotheses deal with quality-dependent score normalisation procedures.
If they are true, the same conclusion can usually be applied to the fusion classifiers. For
the ease of designing experiments, we will only show such coherence using hypothesis
two and four where the former involves score normalisation procedures and the latter
involves intramodal fusion of classifiers.

Since we have 11 quality detectors, to carry out the experiments with hypotheses
1–2, we will pick only the most discriminative quality detector so that the dimension
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of q is only one. This will simplify the comparison for the convenience of validating
the experiments. This is not a limitation because we will test hypothesis 3 with all the
quality measures available (to be discussed further).

3.2 The XM2VTS Standard and Darken Data Sets

We used the face images of the XM2VTS well-illuminated [9] and dark [10] data set. It
contains 295 subjects, among which 200 are used as clients, 25 as impostors reserved
for use for algorithm development, and 70 as impostors for the unique use of evalua-
tion. For each subject, four sessions are acquired among which the first three sessions
are used for algorithm development and the last one is reserved for algorithm evalua-
tion. We consider the dark data sets with left illumination as the “fifth” session and the
one with right illumination as the “sixth” session. Each session contains two mugshots
of face images. In the results reported in [10], the protocol did not explicitly specify
that the dark data set can be used for training although in one of the three submitted
evaluations, the dark data set was possibly used for training. In this paper, however, in
order to show the advantage of having observed some poor illumination data, we used
the 25-impostor data set in which the well-illuminated and dark images are available
for training. However, we could not obtain the scores for the dark client images. Given
the fact that these scores can only be found in the 200-client data set, we further divided
this data set into 20- and 180-client data set such that the 20-client data set is set aside
uniquely for algorithm development and the 180-client for both algorithm development
and evaluation. The consequence is that the data set for algorithm evaluation used in
this paper will consist of sessions 4, 5 and 6 of the 180-client data set and sessions 1–6
of the 70-impostor data set3.

3.3 Face Feature Representations and Classifiers

The classifiers used in this paper can be found in [11] and was implemented based
on the open-source TorchVision4. There are two classifiers with three types of pre-
processing, hence resulting in a matrix of six classifiers. The two classifiers used are
Linear Discriminant Analysis (LDA) with correlation as a distance metric [12] and
Gaussian Mixture Model (GMM) with maximum a posteriori adaptation, i.e., the same
state-of-the-art system used in speaker verification [13]. The use of GMM in face au-
thentication can be found in [14], for instance. The face pre-processing algorithms used
are the photometric normalisation as proposed by Gross and Brajovic [15], histogram
equalisation and local binary pattern (LBP), originally proposed by Ojala [16] but first
used for pure pre-processing (and not recognition) in face authentication in [11]. Since
the goal of this paper is to investigate intramodal fusion at the score-level, the absolute
performance of the baseline systems is a secondary issue, whereas the relative perfor-
mance with respect to the baseline systems as well as the baseline fusion methods as
shown in models (b) and (c) is of particular importance. For this reason, neither the

3 Due to lack of space, we could not show this protocol in a table.
4 http://torch3vision.idiap.ch. See also http://www.idiap.ch/ marcel/labs/faceverif.php for a

tutorial.
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details of the three pre-processing procedures nor their verification performance in con-
junction with the mentioned classifiers are reported here; the interested reader should
refer to [11,14].

3.4 Quality Measures

In this paper, we use a set of proprietary quality detectors developed by Omniperception
Ltd. The details of these quality detectors will thus not be discussed here. Note that
some of them are defined by the MPEG standards. These quality detectors measure:

1. Overall quality
2. Frontal
3. Rotation
4. Reflection

5. Illumination
6. Spatial resolution
7. Bit per pixel
8. Focus

9. Contrast
10. Brightness
11. Reliability5

The overall quality is a combined measure using all the other quality measures. Only
detectors 2–5 are face-related quality measures whereas the rest were developed as gen-
eral purpose image quality detectors. It should be noted that none of these quality de-
tectors were designed specifically to distinguish the three strong dominant quality states
(by manual examination of face images in the XM2VTS database): good illumination,
left illumination and right illumination. Although such a dedicated detector could have
been designed easily, it would not reflect the real life situation where quality detectors
are imperfect. Using the above quality detectors thus make the problem incorporating
quality measures into a fusion classifier a more difficult one. For this reason, we did
not further distinguish between left or right illumination but simply categorised them as
“poor illumination” . The rest of the images were categorised as “good illumination”.
These are the two quality states and they are observed and used when training the QSD
classifier but inferred via q during testing.

3.5 Experiments and Results

We first carried out independent experiments to find out the most discriminative quality
measures to distinguish the quality states. Out of the 11 quality measures, the most
discriminative one is the second one. It will be used for experiments designed to test
hypotheses one and two. When we infer P (Q|q), we consider the priors to be equal,
i.e., P (Q) = 1

NQ
since for a general application, each state may be equally probable.

This makes the task of distinguishing one Q state from another even harder, since there
are more data acquired under good illumination conditions than those acquired under
poor ones.

In order to show the first hypotheses, we conducted two sets of experiments: an
unbiased training and a biased training. In the unbiased case, we trained the score nor-
malisation procedure on the development set and applied the trained procedure to the
evaluation score set. This approach corresponds to the default train/test procedure. For
the biased training, we trained the procedure on the test set so that the score normal-
isation procedure fits the test data perfectly. We then compare the performance of the

5 This reliability measure is probably different from what was proposed in [5].
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Table 1. A posteriori EER of the baseline system (column 1) JQS (columns 2–3) and QSD
(columns 4–6) score normalisation procedures obtained on the XM2VTS well-illuminated and
darken data sets according to Lausanne Protocol I. The last column shows the relative change of
EER between the baseline system (column 1) and the default QSD (column 5); larger negative
values implies better improvement.

a posteriori EER (%) rel. change
system baseline unbiased q biased q Q, w/o quality Q Q, oracle of EER (%), Q
lda-gross 11.41 13.94 9.05 11.41 10.12 9.91 -11.30
lda-heq 8.34 8.15 7.04 8.34 6.72 6.47 -19.38
lda-lbp 8.14 8.57 6.93 8.14 7.83 7.74 -3.74
gmm-gross 9.99 13.03 9.37 9.99 9.62 9.43 -3.67
gmm-heq 25.21 28.15 20.59 25.24 18.68 17.89 -25.93
gmm-lbp 17.01 18.01 13.05 17.06 14.55 13.72 -14.45

baseline (un-normalised scores) with the scores due to unbiased and biased training.
These results are shown in the first three columns (containing a posteriori EER in per-
centage) of Table 1. Contrary to the results reported by [2,4], for almost all the cases
of unbiased training of JQS procedure except lda-heq, their EERs increase with respect
to the baseline unprocessed scores. In contrast, with the biased training of JQS, all re-
sulting EERs decrease. Therefore, we conclude that that JQS over fits the training data.
We repeated the same experiments to model p(y, q|k) except that we constrained the
number of Gaussian components to two. This corresponds to the observed two quality
states, i.e., “good illumination” versus “poor illumination” instead of using cross vali-
dation (recalling that we used a GMM to model p(y, q|k)). Unfortunately, the resulting
EERs are still not systematically better than that of the baseline systems. We therefore
conclude that the JQS method has a too high complexity that cannot be adjusted easily
even by imposing constraints on its density estimator.

We then used the usual unbiased train/test experimental approach for the QSD score
normalisation procedure. We, however, introduced three variations, as follow:

– without quality: This variant ignores the quality information by integrating (11)
with respect to q. We do so for two reasons. Firstly, this will support our claim that
the baseline model can still be deduced from the advanced QSD model. Secondly,
it also verifies the correctness of our implementation.

– with quality: This is the default QSD model where the state Q is inferred via
p(Q|q).

– oracle: This QSD model assumes that the state Q is known deterministically and
so it is not inferred from the trained p(Q|q). We expect that this oracle variant (so
named due to the knowledge of the quality state) is expected to be better than the
default QSD model (the second variant).

The results of these three variants of QSD models are shown in columns 4–6 of Table 1,
respectively. The last column shows the relative change of a posteriori EER due to the
default QSD model with respect to the baseline performance (column one). We observe
that:
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– There is no significant difference in terms of performance between the first variant
of QSD compared to the baseline systems in which the scores are not processed.

– The oracle QSD variant is better than the default QSD model.
– The default QSD model is systematically better than the baseline systems (see the

last column of Table 1). It is also better than the unbiasedly trained JQS model.

In order to show the third hypothesis, we chose the system whose relative performance
gain (according to the last column of Table 1) is the highest. This system is gmm-heq.
Instead of using the second quality measure, we replaced it with the other quality mea-
sures one by one. For each quality measure, we also measured the resulting performance
in terms of EER due to distinguishing the good illumination from the poor one. Note
that we used EER for this task for convenience only; the classification error could have
been used. The EER performance of each quality measure and the relative change of
EER performance of the resultant QSD model due to using p(Q|q∗) for a given q∗ is
shown in Figure 2. As can be observed, the second quality measure gives the largest re-
duction of performance (its absolute and relative change of EER are shown in Table 1).
There is indeed a dominant positive trend in this figure. We therefore conclude that the
discriminative power of q to distinguish the quality state Q is important to guarantee
good generalisation performance of the QSD model (hypothesis three).

In order to show the final hypothesis, we build a fusion classifier with the inde-
pendence assumption as given by (6). Since we have six base systems, we can define
26 − 1 = 63 fusion tasks by exhaustively making all possible combinations. This is
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Fig. 2. Performance gain from quality state-dependent score normalisation (Y-axis) versus the dis-
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Fig. 3. Comparison of performance between the baseline and QSD fusion classifiers on the 63
exhaustive combinations of fusion tasks involving six base systems in terms of (a) absolute EER
performance and of (b) relative change of EER from the baseline fusion classifier to the QSD one.
The numbers 1–6 in the legend corresponds to the number of systems participating in a particular
fusion task.

done by choosing one out of six, i.e., 6C1; then choosing two out of six, i.e., 6C2; then
6C3, . . . and finally 6C6 = 1 which is combining all six systems. The baseline fusion
classifier is based on (4) where p(y|k) is estimated by a GMM. We compared the per-
formance of GMM with that of QSD models in terms of a posteriori EER. The pair of
EERs are plotted in Figure 3(a). As can be observed, the QSD fusion classifiers system-
atically give better performance than the baseline fusion systems. We did not show the
experiments using the JQS classifier because their performance are considerably worse
than the baseline systems. In Figure 3(b), we measured the relative reduction of EER
due to the two fusion classifiers examined. Negative values imply improvement due to
the QSD fusion classifiers. Due to strong negative values (with median around -20%),
we conclude that our proposed QSD fusion classifier is effective.

For the sake of convenience of the analysis, we showed only a posteriori EERs. We
further visualised the DET curves of the baseline fusion (without quality), the QSD clas-
sifier and all the participating baseline systems and verified that indeed the QSD classifier
is almost at least as good as, if not better than, the best participating base systems across
all operating thresholds (examples of figures are not plotted due to lack of space).

3.6 Discussions

In the experiments, the posterior probability p(Q|q) was estimated with (10) where
p(q|Q) is used. However, one could have used a direct estimation of p(Q|q) using for
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instance a multi-layer perceptron [7] or a logistic regression function [17] since the
quality state Q is directly observable in training. In our case, Q is either good or poor
illumination. However, in general, the number of states NQ is unlikely to be known.
In this case, one should first find a number of clusters of quality measures and then
verify that the performance for each cluster of data is indeed different. Using too many
clusters NQ is unlikely to be optimal because the resulting model as given by (11) may
overfit the training data. Furthermore, the estimate of p(y|k, Q) in each cluster may not
be stable since using too many clusters will result in too few examples in each cluster.

4 Conclusions

Combining several face verification systems is a promising solution to increasing the
reliability and robustness of face verification. However, to date, there is no satisfac-
tory fusion solution that can systematically improve over the baseline performance over
all the operating thresholds. The state-of-the-art approach, as exemplified by the JQS
model, tends to overfit the training data. By introducing quality states, which are in
fact clusters of the quality measures, we explicitly introduce a control parameter which
regulates the complexity of the resulting algorithm that exploits quality measures. This
is the main reason for the systematic improvement observed in almost all the 6 score
normalisation and their resulting 63 exhaustive fusion experiments.
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Abstract. A biometric system produces a matching score representing
the degree of similarity of the input with the set of templates for that
user. If the score is greater than a prefixed threshold, then the user is ac-
cepted, otherwise the user is rejected. Typically, the performance is eval-
uated in terms of the Receiver Operating Characteristic (ROC) curve,
where the correct acceptance rate is plotted against the false authenti-
cation rate. A measure used to characterise a ROC curve is the Area
Under the Curve (AUC), the larger the AUC, the better the ROC. In
order to increase the reliability of authentication through biometrics, the
combination of different biometric systems is currently investigated by re-
searchers. In this paper two open problems are addressed: the selection of
the experts to be combined and their related performance improvements.
To this end we propose an index to be used for the experts selection to
be combined, with the aim of the AUC maximisation. Reported results
on FVC2004 dataset show the effectiveness of the proposed index.

1 Introduction

Biometric experts perform user authentication by the so-called matchers, i.e.,
algorithms that compare the acquired biometry to those stored during the en-
rolment phase. The output of a matcher is a matching score, i.e., a measure
stating how much the acquired biometry is similar to the stored biometry. When
a threshold is set, users with a matching score larger than the threshold are ac-
cepted (i.e., assigned to the so-called genuine class), otherwise they are rejected
(i.e., assigned to the so-called impostor class).

In the pattern recognition field the combination of experts is widely used in
many applications as it avoids the choice of the “best” expert, and typically
provide better performance than those provided by individual experts [1]. The
combination of experts also allows “fusing” experts based on different input
sources, so that complementary information can be exploited, and the resulting
combination is robust with respect to noise [1].

For the same reasons, in the biometric field there is an increasing interest
in multi-biometrics, i.e., the combined use of different biometric traits and/or
processing algorithms, as in many application the performance attained by indi-
vidual sensors or processing algorithms does not provide the necessary reliability

M. Haindl, J. Kittler, and F. Roli (Eds.): MCS 2007, LNCS 4472, pp. 357–366, 2007.
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[2,3]. Combination of multiple biometric systems can be performed at different
representation levels, i.e, the raw data level, the feature level, the score level,
and the decision level [3].

An open problem for biometric experts combination is the choice of the experts
to combine, and the decision whether to combine or not. For the combination at
the decision level, the experts can be chosen using the same techniques developed
for pattern classification [1]. At the score level, the performance of a biometric
expert is evaluated in terms of the False Matching Rate (FMR, i.e., the per-
centage of impostors whose score is larger than the decision threshold) and the
False Non-Matching Rate (FNMR, i.e., the percentage of genuines whose score is
smaller than the decision threshold). As these errors vary according to the value
of the chosen threshold, they are usually reported graphically in the Receiver
Operating Characteristic (ROC) curve, where the value of 1 - FNMR (this value
is equal to the True Matching Rate) is plotted against the value of FMR. Usually
specific points of the ROC curve are used to evaluate the performance of experts
as the 1% FMR (i.e., the rate of genuines rejected when the 1% of impostors are
accepted), the 1% FNMR (i.e., the rate of impostors accepted when the 1% of
genuines are rejected), and the Equal Error Rate (i.e., when FMR = FNMR).

Thus, at the score combination level, the ROC is the measure more apt to
assess the performance of individual experts as it is not related to a particular
value of the decision threshold. As a consequence, the choice of the experts to
be combined is more difficult, as we have no information about the “errors”
attained by the experts, and the techniques used for designing multiple pattern
classifiers cannot be used [1].

In this paper we propose an index measure to be used for the selection of the
experts to be combined, given that a set of different experts has been devised for
the authentication problem attend. The index is derived from the formulation
of the AUC through the Wilcoxon-Mann-Whitney statistic, and it has been
designed to select the experts whose combination maximises the AUC. This
index is independent from the combination method used. The rest of the paper
is organised as follows: in Section 2 we describe the proposed index. Section 3
presents an ideal experts combination method that allows attaining the highest
performance from the selected experts. The experimental results are presented
in Section 4 and the conclusions are reported in Section 5.

2 Area Under the Curve

The Receiver Operating Characteristic (ROC) curve is the performance measure
that allows having a global view of the trend of the errors of biometric experts
for all possible acceptance threshold values. Unfortunately the ROC is a graphic
measure, so when two biometric experts are compared it is usefull to use also
a numeric performance measure, as it is more synthetic and allows automatic
comparisons. Such a measure must be a summary index related to the ROC, or
a brief index related to the degree of overlapping of the distributions of genuines
and impostors. Moreover this measure must be a global measure, and not a
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specific measure as a ROC point. A measure with these characteristics is the
Area Under the Curve (AUC) that is defined as follow:

AUCROC =
∫

(1 − FNMR(th))dFMR(th) (1)

The Area Under the Curve (AUC) is the most widely used measure for assessing
the performance of a system because it is more discriminating than the accuracy
when we analyse a ROC curve [4].

Let U = {ui} be the set of users, let also f(·) be the function associated to
expert M that produces a score for each user ui, si = f(ui). Let us denote with
th a decision threshold so that users whose score is larger than th are assigned
to the genuine class, while users whose score is smaller than th are assigned to
the impostor class.

In the following the Wilcoxon-Mann-Whitney statistic [5] will be used to
estimate the AUC as the integral value of the AUC is equivalent to the WMW
statistic [6]. Given an expert M , let us divide all the scores {si} obtained for all
the {ui} users into two sets: {xp} the scores that belong to the genuine users
and with {yq} the scores that belong to the impostor users. So the AUC is:

AUC =

∑n+
p=1

∑n−
q=1 I(xp, yq)

n+ · n−
(2)

where n+ is the number of genuine users and n− is the number of impostors,
and the function I(xp, yq) is1:

I(xp, yq) =
{

1 xp > yq

0 xp < yq

It easy to see that if xp > yq any threshold th ∈ (yq, xp) allows accepting the
genuine user and rejecting the impostor user.

Moreover the AUC can be statistically interpreted as follows: given two ran-
domly chosen users, one belonging to the set of the genuine users and belonging
to the set of the impostor users, the AUC is the probability P (xp > yq), i.e., the
probability of correct pair-wise ranking [6].

Now, let us consider two experts, M1 and M2, and all the possible pairs
{{xp1, yq1}, {xp2, yq2}} obtained from their matching algorithms. Let us divide
these pairs into four subsets

Suv = {(p, q)|I(xp1, yq1) = u and I(xp2, yq2) = v} u, v ∈ {0, 1} (3)

i.e., S11 is made up of all the pairs where xp1 > yq1 and xp2 > yq2, S00 is made
up of all the pairs where xp1 < yq1 and xp2 < yq2, S10 is made up of all the
pairs where xp1 > yq1 and xp2 < yq2, and S01 is made up of all the pairs where
xp1 < yq1 and xp2 > yq2. From Equations (2) and (3) using the Suv subsets
notation, the AUC of the single experts are computed as:

AUC1 =
card(S11) + card(S10)

n+ · n−
, AUC2 =

card(S11) + card(S01)
n+ · n−

(4)

1 For discrete values I(xp, yq) = 0.5 if xp = yq .
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Let us explain the different contributions of the Suv subsets to the value of
the AUC when the combination of experts is performed. As an example, we use
the linear combination because the value of the related AUC, say AUClc, can
be computed by estimating the contributions of the pairs of outputs belonging
to each of the four subsets Suv, u, v ∈ {0, 1} [7]. Let us consider the linear
combination flc(·) = f1(·) + α · f2(·), where the fused outputs are computed as
follows:

ξp = xp1 + α · xp2
ηq = yq1 + α · yq2

The contribution given by all the pairs belonging to S11 does not depend on the
value of α as ξp > ηq is always verified. Thus, the contribution to the AUClc

from the pairs belonging to S11 is equal to card(S11), i.e., the number of pairs
belonging to S11. Similarly, it is easy to see that the contribution given by all
the pairs belonging to S00 does not depend on the value of α as ξp < ηq is always
verified. Thus, the pairs belonging to S00 give a nil contribution to the AUClc.
The contribution given by all the pairs belonging to S10 depends on α and it
is equal to card(S10) only if there is a value of α such that for all the pairs
xi1 + α · xi2 > yi1 + α · yi2. The same reasoning can be used to estimate the
contribution to the AUClc of pairs in S01. It is worth noting that the value of
α such that the contributions of S10 and S01 are equal respectively to card(S10)
and card(S01) may not exists. Summing up, the maximum attainable value of
AUC for the linear combination can be computed as follows:

AUClc =
card(S11) + card(S10) + card(S01)

n+ · n−
(5)

From the Equations (4) and (5) the following relation holds:

AUClc = AUC1 +
card(S01)
n+ · n−

= AUC2 +
card(S10)
n+ · n−

so that the maximum increment attainable by AUClc with respect to AUC1
depends on the cardinality of S01, while the maximum increment attainable by
AUClc with respect to AUC2 depends on the cardinality of S10. An analogous
reasoning can be made for a score combination method that preserves the car-
dinality of S11 (it happens for the majority of the combination rules).

From the above discussion, it should be clear that the combination of expert
is effective if it is able to “recover” those users belonging to S10 and S01, i.e.,
the pairs of users correctly ranked by one expert and not by the other expert.
So, if the cardinality of the two subsets S10 and S01 is small, than the two
experts have similar behaviour, and few pairs of users could be “recovered” by
the experts combination, as they exhibit a low degree of dissimilarity. The larger
the cardinality of these two subsets, the larger the “recovery” factor achievable
by a combination method, as the combined experts exhibit a high degree of
dissimilarity.

We propose to use the sum of the cardinality of the subsets S10 and S01 as a
score dissimilarity index,

SD = card(S10) + card(S01) (6)
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The larger the score dissimilarity, the larger the AUC that could be obtained by
the combined scores with respect to the AUC of the single experts. Otherwise,
if the score dissimilarity is small the AUC obtained by the combined scores is
close to the AUC obtained by the single experts. It is worth nothing that actual
increment value of AUC depends on the combination method used. To compute
the value of SD for ensembles made up of 3 or more experts, the average SD
computed over all pairs of experts can be used [1].

3 Ideal Score Selector

In this section we describe an ideal combination method called ideal score selector
that allows attaining the highest performance from the combination of experts
selected according to the index proposed in the previous section. This method
had been already proposed by the authors in [8]. In this paper we will show the
value of the AUC that is attained by the ideal score selector strategy in terms
of the WMW statistics.

Given an ensemble of experts, the ideal score selector is defined as a selector
that selects the maximum score for genuine users and the minimum score for
impostor users. Using the notation of the previous section, the ideal selector for
N experts can be written as follows:

ϕp = max {xj
p} j = {1 . . . N}

ψq = min {yj
q} (7)

The distributions of genuine and impostor scores produced by the ideal selector
allows attaining smaller errors than those of individual experts. This result can
be easily seen by the example shown in figure 1.

Let us now prove that the above defined ideal selector allows attaining an
AUC that is larger than that of the individual experts. In particular, we will
show that this selector allows exploiting the complementarity of experts selected
according to the SD index. Following the line of reasoning of the previous section,
let us consider two experts. The AUC of the ideal selector, say AUCsel, can be
computed as follows. Let us consider the contribution of all the pairs belonging
to S11. It is easy to see that for each pair the following relation holds: ϕp > ψq.
Thus the contribution to the AUCsel of S11 is equal to card(S11), as for the linear
combiner. By examining the pairs belonging to S00 we have to take into account
two cases. One case is when ϕi and ψj come from the same expert. In this case,
it follows that ϕp < ψq. The other case is when ϕp and ψq come from different
experts. In this case, for some pair it may happen that ϕp > ψq. Let β be the
ensemble of those pairs belonging to S00 that satisfy the above relation. It is
easy to see that the contribution to the AUC of the pairs belonging to β is equal
to card(β). For the subsets S10 and S01, it can be seen by using majority chains
that for each pair ϕp > ψq holds. As a consequence the contribution of S10 and
S01 to the AUC is always card(S10) + card(S01). It is worth noting that in the
case of the linear combiner this contribution of the pairs belonging to S10 and
S01 is just an upper bound, as it may not exist a value of α allowing attaining
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Fig. 1. An example of ideal score selection with two experts(matcher)

such performance. Summing up, the AUC of the ideal selector is computed as
follows:

AUCsel =
card(S11) + card(S10) + card(S01) + card(β)

n+ · n−
(8)

and the following relations hold:

AUCsel ≥ AUC1 , AUCsel ≥ AUC2

By comparing equations (5) and (8), it easy to see that

AUCsel ≥ AUClc

Thus we have proved that the proposed ideal selector always perform better
than any expert of the ensemble. Moreover it allows attaining a larger AUC than
the AUC that could be obtained by an optimal linear combiner. In addition, it
can fully exploit the complementarity of experts selected according to the SD
index proposed in the previous section as the selector can “recover” the pairs
belonging to S10 and S01.

4 Experimental Results

Experiments have been performed using the scores produced by a large number
of experts during the third Fingerprint Verification Competition (FVC2004) [9]
[10]. The competitors were divided into two categories Open and Light. The



Combination of Biometric Experts for AUC Maximisation 363

Open category is composed by 41 experts, while the Light category is composed
by 21 experts with restricted computing and memory usage. The fingerprint
images consists of four different databases, three acquired with different sensors
and one created with a synthetic fingerprint generator. For each sensor and for
each matching algorithm, a set of 7750 matching scores is available related to
2800 authentication attempts of genuine users and 4950 authentication attempts
of impostors. For the details on how the scores where obtained and normalised,
the reader is referred to [9]. For our experiments we used only the Open category
because the scores produced by the matchers belonging to the Light category
are less reliable. As this database is not freely available, our algorithms were
executed at the Biometric Systems Lab (University of Bologna, Italy) which
organises the competition.

In the experiments we used five combination methods: the ideal score selec-
tor proposed in the previous section, the ideal linear combiner (see Section 2),
the Mean rule, the Product rule and a weighted scores combination rule whose
weights are computed through the Linear Discriminant Analysis (LDA) [11].
The ideal score selector and the ideal linear combiner are ideal in the sens that
they use a posteriori information, as the values of actual errors, or the class each
user belongs to. The performance of the ideal linear combiner are estimated by
performing an exhaustive search on the value of the combination weight α, using
values between 0 and 100 with a step of 0.01.

The LDA fusion rule needs a training set to estimate the weights of the com-
bination. In order to create such training sets, we performed two different subdi-
visions of the users. One subdivision is performed by randomly dividing the set
of users into four subsets of the same size. The other subdivision is performed
by randomly dividing the set of users into two halves. The proportion of scores
belonging to the “genuine” and “impostor” users has been kept equal to the one
of the original dataset. In the first case, each of four subsets has been used for
training, while the remaining three subsets have been used for testing. Analo-
gously, in the second case, one halve has been used for training, and the other
for testing, and then their roles have been reversed. This subdivision allowed to
perform an extensive evaluation of the proposed techniques using training and
test sets varying in size and composition. Reported results have been averaged
over the six trials.

Using the above divisions of the dataset, we performed multi-modal (i.e.,
different sensors and/or different experts) combination experiments. For each
experiment, we calculated the SD index, defined in Equation (6), for all the
possible combinations of two experts avoiding duplications and repetitions: over
13300 pairs for trial were obtained. Then, we ordered all the pairs of experts
according to the value of the SD index, and considered two subsets of pairs of
experts. One subset is made up of the first 10 pairs with the largest values of SD,
while the other subset is made up of the first 10 pairs with the smallest SD. The
aim is to investigate the effectiveness of the SD index to selects which experts
to combine.
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The results are assessed in terms of the AUC, the Equal Error Rate (EER)
and the d-prime. The EER is the error when FMR=FNMR, and it is currently
used by researchers in the biometric field to assess the performance of biometric
systems. The d-prime (d’) is a measure of discriminability proposed, as the ROC,
within the Signal Detection Theory [11]. Given the genuine and the impostor
score distributions, the d’ is defined as

d′ =
|μGen − μImp|√

σ2
Gen

2 +
σ2

Imp

2

where μGen and μImp are the means of the two score distributions, while σGen

and σImp are the standard deviations of the score distributions of the genuine
users and impostors, respectively. The larger the d’, the better performance.

Tables (1) and (2) presents the results of the performed experiments. Results
are reported in terms of the average and standard deviation of performance over
the six subsets, and over the ten matching algorithms with largest/smallest SD
value.

We expect that the combination of two experts with a small value of SD allows
attaining only small improvements in AUC with respect to the performance
of the single best expert. This idea is confirmed by the results in Table (1)
where the value of AUC attained by the combination techniques are close to the
AUC of the best single expert. This is due to the fact that the pairs of experts
exhibiting a small value of SD exhibit a large value of AUC, thus allowing for
small improvement in AUC. On the other hand, we can observe more significant
improvements on the other performance measures taken into account. While
improvements are small for the d’, it is worth noting that the EER attained
by the combination rules is always smaller than the EER obtained by the best
single experts. In particular, the EER is at least halved by the combination rules
compared to the EER of single experts. Summing up, this experiment showed
that when the combined experts exhibit high performance and small SD, the
Mean combination rule provides the best results with respect to the LDA and
the Product rule, both in terms of AUC and EER. In addition, its performance
are very close to those attained by the ideal linear combiner. On the other hand,
the ideal score selector exhibits the highest performance as it allows exploiting
the complementarity of the experts.

As we expected, the combination of two experts with a large value of the SD
index allows increasing the AUC with respect to the AUC of the single best
expert (Table 2). In this case the best combiner is the LDA, as its performance
in terms of the AUC and the EER are higher than those attained by the Mean
and the Product rules. However, the performance of combination rules in terms
of the EER and the d’ are close to those of the best single expert. An exception
is the Product rule that exhibits lower performance than the best single expert
either if we take into account pairs of experts with small values of the index, or
pairs of experts with a large value of the index.

When the two ideal methods are taken into account, reported experiments
point out another aspect: the ideal score selector exhibit higher performance than
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Table 1. Combinations of pairs of experts with small values of the SD index. The
results are in terms of the average and standard deviation computed over 10 pairs of
experts, and 6 subsets of the original dataset.

AUC EER d’

Single (best) 0.9973 (±0.0030) 0.0150 (±0.0077) 6.0339 (±1.6882)
Ideal Selector 0.9999 (±0.0004) 0.0015 (±0.0023) 9.2684 (±3.9873)

Linear Combiner 0.9992 (±0.0015) 0.0061 (±0.0059) 6.4045 (±2.1067)
Mean 0.9990 (±0.0017) 0.0067 (±0.0069) 6.5007 (±1.9761)

Product 0.9947 (±0.0066) 0.0122 (±0.0113) 4.3473 (±1.7307)
LDA 0.9978 (±0.0048) 0.0085 (±0.0072) 6.9904 (±1.7728)

Table 2. Combinations of pairs of experts with large values of the SD index. The
results are in terms of the average and standard deviation computed over 10 pairs of
experts, and 6 subsets of the original dataset.

AUC EER d’

Single (best) 0.7924 (±0.1017) 0.2338 (±0.1181) 1.4678 (±0.6888)
Ideal Selector 0.9946 (±0.0127) 0.0123 (±0.0273) 7.3584 (±6.7999)

Linear Combiner 0.8339 (±0.0894) 0.2456 (±0.1258) 1.5098 (±0.7051)
Mean 0.8187 (±0.0976) 0.2429 (±0.0951) 1.5142 (±0.6653)

Product 0.7879 (±0.0936) 0.2418 (±0.1125) 1.3876 (±0.6468)
LDA 0.8246 (±0.0957) 0.2266 (±0.0970) 1.4950 (±0.7075)

the ideal linear combiner in all the performance measures, regardless of the value
of the SD index. In particular, the performance attained for large values of the
SD index clearly outperform other combination mechanisms. This means that
a selection mechanism has the potentiality of exploiting the complementarity
of experts better than mechanisms based on weighted combination. It is also
worth noting that the selection mechanism allows increasing the value of d’
more than other combination rules. At present, a selection mechanism based on
the ideal mechanism has been proposed in the literature [8], but its performance
are currently far away from those achievable by the ideal selector.

5 Conclusions

In this paper we proposed an index for selecting, among a set of biometric
experts, the ones that are worth to be combined to attain performance improve-
ments in terms of the AUC. This index has been derived from the formulation
of the AUC through the Wilcoxon-Mann-Whitney statistic, and allows selecting
those cases where large performance improvements can be attained. Reported
results show that the combination of experts with small value of the index al-
lows attaining small improvements of the AUC, while if the index has a large
value, then the improvements in the AUC are more significant. However, in the
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reported experiments, the experts with small values of the index also exhibited
high values of AUC, so that the combination could provide only small improve-
ments. Nonetheless, the combination of experts with small value of the index
and large individual performance allowed reducing the EER significantly using
the Mean rule. This can be interpreted as the reduction of the “variance” in a
“bias-variance” representation of errors, as the “bias” of the individual experts is
very small. The experiments also showed that selection mechanisms can provide
very high improvement in performance, when experts with large values of the
proposed index are selected. Thus, in these cases the development of score se-
lection mechanism should provide larger performance improvements than fusion
mechanisms.
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Abstract. The use of quality measures in pattern classification has re-
cently received a lot of attention in the areas where the deterioration
of signal quality is one of the primary causes of classification errors. An
example of such domain is biometric authentication. In this paper we
provide a novel theoretical paradigm of using quality measures to im-
prove both uni- and multimodal classification. We introduce Q − stack,
a classifier stacking method in which feature similarity scores obtained
from the first classification step are used in ensemble with the quality
measures as features for the second classifier. Using two-class, syntheti-
cally generated data, we demonstrate how Q − stack helps significantly
improve both uni- and multimodal classification in the presence of signal
quality degradation.

Keywords: statistical pattern classification, quality measures, confi-
dence measures, classifier ensembles, stacking.

1 Introduction

Noisy data is probably the most common problem that haunts pattern recogni-
tion systems [1]. One of the examples where researches are struggling with the
negative effects of signal quality deterioration on classification performance is
biometric identity verification [2].

It is often impossible to completely eliminate the effects of signal quality
degradation by the means of preprocessing, normalization or marginalization
of noisy signals, features or classifier scores [3,4,5]. One of the ways to reduce
remaining classification errors is to combine multiple classifiers [1,6]. In biomet-
ric authentication, classifier fusion became particularly prominent as a natural
consequence of the availability of multiple, presumably independent biometric
traits that characterize an individual [7,2]. Multimodal systems in biometrics
systematically outperform their unimodal counterparts [8,9].

Recently, researchers started to seek to incorporate auxiliary information into
the fusion process, looking for improved robustness to degraded data quality. In
particular, classifier confidence measures [10,11,9] and quality measures [5,12,10]
have been recently put in the limelight.

An interesting attempt to incorporate the classifier confidence measures when
combining multimodal classifiers was presented by Bengio et al. [9]. The authors
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proposed to introduce different confidence measures next to the unimodal classi-
fier scores as a feature when constructing the multimodal fusion classifier. Signal
quality measures were not used.

In [13,5] the authors proposed to use quality measures in order to improve
the performance of multimodal biometric fusion. Their approaches, albeit effec-
tive for their particular datasets, are heuristic in nature and therefore hard to
generalize. The use of quality measures to improve unimodal classification was
not considered.

A probabilistic approach to the use of quality measures in order to improve
classifier fusion was presented by Kryszczuk et al [12,14] and by Richiardi et al.
[10]. The notion of possible correction of decisions using quality-derived reliabil-
ity measures has been first introduced in [12] and developed in [14] in the context
of biometric identity verification. The reliability-based fusion was demonstrated
to grant classification accuracy superior to any classifiers that did not use qual-
ity measures. Conceived as an error-predictor, the reliability estimation methods
require explicit training of four error-conditional models and prior balancing. Its
application to multimodal fusion of more than two classifiers is not straightfor-
ward.

In this paper we provide a theoretical analysis of the role that the quality
measures play in the pattern classification process, in order to find a generic
understanding of the problem. We present a novel theoretical approach to incor-
porating quality measures into the classification process, based on the concept of
classifier stacking [6]. The essence of the presented approach, named Q − stack,
is in the use of feature similarity scores together with the signal quality measures
as classification features for a subsequent, stacked classifier. We notice that while
class-nonspecific, the quality measures are causally linked to the classifier scores,
which allows for increased class-separation in the score-quality measure space.

Q − stack can be directly applied to uni- and multimodal dichotomization
alike and therefore it can be seen as a general framework of incorporating quality
information in classification. We show that in the unimodal case Q−stack grants
a higher classification accuracy than the baseline classifier, and in the multimodal
case it delivers fusion performance superior to other known methods.

Nowadays, with the developments in multi-classifier systems, the published
error rates on real-life data have been radically reduced and available databases
do not anymore give the possibility to prove the minute improvements significant.
We hence demonstrate the improvements granted by the proposed techniques on
synthetic data in order to avoid ambiguities and deliver statistical soundness to
our statements and conclusions.

Since most of the prior efforts and our own motivations derive from the field
of multimodal biometric authentication the method presented in this paper is
presented in the context of dichotomizer. This assumption comes without a loss
of generality since a multi-class problem can be interpreted as a series of two-class
problems [15].

The paper is structured as follows. Section 2 provides a theoretical and in-
tuitive understanding of the role that quality measures and classifier confidence
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play in dichotomization. Section 3 describes the principles behind the proposed
method of Q − stack. Sections 4 and 5 treat on its application to unimodal and
multimodal classification problems, respectively. Section 6 concludes the paper
with a discussion of presented results.

2 The Link Between Noise, Errors, Confidence, and
Quality Measures

Consider a classifier C that computes the value x of a discriminant function
Ψ (f) for an observed feature vector f . The classification is done by comparing
the score x = Ψ (f) to a preset decision threshold τ [1]. The distance from the
score x to the threshold τ for given feature set f is a measure of confidence of
the classifier - the larger the distance, the more confident the classifier is about
making the decision.

Now consider two random processes (classes), A and B, which generate ob-
servations x according to the probability density functions (pdf) p(x|A) and
p(x|B), and noise-generating process N which generates noise instances n ac-
cording to the pdf p(n). In general, p(x|A), p(x|B) and p(n) are not explicitly
known. The process N and the class-generating processes A and B interact in
an arbitrary way, producing noisy observations x′ = Δx = Γ (n, x). The nature
of the function Γ does not need to be given explicitly.

The classifier C is deployed to classify potentially noisy testing data STS(x′)
of unknown class alignment (groundtruth), and a set of training data STR(x′)
of known class alignment is available. Here and further in the text let symbols
with a subscript TR refer to the training data, and TS to the testing data. The
training data by definition exemplifies the noisy data that may be encountered
during testing. The class-conditional distributions of the noisy data p(x′|A) and
p(x′|B) are estimated using the training set [1].

The upper graph in Figure 1 shows an example of p(x|A), p(x|B), p(x′|A)
and p(x′|B). The lower graph in Figure 1 presents the posterior probabilities of
classes A and B given observation x, with respect to the decision threshold τ .

A noiseless observation x0 in Figure 1 is correctly assigned to class A since
p(x0|B) < p(x0|A). The classification error due to noise occurs if the same
observation x0 becomes biased by a noise influence Δx = Γ (x0, n), resulting in
a noisy observation x′

0. If Δx > (x0 − τ) the observation will be falsely assigned
class label B, since p(x0|B) > p(x0|A), as it is shown in Figure 1.

The confidence of the classifier C is given by |x − τ | [9,16]. The notion of
the confidence alone does not allow to predict a possible misclassification: the
observed score x′

0 could very well be a noiseless sample from class B. In or-
der to distinguish between these two cases it is necessary to find a measure
QM(x0) ∼ Δx dependant on the actual amount of noise n that contaminated
the original observation x. In our example, knowing Δx allows to compute the
actual posterior probability P (B|x′ = x′

0). As shown in the lower graph in Fig-
ure 1 this probability falls below the chance level, P (B|x′ = x′

0) < 0.5, and
the inverse class label is more likely to be correct. Therefore it is possible to
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Fig. 1. Relationship between scores and quality measures. Upper graph: class-
conditional probability density functions for training (solid lines) and development
data (dashed lines). Lower graph: corresponding class-conditional posterior probabili-
ties P (A|x),P (B|x),P (A|x′) and P (B|x′) for equal class priors.

invert the original classification decision and correctly assign x′
0 to A with the

probability of 1 − P (B|x′ = x′
0) (since A ∩ B = ∅). Without the notion of Δx

the only justified decision would be to keep the erroneous class label B with the
probability of P (B|x = x′

0) > 0.5. Since the value of QM is encoding the effect
of degradation in the signal quality, we refer to this measure as quality measure,
following the established nomenclature in the field [5,12,10].

3 Q − stack - Using Quality Measures to Improve
Classification

Consider two class data-generating processes A and B, and a noise-generating
random process N , as discussed in Section 2. Processes A and B generate
features that are subjected to a classifier C of an arbitrary nature which re-
turns similarity scores x′. The distributions of observed scores are affected by
a noise-generating process that interacts with the class-generating processes A
and B. This interaction manifests itself as the impact of noise n on the observed
score x′.

In a classical paradigm, the classifier test scores x′
TS are compared to a de-

cision threshold τ in order to obtain the classification decisions. The value of
τ is optimized according to a criterion λ on the training scores x′

TR. The total
Bayes’ error of the classifier C, assuming optimal τ is given by Equation 1.

ER =
1
2

∫ τ

−∞
p(x′|B)dx+

1
2

∫ ∞

τ

p(x′|A)dx (1)
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The proposed Q − stack method begins here. Assume we have a set of sig-
nal quality measure vectors qm. Each quality measure vector qm corresponds
to a particular x′ and may consist of one or more quality measures qm =
[qm1, qm2, ...].

Let us now concatenate the training scores x′
TR and the relevant quality mea-

sures qmTR into evidence vectors eTR = [x′
TR, qmTR]. Resulting vectors have the

dimensionality equal to the number of involved quality measures +1 (score x′).
The evidence vectors eTR have the same known class alignment (groundtruth)
as the scores x′

TR. The essence of Q − stack is to train a new, stacked classi-
fier C′ to separate ETR|A and ETR|B. The nature of the classifier C′ can be
chosen arbitrarily according to the observed class-conditional distributions of
p(ETR|A) = p(x′

TR, qmTR|A) and p(ETR|B) = p(x′
TR, qmTR|B).

The testing evidence vectors eTS are formed in the same fashion, by concate-
nating eTS = [x′

TS , qmTS ]. Now the previously trained classifier C′ and corre-
sponding new decision threshold χ is applied to provide class labels A or B to
each of the vectors eTS . Threshold χ is trained on ETS , according to the criterion
λ. The total Bayes’ error of the stacked classifier C′ is given by Equation 2.

ER′ =
1
2

∫ χ

−∞
p(x′, qm|B)dx+

1
2

∫ ∞

χ

p(x′, qm|A)dx (2)

Since x′ and qm are dependant it can be analytically proven that ER ≥ ER′

[17]. The intuition behind it is provided in the following Section 4. Since the
proposed method uses a second classification step augmented by the quality
information, the entire procedure can be thought of as classifier stacking and
hence the coined name Q − stack.

In the following Sections we assume that the quality measures are linearly
correlated with the magnitude of noise n present in x′ at the correlation coeffi-
cient α. The value of α = 1 corresponds to an undistorted measurement of the
noise. The correlation assumption is for example clarity. In order for Q − stack
to improve classification, statistical dependance between qm and x′, but not
necessarily correlation is required.

4 Q-stack for Unimodal Classification

In this Section we demonstrate how Q − stack operates on synthetic, one-
dimensional noisy data generated by Gaussian processes. Two noise types are
considered: additive (case a, Γ = x + n) and multiplicative (case b, Γ = x · n).
Our goal is to provide the reader with the intuitive understanding of Q − stack
and to show how it allows to reduce the error rates of a single classifier.

Two class data is generated by random Gaussian processes p(x|A) =
N (μA, σ2

A) and p(x|B) = N (μB , σ2
B), where μclass and σ2

class are the mean and
variance parameters of the corresponding class. Let the noise-generating process
N be also Gaussian, N (μN , σ2

N ). The parameters of the processes A, B and N
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in the given example are: μA = −1; σ2
A = μB = σ2

B = μN = σ2
N = 1. We refer to

them as baseline the experiments reported here. Two cases are considered: in the
case a the noise is additive, x′ = n + x. In the case b the noise is multiplicative,
x′ = n · x. Since here the symbolic representation of the processes A and B are
known their associated Bayes error bound can be computed analytically, and
is ERBayes ≈ 0.1587 for noiseless data x, ERBayes

a ≈ 0.2398 for case a and
ERBayes

b ≈ 0.2666 for case b. The distributions of training and testing noisy
observations p(x′|A) and p(x′|B) for cases a and b are shown in Figure 2.
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Fig. 2. Distributions of scores x′|A and x′|B. Case a - additive noise, Γ = x + n. Case
b - multiplicative noise, Γ = x · n.

Let us now assume that we have available a quality measure qm that is corre-
lated with the noise n (Section 2). Following the Q−stack procedures described
in Section 3 we concatenate the noisy scores x′ and the quality measures qm
into training and testing evidence vectors e = [x′, qm]. Figure 3 shows the class-
conditional distributions of testing evidence ETS for the cases a and b.

To apply Q − stack, the stacked classifier C′ is trained on evidence ETR|A
and ETR|B. The training and testing sets contained 20000 data samples each
(40k total). In our example we used a Bayesian classifier using Gaussian Mixture
Modeling (GMM) [1] as classifier C′. In order to minimize the impact of modeling
the experiment was repeated 30 times (new dataset generated each time). The
obtained accuracies for α = 1 are listed in Table 5. As the results show, the
proposed method allowed to classify the noisy data at an error rate reduced to
the proximity of the Bayes error ER for clean data: a result that cannot possibly
be obtained by classifying x′ alone, without the use of quality measures in the
Q − stack scheme.

Based on the current example we wish to provide the reader with an intuitive
understanding of Q − stack. Consider the marked areas in Figures 2 and 3. In
Figure 2 the marked areas are the approximate loci of x′ < τ generated by B,
erroneously assigned to class A. The corresponding ellipsoids in Figure 3 mark
the areas where thanks to the addition of the second dimension (qm) the same
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Fig. 3. Distributions of evidence (x′, qm)|A and (x′, qm)|B. Case a - additive noise,
Γ = x + n. Case b - multiplicative noise, Γ = x · n. Figures show only 500 data points
per class for clarity.

observations can be correctly assigned to class B, hence improving the overall
classification accuracy. Consider a projection of the plotted data on the vertical
qm axis: note that in both Figures 3a and b the dimension of qm provides no
class-separation by itself.

In practical applications finding a quality measure at α = 1 is rather difficult.
Therefore we provide an experimental analysis of the influence of reduced α on
the obtained classification gains. The change in obtained accuracy ACa and ACb

are shown as a function of α in Figure 5.

5 Q-stack for Multimodal Classification

In this Section we demonstrate the application of Q − stack for the task of
multimodal fusion. For the clarity of the example, consider that processes A and
B generate two independent, streams of identically distributed data x1 and x2.
We will consider x1 and x2 as separate modalities. The noise-generating process
N degrades x1 and x2 with two independent streams of noise instances n1 and n2.
For this demonstration, let us take that one data stream is affected by additive,
and the other one by multiplicative noise. Therefore the noisy observations are
given by x′

1 = x1+n1 and x′
2 = x2 ·n2. For the example presented, the parameters

of the processes A, B and N are same as in Section 4. Quality measures qm1 and
qm2 are collected for respective data streams. In total, 20000 data observations
per class (total 40k samples) are collected for training, and another 20000 per
class for testing.

The application of Q − stack follows the steps described in Section 3. First,
the evidence vectors are created for training and testing data. To do this, we con-
catenate all available pieces of evidence from both fused classifiers into one vector
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e = [x′
1, x

′
2, qm1, qm2]. The training evidence is used to train a Bayes/GMM

stacked classifier C′, which is then applied to classify the testing evidence. The
obtained DET curves are shown in Figure 4, with a comparison with the results
obtained using alternative fusion methods including the mean rule (MeanRule),
reliability-weighted mean (MeanRW ), quality-weighted mean (MeanQW ) [13]
and Bayes/GMM without quality measures (GMM)[9,5,12,8]. The obtained
mean error rates and their associated standard deviations after a 30-fold repeti-
tion of the experiment for the proposed method and the best approach to trained
fusion without quality measures, GMM , [9], are summarized in Table 5.
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Fig. 4. DET curves showing the comparison of fusion algorithms, including proposed
Q − stack-based fusion. The error bars correspond to standard deviation of the error
rates after 30 experiment repetitions.

Table 1. Comparison of uni- and multimodal application of Q − stack to a Bayesian
classifier (GMM) trained without the use of quality measures.

ERGMM σGMM ERQ−stack σQ−stack

Additive Noise (a) 24.06% 0.30% 15.88% 0.26%

Multiplicative Noise (b) 28.41% 1.04% 16.82% 0.44%

Fusion(a+b) 17.26% 0.27% 8.75% 0.22%

Like discussed in Section 4, here we provide an analysis of the sensitivity of
the proposed fusion scheme to the correlation coefficient α. The achieved fusion
accuracy as a function of α is shown in Figure 5.
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Fig. 5. Impact of the correlation coefficient α between the quality measure qm and the
actual noise n, on the Q − stack accuracy, for unimodal and multimodal classification.
The error bars correspond to standard deviation of the error rates after 30 repetitions.

6 Discussion and Conclusions

The presented results obtained for uni- and multimodal classification show that
incorporating the class-independent quality measures using the proposed method
can greatly improve the classification accuracy. It is worth noticing that Q−stack
allowed for classification of noisy data at an accuracy much higher than that sug-
gested by corresponding Bayes’ error. In fact, for noisy data the proposed method
is capable of recovering a close-to optimal accuracy computed for noiseless-data.
This is achieved using exclusively noisy data and associated quality measures,
regardless and without any assumptions of the noise type or noiseless data dis-
tributions.

The performance of the proposed method depends heavily on the available
quality measures. Best performance can be achieved if the quality measures
strongly depend on the noise that affects the class data - which can be reason-
ably demanded of a quality measure. However, as Figure 5 shows, as α changes
towards zero the Q − stack error rates asymptotically approach the error rates
obtained without the use of quality measures. Hence, imperfect quality measures
do improve accuracy, albeit to a smaller extent.

In this work we gave an example of one-dimensional data classification. How-
ever, the proposed methodology lends itself easily to more complex classification
problems, as long as the baseline classifier C returns similarity scores. We have
successfully applied Q − stack to face, speech and fingerprint verification - a
report on these experiments exceeds the theoretical frames of this paper.

Proposed method is easily scalable. If moving from one classifier to a fusion
of two, as presented in this paper, required a mere concatenation of scores and
quality measures, the same shall hold for multiple classifiers, and multiple quality
measures. For a very large number of classifiers fused together dimensionality re-
duction techniques may be required. Last but not least, all existing normalization
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techniques can be applied before Q − stack is used - the better the baseline
classifier the higher performance can be expected after applying the proposed
method.
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Abstract. We present three new voting schemes for multi-classifier
biometric authentication using a reliability model to influence the im-
portance of each base classifier’s vote. The reliability model is a meta-
classifier computing the probability of a correct decision for the base
classifiers. It uses two features which do not depend directly on the under-
lying physical signal properties, verification score and difference between
user-specific and user-independent decision threshold. It is shown on two
signature databases and two speaker databases that this reliability classi-
fication can systematically reduce the number of errors compared to the
base classifier. Fusion experiments on the signature databases show that
all three voting methods (rigged majority voting, weighted rigged ma-
jority voting, and selective rigged majority voting) perform significantly
better than majority voting, and that given sufficient training data, they
also perform significantly better than the best classifier in the ensemble.

1 Introduction

A voting combiner operating on the output of classifier ensembles with differing
accuracies can be made more effective by supplying it with additional data to
influence the importance of each base classifier’s vote. A typical scheme is to
weight the vote of each classifier proportionally to its accuracy, by training the
weights on a development dataset. This paper is concerned with the use of other
sources of information for improving voting schemes in biometric authentication.

It has previously been shown that using modality-specific, signal-level qual-
ity information can improve classifier combination [1,2]. These quality measures
must be tailored to each signal to be used (for instance, image sharpness can-
not be used with speech-based biometrics). In this paper, we show that other,
modality-independent quality measures can be used in order to estimate the re-
liability of a classifier’s decision, that is, the probability that the base classifier
has taken a correct decision.

The estimate of reliability can be used for rejecting the sample (thus decreas-
ing a base classifier’s error rate via the reject-error tradeoff), providing a value
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to a human layperson (useful in situations such as border control for biomet-
ric passports), or improving classifier combination (confidence information has
been used to perform classifier selection [3,4,5,6] and classifier fusion [7,8]). In
this paper, we propose different ways of using the reliability information in order
to improve voting for classifier combination.

First, we introduce modality-independent quality measures in Section 2. We
then discuss the process and limits of reliability modelling using the quality
measures as features in Section 3. Section 4 proposes three voting schemes using
the reliability information, and section 5 shows experimental results of reliability
classification on signature and speech, and reliability-based voting for combining
multiple signature classifiers. We close the paper by discussing theoretical points
and further work in Section 6.

2 Modality-Independent Quality Measures

In order to predict the errors of the base classifiers in the ensemble, it is neces-
sary to find quantities which are indicative of potential mistakes. We call these
features quality measures. For example, in speaker recognition, a quality mea-
sure that is interesting to use is the signal-to-noise ratio (SNR), as a lower SNR
tends to increase the probability of error1 . The two quality measure we use,
score and difference between user-specific and user-independent decision thresh-
old, constitute features for the reliability classifier.

Most base classifiers can provide a continuous-valued output (measurement-
level) indicating how close or far a particular sample is to a particular class, a
quantity generally called score in biometrics. This can be a likelihood or poste-
rior probability value for a probabilistic classifier, an Euclidean distance for a
nearest-neighbour classifier, etc. Since the probability of classification error in-
creases as the distance gets closer to the decision boundary between classes, this
“soft” classifier output, and its distribution, constitute valuable data for error
prediction, and are applicable to any biometric modality whose classifier is ca-
pable of producing measurement-level output. Estimation of classifier reliability
based only on this soft classifier output is generally called confidence estimation.

In our experience on speech and signature, however, the boundary defined
by the measurement-level output distribution between correct decisions and in-
correct decisions of the base classifier is complex, and it is difficult (but not
impossible) to train a meta-classifier that performs with fewer errors than the
base classifier whose behaviour it models2. This is illustrated by the projections
on the horizontal axis shown in Figure 1.

Thus, we introduce a second modality-independent quality measure, that is
well correlated with errors and the score: the difference between the user-specific
1 However, it is generally not the case that the relationship between quality mea-

sures and base classifier errors can be modelled effectively by linear or low-order
polynomial regression.

2 This is the likely reason for the lack of improvement in fusion mentioned in [8] when
using a score-based confidence model.
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threshold and the user-independent threshold. In a verification system using
user-independent thresholds3, some users will be more systematically subjected
to false rejects, respectively false accepts, than others. As can be seen in Figure 1,
this feature makes the reliability classification task easier for both the speech and
signature modality.
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(a) Quality measures computed from the output of a signature base clas-
sifier using local features.
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(b) Quality measures computed from the output of a speaker verification
base classifier using Mel-frequency cepstral coefficients (MFCC) features.

Fig. 1. Score and threshold difference quality measures for signature verification
(MCYT100) and speaker verification (BANCA, G2). Dots indicate reliable (correct)
decisions, crosses indicate unreliable (erroneous) decisions of the base classifier. Each
quality measure is also projected onto its axis.

3 For instance because it has recently been deployed and there is not enough data for
each user to reliably set a personalised threshold.



380 J. Richiardi and A. Drygajlo

3 Reliability Estimation

Once the two features (score and threshold difference) are extracted, we can use
nearly any classication algorithm to estimate the reliability of base decisions,
with some limitations we discuss in section 3.1. In our case, we use an ensemble
of decision trees, either a C4.5 pruned decision tree [9] with bagging or a random
forest classifier [10]. In previous work, we have used Bayesian networks to perform
reliability estimation [11]. The training data (development set) is separate from
the base classifier’s training data and the test data, and is generated by running
the base classifiers on the development samples.

3.1 Limits of Reliability Modelling

Since we use measurement-level output of the base classifier as one of the features
for modelling reliability of decisions, the reliability model is dependent on the
accuracy of the base classifier. By definition a well-performing base classifiers
has a lower density of soft outputs (which correspond to reliable or unreliable
decisions) near the decision boundary than a base classifier with a higher error
rate.

However, we can guarantee that the reliability classifier will perform better
than the base classifier under certain conditions, which we will phrase in terms
of confusion matrices (contingency tables). Let us define B as the confusion
matrix of the base classifier, and R as the confusion matrix of the reliability
classifier. The classes in B, used by the base classifier, are 0—impostor and 1—
client, while the classes in R, used by the reliability model, are 0—unreliable and
1—reliable.

B =
(

a b
c d

)
,R =

(
e f
g h

)
(1)

The two confusion matrices are linked by the fact that the reliability model
has as class 0 (unreliable) the errors of the base classifier (off-diagonal elements in
B), and conversely as class 1 (reliable) the correct decisions of the base classifier
(diagonal elements in B):

b + c = e + f, a + d = g + h (2)

The condition for the reliability model to be able to improve on the output
of the base classifier is that the reliability model must make less errors than the
base classifier, meaning that the sum of the number of base errors considered
reliable and the number of base correct decisions considered unreliable must be
less than the sum of the base errors. Equivalently, the accuracy of the reliability
model must be higher than that of the base classifier. This formulation can
be written as in Equation (3) and simplified by using Equations (2) to obtain
Equation (5).
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e + h

(e + f) + (g + h)
>

a + d

(a + d) + (b + c)
(3)

e + h

(e + f) + (g + h)
>

g + h

(g + h) + (e + f)
(4)

e > g (5)

Any reliability model whose confusion matrix satisfies the condition expressed
in Equation (5) is guaranteed to have less errors than the base classifier it models,
and to be useful in reducing base classifier error rates, even if the base classifier
performs below chance. If, in addition to reducing base errors, we want the
reliability model to perform above chance, we can add the condition

e + h > f + g (6)

4 Using Reliability in Voting Combiners

While majority voting is an appealing combining scheme, its optimality depends
on several assumptions4, of which we will mention chiefly the fact that it assumes
comparable expertise of the ensemble base classifiers. In biometric applications it
is often not the case, especially when combining several modalities, with some-
times one or more orders of magnitude of difference between the error rates
of the base classifiers. Therefore, we propose three schemes that use classifier-
specific reliability models as an input to a controller driving the voting process
to improve on majority voting.

4.1 Rigged Majority Voting

The first scheme we propose, rigged majority voting (RMV), uses the base clas-
sifier’s reliability model to estimate, on an instance-by-instance basis, when its
decision is likely to be unreliable. In such cases, the voting controller will rig
the vote by inverting it (the role of prior probabilities in the inversion process is
discussed in [12]). Denoting the base classifier decision by a binary variable CID
(0 for impostors, 1 for clients), the reliability classification by a binary variable
DR (0 for unreliable, 1 for reliable), and the rigged decision by RD, the voting
controller implements the negative exclusive-or function: RD = CID ⊕ DR This
method works instance-by-instance, by estimating for each case the reliability of
the decision.

If the reliability models satisfy Eq. (5), and assuming the correlation between
the rigged votes is the same as the correlation between the votes of the base clas-
sifiers, this scheme guarantees a better lower and upper bounds on the achievable
fused accuracy than simple majority voting on the base classifiers, because the
rigged decisions will have higher individual accuracies. This result can be proved
using the method in [13].
4 Such as independence of ensemble members.
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However, in the case of base classifiers with very different error rates (say, an
order of magnitude), this scheme does not guarantee that we can outperform the
best base classifier. We therefore introduce a variation on the voting controller
by weighting the contributions of individual classifiers.

4.2 Weighted Rigged Majority Voting

The second scheme we introduce, weighted rigged majority voting (WRMV) is
also based on rigged votes, which is an instance-specific method, but the rigged
votes are subsequently weighted by a factor proportional to the accuracy of
that classifier’s reliability model. Thus, we also take into account the overall
performance of the base classifier on a development set.

Even though the classifiers violate the independence assumption, and the
weights may therefore be suboptimal [14, p.124], we set the classifier-specific
weights wn to

N∑

n=1

wn = 1, wn ∝ accn

1 − accn
, (7)

where the accuracy of each reliability model accn is computed according to the
confusion matrix R in Eq. (1).

The difference with standard practice for weighted majority voting is that
the accuracy used in weighting is not that of the base classifier, but is replaced
by the accuracy of the reliability model, which is higher. Thus, the weights
are dependent on the effectiveness of the reliability model. However, since the
accuracies of the reliability models may follow the same ordering as the accuracies
of the base models, the results may not always differ significantly.

The majority threshold is changed from τ ≥ �N/2�+1 for unweighted majority
voting to τ >

∑
Nworst

wn. Thus, the vote of the worst N classifiers Nworst in
the ensemble is insufficient to win the vote, and if reliabilities are unbalanced
the opinion of the most reliable classifiers will count much more. Nworst can be
chosen as �N/2� + 1.

4.3 Selective Rigged Majority Voting

The selective rigged majority voting scheme (SRMV) operates on the same prin-
ciple as the confidence gating method used in [3], the reliability-based decision
table in [1], and the arbitration scheme of [4]: the classifier with the highest
confidence gets to label the sample. The difference in our case is that we are
operating on decisions that have been rigged by the voting controller before the
selection.

Under some conditions (e.g. three classifiers, one of which clearly dominates
for most patterns), selective voting can give results very close to weighted rigged
majority voting. This is because the weights assigned to the members of the
ensemble are proportional to the error rate of their associated reliability classifier.
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5 Experiments

In these experiments, we first test the accuracy of the reliability model of each
classifier for predicting errors (Section 5.2). Then, in Section 5.3 we apply relia-
bility models to voting on a signature verification task.

5.1 Databases and Base Classifiers

For the signature modality, we use the 100-users MCYT-100 database [15] and
the 40-users training set of the SVC2004 database [16]. For the speech modality
we use the 52-users, English part of the BANCA database [17] and the 295-users
XM2VTS database [18].

The base classifiers for signature are a Gaussian mixture model (GMM) using
15 local features [19] (abbreviated LGMM), a GMM using 12 global features
(abbreviated GGMM), and a multi-layer perceptron (MLP) using the same 12
global features (abbreviated GMLP). Both the GMMs and the MLP are learned
from 5 signatures, and the MLP is learned using discriminative training.

The base classifier for speaker verification is a GMM based on the Alize
toolkit [20] (abbreviated AGMM), trained following each speech database’s spe-
cific protocol (P for BANCA, configuration I for XM2VTS).

5.2 Reliability Prediction with Modality-Independent Quality
Measures

The experiments are performed using 10-fold cross-validation and data from all
users. Essentially, we want to verify whether we can learn a reliability model
that will make less mistakes than the underlying base classifiers. If it is the case,
then the reliability model can be used to enhance the performance of the base
classifier.

Several types of classifiers were tested for reliability modelling, and the two
most promising ones were: bagging of C4.5 trees (abbreviated BC45), and ran-
dom forest classifiers (abbreviated RF). For space reasons we will report here
only the best performing of the two. The results are reported in Table 1.

5.3 Voting Schemes with Reliability

We compare two baseline combiners, majority voting (abbreviated MV) and
weighted majority voting (WMV), to three reliability-based voting combiners:
rigged majority voting (RMV), weighted rigged majority voting (WRMV), and
selective rigged majority voting (SRMV). The base classifiers are those presented
above, with the decision thresholds computed a posteriori.

Table 2 presents the results of the tests on the SVC 2004 signature database.
In addition, we performed the McNemar hypothesis test to assess whether the
combiners presented are significantly different (p = 0.05). Despite the encour-
aging results, the small size of the dataset (40 users, 1400 cases available for
fusion tests) means that the only significant difference (in the majority of the



384 J. Richiardi and A. Drygajlo

Table 1. 10-fold cross-validation results of reliability prediction. DB indicates the
database: S for SVC2004, M for MCYT100, B(G1/2) for BANCA G1 or G2, X(E/T)
for XM2VTS Eval or Test set. Classifier refers to the type of base classifier used. Rel
Classifier refers to the type of the reliability classifier used. Err is the error rate (in
percent) of the base classifier. Errr is the error rate (in percent) of the associated
reliability model. Decrease shows the relative reduction in error rate that can be ob-
tained by using the reliability model along with the base classifier. For BANCA G1,
an AdaBoosted ensemble of C4.5 trees brings about a 21.4% relative improvement in
the error rate.

DB Classifier Rel Classifier Err [%] Errr [%] Decrease [%]

S LGMM RF 8.5 4.0 53.0
S GGMM BC45 22.0 16.6 24.0
S GMLP BC45 23.8 19.8 17.0

M LGMM BC45 3.3 1.8 46.7
M GGMM BC45 19.0 12.4 34.7
M GMLP BC45 22.6 16.8 26.0

X(E) AGMM BC45 1.0 0.8 23.5
X(T) AGMM BC45 0.3 0.2 33.0

B(G1) AGMM RF=BC45 7.7 7.7 0
B(G2) AGMM RF 8.4 4.8 44.0

Table 2. 10-fold cross-validation results of reliability-based decision fusion on the
SVC2004 signature database (denoted ’S’) and the MCYT100 signature database (de-
noted ’M’). Baseline best is the best classifier in the ensemble. The standard deviation
over the 10 folds is given along with the error rates. FAR is the false accept rate (im-
postor accepted as a client), FRR the false reject rate (client rejected as an impostor),
and HTER is the half total error-rate, HTER = F AR+F RR

2 .

DB Scheme FAR [%] FRR [%] HTER [%]

S Baseline best 8.6 ± 3.6 8.5 ± 3.0 8.6 ± 2.1
S MV 10.3 ± 3.0 12.9 ± 3.9 11.6 ± 2.2
S WMV 6.1 ± 3.9 15.9 ± 4.6 11.1 ± 2.0

S RMV 4.9 ± 2.2 11.2 ± 4.9 8.0 ± 2.2
S WRMV 2.2 ± 3.0 9.2 ± 5.2 5.7 ± 2.5
S SRMV 3.3 ± 2.5 6.1 ± 3.4 4.7 ± 1.6

M Baseline best 3.4 ± 1.1 3.3 ± 0.9 3.3 ± 0.8
M MV 7.8 ± 1.2 9.0 ± 2.8 8.4 ± 1.2
M WMV 3.4 ± 1.1 3.3 ± 0.9 3.3 ± 0.8

M RMV 3.7 ± 1.0 5.0 ± 1.6 4.3 ± 0.8
M WRMV 1.3 ± 0.8 2.3 ± 0.9 1.8 ± 0.5
M SRMV 1.5 ± 0.8 2.4 ± 0.1 2.0 ± 0.4

cross-validation runs) is between the MV and SRMV combining schemes. Addi-
tionally, WMV and WRMV as well as WMV and SV are significantly different in
50% of the cross-validation folds. Note that using MV or WMV on this ensemble
would actually degrade the performance.
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Thus, we ran the same experiment on MCYT-100, a larger database com-
prising 4500 cases. The results are shown in Table 2. On this dataset, all three
reliability-based schemes significantly outperform MV and WMV, and WRMV
and SRMV both significantly outperform the best base classifier.This underlines
the importance of properly assigning weights in imbalanced ensembles. As can
be seen from the results for WMV, however, this is not always sufficient, and
a finer modelling of the underlying classifier’s behaviour can bring enhanced
performance.

6 Conclusion

We have presented a new model for classifier reliability, based on features that
can be applied independently of the underlying modality. We have used the
new reliability model in three new decision-level fusion methods that take into
account the overall reliability of individual classifiers on a development set, the
instance-by-instance reliability of each classifier’s decision, or both.

The rigged voting scheme improves over baseline methods by lowering the
bias of the base classifiers. However, the current approach makes no guarantee
about the remaining correlation between the rigged votes of the base classifiers,
an important factor in voting-based schemes. It is likely that the results would
be better with less correlation between base classifiers, as would be the case for
majority voting in multimodal verification.

Also, to more clearly show the difference between the WRMV and the SRMV
method, it would be interesting to perform experiments with more than 3 clas-
sifiers, and with more evenly matched classifiers.
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Abstract. Matching systems can be used in different operation tasks
such as verification task and identification task. Different optimization
criteria exist for these tasks - reducing cost of acceptance decisions for
verification systems and minimizing misclassification rate for identifica-
tion systems. In this paper we show that the optimal combination rules
satisfying these criteria are also different. The difference is caused by
the dependence of matching scores produced by a single matcher and as-
signed to different classes. We illustrate the theory by experiments with
biometric matchers and handwritten word recognizers.

1 Introduction

Traditionally, the goal of pattern classification algorithms is to minimize the
misclassification rate or cost[7]. With the development of biometric field another
type of optimization criteria became important - minimizing the cost of veri-
fying the hypothesis of whether the input belongs to the prespecified class. In
particular, for biometric verification system we need to determine whether the
presented biometric input belongs to the claimed enrolled person. The verifica-
tion problem is a two-class problem - the input does belong to the hypothesis
class (genuine verification attempt) or does not (impostor). On the other hand,
the traditional classification problem still takes place in biometrics as an identi-
fication problem: given biometric input determine the person among N enrolled
persons. Note, that similar task division existed before in other pattern recogni-
tion tasks. As an example of verification system in a handwriting application, a
bank check recognition system might hypothesize about the value of the check
based on the legal field, and numeric string recognition module must confirm
that courtesy value coincides with the legal amount[4]. Or, more frequently, a
handwriting recognition module is used to identify each word between N words
in the lexicon.

It turns out that different tasks might require different optimizations of recog-
nition algorithms. Example 1 of this paper presents two hypothetical recognition
algorithms with one more suited for verification task and another for identifica-
tion task. Similarly, if we have two or more matching algorithms, and we want
to combine their results, the best combination algorithms might be different
for different tasks. The goal of this paper is to show that this is indeed the
case. Whereas the optimal combination algorithm for verification systems corre-
sponds to likelihood ratio combination rule, the optimal combination algorithm
for identification systems might be different, and it is rather difficult to find.
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1.1 Performance Measures

Different modes of operation demand different performance measures. For veri-
fication systems the performance is traditionally measured by means of Receiver
Operating Characteristic (ROC) curves or by Detection Error Trade-off (DET)
curve. These curves are well suited for describing the performance of two-class
pattern classification problems. In such problems there are two types of errors:
the samples of first class are classified to belong to second class, and samples of
second class are classified to be in first class. The decision to classify a sample to
be in one of two classes is usually based on some threshold. Both performance
curves show the relationship between two error rates with regards to a threshold
(see [2] for precise definition of above performance measures). In our case we will
use ROC curves for comparing algorithm performance.

For measuring performance of identification systems we will use ranking ap-
proach. In particular, we are interested in maximizing the rate of correctly
identifying the input, first-rank-correct rate. If we look at identification task
as a pattern classification problem, this performance measure will directly corre-
spond to the traditional minimization of the classification error. Note that there
are also other approaches to measure performance in identification systems[2],
e.g. Rank Probability Mass, Cumulative Match Curve, Recall-Precision Curve.
Though they might be useful for some applications, in our case we will be more
interested in correct identification rate.

2 Verification Systems

The problem of combining matchers in verification systems can be easily solved
with pattern classification approach. As we already noted, there are two classes:
genuine verification attempts and impostor verification attempts. The hypothesis
identity of the input is provided before matching. Each matcher j outputs a score
sj corresponding to a match confidence between input sample and hypothesis
identity. Assuming that we combine M matchers, our task is to perform two-class
classification (genuine and impostor) in M -dimensional score space {s1, . . . , sM}.
If the number of combined matchers M is small, we will have no trouble in
training pattern classification algorithm.

We employ the Bayesian risk minimization method as our classification
approach[7]. This method states that the optimal decision boundaries between
two classes can be found by comparing the likelihood ratio

flr(s1, . . . , sM ) =
pgen(s1, . . . , sM )
pimp(s1, . . . , sM )

(1)

to some threshold θ where pgen and pimp are M -dimensional densities of score
tuples {s1, . . . , sM} corresponding to two classes - genuine and impostor verifi-
cation attempts. In order to use this method we have to estimate the densities
pgen and pimp from the training data.

The likelihood ratio combination method is theoretically optimal for verifica-
tion systems and its performance only limited by our ability to correctly estimate



Optimal Classifier Combination Rules 389

score densities. But, since our problem is the separation of genuine and impostor
classes, we could apply many existing pattern classification techniques as well.
For example, support vector machines have shown good performance in many
tasks, and can be definitely used to improve the likelihood ratio method. In [8]
we performed some comparisons of likelihood ratio method with SVMs on an
artificial task and found that on average (over many random training sets) SVMs
do have slightly better performance, but for a particular training set it might
not be true. The difference in performance is quite small and decreases with the
increasing number of training samples.

3 Identification Systems

In identification systems a hypothesis of the input sample is not available and
we have to choose the input’s class among all possible classes. Denote N as the
number of classes. The total number of matching scores available for combination
now is MN : N matching scores for N classes from each of M combined classifiers.
If numbers M and N are not big, then we can use generic pattern classifiers in
MN -dimensional score space to find the input’s class among N classes. For some
problems, e.g. digit or character recognition, this is an acceptable approach; the
number of classes is small and usually there is a sufficient number of training
samples to properly train pattern classification algorithms operating in MN
score space.

But for our applications in handwritten word recognition and biometric person
identification the number of classes is too big and the number of training samples
is too small (there might be even no training samples at all for a particular lexicon
word), so the pattern classification in the MN -dimensional score space seems to
be out of the question. The traditional approach in this situation is to use some
combination rules. The combination rule implies the use of some combination
function f operating only on M scores corresponding to one class, f(s1, . . . , sM ),
and it states that the decision class C is the one which maximizes the value of a
combination function:

C = arg max
i=1,...,N

f(s1
i , . . . , s

M
i ) (2)

Note that in our notation the upper index of the score corresponds to the
classifier, which produced this score, and lower index corresponds to the class
for which it was produced. The names of combination rules are usually di-
rectly derived from the names of used combination functions: the sum function
f(s1, . . . , sM ) = s1 + · · ·+ sM corresponds to the sum rule, the product function
f(s1, . . . , sM ) = s1 . . . sM corresponds to the product rule and so on.

Many combination rules have been proposed so far, but there is no agreement
on the best one. It seems that different applications require different combination
rules for best performance. Anyone wishing to combine matchers in real life has
to test few of them and choose the one with best performance.
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3.1 Likelihood Ratio Combination Rule

As we already know, likelihood ratio function is the optimal combination func-
tion for verification systems. We want to investigate whether it will be opti-
mal for identification systems. Suppose we performed a match of the input
sample by all M matchers against all N classes and obtained MN matching
scores {sj

i}i=1,...,N ;j=1,...,M . Assuming equal prior class probabilities, the Bayes
decision theory states that in order to minimize the misclassification rate the
sample should be classified as one with highest value of likelihood function
p({sj

i}i=1,...,N ;j=1,...,M |ωk). Thus, for any two classes ω1 and ω2 we have to clas-
sify input as ω1 rather than ω2 if

p({sj
i}i=1,...,N ;j=1,...,M |ω1) > p({sj

i}i=1,...,N ;j=1,...,M |ω2) (3)

Let us make an assumption that the scores assigned to each class are sampled
independently from scores assigned to other classes; scores assigned to genuine
class are sampled from M -dimensional genuine score density, and scores assigned
to impostor classes are sampled from M -dimensional impostor score density:

p({sj
i}i=1,...,N ;j=1,...,M |ωk)

= p({s1
1, . . . , s

M
1 }, . . . , {s1

ωk
, . . . , sM

ωi
}, . . . , {s1

N , . . . , sM
N }|ωk)

= pimp(s1
1, . . . , s

M
1 ) . . . pgen(s1

ωk
, . . . , sM

ωk
) . . . pimp(s1

N , . . . , sM
N )

(4)

After substituting 4 into 3 and canceling out common factors we obtain the
following inequality for accepting class ω1 rather than ω2:

pgen(s1
ω1

, . . . , sM
ω1

)pimp(s1
ω2

, . . . , sM
ω2

) > pimp(s1
ω1

, . . . , sM
ω1

)pgen(s1
ω2

, . . . , sM
ω2

)

or
pgen(s1

ω1
, . . . , sM

ω1
)

pimp(s1
ω1

, . . . , sM
ω1

)
>

pgen(s1
ω2

, . . . , sM
ω2

)
pimp(s1

ω2
, . . . , sM

ω2
)

(5)

The terms in each part of the above inequality are exactly the values of the
likelihood ratio function flr taken at the sets of scores assigned to classes ω1
and ω2. Thus, the class maximizing the MN -dimensional likelihood function
of inequality 3 is the same as a class maximizing the M -dimensional likelihood
ratio function of inequality 5. The likelihood ratio combination rule is the optimal
combination rule under used assumptions of score independence.

The main assumption that we made while deriving likelihood ratio combina-
tion rule is that the score samples in each identification trial are independent.
That is, genuine score is sampled from genuine score distribution and is inde-
pendent from impostor scores which are independent and identically distributed
according to impostor score distribution. We can verify if this assumption is true
for our matchers.

Table 1 shows correlations between genuine score and some functions of the
impostor score sets obtained in the same identification trial. firstimp column
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Table 1. Correlations between sgen and different statistics of the impostor score sets
produced during identification trials for considered matchers

Matchers firstimp secondimp thirdimp meanimp

CMR 0.4359 0.4755 0.4771 0.1145

WMR 0.7885 0.7825 0.7663 0.5685

li 0.3164 0.3400 0.3389 0.2961

C 0.1419 0.1513 0.1562 0.1440

G 0.1339 0.1800 0.1827 0.1593

has correlations between genuine and the best impostor score, and so on. Non-
zero correlations indicate that the scores are dependent, and likelihood ratio
combination rule will not necessarily be optimal for our applications.

The main reason for the dependence among matching scores produced during
identification trial is that they are derived using same input signal. The next
two examples will illustrate the effect of score dependences on the performance
of identification systems. In particular, second example confirms that if identi-
fication system uses likelihood ratio combination, then its performance can be
worse than the performance of a single matcher.

Example 1. Suppose we have an identification system with one matcher and,
for simplicity, N = 2 classes. During each identification attempt a matcher
produces two scores corresponding to two classes, and, since by our assumption
the input is one of these two classes (closed set identification), one of these scores
will be genuine match score, and another will be impostor match score. Suppose
we collected a data on the distributions of genuine and impostor scores and
reconstructed score densities (let them be gaussian) as shown in Figure 1.
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Fig. 1. Hypothetical densities of matching(genuine) and non-matching(impostors)
scores
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Consider two possible scenarios on how these densities might have originated
from the sample of the identification attempts:

1. Both scores sgen and simp are sampled independently from genuine and
impostor distributions.

2. In every observed identification attempt : simp = sgen − 1. Thus in this
scenario the identification system always correctly places genuine sample on
top. There is a strong dependency between scores given to two classes, and
score distributions of Figure 1 do not reflect this fact.

If a system works in verification mode and we have only one match score to
make a decision on accepting or rejecting input, we can only compare this score
to some threshold. By doing so both scenarios would have same performance: the
rate of false accepts (impostor samples having match score higher than threshold)
and the rate of false rejects (genuine samples having match score lower than
threshold) will be determined by integrating impostor and genuine densities of
Figure 1 no matter what scenario we have. If system works in identification mode,
the recognizer of the second scenario will be a clear winner: it is always correct
while the recognizer of first scenario can make mistakes and place impostor
samples on top.

This example shows that the performance of the matcher in the verification
system might not predict its performance in the identification system. Given
two matchers, one might be better for verification systems, and another for
identification systems.

Example 2. Consider a combination of two matchers in two class identification
system: one matcher is from the first scenario, and the other is from the second
scenario. Assume that these matchers are independent. Let the upper score index
refer to the matcher producing this score; sj

i is the score for class i assigned
by the classifier j. From our construction we know that the second matcher
always outputs genuine score on the top. So the optimal combination rule for
identification system will simply discard scores of first matcher and retain scores
of the second matcher:

f(s1, s2) = s2 (6)

The input will always be correctly classified as arg maxi s2
i .

Let us now use the likelihood ratio combination rule for this system. Since
we assumed that matchers are independent, the densities of genuine pgen(s1, s2)
and impostor pimp(s1, s2) scores are obtained by multiplying corresponding one-
dimensional score densities of two matchers. In our example, impostor scores are
distributed as a Gaussian centered at (0, 0), and genuine scores are distributed
as a Gaussian centered at (1, 1). Figure 2(a) contains the contours of function
|pgen − pimp| which allows us to see the relative position of these gaussians.
The gaussians have same covariance matrix, and thus the optimal decision con-
tours are hyperplanes[7] - lines s1 + s2 = c. Correspondingly, the likelihood ratio
combination function is equivalent to the combination function f = s1+s2 (note,
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that true likelihood ratio function will be different, but if two functions have
same contours, then their combination rules will be the same). Such combina-
tion improves the performance of the verification system relative to any single
matcher; Figure 2(b) shows corresponding ROC curves for any single matchers
and their combination.
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Fig. 2. (a) Two-dimensional distributions of genuine and impostor scores for examples
2 and 3 (b) ROC curves for single matchers and their likelihood ratio combination

Suppose that (s1
1, s

2
1) and (s1

2, s
2
2) are two score pairs obtained during one

identification trial. The likelihood ratio combination rule classifies the input as
a class maximizing likelihood ratio function:

arg max
i=1,2

pgen(s1
i , s

2
i )

pimp(s1
i , s

2
i )

= arg max
i=1,2

s1
i + s2

i (7)

Let the test sample be (s1
1, s

2
1) = (−0.1, 1.0), (s1

2, s
2
2) = (1.1, 0). We know from

our construction that class 1 is the genuine class, since the second matcher
assigned score 1.0 to it and 0 to the second class. But its score pair (1.1, 0)
is located just above the diagonal s1 + s2 = 1, and the score pair (−0.1, 1.0)
corresponding to class 1 is located just below this diagonal. Hence class 2 has
bigger ratio of genuine to impostor densities than class 1, and the likelihood
ratio combination method would incorrectly classify class 2 as the genuine class.

Thus the optimal for verification system likelihood ratio combination rule
(7) has worse performance than a single second matcher. On the other hand,
the optimal for identification system rule (6) does not improve the performance
of the verification system. Recall, that in section 3.1 we showed that if scores
assigned by matchers to different classes are independent, then likelihood ratio
combination rule is optimal for identification systems, as well as for verification
systems. Current example shows that if there is a dependency between scores,
this is no longer a case, and the optimal combination for identification systems
can be different from the optimal combination for verification systems.
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4 Experiments

We have performed three sets of experiments for this paper - one for combin-
ing two word recognizers and two for combining fingerprint and face biometric
matchers. Two handwritten word recognizers are Character Model Recognizer
(CMR)[3] and Word Model Recognizer (WMR)[5]. Both recognizers employ sim-
ilar approaches to word recognition: they oversegment the word images, match
the combinations of segments to characters and derive a final matching score for
each lexicon word as a function of character matching scores. Still, the correct
identification rates of these recognizers (see Table 2) reveal that these match-
ers produce somewhat complementary results and their combination might be
beneficial.

Our data consists of three sets of 2654, 1723 and 1770 word images represent-
ing UK postal town and county names of approximately same quality (the data
was provided as these three subsets and we did not regroup them). The word
recognizers were run on these images and their match scores for the total of
1681 lexicon words were saved. Since our data was already separated into three
subsets, we used this structure for producing training and testing sets. Each
experiment was repeated three times, each time one subset is used as a training
set, and two other sets are used as test sets. Final results are derived as averages
of these three training/testing phases.

We used biometric matching score set BSSR1 distributed by NIST[1]. This
set contains matching scores for a fingerprint matcher and two face matchers ’C’
and ’G’. Fingerprint matching scores are given for left index ’li’ finger matches
and right index ’ri’ finger matches. In this work we used both face matching
scores and fingerprint ’li’ scores and we do two types of combinations: ’li’&’C’
and ’li’&’G’. We used bigger subsets of this data set with 6000 identification
attempts to create a set of virtual persons and their matching scores. After
discarding enrollees and identification trials with failed biometric enrollment we
obtained two equal sets - 2991 identification trials with 2997 enrolled persons
with each part used as training and testing sets in two phases.

For our applications the number of matchers M is 2 and the number of train-
ing samples is large (bigger than 1000), so we can successfully estimate the
score densities for the likelihood ratio combination method. We approximate
both densities as the sums of 2-dimensional gaussian Parzen kernels. The win-
dow parameter is estimated by the maximum likelihood method on the training
set[6] using leave-one-out technique. Note that window parameter is different for
genuine and impostor density approximations.

4.1 Identification System Experiments

Table 2 shows the performance of likelihood ratio rule on our data sets. Whereas
the combinations of biometric matchers have significantly higher correct identifi-
cation rates than single matchers, the combination of word recognizers has lower
correct identification rate than a single WMR matcher. Example 2 provides an
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Table 2. Correct identification rate for likelihood ratio and weighted sum combination
rules

Matchers Total 1st matcher 2nd matcher Either one Likelihood Weighted
is correct is correct is correct Ratio Rule Sum Rule

CMR&WMR 6147 3366 4744 5105 4293 5015

li&C 5982 4870 4856 5789 5817 5816

li&G 5982 4870 4635 5731 5737 5711

explanation to this result; there is a strong dependence in matching scores for
WMR and it affects the performance of likelihood ratio combination.

We compare the performance of the likelihood ratio combination method with
the weighted sum combination rule f(s1, . . . , sM ) = w1s

1 + · · · + wMsM . We
train the weights so that the number of successful identification trials on the
training set is maximized. Since we have two matchers in all configurations we use
brute-force method: we calculate the correct identification rate of combination
function f(s1, s2) = ws1 + (1 − w)s2 for different values of w ∈ [0, 1], and find w
corresponding to highest rate.

The numbers of successful identification trials on the test sets is presented
in Table 2. In all cases we see an improvement over the performances of single
matchers. The combination of word recognizers is now successful and is in line
with the performance of other combinations of matchers. Weighted sum method
seems to perform slightly worse than likelihood ratio for biometric matchers,
which can be explained by its simplicity. Another possible reason for this is that
likelihood ratio combination rule is actually the optimal rule for classifiers with
independent identification trial scores, and scores of biometric matchers show
less dependence than scores of word recognizers.

4.2 Verification System Experiments

Figure 3 contains ROC curves likelihood ratio and weighted sum combination
rules in verirification tasks. The weights in the weighted sum rule are the same
as trained in identification experiments. In all cases we get slightly worse per-
formance from the weighted sum rule than from the likelihood ratio rule. This
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Fig. 3. ROC curves for combinations of (a) CMR and WMR, (b) ’li’ and ’C’, (c) ’li’
and ’G’
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confirms our assertion that the likelihood ratio is the optimal combination
method for verification systems.

5 Conclusion

The combination of matchers for verification problems is relatively easy task
with likelihood ratio combination rule being the optimal method, as well as
many other two-class pattern classification methods. On the other hand, the
combination in identification problems might require different methods, and it
is rather difficult task. In practice, presented results argue that we can not
effectively use same combination method for both verification and identification.
Though the weighted sum rule shows good performance in identification systems,
there is a need to develop more finely trainable combination methods.
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Abstract. Ensembles are often capable of greater predictive perfor-
mance than any of their individual classifiers. Despite the need for
classifiers to make different kinds of errors, the majority voting scheme,
typically used, treats each classifier as though it contributed equally to
the group‘s performance. This can be particularly limiting on unbalanced
datasets, as one is more interested in complementing classifiers that can
assist in improving the true positive rate without signicantly increas-
ing the false positive rate. Therefore, we implement a genetic algorithm
based framework to weight the contribution of each classifier by an ap-
propriate fitness function, such that the classifiers that complement each
other on the unbalanced dataset are preferred, resulting in significantly
improved performances. The proposed framework can be built on top of
any collection of classifiers with different fitness functions.

1 Introduction

Ensemble techniques are becoming increasingly important as they have repeat-
edly demonstrated the capacity to improve upon the accuracy of a single clas-
sifier in practice and theory [1,2,3]. Ensembles can either be homogeneous, in
which every base classifier is constructed with the same algorithm, or heteroge-
neous, in which different algorithms are used to learn the ensemble members.
Once multiple classifiers have been constructed, their predictions are typically
combined through some method of voting. Many of the popular ensemble tech-
niques use a simple majority vote of every classifier. It stands to reason that not
every member contributes equally to the group performance, and as such, not
every member should be given equal weight in the decision making. However,
the question remains how best to determine the relative worth of every classifier.

A simple solution would be to weight each individual according to its accuracy
on some validation set. However, for an ensemble to be more accurate than its
members, they need only be more accurate than a random guess [3]. It is not
necessarily true that the most accurate classifiers contribute the most to an
ensemble — diversity also plays an important role [4]. Diversity is the degree to
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which classifiers disagree in the errors they make. This allows the voted accuracy
to be greater than the accuracy of any single classifier.

Learning from unbalanced datasets can impose more exacting requirements
on the diversity in types of errors among classifiers, because we are interested
in the collection of classifiers that help in reducing the false negatives without
significantly increasing the false positives. There is a non-uniformity in the types
of errors that can be made, given the interest in increasing the true positives
even if at the expense of increasing the false positives. Moreover, the classifiers
themselves are learned with the objective criterion of reducing the overall error,
and not necessarily the error on the positive class, which is typically the minority
class. The goal then is to be able to discover a weighting scheme for individual
classifiers such that the collective classification helps in improving the true pos-
itive rate. One could potentially weight each classifier by a metric that is more
amenable to evaluating classifiers on unbalanced datasets, but that does not help
in realization of diversity. In this case, each classifier is independently evaluated
on a validation set and that independent evaluation becomes the weight, but it
does not help in realization of their performance as a collective.

Thus, the problem we face is: how to best set the weights of each classifier
to maximize the performance of the entire ensemble on unbalanced datasets?
To that effect, we utilize an evolutionary framework using a genetic algorithm
to assign weights for each classifier in an ensemble [5]. The goal is to assign
weights that reflect the relative contribution of each classifier in improving the
overall performance of the ensemble. The genetic algorithm starts with random
weight assignment to the classifiers, and after multiple generations, these weights
come to reflect the relative contribution of the corresponding classifiers. Such an
evolutionary combination of members can be more effective than considering
all members equally. The evolutionary scheme uses positive (or minority) class
f-measure [6] for its fitness function. It is more attuned with the evaluation on
unbalanced datasets. Furthermore, by separating the stages of learning classifiers
and forming ensemble, our meta-learner does not need any knowledge of the
structure or type of the base classifiers, just their predictions.

Contributions: We posited the following questions in our evaluation of ensembles
learned on unbalanced datasets.

1. What is the improvement offered by the proposed evolutionary framework
over uniform voting, weighted voting, and the best member-classifier of the
ensemble?

2. What is the impact of using a technique designed for countering imbalance in
data as a pre-processing stage before learning ensembles? We used an over-
sampling method, SMOTE [7], that generates synthetic minority (positive)
class instances.

3. Is there a relationship among the classifiers selected by our proposed frame-
work and the classifiers on the ROC convex hull [8]? Utilizing the probabilis-
tic version of C4.5 [9] and different levels of SMOTE, we study the nature
of the classifiers selected in terms of the ROC space.
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1.1 Related Work

Genetic algorithms have a history of use in data mining, especially as wrap-
per technique of feature selections [10,11,12] that use genetic algorithms as an
iterative search technique to identify the best performing feature subset on a
validation set. Kim et al. [13] proposed creating meta-evolutionary ensembles,
in which both classifiers and ensembles are evolved simultaneously. However,
only neural networks were considered as potential classifiers. In a similar vein,
Menczer et al. [14] proposed a local selection methodology for evolving neural
networks in which they seek to minimize the interaction among members. Liu et
al. [15] also explored evolutionary techniques for neural networks. They evolved
both ensembles and neural networks simultaneously, and focused on speciation
to minimize the interactions between ensembles members. Kuncheva and Jain
[16] designed a multiple classifier fusion system using genetic algorithms, albeit
genetic algorithms were used to first select the features and then on those se-
lected feature subsets they learned three different types of classifiers (linear and
quadratic discriminant classifiers and the logistic classifier). Langdon and Buxton
[17] used genetic programming to fuse linear classifiers to achieve a “maximum
realizable ROC”. Our work differs from the above in not only the number of
classifiers, but also on the special focus on unbalanced datasets.

2 Building Evolutionary Ensembles

We implemented a framework that we call EVEN (EVolutionary ENsembles) [5],
which uses a genetic algorithm to carry out the meta-learning. EVEN utilizes the
individual classifier predictions on the validation set as input. EVEN‘s output
comprises weights for each individual classifier and the final composite testing
set predictions based on those weights. EVEN uses the minority class f-measure
[6] as the fitness function, which can be defined as follows.

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

f − measure =
(1 + β2) × precision × recall

β2 × (recall + precision)
(3)

EVEN is implemented as follows. A dataset is partitioned into three disjoint
subsets, one for training, one for validation and one for testing. The base classi-
fiers are learned on the training sets, and then evaluated on the validation data
and the testing data. Their predictions for both validation and testing sets were
recorded. The predictions on the validation sets are used to train EVEN, and the
predictions on the testing set are used to evaluate EVEN‘s final performance. It
is important to note that all EVEN knows of the base classifiers is the predictions
they made; EVEN does not have any information regarding either the decision
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making process of the classifiers or the features of the original data sets. Once
the appropriate weights have been learned on the validation set those weights
are used to combine the predictions of the base classifiers made on the testing
set. The weight vector of classifiers as generated by EVEN is W = w1, w2, ..., wC ,
where C is the number of classifiers in the ensemble. Then the prediction for a
test instance j:

ŷj =
C∑

i=1

wi × ˆyi,j (4)

where ˆyi,j is the prediction by classifier i on the test instance j. The pseudo-code
for EVEN is contained in Evolution .

Algorithm. Evolution(G,p,C)
Input: Number of generations G; Population size p; Number of classifiers C
Output: Weight vector W ; Predictions X
1. (∗ Let Pg denote the population in generation g, and let Pg.i be memberi

of that population. ∗)
2. P0 = Random population(p)
3. for g ← 1 to G
4. for i ← 0 to p
5. Compute: fitnessi = fmeasure(Pg.i)
6. endfor
7. Sort Pg by fitness
8. Pg+1 = interbreed(Pg) + mutations(Pg) + survivors(Pg)
9. endfor
10. Select PG−1.i from PG−1 such that

fitness(PG−1.i) = max(fitness(PG−1.1), ..., f itness(PG−1.p))
11. return W = weights(PG−1.i)
12. return Y = predictions(PG−1.i)

3 Experiments

We ran a variety of experiments to demonstrate the efficacy of EVEN. We
used heterogeneous ensembles comprised of different learning techniques as in-
dividual members, and homogeneous ensembles comprising the same underlying
learning technique but with each classifier trained on a modified version of the
dataset. We included a variety of datasets with different sizes and character-
istics. We preprocessed the datasets by randomly dividing each into the train-
ing/validation/testing sets ten different times, and ran as many experiments.

3.1 Datasets

Our experiments featured five publicly available datasets stemming from differ-
ent domains with differing levels of class imbalance. Table 1 shows the varying
characteristics of the datasets, which are comprised of a mixture of continuous
and nominal values.
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Table 1. Datasets. Ordered by the increasing amount of skew.

Dataset Number of
examples

Number of
Features

Class Distribution
(Negative:Positive)

Pima 768 8 0.6510:0.3490

Phoneme 5404 5 0.7065:0.2935

Satimage 6435 36 0.9027:0.0973

Covtype 35,754 54 0.9287:0.0713

Mammography 11,183 6 0.9768:0.0232

3.2 Experiment-1: Heterogeneous Ensemble on Unbalanced
Datasets

We used 12 different learning algorithms, as implemented in Weka, for construct-
ing the base ensemble: ID3 decision trees, J48 decision trees (C4.5), JRIP rule
learner (Ripper), Naïve Bayes, NBTree (Naïve Bayes trees), 1R, logistic model
trees, logistic regression, decision stumps, multi-layer perceptron, SMO (support
vector machine), and 1BK (k-nearest neighbor). We chose to work with many
different classification algorithms because each displays a different inductive bias,
and therefore provides a potentially more independent and diverse set of pre-
dictions to build upon. In order to enlarge the ensembles to more interesting
sizes, ten full size bootstraps were made on the training data. Each classifier
was learned on each bootstrap, creating a total of 120 classifiers for EVEN to
work with. The purpose of constructing bootstraps was just to generate more
members of the ensembles. For each of the runs, EVEN maintained a population
of size 250 for 1000 generations.

Our experimental set-up included results from EVEN voted classifiers to an
un-weighted uniform vote of classifier; a weighted vote where the weight was
equal to the validation set accuracy of the classifier; a weighted vote where the
weight was set equal to the validation set measure of each classifier; and the f-
measure of the best performing single classifier. We chose to compare to a simple
majority vote because that is the most common voting form in ensembles. The
weighted vote was included to verify that the classifiers’ individual performance
was not a sufficient indicator of its relative contribution. Finally, the single best
classifier, as defined by performance on the validation set, was also used for
comparison to ensure that the added overhead of using multiple classifiers was
justified.

However, for space considerations, we elided the results on the accuracy
weighted vote, as the f-measure and uniformly voted classifiers sufficed for the
comparisons with EVEN. f-measure weighted voting outperformed accuracy
weighted voting, as one would expect, and there was no statistical difference,
if any, between uniform voting and accuracy weighted voting. However, we do
report all the statistical significance comparisons, subsequently. Table 2 shows
the average f-measure and the standard deviations. It is evident from Table 2
that EVEN obtains the best average f-measure as compared to the other con-
sidered schemes.
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Table 2. f-measure of ensemble of 120 classifiers. The following convention is used in
the Table: FMW-V is f-measure weighted voting; U-V is uniform voting; and Best is
the best classifier in the ensemble.

Dataset EVEN FMW-V U-V Best

Pima 0.6528 ± 0.0705 0.6411 ± 0.0561 0.6315 ± 0.0546 0.6345 ±0.0600

Phoneme 0.8221 ± 0.0373 0.7553 ± 0.0182 0.7351 ± 0.0174 0.7849 ± 0.0435

Satimage 0.6682 ± 0.0369 0.6636 ± 0.0402 0.4625 ± 0.0525 0.6599 ± 0.0328

Covtype 0.9022 ± 0.0157 0.8828 ± 0.0086 0.8508 ± 0.0120 0.8748 ± 0.0080

Mammography 0.6186 ± 0.0590 0.5950 ± 0.0501 0.5669 ± 0.0529 0.5731 ± 0.0750

EVEN always significantly outperforms uniform voting and accuracy weighted
voting. It statistically significantly better than f-measure weighted voting in 4
out of 5 datasets. This presents empirical evidence that it is not the individ-
ual worth of a classifier that provides the classification improvement, but it is
their relative worth as a collective. As an example, we show the weights ver-
sus f-measure distribution for the phoneme dataset in Figure 1. Firstly, there
is no obvious correlation observed between the weights and the corresponding
f-measure. Classifiers with similar f-measures have a range of weights, and the
classifiers with higher weights can also have lower f-measures. Similar trends
were observed for the other datasets.
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Fig. 1. Weights versus f-measure distribution across all the classifiers for the Phoneme
dataset

We are more interested in classifiers that make different types of errors, cancel-
ing out each others mistakes, leading to an overall improvement in the ensemble‘s
performance. Based on these weights one can also establish a cut-off for the clas-
sifiers that will vote together, thus reducing the size of the ensemble, which can
be very relevant when the ensemble sizes are in thousands. To evaluate this, we
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established a cut-off value of 0.8 on the weights. Table 3 shows the number of
the selected classifiers and the corresponding average f-measure. Applying the
cut-off results in a significantly reduced number of classifiers, approximately 20
– 25% of the original ensemble size, for all the datasets, without any significant
drop in the f-measure. This shows the effectiveness of EVEN in assigning relevant
weights to the classifiers and identifying the maximally contributing subset.

Table 3. Average f-measure and Size (including standard deviations) of ensemble
after applying a cutoff value of 0.8 to classifier weights in the original ensemble of 120
classifiers

Dataset EVEN0.8 # Classifiers

Pima 0.6483 ± 0.0650 27.9 ± 5.7436

Phoneme 0.8142 ± 0.0194 24.5 ± 3.8370

Satimage 0.6696 ± 0.0430 28.4 ± 2.8752

Covtype 0.9079 ± 0.0122 27.3 ± 4.2177

Mammography 0.5817 ± 0.0921 27.8 ± 4.4096

In accordance with the Free Lunch Theorem [18], no single classifier was
consistently best on all the datasets or even within the set of runs within a
single dataset. Thus, it becomes very important to have a collection of classifiers
to apply to any given dataset. But if one utilizes an ensemble voting framework
like ours, then the selection of a single classifier becomes unimportant, as each
classifier is assigned a weight based on its relative contribution in the collective.

Table 4. f-measure of ensemble of classifiers learned after applying SMOTE. Same
convention as Table 2 applies.

Dataset EVEN FMW-V U-V Best

Pima 0.7027 ± 0.0515 0.6966 ± 0.0550 0.7002 ± 0.052 0.6874 ± 0.0569

Phoneme 0.8160 ± 0.0161 0.7742 ± 0.0147 0.7653 ± 0.0137 0.8193 ± 0.0223

Satimage 0.6459 ± 0.0403 0.6663 ± 0.0443 0.5816 ± 0.0421 0.6560 ± 0.0490

Covtype 0.9063 ± 0.0202 0.8954 ± 0.0135 0.8611 ± 0.0189 0.8865 ± 0.0261

Mammography 0.6937 ± 0.1122 0.6655 ± 0.1194 0.6649 ± 0.1223 0.6172 ± 0.1217

3.3 Experiment-2: Effect of SMOTE on Ensemble Generation

For this set of experiments we did not bootstrap the data. Instead we applied
SMOTE at 5 different levels, 100%, 200%, 300%, 400%, and 500%, to synthet-
ically generate new positive class instances. This resulted in different dataset
sizes and class distributions for members of the ensemble. We also included clas-
sifiers learned on the original distribution, thus giving us a total of 6 classifiers
on a dataset. This resulted in an ensemble of 72 classifiers. The main purpose of
this experiment was to study the behavior of the ensemble when the dataset has
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been pre-treated with a technique to counter the class imbalance and its impact
on different voting schemes. We used exactly the same training, validation, and
testing sets as in Experiment-1. This allowed easy juxtaposing of the two results
from both the experiments. Table 4 shows the results on this set of experiments.
Again, we included the same set of comparisons as in the previous subsection.
It is evident that the initial preprocessing of data by applying an oversampling
technique such as SMOTE, clearly benefits all the voting schemes.

The most significant improvements are for uniform voting and accuracy
weighted voting. This is not surprising as now the classifier‘s inductive bias
is manipulated towards the minority class because of oversampling, which leads
to improved true positives, but at the expense of false positives. We also note
that there is not much difference in the f-measure values obtained by EVEN in
Experiment-1 and Experiment-2. This is very interesting in the light of improve-
ments offered by SMOTE in all other schemes. The best classifier performance
also improves. EVEN is, nevertheless, able to capture the diversity among the
classifiers in their predictions and exploit it, despite classifiers’ inductive bias
towards the majority class. If we compare the results on Experiment-2 and
Experiment-1 (as the testing sets remain the same), SMOTE with EVEN helps
in performance improvement only for two datasets — pima and mammography.
EVEN is thus able to exploit the differences in the errors to generate weights for
optimizing the f-measure performance, irrespective of the prior oversampling.

3.4 EVEN and ROC Space

We are also interested in understanding the classifiers selected via EVEN for
unbalanced datasets and their relationship in the ROC space. Ideally, the ROC
convex hull represents the family of classifiers that are optimal in the differ-
ent operating conditions [8]. The compelling question then is: How many of the
higher weighted EVEN classifiers lie on the ROC convex hull? To that end, we
use C4.5 decision trees from our family of classifiers to understand the phenom-
enon. We smoothed the C4.5 leaf frequencies using the LaPlace estimate [9], and
then constructed ROC curves from the leaf estimates. Moreover, having just a
single type of classifier in the ensemble made the ROC space more tractable for
the purpose of this experiment. Now to construct an ensemble, we first applied
different levels of SMOTE to each of the datasets.

As an example, Figure 2 shows the family of ROC curves and the ROC con-
vex hull for mammography dataset. Due to space considerations, we only show
the ROC curves for the most unbalanced dataset. Clearly, not all classifiers are
falling on the ROC convex hull. SMOTE = 500 classifier is the most dominat-
ing one with the most number of points on the ROC space (approximately 72%
of the ROC convex hull is occupied by points belonging to SMOTE = 500).
That particular classifier also carried the maximum voting weight assigned by
EVEN: 0.99521. But, one might ask what if we just vote the classifiers on the
convex hull. The f-measure then obtained is 0.56, whereas the f-measure obtained
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Fig. 2. ROC curves for Mammography dataset

by EVEN is 0.592 (a 5.7% improvement offered by EVEN). It is indicative of
the value added by the EVEN weighted participation of all the classifiers. As
part of future work, we are including comparisons to the work of Langdon and
Buxton [17].to compare the maximum realizable AUROCs.

4 Conclusions

Ensemble generation using EVEN offers a significant advantage over the differ-
ent voting schemes and the best classifier member of the ensemble. EVEN is
effectively able to weight each individual classifier of the ensemble on the basis
of its relative contribution to the overall performance, and these weights carry no
obvious correlation to the independent performance of the classifier. This under-
lines the fact that the key is not the individual merit of the classifier, but their
diversity in making different types of errors. We also generated ensembles after
applying SMOTE, which significantly helped all the voting methods. Essentially,
we are introducing inherent diversity in the SMOTE-based ensembles by learn-
ing classifiers on different amounts and instances of SMOTE. This increases the
capability of the ensemble to optimize on f-measure, since the individual classi-
fies are learned on different class distributions and demonstrate different biases
in their predictions.

As part of future work, we are also incorporating other metrics such as AU-
ROC within the classifier selection framework. A framework like EVEN allows
for incorporation of any evaluation metric, given the data/class distribution.
This offers flexibility to incorporate any evaluation metric as a fitness function,
since the classifiers don’t have to be re-learned; all we are interested in is the
relative contribution of the classifier given a different objective function.



406 N.V. Chawla and J. Sylvester

References

1. Y. Freund and R. Schapire, “Experiments with a new boosting algorithm,” in
Thirteenth International Conference on Machine Learning, 1996.

2. L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140,
1996.

3. T. Dietterich, “Ensemble methods in machine learning,” Lecture Notes in Com-
puter Science, vol. 1857, pp. 1–15, 2000.

4. L. Kuncheva and C. Whitaker, “Measures of diversity in classifier ensembles and
their relationship with the ensemble accuracy,” Machine Learning, vol. 51, pp. 181–
207, 2003.

5. J. Sylvester and N. V. Chawla, “Evolutionary ensemble creation and thinning,” in
International Joint Conference on Neural Networks, pp. 5148 – 5155, 2006.

6. C. J. van Rijsbergen, Information Retrieval. London: Butterworths, 1979.
7. N. Chawla, L. Hall, B. K.W., and W. Kegelmeyer, “SMOTE: Synthetic Minor-

ity Oversampling TEchnique,” Journal of Artificial Intelligence Research, vol. 16,
pp. 321–357, 2002.

8. F. Provost and T. Fawcett, “Robust Classification for Imprecise Environments,”
Machine Learning, vol. 42/3, pp. 203–231, 2001.

9. F. Provost and P. Domingos, “Tree induction for probability-based rankings,” Ma-
chine Learning, vol. 52(3), 2003.

10. D. Opitz, “Feature selection for ensembles,” in AAAI/IAAI, pp. 379–384, 1999.
11. C. Guerra-Salcedo and L. Whitley, “Genetic approach to feature selection for en-

semble creation,” in International Conference on Genetic and Evolutionary Com-
putation, pp. 236–243, 1999.

12. J. Yang and V. Honavar, “Feature subset selection using A genetic algorithm,” in
Genetic Programming 1997: Proceedings of the Second Annual Conference, p. 380,
13–16 1997.

13. Y. Kim, N. Street, and F. Menczer, “Meta-evolutionary ensembles,” in IEEE Intl.
Joint Conf. on Neural Networks, pp. 2791–2796, 2002.

14. F. Menczer, W. N. Street, and M. Degeratu, “Evolving heterogeneous neural agents
by local selection,” in Advances in the Evolutionary Synthesis of Neural Systems
(V. Honavar, M. Patel, and K. Balakrishnan, eds.), Cambridge, MA: MIT Press,
2000.

15. Y. Liu, X. Yao, and T. Higuchi, “Evolutionary ensembles with negative correlation
learning,” IEE Transactions on Evolutionary Computation, vol. 4.4, pp. 380–387,
2000.

16. L. I. Kuncheva and L. C. Jain, “Designing classifier fusion systems by genetic
algorithms,” IEEE-EC, vol. 4, pp. 327 – 336, November 2000.

17. W. B. Langdon and B. F. Buxton, “Genetic programming for combining classi-
fiers,” in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), pp. 66–73, 2001.

18. D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,”
IEEE Transactions on Evolutionary Computation, vol. 1, pp. 67–82, April 1997.



On the Diversity-Performance Relationship for

Majority Voting in Classifier Ensembles

Yun-Sheng Chung1, D. Frank Hsu2,�, and Chuan Yi Tang1

1 Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
300, ROC

yschung@algorithm.cs.nthu.edu.tw, cytang@cs.nthu.edu.tw
2 Department of Computer and Information Sciences, Fordham University, LL813,

113 West 60th Street, New York, NY 10023, USA
hsu@cis.fordham.edu

Abstract. Combining multiple classifier systems (MCS’) has been
shown to outperform single classifier system. It has been demonstrated
that improvement for ensemble performance depends on either the diver-
sity among or the performance of individual systems. A variety of diver-
sity measures and ensemble methods have been proposed and studied. It
remains a challenging problem to estimate the ensemble performance in
terms of the performance of and the diversity among individual systems.
In this paper, we establish upper and lower bounds for Pm (performance
of the ensemble using majority voting) in terms of P̄ (average perfor-
mance of individual systems) and D̄ (average entropy diversity measure
among individual systems). These bounds are shown to be tight using
the concept of a performance distribution pattern (PDP) for the input
set. Moreover, we showed that when P̄ is big enough, the ensemble per-
formance Pm resulting from a maximum (information-theoretic) entropy
PDP is an increasing function with respect to the diversity measure D̄.
Five experiments using data sets from various applications domains are
conducted to demonstrate the complexity, richness, and diverseness of
the problem in estimating the ensemble performance.

1 Introduction

Multiple classifier systems (MCS), or classifier ensembles, have been recognized
as an effective classification method. It is often observed that MCS can outper-
form single classification systems (e.g., [1, 2, 3, 4, 5]). One of the key factors for
the success of combination is often attributed to diversity [5, 6, 7, 8, 9, 10, 11, 12,
13,14,15,16,17,18]. In addition, the performance of the component systems also
has significant impact on the combined performance [9,10,11,19,20]. One of the
most extensively applied and studied combination methods for MCS is major-
ity voting (e.g., [6, 8, 19, 20, 21, 22, 23, 24, 25]). It is hence an important issue to
understand how diversity and individual performance affect the ensemble per-
formance. We also refer to the two special issues edited by Roli and Kittler [26]
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and Kuncheva [27] and the book by Kuncheva [3] which give excellent treatises
of combining pattern classifiers and diversity in classifier ensembles (see Ch.10
in [3]).

In this paper, we study the following problem:

• Suppose we have p classifier systems C1, . . . , Cp where each classifier pro-
duces a class label, and classifier performance is measured by the zero-one
loss function. Let P̄ and Δ̄ be the average performance and average diversity
of the classifiers over all input, respectively. Let Pm be the performance of
ensemble classifier Cm using majority voting. What is the strongest possible
relationship for Pm in terms of P̄ and Δ̄?

A relationship is established for Pm in terms of P̄ and Δ̄ = D̄, where D̄ is a
non-pairwise diversity measure defined in [3,6] (see Theorems 1 and 2 in Sec. 4).
In particular, tight upper and lower bounds of Pm in terms of P̄ and D̄ are
established. The tight upper and lower bounds will be denoted as Um(P̄ , D̄) and
Lm(P̄ , D̄), respectively. When the classifiers are independent, majority voting
has been studied quite thoroughly [8,20,23]. We also showed that when P̄ is large
enough, the ensemble performance Pm resulting from a performance distribution
pattern (PDP) with maximum entropy is an increasing function in terms of D̄.

The remainder of this paper is organized as follows. In Sec. 2, we review
other related works on ensemble performance in terms of systems diversity and
performance. Section 3 covers various fundamental terms related to performance,
diversity, and ensemble performance, and inlcudes the partition of the input set
and the notion of a performance distribution pattern (PDP). In Sec. 4, we give
bounds of Pm and show their tightness. Section 5 includes experiments on five
data sets to illustrate our results in Sec. 4. Section 6 concludes our paper with
further work discussed.

2 Related Works

In regression, Krogh and Vedelsby [9] had established an elegant equation re-
lating the combination performance to the average performance and diversity of
the individual systems:

E = Ē − Ā

where E is the quadratic error of the combined estimation, Ē is the average
quadratic error of the individual estimations, and Ā measures the variance among
the individual estimations.

However, in classification, the relationship is not as clear. Tumer and Ghosh
[10] studied the case that the classifiers estimate the posterior probabilities of
the classes. They derived an equation for the added error of a linear combination
of correlated unbiased classifiers:

Eave
add = Eadd

(
1 + δ(p − 1)

p

)
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where δ is the average correlation coefficient among the individual classifiers,
Eave

add is the added error of the linear combination, and Eadd is the added error of
the individual systems. Fumera and Roli [11] released some of the assumptions
in [10] and obtained more general results.

When the classifiers produce class labels, the results in [10, 11] do not apply.
One of the most frequently used combination methods and error measures for
this case are majority voting and the zero-one loss function, respectively. In this
setting, extensive experiments using various diversity measures have been con-
ducted by Kuncheva and Whitaker [6] to study the desired relationship. Scatter-
plots of the majority voting accuracy versus the diversity for some fixed member
accuracy are produced in [6] (see also Fig. 10.6 in [3]). Some other experimental
or simulation results are also given in [6, 19].

Breiman [28] proved an upper bound of the error made by random forests,
which also applies to majority voting ensembles in general:

1 − Pm ≤ ρ̄(1 − s2)/s2

where ρ̄ is the correlation coefficient averaged over all pairs of classifiers and
over all inputs, and s is the “strength” (average margin) of the classifiers. In
the two-class case, s = 2P̄ − 1. Hence in the two-class case the above bound
can be expressed as Pm ≥ 1 − ρ̄/(2P̄ − 1)2 + ρ̄. This bound has the desirable
property of decreasing with ρ̄ (higher ρ̄ means lower diversity). However, it is
not tight [3]. In fact, from a tight bound it is easy to derive a bound (at the
expense of tightness) that is increasing with diversity.

When diversity is not involved, the relationship between Pm and the individ-
ual accuracy is relatively simpler and had been studied by several researchers.
One of the first analytical results is due to Matan [29], where tight bounds of
Pm are obtained in terms of the individual system accuracy. Let Pi be the per-
formance of the ith classifier over all input, and let P1 ≤ P2 ≤ · · · ≤ Pp, where
p is the number of classifiers. Also let � = �p/2�. Matan proved that

max{0, ξ(� + 1), ξ(�), . . . , ξ(1)} ≤ Pm ≤ min{1, Σ(� + 1), Σ(�), . . . , Σ(1)}

where Σ(j) = 1
j

∑�+j
i=1 Pi and ξ(j) = 1

j

∑p
i=�+2−j Pi − �

j . Independently, in [19],
Kuncheva et al. defined “pattern of success” and “pattern of failure”. The ma-
jority voting accuracy for the pattern of success (resp. failure) is the tight upper
(resp. lower) bound of majority voting accuracy for all possible ensembles with
the given member accuracy. The upper and lower bounds are:

max
{
0, p/(� + 1) × P̄ − �/(� + 1)

} ≤ Pm ≤ min
{
1, p/(� + 1) × P̄

}
(1)

Roughly speaking, the upper bound in (1) is about 2P̄ , and the lower bound in
(1) is about 2P̄ −1. Ruta and Gabrys [20] further refined the patterns of success
and failure to define “stable” versions which are claimed to be more likely to
occur (and attain the same bounds in (1)).

Bounds of Pm involving only diversity (measured by Q statistic) but not P̄
are also given in [19]. Instead of obtaining explicit bounds of Pm analytically as
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in [19, 20, 28, 29], Narasimhamurthy [16, 25] used linear programming to study
(numerically) the relationship between Pm and individual system performance
or diversity. The size of the linear program can be exponential in the number of
classifiers, which may restrict the scale of permissible analyses.

3 Performance, Diversity, and the Performance
Distribution Pattern

3.1 Performance and Diversity

We assume that the number p of classifiers is odd. Let Ω = {ω1, ω2, . . . , ωq} be
the set of class labels. Let C∗ be the classifier that always gives the true class
label. On input x ∈ I, I being the set of inputs, let Cj(x) (resp. C∗(x) and
Cm(x)) be the output of Cj (resp. C∗ and Cm). Denote as #(ωi, x) the quantity
|{j : Cj(x) = ωi}|. Let ωmax(x) = arg maxωi{#(ωi, x)}. Then define Cm(x) as

Cm(x) =

{
ωmax(x) if #(ωmax(x), x) > p

2

ωq+1 otherwise.

where Cm(x) = ωq+1 indicates its rejection on the input. For x ∈ I, the per-
formance Pj(x) of classifier Cj , and the average performance P̄ (x) of the p
classifiers, are defined as

Pj(x) =

{
1 if Cj(x) = C∗(x);
0 otherwise;

and P̄ (x) =
1
p

p∑

j=1

Pj(x).

The average of P̄ (x) over I is denoted as P̄ . For Cm, the definition of Pm(x)
is similar to Pj(x). When the ensemble classifier rejects on input x, we have
Pm(x) = 0. The performance of Cm, averaged over all input, is denoted as Pm.

Throughout this paper let � = �p
2�. On x ∈ I, define D̄(x) as

D̄(x) = min{P̄ (x), 1 − P̄ (x)}.

Then let D̄ be the average of D̄(x) taken over I. This diversity measure fol-
lows Kuncheva and Whitaker [6] where diversity measures are defined on oracle
outputs, and D̄ is called entropy diversity. By definition, it can be seen that
P̄ + D̄ ≤ 1, D̄ ≤ �

p , D̄ ≤ P̄ and D̄ ≤ 1 − P̄ .

3.2 Performance Distribution Pattern

Given p classifiers C1, C2, . . . , Cp and the input set I, let C∗ be the classifier
as defined in Sec. 3.1. Let P ∗(x) be the performance of C∗ on input x. Clearly,
P ∗(x) = 1 for all x ∈ I. We call C∗ an ideal classifier for I. Let P̄ (x) be
defined in terms of C∗ as in Sec. 3.1. We can partition the input set I into p + 1
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disjoint subsets Ik, k = 0, 1, . . . , p such that Ik = {x ∈ I : P̄ (x) = k
p }. This

partition of the input set I gives rise to a partition vector π = (π0, π1, . . . , πp)T

such that πk = Pr{x ∈ Ik}, k = 0, 1, . . . , p. We now define the Partition of Input
set using Performance (PIP) and the Performance Distribution Pattern (PDP)
(see also [8, 20]):

Definition 1. Given an input set I, suppose that there exists an ideal classifier
C∗ such that P ∗(x) = 1 for every x ∈ I. For a set C = {C1, . . . , Cp} of p
classifiers and Ik = {x ∈ I : P̄ (x) = k

p } where P̄ (x) is defined in Sec. 3.1, we
define the PIP partition and the PDP pattern as:
(a) the input set I has a PIP partition, I =

⋃p
k=0 Ik where Ii ∩Ij = ∅ for i 	= j,

and
(b) the performance distribution pattern (PDP) of C is the vector π = (π0, . . . ,
πp)T, where πk = Pr{x ∈ Ik}.
It follows from Definition 1(a) and 1(b) that there is an one-one correspondence
between the PIP partition and the PDP pattern. Definition 1(a) deals with par-
titions of the input set I =

⋃p
k=0 Ik, while Definition 1(b) gives a corresponding

partition of Pr{x ∈ I} such that 1 = Pr{x ∈ I} =
∑p

k=0 Pr{x ∈ Ik} =
∑p

k=0 πk.
Since Ik is defined to be the set of those inputs in I so that P̄ (x) = k

p , both
Definitions 1(a) and 1(b) require an ideal classifier C∗ to define P̄ (x) for the
input set I and the set C of p classifiers. We can show, under an input set
I and an ideal classifier C∗, the following equivalence between the existence
of a set C of p classifiers {C1, . . . , Cp} and the existence of a probability vec-
tor π associating with a partition of I. The proof is omitted due to page
constraint.

Lemma 1. Let I be an input set and C∗ be an ideal classifier for I. For each
x ∈ I let P̄ (x) be defined as in Sec. 3.1 for an ensemble of classifiers. The
following two statements are equivalent:

(a) There exists a set C of p classifiers C = {C1, . . . , Cp} so that Pr{P̄ (x) =
k
p } = πk.

(b) There exists a probability vector π = (π0, . . . , πp)T such that for some parti-
tion {Jk : k = 0, . . . , p} of I, Pr{x ∈ Jk} = πk for all k.

What underlines the statements (a) and (b) in Lemma 1 is a PIP partition of
the input set I into p + 1 disjoint subsets I =

⋃p
k=0 Ik, where Ii ∩ Ij = ∅ if

i 	= j. Moreover, in this partition, we have Pr{x ∈ Ik} = πk and Ik = {x ∈ I :
P̄ (x) = k

p }. This partition will be very useful in Sec. 4.2 to construct multiple
classifier systems which achieve the tight upper or lower bound. We define vectors
vP and vm in R

p+1 as follows (where the components are numbered from 0 to
p): vP [k] = k

p , 0 ≤ k ≤ p, and vm[k] = 1 if � < k ≤ p, and vm[k] = 0
otherwise. Then, since π = (π0, . . . , πp)T, we have P̄ =

∑p
k=0

k
p · πk = 〈vP , π〉,

and Pm =
∑p

k=�+1 πk = 〈vm, π〉, where 〈·, ·〉 is the inner product operation.
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4 The Upper and Lower Bounds

4.1 The Bounds

In this section, four linear equations of Pm in terms of P̄ , D̄ and some third
terms are given. Based on these equations, bounds of Pm involving only P̄ and
D̄ can be derived. The proof of Lemma 2 is omitted due to space limitation.

Lemma 2. Given p classifiers C1, . . . , Cp with input set I, let Cm be the en-
semble classifier of C1, . . . , Cp using majority voting. Let P̄ (x), Pm(x) be defined
as above for x ∈ I. Let D̄ and P̄ be the average of D̄(x) and P̄ (x) over I, re-
spectively. The following statements hold:

(a) Let R1(x) = 0 if P̄ (x) > �
p , and R1(x) = 2P̄ (x) if P̄ (x) ≤ �

p . Let R1 be the
average of R1(x) over I. Then Pm = P̄ + D̄ − R1.

(b) Let R2(x) = 0 if P̄ (x) ≤ �
p , and R2(x) = 2(1 − P̄ (x)) if P̄ (x) > �

p . Let R2

be the average of R2(x) over I. Then Pm = P̄ − D̄ + R2.
(c) Let R3(x) = 0 if P̄ (x) ≤ �

p and R3(x) = 2pP̄ (x) − p − 1 if P̄ (x) > �
p . Let R3

be the average of R3(x) over I. Then Pm = p(P̄ − D̄) − R3.
(d) Let R4(x) = p − 1 − 2pP̄ (x) if P̄ (x) ≤ �

p and R4(x) = 0 if P̄ (x) > �
p . Let R4

be the average of R4(x) over I. Then Pm = p(P̄ + D̄) + R4 + 1 − p.

Using Lemma 2 and the characteristics of the terms Ri, i = 1, 2, 3 and 4, we are
able to establish upper bound and lower bound for Pm in terms of P̄ and D̄.

Theorem 1. max{P̄ − D̄, p(P̄ + D̄) + 1 − p} ≤ Pm ≤ min{P̄ + D̄, p(P̄ − D̄)}.
Proof. First observe that Ri ≥ 0 for all i = 1, 2, 3, 4. Hence Lemma 2(a) implies
that Pm ≤ P̄ +D̄, and Lemma 2(c) implies Pm ≤ p(P̄ −D̄). Therefore the upper
bound follows. Similarly, the lower bound follows from Lemma 2(b) and (d). �

4.2 Tightness of the Bounds

Given a set of p classifiers and input set I, we have, by Definition 1, the PDP
π = (π0, π1, . . . , πp)T, where πk = Pr{x ∈ Ik} and Ik = {x ∈ I : P̄ = k

p}.
On the other hand, given a probability vector π, we can construct I which has
a partition {Ik : 0 ≤ k ≤ p} with Pr{x ∈ Ik} = πk, and then by Lemma 1,
π corresponds to a set C of multiple classifier systems whose PDP is π. Define
vD ∈ R

p+1 to be such that vD[k] = min{k
p , 1 − k

p }, and we have D̄ = 〈vD, π〉.
Lower Bound. Now consider the lower bound in Theorem 1. First we state
the following lemma without proof due to space limitation.

Lemma 3. (a) If D̄ ≤ �
�+1 (1−P̄ ), then there exists PDP π′ such that 〈vP , π′〉 =

P̄ , 〈vD, π′〉 = D̄, and π′
k = 0 for all k 	∈ {0, �, p}.

(b) If D̄ ≥ �
�+1(1 − P̄ ), then there exists a PDP π′ such that 〈vP , π′〉 = P̄ ,

〈vD, π′〉 = D̄, and π′
k = 0 for all k 	∈ {�, � + 1, p}.

We are ready to prove the tightness of the lower bound stated in Theorem 1.
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Lemma 4. The tight lower bound of Pm is

Pm ≥
{

P̄ − D̄ if D̄ ≤ �
�+1 (1 − P̄ );

p
(
P̄ + D̄

)
+ 1 − p if D̄ ≥ �

�+1 (1 − P̄ ).
(2)

Proof. When D̄ ≤ �
�+1 (1 − P̄ ), the lower bound max{P̄ − D̄, p(P̄ + D̄) + 1 − p}

is P̄ − D̄. Let vR2 ∈ R
p+1 be such that vR2 [k] = 0 if k ≤ �, and vR2 [k] = 2(p−k)

p

if k > �. Then R2 = 〈vR2 , π〉. Note that vR2 [k] = 0 for k ∈ {0, �, p}. Since the
PDP π′ specified in Lemma 3(a) is orthogonal to vR2 , and 〈vP , π′〉 = P̄ and
〈vD, π′〉 = D̄, it follows from Lemma 2(b) that 〈vm, π′〉 = 〈vP , π′〉− 〈vD, π′〉+
〈vR2 , π

′〉 = P̄ − D̄. Hence the lower bound in this case is achieved by π′.
When D̄ ≥ �

�+1 (1 − P̄ ), max{P̄ − D̄, p(P̄ + D̄) + 1 − p} = p(P̄ + D̄) + 1 − p.
Let vR4 ∈ R

p+1 be such that vR4 [k] = p − 1 − 2k if k ≤ �, and vR4 [k] = 0 if
k > �. Then R4 = 〈vR4 , π〉. In this case, the lower bound can be achieved by
the PDP specified in Lemma 3(b), since it is orthogonal to vR4 . �
Upper Bound. Now consider the upper bound in Theorem 1. The following
lemma is stated without proof.

Lemma 5. (a) If D̄ ≤ �
�+1 ×P̄ , then there exists a PDP π′ such that 〈vP , π′〉 =

P̄ , 〈vD, π′〉 = D̄, and π′
k = 0 for all k 	∈ {0, � + 1, p}.

(b) If D̄ ≥ �
�+1 × P̄ , then there exists a PDP π′ such that 〈vP , π′〉 = P̄ ,

〈vD, π′〉 = D̄, and π′
k = 0 for all k 	∈ {0, �, � + 1}.

Now we can establish the tightness of the upper bound stated in Theorem 1.
The proof is similar to that of Lemma 4 and is omitted.

Lemma 6. The tight upper bound of Pm is

Pm ≤
{

p(P̄ − D̄) if D̄ ≥ �
�+1 × P̄ ;

P̄ + D̄ if D̄ ≤ �
�+1 × P̄ .

(3)

The desired relationship among Pm, P̄ and D̄ have thus been established, which
we restate as follows. The bounds are plotted in Fig. 1 for p = 3.

Theorem 2. The tight bounds for majority voting performance Pm are:
(a) If P̄ ≥ 0.5, then the tight bounds are

⎧
⎪⎨

⎪⎩

P̄ − D̄ ≤ Pm ≤ P̄ + D̄ if D̄ ≤ �
�+1 (1 − P̄ ),

p(P̄ + D̄) + 1 − p ≤ Pm ≤ P̄ + D̄ if �
�+1 (1 − P̄ ) < D̄ ≤ �

�+1 × P̄ , and
p(P̄ + D̄) + 1 − p ≤ Pm ≤ p(P̄ − D̄) if D̄ > �

�+1 × P̄ .

(b) If P̄ < 0.5, then the tight bounds are
⎧
⎪⎨

⎪⎩

P̄ − D̄ ≤ Pm ≤ P̄ + D̄ if D̄ ≤ �
�+1 × P̄ ,

P̄ − D̄ ≤ Pm ≤ p(P̄ − D̄) if �
�+1 × P̄ < D̄ ≤ �

�+1 (1 − P̄ ), and
p(P̄ + D̄) + 1 − p ≤ Pm ≤ p(P̄ − D̄) if D̄ > �

�+1 (1 − P̄ ).
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Fig. 1. Bounds for majority voting accuracy. Here p = 3. The dashed and dotted
lines are for P̄ ∈ ( �

p
, �+1

p
), while the solid lines are for P̄ �∈ ( �

p
, �+1

p
). The bounds have

different spans in D̄ since D̄ ≤ min{P̄ , 1 − P̄ , �
p
}.

The lower and upper bounds in (1) established in [19,20] can be derived from
(2) and (3), respectively. This is shown in the following corollary.

Corollary 1. The tight bounds of Pm involving P̄ but not D̄ are

max
{
0, p/(� + 1) × P̄ − �/(� + 1)

} ≤ Pm ≤ min
{
1, p/(� + 1) × P̄

}

Proof. For the lower bound, we need simply to find minD̄ Lm(P̄ , D̄). If P̄ ≥ �
p ,

then D̄ can achieve �
�+1 (1 − P̄ ), and at this value of D̄, Lm(P̄ , D̄) is minimized.

Then by Lemma 4, in this case, minD̄ Lm(P̄ , D̄) = Lm(P̄ , �
�+1 (1 − P̄ )) = P̄ −

�
�+1 (1 − P̄ ) = p

�+1 × P̄ − �
�+1 . Similarly, in the case P̄ < �

p , it can be shown
that the minimum is 0. In both cases, the bound is tight since Lm(P̄ , D̄) is
tight by Lemma 4. The upper bound can be similarly obtained by evaluating
maxD̄ Um(P̄ , D̄), where Um(P̄ , D̄) is as given in Lemma 6. �

4.3 Maximum Entropy PDP’s and Discussion

In the following we consider maximum entropy PDPs (maxent PDPs for short)
satisfying the given P̄ and D̄. That is, PDP π∗ maximizing the information-
theoretic entropy H(π∗) = − ∑p

k=0 π∗
k log π∗

k, with 〈vP , π∗〉 = P̄ and 〈vD, π∗〉 =
D̄. To motivate maxent PDPs, suppose that |I| = n. The number of ways that
any PDP π can be realized follows the multinomial coefficient

(
n

n0,...,np

)
, where

nk = πk · n. The maxent PDP π∗ corresponds to the PDP with the maximum
number of ways of being realized (see, e.g., Sec. V.B of [8] and Sec. 11.2 of [30]).
By Theorem 11.1.1 of [30], the kth component of π∗ is π∗

k = exp(λ0 + λ1k +
λ2 min{k, p − k}), where λ0, λ1 and λ2 are constants.

For simplicity, we only consider the case where p = 3. Then π∗ satisfies the
following system of equations:

⎧
⎪⎨

⎪⎩

eλ0 + eλ0+λ1+λ2 + eλ0+2λ1+λ2 + eλ0+3λ1 = 1,

eλ0+λ1+λ2 + 2eλ0+2λ1+λ2 + 3eλ0+3λ1 = 3P̄ , and
eλ0+λ1+λ2 + eλ0+2λ1+λ2 = 3D̄,

(4)
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Fig. 2. Pm vs D̄ and normalized Pm − P̄ vs normalized D̄ for maxent PDPs. Here
P̄ ∈ {0.95, 0.75, 0.55, 0.35}. In (a) and (b), solid curves are Pm of the maxent PDPs,
while the dashed curves are tight bounds of Pm. (c) Pm − P̄ vs D̄, both normalized.

in which we have eλ1 = [e−λ0(1 − 3D̄) − 1]1/3 and eλ2 = e−λ0(3P̄ − 3D̄)e−2λ1 −
3eλ1 . Since π∗

k, k = 0, 1, 2, 3 can be obtained in terms of λ0, λ1 and λ2 which
can be solved by (4), one of the issues in which we are most interested is
whether Pm = 〈vm, π∗〉 is increasing in D̄. It follows from (4) that 〈vm, π∗〉 =
eλ0+2λ1+λ2 +eλ0+3λ1 = 3P̄ −3D̄−2(1−3D̄−eλ0). Hence d〈vm,π∗〉

dD̄
= 3+2 · deλ0

dD̄
.

We can show that deλ0

dD̄
> − 3

2 if P̄ > 3
5 and D̄ ∈ (0, min{ 1

3 , 1− P̄}), from which it
follows that 〈vm, π∗〉 is increasing in D̄. We state the following remark without
proof due to page constraint.

Remark 1. Let p = 3, P̄ > 0.6 and D̄ ∈ (0, min{ 1
3 , 1 − P̄}). Then the ensemble

performance Pm of the maximum entropy PDP π∗ satisfying 〈vP , π∗〉 = P̄ and
〈vD, π∗〉 = D̄ is increasing in terms of D̄.

In Fig. 2, we observe that when P̄ ∈ (0.5, 0.6] or p > 3, the increasing pattern
also holds. These results indicate that for P̄ > 0.5, it would be quite likely to
see Pm and Pm − P̄ increase in D̄. This is one of the main reasons for taking
advantage of the diversity measure in trying to improve ensemble performance.
However, when P̄ < 0.5, we have Pm < P̄ and Pm − P̄ decreases with D̄.

The upper and lower bounds of Pm − P̄ , as well as the possible range of D̄,
vary with P̄ . For example, for higher P̄ > 0.5, the range of D̄ is smaller, and the
upper bound of Pm − P̄ is also lower. This would become a systematic factor
affecting the relationship between diversity and improvement. To reduce this
effect, in the existence of various P̄ values, we may consider Pm − P̄ and D̄ in
normalized terms. In this work, Pm − P̄ and D̄ are normalized to lie in [−1, 1]
and in [0, 1], respectively (see Fig. 2(c)).

In general we do not expect to see the PDPs on hand exactly match the
maxent PDPs. Nevertheless the maxent PDPs enable us to qualitatively observe
some interesting relationship between D̄ and Pm−P̄ (Fig. 2). Remark 2 discusses
the situation with (a) a fixed P̄ , (b) a fixed D̄, and (c) both P̄ and D̄ in Fig. 2.

Remark 2. Let P̄ , D̄ and Pm be as in Fig. 2 where π∗ is the maxent PDP.
(a) For a fixed P̄ > 0.5, Pm−P̄ increases faster when D̄ is higher. When P̄ < 0.5,
the opposite is true (Fig. 2(c)).
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Table 1. A summary of the datasets

Experiment I II III IV V

Dataset WDBC1 Cone-Torus Multi-Feature Digit Liver Disorders Glass
No. Instances 569 800 2000 345 214
No. Classes 2 3 10 2 7

No. Attributes 30 2 6 6 9

1 Wisconsin Diagnostic Breast Cancer data set.

(b) For a fixed normalized D̄ and P̄ > 0.5, Pm − P̄ has a higher increasing rate
for larger P̄ if the normalized D̄ is in the lower part (say < 0.65). However, if
normalized D̄ belongs to the higher end, the situation is the opposite.
(c) When P̄ and D̄ both vary, the increase or decrease rate for Pm (Fig. 2(a),
(b)) and for normalized Pm − P̄ (Fig. 2(c)) can go higher or lower with respect
to normalized D̄.

Theorem 1 gives a general upper and lower bound for Pm in terms of P̄ and
D̄. Theorem 2 showed that these specific bounds can be achieved. What makes
the bounds complicated is that both upper bounds and lower bounds all involve
P̄ + D̄ and P̄ − D̄. As can be seen in Fig. 1, the values of Pm falls in the region
boounded by a triangle or trapezoid. In addition, that the largest angle in the
region is facing down or up depends on the values of P̄ which is less or greater
than 0.5 respectively. In either case, Pm − P̄ can be either positive, negative
or zero. However, some necessary or sufficient condition for Pm > P̄ can be
derived. For example if D̄ > (1 − 1

p )(1 − P̄ ) then Pm > P̄ by (2). In this case, it
is necessary that P̄ > 0.5 and D̄ < (1− 1

p )P̄ . On the other hand, if D̄ ≥ (1− 1
p )P̄ ,

then by (3) we have Pm ≤ P̄ . These results are stated in the following remark.

Remark 3. Let P̄ , D̄ and Pm be defined as in Sec. 3. We have
(a) If D̄ > (1 − 1/p)(1 − P̄ ), then Pm > P̄ (sufficient condition). (5)
(b) If Pm > P̄ , then D̄ < (1 − 1/p)P̄ (necessary condition). (6)

5 Experiments

In this section we include experiments using five datasets to investigate the
diversity-performance relationship for majority voting. The datasets used are
summarized in Table 1, which include a variety of application domains: Exp. I:
breast cancer diagnostics, Exp. II: cone-torus discrimination, Exp. III: hand-
written digit recognition, Exp. IV: liver disorders, and Exp. V: glass classifica-
tion. Dataset for Exp. II is described in [31]. The others are taken from the UCI
ML repository (http://www.ics.uci.edu/∼mlearn/MLRepository.html).

Half of each dataset is used for training, and the remaining for testing. For
experiments other than II and III, the partition is done randomly. In experiment
II the designated usage of the original dataset is followed, and in III the training
set is obtained by randomly choosing 100 instances from each class. In all five
experiments, Breiman’s ARC-X4 algorithm [32], a variation of AdaBoost, is
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Fig. 3. Scatterplots of P̄ versus D̄ (a) and P̄ versus normalized D̄ ((b) and (c)) for the
experiments. Dotted lines represent the sufficient condition and the necessary condition
in (5) and (6), respectively.

Table 2. Spearman’s rho coefficient of rank correlation between normalized Pm − P̄
and normalized D̄

Exp. I II III IV V Exp. I II III IV V

p = 3 .681∗∗ .398∗∗ .017 .159∗∗ .078 p = 9 .433∗∗ .410∗∗ .144∗ .407∗∗ .200∗∗

∗
Significant at the level of 0.005; ∗∗ significant at the level of 0.001.

adopted to train CART trees. For p = 3 and p = 9, 300 and 900 CART trees are
trained, respectively. Then 500 random subsets (of sizes 3 and 9, respectively)
of these base classifiers are chosen to form 500 ensembles. For each ensemble, P̄ ,
Pm and D̄ are examined on the test set.

Figure 3 shows the scatterplots of P̄ versus D̄ (Fig. 3(a)) and normalized D̄
(Fig. 3(b), (c)). From Fig. 3(a), (b), we observe that a significant portion of the
ensembles in Exp. I satisfy the sufficient condition (5). Table 2 summarizes the
correlation between normalized Pm − P̄ and normalized D̄, as measured using
Spearman’s rho coefficient of rank correlation [33]. The correlation is significantly
positive in most cases, in line with what were observed from the maximum en-
tropy PDPs (Remark 1 and Fig. 2). The two possible exceptions are experiments
III and V, where each is not significantly different from 0 when p = 3 and has
weaker significance than other experiments for p = 9. In Fig. 3(c), we observe
that normalized diversity values for Exp. III and V are lower. Exp. III also has a
much smaller spread of diversity. These could be reasons leading to a lower cor-
relation, as observed in Remark 2. However those significant positive correlations
still suggest that diversity is beneficial to various extents in most cases.

We also compare the normalized Pm − P̄ of these experiments. The Mann-
Whitney statistic is applied to determine whether the normalized Pm−P̄ for the
ensembles in one experiment are larger than those in another. At the significance
level of 0.001, the result for p = 3 is I → II ∼ IV → III ∼ V, and that for p = 9 is
I → IV → II → III → V, where “→” indicates “larger than”, and “∼” indicates
“not significantly different from”.

From Fig. 3, Table 2, and the discussion above, it can be seen that if an
experiment has both higher P̄ and higher normalized D̄, then both its normalized
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Fig. 4. Ensembles from the experiments that are closest to the upper and lower bounds:
(a) The upper-left triangle is the ensemble closest to the upper bound (in normalized
terms) where P̄ = 0.9343, and (b) the lower-right triangle is the ensemble closest to
the lower bound where P̄ = 0.9073.

Pm−P̄ and the diversity-ensemble improvement correlation are also higher. This
phenomenon is also reflected by the fact that the ensembles for Exp. I, II and
IV have higher P̄ + ν(D̄) values (Fig. 3(b), (c)), where ν(D̄) is the normalized
D̄. We also observed that all experiments except Exp. I have higher diversity,
higher ensemble performance, and higher Spearman’s rho for p = 9 than those
for p = 3. This perhaps is a clear indication that majority voting is favored for
a large set of MCS’.

We also examine how close can Pm in these experiments be to the tight upper
and lower bounds in Theorem 2. The ensembles from these experiments that are
closest to the tight bounds in normalized terms are found. That is, for the lower
bound, we find the ensemble with the smallest (Pm − Lm(P̄ , D̄))/(Um(P̄ , D̄) −
Lm(P̄ , D̄)). Similar result is obtained for the upper bound. In Fig. 4, the resulting
ensembles are plotted. These ensembles are quite close to the upper bound with
P̄ = 0.9343 (Fig. 4(a)) and to the lower bound with P̄ = 0.9073 (Fig. 4(b)).

6 Conclusion and Further Work

This paper addresses the fundamental problem of estimating ensemble perfor-
mance in terms of the performance of and diversity among the multiple indi-
vidual classifier systems. In particular, we give upper and lower bounds for the
ensemble performance when the method of combination is majority voting and
diversity measure the entropy diversity. These bounds are shown to be tight in
the sense that they are achievable by certain input data set.

The notions of a partition of the input set by performance (PIP) and a perfor-
mance distribution pattern (PDP) are defined in this paper. Using the concepts
of a PIP I =

⋃p
k=0 Ik, where Ik = {x ∈ I : P̄ (x) = k

p }, and of a PDP
π = (π0, . . . , πp)T, where πk = Pr{x ∈ Ik}, we are able to obtain tight bounds
for Pm, which is the average ensemble performance over the data set I, in terms
of the average performance P̄ and average diversity D̄. It is also shown that
the majority voting accuracy Pm of maximum entropy PDPs is increasing with
the diversity D̄. From maximum entropy PDPs some observations regarding the
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non-uniformity of the relationship between diversity and improvement are also
made. Experiments on five datasets as summarized in Table 1 are included to
illustrate our results.

As reviewed in Sec. 2, several important results have been obtained to esti-
mate the ensemble performance [6,10,11,16,19,20,25,28,29]. As far as we know,
our results are the first to give explicit tight bounds for ensemble performance
in terms of both parameter P̄ and D̄ which are average performance of and
average diversity among MCS’ (where labels are classes) using majority voting
and entropy diversity (Theorems 1 and 2). It represents the first of several on-
going studies on the general problems of estimating ensemble performance. As
pointed out in Ho [2], Kuncheva [3], and Sec. 3–5 of this paper, there are several
factors involved in improving the ensemble performance. These include (among
others): diversity measures, combination methods, and the number of individual
classifier systems (see also [13, 14, 15]). Recently, tight bounds of Pm in terms
of P̄ and Dis (the pairwise disagreement diversity measure) have been estab-
lished [34]. These results will be extended to other pairwise and non-pairwise
diversity measures. On the other hand, we have also obtained similar results for
the ensemble performance in terms of P̄ and D̄ when combination method of
plurality voting is used [34]. Moreover, we are working on the generalization of
the current techniques and results to the problem of combining multiple scoring
systems (see e.g.; [17, 18]). These results will be reported in the future.
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Abstract. In this paper we present a new method for fusing classifiers
output for problems with a number of classes M > 2. We extend the
well-known Behavior Knowledge Space method with a hierarchical ap-
proach of the different cells. We propose to add the ranking information
of the classifiers output for the combination. Each cell can be divided into
new sub-spaces in order to solve ambiguities. We show that this method
allows a better control of the rejection, without using new classifiers
for the empty cells. This method has been applied on a set of classi-
fiers created by bagging. It has been successfully tested on handwritten
character recognition allowing better-detailed results. The technique has
been compared with other classical combination methods.

1 Introduction

In any recognition system, an optimal reliability is one of the main requirements.
In order to obtain such high reliability, the system must be able to consider the
rejection. We distinguish three main ways to build a system able to reject:

– A single classifier, which also considered a rejection class (trained with junk
patterns for example).

– A single classifier, which does not consider a rejection class, but uses some
rejection rules for rejecting or not the results.

– A multi-classifiers system (MCS), where the rejection is processed by the
module that fuses each classifier output.

Among these solutions, we consider in this paper the third solution for several
reasons. We consider that for a high reliability several classifiers must take part
into the recognition, to have several points of view of the problem. In this work,
we will consider a specific MCS type: MCS with a parallel topology. In this case,
the outputs of each classifier are combined thanks to a fusing module [5,11].
Usually, classifiers are combined by voting methods, belief functions, statistical
techniques or Dempster-Shafer evidence theory. We distinguish several types of
fusing rules:

– Fixed rules: majority voting, Borda count method... These rules are usually
simple, fast and they are well-suited for classifiers ensembles that have similar
performances and low correlated errors.
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– Trained rules: Bayesian, behavior knowledge space, neural network... These
rules are potentially better than the fixed rules as they use knowledge about
how to combine. These rules allow taking more into account the complemen-
tarities between classifiers.

This paper will focus on the behavior knowledge space method and its po-
tential issues [6,12]. We will show that it is possible to improve this method by
adding information about the ranking output of each classifier. Accordingly, in
the second section, the initial fusing rule using the behavior knowledge space
will be defined. Its possible improvements are described in the third section.
Then the hierarchical behavior knowledge space is described in the fourth sec-
tion. The fifth section will present the different classifiers. Finally, we exhibit the
improvement given by the method with experiments.

2 Behavior Knowledge Space

We consider a problem with M classes: Ci, 1 ≤ i ≤ M and D classifiers: ei,
1 ≤ i ≤ D.

For applying the Bayes rule, classifiers must be independent. Each classifier
must act separately in a total independent way. This condition cannot be always
verified. The method using the history of the classifiers behavior allows getting
free from this condition. The BKS (Behavior-Knowledge Space) method allows
determining a belief degree of a proposition x ∈ Ci based on the combination of
the first best answer of each classifier ek = jk, k ∈ {1, . . . , D} :

bel(Ci) =
P (e1(x) = j1, . . . , eD(x) = jD, x ∈ Ci)

P (e1(x) = j1, . . . , eD(x) = jD)
This equation corresponds to the degree of belief definition by a Bayesian

approach. It can be represented in a behavior knowledge space (BKS) [6]. This
space represents the behavior for all the possible combinations in the train-
ing database. The BKS is a D dimensional space where each dimension repre-
sents the decision of a classifier. Each classifier has M + 1 possible outputs (M
classes and 1 rejection class). The intersection of the decision of each classifier
corresponds to a cell of the BKS. This method will estimate MD posterior
probabilities.

Each cell of the space is noted by BKS(j1, j2, . . . , jD) with ji ∈ {1, . . . , M+1}
∀i ∈ {1, . . . , D}. Each cell of the BKS is defined by 3 features:

– n(j1, . . . , jD)(i): the total number of samples x such that e1(x) = j1, . . . , eD

(x) = jD and x ∈ Ci i ∈ {1, . . . , M}.
– S(j1, . . . , jD): the total number of samples x such that e1(x) = j1, . . . , eD(x)

= jD and

S(j1, . . . , jD) =
M∑

i=1

(n(j1, . . . , jD)(i))

S(j1, . . . , jD) corresponds to the total sum of the samples that have as com-
bination result the configuration j1, . . . , jD.
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– Bj1,...,jD is the best representative class of the cell j1, . . . , jD of the BKS
then:

n(j1, . . . , jD)(B(j1, . . . , jD)) = maxi(n(j1, . . . , jD)(i))

B(j1, . . . , jD) = Argmaxi(n(j1, . . . , jD)(i))

with i ∈ {1, . . . , M}.

In an implementation view, the BKS space can be represented by a space BKS′

of dimension D + 1, where D dimensions correspond to the classifiers outputs
and the last dimension represents the final optimal result of the combination. The
BKS′ is a space where all the extracted results are represented. In this case, each
cell of BKS′(j1, . . . , jD+1) is a natural positive number such that:

BKS′(j1, . . . , jD+1) = n(j1, . . . , jD)(jD+1)

The degree of belief that a sample x belongs to the class Ci denoted by bel(Ci)
i ∈ {1, . . . , M} is defined by:

bel(Ci) =
P (e1(x) = j1, . . . , eD(x) = jD, x ∈ Ci)

P (e1(x) = j1, . . . , eD(x) = jD)

=
BKS′(j1, . . . , jD, i)

∑M
k=1 BKS′(j1, . . . , jD, k)

=
n(j1, . . . , jD)(i)
S(j1, . . . , jD)

Finally, the combination E of the classifiers will give to the input x the fol-
lowing class:

E(x) =

⎧
⎨

⎩

R(j1, . . . , jD) if (S(j1, . . . , jD) > 0)
and (bel(CRj1,...,jD ) ≥ α)

M + 1 else

where α is a rejection threshold; 0 ≤ α ≤ 1.
During the test phase, it is possible to access to an empty cell. In this case,

it means that the classifiers output combination has been never seen during the
creation of the space. The input x is rejected.

In a statistical point of view, the BKS method tries to estimate the prob-
ability distribution of the classifiers outputs thanks to the frequencies of its
occurrences. Although the BKS does not require a special dependency between
each classifier, several observations can be made for this method.

3 Possible Improvements

The BKS method suffers of several defaults [12]:

– The size of the database is the first issue. In order to estimate the distribution
of each classifier output, a large database is needed for representing all the
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possible combinations. However, this observation is mostly valid for weak
classifiers that cannot offer a good recognition. For strong classifiers, all the
non-empty cells are expected to stay close to the diagonal of the behavior
space. Weak classifiers may lead to a better generalization thanks to their
cover of the input space, but they will require much more samples to fill
the space. Because of the statistical nature of the BKS, the quality of the
database is very important for obtaining a good generalization.

– The confusion of BKS cells where the representative class R has a very
low probability, is the second issue. If such cell exists, the result remains
ambiguous. Although this cell will propose the best solution, many patterns
will obtain a bad class. For the training database, in each cell, S(j1, . . . , jD)−
maxi(n(j1, . . . , jD)(i)) samples, with i ∈ {1, . . . , M}, will not be recognized
correctly. In order to solve this problem, it is possible to add a new classifier
specialized for dealing with the confusion problem involved by the ambiguous
cell. Instead of using such process, we propose to extract more knowledge
contained in the classifiers output: the ranking.

In the BKS method, only the first result of each classifier is considered during
the combination. The confidence value and the ranking of the different classes
are unfortunately not considered. We propose to use more information in order
to improve the description of the ideal combination.

4 Hierarchical Behavior Knowledge Space

The Hierarchical Behavior Knowledge Space is based on the hypothesis that the
ranking of the different classes, for each classifier, may bring relevant informa-
tion for improving the quality of the combination. During the creation of the
behavior space, the only information is the first best answer. The addition of
new information to the space will lead to the creation of new cells. The HBKS
is totally equivalent to the BKS space for 2 classes. Indeed, for a two classes
problem, with C0 and C1, we have P (C0) = 1 − P (C1). Thus there is no in-
formation in the second best answer as it is dependent of the first. For taking
advantage of the cell splitting, we must have M > 2. The new space becomes a
tree of sub-spaces. The root of the space is defined by the initial BKS. For each
cell j1, . . . , jD if bel(CRj1,...,jD ) ≥ α then the cell is split into (M − i + 1)D cells
where i is the actual rank of the cell.

Each cell of the space is noted by HBKS((j1,1, . . . , j1,k), . . . , (jD,1, . . . , jD,k))
with ji,k ∈ {1, . . . , M + 1} ∀(i, k) ∈ ({1, . . . , D} × {1, . . . , M − 1}). k is the rank
of the output.

For the following definition, we note by J the cell
(j1,1, . . . , j1,k), . . . , (jD,1, . . . , jD,k)

Each cell of the HBKS is defined by 3 features:

– n′(J)(i): the total number of samples x such that the best answer of ed(x)
is jd,1, the kth best answer of ed(x) is jd,1 with d ∈ {1, . . . , D} and x ∈ Ci

i ∈ {1, . . . , M}. We note ed,k(x) the kth best answer of ed(x).
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– S′(J): the total number of samples x such that ed,1(x) is jd,1 and ed,k(x) is
jd,k.

S′(J) =
M∑

i=1

(n′(J)(i))

S′(J) corresponds to the total sum of the samples that have as outputs the
configuration J .

– B′(J) is the best representative class of the cell J of the HBKS then:

n′(J)(B′(J)) = max(i∈{1,...,M})(n′(J)(i))

B′(J) = Argmax(i∈{1,...,M})(n′(J)(i))

The creation of such sub-spaces can denoise the initial cells and discover
evidence of confusion between classes. For example, the rejection of a cell can be
due to the noise of the different outputs. It is the case where always the same 2
classes are confused and the combination can solve the ambiguity. If a couple of
classes is confused, which has never happened, the creation of sub-spaces in the
BKS may solve this problem.

E(x) =

⎧
⎨

⎩

R′(j1, . . . , jD) if (S′(j1, . . . , jD) > 0)
and (bel(CR′

j1,...,jD
) ≥ α)

Split the cell else

bel(Ci) =
P (e1(x) = j1,1, . . . , eD(x) = jD, x ∈ Ci)

P (e1(x) = j1, e2(x) = j2, . . . , eD(x) = jD)

=
BKS′(j1, . . . , jD, i)

∑M
k=1 BKS′(j1, . . . , jD, k)

=
n(j1, . . . , jD)(i)
S(j1, . . . , jD)

The number of cells of the HBKS is defined by:

MD +
M−1∑

k=1

lk((M − k)D)

where lk is the number of new sub-spaces at the step k or the number of am-
biguous cells at the step k − 1.

The maximum number of cells of the HBKS is defined by:

MD +
M−1∑

k=1

(M − k + 1)D ∗ (M − k)D − (M − k + 1)D

When a sub-space is created for a cell, the sub-space replaces its corresponding
cell.
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The creation of the HBKS can be built this way:
k ← 1
Fill the HBKS with the training database
While (∃J |((S′(J) > 0) and (bel(CR′(J)) ≤ α))
{

For all J |((S′(J) > 0) and (bel(CR′(J)) ≤ α))
Create a sub-space for the cell J

Fill the new HBKS sub-spaces with the training database
k ← k + 1

}

The table 1 presents an example for a problem with 2 classifiers and 3 classes
(A,B and C). Each cell of the table represents n(j1, . . . , jD)(i). In the BKS cell
AB, there is an ambiguity between the answers A and B. In the classical BKS,
this cell could have been considered as being too ambiguous. The table 2 shows
the subspace involved by the split of the cell AB. In these new cells, some cells
remain ambiguous (c1,c4) but for some others the problem may be solved (c2,c3).

Table 1. Example of some cells in a BKS

top 1 AA AB AC BA BB BC CA CB CC

A 90 50 80 40 9 30 20 0 0
B 5 51 12 60 80 30 20 30 0
C 5 0 8 0 11 40 60 70 100

Table 2. Example for a subspace in a HBKS

cell c1 c2 c3 c4

top 1 AB AB AB AB

top 2 BA BC CA CA

A 21 20 5 1
B 20 2 20 2
C 0 4 3 2

5 Classifiers

In this section, the different classifiers used for the combination are described.
They are based on the same architecture: a convolutional neural network. This
type of classifier has been already successfully used on handwritten digits recog-
nition and word recognition [13].

5.1 Convolutional Neural Network

The used neural network is composed of 5 layers, it is based on the topology
given in [13]:
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– The first one corresponds to the input image. The image is normalized by
its center and reduced to a size of 29*29 [10].

– The next two layers correspond to the information extraction, performed by
convolutions. The second layer is composed of 10 maps, each one corresponds
to a specific image transformation by convolution and sub-sampling reducing
its size. The third layer is composed of 50 maps. For these 2 layers, the
activation function is f(σ) = 1.7159 ∗ tanh((2.0/3.0) ∗ σ) [9]

– The last two layers are fully connected. For these 2 layers, the activation
function is f(σ) = 1/(1 + exp(−σ)).

– The last one corresponds to the output: 10 neurons, for the number of classes.

For a neuron n, weights are initialized with values w such that |w| ≤ 1/
√

Ninput

where Ninput represents the number of inputs. During the back propagation,
shared weights are corrected by the factor 2/

√
Nshare where Nshare represents

the number of neurons that share the same set of weights.

5.2 Creation of the Classifiers

Each classifier is built on the same architecture that was described previously. D
classifiers are created, each classifier being trained on a different versions of the
initial database. For creating the ensemble of classifiers, we did use the bagging
technique [3]. This method is based on obtaining different training sets of equal
size as the original one, by using the statistical bootstrap method.

6 Experiments

6.1 Database Description

The system has been tested on the MNIST handwritten digits database [8]. This
database contains separated handwritten digit images of 28 ∗ 28 in gray level.
The learning set contains 60000 images and the test set contains 10000 images.
In the learning set, 50000 images are used for real learning; 10000 images are
used to find the best parameters. For the experiments, 3 classifiers have been
created. Each one is trained with 33151 images.

6.2 Results

The results obtained on each classifier are presented in the table 3. We present
the best result on the test database and the obtained results with the same
network on the training database. For a single classifier or MCS, the results are
defined by a triplet τr/τs/τq where τr, τs and τq are the recognition rate, the
error rate and the rejection rate respectively.

The results obtained on the whole training database and test database are
presented in the table 3. For each classifier, the results correspond to the network
that gives the best result on the validation database. Although these classifiers do
not offer the best results on this database function to the state-of-the-art [8,13],
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they still provide all a high accuracy. The table 4 illustrates the results on the
test database for the different tops. The good result is almost always in the first
three best answers, which justifies the choice of our approach for the problem.

Table 3. Results

Training Test

C1 99.28 / 0.72 / 0 98.51 / 1.49 / 0
C2 99.32 / 0.68 / 0 98.56 / 1.44 / 0
C3 99.27 / 0.73 / 0 98.61 / 1.39 / 0

Table 4. Recognition rate

Top 1 Top 2 Top 3 Top 4 Top 5 Top 6

C1 98.51 99.63 99.83 99.92 99.99 100
C2 98.56 99.63 99.90 99.94 99.97 99.98
C3 98.61 99.58 99.89 99.96 99.97 99.99

The 3 classifiers have been combined with classical fixed rules:

– The Majority Voting; 2 classifiers must agree to accept the answer.
– The Oracle illustrates the result of an optimal output selection.
– The Maximum rule.
– The combination by outputs sums.
– The combination by outputs products.
– The Borda Count method, which takes into account the outputs ranking [2,4].

The results of these combinations on the test database are shown in the ta-
ble 5. The Borda Count method, which uses rank-level information, gives one
of the best results. It is again a proof for considering the ranking during the
combination for our problem.

For the learning database, we did observe that the HBKS is an optimal
combination: each sub-spaces lead to the good answer. It may lead to the creation
of a sub-space with only one pattern in the space. Such sub-spaces have however

Table 5. Combination results

MNIST Test

Majority voting 98.64 / 1.29 / 0.07
Oracle 99.13 / 0.87 / 0
Max 98.69 / 1.31 / 0
Sum 98.68 / 1.32 / 0

Product 98.64 / 1.36 / 0
Borda Count 98.66 / 1.34 / 0

BKS 98.45 / 1.41 / 0.14
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Table 6. BKS and HBKS results

Rejection Number Number BKS HBKS Sub-spaces
threshold of sub-spaces of cells results

0.4 2 223 98.45 / 1.41 / 0.14 98.45 / 1.41 / 0.14 (0,0,0)
0.5 5 230 98.43 / 1.40 / 0.17 98.44 / 1.41 / 0.15 (1,1,1)
0.6 58 362 98.31 / 1.29 / 0.40 98.35 / 1.31 / 0.34 (4,2,20)
0.7 107 485 98.23 / 1.20 / 0.57 98.31 / 1.25 / 0.44 (8,5,30)
0.8 137 590 98.11 / 1.14 / 0.75 98.21 / 1.21 / 0.44 (10,7,44)
0.9 166 702 98.10 / 1.02 / 0.88 98.20 / 1.08 / 0.72 (10,6,58)

no generalization power. The table 6 presents for different thresholds the results
with the BKS and HBKS methods. For the HBKS, we give the number of
sub-spaces and non-empty cells. The sub-spaces results describe the special effect
of the HBKS. These results are defined by a triplet (ξr, ξs, ξq) where ξr, ξs

and ξq are the number of well recognized patterns, errors and rejected patterns
respectively. For a low threshold (0.4), the HBKS has no effect compared to
the BKS. In the general case, HBKS is expected to give better result than
HBKS if the ranking has a real meaning, like in handwritten word recognition.
In classification tasks where the ranking cannot add knowledge, HBKS may
have too much knowledge for an optimal generalization. When the threshold is
higher, the number of processed patterns by the HBKS is higher. Although the
addition of information may be risky, we show that information can be added
by the sub-spaces while keeping a good reliability.

7 Conclusion

In this paper, a new fusing method has been presented for multi-classifiers sys-
tems with a parallel topology for problems with M classes (M > 2). It corre-
sponds to an improvement of the existing BKS method by adding knowledge
about the rank of the results. Function to a fixed confidence threshold value,
each cell is divided into sub-spaces in order to solve ambiguities. We have shown
that the proposed method can allow an optimal rejection control for the train-
ing database. It also provides new information for some ambiguous cells, without
using new classifiers for the non-empty cells. For an optimal use of this method
classifiers must provide ranking results, which have a real sense. Further works
would deal with the optimal use of the HBKS method and the threshold selec-
tion for getting the best generalization.
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Abstract. An ensemble of classifiers (EoC) has been shown to be effective in im-
proving classifier performance. To optimize EoC, the ensemble selection is one
of the most imporatant issues. Dynamic scheme urges the use of different ensem-
bles for different samples, but it has been shown that dynamic selection does not
give better performance than static selection. We propose a dynamic selection
scheme which explores the property of the oracle concept. The result suggests
that the proposed scheme is apparently better than the selection based on popular
majority voting error.

Keywords: Fusion Function, Combining Classifiers, Diversity, Confusion Ma-
trix, Pattern Recognition, Majority Voting, Ensemble of Learning Machines.

1 Introduction

The purpose of pattern recognition systems is to achieve the best possible classification
performance. A number of classifiers are tested in these systems, and the most appro-
priate one is chosen for the problem at hand. Different classifiers usually make different
errors on different samples, which means that, by combining classifiers, we can arrive
at an ensemble that makes more accurate decisions [11,1,8]. In order to have classifiers
with different errors, it is advisable to create diverse classifiers. For this purpose, di-
verse classifiers are grouped together into what is known as an Ensemble of Classifiers
(EoC). There are several methods for creating diverse classifiers, among them Random
Subspaces [6], Bagging and Boosting [10]. The Random Subspaces method creates var-
ious classifiers by using different subsets of features to train them. Because problems
are represented in different subspaces, different classifiers develop different borders for
the classification. Bagging generates diverse classifiers by randomly selecting subsets
of samples to train classifiers. Intuitively, based on different sample subsets, classifiers
would exhibit different behaviors. Boosting uses parts of samples to train classifiers as
well, but not randomly; difficult samples have a greater probability of being selected,
and easier samples have less chance of being used for training. With this mechanism,
most created classifiers will focus on hard samples and can be more effective.
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There are two levels of problems in optimizing the performance of an EoC. First,
how are classifiers selected, given a pool of different classifiers, to construct the best
ensemble? Second, given all the selected classifiers, what is the best rule for combining
their outputs? These two problems are fundamentally different, and should be solved
separately to reduce the complexity of optimization of EoCs; the former focuses on
ensemble selection [11,1,12] and the latter on ensemble combination, i.e. the choice of
fusion functions [8, 12, 13]. For ensemble selection, the problem can be considered in
two steps: (a) find a pertinent objective function for selecting the classifiers; and (b) use
a pertinent searching algorithm to apply this criterion. Obviously, a correct criterion
is one of the most crucial elements in selecting pertinent classifiers [11, 1, 12]. It is
considered that, in a good ensemble, each classifier is required to have different errors,
so that they will be corrected by the opinions of the whole group [11,10,8,12,15]. This
property is regarded as the diversity of an ensemble. Diversity is thus widely used as
objective function to select ensembles, but since diversity is not itself a fusion function,
other authors proposed to directly use fusion functions such as a simple majority voting
error rule (MVE) for ensemble selection.

However, the use of all these objective functions for ensemble selection is meant
to construct one ensemble for all the samples. Intuitively, this is not the best way to
combine classifiers, because different samples might be fit to different EoCs. Dynamic
scheme explores the use of different classifiers for different samples [5, 4, 2, 3, 16, 7].
Based on different features or different decision regions of each sample, a classifier
is selected and assigned to the sample, some popular methods are a priori selection, a
posteriori selection, overall local accuracy and local class accuracy [4, 2, 3, 16]. In gen-
eral, their performances are compared with oracle, which is defined as the proportion
of test samples that are at least correctly classified by one classifier in EoC. Never-
theless, against all expectations, it has been shown that dynamic selection has a large
performance gap from the oracle [2], and moreover, it does not necessarily give better
performance than static selection [4].

We note that most of dynamic selection schemes use the concept of the classifier ac-
curacy on a defined neighborhood or region, such as local accuracy a priori or local ac-
curacy a posteriori schemes [2]. These classifier accuracies are usually calculated with
the help of KNN, and the use of these accuracies aims to realize an optimal Bayesian
decision, but it is still outperformed by some static ensemble selection rule, such as
MVE. This indicates a dilemma in estimation of these local accuracies, because their
distribution might be too complicated to be well estimated. Interestingly, dynamic se-
lection is regarded as an alternative of EoC [2, 3, 16], and is supposed to select the best
classifier instead of the best EoC for a given sample. But, in fact, dynamic selection and
EoC are not mutually exclusive. We believe that dynamic selection can also explore the
strength of EoC.

We also note that, the oracle is usually regarded as a possible upper bound for EoC
performances, and as far as we know, there is no effort made to explore the property
of the oracle for dynamic selection. We argue that the complicated local classifier ac-
curacy estimation can be actually carried out by oracle on a validation data set, and
a simple KNN method can allow the test data set to obtain the approximated local
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classifier accuracy from the validation data set. Here are the key questions that need to
be addressed:

1. Can the concept of oracle be useful for dynamic selection?
2. Should we use the best classifier or the best EoC for dynamic selection?
3. Can dynamic selection outperform static selection?

To answer these questions, we propose a dynamic selection scheme which explores
the property of the oracle concept, and compare the scheme with the static ensemble
selection guided by different objective functions.

2 Dynamic Classifier Selection Methods

2.1 Overall Local Accuracy (OLA)

The basic idea of this scheme is to estimate each individual classifier’s accuracy in local
regions of feature space surrounding a test sample, and then use the decision of the
most locally accurate classifier [16]. The local accuracy is estimated as the percentage
of training samples in the region that are correctly classified.

2.2 Local Class Accuracy (LCA)

This method is similar to the OLA, the only difference is that the local accuracy is
estimated as the percentage of training samples with the respect to output classes [16].
In other words, we consider the percentage of the local training samples assigned to a
class cli by this classifier that have been correctly labeled.

2.3 A Priori Selection Method (a Priori)

Instead of simply counting the percentage of training samples in the region that are
correctly classified, we can calculate the average of probability outputs from correct
classifiers. The probability can be further weighted by the distances between the training
samples in the local region and the test sample. Consider the sample xj ∈ ωk as one of
the k-nearest neighbors of the test pattern X , the p̂(ωk|xj , ci) provided by the classifier
ci can be regarded as a measure of the classifier accuracy for the test pattern X based
on its neighbor xj . Suppose we have N training samples in the neighborhood, then the
best classifier C∗ to classify the sample X can be selected by [2,4]:

C∗ = argi max

∑N
j=1 p̂(ωk|xj ∈ ωk, ci)Wj

∑N
j=1 Wj

(1)

where Wj = 1
dj

is the distance between the test pattern X and the its neighbor sample
xj .
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2.4 A Posteriori Selection Method (a Posteriori)

If the class assigned by the classifier ci is known, ci(X) = ωk, then this information
can be exploited as well. Suppose we have N training samples in the neighborhood, and
let us consider the sample xj ∈ ωk as one of the k-nearest neighbors of the test pattern
X , then the best classifier C∗(ωk) with the output class ωk to classify the sample X can
be selected by [2,4]:

C∗(ωk) = argi max

∑
xj∈ωk

p̂(ωk|xj , ci)Wj
∑N

j=1 p̂(ωk|xj , ci)Wj

(2)

where Wj = 1
dj

is the distance between the test sample and the training sample.

3 K-Nearest-Oracles (KNORA) Dynamic Classifier Selection

All the above dynamic selection methods intend to find the most possibly correct clas-
sifier for a sample in a pre-defined neighborhood. But we propose another approach:
Instead of finding the most suitable classifier, we select the most suitable ensemble for
each sample.

The concept of the K-Nearest-Oracles (KNORA) is similar to those of OLA, LCA, a
priori and a posteriori in terms of the consideration of the neighborhood of test patterns,
but it distinguishes itself from the others by using directly the property of the oracle of
the training samples in the region in order to find the best ensemble for a given sample.
For any test data point, KNORA simply finds its nearest K neighbors in the validation
set, figure out which classifiers correctly classify these neighbors in the validation set,
and use them as the ensemble to classify the given pattern in the test set.

We propose four different schemes using KNORA:

1. KNORA-ELIMINATE (KN-E)
Given K neighbors xj , 1 ≤ j ≤ K of a test pattern X , and suppose that a set of
classifiers C(j), 1 ≤ j ≤ K correctly classifies all its K nearest neighbors, then
every classifier ci ∈ C(j) belonged to this correct classifier set C(j) should gives
a vote on the sample X . In case that none classifier can correctly classifies all K
nearest neighbors of the test pattern, then we simply decrease the value of K until
at least one classifier correctly classifies its neighbors.

2. KNORA-UNION (KN-U)
Given K neighbors xj , 1 ≤ j ≤ K of a test pattern X , and suppose that the j
nearest neighbor has been correctly classified by a set of classifiers C(j), 1 ≤ j ≤
K , then every classifier ci ∈ C(j) belonged to this correct classifier set C(j) should
gives a vote on the sample X . Note that since K nearest neighbors are considered,
a classifier can have more than one vote if it correctly classifies more than one
neighbor. The more neighbors that one classifier correctly classifies, the more votes
this classifier will have for a test pattern.

3. KNORA-ELIMINATE-W (KN-E-W)
The same as KNORA-ELIMINATE, but each vote is weighted by the distance be-
tween neighbor pattern xj and test pattern X .
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4. KNORA-UNION-W (KN-U-W)
The same as KNORA-UNION, but each vote is weighted by the distance between
neighbor pattern xj and test pattern X .

4 Experiments for Dynamic Selection on Handwritten Numerals

4.1 Experimental Protocol for KNN

We carried out experiments on a 10-class handwritten numeral problem. The data were
extracted from NIST SD19, essentially as in [14], based on the ensembles of KNNs
generated by the Random Subspaces method. We used nearest neighbor classifiers
(K = 1) for KNN, each KNN classifier having a different feature subset of 32 fea-
tures extracted from the total of 132 features.

To evaluate the static ensemble selection and the dynamic ensemble selection, four
databases were used: the training set with 5000 samples (hsf {0 − 3}) to create 100
KNN in Random Subspaces. The optimization set containing 10000 samples
(hsf {0 − 3}) was used for genetic algorithm (GA) searching for static ensemble se-
lection. To avoid overfitting during GA searching, the selection set containing 10000
samples (hsf {0 − 3}) was used to select the best solution from the current population
according to the objective function defined, and then to store it in a separate archive
after each generation. Using the best solution from this archive, the test set containing
60089 samples (hsf {7}) was used to evaluate the EoC accuracies.

We need to address the fact that the classifiers used were generated with feature
subsets having only 32 features out of a total of 132. The weak classifiers can help
us better observe the effects of EoCs. If a classifier uses all available features and all
training samples, a much better performance can be observed [2, 3]. But, since this is
not the objective of this paper, we focus on the improvement of EoCs by optimizing
fusion functions on combining classifiers. The benchmark KNN classifier uses all 132
features, and so, with K = 1 we can have 93.34% recognition rates. The combination of
all 100 KNN by simple MAJ gives 96.28% classification accuracy. The possible upper
limit of classification accuracy (the oracle) is defined as the ratio of samples which
are classified correctly by at least one classifier in a pool to all samples. The oracle is
99.95% for KNN.

4.2 Static Ensemble Selection with Classifier Performance

The majority voting error (MVE) was tested because of its reputation as one of the
best objective functions in selecting classifiers for ensembles [12], it evaluates directly
the global EoC performance by the majority voting (MAJ) rule. Based on this reason
we tested the MAJ as the objective function for the ensemble selection. Furthermore,
we tested the mean classifier error (ME) as well. The MAJ is also used as the fusion
function.

In table 1 we observe that the MVE performs better than ME as an objective function
for the static ensemble selection. The ensemble selected by MVE also outperforms that
of all 100 KNNs.
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Table 1. The recognition rates on test data of ensembles searched by GA with the Mean Classifier
Error, Majority Voting Error

Objective Functions Min QL Median QU Max

Mean Classifier Error (ME) 94.18 % 94.18 % 94.18 % 94.18 % 94.18 %

Majority Voting Error (MVE) 96.32 % 96.41 % 96.45 % 96.49 % 96.57 %

It is clear that the MVE achieved the best performance as the objective function
compared with traditional diversity measures. Given that the MAJ is used as the fusion
function, this is not surprising.

4.3 Dynamic Ensemble Selection

Even though the MVE can so far find the best ensemble for the all samples, this does
not mean that a single ensemble is the best solution for combining classifiers. In other
words, each sample may have a different most suitable ensemble. It is our purpose to
know whether the use of different ensembles on different samples can further increase
the accuracy of the system.

Table 2. The best recognition rates of proposed dynamic ensemble selection methods within the
neighborhood sizes 1 ≤ k ≤ 30. RR= Recognition Rates

KN-E KN-E-W KN-U KN-U-W

RR 97.52 % 97.52 % 97.25 % 97.25 %

K-value 7,8 7,8 1 1

Note that the dynamic ensemble selection does not use any search algorithm for
the ensemble selection, because each sample has its own ensemble for the classifier
combination. As a result, the repetition of the search was also not necessary.

For the dynamic selection, only three databases were used: the training set with 5000
samples (hsf {0 − 3}) to create 100 KNN in Random Subspaces, The optimization set
containing 10000 samples (hsf {0 − 3}) was used for the dynamic ensemble selec-
tion, and the test set containing 60089 samples (hsf {7}) was used to evaluate the
EoC accuracies. We tested our KNORA algorithm and compared it with other proposed
schemes: the overall local accuracy (OLA), the local class accuracy (LCA), the local
class accuracy a priori (a priori), and the local class accuracy a posteriori (a posteriori).

We note that most of the dynamic schemes are so far better than all tested objective
functions for the static ensemble selection, except OLA and a priori methods. Both
LCA and a posteriori schemes achieved very good performances, with 97.40% of the
recognition rates. But the KNORA-ELIMINATE and KNORA-ELIMINATE-W have
good performance as well, and with 97.52% it is the best dynamic selection scheme in
our handwritten numeral problems (Table 2, 3).

If we compare their performances in different neighborhood sizes, we can notice that
while LCA and a posteriori dynamic selection schemes outperform the static GA selec-
tion with MVE as the objective function in a small neighborhood, their performances



A New Dynamic Ensemble Selection Method for Numeral Recognition 437

Table 3. The best recognition rates of each dynamic ensemble selection methods within the neigh-
borhood sizes 1 ≤ k ≤ 30 on Dynamic Ensemble Selection

Methods KNORA OLA LCA a priori a posteriori

Recognition Rates 97.52 % 94.11 % 97.40 % 94.12 % 97.40 %

K-value 7,8 30 1 30 1

declined when the value k augments (Fig. 1). In this case, the static GA selection with
MVE may still be better than LCA and a posteriori dynamic selection schemes. By con-
trast, KNORA-ELIMINATE has a more stable performance even when the value of k
increases. It gives a better recognition rates than all other schemes on our experimental
study, except when k = 1. But still, the stable performance of KNORA-ELIMINATE
suggests that the dynamic selection schemes are worth for more attention.

Fig. 1. The performances of various ensemble selection schemes based on different neighborhood
sizes 1 ≤ k ≤ 30 on NIST SD19 database. In the figure OLA overlaps with a priori selection.

5 Discussion

In this paper, we propose a new dynamic ensemble selection scheme applying directly
the concept of the oracle. Different from other dynamic selections, which use the es-
timated best classifier for a certain data point, the K-nearest oracle uses the estimated
best EoCs for dynamic ensemble selection.

In our study of handwritten numeral digits, the proposed method apparently outper-
forms the static ensemble selection schemes such as the use of MVE or ME as the
objective function in a GA search. Using the GA search, MVE can achieve 96.45%
of the recognition rates, and ME attain can 94.18%. Nevertheless, with 97.52% of the
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recognition rates, KNORA-ELIMINATE is better then the evaluated static ensemble
selection methods.

We note that OLA and a priori dynamic selection schemes were not as good as
the static GA selection scheme with MVE. The OLA takes into account neither the
class dependence, nor the weighting with the each classifier, and the a priori method
ignores the class dependence. Since our experiment has high class dimension (10) and
the ensemble pool size is quite large (100), it is not surprising that they do not perform
well.

We also observe that KNIORA-UNION and KNORA-UNION-W are less perform-
ing than KNORA-ELIMINATE and KNORA-ELIMINATE-W. This might be due to
the extreme elitism in the behavior of oracle.

Moreover, the KNORA-ELIMINATE also performs slightly better than other dy-
namic selection schemes. LCA and a posteriori schemes can achieve 97.40%, which is
better than other static methods but inferior to the KNORA-ELIMINATE. However, the
performance of the KNORA is still far from the oracle, which can achieve 99.95% of
the recognition rates.

This might indicate that the behavior of the oracle is much more complex than a
simple neighborhood approach can achieve, and it is not an easy task to figure out its
behavior merely based on the pattern feature space.

6 Conclusion

We describe a methodology to dynamically select an ensemble for each data points. We
find that by using directly the concept of the oracle, the proposed scheme has apparently
better performances than the static ensemble selection schemes such as GA with MVE
as the objective function. Moreover, the proposed schemes also perform slightly better
than other dynamic selection methods in our study.

Besides this, the dynamic ensemble selection scheme has some additional advan-
tages over the static ensemble selection schemes. For one, dynamic selection is pretty
faster than some static selection - such as GA and exhaustive search. Also, the para-
meters embedded in the dynamic selection are much less than those of static selection.
For example, considering the single GA search we need to adjust the mutation rate,
the number of generation, the size of population size, and so on. All these make the
optimization of the dynamic selection much easier.

Our study shows that a dynamic ensemble selection scheme can, in some cases,
perform better than some static ensemble selection methods. Furthermore, our study
suggests that an ensemble of classifier might be more stable than a single classifier in
the case of a dynamic selection. Yet our method is limited by the uncertainty of the
behavior of the oracle, since the attained recognition rates are still not close to that of
the oracle. We believe that this methodology can be much enhanced with theoretical
studies on the connection between the feature subspaces and the classifier accuracies,
the influence of geometrical and topological constraints on the oracle, better statistical
studies to quantify the uncertainty of the oracle’s behavior, and empirical studies in
more real-world problems with various ensemble generation methods.
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Abstract. We investigate the theoretical links between a regression en-
semble and a linearly combined classification ensemble. First, we refor-
mulate the Tumer & Ghosh model for linear combiners in a regression
context; we then exploit this new formulation to generalise the concept
of the “Ambiguity decomposition”, previously defined only for regression
tasks, to classification problems. Finally, we propose a new algorithm,
based on the Negative Correlation Learning framework, which applies to
ensembles of linearly combined classifiers.

1 Introduction

The field of Multiple Classifier Systems (MCSs) has now firmly established itself
as able to produce state-of-the-art learning techniques. It enjoys an abundance
of heuristic methods for improving performance, though on the whole is lacking
in theoretical contributions. As such, one of the most highly cited references in
the MCS literature is Tumer & Ghosh [1]; this was the first work to show that
correlations between classifier outputs1 had a quantifiable effect on the ensemble
error. A parallel field to MCS is that of regression ensembles ; that is, ensembles
of estimators that solve a regression problem. In this field, the theoretical frame-
work is far more established and can claim a heritage as far back as Laplace [2],
or further. A central result here is the bias-variance-covariance decomposition of
the mean squared error (MSE). This illustrated that the performance of the en-
semble is critically dependent on the three-way balance between bias, variance,
and covariance; the latter accounting for correlations between estimators. This
trade-off is the analog of the often cited “diversity” in the MCS literature.

In previous work we proposed a learning algorithm, Negative Correlation (NC)
learning [3] which explicitly manages the bias-variance-covariance (diversity)
trade-off using a penalty term in the error function. In this work we extend this to
the classification domain, by clearly relating the Tumer & Ghosh model to the
bias-variance-covariance decomposition, and deriving a novel learning method
based on NC learning.
1 It should be noted that the model applies only to ensembles that average class

probability estimates—the equivalent work for ensembles using majority voting is
an outstanding question in the MCS community.
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Fig. 1. Estimating posterior probabilities shifts the ideal decision boundary x∗ by a
quantity b = xb − x∗ > 0. Misclassification error is due to irreducible error (light-grey
area) and added error (dark-grey area).

2 Background

In this section we describe the background of our research. Firstly we introduce
a framework developed by Tumer & Ghosh [1,4] for linearly combined classifiers,
and then discuss the equivalent problem in a regression framework.

2.1 Tumer & Ghosh Framework for Linearly Combined Classifiers

It is well known that for a given class k a classifier can only provide an es-
timate fk(x) of the posterior probability P (ωk|x). Therefore if we choose the
maximum probability class, non-optimal decisions are taken for patterns where
arg maxk fk(x) �= arg maxk P (ωk|x). In a series of studies [1,4] Tumer & Ghosh
analysed the case in which there is a shift of the ideal class boundary. This is
shown in Fig. 1 for a two class problem.

According to their framework, the estimated posterior probability for a class
ωi is the sum of the true posterior probability P (ωi|x) and an estimation error
εi. Under the simplifying assumptions of

– a shift of the decision boundary xb around the ideal decision boundary x∗

caused by estimation errors
– a first order approximation of the posterior probabilities
– a zero order approximation of the input space distribution x around the ideal

decision boundary x∗

they showed that the added error for a single classifier is proportional to the
square of the boundary shift b

E =
p(x∗)t

2
b2 (1)

and that the shift itself can be expressed as a function of the estimation errors
εi(xb) and εj(xb):

b =
εi (xb) − εj (xb)

t
, (2)
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where t is the difference between derivatives of posteriors at the optimal bound-
ary: t = P ′(ωj |x∗) − P ′(ωi|x∗).2

They proved that the expected added error Eadd = E{E} for a single classifier
can be decomposed in terms of the bias and variance of this shift b. The authors
then extended this to an expression of the expected added error for a simple
average combination of M classifiers, deriving an expression that accounted for
the effect of classifier correlations on the added error. As shown in Fig. 1, the
added error in (1) is just a portion of the overall misclassification error evaluated
around the decision boundary x∗.

2.2 The Regression Context

In a regression context quantifying diversity among component individuals of
an ensemble is a well defined problem. Here, the combiner function is a linear
combination (as in the Tumer & Ghosh model) and the loss function of interest
is not the classification error, but instead the MSE.

In this context, Geman et al. [6] showed that the MSE can be broken into
separate components, termed bias and variance:

E
{
(f − d)2

}
= (E {f} − d)2 + E

{
(f − E {f})2

}
(3)

where f denotes the estimator, d the target, and the expectation is with re-
spect to all possible training sets. Ueda and Nakano [7] extended this concept
for a linearly combined regression ensemble (i.e. where the estimator is f̄ =
1
M

∑M
m=1 fm), providing the bias-variance-covariance decomposition. Krogh and

Vedelsby [8] developed another important decomposition for the MSE, termed
the Ambiguity decomposition. They proved that at a single data point the MSE
can be broken into an accuracy and Ambiguity term:

(
f̄ − d

)2 =
1
M

M∑

m=1

(fm − d)2 − 1
M

M∑

m=1

(
fm − f̄

)2
. (4)

The first term is an index of the accuracy of the individuals, while the second
one characterizes diversity among individuals, being a measure of how individual
answers differ from the ensemble answer on this single data point.

What is interesting to point out is that Brown et al. [3] showed that the
expectation of the Ambiguity decomposition leads strictly to the bias-variance-
covariance decomposition, and there exists a common term which quantifies
the accuracy-diversity trade-off in this case. The diversity cannot be maximized
without affecting the accuracy of the individual components, and the often cited
‘diversity dilemma’ is in fact a three-way balance between bias, variance, and
covariance.

2 In this paper we follow the notation used by Fumera and Roli in [5].
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3 Linking the Regression and Classification Frameworks

The equivalence between the Ambiguity and the bias-variance-covariance de-
composition [9] and its exploitation through the NC framework [3] represent a
well-grounded theoretical basis for the understanding of MCSs in terms of the
accuracy-diversity trade-off between its individual components. The classifica-
tion context lacks such a neat theory. The main result reached so far is the
Tumer & Ghosh model, that shows how correlation among individual classifiers
can affect the performance of a MCS. It would be then useful to understand
how they relate to each other. In this section we will show that a regression
problem is implicit in the Tumer & Ghosh model, but it is not obvious what is
the estimator and what is the target that are to be considered. Our contribution
will be to make it clear.

3.1 Which Random Variable to Consider?

As we already mentioned in Sect. 2.2, in regression contexts we want to minimise
the MSE, that is the squared difference between the estimator function f and
the true target d. Thanks to well known bias-variance decomposition [6], the
expected mean squared error can be decomposed into bias and variance, as
illustrated in (3).

In the Tumer & Ghosh model, the random variable (RV) in question is the
boundary shift b in Fig. 1. Intuitively, b can be regarded as the ‘key’ variable
to reformulate this in a regression framework. As b decreases towards 0, the
added error drops accordingly; though bias and variance of b are discussed, it
should be noted that this model differs from other bias-variance decompositions
for classification problems, e.g. [10], because it treats the error as a regression
random variable.

The connection between the bias-variance-covariance and the Tumer & Ghosh
model is not immediately apparent; the main question is: what are the corre-
sponding ’estimator’ and ’target’ variables in this framework?

In order to answer this question, we can first observe that the shaded area
in Fig. 1 has approximately the shape of a triangle. The area S of a triangle is
S = 1

2 (base × height).
After some manipulations we can rewrite (1) as

E = p (x∗)
1
2

(εi − εj)
εi − εj

t
. (5)

If we do not take into consideration the constant p(x∗), it is easy to see that the
added error is the area of a triangle having base (εi − εj) and height b = εi−εj

t .
Let us denote Pi = P (ωi|x) and Pj = P (ωj |x) the posterior probabilities of

classes ωi and ωj conditioned on point x. The posterior probability for the k-th
class can be written as:

fk = Pk + εk . (6)

The base (εi − εj) of the triangle can be expressed as:

εi − εj = (fi − fj) − (Pi − Pj) . (7)
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Fig. 2. The added error has approximately the shape of a triangle

If we look at the picture in Fig. 2 the base of the triangle is not only proportional
to b (it is t times b) but is also a more meaningful random variable. Indeed the
error, that is proportional to b2 is equal to 0 whenever b is equal to 0. At the
optimum boundary, the base of the triangle is equal to 0:

(fi − fj) − (Pi − Pj) = 0 . (8)

The error drops to 0 when the difference between the two function estimation
equals the difference between the posterior probabilities.

Tumer & Ghosh model can be interpreted as a regression problem by simply
considering the base instead of the height of the triangle. In this case we have an
estimator fij = (fi −fj), that is the difference between two posterior probability
estimators. Furthermore we can think of the difference dij = (Pi − Pj) as the
target of our new regression problems. The aim of the regression problem is to
make the function estimator (fi − fj) as close as possible to the new target
(Pi − Pj). This is true for every point x ∈ IR, as shown in Fig. 2.

This change of random variables increases the understanding of the model,
because it makes possible to point out a valid estimator function and target for
the Tumer & Ghosh model. Indeed this looking at the Tumer & Ghosh model
from another perspective determines to re-define not only the RV of interest,
but also its bias-variance decomposition as summarised in Table 1.

Table 1. Some key aspects of the original T & G model are compared with our new
interpretation in a regression context

T & G Model New Interpretation

RV b = 1
t
[(fi − fj) − (Pi − Pj)] fi − fj

Target 0 Pi − Pj

Bias βb =
βi−βj

t
βij = tβb + (Pi − Pj)

Variance σ2
b =

σ2
i +σ2

j

t2
σ2

ij = t2σ2
b
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Now that we have found a formulation of the Tumer & Ghosh model in a
regression context, it would be interesting to investigate the idea of diversity
and to develop an algorithm able to show significative improvements whenever
we try to minimise the added error.

4 Optimizing Diversity by NC Learning

A way of exploiting this inter-dependency is through the Negative Correlation
algorithm [11]. Removing an assumption made by Liu [11], Brown [9] proved
that NC learning can be seen to be exploiting the Ambiguity decomposition. In
his formulation [3] NC algorithm uses the Ambiguity decompositon as it tries to
minimize a ”diversity-encouraging” error function:

ediv =
1
M

M∑

m=1

1
2

(fm − d)2 − γ
1
M

M∑

m=1

1
2

(
fm − f̄

)2
. (9)

The algorithm works iteratively by performing a single weight update for each
neural network in the ensemble, according to (9), proceeding in a pattern-by-
pattern updating scheme. The error function in (9) allows to train a simple aver-
aged ensemble of estimators in parallel, in contrast to the alternative of training
each network independently, by putting γ = 0 3. In a number of benchmark stud-
ies [9,3] it was found that a γ value less than 1 showed significant improvements
in both convergence speed and generalization ability. It is easy to notice that,
except for linear scaling factors, the last term is equal to the Ambiguity term
from (4). Given this, we now show how this algorithm can be extended to work
on linearly combined ensembles exploiting the theoretical framework described
earlier.

Given an ensemble of M classifiers combined by simple averaging and two
classes i and j, let us denote with f̄i is the ensemble estimator function for class
i

f̄i =
1
M

M∑

m=1

fm
i , (10)

and with f̄ij = f̄i − f̄j

f̄ij =
1
M

M∑

m=1

(
fm

i − fm
j

)
. (11)

Following Krogh and Vedelsby [8], we define the Ambiguity decomposition for
the Tumer & Ghosh model as:

(
f̄ij − dij

)2 =
1
M

M∑

m=1

(
fm

ij − dij

)2 − 1
M

M∑

m=1

(
fm

ij − f̄ij

)2
. (12)

3 Equation 9 is equal to an independent MSE function for each network when γ = 0.
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The NC framework applied to this gives us:

Eij =
(
f̄ij − dij

)2 =
1
M

M∑

m=1

(
fm

ij − dij

)2 − γ
{ 1

M

M∑

m=1

(
fm

ij − f̄ij

)2
}

, (13)

where γ is a scaling factor that allows us to vary the covariance component on
Eij . If we adopt a gradient descent procedure on (13), it follows that given two
classes i and j the partial derivative for the m-th classifier and the i-th class is

∂Eij

∂fm
i

=
2
M

(
fm

ij − dij

) − 2
M

γ
(
fm

ij − f̄ij

)
. (14)

In a real multi-class problem it is unknown which pair of classes will contribute
to the added error around any point of the feature space. In this case, we have
to take into account every possible pair of classes i, j | j �= i and i, j = 1 . . . C:

ETOT =
C∑

i=1

∑

j>i

[
1
M

M∑

m=1

(
fm

ij − dij

)2

]
− γ

C∑

i=1

∑

j>i

[
1
M

M∑

m=1

(
fm

ij − f̄ij

)2

]
.

(15)
The partial derivative of the overall error with respect to the class i and the
estimator function m is

∂ETOT

∂fm
i

=
2
M

C∑

j=1
j �=i

(
fm

ij − dij

) − γ
[ 2
M

C∑

j=1
j �=i

(
fm

ij − f̄ij

) ]
. (16)

Nevertheless, (14) still holds for each pair of classes, and is the true added error
for the two class involved around a decision boundary. Equations (14) and (16)
can be used for training in parallel a simple averaged system of neural networks,
like (9) does in regression problems as an alternative to the standard independent
training with the error function 1

2

∑M
m=1 (fm − d)2.

5 Experiments

The aim of these experiments was to assess the performance of the NC ensemble
learning algorithm we derived from the new interpretation of Tumer & Ghosh
model in a regression context. We have applied this new NC algorithm on three
real-world classification problems. The first dataset we used is a random sample
of 3602 items from Phoneme dataset, from the ELENA project. The aim of
the dataset is phoneme recognition—to distinguish between nasal (class 0) and
oral sounds (class 1). There are 3602 data items, 5 continuous features, and
the class distribution is approximately 70% class 0 and 30% class 1. The other
two datasets were taken from the UCI repository. The Wine dataset has 178
instances, 13 continuous features, and 3 classes; the Heart Disease dataset has
270 instances, 13 features (mixture of continuous/discrete), and 2 classes. In
both cases the input features were rescaled to zero mean and unit variance.
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Fig. 3. Phoneme test error for an ensemble with relatively simple MLPs (each has 3
hidden nodes). On the left is an ensemble of size M = 3 (optimum γ∗ = 1). On the
right is a larger ensemble of size M = 10 (optimum γ∗ = 0.8). The larger ensemble
clearly faster convergence.
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Fig. 4. Phoneme test error for an ensemble with relatively complex MLPs (each has 10
hidden nodes). On the left is an ensemble of size M = 3 (optimum γ∗ = 0.3). On the
right is a larger ensemble of size M = 10 (optimum γ∗ = 0.8). The NC technique shows
no significant improvements over independent training with such complex networks.

Experiments have been conducted with multilayer perceptrons, with a sin-
gle hidden layer, two outputs and logistic activation functions on all nodes. In
order to understand the inter-dependency between the number of networks M
and the complexity H of networks4 we have tested four different possible com-
binations of small/large systems made of low/high complexity neural networks,
where we consider 3 and 10 to respectively be a suitable value for small/low and
for large/high. Ten runs of the algorithm have been done for each of these com-
binations. Then, results have been compared with the performance of a single
classifier (neural network with two outputs) and with an identical system5 of
individuals trained independently.
4 i.e. The number of hidden nodes H , considered that every single component of MCS

has the same configuration, that is the same number of hidden nodes.
5 That is same size and same complexity.
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Table 2. Mean (and 95% confidence intervals) improvement of systems trained with the
NC algorithm over independent training after 1000 epochs for low complexity systems
(H = 3) and after 5000 epoch for high complexity systems (H = 10). Note that the
best gains are made with large ensembles of relatively simple networks.

Dataset M = 3, H = 3 M = 10, H = 3 M = 3, H = 10 M = 10, H = 10

Phoneme 2.0 (0.7) 3.8 (0.4) −0.6 (1.1) 0.4 (0.3)
Wine 20.5 (2.1) 16.2 (1.4) 1.4 (0.5) 0.9 (0.1)
Heart 1.7 (0.1) 3.4 (0.5) 2.7 (0.4) 3.0 (0.2)

Figure 3 shows results on Phoneme dataset for ensembles of simple networks,
while Fig. 4 illustrates results obtained with ensembles of complex networks. In
these figures the performance of the independent training MCS, and both per-
formances for the special case γ = 0 and the optimum γ value γ∗6 on the test
dataset have been reported. Table 2 summarises results—the largest improve-
ment is from a large ensemble of relatively simple networks (3.76%); whereas a
small ensemble of complex networks is 0.73% worse than the independent case.

It can also be observed that system improvements can be always obtained for
optimum γ values γ∗ > 0. Furthermore, every system has always shown better
performances than a single network. Results obtained on Phoneme dataset illus-
trates that the NC learning algorithm applied in the Tumer & Ghosh framework
behaves very similarly to the NC algorithm on regression problems [9]. The ob-
servations are consistent with the commonly held idea in the field that MCS
benefits are best levied from a large system of relatively simple classifiers. This
principle of using a large ensemble of weak classifiers is echoed by other works,
such as Boosting or Stochastic Discrimination [12].

6 Discussion and Conclusions

We have run several experiments by testing our NC algorithm on real classifica-
tion problems. The work done so far, shows that our interpretation is consistent
with results obtained, that is the NC learning applied to the new interpretation
of the Tumer & Ghosh model shows improvements in terms of performance with
reference to a system of networks trained independently. Its success supports the
original Tumer & Ghosh idea of decreasing correlations among classifiers as a
tool for increasing MCS accuracy, also illustrating that this “diversity” can be
engineered by an appropriate technique, in this case, the Negative Correlation
Learning framework.

An important point to note in this discussion is the assumptions of noise on
the target data. If we wish to maximise the log-likelihood of the data, under the
assumption of Gaussian noise, the appropriate error function is the mean squared
error. For classification problems it is usual to assume binomial/multinomial
noise, leading to the cross-entropy error function. It should be noted here that
in adopting the regression framework we have implicitly made the assumption
6 the γ that gives the best performance of the ensemble.
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of Gaussian distributed noise on the posterior probability estimates. We leave
the analysis under different noise assumptions for future work.

A full empirical investigation is out of the scope of this paper and will be
conducted in later work. The main contribution of this paper has been to inves-
tigate the theoretical links between two different frameworks, that is: the well
known regression ensemble and a linearly combined classifier ensemble.
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Abstract. Ensemble methods with Random Oracles have been pro-
posed recently (Kuncheva and Rodŕıguez, 2007). A random-oracle clas-
sifier consists of a pair of classifiers and a fixed, randomly created or-
acle that selects between them. Ensembles of random-oracle decision
trees were shown to fare better than standard ensembles. In that study,
the oracle for a given tree was a random hyperplane at the root of
the tree. The present work considers two random oracles types (linear
and spherical) in ensembles of Naive Bayes Classifiers (NB). Our ex-
periments show that ensembles based solely upon the spherical oracle
(and no other ensemble heuristic) outrank Bagging, Wagging, Random
Subspaces, AdaBoost.M1, MultiBoost and Decorate. Moreover, all these
ensemble methods are better with any of the two random oracles than
their standard versions without the oracles.

1 Introduction

Given its name and simplicity, the performance of the Näıve Bayes Classifier is
often described as surprising [8,10,13]. A simple and accurate method is ideally
suited as a base classifier for classifier ensembles. Nevertheless, NB is very stable
and does not work well with some ensemble methods, such as Bagging [1]. The
random oracle makes it possible to destabilize NB, introducing diversity in the
classifiers of an ensemble.

Methods for constructing ensembles are often designed so as to inject random-
ness in the learning algorithm [6]. For instance, a Random Forest [4] is Bagging
using random trees as base classifiers instead of standard decision trees. A ran-
dom oracle makes it possible to introduce randomness for any base classifier
model. Thus it can be considered that the presented approach consists of using
an ensemble method with a different base classifier.

The paper is organised as follows. Section 2 details the random oracle ap-
proach to ensemble construction and the two random oracles considered. The
experimental validation and results are given in Section 3. Finally, Section 4
concludes the study.
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2 Ensembles with a Random Oracle

A random oracle classifier is a mini-ensemble formed by a pair of classifiers and
a random oracle that chooses between them. It can be thought of as a random
discriminant function which splits the data into two subsets with no regard of
any class labels or cluster structure. A random oracle classifier can be used as
the base classifier of any ensemble method. Given a classification method, the
training of a random oracle classifier consists of:

– Select the random oracle (sample its parameters from a uniform distribu-
tion).

– Split the training data in two subsets using the random oracle.
– For each subset of the training data, train a classifier.

The random oracle classifier is formed by the pair of classifiers and the oracle
itself. The classification of a test instance is done in the following way:

– Use the random oracle to select one of the two classifiers.
– Return the classification given by the selected classifier.

If the computational complexity of the oracle is low, both in training and clas-
sification, the computational complexity of a random oracle classifier is very
similar to the complexity of the base classifier. In the classification phase, only
one of the two classifiers is used. In the training phase, two classifiers are built.
Nevertheless, they are trained with a disjoint partition of the training examples
and the training time of any classification method depends, at least linearly, on
the number of training examples.

In this work, two random oracles are considered: the linear and the spherical
oracles.

2.1 The Linear Oracle

This oracle divides the space into two subspaces using a hyperplane. To build the
oracle, two different training objects are selected at random (these can be from
the same class). The oracle is the hyperplane delineating the Voronoi regions of
the two objects, i.e., the hyperplane passing through the middle of the segment
joining the objects and orthogonal to that segment. Using objects from the data
set for constructing the oracle, we ensured that there will be training instances
in both subspaces.

Since the data sets used in the experiment contain both numeric and nominal
attributes, we used distances to the two selected objects rather than the compu-
tationally cheaper calculation of the hyperplane. We consider Euclidean space;
all numerical attributes are scaled within [0,1]. The distance between two values
of a nominal attribute is 0 if the values are equal and 1 otherwise.
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2.2 The Spherical Oracle

The space is divided into two regions: inside and outside a hypersphere in a
random subspace. The procedure for selecting the sphere is:

– Draw a random feature subset containing at least 50% of the features.
– Select a random training instance as the center of the sphere.
– Find the radius of the sphere as the median of the distances from the center

to K randomly selected training instances. (For no specific reason, here we
use K = 7.)

The objective of this procedure is to have training instances inside and outside
of the sphere. The selection of a feature subset seeks to increase the diversity
of the oracles (and therefore, of the random oracle classifiers). The effect of
using such subset is that the distance between two objects can be different for
different oracles. If the distances are always the same for a pair of objects, two
close objects would be in the same subspace for the majority of random oracles.

2.3 Why Does Random Oracle Work?

Figure 1 shows an artificial data set and the classification regions for NB, NB
with linear and spherical random oracles and two NB ensembles with random
oracle. Clearly, NB on its own is not adequate for this kind of data. Classical
ensemble methods of NB classifiers do not help on this data. The training error
of the NB classifier on this data is 57.2%. AdaBoost needs weak classifiers with
errors smaller than 50%. The base classifiers from Bagging are trained from
samples of the data, they will be similar to the classifier obtained from all the
data.

A random oracle classifier with two NB classifiers is better for this data,
but the accuracy depends substantially on the randomly selected oracle. An
ensemble or 25 Random Oracle classifiers approximates rather well the optimal
classification boundary.

This example illustrates two possible reasons for the success of random oracles.
First, the oracle splits the training data into two subsets and the classification
task can be easier in the subsets than in the original data. This may lead to a
better classifier (mini-ensemble) than the original NB.

The second reason for the success of random oracle is that the base classifiers
can be much more diverse than the classifiers obtained with other ensemble
methods. Classical ensemble methods are not able to introduce diversity in NB
classifiers. The example shows that it is possible to obtain accurate ensembles
from random oracle classifiers.

3 Experiments

3.1 Settings

The data sets used in the experiments, from the UCI Repository [7], are shown
in table 1. The experiments were carried out using Weka [16] and our own code.
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(a) Data set (b) NB Classifier

(c) Random linear oracle classifier (d) Random spherical oracle classifier

(e) Random linear oracle ensemble (f) Random spherical oracle ensemble

Fig. 1. Data set and classification regions for NB, NB with random oracle and NB
ensembles with random oracle. Each ensemble consists of 25 classifiers.
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Table 1. Summary of the 35 UCI Datasets used in the experiment

Data set Classes Objects D C

anneal 6 898 32 6
audiology 24 226 69 0
autos 7 205 10 16
balance-scale 3 625 0 4
breast-cancer 2 286 10 0
cleveland-14-heart 2 303 7 6
credit-rating 2 690 9 6
german-credit 2 1000 13 7
glass 7 214 0 9
heart-statlog 2 270 0 13
hepatitis 2 155 13 6
horse-colic 2 368 16 7
hungarian-14-heart 2 294 7 6
hypothyroid 4 3772 22 7
ionosphere 2 351 0 34
iris 3 150 0 4
kr-vs-kp 2 3196 36 0
labor 2 57 8 8

Data set Classes Objects D C

letter 26 20000 0 16
lymphography 4 148 15 3
mushroom 2 8124 22 0
pima-diabetes 2 768 0 8
primary-tumor 22 339 17 0
segment 7 2310 0 19
sick 2 3772 22 7
sonar 2 208 0 60
soybean 19 683 35 0
splice 3 3190 60 0
vehicle 4 846 0 18
vote 2 435 16 0
vowel-context 11 990 2 10
vowel-nocontext 11 990 0 10
waveform 3 5000 0 40
wisconsin-bc 2 699 0 9
zoo 7 101 16 2

Note: ‘D’ stands for the number of discrete features and ‘C’ for the number of
continuous-valued features.

There are several methods for handling continuous attributes in NB classifiers [2];
in this work the “Normal” method was used. The class-conditional pdf for at-
tribute xi, p(xi|ωj) is approximated as a normal distribution, and the discrim-
inant function for class ωj is gj(x) = P (ωj)

∏
i p(xi|ωj). Each ensemble was

formed by 25 classifiers. The results were obtained using a 10-fold stratified
cross validation, repeated 10 times.

3.2 Ensemble Methods

As the random oracle approach produces, in effect, a base classifier, it can be used
with any ensemble heuristic or on its own. The ensemble methods considered in
this work are:

– Bagging [3]. Each base classifier is trained on a bootstrap sample of the
training data.

– Wagging [15,1]. For each base classifier, the training examples are weighted
randomly using the Poisson distribution.

– Random Subspaces [11]. Each base classifier is trained with all the training
examples, but using only a random subset of the features. Two values are
considered for the number of randomly selected features here: 50% and 75%.

– AdaBoost.M1 [9]. This is the most well-known variant of Boosting. The
training samples are also weighted. It is an incremental method; the weight
on an object depends on the correctness of the classifications given by the
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previous base classifiers. Both the re-sampling and the re-weighting version
are considered here, denoted (S) and (W), respectively.

– MultiBoost [15]. This is a combination of Boosting and Wagging. It follows
the AdaBoost method, but after a number of iterations the training examples
are reweighted using the Wagging approach. The size of the sub-committees
for this method was set to 5. It has the same two variants as AdaBoost.M1,
both of them used in the experiment.

– Decorate [14]. This is an incremental method based on the boosting method.
Each base classifier is trained using all training examples plus artificially
generated examples. The method seeks diversity among the base classifiers
by constructing the artificial examples in a specific way.

The total number of different methods together with their variants is 9 (6 meth-
ods, 3 of them with 2 options). Each method will be used with three base classi-
fiers: NB, random linear oracle with NB and random spherical oracle with NB.
Hence, the number of different configurations is 27.

Included in the experiments were also the following three methods: a single
NB (denoted further as ‘Single’) and ensembles obtained using only the random
oracle heuristic, linear (denoted L-Ensemble) or spherical (denoted S-Ensemble).

3.3 Results

Table 2 shows a summary of the experimental results. The methods are sorted
according to their average rank, following the method described in [5]. For each
data set, all the methods are sorted. The best method has rank 1, the second
best has rank 2, and so on. If there are ties, the methods are assigned average
ranks. The overall value of a method is measured by its average rank across all
data sets.

The best 7 methods use a Random Oracle. The top ranks are for MultiBoost
with a Random Oracle and re-weighting or re-sampling. The best method with-
out an oracle is the re-sampling version of MultiBoost.

The last column of the table, the benefit, represents the difference between
the average ranks of a method with an oracle and the corresponding method
without the oracle. The length of the bars is proportional to that difference. For
all the methods, the benefit is positive.

The table also shows that the random oracle can be used as the only heuristic
for ensemble construction. The spherical oracle ensemble has a better rank than
all the methods that do not use a random oracle. The linear oracle ensemble is
not as good, but the only method, without a random oracle, with better rank
than L-Ensemble is MultiBoost.

Table 2 also includes, for the methods with a random oracle, the number of
data sets where that method is better, equal and worse than the corresponding
version without the oracle. For all the methods, the versions with an oracle are
better than the version without the oracle for at least 21 of 35 data sets.

When comparing two methods over 35 data sets, the differences are statisti-
cally significant, according to a sign test [5], for a level α = 0.05, if the number
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Table 2. Ensemble methods with and without Random Oracle sorted by their average
ranks. The ensemble size, L, is 25.

Total Win-tie
Method Rank -loss Benefit
S-MultiBoost (W) 8.41 •26-0-9
S-MultiBoost (S) 8.43 •27-0-8
L-MultiBoost (S) 8.64 •26-0-9
L-MultiBoost (W) 9.33 •25-0-10
S-Bagging 11.23 •31-0-4
S-Wagging 12.44 •27-0-8
S-Ensemble 12.77
MultiBoost (S) 13.11
S-Rand. Subs. (75%) 13.63 •26-0-9
L-Bagging 13.93 •26-0-9
S-AdaBoostM1 (S) 14.09 23-0-12
MultiBoost (W) 14.33
L-Wagging 14.46 •24-0-11
L-Ensemble 14.63
L-AdaBoostM1 (S) 14.71 •24-1-10

Total Win-tie
Method Rank -loss Benefit
S-AdaBoostM1 (W) 15.00 •24-2-9
L-Rand. Subs. (75%) 15.03 •25-0-10
L-AdaBoostM1 (W) 15.56 •25-1-9
L-Rand. Subs. (50%) 15.73 •29-0-6
S-Rand. Subs. (50%) 15.93 •27-1-7
L-Decorate 18.03 23-0-12
AdaBoostM1 (S) 18.63
AdaBoostM1 (W) 19.03
Bagging 20.19
Rand. Subs. (75%) 20.44
S-Decorate 20.74 21-0-14
Wagging 20.83
Single 21.13
Decorate 21.81
Rand. Subs. (50%) 22.79

Note 1: ‘L-’ indicates that the linear oracle is present, ‘S-’ that the spherical oracle is present.
Note 2: ‘•’ indicates that the difference between the method with oracle and without oracle is
statistically significant at α = 0.05 (using sign test).

Table 3. Ensemble methods with and without Random Oracle sorted by their average
ranks. The ensemble size, L, is 25 for the methods with oracle and 50 for the methods
without oracle.

Total Win-tie
Method Rank -loss Benefit
S-MultiBoost (W) 8.36 •28-1-6
S-MultiBoost (S) 8.43 •27-0-8
L-MultiBoost (S) 8.57 •26-0-9
L-MultiBoost (W) 9.16 •28-0-7
S-Bagging 11.11 •30-0-5
S-Wagging 12.26 •27-1-7
S-Ensemble 12.54
S-Rand. Subs. (75%) 13.51 •28-0-7
L-Bagging 13.79 •25-0-10
S-AdaBoostM1 (S) 14.09 23-0-12
L-Wagging 14.23 •24-0-11
L-AdaBoostM1 (S) 14.61 23-1-11
L-Ensemble 14.67
L-Rand. Subs. (75%) 14.73 •28-0-7
S-AdaBoostM1 (W) 14.87 •24-2-9

Total Win-tie
Method Rank -loss Benefit
MultiBoost (S) 15.37
L-AdaBoostM1 (W) 15.37 •26-1-8
L-Rand. Subs. (50%) 15.60 •25-0-10
S-Rand. Subs. (50%) 15.81 •28-0-7
MultiBoost (W) 16.87
L-Decorate 18.04 23-0-12
AdaBoostM1 (S) 18.56
AdaBoostM1 (W) 19.19
Bagging 19.46
Wagging 19.97
S-Decorate 20.66 21-0-14
Single 21.00
Rand. Subs. (75%) 21.00
Rand. Subs. (50%) 21.27
Decorate 21.90

Note: ‘L-’ indicates that the linear oracle is present, ‘S-’ that the spherical oracle is present.
Note 2: ‘•’ indicates that the difference between the method with oracle and without oracle is
statistically significant at α = 0.05 (using sign test).

of wins (plus half the number of ties) is greater or equal than 24. Those cases are
marked with a bullet in the table. From 18 tests, only in 3 cases the difference
is not significant.

In the previous comparison, the number of base classifiers for all the ensembles
was 25. It could be argued that the setting is favourable to the random oracle
variants because these ensembles are formed by 50 NB classifiers (25 Random
Oracles with 2 NB classifiers) while the variants without the oracle are formed
by 25 NB classifiers. That setting was selected because in the variants with and
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without the Random Oracle, each training instance was used to construct, at
most, 25 NB classifiers and each testing instance was classified by, at most, 25
NB classifiers.

The experiments were repeated with all the ensembles without the random
oracle using 50 NB classifiers. Table 3 shows the results. Interestingly, the re-
sults are even more favourable to the versions with the Random Oracle. This
unexpected finding indicates that some classical methods performed worse with
L = 50 classifiers than with L = 25 classifiers. One possible explanation is over-
training of the ensemble. As the results are based on ranking, the behaviour of
one or two ensembles would affect the overall score for all methods. The suspect
here is MultiBoost. In both tables, this is the best method without random or-
acle. In Table 2 this method was the 7th best method, with an average rank of
13.11. In Table 3 the method is at 16th place with an average rank of 15.37,
showing that MultiBoost with L = 50 has been outperformed by more ensemble
methods than MultiBoost with L = 25.

4 Conclusion

Here we study ensembles of NB classifiers with random oracle. Previously a
random linear oracle was used to improve ensembles of decision trees [12]. Our
results indicate that random oracles are even more suitable for NB classifiers
than for decision trees.

Most ensemble methods rely on unstable base classifiers. It is known that
NB are more stable than decision trees. The random oracle introduces the de-
sired instability of NB, which makes random-oracle NB a good base classifier for
constructing ensembles.

Nine ensemble models were considered (6 methods, 3 of them with 2 vari-
ants). For each of them, there were 3 variants: without random oracle, with the
linear oracle and with the spherical oracle. 35 UCI data sets were used in this
study. The spherical oracle ensemble method (based only on the random oracle
heuristic) showed better results than any of the 9 ensemble models without ora-
cle. Moreover the random oracle improved the performance of all nine ensemble
models. Best method appeared to be MultiBoost with a spherical oracle. For NB
base classifiers, the spherical oracle is generally better than the linear oracle.

There is further room for improvement; the ‘best’ random oracle to use can
depend on the base classifier, the ensemble method and the data set. Also, the di-
versity of the classifiers in an ensemble could be improved using different random
oracles in the same ensemble.
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Abstract. Rotation Forest is a recently proposed method for building
classifier ensembles using independently trained decision trees. It was
found to be more accurate than bagging, AdaBoost and Random Forest
ensembles across a collection of benchmark data sets. This paper car-
ries out a lesion study on Rotation Forest in order to find out which of
the parameters and the randomization heuristics are responsible for the
good performance. Contrary to common intuition, the features extracted
through PCA gave the best results compared to those extracted through
non-parametric discriminant analysis (NDA) or random projections. The
only ensemble method whose accuracy was statistically indistinguishable
from that of Rotation Forest was LogitBoost although it gave slightly in-
ferior results on 20 out of the 32 benchmark data sets. It appeared that
the main factor for the success of Rotation Forest is that the transfor-
mation matrix employed to calculate the (linear) extracted features is
sparse.

Keywords: Pattern recognition, Classifier ensembles, Rotation Forest,
Feature extraction.

1 Introduction

Classifier ensembles usually demonstrate superior accuracy compared to that
of single classifiers. Within the classifier ensemble models, AdaBoost has been
declared to be the best off-the-shelf classifier [4]. A close rival to AdaBoost is bag-
ging where the classifiers in the ensemble are built independently of one another,
using some randomisation heuristic [3,5]. Bagging has been found to outperform
AdaBoost on noisy data [1] but is generally perceived as the less accurate of
the two methods. To encourage diversity in bagging, further randomisation was
introduced in the Random Forest model [5]. A Random Forest ensemble consists
of decision trees trained on bootstrap samples from the data set. Additional
diversity is introduced by randomising the feature choice at each node. During
tree construction, the best feature at each node is selected among M randomly
chosen features, where M is a parameter of the algorithm.

Rotation Forest [15] draws upon the Random Forest idea. The base classi-
fiers are also independently built decision trees, but in Rotation Forest each tree

M. Haindl, J. Kittler, and F. Roli (Eds.): MCS 2007, LNCS 4472, pp. 459–468, 2007.
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is trained on the whole data set in a rotated feature space. As the tree learn-
ing algorithm builds the classification regions using hyperplanes parallel to the
feature axes, a small rotation of the axes may lead to a very different tree. A
comparative experiment by Rodriguez et al. [15] favoured Rotation Forest to
bagging, AdaBoost and Random Forest. Studying kappa-error diagrams it was
discovered that Rotation Forest would often produce more accurate classifiers
than AdaBoost which are also more diverse than those in bagging.

This paper explores the effect of the design choices and parameter values on
the performance of Rotation Forest ensembles. The rest of the paper is organized
as follows. Section 2 explains the Rotation Forest ensemble method and the
design choices within. Sections 3 to 6 comprise our lesion study. Experimental
results are reported also in Section 6. Section 7 offers our conclusions.

2 Rotation Forest

Rotation Forest is an ensemble method which trains L decision trees inde-
pendently, using a different set of extracted features for each tree [15]. Let
x = [x1, . . . , xn]T be an example described by n features (attributes) and let
X be an N × n matrix containing the training examples. We assume that the
true class labels of all training examples are also provided. Let D = {D1, . . . , DL}
be the ensemble of L classifiers and F be the feature set.

Rotation Forest aims at building accurate and diverse classifiers. Bootstrap
samples are taken as the training set for the individual classifiers, as in bagging.
The main heuristic is to apply feature extraction and to subsequently reconstruct
a full feature set for each classifier in the ensemble. To do this, the feature
set is split randomly into K subsets, principal component analysis (PCA) is
run separately on each subset, and a new set of n linear extracted features
is constructed by pooling all principal components. The data is transformed
linearly into the new feature space. Classifier Di is trained with this data set.
Different splits of the feature set will lead to different extracted features, thereby
contributing to the diversity introduced by the bootstrap sampling.

We chose decision trees as the base classifiers because they are sensitive to
rotation of the feature axes and still can be very accurate. The effect of rotating
the axes is that classification regions of high accuracy can be constructed with
fewer trees than in bagging and AdaBoost. Our previous study [15] reported
an experiment whose results were favourable to Rotation Forest compared to
bagging, AdaBoost and Random Forest with the same number of base classifiers.
The design choices and the parameter values of the Rotation Forest were picked
in advance and not changed during the experiment. These were as follows

– Number of features in a subset: M = 3;
– Number of classifiers in the ensemble: L = 10;
– Extraction method: principal component analysis (PCA);
– Base classifier model: decision tree (hence the name “forest”).

Thirty two data sets from UCI Machine Learning Repository [2], summarized in
Table 1, were used in the experiment. The calculations and statistical
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Table 1. Characteristics of the 32 data sets used in this study

data set c N nd nc

anneal 6 898 32 6
audiology 24 226 69 0
autos 7 205 10 16
balance-scale 3 625 0 4
breast-cancer 2 286 10 0
cleveland-14-heart 5 307 7 6
credit-rating 2 690 9 6
german-credit 2 1000 13 7
glass 7 214 0 9
heart-statlog 2 270 0 13
hepatitis 2 155 13 6
horse-colic 2 368 16 7
hungarian-14-heart 5 294 7 6
hypothyroid 4 3772 22 7
ionosphere 2 351 0 34
iris 3 150 0 4

data set c N nd nc

labor 2 57 8 8
lymphography 4 148 15 3
pendigits 10 10992 0 16
pima-diabetes 2 768 0 8
primary-tumor 22 239 17 0
segment 7 2310 0 19
sonar 2 208 0 60
soybean 19 683 35 0
splice 3 3190 60 0
vehicle 4 846 0 18
vote 2 435 16 0
vowel-context 11 990 2 10
vowel-nocontext 11 990 0 10
waveform 3 5000 0 40
wisc-breast-cancer 2 699 0 9
zoo 7 101 16 2

Notes: c is the number of classes, N is the number of objects, nd is the number of
discrete (categorical) features and nc is the number of contiunous-valued features

comparisons were done using Weka [20]. Fifteen 10-fold cross-validations were
used with each data set.

Statistical comparisons in Weka are done using a corrected estimate of the
variance of the classification error [14].

The remaining sections of this paper address the following questions.

1. Is splitting the features set F essential for the success of Rotation Forest?
2. How does K (respectively M) affect the performance of Rotation Forest? Is

there a preferable value of K or M?
3. How does Rotation Forest compare to bagging and AdaBoost for various

ensemble sizes L?
4. Is PCA the best method to rotate the axes for the feature subsets? Since

we are solving a classification problem, methods for linear feature extraction
which use discriminatory information may be more appropriate.

3 Is Splitting Essential?

Splitting the feature set, F , into K subsets is directed towards creating diversity.
Its effect is that each new extracted feature is a linear combination of M = �n/K�
original features. Then the “rotation matrix”, R, used to transform a bootstrap
sample T of the original training set into a new training set (T ′ = TR) is sparse. 1

1 Here we refer to random projections broadly as “rotations”, which is not technically
correct. For the random projections to be rotations, the rotation matrix must be
orthonormal. In our case we only require this matrix to be non-degenerate. The
choice of terminology was guided by the fact that random projections are a version
of the rotation forest idea, the only difference being that PCA is replaced by a
non-degenerate random linear transformation.
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To find out how a sparse rotation matrix compares to a full rotation matrix
we used two approaches.

We call the first approach Random Projections. L random (nondegenerate)
transformation matrices of size n × n were generated, denoted R1, . . . , RL, with
entries sampled from a standard normal distribution ∼ N(0, 1). There is no loss
of information in this transformation as Ri can be inverted and the original
space restored. However, any such transformation may distort or enhance dis-
criminatory information. In other words, a rotation may simplify or complicate
the problem, leading to very different sizes of the decision trees in the two cases.

In the second approach, which we call Sparse Random Projections, sparse
transformation matrices were created so as to simulate the one in the Rotation
Forest method. The non-zero elements of these matrices were again sampled
randomly from a standard normal distribution. L such matrices were generated
to form the ensemble.

For ensembles with both pruned and unpruned trees, Sparse Random Projec-
tions were better than Random Projections on 24 of the 32 data sets, where 7
of these differences were statistically significant. Of the remaining 8 cases where
Random Projections were better than Sparse Random Projections, none of the
differences were statistically significant.

Next we look at the reasons why Sparse Random Projections are better than
Random Projections.

3.1 Accuracy of the Base Classifiers

One of the factors contributing to the accuracy of an ensemble is the accuracy of
its base classifiers. Hence, one of the possible causes for the difference between
the performances of Random Projections and Sparse Random Projections may
be due to a difference in the accuracies of the base classifiers. We compared the
results obtained using a single decision tree with the two projection methods.
As in the main experiment, we ran 15 10-fold cross-validations on the 32 data
sets. The results displayed in Table 2 show that

– Decision trees obtained with the projected data are worse than decision trees
obtained with the original data.

– Decision trees obtained after a non-sparse projection are worse than decision
trees obtained after a sparse projection.

One possible explanation of the observed relations is that projecting the data
randomly is similar to introducing noise. The degree of non-sparseness of the
projection matrix gauges the amount of noise. For instance, a diagonal projection
matrix will only rescale the axes and the resultant decision tree will be equivalent
to a decision tree built on the original data.

3.2 Diversity of the Ensemble

Better accuracy of the base classifiers alone is not sufficient to guarantee better
ensemble accuracy. For the ensemble to be successful, accuracy has to be coupled
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Table 2. Comparison of the results obtained with a single decision tree, using the
original and the projected data. The entry ai,j shows the number of datasets for which
the method of column j gave better results than the method of row i. The number in
the parentheses shows in how many of these cases the difference has been statistically
significant.

With pruning Without pruning
original non-sparse sparse original non-sparse sparse

original - 3 (0) 8 (0) - 4 (0) 9 (0)
non-sparse 29 (17) - 30 (13) 28 (15) - 28 (11)
sparse 24 (8) 2 (0) - 23 (7) 4 (0) -

with diversity. To study further the effect due to splitting the feature set, we
consider kappa-error diagrams with sparse and with non-sparse projections.

Kappa-error diagrams is the name for a scatterplot with L(L − 1)/2 points,
where L is the ensemble size. Each point corresponds to a pair of classifiers. On
the x-axis is a measure of diversity between the pair, κ. On the y-axis is the
averaged individual error of the classifiers in the pair, Ei,j = Ei+Ej

2 . As small
values of κ indicate better diversity and small values of Ei,j indicate better
accuracy; the most desirable pairs of classifiers will lie in the bottom left corner.

Figure 1 plots the kappa-error diagrams for two data sets, audiology and
vowel-context, using Random Projections and Sparse Random Projections with
pruned trees. The points come from a 10-fold cross-validation for ensembles of
size 10. We chose these two data sets because they are typical examples of the
two outcomes of the statistical comparisons of sparse and non-sparse random
projections. For the audiology data set, sparse projections are substantially bet-
ter while for vowel-context data the two methods are indistinguishable.

Audiology Vowel-context
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Fig. 1. Kappa-error diagrams for two data sets for sparse and non-sparse random
projections. The ensemble errors are marked on the plots.

The figure shows that the success of the sparse projections compared to non-
sparse projections is mainly due to maintaining high accuracy of the base clas-
sifiers. The additional diversity obtained through the “full” random projection
is not useful for the ensemble.
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The results presented in this section show that splitting the feature set is
indeed essential for the success of Rotation Forest.

4 Number of Feature Subsets, K

No consistent relationship between the ensemble error and K was found. The pat-
terns for different data sets vary from clear steady decrease of the error with K
(audiology, autos, horse-colic, hypothyroid, segment, sonar, soybean, splice, ve-
hicle and waveform datasets), through non-monotonic (almost horizontal) lines,
to marked increase of the error with K (balance-scale, glass, vowel-nocontext and
wisconsin-breast-cancer datasets). The only regularity was that for K = 1 and
K = n the errors were larger than these with values in-between. This is not unex-
pected. First, for K = 1, we have non-sparse projections, which were found in the
previous section to give inferior accuracy to thatwhen sparseprojectionswereused.
Splitting the feature set intoK = 2 subsets immediately makes the rotationmatrix
50%sparse,which is a prerequisite for accurate individual classifiers and ensembles
thereof. On the other hand, if K = n, where n is the number of features, then any
random projection reduces to rescaling of the features axes, and the decision trees
are identical. Thus for K = n we have a single tree rather than an ensemble.

As with K, there was no consistent pattern or regularity for M ranged between
1 and 10. In fact, the choice M = 3 in [15] has not been the best choice in terms
of smallest cross-validation error. It has been the best choice for only 4 data sets
out of the 32, and the worst choice in 8 data sets! Thus M = 3 has not been a
serendipitous guess in our previous study. As Rotation Forest outperformed bag-
ging, AdaBoost and Random Forest for this rather unfavourable value of M , we
conclude that Rotation Forest is robust with respect to the choice of M (or K).

5 Ensemble Size, L

All our previous experiments were carried out with L = 10 ensemble members.
Here AdaBoost.M1, Random Forest and Rotation Forest were run with L vary-
ing from 1 (single tree) to 100. Only unpruned trees were used because Random
Forest only operates with those. Since the classification accuracies vary signifi-
cantly from dataset to dataset, ranking methods are deemed to provide a more
fair comparison [7]. In order to determine whether the ensemble methods were
significantly different we ran Friedman’s two-way ANOVA. The ensemble accu-
racies for a fixed ensemble size, L, were ranked for each dataset. Figure 2 plots
the average ranks of the four methods versus ensemble size, L. All results shown
are from a single 10-fold cross-validation. If the ensemble methods are equivalent,
then their ranks would be close to random for the different data sets. According
to Friedman’s test, the ensemble methods are different at significance level 0.005
for all values of L. However, the differences are largely due to the rank of bagging
being consistently the worst of the four methods. A further pairwise comparison
was carried out. With significance level of 0.1, Rotation Forest was found to be
significantly better than bagging for L ∈ {3, 6, 10− 100}, better than AdaBoost
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Fig. 2. The average ranks (R̄) of the four ensemble methods as a function of the
ensemble size (L)

for L ∈ {4, 7, 11, 12}, and better than Random Forest for L ∈ {1 − 5, 7, 8}. The
differences are more prominent for small ensemble sizes. However, we note the
consistency of Rotation Forest being the best ranking method across all values
of L, as shown in Figure 2.

6 Suitability of PCA

6.1 Alternatives to PCA

Principal Component Analysis (PCA) has been extensively used in statistical
pattern recognition for dimensionality reduction, sometimes called Karhunen-
Loéve transformation. PCA has also been used to extract features for classifier
ensembles [16, 17]. Unlike the approaches in the cited works, we do not employ
PCA for dimensionality reduction but for rotation of the axes while keeping all
the dimensions.

It is well documented in the literature since the 1970s that PCA is not partic-
ularly suitable for feature extraction in classification because it does not include
discriminatory information in calculating the optimal rotation of the axes. Many
alternative linear transformations have been suggested based on discrimination
criteria [11,9,13,19,18]. Sometimes a simple random choice of the transformation
matrix has led to classification accuracy superior to that with PCA [8].

To examine the impact of PCA on Rotation Forest, we substitute PCA by
Sparse Random Projections and Nonparametric Discriminant Analysis (NDA)
[12,10,6]. The Sparse Random Projections were all non-degenerate but were not
orthogonal in contrast to PCA.

We compared Rotation Forest (with PCA, NDA, Random Projections and
Sparse Random Projections), denoted respectively RF(PCA), RF(NDA), RF(R)
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and RF(SR), with bagging, AdaBoost, and Random Forest. We also decided to
include in the comparison two more ensemble methods, LogitBoost and Decorate,
which have proved to be robust and accurate, and are available from Weka [20].

6.2 Win-Draw-Loss Analysis

Tables 3 and 4 give summaries of the results.

Table 3. Comparison of ensemble methods

(2) (3) (4) 5) (6) (7) (8) (9) (10)∗

(1) Decision Tree 11/21/0 12/19/1 18/14/0 11/19/2 8/22/2 9/20/3 19/13/0 17/15/0 20/12/0
(2) Bagging 4/27/1 10/21/1 2/27/3 3/27/2 4/24/4 6/26/0 7/25/0 9/23/0
(3) AdaBoost 7/24/1 1/26/5 1/28/3 3/23/6 5/26/1 5/26/1 8/23/1
(4) LogitBoost 0/24/8 0/24/8 1/21/9 0/29/2 2/26/3 2/28/1
(5) Decorate 5/27/0 2/25/5 6/26/0 6/26/0 7/25/0
(6) Random Forest 2/26/4 6/26/0 8/24/0 9/23/0
(7) RF(R) 7/25/0 8/24/0 9/23/0
(8) RF(SR) 1/31/0 1/31/0
(9) RF(NDA) 0/32/0
∗(10) RF(PCA)

Table 4. Ranking of the methods using the significant differences from all pairwise
comparisons

Number Method Dominance Win Loss Average rank
(10) RF(PCA) 63 65 2 2.750
(4) LogitBoost 59 66 7 3.656
(9) RF(NDA) 50 54 4 3.938
(8) RF(SR) 44 49 5 4.219
(3) AdaBoost.M1 2 34 32 6.219
(6) Random Forest -19 21 40 6.281
(1) Bagging -23 22 45 6.500
(4) Decorate -25 19 44 6.844
(7) RF(R) -34 21 55 5.719
(1) Decision Tree -117 8 125 8.875

The three values in each entry of Table 3 refer to how many times the method
of the column has been significantly-better/same/significantly-worse than the
method of the row. The corrected estimate of the variance has been used in the
test, with level of significance α = 0.05.

Table 4 displays the overall results in terms of ranking. Each of the methods
being compared receives a ranking in comparison with the other methods. The
Dominance Rank of method ‘X’ is calculated as Wins–Losses, where Wins if
the total number of times method ‘X’ has been significantly better than another
method and Losses is the total number of times method ‘X’ has been significantly
worse than another method.

To our surprise, PCA-based Rotation Forest scored better than both NDA
and Random Projections (both sparse and non-sparse). It is interesting to note
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that there is a large gap between the group containing Rotation Forest models
and LogitBoost on the one hand and the group of all other ensemble methods on
the other hand. The only representative of Rotation Forest in the bottom group
is Random Projections, which is in fact a feature extraction ensemble. It does
not share one of the most important characteristic of the rotation ensembles:
sparseness of the projection. We note though that if the problem has c > 2
classes, LogitBoost builds c trees at each iteration, hence Lc trees altogether,
while in Rotation Forest the number of trees is L.

The last column of the table shows the average ranks. The only anomaly in
the table is the rank of RF(P) which places the method further up in the ta-
ble, before Adaboost.M1. The reason for the discrepancy between Dominance
and Average rank is that RF(P) has been consistently better than Adaboost.M1
and the methods below it but the differences in favour of RF(P) have not been
statistically significant. On the other hand, there have been a larger number of
statistically significant differences for the problems where Adaboost.M1, Ran-
dom Forest, bagging and Decorate have been better than RF(R). PCA seems to
be slightly but consistently better than the other feature extraction alternatives.
Sparse random projections are the next best alternative being almost as good
as NDA projections but substantially cheaper to run.

7 Conclusions

Here we summarize the answers to the four questions of this study

1. Is splitting the features set F into subsets essential for the success of Rotation
Forest? Yes. We demonstrated this by comparing sparse with non-sparse ran-
dom projections; the results were favourable to sparse random projections.

2. How does K (respectively M) affect the performance of Random Forest? No
pattern of dependency was found between K (M) and the ensemble accuracy
which prevent us from recommending a specific value. As M = 3 worked well
in our experiments, we propose to use the same value in the future.

3. How does Rotation Forest compare to bagging, AdaBoost and Random For-
est for various ensemble sizes? Rotation Forest was found to be better than
the other ensembles, more so for smaller ensembles sizes (Figure 2).

4. Is PCA the best method to rotate the axes for the feature subsets? PCA was
found to be the best method so far.

In conclusion, the results reported here support the heuristic choices made during
the design of the Rotation Forest method. It appears that the key to its robust
performance lies in the core idea of the method – to make the individual classifiers
as diverse as possible (by rotating the feature space) and at the same time not
compromising on the individual accuracy (by choosing sparse rotation, keeping
all the principal components in the rotated space and using the whole training
set for building each base classifier).
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Abstract. A new optimization technique is proposed for classifier fu-
sion — Cooperative Coevolutionary Ensemble Learning (CCEL). It is
based on a specific multipopulational evolutionary algorithm — cooper-
ative coevolution. It can be used as a wrapper over any kind of weak
algorithms, learning procedures and fusion functions, for both classifica-
tion and regression tasks. Experiments on the real-world problems from
the UCI repository show that CCEL has a fairly high generalization per-
formance and generates ensembles of much smaller size than boosting,
bagging and random subspace method.

1 Introduction

Combining classifiers is one of the most prominent techniques currently used
to augment the accuracy of learning machines. A large number of combination
schemes have been proposed in the literature [1].

Boosting is probably the most popular combination technique [2]. Base classi-
fiers are trained in a sequence so that each focuses its attention on the “hardest”
examples poorly classified by the previous ones. Outputs of the base classifiers
are aggregated by the weighted voting. Boosting is simple and powerful, yet it
suffers from certain disadvantages. First, the greedy sequential strategy takes
into account only the previous classifiers but not the next ones, thus making the
classifier trained be suboptimal in the composition. Second, outliers become the
“hardest” examples with high probability, so concentrating on them may weaken
the base classifiers. To compensate for these drawbacks boosting generates ex-
haustively large number of base classifiers. Generalization error of boosting may
reach its minimum at thousands of base classifiers [3].

Bagging trains classifiers independently on different parts of the training set,
thus making them sufficiently diverse [4]. Training subsets are created by drawing
objects randomly with replacement from the initial training set. Base classifiers
trained on these subsets are aggregated using simple or weighted voting. Bagging
is rather effective on small data sets and when base learning algorithm is instable,
that means small changes in the training set may lead to significantly different
classifiers [5]. If it is not the case, bagging does not improve the performance
of a single classifier much [6]. Also, though the bootstrapping procedure helps
maintain the diversity, no optimization is made to select training subsets. Then
the resulting composition may be rather far from optimal. Like boosting, these
drawbacks are compensated for by taking an exhaustive number of classifiers.

M. Haindl, J. Kittler, and F. Roli (Eds.): MCS 2007, LNCS 4472, pp. 469–478, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



470 D. Kanevskiy and K. Vorontsov

Random Subspace Method (RSM) trains base classifiers independently on the
same training set using different random subsets of features [7]. Outputs of the
obtained classifiers are aggregated by simple majority voting. RSM helps struggle
with the curse of dimensionality and is useful when the number of training
objects is small compared to the number of features [8]. Again, the disadvantage
is that little optimization is made to select feature subsets carefully, that again
leads to a very large number of base classifiers.

Evolutionary Algorithms are frequently used in pattern recognition for feature
selection and classifier fusion. For example, [9] exploits a genetic optimization
technique to choose different subsets of features for the constituents of the en-
semble, and also the type of each base classifier. The fitness function used in this
approach is claimed to be advantageous, because it evaluates the performance of
the combination, not the single classifiers. But the encoding of the chromosome
strongly depends on the number of classifiers in the ensemble, so it must be
prespecified. This often leads to another branch of resource-intensive research
aimed at choosing the best ensemble size. A canonical genetic algorithm is used
in [10] to independently choose a separate feature subset for each base classifier.
After the subsets are chosen, one of the known fusion techniques (boosting, bag-
ging) is applied without further ensemble optimization. This approach implicitly
feeds different base classifiers with different subsets of objects and features, but
no global optimization is used to choose the subsets, that would optimize the
performance of the ensemble as a whole.

Some contributions use genetic optimization to choose a subset of classifiers
from a wider set of pretrained ones. They may strongly depend on the type of
the learning machine such as neural networks [11], or exploit some additional
information such as reliability measures [12]. Both approaches do not optimize
the ensemble globally, leaving this task to the local optimization.

The latter two approaches are combined in [13], where a two-level multi-
objective genetic algorithm is suggested. The first level finds the Pareto-optimal
front of feature subsets, while the second chooses the best ensemble of classifiers
among those trained on the Pareto-optimal feature subsets. The chosen classi-
fiers are then averaged to produce the final output. This also reduces the fusion
problem to a number of independent optimization tasks, and no global optimiza-
tion is held to make classifiers work together. And still the number of classifiers
can not be chosen automatically.

There is also a technique specific to neural networks that incorporates the power
of evolutionary optimization with thoroughly selected heuristics [14]. This tech-
nique automatically determines the number of hidden neurons in NN and the num-
ber of NNs in the ensemble. But a greedy optimization technique (though with
feedback) does not make it possible to take advantage of classifier cooperation.

In this paper we use a special kind of evolutionary algorithm, inspired by the
symbiosis in nature, and called cooperative coevolution [15]. It makes it possible
to optimize all base operators and fusion function simultaneously, learns base op-
erators to cooperate rather than to solve the problem individually, and chooses the
number of operators dynamically, thus obtaining an accurate small size ensemble.
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This technique is appropriate to any type of base classifiers and fusion functions
for both binary and multiclass classification. It can be easily propagated to regres-
sion tasks also. We embody this approach into a new ensemble learning algorithm
called Cooperative Coevolutionary Ensemble Learning (CCEL). Section 2 intro-
duces the necessary notation. Section 3 describes the universal CCEL framework.
Section 4 specifies it for the linear fusion. Section 5 presents the experimental re-
sults and compares CCEL with other popular linear fusion techniques.

2 Definitions and Notation

We consider an input space X , an output space Y and a given finite dataset
D = {xi, yi}�

i=1 of pairs from X × Y . Elements of X are described by n features
gj : X → Vj , j = 1, . . . , n, where Vj is a set of all permissible values of the
feature gj. The goal is to learn a function a : X → Y that approximates the
unknown dependence of outputs on inputs. Approximation quality of a function a
on a finite set U ⊂ D is measured by the empirical error :

Q(a, U) =
1

|U |
∑

xi∈U

L(a(xi), yi),

where L(y, y′) is a real-valued loss function that penalties the deviation of the
output a(xi) from the truth yi.

For the sake of generality and following algebraic approach to pattern recog-
nition [16] we introduce an intermediate space R and suppose that function a
has a form of a superposition: a(x) = C(b(x)) for any x ∈ X , where b : X → R
is called base learner, and C : R → Y is a fixed function. For example, in the
binary classification task Y = {−1, +1}, if R = R, C(b) = sgn(b), then b(x)
is a real-valued classifier. In the multiclass task with Y = {1, . . . , M}, the reason-
able choice is R = R

M , C(b1, . . . , bM ) = argmaxy∈Y by. Regression and binary
classification are trivial examples with the most natural choice R = Y , C(b) = b.

An ensemble of base learners b1(x), . . . , bp(x), aggregated by a fusion func-
tion F : Rp → R is defined as a superposition:

a(x) = C
(
F

(
b1(x), . . . , bp(x)

))
. (1)

The most well-known example is the linear fusion, also called weighted voting :

F (b1, . . . , bp) = α1b1 + · · · + αpbp. (2)

Here the usual requirement αi ≥ 0 means that F must be a monotone function
of its arguments. Less known are non-linear monotone fusion functions for both
classification and regression tasks [17].

Learning algorithm is a mapping μ : (U, G) �→ b that generates base learner
b : X → R using a finite subset of objects U ⊆ D described by a finite subset of
features G ⊆ {g1, . . . , gn}. For example, μ may be an empirical error minimizer:

μ(U, G) = argmin
a∈A(G)

Q(a, U),

where A(G) is a set of functions that uses only features from G.
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3 Cooperative Coevolutionary Ensemble Learner

In this section we propose a generalized evolutionary algorithm for the global
optimization of composition (1). It uses a fixed learning algorithm μ to train base
learners b1, . . . , bp. We do not restrict neither the family of algorithms A(G) nor
the optimization technique that the learning algorithm μ may apply.

The algorithm forms a set of p(t) isolated populations Π1(t), . . . , Πp(t)(t) at
each iteration t = 1, . . . , tmax. Each population Πj(t) is a set of N0 individuals.
Each individual is a binary vector of the length �+ n, which encodes a subset of
objects U ⊆ D and a subset of features G ⊆ {g1, . . . , gn}. So, each individual vj

from Πj(t) can be considered as a pair vj = (U, G) and thus can be fed to the
learning algorithm μ to obtain a base learner bj = μ(vj).

The evolutionary process starts from a single population initialized at random,
see step 1 of Algorithm 1. Populations evolve independently except one but very
important thing: the fitness ϕ(vj) of the individual vj is evaluated as the quality
of the ensemble (1), in which j-th position is occupied by bj , and others are the
most fitted base learners b∗s, taken from other populations Πs(t), s �= j:

ϕ(vj) = Q
(
F (b∗1, . . . , b

∗
j−1, μ(vj), b∗j+1, . . . , b

∗
p(t)), D

)
.

This is the main distinguishing property of the cooperative coevolution. Another
ways exist to choose representatives from other populations, but the fittest ones
are argued to be better if the evaluation involves only one collaboration [18].

All populations go through a common generational loop. Genetic operations
(crossover and mutation) are applied to the individuals, creating offsprings, that
form an intermediate population Π ′′

j . The main population for the next gen-
eration consists of a number of most fitted individuals, selected from the in-
termediate population, and a few elite individuals, transferred from the pre-
vious main population unchanged. For each generation t the best composition
F (b1, . . . , bp(t)) is selected and saved.

Populations may be added or erased during the evolution, changing the size p
of the ensemble. A population is erased when its contribution into the ensem-
ble remains too small for a number of generations. New population is created
when the evolution comes into stagnation. The evolutionary process stops, when
changing the size p does not cease the stagnation.

Now we give details of the heuristics governing the evolutionary process. There
is quite a number of ways to define them, and our choice is based on either our
or other available empirical observations.

Init(N0) generates N0 random individuals. Its parameters are the probabili-
ties of adding an object px and a feature pg. We’ve chosen these to be 0.5 both,
but prohibited the chromosomes with less than 25% of objects or features.

Select(Π, N) is chosen to be the deterministic truncation selection. It returns
a subset of N fittest individuals from the population Π . In CCEL it is used twice:
first, when N2 elite individuals are transferred to the next generation (step 4);
second, when N0 best individuals from intermediate population are taken to form
the population of the next generation (step 6).
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Algorithm 1. Cooperative Coevolutionary Ensemble Learner (CCEL).
Require:

Sample D = {xi, yi}�
i=1;

Base learning algorithm μ;
Parameters: tmax, px, pg, pm, N0, N1, N2, d1, ε1, d2, ε2, d3, ε3;

Ensure:
ensemble F (b1, . . . , bp);

1: initialize a single population:
p(1) := 1; Π1(1) := Init(N0);

2: for all generations t := 1, . . . , tmax do
3: for all populations Πj(t), j := 1, . . . , p(t) do
4: create an intermediate population:

Π ′
j := Crossover(Πj(t),N1);

Π ′′
j := Mutation(Π ′

j) ∪ Select(Πj(t),N2);
5: fix the best individual v∗

j and corresponding b∗
j :

v∗
j := arg min

v∈Π′′
j

ϕ(v); b∗
j := μ(v∗

j ); Qt := ϕ(v∗
j );

6: keep top N0 individuals:
Πj(t + 1) := Select(Π ′′

j , N0);
7: if Contribution(Πj) is small then
8: delete population Πj ; p(t + 1) := p(t) − 1;
9: if Stagnation(Q, t) then

10: add population Πp(t)+1(t + 1) := Init(N0); p(t + 1) := p(t) + 1;
11: if Termination(Q, t) then
12: exit;
13: return ensemble F

�
b∗
1, . . . , b

∗
p(t)

�
.

Crossover(Π, N1) is the uniform crossover operator, generating N1 new in-
dividuals (offsprings) in the following way. Two individuals (parents) are taken
at random from the population Π and the offspring inherits every chromosome
bit equiprobably from one of the parents.

Mutation(Π) is the usual bit-flip operator that makes random changes in the
bits of the individuals in Π . The canonical choice for the bit-flip probability
is pm = 1

k , where k is the length of the chromosome. In our experiments we used
a greater value, which seems to provide better exploration of the search space
in combination with the elitist strategy [19].

Contribution(Πj) evaluates the contribution of the population Πj to the
ensemble using the take-one-out procedure. Two ensembles are constructed: with
and without the j-th base learner, and their respective qualities Qjt and Q̄jt

are estimated. The contribution is defined as their average difference for the last
d1 generations: 1

d1

∑t
τ=t−d1+1

(
Q̄jτ −Qjτ

)
. If the contribution is smaller than ε1,

the population is erased and the size of the ensemble decreases by one.
Stagnation(Q, t) checks the stagnation criterion for the sequence Q = {Qt}

at the time t. New population is created when no significant quality growth
happens last d2 generations: Q∗

t−d2
− Q∗

t < ε2, where Q∗
t = min{Q1, . . . , Qt}.
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Fig. 1. The main characteristics of the evolutionary process as the functions of the
generation number t. On the top chart: the thick curve is the margin functional �Q on
the training set with values along the left vertical axis; the thin curve is the correct
answers rate on the test set with the values along the right vertical axis. The bottom
chart shows the number of populations p(t) that is equal to the ensemble size.

Termination(Q, t) is a criterion of a lingering stagnation: Q∗
t−d3

− Q∗
t < ε3,

where d3 	 d2 is assumed. At least several unsuccessful changes of the ensemble
size p should be made before stopping the whole process.

The contribution, stagnation and termination criteria enable one to control
the number of populations dynamically [15]. Fig. 1 shows s typical example of
how CCEL works. Here several attempts to create and erase population were
made before termination criterion has stopped the process. Note, that the struc-
tural change of a composition always leads to a significant drop of the quality
on both training and test samples, but after a few generations it rehabilitates.

Now the universal CCEL framework is fully defined, except one thing: noth-
ing was said about the optimization of the fusion function F . Although this
framework makes it possible to add another population of fusion parameters
and proceed in the same manner, this approach is computationally ineffective.
Instead we suggest one should use fast optimization procedures specific to the
chosen fusion function. In the next section we demonstrate this for the weighted
voting (2).

4 CCEL for Linear Fusion

In this section we consider the linear fusion functions (2) for binary classification
task assuming Y = {−1, +1}, C(b) = sgn(b).

A wide variety of weight optimization techniques is known [1]. The trivial one
is the simple voting, when αj = 1 and no tuning is necessary. The other end
of the stick is the Support Vector Machine (SVM), that allows one to obtain
near-optimal weights, but seems to be too slow for evolutionary algorithms.
In this work we used the näıve Bayes assumption that the base classifiers are
independent, making it possible to calculate the weights explicitly:

αj = ln
|S| − Ej + 1

Ej + 1
,
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where Ej is the number of errors that the classifier bj makes on a sample S ⊆ D.
In CCEL each base algorithm is trained on its own subsample U ⊂ D, therefore
three variants of weight estimation are possible: from training S = U , from
testing S = D \ U , or from the full sample S = D. Our preliminary experiments
have shown that the second variant is the best. Additionally, if Ej ≥ 1

2 |S|, then
αj is taken to be zero, so the algorithm bj is excluded from the ensemble.

The quality functional Q(a, U) is commonly defined as the error rate of an
ensemble a on a sample U . Yet linear classifiers are known to generalize better
when the direct maximization of margins is used [20]. For the composition (2)
the margin of an object xi is defined as

M(xi) =
yi

∑p
j=1 αjbj(xi)∑p

j=1 αj
.

The margin M(xi) can be thought of as a distance from the object xi to the
classes boundary. If the margin is negative, M(xi) < 0, then the composition
makes an error, a(xi) �= yi. Hence we suggest the quality functional Q̃, defined
as the average margin of the training objects:

Q̃(a, U) =
1

|U |
∑

xi∈U

M(xi) → max
a

.

A number of our preliminary experiments has shown, that Q̃ really outperforms
both the standard error rate functional and its combinations with the explicit
diversity measures [21].

The following heuristic simplifies the Contribution procedure in the case of
linear fusion: the contribution of Πj can be evaluated as the average weight of
the j-th base classifier for the last d1 generations: 1

d1

∑t
τ=t−d1+1 αj(τ). When

this value becomes too small, the population is erased.
Yet another linear-specific heuristic is the “1-3 rule”. As the weighted voting

of two classifiers makes no sense (the one with larger weight always wins), a
1-element ensemble is always increased to a 3 elements one.

Finally, note that the multiclass version of the margins functional is also
available due to [22], thus making it possible to use the algorithm described for
the multiclass problems.

5 Experimental Results

In this section the linear fusion CCEL is compared experimentally with other
linear methods: boosting, bagging, and RSM.

The base algorithm was taken to be the näıve Bayes classifier [1]. Its learning al-
gorithm is very fast, what is very important for the resource-intensive evolutionary
techniques. On the other hand, the quality of this algorithm is rather moderate,
because the underlying assumption of feature independence does not hold for most
real-world problems. Also note that the näıve Bayes classifier is rarely used as an
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Table 1. Bias and variance estimations through 10 runs of 10-fold cross-validation for
12 problems from the UCI repository

Problem Näıve Bayes CCEL boosting bagging RSM
bias var bias var bias var bias var bias var

Cancer 5.24 0.37 3.14 0.32 3.01 1.74 5.32 0.36 4.17 0.77

Credit-a-1 14.07 1.15 11.50 1.46 14.80 1.59 14.13 1.07 13.76 2.53

Credit-a-2 15.05 0.85 12.74 1.42 13.81 4.85 14.81 1.05 14.77 1.56

Credit-g 28.23 3.84 21.04 4.74 24.46 5.02 27.57 3.73 27.61 4.54

DBC 11.04 0.47 4.64 0.74 9.29 15.71 10.82 0.57 10.64 0.64

Heart 16.78 2.64 15.44 2.71 13.73 10.38 16.45 2.87 16.60 2.83
Hepatitis 15.11 1.82 14.12 4.27 15.25 4.65 14.40 2.40 15.19 2.26

Liver 28.51 7.90 23.77 11.06 24.50 10.34 28.25 8.31 28.40 8.18

Diabetes 29.27 2.49 21.60 2.06 18.40 12.99 28.76 2.69 28.44 3.13

Survival 23.69 7.60 23.01 4.67 21.03 6.09 23.87 6.34 23.51 8.99

Tic-tac-toe 24.61 4.30 18.82 5.80 32.56 0.73 25.01 4.02 24.51 4.73

Voting 5.82 0.79 4.03 0.57 4.94 1.31 5.81 0.73 6.09 0.92

Table 2. The test error rates with standard deviations (in percents) averaged through
10 runs of 10-fold cross-validation for 12 problems from the UCI repository. For CCEL
the average size of the ensemble is written in parentheses.

Problem Näıve Bayes CCEL boosting bagging RSM

Cancer 5.55 ± 0.26 3.46 ± 0.37 (3.16) 4.14 ± 1.48 5.63 ± 0.24 4.97 ± 0.40

Credit-a-1 15.22 ± 0.39 12.96 ± 0.57 (2.48) 25.23 ± 6.65 15.20 ± 0.42 15.31 ± 0.62

Credit-a-2 15.94 ± 0.40 14.16 ± 0.53 (2.99) 17.72 ± 2.86 15.87 ± 0.45 16.12 ± 0.48

Credit-g 32.07 ± 0.67 25.78 ± 0.65 (1.74) 29.48 ± 0.93 31.30 ± 0.67 32.11 ± 0.71

DBC 11.50 ± 0.30 5.38 ± 0.44 (2.66) 25.00 ± 7.22 11.40 ± 0.27 11.24 ± 0.35

Heart 19.42 ± 0.92 18.15 ± 0.85 (3.32) 24.11 ± 6.47 19.31 ± 1.16 19.35 ± 1.19

Hepatitis 16.93 ± 1.06 18.38 ± 1.43 (2.87) 19.90 ± 1.80 16.80 ± 1.14 17.32 ± 1.46

Liver 36.42 ± 1.86 34.38 ± 0.95 (1.95) 34.84 ± 2.45 36.56 ± 1.88 36.48 ± 1.77

Diabetes 31.76 ± 0.63 23.66 ± 0.43 (2.30) 31.39 ± 2.05 31.45 ± 0.68 31.53 ± 0.58

Survival 31.29 ± 2.58 26.21 ± 1.02 (2.02) 27.12 ± 1.56 30.22 ± 2.77 32.41 ± 3.24

Tic-tac-toe 28.92 ± 1.02 24.61 ± 1.11 (2.59) 33.29 ± 0.40 29.03 ± 0.96 29.20 ± 1.07

Voting 6.61 ± 0.60 4.60 ± 0.46 (3.53) 6.25 ± 0.65 6.54 ± 0.40 7.0 ± 0.75

ensemble building block because of its very low variance, which prevents standard
fusion techniques from improving its quality. The low variance leaves the only way
of significant performance improvement: reducing a bias. Both bagging and RSM
are known to fail in reducing bias, while boosting sometimes effectively trades off
bias for variance and vice versa [6,5]. To estimate how CCEL works in these terms
we made an empirical evaluation of bias and variance using a standard technique
from [23]. The results are summarized in Table 1.

We compared CCEL with the base classifier, AdaBoost, bagging, and RSM.
For the latter three methods the ensemble size was fixed to be p = 250 [4]. The
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experiments were made on 12 two-class problems from the UCI repository [24].
Table 2 summarizes the average test error.

The results verify the assumption that bagging and RSM fail to improve the
quality of the low-variance base classifier. CCEL competes with boosting in bias
reduction, while preserving substantially lower level of variance. As a result,
CCEL outperforms others in 11 problems out of 12.

6 Conclusion

Cooperative coevolution is a very natural approach to ensemble learning. It
trains base learners to cooperate with each other rather than to solve the prob-
lem independently. Each base learner tends to specialize on its own subset of
objects and subspace of features. This results in significant reduction of the en-
semble size compared to standard techniques. CCEL takes 3–6 base learners
whereas boosting, bagging and RSM require hundreds. CCEL is applicable to
base learning algorithms and fusion functions of any type, though it is also open
to any type-specific heuristics. CCEL yields good results even for such stable
and inaccurate algorithm as näıve Bayes. Finally, analysis of the CCEL results
can tell much about the structure of the problem. For example, one can deter-
mine most important features and filter out some useless objects (outliers). The
only disadvantage of CCEL is the training speed: the solution of a middle-size
problem takes a few minutes on a usual PC. On the other hand, CCEL is very
suitable as an “anytime” learning algorithm that may be interrupted at any
moment to return a solution, and then continued to learn more.
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Abstract. We are concerned with the problem of inferring genetic regulatory 
networks from a collection of temporal observations. This is often done via 
estimating a Dynamic Bayesian Network (DBN) from time series of gene 
expression data. However, when applying this algorithm to the limited 
quantities of experimental data that nowadays technologies can provide, its 
estimation is not robust. We introduce a weak learners' methodology for this 
inference problem, study few methods to produce Weak Dynamic Bayesian 
Networks (WDBNs), and demonstrate its advantages on simulated gene 
expression data.  

Keywords: Genetic Networks, Time Series Data, Dynamic Bayesian Networks, 
Weak Learners. 

1   Introduction 

1.1   Biological Background 

The genome plays a central role in the control of cellular processes. Genes are 
involved in the control of intracellular and intercellular processes. Gene expression is 
a complex process regulated at several stages in the synthesis of proteins. A protein 
synthesized from DNA may function as a transcription factor which fulfills these 
regulatory functions. This gives rise to genetic regulatory systems that can be 
modeled by networks of regulatory interactions. These systems determine which 
genes are expressed and when. A central goal of molecular biology is to understand 
these regulatory mechanisms of gene transcription. Gaining an understanding of the 
interactions between genes in a regulatory network raises a scientific challenge with 
potentially industrial rewards. So far, researchers have gained only partial success in 
trying to discover temporal structure of an underlying causal network.  

1.2   Bayesian Networks 

Graphical models use graphs to model regulatory network where the nodes of the 
graph represent random variables (genes), and the edges represent regulation 
interaction between them. Bayesian (belief) Networks (BNs) [1] generalize the 
Boolean network model, Hidden Markov Models, and other models widely used in 
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the computational biology community [2]. The BN approach is attractive because of 
its solid basis in statistics, which enables it do deal with the stochastic aspects of gene 
expression and noisy data (typically inherent in both the biological processes and the 
measurements) in a natural way. They were first applied to this kind of problem by 
Friedman et al. [3] and has been widely used since (e.g. [4-9]). BN provides 
interpretable and flexible models for representing probabilistic relationships between 
multiple interacting genes. Two major limitations of this approach have been 
discussed: first is the problem of assigning direction of causation to edges [1] and 
second is the acyclic constraint of BN, which rules out recurrent structures. Both of 
these limitations can be overcome by using Dynamic Bayesian Networks (DBN) 
which extends BN for the case of temporal data. 

1.3   Ensemble of Weak Learners 

It turns out that a robust inference and model interpretation using DBN, requires large 
amounts of temporal observations, which currently, are difficult to achieve. Several 
statistical methods were developed to extend the original datasets by effectively 
increasing the number of observations. We can mention "re-sampling" methods such 
as Leave-K-Out, Bootstrapping and Noisy Bootstrapping, and Boosting technologies. 
These methods often use several different learners, regard them as “weak” learners, 
and combine them into one solution. Learners can utilize different learning algorithms 
(e.g. Neural Network and CART); they can be of different architectures (e.g. Neural 
Networks with different number of hidden units) or can be learned from data that is 
manipulated in various ways. The goal is to make them more likely to converge to 
different local minima, and so produce a more independent set of results. Better 
performance is then often achieved by assembling their products into one result [10]. 
These methods showed that such ensemble results in lower variance when the learners 
forming them are not sharing the same errors (e.g. [11-14]). 

Weak Learner methods are popular in solving classification and regression 
problems but have not been extended to Dynamic Bayesian Networks. Few early 
studies have tried averaging methods [15-17], but only for the static case. Our 
approach is a more comprehensive one. We introduce novel algorithms to generate 
Weak Dynamic Bayesian Networks (WDBN) Learners. These Learners use the same 
DBN inference procedure, but manipulate the raw data differently. We demonstrate 
how to generate inference from multiple networks and show that the ensemble of 
these algorithms' results increases the robustness of the inference. 

1.4   Simulations 

Bayesian networks, as well as other models, are often evaluated by comparing the 
predicted regulatory interactions with those known from the biological literature. This 
approach is problematic due to the absence of known gold standards. In addition, the 
available not-synthetic data sets are not rich enough for this kind of inference models. 
The inference methods require a costly gene expression data that is not feasible 
nowadays. This has led to an increasing interest with the simulative approach, where 
the inference results are easy to evaluate. We demonstrate our results on in silico data. 
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This approach has been successfully used to evaluate algorithm performances on 
different network topologies and data sampling schemes [6, 7]. 

2   Methods 

2.1   Simulating a Regulatory Network 

Our approach is to apply network inference procedures to multiple copies of data 
sampled from the same simulated network, and to evaluate the performances by 
comparing the recovered networks to the original network used by the simulator. A 
simple way to model a system of interacting components is to assume that the change 
of each one of them over time is given by a weighted sum of all other components. In 
our simulator the expression at one time point determines the expression observed at 
the next time point. The simulator was written in MATLAB and provides gene 
expression levels at discrete time points, using a given gene network. Its design is 
based on the simulator presented by Yu et al [9, 18], where updates to values at each 
time point are governed by the stochastic process: 

Yt+1 - Yt = f (Yt) = A (Yt - Thr) + ε (1) 

Where Yt is the vector representing the expression levels of all genes at time t, with 
expression levels ranging from 0 to 100, restricted by a floor and ceiling functions. 
Expression levels are initialized to random values uniformly sampled from this range. 
A is a matrix of gene regulatory interactions which underlies the regulatory network. 
This matrix provides information about relationships between genes and can be used 
to reconstruct the underlying gene expression network. The absolute value of Aij 
represents the strength of the regulation of regulator gene i upon a target gene j. The 
sign of Aij indicates the type of regulation: positive values indicating up-regulation 
and negative values indicating down-regulation. We used only three values of 
interaction: 0 for no interaction and 0.15, -0.15 for positive and negative interactions 
respectively. 

Thr is a vector of threshold regulating values for each gene: a regulator gene exerts 
an influence on its target gene when it is above or below its threshold value. 
Therefore the influence of each gene on its target is proportional to its deviation from 
this threshold value. Following previous studies [9, 18], all gene thresholds have been 
set to half of the maximum value, namely 50 is their "steady state". If the regulator 
gene is present at a level above its steady state value, then its regulatory effect on its 
target genes occurs as specified in A. When the regulator gene value is below its 
threshold value, then its effect is in the opposite direction of that specified in A to 
return the gene to its basal level. The noise term ε is drawn uniformly at random from 
the interval –15 to 15. This term is meant to capture all sources of noise (inherent 
biological noise and measurement errors) and its amplitude is a reasonable 
approximation for this kind of experiments. If a gene has no regulator (all 
corresponding entries in A are zero), then it will move in a random walk, governed 
only by values of ε.  
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2.2   Architecture Inference of the Regulatory Network 

In this study we provide the simulator with an architecture that was used in previous 
studies ([9, 19, 20]). It is illustrated in Figure 1, Left. There are few dozens of genes, 
but only twelve assemble a network, while the others have no regulatory connections 
and therefore are used as destructors. There are 13 gene regulatory interactions within 
this architecture: six of them are negative and seven are positive. The model has one 
negative feedback loop. 

 
Fig. 1. Left: illustration of the architecture. Arrows represent an influence of the upstream 
variable's value at one time step on the downstream variable's value at the next time step. A 
regular arrowhead indicates a positive influence, while upside down arrowhead indicates a 
negative influence. Right: Simulated data for 1000 time points. Depicted are gene expression 
time sequence plot for 5 arbitrary genes. The results are consistent with the original structure. 

2.3   Data Acquisition 

The simulator produces data, corresponding to the following parameters: 
Architecture, Number of observations (time points), noise amplitude and influence 
score (the values within the transition matrix, A). As the simulation runs, the data is 
sampled in pre-specified intervals as one would do in an actual experiment. We define 
the sampling interval to be 5 time units (as discussed in [18]), and so the sampled 
output is the series of expression level vectors (Y0, Y5, Y10 ,.....), analogous to data 
gathered in a micro-array time course experiment. An example for the simulator 
output is illustrated in Figure 1, Right. 

2.4   Inference Packages 

For the core inference problem, we used BANJO ([21]) - a software package for the 
inference of Bayesian networks. We set BANJO’s parameters as following: 
discretization is quantile and uses three states (as discussed in [18]). The scoring 
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method was the Bayesian Dirichlet scoring metric for discrete variables (BDe) that 
computes the relative posterior probability of a network structure given data. This 
scoring method has been shown as superior to the BIC scoring method with respect to 
micro-array data in limited quantities [18]. The graph space was explored using 
simulated annealing algorithm with evaluation of a single random local move (one 
addition, deletion, or reversal of a single edge is “proposed” in each iteration) - the 
search examines a single, randomly selected change to the network and keeps the new 
network if it scores better than the current network, or discards the change if it scores 
lower. This search heuristic has been shown to be as good as other search heuristics 
[18]. BANJO is capable to provide any number of highest scoring networks found by 
the search, instead of a single one. 

2.5   Inference Evaluation 

Based on their existence and nonexistence in the recovered network and the true 
network, we classified the edges into four categories: true positive (TP, an edge that 
exists in both networks), true negative (TN, an edge that does not exist in either 
network), false positive (FP, an edge that exists only in the recovered network) and 
false negative (FN, an edge that exists only in the true network). We study the 
inference algorithms' performances by a metric of sensitivity, precision and error:  

Sensitivity (known also as Recall) = TP / (TP + FN). This measure shows how 
much of the true network was discovered. 

Precision = TP / (TP + FP). This measure shows how much of the inferred network 
is true. We chose precision over the common specificity metric (measuring how many 
of the false edges were wrongly inferred) because of the large number of potential 
interactions in a network that makes it a less relevant metric [18, 19]. 

Error = FP + FN. This error function sums up the number of false edges that were 
detected and the number of true edges that were not detected. It gives equal weight to 
the sensitivity and precision, as we are concerned about the general case.  

One should keep in mind that some false positives are more informative than others, 
in that they link genes that are still nearby in the pathway. With the strict metric 
described above, we regard them as false, just like the other false detections.  

2.6   Generating Weak Bayesian Networks (WDBN) 

To demonstrate our approach of ensemble of weak learners, we compare it to the 
regular DBN inference, as implemented by BANJO. We regard its output edges as 
binary ones: an edge can be included within the network or be kept out from it. 

Averaging Inference Iterations. The search space of this inference problem exceeds 
the ability of the inference algorithm to produce robust solutions and there is no 
guarantee that two different inference iterations will provide two identical outputs. 
Instead of regarding the DBN output as a single inference network, we can regard it 
as a weak learner. We investigate two methods to produce such weak learners: 

DBN iterations - we execute separate and independent inference iterations. 

DBN N-best networks - we observe the N best networks that the algorithm provides. 



484 O. Berkman and N. Intrator 

In both cases we can average the weak learners’ networks and get scoring function 
for the edges. The averaging gives a more continuous score, varying from 0 for edges 
that were not detected to 1 for edges that were detected by all of the learners. 

Leave Observations Out (LOO) WDBN. In this procedure observations are taken 
out of the original data before executing the inference algorithm. For every inference 
iteration, we take out different subset of the dataset. The LOO algorithm has a 
partition parameter, α, which determines how much of the data will be dropped in 
each iteration. For example, if this parameter is set to be 10, then 10 inference 
iterations are executed where ten percent of the data is dropped in each. Several 
approaches can be implemented to decide how to choose the data that is dropped: a 
continuous section of observations, every i-th observation, random observations etc’. 
We chose the first option due to the small advantage it showed (lower error). If the 
raw dataset consists of t observations, (X1, ..., Xt), we can formalize the creation of 
the datasets as follows: 

Dataseti = (X1, ..., X(i-1)t/α, Xit/α, ..., Xt)      i=1,..,α       (2) 

LOO execute the inference procedure for each of the α datasets and gives the edges a 
score representing the proportion of its number of detections from the total number of 
iterations. To fetch a single network one should set a threshold to define the minimal 
score an edge should achieve in order to be included within this inferred graph. 
Naturally, a low threshold is more permissive criteria and will result in high 
sensitivity and low precision, and high threshold will cause the opposite. The sense 
behind this method is to create datasets that “behave” different, and to ensemble them 
to improve the inference. 

Leave Genes Out (LGO) WDBN. LGO is a similar WDBN algorithm. It is 
implemented by executing inference iterations, where in each we take out data rows 
(genes) instead of columns (observations). The act of taking out genes from the data 
seems to be more influential than taking out observations. The sense is that strong 
regulators might screen out weaker ones and by taking a gene out of the dataset we may 
“encourage” the learner to find genes that would have been ignored otherwise. Note that 
the influence of the dropped genes still exists within the data, as it still has its part within 
the simulated dynamics, only its values are obscured to the learner. We executed a 
single iteration for each gene we had chosen to drop; meaning in each iteration only one 
gene is missing from the data. Instead of executing iteration for each gene in the original 
dataset, we start from some estimated set. In this study, we repeat the inference 
procedure for every gene that was detected by the LOO (regarding zero threshold 
value), and drop it out of the data in the corresponding iteration. 

Leave Edges Out (LEO) WDBN. Another way to generate weak Bayesian networks is 
the LEO algorithm which performs iteration for edges and obscures them from the 
inference procedure, each edge in its corresponding iteration. Like the LGO, the LEO 
procedure does not repeat the regular inference procedure for every possible edge, but 
considers only the edges that were detected by the LOO procedure (got positive scores). 
The edges, modeling regulatory connections, are the most fundamental features of the 
DBN model and by focusing on them we expect to achieve more exact results.  
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3   Results 

3.1   Searching Time and N Best Networks 

One of the most interesting aspects of the DBN inference procedure is the time we let 
the searcher look for optimal network. As the search is heuristic, we should guarantee 
that it is able to find good networks. We used here 50 simulated datasets and executed 
the inference on subsets of 100, 150 and 200 time points. We observed the inference 
after 60, 120 and 180 seconds. BANJO can provide as many high-scored networks as 
defined, and we used this feature to compare the quality of the 50 best networks, to 
averaged networks based on the 2, 5, and the 10 best networks for every inference 
iteration. As can be seen in figure 2, the inference is steady already after one minute 
and longer searching time does not make it better. This is due to the difficulty in 
inference from this short temporal structure. While a single inference network can not 
be improved, we observe that fusing more inferred networks results in better inference 
performances; Averaging 5 or 10 best networks (green curves) provides better 
networks than the best scored one (blue curve). Naturally, when averaging networks, 
one should set a threshold value to determine for an edge if it is to be included in the 
inference result or not. We examined the threshold values and found the optimal ones 
regarding the error, for each subset size, searching time and number of averaged 
networks (shown within the legends). We could see that low threshold values result in 
lower error levels. For averaging up to 5 networks, threshold of 0.1 was the optimal 
and for 10 networks, threshold value of 0.2. 

3.2   DBN – Iterations 

As a representative method for DBN-iterations, we executed five inference iterations 
for every dataset, for the same datasets sizes. The iterations were independent from 
each other and the output network was obtained by averaging their output networks. 
The total time for each procedure (run time of the BANJO's algorithm) was kept to be 
3 minutes, therefore 3/5 minutes for each iteration. We could verify that the larger the 
dataset is, the lower the error gets. The trade off between the sensitivity and the 
precision is determined by the threshold value. Low threshold value of 0.1 (every 
edge that was detected at least once is included within the output network) results in 
lower error rates for all the checked dataset sizes. 

3.3   LOO, LGO and LEO 

We used the 50 simulated datasets to study the LOO, LGO and LEO inference 
performances. We limited the search to three minutes for every WDBN inference 
procedure (overall time for all the procedure's iterations). We checked their 
performances according to the number of averaged networks. This has showed 
stronger effect for smaller datasets. Naturally when we were using more networks for 
the averaging, the sensitivity becomes higher and the precision becomes lower. This 
tradeoff was consistent for all of these three methods. 
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Fig. 2. Performances of the DBN versus searching time. Different colors represent different 
numbers of averaged networks: 1 (only best scored network), 2, 5 and 10 best networks. The 
columns represent the sensitivity, precision and error. Within the legends one can observe also 
the optimal threshold values, for each time limit, multiplied by 10 (regarding low error levels). 

 
Fig. 3. Performances of the LGO versus threshold values. The different colors represent the 
different averaged networks, done by averaging 1, 2, 5 and 10 best networks. 
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Fig. 4. Comparison between regular DBN, DBN-iterations, DBN-5-best-networks, LOO-5-
best-networks, LGO-5-best-networks and LEO-5-best-networks as described in text 

As can be seen in figure 3 (shown only for LGO), small threshold values (left side 
of the x-axis) results in lower error rates (right column), and when considering the 
smallest threshold value (0.1), the difference between the number of averaged 
networks (the four different colors) is negligible. 

3.5   DBN Versus WDBNs 

Figure 4 illustrates a comparison between six representative inference methods: 
DBN1, which considers only the highest scored networks (regular DBN), DBNI, 
where the number of iterations was 5 for every dataset, DBN5, LOO5, LGO5 and 
LEO5 that averages the best five networks found by the corresponding inference 
algorithms (hence averaged methods). For the LOO we consider iteration parameter 
of 8. For all of the averaged methods, we used threshold value of 0.1 and limited the 
search to three minutes (overall searching time for all the iterations). It can be clearly 
seen that the averaged methods outperformed DBN1. 

In table 1 one can explore the significance of the improvement, by considering the 
P-values of the coupled t-tests. The improvement is more significant for smaller 
datasets, however still significant for all of the checked datasets sizes. The only 
exception for the zero-rates-P-values is the DBN-iterations for datasets of 100 
observations. This is explained by the fact that the DBN-iterations' learners are much 
less independent, namely the regular DBN inference in this case is quite consistent. 
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Table 1.  P-values of the coupled t-tests with the distributions of the methods' errors. Every 
method averaged five best networks and compared to the regular DBN1. The threshold values 
of the averaged methods were 0.1. 

 100 150 200 
DBNI 0.0275 0.0001 0.0002 
DBN5 0 0 0.0026 
LOO5 0 0.0006 0.0103 
LGO5 0 0.0002 0.0024 
LEO5 0 0.0001 0.0001 

4   Discussion 

The known approach of ensemble of weak learners was used for the problem of 
inferring genetic network from gene expression temporal data. Using a simulated 
data, we have introduced five methods for constructing WDBNs and illustrated their 
superiority regarding regular DBN, mainly achieved for small number of time 
observations, namely more realistic data sets. We evaluate the quality of inference 
and conclude that it is still infeasible to fully uncover underlying regulatory networks 
based only on expression data. However, as the DBN model is one of the most 
popular models for this case, especially when combining the data with prior biological 
knowledge, the discussed methods can improve the inference results. 
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Abstract. We describe an ensemble of classifiers based algorithm for incre-
mental learning in nonstationary environments. In this formulation, we assume 
that the learner is presented with a series of training datasets, each of which is 
drawn from a different snapshot of a distribution that is drifting at an unknown 
rate. Furthermore, we assume that the algorithm must learn the new environ-
ment in an incremental manner, that is, without having access to previously 
available data. Instead of a time window over incoming instances, or an aged 
based forgetting – as used by most ensemble based nonstationary learning algo-
rithms – a strategic weighting mechanism is employed that tracks the classifi-
ers’ performances over drifting environments to determine appropriate voting 
weights. Specifically, the proposed approach generates a single classifier for 
each dataset that becomes available, and then combines them through a  
dynamically modified weighted majority voting, where the voting weights 
themselves are computed as weighted averages of classifiers’ individual per-
formances over all environments. We describe the implementation details of 
this approach, as well as its initial results on simulated non-stationary  
environments. 

Keywords: Nonstationary environment, concept drift, Learn++.NSE. 

1   Introduction 

The problem of learning in nonstationary environments (NSE) has traditionally re-
ceived much less attention than its stationary counterpart. It is perhaps due to inherent 
difficulty of the problem: after all, machine learning algorithms require a formal and 
precise definition of the problem, and in this case, it is even difficult to define the 
problem: what exactly is a nonstationary environment? Informally, it refers to the 
variation of the underlying data distribution that defines the concept to be learned: the 
environment subsequently provides new data, for which the input/output mapping 
(decision boundary) is different than those of the previous datasets. Early work in 
NSE learning, also known as concept drift, have concentrated on formalizing exactly 
what kind of drift and/or how fast of a drift can be learned [1-4].  

Therein lies the difficulty with this problem; change can be slow or fast, abrupt or 
gradual, random or systematic, cyclical, expanding or contracting in the feature space. 
                                                           
* Corresponding author. 
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Several approaches have been proposed for various combinations of such changes, 
which typically include a mechanism to (i) detect the drift and/or its magnitude; (ii) 
learn the change in the environment; and/or (iii) forget what is no longer relevant.  

Many algorithms specifically designed for concept drift are generally based in part 
on the ideas used in FLORA [3]: use a timing window (fixed or variable) to choose a 
block of (new) instances as they come in, and then train a new classifier. The window 
size can be increased or decreased depending on how fast the environment is chang-
ing. Of course, such algorithms have a built-in forgetting mechanism with the implicit 
assumption that those instances that fall outside of the window are no longer relevant, 
and the information carried by them can be forgotten. Other approaches try to detect 
when a substantial change has occurred (novelty detection), and then update the clas-
sifier [5-8], or find the extreme examples that carry most relevant and novel informa-
tion to train a classifier (partial instance memory) [9]; still others detect and purge 
those instances that no longer carry relevant information, and train a new classifier 
with the remaining block of data [10]. A different group of approaches treat the non-
stationary learning as a prediction problem, and use appropriate classification (e.g., 
PNN) [11] or tracking algorithms (such as Kalman filters) [12]. 

More recently, ensemble based approaches have also been proposed. As reviewed 
by Kuncheva in [13], such algorithms typically fall into one of the following catego-
ries: (i) dynamic combiners where, for a previously trained fixed ensemble, the com-
bination rule is changed  to track the concept drift, e.g., weighted majority voting or 
Winnow based algorithms [14]; (ii) algorithms that use the new training to update an 
online learner or all members of an ensemble, e.g. online boosting [15]; and (iii) algo-
rithms that add new ensemble members [16] and/or replace the least contributing 
member of an ensemble with a classifier trained on new data [17,18]. 

In this paper we propose an alternative formulation, Learn++.NSE, built upon our 
previously introduced incremental learning algorithm Learn++ [19], by suitably modi-
fying it for nonstationary environments. Learn++.NSE does not completely fit into any 
of the above categories, but rather combines ideas from each. It does use new data to 
create new ensemble members, and it also adjusts the combination rule by dynami-
cally modifying voting weights. It does not use a timing window, or any of the previ-
ously seen data (hence an incremental learning approach), and it does not discard old 
classifiers, in case old classifiers become relevant again in the future. It simply re-
weighs them based on their predicted expertise on the current environment. 

It is reasonable to question whether there is need for yet another ensemble based 
algorithm for nonstationary learning, in particular considering that we make no claim 
on the superiority of Learn++.NSE over any of the other algorithms – ensemble based 
or otherwise. In the spirit of the no-free-lunch theorem, we believe that no single al-
gorithm can outperform all others on all applications, that the success depends much 
on the match of the characteristics of the algorithm with those of the problem, and 
therefore it is best to have access to a toolbox of algorithms each with its own particu-
lar strengths and weaknesses. Considering the differences of Learn++.NSE mentioned 
above, along with the promising initial results and outcomes discussed later in this 
paper, we believe that Learn++.NSE can be a beneficial alternative on a variety of 
nonstationary learning scenarios. The algorithm is described in detail in Section 2, 
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followed by a description of our simulation tests and results in Section 3. Specific 
nonstationary environment scenarios in which the algorithm is expected to be particu-
larly useful are discussed in Section 4. 

2   Learn++.NSE 

Learn++.NSE uses a similar structural framework as Learn++
: incrementally build an 

ensemble of classifiers from new data that are combined by weighted majority voting, 
and the existing ensemble decides on the contribution of each successive classifier. 
There are a number of differences, however, instituted for suitably modifying the al-
gorithm for nonstationary environments.  

In summary, we assume that each new dataset represents a new snapshot of the en-
vironment. The amount of change in the environment since the previous dataset may 
be minor or substantial, and is tracked by the performance of the existing ensemble on 
the current dataset. Learn++.NSE creates a single classifier for each dataset that be-
comes available from the new environment, and a weighted performance measure 
(based on its error) is computed for each classifier on each environment it has experi-
enced. Each performance measure represents the expertise of that classifier on a par-
ticular snapshot of the environment. These performance measures are then averaged 
using a nonlinear (sigmoidal) function, giving higher weights to the performances of 
the classifier on the more recent environments. At any time, the classifiers can be 
combined through weighted majority voting, using the most recent averaged weights, 
to obtain the final hypothesis. 

In Learn++.NSE, the change in the environment is tracked both by addition of new 
classifiers, as well as the voting weights of existing classifiers, and no classifier is 
ever discarded. If cyclical drift makes earlier classifiers once again relevant, the algo-
rithm recognizes this change, and assigns higher weights to earlier classifiers. The al-
gorithm is described in detail below, with its pseudocode given in Fig. 1. 

We assume that an oracle provides us with a training dataset at certain intervals, 
(not necessarily uniform). At each interval, the distribution from which the oracle 
draws the training data changes in some manner and rate, also unknown to us. The 
training dataset Dt of cardinality mt at time t provides us with a snapshot of the then 
current environment. Learn++.NSE generates one classifier for each such new dataset 
that becomes available. To do so, the algorithm first evaluates the classification accu-
racy of the currently available composite hypothesis Ht-1 on the newly available data 
Dt. Ht-1, obtained by the weighted majority voting of all classifiers generated during 
the previous t-1 iterations, represents the existing ensemble’s knowledge of the envi-
ronment. The error of the composite hypothesis Et is computed as a simple ratio of the 
correctly identified instances of the new dataset. We demand that this error be less 
that a threshold, say ½, to ensure that it has a meaningful classification capacity. For 
this selection of the threshold, we normalize the error so that the normalized error Bt 
remains between 0 and 1 (Step 1 inside the Do loop). We then update a set of weights 
for each instance, that is normally initialized to be uniform (1/mt ): the weights of the 
instances misclassified by the ensemble are reduced by a factor of Bt . The weights are 
then normalized to obtain a distribution Dt (step 2).  
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Input: For each dataset  Dt  t=1,2,…representing a new environment 

• Sequence of i=1,…,mt instances xi with labels yi ∈ Y = {1,…,c} 

• Supervised learning algorithm BaseClassifier. 
Do for t=1,2,… 
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6. Calculate classifier voting weights 

( )log 1 , for 1,...,t t
k kW k tβ= =  (10) 

7. Obtain the composite hypothesis as the current final hypothesis 

( ) ( )arg maxt t
i k k ikc

H x W h x c= ⋅ =∑  (11) 

 

Fig. 1. The pseudocode of the algorithm Learn++.NSE 

The algorithm then calls the BaseClassifier and asks it to create the tth classifier ht 
using data drawn from the current training dataset Dt provided by the oracle (step 3). All 
classifiers generated thus far hk, k=1,...,t are then evaluated on the current dataset, by 
computing their weighted error (Equation 6, step 4). Note that at current time step t, we 
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now have t error measures, one for each classifier generated thus far. Hence the error 
term εk

t represents the error of the kth classifier hk at the tth time step. 

The errors are again assumed to be less than ½. Here, we make a distinction: if the 
error of the most recent classifier (on its native training set) is greater than ½, then we 
discard that classifier and generate a new one. For any of the other (older) classifiers, 
if its error is greater than ½, it is set to ½. This effectively sets the normalized error of 
that classifier at that time step to 1, which in turn removes all of its voting power later 
during the weighted majority voting. Note that unlike AdaBoost and similar 
algorithms that use such an error threshold, Learn++.NSE does not abort, nor does it 
throw away (the previously generated) classifiers when their error exceeds ½. This is 
because, it is not unreasonable for a classifier to perform poorly if the environment 
has changed drastically since it was created, and furthermore, it does not mean that 
this classifier will never be useful again in the future. Should the environment goes 
through a cyclical change and becomes similar to the time when the classifier in 
question was generated, its error will then be less than ½ , and it will contribute to the 
current decision of the ensemble. 

In order to combine the classifiers, however, we need one weight for each, even 
though the algorithm maintains a set of t such error measures εk

t for each classifier 
k=1,…,t. The error measures are therefore combined through a weighted averaging 
(step 5). The weighting is done through a sigmoid function (Equation 8), which gives 
a large weight to errors on most recent environments, and less to errors on older envi-
ronments. We emphasize, however, that this process does not give less weight to old 
classifiers. It is their error on old environments that is weighted less. Therefore, a 
classifier generated long time ago can in fact receive a large voting weight, if its error 
on the recent environments is low.  

The errors so weighted as described above are then combined to obtain a weighted 
average error (Eq. 9). The logarithm of the inverse of this weighted error average then 
constitutes the final voting weight Wk

t for classifier k at time instant t (Step 6, Eq. 10). 
Finally all classifiers are combined through weighted majority voting (Step 7, Eq. 11).  

3   Experiments and Results 

Two experiments were designed to test the ability of the algorithm to track a nonsta-
tionary environment. In both experiments, data was drawn from Gaussian distribu-
tions so that the optimal Bayes error could be computed and compared – at each time 
step – against the Learn++.NSE ensemble as well as single classifier performances. 
Naive Bayes was used as the base classifier in all experiments.  

In the first experiment, conceptually illustrated in Fig. 2, the distributions for two 
of the three classes were moved in a concept drift scenario, where both the means and 
the variances of the distributions were changed. In fact, the distribution of one class 
has completely replaced the other. The entire change was completed in 50 time steps, 
however, in each case, we allowed the algorithm to see very little of the environment: 
a mere 20 samples per class. The distribution for the third class left unchanged.  

We then tracked the performance of the Learn++.NSE ensemble, a single classifier, 
and the Bayes classifier, at each time step. Figure 3 shows four independent trials of 
the percent classification performances on the entire feature space, calculated with  
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Fig. 2. Concept drift simulation – 3-class experiment. Classes 1 and 2 move and change variance. 
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Fig. 3. Comparative performances on four independent single trials 

respect to individual instances’ probability of occurrence (to prevent instances away 
from decision boundaries artificially increasing the performance). 

Several interesting observations can be made. First, all four performance trends in-
dicate that the Learn++.NSE tracks the Bayes classifier very closely, and as expected, 
it has smaller performance variance than the single classifier.  
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Second, the ensemble performance is, in general, better than the single classifier, and 
more closely follows the Bayes classifier. This is important since a single Naïve 
Bayes classifier tested on the most recent data on which it was trained would nor-
mally be expected to do very well. The ensemble is using its combined knowledge 
from all training sessions to correctly identify those areas that have changed due to 
concept drift as well as those that have not changed. Third, the performance gap be-
tween the ensemble and the single classifier appear to be widening in time, in favour 
of the ensemble. That is, the performances of single classifier and Learn++.NSE start 
similar, but in time the ensemble increasingly outperforms the single classifier despite 
occasional good single classifier performances. Since the large variance in the single 
classifier performance makes it difficult to determine the validity of such a claim, we 
looked at the average performance of 100 independent trials of the same experiment. 
Performance results in Figure 4 indicate that the Learn++.NSE ensemble increasingly 
and significantly outperforms the single classifier. 

Finally, note that what appears to look like an overall performance decline (from 
90% to 70%-80% range) in Fig.2 and Fig. 4 is irrelevant for our purposes. Such a de-
cline merely indicates that the underlying classification problem is getting increas-
ingly difficult in time (see Fig. 2), as evidenced by the declining optimal Bayes classi-
fier performance. We are primarily concerned with how well Learn++.NSE tracks 
Bayes classifier, as we cannot expect any algorithm to do any better.  
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Fig. 4. Comparative performances - average of 100 independent trials 

We have also designed a second, four-class experiment, the non-stationary envi-
ronment of which was substantially more challenging, including classes switching 
places, changing variances, drifting in and out of their original distributions in a cycli-
cal manner. Figure 5 provides snapshots of the distributions of four classes c1 ~ c4 at 
t=0, t=T/3, t=2T/3 and t=T, where T indicates the time of the last environment update. 
During t=0 to t=T/3, the variances of the class distributions were modified; then the 
means of the class distributions drifted until t=2T/3, and finally both the variances and 
means were changed during the last third section of the simulation. There were a total 
of 120 time steps from t=0 to t=T, during which the distributions briefly returned to 
the vicinity of their original neighbourhoods twice, before drifting again in other di-
rections. Hence, the design simulated a semi-cyclical non-stationary behaviour. 
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The classification performance results of Learn++.NSE, single classifier and the 
Bayes classifier are shown in Figure 6, where all performances are averages of 100 
independent trials. Once again, the ensemble was able to track the Bayes classifier 
much closer than the single classifier, despite the convoluted changes in the environ-
ment. The ensemble performance was also significantly better than the single Naïve 
Bayes classifier at the 95% level for all t>5 steps. 

4   Conclusions and Discussions 

We described an ensemble based algorithm for nonstationary environments. The algo-
rithm creates a single classifier for each dataset that becomes available, and keeps a 
record of the performance of each classifier on all environments throughout the  
training. The classifiers are then combined through a modified dynamically weighted  
majority voting, where the voting weights are determined as a measure of each classi-
fier’s performance on the current environment, weighted along with the performances 
on previous environments. All classifiers are retained, which allows the previously 
generated classifiers to make significant contributions to the ensemble decision, if 
such classifiers provide relevant information for the current environment.  

The algorithm has many characteristics that are deemed desirable for online learn-
ers [13]: (i) the algorithm learns from only single pass of each dataset, without revisit-
ing them. This property of the algorithm is inherited from its predecessor Learn++, as 
it was designed to learn incrementally without requiring access to previously seen 
data; (ii) the algorithm has a relatively small computational complexity that is linear 
in the number of datasets, or even possibly in the data size, depending on the base 
classifier (since it can be used with any supervised classifier); (iii) the algorithm pos-
sesses any-time-learning capability, i.e., if the algorithm is stopped at time t, the algo-
rithm provides the current best representation of the environment at that time. 

As mentioned earlier in our justification for another ensemble based nonstationary 
learning algorithm, the success of any algorithm depends much on how well its char-
acteristics match those of the problem. It is therefore appropriate, and in fact neces-
sary, to establish what such characteristics are for Learn++.NSE. Specifically, when 
would we expect this algorithm to do well? The structure of Learn++.NSE makes it 
particularly useful if the nonstationary environment provides a sequence of relatively 
small data, that by itself is not sufficient to adequately represent the current state of 
the environment. Then, a single classifier generated with such data would not be able 
to appropriately characterize the decision boundary. Only a subset of classes being 
represented in each dataset is another scenario of nonstationary learning, and the per-
formance of Learn++.NSE on such scenarios is part of our planned future work. 

The algorithm described here is certainly not fully developed yet, and much work 
needs to be done. The algorithm, while intuitive, is based on heuristic ideas, and there 
are no theoretical performance guarantees. This is in part because we have not placed 
any restrictions on the environment. However, a careful analysis of the algorithm is 
necessary to determine how it reacts to different scenarios of nonstationary environ-
ments, and specifically to different rates of change. Of particular interest is how well 
the algorithm would be able to track the nonstationary environment, if the environ-
ment changed faster, say for example, it made the same total change in T/2 or T/4 
time steps rather than in T steps? 
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While the algorithm is at its early stages of development, its initial performance 
has been promising, motivating us for further optimization and development. Future 
efforts will include the above mentioned analysis for tracking / estimating the envi-
ronment’s rate of change, and the algorithm’s response to such change. 

Acknowledgments. This material is based upon work supported by the National Sci-
ence Foundation under Grant No. ECS-0239090. 
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Abstract. In this paper, we present some recent developments of Mul-
tiple Classifiers Systems (MCS) for remote sensing applications. Some
standard MCS methods (boosting, bagging, consensus theory and ran-
dom forests) are briefly described and applied to multisource data (satel-
lite multispectral images, elevation, slope and aspect data) for landcover
classification. In the second part, special attention is given to Support
Vector Machines (SVM) based algorithms. In particular, the fusion of
two classifiers using both spectral and the spatial information is dis-
cussed in the frame of hyperspectral remote sensing for the classification
of urban areas. In all the cases, MCS provide a significant improvement
of the classification accuracies. In order to address new challenges for the
analysis of remote sensing data, MCS provide invaluable tools to handle
situations with an ever growing complexity. Examples include extrac-
tion of multiple features from one data set, use of multi-sensor data, and
complementary use of several algorithms in a decision fusion scheme.

1 Introduction

Over the past decades, remote sensing has become a central source of informa-
tion for the observation of the Earth. Numerous satellites have been launched,
providing images in different modalities. On one hand, active imagery systems
use radar sensors (e.g., synthetic aperture radar, polarimetric or interferometric
imagery): an electromagnetic wave is generated and the sensor records the in-
formation reflected by the ground surface when illuminated. On the other hand,
passive imagery systems use optical sensors (panchromatic, multispectral or hy-
perspectral images) where the sensor records the information naturally emitted
by the ground when illuminated by the sun. Multisource data can also include
geographic data such as elevation and slope [7]. All these data have different
characteristics, e.g., different spatial and spectral resolutions, different angle of
view, and different dates of acquisition. They thus provide complementary in-
formation.

Remote sensing data are used in a wide range of applications, including mon-
itoring of the environment, management of major disasters, urban planning,
precision agriculture, and strategic defense issues. In most of these applications,
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an automatic analysis of the data is required. The first step of the analysis
usually consists in a classification at pixel-level, be it (semi-)supervised or not.
Numerous algorithms have been proposed in the geoscience and remote sensing
community to address these emerging issues. Considering the complexity of the
data and the variety of available algorithms, multiple classifier systems (MCS)
proved to be of the utmost interest in numerous remote sensing applications,
significantly improving the classification performances. The aim of this paper is
to present some of the recent issues addressed by multiple classifier systems in
remote sensing. Special attention will be paid to classification algorithms based
on Support Vector Machines.

Several multiclassifier systems have been used in remote sensing research. Bag-
ging, boosting and consensus theory are among the most commonly used such
approaches. Their application to multisource remote sensing data is discussed in
Section 2. Based on these approaches, ensemble of classification and regression
tree classifiers can be formed, leading to random forest classifier. This strategy
used for land cover classification is presented in Section 3.

Support Vector Machines (SVM) have been widely used of late in classification
of remote sensing data. Section 4 briefly presents the principle of this machine
learning algorithm. The fusion of SVM for classification of hyperspectral data is
then addressed, making a joint use of spatial and spectral information. In the
conclusion, we also discuss the new trends in the use of MCS for remote sensing
applications, such as decision fusion schemes.

2 Boosting, Bagging and Consensus Theory for
Multisource Data

The combination of multisource remote sensing and geographic data offers im-
proved accuracies in land cover classification. For such classification, the conven-
tional parametric statistical classifiers, which have been applied successfully in
remote sensing for the last two decades, are not appropriate, since a convenient
multivariate statistical model does not exist for the data. In [1], several single
and multiple classifiers, that are appropriate for the classification of multisource
remote sensing and geographic data are considered. The focus is on multiple
classifiers; bagging, boosting, and consensus-theoretic classifiers. These multiple
classifiers have different characteristics.

2.1 Boosting

Boosting is a general and well known method which is used to increase the
accuracy of any classifier. In this study, we use the AdaBoost.M1 method which
can be used on classification problems with more than two classes [17]. In the
beginning of AdaBoost, all patterns have the same weight and the classifier
C1 is the same as the base classifier. If the classification error is greater than
0.5, then the method does not work and the procedure is stopped. A minimum
accuracy is thus required for the base classifier, which can be of considerable
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disadvantage in multiclass problems. Iteration by iteration, the weight of the
samples which are correctly classified goes down. The algorithm consequently
concentrates on the difficult samples. At the end of the procedure, T weighted
training sets and T base classifiers have been generated. In most cases, the overall
accuracy is increased. Many practical classification problems include samples
which are not equally difficult to classify. AdaBoost is suitable for such problems.
It tends to exhibit virtually no overfitting when the data is noiseless. Other
advantages of boosting include that the algorithm has a tendency to reduce both
the variance and the bias of the classification. On the other hand, AdaBoost
is computationally more demanding than other simpler methods. The lack of
robustness to noise is another shortcoming.

2.2 Bagging

Bagging is an abbreviation of bootstrap aggregating [18]. Bootstrap methods
are based on randomly and uniformly collecting m samples with replacement
from a sample set of size m. Many different bags are constructed by performing
bootstrapping iteratively, classifying each bag, and computing some type of an
average of the classifications of each sample via a vote. Bagging is in some
ways similar to boosting since both methods design a collection of classifiers
and combine their conclusions with a vote. However, the methods are different,
e.g., because bagging always uses resampling instead of re-weighting, it does not
change the distribution of the samples and all classes in the bagging algorithm
have equal weights during the voting. Furthermore, bagging can be done in
parallel, i.e., all the bags can be designed at once. On the other hand, boosting
is always done in series, and each sample set is based on the latest weights.

For a particular bag Si, the probability that a sample from the training set S
is selected at least once in m tries is 1−(1−1/m)m. For a large m, the probability
is approximately 1 − 1/e ≈ 0.632, indicating that each bag only includes about
63.2% of the samples in S. If the base classifier is unstable, that is, when a small
change in training samples can result in a large change in classification accuracy,
then bagging can improve the classification accuracy significantly. If the base
classifier is stable, like e.g., a k-NN classifier, then bagging can actually reduce
the classification accuracy because each classifier receives less of the training
data. The bagging algorithm is also not very sensitive to noise in the data.
The algorithm uses the instability of its base classifier in order to improve the
classification accuracy. Therefore, it is of great importance to select the base
classifier carefully. This is also the case for boosting since it is sensitive to small
changes in the input signal. Bagging reduces the variance of the classification
(just as boosting does) but in contrast to boosting, bagging has little effect on
the bias of the classification.

2.3 Consensus Theory

Consensus theory aims at combining single probability distributions to sum-
marize estimates from multiple experts with the assumption that the experts
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make decisions based on Bayesian decision theory [8]. The combination formula
is called a consensus rule. These rules are used in classification by applying a
maximum rule, i.e., the summarized estimate is obtained for all the information
classes and the pattern X is assigned to the class with the highest summarized
estimate. The most common consensus rule is the linear opinion pool (LOP)
which is based on a weighted linear combination of the posterior probabilities
from each data source. Another consensus rule, the logarithmic opinion pool
(LOGP), is based on the weighted product of the posterior probabilities. The
LOGP is unimodal and less dispersed than the LOP and it processes the data
sources independently.

The simplest approach of the weighting scheme consists in giving all the data
sources equal weights. Measures of reliability of the different sources can also
be used for heuristic weighting. Furthermore, the weights can be chosen to not
only weight the individual sources but also the individual classes. For such a
scheme both linear and nonlinear optimization can be used. In [9], the statistical
consensus models are optimized with neural networks, and achieve improved
classification.

2.4 Experimental Results

Experiments [1] were conducted on multisource remote sensing and geographic
data from Colorado. These data were originally acquired, preprocessed by Dr.
Roger Hoffer from the Colorado State University. Access to the data set is grate-
fully acknowledged.

The classification was performed on a data set consisting of the following four
data sources:

1. Landsat MSS data (4 spectral data channels).
2. Elevation data (in 10 m contour intervals, 1 data channel).
3. Slope data (0-90 degrees in 1 degree increments, 1 data channel).
4. Aspect data (1-180 degrees in 1 degree increments, 1 data channel).

Each channel comprised an image of 135 rows and 131 columns, and all chan-
nels were spatially co-registered. The area used for classification is a mountainous
area in Colorado. It has 10 ground-cover classes: one class is water; the others
are forest types (namely Colorado Blue Spruce, Mountane/Subalpine Meadow,
Aspen, Ponderosa Pine, Ponderosa Pine/Douglas Fir, Engelmann Spruce, Dou-
glas Fir/White Fir, Douglas Fir/Ponderosa Pine/Aspen and Douglas Fir/White
Fir/Aspen). It is very difficult to distinguish among the forest types using the
Landsat MSS data alone since the forest classes show very similar spectral re-
sponse. Reference data were compiled for the area by comparing a cartographic
map to a color composite of the Landsat data and also to a line printer output of
each Landsat channel. By this method, 2019 reference points (11.4% of the area)
were selected comprising two or more homogeneous fields in the imagery for each
class. Approximately 50% of the reference samples were used for training, and
the rest was used as a test set.
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Several single classifiers were applied to the data, namely the minimum Euclid-
ean Distance (MED) classifier and conjugate gradient backpropagation
(CGBP) with two and three layers. The base classifiers which were used for
bagging and boosting were also trained as single classifiers on the data. These
base classifiers were: a decision table, the j4.8 decision tree [19] and the simple
classifier 1R [20]. The results are summarized in Table 1.

Table 1. Training and Testing Accuracies in Percentage for the Different Classification
Methods

Method Average Overall Average Overall
Accuracy Accuracy Accuracy Accuracy

Training set Training set Test set Test set
MED 37.8 40.3 35.5 38.0

Decision Table 73.0 82.8 63.4 77.0
j4.8 81.3 88.0 63.4 77.4
1R 35.9 60.3 34.0 58.8

CGBP (40 hidden neurons) 95.6 96.3 67.0 78.4
LOP (equal weights) 49.3 68.1 46.5 66.4

LOP (heuristic weights) 55.8 74.2 54.9 73.4
LOP (optimal linear weights) 66.2 80.3 66.1 80.2
LOP (optimized with CGBP) 74.6 83.5 72.9 82.2

LOGP (equal weights) 69.2 79.0 69.0 78.7
LOGP (heuristic weights) 69.2 80.5 66.8 79.6

LOGP (optimal linear weights) 65.1 79.7 64.3 80.0
LOGP (optimized with CGBP) 89.1 91.4 75.1 82.3

Bagging with DecisionTable 79.5 88.3 69.3 82.5
Bagging with j4.8 84.3 90.4 69.5 81.7
Bagging with 1R 61.5 74.9 58.9 73.6

Boosting with Decision Table 89.6 91.4 76.1 83.8
Boosting with j4.8 97.6 97.5 72.6 81.5
Boosting with 1R 88.7 90.9 79.4 85.3

Number of Samples 1008 1011

For the LOP and LOGP, ten data classes were defined in each data source.
The multispectral remote sensing data sources were modeled to be Gaussian but
the topographic data sources were modeled by Parzen density estimation with
Gaussian kernels. Several different weighting schemes were used for the LOP and
LOGP.

In the case of bagging, 100 iterations were selected for the decision table, 10
iterations for j4.8 and 200 iterations for 1R. Adaboost.M1 was employed, with
50 iterations for the decision table, 200 iterations for j4.8 and 60 iterations for
1R. In each case, the 10 class problem was converted into multiple two class
problems.

The obtained overall and average accuracies are shown in Table 1 for both
the training and the test sets. The multiple classifiers show improvement over all
the single classifiers. The highest training accuracies were obtained by boosting
the j4.8 decision tree. However, the highest overall and average test accuracies
were obtained by boosting the 1R base classifier, which gave far worse train-
ing and test accuracies on its own than the other base classifiers. In contrast,
bagging the 1R gave poor accuracies. The best overall and average accuracies
for consensus theoretic classifiers were achieved with the LOGP optimised by
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conjugate gradient backpropagation. Those results were comparable in terms of
overall accuracies to the best results achieved using bagging.

3 Random Forests

To further improve the classification performances and overcome the shortcom-
ings of the previous approaches (e.g., sensitivity to noise, computational load
and the need for parametric statistical modeling of each data source), random
forests have been proposed. Random forests are ensembles of tree-type classifiers,
that use a similar but improved method of bootstrapping as bagging, and can
be considered an improved version of bagging. Random forests have been shown
to be comparable to boosting in terms of accuracies, but without the drawbacks
of boosting [11]. In addition, the random forests are computationally much less
intensive than boosting. Recently, random forests have been applied to classifi-
cation of hyperspectral remote sensing data [10]. Their approach is implemented
within a multiclassifier system arranged as a binary hierarchy and provides good
results for a hyperspectral data set with limited training data. Here, we consider
random forests for classification of multisource remote sensing and geographic
data [2]. It is of great interest since it is not only nonparametric [12], but it also
provides a way of estimating the importance of the individual variables (data
channels) in the classification.

Random forest is a general term for ensemble methods using tree-type clas-
sifiers h(x, θk), k = 1, . . . where the θk are independent identically distributed
random vectors and x is an input pattern [11]. In training, the random forest
algorithm creates multiple CART-like trees, each trained on a bootstrapped sam-
ple of the original training data, and searches only across a randomly selected
subset of the input variables to determine a split (for each node). For classifica-
tion, each tree in the random forest casts a unit vote for the most popular class
at input x. The output of the classifier is determined by a majority vote of the
trees.

The number of variables is a user-defined parameter that is often blindly
selected to the square root of the number of inputs. By limiting the number
of variables used for a split, the computational complexity of the algorithm is
reduced, and the correlation between trees is also decreased. Finally, the trees
in random forests are not pruned, further reducing the computational load. As
a result, the random forest algorithm can handle high dimensional data and use
a large number of trees in the ensemble. As each tree is only using a portion
of the input variables in a random forest, the algorithm is considerably lighter
than conventional bagging with a comparable tree-type classifier.

A random forest classifier was applied to the same data set as boosting, bag-
ging and consensus theory, considering the same 10 classes (see Section 2.4). It
performed well (overall test set accuracy: 83%), outperforming the single CART
classifier (78%), and being comparable to the accuracies obtained by other en-
semble methods (Bagging: 83%-decision table, 82%-j4.8, 74%-1R ; Boosting:
84%-decision table, 82%-j4.8, 85%-1R) [2]. However, the random forest classifier
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was much faster in training when compared to the ensemble methods, especially
boosting. The random forest algorithm does not overfit, and it does not require
guidance (although its accuracy can be tweaked slightly by altering the num-
ber of variables used for a split). Furthermore, the algorithm can estimate the
importance of variables for the classification. Such estimation is of value for fea-
ture extraction and/or feature weighting in multisource data classification. The
random forest algorithm can also detect outliers, which can be very useful when
some of the cases may be mislabeled. With this combination of efficiency and
accuracy, along with very useful analytical tools, the random forest classifier is
very desirable for multisource classification of remote sensing and geographic
data, where no convenient statistical models are usually available.

4 Support Vector Machines (SVM) and Multiple
Classifier Systems

4.1 SVM Formulation and the Use of Different Kernel Functions

We first briefly recall the general formulation of SVM classifiers [13]. Let us first
consider a two-class problem in a n-dimensional space R

n. We assume that l
training samples, xi ∈ R

n (vector of attributes, or pixel vectors in the case of
hyperspectral analysis) are available with their corresponding class labels given
by yi = ±1, S = {(xi, yi) | i ∈ [1, l]}. The SVM method consists in finding
the hyperplane that maximizes the margin (see Fig. 1), i.e., the distance to the
closest training data points in both classes. Noting w ∈ R

n as the vector normal
to the hyperplane and b ∈ R as the bias, the hyperplane Hp is defined as

〈w,x〉 + b = 0, ∀x ∈ Hp (1)

where 〈w,x〉 is the inner product between w and x. If x /∈ Hp then f(x) =
〈w,x〉 + b is the distance of x to Hp. The sign of f corresponds to decision
function y = sgn (f(x)). Such a hyperplane has to satisfy:

yi(〈w,xi〉 + b) ≥ 1, ∀i ∈ [1, l]. (2)

For the non-linearly separable case, slack variables ξ are introduced to deal
with misclassified samples, and (2) becomes:

yi(〈w,xi〉 + b) ≥ 1 − ξi, ξi ≥ 0, ∀i ∈ [1, l]. (3)

Finally, the optimal hyperplane has to jointly maximize the margin 2/‖w‖ and

minimize the sum of errors
l∑

i=1

ξi. This is a convex optimization problem:

min
w,ξi,b

[
‖w‖2

2
+ C

l∑

i=1

ξi

]
, subject to (3) (4)
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Fig. 1. Classification of non-linearly data by SVMs

where the parameter C balances the minimization of errors and the smoothness
(regularization) of the solution, thus directly affecting the generalization capa-
bility of the classifier. This primal problem can be solved by considering the dual
optimization problem through the use of Lagrange multipliers αi:

max
α

l∑

i=1

αi − 1
2

l∑

i,j=1

αiαjyiyj〈xi,xj〉

subject to 0 ≤ αi ≤ C ∀i ∈ [1, l]
l∑

i=1

αiyi = 0.

(5)

The relation between the primal (w) and the dual parameters (αi) is given
by w =

∑l
i=1 αiyixi [14]. The solution vector is a linear combination of the

samples of the training set associated with non-null αi, which are called sup-
port vectors. The hyperplane decision function can thus be written as yu =
sgn

(∑l
i=1 yiαi〈xu,xi〉 + b

)
where xu is an unseen sample. To address non-

linear problems while preserving the simplicity of linear models, the input space
is projected in higher dimensional feature Hilbert space H according to a non-
linear mapping Φ [15]. The SVM algorithm can be simply considered with the
following training samples: Φ(S) = {(Φ(xi), yi) | i ∈ [1, l]}, which leads to a new
solution, in which the inner product is: 〈Φ(xi), Φ(xj)〉. Inner products in feature
spaces are computed using the kernel trick [13], which allows one to work in the
mapped kernel space without knowing explicitly the mapping Φ, but only the
kernel function k: 〈Φ(xi), Φ(xj)〉 = k (xi,xj). This way, the decision function is

given by yu = sgn
(∑l

i=1 yiαik(xu,xi) + b
)
.

The most popular kernels are presented below:

– Polynomial . The inner product is computed in the space of all monomials
up to degree d: kpoly (x, z) = (〈x, z〉 + θ)d. The parameter θ tunes the weight
of the higher order polynomial.
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– Gaussian Radial Basis Functions. This kernel is given by kgauss (x, z) =
exp

(−γ‖x − z‖2
)
. For this kernel, kgauss (x,x) = 1. The parameter γ tunes

the flexibility of the kernel.

SVMs are designed to solve binary classification problems. Two main ap-
proaches have been proposed to address multiclass (N classes) problems [14]:

– One versus the rest: N binary classifiers are applied to each class against
the others. Each sample is assigned to the class with the maximum output.

– Pairwise classification: N(N−1)
2 binary classifiers are applied on each pair of

classes. Each sample is assigned to the class getting the highest number of
votes.

The aforementioned multiclass architectures as well as other multicategory
strategies that can be applied to classification of hyperspectral images are pre-
sented and discussed in [16].

4.2 Joint Spatial and Spectral SVMs

A recent trend in multi- and hyperspectral remote sensing tends to use simultane-
ously spatial and spectral information, for improved classification performances.
One way to address this issue consists in designing a decision fusion scheme.
In [6], a landcover multiclass problem is considered on ROSIS data provided
by the German Aerospace Agency (DLR) from urban area (N=9 classes, 115
spectral bands ranging from 0.43 to 0.86 μm, 1.3 m per pixel for the spatial res-
olution). The hyperspectral images are first preprocessed to extract some spatial
information and the data are classified using Support Vector Machines (SVM).
Another SVM classifier is applied on the initial spectral values, with no spatial
information. As a matter of fact, it has been demonstrated that both the spatial
and the spectral information are required to actually achieve good classification
performances.

Using the one versus one classification strategy, 36 binary classifiers are used
for each classifier. The standard method consists in combining the results with a
majority voting scheme. However, a better multiclassifier system can be designed
by storing for each result the actual distance to the hyperplane, following the
general idea that it is more useful to have access to the belief of the classifiers
rather than the final decision [5]. For a given sample, the larger is the distance
to the hyperplane, the more reliable is the label. The most reliable source is thus
the one that gives the largest absolute distance.

Let us consider that m SVM classifiers are used (in our case 2 classifers:
one based on spatial features, one based on spectral information). We have the
following results: {S1, S2, . . . , Sm}, where S1 = d1

ij is the distance provided by the
first SVM classifier which separates class i from class j. The absolute maximum
decision rule is defined as follows:

Sf = AbsMax(S1, . . . , Sm) (6)
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where AbsMax is the logical rules:

if(|S1| > |S2| , . . . , |Sm|) then S1
else if(|S2| > |S1| , . . . , |Sm|) then S2

...
else if(|Sm| > |S1| , . . . , |Sm−1|) then Sm.

(7)

The agreement of the classifiers can also be taken into account. Each dis-
tance is multiplied by the maximum probability associated to the two considered
classes [21]: pi = 2

N(N−1)

∑N
j=0,j �=i I(dij),where I is the indicator function. The

absolute maximum rule is applied on these weighted results:

Sf = AbsMax
(
max(p1

i , p
1
j)S1, . . . , max(pm

i , pm
j )Sm

)
. (8)

A last approach consists in simply applying a majority voting on the m ∗
N(N − 1)/2 binary classifers used when each of the m classifiers uses the one
versus one strategy.

The results are summarized on Table 2: the overall and average accuracies are
clearly improved by the decision fusion, as well as the Kappa coefficient, with
some variations among the different classes.

Table 2. Classification accuracies (%) for the SVMs based on the spectral or the spatial
info, or with the 3 fusion operators

Spectral info. only Spatial info. only Abs. Max. Weighted Abs. max. Maj. Vot.
Overall Accuracy 81.0 85.2 89.6 89.7 86.1
Avergae Accuracy 88.3 90.8 93.6 93.7 88.5
Kappa Coefficient 76.2 80.9 86.6 86.7 81.8

Asphalt 83.7 95.4 93.2 93.0 94.0
Meadows 70.3 80.3 83.9 84.0 85.3
Gravel 70.3 87.6 82.1 82.2 64.9
Trees 97.8 98.4 99.7 99.7 99.67

Metalsheets 99.4 99.5 99.5 99.4 99.5
Bare soil 92.3 63.7 91.2 91.8 61.6
Bitumen 81.6 98.9 97.0 97.2 93.0
Bricks 92.6 95.4 96.4 96.4 98.8

Shadows 96.6 97.7 99.6 99.6 99.6

5 Conclusion and Future Trends

Over the past years, multiple classifiers systems have been designed to address
numerous applications in remote sensing. Dealing with land cover classification,
this paper briefly presented the use of standard algorithms (boosting, bagging
and consensus theory) in the case of multi-source data. Random forests is a
valuable extension of these algorithms. The focus was then on classifiers based
on Support Vector Machines. They provide very promising results in various
remote sensing applications and one application was presented in the frame of
hyperpsectral data from urban areas.

Future trends in the use of MCS in remote sensing arise from the three
following items:
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– Multi-sensor data: As stated in the introduction, numerous imaging satel-
lites have been launched in the last decades and a lot of new ones are sched-
uled for the next few years. As a consequence, in many applications, images
provided by different sensors are available and MCS can help taking ad-
vantage of their complementary characteristics. For instance, in [3], SVM
classifiers working on multitemporal radar and optical data, respectively,
are aggregated with excellent results.

– Multiple feature extraction: To address the difficulty and complexity of
the emerging remote sensing applications, such as the accurate classification
of very high resolution images from urban areas, multiple features are re-
quired. For instance, the spectral information (characterizing the physical
nature of the different materials) is complementary to the spatial informa-
tion (characterizing the shape and geometry of the different objects in the
picture). Again, MCS can help taking advantage of their complementary
characteristics. An example was described in section 4.2. Another strategy
is described in [4], i.e., the spatial features are aggregated with the spectral
information prior to classification using feature extraction and dimension
reduction techniques. More generally speaking, the joint use of spatial and
spectral features for a better understanding of the content of an image, be
it multi- or hyperspectral, is one of the key problems in the close future of
remote sensing.

– Fusion of multiple algorithms (decision fusion): Many different al-
gorithms have been proposed in remote sensing research to address various
applications. In most of the cases, none of these algorithms strictly outper-
forms all others. Every algorithm has its own merits, and, again, MCS can
help taking advantage of their complementary characteristics. A key issue
when designing a decision fusion scheme lies in the reliability of each source
(a source being the result of one algorithm). How can one assess this reliabil-
ity? In the case of SVM classifiers, as previously described, the distance to
the separating hyperplane can be used. In [5], a general framework based on
fuzzy logic is presented. A fusion rule incorporating in a flexible way prior
knowledge on the different sources and local reliability estimated from the
classifiers outputs for each pixel is proposed and tested in the frame of urban
areas classification.

The future for novel remote sensing classifiers is closely tied to the design of
appropriate MCS, enabling an optimal use of all the available information, with
some key issues: 1) How can one handle very high dimensional data?, 2) How
can one assess the reliability of one given classifier?, and 3) How can one handle
temporal variability in the data?
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Abstract. Several papers have already shown the interest of using mul-
tiple classifiers in order to enhance the performance of biometric person
authentication systems. In this paper, we would like to argue that the
core task of Biometric Person Authentication is actually a multiple clas-
sifier problem as such: indeed, in order to reach state-of-the-art perfor-
mance, we argue that all current systems , in one way or another, try to
solve several tasks simultaneously and that without such joint training
(or sharing), they would not succeed as well. We explain hereafter this
perspective, and according to it, we propose some ways to take advantage
of it, ranging from more parameter sharing to similarity learning.

1 Introduction

Biometric authentication is the task of verifying the identity of someone accord-
ing to his or her claim, by using some of his or her biometric information (voice
record, face photo, fingerprint, etc). A Biometric authentication system is thus
trained to accept or reject an access request of one of the registered clients.
This can be done efficiently by solving a two-class classification problem for each
client separately.

When using more than one biometric information [1,2,3], the underlying ver-
ification system is said to be a multiple classifier system, as it merges several
data sources coming from various biometric scanning devices, and hence, fits
very well the topic of this workshop.

In this paper, we would like to argue that even when trying to solve a biometric
authentication system based on a single modality and using a single classifier
per client, one still needs to solve several classifier tasks jointly in order to
reach state-of-the-art performance. We will argue in the following that there
are several ways to solve these tasks jointly, ranging from the so-called world
model approach, which is used to share common knowledge among several client
models, to the learning of specialized distances or representation spaces, that
can then be used for each client to take an accept/reject decision.
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The paper goes as follows: in Section 2 we explain the main argument of the
paper, giving several examples of how it is already used in the various state-of-
the-art approaches of the literature. In Section 3, we propose yet another way
to use this new perspective of the biometric authentication task, and finally, in
Section 4, we briefly conclude.

2 A Multiple Classifier Problem

The purpose of this paper is to show that the essence of a biometric authentica-
tion task is by nature a multiple classifier problem. This is not to be mixed
up with the fact that multiple classifier systems often yield better performance
for the task of biometric authentication [1,2,3].

Instead, we would like to advocate that, while biometric authentication can be
seen as a two-class classification problem (each access should either be accepted
or rejected), it is in fact several two-class classification problems (one for each
client model) that are inter-connected to each other and one should take this into
account in order to better design such systems.

Indeed, the general setup of a biometric authentication task is to be able to
recognize whether a legitimate client is or is not who he or she claims to be by
showing some biometric information. The expected resulting system should be
able to accommodate for a growing number of clients1, and should be able to
enroll a new client with as little as possible of this new client’s biometric material
(be they voice, face, finger, or other modality prints).

2.1 Global Cost Function

The best way to illustrate that person authentication is a multiple classifier
problem is to look at how such systems are evaluated in the research commu-
nity. The most used measures of performance evaluate not only the performance
of a single client model, but that of a large set of client models. Furthermore, this
performance is not additive with respect to these apparently separate problems:
indeed performance measures in person authentication always involve informa-
tion such as False Acceptance Rate (FAR), False Rejection Rate (FRR), aggre-
gates of them such as Half Total Error rate (HTER) or Detection Cost function
(DCF) [4], and curves summarizing them, such as Detection Error Trade-off
(DET) [5] and Expected Performance Curves (EPC) [6]. In all these cases, the
global performance of a (set of) system(s) is not simply the sum of the perfor-
mance of each client model (as the number of accesses per client model, be they
legitimate or impostor, varies greatly from one client to another).

Hence, in order to train a good set of client models, one should select the
corresponding parameters in order to maximize the joint performance of all
models, and not separately the performance of each model. In this sense, it is
clear that one needs to solve a multiple classifier problem jointly.
1 It is expected that it should scale at most linearly with the number of clients, in

terms of training time, and should be constant in terms of access time.
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2.2 Parameter Sharing

Furthermore, given the inherent constraints of biometric authentication systems
already discussed (scarce available data for each client, need for efficient access
time, etc) most (if not all) of the state-of-the-art approaches in biometric au-
thentication try to make use of a large quantity of previous client information in
order to build a generic model, out of which each new client model starts from.

In order to illustrate this phenomenon, we will concentrate on the task of
text-independent speaker verification, but bear in mind that the explanation
is valid for any biometric authentication system. We can divide most of the
current approaches into (apparently) generative approaches and discriminant
approaches2. Let us review these two broad families of approaches.

The most well-known generative approach and still state-of-the-art method
for text-independent speaker verification is based on adapted Gaussian Mixture
Models (GMMs)[8]. It starts by training by Expectation-Maximization a generic
GMM over a large quantity of voice data, and then adapts this generic model,
using for instance Maximum A Posteriori (MAP) techniques, for each new client.
Moreover, not only some parameters from the client model are adapted from a
generic model (this usually applies to Gaussian means), but several other para-
meters of client models are simply copied from the generic model (this usually
applies to Gaussian variances and weights). This approach turns out to be the
most efficient way to make the best use of the small amount of each client’s
information. Furthermore, it is also state-of-the-art for many other biometric
authentication problems, including face verification [9].

Several experiments have shown in the past that if one tries to solve the
speaker verification problem by training a new GMM for each client instead of
starting from a generic model and adapting it, then the performance results are
poorer, even when tuning the number of Gaussians for each client separately.

Other evidences of the same phenomenon can be seen in various enhancements
of the basic GMM based approach that have been proposed in the biometric
authentication literature over the years, including the use of normalization tech-
niques (Z-norm, T-norm, etc) which aim at trying to normalize the obtained
score to make it more robust to several kinds of variations (intra-speaker, inter-
speaker, inter-session, channel, etc) [10]. Once again, in order to compute ef-
ficient normalization parameters, one needs to use a large number of previous
client information. This has already been demonstrated empirically.

For instance, one can see in Table 1 and in Figures 1 and 2 the comparative
performance of three systems on the NIST database described in appendix A.
One system is trained using the classical EM training approach (also called
maximum likelihood approach, or ML), the second one is trained using the MAP
adaptation technique, and the third one is trained using MAP and applying the
T-norm normalization technique. Table 1 shows the a priori performance of all
three systems on the test set in terms of FAR, FRR, and HTER, after selecting
the threshold that minimized the Equal Error Rate (EER) on the development
2 Note that actually, generative approaches that effectively work usually implement

several tricks that make the overall system quite discriminant in various aspects [7].
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set. Figure 1 shows the DET curves on the development set (the lower to the
left the better). Finally, Figure 2 shows the EPC curves on the test set. The
latter curves provide unbiased estimates of the HTER performance of all three
systems for various expected ratios of FAR and FRR (represented on the X-axis
of the graph by γ). The lower part of the graph also shows whether one of the
three models was statistically significantly better than another one, according
to the statistical test described in [11].

In all cases (table results, DET and EPC curves), it is clear that the more one
shares information among client models, the better the expected performance
on new client models becomes.

Table 1. Point-wise performance results, in terms of FAR, FRR and HTER (%),
on the test set of the NIST database using classical ML training, MAP training and
MAP plus T-normalization procedure. These results where obtained by selecting the
threshold that minimized the EER on the development set.

FAR FRR HTER

ML 3.23 30.80 17.02
MAP 4.79 16.38 10.59
MAP + T-norm 7.06 10.29 8.68

In all these cases, one could never obtain a good authentication system for
a given client if no information was shared among various clients. Hence, while
it is never explicitly said, all successful generative approaches to person
authentication systems are built by sharing some information among
several classifier systems.

While generative approaches have been used successfully for many years, there
are good reasons to think that direct discriminant approaches should perform
better; one of them, advocated by Vapnik [12], is that one should never try to
solve a more difficult task than the target task. Hence if the task is to decide
whether to accept or reject an access, there should be no reason to first train a
generic model that describes everything about what is a correct access and what
is an incorrect access, as the only thing that matters is the decision boundary
between these two kinds of accesses.

More recently thus, several discriminant approaches have started to provide
state-of-the-art performance in various person authentication tasks.

For instance, the Nuisance Attribute Projection (NAP) approach [13] tries to
find a linear transformation of the access data into a space where accesses of the
same client are near each others, in terms of the L2-norm. In order to refrain
from finding an obvious bad solution, the size of the target space (or more
specifically its Co-rank) is controlled by cross-validation. This transformation is
learned on a large set of clients (hence, similarly to learning a generic GMM in
the generative approach). After this step is performed, a standard linear support
vector machine (SVM) [14] is trained for each new client over the transformed
access data. This approach provided very good performance in the recent NIST
evaluations.
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Fig. 1. DET curves on the development set of the NIST database using classical ML
training, MAP training and MAP plus T-normalization procedure

This shows even more the fact that one has to share some information among
many clients in order to obtain good performance. In this case, the shared in-
formation is used to learn how to transform the original data into a space which
will be invariant to various aspects, such as the channel, and concentrate on the
important topic, the client specific information.

Unfortunately, one thing in the NAP approach is somehow disappointing: the
transformation function is not learned using the criterion that is directly related
to the task; rather, it tries to minimize the mean squared distance between
accesses of the same client to get rid of the channel effect, but do nothing about
accesses from different clients for instance. In other words, we might still try to
do more than the expected task, which is not optimal, according to Vapnik.

Another recent approach that also goes in the right direction and that obtains
similar and state-of-the-art performance as the NAP approach is the Bayesian
Factor Analysis approach [15]. In this case, one assumes that the mean vector
of a client model is a linear combination of a generic mean vector, the mean
vector of the available training data for that client, and the mean vector of the
particular channel used in this training data. Once again, the linear combination
parameters are trained on a large amount of access data, involving a large amount
of clients. While this approach is nicely presented theoretically (and obtains very
good empirical performance), it still does not try to find the optimal parameters
of client models and linear combination by taking into account the global cost
function.
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Fig. 2. Expected Performance Curves (EPC, the lower the better) on the test set
of the NIST database using classical ML training, MAP training and MAP plus T-
normalization procedure. The lower graph shows the confidence level of one model
being statistically significantly better than another one in each part of the EPC
curve.

3 Similarity Learning

In this section, we would like to propose at least one idea that would directly
take into account the multiple classifier problem dimension of biometric authen-
tication tasks.

We advocated in the previous section that one should try to learn jointly
some information about several clients that would directly help in the final task
of accepting or rejecting accesses. We also advocated that a promising approach
should be discriminant, as the NAP approach is or similarly to Campbell’s poly-
nomial expansion for sequence kernel approach based on support vector machines
(SVMs)[16].

We also acknowledge that the SVM approach to speaker verification is dis-
criminant but given that each client SVM is trained separately, the currently
only parameters that can be shared among clients in this approach are through
the transformation of the input space (as it is done in the NAP approach)3.

3 Actually, another way the SVMs share information among them is through the same
list of negative examples, or impostor accesses.
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We would like to propose here another discriminant method based on SVMs,
but that would use a particular kernel (or similarity measure between two ac-
cesses) that would be learned on several clients’ accesses. Indeed, if we knew in
advance a distance or similarity measure that would quantify reasonably well
whether two accesses are coming from the same client or not, and even assum-
ing this measure to be noisy, putting it into an SVM and training the SVM to
solve the final authentication task would yield a better performance than using
the standard Gaussian or polynomial kernel for the same task, as it is done in
Campbell’s approach for instance.

Hence, our proposed approach is the following. Using a large base of accesses
for which one knows the correct identity, train a parametric similarity measure
that will assess whether two accesses are coming from the same person or not.
That can be done efficiently by stochastic gradient descent using a scheme sim-
ilar to the so-called Siamese neural network [17] and a margin criterion with
proximity constraints, as follows.

Let φ(·) be a mapping of a given access into a space where two accesses of
the same client are near while two accesses from different clients are far. More
formally, given a triplet (x, x+, x−) such that x is a vector representation of a
given access, x+ is a vector representation of an access of the same client as x
and x− a vector representation of an access of a client different from that of x,
we would like the scalar product of the similar ones in the φ(·) space to be higher
than that of the dissimilar ones:

φ(x) · φ(x+) > φ(x) · φ(x−). (1)

Let φ(·) be a multi-layer perceptron (MLP), the following ranking loss function
L [18,19,20] can be used to search for a good candidate for (1):

L = |1 − [
φ(x) · φ(x+) − φ(x) · φ(x−)

] |+ (2)

where |a|+ = max(0, a).
Finally, let us consider for the moment that a given access can be transformed

into a vector representation using a trick such as the one used in Campbell’s
polynomial expansion approach [16]. That constraint could be relaxed to any
other sequence kernel technique that have been proposed in the literature, such
as in [7].

We now have all the ingredients to learn efficiently φ(·) by stochastic gradient
descent. One simply needs to prepare, out of a database of several client accesses,
a training set of triplets (x, x+, x−); one then needs to select a particular form
for the parametric function φ(·) noting that the only constrains here is that it
should be positive and differentiable with respect to its parameters (in partic-
ular, φ(·) can be non-linear, which is not the case for the NAP and Bayesian
Factor Analysis approaches). One can then train φ(·) using stochastic gradient
descent to optimize (2) on that data. The chosen loss function (2) involves a
security margin, as not only do we want similar accesses to be nearer each other
than dissimilar ones in that space, we also want the difference between the two
similarity measures to be at least 1 (or any positive constant, for that matter).
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Once φ(·) is trained on a reasonably large database, one can then use it to
create the following kernel k for each client SVM, similarly to the NAP and
Campbell’s approaches:

k(x, y) = φ(x) · φ(y) (3)

which guaranties Mercer’s conditions for proper SVM training [14], as long as we
put some mild constraint on φ(·) such as being continuous and positive, which
is straightforward to enforce.

4 Conclusion

In this paper, we have presented a somehow novel view of the task of biometric
person authentication, advocating that it should be solved by taking into account
that one needs to create simultaneously several two-class classifiers, one for each
client, and that parameter sharing of one sort or another during this process
is of paramount importance. We have shown that all currently state-of-the-art
approaches to several biometric authentication tasks are indeed following this
approach while never referring to it specifically. We have then proposed a novel
approach, based on learning a similarity measure between two accesses, trained
by a margin criterion on a large set of previous client accesses, that can then
be plugged in an SVM for each client to replace standard kernels such as the
polynomial or the Gaussian kernel. A nice extension of the following framework
could be to incorporate the transformation of an access (which is normally a
variable size sequence of feature vectors such as MFCCs) into a vector repre-
sentation. A standard Time Delay Neural Network (TDNN) [21] could be used
inside the φ(·) function to accomplish this.

A The NIST Database Used in This Paper

The NIST database used here is similar to the one described in [7] and its
description goes as follows: it is a subset of the database that was used for
the NIST 2002 and 2003 Speaker Recognition Evaluation, which comes from
the second release of the cellular switchboard corpus, Switchboard Cellular -
Part 2, of the Linguistic Data Consortium. This data was used as test set while
the world model data and the development data comes from previous NIST
campaigns. For both development and test clients, there were about 2 minutes
of telephone speech used to train the models and each test access was less than
1 minute long. Only female data are used and thus only a female world model
is used. The development population consisted of 100 females, while the test set
is composed of 191 females. 655 different records are used to compute the world
model or as negative examples for the discriminant models. The total number
of accesses in the development population is 3931 and 17578 for the test set
population with a proportion of 10% of true target accesses.

Table 2 gives a summary of the hyper-parameters used for GMM based ex-
periments after selection based on minimizing EER on the development set.
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Table 2. Summary of the hyper-parameters for GMMs based systems on the NIST
database

ML Hyper-Parameters

# of Iterations # of Gaussians Variance Flooring (%)

25 75 60

MAP Hyper-Parameters

# of ML Iterations # of Gaussians Variance Flooring (%)

25 100 60

# of MAP Iterations MAP Factor Variance Flooring (%)

5 0.5 60
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Percannella, Gennaro 282



524 Author Index
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