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Preface

This volume presents the set of papers accompanying the lectures of the seventh
International School on Formal Methods for the Design of Computer, Commu-
nication and Software Systems (SFM).

This series of schools addresses the use of formal methods in computer science
as a prominent approach to the rigorous design of computer, communication and
software systems. The main aim of the SFM series is to offer a good spectrum
of current research in foundations as well as applications of formal methods,
which can be of help for graduate students and young researchers who intend to
approach the field.

SFM 2007 was devoted to formal techniques for performance evaluation and
covered several aspects of the field, including formalisms for performance mod-
eling (Markov chains, queueing networks, stochastic Petri nets, and stochastic
process algebras), equivalence checking and model checking, efficient solution
techniques, and software performance engineering.

The opening paper by Stewart presents Markov chains, the fundamental per-
formance modeling formalism in use since the early 1900s. The author outlines
the events that have led to the present state of the art in the numerical approach
to Markov chain performance modeling and describes current solution methods
and ongoing research efforts.

The paper by Balsamo and Marin is about queueing networks, a class of
stochastic models extensively applied to represent and analyze resource-sharing
systems such as communication and computer systems. The authors mostly fo-
cus on product-form queueing networks, which allow one to define efficient algo-
rithms to evaluate average performance measures.

The paper by Balbo illustrates generalized stochastic Petri nets, a modeling
formalism that can be conveniently used both for the functional verification of
complex models of discrete-event dynamic systems and for their performance
and reliability evaluation.

The paper by Clark, Gilmore, Hillston, and Tribastone provides an introduc-
tion to stochastic process algebras and their use in performance modeling, with a
focus on the PEPA formalism. The authors describe the compositional modeling
capabilities of the formalism and the tools available to support Markov-chain-
based analysis.

The paper by Bernardo defines and compares several Markovian behavioral
equivalences with respect to a number of criteria such as their discriminating
power, the exactness of the Markov-chain-level aggregations they induce, the
achievement of the congruence property, the existence of sound and complete
axiomatizations, the existence of logical characterizations, and the existence of
efficient verification algorithms.
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The paper by Kwiatkowska, Norman, and Parker presents an overview of
model checking for both discrete-time and continuous-time Markov chains, which
deals with algorithms for verifying them against specifications written in prob-
abilistic extensions of temporal logic, including quantitative properties with re-
wards. The authors also outline the main features supported by the probabilistic
model checker PRISM.

The paper by Gribaudo and Telek summarizes the basic concepts and the
potential use of Markov fluid models, together with the factors that determine
the limits of their solvability and practical guidelines that can be extracted from
these factors to establish the applicability of fluid models in practice.

The paper by Knottenbelt and Bradley explores an array of techniques for an-
alyzing stochastic performance models with large state spaces. The authors con-
centrate on explicit techniques suitable for unstructured state spaces and show
how memory and run-time requirements can be reduced using a combination
of probabilistic algorithms, disk-based solution techniques, and communication-
efficient parallelism based on hypergraph partitioning.

The paper by Ciardo discusses some important classes of decision diagrams
and shows how they can be effectively employed to derive symbolic algorithms
for the analysis of large discrete-state models. In particular, the author presents
both explicit and symbolic algorithms for state-space generation, CTL model
checking, and continuous-time Markov chain solution.

The paper by Smith reviews the origins of software performance engineering
(SPE) and covers its fundamental elements: the data required, the software per-
formance models, and the SPE process. The author also illustrates how to apply
the modeling and analysis techniques and reports on the current status as well
as the outstanding problems.

The closing paper by Woodside is about using the SPT/MARTE annota-
tions to capture important performance features of a software design, such as
platform operations, component submodel composition, state machine uses, and
communication costs and delays. The author also addresses the relationship of
the annotated design model to the different kinds of performance model that
can be extracted.

We believe that this book offers a comprehensive view of what has been done
and what is going on worldwide in the field of formal methods for performance
evaluation. We wish to thank all the lecturers and all the participants for a lively
and fruitful school. We also wish to thank the entire staff of the University Res-
idential Center of Bertinoro for the organizational and administrative support.
Finally, we are very grateful to BiCi – Bertinoro international Center for infor-
matics, which kindly provided a sponsorship for this event under the Leonardo
Melandri Program.

June 2007 Marco Bernardo
Jane Hillston
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Performance Modelling and Markov Chains

William J. Stewart�

Department of Computer Science, North Carolina State University,
Raleigh, NC 27695, USA
billy@csc.ncsu.edu

Abstract. Markov chains have become an accepted technique for modeling a
great variety of situations. They have been in use since the early 1900’s, but it is
only in recent years with the advent of high speed computers and cheap memory
that they have begun to be applied to large-scale modeling projects. This paper
outlines the events that have lead to the present state-of-the-art in the numerical
approach to Markov chain performance modeling and describes current solution
methods and ongoing research efforts.

1 Introduction

1.1 A.A. Markov

It is appropriate in a talk of this nature to include a few sentences about the life and
work of A.A. Markov. Three sources were used to gather the information in this sec-
tion, namely a paper by Basherin and Naoumov, presented at the Fourth International
Conference on the Numerical Solution of Markov Chains, [2], a paper by Seneta [67]
given at the 2006 Markov Anniversary Meeting, and a web page maintained by the
School of Mathematics and Statistics at the University of St Andrews, Scotland [74].
Andrei Andreevich Markov was born on June 14, 1856, in Ryazan, Russia. He was the
fourth of his father’s 6 children by his first marriage. His father also had 3 children by
his second wife. An inborn deformity of the knee meant that the very young Markov
had to use crutches. At age ten he was operated on and thereafter walked with a slight
limp. However, it was leg problems that lead to his death. In later life, he developed an
anuerysm in the leg which required multiple surgeries, one of which proved fatal. He
died on July 20, 1922 at the age of 66 and is buried in the Mytrophany Cemetery in St.
Petersburg.

Four years after Markov’s birth, the family moved to St. Petersburg where Markov
attended school. Apparently he was unsuccessful at many subjects, except mathemat-
ics, at which he excelled. He attended the University of St. Petersburg where he studied
under P.L. Chebyshev. He was awarded the gold medal and was offered an academic po-
sition within the university. His doctorate (1884) was entitled “On Certain Applications
of the Algebraic Continuous Fractions”. When Chebychev left the university in 1883,
Markov took over his probability theory course. Twenty years later he was made an
honorary professor, and shortly thereafter, he retired, although he continued to lecture
on probability theory and the theory of continuous fractions.

� Corresponding author.

M. Bernardo and J. Hillston (Eds.): SFM 2007, LNCS 4486, pp. 1–33, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 W.J. Stewart

A.A. Markov married Maria Valvatieva, the daughter of the owner of the estate on
which Markov’s father worked, in 1883. They has a son who was given the same name,
Andrei Andreevich, and who became a renown mathematician in his own right. A.A.
Markov Jr. worked in the fields of algebra, topology and mathematical logic and headed
the Department of Mathematical Logic at Moscow State University. Interestingly, this
position was filled by A.N. Kolmogorov after Markov Jr.’s death. It was Kolmogorov
who laid the foundations for the general theory of Markov processes.

Much of Markov’s work was concerned with investigations into the weak law of
large numbers and the central limit theorem. His introduction of the Markov chain was
to show that Chebyshev’s approach to extending the weak law of large numbers to sums
of dependent random variables could be extended even further. He introduced a simple
chain as “an infinite sequence x1, x2, . . . , xk, xk+1, . . . of variables connected in
such a way that xk+1 for any k is independent of x1, x2, . . . , xk−1, in case xk is
known”. Furthermore he extended this to complex chains in which “every number is
directly connected not with a single but with several preceding numbers”. For the most
part, his studies on chains involved simple homogeneous chains. His works address the
concept of irreducibility and he shows that the dominant eigenvalue of an irreducible
Markov chain must be one and that no other eigenvalue can exceed this in modulus.
Markov’s work has been the basis for much research and provides a powerful method
of analysis that is in vogue today.

1.2 Vic Wallace and the Recursive Queue Analyzer

To the best of this author’s knowledge, the first applications of Markov chains to the
performance evaluation of computer systems occurred in the early 1960’s at the Uni-
versity of Michigan. The Michigan Computer Modelling Project was established in the
Electrical Engineering department under the direction of Dr. Harrry Goode, the father
of “Systems Engineering”. Unfortunately Goode was killed in a car accident shortly
after its establishment. The project was supported by the Rome Air Development Cen-
ter and later by ARPA. The participants in the original project included Vic Wallace,
as principal investigator, Richard Evans, Eugene Lawler, Dennis Fife, Robert Carlson,
Richard Rosenberg, Robert Rosen and John Smith. The original project was followed
by others under the direction of Keki Irani. The specification for the first software pack-
age for Markov modelling, the Recursive Queue Analyzer, RQA-0, appeared in the first
report of the research group in 1964. This was a prototype program for the numerical
solution of the equilibrium state probabilities of Markov chain models and included the
use of sparse matrix algorithms and compact storage for the transition matrix. A soft-
ware package based on these specifications, called RQA-1, was written by Wallace and
Rosenberg and appeared in 1966.

In a paper presented at the first international conference on the numerical solution of
Markov chains [78], (and from which much of the content of this section is extracted),
Wallace cites a number of reasons why numerical solution techniques took so long to
develop and suggests that these same reasons were still present some 25 years after the
introduction of the Recursive Queue Analyzer. Among these was the idea that com-
puter Markov modelling was too new and unfamiliar, being more “mathematical” and
abstract, and not to be trusted. He also suggested that other techniques like product form
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networks and simulation, were distracting attention because they could be more readily
understood, and there were still enough problems that they could solve. Perhaps more
significantly, he postulated that the numerical techniques tended to be quite fragile, that
traps abounded to snare the unwary!

To illustrate one aspect of this, Wallace refers to an unsuccessful experience in the
application of RQA-1. He recalls in the above referenced paper, that although they had
been doing numerical Markov analysis for many years, “I can recall the embarrassment
in 1970 of encountering a seriously ill-conditioned model for the first time while con-
fidently engaged in consulting. No adjustments seemed to eliminate the problem, and
tens of thousands of iterations were getting nowhere.” It turns out that the corporation
for which Wallace was consulting was ICL, International Computers Limited, England.
The problem was to model a SCAN strategy on a disk store with a large number of
cylinders. The difficulty, it later turned out, was the occurrence of multiple eigenvalues
close to unity. The problems that Wallace faced are still with us today, even though much
progress has been made in the intervening years. These are the problems of finding sta-
ble and efficient algorithms for computing numerical solutions and data structures in
which to store and manipulate the transition matrices.

1.3 Alan Scherr

Alan Scherr enters the picture as a PhD student at M.I.T. in the process of completing
his thesis in electrical engineering in 1965. The university had recently acquired a new
“Compatible Time Sharing System” which allowed 300 users to simultaneously access
its software and run their programs. Scherr’s performance problem was to characterize
the system’s usage which he did by extensive simulations. On presenting his thesis
he was told that it just was not “academic” enough, that it needed more mathematical
formulas. To jump this final hurdle, Scherr used some techniques he had learned in
a recently completed operations research course to construct a very primitive Markov
chain model. He designated the integer n to represent the state of the entire system
when n users had submitted their requests — which leaves 300 − n users busy typing
and preparing to submit their request. What was truly amazing and unexpected was the
accuracy with which this simple model appeared to capture the actual behavior of the
computer. It was the success of this simple model that encouraged others to adopt the
Markov chain approach for performance evaluation. Scherr’s thesis was later awarded
the Grace Murray Hopper award by the ACM. More information on the work of Scherr
is can be found in a paper by Von Hilgers and Langville [76].

2 Context for Current State-of-the-Art

In the context of Performance Evaluation, numerical analysis methods refer to those
methods which work with a Markov chain representation of the system under evalua-
tion and use techniques from the domain of numerical analysis to compute stationary
and/or transient state probabilities or other measures of interest. It is often possible to
represent the behavior of a physical system by describing all the different states that it
can occupy and by indicating how the system moves from one state to another in time.
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If the time spent in any state is exponentially distributed, the system may be represented
by a Markov process. Even when the system does not possess this exponential property
explicitly, it is usually possible to construct a corresponding implicit representation.
When the state space is discrete, the term Markov chain is employed. The system being
modelled by the chain is assumed to occupy one and only one of these states at any mo-
ment in time and the evolution of the system is represented by transitions of the Markov
chain from one state to another. The information that is most often sought from such a
model is the probability of being in a given state or subset of states at a certain time after
the system becomes operational. Often this time is taken to be sufficiently long that all
influence of the initial starting state has been erased. The probabilities thus obtained are
referred to as the long-run or stationary probabilities. Probabilities at a particular time
t are called transient probabilities.

It follows that the three steps involved in carrying out this type of evaluation are
firstly, to describe the system to be analyzed as a Markov chain; secondly, to deter-
mine from this Markov chain description, a matrix of transition rates or probabilities;
and thirdly, from this matrix representation, to numerically compute all performance
measures of interest. The first involves characterizing the states of the system and for-
mulating the manner in which it moves from one state to another; the second requires
finding a manner in which to store the transition matrix efficiently; the third requires
the application of matrix equation solving techniques to compute stationary or transient
probabilities.

The Recursive Queue Analyzer, RQA-1, [77], essentially avoided the first step by
requiring a user to describe the transition matrix directly. Since the envisaged appli-
cations derived from queueing networks, the nonzero elements in the transition matrix
often repeat at well defined patterns in the matrix. RQA-1 defined a data structure which
attempted to capture such regularities and to store them as the trio (nonzero element,
pattern, initialization point). The amount of storage used was therefore minimized. The
numerical solution technique employed by RQA-1 was the Power method. In the liter-
ature, the authors reported some success with this approach, [78].

This was followed in the early 1970’s by this author’s Markov Chain Analyzer,
MARCA, [73]. MARCA provided a means of expressing a Markov chain as a system
of “Balls and Buckets”, essentially allowing a single state of the chain to be represented
as a vector, the state descriptor vector. The user has to characterize the way in which
the system changes states by describing the interactions among the components of the
state descriptor vector. With this information MARCA automatically generates the tran-
sition rate matrix and stores it in a compact form. The original solution method used
in MARCA was simultaneous iteration, a forerunner of the currently popular projection
methods. In 1974, a restriction of MARCA to queueing networks was developed and
incorporated into QNAP (Queueing Network Analysis Package), [56].

The 80’s witnessed the popularization of the matrix-geometric approach of Neuts,
[49], and the establishment of Generalized Stochastic Petri Nets (GSPN) as a valuable
modelling paradigm, [1, 15]. These advances were accompanied by a flurry of activ-
ity in numerical aggregation and disaggregation methods, [13, 44, 65] — extending
the seminal work of Courtois, [18], on nearly completely decomposable systems. This
period also saw advances in the computation of bounds, [26, 66], in specification
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techniques, [6], in state-space exploration, [12, 7], and so on. The most popular
applications were, and still are, in the fields of computer communications and relia-
bility modelling, [36, 40, 81, 82]. And, of course, this period was also rich in advances
led by the numerical analysis community, especially in the development of projection
methods, preconditioning techniques and in sparse matrix technology in general, [62].

To this day, research continues along the same paths. Advances continue to be made in
all theaforementionedareas.Inadditionweseeanincreasedemphasisplacedonstochastic
automata networks (SANs), and other structured analysis approaches,
[10,11,16,41,53,72].Thesehaveadvanced handin handwith compositionalapproaches,
such as the stochastic process algebra package, PEPA, [32]. Given the ease of with which
GUIs (Graphical User Interaces) can now be programmed and the availability of cheap
memory and fast CPUs, many more numerical analysis software packages specificially
designed for performance evaluation have made their apparation. This period also wit-
nessed international conferences devoted to the topic, the first in 1990 and the second in
1995. It is significant that the third and fourth in this series were held jointly — with the
PNPM (Petri Nets and Performance Models) conference and the PAPM (Process Algebra
and Performance Modelling) conference in 1999 in Zaragoza, Spain and with the PNPM
(Petri Nets and Performance Models) conference and the Performance Tools and Tech-
niques, Tools’03 conference in Urbana-Champaign in 2003. In a short paper like this, it
is not possible to cover all aspects of the current state-of-the-art in anything other than a
perfunctory fashion. To offset this to some degree, an extensive bibliography is provided.

3 The Numerical Solution of Markov Chains

In Markov chain performance evaluation, all the desired performance measures are
largely computed from the stationary and transient distributions of the Markov chain.
In particular, the computation of stationary distributions is generally referred to as solv-
ing the global balance equations. These performance measures are computed from the
stochastic transition probability matrix P of the Markov chain The elements pij of this
matrix P are the conditional probabilities that on leaving state i the Markov chain next
moves to state j. The relevant equations may be written as

πP = π, (1)

or alternatively, as
πQ = 0, (2)

where P = QΔt+I and Δt ≤ (maxi |qii|)−1. When we perform this operation we es-
sentially convert the continuous-time system represented by the transition rate matrix,
Q, to a discrete-time system represented by the stochastic transition probability ma-
trix, P . In the discrete-time system, transitions take place at intervals of time Δt, this
parameter being chosen so that the probability of two transitions taking place in time
Δt is negligible. The stationary distribution, π, may be computed from either of these
equations. The transient distribution is computed form the Chapmann-Kolmogoroff
differential difference equations
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⎧
⎨

⎩

dπ(t)
dt

= π(t)Q, t ∈ [0, T ]

π(0) = π0 an initial probability distribution.

We shall discuss computational aspects of the stationary and transient distributions
momentarily, but for the moment we shall address a topic that is receiving much atten-
tion in the current literature, the set of right-hand eigenvectors of P . An understanding
of the significance of these vectors is becoming increasing important in applications
such as data mining and search engine development.

3.1 Significance of Subdominant, Right-Hand Eigenvectors

It is known that a left-hand eigenvector corresponding to a unit eigenvalue of the
stochastic transition probability matrix of a Markov chain is its stationary probability
vector. As yet, no physical significance has been ascribed to the left-hand eigenvectors
corresponding to eigenvalues different from unity. The situation is otherwise for the set
of right-hand eigenvectors. When the Markov chain under consideration is irreducible
and noncyclic, its stochastic matrix has a single eigenvalue of modulus 1; i.e., the unit
eigenvalue. In this case some information concerning the tendencies of the states to
form groups may be obtained from an examination of the right-hand eigenvectors cor-
responding to the subdominant eigenvalues, i.e., the eigenvalues with modulus closest
to but strictly less than 1.0. The reason is as follows:

The equilibrium position of the system is defined by the stationary probability vector,
i.e., the left-hand eigenvector corresponding to the unit eigenvalue. With each state of
the system can be associated a real number, which determines its “distance” from this
equilibrium position. This distance may be regarded as the number of iterations (or the
length of time) required to reach the equilibrium position if the system starts in the
state for which the distance is being measured. Such measurements are, of course, only
relative, but they serve as a means of comparison among the states.

Let the row vector w
(1)
i = (0, 0, . . . , 1, . . . , 0) with ith component equal to 1, denote

that initially the system is in state i. We shall assume that P possesses a full set of n
linearly independent eigenvectors. Similar results may be obtained when eigenvectors
and principal vectors are used instead. Let x1, x2, . . . , xn be the left-hand eigenvectors
of P (i.e., xT

j P = λjx
T
j for all j = 1, 2, . . . , n), arranged into descending order ac-

cording to the magnitude of their corresponding eigenvalues. Writing w
(1)
i as a linear

combination of these eigenvectors, we have

w
(1)
i = ci1x

T
1 + ci2x

T
2 + . . . + cinxT

n

where ci1, ci2, . . . , cin are the constants that define the linear combination. Repeated
postmultiplication of w

(1)
i by P yields the steady-state probability vector. We have

w
(1)
i P = ci1x

T
1 P + ci2x

T
2 P + . . . + cinxT

n P (3)

= ci1x
T
1 + ci2λ2x

T
2 + . . . + cinλnxT

n = w
(2)
i , (4)

and in general
w

(k+1)
i = ci1x

T
1 + ci2λ

k
2xT

2 + . . . + cinλk
nxT

n .
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If the system initially starts in some other state j �= i, we have

w
(k+1)
j = cj1x

T
1 + cj2λ

k
2xT

2 + . . . + cjnλk
nxT

n .

Since only the constant coefficients differ, the difference in the length of time taken to
reach the steady state from any two states i and j depends only on these constant terms.
Further, if λ2 is of strictly larger modulus than λ3, λ4, . . ., then for large k, λk

2 � λk
l

for l ≥ 3, and it is the terms ci2 and cj2 in particular that contribute to the difference.
Considering all possible starting states, we obtain

⎛

⎜
⎜
⎜
⎜
⎝

w
(k+1)
1

w
(k+1)
2

...

w
(k+1)
n

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

c11x
T
1 + c12λ

k
2xT

2 + . . . + c1nλk
nxT

n

c21x
T
1 + c22λ

k
2xT

2 + . . . + c2nλk
nxT

n
...

cn1x
T
1 + cn2λ

k
2xT

2 + . . . + cnnλk
nxT

n

⎞

⎟
⎟
⎟
⎠

,

i.e.,

W (k+1) =

⎛

⎜
⎜
⎜
⎝

c11 c12 . . . c1n

c21 c22 . . . c2n

...
...

. . .
...

cn1 cn2 . . . cnn

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

1
λk

2
. . .

λk
n

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

xT
1

xT
2
...

xT
n

⎞

⎟
⎟
⎟
⎠

≡ CΛkXT .

To obtain the matrix C, consider the following: the matrixW (1)=(w(1)
1 ,w

(1)
2 , . . . , w

(1)
n )T

was originally written in terms of the set of left-hand eigenvectors as

W (1) = CXT ,

but since W (1) = I , we obtain

I = CXT ,

i.e., C = (XT )−1 = Y , the set of right-hand eigenvectors of P . Therefore, it is from
the second column of the matrix C, i.e., the subdominant right-hand eigenvector of the
matrix P , that an appropriate measure of the relative distance of each state from the
stationary probability vector may be obtained. The third and subsequent columns may
be employed to obtain subsidiary effects.

States whose corresponding component value in this vector is large in magnitude are,
in a relative sense, far from the equilibrium position. Also, the states corresponding to
component values that are relatively close together form a cluster, or a subset, of states.
If, for example, the components of this vector are close either to +1 or to −1, then it
may be said that those states corresponding to values close to +1 form a subset of states
that is far from the remaining states, and vice versa. In this manner, it may be possible
to determine which states constitute near essential and near cyclic subsets of states. This
technique has been proven useful in a variety of applications in which groups of like
states need to be identified and isolated.
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3.2 Steady State Distributions

We now turn to the computation of steady-state distributions. A number of powerful
numerical procedures are available to us, but unfortunately there is not a single one
that works well in all circumstances. It is necessary to choose a particular method that
responds well to the size, structure and required performance measures. We examine
the various possibilities in the next few sections.

3.2.1 Direct Methods
Direct methods, in contrast to iterative and projection methods, perform a fixed number
of numerical operations to compute a solution to a system of equations. All direct meth-
ods for systems of linear equations are based on Gaussian elimination. In our case, we
apply these methods to equation (1) which is a homogeneous system of linear equations.
If the Markov chain is ergodic, the fact that the system of equations is homogeneous
does not create any problems, since we may replace any of the n equations by the
normalizing equation,

∑n
j=1 πj = 1, and thereby convert it into a nonhomogeneous

system with nonsingular coefficient matrix and nonzero right hand side. The solution
in this case is well defined. It turns out that replacing an equation with the normaliz-
ing equation is not really necessary. The usual approach taken is to construct an LU
decomposition of Q and replace the final zero diagonal element of U with an arbitrary
value. The solution computed by backsubstitution on U must then be normalized. Fur-
thermore, since the diagonal elements are equal to the negated sum of the off-diagonal
elements (Q is, in a restricted sense, diagonally dominant), it is not necessary to perform
pivoting while computing the LU decomposition. This simplifies the algorithm consid-
erably. The problem of the size and nonzero structure (the placement of the nonzero
elements within the matrix) still remain. Obviously this method will work, and work
well, when the number of states is small. It will also work well when the nonzero struc-
ture of Q fits into a narrow band along the diagonal. In these cases a very stable variant,
referred to as the GTH (Grassmann, Taskar and Heyman, [30]) algorithm may be used.
In this variant, all subtraction is avoided by computing diagonal elements as the sum of
off-diagonal elements. This is possible since the zero-row-sum property of an infinites-
imal generator is invariant under the basic operation of Gaussian elimination, namely
adding a multiple of one row into another. For an efficient implementation, the GTH
variant requires convenient access to both the rows and the columns of the matrix.

3.2.2 Basic Iterative Methods
When the number of states becomes large and the structure in not banded, the direct
approach loses its appeal and one is obliged to turn to other methods. For iterative
methods we first take the approach of solving equation (2) in which P is a matrix of
transitions probabilities. Let the initial probability distribution vector be given by π(0).
After the first transition, the probability vector is given by π(1) = π(0)P ; after k tran-
sitions it is given by π(k) = π(k−1)P = π(0)P k. If the Markov chain is ergodic, then
limk→∞ π(k) = π. This method of determining the stationary probability vector, by
successively multiplying some initial probability distribution vector by the matrix of
transition probabilities, is called the Power method. Observe that all that is required
is a vector-matrix multiplication operation. This may be conveniently performed on
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sparse matrices that are stored in compact form. Because of its simplicity, this method
is widely used, even though it often takes a very long time to converge. Its rate of con-
vergence is a function of how close the subdominant eigenvalue of P is to its dominant
unit eigenvalue. In models in which there are large differences in the magnitudes of
transition rates, the subdominant eigenvalue can be pathologically close to one, so that
to all intents and purposes, the Power method fails to converge.

It is also possible to apply iterative equation solving techniques to the system of equa-
tions (1). The well-known Jacobi method is closely related to the Power method, and it
also frequently takes very long to converge. A better iterative method is that of Gauss-
Seidel. Unlike the previous two methods, in which the equations are only updated after
each completed iteration, the Gauss-Seidel method uses the most recently computed
values of the variables as soon as they become available and, as a result, almost always
converges faster than Jacobi or the Power method. All three methods can be written so
that the only numerical operation is that of forming the product of a sparse matrix and
a probability vector so all are equal from a computation per iteration point of view.

3.2.3 Block Methods
If the state space of the Markov chain can be meaningfully partitioned into N subsets of
size n1, n2, . . ., nN with

∑N
i=1 = n, then block iterative methods can become attractive

alternatives to the basic point iterative methods. These essentially involve the solution
of N systems of equations of size ni, i = 1, 2, . . . , N within a global iterative structure,
such as Gauss-Seidel, for instance: thus the Block Gauss-Seidel method. Furthermore,
these N systems of equations are nonhomogeneous and have nonsingular coefficient
matrices and either direct or iterative methods may be used to solve them. It is not
required that the same method be used to solve all the diagonal blocks. Instead, it is
possible to tailor methods to the particular block structures.

If a direct method is used, then a decomposition of the diagonal block may be formed
once and for all before initializing the global iteration process. In each subsequent
global iteration, solving for that block then reduces to a forward and backward substitu-
tion operation. The nonzero structure of the blocks may be such that this is a particularly
attractive approach. For example, if the diagonal blocks are themselves diagonal matri-
ces, or if they are upper or lower triangular matrices or even tridiagonal matrices, then
it is very easy to obtain their LU decomposition, and a block iterative method becomes
very attractive.

If the diagonal blocks do not possess such a structure, and when they are of large
dimension, it may be appropriate to use an iterative method to solve each of the block
systems. In this case, we have many inner iterative methods (one per block) within an
outer (or global) iteration. A number of tricks may be used to speed up this process.
First, the solution computed for any block at global iteration k should be used as the
initial approximation to the solution of this same block at iteration k + 1. Second, it
is hardly worthwhile computing a highly accurate solution in early (outer) iterations.
We should require only a small number of digits of accuracy until the global process
begins to converge. One convenient way to achieve this is to carry out only a fixed,
small number of iterations for each inner solution.

The IAD — Iterative Aggregation/Disaggregation methods are related to block itera-
tive methods. They are particularly powerful when the Markov chain is NCD — Nearly
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Completely Decomposable, as the partitions are chosen based on how strongly the states
of the Markov chain interact with one another, [18, 45]. The choice of good partitions
for both block iterative methods and IAD methods is an active area of current research.

3.2.4 Projection Methods
Projection methods have begun to be applied successfully to Markov chain problems,
[51]. Whereas iterative methods begin with an approximate solution vector that is mod-
ified at each iteration and which (supposedly) converges to a solution, projection meth-
ods create vector subspaces and search for the best possible approximation to the so-
lution that can be obtained from that subspace. With a given subspace, for example,
it is possible to extract a vector π̂ that is a linear combination of a set of basis vec-
tor for that space and which minimizes ‖π̂Q‖ in some vector norm. This vector π̂
may then be taken as an approximation to the solution of πQ = 0. This is the basis
for the GMRES, Generalized Minimal Residual algorithm. Another popular projection
method is the method of Arnoldi. The subspace most often used is the Krylov subspace,
Km = span{v1, v1Q, . . . , v1Q

m−1}, constructed from a starting vector v1 and suc-
cessive iterates of the power method. The computed vectors are then orthogonalized
with respect to one another. It is also possible to construct “iterative” variants of these
methods. When the subspace reaches some maximum size, the best approximation is
chosen from this subspace and a new subspace generated using this approximation as
the initial starting point.

Preconditioning techniques are frequently used to improve the convergence rate of
iterative Arnoldi and GMRES. This typically amounts to replacing the original system
πQ = 0 by

πQM−1 = 0,

where M is a matrix whose inverse is easy to compute. The objective of preconditioning
is to modify the system of equations to obtain a coefficient matrix with a fast rate of
convergence. It is worthwhile pointing out that preconditioning may also be used with
the basic power method to improve its rate of convergence. The inverse of the matrix
M is generally computed from an Incomplete LU factorization of the matrix Q. These
preconditioning techniques can also be applied to iterative methods.

3.3 The Computation of Transient Distributions

There exists several numerical techniques for obtaining transient solutions of homo-
geneous, irreducible Markov chains. These techniques are based either on computing
matrix exponentials or integrating the Chapman-Kolmogorov system of differential
equations: ⎧

⎨

⎩

dπ(t)
dt

= π(t)Q, t ∈ [0, T ]

π(0) = π0 an initial probability distribution.
(5)

The transient distribution, π(t), is the solution of (5) and is known to be given by

π(t) = eQtπ0.



Performance Modelling and Markov Chains 11

Since the matrix exponential is full even when the original matrix is sparse, the prac-
tical computation of eQt in full remains possible only when Q is relatively small, i.e.,
when the number of states in the Markov chain does not exceed a few hundred. In [47],
Moler and Van Loan provide an instructive review of possible methods applicable in
this context. Although this review shows that none of the methods are unconditionally
acceptable for all classes of problems, methods such as those of the Padé-type or ma-
trix decompositions, with careful implementation, can be satisfactory in many contexts.
These methods involve matrix-matrix operations.

To address large problems, the family of series methods, in which matrix-vector op-
erations are paramount, appears to be a reasonable choice. One method of this class,
the uniformization method is particularly widely used. The uniformization (or random-
ization) technique is based on the evaluation of the pth partial Taylor series expansion
of the matrix exponential, [29, 31]. The length p is fixed so that a prescribed tolerance
on the approximation is satisfied. Since Q is essentially nonnegative (i.e., the diagonal
elements of Q are negative and the off-diagonal elements are nonnegative), a naive use
of the expression π(t) = eQtπ0 ≈

∑p
k=0(1/k!)(Qt)kπ0 is subject to severe roundoff

errors due to terms of alternating signs. Uniformization uses the modified formulation
π(t) = eα(P−I)tπ0 = e−αteαPtπ0 where α ≡ maxi |qii| and P ≡ 1

αQ + I is nonneg-
ative with ‖P‖1 = 1. The resulting truncated approximation

π̃(t) =
p∑

k=0

e−αt (αt)k

k!
π0P

k

involves only nonnegative terms and becomes numerically stable. The popularity of
Unifomization is due to three reasons. Firstly, its handiness and malleability facilitate
its implementation – only a matrix-vector product is needed per iteration. Secondly, the
transformation from Q to P has a probabilistic interpretation. Thirdly and perhaps most
important, it works surprizingly well in a great variety of circumstances.

A different class of method, that of ordinary differential equation (ODE) solvers,
is appealing because of the high availability of ready-to-use efficient library routines
for solving initial value ODE problems. In addition to being multiple- or single-step,
ODE solvers can be explicit or implicit, yielding four possible categories. Each cate-
gory yields new classes of methods in their own right — depending on their derivation,
their analytic and numerical properties, or on implementation aspects. For example,
some of the particularities of a method can be: multistage or otherwise, order, stability
region, matrix-free or otherwise, stiff or non-stiff, computational cost, etc. In general,
implicit methods — which are more costly, appear suitable for stiff-problems while
cheap explicit methods are satisfactory only on non-stiff problems. Recently, Krylov
projection-type methods have been developed and these appear to be particularly useful
for Markov chain problems. The Krylov-based algorithm generates an approximation
to π(t) = exp(Qt)π0 and computes the matrix exponential times a vector rather than
the matrix exponential in isolation. The underlying principle is to approximate

π(t) = eQtπ0 = π0 +
(Qt)
1!

π0 +
(Qt)2

2!
π0 + · · · (6)
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by an element of the Krylov subspace

Km(Qt, π0) = Span{π0, (Qt)π0, . . . , (Qt)m−1π0}, (7)

where m, the dimension of the Krylov subspace, is small compared to n, the order of the
coefficient matrix (usually m ≤ 50 whilst n can exceed many hundreds of thousands).
The approximation used is

π̃(t) = βVm+1 exp(H̄m+1 t)e1 (8)

where β = ‖π0‖2; Vm+1 = [π01, . . . , π0m+1] and H̄m+1 = [hij ] are, respectively,
the orthonormal basis and the upper Hessenberg matrix resulting from the well-known
Arnoldi process (see, e.g., [28, 63]); e1 is the first unit basis vector. The distinctive
feature is that the original large problem (6) is converted to the small problem (8) which
is more desirable. Within the framework of Markov chains, relevant studies are those of
Philippe and Sidje, [52], and Sidje, [68, 69].

Systematic and extensive numerical comparisons of various methods for computing
matrix exponentials in general, and transient solutions of Markov chains in particular
are modest in the literature. One can mention the attempt made in Sidje, [68], where
ODE solvers from the NAG library were used. However, the assessment provided is
debatable because, with regard to other ODE libraries, the efficiency of the ODE chapter
of NAG is questioned. In Clarotti, [19], a brief description of a customized implicit-
type method is outlined. Unfortunately no experiments nor comparisons, are reported
that confirm or deny the superiority of the approach. The work in Reibman and Trivedi,
[61], later continued in Malhorta and Trivedi, [42], are also worth mentioning, for the
ODE solution techniques used therein have been tailored specifically for the Markovian
context. In [42] for instance, a comprehensive analysis of the issues (namely, largeness,
stiffness and accuracy) faced when solving Markov chains numerically is presented
and a comparison of four different solution techniques is undertaken. The comparison
suggests that uniformization is best on non-stiff problems but is inferior to implicit
ODE-solvers, such as the implicit third-order RK method, on stiff-problems.

3.4 Markov Chains with Kronecker Product Form

In the recent past, much attention has been given to Markov chains in which the transi-
tion matrix can be written as a sum of Kronecker products [10, 21, 25, 34, 53, 54, 55].
Such matrix representations provide a means of performing Markov chain modelling
without the problem of having to store huge transition matrices. A prime example is a
Stochastic Automata Network (SAN). A SAN consists of a number of individual sto-
chastic automata that operate more or less independently of each other. Each individual
automaton is represented by a number of states and rules that govern the manner in
which it moves from one state to the next. The state of an automaton at any time t is
just the state it occupies at time t and the state of the SAN at time t is given by the
state of each of its constituent automata. An automaton may be thought of as a com-
ponent in a Markov chain state descriptor. It has been observed that SANs provide a
natural means of describing parallel and distributed systems since such systems are
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often viewed as collections of components that operate more or less independently, re-
quiring only infrequent interaction such as synchronizing their actions, or operating at
different rates depending on the state of parts of the overall system. This is exactly the
viewpoint adopted by SANs.

The compact form in which the transition matrix that characterizes the model is
kept helps keep memory requirements within manageable limits and avoids the state
space explosion associated with other state based approaches. Therefore, the state space
explosion problem associated with Markov chain models is mitigated by the fact that
the state transition matrix is not stored, nor even generated. Instead, it is represented
by a number of much smaller matrices and from these all relevant information may
be determined without explicitly forming the global matrix. The implication is that a
considerable saving in memory is effected by keeping the infinitesimal generator in this
fashion. A potential source of memory waste with the Kronecker-based approach is due
to the fact that the tensor product state space can become much larger than the actual
model state space. While this is not a problem for storing the transition matrix itself
(since it is not stored) it can pose a problem for storing the vectors needed to compute
numerical solutions. Research by Ciardo, [17], and others have produced techniques
that go a long way towards eliminating this problem.

In order to benefit from this compact form, the descriptor is never expanded into
a single large matrix. Consequently, all subsequent operations must necessarily work
with the model in its descriptor form and hence numerical operations on the under-
lying Markov chain infinitesimal generator become more costly. Previously, this cost
was sufficiently high to discourage the application of Kronecker-based technologies.
Recent results will most likely change this situation. These show how the application
of successive modelling strategems and numerical savoir-faire reduce the time needed
to compute stationary distributions by several orders of magnitude, thereby reducing
considerably this perceived disadvantage. In particular, the essential role that funtional
transitions play in this scenario needs to be emphasized. Functional transitions allow a
system modeled as a SAN to use fewer automata and fewer synchronizing transitions.
In other words, if functional transitions cannot be handled by the modelling techniques
used, then a given system can be modeled as a SAN only if additional automata are
included and these automata linked to others by means of synchronizing transitions.

Formally, a SAN is a set of automata whose dynamic behavior is governed by a set of
events. Events are said to be local if they provoke a transition in a single automaton, and
synchronizing if they provoke a transition in more than one automaton. It goes without
saying that a single event can generate more than one transition. A transition that results
from a synchronizing event is said to be a synchronized transition; otherwise it is called
a local transition. We denote the number of states in automaton i by ni and denote by
N the number of automata in the SAN.

The behavior of each automaton, A(i), for i = 1, . . . , N , is described by a set of
square matrices, all of order ni. In our context, a SAN is studied as a continuous-time
Markov chain. The rate at which event transitions occur may be constant or may depend
upon the state in which they take place. In this last case they are said to be functional (or
state-dependent). Synchronized transitions may be functional or non-functional. Func-
tional transitions allow a system to be modeled as a SAN using fewer automata and
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fewer synchronizing transitions. In other words, if functional transitions cannot be han-
dled by the modelling techniques used, then a given system may be modeled as a SAN
if additional automata are included and these automata are linked to others by means of
synchronizing transitions.

In the absence of synchronizing events and functional transitions, the matrices which
describe A(i) reduce to a single infinitesimal generator matrix, Q(i), and the global
Markov chain generator may be written as

Q =
N⊕

i=1

Q(i) =
N∑

i=1

In1 ⊗ · · · ⊗ Ini−1 ⊗ Q(i) ⊗ Ini+1 ⊗ · · · ⊗ InN . (9)

The tensor sum formulation is a direct result of the independence of the automata, and
the formulation as a sum of tensor products, a result of the defining property of tensor
sums. The probability distribution at any time t of this independent N -dimensional
system is known to be

π(t) =
N⊗

i=1

π(i)(t). (10)

Now consider the case of SANs which contain synchronizing events but no functional
transitions and let us denote by Q

(i)
l , i = 1, 2, . . . , N , the matrix consisting only of

the transitions that are local to A(i). Then, the part of the global infinitesimal generator
that consists uniquely of local transitions may be obtained by forming the tensor sum
of the matrices Q

(1)
l , Q

(2)
l , . . . , Q

(N)
l . As is shown in [53], stochastic automata net-

works may always be treated by separating out the local transitions, handling these in
the usual fashion by means of a tensor sum and then incorporating the sum of two addi-
tional tensor products per synchronizing event. The first of these two additional tensor
products may be thought of as representing the actual synchronizing event and its rates,
and the second corresponds to an updating of the diagonal elements in the infinitesimal
generator to reflect these transitions. Equation (9) becomes

Q =
N⊕

i=1

Q
(i)
l +

∑

e∈E

(
N⊗

i=1

Q
(i)
e+ +

N⊗

i=1

Q
(i)
e−

)

. (11)

Here E is the set of synchronizing events. Furthermore, since tensor sums are defined
in terms of a matrix sum of tensor products, the infinitesimal generator of a system
containing N stochastic automata with E synchronizing events (and no functional tran-
sition rates) may be written as

Q =
2E+N∑

j=1

N⊗

i=1

Q
(i)
j . (12)

This formula is referred to as the descriptor of the stochastic automata network. Effi-
cient algorithms to form the product of this descriptor and a vector, which is the fun-
damental component in the numerical procedures used to analyze SANs, have been
developed and are discussed in [23, 4]
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Let us momentarily return to equation (11) to consider how best to handle the diago-
nal elements of Q. Since the numerical methods used to compute solutions of SANs are
usually iterative, the most important operation is that of multiplying the descriptor with
a vector and hence it is essential to keep the cost of this multiplication to a minimum.
One way to reduce costs is to precompute the diagonal of the descriptor. In this case,
the descriptor may be considered as being composed of two parts:

• D, a vector containing the diagonal of the descriptor
• Q̄, the descriptor itself with the exception that all the diagonal elements of the

matrices of each tensor product term are set to zero.

From a practical point of view, this is most easily accomplished by setting all the diag-
onal elements of local matrices Q

(i)
l to zero. In each tensor product term corresponding

to a synchronizing event e, the diagonal elements of the matrices corresponding to the
automaton which “owns” this event must also be set to zero. A second advantage of
this astuce now becomes apparent. Normally each synchronizing event generates two
tensor product terms. The first term contains the rates of occurrence of the synchro-
nizing event and the second contains exclusively the elements with which to adjust the
diagonal. This second term, once computed, only generates elements on the diagonal
of the descriptor. Precomputing the diagonal therefore allows us to eliminate the sec-
ond tensor product term of each synchronizing event thereby reducing the number of
terms requiring manipulation during the multiplication phase. The diagonal elements
arising from synchronization terms are added to the diagonal elements corresponding
to the tensor sum part of the descriptor and the number of tensor product terms in the
descriptor is reduced from 2E + N to E + N . Precomputing the diagonal brings about
even greater savings when the descriptor has functional elements, since the evaluation
of functions on the diagonal must all be precomputed, but only once.

Precomputation of the diagonal does have a cost associated with it, although this
cost manifests itself only once, namely, during the preparation of the descriptor. On the
other hand, the benefits derived from this approach occur each time a vector–descriptor
product is computed. A second disadvantage of this approach is the necessity of storing
the diagonal elements themselves. Since the representation of the matrix is extremely
small, this has the effect of almost doubling the amount of memory needed. However,
the augmentation in memory use nevertheless remains low compared to the needs of
storing the entire matrix using sparse matrix technology. To counterbalance these in-
conveniences, this approach provides rapid access to the diagonal of the descriptor with
the resulting advantages of

- Easy computation of the largest element of the descriptor, since, given that the
descriptor is a representation of the infinitesimal generator, the largest element will
always be found along the diagonal.

- Ease of use for implementing certain preconditioning techniques, which, as we
shall see later, require access to the diagonal.

Finally, let us consider the effect of introducing functional transitions into SANs. It
should be apparent that the introduction of functional transition rates has no effect on
the structure of the global transition rate matrix other than when functions evaluate
to zero in which case a degenerate form of the original structure is obtained. In other
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words, the placement of zero versus nonzero elements essentially remains unchanged.
What may change is the value of nonzero elements. The nonzero structure of the SAN
descriptor is just as before (except in the case when a function evaluates to zero but even
here, the sparse data structures used need not be altered). However, because of possi-
ble value changes, the usual tensor operations are no longer valid. Since regular tensor
products are unable to handle functional transitions it is necessary to use a Generalized
Tensor Algebra, (GTA) [23], to overcome this difficulty. In particular, this GTA provides
some associativity, commutativity, distributivity and compatibility over multiplication
properties that enable the descriptor of a SAN with synchronizing events and functional
transitions to be handled with algorithms almost identical to those of SANs with no
functional transitions. Recent and ongoing research concerns the development of pro-
cedures destined to minimize memory requirements, [4], and the computational burden
of applying the SAN modelling concepts, [23], as well as extending the applicability of
the modelling procedure to incorporate phase-type distributions, [64].

3.5 Structured Markov Chains of M/G/1- and GI/M/1-Type

Much work has been carried out by Neuts and his colleagues, [49, 50, 59, 60], on the
numerical solution of Markov chains whose transition matrices have a special block
structure — a block structure that arises frequently when modeling queueing systems.
In the simplest case, these matrices are infinite block tridiagonal matrices in which the
three diagonal blocks repeat after some initial period. To capture this non-zero structure,
we write such a matrix as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B00 B01 0 0 0 0 · · ·
B10 A1 A2 0 0 0 · · ·
0 A0 A1 A2 0 0 · · ·
0 0 A0 A1 A2 0 · · ·

. . .
. . .

. . .
...

...
...

...
...

...
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(13)

in which all submatrices, Aj , j = 0, 1, 2, ... are square and have the same dimension;
the matrix B00 is also square and need not have the same size as A1 and the dimensions
of B01 and B10 are defined to be in accordance with the dimensions of B00 and A1. A
transition matrix having this structure arises when each state of the Markov chain can be
written as a pair {(η, k), η ≥ 0, 1 ≤ k ≤ K} and the states ordered, first according to
increasing value of the parameter η and for states with the same η value, by increasing
value of k.This has the effect of grouping the states into “levels” according to their
η value. The block tridiagonal effect is achieved when transitions are permitted only
between states of the same level (diagonal blocks),to states in the next highest level
(super-diagonal blocks), and to states in the adjacent lower level (sub-diagonal blocks).
The repetitive nature of the blocks themselves arises if, after boundary conditions are
taken into consideration (which gives the initial blocks B00, B01 and B10) the transition
rates/probabilities are constant from level to level. A Markov chain whose transition
matrix has this block tridiagonal structure is said to belong to the class of Quasi-Birth-
Death (QBD) processes.
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Fig. 1. State transition diagram for an M/M/1-type process

3.5.1 Quasi-birth-Death Processes
Consider the Markov chain whose state transition diagram is shown in Figure 1.

Its transition rate matrix is

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ γ1 λ1
γ2 ∗ λ2

∗ γ1 λ1
μ/2 μ/2 γ2 ∗ γ1

γ2 ∗ λ2

∗ γ1 λ1
μ γ2 ∗ γ1

γ2 ∗ λ2

∗ γ1 λ1
μ γ2 ∗ γ1

γ2 ∗ λ2

∗ γ1 λ1
μ γ2 ∗ γ1

γ2 ∗ λ2
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and has the typical block tridiagonal structure which makes it an ideal candidate for
solution by the matrix geometric method. Its diagonal elements, marked by asterisks,
are such that the sum across each row is zero. We have the following block matrices

A0 =

⎛

⎝
0 0 0
0 μ 0
0 0 0

⎞

⎠, A1 =

⎛

⎝
−(γ1 + λ1) γ1 0

γ2 −(μ + γ1 + γ2) γ1
0 γ2 −(γ2 + λ2)

⎞

⎠, A2=

⎛

⎝
λ1 0 0
0 0 0
0 0 λ2

⎞

⎠

and

B00 =
(

−(γ1 + λ1) γ1
γ2 −(γ2 + λ2)

)

, B01 =
(

λ1 0 0
0 0 λ2

)

, B10 =

⎛

⎝
0 0

μ/2 μ/2
0 0

⎞

⎠ .
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The matrix geometric method derives relationships which involve these blocks and
which permits the stationary distribution to be efficient computed. Since this
procedure also applies to more general GI/M/1-type processes, we defer considering
it until the next section. The most common extensions to this simplest case are matri-
ces which are block upper Hessenberg (referred to as M/G/1 type and solved using
the matrix analytic approach) and those that are block lower Hessenberg (referred to as
GI/M/1 type, solved using the matrix geometric approach). Results are also available
for the case in which parameters η and k are both finite, which results in a finite Markov
chain as well as for the case in which transitions may be dependent on the level η.

3.5.2 Structured Markov Chains of the GI/M/1-Type
In a lower Hessenberg matrix A, all elements aij must be zero for values of j > i + 1.
In other words, if moving from top to bottom, we designate the three diagonals of a
tridiagonal matrix as the super-diagonal, the diagonal and the subdiagonal, then a lower
Hessenberg matrix can have non-zero elements only on and below the superdiagonal.
For example, the following matrix is a 6 × 6 lower Hessenberg matrix.

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a00 a01 0 0 0 0
a10 a11 a12 0 0 0
a20 a21 a22 a23 0 0
a30 a31 a32 a33 a34 0
a40 a41 a42 a43 a44 a45
a50 a51 a52 a53 a54 a55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Block lower Hessenberg matrices, found in GI/M/1-type stochastic processes, are just
the block counterparts of lower Hessenberg matrices. In a similar manner we can define
block upper Hessenberg matrices, which are found in M/G/1-type stochastic processes,
as block matrices whose only nonzero blocks are on or above the diagonal blocks and
along the subdiagonal block. One is essentially the block transpose of the other. This
leads us to caution the reader about the notation used to designate the individual blocks.
With block lower Hessenberg matrices, the non-zero blocks are numbered from right to
left as A0, A1, A2, . . ., while in block upper Hessenberg matrices they are numbered
in the reverse order, from left to right. As we have just seen, we choose to denote
the blocks in QBD processes (which are simultaneously both upper and lower block
Hessenberg) from left to right, i.e., using the block upper Hesssenberg notation. Our
interest in this section is with Markov chains whose infinitesimal generators Q have the
following repetitive block lower Hessenberg structure.

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B00 B01 0 0 0 0 0 · · ·
B10 B11 A0 0 0 0 0 · · ·
B20 B21 A1 A0 0 0 0 · · ·
B30 B31 A2 A1 A0 0 0 · · ·
B40 B41 A3 A2 A1 A0 0 · · ·

...
. . .

. . .
. . .

. . .
. . . · · ·

...
...

...
...

...
...

... · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Markov chains with this structure occur when the states are grouped into levels, similar
to that for QBD processes, but now transitions are no longer confined to inter-level and
to adjacent neighboring levels; transitions are also permitted from any level to any lower
level.
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Fig. 2. State transition diagram for a GI/M/1-type process

For example, the Markov chain of Example 3.5.1, modified so that it incorporates ad-
ditional transitions ξ1 and ξ2 to lower non-neighboring states is shown in Figure 2. Its
transition matrix is given by

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ γ1 λ1
γ2 ∗ λ2

∗ γ1 λ1
μ/2 μ/2 γ2 ∗ γ1

γ2 ∗ λ2

ξ1 ∗ γ1 λ1
μ γ2 ∗ γ1

ξ2 γ2 ∗ λ2

ξ1 ∗ γ1 λ1
μ γ2 ∗ γ1

ξ2 γ2 ∗ λ2

ξ1 ∗ γ1 λ1
μ γ2 ∗ γ1

ξ2 γ2 ∗ λ2
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

In this case, we show two boundary columns (Bi0 and Bi1, i = 0, 1, 2, . . . ). In some
applications, such as queueing systems with bulk arrivals, more than two boundary
columns can occur and this may necessitate a restructuring of the matrix. Consider, for
example the generator matrix
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Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B00 B01 B02 A0
B10 B11 B12 A1 A0
B20 B21 B22 A2 A1 A0
B30 B31 B32 A3 A2 A1 A0
B40 B41 B42 A4 A3 A2 A1 A0
B50 B51 B52 A5 A4 A3 A2 A1 A0
B60 B61 B62 A6 A5 A4 A3 A2 A1 A0
B70 B71 B72 A7 A6 A5 A4 A3 A2 A1 A0
B80 B81 B82 A8 A7 A6 A5 A4 0 0 A1 A0

...
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

At present, this matrix is not block lower Hessenberg. However, if it is restructured
into the form

�
����������

B00 A0 0 0 · · ·

B10 A1 A0 0 · · ·

B20 A2 A1 A0

...
. . .

. . .
. . .

�
����������

=

�
�����������������

B00 B01 B02 A0

B10 B11 B12 A1 A0

B20 B21 B22 A2 A1 A0

B30 B31 B32 A3 A2 A1 A0

B40 B41 B42 A4 A3 A2 A1 A0

B50 B51 B52 A5 A4 A3 A2 A1 A0

B60 B61 B62 A6 A5 A4 A3 A2 A1 A0

B70 B71 B72 A7 A6 A5 A4 A3 A2 A1 A0

B80 B81 B82 A8 A7 A6 A5 A4 0 0 A1 A0

...
...

...
...

...
...

. . .
. . .

. . .
. . .

. . .
. . .

�
�����������������

with

A0 =

⎛

⎝
A0
A1 A0
A2 A1 A0

⎞

⎠ , A1 =

⎛

⎝
A3 A2 A1
A4 A3 A2
A5 A4 A3

⎞

⎠ , B00 =

⎛

⎝
B00 B01 B02
B10 B11 B12
B20 B21 B22

⎞

⎠ , · · ·

then the matrix Q does have the desired block lower Hessenberg form and the matrix
geometric techniques which we now outline may be successfully applied to it.

Our objective is to compute the stationary probability vector π from the system of
equations πQ = 0. Let π be partitioned conformally with Q, i.e. π = (π0, π1, π2, · · ·)
where πi = (π(i, 1), π(i, 2), · · · π(i, K)) for i = 0, 1, · · · and π(i, k) is the probability
of finding the system in state (i, k) under steady state conditions. Neuts has shown
that there exists a matrix geometric solution to this problem, that there exists a positive
matrix R such that

πi = πi−1R, for i = 2, 3, . . .

i.e., that
πi = π1R

i−1, for i = 2, 3, . . .

Observe that from πQ = 0 we have
∞∑

k=0

πk+jAk = 0, j = 1, 2, . . .



Performance Modelling and Markov Chains 21

and in particular,

π1A0 + π2A1 +
∞∑

k=2

πk+1Ak = 0

Substituting πi = π1R
i−1

π1A0 + π1RA1 +
∞∑

k=2

π1R
kAk = 0

or

π1

(

A0 + RA1 +
∞∑

k=2

RkAk

)

= 0

which provides us the following mechanism by which the matrix R may be computed.

A0 + RA1 +
∞∑

k=2

RkAk = 0 (14)

When Ak = 0 for k > 2, we obtain the QBD case. Rearranging Equation (14), we find

R = −A0A
−1
1 −

∞∑

k=2

RkAkA−1
1

which leads to the iterative procedure

R(0) = 0; R(l+1) = −A0A
−1
1 −

∞∑

k=2

Rk
(l)AkA−1

1 , l = 1, 2, . . .

which Neuts has shown to be non decreasing and converges to the matrix R. In many
cases, the structure of the infinitesimal generator is such that the blocks Ai are zero
for relatively small values of i, which limits the computational effort needed in each
iteration. The number of iterations needed for convergence using this approach is fre-
quently large. Fortunately more efficient but also more complex algorithms, have been
developed and may be found in the current literature.

We now turn to the derivation of the initial subvectors π0 and π1. From the first
equation of πQ = 0, we have

∞∑

i=0

πiBi0 = 0

and we may write

π0B00 +
∞∑

i=1

πiBi0 = π0B00 +
∞∑

i=1

π1R
i−1Bi0 = π0B00 + π1

( ∞∑

i=1

Ri−1Bi0

)

= 0,

(15)
while from the second equation of πQ = 0,

π0B01 +
∞∑

i=1

πiBi1 = 0, i.e., π0B01 + π1

∞∑

i=1

Ri−1Bi1 = 0. (16)
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Putting Equations (15) and (15) together in matrix form, we see that we can compute
π0 and π1 from

(π0, π1)

⎛

⎝
B00 B01

∑∞
i=1 Ri−1Bi0

∑∞
i=1 Ri−1Bi1

⎞

⎠ = (0, 0).

The computed values of π0 and π1 must now be normalized by dividing them by

α = π0e + π1

( ∞∑

i=1

Rk−1

)

e = π0e + π1(I − R)−1e.

In the case of discrete-time Markov chains, as opposed to the continuous-time case
just outlined, it suffices to replace −A−1

1 with (I − A1)−1, as we described for QBD
processes.

3.5.3 Structured Markov Chains of the M/G/1-Type
We now move to block upper-Hessenberg Markov chains, also called M/G/1-type
processes. For example, the state transition diagram of the Markov chain of Exam-
ple 3.5.1 now modified so that it incorporates additional transitions ζ1 and ζ2 to higher
numbered non-neighboring states is shown in Figure 3. The matrix geometric method
is not applicable to M/G/1-type Markov chains. Instead, Neuts has developed a matrix
analytic method which we now discuss

In the past two sections concerning QBD and GI/M/1-type processes, we posed the
problem in terms of continuous-time Markov chains. Discrete-time Markov chains can
be treated if the matrix inverse A−1

1 is replaced with the inverse (I − A1)−1 where it
is understood that A1 is taken from a stochastic matrix. This time we shall consider
the discrete-time case. Specifically, we consider the case when the stochastic transition
probability matrix is irreducible and has the structure

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B00 B01 B02 B03 · · · B0j · · ·
B10 A1 A2 A3 · · · Aj · · ·
0 A0 A1 A2 · · · Aj−1 · · ·
0 0 A0 A1 · · · Aj−2 · · ·
0 0 0 A0 · · · Aj−3 · · ·
...

...
...

...
...

...
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

in which all submatrices, Aj , j = 0, 1, 2, ... are square and of order K , and B00
is square but not necessarily of order K . Be aware that whereas previously the block
A0 was the right-most non-zero block of our global matrix, this time it is the left-most
non-zero block. Notice that the matrix A =

∑∞
i=0 Ai is a stochastic matrix. We shall

further assume that A is irreducible, the commonly observed case in practice. Instances
in which A is not irreducible are treated by Neuts [50]. Since A is finite and irreducible,
it has a stationary distribution that we denote by πA, i.e.,

πAA = πA, and πAe = 1.



Performance Modelling and Markov Chains 23

 2 

 λ  1  λ  λ  λ  λ 

 λ  λ  λ  λ  λ 

 λ 

 λ 

 1 
 1  1  1  1 

 2  2  2  2  2 
 2 

 γ  γ  γ  γ  γ 

 γ  γ  γ 

 γ 

 γ  γ 

 1 
 γ  γ 

 γ  γ  γ 

 γ 

 γ 

 γ 

 γ 

 1 

 1 

 1 

 1 

 1 

 1 

 1 

 1 

 2  2  2  2  2 

 2  2  2  2  2 

 γ  γ  1  2 
 μ  μ  μ  μ  μ 

0,1 

0,2 

1,1 

1,2 

1,3 

2,1 

2,2 

2,3 

3,1 

3,2

3,3 

4,1 

4,2 

4,3 

5,1 

5,2 

5,3 

 ζ  ζ  ζ  ζ  ζ  ζ 

 ζ  ζ  ζ  ζ  ζ  ζ 

 1 

 1  1  1  1  1  1 

 2  2  2  2  2 

Fig. 3. State transition diagram for an M/G/1-type process

The Markov chain P is known to be positive recurrent if the following condition holds

πA

( ∞∑

i=1

iAi e

)

≡ πA b < 1. (17)

Our objective is the computation of the stationary probability vector π from the system
of equations πP = π. As before, we partition π conformally with P , i.e.

π = (π0, π1, π2, · · ·)

where
πi = (π(i, 1), π(i, 2), · · ·π(i, K))

for i = 0, 1, · · · and π(i, k) is the probability of finding the system in state (i, k) under
steady state conditions. The analysis of M/G/1-type processes is more complicated than
that of QBD or GI/M/1-type processes because the subvectors πi no longer have a
matrix geometric relationship with one another.

The key to solving upper block-Hessenberg structured Markov chains is the compu-
tation of a certain matrix G which is stochastic if the Markov chain is recurrent, which
we assume to be the case. This matrix G has an important probabilistic interpretation.
ITs element Gij is the conditional probability that starting in state i of any level n ≥ 2,
the process enters level n − 1 for the first time by arriving at state j of that level. This
matrix satisfies the fixed point equation

G =
∞∑

i=0

AiG
i

and is indeed is the minimal non-negative solution of

X =
∞∑

i=0

AiX
i.

It can be found by means of the iteration

G(0) = 0; G(k+1) =
∞∑

i=0

AiG
i
(k) = 0, k = 0, 1, . . .
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Once the matrix G has been computed, then successive components of π can be ob-
tained from a relationship, called Ramaswami’s formula, which we now develop. We
follow the algebraic approach of Bini and Meini, [8, 46], rather than the original prob-
abilistic approach of Ramaswami, [57]. We begin by writing the system of equations
πP = π as π(I − P ) = 0, i.e.,

(π0, π1, · · · , πj , · · ·)

�
��������

I − B00 −B01 −B02 −B03 · · · −B0j · · ·
−B10 I − A1 −A2 −A3 · · · −Aj · · ·

0 −A0 I − A1 −A2 · · · −Aj−1 · · ·
0 0 −A0 I − A1 · · · −Aj−2 · · ·
0 0 0 −A0 · · · −Aj−3 · · ·
...

...
...

...
...

...
...

�
��������

=(0, 0, · · · 0, · · ·).

(18)

The submatrix in the lower right block is block Toeplitz. Bini and Meini have shown
that there exists a decomposition of this Toeplitz matrix into a block upper triangular
matrix U and block lower triangular matrix L with

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A∗
1 A∗

2 A∗
3 A∗

4 · · ·
0 A∗

1 A∗
2 A∗

3 · · ·
0 0 A∗

1 A∗
2 · · ·

0 0 0 A∗
1 · · ·

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and L =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I 0 0 0 · · ·
−G I 0 0 · · ·

0 −G I 0 · · ·
0 0 −G I · · ·
...

...
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

We denote the non-zero blocks of U as A∗
i rather than Ui since we shall see later that

these blocks are formed using the Ai blocks of P . Once the matrix G has been formed
then L is known. Observe that the inverse of L can be written in terms of the powers of
G. For example,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I 0 0 0 · · ·
−G I 0 0 · · ·

0 −G I 0 · · ·
0 0 −G I · · ·
...

...
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I 0 0 0 · · ·
G I 0 0 · · ·
G2 G I 0 · · ·
G3 G2 G I · · ·
...

...
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

From Equation (18), we have

(π0, π1, · · · , πj , · · ·)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I − B00 −B01 −B02 −B03 · · · −B0j · · ·
−B10

0
0 UL
0
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=(0, 0, · · ·0, · · ·)
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which allows us to write

π0 (−B01, −B02, · · · ) + (π1, π2, · · · )UL = 0

or
π0 (B01, B02, · · · )L−1 = (π1, π2, · · · ) U,

i.e.,

π0 (B01, B02, · · · )

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I 0 0 0 · · ·
G I 0 0 · · ·
G2 G I 0 · · ·
G3 G2 G I · · ·
...

...
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= (π1, π2, · · · )U

Forming the product of (B01, B02, · · · ) and L−1 leads to the important result

π0 (B∗
01, B∗

02, · · · ) = (π1, π2, · · · )U (19)

where

B∗
01 = B01 + B02G + B03G

2 + · · · =
∞∑

k=1

B0kGk−1

B∗
02 = B02 + B03G + B04G

2 + · · · =
∞∑

k=2

B0kGk−2

...

B∗
0i = B0i + B0,i+1G + B0,i+2G

2 + · · · =
∞∑

k=i

B0kGk−i

The system of equations (19) will allow us to compute the successive components of
the vector π once the initial component π0 and the matrix U are known. To see this,
write Equation (19) as

π0 (B∗
01, B∗

02, · · · ) = (π1, π2, · · · )

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A∗
1 A∗

2 A∗
3 A∗

4 · · ·
0 A∗

1 A∗
2 A∗

3 · · ·
0 0 A∗

1 A∗
2 · · ·

0 0 0 A∗
1 · · ·

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and observe that

π0B
∗
01 = π1A

∗
1 =⇒ π1 = π0B

∗
01A

∗
1
−1

π0B
∗
02 = π1A

∗
2 + π2A

∗
1 =⇒ π2 = π0B

∗
02A

∗
1
−1 − π1A

∗
2A

∗
1
−1

π0B
∗
03 = π1A

∗
3 + π2A

∗
2 + π3A

∗
1 =⇒ π3 = π0B

∗
03A

∗
1
−1 − π1A

∗
3A

∗
1
−1 − π2A

∗
2A

∗
1
−1

...

In general, we find
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πi =
(
π0B

∗
0i − π1A

∗
i − π2A

∗
i−1 − · · · − πi−1A

∗
2

)
A∗

1
−1, i = 1, 2, . . . =

(

π0B
∗
0i −

i−1∑

k=1

πkA
∗
i−k+1

)

A∗
1
−1.

To compute the first subvector π0 we return to

π0 (B∗
01, B∗

02, · · · ) = (π1, π2, · · · )U

and write it as

(π0, π1, · · · , πj , · · ·)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I − B00 −B∗
01 −B∗

02 −B∗
03 · · · −B∗

0j · · ·
−B10 A∗

1 A∗
2 A∗

3 · · · A∗
j · · ·

0 0 A∗
1 A∗

2 · · · Aj−1 · · ·
0 0 0 A∗

1 · · · A∗
j−2 · · ·

0 0 0 0
... · · ·

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (0, 0, · · · 0, · · ·)

From the first two equations, we have

π0 (I − B00) − π1B10 = 0

and
−π0B

∗
01 + π1A

∗
1 = 0.

This latter gives
π1 = π0B

∗
01A

∗
1
−1

which when substituted into the first gives

π0 (I − B00) − π0B
∗
01A

∗
1
−1B10 = 0

or
π0

(
I − B00 − B∗

01A
∗
1
−1B10

)
= 0

from which we may now compute π0, but correct only to a multiplicative constant. It
must be normalized so that

∑∞
i=0 πi = 1 which may be accomplished by enforcing the

condition

π0e + π0

( ∞∑

i=1

B∗
0i

)( ∞∑

i=1

A∗
i

)−1

e = 1. (20)

We now turn our attention to the computation of the matrix U . Since

UL =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I − A1 −A2 −A3 · · · −Aj · · ·
−A0 I − A1 −A2 · · · −Aj−1 · · ·

0 −A0 I − A1 · · · −Aj−2 · · ·
0 0 −A0 · · · −Aj−3 · · ·
...

...
...

...
...

...

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,
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we have ⎛

⎜
⎜
⎜
⎜
⎜
⎝

A∗
1 A∗

2 A∗
3 A∗

4 · · ·
0 A∗

1 A∗
2 A∗

3 · · ·
0 0 A∗

1 A∗
2 · · ·

0 0 0 A∗
1 · · ·

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I − A1 −A2 −A3 · · · −Aj · · ·
−A0 I − A1 −A2 · · · −Aj−1 · · ·

0 −A0 I − A1 · · · −Aj−2 · · ·
0 0 −A0 · · · −Aj−3 · · ·
...

...
...

...
...

...

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I 0 0 0 · · ·
G I 0 0 · · ·
G2 G I 0 · · ·
G3 G2 G I · · ·
...

...
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and it is now apparent that

A∗
1 = I − A1 − A2G − A3G

2 − A4G
3 − · · · = I −

∞∑

k=1

AkGk−1

A∗
2 = −A2 − A3G − A4G

2 − A5G
3 − · · · = −

∞∑

k=2

AkGk−2

A∗
3 = −A3 − A4G − A5G

2 − A6G
3 − · · · = −

∞∑

k=3

AkGk−3

...

A∗
i = −Ai − Ai+1G − Ai+2G

2 − Ai+3G
3 − · · · = −

∞∑

k=i

AkGk−i, i ≥ 2.

We now have all the results we need. The basic algorithm is

• Construct the matrix G.
• Obtain π0 by solving the system of equations π0

(
I − B00 − B∗

01A
∗
1
−1B10

)
= 0,

subject to the normalizing condition, Equation (20).
• Compute π1 from π1 = π0B

∗
01A

∗
1
−1.

• Find all other required πi from πi =
(
π0B

∗
0i −

∑i−1
k=1 πkA∗

i−k+1

)
A∗

1
−1.

where

B∗
0i =

∞∑

k=i

B0kGk−i, i ≥ 1; A∗
1 =I −

∞∑

k=1

AkGk−1 and A∗
i =−

∞∑

k=i

AkGk−i, i ≥ 2.

This obviously gives rise to a number of computational questions. First is the actual
computation of the matrix G. We mentioned previously that that can be obtained from
its defining equation by means of the iterative procedure:

G(0) = 0; G(k+1) =
∞∑

i=0

AiG
i
(k), k = 0, 1, . . .



28 W.J. Stewart

However, this is rather slow. Neuts proposed a variant that converges faster, namely,

G(0) = 0; G(k+1) = (I − A1)−1

(

A0 +
∞∑

i=2

AiG
i
(k)

)

, k = 0, 1, . . .

Among fixed point iterations such as these, the following suggested by Bini and Meini
[8], has the fastest convergence

G(0) = 0; G(k+1) =

(

I −
∞∑

i=1

AiG
i−1
(k)

)−1

A0, k = 0, 1, . . .

Nevertheless, fixed point iterations can be very slow in certain instances. More advanced
techniques based on cyclic reduction have been developed and converge much faster.
These however, are beyond the realm of this paper.

The second major problem is the computation of the infinite summations that appear
in the formulae. Frequently the structure of the matrix is such that Ak and Bk are zero
for relatively small (single digit integer) values of k, so that forming these summations
in not too onerous. In all cases, the fact that

∑∞
k=0 Ak and

∑∞
k=0 Bk are stochastic

implies that the matrices Ak and Bk are negligibly small for large values of i and
can be set to zero once k exceeds some threshold kM . In this case, we take

∑kM

k=0 Ak

and
∑kM

k=0 Bk to be stochastic. More precisely, a nonnegative matrix P is said to be
numerically stochastic if Pe < μe where μ is the precision of the computer. When kM

is not small, finite summations of the type
∑kM

k=i ZkGk−i should be evaluated using
Horner’s rule. For example, if kM = 5

Z∗
1 =

5∑

k=1

ZkGk−1 = Z1G
4 + Z2G

3 + Z3G
2 + Z4G + A5

should be evaluated from the inner-most parenthesis outwards as

Z∗
1 = ( [ (Z1G + Z2)G + Z3 ]G + Z4 )G + Z5.

4 The Future

Today, there are many many researchers who work in the field of numerical analy-
sis, possibly many times more than those who research interests lie in performance
evaluation. The performance evaluation community has been slow to venture into the
numerical analysis arena, probably because there has not been a great need to. The suc-
cess that has accompanied queueing modelling has largely eliminated the need to set
up and solve global balance equations numerically. However, as models become more
complex, it is becoming increasing evident that there is place for numerical analysis
methods in the modelers toolbox. The challenges for the future will be for performance
analysts to keep abreast of the research conducted by numerical analysts in the areas of
aerospace, civil engineering, and so on and to successfully apply these novel approaches
to the special structures that arise in performance evaluation.
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Abstract. The purpose of this tutorial is to survey queueing networks,
a class of stochastic models extensively applied to represent and analyze
resource sharing systems such as communication and computer systems.
Queueing networks (QNs) have been proved to be a powerful and ver-
satile tool for system performance evaluation and prediction. First we
briefly survey QNs that consist of a single service center, i.e., the basic
queueing systems defined under various hypotheses, and we discuss their
analysis to evaluate a set of performance indices, such as resource uti-
lization and throughput and customer response time. Their solution is
based on the introduction of an underlying stochastic Markov process.
Then, we introduce QNs that consist of a set of service centers represent-
ing the system resources that provide service to a collection of customers
that represent the users. Various types of customers define the customers
classes in the network that are gathered in chains. We consider various
analytical methods to analyze QNs with single-class and multiple-class.
We mostly focus on product-form QNs that have a simple closed form
expression of the stationary state distribution that allows to define effi-
cient algorithms to evaluate average performance measures. We review
the basic results, stating from the BCMP theorem that defines a large
class of product-form QNs, and we present the main solution algorithms
for single-class e multiple-class QNs. We discuss some interesting prop-
erties of QNs including the arrival theorem, exact aggregation and insen-
sitivity. Finally, we discuss some particular models of product-form QNs
that allow to represent special system features such as state-dependent
routing, negative customers, customers batch arrivals and departures
and finite capacity queues. The class of QN models is illustrated through
some application examples of to analyze computer and communication
systems.

1 Introduction

Queueing network models have been extensively applied to represent and ana-
lyze resource sharing systems, such as production, communication and computer
systems. They have proved to be a powerful and versatile tool for system perfor-
mance evaluation and prediction. A queueing network model (QN) is a collection
of service centers representing the system resources that provide service to a col-
lection of customers that represent the users. Customers compete for the resource
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service and they possibly wait to be served in the queue into the service centers,
according to the queueing discipline. The analysis of QNs consists of evaluat-
ing a set of performance measures, such as resource utilization, throughput and
customer response time. The dynamic behavior of a QN can be described by a
set of random variables that define a stochastic process. Under some constraints
on the QN it is possible to define an associated underlying stochastic Markov
process, and to compute the QN performance indices by its solution.

The popularity of QNs for system performance evaluation is due to a good
balance between a relative high accuracy in the performance results and the
efficiency in model analysis and evaluation. In this framework the class of product
form networks has played a fundamental role. Product-form QNs have a simple
closed form expression of the stationary state distribution that allow us to define
efficient algorithms to evaluate average performance measures with polynomial
time complexity in the number of model components.

In this work we introduce QN models and their properties. QNs extend the
basic queueing systems that are stochastic models first introduced to represent
the entire system by a single service center. Queueing systems have been first
applied to analyze congestion in telephonic systems and then to study congestion
in computer and communication systems [42,32,48,76,49,39]. A QN represents
a congestion and resource sharing systems as a network of interacting service
centers whose analysis often provides quite accurate prediction of their perfor-
mance. Despite of several assumptions of the class of queueing networks, they
have been observed to be very robust models [74]. QNs can be analyzed by
analytical methods or by simulation. Simulation is a general technique of wide
application, but its main drawback is the potential high development and com-
putational cost to obtain accurate results. Analytical methods require that the
model satisfies a set of assumptions and constraints and are based on a set of
mathematical relationships that characterize the system behavior.

We consider analytical methods to analyze QNs and we mostly focus on
product-form QNs that have a simple closed-form of the stationary state proba-
bility distribution, which allow the definition of efficient algorithms to evaluate
their performance. Jackson [38] introduced product-form QNs for open expo-
nential networks and Gordon and Newell [33] for closed exponential networks.
They introduce several assumptions on the model characteristics and provide
a simple closed-form expression of the stationary state distribution and some
average performance indices. This class of models was then extended to in-
clude several interesting and useful characteristics to represent more complex
system. These features include different types of customers of the networks, var-
ious queueing discipline (i.e., the scheduling algorithms of the waiting queues),
state-dependent service rate, state-dependent routing between the service cen-
ters and some constraints on the population of subnetworks. The main re-
sult concerning product-form QNs known as the BCMP theorem was presented
by Baskett, Chandy, Muntz and Palacios [9]. It defines the well-known class
of BCMP QNs with product-form solution for open, closed or mixed models
with multiple classes of customers, various service disciplines and service time
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distributions and some types of load-dependent functions for the arrival process
and the customers service time. The stationary state distribution is expressed
as the product of the distributions of the single service centers with appropriate
parameters and, for closed networks, with a normalization constant. An impor-
tant property of product-form QNs is the arrival theorem. It states that the
distribution at arrival times at a service center is identical to the distribution at
arbitrary times of the same network, for open networks, and of a network with
one less customer for closed networks [47,70]. This led to the definition of a set of
recurrence equations between average performance measure for closed networks,
and hence to a recursive computational algorithm, the Mean Value Analysis
(MVA) [64], that avoids the direct evaluation of the normalization constant.

Various computational algorithms can be applied to analyze and to evaluate
the performance indices of product-form QNs. The relevance of these solution
algorithms is twofold. First, they provide a powerful tool in the efficient analy-
sis of large QN models, and the analyst can choose the appropriate and most
convenient algorithm depending on the type of model. Second, these algorithms
provides a basis for approximate solution methods of more general network model
with and without product-form. The most relevant solution algorithms for closed
networks are the Convolution Algorithm [13] and the Mean Value Analysis [64].
They provide the evaluation of average performance indices with a polynomial
space and time computational complexity in the network dimension that is the
number of service centers and the network population. Product-form networks
with multiple classes of customers are more difficult to analyze. Various types of
customers define the customer classes in the network that are gathered in chains.
Both Convolution and MVA algorithms have been extended to multiple-class
networks [62,67,45,12], but their cost grows exponentially with the number of
customer classes or chains. Other algorithms for multiple-class QNs have been
proposed. The tree Convolution and tree MVA algorithms for multiple-chain
networks are based on a tree data structure to optimize the algorithm compu-
tation [46,77,37]. Other algorithms for multiple-chain QNs with several types
of customers are Recursion by Chain Algorithm (RECAL) [23,24], Mean Value
Analysis by Chain [22] and Distribution Analysis by Chain (DAC) [26]. Their
computational complexity is polynomial with the number of classes of customers,
but exponential in the number of service centers.

The main computational algorithms for QNs have been integrated in various
software tools for performance modelling and analysis that include user friendly
interfaces based on different languages to take into account the particular field of
application, e.g., computer networks, computer systems. This allows not expert
users to apply efficient performance modelling techniques [49,66,76,14]. More
recently the solution performance algorithms for QNs have been integrated with
model specification techniques to provide tools for the combined functional and
quantitative system analysis [72].

Product-form networks yield various interesting properties. The insensitivity
property states that the analytical results, i.e., the stationary state distribution
and the average performance indices, depend on the service time requirements
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only through their average. Similarly, the performance indices depend on the
customers routing only through the average visit ratio to each service center
[9,17,18,71,79]. Another important property of product-form QN models is that
aggregation methods yield exact results. The aggregation theorem, introduced
by Chandy, et al. [15], allows substituting a subnetwork with a single service cen-
ter, so that the new aggregated network has the same behavior of the original
one in terms of a set of performance indices. From the performance viewpoint
exact aggregation allows us to apply the hierarchical system design process by
relating the performance indices of the models at different levels in the hierar-
chy [49]. In a bottom-up analysis of systems represented by a succession of QNs
exact aggregation defines the next model. Similarly, in a hierarchical top-down
design of system with given performance requirements, the inverse process of
disaggregation or development of the network can be applied to define a more
detailed model with the same performance indices [7]. Aggregation is an effi-
cient technique when applied to the analysis of nearly complete decomposable
systems. Informally, such a system can be decomposed into subsystems whose in-
ternal interactions are much higher than the interactions among the subsystems
[25]. Exact aggregation for product-form QNs provides a basis for approximate
solution methods of more general non-product form network models [51].

More recently further research has devoted to the extension of the class of
product form network models and to its characterization. Some interesting new
features have been defined such as the G-Networks, that are QNs with positive
and negative customers proposed by Gelenbe [29] that can be used to represent
special dynamic of actual systems. Moreover G-Networks can be seen as a unify-
ing model for neural nets and queueing networks [30]. Some other more complex
models include various functions of state-dependent routing and several spe-
cial cases of QNs with finite capacity queues, finite population constraints and
blocking [2,5,11,34,44,75,78]. Nelson in [56] discusses the mathematics leading to
the product-form results and the properties of the stochastic process underlying
the network model. Some extensions of product-form QN are presented in [78].
Product-form solution has been extended to QNs with batch arrivals and batch
services [35,36] that are also related to discrete time QN models.

Some extensions of non product-form QNs have been proposed to represent
special classes of systems and communication models, such as Layered Queue-
ing Networks and Extended QN to represent more complex system, e.g., with
simultaneous resource possesion, finite capacity queues and blocking, and fork
and join [48,68,4,65,61,5].

We shall now provide an introduction to QN models applied to represent and
analyze resource sharing systems In particular we consider the class of product-
form QNs, the main analytical methods to derive a significant set of performance
indices, some relevant QNs properties and their applications to system perfor-
mance evaluation. We present the basic results, the key ideas and the main
algorithms and solution techniques and we discuss the relevance of such models
for system performance evaluation.
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In Section 2 we introduce the basic queueing systems, that are QNs formed by
a single service center, and we recall the definition of the associated continuous-
time Markov process. Section 3 presents QNs which consist of a set of intercon-
nected service centers, the definition of multiple-chain and multiple-class models.
We briefly review Markovian networks and then we focus on product-form QNs,
their characterization, and some interesting extensions and properties. Section 4
deals with the analysis of QNs. We review the most relevant exact analytical al-
gorithms for product-form QNs, which include Convolution and MVA. Then we
discuss some approximate solution algorithms for QNs. Some examples of appli-
cation of QN models for performance analysis of computer and communication
systems are presented in Section 5.

2 Queueing Systems

The simplest queueing network consists of a single service center that models
the entire system. Basic queueing systems have been defined in queueing theory
and applied to analyze congestion systems. The analysis of queueing systems
relies on the theory of stochastic processes [21,42,48,68,39,76]. Under appropriate
independence and exponential assumptions on the model random variables it is
possible to define a continuous-time Markov processes associated to the queueing
system. Then queueing system analysis is usually based on the solution of the
underlying associated Markov process. We shall now first briefly review Markov
process solution that are useful for the analysis of queueing models, and then we
introduce some queueing systems. Queueing networks that consist of more than
one service centers are introduced in the next section.

2.1 Markovian Stochastic Processes

We shall now review the stochastic Markov process definition and solution that
are used to analyze queueing models. A stochastic process is a set of random
variables {X(t)|t ∈ T } defined over the same probability space and indexed by
the parameter t, called time. The process random variables take values in the set
Γ called state space of the process. Both set T and state space Γ can be either
discrete or continuous. The process is called continuous-time or discrete-time
if the time parameter t is continuous or discrete, respectively. A discrete-time
process is usually denoted by {Xn|n ∈ T }. If the state space Γ is discrete
then the process is called discrete-space or chain, otherwise the process is called
continuous-space. The probabilistic behavior of stochastic process is defined by
the joint probability distribution function of the random variables X(ti) for any
set of times ti ∈ T, 1 ≤ i ≤ n, n ≥ 1, denoted by Pr{X(t1) ≤ x1; X(t2) ≤
x2; . . . ; X(tn) ≤ xn}, where xi ∈ Γ .

A discrete-time process is a Markov process if the state at time n + 1 only
depends on the state probability at time n and is independent of the previous his-
tory. This is known as the Markov property. The process conditional probability
distribution satisfies the following condition:
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Pr{Xn+1 = j|X0 = i0; X1 = i1; . . . ; Xn = in} = Pr{Xn+1 = j|Xn = in}, (1)

for all n > 0, and j, i0, i1, . . . , in ∈ Γ .
Similarly, a continuous-time process is said to be a Markov process if it satisfies

the following condition:

Pr{X(t) = j|X(t0) = i0; X(t1) = i1; . . . ; X(tn) = in} =
Pr{X(t) = j|X(tn) = in}, (2)

for all set of times t0 < t1 < . . . < tn < t, and n > 0, j, i0, i1, . . . , in ∈ Γ . Note
that, because of the Markov property, the residence time of the process in each
state is distributed according to either the geometric or the negative exponential
distribution respectively for discrete-time or continuous-time Markov processes.
Hereafter we consider discrete-space Markov process, also called Markov chain.
Consider a discrete-time Markov chain. If the one-step conditional probability
on the right-hand side of formula (1) is independent on time n, then the Markov
chain is homogeneous. Then we define transition probability from state i to
state j as pij = Pr{Xn+1 = j|Xn = i}, and the matrix of state transition
probabilities P = [pij ], where pij ∈ [0, 1],

∑
j pij = 1, ∀i, j ∈ Γ . The stationary

behavior of the Markov process can be evaluated if the process satisfies some
conditions. Informally, a Markov process is said to be irreducible if every state
can be reached from any other state. Each state can be transient or recurrent,
and it is said to be positive recurrent if the average return time to the state is
finite. An ergodic Markov chain is irreducible and formed by positively recurrent
aperiodic states. Let π = [π0π1π2 . . .] denote the stationary state probability
vector, where πj = Pr{X = j} is the stationary probability of state j ∈ Γ .
Then for homogeneous ergodic discrete-time Markov chain we can compute the
stationary probability π as follows [42]:

π = πP, (3)

with the normalizing condition
∑

j πj = 1. This is called system of global balance
equations.

Let us now consider a continuous-time Markov chain. The Markov chain is
homogeneous if the conditioned probability on the right-hand side of formula (2)
is independent on time tn, but only depends on the interval width (t − tn). In
other words we can write the state transition probability from state i to state j
only dependent on the interval width s as follows:

pij(s) = Pr{X(tn + s) = j|X(tn) = i}, ∀i, j ∈ Γ, ∀tn ≥ 0.

Hence we have a width dependent state transition probability matrix P(s) =
[pij(s)]. Then we can define a rate transition probability matrix Q = [qij ], i, j ∈
Γ , also called process infinitesimal generator, as follows:

Q = lim
s→0

P(s) − I
s

.
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The stationary behavior of the continuous-time Markov chain can be evaluated
for homogeneous ergodic chain. The stationary state probability π = [π0π1π2 . . .],
where πj = Pr{X = j} for each state j ∈ Γ , can be computed by solving the
following system of global balance equations:

πQ = 0, (4)

with the normalizing condition
∑

j πj = 1.
For the special class of birth-death processes it is possible to derive a closed-

form solution of the stationary state probability π defined by system (3) for
discrete-time and system (4) for continuous-time processes, respectively. A birth-
death Markov process has state space Γ = N and the only non-zero state tran-
sitions are those from any state i to states i − 1, i, i + 1, ∀i ∈ Γ . Hence the
transition state probability matrix P for discrete-time, or the transition rate
matrix Q for continuous-time process, is tridiagonal. Let us denote the rates of
matrix Q for a continuous-time birth-death Markov chain as follows: qi i+1 = λi,
i ≥ 0 and qi i−1 = μi, i ≥ 1. Then the stationary state probability π can be
calculated as follows:

πi = π0

i−1∏

j=0

λj

μj+1
(5)

for i ≥ 0, and where π0 is given by the normalizing condition, i.e.,

π0 =
[ ∞∑

i=0

i−1∏

j=0

λj

μj+1

]−1
.

This solution holds under the stability condition. A sufficient condition for the
stationary solution is that there exists a state k0 > 0 : λk < μk, ∀k > k0 [42].
Several basic queueing systems can be analyzed by birth-death Markov processes,
as we shall now present.

2.2 Basic Queueing Systems

A simple queueing system or service center is illustrated in Figure 1. The system
models the flow of customers as they arrive, wait in the queue if the server is busy
serving another customer, receive service, and eventually leave the system. For
example a uniprocessor computer system can be modeled by a simple queueing
system where the program to be executed are the customers, the processes ready
for execution are in the queue, the processor is the server whose service models
program execution. To describe the behavior of a queueing system in time, we
have to specify five basic characteristics: 1) the arrival process, 2) the number
of servers, 3) the service process, 4) the service or queueing discipline and 5) the
system or queue capacity.

1) The arrival process to a queueing system describes the behavior of cus-
tomers arrivals. We define the interarrival time as a random variable representing
the time between two consecutive arrivals. The mean arrival rate is the average
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Fig. 1. A queueing system

number of arrivals per unit of time, and is denoted by λ. The Poisson process is
often assumed as arrival process. This corresponds to an exponential interarrival
distribution.

2) The set of identical parallel servers can simultaneously service the cus-
tomers. Each server may correspond to a physically or logically separate service
facility of the system, with a common queue shared by all customers.

3) The service process describes the customer service. We define the service
time as a random variable representing the time spent for a customer service,
whose average is the mean service rate denoted by μ.

4) The queueing discipline describes the scheduling algorithm for the customers
in the queue. If a customer arrives at the system at a time the server(s) is unavail-
able to provide service to it, it is forced to wait in the queue temporarily until
it can start receiving service. If there are more than one customer waiting in the
queue at a time the server becomes available, one of the customers in the queue is
selected to start receiving service. The customers’ selection for service is referred
to as the queueing discipline. Queueing discipline may depend on the arrival time,
the customer priority and the possible service already given to the customer. Clas-
sical examples of queueing disciplines depending only on the arrival time are First
Come First Served (FCFS) and Last Come First Served (LCFS).

5) Finally, the system capacity is the upper limit on the number of customers
(waiting for and receiving service) in the system. Most analytical studies require
the queue size to be infinite, i.e., large enough to accommodate all arriving cus-
tomers. However, systems have often finite resources imposing an upper bound
on the number of customers that can be waiting in the queue simultaneously.

The Kendall’s notation A/B/X/Y/Z describes the queueing process of a sin-
gle queueing system where A indicates the arrival process, B the service process,
X the number of parallel servers, Y the system capacity, and Z the service disci-
pline. The simplified notation A/B/X describes a queueing system with infinite
capacity and FCFS queueing discipline. Arrival and service processes are de-
noted by symbols of probability distributions, e.g., D for Deterministic, M for
exponential, G for general distribution. For example M/M/1 denotes the system
with Poisson (Markov) arrival process, exponential (Markov) service process and
a single server and M/G/1 the same system except for the service time that has
a general or arbitrary distribution.

The analysis of a queueing system aims to evaluate a set of performance
indices, including the following ones:

– n: the number of customers in the system, i.e. in the queue and being served
– w: the number of customers in the queue
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– tr: the customer response time
– tw: the customer waiting time
– U : system utilization, that is the percentage of time the system is busy

serving,
– X : throughput, i.e., the average number of customers served per unit of time.

Queueing system analysis usually evaluates the last two average performance
indices and the probability distribution or the first moments of random variables
n and w, and possibly tr and tw.

Let s denote the number of customers in service and let ts denote the service
time, where E[ts] = 1/μ is the average service time. Then we can write n = w+s
and tr = tw + ts. Let N denote the average number of customers in the system
and R the mean response time, i.e., N = E[n] and R = E[tr]. Hence:

N = E[w] + E[s]
R = E[tw] + E[ts].

The operational analysis defines some interesting relations between average per-
formance indices under general assumptions [48,49,42]. An important relation is
the Little’s Law that states that the average number of customers is equal to
the product of the mean response time and the system throughput, i.e.:

N = XR (6)
E[w] = XE[tw].

Queueing systems are analyzed by defining an associated discrete-space con-
tinuous-time stochastic process, whose state include the system population n.
Under independent and exponential assumptions we can define and associated
continuous-time Markov chain whose stationary solution in terms of state prob-
ability is given by formula (4) [42]. Other performance indices can be derived by
the stationary state probability and the basic relations, such as Little’s law. For
some queueing systems, such as the M/M/1 and M/M/m systems, the under-
lying Markov process is a birth-death Markov process, which yield the simple
closed-form solution of the stationary state probabilities given by formula (5).
Hence these queueing systems can be easily analyzed and the average perfor-
mance indices show simple analytical expressions.

M/M/1. The M/M/1 queueing system has Poisson independent arrivals, expo-
nential service time distribution, one server and FCFS discipline. Let λ denote
the arrival rate, μ the service rate and let ρ = λ/μ denote the traffic intensity.
The system state is defined by n, the customer population and the stationary
state probability πn can be computed by the associated Markov process that is
a birth-death process with constant rates λ and μ. If the system satisfies the
stability condition, from formula (5) we immediately obtain:

πn = ρn(1 − ρ) n ≥ 0. (7)
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The M/M/1 is stable if the ρ < 1, i.e., if the arrival rate is less than the service
rate, λ < μ. Hence, by the state probability and formula (7) we can derive other
performance indices, such as the average population, the mean response time,
system throughput and utilization as follows:

N =
ρ

1 − ρ
(8)

R =
1/μ

1 − ρ
(9)

U = 1 − π0 = ρ (10)
X = λ. (11)

M/M/m. The M/M/m queueing system extends system M/M/1 to m servers
under the same exponential and independence assumption for the arrival and
service processes, with arrival rate λ and service rate μ for each independent
server. Let us define ρ = λ/(mμ). The system state is defined by the customer
population as for the M/M/1 system and the associated Markov process is still
a birth-death process with constant birth rate λ and variable state-dependent
death rate μn = min{n, m}μ for state n ≥ 0. If the system satisfies the stability
condition, that is if ρ < 1, then by formula (5) we obtain:

πn =

{
(mρ)n

n! π0 if 1 ≤ n ≤ m
mmρn

m! π0 if n > m
(12)

where:

π0 =
[ m−1∑

k=0

(mρ)k

k!
+

(mρ)m

m!
1

1 − ρ

]−1
.

Hence we can derive other performance indices, such as the average population
and the mean response time as follows:

N = mρ + πm
ρ

(1 − ρ)2

R =
1
μ

+
πm

mμ(1 − ρ)2
.

M/M/∞. The M/M/∞ queueing system has Poisson independent arrivals with
arrival rate λ and an unlimited number of independent exponential servers, each
with service rate μ. As a consequence the customers never queue and we can
immediately observe that the mean response time is equal to the mean service
time, i.e., R = 1/μ. Let ρ = λ/μ. The Markov process associated to M/M/∞
is a birth-death process with constant birth rate λ and variable state-dependent
death rate μn = nμ. The system is always stable, and the stationary state
probability is given by:

πn =
ρn

n!
e−ρ k ≥ 0, (13)

from which we obtain the average population N = ρ.
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We can apply this type of analysis to various types of M/M/1 queueing sys-
tems by defining and solving the associated Markov chain such as for example
the M/M/1/B system with finite capacity B and the M/M/1//K system with
finite population K. For these and similar basic queuing systems we can derive
closed form expressions for the stationary state probability πn and other average
performance indices [21,42].

Queueing systems with non-exponential time distribution are in general more
difficult to analyze. We now briefly recall some main results for the M/G/1
system and we refer to the literature for the detailed analysis of more complex
queueing system [42,21].

M/G/1. The M/G/1 queueing system has Poisson independent arrivals with
arrival rate λ, service time ts with general distribution, one server and FCFS
discipline. Let μ denote the service rate, that is E[ts] = 1/μ, and let ρ = λ/μ. If
we consider the state n, defined as the customer population, we cannot define an
associated Markov chain. By assuming that the service time can be represented a
probabilistic combination of exponential stages (see Section 2.3) we can still de-
fine an associated Markov process whose state includes the residual service time
of the customer currently in service [42]. This Markov chain is not birth-death,
and it can be analyzed by considering an embedded discrete-time Markov chain.
The stationary state probability is obtained in terms of z-transform, defined as a
function of ρ and of the Lapalce transform of the service time distribution. The
M/G/1 is stable if the ρ < 1, i.e., if the arrival rate is less than the service rate,
λ < μ. The average population is obtained by the Khintchine-Pollaczek theorem
[42] as follows:

N = ρ +
ρ2(1 + CV 2)

2(1 − ρ)
, (14)

where CV is the coefficient of variation of the service time distribution.
Using the basic relations and Little’s law we can derive other performance

indices. Note that formula (14) holds for the M/G/1 system with any queueing
discipline independent on the service time and without pre-emption.
A detailed analysis of M/G/1 system can be found in [21,58].

2.3 Coxian Distribution

Many results for single queueing systems can be obtained by assuming expo-
nential distribution for service time and arrival time. However, for modeling
purposes this can be a constraint that should often be relaxed. We shall now
introduce a class of quite general distributions used in the analysis of QNs. Cox-
ian distributions are defined as a linear combination of exponential variables,
and can be represented by a network of exponential stages. Coxian distribution
plays an important role in QNs for two reasons: first they are used to model
service time distribution for some station types (from 2 to 4) in BCMP QNs [9],
as we shall see in Section 3.3. A second reason is that Coxian distribution has
a rational Laplace transform and can approximate any distribution arbitrarily
closely [42].
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Fig. 2. A queueing system with a Coxian server with L stages

Figure 2 illustrates a queueing system whose service time is modeled by a
Coxian distribution with L exponential stages. There can be at most one cus-
tomer in stages 1 to L at any time. Customers enter the service via stage 1. The
service time at node �, 1 ≤ � ≤ L, is exponentially distributed with mean 1/μ�.
A customer completing its service at stage � leaves the system with probability
b� or proceeds to stage � + 1 with probability a�, (a� + b� = 1, 1 ≤ i ≤ L − 1).
After stage L, the customer leaves the system with probability 1 (bL = 1). This
service distribution is referred to as a Coxian distribution with L stages. Any
probability distribution function can be arbitrarily closely approximated by a
Coxian distribution. This framework allows an arbitrary distribution that does
not have the Markovian property to be approximated by a Coxian distribution
that has the Markovian property. For example, consider the service process of
Figure 2 with b� = 0, 1 ≤ � ≤ L − 1 and μ� = μ, 1 ≤ � ≤ L. This represents the
Erlang distribution with L stages. Its coefficient of variation is equal to 1/

√
λ

and as L → ∞, it goes to zero approximating a deterministic distribution.
A similar representation based on a network of exponential stages is defined

for Phase-type distributions, that also have rational Laplace transforms and can
approximate any distribution function [58].

2.4 Queueing Disciplines

Queueing system behavior and performance indices depend on various system
parameters and specifically on the scheduling or queueing discipline. Customer
scheduling may depend on the arrival time, like FCFS and LCFS discipline or
may be independent of the time arrival and service demand, such as the Random
scheduling.

Computer system processor scheduling often use Round-Robin discipline
where each customer is served for a fixed quantum of time δ. If we consider
the quantum size δ much smaller that the average service time then for δ → 0
we can define the Processor Sharing (PS) discipline. In a system with PS disci-
pline and service rate μ when there are n customers waiting in the queue, each
customer receives the service with rate μ/n.
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The scheduling discipline where all the customers are immediately served
by a free server is called Infinite Server (IS). Examples of IS or delay service
centers are terminal components in timesharing computer systems. The queuing
algorithm may depend on the service time required by the customer and possibly
the service already given to the customer. Examples are the Shortest Processing
Time First, the Shortest Remaining Processing Time First (SRPTF).

The algorithms may also depend on the customer priority that may be defined
by some abstract classification of the customers or may depend on the service
time. Priority discipline can be with or without pre-emption. The latter type
applies priority scheduling when the server is assigned to a customer after an
idle period or at the service completion, and the service is never interrupted. Pre-
emption priority allows a customer with higher priority then the one currently
in service to interrupt that service and to be served. Note that in this case
the customers with low priority do not affect the customers behavior with high
priority.

M/G/1 queueing systems with priority discipline can be analyzed to derive
the mean waiting time for each customer class and for the all the classes, by con-
sidering various types of priority scheduling. By comparing priority disciplines
with and without pre-emption one can observe that pre-emption improves the
average mean waiting time but worsens the average service time, because of the
service interruption. In general priority disciplines improve the global average
waiting time with respect to non priority ones, and this improvement grows
with the system congestion [48].

In the following we mainly focus on the following disciplines FCFS, LCFSPR
(LCFS with pre-emptive resume, i.e., the work done for a pre-empted customer
must not be repeated), PS and IS. Queueing networks whose nodes have such
queueing disciplines can be efficiently analyzed under special conditions, as we
describe in the next Section.

3 Queueing Networks

In this section we introduce QN models. First in Sections 3.1 and 3.2 we define
the model whose analysis is based on the solution of the associated Markov
stochastic process. Then in Section 3.3 we focus on the class of product-form
QNs and we review BCMP theorem. Section 3.3 discusses the characterization
of product-form QNs and reviews both BCMP extensions and non BCMP QNs.

3.1 Model Definition

A queueing network (QN) is a collection of service centers (or stations) that
provide service to a set of customers that move among the stations. If the total
number of customers, i.e., the population, in the network is constant then the
network is closed. If customers may arrive from (depart to) places outside the
network then the network is open. Examples of open and closed networks are
given by Figures 8 and 9 in Section 5. Informally, a QN is defined by a set of M
service centers Ω = {1, . . . , M}, the set of customers and the network topology.
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Each service center is defined by:

– the number of servers. We usually suppose independent and identical servers;
– the service rate. Each server can serve a customer with a speed which can

be either constant or dependent on the station state.
– the queueing discipline. The customers in the service center wait to be served

according to the scheduling discipline, as introduced in Section 2.4.

Customers are described by:

– their total number for closed models,
– the arrival process to each service center for open models,
– the service demand to each service center. The service demand of the cus-

tomer is expressed in units of service. The service rate of each server is given
by units of service / units of time. Hence we usually consider the service time
combines these two parameters as follows: let α be the customer service de-
mand and β the server service rate, then the ratio α/β is the service time.
Hereafter we consider the service time as a non-negative random variable
with mean denoted by 1/μ.

The network topology models the customer behavior among the intercon-
nected service centers. We assume a non-deterministic behavior represented by
the following probabilistic model. In a QN with M stations, when a customer
completes its service in station i it immediately exits the node and moves to
station j with probability pij , with 1 ≤ i, j ≤ M . For open networks the cus-
tomer may also exit the QN from station i with probability pi0. Then customer
behavior in the QN is represented by the routing probability matrix P = [pij ],
1 ≤ i, j ≤ M , where

∑M
j=1 pij = 1 for each station i.

A QN is well-formed if it has a well-defined long-term customer behavior, i.e.:

– a closed QN is well-formed if every station is reachable from any other with
a nonzero probability;

– for open QNs we can add a virtual station 0 that represents the external
behavior, that is it generates external arrivals and absorbs all departing
customers, so obtaining a closed QN. Thus an open QN is well-defined by
referring to the closed QN definition.

In simple queueing models we assume that all the customers are statistically
identical, i.e., the service times and the routing probabilities are independent of
the customer identity. However, modelling real systems can require to identify
different categories of customers that define both the service time and the routing
probabilities. To this aim we introduce QNs with multiple types of customers, by
defining the concepts of class and chain. In the following we use classes in the the
global sense (see for example [39,9,68,48]) as opposed to the local sense (see for
example [63,20]). A chain forms a permanent categorization of customers, i.e., a
customer belongs to the same chain during its whole activity in the network. A
class is a temporary classification of customers, i.e., a customer can switch from a
class to another (usually with a probabilistic behavior) during its activity in the
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network. The customer service time in each station and the routing probabilities
usually depend on the class it belongs to. So we can have multiple-class single-
chain QNs or multiple-class and multiple-chain QNs. In the following R denotes
the set of classes of the QN, R the number of classes, C the set of chains and
C the number of chains. In a well-formed QN, classes can be partitioned into
chains, such that there cannot be a customer switch from classes belonging to
different chains. The probabilistic behavior of customers in a well-formed QN
is represented by C routing probability matrices P(c), one for each chain c. A
customer that completes its service at station i and class r, either leaves the
system with probability p

(c)
ir,0 or immediately moves to a station j in class s

with probability p
(c)
ir,js, 1 ≤ i, j ≤ M , r, s ∈ R and r, s belongs to the same

chain c. For multiple-chain QNs we distinguish open chains, i.e., if arrivals from
and departures to external are allowed, and closed chains, i.e., when there is a
finite number of customers. Let K(c) denote the population of a closed chain
c ∈ C and let p

(d)
0,ir > 0 denote the routing probability of an external arrival to

station i, class r of open chain d ∈ C. A QN is said to be open if all its chains
are open, closed if they are all closed, and mixed otherwise. We can apply an
algorithm [39] that checks whether a multiple-class and multiple-chain QN is
well-formed, given set Ω and the routing matrices, and it defines a partition of
the set E = {(i, r) : r ∈ R, 1 ≤ i ≤ M} into C ergodic chains. We summarize
the notation for QN classes and chains as follows:

– R is the set of classes and R = |R|, 1 ≤ i ≤ M ,
– Ri = {r : ∃j, s, c : p

(c)
js,ir > 0 ∨ p

(c)
0,ir > 0 r, s ∈ R, c ∈ C, 1 ≤ j ≤ M} is the

set of classes served by station i, so R =
⋃M

i=1 Ri,
– Ec = {(i, r)|r ∈ Ri, 1 ≤ i ≤ M, class r belongs to chain c},
– R(c)

i = {r ∈ R, (i, r) ∈ Ec} is the set of the classes served by station i

belonging to chain c, 1 ≤ i ≤ M and 1 ≤ c ≤ C, so Ri =
⋃C

c=1 R(c)
i ,

– R(c) =
⋃M

i=1 R(c)
i is the set of all classes belonging to chain c. We use r(c) to

point out that a class r belongs to the set R(c).

Example. Figure 3 shows an example of a two node multiple-class and multiple-
chain QN. The QN has R = 3 classes and C = 2 chains. Chain 1 is open and
formed by classes 1 and 2, while chain 2 is closed. Figure 4 sketches how to
identify chains of the QN by the analysis of the strong connected components
of a directed graph, whose nodes denote the couples (station, class) and arrows
are determined by the QN routing matrix. Then we have R = {1, 2, 3}, R1 =
{1, 2, 3}, R2 = {1, 3}, E1 = {(1, 1), (1, 2), (2, 1)}, E2 = {(1, 3), (2, 3)}, R(1)

1 =
{1, 2}, R(1)

2 = {1}.
A chain c, 1 ≤ c ≤ C, is said to be a single-class if it is has a just one class, so

that there is not class switching inside the chain. In the QN of Figure 3, Chain 1
is not single class, while Chain 2 is single class. When all the chains of a QN are
single-class, then we say that the QN is single-class and multiple-chain. In this
case, the notation can be simplified, e.g., an element of the probability routing
matrix P(c), 1 ≤ c ≤ C, can be written as p

(c)
ij which represents the probability
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Fig. 3. Example of multiple-class and multiple-chain queueing network

Fig. 4. Example of a class graph for a multiple-class and multiple-chain queueing net-
work

Fig. 5. Single-class and multiple-chain queueing network

for a chain c customer of going to station j after being served by station i. Figure
5 illustrates and example of single class and multiple-chain QN with two chains
and three stations.

In the following we suppose that the QNs are well-formed, i.e., in the long-run
no class can be empty of customers with probability 1 and no class can have an
unlimited growth of the number of customers. In other word the stationary QN
behavior is stable.
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3.2 Markovian Queueing Networks

Consider a QN with M stations, Ω = {1, . . . , M} and R classes. Let nir(t) be the
number of customers of class r at the station i at time t, ni(t) =

∑R
r=1 nir(t) the

total number of customers at station i at time t and ni(t) = (ni1(t), . . . , niR(t)).
Let the state of the QN at time t be n(t) = (n1(t), . . .nM(t)). We can asso-
ciate to the QN state a discrete-space continuous-time time-homogeneous ergodic
Markov chain, then we say that the QN is Markovian. As we are interested in
studying the steady-state performance indices, we can ignore the time parameter
t in the state definition. A Markovian QN requires independence and exponen-
tial assumptions of the random variables that represent the state. If we consider
independent Poisson arrivals for open chains and exponential service time dis-
tributions whose rate can depend only on the state of the system then we can
define an associated Markov chain with state n. Let π(n) denote the stationary
probability of state n and let Q = [qn,n′ ] be the infinitesimal generator of the
Markov chain, where qn,n′ denotes the transition rate from state n to state n′.
If the QN is stable, the Markov chain yields a steady-state solution. The steady
state probability π is defined by the normalized solution of the system of global
balance equations (4).

Other performance indices of the QN are derived from the stationary state dis-
tribution of the process. Unfortunately the generality of this approach is limited
by its computational complexity. One can easily observe that the process state
space cardinality, i.e., the number of states and of global balance equations, often
makes the solution of the system intractable. More precisely, for an open network
the process state space is infinite and we can obtain an exact solution only in
some special cases, when the matrix Q shows a particular regular structure. For
example some QNs with special structure can be analyzed by matrix-geometric
technique [58]. For a closed network the process state space grows exponentially
with the network parameters that are the number of service centers, customers
and customers types. For example, for a single-class exponential QN with M
service centers and K customers the state space cardinality is

(
M+K−1

K

)
. Hence

a direct solution of the QN by the underlying Markov process becomes soon
prohibitively expensive.

Note that Markovian QNs can be defined also by relaxing exponential con-
ditions for the time distribution. By using Coxian or Phase-type distributions
and by a more detailed and appropriate state definition, it is still possible to
define and underlying Markov chain. However this further increases the state
space complexity and its cardinality.

In the next section we introduce the class of QNs with product-form that
shows a simple closed form of the stationary probability.

3.3 Product-Form Queueing Networks

Product-form QNs provide precise and detailed results in terms of performance
indices such as queue length distribution, average response time, resource utiliza-
tion and throughput. These performance indices are evaluated for each
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component and for the overall network. Product-form network analysis is based
on a set of assumptions on the system parameters that lead to a closed-form
expression of the stationary state distribution. Consider a single-class and single-
chain QN with M service centers. Let n = (n1, . . . , nM ) be its state, and ni the
number of customers at station i, and finally n =

∑M
i=1 ni the network popula-

tion for 1 ≤ i ≤ M . Product-form QNs show a closed-form of the joint queue
length distribution π that is defined by the associated Markov process, as follows:

π(n) =
1
G

d(n)
M∏

i=1

gi(ni), (15)

where G is a normalizing constant, function d is defined in terms of network
parameters and gi is a function of ni and depends on the type of service center
i, 1 ≤ i ≤ M . For open networks G = 1, whereas for closed networks d(n) = 1.
Product-form QNs have been first introduced by Jackson for open QNs in [38],
and by Gordon and Newell for closed QNs in [33]. Both these models require
exponential service time distributions, Poisson arrival for Jackson networks, and
consider only single-class and single-chain QNs. BCMP theorem [9] extends these
classes of QNs to open, closed and mixed, multiple-class and multiple-chain QNs.
It also considers non-exponential service time distributions for certain scheduling
disciplines.

Product-form QNs can be efficiently analyzed by algorithms with a polyno-
mial time computational complexity in the number of network components that
will be presented in Section 4. This class of models allows a good balance be-
tween a relative high accuracy in the performance results and the efficiency in
model analysis and evaluation. Moreover product-form networks yield several
interesting properties such as insensitivity and exact aggregation that greatly
influenced the application of this class of models as a powerful tool for perfor-
mance evaluation. We shall now define the class of BCMP QNs, and then we
discuss some properties and possible characterizations of product-form QNs.

BCMP Queueing Networks

BCMP theorem [9] characterizes a wide class of QNs with product-form. Be-
fore stating the main result of the theorem we introduce the hypothesis and the
model definition. In the following we refer to a QN which satisfies the following
assumptions as a BCMP QN. For the sake of clarity we first present the BCMP
theorem for multiple-chain, single-class networks. In order to simplify the nota-
tion we assume that the class number and the chain number are the same, e.g.,
we can write c ∈ Ri to identify a chain c served by node i. Then we consider
multiple-chain and multiple-class networks.

Service center types. The network consists of M service stations:

Ω = {1, . . . , M}.
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The number of classes and chains is the same R = C and each chain can be open
or closed. We refer to the notation introduced in Section 3.1 and summarized in
Table 1. BCMP theorem considers four types of service centers:

Type 1: FCFS Service discipline and exponentially distributed and chain-inde-
pendent service time.

For types 2, 3 and 4 stations, the service time distributions have rational Laplace
transforms (see Section 2.3) and the average service rate can depend on the state
of each customer chain.

Type 2: PS Service discipline.
Type 3: IS service centers.
Type 4: LCFSPR Service discipline.

We first assume a constant service rate. Let μ
(c)
i denote the service rate of

station i for chain c customers, 1 ≤ i ≤ M and c ∈ C. For type 1 service centers
μ

(c)
i = μi, as the service time is chain independent.

State vector. BCMP theorem gives a product-form solution for states with
different levels of detail. Let n = (n1, . . . ,nM) denote the network state, where:

– ni = (n(1)
i , . . . , n

(C)
i ) is the occupancy vector at station i, 1 ≤ i ≤ M ,

– ni =
∑C

c=1 n
(c)
i is the number or customers at station i, 1 ≤ i ≤ M ,

– n =
∑M

i=1 ni is the total number of customers in the network,
– n(c) =

∑M
i=1 n

(c)
i is the number of customers of chain c in the network,

1 ≤ c ≤ C. Note that n(c) = K(c) if c is a closed chain.

Arrivals to open chains. For open chains, customers arrive to the network
from an external source. There are two possible state dependencies for the arrival
process. In the first case the total arrival process to the network is a Poisson
process with parameter λ(n) where n is the total number of customers in the
network. Arrivals are distributed among the classes according to the routing
probabilities. Let p

(c)
0i denote the probability of an external arrival to node i

and open chain c, then by decomposition property of Poisson processes, the
arrival process to station i and chain c is a Poisson process with rate λ(n)p(c)

0i ,
with

∑M
i=1

∑
c∈Ri

p
(c)
0i = 1. In the second case the arrival processes to different

open chains are independent Poisson processes whose rates depend on the total
number of customers of the associated chain, i.e., λc(n(c)) where 1 ≤ c ≤ C and
c is an open chain. The arrival process to station j, 1 ≤ j ≤ M is a Poisson
process with rate λc(n(c))p(c)

0j . Routing probabilities satisfies the normalizing

constant
∑M

i=1 p
(c)
0i = 1. For a closed chain c we set p

(c)
0i = 0 for every station

i = 1, . . . , M and let K(c) denote the constant chain population, i.e., n(c) = K(c)

for all states n.
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Traffic equations. We first define the set of expected number of visits or
(relative) throughput for each node i and chain c, denoted by e

(c)
i . These values

are obtained as the solution of the following C systems of linear equations, called
traffic equations:

e
(c)
j =

M∑

i=1

e
(c)
i p

(c)
i,j + p

(c)
0,j j = 1, . . . , M 1 ≤ c ≤ C (16)

These systems uniquely define the solution e
(c)
j if chain c is open, while they are

not uniquely determined if chain c is closed. If chain c is open e
(c)
j represents the

expected number of visits (visit ratio) for a customer of chain c at station i. If
chain c is closed, then we replace one equation for a station i such that R(c)

i �= ∅
with e

(c)
i = 1, and we obtain a set of linear independent equations. Then the

solution e
(c)
j represents the relative visit ratio of a customer belonging to chain c

to station j for each visit to station i. Let us define the ρ
(c)
i = e

(c)
i /μ

(c)
i for each

station i = 1, . . . , M and chain c ∈ R(c)
i , let ρ

(c)
i = 0 if c /∈ R(c)

i .
We now state the BCMP theorem:

Theorem 1 (BCMP theorem, single-class, multiple-chain [9]). Let Ω be
a BCMP QN under stability conditions. Then the following steady state proba-
bility holds:

π(n) =
1
G

d(n)
M∏

i=1

gi(ni), (17)

where d(n) =
∏n−1

a=0 λ(a) if the arrival rate depends on the total number of cus-

tomer in the system, or d(n) =
∏C

c=0
∏n(c)−1

a=0 λc(a). Functions gi(ni) are deter-
mined as follows:

– For type 1, type 2 and type 4 stations:

gi(ni) = ni!
[ c∏

c=1

1

n
(c)
i !

(ρ(c)
i )n

(c)
i

]
, (18)

considering μ
(c)
i = μi for type 1 stations.

– For type 3 stations:

gi(ni) =
C∏

c=1

1

n
(c)
i !

(ρ(c)
i )n

(c)
i . (19)

Proof. The proof given in [9] is based on a detailed definition of the network
state and by substitution of the product-form expression into the global balance
equations of the Markov continuous-time process underlying the QN. If i is a
type 1 station then its state is represented by vector bi = (bi1, . . . , bini) where ni

is the number of customers in the station and bij is the number of the class of the
j-th customer in the FCFS order. If i is a type 2 or 3 station bi = (bi1, . . . ,biR)
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where bir is a vector whose components represent the number of customers of
class r at a certain stage of service. If i is a type 4 station, its state is similar to
the one introduced for type 1 stations but each vector component always stores
the customer service stage (note that the discipline has resume feature). In order
to prove the theorem it is shown that:

1. The stationary probability distribution for the detailed state (that we omit
for the sake of clarity) is correct by substitution on the global balance equa-
tions system.

2. The stationary probability distribution for the state n defined above can be
obtained as marginal distribution of the aggregation of the detailed states.

�

Let us now consider stations with load-dependent service rates. BCMP theorem
identifies three kinds of state-dependent service rates:

Type A: The service rate of a customer at station i depends on the total num-
ber of customers ni. Let xi(ni) be a positive function which gives the relative
service rate at station i, i.e., xi(1) = 1, such that the actual service rate for
a class r customer at station i is xi(ni)μir. Function xi is also called ca-
pacity function. Then function gi defined by equation (18) or (19) must be
multiplied by factor:

ni∏

a=1

1
xi(a)

.

Type B: The service rate of a class r customer at station i depends on n
(c)
i .

Define y
(c)
i (n(c)

i ) as a positive capacity function, similarly to xi definition in
the previous case. Then function gi definition must be multiplied by factor:

∏

c∈Ri

n
(c)
i∏

a=1

1

y
(c)
i (a)

.

Note that this state-dependent service rate violates the BCMP hypothesis
for type 1 stations, that is it applies only for types 2, 3 and 4.

Type C: The service rate of a customer at station i depends on the number
of customers in several stations. Let H ⊆ Ω be a subset of the station
set, and nH =

∑
h∈H nh. Define zH(nH) to be a positive capacity function

which represents the relative service rate when nH = 1. Then the product∏
h∈H gi(ni) in equation (17) becomes:

[ ∏

h∈H
gi(ni)

] nH∏

a=1

1
zH(a)

.

Note that state-dependent service rates can be combined giving a great flexibil-
ity to BCMP networks expressive power. For example in order to model a PS
(or LCFSPR) with different mean service rates for class, with m constant rate
servers, it suffices to set xi(ni) = min{m, ni}/ni and y

(c)
i (n(c)

i ) = n
(c)
i .
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BCMP theorem for multiple-class and multiple-chain QNs. We now
state a more general form of the BCMP theorem, as presented in [9], for QNs
where a customer can move within a chain by class switching. In order to repre-
sent class switching we have to modify the notation as follows:

– The routing matrices P(c) assume the general form p
(c)
ir,js for nodes i, j,

classes r and s in chain c as introduced in Section 3.1.
– Service rate at station i = 1, . . . , M is relative to the class (for types 2, 3

and 4 stations), so we use μ
(c)
ir ,

– There are C independent traffic equation systems which define the (relative)
visit ratio for class and station, e

(c)
ir for i = 1, . . . , M and r ∈ R(c)

i , 1 ≤ c ≤ C,
as follows:

e
(c)
jr =

M∑

i=1

∑

s∈R(c)
i

e
(c)
is p

(c)
is,jr + p

(c)
0,jr. (20)

Let us define ρ
(c)
ir = e

(c)
ir /μ

(c)
ir for station i, class r belonging to chain c.

Example. Consider the multiple-class network of Figure 3. Assuming a con-
stant arrival rate λ, the traffic equations system for the open chain 1 is:

⎧
⎪⎨

⎪⎩

e
(1)
11 = 1

e
(1)
12 = e

(1)
11 p

(1)
11,12

e
(1)
21 = e

(1)
11 p

(1)
11,21

,

which has a unique solution. The traffic equation system for Chain 2 has
infinite linear dependent solutions, and we can set e

(2)
21 = 1 that yields e

(2)
22 =

1. For an open chain e
(c)
ir represents the mean number of visits at station

i with class r, for a closed chain it represents the average number of visits
at station i with class r relative to a visit for an arbitrary couple (station,
class) belonging to the same chain of c.

– State n = (n1, . . . ,nM) components are the occupancy vectors for classes,
i.e., ni = (n(1)

i , . . . ,n(C)
i ) where n(c)

i is a vector whose components n
(c)
ir

represent the number of customers of class r (belonging to chain c) at station
i, for r ∈ R(c)

i and 1 ≤ i ≤ M and 1 ≤ c ≤ C.

Then for a multiple-chain and multiple-class QN, Theorem 1 still holds by using
the following definitions of function gi:

gi(ni) = ni!
C∏

c=1

∏

r∈R(c)
i

1

n
(c)
ir !

(ρ(c)
ir )n

(c)
ir , (21)

for a service center i of type 1, 2 and 4, and:

gi(ni) =
C∏

c=1

∏

r∈R(c)
i

1

n
(c)
ir !

(ρ(c)
ir )n

(c)
ir , (22)

for a type 3 service center i.
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These QNs can have load-dependent service centers. Capacity function for
state-dependent service rate of type B can be reformulated considering the class
population instead of the chain population at the node, i.e., the capacity function
can be y

(c)
ir for station i, and r ∈ R(c)

i .
In order to evaluate the QN performance indices we can simplify the compu-

tation of the BCMP product-form solution as follows:

Aggregation by chain. If Ω is a multiple-class and multiple-chain QN, under
certain assumptions we can compute the steady state probability on an ag-
gregate state. Consider an aggregated vector na where n

(c)
ai =

∑
r∈Ri

n
(c)
ir

for i = 1, . . . , M and c = 1, . . . , C. In the general case, as the service rate
can depend on the class of the customer, we can express the aggregated
probability πa(na) as sum of probabilities π(n) as follows:

πa(na) =
∑

n|�
r∈R(c)

i

n
(c)
ir =n

(c)
ai

i=1,...,M∧c=1,...,C

π(n).

If for each station the service rate is load-independent or depends on the net-
work state according to type A, C or B (formulated on the chain population
and not the class population), then BCMP theorem for multiple-class and
multiple-chain QNs can be simplified to single-class and multiple-chain case.
In fact formulas (17), (18) and (19) hold by considering the (relative) visit
ratio at station i, 1 ≤ i ≤ M and chain c as the sum of the visit ratios for
all the classes belonging to the same chain as station i: e

(c)
i =

∑

r∈R(c)
i

e
(c)
ir ,

and the service rate per chain is the weighted sum of the service rate of the
classes belonging to the same chain: μ

(c)
i =

∑

r∈R(c)
i

e
(c)
ir μ

(c)
ir /e

(c)
i .

Aggregation for open networks by node population. If all chains of the
network are open, arrival rates λ are constant and capacity functions xi(ni)
are of type A, then it is possible to simplify the steady state distribution
function for the aggregated state n′ = (n1, . . . , nM ) where ni is the total
number of customer at station i, ni =

∑C
c=1

∑

r∈R(c)
i

n
(c)
ir . In fact it is possible

to study each station in isolation considering ρi =
∑C

c=1
∑

r∈R(c)
i

λ · ρ(c)
ir and

capacity function xi. This results provide a convenient way for normalizing
probabilities and checking if the stability condition holds (i.e. ∀i = 1, . . . , M :
ρi < 1).

Characterization of Product-Form Queueing Networks

Product-form QN allows to obtain a set of performance indices without generat-
ing and solving the associated Markov process and the system of global balance
equations. The characterization of the classes of product-form QNs is an in-
teresting task. Under some assumptions (e.g., non-priority scheduling, infinite
queue capacity, non-blocking factors, state-independent routing probabilities) it
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is possible to give conditions on the service time distributions and on the station
queueing disciplines to determine whether a well-formed QN yield a BCMP-like
product-form solution. We consider the following properties which are strictly
related to product-form: local balance, M =⇒ M , quasi-reversibility, station
balance.

Local balance property. This property states that the effective rate at which
the system leaves state ξ due to a service completion of a chain r customer at
station i, equals the effective rate at which the system enters state ξ due to
an arrival of chain r customer to station i. This result can be also generalized
for multiple-class and multiple-chain networks. It can be shown that, for some
queueing disciplines, local balance holds even when service times distributions
are represented by a network of exponential stages [59,17]. In this case the state
must include the stage at which a customer is being served. Note that:

– If a steady state probability distribution π satisfies the local balance equa-
tions (LBEs), then it satisfies also the global balance equations, but opposite
is not true, i.e., LBEs are a sufficient condition for network solution.

– Solving LBEs is computationally easier than solving global balance ones
even if it still requires to handle the set of reachable states (which can be a
problem for open chains or networks). However if we need to prove that a
steady state formula is correct, it can be simpler to check if it verifies LBEs.

– The local balance is a property of a station embedded in a QN. The states
we are considering are still states of the network.

M =⇒ M property. This property is introduced in [55] and it is defined for
a single queueing system. An open queueing system holds this property if under
independent Poisson arrivals per class of customers, the departure processes
are also independent Poisson processes. Consider an isolated station with R
classes and a state space Γ . Customers of class r arrive to the system according
to independent Poisson processes with rate λr. Let π(ξ) be the steady state
probability of state ξ with ξ ∈ Γ , let |ξ|r be the number of customers of class
r in the station when the state is ξ. Define the set S+

r = {ξ′ : |ξ′|r = |ξ|r + 1}.
Then the M =⇒ M property holds if:

∀ξ ∈ Γ
∑

ξ′∈S+
r

π(ξ′)qξ′ξ

π(ξ)
= λr, (23)

where qξ′ξ is the transition rate between state ξ′ and ξ. Note that:

– M =⇒ M property considers the station in isolation. Thus it can be used
to decide whether a station with specific queueing discipline and service
time distribution, can be embedded in a product-form QN (see for example
[1,50]). If each station of a QN has the M =⇒ M property then it has a
product-form solution.
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– If a network (a chain) is open and each of the station has the M =⇒ M
properties, than the network itself has the M =⇒ M property [55].

– In a QN with service centers with non-priority scheduling disciplines property
M =⇒ M holds for every station if and only if local balance holds [39,10].

Quasi-reversibility property. A queueing system exhibits quasi-reversibility
property if the queue length at a given time t is independent of the arrival times
of customers after t and of departure times of customer prior to t. It is possible
to prove (e.g., in [40]) that a QN whose stations are quasi-reversible yields a
product-form solution. Note that:

– Quasi-reversibility property is defined for isolated stations.
– It is easy to prove (see for example [39]) that all arrival streams to a quasi-

reversible system should be independent and Poisson, and all departure
streams should be independent and Poisson. In other words a system is
quasi-reversible if and only if it exhibits the M =⇒ M property.

Station balance property. This property is introduced in [17] and discussed in
[59] and [18]. A scheduling discipline holds station balance property if the service
rates at which the jobs in a position of the queue are served are proportional to
the probability that a job enters this position. We call these kinds of scheduling
disciplines symmetric disciplines. Note that also the property is defined for an
isolated station, and it is a sufficient condition for product-form (e.g., FCFS does
not yields station balance).

Figure 6 shows the relation between these properties:

Fig. 6. Relations between properties related to product-form for nonpriority service
centers

It is worthwhile trying to characterize product-form QNs with higher level
properties, e.g., on properties of scheduling discipline. We can summarize some
observations:

– Every service center with: A) a queueing discipline which is work-conserving
and independent of the service time requirement of the customers, and B)
an exponentially distributed service time, yields local balance property.
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– For symmetric disciplines the QN steady state probabilities only depend on
the mean of the service time distribution and on the value of the (relative)
visit ratio. This is know as the insensitivity property of product-form net-
works [17]. Moreover we can say that the routing matrix influences the QN
performance parameters only for the computation of the visit ratios, i.e., two
networks with the same stations and different routing matrices are equivalent
if they have the same (relative) visit ratio for each station.

– The symmetric disciplines are the only ones that give product-form solution
if the service time distribution is not exponential [18].

– A symmetric discipline starts serving a customer as soon as it enters in the
system, i.e., symmetric discipline are always preemptive discipline.

Other Product-Form Queueing Networks

Various extensions of the class of BCMP product-form networks have been pro-
posed. They include state-dependent routing [44,75,11], i.e., the definition of
routing probabilities are special functions that may depend on the state of the
entire network or of subnetworks and/or single service centers. This allows rep-
resenting systems with more complex features such as dynamic load balancing
algorithms or adaptive routing strategies. Such models usually assume some ad-
ditional constraints on the network parameters and a special structure of the
routing state-dependent functions. For example Towsley [75] considered closed
QNs where the routing for some service centers may be a rational function of
the queue length of the service centers belonging to a downstream subnetwork
with a particular topology, called parallel subnetwork. Boucherie and VanDijk
have proposed an extension to more complex state-dependent routing by con-
sidering a more detailed definition of routing functions dependent on the state
of subnetworks called clusters and the state of service centers [11]. The model
assumes that the service centers are partitioned into a set of subnetworks that
are linked by a state-dependent routing. Then the routing function between two
service centers i and j that respectively belong to two disjoint subnetworks I
and J has the following expression: pi0(I)p′IJp0j(J), where pi0(I) and p0j(J) are
routing functions internal to subnetworks I and J , respectively, and p′IJ denotes
the routing between subnetworks. This model can be useful to represent hier-
archical and decomposable systems. Extensions of BCMP networks to different
service disciplines have been derived. Le Boudec proved product-form solution
for QNs with multiple-server nodes with concurrent class of customers that allow
to represent special systems [50].

Various special classes of non BCMP QNs have been proved to have product-
form solution under particular constraints. These QNs may represent some spe-
cial system characteristics, such as for example, finite capacity queues, popula-
tion constraints and positive and negative customers.

QNs with finite capacity queues, subnetwork population constraints and
blocking have product-form solution in some special cases [2,5,34,78]. Various
blocking types that describe different behaviors of customer arrivals at full ca-
pacity service centers and the servers’ activity in the network have been defined.



60 S. Balsamo and A. Marin

For several special combinations of network topology, types of service centers and
blocking mechanisms one can derive a product-form solution for the stationary
state distribution. Moreover, one can derive various equivalence properties be-
tween product-form networks with and without blocking and between networks
with different blocking type, as discussed in [5].

Another extension of QNs with product-form is the class of networks pro-
posed by Gelenbe [29] (G-networks) with positive and negative customers that
can be used to represent special system behaviors [30]. For example negative
customers may represent commands to delete some transactions in databases or
in a distributed computer system due to inconsistency or data locking. A nega-
tive customer arriving to a service center reduces the total queue length by one
if the queue length is positive and it has no effect otherwise. Negative customers
do not receive service. A customer moving between service centers can become
either negative or remain positive. Such a QN has product-form solution under
exponential and independence assumptions and with a Markovian routing and
the solution is based on a set of non linear traffic equations of the customers. G-
networks also deal with multiple-class of customers [27]. Some further extensions
have been introduced in order to extend the model power of G-networks, such
as the introduction of reset-customers [31], or network state-dependent service
rate and routing intensities, triggered batch signal movement [28].

Product-form solution has been extended to QNs with batch arrivals and
batch services [35,36] that are also related to discrete time QN models. The
model evolution is described by a discrete-time Markov chain and assumes special
expressions for the probability of batch arrivals and departures and correlated
batch routing. The product-form solution is based on a generalized expression
of the traffic equations and the quasi-reversibility property of the network. The
product-form solution holds for continuous-time and discrete time QNs.

3.4 Flow-Equivalent Aggregation

An insensitivity property of product-form QNs is the exact flow-equivalent aggre-
gation. QNs aggregation, or Norton’s theorem, allows substituting a subnetwork
with a simple service center so that the aggregated network is equivalent to
the original one, in terms of performance indices. QNs aggregation is based on
aggregation of the underlying Markov chain. Aggregation of states on Markov
chains has been widely studied in order to find the steady state probability of
the process by solving a reduced number of global balance equations. In [41] the
authors analyze the concept and the condition of lumpability for finite states
Markov chains. Aggregation for decomposable Markov chains is studied in [25].

For product-form QNs it is possible to apply aggregation at a higher ab-
straction level, i.e., subnetwork aggregation instead of state aggregation. This
technique can be used to study complex QN models and in hierarchical model-
ing. With exact aggregation of product-form QNs we can replace a subnetwork
with a single station with appropriately chosen service rate function so that the
performance measures of remaining nodes are the same. For non-product-form
QNs in general aggregation defines an approximate model of the original one
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[16]. Various approximation techniques are based on aggregating subnetworks as
we discuss in the next section. Consider a single-chain QN. Figure 7-A shows a
QN Ω partitioned in two subnetworks. We want to replace the subnetwork Ωa

in the network Ω with an single station a. We apply exact aggregation to obtain
the new network Ω∗ where subnetwork Ωa is replaced by a new station a, as
shown in Figure 7-C. Exact aggregation or Norton’s theorem defines the para-
meters of station a, called aggregated station, i.e., the station which replaces the
subnetwork. We usually define station a as a FCFS exponential station (BCMP
type 1) or, by insensitivity property, we can assume PS discipline. Let μa(n)
denote the load-dependent service rate where there are n customers at station a.
The aggregated network parameters, i.e., μa(n) and the routing probabilities of
network Ω∗, are derived by the solution of subnetwork Ωa analyzed in isolation,
as shown in Figure 7-B. This isolated network is obtained from the original one
by shorting out, that is, by setting to zero all the service times of the stations
in Ω − Ωa. The isolated network is analyzed by product-form algorithms to cal-
culate the network throughput denoted by Λa(n) when there are n customer in
the network. Hence we state Norton’s theorem:

Theorem 2 (Norton’s theorem). Let network Ω∗ be defined as network Ω
by substituting subnetwork Ωa with a single service center a, and with same
parameters for subnetwork Ω − Ωa and with the same number of customers K.
Let node a service rate be defined as μa(n) = Λa(n) for 1 ≤ n ≤ K. Then Ω and
Ω∗ are equivalent in terms of stationary state distribution of the non aggregated
subnetwork.

Exact aggregation allows to compute performance measures for subnetwork Ω −
Ωa and for node a representing the aggregated subnetwork Ωa. It holds for any
subnetwork, i.e., for subnetworks with multiple entry and exit points and for
which we have also to define a new routing matrix for the aggregated network
[6], for multiple-chain networks [68,43] and for mixed networks and occupancy
vector-dependent capacities [43].

Exact aggregation can be used in hierarchical system analysis. In a bottom-
up system design process we can relate the performance indices of the network
models at different levels in the hierarchy [49]. Exact aggregation provides a
tool to define an equivalent aggregated model at the higher level of abstraction.
Similarly, in a hierarchical top-down system design with predefined performance
requirements, we can apply the inverse process called disaggregation or synthesis
of the network to define a more detailed model with the same performance indices
[7]. The disaggregation process answer the question of what the system topology
and parameter should be in order to achieve the given performance goal.

An important application of exact aggregation for product-form QNs is the
definition of various approximate methods for non product-form networks [51]
that we discuss in Section 4.4. These algorithms are usually based on an itera-
tive scheme and they basically apply the aggregation theorem to non product-
form networks, although in this case it provides only approximate results. At
each iteration step several subnetworks are analyzed and aggregated in the flow-
equivalent service centers. This principle has been applied for the approximate
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Fig. 7. Example of exact aggregation

analysis of various types of non product-form networks, such as for example
networks with simultaneous resource possession and finite capacity queues.

4 Solution Algorithms for Queueing Networks

The main advantage of product-form QNs is that several efficient algorithms
have been developed for their performance analysis. As a consequence efficient
and powerful performance evaluation tools based on product-form QNs have
been developed and applied to obtain performance indices for large networks
with many service centers and customers [68,48,49,66,14].

In order to evaluate performance indices we can use either exact algorithms
or approximate methods. The choice depends on a number of factors, e.g., the
number of classes and chains of the network. We shall now review the most used
algorithms for BCMP product-form QNs. The two main solution algorithms are
Convolution and MVA. Convolution (or Buzen’s Algorithm) was first introduced
for single-chain networks by Buzen in [13] and then extended to multiple-chain
networks by Bruell and Balbo in [12]. Mean Value Analysis (MVA) algorithm has
been developed by Reiser an Lavenberg [64,62] both for single and multiple-chain
networks. Another solution algorithm is the Local Balance based computation
of Normalization Constant (LBANC) developed by Sauer and Chandy in [67].
A detailed discussion on various computational algorithms can be found in [68].
For multiple-chain QN several further algorithms have been proposed: Recursion
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by chain (RECAL) [23], Tree-Convolution [46], Tree-MVA [77,37], Distributed
Analysis by Chain (DAC) [26] and Mean Value Analysis by Chain (MVAC) [22].

We first illustrate Convolution algorithm both for single-chain and multiple-
chain QNs. In Section 4.2 we present MVA for single-chain and multiple-chain
QNs, then Section 4.3 briefly reviews the other algorithms paying special atten-
tion to RECAL.

4.1 The Convolution Algorithm

In this section we first describe Convolution algorithm for a single-class closed
QN and then for the single-class multiple-chain closed QN. Consider a BCMP
QN with the set of stations Ω = {1, . . . , M}, K customers and where the sta-
tion service rates can depend only on the number of customers at that station
(BCMP type A capacity function). The computation of the stationary state dis-
tribution π requires the evaluation of the normalizing constant G in formula
(17). Convolution algorithm is based on a direct and efficient computation of
G. Without loss of generality we assume that the first D stations have constant
service rate IS discipline (simple delay stations), then the stations from D + 1
to D + I have load-independent service rates (simple stations) and the stations
from D + I + 1 to D + I + L = M have the load-dependent service rates. Let
Gi(k) denote the normalizing constant for the QN considering a population of
k customers and the first i stations. Then the network normalizing constant in
formula (17) is given by G = GM (K) and is defined as follows:

G = GM (K) =
∑

n|�M
i=1 ni=K

M∏

i=1

gi(ni), (24)

where functions gi(ni) is defined in Theorem 1. Direct computation of G by
formula (24) takes an exponential time in M and K, i.e., it is proportional to
the state space cardinality. Convolution algorithm avoids this direct computation
and evaluates G recursively and it is based on the Convolution theorem [13]. In
order to calculate GM (K) efficiently we write the following recursive equation:

Gi(k) =
k∑

n=0

Gi−1(k − n)gi(n) 1 ≤ i ≤ M, 1 ≤ k ≤ K, (25)

with initial conditions: G0(k) = 0, ∀k > 0 and Gi(0) = 1 for 1 ≤ i ≤ M . Each
recursive step for station i in formula (25) requires O(K2) operations. This
scheme can be further simplified as follows. As the first D service centers are
simple delay stations then we can immediately write:

GD(k) =
1
k!

[ D∑

i=1

ρi

]k

, 0 ≤ k ≤ K, (26)

where ρi is defined in Theorem 1, Section 3.3. This formula requires O(K + D)
operations. If i is a simple station then we can write gi(k) = ρk

i . Hence formula
(25) reduces to:
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Gi(k) = Gi−1(k) + ρiGi(k − 1) 0 ≤ k ≤ K. (27)

Thus adding a load-independent station requires O(K) operations. Algorithm 1
summarizes the computation of the normalizing constant G with the Convolution
algorithm by formula (26) for simple delay stations, (27) for load-independent
stations and (25) for load-dependent ones.

Several performance measures can be directly evaluated by function G. For a
simple station j we can write the marginal queue length distribution as follows:

Pr(nj = n|K) = ρn
j

GM (K − n) − ρjGM (K − n − 1)
GM (K)

0 ≤ n ≤ K, (28)

that is the probability of n customers in station j, given a network population
of K customers. Then we obtain the average performance indices, i.e., the mean
queue length, the throughput and the utilization for node j as follows:

Nj =
K∑

k=1

ρk
j

GM (K − k)
GM (K)

, (29)

Xj = ej
GM (K − 1)

GM (K)
, (30)

Uj =
Xj

μj
. (31)

For a service center j with load-dependent service rate we cannot apply for-
mula (28) and we have the following expression for the queue length distribution:

Pr(nj = n|K) = gj(n)
GΩ−{j}(K − n)

GM (K)
, (32)

where GΩ−{j} denotes the normalizing constant of the network obtained by
the original network Ω with station j removed. Hence, Convolution algorithm
efficiency is reduced when the network has several load-dependent service centers.

A limitation of this algorithm is its potential numerical instability, i.e., the
possible overflow or underflow in the computation of constant G. Some scaling
techniques to overcome this problem have been proposed [45].

Algorithm 1 is Convolution algorithm to compute the normalizing constant,
and Algorithm 2 illustrates the computation of a set of performance indices.
Note that, for closed networks with L load-dependent service centers we need to
apply Algorithm 1 L times, but we can use some optimization techniques that
keep function GD+I for simple and delay stations. The overall computational
complexity of the algorithm is O(K + IK + L2K2). If all the stations have
load-independent service rate the time complexity is simply O(MK).

Let us consider a multiple-chain QN. Let K = (K(1), . . . , K(C)) be the popu-
lation vector per chain where C is the number of closed chains, and K(c) is the
population of chain c for 1 ≤ c ≤ C. Equation (25) becomes:

Gi(K) =
K(1)
∑

k
(1)
i =0

· · ·
K(C)
∑

k
(C)
i =0

Gi−1(K − ki)gi(ki),
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Algorithm 1. Convolution algorithm: calculate normalizing constant G

Assumptions: The set of nodes Ω is ordered as follows: nodes from 1 to D are simple
delay stations, from D + 1 to D + I are load-independent stations, from D + I + 1
to D + I + L = M are load-dependent.
{Initialization}
Gi(0) = 1, i = 1 . . . , M
G0(k) = 0 k = 0, . . . , K
Compute visit ratios e by equation (16) and scale to reduce numeric problems
{Add simple delay stations}
ρD = 0
for i = 1 to D do

ρD = ρD + ρi

end for
for k = 1 to K do

GD(k) = 1/k!(ρD)k

end for
{Add simple stations}
for m = D + 1 to D + I do

for k = 1 to K do
Gm(k) = Gm−1(k) + ρmGm(k − 1)

end for
end for
{Add load-dependent stations}
for m = D + I + 1 to M do

for k = 1 to K do
Gm(k) = 0
for n = 0 to k do

Gm(k)+ = Gm−1(k − n)gi(n)
end for

end for
end for
return G {Return matrix G}

which can be simplified for simple stations as follows:

Gi(K) = Gi−1(K) +
C∑

c=1

ρ
(c)
i Gi(K − 1c),

where 1c is the unit vector, i.e., all components are 0 but the c-th which is 1 and
ρ
(c)
i is defined in Section 3.3. As the first D stations are simple delay stations we

can directly calculate GD(K):

GD(K) =
[ D∑

i=1

ρ
(1)
i

]K(1)

· · ·
[ D∑

i=1

ρ
(C)
i

]K(C) 1
K(1) · · · K(C) .
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Algorithm 2. Convolution Algorithm: calculate performance indices from G

Assumptions: The set of nodes Ω is ordered as follows: nodes from 1 to D are simple
delay station, from D + 1 to D + I are load-independent stations, from D + I + 1 to
D + I + L = M are load-dependent.
{Calculate performance indices for simple delay stations}
for i = 1 to D do

calculate throughput Xi

end for
{Calculate performance indices for simple stations}
for i = D + 1 to D + I do

calculate Ni by formula (29)
calculate Xi by formula (30)
calculate Ui by formula (31)

end for
{Calculate performance indices for load-dependent stations} L = 0
for i = D + I + 1 to M do

L = L + 1
if L > 1 then

Let Ω′ be Ω with station i as last station
Calculate G′ for Ω′

Calculate performance indices using formula (30) and (32) using G′

else
Calculate performance indices using formula (30) and (32) using G

end if
end for

If ni is the occupancy vector at station i, for a load-dependent station i, the
the analogue of equation (32) is the following:

Pr(ni = n|K) =
GΩ−{i}(K − n)

GM (K)
gi(n),

that is the probability of state n for station i, given the network population
vector K. The average performance indices for each station i and each chain c
can be calculated as follows:

X
(c)
i = e

(c)
i

GM (K − 1c)
GM (K)

U
(c)
i = ρ

(c)
i

GM (K − 1c)
GM (K)

N
(c)
i =

K(c)
∑

a=1

∑

n:n(c)=a

Pr(ni = n)

Moreover the computation of G can be further simplified as presented in [54].
Let ki = (k(1)

i , . . . , k
(C)
i ) be a vector representing the number of customers for

each chain c in the first i stations of the network, i.e., k
(c)
i is the overall number
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of customers of chain c at nodes 1, . . . , i: k
(c)
i =

∑i
j=1 n

(c)
j . Then kM = K. The

following recursive formula holds:

Gi(ki) =
∑

∀ki−1,ki−1+ni=ki

Gi−1(ki−1)gi(ni),

where ni represents a valid occupancy vector at station i. Noting that GM (K) =
GM (kM) we have the normalizing constant.

The time computational complexity for multiple-chain Convolution algorithm
depends on the product of chain populations. Let us define:

H =
C∏

c=1

(K(c) + 1). (33)

Then for a QN with C chains and population vector K, an iteration step of
Convolution for a simple station requires O(CH) operations and for a load-
dependent station requires O(H2) operations. For the special case of a QN where
all the chains have the same population K(c) = K = K/C, and all the stations
are load-independent, then the time complexity is O(MCKC). Thus the time
requirements grows rapidly with the number of chain and their population. The
Convolution algorithm suffers of numerical instability with problem of underflow,
overflow and round-off errors.

4.2 Mean Value Analysis (MVA)

Algorithm MVA directly calculates the QN performance indices avoiding the
explicitly computation of the normalizing constant. It is based on the arrival
theorem [47,70] and on Little’s theorem. We briefly recall the arrival
theorem:

Theorem 3 (Arrival theorem). In a closed product-form QN the steady state
distribution of the number of customers at station i at customer arrival times at
i is identical to the steady state distribution of the number of customers at the
same station at an arbitrary time with that user removed from the QN.

Consider a single-chain QN where we number the stations such that those from
1 to D are simple delay stations, from D + 1 to D + I are load-independent
service rate stations (simple stations), and from D + I + 1 to D + I + L = M
are load-dependent stations. By Theorem 3 MVA derives the following recursive
scheme:

For simple delay stations:

Rj(K) = 1
μj

1 ≤ j ≤ D

Rj(K) = 1
μj

(1 + Nj(K − 1)) D + 1 ≤ j ≤ D + I

Xj(K) = K�M
i=1(ei/ej)Ri(K) 1 ≤ j ≤ D + I

Nj(K) = Xj(K)Rj(K) 1 ≤ j ≤ D + I.

(34)
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For load-dependent service rate stations:

Rj(K) =
∑K

n=1
n

μj(n)Pr(nj = n − 1|K − 1) D + I + 1 ≤ j ≤ M,

K > 0
Xj(K) = K�M

i=1(ei/ej)Ri(K)
D + I + 1 ≤ j ≤ M

Pr(nj = n|K) = Xj(K)
μj(n) Pr(nj = n − 1|K − 1) D + I + 1 ≤ j ≤ M,

1 ≤ n ≤ K, K > 1
Pr(nj = 0|K) = 1 −

∑K
n=1 Pr(nj = n|K)

(35)

with the initial conditions Pr(nj = 0|0) = 1 and Nj(0) = 0.
Note that MVA does not compute the normalizing constant G so avoiding the

consequent numerical instability. However, the computation of marginal prob-
ability Pr(nj = 0|K) can lead to numerical problems as it tends to zero. To
overcome this drawback of potential numerical instability, a modified algorithm
(MMVA) has been proposed. MMVA algorithm modifies the recursive scheme of
formula (35) for the zero probability as follows:

Pr(nj = 0|K) = Pr(nj = 0|K − 1)
Xi(K)

X
Ω−{j}
i (K)

, (36)

where X
Ω−{j}
i is the throughput of any node i computed for the QN with node

j removed. This direct computation improves the algorithm numerical stability.
On the other hand MMVA has a higher computational complexity than MVA. In
fact a QN with L load-dependent stations requires to solve 2L−1 additional QNs.
For a single-chain QN without load-dependent stations with K customers and M
nodes, MVA has the same time complexity of Convolution, i.e., O(KM). If the
QN has only load-dependent stations, then MVA complexity becomes O(MK2)
which is better than Convolution complexity O(M2K2). However, consider that
to overcome the numerical instability problem MMVA has the same complexity
as Convolution.

Consider now a multiple-chain QN and let K = (K(1), . . . , K(C)) be the pop-
ulation of the network by chain. The multiple-chain MVA algorithm defines the
following recursive scheme:

– for simple delay stations and simple stations, for 1 ≤ c ≤ C and 1 ≤ j ≤
D + I:

R
(c)
j (K) = 1

μ
(c)
j

1 ≤ j ≤ D

R
(c)
j (K) = 1

μ
(c)
j

[1 + N
(c)
j (K − 1c)] K(c) > 0,

D + 1 ≤ j ≤ D + I

X
(c)
j (K) = K(c)

�M
i=1(e(c)

i /e
(c)
j )·R(c)

i (K)

N
(c)
j (K) = X

(c)
j (K)R(c)

j (K)

(37)
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– for load-dependent stations (of type A BCMP form), let K =
∑C

d=1 K(d),
1 ≤ c ≤ C and D + I + 1 ≤ j ≤ M :

R
(c)
j (K) =

∑K
n=1

n

μ
(c)
j (n)

Pr(nj = n − 1|K − 1c) K(c) > 0

X
(c)
j (K) = K(c)

�
M
i=1(e

(c)
i /e

(c)
j )R(c)

i (K)

Pr(nj = n|K) =
∑

c:K(c)>0
X

(c)
j (K)

μ
(c)
j (n)

Pr(nj = n − 1|K) n > 0

Pr(nj = 0|K) = 1 −
∑K

n=1 Pr(nj = n|K)

(38)

with the initial condition N
(c)
j (0) = 0 and Pr(nj = 0|0) = 1 for each station

j and chain c.

Algorithm 3 sketches the MVA algorithm for multiple-chain single-class QNs
assuming that all quantities are zero at negative populations.

Multiple-chain MVA algorithm has of the same numerical instability problem
as single-chain MVA and it can be solved in a similar mode. Let H be defined
by equation (33). Then the time complexity of the algorithm is O(KCH) oper-
ations for an iteration step on a load-dependent station and O(CH) for simple
stations. MVA complexity for load-dependent stations is lower than Convolu-
tion algorithm, that is O(H2). Indeed Convolution does not take advantage of
chain independent capacity functions, i.e., basic MVA considers only capacity
functions of type A, while Convolution considers both type A and B. For a net-
work without load-dependent stations, MVA and Convolution have the same
time complexity, i.e., O(MCKC) assuming that all the chains have the same
population K = K/C. In [73] MVA algorithm is generalized in order to calculate
higher moments of performance measures.

4.3 Other Algorithms for Multiple-Class Queueing Networks

Recursion by Chain Algorithm (RECAL) has a similar approach to Convolution
one since it computes the normalizing constant in order to obtain the mean
performance measures of the product-form QN. However, as the name says, the
recursion is based on the chains of the QN. RECAL algorithm is very well suited
for networks with a large number of job classes but a small number of stations
[22,24]. The recursive scheme is based on the formulation of the normalizing
constant G for C chains as function of the normalizing constant for C −1 chains.

Consider a QN with C > 1 chains and M load-independent service rate sta-
tions. The algorithm is based on a QN transformation into a new dual QN by
augmenting the number of chains so that each chain has just one customer.
Therefore it partitions each chain c into K(c) identical subchains with one job
per chain. The recursive algorithm applies to compute the normalizing constant
of the dual network. The average performance indices of the original QN are
obtained by those of the dual one. In the following we use the up-script ∗ to
denote the fictitious network parameters, e.g., Ω∗ is the fictitious network itself,
C∗ = K∗ = K is the number of chains and customers. Let us number the cus-
tomers and the corresponding chain in the dual network with labels 1, . . . , K,
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Algorithm 3. MVA algorithm for multiple-chain QNs
Assumptions: The set of nodes Ω is ordered as follows: nodes from 1 to D are simple

delay stations, from D+1 to D+I are load-independent stations and from D+I +1
to D + I + L = M are load-dependent.
{Initialization}
for i = 1 to M do

for c = 1 to C do
N

(c)
i (0) = 0

end for
if i > Ms then

Pi(0|0) = 1
end if

end for
{Obtain performance indices}
{The following cycle iterates H times!}
for k = 0 to K do

for c = 1 to C do
for i = 1 to D do

R
(c)
i = 1/μ

(c)
i

end for
for i = D + 1 to D + I do

R
(c)
i (k) = 1

μ
(c)
i

[1 + N
(c)
i (k − 1c)]

end for
for i = D + I + 1 to M do

R
(c)
i (k) =

�K
n=1

n

μ
(c)
i (n)

P (n − 1|k − 1c)

end for
{Let j|e(c)

j > 0, calculate the cycle time to j}
CT

(c)
j = 0

for i = 1 to M do
CT

(c)
j = CT

(c)
j + e

(c)
i /e

(c)
j R

(c)
i (k)

end for
for i = 1 to M do

X
(c)
i = (e

(c)
i /e

(c)
j )(K(c)/CT

(c)
j )

N
(c)
i = R

(c)
i (k) · X

(c)
i (k)

end for
end for
for i = D + I + 1 to M do

for n = 1 to k do
Pi(n|k) = 0
for c = 1 to C do

Pi(n|k) = Pi(n|k) + U
(c)
i /xi(n) · Pi(n − 1|k − 1c)

end for
end for
Pi(0|k) = 1 −

�k
n=1 Pi(n|k)

end for
end for
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hence customer k is the only one that belongs to the k-th chain in the dual net-
work. Let function ν(k) denote the chain index of k-th customer in the original
QN.

Let G∗
c(vc) denote the normalizing constant of the dual network for the first

c chains, 1 ≤ c ≤ C∗, where vc = (v1c, . . . , vMc) is to be defined. We have that
GC∗(0) is the normalizing constant for the dual QN and it corresponds to the
normalizing constant of the original network, i.e., G∗

C∗(0) = G. RECAL applies
the following recursive scheme:

G∗
d(vd) =

M∑

i=1

(1 + vidδi)
e
(ν(d))
i

μ
(ν(d))
i

G∗
d−1(vd + 1i), (39)

for d = 1 . . . , K∗ and vd ∈ Fd, with:

Fd = {vd|vid ≥ 0 for i = 1, . . .M,

M∑

i=1

vid = K∗ − d} (40)

δi =

{
1 if i is of type 1, 2, 4
0 if i is of type 3

(41)

The initial condition is G∗
0(v0) = 1 for all v0 ∈ F∗

0 . RECAL then computes the
performance indices for the last chain C∗ of the dual network stations, denoted
by X

∗(C∗)
i and N

∗(C∗)
i , as follows:

X
∗(C∗)
i =

⎧
⎨

⎩

e
(ν(C∗))
i

∑M
j=1

G∗
C∗−1(1j)

G∗
C∗ (0)(M+K∗−1) if there are no IS nodes

e
(ν(C∗))
i

G∗
C∗−1(1j)
G∗

C∗ (0) if j is any of the IS nodes
(42)

N
∗(C∗)
i =

G∗
C∗−1(1i)
G∗

C∗(0)
· e

(ν(C∗))
i

μ
(ν(C∗))
i

.. (43)

Then the original network performance indices for node i and class c = ν(K∗)
are obtained as follows:

X
(c)
i = K(c)X

∗(C∗)
i (44)

N
(c)
i = K(c)N

∗(C∗)
i (45)

In order to obtain the performance indices for any other chain c′ = 1 . . . , C
of the original network, we have to relabel the customers and modify function ν
such that ν(C∗) = c′. Algorithm 4 sketches the RECAL method. Note that the
computation is optimized by an appropriate ordering of the dual network chains,
by choosing the last C customers belonging to different chains of the original QN.
RECAL has been extended to QNs with load-dependent station whose capacity
function is of type A [24]. Note that if K(c) = K for all the chains c, M and K
constant, one can prove that for C → ∞ the time requirement is O(CM+1) [23].

RECAL algorithm computes performance measures through the recursive
computation of the normalizing constant. This can give the same numerical
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problems as discussed for Convolution algorithm. MVAC (Mean Value Analysis
by Chain) [22] and DAC (Distribution Analysis by Chain) [26] implements, like
RECAL, a recursion scheme based on chains, but with a direct computation of
some performance parameters. Consequently these algorithms are numerically
robust, even for load-dependent stations.

If the network is sparse, i.e., most of the chains visit just a small number
of the QN stations, one should consider the use of a tree algorithm. Tree-MVA
[77,37] and Tree-Convolution [46] are extensions of algorithm MVA and Convo-
lution. They are designed to give their best performance for sparse networks.
The main idea is to build a tree data structure where QN stations are leaves,
that are combined into subnetworks in order to obtain the full QN (depicted by
the root of the tree). Tree algorithms used for dense QNs can give worse perfor-
mance than the corresponding linear algorithms. Tree-Convolution has the same
numerical properties as standard Convolution, while Tree-MVA is more robust
than standard MVA.

The algorithms presented in previous sections do not allow class switching.
For networks with class switching, it is possible to reduce a closed QN with C
ergodic chains and class switching to an equivalent closed network with C chains
without class switching, as proved in [53].

The algorithms defined for closed QNs can be used also for mixed QNs. One
approach consists in modifying the station capacity functions in order to account
the service capacity consumed by the open chains. Then one analyzes the remain-
ing closed QN. Thus, the complexity of solving a mixed QN basically depends
on the number and the population of closed chains (see [39,48] for details).

4.4 Approximate Algorithms

Large product-form QNs can be also analyzed by approximate algorithms in
order to reduce the computational complexity. In fact time (but also space)
complexity of exact algorithms increases quickly for large networks with many
customers. This is especially true for multiple-chain models. Two approximate
algorithms for product-form QN are based on MVA. The Bard and Schweitzer
Approximation, introduced in [8,69] is a popular and widely applied approximate
algorithm [60]. Another algorithm is Self-Correcting Approximation Technique
(SCAT), introduced in [57], extended in [3] and generalized as the Linearizer
Algorithm in [19].

The basic idea of these algorithms is to approximate the MVA recursive
scheme and apply an approximate iterative scheme. Consider a multiple-chain
single-class QN, and let N

(c)
i (K) be the mean population at station i, chain c

when the total network population is K = (K(1), . . . , K(C)) for 1 ≤ i ≤ M and
1 ≤ c ≤ C. MVA recursive equations (37) requires to compute N

(c)
i (K − 1d) for

all d = 1 . . . , C to obtain N
(c)
i (K). The Bard-Schweitzer Approximation algo-

rithm approximates the average queue length as follows:

N
(c)
i (K − 1d) =

|K − 1d|c
K(c) N

(c)
i (K), (46)
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Algorithm 4. RECAL algorithm for multiple-chain QNs
Assumptions: Ω is a QN with M load-independent stations.
1: Number the jobs of the dual network Ω∗, and define an appropriate function ν

such that the last C jobs belong to different chains in the original QN.
2: G∗

0(v0) = 1 for all v0 ∈ F0 defined by (40)
{Consider the first K∗ − C nodes}

3: for c = 1 to K∗ − C do
4: for vc ∈ Fc do
5: Compute G∗

c(vc) by formula (39)
6: end for
7: end for

{Compute performance indices}
8: for d = 1 to C do
9: Number the jobs of the dual network Ω∗, and modify the last C values of ν such

that ν(K∗) = d
10: for c = K∗ − C + 1 to K∗ do
11: for vc ∈ Fc do
12: Compute G∗

c(vc) by formula (39)
13: end for
14: end for
15: Compute the performance indices by equations (44) and (45)
16: end for

where

|K − 1d|c =
{

K(c) if c �= d

K(c) − 1 if c = d
.

Then by substituting this expression in formula (37), MVA becomes an it-
erative approximate algorithm. The iteration stops if the value of N

(c)
i (K) in

two consecutive iteration steps differ by less than a chosen error ε. This approx-
imation technique assumes that removing a customer from chain c only affects
the mean number of customer N

(c)
i . There are examples of systems where this

assumption is not acceptable.
SCAT algorithm iterative scheme is similar to that of Bard-Schweitzer Ap-

proximation, but it estimates the change in the mean number of customers for
two successive iteration steps. This estimate is used to modify equation (46).
This technique for closed QNs with load-independent stations gives better re-
sults than Bard-Schweitzer Approximation thanks to its self-correcting capabil-
ity, but it provides less precise results for QNs with load-dependent service rate
stations. The Extended SCAT Algorithm presented in [3] improves the approxi-
mation accuracy. Discussion on approximate MVA based algorithms comparison,
accuracy, uniqueness and convergence are presented in [10,39,60].

Some other approximate algorithms are based on the so-called summation
method that defines an approximate function fi which relates the throughput of
a stations with the mean number of customers, i.e., Ni = fi(Xi). This method
can be used both for single-chain and multiple-chain QNs [10].



74 S. Balsamo and A. Marin

5 Examples

In this section we illustrate some examples of application of QN modeling for
system performance evaluation. The purpose of this section is just to give the
reader an idea on how it is possible to obtain analytical performance measures
from a QN based stochastic model. The whole process of performance analysis
and prediction of real systems is a complex task which involves measurements
and models validations [52,39] and is out of the scope of this work.

Example 1 (Machine repair model). This classical example considers a system
composed of α identical machines which can achieve the same task with identical
speed. They operate independently, in parallel and are subject to breakdown.
At most β ≤ α of them can be operating simultaneously (active). An active
machine operates until failure. The active-time is a random time exponentially
distributed with mean 1

μ1
. After a failure a machine waits for being repaired. At

most γ machines can be in repair, and the repair-time is a random time exponen-
tially distributed with mean 1

μ2
. Figure 8 illustrates the QN that represents the

system.

Fig. 8. Repairman model

We can study the model as a single-chain and single-class closed BCMP QN
consisting of M = 2 stations, where station 1 represents the state of operative
machines, and station 2 the machines in repair. The routing matrix is P =
[[0, 1], [1, 0]] for which we immediately obtain visit ratios e1 and e2. Station server
rates are μ1 for station 1 servers and μ2 for station 2 servers. Both the system
have multiple servers, and there are β servers for node 1 and γ for node 2. We
use the BCMP representation with a single server with load-dependent service
rate whose capacity function is:
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x1(n1) =
{

n1 if n1 ≤ β
β if n1 > β

x2(n1) =
{

n2 if n2 ≤ γ
γ if n2 > γ

QN population is K = α. Then we can apply Convolution or MVA algorithm for
single-chain QNs described in Section 4 to compute the following performance
measures:

– steady state probability distribution, that is the probability of n1 active
machines and n2 machines in waiting to be repaired,

– mean number of working machines, and mean number of machines in repair,
corresponding to measures N1 and N2,

– the utilization at station 1, that is the ratio between the effective average
work and the maximum work, i.e., when there are always β active machines.
Note that for efficiency purposes one should desire a U1 → 1 and U2 → 0.

– mean time that a machine is broken, i.e., the response time R2 of node 2.

Note that by the exponential assumptions, we can choose any BCMP-type queue-
ing disciplines to compute the product-form solution in a single-chain and single-
class QN. In fact in this case, disciplines PS, LCFSPR and FCFS are equivalent
in terms of steady state probability computation. We can model more complex
active and repair time by assuming appropriate Coxian service time distribution
that can be used to approximate a wide class of random distributions. Then we
obtain a BCMP QN if we assume PS or LCFSPR queueing discipline.

Example 2 (Database mirror). Consider a database (DB) repository system with
two servers. The first server is the master, and the second one is a mirror. At the
query arrival a dispatcher routes the query to the primary or to the secondary
database. When a query is sent to the mirror, if the required data are found then
the answer is sent back to the client. If the required data are not found, then
the mirror redirects the query to the primary database that provides the answer.
The system is analyzed to identify the optimal dispatcher routing strategy that
gives the lowest system response time, given the DB average service times, the
cache hit probability for the slave database, and the arrival rate.

Under some independence and exponential assumptions we can model the
system by an open BCMP QN where a request is a customer. The QN is formed
by M = 3 stations and is illustrated in Figure 9. We assume a probabilistic
behavior of the requests that arrives according to a Poisson process with rate λ.
The first station corresponds to the dispatcher which routes the requests either
to the master (with probability p) or to the mirror (with probability 1 − p).
We assume that the routing is request independent so to define a simple chain
QN, otherwise we should use a multiple-chain QN. A request can be fulfilled
by the mirror with probability q and it generates a new request to the master
with probability 1− q. We assume that the dispatcher is a delay station, i.e., the
requests never queue and they are dispatched almost instantaneously. In order



76 S. Balsamo and A. Marin

to obtain a BCMP QN if we model DB stations with PS queueing discipline we
can relax the hypothesis on exponential service time distribution. If we assume
a FCFS discipline, database stations must have an exponentially distributed
service time.

Fig. 9. Open QN modeling the system of Example 2

This open BCMP QN can be easily studied. We immediately derive the visit
ratios ei, i = 1, 2, 3 by solving the traffic equations be formula (16) that yield
e1 = 1, e2 = p+(1− p)(1− q), e3 = 1− p. Then by setting ρi = λei/μi where μi

is the mean service rate of station i, for i = 1, 2, 3, we apply the BCMP formulas
given in Section 3 to derive the performance indices. For example the average
response time for each node i given by formula (9) and the overall QN average
response time is R = R1+e2R2+e3R3. Then we can apply a parametric analysis
of response time R as function of probability p in order to identify the optimal
routing strategy.

Example 3 (Network performance from the client view). Consider a typical sys-
tem architecture used by a company to provide an Internet connection to a
number of machines. The intranet is connected to a 10Mbps LAN, with an ac-
cess to Internet through a Proxy server and then to a router/firewall. Suppose
that the company has doubled the number of clients in the last year, and it
registered an impressive slow-down of the network performace (i.e., the response
time for an Internet request grew up to three times). The goal of the performance
analysis is to find a possible bottleneck in the system and suggest a solution.

Figure 10 illustrates a QN model to study the performance indices from the
client-side of an Internet access. In this example [52] a set of clients access the
Internet through a LAN and a Proxy server. If the Proxy server has the request
cached then it answers to the client through the LAN connection, otherwise the
request goes to router. Note that, in order to distinguish client answers from
client requests, since they both pass through the LAN connection, we use class
switching among the same chain. Therefore the model is a multiple-class and
single-chain QN. The QN is formed by M = 7 service centers, R = 2 classes,
C = 1 chains. We order the classes of the QN for all nodes, first for class 1 and
then for class 2, and we denote by p be the proxy cache hit probability, and
q = 1 − p, then the QN routing matrix is:
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P =

(1,1) 0 1 0 0 0 0 0 0 0 0 0 0 0 0
(2,1) 0 0 1 0 0 0 0 0 0 0 0 0 0 0
(3,1) 0 0 0 q 0 0 0 0 p 0 0 0 0 0
(4,1) 0 0 0 0 1 0 0 0 0 0 0 0 0 0
(5,1) 0 0 0 0 0 1 0 0 0 0 0 0 0 0
(6,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 1
(7,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(1,2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(2,2) 1 0 0 0 0 0 0 0 0 0 0 0 0 0
(3,2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(4,2) 0 0 0 0 0 0 0 0 1 0 0 0 0 0
(5,2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(6,2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(7,2) 0 0 0 0 0 0 0 0 0 0 1 0 0 0

System performance analysis based on the QN allows the analyst to derive:

– The effect of the Proxy server on the overall system performance. By relating
the cache hits and the response time with the cache size, one could decide
the Proxy server characteristic for a given amount of requests.

– The behavior of the client response time, given the system parameters, as
function of the number of requests.

– The effect of the outgoing and incoming link on the performance of the
network. This is usually determined by the company agreements with the
ISP.

Fig. 10. QN associated to the system described in Example 3

The complete definition of the QN model requires the specification of the
service center characteristics and traffic load. We assume that a workload char-
acterization method has been used to define the workload specification. Then we
have to define the service time distribution and its mean for each node and class
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Table 1. Glossary for queueing network symbols

Symbol Meaning
C Number of chain of the QN
C Set of the QN chains
E Set of couple (i, r) for each station i and each class r ∈ Ri

Ec Set of couple (i, r) for each station i and each class r ∈ Ri belonging to
chain c

e
(c)
i (Relative) Visit ratio to node i, chain c

e
(c)
ir (Relative) Visit ratio to node i, class r belonging to chain c

G Normalizing constant for closed product-form QN
gi(ni) Function associated to node i in BCMP theorem

K Vector (K(1) . . . K(C) in a closed QN

K(c) Number of customer in closed chain c
K Total number of customers in a closed QN
n An (aggregated) state of a QN
ni Occupancy vector at node i for chain

n
(c)
i Number of users belonging to chain c at node i of a QN

n(c)
i Occupancy vector at node i for classes of chain c

n
(c)
ir Number of customers of class r belonging to chain c at station i

ni Total number of users at station i
n Number of customers in the QN
M Number of stations in a QN
Ni Mean number of users at node i

N
(c)
i Mean number of users at node i belonging to chain c

P Routing probabilities matrix of the single-chain QN

P(c) Routing probabilities matrix of chain c of the QN

p
(c)
ij Probability of going to node j from node i for a customer of chain c in

single-class multiple-chain QNs

p
(c)
ir,js Probability of going to node j and class s from node i form class r for a

customer of chain c
R Number of classes of the QN
R Set of classes of the QN
Ri Mean response time at node i

R
(c)
i Mean response time at node i for chain c customers

R Set of classes of the QN
Ri Set of classes served by service center i

R(c)
i Set of classes served by service center i belonging to chain c

Ui Utilization of node i

U
(c)
i Utilization of node i, chain c

Xi Throughput of node i

X
(c)
i Throughput of node i for chain c customers

λ Total arrival rate to the QN

λ(c) Total arrival rate to open chain c of the QN

ρ
(c)
i ratio e

(c)
i /μ

(c)
i

ρ
(c)
ir ratio e

(c)
ir /μ

(c)
ir

π(n) Steady state probability of (aggregated) state n of a QN
Ω Set of service centers of the QN, Ω = {1, . . . , M}
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and the capacity function. This can be a non-trivial task. A similar argument
can be formulated for Proxy server station. On the other hand if we focus to
BCMP model, we should really pay attention to the service time distribution
only for those stations which have a FCFS discipline for which the only possible
distribution is the exponential, while for the other types of nodes we can use
Coxian distribution. This example and the QN model calibration are described
in [52,39].

The network can be studied with the help of software tools. We can point out
the bottlenecks by observing the utilization of the stations. For example, if the
utilization of the incoming link is high (U7 → 1) one can decide either a new a
agreement with the ISP in order to increase the incoming link bandwith, or to
improve the Proxy cache hit rate.
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Università di Torino,
Dipartimento di Informatica

Corso Svizzera, 185, 10149 Torino, Italy
balbo@di.unito.it

Abstract. Generalized Stochastic Petri Nets are a modelling formalism
that can be conveniently used for the analysis of complex models of Dis-
crete Event Dynamic Systems and for their performance and reliability
evaluation. The automatic construction of the probabilistic models that
underly the dynamic behaviours of these nets rely on a set of results that
derive from the theory of untimed Petri nets. The paper briefly surveys
some results of net theory together with the different approaches used
to introduce the concept of time in these models that are useful for the
definition of Stochastic Petri Nets and Generalized Stochastic Petri Nets.
Details on the solution techniques and on their computational aspects
are provided. A brief overview of advanced material is included at the
end of the paper to highlight the state of the art in this field and to give
pointers to relevant results published in the literature.

1 Introduction

Petri nets [47,1,46,48] are a powerful tool for the description and the analysis
of systems that exhibit concurrency, synchronization and conflicts. Timed Petri
nets [7,41] in which the basic model is augmented with time specifications are
commonly used to evaluate the performance and reliability of complex systems.

The pioneering work in the area of timed Petri nets was performed by Noe
and Nutt [45] and by Merlin and Faber [38]. In this early work, timed Petri nets
were viewed as a formalism for the description of the global behaviour of complex
structures. The nets were used to drive simulations so that their analysis was
conducted on the basis of observations made during the different runs.

Following these initial ideas, several proposals for incorporating timing infor-
mation into Petri net models appeared in the literature. Interpreting Petri nets
as state/event models, time is naturally associated with activities that induce
state changes, and hence with the delays incurred before firing transitions.

Stochastic Petri Nets (SPNs) were introduced in 1980 [49,43,40] as a formal-
ism for the description of Discrete Event Dynamic Systems (DEDS) whose dy-
namic behaviour could be represented by means of continuous-time homogeneous
Markov chains. The original SPN proposal assumed atomic firings, exponentially
distributed firing times, and a race execution policy.
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With the aim of extending the modelling power of stochastic Petri nets, Gen-
eralized Stochastic Petri Nets (GSPNs) were proposed in [4]. GSPNs include
two classes of transitions: exponentially distributed timed transitions, which are
used to model the random delays associated with the execution of activities,
and immediate transitions, which are devoted to the representation of logical ac-
tions that do not consume time. Immediate transitions permit the introduction
of branching probabilities that are independent of timing specifications. When
timed and immediate transitions are enabled in the same marking, immediate
transitions always fire first. In GSPNs the reachability set is also partitioned
in two sets. Tangible markings are those in which only timed transitions are
enabled whereas vanishing markings are those in which at least one immediate
transition is enabled. The time spent by a GSPN in a tangible state is exponen-
tially distributed with the parameter depending on the timed transitions that
are enabled in that marking; the time spent by a GSPN in a vanishing marking is
instead zero. Other generalizations of the basic SPN formalism that are related
to GSPNs, are the Extended Stochastic Petri Nets [29], the Stochastic Activity
Networks [39], and the Well Formed Stochastic Petri Nets that allows transitions
and tokens to be coloured [19]. GSPNs are among the SPN formalisms that are
most commonly used for the analysis of important problems and a considerable
effort has been devoted to their improvement since the time of their original
introduction.

To overcome the constraints introduced by the exponential distribution of fir-
ing of timed transitions, several further extentions have been introduced that
allow the construction of more complex underlying stochastic processes. Cru-
cial in the definition of these models is the characterization of the behaviour
of concurrent time transitions when one of them fires, as well as that of con-
flicting transitions that may become disabled at the solution of the conflict.
Special classes of GSPNs with non-exponential firing time distributions are the
Deterministic Stochastic Petri Nets (DSPN) that account for the presence of de-
terministic distributions and the Phase Type Stochastic Petri Nets (PHSPN)in
which the non-exponential distributions are limited to be of Phase Type.

In this paper, we discuss the relevance of Generalized Stochastic Petri Nets
by providing first an introduction to the basic results that set the ground for
the derivation of the stochastic processes corresponding to these models and for
the study of their solution methods. The balance of the paper is the following.
Section 2 describes the relevance of Petri nets for modelling Discrete Event
Dynamic Systems and introduces the basic classical properties of the formalism
that are needed later in the paper. Section 3 discusses the impact that transitions
of different priority levels have on the analysis of the model. Section 4 presents the
different possibilities that exist for introducing the concept of time in Petri net
models. Section 5 introduces the definition of Stochastic Petri nets and provides
the details for the construction of their underlying stochastic process. Section 6
discusses the characteristics of Generalized Stochastic Petri Nets and provides
details on some of the computational issues that are relevant for the application
of this modeling formalism. Section 7 concludes the paper with a few pointers to



Introduction to Generalized Stochastic Petri Nets 85

more advanced material. and with some general remarks on net modelling. The
paper has been written in the attempt of providing a uniform and self-contained
introduction to modelling with Generalized Stochastic Petri Nets. The discussion
introduces the basic terminology and operational rules of Petri nets for which a
comprehensive reference can be found in [42] where the reader will be able to
find a clear explanation of all the concepts that are only marginally addressed in
this work. Moreover, additional explanations of the topics discussed throughout
the paper can be found in [6,11,12,13].

2 Petri Net

Petri nets (PNs) are abstract formal models that have been developed in search
for natural, simple, and powerful methods for describing and analyzing the flow
of information and control in systems.

PNs have been originally proposed for the description and the analysis of
systems in which concurrency and conflicts play a special role. In PNs, the state
of the system derives from the combination of local state variables that allow a
direct representation of concurrency, causality, and independence. PNs are bi-
partite graphs represented as collections of places and transitions connected by
directed arcs. The graphical aspect of these models is very attractive for practical
modelling, since it helps in understanding how features of the real system are
conveyed in the model.

In order to keep PN models concise, high level PN have been introduced that
provide a form of abbreviation when repetition of similar sub-nets would make
the model large and difficult to understand. Always to make models easier to
understand, several extensions have been introduced in the basic PN formalism,
often with the disadvantage of reducing the analyzability of the model (e.g.,
inhibitor arcs give to the Petri net formalism the computation power of Turing
Machines, but their effect cannot be accounted for using the standard methods
for the structural analysis of the net).

The behaviour of PNs is independent of time and environment, and is char-
acterized by the non-deterministic firing of transitions that are simultaneously
enabled in a given marking. The connection of the formalism with reality is
provided in this case by interpretations that incorporate in the model external
constraints such as time considerations. Different extensions and different inter-
pretations yield different PN based formalisms sharing some basic principles.

2.1 Petri Net Models

PN models consist of two parts: a net structure and a marking. The net structure
is an inscribed bipartite directed graph, that represents the static part of the
system. The two types of nodes, places and transitions, are represented as circles
and boxes (or bars), respectively. Places correspond to state variables of the
system and transitions to actions that induce changes of states. Arcs connecting
places to transitions are called input arcs; output arcs connect instead transitions
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Fig. 1. Simple PN model of the classical Consumer/Producer problem

to places. Different types of inscriptions lead to various families of nets. When
the inscriptions are natural numbers associated with arcs, named weights or
multiplicities, Place/Transition (P/T) nets are obtained.

The marking is an assignment of tokens to places. The marking of a place
represents its state value.

The specification of a PN model thus requires the definition of the net and the
assignment of the initial marking. The dynamics of a system (i.e., its behaviour)
is given by the evolution of the marking that is driven by few simple rules:

– A transition occurs when the input state values fulfill some conditions ex-
pressed by the arc inscriptions.

– The occurrence of a transition changes the values of its adjacent state vari-
ables (markings of input and output places) according to arc inscriptions.

Figure 1 illustrates this graphically capability by modeling a pair of Producer-
/Consumer processes communicating via an intermediate buffer. The Producer
process is characterized by two phases: production and delivery represented by
the transitions end prod and fill. The delivering of a product can be done only if
the buffer has (at least) one position available. Free buffer positions are counted
by the tokens in place free buffers. If no free buffer positions are available, the
Producer waits in place send for one position to become free. Similarly, the
Consumer process, waits for a product to be available in the buffer. When the
product arrives the Consumer removes it from the buffer, thus making the po-
sition available for future deliveries, and enters a phase of local processing (the
token in place consume) that, when completed, makes the Consumer ready for
accepting the next product. This separation between the structure of the net
and its dynamics allows to reason on net based models at two different levels:
structural and behavioural. From the former we may derive ”fast” conclusions
on the possible behaviours of the modelled system. Pure behavioural reasonings
can be more conclusive, but they may require substantial computations, which in
certain cases may not even be feasible. Structural reasoning may be regarded as
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an abstraction of the behavioural one: for instance, instead of studying whether
a given system has a finite state space, we might address the problem of whether
the state space is finite for every possible initial marking; similarly, we could in-
vestigate whether there exists an initial marking that guarantees infinite activity,
rather than verifying if this is the case for a given initial state.

A marked PN is formally defined by the following tuple

PN = (P, T, F, W, m0) (1)

where
P = (p1, p2, ..., pP ) is the set of places,
T = (t1, t2, ..., tT ) is the set of transitions,
F ⊆ (P × T )

⋃
(T × P ) is the set of arcs,

W : F → IN is a weight function,
m0 = (m01, m02, ..., m0P ) is the initial marking.

As we have said, a marking m is an assignment of tokens to places and can thus
be represented by a vector with as many components as there are places in the
net: the i−th component representing the number of tokens assigned to place pi.
The dot notation is used for pre- and post-sets of nodes: •v = {u| < u, v >∈ F}
and v• = {u| < v, u >∈ F}. A pair comprising a place p and a transition t is
called a self-loop if p is both input and output of t (p ∈ •t

∧
p ∈ t• ). A net is

said to be pure if it has no self-loops. Pure nets are completely characterised by a
single matrix C that is called the incidence matrix of the net and that combines
the information provided by the flow relations and by the weight function.

C =
p
l
a
c
e
s

transitions

cpt

with cpt = c+
pt + c−pt = w(t, p) − w(p, t).

Table 1 contains the specifications of these formal components for the model
of Fig. 1.

2.2 System Dynamics

The graph and matrix characterizations that we have introduced in the previous
section represent the static component of a PN model. The dynamic evolution of
the PN marking is governed by transition occurrences (firings) which consume
and create tokens.

“Enabling” and “firing” rules are associated with transitions. Informally, we
can say that the enabling rule defines the conditions that allow a transition to
fire, and the firing rule specifies the change of state produced by the transition.
Both the enabling and the firing rules are specified in terms of arc characteristics.
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Table 1. Formal specification of the Producer/Consumer Petri Net model of Fig. 1

Set of places: P = (p1, p2, p3, p4, p5, p6)

Set of transitions: T = (a, b, c, d)

Incidence matrix: C =
1
2
3
4
5
6

a b c d

−1 +1
+1 −1

+1 −1
−1 +1

−1 +1
+1 −1

Initial marking: m0 = (1, 0, 0, 2, 0, 1)

A transition t is enabled if and only if each input place contains a number
of tokens greater or equal than given thresholds defined by the multiplicities of
arcs. The set of transitions enabled in marking m is indicated with E(m); the
number of simultaneous enablings of a transition ti in a given marking m is
called its enabling degree, and is denoted by ei(m).

When transition t fires, it deletes from each place in its input set •t as many
tokens as the multiplicity of the arc connecting that place to t, and adds to each
place in its output set t• as many tokens as the multiplicity of the arc connecting
t to that place.

Transition t, enabled in marking m, fires producing marking m′ such that
m′ = m + O(t) − I(t). The change of state due to the firing of transition t
is usually indicated in a compact way as m[t〉m′, and we say that m′ is directly
reachable from m.

The natural extension of the concept of transition firing, is the firing of a tran-
sition sequence (or execution sequence). A transition sequence1 σ = t(1), · · · , t(k)
can fire starting from marking m if and only if there exists a marking sequence2

Σ = m(1), m(2), · · · , m(k+1) with m = m(1) and m′ = m(k+1), such that
∀i = (1, · · · , k), m(i)[t(i)〉m(i+1). We denote by m[σ〉m′ the firing of a transition
sequence, and we say that m′ is reachable from m.

An important final consideration is that the enabling and firing rules for a
generic transition t are “local”: indeed, only the numbers of tokens in the input
of t, and the weights of the arcs connected to t need to be considered to establish

1 We write t(1) rather than t1 because we want to indicate the first transition in the
sequence, that may not be the one named t1.

2 Also in this case m(1) represents the first marking of the sequence rather than a
specific marking named m1 .
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whether t can fire and to compute the change of marking induced by its firing.
This justifies the assertion that the PN marking is intrinsically “distributed”.

A common way of describing the behaviour of a PN is by means of its se-
quential observation. A hypothetical observer is supposed to ”see” only single
events occurring at any point in time. The interleaving semantics of a net sys-
tem is given by all possible sequences of individual transition firings that could
be observed from the initial marking. If two transitions t1 and t2 are enabled
simultaneously, and the occurrence of one does not disable the other, in principle
they could occur at the same time, but the sequential observer will see either
t1 followed by t2 or viceversa. The name interleaving semantics comes from this
way of “seing” simultaneous occurrences.

An alternative way of envisioning the evolution of a net is that of allowing
the presence of multiple events. Multiple events may happen at any given time.
A step S is a multi-set of transitions that are enabled to concurrently fire in the
same marking. Firing a step (step semantics) amounts to withdraw the tokens
from all the input places of the transitions of the step and to deposit tokens in
all their output places. If a set of transitions can be fired in a step, this makes
explicit the fact that they need not occurring in a precise order. The occurrence
of a step can be denoted by m

S−→ m′, or m
σ−→ m′, if σ is an arbitrary

sequentialisation of S. In fact, every sequentialisation of the step is fireable so
that, in practice, the reachable markings can be computed considering individual
transition occurrences only.

Starting from the initial marking it is possible to compute the set of all mark-
ings reachable from it (the state space of the PN) and all the paths that the
system may follow to move from state to state.3 When there is no possibility of
confusion, we indicate with RS the set RS(m0). We also indicate with RS(m)
the set of markings reachable from a generic marking m. A marking m′ is said
to be a home state iff it can be reached from any m ∈ RS(m0). The RS contains
no information about the transition sequences fired to reach each marking.

This information is contained in the reachability graph (RG), where each node
represents a reachable state, and there is an arc from m1 to m2 if the marking
m2 is directly reachable from m1. If m1[t〉m2, the arc is labelled with t. Note
that more than one arc can connect two nodes (it is indeed possible for two
transitions to be enabled in the same marking and to produce the same state
change), so that the reachability graph is actually a multigraph.

For our practical example using the Producer/Consumer problem, the RS is
listed in Table 2, while the RG is depicted in Fig. 2.

The dynamic behaviour of PN models is characterized by three basic phe-
nomena that account for the fact that actions may occur simultaneously (con-
currency), some require that others occur first (causal dependency), and they
may occur only in alternative (conflicts).

3 Obviously this computation is feasible only in the case of models with finite state
spaces. In the rest of this paper, we assume that our models satisfy this condition,
except when it is stated differently. Proper generalisations are possible to deal with
infinite state spaces introducing the notion of ”covering tree” [42].
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Table 2. Reachability Set of the Producer/Consumer Petri Net model of Fig. 1

m0 = (1, 0, 0, 2, 0, 1) m1 = (0, 1, 0, 2, 0, 1)

m2 = (1, 0, 0, 2, 1, 0) m3 = (1, 0, 1, 1, 0, 1)

m4 = (0, 1, 0, 2, 1, 0) m5 = (0, 1, 1, 1, 0, 1)

m6 = (1, 0, 1, 1, 1, 0) m7 = (1, 0, 2, 0, 0, 1)

m8 = (0, 1, 1, 1, 1, 0) m9 = (0, 1, 2, 0, 0, 1)

m10 = (1, 0, 2, 0, 1, 0) m11 = (0, 1, 2, 0, 1, 0)

Concurrency - Two transitions are concurrent in a given marking if they can
occur in a step. Transitions ti and tj are concurrent in marking m, if m >

c(., ti)
T + c(., tj)

T . Notice that steps allow to express true concurrency. In the
case of interleaving semantics, concurrency of two (or more) actions t1 and t2
is represented by the possibility of performing them in any order, first t1 and
then t2, or viceversa. Nevertheless, the presence of all possible sequentialisations
of the actions does not imply that they are ”truly” concurrent, as the example
in Figure 3 illustrates: t1 and t2 can occur in any order, but they cannot occur
simultaneously, and in fact the step t1 + t2 is not enabled. The distinction is

1 0  0 2  0 1

0 1  0 2  0 1

1 0  1 1  0 1

0 1  1 1  0 1

1 0  2 0  0 1

0 1  2 0  0 1

1 0  0 2  1 0

0 1  0 2  1 0

1 0  1 1  1 0

0 1  1 1  1 0

1 0  2 0  1 0

0 1  2 0  1 0
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end_cons

end_cons

fill

fill

fill
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Fig. 2. Reachability Graph of the PN of Fig. 1
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especially important if transitions t1 and t2 were to be refined, i.e., if they were
to be replaced by subnets.

Causal dependence - Informally, causal dependencies are represented by the
partial ordering of actions induced by the flow relation. They correspond to
situations in which the firing of a given transition can happen only after the
occurrence of others in whatever order. The very basic net construct used to
model causal dependence is a place connecting two transitions.

Conflicts - Informally, we have a situation of conflict when, being several tran-
sitions enabled in the same marking, we must chose which one to fire and, by so
doing, we affect the enabling conditions of the others. The very basic net con-
struct used to model conflicts is a place with more than one output transition.
We can say that a transition tr is in conflict with transition ts in marking m iff
tr, ts ∈ E(m), m

ts−→ m′, and tr �∈ E(m′). Things are more complex when
we consider concurrent systems where the fact that two transitions are enabled
in a given marking does not necessarily means that we have to choose which
one to fire even if they share some input places. Conflicts can be antisymmetric
as we can see from the second example of Figure 4 where t′2 is in conflict with
t′1, but not the other way around, since the firing of t′1 does not decrease the
enabling degree of t′2.

Conflicts are called equal when all the transitions have the same input set.
An intriguing situation arises when different interleaved firings of the members

of a step may either yield conflict situations or not. This phenomenon is known
as confusion and is illustrated by the conflicts of Figure 5, where we can recognize
that ti and tk are a step such that, when tk fires no effects are felt by transition
ti, while the same is not true for transition tj .
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These few examples show how the concept of conflict in PNs is intrinsically
complex and crucial for their analysis. A comprehensive discussion of these
aspects is contained in [6,13] where the interested reader can find a formal def-
inition of the properties mentioned so far as well as additional examples useful
for their clarifications.

2.3 Properties of Petri Nets

Properties of PN models are characteristics that allow to assess the quality of a
given system in an objective manner. The following are among the most useful
properties that can be defined for PN models.

Reachability and reversibility — As defined before, a marking m′ is reach-
able from m if there exists a sequence σ such that m[σ〉m′.

Reachability can be used to answer questions concerning the possibility for
the modelled system of being in a given marking m. An important reachability
property is reversibility: a marked PN is said to be reversible if and only if
from any state reachable from m0, it is possible to come back to m0 itself.
Reversibility expresses the possibility for a PN to come back infinitely often to
its initial marking.

Liveness — A transition t is said to be live if and only if, for each marking
m reachable from m0, there exists a marking m′, reachable from m, such that
t ∈ E(m′). A PN is said to be live iff ∀tr ∈ T : tr is live. Liveness is a
property that depends on the initial marking. A transition that is not live is said
to be dead. For each dead transition t, it is possible to find a marking m such
that none of the markings in RS(m) enables t.

A very important consequence of liveness is that, if at least one transition is
live, then the PN cannot deadlock.4 Moreover, if all transitions are live, then
the corresponding PN contains no livelock.5 Liveness defines the possibility for
a transition to be enabled (and to fire) infinitely often.

4 A PN contains a deadlock if it can reach a state in which no transition can be fired.
5 A system is in a livelock condition when it enters a subset of its activities from which

it has no possibility of exiting.
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Boundedness — A place p of a PN is said to be k-bounded if and only if,
for each reachable marking m, the number of tokens in that place is less than
or equal to k. A PN is said to be k-bounded if and only if all places p ∈ P
are k-bounded. PNs that are 1-bounded are said to be safe. A very important
consequence of boundedness is that it implies the finiteness of the state space.
In particular, if a PN comprising N places is k-bounded, the number of states
cannot exceed (k + 1)N .

Being able to identify the properties of a PN model is an important step of its
analysis that can be supported by the use of linear algebraic techniques, derive
some basic properties of the net from the incidence matrix C.

The relevance of the incidence matrix is due to the fact that it allows the net
dynamics to be expressed by means of linear algebraic equations. In particular,
we can observe that for any marking m, the firing of a transition t enabled in
m produces the new marking

m′ = m + c(., t)T (2)

where m and m′ are row vectors, and c(., t) is the column vector of C corre-
sponding to transition t.

P-semiflows and P-invariant relations — A PN is strictly conservative (or strictly
invariant) if and only if the token’s count is constant for all the markings of the
net, i.e. iff

P∑

p=1

mp =
P∑

p=1

m0p, ∀m ∈ RS(m0) (3)

A PN is conservative (or P invariant) iff

∃ y = (y1, y2, ..., yP ) > 0 such that

P∑

p=1

ypmp =
P∑

p=1

ypm0p ∀m ∈ RS(m0) (4)

i.e., the weighted token count is invariant with respect to any marking of the
net. Taking into account that the incidence matrix Ccaptures the way in which
markings change on the occurrence of transitions firings, it is easy to show that
the vector y must satisfy the following equation:

CT · y = 0 (5)

The positive vectors y that satisfy Equation (5) are called the P-semiflows of the
PN. Note that P-semiflows are computed from the incidence matrix, and are thus
independent of any notion of initial marking. Markings are only instrumental for
their interpretation. In particular, the expression

∀t ∈ T :
∑

pi∈P

C(pi, t) · yi = 0 (6)

identifies an invariant relation called a place invariant, or simply P-invariant.
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As a consequence, if in a PN model all places are covered by P-semiflows6,
then for any reachable marking (and independently of the initial marking), the
maximum number of tokens in any place is finite (since the initial marking is
finite) and the net is said to be structurally bounded.

All P-semiflows of a PN can be obtained as linear combinations of the P-
semiflows that are elements of a minimal set PS. See [34,37,9,10] for P-semiflows
computation algorithms.

T-semiflows and T-invariant relations — Using similar arguments based on the
“cumulative change” of a marking produced by the execution of a transition
sequence, it is possible to show that the solutions of the following equation have
particular meanings as well:

C · x = 0 (7)

The vectors x, that are integer solutions of this matrix equation are called T-
semiflows of the net.

In general, the invariant relation (called transition invariant or T-invariant)
produced by a T-semiflow is the following:

∀p ∈ P :
∑

t∈T

C(p, t) · x(t) = 0 (8)

This invariant relation states that, by firing from marking m any transition
sequence σ whose transition count vector is a T-semiflow, the marking obtained
at the end of the transition sequence is equal to the starting one, provided that
σ can actually be fired from marking m (m[σ〉m). A net covered by T semiflows
may have home states. A net with home states is covered by T -semiflows. Like P-
semiflows, all T-semiflows can be obtained as linear combinations of the elements
of a minimal set TS.

Note again that the T-semiflows computation is independent of any notion
of marking, so that T-semiflows are identical for all PN models with the same
structure and different initial markings.

Observe the intrinsic difference between P- and T-semiflows. The fact that all
places in a PN are covered by P-semiflows is a sufficient condition for bound-
edness, whereas the existence of T-semiflows is only a necessary condition for a
PN model to be able to return to a starting state, because there is no guarantee
that a transition sequence with transition count vector equal to the T-semiflow
can actually be fired.

Properties of PNs that are obtained from the incidence matrix and from the
graph structure of the model, independently of the initial marking are identified
as structurals.

Properties of PNs that depend on the initial marking and are obtained from
the reachability graph (finite case) of the net or from the coverability tree (infinite
case) are identified as behaviourals.
6 A place p is covered by a P-semiflow if there is at least one vector y with a non null

entry for p.
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Applying these solution techniques to our practical example we obtain the
results summarized in Table 3.

Table 3. Semiflows and invariant properties of the Producer/Consumer Petri Net
model of Fig. 1

P-semiflows (Y C = 0):

y = (1, 1, 0, 0, 0, 0)
y = (0, 0, 1, 1, 0, 0)
y = (0, 0, 0, 0, 1, 1)

The net is covered by these P-semiflows and it is thus bounded.

T-semiflows (CX = 0):

x = (1, 1, 1, 1)

The net is covered by this T-semiflow and this suggests the presence of a
home state.

3 Petri Nets with Priorities and Inhibitor Arcs

In many practical situations it is useful having the possibility of assigning differ-
ent levels of priority to the transitions of a PN. Similarly it can be very important
having the capability of disabling the firing of a transition when a certain con-
dition holds (and thus the corresponding place is marked). In this paper, we
assume that the transitions satisfy a priority structure given once for all at the
moment of the definition of the net so that in each marking, the choice of the
transition to fire when several transitions are enabled is decided on the basis of
this additional “static” information.

A marked PN with transition priorities, arc multiplicities, and inhibitor arcs
can be formally defined by the following tuple:

PN = (P, T, Π(.), I(.), O(.), H(.), m0) (9)

– P is a set of places,
– T is a set of transitions,
– m0 is an initial marking,
– Π(.), I(.), O(.), H(.) are four functions defined on T .

The priority function Π(.) maps transitions into non-negative natural num-
bers representing their priority level. The input, output, and inhibition functions
I(.), O(.), and H(.) map transitions on “bags” of places. The former two are rep-
resented as directed arcs from places to transitions and viceversa; the inhibition
function is represented by circle-headed arcs. When greater than one, the mul-
tiplicity is written as a number next to the corresponding arc.
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As we just said, the priority definition that we assume in this paper is global:
the enabled transitions with a given priority k always fire before any other en-
abled transition with priority7 j < k.

This kind of priority definition can be used for two different modelling pur-
poses: (1) it allows to partition the transition set into classes representing actions
at different logical levels, e.g. actions that take time versus actions correspond-
ing to logical choices that occur instantaneously; (2) it gives the possibility of
specifying a deterministic conflict resolution criterion.

Enabling and firing — The firing rule in PNs with priority requires the following
new definitions:

– a transition tj is said to have concession in marking m if the numbers of
tokens in its input and inhibitor places verify the usual enabling conditions
for PN models without priority (m ≥ I(t))

∧
(m < H(t));

– a transition tj is said to be enabled in marking m if it has concession in the
same marking, and if no transition tk ∈ T of priority πk > πj exists that has
concession in m. As a consequence, two transitions may be simultaneously
enabled in a given marking only if they have the same priority level;

– a transition tj can fire only if it is enabled. The effect of transition firing is
identical to the case of PN models without priority.

Note that the presence of priority only restricts the set of enabled transitions
(and therefore the possibilities of firing) with respect to the same PN model
without priority. This implies that some properties are not influenced by the
addition of a priority structure, while others are changed in a well-determined
manner, as we shall see in a while.

3.1 Conflicts, Confusion and Priority

The notions of conflict and confusion are modified when a priority structure
is associated with transitions. It is thus very important to be able to clearly
identify by inspection of the net structure the sets of potentially conflicting
transitions.

Conflict — The notion of conflict is drastically influenced by the introduction of
a priority structure in PN models. The definition of conflict has to be modified
with respect to the new notion of concession. Instead, the definition of enabling
degree given in Section 2.2 remains unchanged for PN models with priority.
Observe that this implies that both, transitions that have concession and enabled
transitions, have enabling degree greater than zero. Conflict resolution causes the
enabling degree of some transition to be reduced, and this may happen both for
transitions with concession and for enabled ones.
7 Without loss of generality, we also assume that all lower priority levels are not empty:

∀tj ∈ T, πj > 0 =⇒ ∃tk ∈ T : πk = πj − 1
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The definition of transitions with different priority levels introduces a further
complication, since it destroys the locality of conflicts typical of PN models
without priority. This observation leads to the possibility of indirect conflicts.

P1 P2 P3 P4

P6

P7P5

tl

tk

tj

  2π

ti

  2π

th

  2π

Fig. 6. An example of indirect conflict

Let us consider the net in Fig. 6. Transitions tl and tk are both enabled in the
marking represented in the figure (since they both have concession, and there
is no higher priority transition which has concession), and apparently they are
not in conflict, since they do not share input or inhibition places. According to
the definition of concurrent transitions given in Section 2.2, one might conclude
that tl and tk are concurrent. However, the firing of tl enables a sequence of
transitions th, ti, and tj which have higher priority than tk, so that:

1. transition tk becomes disabled while keeping its concession;
2. transition th is certainly the next transition to fire;
3. the firing of tj removes the token from place p5, thus taking concession away

from transition tk.

This sequence of events is not interruptible after the firing of tl, due to the
priority structure, and eventually results in the disabling of tk through the firing
of higher priority transitions. We call this situation indirect conflict between tl
and tk.

The presence of indirect conflicts complicates the behaviour of PN with pri-
orities and makes their analysis more difficult. The local effect of choices, typ-
ical of PN models without priorities, is now replaced by a global feature that
could require expensive and estensive testing to identify the markings that can
be reached when several transitions have simultaneous concessions. In order to
confine this problem, it is possible to define an equivalence relation [6,13] that
partitions the set T into equivalence classes called extended conflict sets(ECS).

In any marking that enables transitions of the same ECS, a choice that may
have effect on the future evolution of the net must be made in order to decide
which, among these transitions, has to be fired next. Instead, two simultaneously
enabled transitions ti and tj that belong to different ECS can be fired in any
order and are thus concurrent.
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Confusion and priority — We introduced the concept of confusion in the frame-
work of PN models without priority. In this section we shall see how the intro-
duction of a priority structure can avoid confusion.

Confusion is an important notion because it highlights the fact that, in terms
of event ordering, the system behaviour is not completely defined: this under-
specification could be due either to a precise modelling choice or to a modelling
error. The introduction of a priority structure may force a deterministic ordering
of conflict resolutions that removes confusion.

For instance, let us consider again the example depicted in Fig. 6 assuming
first that transitions tl and tk have the same priority level of the others. A
confusion situation arises due to the fact that both sequences σ = tk, tl, th, tj
and σ′ = tl, th, ti, tk are fireable in a marking with tokens in places p1 and p5,
and that they involve different conflict resolutions. By making the priority level
of transitions th, ti, and tj higher than that of tl and tk we have removed the
confusion situation since any conflict between tj and tk is always solved in favour
of tj ; as a consequence the sequence σ′ = tl, th, ti, tk is no more fireable in m
and confusion is avoided.

Again the interested reader is referred to [6,13] for a deeper discussion of these
aspects and for their complete formalizations.

3.2 Properties of Petri Nets with Priority

In order to briefly discuss the impact that priorities have on the properties of PN
models, we must first divide them into two broad classes. Properties that hold for
all states in the state space are called safety or invariant properties; properties
that instead hold only for some state are called eventuality or progress proper-
ties). Examples of invariant properties are boundedness, and mutual exclusion.
Examples of eventuality properties are reachability (a given marking will be
eventually reached) and liveness (a transition will eventually become enabled).

Let Mπ be a PN with priority and let M be the underlying PN without
priority. Since the introduction of priority can only reduce the state space, all
the safety properties that can be shown to be true for M, surely hold also for Mπ.
Eventuality properties instead are not preserved in general by the introduction
of a priority structure.

It is interesting to observe that P and T-invariants describe properties that
continue to hold after the addition of a priority structure. The reason is that they
are computed only by taking into account the state change caused by transition
firing, without any assumption on the possibility for a transition of ever becoming
enabled. Boundedness is preserved by the introduction of a priority structure in
the sense that a bounded PN model remains bounded after the introduction
of a priority specification. This implies that the use of P-semiflows to study
the boundedness of a PN model can be applied to the model without priority
M associated with a priority PN model Mπ and if the former model is shown
to be structurally bounded, the conclusion can be extended to the latter one.
Observe, however, that an unbounded PN model may become bounded after the
specification of an appropriate priority structure.
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On the other hand, since enabling is more restricted than in the corresponding
PN model without priority, reachability is not preserved in general by the addi-
tion of a priority structure. However, a marking m′ is reachable from a marking
m in a PN model with priority only if it is reachable in the corresponding PN
model without priority.

Liveness is intimately related to the enabling and firing rules, hence it is
greatly influenced by a change in the priority specification: a live PN model may
become not live after the introduction of an inappropriate priority structure and,
viceversa, a PN model that is not live, may become live after the addition of a
proper priority structure.

4 Time in Petri Nets

In this Section we discuss the issues related to the introduction of temporal con-
cepts into PN models. Particular attention will be given to the temporal seman-
tics that is peculiar to stochastic PNs (SPNs) and generalized SPNs (GSPNs).

4.1 The Motivations for Timing

The PN models that were considered in the previous sections included no notion
of time. The concept of time was intentionally avoided in the original work by
C.A.Petri [47], because of the effect that timing may have on the behaviour of
PNs. In fact, the association of timing constraints with the activities represented
in PN models may prevent certain transitions from firing, thus destroying the
assumption that all possible behaviours of a real system are represented by the
structure of the PN.

Soon after their proposal, PNs were recognized as a convenient formalism
for the construction of models of real concurrent systems, where the concept
of time becomes of paramount importance when the interest is driven by real
applications whose efficiency is always a relevant design problem. Indeed, in areas
like hardware and computer architecture design, communication protocols, and
software system analysis, timing is crucial even to define the logical aspects of
the dynamic operations.

Time is thus introduced in PNs to model the interaction among several ac-
tivities considering their starting and completion instants. The introduction of
time specifications corresponds to an interpretation of the model by means of
the observation of the autonomous (untimed) model and the definition of a non-
autonomous model.

Different ways of incorporating timing information into PN models have been
proposed by many researchers.

The pioneering works in the area of timed PNs were performed by J.D.Noe
and G.J.Nutt [45], and by P.M.Merlin and D.J.Farber [38].

The different proposals are strongly influenced by the specific application
fields and it is possible to find time associated with tokens, places, arcs, and
transitions.
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4.2 Timed Transitions

Ideally, the introduction of time into PN models, should not modify the behav-
iour of the underlying untimed model in order to make possible the analysis
of the timed PN exploiting the properties of the basic model as well as the
available theoretical results. The addition of temporal specifications therefore
should not modify the unique and original way of expressing synchronization
and parallelism that is peculiar of PNs. This requirement often conflicts with
the user’s wishes for extensions of the basic PN formalism to allow a direct and
easy representation of specific phenomena of interest. A compromise must thus
be reached to accomodate these conflict requirements in the best possible way.
Time specifications are also used for reducing the non-determinism of the model
by means of rules based on time considerations. Finally, time extensions must
provide methods for the computation of performance indices.

Timed transitions represent the most common extension used by the authors
to add time to PN models. The firing of a transition in a PN model corresponds
to the event that changes the state of the real system. This change of state can
be due to one of two reasons: it may either results from the verification of some
logical condition in the system, or be induced by the completion of some activity.
Considering the second case, we note that transitions can be used to model
activities, so that transition enabling periods correspond to activity executions
and transition firings correspond to activity completions. Hence, time can be
naturally associated with transitions.

Different firing policies may be assumed: the three-phase firing assumes that
tokens are consumed from input places when the transition is enabled, then
the delay elapses, finally tokens are generated in output places; atomic firing
assumes instead that tokens remain in input places during the whole transition
delay; they are consumed from input places and generated in output places only
when the transition fires.

Timed transition Petri nets (TTPN) with atomic firing can preserve the be-
haviour of the underlying untimed model. It is thus possible to qualitatively
study TTPN with atomic firing exploiting the theory developed for untimed
(autonomous) PN (reachability set, invariants, etc.). In TTPN,timing specifica-
tions may affect the qualitative behaviour of the PN only when they describe
constant and interval firing delays.

We can explain the behaviour of a timed transition (whose graphical represen-
tation is usually a box or a thick bar and whose name usually starts with T ) by
assuming that it incorporates a timer. When the transition is enabled, its local
clock is set to an initial value. The timer is then decremented at constant speed,
and the transition fires when the timer reaches the value zero. The timer asso-
ciated with the transition can thus be used to model the duration of an activity
whose completion induces the state change that is represented by the change of
marking produced by the firing of T . The type of activity associated with the
transition, whose duration is measured by the timer, depends on the system that
we are modelling: it may correspond to the execution of a task by a processor,
or to the transmission of a message in a communication network, or to the work
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performed on a part by a machine tool in a manufacturing system. It is impor-
tant to note that the activity is assumed to be in progress while the transition is
enabled. This means that in the evolution of more complex nets, an interruption
of the activity may take place if the transition loses its enabling condition before
it can actually fire. The activity may be resumed later on, during the evolution
of the net in the case of a new enabling of the associated transition. This may
happen several times until the timer goes down to zero and the transition finally
fires.

It is possible to define a timed transition sequence or timed execution of a timed
PN system as a transition sequence (as defined in Section 2.2) augmented with a
set of nondecreasing real values describing the epochs of firing of each transition.
Such a timed transition sequence is denoted as follows:

[(τ(1), T(1)); · · · ; (τ(j), T(j)); · · ·] (10)

The time intervals [τ(i), τ(i+1)) between consecutive epochs represent the periods
during which the PN sojourns in marking m(i) which is then denoted as σ(i) =
τ(i+1) − τ(i). This sojourn time corresponds to a period in which the execution of
one or more activities is in progress and the state of the system does not change.

Focussing on markings and sojourn times, the timed transition sequence yields
also a timed marking sequence

[(σ(1), m(1)); · · · ; (σ(j), m(j)); · · ·] (11)

where σ(1) represents the time spent in marking m(1) that was reached after the
firing of transition T(1) and was left upon firing of transition T(2).

4.3 Immediate Transitions

As we noted before, not all the events that occur in a system correspond to
the end of time-consuming activities (or to activities that are considered time-
consuming at the level of detail at which the model is developed). For instance,
in the Producer/Consumer model of Fig. 1, the acquisition of a buffer position,
when it is available, requires a very small amount of time compared with the
execution of the task of producing the item. The same can be true when we
compare context switchings and task durations in the model of a multiprocessor
system described at a high level of abstraction, or bus arbitration compared
with bus use. In other cases, the state change induced by a specific event may be
quite complex, and thus difficult to obtain with the firing of a single transition.
Moreover, the state change can depend on the present state in a complex manner.
As a result, the correct evolution of the timed PN model can often be described
with subnets of transitions that consume no time and encode the logics or the
algorithm of state evolution induced by the complex event.

To cope with both these situations, it is convenient to introduce in timed PN,
a second type of transitions called immediate. Immediate transitions fire as soon
as they become enabled (with a null delay), thus acquiring a sort of precedence
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over timed transitions. With this assumption we are introducing in the model a
priority structure that will be explicitely addressed in the following sections.

In this paper, immediate transitions are depicted as thin bars whereas timed
transitions are depicted as boxes or thick bars. Following these considerations,
the Producer/Consumer model of Fig. 1 can now be depicted as in Fig. 7 where
the immediate transitions are used to represent both the delivery/ withdrawal
of items to/from the buffer.

p1

p2

Td

p5

p6

p3

p4

tctbTa

produce

consume

fill

remove

busy_buffers

free_buffers

end_prod

end_cons

send

receive

Fig. 7. The Producer/Consumer model with immediate transitions

4.4 Parallelism and Conflict

The introduction of temporal specifications in PN models must not reduce the
modelling capabilities with respect to the untimed case. Let us verify this con-
dition as far as parallelism and conflict resolution are considered.

Pure parallelism can be modelled by two transitions that are independently
enabled in the same marking. The evolution of the two activities is measured
by the decrement of the clocks associated with the two transitions. When one of
the timers reaches zero, the transition fires and a new marking is produced. In
the new marking, the other transition is still enabled and its timer can either be
reset or not depending on the different ways of managing this timer that will be
discussed in the next Section.

Consider now transitions T1 and T2 in Fig. 8. In this case, the two transitions
are in free-choice conflict. In untimed PN systems, the choice of which of the two
transitions to fire is completely nondeterministic. When more than one timed
transition with atomic firing is enabled, the behaviour is similar, but for the
choice two alternative selection rules are possible:

– preselection - the enabled transition that will fire is chosen when the mark-
ing is entered, according to some metric (e.g., priority),

– race- the enabled transition that will fire is the one whose firing delay is
minimum.
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p1

T2T1 μλ

Fig. 8. A simple example of a free-choice conflict among timed transitions

In TTPNs the race policy it usually adopted and this is the alternative that
will be used in the rest of this paper when dealing with timed transitions.

Considering now that the presence of immediate transitions introduces a pri-
ority structure, we must observe that timed transitions are assumed to be all
associated with the lowest possible level of priority. Immediate transitions can
instead be characterized by different (higher) priority levels and the concept of
concession discussed in Section 3 must be used when resolving conflicts.

When a conflict involves transitions of different priority levels, the choice is
deterministically made in favour of the higher priority ones, which are also those
who are enabled. When several immediate transitions are enabled in the same
marking the choice of the transition that will fire is made using a mechanisms
that consists in the association of a discrete probability distribution function
with the set of conflicting transitions, so that the conflict among immediate
transitions is randomly solved.

The priority that immediate transitions have over timed one can be used to
separate conflict resolution from timing specification of transitions. The conflict
can be transferred to a barrier of conflicting immediate transitions, followed by
a set of timed transitions. The extensive use of this technique can eliminate
from a net all conflicts among timed transitions that are simultaneously enabled
in a given marking. If this mechanism is consistently used to prevent timed
transitions from entering into conflict situations, a preselection policy of the
(timed) transition to fire next is said to be used.

Conflicts comprising timed and immediate transitions have an important use
in timed PNs, since they allow the interruption (or preemption) of ongoing ac-
tivities, when some special situation occurs. Consider, for example, the subnet
in Fig. 9. A token in place p1 starts the activity modelled by timed transition T1.
If a token arrives in p2 before the firing of T1, immediate transition t2 becomes
enabled and (due to its higher priority) fires, thus disabling timed transition T1.

The presence of immediate transitions induces a distinction among markings.
Markings in which no immediate transitions are enabled are called tangible,

P1 P2

P3 P4

T1 t2

Fig. 9. Interrupting an activity with an immediate transition
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whereas markings enabling at least one immediate transition are said to be
vanishing. From this observation follows that TTPNs spend a positive amount
of time in tangible markings, and a null time in vanishing markings.

4.5 Memory

An important issue that arises at every transition firing, when timed transitions
are used in a model, is how to manage the timers of all the transitions that do
not fire.

From the modeling point of view, the different policies that can be adopted to
manage these situations link the past history of the system to its future evolution
considering various ways of retaining memory of the time already spent in pe-
forming the activities associated with all the transitions. The question concerns
the memory policy of transitions, and defines how to set the transition timers
when a state change occurs, possibly modifying the enabling of transitions. Two
basic mechanisms can be considered for a timed transition at each state change.

– Continue. The timer associated with the transition holds the present value
and will continue later on its count-down.

– Restart. The timer associated with the transition is restarted, i.e., its present
value is discarded and a new value will be generated when needed.

To model the different behaviours arising in real systems, different ways of keep-
ing track of the past are possible by associating different continue or restart
mechanisms with timed transitions. We discuss here three alternatives:

– Resampling. At each and every transition firing, the timers of all the timed
transitions are discarded (restart mechanism). No memory of the past is
recorded. After discarding all the timers, new values of the timers are set for
the transitions that are enabled in the new marking.

– Enabling memory. At each transition firing, the timers of all the timed
transitions that are disabled are discarted (resampling mechanism) whereas
the timers of all the timed transitions that are not disabled hold their present
value (continue mechanism). The memory of the past is recorded with an en-
abling memory variable associated with each transition. The enabling mem-
ory variable accounts for the work performed by the activity associated with
the transition since the last instant of time its timer was set. In other words,
the enabling memory variable measures the enabling time of the transition
since the last instant of time it became enabled.

– Age memory. At each transition firing, the timers of all the timed tran-
sitions hold their present values (continue mechanism). The memory of the
past is recorded with an age memory variable associated with each timed
transition. The age memory variable accounts for the work performed by
the activity associated with the transition since the time of its last firing.
In other words, the age memory variable measures the cumulative enabling
time of the transition since the last instant of time when it fired.
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These three memory policies can be used in timed PN models for different
modelling purposes. In the first case (resampling) the work performed by activ-
ities associated with transitions that do not fire is lost. This may be adequate
for modelling, for example, competing activities of the type one may find in the
case of the parallel execution of hypothesis tests. The process that terminates
first is the one that verified the test; those hypotheses whose verification was
not completed become useless, and the corresponding computations need not be
saved. The practical and explicit use of this policy is very limited, but it must be
considered because of its theoretical importance in the case of SPNs and GSPNs.

The other two policies are of greater importance from the application view-
point. They can coexist within the same TTPN model, because of the different
semantics that can be assigned to the different transitions of the model. For a
detailed discussion on this topic the reader is referred to [2,26].

4.6 Multiple Enabling

Special attention must be paid to the timing semantics in the case of timed transi-
tions with enabling degree larger than one. Different semantics are possible when
several tokens are present in the input places of a transition. Borrowing from
queueing network terminology, we can consider the following different situations:

1. Single-server semantics - a firing delay is set when the transition is first
enabled, and new delays are generated upon transition firing if the transition
is still enabled in the new marking.

2. Infinite-server semantics - every enabling set of tokens is processed as
soon as it forms in the input places of the (timed) transition. Its correspond-
ing firing delay is generated at this time, and the timers associated with all
these enabling sets run down to zero in parallel.

3. Multiple-server semantics - enabling sets of tokens are processed as soon
as they form in the input places of the transition up to a maximum degree
of parallelism (say K). For larger values of the enabling degree, the timers
associated with new enabling sets of tokens are set only when the number
of concurrently running timers decreases below the value of K.

The introduction of these different firing semantics permits the definition of
PN models that are graphically simple without losing any of the characteristics
that allow the analysis of their underlying behaviours.

5 Stochastic Petri Nets

Timed Petri nets in which the firing delays are specified by random variables
yeld to probabilistic models. The execution of a timed PN model of this type
corresponds to a realization of a stochastic point process.

The use of negative-exponential distributions for the definition of temporal
specifications is particularly attractive because TTPNs in which all the transi-
tion delays are exponentially distributed can be mapped onto continuous-time
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Markov chains (CTMC). In this case the memoryless property of the negative-
exponential distribution makes unnecessary the distinction between the distri-
bution of the delay itself, and the distribution of the remaining delay after a
change of state, as we shall see in a while.

Stochastic Petri Nets (SPNs) are TTPNs with atomic firing and in which
transition firing delays are negative-exponentially distributed random variables:
each transition Ti is associated with a random firing delay whose probability
density function is a negative-exponential with rate wi.

SPNs were originally defined in [31,40] Formally, a SPN model is a 6-tuple

SPN = (P, T, I(.), O(.), W (.), m0) (12)

P , T , I(.), O(.), and m0 have the usual meanings so that the underlying PN
model constitutes the structural component of a SPN model.

The function W allows the definition of the stochastic component of a SPN
model mapping transitions into real positive functions of the SPN marking. Thus,
for any transition T it is necessary to specify a function W (T, m). In the case
of marking independency, the simpler notation wk is normally used to indicate
W (Tk), for any transition Tk ∈ T . The quantity W (Tk, m) (or wk) is called the
“rate” of transition Tk in marking m.

In this section we show how SPNs can be converted into Markov chains and
how their analysis can be performed to compute interesting performance indices.
The construction of the Markov chain associated with a SPN is described first,
to set the ground for the subsequent derivation of the probabilistic model asso-
ciated with a GSPN. Only SPNs with finite state space are considered, as they
yield Markov chains that are solvable with standard numerical techniques. More
advanced solution methods are discussed in [32,44,14].

5.1 The Stochastic Process Associated with a SPN

We have already discussed the motivations behind the work of several authors
that led to the proposal of Timed and Stochastic Petri Nets. Due to the mem-
oryless property of the negative-exponential distribution of firing delays, it is
relatively easy to show [31,40] that SPNs are isomorphic to CTMCs. In par-
ticular, a k-bounded SPN system can be shown to be isomorphic to a finite
CTMC.

Finite State Machine and Marked Graph SPNs - This can be easily
seen when the structure of the SPN is that of both a finite state machine (no
transition has more than one input and one output place) and of a marked graph
(no place has more than one input and one output transition) with only one
token in its initial marking (see Fig. 10). In this case each place of the net
univocally corresponds to a state of the model and the position of the token
at a given instant of time identifies the state of the model at that same time.
Each place of the net maps into a state of the corresponding Continuous Time
Stochastic Process and each transition maps into an arc annotated by the rate
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λ μ γ

p1 p2 p3T1 T2 T3

Fig. 10. A simple Stochastic Petri net of the MG type

of the corresponding firing time distribution. Moreover, if the firing times of the
transitions have negative-exponential distributions and if the structure of the net
is that of a marked graph, the time spent in each place by the net is completely
identified by the characteristics of the only transition that may withdraw the
token from that place. The sojourn time in that place has a negative exponential
distribution and thus the Stochastic Process associated with the net is a CTMC
(see Fig. 11). When the net has the structure of a finite state machine (e.g, the
model of Fig. 12), conflicts among simultaneously enabled transitions arise since
several transitions may share the same input place. Since we are assuming that
all the activities have negative-exponentially distributed durations, the CTMC
corresponding to the SPN is obtained from the net in a straightforward manner.
Again each place of the SPN maps into a state of the corresponding CTMC
and each transition of the SPN maps into an arc of the CTMC annotated with
the rate of the corresponding firing time distribution. Also in this case the time
spent by the net in each place has a negative-exponential distribution, but its
rate is given by the sum of the firing rates of all the transitions that withdraw
tokens from that place (see Fig. 13).

More complex situations arise, even in these simple cases, when several tokens
are allowed in the initial marking. Consider the case of the net in Fig. 14 and
its RG represented in Fig. 15. Assume that all the transitions of the net operate
according to a ”single-server” semantics and that, upon firing of a multiply
enabled transition, tokens are withdrawn from its input places selecting them
at random (see Section 4.6). Starting from the initial marking (2, 0, 0, 0), we
get to marking (1, 1, 0, 0) when the only enabled transition (T1) fires. In that
precise moment, the two system activities represented by transitions T1 and T2

1  0  0 0  1  0 0  0  1

λ μ

γ

Fig. 11. Reachability Graph and Markov Chain of the net of fig. 10
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Fig. 12. A simple Stochastic Petri net of the FSM type

start and their durations are chosen. Since these two durations are samples of
continuous random variables whose distributions do not have discontinuities, the
probability of chosing two identical values is null and thus the net leaves marking
(1, 1, 0, 0) when the fastest of the two transitions fires. Suppose that this ”race”
is won by transition T2. When the net enters marking (1, 0, 1, 0), an interesting
situation occurs. We have again two possible ways out from this last marking,
corresponding to the (possible) firings of transitions T1 and T3 (as illustrated
by the RG of Fig. 15). Looking at this situation more in detail, we observe that
the ”race” is now between the completion time of the activity associated with
transition T1 - that started already when the net was in the previous marking
(1, 1, 0, 0) - and that of the activity corresponding to T3 that started just at the
entering of the net in this last marking. Because of the ”memoryless” property
of the negative-exponential distributions of the firing times of all the transitions
involved in this last race (as well as in all the other races that can be envisioned
during the evolution of the net), the distribution of the remaining firing time

1  0  0  0 0  1  0  0

0  0  1  0

0  0  0  1
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σ

Fig. 13. Reachability Graph and Markov Chain of the net of fig. 12
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Fig. 14. A simple Stochastic Petri net with multiple tokens of the
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Fig. 15. Reachability Graph of the net of fig. 14

of transition T1 is identical to that of its total firing time and the probability
that transition T1 has of winning the race is determined on the basis of the rates
of its (total) firing time distribution as well as of that of transition T3. This is
the argument that allows to identify the stochastic process that underlies the
behaviour of this net as a Markov chain. Also in this case the state transition
diagram is still isomorphic to the RG of the PN with the state transition arcs
annotated with the firing rates of the corresponding transitions as indicated in
Fig. 16. Notice that transitions T1 and T3 are concurrent and do not interfere
in their firing processes. This is perfectly captured by the RG of the net where,
from marking (1, 0, 1, 0) it is possible to reach marking (0, 1, 0, 1) firing the two
transitions T1 and T3 in different orders (via intermediate markings (0, 1, 1, 0) or
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Fig. 16. Markov Chain deriving from the net of fig. 14

(1, 0, 0, 1), respectively). Instead, by labeling with the corresponding transition
rates the arcs of the state transition diagram of Fig. 16, we implicitly say that,
every time a state changes, the activities that turn out to be active in the new
state are started anew.

Formally, the Markov property applied to the stochastic process {X(t), t ≥ 0}
representing the execution of the SPN says that

Pr{Xn+1 = mj , σj > t|(Xn = mi, σi = u), (Xn−1 = mk, σk = v), ...}
= Pr{Xn+1 = mj , σj > t|Xn = mi} (13)

where Xn = X(τ(n)+), n ≥ 0 is the marking reached by the net immediately
after the firing of the n − th transition and σj is the sojourn time in marking
mbj as defined for the timed marking sequence introduced in Section 4.2.

The interpretation of this expression in terms of the behaviours of the tran-
sitions enabled in a given marking and whose firings are the actual cause of the
timed execution of the net, requires some additional notation and definitions.
Recalling from Section 2.2 that E(m) represents the set of transitions enabled
in marking m, we can observe that E(m) = NE(m) ∪ OE(m), where NE(m)
represents the set of transitions that became enabled when the net entered mark-
ing m (and were not enabled in the previous marking), and OE(m) is instead
the set of transitions that were enabled in the previous marking and are still
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enabled in marking m. Denoting with δk, k ∈ E(mj) the firing times (or firing
delays) of all the transitions enabled in marking mj , we can observe that

Pr{σj > t} = Pr
{ ⋂

k∈E(mj)
δk > t

}
(14)

so that,

Pr{Xn+1 = mj , σj > t|Xn = mi, σi > u} =

=
Pr{Xn+1 = mj , σj > t, σi > u|Xn = mi}

Pr{σi > u}

=
Pr

{
Xn+1 = mj ,

( ⋂

k∈NE(mj)
δk > t

)
,
( ⋂

h∈OE(mj )
δh > (t + u)

)
|Xn = mi

}

Pr
{ ⋂

h∈OE(mj )
δh > u

}

= Pr
{
Xn+1 = mj ,

( ⋂

k∈E(mj)
δk > t

)
|Xn = mi

}
(15)

where the last step is made possible by the memory-less property of the negative
exponential distribution. From this result, we can conclude that indeed in these
cases, whenever an activity started in a previous marking and continues through
several (intermediate) markings up to the current one, its duration before en-
tering the current marking is irrelevant for any probabilistic evaluation of the
future execution of the net.

This result is the basis for the observation that in SPN with negative-
exponential distributions of the transition’s firing times, the model behaves as
if the corresponding system followed a global resampling policy so that all the
activities start anew every time the system enters a state that enables them
(even if they were already enabled in the previous one).

The above discussion of the execution of the SPN of Fig. 14 purposely disre-
garded the situation in which several tokens were in the input place of a single
transition. However, even the very simple case of two tokens waiting in the only
input place of a transition raises another set of interesting questions that must
be addressed in developing the corresponding probabilistic model. The first has
to do with the speed at which the transition withdraws the tokens from its input
place in this situation and thus with the service policies discussed in Section 4.6.
In the most general case of assuming a form of load dependency in which the
firing rate of the transition is a function of its enabling degree, an additional
specification must be introduced in the model to define the load dependency
function associated with each transition. A second question refers to the selec-
tion of the token that is removed from the input place upon the firing of the
transition. From a “classical” PN point of view, this selection policy is inessen-
tial since tokens do not carry any identity. In many applications however, it is
convenient to associate a physical meaning with the tokens (e.g., customers),
so that questions on their flow through the net can be answered. In these sit-
uations, when several tokens are simultaneously present in the input place of a
transition, if this is assumed to operate with a single server policy, a question on
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p1 p2T1 T2

Fig. 17. A simple SPN with two timed transitions

the queueing policy applied to these tokens becomes interesting. As we already
notice before, the most natural policy is a random order. When the firing times
are exponentially distributed and when the performance figures of interest are
only related to the moments of the number of tokens in the input place of a tran-
sition, it is possible to show that many queueing policies yield the same results
(e.g., random, FIFO, LCFS). It must however be observed that in other cases
the choice of the queueing policy may be important and that policies different
from the random one must be explicitly implemented through appropriate net
constructions.

Considering as an example the net of Fig. 17, we can construct the CTMCs
of Fig. 18 (a) and (b) dependi9ng on whether we assume that the transitions
perform with single-server or multiple-server semantics

SPNs with general structure - Drawing from the discussion done so far, it
is possible to conclude that the CTMC associated with a given SPN system is
obtained by applying the following simple rules:

1. The CTMC state space S = {si} corresponds to the reachability set
RS(m0) of the PN associated with the SPN (mi ↔ si).

2. The transition rate from state si (corresponding to marking mi) to state sj

(mj) is obtained as the sum of the firing rates of the transitions that are
enabled in mi and whose firings generate marking mj .
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(a) (b)

Fig. 18. Markov Chain deriving from the net of fig. 17
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Based on these simple rules, it is possible to devise algorithms for the auto-
matic construction of the infinitesimal generator (also called the state transition
rate matrix) of the isomorphic CTMC, starting from the SPN description.

Assuming that all the transitions of the net operate with a single-server se-
mantics and marking-independent speeds, and denoting with Q this matrix, with
wk the firing rate of Tk, and with Ej(mi) = {h : Th ∈ E(mi) ∧ mi[Th〉mj} the
set of transitions whose firings bring the net from marking mi to marking mj ,
the components of the infinitesimal generator are:

qij =

⎧
⎨

⎩

∑
Tk∈Ej

(mi) wk i �= j

−qi i = j

(16)

where

qi =
∑

Tk∈E(mi)

wk (17)

Let π(mi, τ) be the probability that the SPN is in marking mi at time τ . The
Chapman-Kolmogorov equations for the CTMC associated with an SPN are
specified by:

dπ(si, τ)
dτ

=
∑

sk

π(sk, τ)qkj (18)

In matrix notation this becomes
dπ(τ)

dτ
= π(τ)Q, (19)

whose solution can be formally written as

π(τ) = π(0)eQτ (20)

where π(0) is the probability of the initial distribution (in our case we usually
have πi(0) = 1 if mi = m0 and πi(0) = 0 otherwise) and eQτ is the matrix
exponentiation formally defined by

eQτ =
∞∑

k=0

(Qτ)k

k!
(21)

In this paper we consider only SPNs originating homogeneous and ergodic
CTMC. A k-bounded SPN system is said to be ergodic if it generates an ergodic
CTMC; it is possible to show that a SPN system is ergodic if m0, the initial
marking, is a home state (see Section 2.2).

If the SPN is ergodic, the steady-state probability distribution on its markings
exists and is defined as the limit π = limτ→∞ π(τ). Its value can be computed
solving the usual system of linear equations:

⎧
⎨

⎩

π Q = 0

π 1T = 1
(22)



114 G. Balbo

where 0 is a vector of the same size as π and with all its components equal to
zero and 1T is a vector (again of the same size as π) with all its components
equal to one, used to enforce the normalization condition.

To keep the notation simple, in the rest of the paper we will use πi(τ) and πi

instead of π(mi, τ) and π(mi) to denote the transient and steady state proba-
bilities of marking mi. As we already observed, the Markovian property of this
model ensures that the sojourn time in the i − th marking is exponentially dis-
tributed with rate qi. The pdf of the sojourn time in a marking corresponds to
the pdf of the minimum among the firing times of the transitions enabled in
the same marking; it thus follows that the probability that a given transition
Tk ∈ E(mi) fires (first) in marking mi can be expressed as follows:

P{Tk|mi} =
wk

qi
. (23)

Using the same argument, we can observe that the average sojourn time in
marking mi is given by the following expression:

SJi = E[σi] =
1
qi

. (24)

SPN performance indices - The steady-state distribution π is the basis for a
quantitative evaluation of the behaviour of the SPN that is expressed in terms of
performance indices. These results can be computed using a unifying approach
in which proper index functions (also called reward functions) are defined over
the markings of the SPN and an average reward is derived using the steady-state
probability distribution of the SPN. Assuming that r(m) represents a reward
function, the average reward can be computed using the following weighted sum:

E[R] =
∑

mi∈RS(m0)

r(mi) πi (25)

Different interpretations of the reward function can be used to compute different
performance indices. In particular, assuming r(m) = n iff m(pj) = n, Eq.
25 yields the expected value of the number of tokens in place pj ; instead, when
r(m) = wj iff Tj ∈ E(m) Eq. 25 provides the mean number of firings per unit
of time of transition Tj, i.e. the throughput of transition Tj.

For a detailed discussion of the reward method for computing the performance
indices of SPN models, the interested reader is referred to [27]

6 Generalized Stochastic Petri Nets

Several reasons suggest the introduction of the possibility of using immediate
transitions into PN models together with timed transitions. As we observed in
Section 4.3 the firing of a transition may describe either the completion of a
time-consuming activity, or the verification of a logical condition. It is thus nat-
ural to use timed transitions in the former case, and immediate transitions in
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the latter. Moreover, when all transitions are timed the temporal specification
of the model must in some cases consider at one time both the timing and the
probability inherent in a choice. It seems natural to provide a way to separate
the two aspects in the modelling paradigm, so as to simplify the model specifica-
tion. Furthermore, by allowing the use of immediate transitions, some important
benefits can be obtained in the model solution. They will be described in detail
later in this section; we only mention here the fact that the use of immedi-
ate transitions may significantly reduce the cardinality of the reachability set,
and may eliminate the problems due to the presence of timed transitions with
rates that differ by orders of magnitude. The latter situation results in so-called
“stiff” stochastic processes, that are quite difficult to handle from a numerical
viewpoint. On the other hand, the introduction of immediate transitions in an
SPN does not raise any significant complexity in the analysis, as we shall see
soon.

SPN models in which immediate transitions coexist with timed transitions
with race policy and random firing delays with negative exponential distributions
are known by the name of Generalized SPNs (GSPNs) [4].

Immediate transitions are fired with priority over timed transitions. Thus, if
timing is disregarded, the resulting PN model comprises transitions at different
priority levels. The adoption of the race policy may seem to imply the priority
of immediate over timed transitions; this is indeed the case in most situations,
but the explicit use of priority simplifies the development of the theory, as we
shall discuss in a while.

Recall that markings in the reachability set can be classified as tangible or
vanishing. A marking in which no transition is enabled is tangible (but is also
an absorbing state - a deadlock - for the execution of the net). The time spent
in any vanishing marking is deterministically equal to zero, while the time spent
in tangible markings is positive with probability one.

To describe the GSPN dynamics, we separately observe the timed and the
immediate behaviour, hence referring to tangible and vanishing markings, re-
spectively. Let us start with the timed dynamics (hence with tangible markings);
this is identical to the dynamics in SPNs, that was described before. We can as-
sume that each timed transition has a timer. The timer is set to a value that is
sampled from the negative exponential distribution associated with the transi-
tion, when the transition becomes enabled for the first time after firing. During
all time intervals in which the transition is enabled, the timer is decremented.
Transitions fire when their timer reading goes to zero.

With this interpretation, each timed transition can be used to model the
execution of some activity in a distributed environment; all enabled activities
execute in parallel (unless otherwise specified by the PN structure) until they
complete. At completion time, activities induce a change of state, that is limited
to their local environment. No special mechanism is necessary for the resolution
of timed conflicts: the temporal information provides a metric that allows the
conflict resolution.
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In the case of vanishing markings, the GSPN dynamics consumes no time:
everything takes place instantaneously. This means that if only one immediate
transition is enabled, it fires and the following marking is produced. If several im-
mediate transitions are enabled, a metric is necessary to identify which transition
will produce the marking modification. Actually, the selection of the transition
to be fired is relevant only in those cases in which a conflict must be resolved. If
the enabled transitions are concurrent, they can be fired in any order. For this
reason, GSPNs associate weights with immediate transitions belonging to the
same conflict set.

For the time being, let us consider only free-choice conflict sets; the case of
non-free-choice conflict sets will be considered later on, but we can anticipate
at this point that it can be tackled as the free-choice case by exploiting the
definition of ECS introduced in [18,6] and briefly discussed in Section 3.1. The
transition weights are used to compute the firing probabilities of the simulta-
neously enabled transitions comprised within the conflict set. The restriction to
free-choice conflict sets guarantees that transitions belonging to different conflict
sets cannot disable each other, so that the selection among transitions belonging
to different conflict sets is not necessary.

We can thus observe a difference between the specification of the temporal
information for timed transitions and the specification of weights for immedi-
ate transitions. The temporal information associated with a timed transition
depends only on the characteristics of the activity modelled by the transition
and thus does not require. information on the other (possibly conflicting) timed
transitions, or on their temporal characteristics. On the contrary, for immediate
transitions, the specification of weights must be performed considering at one
time all transitions belonging to the same conflict set. Indeed, weights are nor-
malized to produce probabilities by considering all enabled transitions within a
conflict set. This is not a modelling difficulty when free-choice conflicts among
immediate transitions are considered. However, when employing non-free-choice
conflicts of immediate transitions, the user has the possibility of describing a
much wider range of dynamic behaviours in vanishing markings, but he must be
able to correctly associate the immediate transitions with the metrics that define
their probabilistic conflict resolution. In principle, this requires the knowledge of
the sets of simultaneously enabled non-concurrent immediate transitions in any
vanishing marking. This knowledge may not be easy to obtain without the gen-
eration of the reachability set, which is however very costly in most cases. The
definition of ECSs was introduced to provide the user with the information on
the sets of transitions that may be in effective conflict (either direct or indirect),
thus helping in the definition of weights.

6.1 The Definition of a GSPN Model

GSPNs were originally defined in [4]. The definition was later improved to better
exploit the structural properties of the modelling paradigm [3]. The definition
we present here is based on the version contained in this second proposal.
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Formally, a GSPN model is an 8-tuple

GSPN = (P, T, Π(.), I(.), O(.), H(.), W (.), m0) (26)

where PNπ = (P, T, Π(.), I(.), O(.), H(.), m0) is the marked PN with priority
underlying the GSPN and W (.) is a function defined on the set of transitions
Timed transitions are associated with priority zero, whereas all other priority
levels are reserved for immediate transitions.

The underlying PN model constitutes the structural component of a GSPN
model, and it must be confusion-free (see Section 3.1) at priority levels greater
than zero (i.e., in subnets of immediate transitions).

The function W allows the definition of the stochastic component of a GSPN
model as in the case of SPNs. The quantity W (tk, m) (or wk) is called the “rate”
of transition tk in marking m if tk is timed, and the “weight” of transition tk in
marking M if tk is immediate.

Referring again to the Producer/Consumer case of Fig. 7, Table 4 provides
the formal specification of the model.

Since in any marking all firing delays of timed transitions have a negative
exponential distribution, and all the delays are independent random variables,
the sojourn time in a tangible marking is a random variable with a negative
exponential distribution whose rate is the sum of the rates of all enabled timed

Table 4. Formal specification of the Producer/Consumer GSPN of Fig. 7

Set of places: P = (p1, p2, p3, p4, p5, p6)

Set of transitions: T = (Ta, tb, tc, Td)

Priorities: Π = (π0, π1, π1, π0)

Weights: W = (α, 1, 1, β)

Incidence matrix: C =
1
2
3
4
5
6

a b c d

−1 +1
+1 −1

+1 −1
−1 +1

−1 +1
+1 −1

Initial marking: m0 = (1, 0, 0, 2, 0, 1)
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p1
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Fig. 19. A conflict set comprising a timed and an immediate transition

transitions in that marking. In the case of vanishing markings, the weights of
the immediate transitions enabled in an ECS can be used to determine which
immediate transition will actually fire. The choice among immediate transitons
belonging to different ECSs is irrelevant because the confusion-free restriction on
the immediate subnets makes them truly concurrent. This confusion-free restric-
tion has also a beneficial impact on the model definition, since the association of
weights with immediate transitions requires only the information about ECSs,
not about reachable markings. For each ECS the analyst thus defines a local
association of weights from which probabilities are then derived.

As we said before the race policy seems to naturally solve also the conflicts
between timed and immediate transitions since immediate transitions will always
win the race except for the case of sampling a zero delay from a timed transition
with negative exponential distribution that happens with probability zero.

Despites this observation, some problem may arise when the conflict set is
enabled infinitely often in a finite time interval. For example, in the case of
Fig. 19, the timed and the immediate transitions are always enabled, because
the firing of the immediate transition t2 does not alter the PN marking. The
situation is changed only when the timed transition T1 fires. Even if it will require
in general an infinite number of firings of the immediate transition, this happens
with probability one in zero time. To avoid these (sometimes strange) limiting
behaviours, the priority of immediate over timed transitions was introduced in
the GSPN definition.8

The RS and the RG of our Producer/Consumer GSPN are represented in
Table 5 and Fig. 20, respectively.

6.2 The Stochastic Process Associated with a GSPN

As we have just observed, GSPNs adopt the same firing policy of SPNs; when
several transitions are enabled in the same marking, the probabilistic choice of
the transition to fire next depends on parameters that are associated with these
same transitions and that are not functions of time. The general expression

8 Notice that this assumption makes the model of Fig. 19 somehow “pathological”
from a different point of view since the token remains “trapped” in p1 and transition
T1 will never fire.
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Fig. 20. Reachability Graph of the PN of Fig. 7

for the probability that a given (timed or immediate) transition tk, enabled in
marking mi, fires is:

P{tk|mi} =
wk

qi
(27)

where qi is the quantity defined by Equation (17). Equation (27) represents
the probability that transition tk fires first, and is identical to Equation (23)
for SPNs, with a difference in the meaning of the parameters wk. When the
marking is vanishing, the parameters wk are the weights of the immediate tran-
sitions enabled in that marking and define the selection policy used to make the
choice. When the marking is tangible, the parameters wk of the timed transitions
enabled in that marking are the rates of their associated negative exponential
distributions. The average sojourn time in vanishing markings is zero, while the
average sojourn time in tangible markings is given by Equation (24).

Observing the evolution of a GSPN, we can notice that the distribution of
the sojourn time in an arbitrary marking can be expressed as a composition
of negative exponential and deterministically zero distributions: we can thus
recognize that the marking process {M(τ), τ ≥ 0} is semi-Markov.

When several immediate transitions are enabled in the same vanishing mark-
ing, deciding which transition to fire first makes sense only in the case of con-
flicts. If these immediate transitions do not “interfere” they could be fired
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simultaneously and the choice of firing only one of them at a time becomes an
operational rule of the model that hardly relates with the actual characteristics
of the system we are modelling.

Table 5. Reachability Set for the Producer/Consumer GSPN of Fig. 7

Vanishing markings: m1 = (0,1,0,2,0,1)
m2 = (0,1,0,2,1,0)
m3 = (1,0,1,1,1,0)
m4 = (0,1,1,1,0,1)
m5 = (1,0,2,0,1,0)
m6 = (0,1,2,0,1,0)

Tangible markings: m7 = (1,0,0,2,0,1)
m8 = (1,0,0,2,1,0)
m9 = (1,0,1,1,0,1)
m10 = (1,0,2,0,0,1)
m11 = (0,1,2,0,0,1)

Assuming that the GSPN is not confused, the computation of the ECSs of the
net corresponds to partitioning the set of immediate transitions into equivalence
classes such that transitions of the same partition may be in conflict among each
other in possible markings, while transitions of different ECSs behave in a truly
concurrent manner. When transitions belonging to the same ECS are the only
ones enabled in a given marking, one of them (say transition tk) is selected to
fire with probability:

P{tk|mi} =
wk

ωk(mi)
(28)

where ωk(mi) is the weight of ECS(tk) in marking mi and is defined as follows:

ωk(mi) =
∑

tj∈[ECS(tk)∧E(mi)]

wj (29)

Within the ECS we may have transitions that are in direct as well as in indirect
conflicts. This means that the firing selection probabilities may be different for
the same transition in different markings. Equation (28) however ensures that if
we have two transitions (say transitions ti and tj), both enabled in two different
markings (say markings mr and ms), the ratios between the firing probabilities
of these two transitions in these two markings remain constant and in particular
equal to the ratio between the corresponding weights assigned at the moment of
the specification of the model.
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6.3 Numerical Solution of GSPN Systems

The stochastic process associated with a k-bounded GSPN with m0 as its ini-
tial marking (home state) can be classified as a finite state space, stationary
(homogeneous), irreducible, and continuous-time semi-Markov process.

Semi-Markov processes can be analysed identifying an embedded (discrete-
time) Markov chain that describes the transitions from state to state of the
process. In the case of GSPNs, the embedded Markov chain (EMC) can be
recognized disregarding the concept of time and focusing the attention on the set
of states of the semi-Markov process. The specifications of a GSPN are sufficient
for the computation of the transition probabilities of such a chain.

Let RS, TS, and V S indicate the state space (the reachability set), the set of
tangible states (or markings) and the set of vanishing markings of the stochastic
process, respectively. The following relations hold among these sets:

RS = TS
⋃

V S, TS
⋂

V S = ∅.

The transition probability matrix U of the EMC can be obtained from the
specification of the model using the following expression:

uij =

∑
Tk∈Ej(mi) wk

qi
(30)

In this way, except for the diagonal elements of matrix U , all the other transition
probabilities of the EMC can be computed using Equation (27) independently
of whether the transition to be considered is timed or immediate.

By ordering the markings so that the vanishing ones correspond to the first
entries of the matrix and the tangibles to the last, the transition probability
matrix U can be decomposed in the following manner:

U = A + B =

⎡

⎢
⎢
⎢
⎣

C

0

D

0

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

0

E

0

F

⎤

⎥
⎥
⎥
⎦

(31)

The elements of matrix A correspond to changes of markings induced by the
firing of immediate transitions; in particular, those of submatrix C are the prob-
abilities of moving from vanishings to vanishings, while those of D correspond
to transitions from vanishings to tangibles. Similarly, the elements of matrix B
correspond to changes of markings caused by the firing of timed transitions: E
accounts for the probabilities of moving from tangibles to vanishings, while F
comprises the probabilities of remaining within tangible markings.

Indicating with ψ(n) the probability distribution of the EMC at step n (i.e.,
after n (state-) transitions performed by the EMC), we can compute this quantity
using the following expression

ψ(n) = ψ(0)Un (32)
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where, as usual, ψ(0) represents the initial distribution of the EMC. The steady-
state probability distribution ψ can be obtained as the solution of the system of
linear equations ⎧

⎨

⎩

ψ = ψ U

ψ 1T = 1
(33)

The steady-state probability distribution of the EMC, can be interpreted in
terms of numbers of (state-) transitions performed by the EMC. In fact, 1/ψi is
the mean recurrence time for state si (marking mi) measured in number of tran-
sition firings. The steady-state probability distribution of the stochastic process
associated with the GSPN system is thus obtained by weighting each entry ψi

with the sojourn time of its corresponding marking SJi and by normalizing the
whole distribution.

Applying these considerations to the Producer/Consumer problem that we
are using as an example, the EMC is presented in Table 6.

Table 6. EMC for the Producer/Consumer GSPN of Fig. 7

The solution method outlined so far, is computationally acceptable whenever
the size of the set of vanishing markings is small (compared with the size of the
set of tangible markings). However, this method requires the computation of the
steady-state probability of each vanishingmarking that is knownapriori to be null.
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In order to restrict the solution to quantities directly related with the com-
putation of the transient and steady-state probabilities of tangible markings, we
must reduce the model by computing the total transition probabilities among
tangible markings only, thus identifying a Reduced EMC (REMC).

To illustrate the method of reducing the EMC by removing the vanishing
markings, consider first the example of Fig. 21. This system contains two free-
choice conflicts corresponding to transitions T1 , T2, and t1, t2, respectively. From
the initial marking mi with one token in p1, the system can move to marking mj

(the token in p3) following two different paths. The first corresponds to the firing
of transition T1, that happens with probability μ1

(μ1+μ2)
, and that leads to the de-

sired (target) marking mj in one step only. The second corresponds to selecting
transition T2 to fire first, followed by transition t1. The first of these two events
happens with probability μ2

(μ1+μ2) , and the second with probability α
(α+β) . The

total probability of this second path from mi to mj amounts to μ2
(μ1+μ2)

α
(α+β) .

Notice that firing T2 followed by t2 would lead to a different marking (in this
case the initial one). Firing T2 leads the system into an intermediate (vanishing)
marking mr. The total probability of moving from mi to mj is thus:

u′
ij =

μ1

(μ1 + μ2)
+

μ2

(μ1 + μ2)
α

(α + β)
(34)

p1

p2 p3

T1T2

t1

t2β

α

μ1μ2

Fig. 21. A GSPN system with multiple paths between tangible markings

In general, recalling the structure of the U matrix, a direct move from marking
mi to marking mj corresponds to a non-zero entry in block F (fij �= 0), while
a path from mi to mj via two intermediate vanishing markings corresponds to
the existence of

1. a non-zero entry in block E corresponding to a move from mi to a generic
intermediate marking mr;

2. a non-zero entry in block C from this generic state mr to another arbitrary
vanishing marking ms;

3. a corresponding non-zero entry in block D from ms to mj .
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These informal arguments are precisely captured by the following expression:

u′
ij = fij +

∑

r:mr∈V S

eirP{r → s} dsj (35)

where P{r → s} dsj is the probability that the net moves from vanishing marking
mr to tangible marking mj in an arbitrary number of steps, following a path
through vanishing markings only.

In order to provide a general and efficient method for the computation of
the state transition probability matrix U ′ of the REMC, we can observe that
Equation (35) can be rewritten in matrix notation in the following form:

U ′ = F + E G D (36)

where each entry grs of matrix G represents the probability of moving between
vanishing markings mr and ms in any number of steps, but without hitting any
intermediate tangible marking. G can be expressed in the following way:

G =
∞∑

n=0

Cn

In the computation of Cn, two possibilities may arise. The first corresponds
to the situation in which there are no loops among vanishing markings. This
means that for any vanishing marking mr ∈ V S there is a value n0r such that
any sequence of transition firings of length n ≥ n0r starting from such marking
must reach a tangible marking mj ∈ TS. In this case

∃n0 : ∀ n ≥ n0 Cn = 0

and

G =
∞∑

k=0

Ck =
n0∑

k=0

Ck

The second corresponds to the situation in which there are possibilities of loops
among vanishing markings, so that the GSPN may remain “trapped” within a
set of vanishing markings. In this case the irreducibility property of the semi-
Markov process associated with the GSPN system ensures that the following
results hold [51]:

lim
n→∞ Cn = 0

so that

G =
∞∑

k=0

Ck = [I − C]−1.

We can thus write (see [5,4] for details):

H =

⎧
⎨

⎩

( ∑n0
k=0 Ck

)
D

[I − C]−1 D

no loops among vanishing states

loops among vanishing states
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The transition probability matrix of the REMC can thus be expressed as

U ′ = F + E H (37)

Once the matrix U ′ is constructed, standard techniques are used to compute
the stationary probability distribution of the REMC and subsequently that of
the tangible markings of the GSPN, using their (known) sojourn times.

The computation of the performance indices defined over GSPN models can be
performed using the reward method discussed in Section 5 without any additional
difficulty.

The advantage of solving the system by first identifying the REMC is twofold.
First, the time and space complexity of the solution is reduced in most cases,
since the iterative methods used to solve the system of linear equations tend to
converge more slowly when applied with sparse matrices and an improvement
is obtained by eliminating the vanishing states thus obtaining a denser matrix
[24,15]. Second, by decreasing the impact of the size of the set of vanishing states
on the complexity of the solution method, we are allowed a greater freedom in
the explicit specification of the logical conditions of the original GSPN, making
it easier to understand.

The construction of the REMC for the GSPN model of the Producer/
Consumer problem is summarized i7 Table 6, where we have exploited the fact
that C2 = 0.

The method outlined in this section exploits the elegant mathematical struc-
ture of the problem to overcome the difficulties due to the presence of loops of

Table 7. REMC for the Producer/Consumer GSPN of Fig. 7

G = I + C =

1
2
3
4
5
6

1 2 3 4 5 6
1

1 1
1

1
1

1 1

U’ = F+EGD =

7
8
9
10
11

7 8 9 10 11
α β

1
α β

α β
1



126 G. Balbo

immediate transitions. The loops considered in this derivation are of the “tran-
sient” type [24] and correspond to situations in which a steady-state analysis of
the model is possible. The REMC is instead impossible to construct following
this approach when the loop of immediate transitions is of the “absorbing” type
so that during its evolution the net can be trapped into a situation from which
it cannot exit. Except for very pathological cases [24] in which the model makes
sense despite the presence of such absorbing loops, GSPNs of this type are con-
sidered non-well behaving and their analysis is stopped once the existence of
absorbing loops of immediate transitions is discovered during the construction
of the infinitesimal generator of the REMC. The interested reader is referred to
[6] for a detailed discussion of the computational difficulties of the solution and
for the many methods that have been developed for handling complex GSPN
models of real systems.

7 Conclusions

In this paper we have shown how GSPNs can be conveniently used for the
analysis of complex models of DEDS and for their performance and reliability
evaluation.

The advantage of net-based models, however, goes far beyond the modelling
power of the formalism. In fact, the analysis of the structure of the graph and
the computation of its algebraic properties provide information such as invari-
ant conditions, flow-balance equations, and special structures of the reachability
graph that can be used to identify models with peculiar solution characteristics,
to optimize the solution techniques, and to develop approximation methods.

The practical relevance of GSPNs also highlights a whole set of new problems
since larger and larger models are being built and need to be analyzed. Dealing
with large models is obviously difficult since even in the case of bounded nets,
the size of their reachability sets can become enormous, making their numerical
evaluation impossible and discrete-event simulation extremely expensive.

Many important results have been developed in the GSPN field since the time
of the introduction of this formalism. In our view, the most important ones are
those using the net structure of the model to ease the modelling effort and to
improve the efficiency of the solution methods. This allows the analyst to reason
about the system at the net level while hiding the complexity of the underlying
probabilistic structure.

This has been successfully achieved in dealing with the automatic exploitation
of symmetries and modularity, and in incorporating timed transitions with non-
exponential distribution that are either deterministic or of phase-type [44].

Symmetries - When dealing with complex systems, it often happens that their
models can be constructed via the replication of many identical submodels. To
deal with this problem, coloured Petri nets have been proposed to allow the
construction of more compact representations [35].

A special class of coloured Petri nets is that of Stochastic Well Formed Petri
Nets (SWNs) in which restrictions are introduced on the functions that regulate
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transition firings and colour manipulations [30,20,19]. The important feature of
SWNs is that the special form of their colour functions allows the direct construc-
tion of an aggregated state space. With this formalism the symmetries intrinsic
in the model are directly exploited to identify markings that are representative
of large groups of states having similar characteristics. The aggregation method
is fully automated and the direct generation of the aggregated Markov chain
is obtained with considerable saving at the level of memory requirements. A
significant advantage is also obtained when we must resort to simulation [21].

Block Structure - When designing complex systems we often rely on the defi-
nition of components and on their composition for providing advanced services.
In these cases, the compositional approach can also be used at the evaluation
level when the analyst must maintain a local view of the different components
avoiding the direct representation of global system features that, resulting from
the interaction of the individual parts, could exhibit unexpected behaviours in
pathological cases that are difficult to foresee. The Markov chain that under-
lies the entire model is only formally specified in this approach in terms of the
Markov chains (transition probability matrices) of the individual submodels and
of certain correcting factors that account for the interactions among the sub-
models. The complete transition probability matrix is never really constructed
thereby allowing the solution of extremely large models in a very efficient man-
ner. This solution technique also has the non-trivial advantage of being quite
suitable for parallelization. In addition, the solution of the entire model is made
easier when the submodels interact in very special ways [16], thus making the
correcting factors extremely simple.

General Distributions - The assumption of the negative exponential distri-
bution of firing times was soon felt to be too restrictive for a convenient rep-
resentation of complex systems and several attempts were made to introduce
general firing time distributions into the formalism. When generalizing to non
exponential distributions the memory policies that we briefly discussed when
we introduced the concept of time in the basic PN formalism become extremely
important.

Firing delays that are characterized by phase-type distributions were intro-
duced by employing suitable subnet structures that could be easily embedded
into GSPN models [17] or by enriching the solution algorithms with proper tech-
niques suited for exploiting their regular structure [28,50].

Using the approach of identifying an embedded Markov chain, a technique
has been proposed for the analysis of deterministic and stochastic Petri nets
(DSPNs) [8]. In this case the embedded chain is used for the computation of the
steady-state solution of nets in which at most one transition of constant delay
is enabled in any marking. The transient analysis of DSPN models is presented
in [22].

Recently, the class of DSPN models has been extended allowing the transi-
tions to have generally distributed firing times, provided that the constraint of
having at most one of these transitions enabled in each marking is still satisfied
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[33]. This class of models is also called Markov Regenerative SPNs [36,23] and
special formulas for the computation of their steady-state solution were derived.
A systematic study of this class of models can be found in [25].

Despite these results that we have briefly overviewed, the computational com-
plexity of the solution of realistic GSPN models remains a difficulty that chal-
langes the effort of many researchers. On one side, there is general consensus
that the only means of successfully dealing with large models is to keep them
simple by using a “divide and conquer” approach in which the solution of the
entire model is constructed on the basis of the solutions of its individual com-
ponents. A different approach is that of working at another level of abstraction
by introducing new components of the fluid type where the details of individual
elements are neglected and their overall behaviour is captured by continuous
variables.

We believe that, driven by the needs of evaluating more and more compkex
systems, many new results will appear in the literature in the near future coming
from the above two lines of investigation and contributing to the development
of the solid theoretical framework of model construction and analysis.
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Abstract. In this tutorial we give an introduction to stochastic process
algebras and their use in performance modelling, with a focus on the
PEPA formalism. A brief introduction is given to the motivations for
extending classical process algebra with stochastic times and probabilis-
tic choice. We then present an introduction to the modelling capabil-
ities of the formalism and the tools available to support Markovian
based analysis. The chapter is illustrated throughout by small examples,
demonstrating the use of the formalism and the tools.

1 Introduction

Process algebras emerged as a modelling technique for the functional analysis
of concurrent systems approximately twenty years ago. Over the last 17 years
there have been several attempts to take advantage of the attractive features of
this modelling paradigm within the field of performance evaluation.

Stochastic process algebras (SPA) were first proposed as a tool for perfor-
mance and dependability modelling in 1990 [1]. At that time there was already
a plethora of techniques for constructing performance models so the introduction
of another one could have been deemed unnecessary if it were not for the fact
that SPA offered something new—formally defined compositionality. Queueing
networks, which have been widely used for performance modelling for more than
thirty years, have an inherent compositionality but this is implicit and infor-
mal. Stochastic extensions of Petri nets have a semantic model but, in general,
no clear compositional structure. In the process algebra the compositionality is
explicit—provided by the combinators of the language—and formal—supported
by the semantics and equivalence relations of the language.

It was immediately clear that having this explicit structure within models
offers benefits for model construction:

– when a system consists of interacting components, the components, and the
interaction, can each be modelled separately;

– models have a clear structure and are easy to understand;
– models can be constructed systematically, by either elaboration or refine-

ment;
– the possibility of maintaining a library of model components, supporting

model reusability, is introduced.

Many case studies demonstrating these and other benefits have appeared in the
literature [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16].
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A limitation of the initial SPA languages was their lack of expressiveness
with respect to timing distributions. Essentially, they restricted consideration
to models in which all durations were represented by negative exponentially
distributed random variables. Some later work has aimed to change this situation
by considering languages in which generally distributed random variables may be
associated with the actions of a model. However such models are not so amenable
to quantitative analysis and therefore their practical uptake has been limited.

The remainder of this tutorial is organised as follows. In the following section
we present a short introduction to classical process algebras as they are used
for system verification from a functional or qualitative point of view. Stochastic
process algebras generally, and the language PEPA specifically, are presented in
Section 3. Section 4 describes model analysis. The tools available to support the
approaches we have described are discussed in Section 5, and we present some
case studies in the following section. In Section 7 we continue to advanced topics
such as continuous state-space approximation.

2 Classical Process Algebras

Process algebras are abstract languages used for the specification and design
of concurrent systems. The most widely known process algebras are Milner’s
Calculus of Communicating Systems (CCS) [17] and Hoare’s Communicating
Sequential Processes (CSP) [18]. The stochastic process algebras take inspiration
from both these formalisms. Models in CCS and CSP have been used extensively
to establish the correct behaviour of complex systems by deriving qualitative
properties such as freedom from deadlock or livelock.

In the process algebra approach systems are modelled as collections of entities,
called agents, which execute atomic actions. These actions are the building blocks
of the language and they are used to describe sequential behaviours which may
run concurrently, and synchronisations or communications between them.

In CCS two agents communicate when one performs an action, a say, while
the other performs the complementary action ā. The resulting communication
action has the distinguished label τ , which represents an internal action that
is invisible to the environment. Agents may proceed with their internal actions
simultaneously but it is important to note that the semantics given to the lan-
guage imposes an interleaving on such concurrent behaviour. The basic calculus
contains the following primitives for defining agents:

prefix a.B after action a the agent becomes B

parallel composition A|B agents A and B proceed in parallel

choice A + B
the agent behaves as A or B depending
on which acts first
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restriction A\M
the set of labels M is hidden from out-
side agents

relabelling A[a1/a0, ..] in this agent label a1 is renamed a0

the null agent 0 this agent cannot act (deadlock)

The communication mechanism in CSP is different as there is no notion of com-
plementary actions: this is a major distinction between CCS and CSP. In CSP
two agents communicate by simultaneously executing actions with the same
label. Since during the communication the joint action remains visible to the
environment, it can be reused by other concurrent processes so that more than
two processes can be involved in the communication (multiway synchronisation).
This is the communication mechanism adopted by most of the SPA languages.

Like many other process algebras, CCS is given a structured operational
semantics (SOS), using a labelled transition system. From this a derivative tree
or graph may be constructed in which language terms form the nodes and transi-
tions are the arcs. This structure is a useful tool for reasoning about agents and
the systems they represent. It is also the basis of the bisimulation style of equiv-
alence. In this style of equivalence, the actions of an agent characterise it, so two
agents are considered to be equivalent if they are observed to perform exactly
the same actions. Strong and weak forms of equivalence are defined depending
on whether the internal actions of an agent are deemed to be observable.

In CCS and CSP, since the objective is qualitative analysis rather than quan-
titative, time is abstracted away. Various suggestions for incorporating time into
these formalisms have been investigated (see [19] for an overview). For example,
Temporal CCS [20] extends CCS with fixed delays and wait-for synchronisation
(asynchronous waiting):

fixed time delay (t) the agent must wait t time units before per-
forming its next action

wait-for synchronisation δ
the agent may idle indefinitely until its
next action is possible

non-temporal deadlock 0 the agent idles indefinitely and never
engages in further actions.

Note that most of the timed extensions, including TCCS, retain the assumption
that actions are instantaneous and regard time progression as orthogonal to the
activity of the system. In contrast, the early SPAs generally associated a random
variable, representing duration, with each action. The alternative approach, of
separating action and time, is adopted in most of the work incorporating non-
exponentially distributed durations.

Similarly process algebras are often used to model systems in which there
is uncertainty about the behaviour of a component, but this uncertainty is
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Fig. 1. Functional analysis of process algebra

abstracted away so that all choices become nondeterministic. Probabilistic exten-
sions of process algebras, such as PCCS [21], allow this uncertainty to be quan-
tified using a probabilistic choice combinator. In this case a probability is associ-
ated with each possible outcome of a choice. In some SPA an alternative approach
is taken—we assume that a race condition resolves choices when more than one
(timed) action can occur.

The Concurrency Workbench (CWB) [22] is a tool that automates the checking
of assertions about CCS models in order to establish properties of the systems they
describe. As well as the basic calculus, it supports a synchronous variant and the
temporal extension, TCCS. The CWB allows simple properties, such as presence of
deadlock, to be checked directly, but needs more specific properties to be expressed
in a suitable logic. In the context of process algebra modelling, a process logic is a
natural way to frame properties and queries. Such logics, known as modal logics,
express assertions about changing state. There is a simple modal logic, Hennessy-
Milner logic [23], for immediate possibilities in a model, and an extended logic, the
modal μ−calculus[24], with fixed point operators for recursive definitions.

3 Stochastic Process Algebra: PEPA

Process algebras offer several attractive featureswhich are not necessarily available
in existing performance modelling paradigms. The most important of these are
compositionality, the ability to model a system as the interaction of its subsystems,
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Fig. 2. Quantitative analysis of stochastic process algebra

formality, giving a precise meaning to all terms in the language, and abstraction,
the ability to build up complex models from detailed components but disregarding
internal behaviour when it is appropriate to do so. Queueing networks offer com-
positionality but not formality; stochastic extensions of Petri nets offer formality
but not compositionality; neither offer abstraction mechanisms.

In the early 1990s several stochastic extensions of process algebra appeared
in the literature, motivated by a desire to add quantification to process alge-
bra models and make them suitable for performance modelling. These included
TIPP [25] from the University of Erlangen, EMPA1 [26,27] from the University
of Bologna, PEPA [28,29] from the University of Edinburgh and SPADE2 [30]
from Imperial College. PEPA was the first language to be developed with the
intention of generating Markov processes which could be solved numerically for
performance evaluation, but versions of TIPP and EMPA from around the same
time are similarly Markovian based. The other Markovian-based SPA, emerged
a little later the stochastic π-calculus [31] and IMC [32] and differ in terms
of their synchronisation and treatment of delay, respectively. For the remain-
der of this section, and the following one, we concentrate on PEPA; however,
towards the end of this section we will discuss how TIPP and EMPA differ
from PEPA. SPADE was developed with a different motivation, relating to gen-
eralised semi-Markov processes and simulation. Several other calculi have also

1 Originally called simply MPA.
2 Originally called CCS+.
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incorporated generally distributed activities or delays, e.g. Modest [33],
IGSMP [34] and GSMPA [35].

PEPA (Performance Evaluation Process Algebra) extends classical process
algebra by associating a random variable, representing duration, with every
action. These random variables are assumed to be exponentially distributed and
this leads to a clear relationship between the process algebra model and a con-
tinuous time Markov process. Via this underlying Markov process performance
measures can be extracted from the model.

PEPA models are described as interactions of components. Each component
can perform a set of actions: an action a ∈ Act is described as a pair (α, r),
where α ∈ A is the type of the action and r ∈ R

+ is the parameter of the
negative exponential distribution governing its duration. Whenever a process P
can perform an action, an instance of a given probability distribution is sampled:
the resulting number specifies how long it will take to complete the action. A
small but powerful set of combinators is used to build up complex behaviour
from simpler behaviour. The combinators are familiar from classical process
algebra: prefix, choice, parallel composition and abstraction. We explain each of
the combinators informally below. A formal operational semantics for PEPA is
available in [29].

Prefix: A component may have purely sequential behaviour, repeatedly under-
taking one activity after another and eventually returning to the beginning of its
behaviour. A simple example is a web service within a distributed system, which
can serve one request at a time. Each application requiring the web service will
need to gain access to the service which will then only be made available for
another application when a response has been successfully transferred.

WS
def= (request, �).(serve, μ).(respond, �).WS
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In some cases, as here, the rate of an action is outside the control of this com-
ponent. Such actions are carried out jointly with another component, with this
component playing a passive role. For example, the web service is passive with
respect to the request action, as it cannot influence the rate at which requests
arrive, and this is recorded by the distinguished symbol, � (called “top”).

Choice: A choice between two possible behaviours is represented as the sum
of the possibilities. For example, if we consider an application in a distributed
system, a computation may have two possible outcomes: access to a locally avail-
able method is required (with probability p1) or access to a remote web service
is necessary (with probability p2 = 1 − p1). In this example the think action
denotes processing within the application. These alternatives are represented as
shown below:

Appl
def= (think, p1λ).(local, m).Appl

+ (think, p2λ).(request, rq).(respond, rp).Appl

A race condition governs the behaviour of simultaneously enabled actions so
the choice combinator represents pre-emptive selection with re-sampling. The
continuous nature of the probability distributions ensures that the actions cannot
occur simultaneously. Thus a sum will behave as either one summand or the
other. When an action has more than one possible outcome, e.g. the think action
in the application, it is represented by a choice of separate actions, one for each
possible outcome. The rates of these actions are chosen to reflect their relative
probabilities.

Parallel composition: As mentioned earlier, PEPA and most of the other SPA
adopt the parallel composition from CSP, rather than that from CCS. Corre-
spondingly, there is no notion of complementary actions and multiway synchro-
nisations are possible.

In the web service example, we have already anticipated that the application
and the web service will be working together within the same system. This will
require them to cooperate when the application needs the service offered by the
web service, which is not available locally. In contrast, the local activities of the
application can be carried out independently of the web service. Cooperation
over given actions is reflected in the parallel composition by the cooperation set,
L = {request, serve, respond} in this case. Actions in this set require the simul-
taneous involvement of both components. The resulting action, a shared action,
will have the same type as the two contributing actions and a rate reflecting the
rate of the action in the slowest participating component. Note that this means
that the rate of a passive action will become the rate of the action it cooperates
with.

If, for simplicity, we assume that the distributed system consists of just two
independent applications, the system is represented as the cooperation of the
applications and the web service as follows:

Sys1
def=

(
Appl ‖ Appl

) ��
L

WS L = {request, serve, respond}
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The combinator ‖ is a degenerate form of the cooperation combinator, formed
when two components behave completely independently, without any cooper-
ation between them, as in the case of the two independent applications. This
pure parallel combinator can be thought of as cooperation over the empty set:
(Appl ��

∅
Appl).

Abstraction: Again, the abstraction mechanism used in SPA follows CSP rather
than CCS. It is often convenient to hide some actions, making them private to
the component or components involved. The duration of the actions is unaf-
fected, but their type becomes hidden, appearing instead as the unknown type
τ . Components cannot synchronise on τ . For example, as we further develop the
model of the distributed system we may wish to hide the access of a application
to its local method. This might lead to a new representation of the application:

Appl′ def= Appl/{local}

and a corresponding new representation of the system:

Sys2
def=

(
Appl′ ‖ Appl′

) ��
L

WS L = {request, serve, respond}

Note that this is quite different from the CCS restriction operator which prevents
actions of the given label from occurring.

Use of the hiding combinator has two implications. Firstly, it ensures that
no components added to the model at a later stage can invoke this method of
the application. Secondly, private actions are deemed to have no contribution to
the performance measures being calculated and this might subsequently suggest
simplifications to the model.

Throughout the simple example above we have used constants such as WS to
associate names with behaviours. Using recursive definitions we have been able
to describe components with infinite behaviours without the use of an explicit
recursion operator.

Representing the components of the system as separate components means
that we can easily extend our model. Now we may want to consider a distributed
system consisting of more than two applications which act independently of each
other but compete for the use of web service. To enhance fault tolerance the web
service may be replicated. This extension may be achieved compositionally by
combining more instances of the components already described. For example, in
the case of three applications and two instances of the web service we have:

Sys3
def=

(
Appl ‖ Appl ‖ Appl) ��

L
(WS ‖ WS) L = {request, serve, respond}

3.1 Designing the Language

Action durations. The selection of a negative exponential distribution as the
governing distribution for the action durations in PEPA and other SPA has
profound consequences. In terms of the underlying stochastic process, it is the
only choice which gives rise to a Markov process. In terms of the process algebra it
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is the only choice which preserves the well-known expansion law which underlies
the interleaving semantics. In both cases this is due to the memoryless property
of the exponential distribution: the time until the next event is independent of
the time since the last event—the exponential distribution “forgets” how long it
has already waited. Thus if we consider a process (α, r).Stop ‖ (β, s).Stop, from
the semantics we derive:
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Stop ‖ (β, s).Stop (α, r).Stop ‖ Stop

Stop ‖ Stop

(α, r).Stop ‖ (β, s).Stop

(β, s)

(α, r) (β, s)

(α, r)

In a generally timed (or even deterministically timed) scenario it would be
important to record the elapsed time in the intermediate states in order to know
the residual time of the remaining activity. For example, the time needed to
complete β in Stop ‖ (β, s).Stop should reflect the time already taken to complete
activity α. However the memoryless property of the exponential distribution tells
us that the distribution of the residual time in β is the same as it was initially in
state (α, r).Stop ‖ (β, s).Stop before any time had elapsed. Thus we retain the
expansion law of classical process algebra:

(α, r).Stop ‖ (β, s).Stop =
(α, r).(β, s).(Stop ‖ Stop) + (β, s).(α, r).(Stop ‖ Stop)

Later formalisms which incorporated general distributions either avoided the
issue of residual durations by separating actions and delays (e.g. Modest [33]
and IGSMP [34]), or used a finer-grained semantics such as ST-semantics to
distinguish the start and stop of each action (e.g. GSMPA [35]).

Another major difference between the SPA formalisms concerns immediate or
instantaneous actions. EMPA has immediate actions, modelled after the imme-
diate transitions of GSPN. Each immediate action has an associated priority
level and an associated weight. Immediate actions always have higher priority
than exponentially timed actions, so a choice between such actions is resolved
by priorities. If two immediate actions of the same priority level are concur-
rently enabled, the choice is resolved on the basis of their associated weights.
The inclusion of immediate actions in TIPP, in addition to those with an asso-
ciated exponentially distributed delay, has also been investigated. These actions
were used to model logical [36] or control activities [37]. In these cases it was
assumed that the environment of the component will resolve choices, but this
opens the possibility that a model may contain non-determinism. Such a model
is considered to be under-specified.
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Cooperation. Communication or parallel composition is the essence of com-
positionality in process algebras. It gives structure to models, indicating which
actions may be undertaken concurrently, and which cannot.

For most SPA the choice was made to adopt the multiway synchronisation
using shared names (as in CSP) rather than complementary actions (as in CCS).
This means that components or agents jointly perform actions of the same
type, when the parallel composition dictates it. The motivation was to represent
something more general than communication. In performance models interaction
often captures resource usage and the objective of the model is to study the con-
straints imposed on components by competition over resources. In this context
the multiway synchronisation offered more generality. However this choice was
independent of the quantification of action durations, as witnessed by the adop-
tion of CCS-style synchronisation in the stochastic π-calculus which generates a
Markov process in the same way as PEPA [31].

Nevertheless the quantification of action duration did pose a challenge for
the definition of cooperation. Actions which are to be performed jointly may
each have been assigned rates (durations) in their respective components. The
best way to resolve what should be the rate of the shared action has been a
topic of some debate. The differing solutions adopted have become the main
distinguishing feature of the various SPA formalisms.

The first observation is that if we view the joint action as a “synchronisation”
as in the sense of barrier synchronisation in parallel programming then the cor-
rect duration would be the maximum of the durations, i.e. the maximum of the
random variables. The unfortunate problem is that the maximum of two or more
exponentially distributed random variables is not exponentially distributed.

In PEPA it is assumed that each component has bounded capacity to carry out
activities of any particular type, determined by the apparent rate. For a component
P and action type α, the apparent rate of α in P , denoted rα(P ), is the sum of
the rates of each α action enabled in P . This corresponds to the rate at which P
appears to an external observer to carry out an α action, due to the superposition
principle of the negative exponential distribution. The definition of cooperation
in PEPA is based on the assumption that a component cannot be made to exceed
its bounded capacity, meaning that the apparent rate of the shared action will be
the minimum of the apparent rates of the components involved.

In TIPP the “rate” is assumed to represent work capacity in one partner
of the synchronisation and work demand in the other. The rate of the shared
action is then taken to be the product of the two component rates. In contrast,
in EMPA it is assumed that in any synchronisation exactly one participant has
an explicit representation for the rate of the activity, all other participants being
passive with respect to this activity, prepared to proceed at the rate of the
active participant. This scheme does satisfy the principle of bounded capacity
but the restriction has implications for the compositionality of the language.
The formalisms which separate action and time evolution avoid this issue by only
allowing synchronisation on untimed actions. The issue of timed synchronisation
is discussed in [38,39] and in detail in Bradley’s thesis [40].



142 A. Clark et al.

4 Model Analysis

The formality of the process algebra approach allows us to assign a precise
meaning to every language expression. This implies that once we have a language
description of a given system its behaviour can be deduced automatically. The
meaning, or semantics, of a PEPA expression is provided by SOS rules as for
CCS, which associates a labelled multi-transition system with every expression
in the language [29].

A labelled transition system (S, T, { t−→ | t ∈ T }) consists of a set of states
S, a set of transition labels T and a transition relation t−→ ⊆ S × S. For PEPA
the states are the syntactic terms in the language, the transition labels are the
actions ((type, rate) pairs), and the transition relation is given by the semantic
rules. A multi-transition relation is used because the number of instances of a
transition (action) is significant since it can affect the timing behaviour of a
component.

Based on the transition relation, a transition diagram, called the derivation
graph (DG), can be associated with each language expression. This graph describes
all the possible evolutions of any component and provides a useful way to reason
about the behaviour of a model. A certain amount of care is needed in defining the
derivation graph. Consider a simple component, P , which will repeatedly carry
out the action a = (α, r), i.e. P

def= (α, r).P . For a classical process algebra we
need only consider which actions it is possible for an agent to perform. Thus, the
agent P + P has the same behaviour as the agent P—both are capable of an α
named action and subsequently behave as P—so these agents are considered to
be equivalent. In a SPA multiple instances of an action become apparent because
the duration of an action of that type will be the minimum of the corresponding
random variables, i.e. the apparent rate of the action will be the sum of the rates.
Thus P +P appears to carry out the first α named action at twice the rate of the
agent P . Consequently the two cannot be regarded as equivalent.

Alternative solutions have been offered for this problem. In TIPP and EMPA
supplementary labels are used to distinguish instances of multiply enabled
actions, and the underlying structure is still a labelled transition system. In
PEPA the semantics of the language is given in terms of a labelled multi-
transition system with the transition relation represented as a multi-relation
in which the multiplicities of arcs are recorded.

An example derivation graph is shown in Figure 4 where the DG of the PEPA
model Sys4, consisting of a single application accessing the web service, is shown.
For didactic purposes, in the left hand part of the figure we have expanded the
derivatives of the components Appl and WS.

Inspection of the DG allows one to derive qualitative properties of the model.
In this case, for instance, we can see that the PEPA model is free from deadlock
and live. Moreover, the Markov process underlying any finite PEPA component
can be obtained directly from the DG: a state of the Markov process is associated
with each node of the graph and the transitions between states are defined by
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Appl
def= (think, p1λ).Appl1
+ (think, p2λ).Appl2

Appl1
def= (local, m).Appl

Appl2
def= (request, rq).Appl3

Appl3
def= (respond, rp).Appl

WS
def= (request, �).WS1

WS1
def= (serve, μ).WS2

WS2
def= (respond, �).WS
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def= Appl ��
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Fig. 4. Derivation graph underlying Sys4

considering the rates labelling the arcs. Since all activity durations are exponen-
tially distributed, the total transition rate between two states will be the sum of
the activity rates labelling arcs connecting the corresponding nodes in the DG.
Starting from the DG of Figure 4, the derivation of the corresponding Markov
process is straightforward and results in the generator matrix shown below.

Q =

⎛

⎜
⎜
⎜
⎜
⎝

−λ p1λ p2λ 0 0
m −m 0 0 0
0 0 −rq rq 0
0 0 0 −μ μ
rp 0 0 0 −rp

⎞

⎟
⎟
⎟
⎟
⎠

Once obtained, the infinitesimal generator matrix can be used for a variety of
different analysis techniques. Most commonly the model is subjected to steady
state analysis. This assumes that the Markov process will eventually reach a
regular pattern of behaviour and the probability distribution over the states
of the model will cease to change, i.e. that the Markov process is ergodic. For
such models the steady state probability distribution can be derived and reveals
much information about the steady state, or equilibrium, behaviour of the model.
In addition, any Markov process (both ergodic and not) can be subjected to
transient analysis. In its simplest form a transient analysis will derive the state
probability distribution for a given starting state and after a given time. However,
it is also the basis of more sophisticated analyses such as calculating first passage
and response time distributions.

In order to ensure that the Markov process underlying a PEPA model is
ergodic, the DG of a PEPA model must be strongly connected. Necessary con-
ditions for ergodicity, at the syntactic level of a PEPA model, have been defined
[29]. For example, if cooperation occurs it must be the highest level combinator.
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The class of PEPA terms which satisfy these syntactic conditions are termed
cyclic components and they can be described by the following grammar:

P ::= S | P ��
L

P | P/L

S ::= (α, r).S | S + S | A

All the models we have discussed so far satisfy the syntactic conditions required
to be cyclic models.

It is well known that if the Markov process is ergodic, it is possible to compute
the steady state probability distribution over all the possible states by solving
the matrix equation πQ= 0 where Q is the generator matrix of the Markov
process and π is the state probability vector, such that

∑
i πi = 1.

The probability distribution of the states of the model is often not the ultimate
goal of performance analysis. Performance measures such as throughput and
utilisation are often derived via a reward structure which is defined over the
Markov process. This can either be done explicitly by the modeller, or as we
will see, automatically by the tool for commonly required measures. A reward
structure associates a value or reward with each state of the model. For steady
state measures, the expected value of the reward (i.e. the sum over the entire
state space of (probability of a state × reward in that state)) is calculated. In a
process algebra it can be easier to associate rewards with actions. In this case the
reward associated with a state will be the total reward attached to the actions
that the state enables. Note that in PEPA no reward can be attached to internal,
τ , actions.

4.1 Case Studies

As originally intended, PEPA has been applied to study the performance charac-
teristics of a number of computer and communication systems. Initial examples
focussed on well-known standard performance evaluation abstractions such as
multi-server multi-queue systems [41] and various queueing systems [4]. How-
ever over time more realistic case studies emerged, both from the PEPA group
and from others. For example, in [42] the performance impact of fault-tolerant
protocols within a distributed system framework is evaluated. In [5] Bowman
et al. develop a model of multimedia traffic characteristics and use it to derive
quality of service measures such as jitter, throughput and latency. In an investi-
gation of ways in which to ease the development of parallel database systems, the
STEADY group at the Heriot-Watt University proposed the use of performance
estimators. PEPA was used to verify the output of the performance estimators
for a number of particular configurations and therefore improve confidence in
the approach [43].

In recent work a group at the PRiSM Laboratory of the University of Versailles
are working on a novel active rule-based approach to active networks (networks
in which intermediate nodes supplement routing of data with some computation)
[44]. A PEPA model was used to study the impact of the “active” traffic on the
non-active cross-traffic in terms of loss rate and latency within an active switch
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[45]. Furthermore the models were validated against simulation models of the
same system and showed very good agreement [46].

In addition, the formalism has been applied to a number of other problems
which are beyond the usual arena of computer performance evaluation.

Inland shipping. Luk Knapen of Hasselt applied PEPA to study traffic flow
within the inland shipping network of Belgium focussing in particular on the
locks and movable bridges.

Robotic workcells. Robert Holton of the University of Bradford used PEPA
models to analyse the performance and functional correctness of a robotic
workcell designed for a automated manufacturing system [3,2].

Cellular telephone networks. A team from the PRiSM Laboratory at the
University of Versailles considered a problem of dimensioning in a cellular
telephone network. They used a PEPA model to study the impact on call
blocking and dropping of allocating bandwidth resources between micro and
macro-cell level [8]. They took advantage of automatic aggregation [47].

Automotive diagnostic expert systems. Console et al. of the University of
Turin constructed a PEPA model of an automatic diagnostic system to be
deployed in a car. A large number of sensors were placed around the car and
some number could trigger an alarm. The role of the PEPA model was to pro-
vide probabilistic reasoning to resolve the likely cause of the alarm based on
previous observations of the timing and frequency of individual faults [48].

5 Tool Support

Case studies of the size and complexity described above are only possible if the
modelling process has adequate support. In this section we describe some of
the tool support which is available for performance modelling using stochastic
process algebras. We focus primarily on the tools which support PEPA and the
analysis techniques that they offer. There is a brief discussion of other SPA tools
at the end of the section.

5.1 PEPA Tools

The PEPA Plugin Project. The PEPA Plugin Project is a software tool for
reasoning about the various stages of the Markovian analysis of PEPA models.
The tool is implemented as a collection of plug-ins for Eclipse [49], an extensible
integrated development environment for a large variety of programming and
modelling languages such as Java, C++, Python and UML. This framework was
chosen for three main reasons. First, Eclipse is a freely available product. Second,
it is widely supported by a growing community of users and businesses. Third, it
can run on a variety of platforms, as it is implemented in Java and the graphical
library used for the user interface is available on many operating systems.

The functionalities of the tool are accessible both programmatically and
through a more user-friendly graphical interface. In the remainder of this sec-
tion we focus on the latter method. Resources of an Eclipse workspace can be
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manipulated using two main classes of tools, editors and views. The former
follow the traditional open-save-close cycle pattern. The latter are typically used
to navigate resources, modify properties of a resource and provide additional
information on the resource being edited.

The PEPA Plugin contributes an editor for the language and views which
assist the user during the entire cycle of model development. Static analysis is
used for checking the well-formedness of a model and detecting potential errors
prior to inferring the derivation graph of the system. A well-formed model can be
derived, i.e. the underlying Markov process is extracted and the corresponding
state space can thus be navigated and filtered via the State Space view. Finally,
the CTMC allows numerical steady-state analyses such as activity throughput
and component utilisation.

Editor. A PEPA editor is opened for files in the Eclipse workspace which have
the pepa extension. The editor provides a convenient way to run a parser which
translates the model description in the PEPA language into an in-memory repre-
sentation suitable for further processing. This form is represented graphically in
the AST view by means of a hierarchical structure for the model. The in-memory
model also acts as an intermediate form for converting PEPA models into external
formats. In particular, the PEPA plugin project provides an exporter to EMF [50],
the de-facto standard for data exchange within the Eclipse framework.

Static Analysis. Static analysis deals with checking the well-formedness of a PEPA
model. Because of its low computational cost, static analysis is performed every
time the text of the model description is saved. The output of this tool is a con-
tribution of a list of messages to the already existing Eclipse Problem view. The
information provided can be grouped into two categories: warnings are messages
about low priority problems which do not prevent further processing; errors are
instead critical problems which must be fixed in order to continue the model devel-
opment process. For instance, basic warning messages are about rate or process
definitions which are defined in the model description but never used; error mes-
sages can be about rate or process names which are used but never defined.3

More advanced static analysis is carried out to detect potential local dead-
locks, redundant declaration of actions of the cooperation operator and ung-
uarded component uses giving rise to non-well-founded definitions of processes,
i.e. self-containing processes. In order to fulfill these tasks, the model’s in-
memory representation is iteratively walked to create two support data struc-
tures: complete action types set and used definition set.

The complete action type set A of a component is the set of all the action
types which can performed by the component during its evolution. This set can
be calculated according to Tab. 2. For example, if we consider the model in Fig. 5
(for the sake of clarity we omit the actual rate values) then the complete action
type sets of its constants are as follows:

3 It is worthwhile noting that rate names must be declared before using them in a prefix
definition. However, there is no such a rule with regards to process definitions.
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A(P1 ) = {α, β, γ, δ}
A(P2 ) = {α, β, γ, δ}
A(P3 ) = {α, β, γ, δ}
A(Q1 ) = {α, β, ε, η}
A(Q2 ) = {α, β, ε, η}
A(Q3 ) = {α, β, ε, η}

(5.1)

The used definition set U of a component is the set of all the constants which the

Table 2. Rules for deriving the complete action type set

Constant A def
= P A(A) = A(P)

Prefix (α, r).P A
�
(α, r).P

�
= {α} ∪ A(P )

Choice P + Q A(P + Q) = A(P ) ∪ A(Q)

Cooperation P ��
L

Q A(P ��
L

Q) = A(P ) ∪ A(Q)

Hiding P\{L} A(P\{L}) = A(P ) − L

component behaves as during its evolution. This set can be calculated according
to the rules in Tab. 3. The used definition sets of the constants of the model in
Fig. 5 are as follows:

U(P1 ) = {P1 ,P2 ,P3}
U(P2 ) = {P1 ,P2 ,P3}
U(P3 ) = {P1 ,P2 ,P3}
U(Q1 ) = {Q1 ,Q2 ,Q3}
U(Q2 ) = {Q1 ,Q2 ,Q3}
U(Q3 ) = {Q1 ,Q2 ,Q3}

(5.2)

P1 def
= (α, r).P2 + (β, s).P3

P2 def
= (γ, t).P1

P3 def
= (δ, u).P1

Q1 def
= (α, �).Q2 + (β, �).Q3

Q2 def
= (ε, v).Q1

Q3 def
= (η, w).Q1

P1 ��
{α,β}

Q1

Fig. 5. An example of PEPA model

Let us consider two processes which cooperate over a non-empty set of action
types. A local deadlock is a condition that may occur when one process cannot
proceed because it is in a state where it is synchronised on an activity which can
never be performed by its partner. The model in Fig. 6 exhibits a local deadlock
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Table 3. Rules for deriving the used definition set

Constant A def
= P {P} ∪ U (P )

Prefix (α, r).P U(P )

Choice P + Q U(P ) ∪ U(Q)

Cooperation P ��
L

Q U(Q) ∪ U(R)

Hiding P\{L} U(P)

in the initial state, because the action type α cannot be performed by either
Q1 or Q2 . Local deadlock conditions are critical errors which can be statically
detected by examining the used definition set of each cooperation of a model. In
particular, a cooperation P ��

L
Q gives rise to a deadlock on the action α if the

following condition holds:

∃α ∈ L : α �∈ A(P ) ∩ A(Q), α ∈ A(P ) ∪ A(Q) (5.3)

The tool emits warning messages if it discovers the existence of redundant def-
inition of action types in cooperation sets. A cooperation specifies a redundant
action type α if the following condition holds:

∃α ∈ L : α �∈ A(P ) ∪ A(Q) (5.4)

The used definition set allows for the detection of non-guarded recursive defini-
tions of components. In Fig. 7 is shown a model exhibiting such a condition. A
subset of the infinite labeled transition system of component P1 is:

P1
(γ,t)→ P2 ‖ P3 ‖ P3
(γ,t)→ P2 ‖ P3 ‖ P3 ‖ P3
(γ,t)→ P2 ‖ P3 ‖ P3 ‖ P3 ‖ P3
(γ,t)→ · · ·

This gives rise to an infinite-state Markov chain. We wish to work with finite-
state Markov chains so we reject definitions such as these as being ill-formed.

P1 def= (α, r).P2
P2 def= (γ, t).P1
Q1 def= (β, s).Q2
Q2 def= (ε, v).Q1
P1 ��

{α}
Q1

Fig. 6. Example of a PEPA model with local deadlock
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. . .

P1 def= P2 ‖ P3
P2 def= (γ, t).P1
. . .

Fig. 7. Example of a PEPA model with non-guarded recursive definitions of compo-
nents

The used definition set is calculated for each process constant A def= P which
defines a cooperation (in the example, U(P1 ) would be calculated). Such a con-
stant is not well-formed if the following condition holds:

A ∈ U(A) (5.5)

The PEPA Plugin project provides a tool for state space derivation, i.e. the
process of extracting a Markov process from the labeled transition system of the
PEPA model. The output of the tool is the state space and the corresponding
infinitesimal generator of the CTMC. The state space can be navigated and
filtered via the State Space view. The state space is represented in a tabular
form: the first column is the state number; then follow as many columns as the
number of top-level components of the system. The tabular representation of the
state space of the model in Fig. 5 would be as in Tab. 4.

Table 4. Tabular representation of the state space of the example model

State Number First Component Second Component

1 P1 Q1
2 P3 Q3
3 P3 Q1
4 P1 Q3
5 P2 Q2
6 P2 Q1
7 P1 Q2

A variety of filter options is available in order to narrow down the number
of states shown in the view. The user can exclude/include states which have a
sequential component in a particular local state or states which contain unnamed
processes (i.e., prefixes). More precise filtering can be obtained by means of a
pattern language which allows the user to match local states which contain
given top-level component local states at specified positions. The components
are separated by vertical bars and a wild-card is used to disregard positions
which are of no interest. According to the example in Fig. 5, the pattern P1
| * would match the states whose first top-level component is in state P1,
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thus displaying states 1,4,7; the pattern * | Q2 would match states 5,7. For a
more concise description of the filter, the generic pattern P is considered as an
abbreviation of P | * | ... | *.

Additionally, the plug-in contributes the Single Step Navigator, a tool for
walking the state space. This is particularly useful for debugging purposes. It
consists of two tables containing the list of incoming and outgoing states. The
sequential components which cause the transition to be performed are high-
lighted and an option allows the user to make filtered states not walkable.

A model whose state space is derived successfully is amenable to performance
analysis which can be carried out by calculating the steady-state probability
distribution of the CTMC over the state space. The user interface provides a
dialogue wizard which guides the user through this process. The wizard is a
graphical interface to the MTJ toolkit [51], the library used for the numerical
solution of the Markov chain, allowing the user to choose and tune the parameters
of an extensive selection of solvers and preconditioners.

After the model is successfully solved, the State Space view is updated with
information on the obtained steady-state probability distribution which is shown
on an additional column. Additional analysis can be carried out via the Per-
formance Evaluation view, which permits throughput and utilisation analysis.
Throughput is an action-related metric showing the rate at which an action
is performed at steady-state; utilisation is related to a sequential component
showing the steady-state distribution probability over its local states.

In order to better illustrate these metrics, let us consider the model in Fig. 8
consisting of one single sequential component evolving through three local states.
With rates r = 2, s = 1, t = 1 the utilisation figures are P1 = 0.2, P2 = 0.4, P3 =
0.4 whereas throughput is 0.4 for each action.

P1 def
= (α, r).P2

P2 def
= (β, s).P3

P3 def
= (γ, t).P1

Fig. 8. A tiny PEPA model with one sequential component

Experimentation is a tool for sensitivity analysis. The user can supply ranges
for rate values against which the performance metrics described above are cal-
culated. Results are then shown in the form of graphs for which a number of
exporting options are available.

The Imperial PEPA Compiler. The Imperial PEPA Compiler (IPC) [52] pro-
vides an alternative implementation of the PEPA language, providing a bridge to
performance analysis tools developed at Imperial College by Knottenbelt and his
group [53,54].

The ipc tool translates an input PEPA model into the Petri net notation pro-
vided by Dnamaca [53]. Its support for the PEPA language is comprehensive.
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Apparent rates are supported, as are anonymous components. The great advan-
tage of accessing the functionality of the Dnamaca analyser is that other forms
of analysis (beyond steady-state) become available.

The steady state probability distribution represents the behaviour of the sys-
tem at equilibrium, where the influence of the initial state of the system is no
longer measurable. Some performance measures of interest cannot be derived
from the results of steady state analysis. Examples of performance measures in
the class of non-equilibrium measurements include mean time to failure analysis,
as computed in the evaluation of dependable systems. Other examples include
the probabilistic quality-of-service guarantees which underpin most commer-
cial service level agreements (SLAs): e.g. the probability that a 10-node clus-
ter should be able to process 3000 database transactions in less than 6 seconds
should be greater than 0.915; or a train service should not run more than 10
minutes late more than 20% of the time.

More generally, such measures necessitate the computation of passage-time
quantiles which detail the probability of passing through the system evolution
from a start state to an end state (or a set of starting states to a set of end states).
The computation of such measures depends on the aggregate time behaviour
across a whole system of complex interactions. The computation of passage-time
quantiles depends on transient analysis of the CTMC, which is more expensive
than steady-state analysis in both run-time and memory consumption.

Via ipc, the unique solution capabilities of Dnamaca become available and
because of this it is possible to efficiently perform passage time analysis over
PEPA models [52,54]. Start and end points are specified using the concept of
stochastic probes developed by Argent-Katwala, Bradley and Dingle [55]. Sto-
chastic probes are themselves PEPA components which have been generated
from regular expression-based inputs.

The PRISM model checker. PRISM is a probabilistic model checker devel-
oped by Kwiatkowska’s group at the University of Birmingham. It supports
discrete time Markov chains and Markov decision processes as well as CTMCs.
The standard input to PRISM is a model described in a simple reactive modules
language. PEPA was integrated into the tool via a compiler which translates
PEPA models into this language. The developers at the University of Birm-
ingham extended PRISM’s modelling capabilities to implement at the binary
decision diagram level PEPA’s combinators (cooperation and hiding).

Integration into PRISM enables model checking of the CTMC underlying a
PEPA model against properties expressed in Continuous Stochastic Logic (CSL)
[56]. It also provides access to the efficient numerical solutions of PRISM based
on MTBDDs [57] and sparse matrix representation. PRISM has been applied
successfully to a number of PEPA (and PEPA net) case studies [58,59].

The Möbius modelling platform. The Möbius modelling framework [60] was
developed at the University of Illinois Urbana-Champaign. It is both a multi-
formalism and multi-paradigm modelling tool, i.e. it aims to offer the user a
choice of model description techniques and solution methods. Moreover it is
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designed to allow a model to be composed of submodels which may be expressed
in different formalisms. It has a broad spectrum of users in North America.
Integrating PEPA into Möbius offered opportunities to present stochastic process
algebra to users who were previously unfamiliar with the formalism, and to
expore the possibilities of interaction between modelling formalisms [61].

5.2 Related Work

Over the years, several software tools have been made available for support-
ing computer-aided analysis with process algebra. TwoTowers [62], for example,
provides a similar range of tools for the stochastic process algebra EMPAgr.

TIPP-Tool. The TIPP-Tool is a prototype modelling tool for creating and eval-
uation TIPP models of parallel and distributed systems. It supports a LOTOS-
oriented input language and as well as facilities to apply functional analysis
based on reachability analysis, it provides a set of numerical solution modules
for the stationary and transient analysis of the Markov process underlying a
TIPP specification [63,64].

In order to evaluate the performance of the specification the derived transi-
tion system serves as a base for further reduction into a Markov process. For the
steady state analysis of the underlying Markov process a variety of numerical
algorithms are available: LU-factorization, power method, and Gauss-Seidel iter-
ation scheme. TIPP-Tool supports also transient analysis by providing methods
to compute the mean time to absorption of an absorbing Markov chain or the
transient state probabilities. For the latter a refined randomisation scheme is
provided.

The result of numerical analysis is usually a vector with state probabilities. In
order to obtain more sophisticated and expressive results the user can specify mea-
sures. This is done via rewards that are assigned to states which match a regular
expression which the user must specify. Series of experiments are also supported
by allowing rates to be symbolic variables. The specification of the model, as well
as the measures and experiments, is supported through a graphical user interface.

TwoTowers. TwoTowers [62], which supports modelling with the SPA language
EMPA, builds on two existing tools, CWB-NC [65] for functional analysis and
MARCA [66] for performance analysis. The specification language for TwoTowers
is EMPAr, an extension of EMPA to include the specification of rewards—in the
subsequent analysis these rewards are used to derive performance measures. The
other SPA tools include the facility to associate a reward structure with a model;
in EMPAr the reward structure is assumed to be an integral part of the model.

TwoTowers has a graphical user interface written in Tcl/Tk. This interface
allows the user to edit and compile specifications and provides access to the vari-
ous analysis routines. CWB-NC provides a suite of functional analysis techniques:
model checking, equivalence checking, preorder checking and reachability analy-
sis. MARCA provides for both steady state and transient performance analysis
of the underlying Markov process. In addition there is a simulation engine which
allows models to be simulated.
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More information about TwoTowers is available at:
(http://www.sti.uniurb.it/bernardo/twotowers).

MoDeST. The MoDeST modelling language (Modelling and Description lan-
guage for Stochastic Timed systems) [33] enriches a process algebra with atomic
statements to control the granularity of transitions, non-deterministic and proba-
bilistic branching and timing. The MoDeST language provides conventional
programming constructs such as iteration, alternatives, atomic statements, and
exception handling in the style of user-friendly specification languages such as
Promela. The MoDeST semantics maps each MoDeST specification onto a sto-
chastic timed automata, a modelling formalism which subsumes timed, stochastic
and probabilistic automata.

The MoDeST language has been integrated into the Möbius multi-paradigm
modelling framework [67] as an atomic model. MoDeST models which do not use
non-determinism can be assessed quantitatively using the discrete-event simulator
of Möbius or its Markovian analysers. MoDeST models are mapped onto C++
code which links against the Möbius Abstract Functional Interface (AFI).

Verification of properties of MoDeST models can be performed using the CADP
Tools [68].

6 Case Studies

6.1 Roland the Gunslinger

In this subsection we consider a sequence of small examples based around a char-
acter known as “Roland the Gunslinger”. These simple models are intended to be
intuitive to understand but yet show some of the main features of the language
and demonstrate a variety of solution techniques. A more substantial example is
presented in the following subsection.

Roland alone. Roland Deschain is a gunslinger and his primary activity is fir-
ing his gun which is a six-shooter, i.e. there is room in the barrel for six bullets
at a time. When his gun is empty Roland will reload the gun and then continue
shooting.

Roland6
def= (fire, rfire).Roland5

Roland5
def= (fire, rfire).Roland4

Roland4
def= (fire, rfire).Roland3

Roland3
def= (fire, rfire).Roland2

Roland2
def= (fire, rfire).Roland1

Roland1
def= (fire, rfire).Rolandempty

Rolandempty
def= (reload, rreload).Roland6
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If we suppose that Roland has two guns then he should be allowed to fire either
gun independently. A simplistic way to model this is to have two instances of
Roland in parallel:

Roland6 ‖ Roland6

However, this model does not capture the fact that Roland needs both hands in
order to reload either gun. The simplest way to fix this is to assume that Roland
only reloads both guns when both are empty.

Roland6 ��
{reload}

Roland6

In the remaining models, we consider only the case of Roland using his shotgun,
which has only two bullets before it needs reloading, and requires both hands for
firing.

Choice. In the first straightforward model of Roland, he was simply firing his
guns. We now consider a model which captures the possibility that Roland will
miss or hit his target.

Upon his travels Roland will encounter some enemies with whom he will have
no choice but to enter combat. In this model it is assumed that his enemies do not
possess the skill required to seriously harm Roland. Therefore he never dies but
simply encounters villians and fires at them until he successfully hits them. Each
hit is assumed to be fatal and it is assumed that a sense of honour prevents an
enemy from attacking Roland if he is already involved in a gun fight.

The rates involved in this model are given in Table 5; each is measured in sec-
onds, so a rate of 1.0 would indicate that the action is expected to occur once every
second. There is one special parameter, phit-success which is a probability measure,
used to calculate the values for the rates rhit and rmiss.

Rolandidle
def= (attack, rattack).Roland2

Roland2
def= (hit, rhit).(reload, rreload).Rolandidle + (miss, rmiss).Roland1

Roland1
def= (hit, rhit).(reload, rreload).Rolandidle + (miss, rmiss).Rolandempty

Rolandempty
def= (reload, rreload).Roland2

Table 5. Parameter settings for the Roland2 model

parameter value explanation
rfire 1.0 Roland can fire the gun once per-second
phit-success 0.8 Roland has an 80% success rate
rhit 0.8 rfire × phit-success

rmiss 0.2 rfire × (1 − phit-success)
rreload 0.3 It takes Roland about 3 seconds to reload
rattack 0.01 Roland is attacked once every 100 seconds
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Steady-State Analysis. This model can be used to calculate the probability that at
any time Roland is involved in a battle. Using steady state analysis this amounts
to calculating the probability that Roland is in any of the states in which a battle is
on-going, i.e. Roland2, Roland1 and Rolandempty . Alternatively one can calculate
the probability that Roland is in the single peaceful state Rolandidle and subtract
it from 1. This was done for the above model, for the parameter values shown in
Table 5, giving the result:

State Measure ’roland peaceful’ % 100 seconds

mean 9.5490716180e-01

This shows that there is more than a 95 percent chance that Roland is not cur-
rently involved in a gun battle. This is intuitively what we would expect since he
is attacked once every 100 seconds and will usually take around one second to fire
each bullet. Two bullets then cost him a further three seconds to reload, however
since his success rate is at 80 percent, he will often not need to reload.

Transient Analysis. Transient analysis could be used here to determine the proba-
bility that Roland will have killed some enemy within a given time, say two
minutes, of starting off on his travels.

Passage-Time Analysis. An example of a passage-time analysis for this model
would calculate the probability that at a given time after he is attacked, Roland
has killed his attacker. This would involve calculating the probability that the
model performs a hit action within the given time after performing an attack
action.

The graph on the left hand side of Figure 9 shows an example of this kind
of analysis. It shows the probability that Roland will successfully perform a hit
action a given time after an attack action. This also confirms our instincts con-
cerning the steady-state analysis. Since there is a 95 percent chance that Roland
is not involved in a gun battle, and one occurs about once every 100 seconds, then
we should expect gun battles to last for around five seconds. Looking at the graph
on the left hand side of Figure 9 we see that the probability that Roland has per-
formed a hit action five seconds after an attack action is quite high at just over 90
percent.

We can also measure, for example, the probability that Roland will miss after
having been attacked. This probability is somewhat low. One of the reasons is
that, if Roland hits the target with his first shot then in order to observe a miss
action in the model we will have to wait until Roland is attacked again. The graph
on the right hand side of Figure 9 shows the probability curve for the same time
period as the first graph. Because the attack rate is low, in this period of time
it is unlikely that Roland will be attacked for a second time. For this reason the
graph looks similar to the first graph, but translated down the probability axis.
The initial rise in probability corresponds, as in the first graph, to the probability
that Roland will fire his gun within that time.
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Fig. 9. Probability of events occurring after an attack event

Cooperation. We now consider the model augmented to allow the enemies of
Roland to fight back. However, they are currently somewhat ineffective and always
miss Roland when they fire. (The next model will fix this.) This model can be used
to calculate properties such as the likelihood that an enemy will manage to fire one
shot before they are killed by Roland.

Table 6. Parameters for the enemies

parameter value explanation
rattack 0.01 Roland is attacked once every 100 seconds
re-miss 0.3 Enemies can fire only once every 3 seconds

Rolandidle
def= (attack, �).Roland2

Roland2
def= (hit, rhit).(reload, rreload).Rolandidle + (miss, rmiss).Roland1

Roland1
def= (hit, rhit).(reload, rreload).Rolandidle + (miss, rmiss).Rolandempty

Rolandempty
def= (reload, rreload).Roland2

Enemiesidle
def= (attack, rattack).Enemiesattack

Enemiesattack
def= (fire, re-miss).Enemiesattack + (hit, �).Enemiesidle

Roland2 ��
{hit}

Enemiesidle

Notice that in this model the behaviour of the enemy has been simplified. There is
no running out of bullets or reloading. This model can be thought of as an approxi-
mation to a more complicated component similar to the one which models Roland.
The rate at which the enemy fires encompasses all of the actions, including the
reloading of an empty gun. The analyses associated with this model are very sim-
ilar to those for the previous model. Steady-state analysis can be used to determine
the likelihood that Roland is currently in a peaceful state.
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It is also sometimes useful to carry out a validation of the model by calculating
a metric which we believe we already know the value of. For example in this model
we could make such a sanity check by calculating the probability that the model
is in a state in which Roland is idle but the enemies are not, or vice versa. This
should never occur and hence the probability should be zero.

Transient analysis could again be used to calculate the expected time before
Roland is attacked or the expected time before Roland has made a kill.

Sensitivity Analysis. Due to the roles which activities play in creating the
dynamics of our stochastic process algebra model it may be that increasing the
rate of one activity increases the score obtained by the model on our chosen per-
formance measure of interest. Conversely, increasing the rate of another activity
may decrease the score which we get. Changing one rate a little may vary the score
a lot. Changing another rate a lot might only vary the score a little. The study of
how changes in performance depend on changes in parameter values in this way
is known as sensitivity analysis.

Sensitivity analysis is performed by solving the model many times while vary-
ing the rates slightly. For this model we chose to vary three of the rates involved
and measured for each combination of rates the passage-time probability that the
model performs a hit action after performing an attack action.

The results are shown in Figure 10. The first three graphs measure the sensi-
tivity of each of the three rates. The top left graph shows the effect that varying
the phit-success parameter has. The top right graph depicts the effect of varying the
rfire rate and finally the middle left graph shows the rreload rate.

From these graphs one can deduce that the strongest influence is from the
phit-success parameter. To see this, notice the greater curvature of the graph of
probability against time as the value of the phit-success parameter is increased. In
contrast, the top right and middle left graphs show little of the warping that is
seen in the first graph.

In the final three graphs we measure the effect that varying one rate has, on the
effect of another rate. In most models the effect which one rate has depends on the
values of the other rates. For example, in our model, clearly if both the rreload and
rfire rates are small then the effect of the phit-success is large since Roland pays
a large penalty whenever he misses. If, however, these two rates are large then
Roland pays less of a penalty for missing and hence the effect of increasing (or
decreasing) phit-success is diluted.

To keep such graphs comprehensible to humans we fix the time at which the
probability is measured. The first of these graphs on the middle right of Figure 10
measures the effect of varying rreload against phit-success. Similarly the bottom left
graph depicts varying rreload against rfire; and finally, the bottom left varies rfire
and phit-success. This final graph is interesting. On the far left it can be seen that
when the rfire is low, as we increase phit-success there is close to a linear increase in
the probability. However, when the rfire is high the graph of probability against
phit-success rises sharply and then becomes less steep. This is most likely because
when the rfire rate is high, the penalty for Roland reloading is also relatively high
in comparison and therefore the benefit of avoiding this is greater.
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Fig. 10. Graphs of cumulative distribution function sensitivity to changes in rates for
the passage from attack to Roland killing the enemy

Accurate Enemies. We now allow the enemies of Roland to actually hit him.
This means that Roland may die. It is important to note that this has the conse-
quence that the model will always deadlock. The underlying Markov process is no
longer ergodic.

To maintain the simplicity of the model we assume that the enemies can only
hit Roland once every 50 seconds. Note that this rate approximates the rate of
a more detailed model in which we would assign a process to the enemies which
is much like that of the process which describes Roland. That is, it can fire and
miss, run out of bullets and reload etc. before finally hitting Roland. The only new
parameter is re-hit which is assigned a value 0.02 to reflect this assumption.
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Rolandidle
def= (attack, �).Roland2

Roland2
def= (hit, rhit).(reload, rreload).Rolandidle + (miss, rmiss).Roland1

+ (e-hit, �).Rolanddead

Roland1
def= (hit, rhit).(reload, rreload).Rolandidle + (miss, rmiss).Rolandempty

+ (e-hit, �).Rolanddead

Rolandempty
def= (reload, rreload).(reload, rreload).Roland2 + (e-hit, �).Rolanddead

Rolanddead
def= Stop

Enemiesidle
def= (attack, rattack).Enemiesattack

Enemiesattack
def= (e-hit, re-hit).Enemiesidle + (hit, �).Enemiesidle

Roland2 ��
{hit,attack,e-hit}

Enemiesidle

Steady-State Analysis. This model has the interesting property that the model
will always deadlock: because there is an infinite supply of enemies eventually
Roland will always die. This means that steady-state analysis would not be used
on such a model, although a possible use would be as a validation of the model,
as was done for the previous model.

Transient Analysis. Transient analysis on this model can be used to calculate the
expected time at which Roland will die, or rather the probability that Roland is
dead after a given amount of time. As the time increases this should tend towards
probability 1.

Passage-Time Analysis. As before, the passage-time analysis on this model would
be used to calculate the probability of a given event happening at a given time
after another given event. Here we might again choose the starting event to be an
attack on Roland, and the ending event could be either Roland dying or Roland
winning the gun fight.

More Cooperation. The cooperation so far has involved the synchronisation
between two processes on events that they have either caused directly or are
directly affected by. In this section cooperation is used to synchronise between
components of the model such that they observe events which they neither directly
cause nor are directly affected by. In this particular example an accomplice is
befriended by Roland from time to time and whenever an enemy attacks, Roland
and the accomplice fight together. Whenever either one of them kills the enemy
the other must observe this action, so as to stop firing at a dead opponent.

The component representing Roland is now modified to include actions, which
Roland does not participate in, such as his accomplice killing the enemy, but which
nevertheless alter Roland’s state and therefore must be witnessed.
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Table 7. Parameter values for the accomplice

parameter value explanation
rbefriend 0.001 Roland befriends a stranger once every 1000 seconds
ra-fire 1.0 the accomplice can also fire once per second
pa-hit-success 0.6 the accomplice has a 60 percent accuracy
ra-hit 0.6 rfire × phit-success

ra-miss 0.4 rfire × (1.0 − phit-success)
ra-reload 0.25 it takes the accomplice 4 seconds to reload

Rolandidle
def= (attack, �).Roland2 + (befriend, rbefriend).Rolandidle

Roland2
def= (hit, rhit).Rolandhit + (a-hit, �).Rolandidle + (miss, rmiss).Roland1

Roland1
def= (hit, rhit).Rolandhit + (a-hit, �).(reload, rreload).Rolandidle

+ (miss, rmiss).Rolandempty

Rolandhit
def= (enemy-die, �).(reload, rreload).Rolandidle

Rolandempty
def= (reload, rreload).Roland2 + (a-hit, �).(reload, rreload).Rolandidle

The attack is assumed to be a concerted effort between Roland and his accomplice
but we do not wish to leave Roland vulnerable when he has no accomplice. For this
reason the representation of the accomplice includes a state when the accomplice
is absent. In this state the accomplice component will passively participate in any
attack which Roland makes. The alternative would be that Roland was blocked
from attacking when he had no accomplice. Also note that, just as Roland wit-
nesses if the accomplice kills the enemy, the accomplice also witnesses if Roland
kills the enemy.

Accompliceabs
def= (befriend, rbefriend).Accompliceidle + (hit, �).Accompliceabs

+ (attack, �).Accompliceabs

Accompliceidle
def= (attack, �).Accomplice2

Accomplice2
def= (a-hit, ra-hit).Accomplicehit + (hit, �).Accompliceidle

+ (miss, rmiss).Accomplice1 + (enemy-hit, �).Accompliceabs

Accomplice1
def= (a-hit, ra-hit).Accomplicehit

+ (hit, �).(reload, ra-reload).Accompliceidle

+ (miss, rmiss).Accompliceempty + (enemy-hit, �).Accompliceabs

Accomplicehit
def= (enemy-die, �).(reload, ra-reload).Accompliceidle

Accompliceempty
def= (reload, ra-reload).Accomplice2 + (enemy-hit, �).Accompliceabs

+ (hit, �).(reload, ra-reload).Accompliceidle



Stochastic Process Algebras 161

The component representing the enemy is similar to before.

Enemiesidle
def= (attack, rattack).Enemiesattack

Enemiesattack
def= (enemy-hit, re-hit).Enemiesattack + (enemy-die, �).Enemiesidle

The system equation is as follows:

(Roland2 ��
{hit,a-hit,befriend}

Accompliceabs) ��
{attack,enemy-die,enemy-hit}

Enemiesidle

Steady-State Analysis. As before steady-state analysis can be used to determine
the probability that at any given time Roland is involved in a gun battle. Addition-
ally this can now be used to determine the likelihood that Roland is on his own or
has an accomplice. It is interesting to note the relations between the rates involved
in the model and the subsequent probabilities. Additionally the relations between
each of the steady-state proabilities. Since Roland cannot perform a befriending
action while currently involved in a confrontation with an enemy, the probabilty
that Roland is in such a battle clearly affects the probability that he is alone in
his quest. So for example if Roland’s success rate is reduced then gun battles will
take longer to resolve, hence Roland will be involved in a gun battle more often,
and therefore he will befriend fewer accomplices.

Transient Analysis. An additional transient analysis would be to determine the
expected time after Roland has set off before he meets his first accomplice.

Passage-Time Analysis. As with all the previous models the passage-time analy-
sis will measure the probability starting from an attack action. Possible actions
to stop the analysis at would be the event of the enemy’s death or that of the
accomplice. Since all gun battles now end in the enemy being killed stopping the
analysis there would give us the expected duration of any one gun battle. Stopping
the analysis with the death of the accomplice would also incorporate the chance
that the enemy is killed but a further enemy attacks and hits the accomplice. How-
ever, the extra probability of this is rather small because of the low-rate at which
Roland is attacked. Finally the passage-time analysis could be stopped on either
of the two hit events, this would give us the probability at a given time after an
attack event that either the accomplice or the enemy has been shot.

This model also presents a further possible starting action besides that of the
attack action, that is the befriend action. An interesting passage-time query would
be the probability that a given length of time after a befriend action has occurred
that a enemy-hit action occurs. This would give the modeller an estimate of the
duration of Roland’s friendships.

Hiding. There is a possible deficiency in the above model. What if the enemy
starts to perform a befriend action (or equally a hit or a-hit action)? This would
invalidate our model as it would model strange things happening, for example if
Roland would not be able to meet any new accomplices. Of course the problem
is not that the enemy might use this as an underhand tactic since it is the mod-
eller that is describing the enemy component. The problem is that the modeller
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is fallible and may make a mistake, especially if the enemy component becomes
more complex. One way to avoid this is to ‘hide’ those actions only Roland and
the accomplice should cooperate on.

To do this for our model we can simply change the system equation to read:

((Roland2 ��
L1

Accomplice)/L1) ��
L2

Enemiesidle

where L1 = {hit, a-hit, befriend} and L2 = {attack, enemy-die, enemy-hit}.

6.2 Web Service Composition

As example of a realistic case study, we consider an example of a business applica-
tion which is composed from a number of offered web services. Furthermore there
is an access control issue, as it must be ensured that the web service consumer
has the requisite authority to execute the web services it requests. A schematic
representation of the system is depicted in Fig. 11.

1

2

4

6

7

3

8

5

WS component
for SMS

Application
Logic

Session
Manager

Location request

WS SMS notification

MMS deliveryLocation result

Start Session

SMS

End Session

Check request validity

Web Service Consumer

Web Service Provider

Policy Access Provider

WS component
for MMS

WS component
for location

Fig. 11. Schematic representation of the web service composition

The scenario is as follows. Several web services are combined to define the busi-
ness logic of an application. For example, consider an application to find the near-
est restaurant for a user and show it on a map. This could involve web services for
SMS and MMS handling in addition to the User Location web service. Moreover, a
user should not be able to gain access to location information of an arbitary user.
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This is where the access control aspect becomes important. Therefore, in addi-
tion to the requested web services, the web service provider may need to interact
with some authorisation component to check that the current user has the correct
authority to access the requested information. In adddition the service provider
may stipulate some further conditions, such as that only one location request may
be made per session:

1. The user activates a service by sending an SMS to a service centre number.
This is handled by an appropriate web service.

2. This initiates a start-session message to be sent to the Policy Access Provider.
3. A notification is sent to the application that an SMS has arrived.
4. The application requests the user’s location from a location web service.
5. The web service contacts the session managerwithin the policy access provider

to check the validity of the request.
6. If the validity check is OK the location web service will return the location to

the application which uses it to construct the appropriate map for the user.
7. This is then passed as an MMS to the MMS web service which delivers it to

the user.
8. The MMS web service terminates the session with the Session Manager.

We model such a system with the following PEPA model. It has three types of
model component, corresponding to the three large rectangles in Figure 11. Note
that although the Web Service Provider consists of three distinct elements, we
are interested in the session associated with each Web Service Consumer. Each
session is associated with an instance of the Web Service Provider. Thus, concur-
rency is introduced into the model by allowing multiple sessions rather than by
representing the constituent web services separately.

ComponentCustomer . The customer’s behaviour is simply modelled with two
local states. In the first state the customer sends a request to the system via the
getSMS action. She then waits for a response which triggers the getMap transi-
tion if it is successful. Therefore we associate the user-perceived system perfor-
mance with the throughput of this action, which can be calculated directly from
the steady-state probability distribution of the underlying Markov chain.

Customer def= (getSMS , r1).Customer1

Customer1
def= (getMap, �).Customer + (get404 , �).Customer

In this model sending either an error message get404 or the requested map occur
at the same rate r8 and MMS passing between web services is ten times as fast as
the communication with the user.

Component WSConsumer . The web service consumer, WSConsumer , fol-
lows a simple pattern of behaviour. Once it is notified that a session has been
started by the user (via SMS message), it initiates a request for the user’s current
location and waits for a response. If the request was valid, the location is returned
and used to compute the appropriate map for the user, which is then sent via an
MMS message, using the web service for this.
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WSConsumer def= (notify , �).WSConsumer2

WSConsumer2
def= (locReq , r4).WSConsumer3

WSConsumer3
def= (locRes , �).WSConsumer4

+ (locErr , �).WSConsumer

WSConsumer4
def= (compute, r7).WSConsumer5

WSConsumer5
def= (sendMMS , r9).WSConsumer

Component WSProvider . As explained above, although the Web Service
Provider can be viewed as consisting of three independent web services, the use of
sessions restricts a user’s access to these services to be sequential. We assume that
there is a distinct instance of the component WSProvider for each distinct session.
As each would be in a distinct thread it is reasonable for there to be concurrency at
this level. The activities of the component are as outlined in the scenario above.
Note that the checkValid action is represented twice, to capture the two possi-
ble distinct outcomes of the action. If the check is successful the location must be
returned to the Web Service Consumer in the form of a map (getMap). However,
if the check revealed an invalid request (locErr ) then an error must be returned
to the Web Service Consumer (get404 ) and the session terminated (stopSession).

WSProvider def= (getSMS , �).WSProvider 2

WSProvider 2
def= (startSession, r2).WSProvider 3

WSProvider 3
def= (notify , r3).WSProvider 4

WSProvider 4
def= (locReq, �).WSProvider 5

WSProvider 5
def= (checkValid , 99 · �).WSProvider 6

+ (checkValid , �).WSProvider 10

WSProvider 6
def= (locRes , r6).WSProvider 7

WSProvider 7
def= (sendMMS , �).WSProvider 8

WSProvider 8
def= (getMap, r8).WSProvider 9

WSProvider 9
def= (stopSession , r2).WSProvider

WSProvider 10
def= (locErr , r6).WSProvider 11

WSProvider 11
def= (get404 , r8).WSProvider 9

Component PAProvider . In our model the Policy Access Provider has a very
simple behaviour. It simply maintains a thread for each session and carries out
the validity check on behalf of the Web Service Provider. This representation of
the PAProvider is stateful.
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PAProvider def= (startSession, �).PAProvider 2

PAProvider 2
def= (checkValid , r5).PAProvider 3

PAProvider 3
def= (stopSession , �).PAProvider

An alternative design is to have a stateless implementation, as below.

PAProvider def= (startSession, �).PAProvider
+ (checkValid , r5).PAProvider
+ (stopSession , �).PAProvider

We will contrast these two versions in our model analysis.

Model Component WSComp. The complete system is represented by some
number of instances of the components interacting on their shared activities:

WSComp def=
(
(Customer [NC ] ��

L1
WSProvider [NWSP ])

��
L2

WSConsumer [NWSC ]
)

��
L3

PAProvider [NPAP ]

where the cooperation sets are

L1 = {getSMS , getMap, get404}
L2 = {notify , locReq, locRes , locErr , sendMMS}
L3 = {startSession, checkValid , stopSession}

and NC , NWSC , NWSP and NPAP are the number of instances of Customer ,
WSConsumer , WSProvider and PAProvider respectively.

6.3 Performance Analysis of the Web Service Composition Case
Study

In this section we carry out steady-state analysis on the Web Service Composition
case study in order to tune the parameters of the system. To accomplish this task
we use a modified version of the model in which the customer is explicitly modelled
as a component of the system. The values for each rate are shown in Table 8.

Suppose that we want to design the system in such a way that it can handle 30
independent customers. The modeller may have constraints on some parameters
such as the network delays because those are limited by the available technology.
However, there are a number of degrees of freedom which let her vary, for example,
the number of threads of control of the components of the system. The purpose is
to deliver a satisfactory service in a cost-effective way. The simplest example of a
cost function may be a linearly dependency on the number of copies of a compo-
nent or the rate at which an activity is performed.

The graph in Fig. 12 shows the throughput of the getMap action as the num-
ber of customers varies between 1 and 30. Each line represents a given number of
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Table 8. Parameters used in the performance analysis of the Web Service composition

parameter value explanation
r1 0.0010 rate at which customers request maps
r2 0.5 rate at which a session can be started
r3 0.1 notification exchange between consumer and provider
r4 0.1 rate at which requests for customer’s location can be satisfied
r5 0.05 rate at which the provider can check the validity of the incom-

ing request
r6 0.1 rate at which location information can be returned to the

consumer
r7 0.05 rate at which maps can be generated
r8 0.02 rate at which MMS messages can be sent from provider to

customer
r9 10.0 ∗ r8 rate at which MMS messages can be sent via the Web Service

copies of the WSProvider component in the system. When the total number of
customers is 30, two providers lead to a throughput which is twice as much as in
the base system configuration with one provider only. However, as the number of
provider increases the incremental benefit becomes less significant. In particular,
the system with four copies is just 8.7% faster than the system with three. In the
following we set to three the copies of WSProvider .
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Fig. 12. Throughput of getMap for changes in the number of WSProvider and customers

In Fig. 13 is shown the effect that the rate at which the users initiate the request
(r1 ) has on the getMap throughput for different values of the copies of the
WSConsumer . Every line starts to plateau at approximately r1 = 0.010 following
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Fig. 14. Throughput of getMap for changes in the number of PAProvider and r5

an initial sharp increase. This suggests that the system can guarantee satisfactory
behaviour under the constraint that the users’ request rate is below that thresh-
old. In addition, the graph gives the modeller insights into the optimal number
of operating threads of control of WSConsumer , which we believe is two as the
additional third copy is not well matched by performance boost. Hence, in order
to tune PAProvider—the remaining system component—we set WSConsumer to
that value.
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The same approach can be applied to the optimisation of the number of copies
of PAProvider . Here we are particularly interested in the overall impact of the
rate at which the validity check is performed. Slower rates may mean more com-
putationally expensive validation, whereas faster rates may involve less accuracy
and lower security of the system. Such effects are measured in Fig. 14 where the
getMap throughput is plotted against r5 for different PAProvider pool sizes. A
sharp increase followed by a constant levelling off suggests that optimal rate values
lie on the left of the plateau, as faster rates do not improve the system considerably.
As for the optimal number of copies of PAProvider , deploying two copies rather
than one dramatically increases the quality of service of the overall system. With
a similar approach as previously discussed, the modeller may want to consider the
trade-off between the cost of adding a third copy and the throughput increase.

Evaluation of an alternative design of PAProvider . We conclude this sec-
tion by showing how this model can be used to evaluate alternative designs of parts
of the system. Here, we focus on PAProvider which has been originally modelled
as a stateless component. Any of its services can be called at any point, the correct-
ness of the system being guaranteed by implementation-specific constraints such
as session identifiers being uniquely assigned to the clients and passed as parame-
ters of the method calls.

Another design of a component which offers the same functionalities is that of
a stateful provider. In PEPA such a service can be modelled as a sequential com-
ponent with three local states (see above). This implementation has the conse-
quence that there can never be at any point in time more than NWSP WSProvider
which have started a session with a PAProvider . This is because the provider has
to release a previous session in order to start another one.
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The graph in Fig. 15 measures the same metrics as in Fig. 14 when the stateful
provider is employed. It shows that the incremental gain in adding more copies
has become more noteworthy. However, the modeller may want to prefer the orig-
inal version, as three copies of the stateful provider deliver about as much as the
throughput of only one copy of the stateless implementation.

7 Advanced Topics

Like all state based modelling techniques, stochastic process algebra models are
subject to the problem of state space explosion — the generated models may be
intractable because of their size. A variety of techniques have been proposed for
tackling this problem in the context of stochastic process algebra. Below we briefly
discuss two of them:

– model reduction and model simplification via equivalence relations;
– fluid approximation of the state space.

7.1 Equivalence Relations and Model Manipulation

The state space explosion problem arises because although the compositionality
of SPA can greatly aid model construction, in general the compositionality does
not assist in the model solution and the resulting models may be too large to solve.
This has led to research into how model simplification and aggregation techniques
can be applied in the process algebra setting. Many such techniques are known in
the context of Markov processes but are based on conditions phrased in terms
of the process or its generator matrix. Moreover application of these techniques
often relies on the expertise of the modeller. The challenge for SPA has been to
define such model manipulation techniques in the context of the process algebra,
in such a way that it can subsequently be applied automatically. Some significant
results have been achieved in this area through the use of equivalence relations
which provide the basis for comparing and manipulating models within a formal
framework. Furthermore the compositionality of the process algebra allows these
techniques to be applied to part of the model whilst maintaining the integrity of
the model as a whole.

There have been two principal approaches to model manipulation in SPA:

model simplification: Here an equivalence relation is used in order to establish
behavioural or observational equivalence between models. The aim is to replace
one model by an equivalent one which is more desirable from a solution point
of view. Once the desirable model has replaced the original, the underlying
Markov process is generated as usual, associating one state with each node in
the labelled transition system generated by the semantics. Equivalence rela-
tions which have been used in this way are weak isomorphism in PEPA [29,69],
Markovian bisimulation and weak bisimulation in TIPP [70].

model aggregation: Here an equivalence relation is used in order to establish
behavioural or observational equivalence between states within a model. The
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aim is to use an alternative mapping from the labelled transition system, given
by the semantics of the model, to the underlying Markov process. The equiv-
alence relation is used to partition the nodes of the labelled transition system
into equivalence classes. Then, instead of the usual one-to-one correspondence
between nodes and states, one state in the underlying Markov process is asso-
ciated with each equivalence class of nodes. The hope is that this will generate
a Markov process with a smaller number of states. The equivalence relation
which has been used in this way is variously called strong equivalence (PEPA)
[29], Markovian bisimulation (TIPP) [71], and extended Markovian bisimula-
tion equivalence (EMPA) [27].

Equivalence relations and model manipulations will be discussed in more detail in
another chapter within this volume [72].

The basis of aggregation is the observation that it can be sufficient to con-
sider the behaviour of one element within an equivalence class of elements who
all behave in the same way. The simplest way in which such equivalence classes
arise is if we have repeated instances of identical components within the model. For
this case, for PEPA models we have developed an automatic method which gener-
ates the CTMC corresponding the equivalence classes, rather than the individual
states, on-the-fly [47]. This relies on a canonical representation of states within
the model which makes it clear syntactically when they are equivalent, while also
keeping track of how many instances there are in each such equivalence class.

Since the static cooperation combinators remain unchanged in all states of a
model, it is often convenient to represent the states in vector form. The state vec-
tor records one entry for each sequential component of the PEPA model. These
components will be present in each derivative of the model, although they will
change their local state or derivative. Thus the global state can be represented as
a vector or sequence of local derivatives.

If a model contains equivalent components there may be multiple states within
the model which exhibit the same behaviour and so we may aggregate the model.
The derivation graph is then constructed in terms of equivalence classes of syntac-
tic terms and this is used as the basis of the CTMC construction [47]. Canonicalisa-
tion involves reordering entries within the vector in a way that strong equivalence,
the Markovian bisimulation of PEPA models, is respected, but which places ele-
ments within subvectors of equivalent components in lexicographical order. Fur-
ther details can be found in [47].

7.2 Continuous State Space Approximation

Even with the use of aggregation some model still remain too large to be read-
ily analysed using Markovian techniques. Recent work has considered a radically
different approach to tackling the state space explosion problem when modelling
with a process algebra such as PEPA [73]. The approach is based on two shifts
from the usual perspective:

– Firstly, we do not aim to calculate the probability distribution over the entire
state space of the model. We choose a more abstract state representation in
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terms of state variables, quantifying the types of behaviour evident in the
model.

– Secondly, we assume that these state variables are subject to continuous
rather than discrete change.

Once these adjustments are made the system is amenable to efficient solution as
a set of ordinary differential equations (ODEs), leading to the evaluation of tran-
sient, and in the limit, steady state measures.

State representation. As we have seen the usual state representation is in terms
of the syntactic forms of the model expression, or when aggregation is applied, in
terms of a canonical representation of an equivalence class of states.

The work on continuous approximation proposes an alternative vector form for
capturing the state information of models with repeated components. In the state
vector form, even when the canonical representation is used there is one entry
in the vector for each sequential component in the model. When the number of
repeated components becomes large this can be prohibitively expensive in terms
of storage. In the alternative vector form there is one entry for each local derivative
of each type of component in the model. Two components have the same type
if their derivation graphs are isomorphic. The entries in the vector are no longer
syntactic terms representing the local derivative of the sequential component, but
the number of components currently exhibiting this local derivative.

To clarify the distinction between the two vector forms consider the small exam-
ple defined below, consisting of interacting processors and resources:

Processor0
def= (task1, r1).Processor1

Processor1
def= (task2, r2).Processor0

Resource0
def= (task1, r1).Resource1

Resource1
def= (reset, s).Resource0

(Resource0 ‖ Resource0) ��
{task1}

(Processor0 ‖ Processor0)

The canonical state vector form corresponding to this example with the given
configuration is shown in Figure 16a). Here the initial state is represented explic-
itly as ((Resource0,Resource0), (Processor0,Processor0)){task1}. In contrast, in
the numerical vector form, shown in Figure 16b), the initial state is (2, 0, 2, 0)
where the entries in the vector are counting the number of Resource0, Resource1,
Processor0, Processor1 local derivatives respectively, exhibited in the current state.
In the canonical state vector representation we record the number of elements in
each equivalence class (shown in square brackets in Figure 16a). The total rate
of the transitions between the canonical states is derived from this number of
instances, the number of enabled activities and their relative probabilities. In the
numerical state vector representation each vector is a single state and the rates of
the transitions between states are derived directly from the vector and the activity
rate, as explained below.
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Fig. 16. Illustrative example of contrasting state representations

In the current configuration of the model, with two instances of each component
type, it is clear that the state vector form and the numerical vector form each
have four elements, but if we consider a configuration with ten instances of each
component type it becomes clear that the numerical form is much more compact.

The numerical vector form for an arbitrary PEPA model is defined as follows.

Definition 1 (Numerical Vector Form). For an arbitrary PEPA model M
with n component types Ci, i = 1, . . . , n, each with Ni distinct derivatives, the
numerical vector form of M, V(M), is a vector with N =

∑n
i=1 Ni entries. The

entry vij records how many instances of the jth local derivative of component type
Ci are exhibited in the current state.

If there is a large number of instances of each component type the domain of values
of each entry in V(M) is large. If Ki is the number of components of type Ci in the
initial configuration of the model then each entry in the ith subvector will have
domain 0, . . . , Ki.

The system is inherently discrete with the entries within the numerical vector
form always being non-negative integers and always being incremented or decre-
mented in steps of one. When the numbers of components are large these steps
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are relatively small and we can approximate the behaviour by considering the
movement between states to be continuous, rather than occurring in discontin-
uous jumps. In this case we can replace the discrete event system represented by
the derivation graph of a PEPA process by a continuous model, represented by a
set of coupled ordinary differential equations. The numerical vector form of state
representation is an intermediate step to achieving that. Considering these states
of the process and the activities which are enabled, and the states they lead to, we
are able to construct an activity matrix which records the impact of each activity
type on the number of each component type. From this the appropriate system of
ODEs is derived (see [73] for details).

Small example revisited. Let us consider again the small example considered
earlier, assuming now that there are large numbers of processors and resources:

Processor0
def= (task1, r1).Processor1

Processor1
def= (task2, r2).Processor0

Resource0
def= (task1, r1).Resource1

Resource1
def= (reset, s).Resource0

(Resource0 ‖ · · · ‖ Resource0) ��
{task1}

(Processor0 ‖ · · · ‖ Processor0)

Let n1 denote the number of Processor0 entities, n2 the number of Processor1
entities, n3 the number of Res0 entities and n4 the number of Resource1 entities.
The activity matrix corresponding the component definitions is shown in Fig. 17.

task1 task2 reset
Processor0 −1 +1 0 n1

Processor1 +1 −1 0 n2

Resource0 −1 0 +1 n3

Resource1 +1 0 −1 n4

Fig. 17. Activity matrix for the simple Processor-Resource model

From the matrix, we derive each differential equation in turn. For state variable
ni, consider row i. Each non-zero entry in the row will results in one term within
the equation.

dn1(t)
dt

= −r1 min(n1(t), n3(t)) + r2n2(t)

dn2(t)
dt

= r1 min(n1(t), n3(t)) − r2n2(t)

dn3(t)
dt

= −r1 min(n1(t), n3(t)) + sn4(t)

dn4(t)
dt

= r1 min(n1(t), n3(t)) − sn4(t)
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Fig. 18. Graph showing the changing numbers of copies of Processor0, Processor1,
Resource0 and Resource1 as a function of time, obtained by numerically integrating the
differential equations for this system. The values of the rates were r1 = 0.125, r2 = 0.003
and s = 0.1.

Note that the form of the system of equations is independent of the number of
components included in the initial configuration of the model. The only impact of
changing the number of instances of each component type is to alter the initial con-
ditions. Thus, if there are initially 1024 processors, all starting in state Processor0
and 512 resources, all of which start in state Resource0, the initial conditions will
be:

n1(0) = 1024 n2(0) = 0 n3(0) = 512 n4(0) = 0

Numerically integrating the differential equations for this system to generate a
time series plot for the first 100 seconds of the system evolution starting from the
above initial value problem produces the graph shown in Fig. 18.

8 Conclusions and Summary

In this tutorial we have described an algebraic description technique, based on a
classical process algebra, and enhanced with timing information. This extension
results in models which may be used to calculate performance measures as well as
deduce functional properties of the system. Several interesting analysis techniques
of SPA models including steady state, transient and response time analysis of the
underlying CTMC have been discussed, together with an introduction to the tools
which support these analysis techniques. We have demonstrated the approach on
a number of small models as well as a more realistic example of a service-oriented
architecture. Finally we outlined some more advanced topics related to SPA and
highlighted some on-going work.
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Möbius modeling framework. In de Alfaro, L., Gilmore, S., eds.: Proceedings of the
first joint PAPM-PROBMIV Workshop. Volume 2165 of Lecture Notes in Computer
Science., Aachen, Germany, Springer-Verlag (September 2001) 200–215

62. : TwoTowers 5.1. http://www.sti.uniurb.it/bernardo/twotowers/
63. Hermanns, H., Mertsiotakis, V.: A Stochastic Process Algebra Based Modelling

Tool. In: Proc. of the 11th UK Performance Engineering Workshop for Computer
and Telecommunication Systems, Springer (1995)

64. Hermanns, H., Herzog, U., Klehmet, U., Mertsiotakis, V., Siegle, M.: Compositional
performance modelling with the TIPPtool. In: Proc. of 10th International Confer-
ence on Modelling Techniques and Tools for Computer Performance Evaluation.
Volume 1469 of LNCS., Palma de Mallorca, Springer-Verlag (1998)

65. Cleaveland, W., Sims, S.: The NCSU Concurrency Workbench. In: Proc. of Int.
Conf. on Computer Aided Verification (CAV’96). Volume 1102 of LNCS., Springer-
Verlag (1996) 394–397

66. Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton
University Press (1994)

http://www.eclipse.org
http://www.eclipse.org/home
http://rs.cipr.uib.no/mtj/
http://www.cs.bham.ac.uk/~dxp/prism/index.php
http://www.sti.uniurb.it/bernardo/twotowers/


Stochastic Process Algebras 179

67. Bohnenkamp, H., Courtney, T., Daly, D., Derisavi, S., Hermanns, H., Katoen, J.P.,
Klaren, R., Lamb, V., Sanders, W.: On integrating the Möbius and Modest mod-
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Abstract. Markovian behavioral equivalences are a means to relate and
manipulate the formal descriptions of systems with an underlying CTMC
semantics. There are three fundamental approaches to their definition:
bisimilarity, testing, and trace. In this paper we survey the major re-
sults appeared in the literature about Markovian bisimilarity, Markovian
testing equivalence, and Markovian trace equivalence. The objective is
to compare these equivalences with respect to a number of criteria such
as their discriminating power, the exactness of the CTMC-level aggre-
gations they induce, the achievement of the congruence property, the
existence of sound and complete axiomatizations, the existence of logical
characterizations, and the existence of efficient verification algorithms.

1 Introduction

Performance-oriented notations provide the designer with the capability of build-
ing performance-aware system models, which can be used in the early develop-
ment stages to predict the satisfiability of certain performance requirements as
well as to choose among alternative designs on the basis of their expected QoS
guarantees. These notations range from more theoretical ones – like queueing net-
works [38], stochastic Petri nets [1], and stochastic process algebras [32] – to more
applicative ones – like formal modeling languages (Modest [12]), architectural
description languages (Æmilia [5]), coordination languages (StocKlaim [22]),
and object-oriented modeling languages (UML SPT/MARTE [48]).

An important feature shared by most of the performance-oriented notations
mentioned above is that of providing behavioral models of the systems under
construction. Given two such models, establishing whether they are equivalent
amounts to establishing whether the systems they represent behave the same.
What is needed is thus a notion of behavioral equivalence. This would be useful
not only to relate models that are syntactically different, but also to manipulate
models in a way that preserves their functional and performance properties.

Among the various proposals appeared in the literature [25], there are three
fundamental approaches to the definition of behavioral equivalences: bisimilar-
ity [43,41], testing [21], and trace [33]. In the first approach, two models are
considered to be equivalent if they are able to mimic each other’s behavior step-
wise. In the second approach, two models are considered to be equivalent if an
external observer cannot distinguish between them, with the only way for the
observer to compare their behaviors being to interact with them by means of
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tests and look at their reactions. In the third approach, similarly to traditional
automata theory, two models are considered to be equivalent if they are able to
perform the same sequences of activities.

These three approaches, originally conceived for reasoning about functional
aspects, have been subsequently extended to deal with non-functional aspects. As
far as performance aspects are concerned, research has mainly concentrated on
models of systems with an underlying continuous-time Markov chain (CTMC)
semantics. The reason is that, due to their memoryless property, exponential
distributions result in a simpler mathematical treatment without sacrificing ex-
pressiveness. In fact, besides being adequate for many real-life phenomena (like
arrival processes and failure events), exponential distributions provide the most
appropriate stochastic approximation if only the average duration of an activity
is known, and proper combinations of them (called phase-type distributions) can
approximate most of general distributions arbitrarily closely.

This has resulted in the development of the Markovian versions of bisimilarity,
testing equivalence, and trace equivalence, which will be surveyed in this paper
by recalling from [32,15,31,14,18,4,23,10,30,8,7,9,49] their properties.

Although behavioral equivalences abstract from specific kinds of models, most
of their properties can be better investigated and understood in a process alge-
braic framework [41,33,2,6]. For this reason, the three Markovian behavioral
equivalences mentioned above will be defined in this paper over Markovian
process calculi. Many such calculi have been proposed in the literature, like
TIPP [27], PEPA [32], MPA [16], EMPAgr [10], Sπ [44], IMC [30], and PIOA [46].
They differ for the action representation – durational actions (TIPP, PEPA,
MPA, EMPAgr, Sπ, PIOA) vs. instantaneous actions separated from time pass-
ing (IMC) – as well as for the action synchronization discipline – symmetric
(TIPP, MPA, Sπ, IMC), asymmetric (EMPAgr, PIOA), or both (PEPA).

In this paper we shall start with a sequential Markovian process calculus
(SMPC) with durational actions, which generates all the finite CTMCs with as
few operators as possible: the null term, the action prefix operator, the alterna-
tive composition operator, and recursion. Then we shall add a parallel composi-
tion operator governed by an asymmetric action synchronization discipline, thus
resulting in a concurrent Markovian process calculus (CMPC). We shall also
address some syntax variations – like the inclusion of rewards, nondeterminism,
and prioritized/weighted immediate actions – in order to present some useful
variants of the considered equivalences.

Markovian bisimilarity, Markovian testing equivalence, and Markovian trace
equivalence will be compared with respect to the following criteria:

1. Discriminating power. The three Markovian behavioral equivalences, to-
gether with some variants of Markovian trace equivalence, will be ordered
according to a finer-than/coarser-than relation, thus providing information
about the linear-time/branching-time spectrum in the Markovian case. As
we shall see, similarly to what happens in the probabilistic case [36,35], the
Markovian spectrum is more condensed than the nondeterministic one [25].
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2. Exactness. Each of the three Markovian behavioral equivalences induces an
aggregation at the CTMC level. In general, a CTMC aggregation is exact
whenever the transient/stationary probability of being in a macrostate of an
aggregated CTMC is the sum of the transient/stationary probabilities of be-
ing in one of the constituent microstates of the original CTMC. This guaran-
tees the preservation of the performance characteristics when going from the
original CTMC to the aggregated one. As we shall see, all the three Markov-
ian behavioral equivalences induce exact aggregations. In other words, the
three approaches – bisimilarity, testing, trace – to the definition of behav-
ioral equivalences are not only intuitively appropriate from the functional
viewpoint, but also meaningful for performance evaluation purposes.

3. Congruence. A behavioral equivalence that is a congruence with respect to
the typical process algebraic operators is particularly helpful in practice, as
it supports compositional reasoning. This enables the compositional reduc-
tion of the model state space. As we shall see, Markovian bisimilarity and
Markovian testing equivalence are congruences, whereas Markovian trace
equivalence – unlike the nondeterministic case but similarly to the proba-
bilistic one [36] – is not a congruence with respect to parallel composition.

4. Axiomatization. The axiomatization of a behavioral equivalence elucidates
the fundamental equational laws on which the equivalence relies. This equa-
tional characterization is thus useful to understand what models can be
related by the equivalence. Whenever it is sound and complete, the axiom-
atization gives rise to the specific rules of a deduction system – including
reflexivity, symmetry, transitivity, and substitutivity – that can be exploited
as a rewriting system to syntactically manipulate the models in a way that
is consistent with the equivalence.

5. Logical characterization. The modal/temporal logic characterization of a be-
havioral equivalence shows what behavioral properties are preserved by the
equivalence. This can be exploited to provide diagnostic information that ex-
plains why two models are not equivalent. As we shall see, Markovian bisim-
ilarity preserves branching-time properties, while Markovian trace equiva-
lence preserves linear-time properties.

6. Verification complexity. In order to be applicable in practice, a behavioral
equivalence must be equipped with an efficient verification algorithm. As we
shall see, not only Markovian bisimilarity but also Markovian testing and
trace equivalences – unlike the nondeterministic case [37] but similarly to
the probabilistic one [35] – are all decidable in polynomial time.

This paper is organized as follows. In Sect. 2 we introduce the syntax and the
semantics for SMPC and CMPC. In Sect. 3 we study Markovian bisimilarity. In
Sect. 4 we address some of its variants that include rewards, nondeterminism, and
prioritized/weighted immediate actions. In Sect. 5 we present Markovian testing
equivalence. In Sect. 6 we illustrate Markovian trace equivalence together with
some other trace-based Markovian behavioral equivalences. Finally, in Sect. 7
we summarize the comparison of the Markovian behavioral equivalences based
on the criteria explained above and we discuss some open problems.
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2 Basic Markovian Process Calculi

In this section we introduce two basic Markovian process calculi with durational
actions. The first one is a sequential Markovian process calculus (SMPC) that
generates all the finite CTMCs with as few operators as possible: the null term,
the action prefix operator, the alternative composition operator, and recursion.
The second one is a concurrent Markovian process calculus (CMPC) as it ad-
ditionally includes a parallel composition operator governed by an asymmetric
action synchronization discipline. Then we introduce some notation concerned
with the exit rates of the process terms and the attributes associated with their
computations.

2.1 Syntax and Semantics for SMPC

In SMPC every action is durational, hence it is represented as a pair <a, λ>,
where a ∈ Name is the name of the action while λ ∈ RI >0 is the rate of the
exponential distribution quantifying the duration of the action. The average
duration of an exponentially timed action is equal to the inverse of its rate.

Whenever several exponentially timed actions are enabled, the race policy is
adopted, hence the fastest action is the one that is executed. As a consequence
of this generative [26] selection mechanism, the execution probability of any
enabled exponentially timed action is proportional to its rate and the average
sojourn time associated with a process term is exponentially distributed with
rate given by the sum of the rates of the actions enabled by the term.

We denote by ActS = Name × RI >0 the set of the actions of SMPC. Unlike
standard process theory, where a distinguished symbol τ is used as the name of
the invisible action, here we assume that all the actions are visible.

Definition 1. The set LS of the process terms of SMPC is generated by the
following syntax:

P ::= 0
| <a, λ>.P
| P + P
| X
| rec X : P

where X is a process variable. We denote by PS the set of the closed and guarded
process terms of SMPC.

The semantics for SMPC is given by a state-transition model that can be defined
in the usual operational style. However, unlike nondeterministic process calculi,
idempotency no longer holds. In fact, a term like <a, λ>.P +<a, λ>.P is not the
same as <a, λ>.P , as the average sojourn time associated with the latter, i.e.
1/λ, is twice the average sojourn time associated with the former, i.e. 1/(λ+λ).
To keep the two terms distinct at the semantic level, it is necessary to take into
account the multiplicity of each transition, intended as the number of different
proofs for the derivation of the transition.
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Therefore, the behavior of each process term P ∈ PS is given by a labeled
multitransition system [[P ]], whose states correspond to process terms and whose
transitions – each of which has a multiplicity – are labeled with actions. From
such a labeled multitransition system the CTMC underlying the process term
can easily be retrieved by (i) discarding the action names from the transition
labels and (ii) collapsing all the transitions between any two states into a single
transition whose rate is the sum of the rates of the original transitions.

We now provide the semantic rules for the various operators of SMPC:

– Null term: 0 cannot execute any action, hence the corresponding labeled
multitransition system is just a state with no transitions.

– Exponentially timed action prefix: <a, λ>.P can execute an action of name a
and rate λ and then behaves as P :

<a, λ>.P
a,λ

−−−→ P

– Alternative composition: P1 + P2 behaves as either P1 or P2 depending on
whether P1 or P2 executes an action first:

P1
a,λ

−−−→ P ′

P1 + P2
a,λ

−−−→ P ′

P2
a,λ

−−−→ P ′

P1 + P2
a,λ

−−−→ P ′

– Recursion: rec X : P behaves as P after replacing every occurrence of X
with rec X : P :

P{(rec X : P )/X}
a,λ

−−−→ P ′

rec X : P
a,λ

−−−→ P ′

2.2 Syntax and Semantics for CMPC

CMPC extends SMPC with a parallel composition operator governed by an
asymmetric action synchronization discipline, which is enforced on an explicit
set of action names and makes use of passive actions. Multiway synchronizations
are allowed provided that they involve at most one exponentially timed action,
with all the other actions being passive.

A passive action is of the form <a, ∗w>, where w ∈ RI >0 is called weight and
is used to quantify choices among passive actions with the same name. Every
passive action has a duration that will become specified upon synchronization
with an exponentially timed action having the same name.

Whenever several passive actions are enabled, the reactive [26] preselection
policy is adopted. This means that, within every set of enabled passive actions
with the same name, each such action is given an execution probability pro-
portional to its weight. The choice between two enabled passive actions having
different names is instead nondeterministic.

We denote by ActC = Name × Rate the set of the actions of CMPC, where
Rate = RI >0 ∪ {∗w | w ∈ RI >0} is the set of the action rates (ranged over by λ̃).
As for SMPC, we assume that all the actions are visible.
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Definition 2. The set LC of the process terms of CMPC is generated by the
following syntax:

P ::= 0
| <a, λ>.P
| <a, ∗w>.P
| P + P
| P ‖S P
| X
| rec X : P

where S ⊆ Name and X is a process variable. We denote by PC the set of the
closed and guarded process terms of CMPC.

Due to the memoryless property of exponential distributions and the fact that
the probability that two concurrent exponentially timed actions terminate si-
multaneously is zero, the semantics for the parallel composition operator can
be defined in the usual interleaving style like in the nondeterministic case. In
fact, term <a, λ>.0 ‖∅ <b, μ>.0 behaves exactly like term <a, λ>.<b, μ>.0 +
<b, μ>.<a, λ>.0 as the execution of an exponentially timed action can be
thought of as being started in the last state in which the action is enabled.

We now provide the semantic rules for the additional operators of CMPC:

– Passive action prefix: <a, ∗w>.P can execute a passive action of name a and
weight w and then behaves as P :

<a, ∗w>.P
a,∗w

−−−→ P

– Parallel composition: P1 ‖S P2 behaves as P1 in parallel with P2 as long as
actions are executed whose names do not belong to S:

P1
a,λ̃

−−−→ P ′
1 a /∈ S

P1 ‖S P2
a,λ̃

−−−→ P ′
1 ‖S P2

P2
a,λ̃

−−−→ P ′
2 a /∈ S

P1 ‖S P2
a,λ̃

−−−→ P1 ‖S P ′
2

Generative-reactive synchronizations are forced between any exponentially
timed action executed by one term and any passive action executed by the
other term that have the same name belonging to S:

P1
a,λ

−−−→ P ′
1 P2

a,∗w

−−−→ P ′
2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P2 ,a)

−−−−−−−−−−−−→ P ′
1 ‖S P ′

2

P1
a,∗w

−−−→ P ′
1 P2

a,λ
−−−→ P ′

2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P1 ,a)

−−−−−−−−−−−−→ P ′
1 ‖S P ′

2
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while reactive-reactive synchronizations are forced between any two passive
actions executed by the two terms that have the same name belonging to S:

P1

a,∗w1−−−→ P ′
1 P2

a,∗w2−−−→ P ′
2 a ∈ S

P1 ‖S P2

a,∗ w1
weight(P1 ,a) · w2

weight(P2 ,a) ·(weight(P1,a)+weight(P2,a))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→P ′
1 ‖S P ′

2

where the weight of a process term P with respect to the passive actions of
name a that P enables is defined as follows:

weight(P, a) =
∑

{| w ∈ RI >0 | ∃P ′ ∈ PC. P
a,∗w

−−−→ P ′ |}

We point out that the CTMC underlying a process term in PC can be retrieved
only if its labeled multitransition system has no passive transitions. In this case
we say that the process term is performance closed. We denote by PC,pc the set
of the performance closed process terms of PC. Note that PS,pc = PS.

2.3 Exit Rates and Computations of Process Terms

The Markovian behavioral equivalences that we shall define over SMPC and
CMPC are based on concepts like the exit rates of the process terms and the
traces, the probabilities, and the durations of their computations. Since these
concepts will be used several times in the paper, we collect in this section the
related notation.

The exit rate of a process term is the rate at which it is possible to leave
the term. We distinguish among the rate at which the process term can execute
actions of a given name that lead to a given set of terms, the total rate at which
the process term can execute actions of a given name, and the total exit rate of
the process term. The latter is the sum of the rates of all the actions that the
process term can execute, and coincides with the reciprocal of the average sojourn
time in the CTMC-level state corresponding to the process term whenever the
process term is performance closed.

Since there are two kinds of actions – exponentially timed and passive –
we consider a two-level definition of each variant of exit rate, where level 0
corresponds to exponentially timed actions and level −1 corresponds to passive
actions.

Definition 3. Let P ∈ PC, a ∈ Name, l ∈ {0, −1}, and C ⊆ PC. The exit
rate of P when executing actions of name a and level l that lead to C is defined
through the following non-negative real function:

rate(P, a, l, C) =

⎧
⎨

⎩

∑
{| λ ∈ RI >0 | ∃P ′ ∈ C. P

a,λ
−−−→ P ′ |} if l = 0

∑
{| w ∈ RI >0 | ∃P ′ ∈ C. P

a,∗w

−−−→ P ′ |} if l = −1

where each summation is taken to be zero whenever its multiset is empty.
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Definition 4. Let P ∈ PC and l ∈ {0, −1}. The total exit rate of P at level l is
defined through the following non-negative real function:

ratet(P, l) =
∑

a∈Name
rate(P, a, l, PC)

where rate(P, a, l, PC) is the total exit rate of P with respect to a at level l.

A computation of a process term is a sequence of transitions that can be executed
starting from the state corresponding to the term. The length of a computation is
given by the number of transitions occurring in it. We say that two computations
are independent of each other if it is not the case that one of them is a proper
prefix of the other one. In the following, we denote by Cf(P ) and If(P ) the
multisets of the finite-length computations and independent computations of
P ∈ PC. Below we inductively define the trace, the execution probability, the
average duration, and the duration distribution of an element of Cf(P ), using
symbol “◦” to denote the sequence concatenation operator.

Definition 5. Let P ∈ PC and c ∈ Cf(P ). The trace associated with the execu-
tion of c is the sequence of the action names labeling the transitions of c, which
is defined by induction on the length of c through the following Name∗-valued
function:

trace(c) =

{
ε if length(c) = 0

a ◦ trace(c′) if c ≡ P
a,λ̃

−−−→ c′

where ε is the empty trace.

Definition 6. Let P ∈ PC,pc and c ∈ Cf(P ). The probability of executing c is
the product of the execution probabilities of the transitions of c, which is defined
by induction on the length of c through the following RI ]0,1]-valued function:

prob(c) =

{
1 if length(c) = 0

λ
ratet(P,0) · prob(c′) if c ≡ P

a,λ
−−−→ c′

We also define the probability of executing a computation of C as:

prob(C) =
∑

c∈C

prob(c)

for all C ⊆ If(P ).

Definition 7. Let P ∈ PC,pc and c ∈ Cf(P ). The average duration of c is the
sequence of the average sojourn times in the states traversed by c, which is defined
by induction on the length of c through the following (RI >0)∗-valued function:

timea(c) =

{
ε if length(c) = 0

1
ratet(P,0) ◦ timea(c′) if c ≡ P

a,λ
−−−→ c′
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where ε is the empty average duration. We also define the multiset of the com-
putations of C whose average duration is not greater than θ as:

C≤θ = {| c ∈ C | length(c) ≤ length(θ) ∧
∀i = 1, . . . , length(c). timea(c)[i] ≤ θ[i] |}

for all C ⊆ Cf(P ) and θ ∈ (RI >0)∗.

Definition 8. Let P ∈ PC,pc and c ∈ Cf(P ). The duration of c is the sequence
of the random variables quantifying the sojourn times in the states traversed by
c, which is defined by induction on the length of c through the following random-
variable-sequence-valued function:

timed(c) =

{
ε if length(c) = 0

Expratet(P,0) ◦ timed(c′) if c ≡ P
a,λ

−−−→ c′

where ε is the empty duration while Expratet(P,0) is the exponentially distributed
random variable with rate ratet(P, 0) ∈ RI >0.

Definition 9. Let P ∈ PC,pc, C ⊆ If(P ), and θ ∈ (RI >0)∗. The probability
distribution of executing a computation of C within a sequence θ of time units
is given by:

probd(C, θ) =
length(c)≤length(θ)∑

c∈C

prob(c) ·
length(c)∏

i=1
Pr(timed(c)[i] ≤ θ[i])

where Pr(timed(c)[i] ≤ θ[i]) = 1 − e−θ[i]/timea(c)[i] is the cumulative distribu-
tion function of the exponentially distributed random variable timed(c)[i], whose
expected value is timea(c)[i].

We conclude by observing that the average duration (resp. duration) of a finite-
length computation has been defined as the sequence of the average sojourn
times (resp. of the random variables quantifying the sojourn times) in the states
traversed by the computation. The same quantity could have been defined as the
sum of the same basic ingredients, but this would not have been appropriate.

Example 1. Consider the two following process terms:
<g, γ>.<a, λ>.<b, μ>.0 + <g, γ>.<a, μ>.<d, λ>.0
<g, γ>.<a, λ>.<d, μ>.0 + <g, γ>.<a, μ>.<b, λ>.0

with λ �= μ and b �= d. Observed that the two terms have identical non-maximal
computations, we further notice that the first term has the two following maxi-
mal computations each with probability 1/2:

c1,1 ≡ .
g,γ

−−−→ .
a,λ

−−−→ .
b,μ

−−−→ .

c1,2 ≡ .
g,γ

−−−→ .
a,μ

−−−→ .
d,λ

−−−→ .

while the second term has the two following maximal computations each with
probability 1/2:
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c2,1 ≡ .
g,γ

−−−→ .
a,λ

−−−→ .
d,μ

−−−→ .

c2,2 ≡ .
g,γ

−−−→ .
a,μ

−−−→ .
b,λ

−−−→ .
If the average duration were defined as the sum of the average sojourn times,
then c1,1 and c2,2 would have the same trace g ◦ a ◦ b and the same average
duration 1

2·γ + 1
λ + 1

μ , and similarly c1,2 and c2,1 would have the same trace
g ◦a◦d and the same average duration 1

2·γ + 1
μ + 1

λ . This would lead to conclude
that the two terms are equivalent, whereas an external observer equipped with a
button-pushing machine displaying the names of the actions that are performed
and the times at which they are performed [49] would be able to distinguish
between the two terms.

3 Markovian Bisimilarity

Markovian bisimilarity considers two process terms to be equivalent whenever
they are able to mimic each other’s functional and performance behavior step-
wise. In this section we provide the definition of Markovian bisimilarity over PC
and we recall its properties from [32,15,31,14,18,4,23].

3.1 Equivalence Definition

The basic idea behind Markovian bisimilarity is that, whenever a process term
can perform actions with a certain name that reach a certain set of terms at
a certain speed, then any process term equivalent to the given one has to be
able to respond with actions with the same name that reach an equivalent set
of terms at the same speed. This can be formalized through the comparison of
the process term exit rates when executing actions of the same name (and level)
that lead to the same set of equivalent terms.

Definition 10. An equivalence relation B ⊆ PC × PC is a Markovian bisimu-
lation iff, whenever (P1, P2) ∈ B, then for all action names a ∈ Name, levels
l ∈ {0, −1}, and equivalence classes C ∈ PC/B:

rate(P1, a, l, C) = rate(P2, a, l, C)

Since the union of all the Markovian bisimulations can be proved to be the
largest Markovian bisimulation, the definition below follows.

Definition 11. Markovian bisimilarity, denoted by ∼MB, is the union of all the
Markovian bisimulations.

Obviously, ∼MB is strictly finer than classical bisimilarity [43,41] and probabilis-
tic bisimilarity [40]. We conclude with an easy-to-check necessary condition.

Proposition 1. Let P1, P2 ∈ PC. Whenever P1 ∼MB P2, then for all a ∈ Name
and l ∈ {0, −1}:

rate(P1, a, l, PC) = rate(P2, a, l, PC)
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3.2 Exactness

Markovian bisimilarity is consistent with an exact aggregation for CTMCs that
is known under the name of ordinary lumping.

Definition 12. A partition O of the state space of a CTMC is an ordinary
lumping iff, whenever s1, s2 ∈ O for some O ∈ O, then for all O′ ∈ O:

∑
{| λ ∈ RI >0 | ∃s′ ∈ O′. s1

λ
−−−→ s′ |} =

∑
{| λ ∈ RI >0 | ∃s′ ∈ O′. s2

λ
−−−→ s′ |}

Theorem 1. The CTMC-level aggregation induced by ∼MB is an ordinary
lumping.

Corollary 1. The CTMC-level aggregation induced by ∼MB is exact.

3.3 Congruence

Markovian bisimilarity is a congruence with respect to all the operators of
CMPC.

Theorem 2. Let P1, P2 ∈ PC. Whenever P1 ∼MB P2, then:

1. <a, λ̃>.P1 ∼MB <a, λ̃>.P2 for all <a, λ̃> ∈ ActC.
2. P1 + P ∼MB P2 + P and P + P1 ∼MB P + P2 for all P ∈ PC.
3. P1 ‖S P ∼MB P2 ‖S P and P ‖S P1 ∼MB P ‖S P2 for all S ⊆ Name and

P ∈ PC.

As far as recursion is concerned, we need to extend ∼MB to open process terms.
These are terms containing free process variables, i.e. variables not occurring
within the scope of a rec binder.

Definition 13. Let P1, P2 ∈ LC containing a free process variable X. We define
P1 ∼MB P2 iff P1{Q/X} ∼MB P2{Q/X} for all Q ∈ PC.

Theorem 3. Let P1, P2 ∈ LC containing a free process variable X. Whenever
P1 ∼MB P2, then rec X : P1 ∼MB rec X : P2.

3.4 Axiomatization

Markovian bisimilarity has a sound and complete axiomatization over PC, whose
specific axioms are shown Table 1. This includes three basic laws for alternative
composition, two laws characterizing the race policy and the reactive preselection
policy, an expansion law for parallel composition, and three laws for recursion.
As far as AMB

6 is concerned, I and J are finite index sets (if empty, the related
summations are taken to be 0). The validity of this law is a consequence of the
memoryless property of the exponentially distributed durations and of the fact
that the probability that two concurrent exponentially timed actions terminate
simultaneously is zero, which allows the semantics for the parallel composition
operator to be defined in the usual interleaving style.

Theorem 4. The deduction system DED(AMB) is sound and complete for ∼MB
over PC, i.e. for all P1, P2 ∈ PC:

P1 ∼MB P2 ⇐⇒ AMB � P1 = P2
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Table 1. Axiomatization of ∼MB over PC

(AMB
1 ) P1 + P2 = P2 + P1

(AMB
2 ) (P1 + P2) + P3 = P1 + (P2 + P3)

(AMB
3 ) P + 0 = P

(AMB
4 ) <a,λ1>.P + <a, λ2>.P = <a, λ1 + λ2>.P

(AMB
5 ) <a, ∗w1>.P + <a, ∗w2>.P = <a, ∗w1+w2>.P

(AMB
6 )

�
i∈I

<ai, λ̃i>.P1,i ‖S

�
j∈J

<bj , μ̃j>.P2,j =

�
k∈I,ak /∈S

<ak, λ̃k>.

�
P1,k ‖S

�
j∈J

<bj , μ̃j>.P2,j

�
+

�
h∈J,bh /∈S

<bh, μ̃h>.

��
i∈I

<ai, λ̃i>.P1,i ‖S P2,h

�
+

�
k∈I,ak∈S,λ̃k∈ RI >0

�
h∈J,bh=ak,μ̃h=∗wh

<ak, λ̃k · wh
weight(P2,bh)>.(P1,k ‖S P2,h) +

�
h∈J,bh∈S,μ̃h∈ RI >0

�
k∈I,ak=bh,λ̃k=∗vk

<bh, μ̃h · vk
weight(P1,ak)>.(P1,k ‖S P2,h) +

�
k∈I,ak∈S,λ̃k=∗vk

�
h∈J,bh=ak,μ̃h=∗wh

<ak, ∗ vk
weight(P1,ak) · wh

weight(P2,bh) ·(weight(P1,ak)+weight(P2,bh))>.(P1,k ‖S P2,h)

(AMB
7 ) rec X : P = rec Y : P{Y/X} if Y not in P

(AMB
8 ) rec X : P = P{(rec X : P )/X}

(AMB
9 ) Q = P{Q/X} ⇒ Q = rec X : P

3.5 Logical Characterization

Markovian bisimilarity has a modal logic characterization over PC,pc based on
a Markovian variant of the Hennessy-Milner logic [29], in which the diamond
operator is decorated with a rate lower bound.

Definition 14. The set of the formulas of HMLMB is generated by the following
syntax:

φ ::= true | ¬φ | φ ∧ φ | ∇a | 〈a〉λφ

where a ∈ Name and λ ∈ RI >0.

Definition 15. The satisfaction relation |=MB of HMLMB over PC,pc is defined
by structural induction as follows:

P |=MB true
P |=MB ¬φ if P �|=MB φ
P |=MB φ1 ∧ φ2 if P |=MB φ1 and P |=MB φ2
P |=MB ∇a if rate(P, a, 0, PC) = 0
P |=MB 〈a〉λφ if rate(P, a, 0, sat(φ)) ≥ λ

where sat(φ) = {P ′ ∈ PC | P ′ |=MB φ}.
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Theorem 5. Let P1, P2 ∈ PC,pc. Then:
P1 ∼MB P2 ⇐⇒ (∀φ ∈ HMLMB. P1 |=MB φ ⇐⇒ P2 |=MB φ)

We also mention that Markovian bisimilarity has a temporal logic characteriza-
tion based on the branching-time logic CSL [3]. Besides the usual propositional
connectives, this logic comprises:

– a probability operator, which replaces the universal and existential com-
putation quantifiers and allows to refer to the probability of performing a
computation that satisfies a certain formula;

– a time-bounded next operator, which expresses that the next state is reached
within a certain amount of time and a certain formula holds in it;

– a time-bounded until operator, which expresses that a certain formula is
satisfied at some instant no later than a certain amount of time and at all
preceding instants another given formula holds;

– a steady-state operator, which enables to reason about the probability to be
in the long run in some state that satisfies a certain formula.

3.6 Verification Complexity

Markovian bisimilarity can be decided in polynomial time by means of a parti-
tion refinement algorithm in the style of [42]. This algorithm exploits the fact
that ∼MB can be characterized as a fixed point of successively finer relations. In
fact we have:

∼MB =
⋂

i∈NI
∼MB,i

where ∼MB,0 = PC × PC and ∼MB,i for i ≥ 1 is defined as follows: whenever
(P1, P2) ∈∼MB,i, then for all a ∈ Name, l ∈ {0, −1}, and C ∈ PC/∼MB,i−1:

rate(P1, a, l, C) = rate(P2, a, l, C)
In other words, ∼MB,0 induces a trivial partition with a single equivalence class
that coincides with PC, ∼MB,1 refines the previous partition by creating an
equivalence class for each set of terms that satisfy the necessary condition stated
by Prop. 1, and so on.

The algorithm to check whether P1 ∼MB P2 thus proceeds as follows:

1. Build a partition with a single class including all the states of the disjoint
union of [[P1]] and [[P2]], then initialize a list of splitters with this class.

2. Refine the current partition by splitting each of its classes according to the
exit rates towards one of the splitters, then remove this splitter from the list.

3. For each split class, insert into the list of splitters all the resulting subclasses
except for the largest one.

4. If the list of splitters is empty, return yes/no depending on whether the
initial state of [[P1]] and the initial state of [[P2]] belong to the same class or
not, otherwise go back to the refinement step.

The time complexity is O(m · log n), where n is the number of states and m
is the number of transitions of the disjoint union of [[P1]] and [[P2]]. To achieve
this complexity it is necessary to resort to a splay tree when representing the
subclasses arising from the splitting of a class.
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4 Variants of Markovian Bisimilarity

Due to the nice properties presented in the previous section, Markovian bisimi-
larity has received more attention than Markovian testing and trace equivalences.
For this reason, some useful variants of it have appeared in the literature, three
of which will be recalled in this section.

The first one – reward Markovian bisimilarity [10] – takes rewards into ac-
count in order to allow process terms to be compositionally manipulated in a
way that is sensitive to specific performance measures. The second one – interac-
tive Markovian bisimilarity [30] – stems from the interaction of nondeterministic
process calculi and CTMCs and deals with both Markovian branchings and non-
deterministic branchings. The third one – extended Markovian bisimilarity [8]
– considers immediate actions à la GSPN [1] and deals with both Markovian
branchings and prioritized/probabilistic branchings.

4.1 Reward Markovian Bisimilarity

Although Markovian bisimilarity is consistent with ordinary lumping, which is an
exact aggregation, it may happen that specific performance measures distinguish
between ordinarily lumpable states by ascribing them a different meaning.

The usual approach to the specification of performance measures for CTMC-
based models relies on reward structures [34]. This requires associating real
numbers with model behaviors and activities, which are then transferred to the
proper states (as yield rewards) and transitions (as bonus rewards) of the un-
derlying CTMC, respectively. A yield reward expresses the rate at which a gain
(or a loss, if the number is negative) is accumulated while sojourning in the
related state. By contrast, a bonus reward specifies the instantaneous gain (or
loss) implied by the execution of the related transition.

The instant-of-time value of a performance measure specified through a reward
structure is computed as follows for a CTMC:

∑

s
yr(s) · π(s) +

∑

s
λ−−−→ s′

br (s, λ, s′) · φ(s, λ, s′)

where:

– yr(s) is the yield reward associated with state s.
– π(s) is the probability of being in state s at the considered instant of time.

– br(s, λ, s′) is the bonus reward associated with transition s
λ

−−−→ s′.

– φ(s, λ, s′) is the frequency of transition s
λ

−−−→ s′ at the considered instant
of time, which is given by π(s) · λ.

In this setting, ascribing a different meaning to ordinarily lumpable states
amounts to giving different rewards to such states or their outgoing transitions.
In order to manipulate process terms in a performance-sensitive way, the defin-
ition of Markovian bisimilarity can be modified by taking rewards into account.
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Before doing that, we need to extend CMPC with rewards. While bonus re-
wards can naturally be associated with actions, the treatment of yield rewards is
not trivial because in process calculi the concept of state is implicit. An approach
that can be followed is to associate yield rewards with actions too, with the yield
reward of a state being given by the sum of the yield rewards associated with
the actions enabled in that state (additivity assumption).

Therefore, we derive from CMPC a new calculus, which we call concurrent
reward Markovian process calculus (CRMPC):

– The syntax is extended as follows:

P ::= 0
| <a, λ, yr , br>.P
| <a, ∗w, ∗, ∗>.P
| P + P
| P ‖S P
| X
| rec X : P

where yr ∈ RI is the yield reward and br ∈ RI is the bonus reward. We
denote by PCR the set of the closed and guarded process terms of CRMPC.

– The semantic rules are modified accordingly. In particular, the synchroniza-
tion rules change as follows:

P1
a,λ,yr ,br
−−−−−−→ P ′

1 P2
a,∗w,∗,∗
−−−−−−→ P ′

2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P2 ,a) ,yr · w

weight(P2,a) ,br

−−−−−−−−−−−−−−−−−−−−−−−−−−−→P ′
1 ‖S P ′

2

P1
a,∗w,∗,∗
−−−−−−→ P ′

1 P2
a,λ,yr ,br
−−−−−−→ P ′

2 a ∈ S

P1 ‖S P2

a,λ· w
weight(P1 ,a) ,yr · w

weight(P1,a) ,br

−−−−−−−−−−−−−−−−−−−−−−−−−−−→P ′
1 ‖S P ′

2

P1

a,∗w1 ,∗,∗
−−−−−−→ P ′

1 P2

a,∗w2 ,∗,∗
−−−−−−→ P ′

2 a ∈ S

P1 ‖S P2

a,∗ w1
weight(P1,a) · w2

weight(P2,a) ·(weight(P1,a)+weight(P2,a)),∗,∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→P ′

1 ‖S P ′
2

Note that the yield rewards are subject to the same normalization as the
rates, because they are strictly related to the sojourn time in the states.
By contrast, no normalization is needed for the bonus rewards, as they are
earned upon the execution of the transitions.

We now introduce the concept of exit reward, on the basis of which we shall
define the performance-sensitive variant of Markovian bisimilarity.

Definition 16. Let P ∈ PCR, a ∈ Name, l ∈ {0, −1}, and C ⊆ PCR. The
exit reward of P when executing actions of name a and level l that lead to C is
defined through the following real function:
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reward(P, a, l, C) =

{
∑

{| yr+λ·br ∈ RI | ∃P ′ ∈ C. P
a,λ,yr ,br
−−−−−−→ P ′ |} if l = 0

0 if l = −1

where the summation is taken to be zero whenever its multiset is empty.

Definition 17. An equivalence relation B ⊆ PCR ×PCR is a reward Markovian
bisimulation iff, whenever (P1, P2) ∈ B, then for all action names a ∈ Name,
levels l ∈ {0, −1}, and equivalence classes C ∈ PCR/B:

rate(P1, a, l, C) = rate(P2, a, l, C)
reward(P1, a, l, C) = reward(P2, a, l, C)

Definition 18. Reward Markovian bisimilarity, denoted by ∼RMB, is the union
of all the reward Markovian bisimulations.

∼RMB enjoys the same properties as ∼MB. The characterizing axioms are:

<a, λ1, yr1, br1>.P + <a, λ2, yr 2, br2>.P =
<a, λ1 + λ2, yr1 + yr2,

λ1
λ1+λ2

· br1 + λ2
λ1+λ2

· br2>.P

<a, ∗w1 , ∗, ∗>.P + <a, ∗w2 , ∗, ∗>.P = <a, ∗w1+w2 , ∗, ∗>.P

or equivalently:

<a, λ, yr , br>.P = <a, λ, yr + λ · br , 0>.P
<a, λ1, yr1, 0>.P + <a, λ2, yr2, 0>.P = <a, λ1 + λ2, yr 1 + yr2, 0>.P

<a, ∗w1 , ∗, ∗>.P + <a, ∗w2 , ∗, ∗>.P = <a, ∗w1+w2 , ∗, ∗>.P

or equivalently:

<a, λ, yr , br>.P = <a, λ, 0, br + yr
λ >.P

<a, λ1, 0, br1>.P +<a, λ2, 0, br2>.P = <a, λ1+λ2, 0, λ1
λ1+λ2

·br1+ λ2
λ1+λ2

·br2>.P

<a, ∗w1, ∗, ∗>.P + <a, ∗w2 , ∗, ∗>.P = <a, ∗w1+w2 , ∗, ∗>.P

4.2 Interactive Markovian Bisimilarity

Markovian bisimilarity deals with fully probabilistic models. However, it may
happen that not all the details of a model are known in the early design stages.
In that case, nondeterminism is a useful abstraction.

A way to recover nondeterminism in a Markovian framework is to combine
nondeterministic process calculi and CTMCs. This can be accomplished by re-
placing durational actions with two distinct prefix operators – one for interacting
actions that take no time and one for exponential delays – with the inter-process
communication being implemented through the synchronization of visible inter-
acting actions. Since an invisible action – which we denote by τ as usual – takes
no time and cannot be prevented by any synchronization constraint, we assume
maximal progress, i.e. τ -actions take precedence over time passing.

We now derive from CMPC a new calculus, which we call concurrent interac-
tive Markovian process calculus (CIMPC):
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– The syntax is modified as follows:

P ::= 0
| a.P
| (λ).P
| P + P
| P ‖S P
| X
| rec X : P

where a ∈ Name ∪ {τ}. We denote by PCI the set of the closed and guarded
process terms of CIMPC.

– Two transition relations are necessary: one for interacting actions and one
for exponential delays. Besides handling recursion, the semantic rules for
interacting actions include:

a.P
a

−−−→I P

P1
a

−−−→I P ′

P1 + P2
a

−−−→I P ′
P2

a
−−−→I P ′

P1 + P2
a

−−−→I P ′

P1
a

−−−→I P ′
1 a /∈ S

P1 ‖S P2
a

−−−→I P ′
1 ‖S P2

P2
a

−−−→I P ′
2 a /∈ S

P1 ‖S P2
a

−−−→I P1 ‖S P ′
2

P1
a

−−−→I P ′
1 P2

a
−−−→I P ′

2 a ∈ S

P1 ‖S P2
a

−−−→I P ′
1 ‖S P ′

2

while the semantic rules for exponential delays include:

(λ).P
λ

−−−→M P

P1
λ

−−−→M P ′

P1 + P2
λ

−−−→M P ′

P2
λ

−−−→M P ′

P1 + P2
λ

−−−→M P ′

P1
λ

−−−→M P ′
1

P1 ‖S P2
λ

−−−→M P ′
1 ‖S P2

P2
λ

−−−→M P ′
2

P1 ‖S P2
λ

−−−→M P1 ‖S P ′
2

Before defining the interactive variant of Markovian bisimilarity, we adapt to
this setting the concept of exit rate.

Definition 19. Let P ∈ PCI and C ⊆ PCI. The exit rate of P towards C is
defined through the following non-negative real function:

rateM(P, C) =
∑

{| λ ∈ RI >0 | ∃P ′ ∈ C. P
λ

−−−→M P ′ |}

where the summation is taken to be zero whenever its multiset is empty.
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Definition 20. An equivalence relation B ⊆ PCI×PCI is an interactive Markov-
ian bisimulation iff, whenever (P1, P2) ∈ B, then for all action names a ∈
Name ∪ {τ} and equivalence classes C ∈ PCI/B:

– P1
a

−−−→I P ′
1 implies P2

a
−−−→I P ′

2 for some P ′
2 with (P ′

1, P
′
2) ∈ B.

– P1 �
τ

−−−→I implies rateM(P1, C) = rateM(P2, C).

Definition 21. Interactive Markovian bisimilarity, denoted by ∼IMB, is the
union of all the interactive Markovian bisimulations.

∼IMB enjoys properties similar to those of ∼MB. The characterizing axioms are:

a.P + a.P = a.P
(λ1).P + (λ2).P = (λ1 + λ2).P

τ.P + (λ).Q = τ.P

which encode idempotency, race policy, and maximal progress, respectively.
Since τ -actions are invisible and take no time, when comparing process terms

they should be abstracted away. This can be achieved by weakening ∼IMB in
such a way that, after any non-pre-emptable exponential delay, all the states
that can evolve via a finite sequence of τ -transitions to a given class are skipped.

Definition 22. Let C ⊆ PCI. The internal backward closure of C is defined as
follows:

Cτ = {P ′ ∈ PCI | ∃P ∈ C. P ′ τ∗
====⇒I P}

where P ′ τ∗
====⇒I P means that P ′ can evolve to P after a finite sequence of zero

or more τ-transitions.

Definition 23. An equivalence relation B ⊆ PCI × PCI is a weak interactive
Markovian bisimulation iff, whenever (P1, P2) ∈ B, then for all action names
a ∈ Name and equivalence classes C ∈ PCI/B:

– P1
a

−−−→I P ′
1 implies P2

τ∗aτ∗
====⇒I P ′

2 for some P ′
2 with (P ′

1, P
′
2) ∈ B.

– P1
τ

−−−→I P ′
1 implies P2

τ∗
====⇒I P ′

2 for some P ′
2 with (P ′

1, P
′
2) ∈ B.

– P1
τ∗

====⇒I P ′
1 �

τ
−−−→I implies P2

τ∗
====⇒I P ′

2 �
τ

−−−→I for some P ′
2 with

rateM(P ′
1, Cτ ) = rateM(P ′

2, Cτ ).

Definition 24. Weak interactive Markovian bisimilarity, denoted by ≈IMB, is
the union of all the weak interactive Markovian bisimulations.

≈IMB is strictly coarser than ∼IMB but it is not a congruence with respect to
alternative composition. As usual, initial τ -actions need a different treatment.

Definition 25. Let P1, P2 ∈ PCI. We say that P1 is weakly interactive Markov-
ian bisimulation congruent to P2, written P1 �IMB P2, iff for all action names
a ∈ Name ∪ {τ} and equivalence classes C ∈ PCI/≈IMB:
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– P1
a

−−−→I P ′
1 implies P2

τ∗aτ∗
====⇒I P ′

2 for some P ′
2 with P ′

1 ≈IMB P ′
2.

– P2
a

−−−→I P ′
2 implies P1

τ∗aτ∗
====⇒I P ′

1 for some P ′
1 with P ′

1 ≈IMB P ′
2.

– P1 �
τ

−−−→I iff P2 �
τ

−−−→I .

– P1 �
τ

−−−→I implies rateM(P1, C) = rateM(P2, C).

It turns out ∼IMB ⊂ �IMB ⊂ ≈IMB with �IMB enjoying the same properties
as ∼IMB. Moreover, �IMB has the following additional characterizing axioms:

a.τ.P = a.P
P + τ.P = τ.P

a.(P + τ.Q) + τ.Q = a.(P + τ.Q)
(λ).τ.P = (λ).P

which are called τ -laws and witness the capability of �IMB of abstracting from
τ -actions.

4.3 Extended Markovian Bisimilarity

Markovian bisimilarity is restricted to exponential distributions. Although their
combinations can approximate most of general distributions arbitrarily closely,
some useful distributions are left out, specially the one representing a zero
duration. The capability of expressing zero durations would also constitute a
good performance abstraction mechanism, similarly to the functional abstrac-
tion mechanism given by the invisible action name τ .

In the modeling process it often happens to deal with choices among logical
events (like the reception of a message vs. its loss) with which no timing can
reasonably be associated, or to encounter activities that are several orders of
magnitude faster than the activities that are important for the evaluation of
certain performance measures. In all of these cases, using a zero duration would
be an adequate solution from the modeling standpoint.

Zero durations can be introduced by admitting the so-called immediate ac-
tions. Each of them has a name and a zero duration (or, equivalently, an infinite
rate), together with a priority level l ∈ NI >0 and a weight w ∈ RI >0. Priority
levels and weights are used to choose among several immediate actions that are
simultaneously enabled. According to the generative [26] preselection policy, each
of the highest priority immediate actions that are enabled is given an execution
probability proportional to its weight.

It is worth noting that this extended Markovian framework is complemen-
tary with respect to the interactive Markovian framework, because it is as if
nondeterminism were ruled out by augmenting each interacting action with a
priority level and a weight. Here maximal progress is subsumed by pre-emption:
immediate τ -actions take precedence over all the lower priority actions.

We now derive from CMPC a new calculus, which we call concurrent extended
Markovian process calculus (CEMPC):
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– The syntax is extended as follows:

P ::= 0
| <a, λ>.P
| <a, ∞l,w>.P

| <a, ∗l′

w>.P
| P + P
| P ‖S P
| X
| rec X : P

where a ∈ Name ∪ {τ}, l ∈ NI >0, and l′ ∈ NI . We denote by PCE the set
of the closed and guarded process terms of CEMPC. We point out that
every passive action has been augmented with a priority constraint, which is
useful to keep under control the process priority interrelation. Besides syn-
chronizing with passive actions with the same priority constraint, a passive
action with priority constraint 0 can only synchronize with an exponentially
timed action, while a passive action with priority constraint l′ > 0 can only
synchronize with an immediate action with priority level l = l′.

– The additional semantic rules specific for immediate actions are the
following:

<a, ∞l,w>.P
a,∞l,w

−−−→ P

P1
a,∞l,w

−−−→ P ′
1 P2

a,∗l
v−−−→ P ′

2 a ∈ S

P1 ‖S P2

a,∞l,w· v
weight(P2,a,l)

−−−−−−−−−−−−−−−→ P ′
1 ‖S P ′

2

P1
a,∗l

v−−−→ P ′
1 P2

a,∞l,w

−−−→ P ′
2 a ∈ S

P1 ‖S P2

a,∞l,w· v
weight(P1,a,l)

−−−−−−−−−−−−−−−→ P ′
1 ‖S P ′

2

Note that, consistently with the asymmetric action synchronization disci-
pline, immediate actions can synchronize only with passive actions.

Before defining the extended variant of Markovian bisimilarity, we extend to
immediate actions the notion of exit rate. Below, the priority level of an action is
encoded through a number in ZZ , which is 0 if the action is exponentially timed,
l if the action rate is ∞l,w, −l − 1 if the action rate is ∗l

w.

Definition 26. Let P ∈ PCE, a ∈ Name ∪ {τ}, l ∈ ZZ , and C ⊆ PCE. The exit
rate of P when executing actions of name a and priority level l that lead to C is
defined through the following non-negative real function:

rate(P, a, l, C) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
{| λ ∈ RI >0 | ∃P ′ ∈ C. P

a,λ
−−−→ P ′ |} if l = 0

∑
{| w ∈ RI >0 | ∃P ′ ∈ C. P

a,∞l,w

−−−→ P ′ |} if l > 0
∑

{| w ∈ RI >0 | ∃P ′ ∈ C. P
a,∗−l−1

w−−−→ P ′ |} if l < 0
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where each summation is taken to be zero whenever its multiset is empty.

In the following we denote by priτ
∞(P ) the priority level of the highest priority

immediate τ -action enabled by P , and we set pri τ
∞(P ) = 0 if P does not enable

any immediate τ -action. Moreover, given l ∈ ZZ , we use no-pre(l, P ) to denote
that no action whose priority level is l can be pre-empted in P . Formally, this is
the case whenever l ≥ pri τ

∞(P ) or −l − 1 ≥ pri τ
∞(P ).

Definition 27. An equivalence relation B ⊆ PCE×PCE is an extended Markov-
ian bisimulation iff, whenever (P1, P2) ∈ B, then for all action names a ∈
Name ∪ {τ}, equivalence classes C ∈ PCE/B, and priority levels l ∈ ZZ such
that no-pre(l, P1) and no-pre(l, P2):

rate(P1, a, l, C) = rate(P2, a, l, C)

Definition 28. Extended Markovian bisimilarity, denoted by ∼EMB, is the
union of all the extended Markovian bisimulations.

∼EMB enjoys the same properties as ∼MB. The characterizing axioms are:

<a, λ1>.P + <a, λ2>.P = <a, λ1 + λ2>.P
<a, ∞l,w1>.P + <a, ∞l,w2>.P = <a, ∞l,w1+w2>.P

<a, ∗l
w1

>.P + <a, ∗l
w2

>.P = <a, ∗l
w1+w2

>.P
<τ, ∞l,w>.P + <a, λ>.Q = <τ, ∞l,w>.P

<τ, ∞l,w>.P + <a, ∞l′,w′>.Q = <τ, ∞l,w>.P if l > l′

<τ, ∞l,w>.P + <a, ∗l′

w′>.Q = <τ, ∞l,w>.P if l > l′

with the last three encoding pre-emption.
Similarly to the interactive framework, when comparing process terms the

immediate τ -actions should be abstracted away, as they are unobservable both
from the functional viewpoint and from the performance viewpoint. However,
weakening ∼EMB is harder than weakening ∼IMB, because it is necessary to
keep track of the priority levels and of the weights associated with the actions
to be abstracted away. Furthemore, it is also necessary to take into account the
degree of observability of the states.

Definition 29. Let P ∈ PCE and l ∈ NI >0. We say that P is l-unobservable iff
priτ

∞(P ) = l and P does not enable any visible action with priority level l′ ∈ ZZ
such that l′ ≥ l or −l′ − 1 ≥ l.

Definition 30. Let n ∈ NI >0 and P1, P2, . . . , Pn+1 ∈ PCE. A computation c of
length n:

P1

τ,∞l1,w1−−−→ P2

τ,∞l2,w2−−−→ . . .
τ,∞ln,wn−−−→ Pn+1

is unobservable iff for all i = 1, . . . , n process term Pi is li-unobservable. In that
case, the probability of executing c is given by:

prob(c) =
n∏

i=1

wi

rate(Pi,τ,li,PCE)
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Definition 31. Let P ∈ PCE, a ∈ Name ∪{τ}, l ∈ ZZ , and C ⊆ PCE. The weak
exit rate of P when executing actions with name a and priority level l that lead
to C is defined through the following non-negative real function:

ratew(P, a, l, C) =
∑

P ′∈Cw

rate(P, a, l, {P ′}) · probw(P ′, C)

where:

– Cw is the weak backward closure of C:
Cw = C ∪ {Q ∈ PCE − C | Q can reach C via unobservable computations}

– probw is a RI ]0,1]-valued function representing the sum of the probabilities of
all the unobservable computations from a term in Cw to C:

probw(P ′, C) =

⎧
⎨

⎩

1 if P ′ ∈ C
∑

{| prob(c) |c unobservable computation from P ′ to C |}
if P ′ ∈ Cw − C

The definition of ∼EMB can be weakened by using ratew instead of rate and by
skipping the weak exit rate comparison for some equivalence classes that contain
certain unobservable states:

– An observable state is a state that enables an observable action that cannot
be pre-empted by any enabled unobservable action.

– An initially unobservable state is a state in which all the enabled observable
actions are pre-empted by some enabled unobservable action, but at least
one of the computations starting at this state with one of the higher priority
enabled unobservable actions reaches an observable state.

– A fully unobservable state is a state in which all the enabled observable
actions are pre-empted by some enabled unobservable action, and all the
computations starting at this state with one of the higher priority enabled
unobservable actions are unobservable (note that 0 is fully unobservable).
We denote by PCE,fu the set of the fully unobservable process terms of PCE.

Definition 32. An equivalence relation B ⊆ PCE × PCE is a weak extended
Markovian bisimulation iff, whenever (P1, P2) ∈ B, then for all action names a ∈
Name ∪ {τ} and priority levels l ∈ ZZ such that no-pre(l, P1) and no-pre(l, P2):

ratew(P1, a, l, C) = ratew(P2, a, l, C) for all observable C ∈ PCE/B
ratew(P1, a, l, PCE,fu) = ratew(P2, a, l, PCE,fu)

Definition 33. Weak extended Markovian bisimilarity, denoted by ≈EMB, is the
union of all the weak extended Markovian bisimulations.

≈EMB enjoys the same properties as ∼EMB except for congruence. In fact, to
recover congruence with respect to parallel composition, we have to restrict our-
selves to the set PCE,wp of the well-prioritized process terms of PCE. This is the
smallest subset of PCE closed under null term, action prefix, alternative compo-
sition, and recursion such that the following holds: If P1, P2 ∈ PCE,wp and all the
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immediate/passive transitions of [[P1]] (resp. [[P2]]) have priority level/constraint
less than the priority level of any unobservable transition of [[P2]] (resp. [[P1]]),
then P1 ‖S P2 ∈ PCE,wp.

The additional characterizing axioms of ≈EMB over PCE,wp are the following:

<a, λ>.
∑

i∈I

<τ, ∞l,wi>.Pi =
∑

i∈I

<a, λ · wi/ Σk∈I wk>.Pi

<a, ∞l′,w′>.
∑

i∈I

<τ, ∞l,wi>.Pi =
∑

i∈I

<a, ∞l′,w′·wi/ Σk∈I wk
>.Pi

<a, ∗l′

w′>.
∑

i∈I

<τ, ∞l,wi>.Pi =
∑

i∈I

<a, ∗l′

w′·wi/ Σk∈I wk
>.Pi

which witness the capability of ≈EMB of abstracting from immediate τ -actions
in a way that correctly takes into account their weights.

5 Markovian Testing Equivalence

Markovian testing equivalence considers two process terms to be equivalent
whenever an external observer, who can interact with them by means of tests, is
not able to distinguish between them from the functional or performance view-
point. In this section we provide the definition of Markovian testing equivalence
over PC,pc and we recall its properties from [7,9].

5.1 Test Formalization

The only way that the external observer has to infer information about the
behavior of the process terms is to interact with them by means of tests and
look at their reactions. Was the test passed? If so, with which probability? And
how long did it take to pass the test?

In our Markovian framework with asymmetric action synchronization disci-
pline, the most convenient way to represent a test is through another process
term composed of passive actions only, which interacts with the terms to be
tested by means of a parallel composition operator that enforces synchroniza-
tion on any action name. In this way, the parallel composition of a performance
closed term to be tested and a test will still be performance closed.

From the testing viewpoint, in any of its states a process term to be tested
generates the proposal of an action to be executed by means of a race among the
exponentially timed actions enabled in that state. Then the test either reacts by
participating in the interaction with the process term through a passive action
having the same name as the proposed exponentially timed action, or blocks the
interaction if it has no passive actions with the proposed name.

Since it is necessary to measure the probability with which process terms pass
tests within a finite amount of time, for the test formalization we can restrict
ourselves to non-recursive terms (composed of passive actions only). In other
words, the expressiveness provided by labeled multitransition systems with a
finite dag-like structure will be enough for the tests.
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In order to represent the fact that a test is passed or not, each of the terminal
nodes of the dag-like semantic model underlying a test must be suitably labeled
so as to establish whether it is a success or failure state. At the process calculus
level, this amounts to replace 0 with two zeroary operators, which we denote by
“s” (for success) and “f” (for failure).

Ambiguous terms like s+ f will be avoided in the test syntax by replacing the
action prefix operator and the binary alternative composition operator with a
set of n-ary guarded alternative composition operators, with n ranging over the
whole NI >0.

Definition 34. The set T of the tests is generated by the following syntax:

T ::= f
| s
|

∑

i∈I

<ai, ∗wi>.Ti

where I is a non-empty finite index set.

5.2 Equivalence Definition

Markovian testing equivalence relies on comparing the process term probabilities
of performing a successful test-driven computation within a given sequence of
average amounts of time. A test-driven computation is a sequence of transitions
in the labeled multitransition system underlying the parallel composition of a
process term and a test. Due to the restrictions imposed on the test syntax, all
the considered test-driven computations will turn out to have a finite length,
hence the inductive definitions of Sect. 2.3 apply to them.

Definition 35. Let P ∈ PC,pc and T ∈ T . The interaction system of P and T
is process term P ‖Name T ∈ PC,pc, where we say that:

– A configuration is a state of [[P ‖Name T ]].
– A configuration is formed by a process part and a test part.
– A configuration is successful (resp. failed) iff its test part is “s” (resp. “f”).
– A computation is successful (resp. failed) iff so is its last configuration.
– A computation that is neither successful nor failed is interrupted.

We denote by SC(P, T ) the multiset of the successful computations
of Cf(P ‖Name T ).

Note that SC(P, T ) ⊆ If(P ‖Name T ), because of the maximality of the successful
test-driven computations, and that SC(P, T ) is finite, because of the finitely-
branching structure of the considered terms.

Definition 36. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian testing equiv-
alent to P2, written P1 ∼MT P2, iff for all tests T ∈ T and sequences θ ∈ (RI >0)∗

of average amounts of time:
prob(SC≤θ(P1, T )) = prob(SC≤θ(P2, T ))
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Obviously, ∼MT is strictly finer than classical testing equivalence [21] and prob-
abilistic testing equivalence [17,19]. On the other hand, it is strictly coarser than
∼MB as it is less sensitive to branching points. A consequence of this fact is that
the derivatives of two Markovian testing equivalent terms are not necessarily
related by ∼MT. We conclude with a necessary condition.

Proposition 2. Let P1, P2 ∈ PC,pc and T ∈ T . Whenever P1 ∼MT P2, then
for all ck ∈ SC(Pk, T ) with k ∈ {1, 2} there exists ch ∈ SC(Ph, T ) with h ∈
{1, 2} − {k} such that:

trace(ck) = trace(ch)
timea(ck) = timea(ch)

and for all a ∈ Name:
rate(Pk,last, a, 0, PC) = rate(Ph,last, a, 0, PC)

with Pk,last (resp. Ph,last) being the process part of the last configuration of ck

(resp. ch).

5.3 Alternative Characterizations

We now present two alternative characterizations of ∼MT. The first one is based
on the probability distribution of passing a test within a certain sequence of
amounts of time. A consequence of this characterization is that considering the
(more accurate) probability distributions quantifying the durations of the test-
driven computations leads to the same equivalence as considering the (easier to
work with) average durations of the test-driven computations. This justifies the
use of expected values instead of random variables in the definition of ∼MT.

Definition 37. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian distribution-
testing equivalent to P2, written P1 ∼MT,d P2, iff for all tests T ∈ T and se-
quences θ ∈ (RI >0)∗ of amounts of time:

probd(SC(P1, T ), θ) = probd(SC(P2, T ), θ)

Theorem 6. Let P1, P2 ∈ PC,pc. Then:
P1 ∼MT,d P2 ⇐⇒ P1 ∼MT P2

The second alternative characterization of ∼MT is based on traces that are suit-
ably extended with the sets of the action names permitted at each step by the
environment. This means that it is possible to characterize ∼MT in a way that
fully abstracts from the tests. A consequence of the proof of this characterization
is the identification of a set of canonical tests, i.e. a set of tests that are neces-
sary and sufficient in order to establish whether two process terms are Markovian
testing equivalent. Each such test admits a single computation leading to suc-
cess, whose states can have additional computations each leading to failure in
one step.

Definition 38. An element σ of (Name × 2Name)∗ is an extended trace iff ei-
ther σ is the empty sequence or:

σ ≡ (a1, E1) ◦ (a2, E2) ◦ . . . ◦ (an, En)
for some n ∈ NI >0 with ai ∈ Ei for each i = 1, . . . , n. We denote by ET the set
of the extended traces.
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Definition 39. Let σ ∈ ET . The trace associated with σ is defined by induction
on the length of σ through the following Name∗-valued function:

trace(σ) =
{

ε if length(σ) = 0
a ◦ trace(σ′) if σ ≡ (a, E) ◦ σ′

where ε is the empty trace.

Definition 40. Let P ∈ PC,pc, c ∈ Cf(P ), and σ ∈ ET . We say that c is com-
patible with σ iff:

trace(c) = trace(σ)
We denote by CC(P, σ) the multiset of the computations of Cf(P ) that are com-
patible with σ.

Note that CC(P, σ) ⊆ If(P ) because of the compatibility of the considered com-
putations with the same extended trace σ.

Definition 41. Let P ∈ PC,pc, σ ∈ ET , and c ∈ CC(P, σ). The probability of
executing c with respect to σ is defined by induction on the length of c through
the following RI ]0,1]-valued function:

probσ(c) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if length(c) = 0
λ�

b∈E
rate(P,b,0,PC) · probσ′

(c′) if c ≡ P
a,λ

−−−→ c′

with σ ≡ (a, E) ◦ σ′

We also define the probability of executing a computation of C with respect to σ
as:

probσ(C) =
∑

c∈C

probσ(c)

for all C ⊆ CC(P, σ).

Definition 42. Let P ∈ PC,pc, σ ∈ ET , and c ∈ CC(P, σ). The average duration
of c with respect to σ is defined by induction on the length of c through the
following (RI >0)∗-valued function:

timeσ
a (c) =

⎧
⎪⎪⎨

⎪⎪⎩

ε if length(c) = 0
1�

b∈E
rate(P,b,0,PC) ◦ timeσ′

a (c′) if c ≡ P
a,λ

−−−→ c′

with σ ≡ (a, E) ◦ σ′

where ε is the empty average duration. We also define the multiset of the com-
putations of C whose average duration with respect to σ is not greater than θ
as:

Cσ
≤θ = {| c ∈ C | length(c) ≤ length(θ) ∧

∀i = 1, . . . , length(c). timeσ
a (c)[i] ≤ θ[i] |}

for all C ⊆ CC(P, σ) and θ ∈ (RI >0)∗.
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Definition 43. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian extended-trace
equivalent to P2, written P1 ∼MTr,e P2, iff for all extended traces σ ∈ ET and
sequences θ ∈ (RI >0)∗ of average amounts of time:

probσ(CCσ
≤θ(P1, σ)) = probσ(CCσ

≤θ(P2, σ))

Theorem 7. Let P1, P2 ∈ PC,pc. Then:
P1 ∼MTr,e P2 ⇐⇒ P1 ∼MT P2

Definition 44. The set Tc of the canonical tests is generated by the following
syntax:

T ::= s
| <a, ∗1>.T +

∑

b∈E−{a}
<b, ∗1>.f

where the summation is absent whenever E − {a} = ∅.

Corollary 2. Let P1, P2 ∈ PC,pc. Then P1 ∼MT P2 iff for all T ∈ Tc and
θ ∈ (RI >0)∗:

prob(SC≤θ(P1, T )) = prob(SC≤θ(P2, T ))

5.4 Exactness

Markovian testing equivalence induces a CTMC-level aggregation that is strictly
coarser than ordinary lumping and was not known in the CTMC field. This
aggregation can be depicted through the following rewriting rule:

λ1

|  |I

|  |Iλ

μ |  |,1Iμ1,1 |  |II J|  |, |      |

0s

1s s

μ1, J|   |1
μ

i,js

|  |Iλ
Σ λkk

λ1
Σ λkk

___ . μ1,1 |  |II J|  |, |      |

s’

s’’

Σ λkk

___ . μ

i,js

where:

– I is a finite index set with |I| ≥ 2.
– k ranges over I.
– Ji is a non-empty finite index set for all i ∈ I.
– For all i1, i2 ∈ I: ∑

j∈Ji1

μi1,j =
∑

j∈Ji2

μi2,j

with each summation being zero whenever its index set is empty.

Theorem 8. The CTMC-level aggregation induced by ∼MT is exact.
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5.5 Congruence

Markovian testing equivalence is a congruence with respect to all the operators
of CMPC. In particular, we have what follows.

Theorem 9. Let P1, P2 ∈ PC,pc. Whenever P1 ∼MT P2, then:

1. <a, λ>.P1 ∼MT <a, λ>.P2 for all <a, λ> ∈ ActS.
2. P1 + P ∼MT P2 + P and P + P1 ∼MT P + P2 for all P ∈ PC,pc.
3. P1 ‖S P ∼MT P2 ‖S P and P ‖S P1 ∼MT P ‖S P2 for all S ⊆ Name and P ∈

PC containing only passive actions such that P1 ‖S P, P2 ‖S P ∈ PC,pc.

5.6 Axiomatization

Markovian testing equivalence is strictly coarser than Markovian bisimilarity,
hence the axioms of Table 1 are still valid for ∼MT over PC,pc, but not complete.
In fact, the two process terms depicted below (with P ′ �∼MB P ′′):

MT~
~MB/1λ 2λ +1λ 2λ

+1λ 2λ
b,_____ μ1λ .

+1λ 2λ
b,_____ μλ2 .

a, a,

μ μb, b,

a,

P’ P’P’’ P’’

show that ∼MB is highly sensitive to branching points. By contrast, ∼MT allows
choices to be deferred as long as they are related to branches starting with
actions having the same name that are immediately followed by actions having
the same names and the same total rates in all the branches.

The two terms above constitute the simplest instance of an axiom schema
subsuming AMB

4 that characterizes ∼MT. The axiom schema is the following:
∑

i∈I

<a, λi>.
∑

j∈Ji

<bi,j , μi,j>.Pi,j =

<a, Σ
k∈I

λk>.
∑

i∈I

∑

j∈Ji

<bi,j ,
λi

Σk∈I λk
· μi,j>.Pi,j

where:

– I is a finite index set with |I| ≥ 2.
– Ji is a finite index set for all i ∈ I, with the related summation being 0

whenever Ji = ∅.
– For all i1, i2 ∈ I and b ∈ Name:

∑

j∈Ji1

{| μi1,j | bi1,j = b |} =
∑

j∈Ji2

{| μi2,j | bi2,j = b |}

with each summation being zero whenever its index set is empty.
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5.7 Logical Characterization

Markovian testing equivalence has a modal logic characterization over PC,pc
based on a Markovian variant of a restriction of the Hennessy-Milner logic, in
which both negation and logical conjunction are ruled out, while the diamond
operator is made dependent from the environment.

Unlike HMLMB, where the syntax is decorated with rate lower bounds and
the satisfaction relation is qualitative, here there is no extra information in the
syntax and a quantitative interpretation inspired by [39] is adopted. This es-
tablishes the probability with which a process term satisfies a formula quickly
enough on average, i.e. within a given sequence of average amounts of time.

Definition 45. The set of the formulas of HMLMT is generated by the following
syntax:

φ ::= true | 〈a|E〉φ

where a ∈ Name and E ⊆ Name such that a ∈ E.

Definition 46. The interpretation function [[.]]MT of HMLMT over PC,pc ×
(RI >0)∗ is defined by structural induction as follows:

[[true]]MT(P, θ) = 1

[[〈a|E〉φ]]MT(P, θ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if θ = ε ∨ 1
Σ

b∈E
rate(P,b,0,PC) > θ[1]

∑

P
a,λ
−−−→ P ′

λ
Σ

b∈E
rate(P,b,0,PC) · [[φ]]MT(P ′, θ′)

if θ = t ◦ θ′ ∧ 1
Σ

b∈E
rate(P,b,0,PC) ≤ t

where the summation is taken to be zero whenever there are no a-transitions
departing from P .

Theorem 10. Let P1, P2 ∈ PC,pc. Then:
P1 ∼MT P2 ⇐⇒ ∀φ ∈ HMLMT. ∀θ ∈ (RI >0)∗. [[φ]]MT(P1, θ) = [[φ]]MT(P2, θ)

5.8 Verification Complexity

Markovian testing equivalence can be decided in polynomial time because two
action-labeled CTMCs are Markovian testing equivalent iff their corresponding
embedded action-labeled DTMCs (with suitably enriched labels) are probabilis-
tic testing equivalent, with the latter coinciding with probabilistic ready equiv-
alence and hence being decidable in polynomial time [35].

The algorithm to check whether P1 ∼MT P2 thus proceeds as follows:

1. Transform [[P1]] and [[P2]] into their corresponding embedded discrete-time
versions:
(a) Divide the rate of each transition by the total exit rate of its source state.
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(b) Augment the name of each transition with the total exit rate of its source
state.

2. Compute the equivalence R that relates any two states of the disjoint union
of [[P1]] and [[P2]] such that their two sets of (original) action names labeling
their outgoing transitions coincide.

3. For each equivalence class R induced by R, apply the algorithm of [47] to
check the embedded discrete-time versions of [[P1]] and [[P2]] for probabilistic
language equivalence by considering R as the set of accepting states.

The time complexity is O(n5), where n is the number of states of the disjoint
union of [[P1]] and [[P2]].

6 Markovian Trace Equivalence

Markovian trace equivalence considers two process terms to be equivalent when-
ever they are able to perform computations with the same functional and per-
formance characteristics. In this section we provide the definition of Markovian
trace equivalence over PC,pc and we recall its properties from [49,7,9].

6.1 Equivalence Definition

Markovian trace equivalence relies on comparing the process term probabilities
of performing a computation within a given sequence of average amounts of
time. We emphasize that here, given a process term P ∈ PC,pc, we no longer
have tests that interact with P . Instead, we directly consider the finite-length
computations of P , to which the inductive definitions of Sect. 2.3 apply.

Definition 47. Let P ∈ PC,pc, c ∈ Cf(P ), and α ∈ Name∗. We say that c is
compatible with α iff: trace(c) = α
We denote by CC(P, α) the multiset of the finite-length computations of P that
are compatible with α.

Note that CC(P, α) ⊆ If(P ), because of the compatibility of the computations
with the same trace α, and that CC(P, α) is finite, because of the finitely-
branching structure of the considered terms.

Definition 48. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian trace equiv-
alent to P2, written P1 ∼MTr P2, iff for all traces α ∈ Name∗ and sequences
θ ∈ (RI >0)∗ of average amounts of time:

prob(CC≤θ(P1, α)) = prob(CC≤θ(P2, α))

Obviously, ∼MTr is strictly finer than classical trace equivalence [33] and prob-
abilistic trace equivalence [36]. On the other hand, it is strictly coarser than
∼MT as it completely overrides branching points. Thus, similarly to ∼MT, the
derivatives of two Markovian trace equivalent terms are not necessarily related
by ∼MTr. We conclude with a necessary condition.
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Proposition 3. Let P1, P2 ∈ PC,pc and α ∈ Name∗. Whenever P1 ∼MTr P2,
then for all ck ∈ CC(Pk, α) with k ∈ {1, 2} there exists ch ∈ CC(Ph, α) with
h ∈ {1, 2} − {k} such that:

trace(ck) = trace(ch)
timea(ck) = timea(ch)

and:
ratet(Pk,last, 0) = ratet(Ph,last, 0)

with Pk,last (resp. Ph,last) being the last configuration of ck (resp. ch).

6.2 Alternative Characterizations

Similarly to ∼MT, it turns out that ∼MTr has an alternative characterization
based on the probability distribution of executing a trace within a certain se-
quence of amounts of time. A consequence of this characterization is that con-
sidering the (more accurate) probability distributions quantifying the durations
of the computations leads to the same equivalence as considering the (easier
to work with) average durations of the computations. This justifies the use of
expected values instead of random variables in the definition of ∼MTr.

Definition 49. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian distribution-
trace equivalent to P2, written P1 ∼MTr,d P2, iff for all traces α ∈ Name∗ and
sequences θ ∈ (RI >0)∗ of amounts of time:

probd(CC(P1, α), θ) = probd(CC(P2, α), θ)

Theorem 11. Let P1, P2 ∈ PC,pc. Then:
P1 ∼MTr,d P2 ⇐⇒ P1 ∼MTr P2

6.3 Other Markovian Trace-Based Equivalences

Like for classical trace equivalence, it is possible to define some variants of ∼MTr,
which are based on the notions of completed trace, failure set, ready set, failure
trace, and ready trace, respectively.

These variants were originally conceived to overcome some drawbacks of clas-
sical trace equivalence. Completed traces are traces ending up in deadlock states,
so considering them apart is useful to make classical trace equivalence sensitive
to deadlock. A failure set is a set of names of actions that cannot be executed in
a certain state, and a failure trace is a trace extended at each step with a fail-
ure set. Considering failures makes classical trace equivalence sensitive to safety
properties. Likewise, a ready set is the set of the names of all the actions that
must be executable in a certain state, and a ready trace is a trace extended at
each step with a ready set. Considering readies makes classical trace equivalence
sensitive to liveness properties.

Definition 50. Let P ∈ PC,pc, c ∈ Cf(P ), and α ∈ Name∗. We say that c is a
maximal computation compatible with α iff c ∈ CC(P, α) and the last configura-
tion of c is deadlocked. We denote by MCC(P, α) the multiset of the finite-length
maximal computations of P that are compatible with α.
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Definition 51. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian completed-
trace equivalent to P2, written P1 ∼MTr,c P2, iff for all traces α ∈ Name∗ and
sequences θ ∈ (RI >0)∗ of average amounts of time:

prob(CC≤θ(P1, α)) = prob(CC≤θ(P2, α))
prob(MCC≤θ(P1, α)) = prob(MCC≤θ(P2, α))

Definition 52. Let P ∈ PC,pc, c ∈ Cf(P ), and ϕ ≡ (α, F) ∈ Name∗ × 2Name.
We say that c is a failure computation compatible with ϕ iff c ∈ CC(P, α) and
the last configuration of c cannot execute any action whose name belongs to the
failure set F . We denote by FCC(P, ϕ) the multiset of the finite-length failure
computations of P that are compatible with ϕ.

Definition 53. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian failure equiv-
alent to P2, written P1 ∼MF P2, iff for all traces with final failure set ϕ ∈
Name∗ × 2Name and sequences θ ∈ (RI >0)∗ of average amounts of time:

prob(FCC≤θ(P1, ϕ)) = prob(FCC≤θ(P2, ϕ))

Definition 54. Let P ∈ PC,pc, c ∈ Cf(P ), and ρ ≡ (α, R) ∈ Name∗ × 2Name.
We say that c is a ready computation compatible with ρ iff c ∈ CC(P, α) and
the set of the names of all the actions executable by the last configuration of c
coincides with the ready set R. We denote by RCC(P, ρ) the multiset of the
finite-length ready computations of P that are compatible with ρ.

Definition 55. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian ready equiv-
alent to P2, written P1 ∼MR P2, iff for all traces with final ready set ρ ∈
Name∗ × 2Name and sequences θ ∈ (RI >0)∗ of average amounts of time:

prob(RCC≤θ(P1, ρ)) = prob(RCC≤θ(P2, ρ))

Definition 56. Let P ∈ PC,pc, c ∈ Cf(P ), and φ ∈ (Name × 2Name)∗. We say
that c is a failure-trace computation compatible with φ iff c is compatible with
the trace component of φ and each configuration of c cannot execute any action
whose name belongs to the corresponding failure set in the failure component
of φ. We denote by FT CC(P, φ) the multiset of the finite-length failure-trace
computations of P that are compatible with φ.

Definition 57. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian failure-trace
equivalent to P2, written P1 ∼MFTr P2, iff for all failure traces φ ∈ (Name ×
2Name)∗ and sequences θ ∈ (RI >0)∗ of average amounts of time:

prob(FT CC≤θ(P1, φ)) = prob(FT CC≤θ(P2, φ))

Definition 58. Let P ∈ PC,pc, c ∈ Cf(P ), and  ∈ (Name × 2Name)∗. We say
that c is a ready-trace computation compatible with  iff c is compatible with the
trace component of  and the sets of the names of all the actions executable by
the configurations of c coincide with the corresponding ready sets in the ready
component of . We denote by RT CC(P, ) the multiset of the finite-length ready-
trace computations of P that are compatible with .
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Definition 59. Let P1, P2 ∈ PC,pc. We say that P1 is Markovian ready-trace
equivalent to P2, written P1 ∼MRTr P2, iff for all ready traces  ∈ (Name ×
2Name)∗ and sequences θ ∈ (RI >0)∗ of average amounts of time:

prob(RT CC≤θ(P1, )) = prob(RT CC≤θ(P2, ))

Similarly to the probabilistic case [36,35], in the Markovian framework trace
equivalence becomes deadlock sensitive, hence ∼MTr coincides with Markov-
ian completed-trace equivalence. Moreover, Markovian failure equivalence co-
incides with Markovian ready equivalence – with both coinciding with ∼MT –
and Markovian failure-trace equivalence coincides with Markovian ready-trace
equivalence. As a consequence, the Markovian linear-time/branching-time spec-
trum turns out to be more condensed than the nondeterministic one [25].

Theorem 12. The Markovian linear-time/branching-time spectrum is:
∼MB ⊂ ∼MRTr = ∼MFTr ⊂ ∼MR = ∼MT = ∼MTr,e = ∼MF ⊂ ∼MTr,c = ∼MTr

6.4 Exactness

From the point of view of the induced CTMC-level aggregation, nothing changes
when moving from ∼MT to ∼MTr.

Theorem 13. ∼MTr induces the same CTMC-level aggregation as ∼MT.

Corollary 3. The CTMC-level aggregation induced by ∼MTr is exact.

6.5 Congruence

Markovian trace equivalence is a congruence with respect to all the operators of
SMPC. In particular, we have what follows.

Theorem 14. Let P1, P2 ∈ PS. Whenever P1 ∼MTr P2, then:

1. <a, λ>.P1 ∼MTr <a, λ>.P2 for all <a, λ> ∈ ActS.
2. P1 + P ∼MTr P2 + P and P + P1 ∼MTr P + P2 for all P ∈ PS.

Unfortunately, similarly to the probabilistic case [36], ∼MTr is not a congru-
ence with respect to parallel composition. Consider for instance the following
two Markovian trace equivalent process terms:

P1 ≡ <a, λ1>.<b, μ>.P ′ + <a, λ2>.<c, μ>.P ′′

P2 ≡ <a, λ1 + λ2>.(<b, λ1
λ1+λ2

· μ>.P ′ + <c, λ2
λ1+λ2

· μ>.P ′′)
where b �= c. If we place each of them in the following context:

‖{a,b,c} <a, ∗1>.<b, ∗1>.0
we obtain two performance-closed process terms – which we call Q1 and Q2 –
that are no longer Markovian trace equivalent.

In fact, the following trace:
α ≡ a ◦ b
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can distinguish between Q1 and Q2. The reason is that the only computation of
Q1 compatible with α is formed by a transition labeled with <a, λ1> followed
by a transition labeled with <b, μ>, which has execution probability λ1

λ1+λ2
and

average duration 1
λ1+λ2

◦ 1
μ . By contrast, the only computation of Q2 compatible

with α is formed by a transition labeled with <a, λ1 + λ2> followed by a transi-
tion labeled with <b, λ1

λ1+λ2
· μ>, which has execution probability 1 and average

duration 1
λ1+λ2

◦ λ1+λ2
λ1·μ .

6.6 Axiomatization

Markovian trace equivalence is strictly coarser than Markovian testing equiva-
lence, hence the axioms of ∼MT are still valid for ∼MTr over PS, but not complete.
In fact, the two process terms depicted below (with b �= c):

1λ 2λ +1λ 2λ

+1λ 2λ +1λ 2λ

a, a,

μ μb,

P’ P’’

c,
~
~/ MT

MTr

a,

P’ P’’

b,_____ μ1λ . _____ μλ2 .c,

show that, when moving from ∼MT to ∼MTr, the action prefix operator tends
to become left-distributive with respect to the alternative composition operator.
More precisely, choices can be deferred as long as they are related to branches
starting with actions having the same name that are followed by terms having
the same total exit rate. Note that the names and the total rates of the initial
actions of such derivative terms can be different in the various branches.

The two terms above constitute the simplest instance of an axiom schema
that characterizes ∼MTr, which is more liberal than the one characterizing ∼MT.
The axiom schema is the following:

∑

i∈I

<a, λi>.
∑

j∈Ji

<bi,j , μi,j>.Pi,j =

<a, Σ
k∈I

λk>.
∑

i∈I

∑

j∈Ji

<bi,j ,
λi

Σk∈I λk
· μi,j>.Pi,j

where:

– I is a finite index set with |I| ≥ 2.
– Ji is a finite index set for all i ∈ I, with the related summation being 0

whenever Ji = ∅.
– For all i1, i2 ∈ I: ∑

j∈Ji1

μi1,j =
∑

j∈Ji2

μi2,j

with each summation being zero whenever its index set is empty.
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6.7 Logical Characterization

Markovian trace equivalence has a modal logic characterization over PC,pc simi-
lar to the one for Markovian testing equivalence, in which the diamond operator
is no longer dependent from the environment.

Definition 60. The set of the formulas of HMLMTr is generated by the following
syntax:

φ ::= true | 〈a〉φ
where a ∈ Name.

Definition 61. The interpretation function [[.]]MTr of HMLMTr over PC,pc ×
(RI >0)∗ is defined by structural induction as follows:

[[true]]MTr(P, θ) = 1

[[〈a〉φ]]MTr(P, θ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if θ = ε ∨ 1
ratet(P,0) > θ[1]

∑

P
a,λ−−−→ P ′

λ
ratet(P,0) · [[φ]]MTr(P ′, θ′)

if θ = t ◦ θ′ ∧ 1
ratet(P,0) ≤ t

where the summation is taken to be zero whenever there are no a-transitions
departing from P .

Theorem 15. Let P1, P2 ∈ PC,pc. Then:
P1 ∼MTr P2 ⇐⇒ ∀φ ∈ HMLMTr. ∀θ ∈ (RI >0)∗. [[φ]]MTr(P1, θ) = [[φ]]MTr(P2, θ)

6.8 Verification Complexity

Markovian trace equivalence can be decided in polynomial time because two
action-labeled CTMCs are Markovian trace equivalent iff their corresponding
embedded action-labeled DTMCs (with suitably enriched labels) are probabilis-
tic trace equivalent, with the latter being decidable in polynomial time [35].

Similarly to the verification of ∼MT, the algorithm to check whether P1 ∼MTr
P2 thus proceeds as follows:

1. Transform [[P1]] and [[P2]] into their corresponding embedded discrete-time
versions:
(a) Divide the rate of each transition by the total exit rate of its source state.
(b) Augment the name of each transition with the total exit rate of its source

state.
2. Apply the algorithm of [47] to check the embedded discrete-time versions of

[[P1]] and [[P2]] for probabilistic language equivalence by considering each of
their states as being an accepting state.

The time complexity is O(n4), where n is the number of states of the disjoint
union of [[P1]] and [[P2]].
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7 Conclusion

In this survey we have recalled the definitions and the properties of Markov-
ian behavioral equivalences. Besides providing information about the Markovian
linear-time/branching-time spectrum, we have compared Markovian bisimilarity,
Markovian testing equivalence, and Markovian trace equivalence with respect to
a number of criteria, as summarized below:

exact congruence sound & complete logical verification
aggregation property axiomatization characteriz . complexity

∼MB OK OK OK OK O(m · log n)
∼MT OK OK OK OK O(n5)
∼MTr OK OK SMPC OK SMPC OK O(n4)

As can be noted, ∼MB is satisfactory with respect to all the criteria, although
it is often too discriminating. A good alternative may be ∼MT, as it encodes the
viewpoint of an external observer and is more flexible with respect to branching
points. By contrast, ∼MTr cannot be considered as a valid alternative, as it fails
to be a congruence with respect to parallel composition.

It is also worth emphasizing the exactness of the CTMC-level aggregations
induced by each of the three considered Markovian behavioral equivalences. This
means that ∼MB, ∼MT, and ∼MTr are all meaningful for performance evaluation
purposes. Besides justifying the investigation of the other properties, this can
be exploited in practice. For instance, such Markovian behavioral equivalences
can be used to aggregate the state space of a model by taking advantage of
symmetries within the model [24], or to reduce the state space of a model be-
fore applying analysis techniques like model checking [45], without altering the
performance properties to be assessed.

We conclude by mentioning some open problems in the field of Markovian
behavioral equivalences:

– In our framework based on an asymmetric action synchronization discipline,
while ∼MB is defined over non-performance-closed terms too, this is not the
case for ∼MT and ∼MTr. Finding a way to extend their definitions so that
it is still possible to determine the execution probability and the average
duration of the computations in the presence of passive transitions is highly
desirable.

– The exactness of the CTMC-level aggregations induced by ∼MB, ∼MT, and
∼MTr establishes a strong connection between concurrency theory and
Markov chain theory, which in particular gives rise to a process algebraic
characterization of the aggregations themselves. The question here is whether
the aggregation induced by ∼MT and ∼MTr is the coarsest exact non-trivial
one that can be obtained, or whether it can be further extended.

– The set of logical operators necessary to characterize Markovian behavioral
equivalences decreases as the discriminating power of the equivalences de-
creases. However, the logical characterization of ∼MT relies on a
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non-standard variant of the diamond operator. What if we replace the non-
standard operator with the standard one and we reintroduce logical conjunc-
tion? We claim that this may result in an alternative logical characterization
of ∼MT if the diamonds occurring in a conjunction are independent of each
other, i.e. if the names of the related actions are all different [39].

– The verification algorithm for ∼MB can also be used as a minimization al-
gorithm (with respect to ∼MB), whereas this is not the case for the ver-
ification algorithms for ∼MT and ∼MTr. As far as testing is concerned, it
should be investigated whether the algorithm for verifying classical testing
equivalence [20] can be adapted to the Markovian framework. The reason is
that this algorithm reduces the verification of classical testing equivalence
over standard state-transition models to the verification of (a generalization
of) classical bisimilarity over transformed models inspired by acceptance
trees [28], hence it can be exploited for minimization purposes as well.

– We would like to assess whether ∼MT can be used also for quantitative
analysis. So far, it supports a merely qualitative analysis, in the sense that
it only allows one to establish whether two models pass an arbitrary test in
the same way. What we envision is the possibility of identifying classes of
tests that are related to specific performability measures, which may thus
be used to evaluate models with respect to certain indices of interest.

– Finally, it would be interesting to develop weaker versions of ∼MB, ∼MT,
and ∼MTr. In this survey we have seen ≈IMB and ≈EMB, which abstract from
invisible immediate actions. However, one could also consider the possibility
of abstracting from invisible actions that are exponentially timed, which
amounts to understand to what extent exponential delays can be neglected.
This issue has been tackled in [32,11,13,4], but none of the proposals seems
to induce an exact aggregation at the CTMC level.
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Stochastic Model Checking�
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Abstract. This tutorial presents an overview of model checking for both
discrete and continuous-time Markov chains (DTMCs and CTMCs).
Model checking algorithms are given for verifying DTMCs and CTMCs
against specifications written in probabilistic extensions of temporal
logic, including quantitative properties with rewards. Example proper-
ties include the probability that a fault occurs and the expected number
of faults in a given time period. We also describe the practical applica-
tion of stochastic model checking with the probabilistic model checker
PRISM by outlining the main features supported by PRISM and three
real-world case studies: a probabilistic security protocol, dynamic power
management and a biological pathway.

1 Introduction

Probability is an important component in the design and analysis of software
and hardware systems. In distributed algorithms electronic coin tossing is used
as a symmetry breaker and as a means to derive efficient algorithms, for example
in randomised leader election [38,26], randomised consensus [3,18] and root con-
tention in IEEE 1394 FireWire [37,47]. Traditionally, probability has also been
used as a tool to analyse system performance, where typically queueing theory
is applied to obtain steady-state probabilities in order to arrive at estimates of
measures such as throughput and mean waiting time [30,61]. Probability is also
used to model unreliable or unpredictable behaviour, as in e.g. fault-tolerant
systems and multi-media protocols, where properties such as frame loss of 1 in
every 100 can be described probabilistically.

In this tutorial, we summarise the theory and practice of stochastic model
checking. There are a number of probabilistic models, of which we will consider
two in detail. The first, discrete-time Markov chains (DTMCs), admit probabilis-
tic choice, in the sense that one can specify the probability of making a transition
from one state to another. Second, we consider continuous-time Markov chains
(CTMCs), frequently used in performance analysis, which model continuous real
time and probabilistic choice: one can specify the rate of making a transition
from one state to another. Probabilistic choice, in this model, arises through race
conditions when two or more transitions in a state are enabled.
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Stochastic model checking is a method for calculating the likelihood of the
occurrence of certain events during the execution of a system. Conventional
model checkers input a description of a model, represented as a state transition
system, and a specification, typically a formula in some temporal logic, and
return ‘yes’ or ‘no’, indicating whether or not the model satisfies the specification.
In common with conventional model checking, stochastic model checking involves
reachability analysis of the underlying transition system, but, in addition, it must
entail the calculation of the actual likelihoods through appropriate numerical or
analytical methods.

The specification language is a probabilistic temporal logic, capable of express-
ing temporal relationships between events and likelihood of events and usually
obtained from standard temporal logics by replacing the standard path quanti-
fiers with a probabilistic quantifier. For example, we can express the probability
of a fault occurring in a given time period during execution, rather than whether
it is possible for such a fault to occur. As a specification language for DTMCs we
use the temporal logic called Probabilistic Computation Tree Logic (PTCL) [29],
which is based on well-known branching-time Computation Tree Logic (CTL)
[20]. In the case of CTMCs, we employ the temporal logic Continuous Stochastic
Logic (CSL) developed originally by Aziz et al. [4,5] and since extended by Baier
et al. [10], also based on CTL.

Algorithms for stochastic model checking were originally introduced in
[62,23,29,5,10], derive from conventional model checking, numerical linear al-
gebra and standard techniques for Markov chains. We describe algorithms for
PCTL and CSL and for extensions of these logics to specify reward-based prop-
erties, giving suitable examples. This is followed by a description of the PRISM
model checker [36,53] which implements these algorithms and the outcome of
three case studies that were performed with PRISM.

Outline. We first review a number of preliminary concepts in Section 2. Section 3
introduces DTMCs and PCTL model checking while Section 4 considers CTMCs
and CSL model checking. Section 5 gives an overview of the probabilistic model
checker PRISM and case studies that use stochastic model checking. Section 6
concludes the tutorial.

2 Preliminaries

In the following, we assume some familiarity with probability and measure the-
ory, see for example [16].

Definition 1. Let Ω be an arbitrary non-empty set and F a family of subsets
of Ω. We say that F is a field on Ω if:

1. the empty set ∅ is in F ;
2. whenever A is an element of F , then the complement Ω \ A is in F ;
3. whenever A and B are elements of F , then A ∪ B is in F .

A field of subsets F is called a σ-algebra if it is field which is closed under
countable union: whenever Ai ∈ F for i ∈ N, then ∪i∈NAi is also in F .
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The elements of a σ-algebra are called measurable sets, and (Ω, F) is called a
measurable space. A σ-algebra generated by a family of sets A, denoted σ(A), is
the smallest σ-algebra that contains A which exists by the following proposition.

Proposition 1. For any non-empty set Ω and A a family of subsets of Ω, there
exists a unique smallest σ-algebra containing A.

Definition 2. Let (Ω, F) be a measurable space. A function μ : F → [0, 1] is a
probability measure on (Ω, F) and (Ω, F , μ) a probability space, if μ satisfies
the following properties:

1. μ(Ω) = 1
2. μ(∪iAi) =

∑
i μ(Ai) for any countable disjoint sequence A1, A2, . . . of F .

The measure μ is also referred to as a probability distribution. The set Ω is called
the sample space, and the elements of F events .

In order to go from a notion of size defined on a family of subsets A to an
actual measure on the σ-algebra generated by A, we need an extension theorem.
The following [16] is a typical example.

Definition 3. A family F of subsets of Ω is called a semi-ring if
1. the empty set ∅ is in F ;
2. whenever A and B are elements of F , then A ∩ B is also in F ;
3. if A ⊆ B are in F , then there are finitely many pairwise disjoint subsets

C1, . . . , Ck ∈ F such that B \ A = ∪k
i=1Ci.

This is not the form of the definition most commonly used in field because of
the strange last condition but it is precisely the property that holds for ‘hyper-
rectangles’ in R

n and, more importantly here, for the cylinder sets defined later
in this tutorial.
Theorem 1. If F is a semi-ring on X and μ : F → [0, ∞] satisfies
1. μ(∅) = 0
2. μ(∪k

i=1Ai) =
∑k

i=1 μ(Ai) for any finite disjoint sequence A1, . . . , Ak ∈ F
3. μ(∪iAi) �

∑
i μ(Ai) for any countable sequence A1, A2, . . . ∈ F ,

then μ extends to a unique measure on the σ-algebra generated by F .
The proof of this theorem may be found in a standard text on probability and
measure, for example [16]. It is straightforward to check that the ‘measures’ we
define on cylinder sets later in the tutorial satisfy the hypotheses of the above
theorem. Hence, these can be extended to measures used for the interpretation
of the logics PCTL and CSL without ambiguity.

Definition 4. Let (Ω, F , μ) be a probability space. A function X : Ω → R�0 is
said to be a random variable.

Given a random variable X : Ω → R and the probability space (Ω, F , μ) the
expectation or average value with respect to the measure μ is given by the
following integral:

E[X ] def=
∫

ω∈Ω

X(ω) dμ .
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Fig. 1. The four state DTMC D1

3 Model Checking Discrete-Time Markov Chains

In this section we give an overview of the probabilistic model checking of discrete-
time Markov chains (DTMCs). Let AP be a fixed, finite set of atomic proposi-
tions used to label states with properties of interest.

Definition 5. A (labelled) DTMC D is a tuple (S, s̄,P, L) where

– S is a finite set of states;
– s̄ ∈ S is the initial state;
– P : S×S → [0, 1] is the transition probability matrix where

∑
s′∈S P(s, s′) =

1 for all s ∈ S;
– L : S → 2AP is a labelling function which assigns to each state s ∈ S the

set L(s) of atomic propositions that are valid in the state.

Each element P(s, s′) of the transition probability matrix gives the probability
of making a transition from state s to state s′. Note that the probabilities on
transitions emanating from a single state must sum to one. Terminating states,
i.e. those from which the system cannot move to another state, can be modelled
by adding a self-loop (a single transition going back to the same state with
probability 1).

Example 1. Fig. 1 shows a simple example of a DTMC D1 = (S1, s̄1,P1, L1).
In our graphical notation, states are drawn as circles and transitions as arrows,
labelled with their associated probabilities. The initial state is indicated by an
additional incoming arrow. The DTMC D1 has four states: S1 = {s0, s1, s2, s3},
with initial state s̄ = s0. The transition probability matrix P1 is given by:

P1 =

⎛

⎜
⎜
⎝

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

⎞

⎟
⎟
⎠ .

The atomic propositions used to label states are taken from the set AP =
{try, fail , succ}. Here, the DTMC models a simple process which tries to send
a message. After one time-step, it enters the state s1 from which, with proba-
bility 0.01 it waits another time-step, with probability 0.98 it successfully sends
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the message, and with probability 0.01 it tries but fails to send the message. In
the latter case, the process restarts. The labelling function allows us to assign
meaningful names to states of the DTMC:

L1(s0) = ∅, L1(s1) = {try}, L1(s2) = {fail} and L1(s3) = {succ} .

3.1 Paths and Probability Measures

An execution of a DTMC D = (S, s̄,P, L) is represented by a path. Formally, a
path ω is a non-empty sequence of states s0s1s2 . . . where si ∈ S and P(si, si+1)
> 0 for all i � 0. A path can be either finite or infinite. We denote by ω(i) the ith
state of a path ω, |ω| the length of ω (number of transitions) and for a finite path
ωfin , the last state by last(ωfin). We say that a finite path ωfin of length n is a
prefix of the infinite path ω if ωfin(i) = ω(i) for 0 � i � n. The sets of all infinite
and finite paths of D starting in state s are denoted PathD(s) and PathD

fin(s),
respectively. Unless stated explicitly, we always deal with infinite paths.

In order to reason about the probabilistic behaviour of the DTMC, we need
to determine the probability that certain paths are taken. This is achieved by
defining, for each state s ∈ S, a probability measure Prs over the set of infi-
nite paths PathD(s). Below, we give an outline of this construction. For further
details, see [41]. The probability measure is induced by the transition proba-
bility matrix P as follows. For any finite path ωfin ∈ PathD

fin(s), we define the
probability Ps(ωfin):

Ps(ωfin) def=
{

1 if n = 0
P(ω(0), ω(1)) · · ·P(ω(n − 1), ω(n)) otherwise

where n = |ωfin |. Next, we define the cylinder set C(ωfin) ⊆ PathD(s) as:

C(ωfin ) def= {ω ∈ PathD(s) | ωfin is a prefix of ω}

that is, the set of all infinite paths with prefix ωfin . Then, let ΣPathD(s) be
the smallest σ-algebra (see Section 2) on PathD(s) which contains all the sets
C(ωfin), where ωfin ranges over the finite paths PathD

fin(s). As the set of cylinders
form a semi-ring over (PathD(s), ΣPathD(s)), we can apply Theorem 1 and define
Prs on (PathD(s), ΣPathD(s)) as the unique measure such that:

Prs(C(ωfin)) = Ps(ωfin) for all ωfin ∈ PathD
fin(s) .

Note that, since C(s) = PathD(s) and Ps(s) = 1, it follows that Pr s is a
probability measure. We can now quantify the probability that, starting from a
state s ∈ S, the DTMC D behaves in a specified fashion by identifying the set of
paths which satisfy this specification and, assuming that this set is measurable,
using the measure Prs.
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Example 2. Consider again the DTMC D1 in Example 1 (see Fig. 1). There are
five distinct paths of length 3 starting in state s0. The probability measure of
the cylinder sets associated with each of these is:

Prs0(C(s0s1s1s1)) = 1.00 · 0.01 · 0.01 = 0.0001
Prs0(C(s0s1s1s2)) = 1.00 · 0.01 · 0.01 = 0.0001
Prs0(C(s0s1s1s3)) = 1.00 · 0.01 · 0.98 = 0.0098
Prs0(C(s0s1s2s0)) = 1.00 · 0.01 · 1.00 = 0.01
Prs0(C(s0s1s3s3)) = 1.00 · 0.98 · 1.00 = 0.98 .

3.2 Probabilistic Computation Tree Logic (PCTL)

Specifications for DTMC models can be written in PCTL (Probabilistic Com-
putation Tree Logic) [29], a probabilistic extension of the temporal logic CTL.
PCTL is essentially the same as the logic pCTL of [6].

Definition 6. The syntax of PCTL is as follows:

Φ ::= true
∣
∣ a

∣
∣ ¬Φ

∣
∣ Φ ∧ Φ

∣
∣ P∼p[φ]

φ ::= X Φ
∣
∣ Φ U�k Φ

where a is an atomic proposition, ∼ ∈{<, �, �, >}, p ∈ [0, 1] and k ∈ N ∪ {∞}.
PCTL formulae are interpreted over the states of a DTMC. For the presentation
of the syntax, above, we distinguish between state formulae Φ and path formulae
φ, which are evaluated over states and paths, respectively. To specify a property
of a DTMC, we always use a state formula: path formulae only occur as the
parameter of the P∼p[·] operator. Intuitively, a state s of D satisfies P∼p[φ] if
the probability of taking a path from s satisfying φ is in the interval specified
by ∼p. For this, we use the probability measure Prs over (PathD(s), ΣPathD(s))
introduced in the previous section.

As path formulae we allow the X (‘next’) and U�k (‘bounded until’) operators
which are standard in temporal logic. The unbounded until is obtained by taking
k equal to ∞, i.e. Φ U Ψ = Φ U�∞ Ψ .

Intuitively, X Φ is true if Φ is satisfied in the next state and Φ U�k Ψ is true
if Ψ is satisfied within k time-steps and Φ is true up until that point.

For a state s and PCTL formula Φ, we write s |= Φ to indicate that s satisfies Φ.
Similarly, for a path ω satisfying path formula φ, we write ω |= φ. The semantics
of PCTL over DTMCs is defined as follows.

Definition 7. Let D = (S, s̄,P, L) be a labelled DTMC. For any state s ∈ S,
the satisfaction relation |= is defined inductively by:

s |= true for all s ∈ S
s |= a ⇔ a ∈ L(s)

s |= ¬Φ ⇔ s �|= Φ
s |= Φ ∧ Ψ ⇔ s |= Φ ∧ s |= Ψ

s |= P∼p[φ] ⇔ ProbD(s, φ) ∼ p
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where:
ProbD(s, φ) def= Prs{ω ∈ PathD(s) | ω |=φ}

and for any path ω ∈ PathD(s) :

ω |= X Φ ⇔ ω(1) |= Φ
ω |= φ U�k Ψ ⇔ ∃i ∈ N. ( i�k ∧ ω(i) |=Ψ ∧ ∀j<i. (ω(j) |=Φ) ) .

Note that, for any state s and path formula φ, the set {ω ∈ PathD(s) | ω |= φ} is
a measurable set of (PathD(s), ΣPathD(s)), see for example [62], and hence Prs is
well defined over this set. From the basic syntax of PCTL, given above, we can
derive a number of additional useful operators. Among these are the well known
logical equivalences:

false ≡ ¬true
Φ ∨ Ψ ≡ ¬(¬Φ ∧ ¬Ψ)

Φ → Ψ ≡ ¬Φ ∨ Ψ .

We also allow path formulae to contain the � (‘diamond’ or ‘eventually’) oper-
ator, which is common in temporal logic. Intuitively, �Φ means that Φ is even-
tually satisfied and its bounded variant ��kΦ means that Φ is satisfied within
k time units. These can be expressed in terms of the PCTL ‘until’ operator as
follows:

P∼p[� Φ] ≡ P∼p[true U�∞ Φ]
P∼p[��k Φ] ≡ P∼p[true U�k Φ] .

Another common temporal logic operator is � (‘box’ or ‘always’). A path satisfies
�Φ when Φ is true in every state of the path. Similarly, the bounded variant
��kΦ means that Φ is true in the first k states of the path. In theory, one can
express � in terms of � as follows:

�Φ ≡ ¬�¬Φ

��kΦ ≡ ¬��k¬Φ .

However, the syntax of PCTL does not allow negation of path formulae. Ob-
serving, though, that for a state s and path formula Φ, ProbD(s, ¬φ) = 1 −
ProbD(s, φ), we can show for example that:

P�p[� Φ] ⇔ ProbD(s, � Φ) � p

⇔ 1 − ProbD(s, � ¬Φ) � p

⇔ ProbD(s, � ¬Φ) � 1 − p

⇔ P�1−p[� ¬Φ] .

In fact, we have the following equivalences:

P∼p[� Φ] ≡ P∼1−p[� ¬Φ]
P∼p[��k Φ] ≡ P∼1−p[��k ¬Φ]

where < ≡ >, � ≡ �,� ≡ � and > ≡ <.
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Fig. 2. Example demonstrating difference between P�1[�Φ] and ∀�Φ

The P∼p[·] operator of PCTL can be seen as the probabilistic analogue of the
path quantifiers of CTL. For example, the PCTL formula P∼p[� Φ], which states
that the probability of reaching a Φ-state is ∼ p, is closely related to the CTL
formulae ∀� Φ and ∃� Φ (sometimes written AF Φ and EFΦ), which assert that
all paths or at least one path reach a Φ-state, respectively. In fact, we have the
following equivalence:

∃�Φ ≡ P>0[� Φ]

as the probability is greater than zero if and only if there exists a finite path
leading to a Φ-state. Conversely, ∀� Φ and P�1[� Φ] are not equivalent. For
example, consider the DTMC in Fig. 2 which models a process which repeatedly
tosses a fair coin until the result is ‘tails’. State c0 satisfies P�1[� tails ] since the
probability of reaching c2 is one. There is, though, an (infinite) path c0c1c0c1 . . .
which never reaches state c2. Hence, ∀� tails is not satisfied in state c0.

Example 3. Below are some typical examples of PCTL formulae:

– P�0.4[X delivered ] - the probability that a message has been delivered after
one time-step is at least 0.4;

– init → P�0[� error ] - from any initial configuration, the probability that the
system reaches an error state is 0;

– P�0.9[¬down U served ] - the probability the system does not go down until
after the request has been served is at least 0.9;

– P<0.1[¬done U�10 fault ] - the probability that a fault occurs before the pro-
tocol finishes and within 10 time-steps is strictly less than 0.1.

A perceived weakness of PCTL is that it is not possible to determine the actual
probability with which a certain path formula is satisfied, only whether or not
the probability meets a particular bound. In fact, this restriction is in place
purely to ensure that each PCTL formula evaluates to a Boolean. In practice,
this constraint can be relaxed: if the outermost operator of a PCTL formula is
P∼p , we can omit the bound ∼ p and simply compute the probability instead.
Since the algorithm for PCTL model checking proceeds by computing the actual
probability and then comparing it to the bound, no additional work is needed.
It is also often useful to study a range of such values by varying one or more
parameters, either of the model or of the property. Both these observations can
be seen in practice in Section 5.
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3.3 Model Checking PCTL

We now summarise a model checking algorithm for PCTL over DTMCs, which
was first presented in [22,29,23]. The inputs to the algorithm are a labelled
DTMC D = (S, s̄,P, L) and a PCTL formula Φ. The output is the set of states
Sat(Φ) = {s ∈ S | s |= Φ}, i.e. the set containing all the states of the model which
satisfy Φ. In a typical scenario, we may only be interested in whether the initial
state s̄ of the DTMC satisfies Φ. However, the algorithm works by checking
whether each state in S satisfies the formula.

The overall structure of the algorithm is identical to the model checking al-
gorithm for CTL [20], the non-probabilistic temporal logic on which PCTL is
based. We first construct the parse tree of the formula Φ. Each node of this tree
is labelled with a subformula of Φ, the root node is labelled with Φ itself and
leaves of the tree will be labelled with either true or an atomic proposition a.
Working upwards towards the root of the tree, we recursively compute the set
of states satisfying each subformula. By the end, we have determined whether
each state in the model satisfies Φ. The algorithm for PCTL formulae can be
summarised as follows:

Sat(true) = S
Sat(a) = {s | a ∈ L(s)}

Sat(¬Φ) = S\Sat(Φ)
Sat(Φ ∧ Ψ) = Sat(Φ) ∩ Sat(Ψ)
Sat(P∼p[φ]) = {s ∈ S |ProbD(s, φ)∼p} .

Model checking for the majority of these formulae is trivial to implement and
is, in fact, the same as for the non-probabilistic logic CTL. The exceptions are
formulae of the form P∼p[φ]. For these, we must calculate, for all states s of the
DTMC, the probability ProbD(s, φ) and then compare these values to the bound
in the formula. In the following sections, we describe how to compute these values
for the two cases: P∼p[X Φ] and P∼p[Φ U�k Ψ ]. Because of the recursive nature
of the PCTL model checking algorithm, we can assume that the relevant sets,
Sat(Φ) or Sat(Φ) and Sat(Ψ), are already known.

P∼p[X Φ] formulae. In this case, we need to compute the probability ProbD

(s, X Φ) for each state s ∈ S. This requires the probabilities of the immediate
transitions from s:

ProbD(s, X Φ) =
∑

s′∈Sat(Φ)

P(s, s′) .

We determine the vector ProbD(X Φ) of probabilities for all states as follows.
Assuming that we have a state-indexed column vector Φ with

Φ(s) =
{

1 if s ∈ Sat(Φ)
0 otherwise,

then ProbD(X Φ) is computed using the single matrix-vector multiplication:

ProbD(X Φ) = P · Φ .
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Example 4. Consider the PCTL formula P�0.9[X (¬try∨succ)] and the DTMC D1
from Fig. 1. Proceeding recursively from the innermost subformulae, we compute:

Sat(try) = {s1}
Sat(succ) = {s3}

Sat(¬succ) = S \ Sat(succ) = {s0, s1, s2}
Sat(try ∧ ¬succ) = Sat(try) ∩ Sat(¬succ) = {s1} ∩ {s0, s1, s2} = {s1}
Sat(¬try ∨ succ) = Sat(¬(try ∧ ¬succ)) = S \ Sat(try ∧ ¬succ) = {s0, s2, s3} .

This leaves the X operator, and from above we have ProbD(X ¬try ∨succ) equals:

P1 · ¬try ∨ succ =

⎛

⎜
⎜
⎝

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎝

1
0
1
1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0
0.99
1
1

⎞

⎟
⎟
⎠ ,

and hence Sat(P�0.9[X (¬ try ∨ succ)]) = {s1, s2, s3}.

P∼p[Φ U�k Ψ ] formulae. For such formulae we need to determine the proba-
bilities ProbD(s, Φ U�k Ψ) for all states s where k ∈ N ∪ {∞}. We begin by
considering the case when k ∈ N.

Case when k ∈ N. This amounts to computing the solution of the following set
of equations. For s ∈ S and k ∈ N: ProbD(s, Φ U�k Ψ) equals

⎧
⎨

⎩

1 if s ∈ Sat(Ψ)
0 if k= 0 or s ∈ Sat(¬Φ∧¬Ψ)

∑
s′∈S P(s, s′)·ProbD(s′, Φ U�k−1 Ψ) otherwise.

(1)

We now show how these probabilities can be expressed in terms of the transient
probabilities of a DTMC. We denote by πD

s,k(s′) the transient probability in D
of being in state s′ after k steps when starting in s, that is:

πD
s,k(s′) = Prs{ω ∈ PathD(s) | ω(k) = s′} ,

and require the following PCTL driven transformation of DTMCs.

Definition 8. For any DTMC D = (S, s̄,P, L) and PCTL formula Φ, let D[Φ]
= (S, s̄,P[Φ], L) where, if s �|= Φ, then P[Φ](s, s′) = P(s, s′) for all s′ ∈ S, and
if s |= Φ, then P[Φ](s, s) = 1 and P[Φ](s, s′) = 0 for all s′ �= s.

Using the transient probabilities and this transformation we can characterise the
probabilities ProbD(s, Φ U�k Ψ) as follows.

Proposition 2. For any DTMC D = (S, s̄,P, L), state s ∈ S, PCTL formulae
Φ and Ψ , and k ∈ N:

ProbD(s, Φ U�k Ψ) =
∑

s′|=Ψ

π
D[¬Φ∨Ψ ]
s,k (s′) .
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Note that D[¬Φ ∨ Ψ ] = D[¬(Φ ∧ Ψ)][Ψ ], that is all states in Sat(¬(Φ ∧ Ψ)) and
Sat(Ψ) are made absorbing (the only transitions available in these states are
self-loops). States in Sat(¬(Φ ∧ Ψ)) are made absorbing because, for any state s
in this set, ProbD(s, Φ U�k Ψ) is trivially 0 as neither Φ nor Ψ is satisfied in s,
since no path starting in s can possibly satisfy the path formula Φ U�k Ψ . On
the other hand, states in Sat(Ψ) are made absorbing because, for any state s in
this set, we have ProbD(s, Φ U�k Ψ) is trivially 1 since all paths leaving s clearly
satisfy Φ U�k Ψ .

Using Proposition 2, the vector of probabilities ProbD(Φ U�k Ψ) can then be
computed using the following matrix and vector multiplications:

ProbD(Φ U�k Ψ) = (P[¬Φ ∨ Ψ ])k · Ψ .

This product is typically computed in an iterative fashion:

P[¬Φ ∨ Ψ ] · (· · · (P[¬Φ ∨ Ψ ] · Ψ) · · · )

which requires k matrix-vector multiplications. An alternative is to precompute
the matrix power (P[¬Φ ∨ Ψ ])k and then perform a single matrix-vector multi-
plication. In theory, this could be more efficient since the matrix power could be
computed by repeatedly squaring P[¬Φ ∨ Ψ ], requiring approximately log2k, as
opposed to k, multiplications. In practice, however, the matrix P[¬Φ∨Ψ ] is large
and sparse, and therefore employing such an approach can dramatically increase
the number of non-zero matrix elements, having serious implications for both
time and memory usage.

Example 5. Let us return to the DTMC D1 in Fig. 1 and consider the PCTL
formula P>0.98[��2succ]. This is equivalent to the formula P>0.98[true U�2 succ].
We have:

Sat(true) = {s0, s1, s2, s3} and Sat(succ) = {s3} .

The matrix P1[¬true ∨ succ], is identical to P1, and we have that:

ProbD1(Φ U�0 Ψ) = succ = [0, 0, 0, 1]
ProbD1(Φ U�1 Ψ) = P1[¬true ∨ succ] · ProbD1(Φ U�0 Ψ) = [0, 0.98, 0, 1]
ProbD1(Φ U�2 Ψ) = P1[¬true ∨ succ] · ProbD1(Φ U�1 Ψ) = [0.98, 0.9898, 0, 1] .

Hence, Sat(P>0.98[��2succ]) = {s1, s3}.

Case when k = ∞. Note that, instead of U�∞, we use the standard notation U
for unbounded until. The probabilities ProbD(s, Φ U Ψ) can be computed as the
least solution of the linear equation system:

ProbD(s, Φ U Ψ) =

⎧
⎨

⎩

1 if s ∈ Sat(Ψ)
0 if s ∈ Sat(¬Φ ∧ ¬Ψ)

∑
s′∈S P(s, s′)·ProbD(s′, Φ U Ψ) otherwise.
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Prob0(Sat(Φ),Sat(Ψ))

1. R := Sat(Ψ)
2. done := false
3. while (done = false)
4. R′ := R ∪ {s ∈ Sat(Φ) | ∃s′ ∈ R .P(s, s′)>0}
5. if (R′ = R) then done := true
6. R := R′

7. endwhile
8. return S\R

Prob1(Sat(Φ),Sat(Ψ), Sat(P�0[Φ U Ψ ]))

1. R := Sat(P�0[Φ U Ψ ])
2. done := false
3. while (done = false)
4. R′ := R ∪ {s ∈ (Sat(Φ)\Sat(Ψ)) | ∃s′ ∈ R .P(s, s′)>0}
5. if (R′ = R) then done := true
6. R := R′

7. endwhile
8. return S\R

Fig. 3. The Prob0 and Prob1 algorithm

To simplify the computation we transform this system of equations into one
with a unique solution. This is achieved by first finding all the states s for which
ProbD(s, Φ U Ψ) is exactly 0 or 1; more precisely, we compute the sets of states:

Sat(P�0[Φ U Ψ ]) = {s ∈ S |ProbD(s, Φ U Ψ)=0}
Sat(P�1[Φ U Ψ ]) = {s ∈ S |ProbD(s, Φ U Ψ)=1} .

These sets can be determined with the algorithms Prob0 and Prob1 which are
described in Fig. 3:

Sat(P�0[Φ U Ψ ]) = Prob0(Sat(Φ),Sat(Ψ))
Sat(P�1[Φ U Ψ ]) = Prob1(Sat(Φ),Sat(Ψ),Sat(P�0[Φ U Ψ ])) .

Prob0 computes all the states from which it is possible, with non-zero proba-
bility, to reach a state satisfying Ψ without leaving states satisfying Φ. It then
subtracts these from S to determine the states which have a zero probability.
Prob1 first determines the set of states for which the probability is less than
1 of reaching a state satisfying Ψ without leaving states satisfying Φ. These
are the states from which there is a non-zero probability of reaching a state
in Sat(P�0[Φ U Ψ ]), passing only through states satisfying Φ but not Ψ . It then
subtracts this set from S to produce Sat(P�1[Φ U Ψ ]). Note that both algorithms
are based on the computation of a fixpoint operator, and hence require at most
|S| iterations.

The probabilities ProbD(s, Φ U Ψ) can then be computed as the unique solution
of the following linear equation system:



232 M. Kwiatkowska, G. Norman, and D. Parker

ProbD(s, Φ U Ψ) =

⎧
⎨

⎩

1 if s ∈ Sat(P�1[Φ U Ψ ])
0 if s ∈ Sat(P�0[Φ U Ψ ])

∑
s′∈S P(s, s′) · ProbD(s′, Φ U Ψ) otherwise.

Since the probabilities for the sets of states Sat(P�1[Φ U Ψ ]) and Sat(P�0[Φ U Ψ ])
are known, i.e. 1 and 0 respectively, it is possible to solve the linear equation
system over only the set of states S? = S \ (Sat(P�1[Φ U Ψ ]) ∪ Sat(P�0[Φ U Ψ ])):

ProbD(s, Φ U Ψ) =
∑

s′∈S?

P(s, s′) · ProbD(s, Φ U Ψ) +
∑

s′∈Sat(P�1[Φ UΨ ])

P(s, s′)

reducing the number of unknowns from |S| to |S?|.
In either case, the linear equation system can be solved by any standard ap-

proach. These include direct methods, such as Gaussian elimination and L/U de-
composition, or iterative methods, such as Jacobi and Gauss-Seidel. The algo-
rithms Prob0 and Prob1 form the first part of the calculation of ProbD(s, Φ U Ψ).
For this reason, we refer to them as precomputation algorithms. For qualitative
PCTL properties (i.e. where the bound p in the formula P∼p[Φ U Ψ ] is either 0 or
1) or for cases where ProbD(s, Φ U Ψ) happens to be either 0 or 1 for all states (i.e.
Sat(P�0[Φ U Ψ ]) ∪ Sat(P�1[Φ U Ψ ]) = S), it suffices to use these precomputation
algorithms alone. For quantitative properties with an arbitrary bound p, numeri-
cal computation is also usually required. The precomputation algorithms are still
valuable in this case. Firstly, they can reduce the number of states for which nu-
merical computation is required. Secondly, they determine the exact probability
for the states in Sat(P�0[Φ U Ψ ]) and Sat(P�1[Φ U Ψ ]), whereas numerical compu-
tation typically computes an approximation and is subject to round-off errors.

Finally we note that, if desired, the Prob1 algorithm can be omitted and
Sat(P�1[Φ U Ψ ]) replaced by Sat(Ψ). The set Sat(P�0[Φ U Ψ ]), however, must be
computed to ensure that the linear equation system has a unique solution.

Example 6. Consider again the DTMC D1 in Fig. 1 and the PCTL formula
P>0.99[try U succ]. We have Sat(try) = {s1} and Sat(succ) = {s3}. Prob0

determines in two iterations that Sat(P�0[try U succ]) = {s0, s2}. Prob1 deter-
mines that Sat(P�1[try U succ]) = {s3}. The resulting linear equation system
is:

ProbD1(s0, try U succ) = 0
ProbD1(s1, try U succ) = 0.01 · ProbD1(s1, try U succ) +

0.01 · ProbD1(s2, try U succ) +
0.98 · ProbD1(s3, try U succ)

ProbD1(s2, try U succ) = 0
ProbD1(s3, try U succ) = 1 .

This yields the solution ProbD(try U succ) = (0, 98
99 , 0, 1) and we see that the

formula P>0.99[try U succ] is satisfied only in state s3.
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3.4 Extending DTMCs and PCTL with Rewards

In this section we enhance DTMCs with reward (or cost) structures and extend
PCTL to allow for specifications over reward structures. For a DTMC D =
(S, s̄,P, L) a reward structure (ρ, ι) allows one to specify two distinct types of
rewards: state rewards, which are assigned to states by means of the reward
function ρ : S → R�0, and transition rewards, which are assigned to transitions
by means of the reward function ι : S × S → R�0. The state reward ρ(s) is the
reward acquired in state s per time-step, i.e. a reward of ρ(s) is incurred if the
DTMC is in state s for 1 time-step and the transition reward ι(s, s′) is acquired
each time a transition between states s and s′ occurs.

A reward structure can be used to represent additional information about
the system the DTMC represents, for example the power consumption, number
of packets sent or the number of lost requests. Note that state rewards are
sometimes called cumulative rewards while transition rewards are sometimes
referred to as instantaneous or impulse rewards.

Example 7. Returning to Example 1 which describes the DTMC D1 of Fig. 1,
consider the reward structure (ρD1 ,0), where ρD1(s) = 1 if s = s1 and equals 0
otherwise. This particular reward structure would be useful when we are inter-
ested in the number of time-steps spent in state s1 or the chance that one is in
state s1 after a certain number of time-steps.

The logic PCTL is extended to allow for the reward properties by means of the
following state formulae:

R∼r[C�k]
∣
∣ R∼r[I=k]

∣
∣ R∼r[F Φ]

where ∼ ∈{<, �, �, >}, r ∈ R�0, k ∈ N and Φ is a PCTL state formula.
Intuitively, a state s satisfies R∼r[C�k] if, from state s, the expected reward

cumulated after k time-steps satisfies ∼r; R∼r[I=k] is true if from state s the
expected state reward at time-step k meets the bound ∼r; and R∼r[F Φ] is true
if from state s the expected reward cumulated before a state satisfying Φ is
reached meets the bound ∼r.

Formally, given a DTMC D = (S, s̄,P, L), the semantics of these formulae is
defined as follows. For any s ∈ S, k ∈ N, r ∈ R�0 and PCTL formula Φ:

s |= R∼r[C�k] ⇔ ExpD(s, XC�k) ∼ r

s |= R∼r[I=k] ⇔ ExpD(s, XI=k) ∼ r

s |= R∼r[F Φ] ⇔ ExpD(s, XFΦ) ∼ r

where ExpD(s, X) denotes the expectation of the random variable X : PathD(s)
→ R�0 with respect to the probability measure Prs, and for any path ω =
s0s1s2 · · · ∈ PathD(s):
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XC�k(ω) def=
{

0 if k = 0
∑k−1

i=0 ρ(si) + ι(si, si+1) otherwise

XI=k(ω) def= ρ(sk)

XFΦ(ω) def=

⎧
⎨

⎩

0 if s0 |= Φ
∞ if ∀i ∈ N. si �|= Φ

∑min{j|sj |= Φ}−1
i=0 ρ(si) + ι(si, si+1) otherwise.

Example 8. Below are some typical examples of reward based specifications using
these formulae:
– R�5.5[C�100] - the expected power consumption within the first 100 time-

steps of operation is less than or equal to 5.5;
– R�4[I=10] - the expected number of messages still to be delivered after 10

time-steps have passed is at least 4;
– R�14[F done] - the expected number of correctly delivered messages is at

least 14.

We now consider the computation of the expected values for each of the random
variables introduced above.

The random variable XC�k . In this case the computation of the expected
values ExpD(s, XC�k) for all s ∈ S is based on the following set of equations:

ExpD(s, XC�k) =
{

0 if k = 0
ρ(s)+

∑
s′∈S P(s, s′)·

(
ι(s, s′)+ExpD(s′, XC�k−1)

)
otherwise.

More precisely, one can iteratively compute the vector of expected values by
means of the following matrix-vector operations:

ExpD(XC�k) =
{

0 if k = 0
ρ + P ·

(
ι·1 + ExpD(XC�k−1)

)
otherwise

where 1 denotes a vector with all entries equal to 1.
Example 9. Let us return to the DTMC D1 of Example 1 (see Fig. 1) and reward
structure of Example 9. The PCTL formula R>1[C�k] in this case states that,
after k time steps, the expected number of time steps spent in state s1 is greater
than 1. Now from above:

ExpD(XC�0) = [0, 0, 0, 0]

ExpD(XC�1) = ρ + P ·
(
ι + ExpD(XC�0)

)

= [0, 1, 0, 0] + P ·
(
0·1 + [0, 0, 0, 0]

)

= [0, 1, 0, 0]
ExpD(XC�2) = ρ + P ·

(
ι + ExpD(XC�1)

)

= [0, 1, 0, 0] + P ·
(
0·1 + [0, 1, 0, 0]

)

= [1, 1.01, 0, 0]

and hence Sat(R>1[C�2]) = {s1}.
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The random variable XI=k . In this case the expected value can be computed
iteratively through the following set of equations:

ExpD(s, XI=k) =
{

ρ(s) if k = 0
∑

s′∈S P · ExpD(s, XI=k−1) otherwise.

Therefore, the vector ExpD(XI=k) can be computed by means of the following
matrix-vector operations:

ExpD(XI=k) =
{

ρ if k = 0
P · ExpD(XI=k−1) otherwise.

Example 10. Returning again to the DTMC D1 of Example 1 and reward struc-
ture of Example 9. In this case, the PCTL formula R>0[I=k] specifies that, at
time-step k, the expectation of being in state s1 is greater than 0. We have:

ExpD(XI=0) = [0, 1, 0, 0]

ExpD(XI=1) = P · ExpD(XI=0) = P · [0, 1, 0, 0] = [1, 0.01, 0, 0]

ExpD(XI=2) = P · ExpD(XI=1) = P · [1, 0.01, 0, 0] = [0.01, 0.0001, 1, 0] .

Hence, the states s0, s1 and s2 satisfy the formula R>0[I=2].

The random variable XFΦ. The expectations in this case are a solution of the
following system of linear equations:

ExpD(s, XFΦ) =
{

0 if s ∈ Sat(Φ)
ρ(s) +

∑
s′∈S P(s, s′)·

(
ι(s, s′)+ExpD(s′, XFΦ)

)
otherwise.

As above, to simplify the computation this system of equations is transformed
into one for which the expectations ExpD(s, XFΦ) are the unique solution. To
achieve this, we identify the sets of states for which ExpD(s, XFΦ) equals ∞. This
set of states are simply the set of states for which the probability of reaching a Φ
state is less than 1, that is, the set Sat(P<1[� Φ]). We compute this set using the
precomputation algorithms Prob1 and Prob0 described in the previous section
and the equivalence P<1[� Φ] ≡ ¬P�1[� Φ]. One can then compute ExpD(s, XFΦ)
as the unique solution of the following linear equation system:

ExpD(s, XFΦ) =
⎧
⎨

⎩

0 if s ∈ Sat(Φ)
∞ if s ∈ Sat(P<1[� Φ])

ρ(s) +
∑

s′∈S P(s, s′)·
(
ι(s, s′)+ExpD(s′, XFΦ)

)
otherwise.

As for ‘until’ formulae, this can be solved using any standard direct or iterative
method.
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Example 11. Let us return to D1 of Example 1 and the reward structure in Ex-
ample 9. The PCTL formula, R<1[F succ], in this case, asserts that the expected
number of times state s1 is entered before reaching a state satisfying succ is less
than 1. Following the procedure outlined above, we compute:

Sat(succ) = {s3}
Sat(P<1[� succ]) = Sat(¬P�1[� succ])

= S \ Sat(P�1[� succ])
= S \ Prob1(S,Sat(succ),Sat(P�0[� succ]))
= S \ Prob1(S,Sat(succ),Prob0(Sat(true),Sat(succ)))
= S \ Prob1(S,Sat(succ), ∅)
= S\{s0, s1, s2, s3} = ∅.

This leads to the linear equation system:

ExpD(s0, XFsucc) = 0+1.00·
(
0+ExpD(s1, XFsucc)

)

ExpD(s1, XFsucc) = 1+0.01·
(
0+ExpD(s1, XFsucc)

)
+0.01·

(
0+ExpD(s2, XFsucc)

)

ExpD(s2, XFsucc) = 0+1.00·
(
0+ExpD(s0, XFsucc)

)

ExpD(s3, XFsucc) = 0

which has the solution ExpD(XFsucc) =
( 100

98 , 100
98 , 100

98 , 0
)
, and hence it follows

that Sat(R<1[F succ]) = {s3}.

3.5 Complexity of PCTL Model Checking

The overall time complexity for model checking a PCTL formula Φ against a
DTMC D = (S, s̄,P, L) is linear in |Φ| and polynomial in |S|. The size |Φ| of
a formula Φ is, as defined in [29], equal to the number of logical connectives
and temporal operators in the formula plus the sum of the sizes of the temporal
operators. Because of the recursive nature of the algorithm, we perform model
checking for each of the |Φ| operators and each one is at worst polynomial in
|S|. The most expensive of these are the operators P∼p[Φ U Ψ ] and R∼r[F Φ],
for which a system of linear equations of size at most |S| must be solved. This
can be done with Gaussian elimination, the complexity of which is cubic in the
size of the system. Strictly speaking, the complexity of model checking is also
linear in kmax, the maximum value of k found in formulae of type P∼p[Φ U�k Ψ ],
R∼r[C�k] or R∼r[I=k]. In practice, k is usually much smaller than |S|.

4 Model Checking Continuous-Time Markov Chains

This section concerns model checking continuous-time Markov chains (CTMCs)
against the logic Continuous Stochastic Logic (CSL). While each transition be-
tween states in a DTMC corresponds to a discrete time-step, in a CTMC tran-
sitions occur in real time. As for the case of DTMCs, we suppose that we have
a fixed set of atomic propositions AP.
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Definition 9. A (labelled) CTMC is a tuple C = (S, s̄,R, L) where:

– S is a finite set of states;
– s̄ ∈ S is the initial state;
– R : S × S → R�0 is the transition rate matrix;
– L : S → 2AP is a labelling function which assigns to each state s ∈ S the

set L(s) of atomic propositions that are valid in the state.

The transition rate matrix R assigns rates to each pair of states in the CTMC,
which are used as parameters of the exponential distribution. A transition can
only occur between states s and s′ if R(s, s′)>0 and, in this case, the probabil-
ity of this transition being triggered within t time-units equals 1 − e−R(s,s′)·t.
Typically, in a state s, there is more than one state s′ for which R(s, s′)>0. This
is known as a race condition. The first transition to be triggered determines the
next state of the CTMC. The time spent in state s, before any such transition
occurs, is exponentially distributed with rate E(s), where:

E(s) def=
∑

s′∈S

R(s, s′) .

E(s) is known as the exit rate of state s. A state s is called absorbing if E(s) = 0,
i.e. if it has no outgoing transitions. We can also determine the actual probability
of each state s′ being the next state to which a transition is made from state s,
independent of the time at which this occurs. This is defined by the following
DTMC.

Definition 10. The embedded DTMC of a CTMC C = (S, s̄,R, L) is the
DTMC emb(C) = (S, s̄,Pemb(C), L) where for s, s′ ∈ S:

Pemb(C)(s, s′) =

⎧
⎨

⎩

R(s,s′)
E(s) if E(s) �= 0
1 if E(s) = 0 and s = s′

0 otherwise.

Using the above definitions, we can consider the behaviour of the CTMC in an
alternative way. It will remain in a state s for a delay which is exponentially
distributed with rate E(s) and then make a transition. The probability that this
transition is to state s′ is given by Pemb(C)(s, s′).

We also define the following matrix, which will be used when we perform
analysis of the CTMC.

Definition 11. The infinitesimal generator matrix for the CTMC C =
(S, s̄,R, L) is the matrix Q : S × S → R defined as:

Q(s, s′) =
{

R(s, s′) if s �= s′

−
∑

s′′ �=s R(s, s′′) otherwise.

Example 12. Fig. 4 shows a simple example of a CTMC C1 = (S1, s̄1,R1, L).
The graphical notation is as for DTMCs, except that transitions are now labelled
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33 3

{full}

s1 s2 s3s0

{empty} 3
2

3
2

3
2

Fig. 4. The four state CTMC C1

with rates rather than probabilities. The CTMC models a queue of jobs: there
are four states s0, s1, s2 and s3, where state si indicates that there are i jobs
in the queue. Initially, the queue is empty (s̄ = s0) and the maximum size is
3. Jobs arrive with rate 3

2 and are removed from the queue with rate 3. The
associated transition rate matrix R1, transition probability matrix Pemb(C1)

1 for
the embedded DTMC and infinitesimal generator matrix Q1 are as follows:

R1 =

⎛

⎜
⎜
⎝

0 3
2 0 0

3 0 3
2 0

0 3 0 3
2

0 0 3 0

⎞

⎟
⎟
⎠ Pemb(C1)

1 =

⎛

⎜
⎜
⎝

0 1 0 0
2
3 0 1

3 0
0 2

3 0 1
3

0 0 1 0

⎞

⎟
⎟
⎠ Q1 =

⎛

⎜
⎜
⎝

− 3
2

3
2 0 0

3 −9
2

3
2 0

0 3 −9
2

3
2

0 0 3 −3

⎞

⎟
⎟
⎠ .

We have labelled the state s0, where the queue contains no jobs, with the atomic
proposition empty and the state s3, where it has the maximum number of jobs,
with full . These are also illustrated in Fig. 4.

4.1 Paths and Probability Measures

An infinite path of a CTMC C = (S, s̄,R, L) is a non-empty sequence s0t0s1s2 . . .
where R(si, si+1)>0 and ti ∈ R>0 for all i�0. A finite path is a sequence
s0t0s1t1sk−1tk−1sk such that sk is absorbing. The value ti represents the amount
of time spent in the state si. As with DTMCs, we denote by ω(i) the ith state of
a path ω, namely si. For an infinite path ω, we denote by time(ω, i) the amount
of time spent in state si, namely ti, and by ω@t the state occupied at time t,
i.e. ω(j) where j is the smallest index for which

∑j
i=0 ti � t. For a finite path

ω = s0t0s1s2 . . . tk−1sk, time(ω, i) is only defined for i � k: time(ω, j) = ti for
i < k and time(ω, k) = ∞. Furthermore, if t �

∑k−1
i=1 ti, then ω@t is defined as

for infinite paths, and otherwise ω@t = sk.
We denote by PathC(s) the set of all (infinite and finite) paths of the CTMC

C starting in state s. The probability measure Prs over PathC(s), taken from
[10], can be defined as follows. If the states s0, . . . , sn ∈ S satisfy R(si, si+1) > 0
for all 0 � i < n and I0, . . . , In−1 are non-empty intervals in R�0, then the
cylinder set C(s0, I0, . . . , In−1, sn) is defined to be the set containing all paths
ω ∈ PathC(s0) such that ω(i) = si for all i � n and time(ω, i) ∈ Ii for all i < n.

We then let ΣPathC(s) be the smallest σ-algebra on PathC(s) which contains
all the cylinder sets C(s0, I0, . . . , In−1, sn), where s0, . . . , sn ∈ S range over all
sequences of states with s0 = s and R(si, si+1) > 0 for 0�i<n, and I0, . . . , In−1
range over all sequences of non-empty intervals in R�0. Using Theorem 1, we
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can then define the probability measure Pr s on ΣPathC(s) as the unique mea-
sure such that Prs(C(s)) = 1 and for any cylinder C(s, I, . . . , In−1, sn, I ′, s′),
Prs(C(s, I, . . . , In−1, sn, I ′, s′)) equals:

Prs(C(s, I, . . . , In−1, sn)) · Pemb(C)(sn, s′) ·
(
e−E(sn)·inf I′ − e−E(sn)·sup I′

)
.

Example 13. Consider the CTMC C1 from Fig. 4 and the sequence of states
and intervals s0, [0, 2], s1 (i.e. taking I0 = [0, 2] in the notation of the previous
paragraph). Using the probability measure Pr s0 over (PathC1(s0), ΣPathC(s0)),
for the cylinder set C(s0, [0, 2], s1), we have:

Prs0(C(s0, [0, 2], s1)) = Prs0(C(s0)) · Pemb(C1)
1 (s0, s1) · (e−E(s0)·0 − e−E(s0)·2)

= 1 · 1 · (e0 − e−3)
= 1 − e−3 .

Intuitively, this means that the probability of leaving the initial state s0 and
passing to state s1 within the first 2 time units is 1 − e−3 ≈ 0.950213.

4.2 Steady-State and Transient Behaviour

In addition to path probabilities, we consider two more traditional properties
of CTMCs: transient behaviour, which relates to the state of the model at a
particular time instant; and steady-state behaviour, which describes the state
of the CTMC in the long-run. For a CTMC C = (S, s̄,R, L), the transient
probability πC

s,t(s′) is defined as the probability, having started in state s, of
being in state s′ at time instant t. Using the definitions of the previous section:

πC
s,t(s

′) def= Pr s{ω ∈ PathC(s) | ω@t = s′} .

The steady-state probability πC
s (s′), i.e. the probability of, having started in

state s, being in state s′ in the long-run, is defined as:

πC
s (s′) def= lim

t→∞πC
s,t(s

′) .

The steady-state probability distribution, i.e. the values πC
s (s′) for all s′ ∈ S,

can be used to infer the percentage of time, in the long-run, that the CTMC
spends in each state. For the class of CTMCs which we consider here, i.e. those
that are homogeneous and finite-state, the limit in the above definition always
exists [59]. Furthermore, for CTMCs which are irreducible (strongly connected),
that is, those for which there exists a finite path from each of its states to every
other state, the steady-state probabilities πC

s (s′) are independent of the starting
state s.

We now outline a standard technique, called uniformisation (also known as
‘randomisation’ or ‘Jensen’s method’), for computing transient probabilities of
CTMCs as this will later be relied on in the model checking algorithms for
CTMCs.
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Uniformisation. For a CTMC C = (S, s̄,R, L), we denote by ΠC
t the matrix

of all transient probabilities for time t, i.e. ΠC
t (s, s′) = πC

s,t(s
′). It can be shown

(see for example [59]) that ΠC
t can be expressed as a matrix exponential, and

hence evaluated as a power series:

ΠC
t = eQ·t =

∞∑

i=0

(Q · t)i

i!

where Q is the infinitesimal generator matrix of C (see Definition 11). Unfortu-
nately, this computation tends to be unstable. As an alternative, the probabilities
can be computed through the uniformised DTMC of C.

Definition 12. For any CTMC C = (S, s̄,R, L) with infinitesimal generator
matrix Q, the uniformised DTMC is given by unif (C) = (S, s̄,Punif(C), L) where
Punif(C) = I + Q/q and q � max{E(s) | s ∈ S}.
The uniformisation rate q is determined by the state with the shortest mean
residence time. All (exponential) delays in the CTMC C are normalised with
respect to q. That is, for each state s ∈ S with E(s) = q, one epoch in unif (C)
corresponds to a single exponentially distributed delay with rate q, after which
one of its successor states is selected probabilistically. As a result, no self-loop
is added to such states in the DTMC unif (C). If E(s)<q – this state has on
average a longer state residence time than 1

q – one epoch in unif (C) might not
be “long enough”. Hence, in the next epoch these states might be revisited and,
accordingly, are equipped with a self-loop with probability 1 − E(s)

q . Note the
difference between the embedded DTMC emb(C) and the uniformised DTMC
unif (C): whereas the epochs in C and emb(C) coincide and emb(C) can be con-
sidered as the time less variant of C, a single epoch in unif (C) corresponds to
a single exponentially distributed delay with rate q in C. Now, using the uni-
formised DTMC the matrix of transient probabilities can be expressed as:

ΠC
t =

∞∑

i=0

γi,q·t ·
(
Punif(C)

)i

where γi,q·t = e−q·t · (q·t)i

i!
. (2)

In fact, this reformulation has a fairly intuitive explanation. Each step of the
uniformised DTMC corresponds to one exponentially distributed delay, with
parameter q, in the CTMC. The matrix power

(
Punif(C)

)i
gives the probability

of jumping between each pair of states in the DTMC in i steps and γi,q·t is
the ith Poisson probability with parameter q·t, the probability of i such steps
occurring in time t, given the delay is exponentially distributed with rate q.

This approach has a number of important advantages. Firstly, unlike Q, the
matrix Punif(C) is stochastic, meaning that all entries are in the range [0, 1] and
all rows sum to one. Computations using Punif(C) are therefore more numerically
stable. In particular, Q contains both positive and negative values which can
cause severe round-off errors.

Secondly, the infinite sum is now easier to truncate. For example, the tech-
niques of Fox and Glynn [27], which allow efficient computation of the Poisson
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probabilities γi,q·t, also produce an upper and lower bound (Lε, Rε), for some
desired precision ε, below and above which the probabilities are insignificant.
Hence, the sum can be computed only over this range.

Lastly, the computation can be carried out efficiently using matrix-vector
multiplications, rather than more costly matrix-matrix multiplications. Consider
the problem of computing πC

s,t(s
′) for a fixed state s. These values can be obtained

by pre-multiplying the matrix ΠC
t by the initial probability distribution, in this

case the vector πC
s,0 where πC

s,0(s
′) is equal to 1 if s′ = s and 0 otherwise:

πC
s,t = πC

s,0 · ΠC
t = πC

s,0 ·
∞∑

i=0

γi,q·t ·
(
Punif(C)

)i

.

Rearranging, this can be expressed as a sum of vectors, rather than a sum of
matrix powers:

πC
s,t =

∞∑

i=0

(

γi,q·t · πC
s,0 ·

(
Punif(C)

)i
)

where the vector required in each element of the summation is computed by a
single matrix-vector multiplication, using the vector from the previous iteration:

πC
s,0 ·

(
Punif(C)

)i

=
(

πC
s,0 ·

(
Punif(C)

)i−1
)

· Punif(C) .

Hence, the total work required is Rε matrix-vector multiplications.

4.3 Continuous Stochastic Logic (CSL)

We write specifications of CTMCs using the logic CSL (Continuous Stochastic
Logic), an extension of the temporal logic CTL.

Definition 13. The syntax of CSL is as follows:

Φ ::= true
∣
∣ a

∣
∣ ¬Φ

∣
∣ Φ ∧ Φ

∣
∣ P∼p[φ]

∣
∣ S∼p[Φ]

φ ::= X Φ
∣
∣ Φ UI Φ

where a is an atomic proposition, ∼ ∈{<, �, �, >}, p ∈ [0, 1] and I is an interval
of R�0.

As for PCTL, P∼p[φ] indicates that the probability of the path formula φ being
satisfied from a given state meets the bound ∼p. Path formulae are the same
for CSL as for PCTL, except that the parameter of the ‘until’ operator is an
interval I of the non-negative reals, rather than simply an integer upper bound.
The path formula Φ UI Ψ holds if Ψ is satisfied at some time instant in the
interval I and Φ holds at all preceding time instants. To avoid confusion, we
will refer to this as the ‘time-bounded until’ operator. Similarly to PCTL, the
standard ‘unbounded until’ operator can be derived by considering the interval
I = [0, ∞). The S operator describes the steady-state behaviour of the CTMC.
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The formula S∼p[Φ] asserts that the steady-state probability of being in a state
satisfying Φ meets the bound ∼p.

As with PCTL, we write s |= Φ to indicate that a CSL formula Φ is satisfied
in a state s and denote by Sat(Φ) the set {s ∈ S | s |=Φ}. Similarly, for a path
formula φ satisfied by path ω, we write ω |=φ. The semantics of CSL over CTMCs
is defined as follows.

Definition 14. Let C = (S, s̄,R, L) be a labelled CTMC. For any state s ∈ S
the relation s |= Φ is defined inductively by:

s |= true for all s ∈ S
s |= a ⇔ a ∈ L(s)

s |= ¬Φ ⇔ s �|= Φ
s |= Φ ∧ Ψ ⇔ s |= Φ ∧ s |=Ψ

s |= P∼p[φ] ⇔ ProbC(s, φ) ∼ p
s |= S∼p[Φ] ⇔

∑
s′ |= Φ πC

s (s′) ∼ p

where:
ProbC(s, φ) def= Prs{ω ∈ PathC(s) | ω |= φ}

and for any path ω ∈ PathC(s):

ω |= X Φ ⇔ ω(1) is defined and ω(1) |=Φ
ω |=Φ UI Ψ ⇔ ∃t ∈ I. (ω@t |=Ψ ∧ ∀x ∈ [0, t). (ω@x |=Φ) ) .

As discussed in [12], for any path formula Φ, the set {ω ∈ PathC(s) | ω |= φ} is a
measurable set of (PathC(s), ΣPathC(s)), and hence Prs is well defined over this
set. In addition the steady-state probabilities πC

s (s′) always exists as C contains
finitely many states [59].

As with PCTL, we can easily derive CSL operators for false, ∨ and →.
Similarly, we can use the � and � temporal operators:

P∼p[�IΦ] ≡ P∼p[true UI Φ]
P∼p[�IΦ] ≡ P∼1−p[�I¬Φ] .

It is also worth noting that, despite the fact that CSL does not explicitly include
operators to reason about transient probabilities, the following can be used to
reason about the probability of satisfying a formula Φ at time instant t:

P∼p[�[t,t] Φ] .

Example 14. Below are some typical examples of CSL formulae:

– P>0.9[�[0,4.5] served ] - the probability that a request is served within the first
4.5 seconds is greater than 0.9;

– P�0.1[�[10,∞) error ] - the probability that an error occurs after 10 seconds
of operation is at most 0.1;
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– down → P>0.75[¬fail U[1,2] up ] - when a shutdown occurs, the probability of
system recovery being completed in between 1 and 2 hours without further
failures occurring is greater than 0.75;

– S<0.01[insufficient routers ] - in the long-run, the probability that an inade-
quate number of routers are operational is less than 0.01.

4.4 CSL Model Checking

In this section we consider a model checking algorithm for CSL over CTMCs.
CSL model checking was shown to be decidable (for rational time bounds) in [4]
and a model checking algorithm first presented in [12]. We use these techniques
plus the subsequent improvements made in [10,40].

The inputs to the algorithm are a labelled CTMC C = (S, s̄,R, L) and a
CSL formula Φ. The output is the set of states Sat(Φ) = {s ∈ S | s |=Φ}. As
for DTMCs and PCTL, we first construct the parse tree of the formula Φ and,
working upwards towards the root of the tree, we recursively compute the set
of states satisfying each subformula. By the end, we have determined whether
each state in the model satisfies Φ. The algorithm for CSL operators can be
summarised as follows:

Sat(true) = S
Sat(a) = {s | a ∈ L(s)}

Sat(¬Φ) = S\Sat(Φ)
Sat(Φ ∧ Ψ) = Sat(Φ) ∩ Sat(Ψ)
Sat(P∼p[φ]) = {s ∈ S |ProbC(s, φ)∼p}
Sat(S∼p[Φ]) = {s ∈ S |

∑
s′ |= Φ πC

s (s′)∼p} .

Model checking for the majority of these operators is trivial to implement and
is, in fact, the same as for the non-probabilistic logic CTL. The exceptions are
the P∼p[·] and S∼p[·] operators which are considered below.

P∼p[X Φ] formulae. The CSL ‘next’ operator is defined as for the PCTL equiv-
alent. Furthermore, the definition does not relate to any of the real-time aspects
of CTMCs: it depends only on the probability of moving to the next immediate
state, and hence this operator can actually be model checked by using the PCTL
algorithms of Section 3 on the embedded DTMC emb(C) (see Definition 10).

Example 15. Consider the CTMC C1 in Fig. 4 and the CSL formula P�0.5[X full ].
Working with the embedded DTMC emb(C1) and following the algorithm of
Section 3, we multiply the matrix Pemb(C1), given in Example 12, by the vec-
tor (0, 0, 0, 1), yielding the probabilities ProbC1(X full) = (0, 0, 1

3 , 0). Hence, the
formula is not true in any state of the CTMC.

P∼p[Φ UI Ψ ] formulae. For this operator, we need to determine the probabilities
ProbC(s, Φ UI Ψ) for all states s where I is an arbitrary interval of the non-
negative real numbers. Noting that:

ProbC(s, Φ UI Ψ) = ProbC(s, Φ Ucl(I) Ψ)

where cl(I) is the closure of the interval I, and that:
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ProbC(s, Φ U[0,∞) Ψ) = Probemb(C)(s, Φ U�∞ Ψ)

we are left with the following three cases for the interval I:

– I = [0, t] for some t ∈ R�0;
– I = [t, t′] for some t, t′ ∈ R�0 such that t � t′;
– I = [t, ∞) for some t ∈ R�0.

Following the method presented in [10], we will now show that the probabilities
ProbC(s, Φ UI Ψ) for these cases can be computed using variants of uniformisation
(see Section 4.2).

The case when I = [0, t]. Computing the probabilities in this case reduces
to determining the least solution of the following set of integral equations:
ProbC(s, Φ U[0,t] Ψ) equals 1 if s ∈ Sat(Ψ), 0 if s ∈ Sat(¬Φ ∧ ¬Ψ) and

ProbC(s, Φ U[0,t] Ψ) =

� t

0

�
s′∈S

Pemb(C)(s, s′)·E(s)·e−E(s)·x·ProbC(s′, Φ U[0,t−x] Ψ) dx

otherwise. Here, E(s)·e−E(s)·x denotes the probability density of taking some
outgoing transition from s at time x. Note the resemblance with equations (1)
for the PCTL bounded until operator. Originally, [12] proposed to do this via
approximate solution of Volterra integral equation systems. Experiments in [34]
showed that this method was generally slow and, in [8], a simpler alternative
was presented which reduces the problem to transient analysis. This approach
is outlined below.

Definition 15. For any CTMC C = (S, s̄,R, L) and CSL formula Φ, let CTMC
C[Φ] = (S, s̄,R[Φ], L) with R[Φ](s, s′) = R(s, s′) if s �|= Φ and 0 otherwise.

Note that, using Definition 8, we have that emb(C[Φ]) = emb(C)[Φ].

Proposition 3 ([8]). For a CTMC C = (S, s̄,R, L), CSL formulae Φ and Ψ
and positive real t ∈ R�0:

ProbC(s, Φ U[0,t] Ψ) =
∑

s′|=Ψ

π
C[¬Φ∨Ψ ]
s,t (s′) .

Consider the CTMC C[¬Φ ∧ ¬Ψ ][Ψ ] = C[¬Φ ∨ Ψ ]. Since a path in this CTMC
cannot exit a state satisfying Ψ once it reaches one, and will never be able to
reach a state satisfying Ψ if it enters one satisfying ¬Φ∧¬Ψ , the probability of the
path formula Φ U[0,t] Ψ being satisfied in CTMC C is equivalent to the transient
probability of being in a state satisfying Φ at time t in CTMC C[¬Φ ∨ Ψ ].

As shown in [40], uniformisation can be adapted to compute the vector of
probabilities ProbC(Φ U[0,t] Ψ) without having to resort to computing the prob-
abilities for each state separately. More precisely, from Theorem 3:
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ProbC(Φ U[0,t] Ψ) = Π
C[¬Φ∨Ψ ]
t · Ψ

=

( ∞∑

i=0

γi,q·t ·
(
Punif(C[¬Φ∨Ψ ])

)i
)

· Ψ by (2)

=
∞∑

i=0

(

γi,q·t ·
(
Punif(C[¬Φ∨Ψ ])

)i

· Ψ

)

rearranging

Note that the inclusion of the vector Ψ within the brackets is vital since, like with
uniformisation, it allows explicit computation of matrix powers to be avoided.
Instead, each product is calculated as:

(
Punif(C)

)0
· Ψ = Ψ and

(
Punif(C)

)i+1
· Ψ = Punif(C) ·

((
Punif(C)

)i

· Ψ

)

,

reusing the computation from the previous iteration. As explained in Section 4.2,
the infinite summation can be truncated using the techniques of Fox and Glynn
[27]. In fact the summation can be truncated even sooner if the vector con-
verges. As an additional optimisation, we can reuse the Prob0 algorithm, from
Fig. 3 in Section 3, to initially identify all states s for which the probability
ProbC(s, Φ U[0,t] Ψ) is 0.

Example 16. Consider the CTMC C1 in Fig. 4 and the CSL ‘time-bounded
until’ formula P>0.65[true U[0,7.5] full ]. To compute the vector of probabilities
ProbC(true U[0,7.5] full), i.e. the probability from each state that a state satisfy-
ing atomic proposition full is reached within 7.5 time units, we follow the proce-
dure outlined above. First, observe that only state s3 satisfies full and no states
satisfy ¬true. Hence, the only difference in the modified CTMC C1[¬true∨ full ]
is that state s3 made absorbing, i.e. the transition between states s3 and s2 is
removed. Using the uniformisation rate q = 4.5(= max0�i�3 E(si)), the tran-
sition probability matrix for the uniformised DTMC of this modified CTMC
C1[¬true ∨ full ] is given by:

Punif(C1[¬true∨full ]) =

⎛

⎜
⎜
⎝

2
3

1
3 0 0

2
3 0 1

3 0
0 2

3 0 1
3

0 0 0 1

⎞

⎟
⎟
⎠ .

Computing the summation of matrix-vector multiplications described above
yields the solution:

ProbC1(true U[0,7.5] full) ≈ (0.6482, 0.6823, 0.7811, 1)

and we conclude that the CSL property is satisfied in states s1, s2 and s3.

The case I = [t, t′]. For this case, we split the computation into two parts. As
shown in [8], we can consider separately the probabilities of: (a) staying in states
satisfying Φ up until time t; (b) reaching a state satisfying Ψ , while remaining
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in states satisfying Φ, within time t′ − t. For the former, we use a similar idea
to that used in the case when I = [0, t], computing transient probabilities in a
CTMC for which states satisfying ¬Φ have been made absorbing. We have:

ProbC(s, Φ U[t,t′] Ψ) =
∑

s′ |=Φ

π
C[¬Φ]
s,t (s′) · ProbC(s′, Φ U[0,t′−t] Ψ)

= π
C[¬Φ]
s,t · ProbC

Φ(Φ U[0,t′−t] Ψ)

where ProbC
Φ(Φ U[0,t′−t] Ψ) is a vector with:

ProbC
Φ(s, Φ U[0,t′−t] Ψ) =

{
ProbC(s, Φ U[0,t′−t] Ψ) if s |=Φ

0 otherwise

which can be computed using the method described above. The overall com-
putation can be performed as a summation, in the style of uniformisation, to
determine the probability for all states at once:

ProbC(Φ U[t,t′] Ψ) = Π
C[¬Φ]
t · ProbC

Φ(Φ U[0,t′−t] Ψ)

=

( ∞∑

i=0

γi,q·t ·
(
Punif(C[¬Φ])

)i
)

· ProbC
Φ(Φ U[0,t′−t] Ψ)

=
∞∑

i=0

(

γi,q·t ·
(
Punif(C[¬Φ])

)i

· ProbC
Φ(Φ U[0,t′−t] Ψ)

)

Again, this summation can be truncated and performed using only scalar and
matrix-vector multiplication.

The case I = [t, ∞). This case is, in fact, almost identical to the previous one. We
again split the computation into two parts. Here, however, the second part is an
unbounded, rather than time-bounded, ‘until’ formula, and hence the embedded
DTMC can be used in this case. More precisely, we have:

ProbC(s, Φ U[t,∞) Ψ) = π
C[¬Φ]
s,t · ProbC

Φ(Φ U Ψ) = π
C[¬Φ]
s,t · Probemb(C)

Φ (Φ U Ψ) .

Similarly to the above, this can be compute for all states:

ProbC(Φ U[t,∞) Ψ) =
∞∑

i=0

(

γi,q·t ·
(
Punif(C[¬Φ])

)i

· Probemb(C)
Φ (Φ U Ψ)

)

.

S∼p[Φ] formulae. A state s satisfies the formula S∼p[Φ] if
∑

s′ |=Φ πC
s (s′) ∼ p.

Therefore, to model check the formula S∼p[Φ], we must compute the steady-state
probabilities πC

s (s′) for all states s and s′. We first consider the simple case when
C is irreducible.

The case when C is irreducible. As described in Section 4.2, the steady-state
probabilities of C are independent of the starting state, and therefore we denote
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by πC(s) and πC the steady-state probability of being in the state s and the vector
of all such probabilities, respectively. These probabilities can be computed as the
unique solution of the linear equation system:

πC · Q = 0 and
∑

s∈SπC(s) = 1 . (3)

This system can be solved by any standard approach, for example using direct
methods, such as Gaussian elimination, or iterative methods, such as Jacobi and
Gauss-Seidel. The satisfaction of the CSL formula, which in this case will be the
same for all states, can be determined by summing the steady-state probabilities
for all states satisfying Φ and comparing this result to the bound in the formula.
More precisely, for any state s ∈ S:

s |= S∼p[Φ] ⇔
∑

s′ |= ΦπC(s′) ∼ p .

The case when C is reducible. In this case the procedure is more complex. First
graph analysis is carried out to determine the set bscc(C) of bottom strongly
connected components (BSCCs) of C, i.e. the set of strongly connect components
of C that, once entered, cannot be left any more. Each individual BSCC B ∈
bscc(C) can be treated as an irreducible CTMC, and hence the steady-state
probability distribution πB can be determined using the method described in
the previous case.

Next, we calculate the probability of reaching each BSCC B ∈ bscc(C) from
each state s of C. In fact, this is simply Probemb(C)(s, � aB), where aB is an
atomic proposition true only in the states s′ ∈ B. Then, for states s, s′ ∈ S, the
steady-state probability πC

s (s′) can be computed as:

πC
s (s′) =

{
Probemb(C)(s, � aB) · πB(s′) if s′ ∈ B for some B ∈ bscc(C)

0 otherwise.

Note that, since the steady-state probabilities πB(s′) are independent of s, the
total work required to compute πC

s (s′) for all s, s′ ∈ S is the solution of two
linear equation systems for each BSCC in the CTMC: one to obtain the vector
of probabilities πB and another for the vector of probabilities Probemb(C)(� aB).
Computation of the BSCCs in the CTMC requires an analysis of its underlying
graph structure and can be performed using classic algorithms based on depth-
first search [60].

Example 17. Consider the CTMC C1 in Fig. 4 and the CSL ‘steady-state’ for-
mula S<0.1[full ]. From inspection, we see that the CTMC comprises a single
BSCC containing all 4 states. Hence, the steady-state probabilities are computed
by solving the linear equation system:

− 3
2 · πC1(s0) + 3 · πC1(s1) = 0

3
2 · πC1(s0) − 9

2 · πC1(s1) + 3 · πC1(s2) = 0
3
2 · πC1(s1) − 9

2 · πC1(s2) + 3 · πC1(s3) = 0
3
2 · πC1(s2) − 3 · πC1(s3) = 0

πC1(s0) + πC1(s1) + πC1(s2) + πC1(s3) = 1
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which has the solution πC1 = ( 8
15 , 4

15 , 2
15 , 1

15 ). State s3 is the only state satisfying
atomic proposition full , and thus the CSL formula is true in all states.

4.5 Extending CTMCs and CSL with Rewards

As for DTMCs, given a CTMC C = (S, s̄,R, L), we can enrich C with a reward
structure (ρ, ι). Recall that the state reward function ρ : S → R�0 defines this
as the rate at which reward is acquired in a state and the transition reward
function ι : S × S → R�0 defines the reward acquired each time a transition
occurs. Note that, since we are now in the continuous time setting, a reward of
t · ρ(s) will be acquired if the CTMC remains in state s for t ∈ R�0 time units.

Example 18. Returning to the CTMC C1 of Example 12 (see Fig. 4), we consider
two different reward structures:

– (0, ιC1) where ιC1 assigns 1 to the transitions corresponding to a request
being served and 0 to all other transitions, that is:

ιC1 =

⎛

⎜
⎜
⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎠ .

Such a structure can be used for measures relating to the number of requests
served within a given time interval or in the long-run.

– (ρC1 ,0) where ρC1 associates with each state the number of requests that are
awaiting service:

ρC1 = (0, 1, 2, 3) .

This structure is used when one is interested in the queue size at any time
instant or in the long-run.

The construction of both the embedded DTMC emb(C) (see Definition 10) and
uniformised DTMC unif (C) (see Definition 12) can be extended to incorporate
the reward structure (ι, ρ). In both constructions the transition reward function
does not change, that is, ιemb(C) = ιunif(C) = ι. On the other hand, the con-
structed state reward function takes into account the expected time that the
CTMC remains in each state. More precisely, if q is the uniformisation rate used
in the construction of the uniformised DTMC, then for any s ∈ S:

ρemb(C)(s) = E(s) · ρ(s) and ρunif(C)(s) = 1
q · ρ(s) .

We extend the syntax of logic CSL to allow for specifications relating to rewards
by introducing the following formulae:

R∼r[C�t]
∣
∣ R∼r[I=t]

∣
∣ R∼r[F Φ]

∣
∣ R∼r[S]

where ∼ ∈{<, �, �, >}, r, t ∈ R�0 and Φ is a CSL formula. Intuitively, a state s
satisfies R∼r[C�t] if, from state s, the expected reward cumulated up until t time
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units have elapsed satisfies ∼r; R∼r[I=t] is true if, from state s, the expected
state reward at time instant t meets the bound ∼r; R∼r[F Φ] is true if, from
state s, the expected reward cumulated before a state satisfying Φ is reached
meets the bound ∼r; and R∼r[S] is true if, from state s, the long-run average
expected reward satisfies ∼r.

Formally, given a CTMC D = (S, s̄,R, L), the semantics of these formulae is
defined as follows. For any s ∈ S, r, t ∈ R�0 and PCTL formula Φ:

s |= R∼r[C�t] ⇔ ExpC(s, XC�t) ∼ r

s |= R∼r[I=t] ⇔ ExpC(s, XI=t) ∼ r

s |= R∼r[F Φ] ⇔ ExpC(s, XFΦ) ∼ r

s |= R∼r[S] ⇔ limt→∞ 1
t · ExpC(s, XC�t) ∼ r

where ExpC(s, X) denotes the expectation of the random variable X with respect
to the probability measure Pr s and for any path ω = s0t0s1t1s2 · · · ∈ PathC(s):

XC�t(ω) def=
jt−1∑

i=0

(
ti · ρ(si) + ι(si, si+1)

)
+

(

t −
jt−1∑

i=0

ti

)

· ρ(sjt)

XI=t(ω) def= ρ(ω@t)

XFΦ(ω) def=

⎧
⎨

⎩

0 if ω(0) |= Φ
∞ if ∀i ∈ N. si �|=Φ

∑min{j|sj |= Φ}−1
i=0 ti · ρ(si) + ι(si, si+1) otherwise

and jt = min{j |
∑j

i=0 ti � t}.

Example 19. Below are some typical examples of reward based formulae:

– R>3.6[C�4.5] - the expected number of requests served within the first 4.5
seconds of operations is greater than 3.6;

– R<2[I=6.7] - the expected size of the queue when 6.7 time units have elapsed
is less than 2;

– R<10[F full ] - the expected number of requests served before the queue be-
comes full is less than 10;

– R�1.2[S] - the expected long-run queue size is at least 1.2.

We now consider the computation of the expected values of the different random
variables defined above.

The random variable XC�t . Based on the results in [43,44], we can use the
uniformised DTMC to compute the expectation of this random variable. More
precisely, we have have the following result.

Proposition 4 ([44]). For a CTMC C = (S, s̄,R, L), state s ∈ S and positive
real t ∈ R�0:

ExpC(s, XC�t) =
∞∑

i=0

γ̄i,q·t ·
(
Punif(C)

)i

· fq(ρ, ι)
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where

γ̄i,q·t
def=

∫ t

0
γi,q·u du =

1
q

∞∑

j=i+1

γj,q·t =
1
q

⎛

⎝1 −
i∑

j=i

γj,q·t

⎞

⎠ ,

π
unif(C)
s,i denotes the probability distribution in unif (C) after i steps when starting

in s, q is the uniformisation rate and

fq(ρ, ι) = ρ + q ·
(
Punif(C) • ι

)
· 1

with • denoting the Schur or entry-wise multiplication of matrices and 1 a vector
with all entries equal to 1.

Similarly to computing the vector of probabilities ProbC(Φ U[0,t] Ψ), we can both
truncate the summation and use only scalar and matrix-vector multiplication in
the computation. In this case, to compute the coefficients γ̄i,q·t, we can employ
the method (based on Fox and Glynn [27]) given in [42].

Example 20. Returning to the CTMC C1 of Example 12 and the reward structure
(0, ρC1) of Example 18, the expected number of requests served after 5.5 time
units have elapsed is given by:

ExpC1(XC�5.5) ≈ (7.0690, 8.0022, 8.8020, 9.3350)

and hence only state s3 satisfies R>9[C�5.5].

The random variable XI=t. In this case, using the fact that:

ExpC(s, XI=t) =
∑

s′∈S

ρ(s′) · πC
s,t(s

′)

we can again use the uniformised DTMC unif (C) to compute the expectation.
More precisely, we can compute the vector ExpC(XI=t) through the following
sum over vectors of coefficients:

ExpC(XI=t) =
∞∑

i=0

γi,q·t ·
(
Punif(C)

)i

· ρ

which again can be truncated and computed using only scalar and matrix-vector
multiplications.

Example 21. Returning to the CTMC C1 in Example 12 and the reward structure
(ρC1 ,0) of Example 18, the expected size of the queue after 1 time unit has
elapsed is given by:

ExpC1(XI=1) ≈ (0.5929, 0.7352, 1.0140, 1.2875)

and hence all states satisfy the formula R<2[I=1].
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The random variable XFΦ. To compute the expectations in this case, we use
the fact that:

ExpC(s, XFΦ) = Expemb(C)(s, XFΦ)

that is, we compute the expectations by constructing the embedded DTMC
emb(C) and employing the algorithms for verifying DTMCs against PCTL given
in Section 3.3.

Example 22. Consider the CTMC C1 of Example 12, the reward structure (0, ιC1)
of Example 18. The formula R<7[F full ], in this case, states that the expected
number of requests served before the queue becomes full is less than 7. Now,
computing the expectations Expemb(C1)(s, XFfull ) according to Section 3.4:

Sat(full) = {s3}
Sat(P<1[� full ]) = S \ Prob1(S,Sat(full),Prob0(S,Sat(full)))

= S\{s0, s1, s2, s3} = ∅

leading to the linear equation system:

Expemb(C1)(s0, XFfull ) = 1·Expemb(C1)(s1, XFfull)
Expemb(C1)(s1, XFfull ) = 2

3 ·
(
1+Expemb(C1)(s0, XFfull )

)
+1

3Expemb(C1)(s2, XFfull )
Expemb(C1)(s2, XFfull ) = 2

3 ·
(
1+Expemb(C1)(s1, XFfull )

)

Expemb(C1)(s3, XFfull ) = 0 .

Solving this system of equations gives Expemb(C1)(XFfull ) = (8, 8, 6, 0), and there-
fore, since ExpC1(s, XFfull ) = Expemb(C1)(s, XFfull), only states s2 and s3 satisfy
the formula R�7[F full ].

The random variable XS. As in the case of the operator S∼p[·], we consider
the cases when C is irreducible and reducible separately.

The case when C is irreducible. If πC is the vector of the steady-state probabilities
(recall that when C is irreducible the steady-state probabilities are independent
of the starting state), we have:

ExpC(s, XS) = πC · ρ + πC · (R • ι
)

· 1

with • again denoting the Schur or entry-wise multiplication of matrices and 1 a
vector with all entries equal to 1. Note that since the expectation is independent
of the starting state, we denote the expectation by ExpC(XS). The computation
in this case therefore requires the computation of the steady-state probabilities
of C, which reduces to solving the linear equation system given in (3).

The case when C is reducible. Similarly, to the approach for checking formulae
of the form S∼p[Φ], first, through graph analysis, we determine the set bscc(C)
of BSCCs of C. Next, treating each individual B ∈ bscc(C) as an irreducible
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CTMC, we compute the expectations ExpBi(XS) and determine the vector of
probabilities Probemb(C)(� aB) for each B ∈ bscc(C). Finally, for each state s ∈ S:

ExpC(s, S) =
∑

B∈bscc(C)

Probemb(C)(s, � aB) · ExpB(S) .

Example 23. Returning once again to the CTMC C1 in Example 12, using the
steady-state probabilities computed earlier and the reward structure (0, ιC1) of
Example 18, the long-run average expected number of requests served is given
by:

πC · 0 + πC · (R1 • ιC1
)

· 1 = ( 8
15 , 4

15 , 2
15 , 1

15 ) ·

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

0 3
2 0 0

3 0 3
2 0

0 3 0 3
2

0 0 3 0

⎞

⎟
⎟
⎠ •

⎛

⎜
⎜
⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ · 1

= ( 8
15 , 4

15 , 2
15 , 1

15 ) ·

⎛

⎜
⎜
⎝

0 0 0 0
3 0 0 0
0 3 0 0
0 0 3 0

⎞

⎟
⎟
⎠ · 1

= ( 8
15 , 4

15 , 2
15 , 1

15 ) ·

⎛

⎜
⎜
⎝

0
3
3
3

⎞

⎟
⎟
⎠ = 7

5

and thus no states satisfy the formula R�1.5[S] when the reward structure (0, ιC1)
is associated with the CTMC C1.

On the other hand, using the reward structure (ρC1 ,0) of Example 18, the
long-run average size of the queue is given by:

πC · c1 + πC · (R1 • 0
)

· 1 = ( 8
15 , 4

15 , 2
15 , 1

15 ) ·

⎛

⎜
⎜
⎝

0
1
2
3

⎞

⎟
⎟
⎠ = 11

15

and hence all states satisfy the formula R�0.8[S] when the reward structure
(ρC1 ,0) is associated with the CTMC C1.

4.6 Complexity of CSL Model Checking

The overall time complexity for model checking a CSL formula Φ against a
CTMC C = (S, s̄,R, L) is linear in |Φ|, polynomial in |S| and linear in q·tmax,
where q = maxs∈S |Q(s, s)| and tmax is the maximum value found in the parame-
ter of a ‘time-bounded until’ operator. For formulae of the form P∼p[Φ U[0,∞) Ψ ],
S∼p[Φ], R∼r[F Φ] and R∼r[S] a solution of a linear equation system of size |S| is
required. This can be done with Gaussian elimination, the complexity of which
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is cubic in the size of the system. For formula of the form P∼p[Φ UI Ψ ], R∼r[C�t]
and R∼r[I=t] we must perform at most two iterative summations, each step of
which requires a matrix-vector multiplication. This operation is quadratic in the
size of the matrix, i.e. |S|. The total number of iterations required is determined
by the upper bound supplied by the algorithm of Fox and Glynn [27], which for
large q·t is linear in q·t.

5 Stochastic Model Checking in Practice

In this section we first give a high-level overview of the functionality of the
stochastic model checker PRISM and then discuss three case studies employing
stochastic model checking and PRISM.

5.1 The Probabilistic Model Checker PRISM

PRISM [36,53] is a probabilistic model checker developed at the University of
Birmingham. It accepts probabilistic models described in its modelling language,
a simple, high-level state-based language. Three types of probabilistic models are
supported directly; these are discrete-time Markov chains (DTMCs), Markov de-
cision processes (MDPs), and continuous-time Markov chains (CTMCs). Markov
decision processes, not considered in this tutorial, extend DTMCs by allowing
non-deterministic behaviour that is needed, for example, to model asynchronous
parallel composition. For a detailed introduction to model checking of MDPs see,
for example, [56]. Additionally, probabilistic timed automata (PTAs) are par-
tially supported, with the subset of diagonal-free PTAs supported directly via
digital clocks [47]. Properties are specified using PCTL for DTMCs and MDPs,
and CSL for CTMCs. Probabilistic timed automata have a logic PTCTL, an
extension of TCTL, a subset of which is supported via a connection to the timed
automata model checking tool Kronos [24].

Tool Overview. PRISM first parses the model description and constructs an
internal representation of the probabilistic model, computing the reachable state
space of the model and discarding any unreachable states. This represents the
set of all feasible configurations which can arise in the modelled system. Next,
the specification is parsed and appropriate model checking algorithms are per-
formed on the model by induction over syntax. In some cases, such as for prop-
erties which include a probability bound, PRISM will simply report a true/false
outcome, indicating whether or not each property is satisfied by the current
model. More often, however, properties return quantitative results and PRISM
reports, for example, the actual probability of a certain event occurring in the
model. Furthermore, PRISM supports the notion of experiments, which is a way
of automating multiple instances of model checking. This allows the user to
easily obtain the outcome of one or more properties as functions of model and
property parameters. The resulting table of values can either be viewed directly,
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Fig. 5. A screenshot of the PRISM graphical user interface

exported for use in an external application such as a spreadsheet, or plotted as a
graph. For the latter, PRISM incorporates substantial graph-plotting function-
ality. This is often a very useful way of identifying interesting patterns or trends
in the behaviour of a system. The reader is invited to consult the ‘Case Studies’
section of the PRISM website [53] for many examples of this kind of analysis.

Fig. 5 shows a screenshot of the PRISM graphical user interface, illustrating
the results of a model checking experiment being plotted on a graph. The tool
also features a built-in text-editor for the PRISM language. Alternatively, all
model checking functionality is also available in a command-line version of the
tool. PRISM is a free, open source application. It presently operates on Linux,
Unix, Windows and Macintosh operating systems. Both binary and source code
versions can be downloaded from the website [53].

Implementation. One of the most notable features of PRISM is that it is a
symbolic model checker, meaning that its implementation uses data structures
based on binary decision diagrams (BDDs). These provide compact represen-
tations and efficient manipulation of large, structured probabilistic models by
exploiting regularity that is often present in those models because they are de-
scribed in a structured, high-level modelling language. More specifically, since
we need to store numerical values, PRISM uses multi-terminal binary decision
diagrams (MTBDDs) [21,7] and a number of variants [46,52,48] developed to
improve the efficiency of probabilistic analysis, which involve combinations of
symbolic data structures such as MTBDDs and conventional explicit storage
schemes such as sparse matrices and arrays. Since its release in 2001, the model
size capacity and tool efficiency has increased substantially (107 – 108 is feasible
for CTMCs and higher for other types of models). PRISM employs and builds
upon the Colorado University Decision Diagram package [58] by Fabio Somenzi
which implements BDD/MTBDD operations.
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The underlying computation in PRISM involves a combination of:

– graph-theoretical algorithms, for reachability analysis, conventional temporal
logic model checking and qualitative probabilistic model checking;

– numerical computation, for quantitative probabilistic model checking, e.g.
solution of linear equation systems (for DTMCs and CTMCs) and linear
optimisation problems for (MDPs).

Graph-theoretical algorithms are comparable to the operation of a conventional,
non-probabilistic model checker and are always performed in PRISM using
BDDs. For numerical computation, PRISM uses iterative methods rather than
direct methods due to the size of the models that need to be handled. For so-
lution of linear equation systems, it supports a range of well-known techniques,
including the Jacobi, Gauss-Seidel and SOR (successive over-relaxation) meth-
ods. For the linear optimisation problems which arise in the analysis of MDPs,
PRISM uses dynamic programming techniques, in particular, value iteration.
Finally, for transient analysis of CTMCs, PRISM incorporates another iterative
numerical method, uniformisation (see Section 4.4).

In fact, for numerical computation, the tool actually provides three distinct
numerical engines . The first is implemented purely in MTBDDs (and BDDs);
the second uses sparse matrices; and the third is a hybrid, using a combination
of the two. Performance (time and space) of the tool may vary depending on
the choice of the engine. Typically the sparse engine is quicker than its MTBDD
counterpart, but requires more memory. The hybrid engine aims to provide a
compromise, providing faster computation than pure MTBDDs but using less
memory than sparse matrices (see [46,52]).

The PRISM modelling language. The PRISM modelling language is a sim-
ple, state-based language based on the Reactive Modules formalism of Alur and
Henzinger [1]. In this section, we give a brief outline of the language. For a full
definition of the language and its semantics, see [45]. In addition a wide range of
examples can be found both in the ‘Case Studies’ section of the PRISM website
[53] and in the distribution of the tool itself.

The fundamental components of the PRISM language are modules and vari-
ables . Variables are typed (integers, reals and booleans are supported) and can
be local or global. A model is composed of modules which can interact with
each other. A module contains a number of local variables . The values of these
variables at any given time constitute the state of the module. The global state
of the whole model is determined by the local state of all modules, together with
the values of the global variables. The behaviour of each module is described by
a set of commands . A command takes the form:

[] g → λ1 : u1 + · · · + λn : un ;

The guard g is a predicate over all the variables in the model (including those
belonging to other modules). Each update ui describes a transition which the
module can make if the guard is true. A transition is specified by giving the new
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dtmc

module D1

x : [0..3] init 0;

[] x=0 → (x ′=1);
[] x=1 → 0.01 : (x ′=1)

+ 0.01 : (x ′=2)
+ 0.98 : (x ′=3);

[] x=2 → (x ′=0);
[] x=3 → (x ′=3);

endmodule

ctmc

module C1

y : [0..3] init 0;

[] y<3 → 1.5 : (y ′=y+1);
[serve ] y>0 → 3 : (y ′=y−1);

endmodule

Fig. 6. The PRISM Language: Specification of D1 and C1

values of the variables in the module, possibly as an expression formed from
other variables or constants. The expressions λi are used to assign probabilistic
information to the transitions.

In Fig. 6 we present the specification of the DTMC D1 (see Example 1 and
Fig. 1) and the CTMC C1 (see Example 12 and Fig. 4). For both these models
there is a single initial state, but PRISM allows the specification of a set of initial
states, see [45]. The labelling ‘serve’ of the second command in the specification
of C1 will be used below to specify a reward structure for this model.

In general the probabilistic model corresponding to a PRISM language de-
scription is constructed as the parallel composition of its modules. In every state
of the model, there is a set of commands (belonging to any of the modules)
which are enabled, i.e. whose guards are satisfied in that state. The choice be-
tween which command is performed (i.e. the scheduling) depends on the model
type. For a DTMC, the choice is probabilistic, with each enabled command se-
lected with equal probability and for CTMCs it is modelled as a race condition.
PRISM also supports multi-way synchronisation in the style of process algebras.
For synchronisation to take effect, commands are labelled with actions that are
placed between the square brackets.

Reward Structures. PRISM includes support for the specification and analy-
sis of properties based on reward (and cost) structures. Reward structures are
associated with models using the rewards “reward name” ... endrewards con-
struct and are specified using multiple reward items of the form:

g : r ; or [a] g : r ;

depending on whether a state or transition rewards are being specified, where g
is a predicate (over all the variables of the model), a is a action label appear-
ing in the commands of the model and r is a real-valued expression (containing
any variables, constants, etc. from the model). A single reward item can assign
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different rewards to different states or transitions, depending on the values of
model variables in each one. Any states/transitions which do not satisfy the
guard of a reward item will have no reward assigned to them. For states/
transitions which satisfy multiple guards, the reward assigned is the sum of
the rewards for all the corresponding reward items.

For example, the two reward structures of the CTMC C1 given in Example 18
can be specified as:

rewards “reward1 ”
true : y;

endrewards

rewards “reward2 ”
[serve ] true : 1;

endrewards

To further illustrate how reward structures are specified in PRISM consider
the reward structure given below, which assigns a state reward of 100 to states
satisfying x=1 or y=1 and 200 to states that satisfy both x=1 and y=1, and a
transition reward of 2 · x to transitions labelled by a from states satisfying x>0
and x<5.

rewards “reward name”
x=1 : 100;
y=1 : 100;
[a] x>0 & x<5 : 2 ∗ x ;

endrewards

Property specifications. Properties of PRISM models are expressed in PCTL
for DTMCs and CSL for CTMCs. The operators P∼p[·], S∼p[·] and R∼r[·] by
default include the probability bound ∼p or reward bound ∼r. However, in
PRISM, we can also directly specify properties which evaluate to a numerical
value by replacing the bounds in the P, S and R operators with =?, as illustrated
in the following PRISM specifications:

– P=? [ ! proc2 terminate U proc1 terminate ] - the probability that process 1
terminates before process 2 completes;

– S=? [ (queue size/max size)>0.75 ] - the long-run probability that the queue
is more than 75% full;

– R=? [ C � 24 ] - the expected power consumption during the first 24 hours
of operation;

– R=? [ I = 100 ] - after 100 time units, the expected number of packets await-
ing delivery;

– R=? [ F elected ] - the expected number of steps required for the leader elec-
tion algorithm to complete;

– R=? [ S ] - the long-run expected queue-size.

Note that the meaning ascribed to these properties is, of course, dependent on
the definitions of the atomic propositions and reward structures.

By default, the result for properties of this kind is the probability for the
initial state of the model. It is also possible, however, to obtain the probability
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for an arbitrary state or more generally either the minimum or maximum prob-
ability for a particular class of states, as demonstrated in the following PRISM
specifications:

– P=? [ queue size�5 U queue size<5 {queue size=5} ] - the probability, from
the state where the queue contains 5 jobs, of the queue processing at least
one job before another arrives;

– P=? [ !proc2 terminate U proc1 terminate {init}{min} ] - the minimum
probability, over all possible initial configurations, that process 1 terminates
before process 2 does.

5.2 Case Study 1: Probabilistic Contract Signing

This case study, taken from [51], concerns the probabilistic contract signing pro-
tocol of Even, Goldreich and Lempel [25]. The protocol is designed to allow two
parties, A and B, to exchange commitments to a contract. In an asynchronous
setting, it is difficult to perform this task in a way that is fair to both parties,
i.e. such that if B has obtained A’s commitment, then A will always be able to
obtain B’s. In the Even, Goldreich and Lempel (EGL) protocol, the parties A
and B each generate a set of pairs of secrets which are then revealed to the other
party in a probabilistic fashion. A is committed to the contract once B knows
both parts of one of A’s pairs of secrets (and vice versa).

PRISM was used to identify a weakness of the protocol [51,53], showing that,
by quitting the protocol early, one of the two parties (the one which did not ini-
tiate the protocol) can be at an advantage by being in possession of a complete
pair of secrets while the other party knows no complete pairs. Various modifica-
tions to the basic EGL protocol were proposed [51,53] and PRISM was used to
quantify the fairness of each.

The model is constructed as a DTMC and below we list the range of PCTL
properties relating to party A that have been studied with PRISM (the dual
properties for party B have also been studied). For each property we also state
any modification to the model or reward structure required and explain the
relevance of the property to the performance of the protocol.

– P=?[� knowB ∧ ¬knowA] – the probability of reaching a state where A does
not know a pair while B does know a pair. This measure can be interpreted
as the “chance” that the protocol is unfair towards either party.

– R=?[F done] - the expected number of bits that A needs to know a pair once B
knows a pair. In this case the model of the protocol was modified by adding
a transition to the final state done as soon as B knows a pair and assigning
to this transition a reward equal to the number of bits that A requires to
know a pair. This property is a quantification of how unfair the protocol is
with respect to either party.

– R=?[F knowA] - once B knows a pair, the expected number of messages from
B that A needs to know a pair. The reward structure in this case associates a
reward of 1 to all transitions which correspond to B sending a message to A
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Fig. 7. Model checking results for the EGL contract signing protocol

from a state where B already knows a pair. This measure can be interpreted
as an indication of how much influence a corrupted party has on the fairness
of the protocol, since a corrupted party can try and delay these messages in
order to gain an advantage.

– R=?[F knowA] - once B knows a pair, the expected total number of messages
that need to be sent (by either party) before A knows a pair. In this case
we assign a reward of 1 to any transition which corresponds to either B
sending a message to A or A sending a message to B in a state where B
already knows a pair. This measure can be interpreted as representing the
“duration” of unfairness, that is, the time that one of the parties has an
advantage.

Fig. 7 shows plots of these values for both the basic protocol (EGL) and three
modifications (EGL2, EGL3 and EGL4). The solid lines and dashed lines repre-
sent the values for parties A and B, respectively (where process B initiated the
protocol). The data is computed for a range of values of n: the number of pairs
of secrets which each party generates.

The results show EGL4 is the ‘fairest’ protocol except for the ‘duration of
fairness measure’ (expected messages that need to be sent for a party to know a
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pair once the other party knows a pair). For this measure, the value is larger for B
than for A and, in fact, as n increases, this measure increases for B but decreases
for A. In [51] a solution is proposed and analysed which merges sequences of bits
into a single message. For further details on this case study see [51] and the
PRISM website [53].

5.3 Case Study 2: Dynamic Power Management

Dynamic Power Management(DPM) is a technique for saving energy in devices
which can be turned on and off under operating system control. DPM has gained
considerable attention over the last few years, both in the research literature
and in the industrial setting, with schemes such as OnNow and ACPI becoming
prevalent. One of the main reasons for this interest is the continuing growth in
the use of mobile, hand-held and embedded devices, for which minimisation of
power consumption is a key issue.

(SR)

Requester
Service

State Observations Commands

Power Manager (PM)

(SP)
Service Provider

Service Request Queue

(SRQ)

Fig. 8. The DPM System Model

DPM-enabled devices typically have several power states with different power
consumption rates. A DPM policy is used to decide when commands to transition
between these states should be issued, based on the current state of the system.
In this case study we consider only simple policies, so called N -policies, which
‘switch on’ when the queue of requests awaiting service is greater than or equal
to N , and ‘switch off’ when the queue becomes empty.

The basic structure of the DPM model can be seen in Fig. 8. The model
consists of: a Service Provider (SP), which represents the device under power
management control; a Service Requester (SR), which issues requests to the de-
vice; a Service Request Queue (SRQ), which stores requests that are not serviced
immediately; and the Power Manager (PM), which issues commands to the SP,
based on observations of the system and a stochastic DPM policy.

This case study is based on a CTMC model of a Fujitsu disk drive [54]. The
SP has three power states: sleep, idle and busy. In sleep the SP is inactive and
no requests can be served. In idle and busy the SP is active; the difference is
that idle corresponds to the case when the SP is not working on any requests
(the SRQ is empty) and busy it is actively working on requests (the SRQ is not
empty). Transitions between sleep and idle are controlled by the PM (that is,
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sleep idle busy
sleep 0 1.6 -

idle 0.67 0 0

busy - 0 0

(a) Transition time

sleep idle busy
sleep 0 7 -

idle 0.067 0 0

busy - 0 0

(b) Energy consumed

sleep idle busy
av. power 0.13 0.95 2.15

av. service 0 0 0.008

(c) Power and service times

Fig. 9. Transition times, energy and power consumption and service times for the SP

by the DPM policy), while transitions between idle and busy are controlled by
the state of the SRQ. Fig. 9(a) shows the average times for transitions between
power states, Fig. 9(b) show the energy used for these transitions and Fig. 9(c)
the average power consumption and service times for each state. The SR models
the inter-arrival distribution of requests given by exponential distribution with
rate 100/72 and the SRQ models a service request queue which has a maximum
size of 20. Note that, if a request arrives from the SR and the queue is full (20
requests are already awaiting service), then they are presumed lost.

The three reward structures constructed for this case study which are outlined
below.

1. The first reward structure, used to investigate the power consumption of
the system, is defined using the energy and power consumption of the SP
given in Fig. 9. More precisely, the state rewards equal the average power
consumption of the SP in that state and the transition reward for transi-
tions in which the SP changes state is assigned the energy consumed by the
corresponding state change.

2. The second reward structure, used for analysing the size of the service request
queue, is obtained by setting the reward in each state to the size of the SRQ
in that state (there are no transition based rewards);

3. The third reward structure, used when calculating the number of lost re-
quests, assigns a reward of 1 to any transition representing the arrival of a
request in a state where the queue is full (there are no state rewards in this
case).

Below we list a range of CSL properties that have been studied for this case
study in PRISM.

– P=?[��t (q�M)] – the probability that the queue size becomes greater than
or equal to M by t;

– P=?[��t (lost�M)] – the probability that at least M requests get lost by t;
– R=?[C�t] – the expected power consumption by t or the expected number

of lost customers by time t (depending on whether the first or third reward
structure is used);

– R=?[I=t] – the expected queue size at t (using the second reward structure);
– R=?[S] – the long run average power consumption, long run average queue

size or long run average number of requests lost per unit time (depending
on which reward structure is used).
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Fig. 10. Range of results for the DPM case study obtained with PRISM

Fig. 10 presents a range of the results obtained with PRISM for this case study.
The results demonstrate, as expected, that increasing N decreases the power con-
sumption, while increasing both the queue size and the number of lost requests.
For further details about DPM see, for example, [14,55] and for probabilistic
model checking of DPM [50].



Stochastic Model Checking 263

5.4 Case Study 3: Fibroblast Growth Factors

The final case study concerns a biological pathway for Fibroblast Growth Factors
taken from [32]. Fibroblast Growth Factors (FGF) are a family of proteins which
play a key role in the process of cell signalling in a variety of contexts, for
example wound healing. The model is a CTMC and it incorporates protein-
protein interactions (including competition for partners), phosphorylation and
dephosphorylation, protein complex relocation and protein complex degradation
(via ubiquitin-mediated proteolysis). Fig. 11 illustrates the different components
in the pathway and their possible bindings.

Fig. 11. Diagram showing the different possible bindings in the pathway

In [32] a base model, representing the full system, was developed. Subse-
quently, a series of ‘in silico genetics’ experiments on the model designed to
investigate the roles of the various components of the activated receptor com-
plex in controlling signalling dynamics. This involves deriving a series of modified
models of the pathway where certain components are omitted (Shp2, Src, Spry
or Plc), and is easily achieved in a PRISM model by just changing the initial
value of the component under study. Below, we present a selection of the various
CSL properties of the model that were analysed including, for properties relating
to rewards, an explanation of the corresponding reward structure.

– P=?[�[t,t] agrb2 ] - the probability that Grb2 is bound to FRS2 at the time
instant t.

– R=?[C�t] - the expected number of times that Grb2 binds to FRS2 by time
t. In this case, the only non-zero rewards are associated with transitions
involving Grb2 binding to FRS2 which have a reward 1.

– R=?[C�t] – the expected time that Grb2 spends bound to FRS2 within the
first T time units. The reward structure for this property assigns a reward
of 1 to all states where Grb2 is bound to FRS2 and 0 to all other states and
transitions.

– S=?[agrb2 ] - the long-run probability that Grb2 is bound to FRS2.
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Fig. 12. Transient numerical results

– R=?[F (asrc∨aplc∨aspry)] - the expected number of times Grb2 binds to FRS2
before degradation or relocation occurs. As in the second property, transi-
tions involving Grb2 binding to FRS2 are assigned reward 1.

– R=?[F (asrc∨aplc∨aspry)] - the expected time Grb2 spends bound to FRS2
before degradation or relocation occurs As for the third property, all states
where Grb2 is bound to FRS2 have a reward of 1.
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Table 1. Long run and expected reachability properties for the signal

S=?[agrb2 ] R=?[F (asrc∨aplc∨aspry)]
bindings time (min)

full model 7.54e-7 43.1027 6.27042
no Shp2 3.29e-9 10.0510 7.78927
no Src 0.659460 283.233 39.6102
no Spry 4.6e-6 78.3314 10.8791
no Plc 0.0 51.5475 7.56241

Table 2. Probability and expected time until degradation/relocation in the long run

P=?[¬(asrc∨aplc∨aspry) U axxx ] R=?[F (asrc∨aplc∨aspry)]
xxx = src xxx = plc xxx = spry (min)

full model 0.602356 0.229107 0.168536 14.0258
no Shp2 0.679102 0.176693 0.149742 10.5418
no Src - 1.0 0.0 60.3719
no Spry 0.724590 0.275410 - 16.8096
no Plc 0.756113 - 0.243887 17.5277

– P=?[¬(asrc∨aplc∨aspry) U[0,t] asrc] - the probability that degradation or relo-
cation occurs by by time t and Src is the cause.

– P=?[¬(asrc∨aplc∨aspry) U aplc ] - the probability that Plc is the first cause of
degradation or relocation.

– R=?[F (asrc∨aplc∨aspry)] - the expected time until degradation or relocation
occurs in the pathway. For this property all states are assigned reward 1
(and all transitions are assigned reward 0).

Fig. 12 presents results relating to the transient properties, while Tables 1 and 2
consider long-run properties. Note that the results of Table 1 and Table 2 can be
regarded as the values of Fig. 12(a)–(c) and Fig. 12(d)–(f) in “the limit”, i.e. as
t tends to infinity. For further details on the case study see [32] and the PRISM
website [53].

6 Conclusions

In this tutorial we have presented an overview of stochastic model checking,
covering both the theory and practical aspects for two important types of prob-
abilistic models, discrete- and continuous-time Markov chains. Algorithms were
given for verifying these models against probabilistic temporal logics PCTL and
CSL and their extensions with the reward operator. The probabilistic model
checker PRISM, which implements these algorithms, was used to analyse three
real-world case studies also described here. However, there are many other as-
pects of stochastic model checking not covered in this tutorial and below we
attempt to give brief pointers to related and further work.
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More expressive logics than PCTL have been proposed, including LTL
and PCTL* [6,15]. For the corresponding model checking algorithms see
[62,22,6,15,13]. We also mention the alternative reward extension of PCTL given
in [2]. With regards to CTMCs, a number of extensions of CSL have been pro-
posed in the literature, along with associated model checking algorithms. For
example, [35] proposes an action based version of CSL; [31,9] introduce the log-
ics CRL and CSRL which added support for reward-based properties [42]; and
[44] augment CSL with random time-bounded until and random expected-time
operators, respectively.

This tutorial concentrated on stochastic model checking. Related topic in-
clude: probabilistic generalisations of bisimulation and simulation relations for
DTMCs [49,57] and for CTMCs [17,11]; and approximate methods for stochas-
tic model checking based on discrete event simulation [33,63]. Stochastic model
checkers SMART [19], E TMC2[34] and MRMC [39] have similarities with the
PRISM model checker described here. Finally, we mention a challenging direc-
tion of research is into the verification of models which allow more general prob-
ability distributions. While the restriction to exponential distributions imposed
by CTMCs is important for the tractability of their model checking, it may prove
too simplistic for some modelling applications. See [28] for an introduction to
this area.
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Abstract. Stochastic fluid models have been applied to model and eval-
uate the performance of many important real systems. The automatic
analysis tools to support of fluid models are still not as improved as
the ones for discrete state Markov models, but there is a wide range of
models which can be effectively described and analyzed with fluid mod-
els. Also the model support of hybrid models from various performance
evaluation tools improves continuously.

The aim of this work is to summarize the basic concepts and the
potential use of Markov fluid models. The factors which determine the
limits of solvability of fluid models are also discussed. Practical guidelines
can be extracted from these factors to determine the applicability of
fluid models in practical modeling examples. The work is supported by
an example where Fluid Models, derived from an higher level modeling
language (Fluid Stochastic Petri Nets), have been exploited to study the
transfer time distribution in Peer-to-Peer file sharing applications.

1 Introduction

Fluid models describe systems using two different kinds of variables; the discrete
variables and the continuous variables. Usually the state of a fluid model can
be decomposed into a discrete part which takes into account only the values of
the discrete variables, and a fluid part, which considers only the changes in the
fluid variables. The aim of this work is to summarize the basic concepts and the
potential use of Markov fluid models, and to discuss the factors which determine
the limits of solvability of this kind models.

This work is structured as follows: in Section 2, the main motivations and
advantages of fluid models are presented. The main literature about fluid models
is analyzed in 3. Section 4 defines three different formalisms that can be used
to express fluid models. Section 5 deals with the analytical description of fluid
models for steady state and transient analysis. Solution techniques are addressed
in Section 6. In Section 7 an application of Fluid Stochastic Petri Nets to compute
the transfer time distribution in Peer-to-Peer file sharing systems is presented.
Section 8 concludes the work.
� This work is partially supported by the Italian-Hungarian R&D project 9/2003 and

by the OTKA K61709 grant.

M. Bernardo and J. Hillston (Eds.): SFM 2007, LNCS 4486, pp. 271–317, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



272 M. Gribaudo and M. Telek

2 Motivations

Even if the conventional performance evaluation techniques are well suited to
describe a wide range of real systems, things are not always as easy as they
seem. The modeler usually faces several problems when trying to describe a
system with a particular formalism, and sometimes these problems make the
models extremely hard to handle. Some examples are:

– State space explosion. One of the weakest points in performance evalua-
tion is that the complexity of the solution of discrete state models generally
grows exponentially with the complexity of the model behavior. Many analy-
sis techniques for most of the formalisms require the generation and the visit
of all the possible states that the system may reach. This set of states is called
the state space of the model, and for many applications it must be stored in
the central memory. Since it grows exponentially with the complexity of the
model, the size of this set may reach very quickly the storage capacity of
the machine. In many situations this problem prevents a well defined model
from being solved.

– Inaccurate results. A model is always a simplification of realty. Some sim-
plifications are motivated by the fact that they cut out some parameters
of the model that do not influence the required solutions. Some others are
required in order to produce a system that can be analyzed with the tools
that a modeler has. These simplifications may not be adequate sometimes
and can lead to incorrect or inaccurate results. Many of these simplifica-
tions involve the characterization of some stochastic process by a Poisson
process and the probability distribution of the time between two events by
an exponential distribution.

– Granularity and sizes. In many situations the user must deal with a huge
number of small elements. Let us consider for example a production line that
produces bolts and screws. Thousands of parts will be produced in a very
short time. A model that wishes to capture the number of parts produced,
must deal with this big number which usually makes the state space explode
even faster. Similar problems arise in today’s communication systems which
deals with a high number of very small data packets.

– Modeling power limitations. Sometimes a model depends on some phys-
ical quantity such as temperature or power consumption. Those are contin-
uous quantities and they cannot be emulated correctly by discrete states.
In these cases, the modeling power of a discrete state model specification
language may not be adequate to describe the system.

2.1 Possible Solutions

In order to overcome the mentioned limitations, new modeling techniques have
been developed. In this paper, we will examine how the previous problems can be
attacked using Hybrid continuous / discrete techniques. Continuous and hybrid
models can in some circumstances solve the above mentioned problems, or give
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better results than conventional discrete state techniques in terms of computa-
tional complexity or accuracy of results. For example, hybrid models may solve
the problems in the following way:

– State space explosion: Usually hybrid models are analyzed by splitting the
discrete state space into a discrete part, that takes into account the possible
states that the system may reach (by considering only the discrete compo-
nents of the system) and a continuous part. Usually, when solving a hybrid
model, only the discrete part of the state space must be memorized explic-
itly, while the continuous part is expressed as a set of functions or predicates.
This greatly reduces the number of states that must be memorized and in
some cases may solve the state space explosion problem.

– Inaccurate results: When the inaccuracy of a result is caused by the Poisson
arrival or the exponential service time distribution, continuous models can
be used to overcome this problem. Continuous components can be used to
explicitly model the time since an action has been enabled, and can thus be
used to model non-Markovian processes and complex memory properties.

– Granularity and sizes: When the modeling problems are caused by a variable
that has a very small granularity, this variable may be approximated by
a continuous quantity. Even if in the real system the variable is actually
discrete, usually its continuous approximation can lead to very good results,
especially if the changes in the real quantity happens at a constant rate. For
example modeling the number of packets contained in a queue of an ATM
router or the number of bytes allocated in the central memory of a PC can
produce good results .

– Modeling power limitations: If the system under study depends on a physi-
cal continuous quantity that must be modeled explicitly to capture its real
behavior, then hybrid models seem to be the natural solution. For example
the instantaneous fuel consumption of a turbine in a power plant can be
modeled explicitly by a continuous variable.

3 Related Works

Several formalisms have been introduced in the literature with this purpose in
view. We will start our work with a review of the ones related to the results
presented in the following sections.

Fluid Stochastic Petri Nets. Fluid Stochastic Petri Nets were introduced by
K. S. Trivedi and V. G. Kulkarni in [37], and the extended in [21]. An FSPN
is an extension of stochastic Petri net in which continuous quantities may be
included directly in the model. A FSPN has two type of places: discrete places
(containing a non-negative number of tokens) and continuous places (containing
fluid). Discrete places are drawn as single circle, while fluid places are represented
by two concentric circles. Transition firings are determined by both discrete and
continuous places, and fluid flow is permitted through enabled timed transitions.
Transitions may be either timed, when they have associated an exponential firing
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time, or immediate, when they fire in zero time. To each transition a guard may
be associated. A guard is boolean function of the state space G : (T ×S) → {0, 1}
where T represents the set of transitions and S the discrete-continuous state
space. A transition t may fire in state M only if G(t, M) = 1. Guards associated
with timed transitions may depend upon the marking of both the discrete and
the continuous places, while guards associated with immediate transitions may
depend only upon the discrete part of the marking. Fluid flow is determined by
fluid arcs that connect timed transitions to fluid places. Each fluid arc that goes
from transition t to fluid place c has associated a (possibly state M dependent)
flow rate r((t, c), M). If transition t is enabled in state M, then fluid flows across
the arc at r((t, c), M) fluid units per time units. If the arc is directed from the
transition to the place, then the fluid enters the fluid place. If the arc is directed
from the place to the transition, fluid flows out of the place. Standard arcs are
represented by standard arrows, while fluid arcs are represented as a double line,
to suggest a pipe.

FSPN models are analyzed by writing the equations of the underlying stochas-
tic processes and then by solving them numerically. The equations are written
by decoupling the discrete part of the model from the continuous one.

Some extensions to the basic FSPN formalism and the problem of simula-
tion of FSPN have been addressed in [9]. In this paper the formalism has been
extended to consider fluid impulses associated with both immediate and timed
transitions firings, and to allow guards associated with both timed and imme-
diate transitions, dependent on both fluid levels and on the discrete part of
the marking. Although interesting, these extensions make the models analyzable
only through simulation. Simulation of FSPN, however, is not an easy task since
the underlaying stochastic process becomes a non-homogenous Markov process.
The problem is solved in the paper using a technique called thinning [25].

The main advantage of this formalism lies in the ability to write equations,
wihch can describe the behavior of the model (at least for the original version).
Its major drawback is the lack of fluid conservation. This means that if a tran-
sition connects two fluid places, one with an input fluid arc and the other with
an output fluid arc (See Figure 1a)), the transition does not actually trans-
fer fluid from one place to the other. If the source place becomes empty, the
destination place continues to fill, making the model represented in Figure 1a)
virtually equivalent to the one shown in Figure 1b). This problem may lead to
models whose graphical appearance may be misinterpreted from unexperienced
users.

β1 β2
x1 x2

a)

β1 β2
x1 x2

b)

Fig. 1. The fluid conservation problem: a) an ambiguous model b) an equivalent model
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Second Order Fluid Stochastic Petri Nets. Second order fluid stochastic
Petri nets have been introduced by K. Wolter in [38]. Those models are an
extension of the FSPN formalism described in Section 3. In second order FSPN,
fluid does not flow at a constant rate, but at randomly variable rate. The flow
rate is specified by a mean flow rate and a flow variance. These kind of models are
called second order models since their solution involves the solution of a system
of second order partial differential equations. In second order FSPN, each fluid
arc has associated a mean flow rate and a variance. Then the potential flow rate
in each discrete state is computed as the sum of the flow rate of the input arcs
that connect enabled timed transitions to that place, minus the sum of the flow
rate of the output arcs that connect that place to enabled timed transitions. The
potential variance of the state is computed as the sum of the variance of all the
fluid arcs that connect that place to enabled timed transitions, regardless of the
direction of the arc.

Second order FSPNs have been extended in [39] to include fluid jumps. In
this extension, each time a timed transition fires, a random amount of fluid may
be added or removed from some fluid place. This is graphically represented by
connecting timed transitions to fluid places with standard arcs. Since fluid places
may be bounded, two jump policies exist: force jump and preserve. Using the
first policy, if a jump would lead to a marking outside the boundary, it will be
stopped at that boundary. Using the preserve policy, jumps that may lead the
fluid levels outside the bounds are inhibited. In this way, fluid jumps after a
transition firing will occur only if their magnitude will not make the fluid levels
go outside the boundary.

Another extension called Non Markovian second order FSPNs has been pro-
posed in [40]. This formalism makes it possible to also use timed transitions with
a non exponential firing time, as long as only one general transition is enabled
in a discrete marking. This formalism merges the characteristics of the second
order FSPN, with the features of the non Markovian stochastic Petri nets [17].

The main drawback of this formalism is that in practical applications flow
variance is very rarely required. In practice, most of the systems that are an-
alyzed with fluid require only deterministic flow rates. Not many applications
of second order FSPNs have been investigated in the literature, and this poses
some additional problems to novices who want to understand the real power of
the formalism.

Continuous and Hybrid Petri Nets. Continuous Petri Nets and Hybrid
Petri Nets have been defined by H. Alla and R. David. A good reference to both
models can be found in [5]. The main difference between these models and the
one introduced in the previous sections is that fluid is not moved by arcs, but
by appropriate primitives called fluid transitions. A Continuous Petri Nets is a
model made by only fluid places and fluid transitions. Fluid is transferred along
the places by the fluid transitions. A fluid transition is enabled when there is
some fluid in all its input fluid places. Thanks to the fluid transitions, fluid is
conserved. This implies that the flow rate of a fluid transition may be reduced
when one of its input fluid places are empty. Conflicts may arise if two fluid
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transitions are connected to the same fluid place. In this case two policies have
been defined. With the priority policy, the input flow of the common fluid place
is used first to enable the highest priority fluid transition. If the input flow is
enough to satisfy the requirement of the highest priority transition, the remaining
part is used to satisfy the request of the second highest in rank and so on. With
the sharing policy, the input flow is shared among the output transitions, in
proportion with their flow rates. In this way, all fluid transitions connected to a
fluid place are always enabled, as long as there is some fluid flowing into their
input fluid places.

Hybrid Petri Nets combine the power of CPN with standard Petri nets. HPN
have discrete places, continuous places, discrete transitions and fluid transitions.
Discrete transitions may be enabled by both discrete and continuous places,
and can transfer tokens from discrete places and fluid from continuous places
when they fire. Discrete transitions can convert fluid to tokens (by connecting a
fluid place with an input arc and a discrete place with an output arc) and vice
versa. Continuous transitions may be enabled by discrete and continuous places
as well, but there is a limitation. If a continuous transition is connected with
an input arc to a discrete place, it must also be connected with an output arc
of the same weight to the same discrete place. This is required to “preserve the
token”, otherwise the fluid transition will consume a discrete quantity which is
not possible.

From the modeler point of view, HPN and CPN are more easier to use, since
the preservation of the fluid that enters a fluid transition is something that a
graph like the one presented in Figure 1a) suggests. On the other end, require-
ments such as the conservation of tokens, makes the models defined with HPN
a bit more complex to draw than the ones written with FSPN. For example,
in Figure 2 a production / consumer model is presented using both the FSPN
and the HPN formalisms. As we can see, HPN requires two more transitions
and four more arcs than does the FSPN. Many applicative examples exist in
the literature. In [5] a short review is made, by presenting HPNs used to model
a microchip production system, a production line and a water supply system.
However, the main disadvantage of the CPN and HPN approaches is that they
can be analyzed only by simulation. Analytical techniques can be used only in
very limited cases, even if some studies in this direction have been carried out
(see for example [26]).

Fluid and diffusion models. Another class of interesting fluid based ap-
proaches is the one in which queues and buffers are approximated by fluid. In
the work done by D. Mitra in [7], a producer / consumer model, with a fixed
number of producers and a single consumer, with an intermediate fluid buffer
is presented. In the proposed model, a Markov chain describes the state of the
sources (i.e. it counts how many producers are active). In each state an input
rate is computed based on the number of active producers. The difference be-
tween this value and the output rate of the consumer gives an instantaneous
rate of change of the fluid buffer. A system of differential equation is then writ-
ten to completely characterize the model. The proposed system is solved by
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a)
b)

Fig. 2. A model of a producer / consumer system: a) FSPN b) HPN

computing the eigenvalues and eigenvectors of a matrix. Several techniques to
obtain these eigenvalues in various cases are presented in the paper, together
with some asymptotic results.

In [28] these results are extended to the case of multiple consumers.In this pa-
per, the state of the consumers is also expressed as the state of another Markov
chain. The global state of the model is defined as the Kronecker product of the
two Markov chains (the one which represents the consumers and the one corre-
sponding to the producers). In [13] the results are further extended to consider
the case of different classes of sources, finite buffer, and production rates depen-
dent on buffer occupancy. This class of models is used to describe a rate-based
congestion control of a high speed network with loss priorities. The key features
of these works are the abilities to characterize the stochastic process that de-
scribes the model, and to present some specific but efficient analytical solution
techniques. General fluid models, where no particular structure is considered for
the Markov chain that governs the fluid flow, have been addressed in several pa-
pers. A particularly interesting solution algorithm, based on Taylor expansion,
has been presented in [34]. The advantages of that approach is that it does not
require the computation of matrix eigenvalue and eigenvector (a task that can
present many numerical problems).

Diffusion models, on the other hand, are models where the fluid flow is not
considered constant in a given state, but it is defined by a mean flow rate and
a variance. These models are often referred to as second order models, since
they require the solution of a system of second order differential equations.
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Usually these models describe the whole system using only continuous quanti-
ties. Discrete states are not considered and discrete quantities are approximated
by continuous ones. The theory behind these approaches is based on the central
limit theorem: a sum of a large number of random variables can be approxi-
mated by a Normal distribution characterized by a mean that corresponds to
sum of the means of the various random variables, and by a variance that cor-
responds to the sum of the various variances. The normal distribution can then
be approximated by the solution of a diffusion process that is expressed through
a second order differential equation. Models are expressed as standard queuing
networks with general service time distributions. Only the first two moments of
these distributions (i.e. their mean and their variance) are required to find the
parameters for the diffusion equation. In order to better describe the process,
special boundary conditions are included. A barrier with an instantaneous jump
is used to characterize the phase in which a service center is empty. A good
reference to these kinds of models can be found in [11]. This approach has been
extended in order to consider finite capacity queues and complex server policies.
It has been used to study several applicative problems, such as cellular telephone
cells or ABR traffic sources.

4 Formalisms

Continuous quantities have been introduced in performance models in many
flavors. Many high-level and low-level performance evaluation formalisms have
been developed to deal with continuous quantities. In this work we will consider:

– Reward Models (RM),
– Fluid Models (FM), and
– Fluid Stochastic Petri Nets (FSPN).

4.1 Reward Models

A Reward Model is a Markov chain in which each state has associated a pos-
itive quantity called Reward Rate. A continuous variable, takes into account all
the Reward accumulated over a time interval. This quantity grows proportionally
with the time spent in a state and with the corresponding reward rate. One of
the key aspect of reward models, is that the accumulated reward is unbounded.

The Markov Chain that governs the reward accumulation is called the under-
laying Markov Chain, and is described by a generator matrix Q, whose element
qij defines the transition from state i to state j, as in any other Markov Chain:

qij = lim
Δt→0

P{S(t + Δt) = j|S(t) = i}
Δt

, for i �= j

qij = −
∑

k �=i

qik, for i = j,

where S(t) is the state of the underlaying Markov chain at time t.
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The reward rate of the state i is denoted by ri, ri ≥ 0. This quantity describes
the rate at which the accumulated reward grows when the underlaying Markov
chain is in state i. Reward rates are collected in a diagonal matrix, R, whose
elements Rij are such that:

Rij = 0, for i �= j,
Rij = ri, for i = j.

We denote with X(t) the total reward accumulated until time t, and we set
X(0) = 0. If we know the evolution of the underlaying Markov chain (that is
S(t)), then we can compute X(t) as follows:

X(t) =
∫ t

0
rS(u) du.

The fact that the reward rates are always positive, and that the accumu-
lated reward is unbounded, greatly simplifies the analytical description of the
systems. Many efficient techniques exists in the literature to analyze Reward
Models [32,12,24,29,31].

4.2 Fluid Models

Fluid Models are an extension of Reward Models. Various definition of fluid
models exists, and they will be fully addressed in section 5. Here we will put just
a general presentation of the main formalism. As RMs, FMs are characterized
by an underlaying Markov Chain, defined by matrix Q, and a reward matrix
R. The main difference with respect to RM, is that in FM the rate associated
to each state (called in this case flow rate or drift) can be positive, negative or
zero. Usually, the accumulated reward is called Fluid Level, since the continuous
value of the reward can be used to represent the level of fluid contained in a
reservoir. The second main difference between FMs and RMs, is that in a FM
the fluid level has at least a lower bound at zero, and may also have an upper
bound at a fixed positive value.

Even if the differences between FMs and RMs seem to be negligible at first
sight, FMs are much more complex to be analyzed. The presence of bound-
aries and negative rates, imposes the introduction of boundary conditions in the
equations that describe the evolution of the system. These conditions reduce the
applicability of analytical results, and makes the solution much more complex.
However, from a modeling point of view, the introduction of negative rates and
bounds allows the characterization of a larger set of interesting systems, which
could not be analyzed by simple RMs. FMs can be used to approximate large
buffers with continuous quantities, making thus the formalism well suited to
analyze high speed communication and production systems.
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4.3 Fluid Stochastic Petri Nets

A Fluid Stochastic Petri Net (FSPN) is an extension of an ordinary Sto-
chastic Petri Net, capable of incorporating continuous quantities. Other similar
extensions with minor differences are: Continuous Petri Nets and Hybrid Petri
Nets [5]. In this work we will not consider such formalisms, and we will present
only the basic formalism, intended for stochastic analysis. Several extensions
have been considered to allow the description of more complex model, which
however can only be solved using simulation [10].

Formally, a FSPN is a tuple 〈P , T , A, B, F, W, R, M0〉, where:

– P is the set of places, partitioned into a set of discrete places Pd ={
p1, . . . , p|Pd|

}
and a set of continuous places Pc =

{
c1, . . . , c|Pc|

}
(with

Pd ∩ Pc = ∅ and Pd ∪ Pc = P). The discrete places may contain tokens
(the number of tokens in a discrete place is a natural number), while the
marking of a continuous place is a non negative real number that we call
the fluid level. In the graphical representation, a discrete place is drawn as
a single circle while a continuous place is signified by two concentric circles.
The complete state (marking) of a FSPN is described by a pair of vectors
M = (m, x), where the vector m, of dimension |Pd| is the marking of the
discrete part of the FSPN and the vector x, of dimension |Pc|, represents
the fluid levels in the continuous places (with xl ≥ 0 for any cl ∈ Pc). We
use S to denote the partly discrete and partly continuous state space. In the
following we denote by Sd and Sc the discrete and the continuous component
of the state space respectively. The marking M = (m, x) evolves in time.
We can imagine the marking M at time τ as the stochastic marking process
M(τ) = {(m(τ), x(τ)), τ ≥ 0}.

– T is the set of transitions partitioned into a set of stochastically timed
transitions Te and a set of immediate transitions Ti (with Te ∩ Ti = ∅ and
Te ∪ Ti = T ). A timed transition Tj ∈ Te is drawn as a rectangle and has an
instantaneous firing rate associated with it. An immediate transition th ∈ Ti

is signified by a thin bar and has constant zero firing time.
– A is the set of arcs partitioned into three subsets: Ad, Ah and Ac. The

subset Ad contains the discrete arcs which can be seen as a function1 Ad :
((Pd × T ) ∪ (T × Pd)) → IN . The arcs Ad are drawn as single arrows. The
subset Ah contains the inhibitor arcs, Ah : (Pd × T ) → IN . These arcs are
drawn with a small circle at the end. The definitions of •tj , t•j , and ◦tj
involve only discrete places and are the same as for the standard GSPNs.

The subset Ac define the continuous arcs. These arcs are drawn as double
arrows to suggest a pipe. Ac is a subset of (Pc × Te) ∪ (Te × Pc), i.e., a
continuous arc can connect a fluid place to a timed transition or it can
connect a timed transition to a fluid place.

– The function B : Pc → IR+ ∪ {∞} describes the fluid upper boundaries on
each continuous place. This boundary has no effect when it is set to infinity.
From this if follows that ∀ M = (m, x) ∈ S and cl ∈ Pc, 0 ≤ xl ≤ B(cl).
Each fluid place has an implicit lower boundary at level 0.

1 Note that when the arcs are defined as a function we use uppercase symbols.
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– The firing rate function F is defined for timed transitions Te so that
F : Te × S → IR+. Therefore, a timed transition Tj enabled at time
τ in a discrete marking m(τ) with fluid level x(τ), may fire with rate
F (Tj , m(τ), x(τ)), that is:

lim
Δτ→0

Pr{Tj fires in (τ, τ +Δτ )|M(τ )=(m(τ ), x(τ ))}=F (Tj, m, x)Δτ

We also use as a short hand notation F (Tj, M), where M = (m, x)).
– The weight function W is defined for immediate transitions Ti such that

W : Ti × Sd → IR+. Note that the firing rates for timed transitions may
be dependent both on the discrete and the continuous part of the marking,
while the weights for immediate transitions may only be dependent on the
discrete part.

– The function R : Ac × S → IR+ ∪ {0} is called the flow rate function and
describes the marking dependent flow of fluid across the input and output
continuous arcs connecting timed transitions and continuous places.

– The initial state of the FSPN is denoted by the pair M0 = (m0, x0).

Figure 3 visually represents the discrete primitives of a FSPN (that are identical
to their GSPN counterparts), and Figure 4 shows the continuous primitives of
the formalism.

pi

tkTj

discrete
place

timed
transition

immediate
transition

discrete
arc

inhibitor
arc

tokens

pi

Fig. 3. Discrete primitives

The role of the previous sets and functions will be clarified by providing the
enabling and firing rules.

Let us denote by mi the i-th component of the vector m, i.e., the number
of tokens in place pi when the discrete marking is m. We say that a transition
tj ∈ T (no matter whether tj is an immediate or timed transition) has concession
in marking M = (m, x) iff ∀pi ∈ •tj , mi ≥ Ad(pi, tj) and ∀pi ∈ ◦tj , mi < Ah(pi, tj).

If an immediate transition has concession in M = (m, x), it is said to be enabled
and the marking is vanishing. Otherwise, the marking is tangible and any timed
transition with concession is enabled in it. Note that the previous definition is
exactly the one of standard GSPNs [4], i.e., the concession and the enabling
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Fig. 4. Continuous primitives

conditions depend only on the discrete part of the FSPN. Let E(M) denote the
set of enabled transitions in marking M = (m, x), we have that E(M) = E(M ′),
for any marking M ′ = (m, x′).

The stochastic evolution of the discrete part of the FSPN in a tangible marking
is governed by a race [3]. In a vanishing marking, instead, the weights are used
to decide which transition should fire according to the standard rules for GSPNs
[4]. Let us see how enabled transitions may influence the continuous part of
the marking. Each continuous arc that connects a fluid place cl ∈ Pc to an
enabled timed transition Tj ∈ Te (resp. an enabled transition Tj to a fluid place
cl), causes a “change” in the fluid level of place cl. Let M(τ) be the marking
process, i.e., M(τ) = Mi if at time τ the marking of the FSPN is Mi = (mi, xi).
Thus, when the FSPN marking is M(τ) fluid can leave place cl ∈ Pc along the
arc (cl, Tj) ∈ Ac at rate R((cl, Tj), M(τ)) and can enter the continuous place cl

at rate R((Tj, cl), M(τ)) for each (timed) transition Tj enabled in M(τ). The
potential rate of change of fluid level for the continuous place cl in marking
M(τ) is:

rp
l (M(τ )) =

�

Tj∈E(M(τ))

R((Tj , cl), M(τ )) − R((cl, Tj), M(τ )).

We require that for every discrete marking m and continuous arc (cl, Tj) (resp.
(Tj , cl)),that the rate R((cl, Tj), (x, m)) (resp. R((Tj , cl), (x, m))) be a piecewise
continuous function of x.

Now let Xl(τ) be the fluid level at time τ in a continuous place cl ∈ Pc. The
fluid level in each continuous place cl can never become negative or exceed the
bound B(cl), so the (actual) rate of change over time, τ , when the marking is
M(τ), is

rl(M(τ))=
dXl(τ)

dτ
=

����������
���������

rp
l (M(τ)) if Xl(τ) = 0 and rp

l (M(τ)) ≥ 0

rp
l (M(τ)) if Xl(τ) = B(cl) and rp

l (M(τ)) < 0

0 if Xl(τ) = 0 and rl(M(τ)) < 0

0 if Xl(τ) = B(cl) and rp
l (M(τ)) > 0

rp
l (M(τ)) if 0<Xl(τ)<B(cl) and rp

l (M(τ−))rp
l (M(τ+)) ≥ 0

0 if 0<Xl(τ)<B(cl) and rp
l (M(τ−))rp

l (M(τ+))<0.

(1)
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The first two cases of the previous equation concern situations when Xl(τ) = 0
(resp. Xl(τ) = B(cl)) and the potential rate is rp

l (M(τ)) ≥ 0 (resp. rp
l (M(τ)) <

0). In both cases the actual rate is equal to the potential rate. The third and
the fourth cases prevent the fluid level from overcoming the lower and the upper
boundaries. The last two cases require a deeper explanation (a reference for a
complete discussion of these aspects is [13]). As it has been assumed in [21], the
flow rate function R(·, ·) is a piecewise continuous function of the continuous
part of the marking. The meaning of the last case is that a sign change (from
+ to −) in rp

l (M(τ)) will “trap” Xl(τ) in a state in which it will be constant.
With this assumption, the analysis of the stochastic process M(τ) is simplified
(see [13] for a discussion on this type of situation). The fifth case, which is the
most common one, accounts for the fact that there is no sign change from + to
− in rp

l (M(τ)) and hence the actual rate is equal to the potential rate.
Fluid Stochastic Petri Nets are analyzed by transforming them into equiva-

lent Fluid Models. If the FSPN has a single fluid place, then standard FM can
be applied. If the FSPN has more than one fluid place, then special FM with
multiple continuous variables must be used.

We will begin by describing how to compute the infinitesimal generator Q of
the equivalent FM. Since fluid arcs arcs do not change the enabling condition of
a transition, standard analysis techniques can be applied to the discrete marking
process m(τ) [4]. These techniques split the discrete state space into two disjoint
subsets; called respectively, the tangible marking set and the vanishing marking
set. Since the process spends no time in vanishing markings, they can be removed
and their effect can be included in the transitions between tangible markings.
From this point on, we will consider only tangible markings. In GSPNs, the
underlying stochastic process is a CTMC, whose infinitesimal generator is a
matrix Q. Each entry qij represents the rate of transition from a tangible state
mi to a tangible state mj , that is:

qij =
�

Tk∈E(mi) | mi
Tk→mj

F (Tk, mi),

where E(mi) represents the set of enabled transitions in marking mi, and mi
Tk→

mj means that the firing of transition Tk changes the discrete state of the system
from mi to mj .

In the FSPN model defined in [21], the firing rate of each timed transition
can be made dependent on the continuous component of the state. With this
extension, the infinitesimal generator matrix must be also dependent on the fluid
component of the state, that is Q(x) = {qij} where:

qij(x) =
�

Tk∈E(mi) | mi
Tk→mj

F (Tk, mi, x).

The summation considers the transition rates of all the transitions Tk that bring
the net from state mi to mj . In the standard equations that describe a CTMC,
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the terms on the diagonal of the infinitesimal generator account for the proba-
bility of exiting from a state. In this case, we simply define:

qii(x, ∅) = −
∑

j �=i

qij(x). (2)

Matrix Q(x) is equivalent to the infinitesimal generator of a CTMC, in the
sense that each row sum of

�

s∈2Pc

Q(x, s), is equal to zero. In other words:

Q(x)1 = 0

where 1 (respectively 0) is a column vector with all the |Sd| components equal
to 1 (resp. 0).

If we have only a single fluid place cl, the fluid rate matrix R(x), of the
underlaying fluid model, can be simply computed by defining r(i, x) = rl(M),
where M = (mi, x). Then R(x) = diag(r(i, x)) becomes the diagonal matrix
whose components account for the actual flow rate out of the fluid place.

No boundary conditions are needed, since they are included in the definition
of the potential flow rate (Equation (1)). Dirac’s delta functions in the solution,
represent cases where there is a non zero probability of finding the system in a
particular marking (both discrete and continuous).

In [19] a new kind of fluid primitive, called Flush-out arcs has been added to
the FSPN formalism.

flush-out
arc

Fig. 5. Flushout arcs

Flush-out (See Figure 5 arcs are special arcs that connect fluid places to timed
transition (but not timed transition to fluid places). They are drawn using thick
lines. When a transition fires, the places connected with a flush-out arc are
emptied in zero time.

Despite their simplicity, Flush-out Arcs can be exploited to obtain many in-
teresting effects, like dropping the content of the transmission buffer. The un-
derlaying stochastic model is no longer a standard Fluid Model, but it can be
analyzed similarly using appropriate boundary conditions. It has been shown
in [19] that FSPNs with flush-out arcs can be used to simulate Non-Markovian
Stochastic Petri Nets [15].

5 Analytical Description of Fluid Models

Since the behaviour of the considered class of fluid models contain random
elements they belong to the large family of stochastic processes. Stochastic
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processes can be viewed as a set of random variables, which are ordered accord-
ing to a parameter. In typical engineering applications the parameter represents
the time and it takes value either from the natural numbers, 0, 1, 2, . . ., or from
the set of non-negative real numbers. The former case is referred to as discrete
time stochastic process and the later as continuous time stochastic process.

Also in typical engineering applications the random variables has the same
support set. The characteristics of this support set is the other main feature of
the stochastic process. We distinguish the following cases:
– discrete support set, e.g., the number of customers in a queue,
– continuous support set, e.g., the unfinished work in a queue,
– hybrid (continuous and discrete) support set, e.g., the unfinished work and

the number of customers.

General continuous and hybrid valued stochastic processes are hard to ana-
lyze but, there are special cases which allow the application of simple analysis
methods. Focusing on the hybrid valued case the simplest processes are obtained
when the continuous part of the model is determined by its discrete part through
a very simple function, which is the case with reward models and fluid models.

In both cases a simple function of a discrete state stochastic process governs
the evolution of the continuous variable. E.g., the continuous value is increasing
or decreasing at a given rate while the discrete value is constant (see Figure 6).
In case of reward models this evolution is non-decreasing and unbounded, while
in case of fluid models the evolution of the continuous variable is bounded.
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B

0

Fluid model

Fig. 6. Evolution of the continuous variable in reward and fluid models

Definition 1. Markov property: A stochastic process is said to enjoy the Markov
property at time t, when the future evolution of the process is independent of its
past and depend only on the value of the random variable at time t.

Those stochastic processes which enjoy the Markov property at all time are
referred to as Markov processes. Continuous time Markov chains, Markov reward
models, Markov fluid models are examples of Markov processes. In this chapter
we focus on these Markovian cases.
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5.1 Classification of Fluid Models

The following features of fluid models are used for classification:

– Buffer size:
It is commonly assumed that the minimal buffer level is 0. This way the
size of the buffer determines the maximal buffer content. The two main
cases are finite buffer and infinite buffer. In case of an infinite buffer the
continuous quantity is only lower bounded at zero and in case of a finite
buffer the continuous quantity is lower bounded at zero and upper bounded
at B (Figure 7).
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Fig. 7. Infinite and finite buffer fluid models

– Evolution of the continuous variable:
The evolution of the continuous variable depends on the value of the discrete
variable, but this dependence can be of two kinds. The case when the con-
tinuous variable deterministically increases/decreases as long as the discrete
variable is constant, is referred to first order fluid model (Figure 8). The
case when the increment of the continuous variable during a period when
the discrete variable is constant is a normal distributed random quantity is
referred to second order fluid model (Figure 8).

Second order fluid models can be interpreted as the limiting process of a
two dimensional random walk according to Figure 9, where the horizontal
dimension represents the discrete variable and the vertical dimension repre-
sents the buffer level.

In this model the probabilities of the vertical state transitions determine
the mean fluid increase for each value of the discrete variable. It can be seen
that the fluid level can increase and also decrease in each column.

Reducing the time step and the granularity of the fluid level of this model
to zero results in the second order fluid flow model.

– Effect of the buffer content on the discrete variable:
With this respect there are two main cases. The evolution of the discrete
variable can be independent of or can depend on the instantaneous value
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Fig. 8. First and second order fluid models
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Fluid
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Fig. 9. Interpretation of second order fluid models

of the fluid variable. In case of a Markov fluid model, the first means that
the discrete part of the model is an “independent” CTMC which modulates
the fluid accumulation. In the later case there is a mutual dependence of
the continuous and the discrete part of the model and it is not possible to
analyze the discrete variable in isolation. The first case is also referred to as
space inhomogeneous model, since the generator matrix of the discrete
variable is constant, i.e., independent of the fluid level, while the second
case is also referred to as fluid level dependent model.

– Behaviour of the second order model at the boundaries:
In case of first order fluid models the model behaviour is quite well defined
when the fluid level reaches a boundary. When the fluid level reaches the
lower boundary (empty buffer) the system must be in a state with a negative
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Fig. 11. Second order fluid models with reflecting and absorbing boundary behaviour

fluid rate. After reaching the lower boundary (in a state with a negative fluid
rate), the buffer remains empty as long as a transition to a state with positive
fluid rate takes place. The system behaviour at the upper boundary (if any)
is similar.

The behaviour of second order fluid models is more complex at the bound-
aries. In this case we might assume a deterministic and a stochastic behaviour
depending on the behaviour of the modeled system.

The deterministic boundary behaviour of second order models is more
or less identical with the described boundary behaviour of the first order
model. The only difference is that the fluid level can become zero also in
states with non-negative drift and positive variance. This case is referred
to as absorbing boundary, since the fluid level gets identical with the
boundary for a positive amount of time (Figure 11).

The stochastic boundary behaviour of second order models is similar to
the general evolution of these models between the boundaries, where the fluid
level alternates randomly all over the time and does not remain constant for
a non-zero time period with positive probability. In this case, the fluid level
process is reflected as soon as it reaches a boundary, and this way it always
remain between the boundaries with probability 1. This case is referred to
as reflecting boundary, since the fluid level gets reflected at the boundary
(Figure 11).

These boundary behaviours can be interpreted using the same random
walk approximation as we used for the interpretation of the second order fluid
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Upper boundary

Reflecting Absorbing

Fig. 12. Interpretation of the boundary behaviour

model. Those states exhibit absorbing boundary behaviour, where there is
no vertical state transition out of a boundary state, i.e., the discrete variable
must change its value to leave the given boundary state. (Figure 12). In
contrast, those states exhibit reflecting behaviour, where there is a vertical
transition out of the boundary state, i.e., the fluid level is alternating all
over the time.

5.2 Transient Behaviour of the Fluid Level Process

In this section we study the transient behaviour of the fluid level process accord-
ing to a simple to more complex approach. The simplest case is the transient
analysis of first order, infinite buffer, homogeneous Markov fluid models. Later
on we extend this model with finite buffer, second order fluid accumulation and
fluid level dependency.

First order, infinite buffer, homogeneous Markov fluid models. During
an infinitesimally short period of time, (t, t + Δ), while the continuous variable
is i, or equivalently we also say that the (discrete part of the) system is in state
i, (S(τ) = i, ∀τ ∈ (t, t + Δ)), the fluid level (X(t)) increases at rate ri when
X(t) > 0:

X(t + Δ) − X(t) = riΔ

that is
d

dt
X(t) = ri if S(t) = i, X(t) > 0.

When X(t) = 0 the fluid level can not decrease:

d

dt
X(t) = max(ri, 0) if S(t) = i, X(t) = 0.
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That is
d

dt
X(t) =

{
rS(t) if X(t) > 0,

max(rS(t), 0) if X(t) = 0,

where rS(t) denotes the fluid rate in the actual discrete state of the process.

First order, finite buffer, homogeneous Markov fluid models. When
X(t) = B the fluid level can not increase:

d

dt
X(t) = min(ri, 0), if S(t) = i, X(t) = B.

That is
d

dt
X(t) =

⎧
⎨

⎩

rS(t), if X(t) > 0,
max(rS(t), 0), if X(t) = 0,
min(rS(t), 0), if X(t) = B.

Second order, infinite buffer, homogeneous Markov fluid models with
reflecting barrier. During a sojourn in the discrete state i (S(t) = i) in
the sufficiently small (t, t + Δ) interval the distribution of the fluid increment
(X(t + Δ) − X(t)) is normal distributed with mean riΔ and variance σ2

i Δ:

X(t + Δ) − X(t) = N (riΔ, σ2
i Δ), if S(u) = i, u ∈ (t, t + Δ), X(t) > 0,

where N (riΔ, σ2
i Δ) denotes a normal distributed random variable with mean

riΔ and variance σ2
i Δ.

If at X(t) = 0 the fluid process is reflected immediately in state i, it means
that the time spent at the boundary has a 0 measure, and so the probability of
staying at the boundary is

Pr(X(t) = 0, S(t) = i) = 0.

Second order, infinite buffer, homogeneous Markov fluid models with
absorbing barrier. Between the boundaries the evolution of the process is the
same as before.

When the fluid level decreases to zero in an absorbing barrier state, i, the
fluid process gets stopped and the fluid level remains zero for a positive amount
of time. Due to this behaviour

Pr(X(t) = 0, S(t) = i) > 0.

On the other hand, due to the absorbing property of the boundary the probability
that the fluid level is close to the boundary in an absorbing state is very low,

lim
Δ→0

Pr(0 < X(t) < Δ, S(t) = i)
Δ

= 0.
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Inhomogeneous (fluid level dependent), first order, infinite buffer
Markov fluid models. The evolution of the fluid level differs due to the fluid
level dependency of the fluid rate ri(x), where x is the fluid level. This way the
fluid level changes as:

d

dt
X(t) =

{
rS(t)(X(t)), if X(t) > 0,

max(rS(t)(X(t)), 0), if X(t) = 0 .

The evolution of the discrete part also depends on the fluid level. The detailed
discussion of this dependence is delayed to the next subsection.

5.3 Transient Description of Fluid Models

The aim of this section is to derive partial differential equations representing the
evolution of Markov fluid models in time. To this end we introduce the following
notations:

– πi(t) = Pr(S(t) = i) – state probability,
– ui(t) = Pr(X(t) = B, S(t) = i) – buffer full probability,
– �i(t) = Pr(X(t) = 0, S(t) = i) – buffer empty probability,

– pi(t, x) = lim
Δ→0

1
Δ

Pr(x < X(t) < x + Δ, S(t) = i) – fluid density.

Based on these notations the total probability law for time t gives

πi(t) = �i(t) + ui(t) +
∫

x

pi(t, x)dx. (3)

In the simplest considered case the evolution of the discrete variable is inde-
pendent of the fluid level, hence the discrete part of the model is a continuous
time Markov chains (CTMC).

Continuous time Markov chains. We start with the transient behaviour of
CTMCs and based on that we extend the analysis to the various fluid models.
The transient behaviour of CTMCs is characterized by the transition rates that
are determined by the transition probabilities as follows

lim
Δ→0

Pr(S(t + Δ) = j|S(t) = i)
Δ

= qij . (4)

The commonly applied forward argument to analyze Markovian stochastic
processes is based on the analysis of the short term behaviour of the process.
We can say that a CTMC which is in state i at time t can do 3 different things
in the (t, t + Δ) interval:

– no state transition:
The process can remain in state i during the whole period with probability
1 −

∑
j,j �=i qijΔ + σ(Δ), where qijΔ is the probability of a state transition

from state i to j in the (t, t+Δ) interval and σ(Δ) is a small error term that
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quickly vanishes as Δ tends to zero, i.e., limΔ→0 σ(Δ)/Δ = 0. Introducing
the notation, qii = −

∑
j,j �=i qij , we can write the probability of no state

transition in the (t, t + Δ) interval as 1 + qiiΔ + σ(Δ). Note that qii is
negative.

– one state transition:
The process can have a state transition from i to j during the (t, t + Δ)
interval with probability qijΔ + σ(Δ).

– more than one state transitions:
The probability of having more than one state transitions in a short interval
is quickly vanishes as Δ tends to zero, it is σ(Δ).

Based on these three options we can evaluate the probability of being in state
i at time t+Δ (πi(t+Δ)) as a function of the probability of being in the various
states at time t (πj(t)):

πi(t + Δ) =
(

1 + qiiΔ + σ(Δ)
)

πi(t)+
∑

j,j �=i

(

qjiΔ + σ(Δ)
)

πj(t)+

σ(Δ).

A σ(Δ) function multiplied with a bounded function (0 ≤ πi(t) ≤ 1) remains to
be a σ(Δ) function as well as the finite sum of such functions. Using this we can
rearrange the expression to

πi(t + Δ) − πi(t) = qiiΔπi(t) +
∑

j,j �=i

qjiΔπj(t) + σ(Δ) =
∑

j

qjiΔπj(t) + σ(Δ).

Dividing both sizes by Δ and making the Δ → 0 limit we have

πi(t + Δ) − πi(t)
Δ

=
∑

j

qjiπj(t) +
σ(Δ)

Δ

and
dπi(t)

dt
=
∑

j

πj(t)qji . (5)

(5) is the differential equation describing the transient behaviour of CTMCs. We
apply the same forward approach to evaluate the transient behaviour of Markov
fluid models.

First order, infinite buffer, homogeneous Markov fluid models. We
perform the same analysis for the fluid density using these 3 possible events
during the (t, t + Δ) interval. For simplicity we neglect the unnecessary σ(Δ)
terms.

If S(t + Δ) = i, then during the (t, t + Δ) interval the CTMC

– stays in i and increases the fluid level with riΔ with probability 1 + qiiΔ,
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– moves from k to i and changes the fluid level with O(Δ) with probability
qkiΔ, where O(Δ) is a function which vanishes as Δ tends to zero, i.e.,
limΔ→0 O(Δ) = 0 (in this particular case the change of the fluid level is
between riΔ and rjΔ),

– has more than 1 state transition with probability σ(Δ).

Considering these three cases we can express the fluid density at time t + Δ
as a function of the fluid density at time t:

pi(t + Δ, x) = (1 + qiiΔ) pi(t, x − riΔ)+
∑

k∈S,k �=i

qkiΔ pk(t, x − O(Δ))+

σ(Δ) .

Rearranging the terms, dividing both sides by Δ and making the Δ → 0 limit
gives

pi(t + Δ, x) − pi(t, x − riΔ) =
∑

k∈S
qkiΔ pk(t, x − O(Δ)) + σ(Δ) ,

pi(t + Δ, x) − pi(t, x)
Δ

+ ri
pi(t, x) − pi(t, x − riΔ)

riΔ
=

∑

k∈S
qki pk(t, x − O(Δ)) +

σ(Δ)
Δ

,

∂

∂t
pi(t, x) + ri

∂

∂x
pi(t, x) =

∑

k∈S
qki pk(t, x) . (6)

(6) is the basic partial differential equation describing the transient behaviour
of Markov fluid models. Indeed this equation describes the process behaviour
during the period while the fluid level is between the boundaries.

The model behaviour at the boundaries can be obtained by the same forward
argument. If ri > 0, than the fluid level increases in state i, which means that
the buffer cannot be empty in state i, i.e., �i(t) = Pr(X(t) = 0, S(t) = i) = 0.

If ri ≤ 0, we can consider the same 3 cases for the (t, t + Δ) interval:

– If there is no state transition the fluid level is zero at t + Δ if it was zero at
t or if it was between 0 and −riΔ at t.

– If there is one state transition in the interval, the fluid level was zero at t or
if it was between 0 and O(Δ) (between −riΔ and −rkΔ) at t.

– The case of having more than one state transitions in the interval, is treated
in the same way as before.
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�i(t + Δ) =

(1 + qiiΔ)

(

�i(t) +
∫ −riΔ

0
pi(t, x)dx

︸ ︷︷ ︸

∗

)

+

∑

k∈S,k �=i

qkiΔ

(

�k(t) +
∫ O(Δ)

0
pk(t, x)dx

︸ ︷︷ ︸
O(Δ)

)

+

σ(Δ) .

When x ≤ −riΔ, then using the first elements of the Taylor series of pi(t, x),
we have

pi(t, x) = pi(t, 0) + xp′i(t, 0) + σ(Δ) ,

and substituting it into the previous expression we obtain

∗ =
∫ −riΔ

0
pi(t, x)dx

=
∫ −riΔ

0
pi(t, 0)dx +

∫ −riΔ

0
xp′i(t, 0)dx +

∫ −riΔ

0
σ(Δ)dx

= −riΔ pi(t, 0) +
(−riΔ)2

2
p′i(t, 0)

︸ ︷︷ ︸
σ(Δ)

+ (−riΔ) σ(Δ)
︸ ︷︷ ︸

σ(Δ)

.

From which we can calculate the differential equation for the empty buffer prob-
ability using the same steps as before:

�i(t + Δ) = (1 + qiiΔ)
(
�i(t) −riΔpi(t, 0) + σ(Δ)

)
+

∑

k∈S,k �=i

qkiΔ (�k(t) + O(Δ)) + σ(Δ) ,

�i(t + Δ) − �i(t) = qiiΔ �i(t) − riΔpi(t, 0)+

∑

k∈S,k �=i

qkiΔ (�k(t) + O(Δ)) + σ(Δ) ,

�i(t + Δ) − �i(t)
Δ

=

− ri pi(t, 0) +
∑

k∈S
qki (�k(t) + O(Δ)) +

σ(Δ)
Δ

,

d

dt
�i(t) = −ri pi(t, 0) +

∑

k∈S
qki �k(t) .

(7)



Fluid Models in Performance Analysis 295

Having these expressions we can conclude the transient description of first
order, infinite buffer, homogeneous Markov fluid models. The fluid density is
governed by (6) while the empty buffer probability is �i(t) = 0 if ri > 0 and (7)
if ri ≤ 0. There is no simple symbolic solution to this set of differential equations.
When the initial condition of the fluid model is known, it can be solved using
numerical techniques. The solution has to fulfill the following equations:

∫ ∞

0
pi(t, x)dx + �i(t) = πi(t) . (8)

πi(t) = πi(0)eQt, (9)

where (8) is the special form of (3) for infinite buffer model and (9) is the solution
of (5).

First order, finite buffer , homogeneous behaviour. The presence of an
upper boundary at B does not change the transient description a lot. It leaves
the behaviour at the lower boundary, (7), unchanged, it reduces the validity of
(6) to 0 < x < B and it introduces a differential equation, very similar to (7) for
the upper boundary. That is, ui(t) = 0 if ri < 0 and

d

dt
ui(t) = ri pi(t, B) +

∑

k∈S
qki uk(t), (10)

if ri ≥ 0. (10) is obtained in the same way as (7).

Second order , infinite buffer, homogeneous behaviour. The case of sec-
ond order Markov fluid model can be analyzed using the same method based on
the short term behaviour of the Markov model. We derive the fluid density at
time t + Δ based on the fluid density at time t:

– If there is no state transition in the (t, t + Δ) interval we need to evaluate a
convolution with respect to the pdf of the normal distributed amount of fluid
accumulated over the (t, t+Δ) interval, fN (Δri,Δσ2

i )(u). For simplicity we set
the limits of this integration to −∞ and ∞. It is to avoid the introduction
of additional vanishing error terms.

– The analysis of the case with one state transition is also simplified. A con-
volution with finally vanishing terms should be taken into consideration in
a more detailed analysis. The analysis of the term without state transition
indicates how the term with one state transition vanishes, but we do not
detail this point here.

pi(t + Δ, x) = (1 + qiiΔ)
∫ ∞

−∞
pi(t, x − u)fN (Δri,Δσ2

i )(u)du

︸ ︷︷ ︸

∗∗

+

∑

k∈S,k �=i

qkiΔ pk(t, x − O(Δ))+

σ(Δ)
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To obtain the under braced term we use the Taylor expansion again, but now
with 3 terms:

pi(t, x − u) = pi(t, x) − up′i(t, x) +
u2

2
p′′i (t, x) + O(u)3.

Based on this expansion we have:

∗∗ = pi(t, x)
∫ ∞

−∞
fN (Δri,Δσ2

i )(u)du

︸ ︷︷ ︸
1

−p′i(t, x)
∫ ∞

−∞
ufN (Δri,Δσ2

i )(u)du

︸ ︷︷ ︸
Δri

+

p′′i (t, x)
∫ ∞

−∞

u2

2
fN (Δri,Δσ2

i )(u)du

︸ ︷︷ ︸
Δ2r2

i +Δσ2
i /2=Δσ2

i /2+σ(Δ)

+
∫ ∞

−∞
O(u)3fN (Δri,Δσ2

i )(u)du

︸ ︷︷ ︸
O(Δ)2=σ(Δ)

.

Back substituting this results and performing the same steps as before we
obtain

pi(t + Δ, x) = (1 + qiiΔ)
(
pi(t, x) − p′i(t, x)Δri + p′′i (t, x)Δσ2

i /2
)

+
∑

k∈S,k �=i

qkiΔ pk(t, x − O(Δ)) + σ(Δ) ,

pi(t + Δ, x) − pi(t, x) = qiiΔpi(t, x) − p′i(t, x)Δri + p′′i (t, x)Δσ2
i /2+

∑

k∈S,k �=i

qkiΔ pk(t, x − O(Δ)) + σ(Δ) ,

∂

∂t
pi(t, x) +

∂

∂x
pi(t, x)ri − ∂2

∂x2 pi(t, x)
σ2

i

2
=
∑

k∈S
qki pk(t, x). (11)

(11) also justifies the name of this fluid models. In this case not only the first
derivative of the fluid density, but also the second one appear in the partial
differential equation describing the transient behaviour of the model.

Boundary condition with reflecting barrier. The boundary condition of
second order Markov fluid models depends on the type of the boundary. In case
of reflecting barriers the probability of empty buffer is zero, �i(t) = 0 and the
initial value of the fluid density can be computed based on (3) using (11) and (5).

Since the buffer is infinite buffer and �i(t) = 0, we have
∫ ∞

0
pi(t, x)dx = πi(t) .

Taking the derivatives of both side with respect to t results
∫ ∞

x=0

∂

∂t
pi(t, x) dx =

∂

∂t
πi(t)
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Substituting (11) into the left and (5) into the right hand side we have
∫ ∞

x=0
−∂pi(t, x)

∂x
ri +

∂2pi(t, x)
∂x2

σ2
i

2
+
∑

k∈S
qki pk(t, x)dx =

∑

k∈S
qkiπi(t),

from which we obtain the boundary condition as

−ri

[

pi(t, x)
]∞

x=0︸ ︷︷ ︸
−pi(t,0)

+
σ2

i

2

[

p′i(t, x)
]∞

x=0︸ ︷︷ ︸
−p′

i(t,0)

+
∑

k∈S
qki

∫ ∞

x=0
pk(t, x)dx

︸ ︷︷ ︸
πi(t)

=
∑

k∈S
qkiπi(t) ,

ripi(t, 0) − σ2
i

2
p′i(t, 0) = 0 (12)

Fluid level dependent model behaviour. Up to now we considered fluid
models where between the boundaries the fluid level does not effect the evolution
of the system. It is not always the case in practice and the presented analytical
description of fluid models allows to integrate fluid level dependence into the
transient description in a simple way.

As a consequence we assumed that the transition rate of the discrete part of
the process, qij , the mean and the variance of the fluid changing rate, ri and σi,
respectively, are independent of the current fluid level. When these quantities
depend on the fluid level we have the following model behaviour.

lim
Δ→0

Pr(S(t + Δ) = j|S(t) = i, X(t))
Δ

= qij(X(t)) .

When the first order model stays in state i during the (t, t+Δ) interval and the
fluid level is between the boundaries

X(t + Δ) − X(t) = ri(X(t))Δ + σ(Δ),

and when the second order model does the same

X(t + Δ) − X(t) = N (ri(X(t))Δ, σ2
i (X(t))Δ) + σ(Δ).

Formally it is easy to incorporate fluid level dependency into all previous
equations by making the transition rates of the discrete part, the mean and the
variance of the fluid changing rate depend on the fluid level, i.e., qij(x), ri(x)
and σi(x), respectively. This ways, e. g., (6) becomes

∂

∂t
pi(t, x) + ri(x)

∂

∂x
pi(t, x) =

∑

k∈S
qki(x) pk(t, x) ,

and the associated boundary equation, (7) becomes, if ri(0) < 0 (and ri(x) is
continuous):

d

dt
�i(t) = − ri(0) pi(t, 0) +

∑

k∈S
qki(0) �k(t).
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General case. We summarize the results by providing the most general equa-
tion and present the ways to simplify it in case of special fluid models.

First of all we compose vector equations out of the set of scalar equations
presented before. Let p(t, x) = {pi(t, x)}, �(t) = {�i(t)} and u(t) = {ui(t)}
be the row vectors of fluid densities, empty buffer probabilities and buffer full
probabilities respectively, further more let Q(x) = {qij(x)}, R(x) = Diag〈ri(x)〉
and S(x) = Diag〈σ2

i (x)
2 〉 be the generator matrix of the discrete variable, the

diagonal matrix of the mean fluid rates and the diagonal matrix of the variance
parameter of the fluid process.

The most general equations are obtained with second order , finite buffer ,
fluid level dependent fluid models, where we do not define the boundary be-
haviour yet:

∂p(t, x)
∂t

+
∂p(t, x)

∂x
R(x) − ∂2p(t, x)

∂x2 S(x) = p(t, x) Q(x) ,

p(t, 0) R(0) − p′(t, 0) S(0) = �(t) Q(0) ,

−p(t, B) R(B) + p′(t, B) S(B) = u(t) Q(B) ,

(13)

These general equations simplify as follows, according to the boundary be-
haviour of the model:

– if σi = 0 and ri(x) is positive and continuous around zero then �i(t) = 0, if
σi = 0 and ri(x) is negative and continuous around B then ui(t) = 0.

– if σi >0 and the lower boundary is reflecting in state i then �i(t) = 0, if
σi >0 and the upper boundary is reflecting in state i then ui(t) = 0.

– if σi >0 and the lower boundary is absorbing in state i then pi(t, 0)=0, if
σi >0 and the upper boundary is absorbing in state i then pi(t, B)=0.

The special cases of this general case are:

– the first order model: green parts vanish ,

– the infinite buffer model: blue equation vanishes ,

– the fluid level independent model: Q(x), R(x), S(x) become Q, R, S .

Normalizing condition. In case of transient analysis the set of differential
equations is accompanied with an initial condition that defines the normalization
of the model. Indeed the initial condition should fulfill the normalizing condition

∫ B

0
p(0, x) dx1I + �(0)1I + u(0)1I = 1.

The set of differential equations we presented in this section preserves the prob-
ability, which means that if the initial condition satisfies the normalizing condi-
tion, then for all t > 0 the following normalizing condition holds
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∫ B

0
p(t, x) dx1I + �(t)1I + u(t)1I = 1.

5.4 Stationary Description of Fluid Models

The presented transient description of fluid models describes also the time limit-
ing behaviour of these models, but as it is common with several other stochastic
models, the direct stationary analysis is more efficient when only the station-
ary behaviour is of interest. The general approach to obtain the stationary de-
scription of fluid models is to make the t goes to infinity limit in the transient
equations.

Two main questions has to be considered during this transition. If the tran-
sient functions tend to stationary values, and if this value is unique, i.e., inde-
pendent of the initial condition in the sense that it converges to the same limit
starting from any valid initial condition.

The typical behaviour of the above differential equations is that the solution
either converges to a finite value or diverges, but does not exhibit strange be-
haviours like cyclic alternation, etc. Finite buffer models usually converge. To
decide if an infinite buffer model converges to a proper stationary distribution
we need the stability property.

Definition 2. A fluid model is said to be stable, if for ∀x ∈ R
+, ∀i ∈ S the time

to empty the buffer

T E
i (x) = min

t>0
(X(t) = 0|X(0) = x, S(0) = i)

has a finite mean (i.e., E(T E
i (x)) < ∞).

Stable infinite buffer models usually converge. It is easy to decide if a model is
stable in case of fluid level independent Markov fluid models. The condition of
stability is ∑

i∈S
πiri < 0,

where πi is the stationary distribution of the discrete part of the model. The
stability of fluid level dependent Markov fluid models is more complex to decide.
It requires the solution of the differential equations describing the stationary
behaviour of the process.

To decide if the stationary behaviour is unique we need the ergodic property.

Definition 3. A fluid model is said to be ergodic, if for ∀x, y ∈ R
+, ∀i, j ∈ S

the transition time

Ti,j(x, y) = min
t>0

(X(t) = y, S(t) = j|X(0) = x, S(0) = i)

has a finite mean (i.e., E(T ) < ∞).

The stationary behaviour of ergodic fluid models is independent of the initial
condition.
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Stationary equations. Assuming the following limits exists, describe a proper
distribution and independent of the initial condition we present the stationary
equations obtained from the transient ones.

– πi = lim
t→∞Pr(S(t) = i) – state probability,

– ui = lim
t→∞Pr(X(t) = B, S(t) = i) – buffer full probability,

– �i = lim
t→∞Pr(X(t) = 0, S(t) = i) – buffer empty probability,

– pi(x) = lim
t→∞ lim

Δ→0
1/Δ Pr(x < X(t) < x + Δ, S(t) = i) – fluid density,

– Fi(x) = lim
t→∞Pr(X(t) < x, S(t) = i) – fluid distribution.

The stationary counterpart of (13) can be obtained by making the t goes to
infinity limit on both sides of the equations:

p′(x) R(x) − p′′(x) S(x) = p(x) Q(x) ,

p(0) R(0) − p′(0) S(0) = � Q(0) ,

−p(B) R(B) + p′(B) S(B) = u Q(B) ,

(14)

where the fluid rate and the boundary conditions determine the following vari-
ables:

– if σi = 0 and ri(x) is positive and continuous around zero then �i = 0, if
σi = 0 and ri(x) is negative and continuous around B then ui = 0,

– if σi >0 and the lower boundary is reflecting in state i then �i = 0, if σi >0
and the upper boundary is reflecting in state i then ui = 0,

– if σi >0 and the lower boundary is absorbing in state i then pi(0) = 0, if
σi >0 and the upper boundary is absorbing in state i then pi(B)=0.

Normalizing condition. In case when the stationary solution is computed
based on (14), we cannot utilize the information about the initial condition of
the model, but the solution must fulfill the normalizing condition:

∫ B

0
p(x) dx1I + �1I + u1I = 1.

6 Solution Methods

There are several different ways to evaluate Markov fluid models. They differ
in their applied analysis approach, provided results and applicability. It is pos-
sible to obtain symbolic solution for rather small models (Markov fluid models
with less than 5 discrete states), but for larger models the application of nu-
merical methods is feasible only. Table 1 presents a summary of some potential
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Table 1. Solution methods for Markov fluid models

transient statioanry

differential equations [8] [16]
spectral decomposition + [23,1,7,6]

randomization [34] [36,35]
transform domain [33] +

Markov regenerative [2] +
matrix exponent + [18]

approaches and classifies some research papers according to their applied ap-
proaches. In this section we summarize some analysis approaches, but we do not
intend to provide a complete view.

Table 1 indicates that all of the mentioned solution methods are applicable
to both, the transient and the stationary analysis, but in a different way. In case
of transient analysis we have a set of partial differential equations (13), a set
of boundary conditions, and a set of explicit initial conditions. Starting from
this initial condition it is possible to evaluate the model behaviour using a for-
ward analysis approach. In case of stationary analysis we have a set of ordinary
differential equations (14), a set of boundary conditions, and a normalizing con-
ditions. A difficulty of the stationary analysis with respect to the transient one
is that normalizing condition does not provide an explicit expression to start
the solution from. Apart of this the transient analysis is more complex than the
stationary one, since we have one variable (t) more in the transient case.

In the rest of this section we summarize the main ideas of some selected
solution methods.

6.1 Transient Solution Methods

Numerical solution of differential equations. Chen et al. proposed a dis-
cretization based numerical technique to evaluate the transient behaviour of
fluid models [8]. The main strength of their approach is that that all mentioned
model behaviour can be analyzed with it. Indeed this is the only approach for
the transient analysis of fluid level dependent models. The proposed approach
starts from the initial condition, and computes (approximates) the evolution of
the fluid distribution step-by-step in Δ long time intervals at some fluid levels
based on the differential equations and the boundary condition.

Randomization. Randomization is an effective numerical analysis approach
that is widely used for the transient analysis of CTMCs, i.e., for the numerical
solution of (5). It is numerically stable procedure where the convex combination
of probabilities (non-negative numbers less or equal to one) are computed. The
procedure is based on a symbolic solution of (5). Sericola extended this technique
to the transient analysis of first order, infinite buffer, fluid level independent
Markov fluid models [34]. Indeed he provided a symbolic solution of (6) in the
following form:
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F c
i (t, x) =

∞∑

n=0

e−λt (λt)n

n!

n∑

k=0

(
n
k

)

xk
j (1 − xj)n−kb

(j)
i (n, k),

where F c
i (t, x) = Pr(X(t) > x, S(t) = i), xj =

x−r+
j−1t

rjt−r+
j−1t

if x ∈ [r+
j−1t, rjt), and

b
(j)
i (n, k) is defined by initial value and a simple recursion.

The main properties of this randomization based solution method are as fol-
lows:

– the expression with the given recursive formulas is a solution of the differ-
ential equation,

– the initial value of b
(j)
i (n, k) is set to fulfill the boundary condition,

– due to the fact that 0 ≤ xj ≤ 1 we have the same numerical stability
properties as for the transient analysis of CTMCs:
convex combination of non-negative numbers are computed, and hence the
floating point errors has a limited effect and it does not cause problems like
“ringing” (change of sign),

– the initial fluid level must be X(0) = 0 (extension to X(0) > 0 and to finite
buffer is not available).

Markov regenerative approach. Ahn and Ramaswami recommended to di-
vide the transient analysis of first order, infinite buffer, fluid level independent
Markov fluid models into periods according to the busy/idle state of the buffer
[2]. When Ti is the beginning of the ith busy (non-empty) period of the fluid
buffer then the (S(ti), Ti) pairs form a Markov renewal sequence. The analysis of
a busy and an idle cycle, i.e., a (Ti−1, Ti) interval, is divided into two parts. The
idle period is easier to analyze. Its length is phase type distributer. The analysis
of the busy period is more complex, but Ahn and Ramaswami recognized the
similarities between fluid and queueing models and provided a solution method
based on Matrix analytic technique.

Transform domain description. Ren and Kobayashi proposed a solution
technique based on the Laplace transform domain description first order, infinite
buffer, fluid level independent Markov fluid models [33]. The Laplace transform
of (6) is

p∗∗(s, v) = ( p∗(0, v)
︸ ︷︷ ︸

initial condition

+ p∗(s, 0)
︸ ︷︷ ︸

unknown

R)(sI + vR − Q)−1.

where p∗∗(s, v) must be analytical. Since p∗(0, v) is known from the initial con-
dition p∗(s, 0) is set to eliminates the roots of det(sI + vR − Q).

This approach provides a closed form solution also for the case of initially
non-empty buffer (X(0) > 0), but its applicability is limited to small models
(less than 5 discrete states) since it is based on complex symbolic functional
analysis.
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6.2 Stationary Solution Methods

Spectral decomposition. One of the first papers on the application of Markov
fluid models for modeling of telecommunication systems [7] already applied the
spectral decomposition method for the solution of the obtained model. Later on
Kulkarni presented a survey on spectral decomposition based analysis of first
order, infinite and finite buffer, fluid level independent Markov fluid models [23].

To present these results we need the following notations. The set of discrete
states are partitioned as follows:

– S+: i ∈ S+ iff σi > 0 – second order states,
– S0: i ∈ S0 iff ri = 0 and σi = 0, – zero states,
– S0+: i ∈ S0+ iff ri > 0 and σi = 0, – positive first order states,
– S0−: i ∈ S0− iff ri < 0 and σi = 0, – negative first order states,
– S∗ = S0−⋃S0+, – first order states.

The general form of the solution of the differential equation p′(x)R = p(x)Q
is

p(x) = eλxφ,

where φ is a row vector. Substituting this solution into the differential equation
we get the characteristic equation:

φ(λR − Q) = 0,

whose solutions are obtained at

det(λR − Q) = 0.

The characteristic equation has |S0+| + |S0−| solutions, with |S0+| negative
eigenvalues, 1 zero eigenvalue, and |S0−| − 1 positive eigenvalues. Having these
eigenvalues and eigenvectors the solution is

p(x) =
|S0+|+|S0−|∑

j=1

aje
λjxφj ,

and the aj coefficients are set to fulfill the boundary and normalizing conditions.
In the infinite buffer case these conditions are:

– p(0) R = � Q ,
– �i = 0 if ri > 0, and
–
∫∞
0 pi(x)dx + �i = πi.

From which aj = 0 for λj > 0 and the aj coefficients for λj < 0 are obtained
from the solution of the linear system of equations determined by the conditions
of infinite buffer.
In the finite buffer case these conditions are:

– p(0) R = � Q , p(B) R = u Q ,
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– �i = 0 if ri > 0, ui = 0 if ri < 0, and
–
∫∞
0 pi(x)dx + �i + ui = πi.

From which all aj coefficients are obtained from the linear system of equations
determined by the conditions of infinite buffer.
The result on the sign of the eigenvalues has the following consequences:

– If |S0−| > 1 and the buffer is infinite then there is at least one positive
eigenvalue, which needs to be excluded from the solution (if the fluid model
is stable). The exclusion of the positive eigenvalue makes the spectral de-
composition necessary.

– If |S0−| = 1 and the buffer is infinite, then all eigenvalues are non-positive
and there is no need to exclude any eigenvalue from the solution.

– If the buffer is finite all eigenvalues plays role in the solution, i.e., there is
no need for special treatment of the positive eigenvalues.

Matrix exponent. An algebraic approach was proposed by Gribaudo and Ger-
man to solve the set of equations given for first order, finite buffer, fluid level
independent Markov fluid models [18]. Assuming that |S0| = 0 and S = S∗ they
introduced v = � + u, Q−, Q+, where q−ij = qij if i ∈ S− and otherwise q−ij = 0.
With these notations the set of equations becomes:

∂p(x)
∂x

R = p(x)Q −→ p(B) = p(0) eQR−1B = p(0) Φ,

p(0)R = vQ− −→ p(0) = vQ−R−1,

−p(B)R = vQ+ −→ v(Q−R−1ΦR + Q+) = 0 ,

where the equation in the box is linear for the unknown element of vector v. The
normalizing condition of this equation is

�1I + u1I + p(0)
∫ B

0
eQR−1xdx

︸ ︷︷ ︸
Ψ

1I = v(I + Q−R−1Ψ)1I = 1 .

Relation of spectral decomposition and matrix exponent. With some
rearrangement of the spectral solution we can show that the above presented
2 solutions are identical. Suppose that |S0| = 0 and S = S∗ the characteristic

equation is φ(λI−QR−1) = 0, and the spectral solution is p(x) =
|S|∑

j=1

aje
λjxφj ,

where λj and φj are the eigenvalues and the left eigenvector of matrix QR−1.

Introducing vector a = {aj} and matrix B =

⎛

⎜
⎜
⎜
⎝

φ1

φ2
...

φ|S∗|

⎞

⎟
⎟
⎟
⎠

, the spectral solution

can be rewritten as
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p(x) =
|S|∑

j=1

aje
λjxφj = a Diag〈eλix〉 B

= a B︸︷︷︸ B−1 Diag〈eλix〉 B
︸ ︷︷ ︸

= p(0) eQR−1x,

which is the matrix exponential form used in [18].

Spectral decomposition of second order models. The spectral decomposi-
tion based analysis of second order, infinite and finite buffer, fluid level indepen-
dent Markov fluid models is presented by Karandikar and Kulkarni in [22]. In this

case the differential equation has the form p′(x) R − p′′(x) S = p(x) Q . The
general form of the solution if this equation is the same as in the first order case,
p(x) = eλxφ, but back substituting this solution we a different characteristic
equation:

φ(λR − λ2S − Q) = 0.

This characteristic equation has 2|S+|+|S∗| solutions, with |S+|+|S0+| negative
eigenvalues, 1 zero eigenvalue, and |S+|+|S0−|−1 positive eigenvalues. The final
form of the solution is

p(x) =
2|S+|+|S∗|∑

j=1

aje
λjxφj ,

and the aj coefficients are set to fulfill the boundary and normalizing conditions.

A transformation of the quadratic equation to a linear one. To avoid
handling quadratic equations several authors recommended to transform the
system into a linear one with enlarged size, e.g., [6]. In case of second order,
infinite and infinite buffer, fluid level independent models with |S0| = |S∗| = 0
and S = S+, this transformation is based on the following representation of the
differential equation

d

dx
p(x) R − d

dx
p′(x) S = p(x) Q ,

d

dx
p(x) I = p′(x) I .

This equations form a vector equation of double size

d

dx
p(x) p′(x)

R I
−S 0

= p(x) p′(x)
Q 0
0 I

.

Introducing p̂(x) = p(x) p′(x) , R̂ =
R I
−S 0

, and Q̂ =
Q 0
0 I

, we obtain a first

order differential equation

d

dx
p̂(x) R̂ = p̂(x) Q̂ ,
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whose solution is
p̂(B) = p̂(0) eQ̂R̂−1B.

Randomization. One of the simplest stationary solution methods is based on
randomization. It is applicable for first order, infinite [36] or finite [35] buffer,
fluid level independent Markov fluid models. A symbolic solution of the differ-
ential equation is

Fi(x) =
∞∑

n=0

e−λt/r (λt/r)n

n!
bi(n)

where r = min(ri|ri > 0) and bi(n) is defined by simple recursion such that the
boundary conditions are fulfilled. Similar to other randomization based methods
the numerical procedure computes convex combination of non-negative numbers,
which ensures nice numerical properties.

The main limitation of these randomization based methods is that |S0−| must
be 1. Extension to the |S0−| > 1 case is not known.

Numerical solution of differential equations. Unfortunately non of the
above stationary analysis methods is applicable with fluid level dependent mod-
els. The only approach that is applicable for fluid level dependent cases is based
on the numerical solution of the

M′(x) R(x) − M′′(x) S(x) = M(x) Q(x) (15)

differential equation with initial condition M(0) = I, as it is proposed by Grib-
audo et al. in [16].

The solution is composed by the following steps:

– Numerically solve the matrix function M(x) based on the differential equa-
tion (15)

– calculate the unknowns (p(0), p(B), �, u) based on the boundary conditions,
the normalizing condition and

p(B) = p(0) M(B)

The major limitation of this approach is that it limited to finite buffer models.

7 Application

Fluid Models and FSPNs have been successfully used in the literature to study
several interesting systems. Here we present how Fluid Stochastic Petri Nets
have been used in [27] to compute the transfer time distribution of resource in
a Peer-to-Peer file sharing application.

File transfer using Peer-to-Peer file sharing applications is usually divided
into two steps: resource search and resource download. Depending on the file
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size and its popularity, either of the two phases can become the bottleneck. In
this section we describe both the location and download phases of a generic Peer-
to-Peer file sharing application using a fluid model. We propose a model that
allows the computation of the transfer time distribution, and that it is capable of
considering some advanced characteristic such as parallel downloads and on-off
peer behavior. These features, although quite common in the real applications,
have not been considered in previous models proposed in the literature. Model
parameters reflect network, application, resource and user characteristics, and
can be tuned to analyze a large number of different real implementations.

Peer-to-Peer Model. The proposed fluid model for the estimation of the trans-
fer time distribution in P2P file sharing applications will be described using the
Fluid Stochastic Petri Net (FSPN) formalism [21,20]. Table 2 reports the other
notations derived from the reference.

Table 2. Model Notations

Notation Description Range
B Set of bandwidths {14.4, 28.8, 33.6, 56, 64

128, DSL, Cable, T1, T3}
N Number of peers holding the resource IN
SB Server bandwidth B
CB Tagged client bandwidth B
S Resource size IN

K(b) Max. number of concurrent peers B → IN
LT Average number of requests of uploads IN
W Bandwidth dependent weight B → [0, 1]

L(b) LT as function of the peer bandwidth LT ∗ W (b)

The FSPN basic Model The basic model [14] computes the transfer time dis-
tribution of a resource of size S downloaded by a client with a bandwidth CB,
from a server with bandwidth SB. It neglects both the search and the queueing
phase, and download interruptions. That model is defined by means of a FSPN.
The main assumption in the basic model, is that the session time of concurrent
peers is described by an Hyperexponetnial distribution (with parameters α, μ1
and μ2), and that the interarrival time of concurrent downloaders is approx-
imated by an exponential distribution (whose parameter L(cb) is bandwidth
dependent). The maximum number of concurrent downloads from a server is
limited by a bandwidth dependent parameter K(sb). Moreover, the server band-
width is equally shared among the concurrent downloaders. For a discussion on
the validity of these assumptions, please refer to [14].

Using these assumptions, the available bandwidth at the client can be com-
puted as a function of the number of concurrent peers. In particular, if we call
Ij the total number of concurrent peers in a discrete state of FSPN model, then
the available bandwidth is equal to:

f(Ij) = min
(

sb

Ij + 1
, cb

)

. (16)

The FSPN model is analyzed by solving the system of partial derivative dif-
ferential equations that describes its underlaying stochastic process. From the
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solution to these equations the probability density π̄(τ, x) of the fluid level at a
given time instant τ can be directly computed. π̄(τ, x) corresponds to the prob-
ability density that the number of bytes downloaded at time τ is equal to x. By
integrating this quantity, the probability distribution that a file of size s can be
downloaded in less than t can be computed:

Ft(t|s) =
∫ ∞

s

π̄(τ, x)dx

∣
∣
∣
∣
τ=t

. (17)

Modeling the search time, queueing time and peer unavailability.
Search time is conditioned by many factors such as the popularity of the re-
source, protocol characteristics, the participation level of the user and the num-
ber of neighbor peers. After the searching phase the client selects peers from
which get the resource. Queueing time is the time spent before a selected server
serves the client request. It also depends on many factors, as the number of
concurrent downloads allowed, the bandwidth of the server and the number of
concurrent clients, the protocol, and the participation level of clients.

Creating a detailed model to consider all these aspects would be too complex.
Instead we simplify the model by considering the aggregate search plus queuing
time perceived by a client. That is, we suppose that we could compute the distri-
bution QS(τ) of the time required from the start of the search to the start of the
actual download of a resource. This seems to be a quite strong assumption, but
we will prove, at the end of this section, that despite its simplicity, the proposed
model is able to get most of the qualitative features that characterize parallel
download in peer to peer applications.

Figure 13 represents the extension of the model proposed [14]. The arrival
of a new concurrent download is modelled by transition request arrival. The ses-
sion length distribution is modelled by the sub-net composed by places CHOICE,
STAGE 1, STAGE 2, END SERVICE and transitions choose 1, choose 2, termi-
nate service, service 1, service 2. Their parameters are directly mapped to the
parameters of the distributions outlined in Section 7. The maximum number of
concurrent downloads is determined by the initial marking of place AVAILABLE,
and is set according to parameter K(sb). The amount of byte transferred is
modelled by fluid place TRANSFERRED and fluid transition transfer. The value
of parameter Ij corresponds to the sum of the marking of places STAGE 1 and
STAGE 2. The search and queueing phases are represented by the generic firing
time transition TON, with distribution φon.

Due to the active/non-active peer dynamics the server may become unavail-
able and then its service is stopped. When failures occur, the client starts a new
search of the same resource, and then it continues the download (likely from
another peer), after experiencing a new queueing time. The failure of server is
represented in the model by generic firing time transition TOFF, with firing time
distribution φoff .

Place SandQ represents the search and queueing phases, and place TRANS
the resource transfer phase.
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As reported in [14], special care should be used to compute the initial distribu-
tion of the number of concurrent peers at the server. In this case, the initial state
of the places representing the concurrent peers at the server, should be deter-
mined at the time when the actual transfer starts, i.e. at the firing of transition
TON. When transition TON fires, it should set the number of tokens in places
AVAILABLE, STAGE 1 and STAGE 2 according to the initial distribution, deter-
mined following the technique proposed in [14]. The setting of the initial state
is achieved by an appropriate set of immediate transitions, weighted according
to the initial state distribution. In order to simplify Figure 13, this sub-net has
been removed and has been represented by the gray arrow labeled with Set Ini-
tial state. Similarly, when the server experience a failure, all the places of the
sub-model representing its state must be emptied. This also can be achieved by
an appropriate set of immediate transition, which has been represented in Figure
13 by the gray arrow labeled with Clear state.

In this model, the popularity of the resource is considered when determining
the rate of transition TON. A very popular resource will have a shorter search
and queueing time, since will be available from more peers. A rare resource will
instead have a very high searching and queueing time.

K(sb)-1

α1

CHOICE STAGE_1

μ1

service_1

μ2

service_2

END_SERVICE

AVAILABLE

STAGE_2 terminate_service

choose_1

1−α1

choose_2

L(sb)

request_arrival

transfer TRANSFERRED

f(Ij) = min( sb / (Ij +1) , cb)

TRANSφon

TON

SandQ φoff

TOFF

Set initial
state

Clear
state

Fig. 13. FSPN model representation of an unreliable server with search and queueing
phases

Considering the parallel download from multiple sources. The model
that represents parallel download from multiple servers can be obtained by
repeating H times the sub-models of Figure 13 representing the server and the
search-queueing state, where H corresponds to the maximum number of parallel
downloads. This is represented in Figure 14. Note that the H sub-models rep-
resenting the H servers, share the same resource download buffer, modeled by
fluid place TRANSFERRED. In this case, the rate at which the file is downloaded,
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Table 3. Model parameters used for experiments

Service parameters

μ1 0.001
μ2 0.1
α1 0.6
α2 0.4

Arrival rate

LT 0.01

K(sb)-1

α1

CHOICE STAGE_1

μ1

service_1

μ2

service_2

END_SERVICE

AVAILABLE

STAGE_2 terminate_service

choose_1

1−α1

choose_2

L(sb)

request_arrival

TRANSφon

TON

SandQ φoff

TOFF

Set initial
state

Clear
state

transfer TRANSFERRED

f(Ij) = min( Σksb / (Ijk +1) , cb)

Fig. 14. FSPN model for multiple servers download

is expressed as the minimum between the client bandwidth cb, and the sum of
the download rate from each server that is active in that time instant, that is:

f(Ij) = min

(
H∑

k=1

I(#TRANSk = 1)
sbk

Ijk + 1
, cb

)

(18)

where I(#TRANSk) is an indicator function that returns 1 if the the number of
tokens in place TRANS of the submodel representing the k-th server is equal to
1 (i.e. active download), zero otherwise. Ijk + 1 represents the sum of the tokens
in places STAGE 1 and STAGE 2 for each tangible (discrete) state mj of the k-th
server, i.e. the number of requests that interfere on that server with the tagged
client service.

Despite the symmetries, the sub-models are not independent, since they are
coupled by the fluid buffer TRANSFERRED. Moreover the relation that governs
the rate of the growth of the fluid place (Equation 18) is non-linear, due to the
presence of the min(·) function. This prevents to apply a solution technique that
analyzes each server separately, and combine them afterward.
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Table 4. Downloading bandwidth versus session duration and resource size

Resource Size Average Bandwidth (Kbit/sec)
Session Time Session Time Session Time

1000 sec 20 sec. 10 sec.
512 KB 24.32 10.4 6.56
4 MB 59.68 14.08 7.84
10 MB 68.48 6.64 3.12

Experiments. The proposed models, despite their simplifying assumptions, can
describe the qualitative behavior of real peer to peer systems. In both cases, we
present our analysis only for the case when all peers have the same bandwidth
connection (in particular, we consider 640 MB/s DSL technology). We also ap-
proximate both search and queue time distribution and the server failure distrib-
ution with exponential distributions. For this reason, in the following we will use
parameters φon and φoff to indicate the rate of the corresponding exponential
distribution.

Extensive validation of results for our modeling technique shares the same
difficulty of previous works on analytical models for P2P systems. It is a difficult
task since existing measurement based studies have not focused on characteriz-
ing the duration of the transfer phase. Although it might be possible to validate
our model through detailed simulations of realistic P2P file sharing applications
it would have a prohibitive programming and computational cost. Nevertheless,
we performed simple validations by comparing model results in selected cases
where theoretical results are known or can be exactly computed. In particular,
we compared model results with the ideal case where there is no competition
for the server bandwidth and the transfer is only conditioned by the minimum
bandwidth between server and clients. In these cases we found a perfect agree-
ment between the model predictions and the theoretical results. It is a safety
check that allow us to know that at least in the deterministic case, without
concurrent operations, model result is identical to the expected one (that is the
ratio between the resource size and the minimum bandwidth among client and
server ones). Moreover, results presented in Table 5 are partially supported by
the measurement study presented in [30]. In particular, in [30] it is shown that
the average download speed is 30KB/sec that in the case of a 4MB resource
corresponds to an average transfer time of 133seconds. This average is compara-
ble with most of average values, referring to different number of sources, shown
in Table 5.

A first intuitive result (see Table 4) shows that the transfer time increases with
the increasing of unavailability rate. However, we must point out that this effect
heavily depends on the resource size. We thus perform an analysis with respect to
the resource size, in particular, we look at average bandwidth experienced during
the file transfer as function of the failure rate. We keep the searching-queueing
rate constant to 0.01: this means that client wait a mean of 100 seconds to find
a new connection. We vary the failure rate in order to get server sessions of 10,
20, and 1000 seconds. The number of concurrent peers on the server, K(sb)-1
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Fig. 15. Improvement provided by parallel downloads

Table 5. Transfer time as function of the number of sources

Number of Sources Tansfer Time (sec.)
Mean 50th quantile 90th quantile

3 178 170 240
4 148 140 200
5 131 130 170
6 119 120 160
7 110 110 148
8 104 100 130
9 104 100 130

(minus one takes into account the tagged client), is set to 3. In this analysis
we does not consider parallel downloads. FSPN model parameters used in this
experiment are reported in Table 3 while results are shown in Table 4. The index
we use to evaluate the performance is the average bandwidth experienced to
complete the transfer of the resource. It has been computed as the ratio between
the resource size and the average of the time transfer. It is interesting to note
that bigger resources suffer significantly from servers failure. For instance, in the
case of a 10 MBytes resource, the bandwidth falls down when the failure rate
is 0.05 and 0.1 (that is session time of 10 and 20 seconds). Instead in the case
of a 512 KByte resource, the penalty introduced by the failure of the server is
less significative. This is due to fact that, on the average, the resource can be
completely transferred before the server fails, despite shorter server session.

Most P2P file sharing applications (e.g., eDonkey, BitTorrent, etc.) allow par-
allel downloads. The model presented in Figure 14 represents this feature. Client
peer downloads from multiple sources and gets better performance when the
number of source increases as shown in Fig. 15. This experiment refers to the
transfer of a 4 MByte file, with searching-queueing rate equal to 0.01 and failure
rate equal to 0.001, the number of concurrent peers on each server, K(sb) − 1
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Fig. 16. Benefits of parallel downloading for different resource sizes

Table 6. Modeling searching and queueing phases with different distributions

Distribution Tansfer Time (sec.)
Mean 90th quantile 95th quantile

Hypo-exponential 448 580 630
Exponential 376.31 575 660

Hyper-exponential 1 306.34 495 605
Hyper-exponential 2 297.35 440 510

(minus one takes into account the tagged client), is set to 3. However, improve-
ments in performance are limited by the client download bandwidth; i.e. when
the total bandwidth provided by multiple servers exceeds the maximum client
download bandwidth, the speed at which the file is transferred remains con-
stant, despite the growth in the number of sources. This is shown in table 5,
where the mean and quantiles of the transfer time distribution related to a 4
MBytes resource are reported as function of the number of sources. In this case
parameters are: searching-queueing rate equal to 0.01 and failure rate equal to
0.001, the number of concurrent peers on each server, K(sb) − 1, is set to 1. We
can note that the improvement in transfer performance become less significative
as the number of sources increases (since they saturate the client downloading
bandwidth). When sources become 9 the time required to transfer the file re-
mains constant. This insight may provide suggestions for the application design.
E.g., let suppose that the application protocol is able to monitor the client band-
width status. If it detects that the client is the bottleneck, then it can avoid to
add new (parallel) sources. Their contribute, that should not be exploited in or-
der to improve tagged transfer performance, could be exploited to improve the
system service capacity for other peers.

It is interesting to see how the benefit derived from the use of parallel download
depends on the size of the resource. Consider the case in which downloading
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Fig. 17. Transfer time distribution with different searching-queueing rate distributions

session does not suffer from the servers failures (i.e. the failure rate is very low).
We set searching-queueing rate much bigger than the failure one, respectively
0.1 and 0.001. The number of concurrent peers on each server, K(sb) − 1, is set
to 1. The study has been done for 512 KBytes, 4 and 10 MBytes resource sizes
and for a number of parallel downloads that grows from 1 up to 6, as shown In
Fig. 16. Small resources take less benefits from parallel downloading, since the
downloading time is shorter than the time required by the searching and queueing
phase to start a parallel download from another source. For bigger resources
instead, the downloading time is reduced significantly with the increases in the
number possible download source. These improvements are however limited by
the client bandwidth, as shown in the previous example. This can be seen for
for the 4 and the 10 MBytes cases, when the number of sources increase from 5
to 6.

In order to describe different system scenario we also approximate the search-
ing and queueing rate with different distributions. All previous results refer to the
exponential case. In addition we model the searching and queueing phases with
Hyper-exponential and Hypo-exponential distributions. Results are reported in
Table 6; Figure 17 refers to the transfer of a 4MB file with 3 parallel down-
loads and a session mean time of 15 minutes. In all cases the mean time spent
in the searching/queueing phase is 5 minutes. In the case ”Hyper-exponential
1” the mean time spent by the client is 10 minutes with a probability of 44%
and 1 minute with a probability of 56%. In this case faster searching/queueing
phases are favorite, indeed transfer time is shorter than in the case ”Expo-
nential”. Shorter searching/queueing phases are even more favorite in the case
”Hyper-exponential 2”: 3.45 minutes with probability 80%, and 10 minutes with
probability 20%. This setting results in faster transfers, as reported in Table 6.
The choice of the Hyper-exponential distribution can be useful for describing dif-
ferent scenario where shorter searching/queueing phases model popular resource
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transfers and longer ones model rare resource transfers. The Hypo-exponential
distribution can be used to model rates when the approximation should be more
deterministic. In this case, the Hypo-exponential case corresponds to a 5 stages
Erlang distribution. Even if the goal of this work is not to compare different
approximations, it shows that the proposed model can be considered a flexible
tool for evaluating P2P applications performance.

8 Conclusions

Stochastic models with continuous variables (Reward models, Fluid models and
FSPNs) often allows proper modeling of real systems. Their analysis is a more
complex than the ones with only discrete variables, but feasible for a wide class
of models. The analytical description of Markov fluid models and a set of so-
lution techniques have been introduced. The potential use of fluid models in
performance analysis has been demonstrated by an applicative example.
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Abstract. Stochastic performance models provide a powerful way of
capturing and analysing the behaviour of complex concurrent systems.
Traditionally, performance measures for these models are derived by gen-
erating and then analysing a (semi-)Markov chain corresponding to the
model’s behaviour at the state-transition level. However, and especially
when analysing industrial-scale systems, workstation memory and com-
pute power is often overwhelmed by the sheer number of states.

This chapter explores an array of techniques for analysing stochastic
performance models with large state spaces. We concentrate on explicit
techniques suitable for unstructured state spaces and show how memory
and run time requirements can be reduced using a combination of prob-
abilistic algorithms, disk-based solution techniques and communication-
efficient parallelism based on hypergraph-partitioning. We apply these
methods to different kinds of performance analysis, including steady-
state and passage-time analysis, and demonstrate them on case study
examples.

1 Introduction and Context

Modern computer and communication systems are increasingly complex.
Whereas in the past systems were usually controlled by a single program run-
ning on a single machine with a single flow of control, recent years have seen the
rise of technologies such as multi-threading, parallel and distributed computing
and advanced communication networks. The result is that modern systems are
complex webs of cooperating subsystems with many possible interactions.

In the face of this complexity, it is an extremely challenging task for system
designers to guarantee satisfactory system operation in terms of both correctness
and performance. Unfortunately, attempts to predict dynamic behaviour using
intuition or “rules of thumb” are doomed to failure because designers cannot fore-
see the many millions of possible interactions between components. Likewise, ad
hoc testing cannot expose a sufficient number of execution paths. Consequently
the likelihood of problems caused by subtle bugs such as race conditions is high.

One way to meet the above challenge using a rigorous engineering approach
is to use formal modelling techniques to mechanically verify correctness and
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performance properties. The advantage of this style of approach over ad hoc
methods has been clearly demonstrated in recent work on the formal model
checking of file system code – in [1] the authors use a breadth-first state space
exploration of all possible execution paths and failure points to automatically
uncover several (serious and hitherto undiscovered) errors in ten widely-used file
systems.

Formal techniques which consider all possible system behaviours can likewise
be brought to bear on the problem which is the primary concern of the present
chapter, namely that of predicting system performance. Our specific focus is
on analytical performance modelling techniques which make use of Markov and
semi-Markov chains to model the low-level stochastic behaviour of a system.
(Semi-)Markov chains are limited to describing systems that have discrete states
and which satisfy the property that the future behaviour of the system depends
only on the current state. Despite these limitations, they are flexible enough to
model many phenomena found in complex concurrent systems such as blocking,
synchronisation, preemption, state-dependent routing and complex traffic arrival
processes. In addition, tedious manual enumeration of all possible system states is
not necessary. Instead, chains can be automatically derived from several widely-
used high level modelling formalisms such as Stochastic Petri Nets and Stochastic
Process Algebras.

A major difficulty often encountered with this approach is the state space
explosion problem whereby workstation memory and compute power are over-
whelmed by the sheer number of states that emerge from complex models. Con-
sequently, a major challenge and focus of research is the development of methods
and data structures which minimise the memory and runtime required to gener-
ate and solve very large (semi-)Markov chains. One approach to this “largeness”
problem is to restrict the structure of models that can be analysed. This allows
for the application of efficient techniques which exploit the restricted structure.
Since these techniques are covered in other chapters, we do not discuss them
further here, preferring unrestricted scalable parallel and distributed algorithms
which are able to efficiently leverage the compute power, memory and disk space
of several processors.

2 Stochastic Processes

At the lowest level, the performance modelling of a system can be accomplished
by identifying all possible configurations, or states, that the system can enter and
describing the ways in which the system can move between those states. This
is termed the state-transition level behaviour of the model, and the changes in
state as time progresses describe a stochastic process. We focus on those stochas-
tic processes which belong to the class known as Markov processes, specifically
continuous-time Markov chains (CTMCs) and the more general semi-Markov
processes (SMPs).

Consider a random variable χ which takes on different values at different times
t. The sequence of random variables χ(t) is said to be a stochastic process. The
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different values which χ(t) can take, describe the state space of the stochastic
process.

A stochastic process can be classified by the nature of its state space and of
its time parameter. If the values in the state space of χ(t) are finite or countably
infinite, then the stochastic process is said to have a discrete state space (and
may also be referred to as a chain). Otherwise, the state space is said to be
continuous. Similarly, if the times at which χ(t) is observed are also countable,
the process is said to be a discrete-time process. Otherwise, the process is said to
be a continuous-time process. In this chapter, all stochastic processes considered
have discrete and finite state spaces, and we focus mainly on those which evolve
in continuous time.

Definition 1. A Markov process is a stochastic process in which the Markov
property holds. Given that χ(t) = xt indicates that the state of the process χ(t)
at time t is xt, this property stipulates that:

IP
(
χ(t) = x | χ(tn) = xn, χ(tn−1) = xn−1, . . . , χ(t0) = x0

)

= IP
(
χ(t) = x | χ(tn) = xn

)

for t > tn > tn−1 > . . . > t0

That is, the future evolution of the system depends only on the current state and
not on any prior states.

Definition 2. A Markov process is said to be homogeneous if it is invariant to
shifts in time:

IP
(
χ(t + s) = x | χ(tn + s) = xn

)
= IP

(
χ(t) = x | χ(tn) = xn

)

2.1 Continuous-Time Markov Chains

There exists a family of Markov processes with discrete state spaces but whose
transitions can occur at arbitrary points in time; we call these continuous-time
Markov chains (CTMCs). An homogeneous N -state CTMC has state at time
t denoted χ(t). Its evolution is described by an N × N generator matrix Q,
where qij is the infinitesimal rate of moving from state i to state j (i �= j), and
qii = −

∑
j �=i qij .

The Markov property imposes a memoryless restriction on the distribution
of the sojourn times of states in a CTMC. The future evolution of the system
therefore does not depend on the evolution of the system up until the current
state, nor does it depend on how long the system has already been in the current
state. This means that the sojourn time ν in any state must satisfy:

IP(ν ≥ s + t | ν ≥ t) = IP(ν ≥ s) (1)

A consequence of Eq. (1) is that all sojourn times in a CTMC must be exponen-
tially distributed (see [2] for a proof that this is the only continuous distribution
function which satisfies this condition). The rate out of state i, and therefore
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the parameter of the sojourn time distribution, is μi and is equal to the sum of
all rates out of state i, that is μi = −qii. This means that the density function
of the sojourn time in state i is fi(t) = μi e−μit and the average sojourn time in
state i is μ−1

i .
A concept that is fundamental to reasoning about the performance of a CTMC

is that of its steady state distribution – that is the long-run average proportion
of time that a system spends in each of its states.

Definition 3. A Markov chain is said to be irreducible if every state commu-
nicates with every other state, i.e. if for every pair of states i and j there is a
path from state i to j and vice versa.

Definition 4. The steady-state probability distribution {πj} of an irreducible,
homogeneous CTMC is given by:

πj = lim
t→∞ IP(χ(t) = j | χ(0) = i)

For a finite, irreducible and homogeneous CTMC, the steady-state probabilities
{πj} always exist and are independent of the initial state distribution. They are
uniquely given by the solution of the equations:

−qjjπj +
∑

k �=j

qkjπk = 0 subject to
∑

i

πi = 1

Again, this can be expressed in matrix vector form (in terms of the vector π
with elements {π1, π2, . . . , πN} and the matrix Q defined above) as:

πQ = 0 (2)

A CTMC also has an embedded discrete-time Markov chain (EMC) which
describes the behaviour of the chain at state-transition instants, that is to say
the probability that the next state is j given that the current state is i. The EMC
of a CTMC has a one-step N × N transition matrix P where pij = −qij/qii for
i �= j and pij = 0 for i = j.

The steady-state distribution enables us to compute various basic resource-
based measures (such as utilisation, mean throughput, and so on); however, more
advanced response-time measures (such as quantiles of response time) require a
first passage time analysis.

Definition 5. Consider a finite, irreducible CTMC with N states {1, 2, . . . , N}
and generator matrix Q. If χ(t) denotes the states of the CTMC at time t (t ≥ 0)
and N(t) denotes the number of state transitions which have occurred by time
t, the first passage time from a single source marking i into a non-empty set of
target markings j is:

Pij(t) = inf{u > 0 : χ(t + u) ∈ j, N(t + u) > N(t), χ(t) = i}
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When the CTMC is stationary and time-homogeneous this quantity is indepen-
dent of t:

Pij = inf{u > 0 : χ(u) ∈ j, N(u) > 0, χ(0) = i} (3)

That is, the first time the system enters a state in the set of target states j, given
that the system began in the source state i and at least one state transition has
occurred. Pij is a random variable with probability density function fij(t) such
that:

IP(t1 < Pij < t2) =
∫ t2

t1

fij(t) dt for 0 ≤ t1 < t2

In order to determine fij(t) it is necessary to convolve the state holding-time
density functions over all possible paths (including cycles) from state i to all of
the states in j.

The calculation of the convolution of two functions in t-space can be more
easily accomplished by multiplying their Laplace transforms together in s-space
and inverting the result. The calculation of fij(t) is therefore achieved by calcu-
lating the Laplace transform of the convolution of the state holding times over
all paths between i and j and then numerically inverting this Laplace transform
(see Sect. 4.3 for a description of two inversion algorithms).

In a CTMC all state sojourn times are exponentially distributed, so the density
function of the sojourn time in state i is μie

−μit, where μi = −qii (as before).
The Laplace transform of an exponential density function with rate parameter
λ is:

L{λe−λt} =
λ

λ + s

Denoting the Laplace transform of the density function fij(t) of the passage
time random variable Pij as Lij(s), we proceed by means of a first-step analysis.
That is, to calculate the first passage time from state i into the set of target
states j, we consider moving from state i to its set of direct successor states k
and thence from states in k to states in j. This can be expressed as the following
system of linear equations:

Lij(s) =
∑

k/∈j

pik

(
−qii

s − qii

)

Lkj(s) +
∑

k∈j

pik

(
−qii

s − qii

)

(4)

The first term (i.e. the summation over non-target states k /∈ j) convolves the
sojourn time density in state i with the density of the time taken for the system
to evolve from state k into a target state in j, weighted by the probability that
the system transits from state i to state k. The second term (i.e. the summation
over target states k ∈ j) simply reflects the sojourn time density in state i
weighted by the probability that a transition from state i into a target state k
occurs.

Given that pij = −qij/qii in the context of a CTMC, Eq. (4) can be rewritten
more simply as:

Lij(s) =
∑

k/∈j

qik

s − qii
Lkj(s) +

∑

k∈j

qik

s − qii
(5)
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This set of linear equations can be expressed in matrix–vector form. For example,
when j = {1} we have:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

s − q11 −q12 · · · −q1n

0 s − q22 · · · −q2n

0 −q32 · · · −q3n

0
...

. . .
...

0 −qn2 · · · s − qnn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

L1j(s)
L2j(s)
L3j(s)

...
Lnj(s)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
q21
q31
...

qn1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(6)

Our formulation of the passage time quantity in Eq. (3) states that we must
observe at least one state-transition during the passage. In the case where i ∈ j
(as for L1j(s) in the above example), we therefore calculate the density of the
cycle time to return to state i rather than requiring Lij(s) = 1.

Given a particular (complex-valued) s, Eq. (5) can be solved for Lij(s) by
standard iterative numerical techniques for the solution of systems of linear
equations in Ax = b form. Many numerical Laplace transform inversion algo-
rithms (such as the Euler and Laguerre methods) can identify in advance the
s-values at which Lij(s) must be calculated in order to perform the numerical in-
version. Therefore, if the algorithm requires m different values of Lij(s), Eq. (5)
will need to be solved m times.

The corresponding cumulative distribution function Fij(t) of the passage time
is obtained by integrating under the density function. This integration can be
achieved in terms of the Laplace transform of the density function by dividing
it by s, i.e. F ∗

ij(s) = Lij(s)/s. In practice, if Eq. (5) is solved as part of the
inversion process for calculating fij(t), the m values of Lij(s) can be retained.
Once the numerical inversion algorithm has used them to compute fij(t), these
values can be recovered, divided by s and then taken as input by the numerical
inversion algorithm again to compute Fij(t). Thus, in calculating fij(t), we get
Fij(t) for little further computational effort.

When there are multiple source markings, denoted by the vector i, the Laplace
transform of the response time density at equilibrium is:

Li j(s) =
∑

k∈i

αkLkj(s)

where the weight αk is the equilibrium probability that the state is k ∈ i at the
starting instant of the passage. This instant is the moment of entry into state
k; thus αk is proportional to the equilibrium probability of the state k in the
underlying embedded (discrete-time) Markov chain (EMC) of the CTMC with
one-step transition matrix P as defined in Sect. 2.1. That is:

αk =
{

πk/
∑

j∈i πj if k ∈ i

0 otherwise
(7)

where the vector π is any non-zero solution to π = πP. The row vector with
components αk is denoted by α.
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Uniformisation. Passage time densities and quantiles in CTMCs may also
be computed through the use of uniformisation (also known as randomisation)
[3,4,5,6,7,8]. This transforms a CTMC into one in which all states have the same
mean holding time 1/q, by allowing “invisible” transitions from a state to itself.
This is equivalent to a discrete-time Markov chain, after normalisation of the
rows, together with an associated Poisson process of rate q.

Definition 6. The one-step transition probability matrix P which characterises
the one-step behaviour of a uniformised DTMC is derived from the generator
matrix Q of the CTMC as:

P = Q/q + I (8)
where the rate q > maxi |qii| ensures that the DTMC is aperiodic by guaranteeing
that there is at least one single-step transition from a state to itself.

We ensure that only the first passage time density is calculated and that we do
not consider the case of successive visits to a target state by making the target
states in P absorbing. We denote by P′ the one-step transition probability matrix
of the modified, uniformised chain.

The calculation of the first passage time density between two states then
has two main components. The first considers the time to complete n hops
(n = 1, 2, 3, . . .). Recall that in the uniformised chain all transitions occur with
rate q. The density of the time taken to move between two states is found by
convolving the state holding-time densities along all possible paths between the
states. In a standard CTMC, convolving holding times in this manner is non-
trivial as, although they are all exponentially distributed, their rate parameters
are different. In a CTMC which has undergone uniformisation, however, all states
have exponentially-distributed state holding-times with the same parameter q.
This means that the convolution of n of these holding-time densities is an n-stage
Erlang density with rate parameter q.

Secondly, it is necessary to calculate the probability that the transition be-
tween a source and target state occurs in exactly n hops of the uniformised
chain, for every value of n between 1 and a maximum value m. The value of m
is determined when the value of the nth Erlang density function (the left-hand
term in Eq. (9)) drops below some threshold value. After this point, further
terms are deemed to add nothing significant to the passage time density and so
are disregarded.

The density of the time to pass between a source state i and a target state j in
a uniformised Markov chain can therefore be expressed as the sum of m n-stage
Erlang densities, weighted with the probability that the chain moves from state
i to state j in exactly n hops (1 ≤ n ≤ m). This can be generalised to allow
for multiple target states in a straightforward manner; when there are multiple
source states it is necessary to provide a probability distribution across this set
of states (such as the renormalised steady-state distribution calculated below in
Eq. (11)).

The response time between the non-empty set of source states i and the non-
empty set of target states j in the uniformised chain therefore has probability
density function:
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fij(t) =
∞∑

n=1

⎛

⎝
qntn−1e−qt

(n − 1)!

∑

k∈j

π
(n)
k

⎞

⎠

�
m∑

n=1

⎛

⎝
qntn−1e−qt

(n − 1)!

∑

k∈j

π
(n)
k

⎞

⎠ (9)

where:
π(n+1) = π(n)P′ for n ≥ 0 (10)

with:

π
(0)
k =

{
0 for k /∈ i
πk/

∑
j∈i πj for k ∈ i

(11)

The πk values are the steady state probabilities of the corresponding state k in
the CTMC’s embedded Markov chain. When the convergence criterion:

‖π(n) − π(n−1)‖∞
‖π(n)‖∞

< ε (12)

is met, for given tolerance ε, the vector π(n) is considered to have converged and
no further multiplications with P′ are performed. Here, ‖x‖∞ is the infinity-norm
given by ‖x‖∞ = maxi |xi|.

The corresponding cumulative distribution function for the passage time,
Fij(t), can be calculated by substituting the cumulative distribution function
for the Erlang distribution into Eq. (9) in place of the Erlang density function
term, viz.:

Fij(t) =
∞∑

n=1

⎛

⎝

(

1 − e−qt
n−1∑

k=0

(qt)k

k!

)
∑

k∈j

π
(n)
k

⎞

⎠

�
m∑

n=1

⎛

⎝

(

1 − e−qt
n−1∑

k=0

(qt)k

k!

)
∑

k∈j

π
(n)
k

⎞

⎠

where π(n) is defined as in Eqs. (10) and (11).

2.2 Semi-Markov Processes

Semi-Markov Processes (SMPs) are an extension of Markov processes which
allow for generally distributed sojourn times. Although the memoryless property
no longer holds for state sojourn times, at transition instants SMPs still behave
in the same way as Markov processes (that is to say, the choice of the next
state is based only on the current state) and so share some of their analytical
tractability.
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Definition 7. Consider a Markov renewal process {(χn, Tn) : n ≥ 0} where Tn

is the time of the nth transition (T0 = 0) and χn ∈ S is the state at the nth
transition. Let the kernel of this process be:

R(n, i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i)

for i, j ∈ S. The continuous time semi-Markov process, {Z(t), t ≥ 0}, defined by
the kernel R, is related to the Markov renewal process by:

Z(t) = χN(t)

where N(t) = max{n : Tn ≤ t}, i.e. the number of state transitions that have
taken place by time t. Thus Z(t) represents the state of the system at time t.

We consider only time-homogeneous SMPs in which R(n, i, j, t) is independent
of n, that is for:

R(i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i) for any n ≥ 0
= pijHij(t)

where pij = IP(χn+1 = j | χn = i) is the state transition probability between
states i and j and Hij(t) = IP(Tn+1 − Tn ≤ t | χn+1 = j, χn = i), is the sojourn
time distribution in state i when the next state is j. An SMP can therefore be
characterised by two matrices P and H with elements pij and Hij respectively.

Semi-Markov processes can be analysed for steady-state performance metrics
in a similar manner as DTMCs and CTMCs. To do this, we need to know the
steady-state probabilities of the SMP’s embedded Markov chain and the average
time spent in each state. The first of these can be calculated by solving π = πP,
as in the case of DTMCs. The average time in state i, IE[τi], is the weighted sum
of the averages of the sojourn time in the state i when going to state j, IE[τij ],
for all successor states j of i, that is:

IE[τi] =
∑

j

pijIE[τij ]

The steady-state probability of being in state i of the SMP is then:

φi =
πiIE[τi]

∑N
m=1 πmIE[τm]

(13)

That is, the long-run probability of finding the SMP in state i is the probability
of its EMC being in state i multiplied by the average amount of time the SMP
spends in state i, normalised over the mean total time spent in all of the states
of the SMP.

Passage-time analysis for SMPs is also possible by extending the Laplace
transform method for CTMCs to cater for generally-distributed state sojourn
times.
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Definition 8. Consider a finite, irreducible, continuous-time semi-Markov
process with N states {1, 2, . . . , N}. Recalling that Z(t) denotes the state of the
SMP at time t (t ≥ 0), the first passage time from a source state i at time t into
a non-empty set of target states j is:

Pij(t) = inf{u > 0 : Z(t + u) ∈ j, N(t + u) > N(t) | Z(t) = i} (14)

For a stationary time-homogeneous SMP, Pij(t) is independent of t and we have:

Pij = inf{u > 0 : Z(u) ∈ j, N(u) > 0 | Z(0) = i} (15)

Pij has an associated probability density function fij(t) such that the passage
time quantile is given as:

IP(t1 < Pij < t2) =
∫ t2

t1

fij(t) dt for 0 ≤ t1 < t2 (16)

In general, the Laplace transform of fij , Lij(s), can be computed by solving a
set of N linear equations:

Lij(s) =
∑

k/∈j

r∗ik(s)Lkj(s) +
∑

k∈j

r∗ik(s) for 1 ≤ i ≤ N (17)

where r∗ik(s) is the Laplace-Stieltjes transform (LST) of R(i, k, t) and is defined
by:

r∗ik(s) =
∫ ∞

0
e−st dR(i, k, t) (18)

Eq. (17) has a matrix–vector form where the elements of the matrix are arbitrary
complex functions; care needs to be taken when storing such functions for even-
tual numerical inversion (see Sect. 4.3). For example, when j = {1}, Eq. (17)
yields:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 −r∗12(s) · · · −r∗1N (s)
0 1 − r∗22(s) · · · −r∗2N (s)
0 −r∗32(s) · · · −r∗3N (s)
...

...
. . .

...
0 −r∗N2(s) · · · 1 − r∗NN (s)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

L1j(s)
L2j(s)
L3j(s)

...
LNj(s)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

r∗11(s)
r∗21(s)
r∗31(s)

...
r∗N1(s)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(19)

When there are multiple source states, denoted by the vector i, the Laplace
transform of the passage time density at steady-state is:

Li j(s) =
∑

k∈i

αkLkj(s) (20)

where the weight αk is the probability at equilibrium that the system is in state
k ∈ i at the starting instant of the passage. As with CTMCs α is defined in
terms of π, the steady-state vector of the embedded discrete-time Markov chain
with one-step transition probability matrix P:

αk =
{

πk/
∑

j∈i πj if k ∈ i

0 otherwise
(21)
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3 Modelling Formalisms

Stochastic models are specified using graphical or symbolic languages known
as modelling formalisms. Below we describe two popular formalisms: Stochastic
Petri nets and Stochastic Process Algebras.

3.1 Stochastic Petri Nets

We briefly outline two types of stochastic Petri net: Generalised Stochastic Petri
Nets (GSPNs) which allow timed exponential and immediate transitions, and
Semi-Markov Stochastic Petri Nets (SM-SPNs) which specify models with gen-
erally distributed transitions.

Generalised Stochastic Petri Nets. Generalised Stochastic Petri nets are
an extension of Place-Transition nets, which are ordinary, untimed Petri nets. A
Place-Transition net does not have firing delays associated with its transitions
and is formally defined in [2]:

Definition 9. A Place-Transition net is a 5-tuple PN = (P, T, I−, I+, M0)
where

– P = {p1, . . . , pn} is a finite and non-empty set of places.
– T = {t1, . . . , tm} is a finite and non-empty set of transitions.
– P ∩ T = ∅.
– I−, I+ : P × T → IN0 are the backward and forward incidence functions,

respectively. If I−(p, t) > 0, an arc leads from place p to transition t, and if
I+(p, t) > 0 then an arc leads from transition t to place p.

– M0 : P → IN0 is the initial marking defining the initial number of tokens on
every place.

A marking is a vector of integers representing the number of tokens on each
place in a Petri net. The set of all markings that are reachable from the initial
marking M0 is known as the state space or reachability set of the Petri net, and
is denoted by R(M0). The connections between markings in the reachability set
form the reachability graph. Formally, if the firing of a transition that is enabled
in marking Mi results in marking Mj, then the reachability graph contains a
directed arc from marking Mi to marking Mj .

GSPNs [9] are timed extensions of Place-Transition nets with two types of
transitions: immediate transitions and timed transitions. Once enabled, immedi-
ate transitions fire in zero time, while timed transitions fire after an exponen-
tially distributed firing delay. Firing of immediate transitions has priority over
the firing of timed transitions.

The formal definition of a GSPN is as follows [2]:

Definition 10. A GSPN is a 4-tuple GSPN = (PN, T1, T2, W ) where

– PN = (P, T, I−, I+, M0) is the underlying Place-Transition net.
– T1 ⊆ T is the set of timed transitions, T1 �= ∅,
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– T2 ⊂ T denotes the set of immediate transitions, T1 ∩ T2 = ∅, T = T1 ∪ T2
– W = (w1, . . . , w|T |) is an array whose entry wi is either

• a (possibly marking dependent) rate ∈ IR+ of an exponential distribution
specifying the firing delay, when transition ti is a timed transition, i.e.
ti ∈ T1
or

• a (possibly marking dependent) weight ∈ IR+ specifying the relative fir-
ing frequency, when transition ti is an immediate transition, i.e. ti ∈ T2.

The reachability graph of a GSPN contains two types of markings. A vanishing
marking is one in which an immediate transition is enabled. The sojourn time
in such markings is zero. A tangible marking is one which enables only timed
transitions. The sojourn time in such markings is exponentially distributed. Once
vanishing markings have been eliminated (see [10] for a discussion of methods
for vanishing state elimination), the resulting tangible reachability graph of a
GSPN maps directly onto a CTMC.

Semi-Markov Stochastic Petri Nets. Semi-Markov stochastic Petri nets [11]
(SM-SPNs) are extensions of GSPNs which support arbitrary holding-time dis-
tributions and which generate an underlying semi-Markov process rather than a
Markov process. Note that it is not intended that they be a novel technique for
dealing with concurrently-enabled generally-distributed transitions. They are in-
stead a useful high-level vehicle for the construction of large semi-Markov models
for analysis.

Definition 11. An SM-SPN consists of a 4-tuple, (PN, P , W , D), where:

– PN = (P, T, I−, I+, M0) is the underlying Place-Transition net. P is the
set of places, T , the set of transitions, I+/− are the forward and backward
incidence functions describing the connections between places and transitions
and M0 is the initial marking.

– P : T × M → ZZ+, denoted pt(m), is a marking-dependent priority function
for a transition.

– W : T × M → IR+, denoted wt(m), is a marking-dependent weight function
for a transition, to allow implementation of probabilistic choice.

– D : T × M → (IR+ → [0, 1]), denoted dt(m), is a marking-dependent cumu-
lative distribution function for the firing time of a transition.

In the above, M is the set of all markings for a given net. Further, we define
the following general net-enabling functions:

– EN : M → P (T ), a function that specifies net-enabled transitions from a
given marking.

– EP : M → P (T ), a function that specifies priority-enabled transitions from
a given marking.

The net-enabling function, EN , is defined in the usual way for standard Petri nets:
if all preceding places have occupying tokens then a transition is net-enabled.
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Similarly, we define the more stringent priority-enabling function, EP . For a
given marking, m, EP (m) selects only those net-enabled transitions that have
the highest priority, that is:

EP (m) = {t ∈ EN(m) : pt(m) = max{pt′(m) : t′ ∈ EN (m)}} (22)

Now for a given priority-enabled transition, t ∈ EP (m), the probability that
it will be the one that actually fires after a delay sampled from its firing distri-
bution, dt(m), is:

IP(t ∈ EP (m) fires) =
wt(m)

∑
t′∈EP (m) wt′(m)

(23)

Note that the choice of which priority-enabled transition is fired in any given
marking is made by a probabilistic selection based on transition weights, and is
not a race condition based on finding the minimum of samples extracted from
firing-time distributions. This mechanism enables the underlying reachability
graph of an SM-SPN to be mapped directly onto a semi-Markov chain.

3.2 Stochastic Process Algebras

A process algebra is an abstract language which differs from the formalisms
we have considered so far because it is not based on a notion of flow. Instead,
systems are modelled as a collection of cooperating agents or processes which
execute atomic actions. These actions can be carried out independently or can
be synchronised with the actions of other agents.

Since models are typically built up from smaller components using a small set
of combinators, process algebras are particularly suited to the modelling of large
systems with hierarchical structure. This support for compositionality is comple-
mented by mechanisms to provide abstraction and compositional reasoning.

Two of the best known process algebras are Hoare’s Communicating Sequen-
tial Processes (CSP) [12] and Milner’s Calculus of Communicating Systems
(CCS) [13]. These algebras do not include a notion of time so they can only be
used to determine qualitative correctness properties of systems such as the free-
dom from deadlock and livelock. Stochastic Process Algebras (SPAs) associate a
random variable, representing a time duration, with each action. This addition
allows quantitative performance analysis to be carried out on SPA models in the
same fashion as for SPNs.

Here we will briefly describe the Markovian SPA, PEPA [14]. Other SPAs in-
clude TIPP [15,16], MPA [17] and EMPA [18] which are similar to PEPA. A de-
tailed comparison of Markovian stochastic process algebras can be found in [19].
More recently developed non-Markovian SPAs allow for generally-distributed
delays as part of the model; examples of these include SPADES [20,21], semi-
Markov PEPA [22] and iGSMPA [23,24].

PEPA models are built from components which perform activities of form
(α, r) where α is the action type and r ∈ IR+ ∪ {�} is the exponentially distrib-
uted rate of the action. The special symbol � denotes an passive activity that
may only take place in synchrony with another action whose rate is specified.
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Interaction between components is expressed using a small set of combinators,
which are briefly described below:

Action prefix: Given a process P , (α, r).P represents a process that performs
an activity of type α, which has a duration exponentially distributed with
mean 1/r, and then evolves into P .

Constant definition: Given a process Q, P
def= Q means that P is a process

which behaves in exactly the same way as Q.
Competitive choice: Given processes P and Q, P + Q represents a process

that behaves either as P or as Q. The current activities of both P and Q are
enabled and a race condition determines into which component the process
will evolve.

Cooperation: Given processes P and Q and a set of action types L, P ��
L

Q
defines the concurrent synchronised execution of P and Q over the cooper-
ation set L. No synchronisation takes place for any activity α /∈ L, so such
activities can take place independently. However, an activity α ∈ L only
occurs when both P and Q are capable of performing the action. The rate
at which the action occurs is given by the minimum of the rates at which
the two components would have executed the action in isolation.
Cooperation over the empty set P ��

∅
Q represents the independent concur-

rent execution of processes P and Q and is denoted by P || Q.
Encapsulation: Given a process P and a set of actions L, P/L represents

a process that behaves like P except that activities α ∈ L are hidden and
performed as a silent activity. Such activities cannot be part of a cooperation
set.

PEPA specifications can be mapped onto continuous time Markov chains in
a straightforward manner. Based on the labelled transition system semantics
that are normally specified for a process algebra system, a transition diagram or
derivation graph can be associated with any language expression. This graph de-
scribes all possible evolutions of a system and, like a tangible reachability graph
in the context of GSPNs, is isomorphic to a CTMC which can be solved for its
steady-state distribution. Fig. 1 shows a PEPA specification of a multiprocessor
system together with its corresponding derivation graph.

4 Methods for Tackling Large Unstructured State Spaces

We proceed to review several approaches to the problem of analysing stochastic
models with large underlying state spaces, covering the major phases in an ad-
vanced performance analysis pipeline, i.e. state generation, steady-state solution
and passage-time analysis.

The methods reviewed here are based on explicit state representation, and so
are particularly suited to the analysis of systems with large unstructured state
spaces. We note that there are effective approaches based on implicit/symbolic
state representation which can be applied to systems whose underlying state



332 W.J. Knottenbelt and J.T. Bradley

Proc ��
L

Mem

Proc1 ��
L

Mem Proc2 ��
L

Mem

Proc3 ��
L

Mem1

Proc4 ��
L

Mem2

���������

���������

�

�

� �

(local , m) (rel , r)

(think , p1λ)
(think , p2λ)

(get , g)

(use , μ)

Proc def
= (think , p1λ).Proc1 + (think , p2λ).Proc2

Proc1
def
= (local , m).Proc

Proc2
def
= (get , g).Proc3 Proc3

def
= (use, μ).Proc4 Proc4

def
= (rel , r).Proc

Mem def
= (get , �).Mem1 Mem1

def
= (use, μ).Mem2 Mem2

def
= (rel , �).Mem

Sys4
def
= Proc ��

L
Mem where L = {get , rel , use}

Fig. 1. A PEPA specification and its corresponding derivation graph [25]

spaces are structured in some way – for example methods based on Binary Deci-
sion Diagrams and related data structures [26,27,7,28], and Kronecker methods
[29]. Since these methods are the subjects of other chapters in this volume, they
are not discussed further here.

4.1 Probabilistic State Space Generation

The first challenge in the quantitative analysis of stochastic models is to gener-
ate all reachable states or configurations that the system can enter. The main
obstacle to this task is the huge number of states that can emerge, a prob-
lem compounded by the large size of individual state descriptors. Consequently
there are severe memory and time constraints on the number of states that can
be generated using a simplistic explicit exhaustive enumeration.

The Case for Probabilistic Algorithms. A useful, but at first seemingly
bizarre, method of dealing with a problem that seems to be infeasible (either in
terms of computational or storage demands) is to relax the requirement that a
solution should always produce the correct answer. Adopting such a probabilistic
or randomised approach can lead to dramatic memory and time savings. Of
course, in order to be useful in practice, the risk of producing an incorrect result
must be quantified and kept very small.
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One of the most exciting early applications of probabilistic algorithms was in
finding an efficient solution to the primality problem (i.e. to determine if some
positive integer n is prime). This problem has direct application to public key
cryptographic systems, many of which are based on finding a modulus of form
pq where p and q are large prime numbers.

The Miller-Rabin primality test [30] provides an efficient probabilistic solution
to the primality problem by relying on three facts:

– If n is composite (i.e. not prime) then at least three quarters of the natural
numbers less than n are witnesses to the compositeness of n (i.e. can be used
to establish that n is not prime).

– If n is prime then there is no natural number less than n that is witness to
the compositeness of n.

– Given number natural numbers m and n with m < n, there is an efficient al-
gorithm which ascertains whether or not m is a witness to the compositeness
of n.

The algorithm works by performing k witness tests using randomly chosen
natural numbers less than n; should all of these witness tests fail, we assume n
is prime. Indeed, if n is prime, this is the correct conclusion. If n is composite,
the chances of failing to find a witness (and hence detect that the number is not
prime) is 2−2k. Hence, by increasing k, we can arbitrarily increase the reliability
of the algorithm at logarithmic run time cost; when k is around 20, the algorithm
is probably more reliable than most computer hardware.

Application to State Space Generation. While research into probabilis-
tic algorithms for solving the primality problem has been focused on reducing
run time, the application of probabilistic algorithms to state space generation
has been focused on the need to reduce memory requirements. In particular,
the memory consumption of explicit state space generation algorithms is heav-
ily dependent on the layout and management of a data structure known as the
explored state table. This table prevents redundant work by identifying which
states have already been encountered. Its implementation is particularly chal-
lenging because the table is accessed randomly and must be able to rapidly store
and retrieve information about every reachable state. One approach is to store
the full state descriptor of each state in the table. This exhaustive approach
guarantees full coverage, but at very high memory cost. Probabilistic methods
use one-way hashing techniques to drastically reduce the amount of memory re-
quired to store states. However, this introduces the risk that two distinct states
will have the same hashed representation, resulting in the misidentification and
omission of states in the state graph. Naturally, it is important to quantify this
risk and to find ways of reducing it to an acceptable level.

The next sections review three of the best-known probabilistic methods (in-
terested readers might also like to consult [31] which presents another recent
survey). In each case, we include an analysis and discussion of memory con-
sumption and the omission probability.
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Holzmann’s Bit-state Hashing. Holzmann’s bit-state hashing (or super-
trace) technique [32,33] was developed in an attempt to maximize state coverage
in the face of limited memory. The technique has proved popular because of its
elegance and simplicity and has consequently been included in many research
and commercial verification tools.

Holzmann’s method is based on the use of Bloom Filters. These were conceived
by Burton H. Bloom in 1970 as space-efficient probabilistic data structures for
testing set membership [34]. Here the explored state table takes the form of a bit
vector T . Initially all bits in T are set to zero. States are mapped into positions
in this bit vector using a hash function h, so that when state s is inserted into
the table its corresponding bit T [h(s)] is set to one. To check whether a state
s is already in the table, the value of T [h(s)] is examined. If it is zero, we
know that the state has definitely not been previously encountered; otherwise
it is assumed that the state has already been explored. This may be a mistake,
however, since two distinct states can be hashed onto the same position in the
bit vector. The result of a hash collision will be that one of the states will be
incorrectly classified as explored, resulting in the omission of one or more states
from the state space. Assuming a good hash function which distributes states
randomly, the probability of no hash collisions p when inserting n states into a
bit vector of t bits is:

p =
t!

(t − n)!tn
=

n−1∏

i=0

(t − i)
t

=
n−1∏

i=0

(

1 − i

t

)

Assuming the favourable case n � t and using the approximation ex ≈ (1+x)
for |x| � 1, we obtain:

p ≈
n−1∏

i=0

e−i/t = e
�n−1

i=0 −i/t = e−
n(n−1)

2t = e
n−n2

2t

Since n2 � n for large n, a good approximation for p is given by:

p ≈ e−
n2
2t

The corresponding probability of state omission is q = 1 − p. Unfortunately
the table sizes required to keep the probability of state omission very low are
impractically large. For example, to obtain a state omission probability of 0.1%
when inserting n = 106 states requires the allocation of a bit vector of 125TB.
The situation can be improved a little by using two independent hash functions
h1 and h2. When inserting a state s, both T [h1(s)] and T [h2(s)] are set to one.
Likewise, we conclude s has been explored only if both T [h1(s)] and T [h2(s)]
are set to one. Wolper and Leroy [35] show that now the probability of no hash
collisions is:

p ≈ e−
4n3

t2 .

However the table sizes required to keep the probability of state omission low
are still impractically large. Using more than two hash functions helps improve
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the probability slightly; in fact it turns out that the optimal number of functions
is about 20 [35]. However, computing 20 independent hash functions on every
state is expensive and the resulting algorithm is very slow. The strength of Holz-
mann’s algorithm therefore lies in the goal for which it was originally designed,
i.e. the ability to maximize coverage in the face of limited memory, and not in
its ability to provide complete state coverage.

Wolper and Leroy’s Hash Compaction. Holzmann’s method requires a very
low ratio of states to hash table entries to provide a good probability of complete
state space coverage. Consequently, a large amount of the space allocated to the
bit vector will be wasted. Wolper and Leroy observed that it would be better
to store which bit positions in the table are occupied instead [35]. This can be
done by hashing states onto compressed keys of b bits. These keys can then be
stored in a smaller hash table which supports a collision resolution scheme.

Given a hash table with m ≥ n slots, the memory required is:

M = (mb + m)/8 = m(b + 1)/8

since we need to store the keys, as well as a bit vector indicating which hash table
slots are occupied. If we wish to construct the state graph efficiently, states also
need to be assigned unique state sequence numbers. Given s-bit state sequence
numbers, total memory consumption in this case is:

M = m(b + s + 1)/8.

In terms of the reliability of the technique, this approach is equivalent to a bit-
state hashing scheme with a table size of 2b, so the probability of no collision p
is given by:

p ≈ e−
n2

2b+1

Wolper and Leroy recommend compressed values of b = 64 bits, i.e. 8-byte
compression.

Stern and Dill’s Improved Hash Compaction. Wolper and Leroy do not
discuss exactly how states are mapped onto slots in their hash table. It seems
to be implicitly assumed that the hash values used to determine where to store
the b-bit compressed values in the hash table are calculated using the b-bit
compressed values themselves. Stern and Dill [36] noticed that the omission
probability can be dramatically reduced in two ways – firstly by calculating
the hash values and compressed values independently and secondly by using a
collision resolution scheme which keeps the number of probes per insertion low.
This improved technique is so effective that it requires only 5 bytes per state in
situations where Wolper and Leroy’s standard hash compaction requires 8 bytes
per state.

Given a hash table with m slots, states are inserted into the table using
two hash functions h1(s) and h2(s). These hash functions generate the probe
sequence h(0)(s), h(1)(s), . . . , h(m−1)(s) with h(i)(s) = (h1(s) + ih2(s)) mod m
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for i = 0, 1, . . . , m − 1. This double hashing scheme prevents the clustering
associated with simple rehashing algorithms such as linear probing. A separate
independent compression function h3 is used to calculate the b-bit compressed
state values which are stored in the table.

Slots are examined in the order of the probe sequence, until one of two con-
ditions are met:

1. If the slot currently being examined is empty, the compressed value is in-
serted into the table at that slot.

2. If the slot is occupied by a compressed value equal to the h3(s), we assume
(possibly incorrectly) that the state has already been explored.

Total memory consumption is the same as for Wolper and Leroy’s hash com-
paction method, i.e.

M = m(b + s + 1)/8

where we assume a bit vector indicates which hash slots are used, and s-bit
unique state sequence numbers are used to identify states for efficient construc-
tion of the state graph.

Given m slots in the hash table, n of which are occupied by states, Stern and
Dill prove that the probability of no state omissions p is given by

p ≈
n−1∏

k=0

⎡

⎣
k∑

j=0

(
2b − 1

2b

)j
m − k

m − j

j−1∏

i=0

k − i

m − i

⎤

⎦

This formula takes O(n3) operations to evaluate. Stern and Dill derive an
O(1) approximation given by

p ≈
(

2b − 1
2b

)(m+1) ln( m+1
m−n+1 )− n

2(m−n+1) + 2n+2mn−n2

12(m+1)(m−n+1)2
−n

An upper bound for the probability of state omission q is

q ≤ 1
2b

[(m + 1)(Hm+1 − Hm−n+1) − n]

where Hn =
∑n

k=1 1/k is the nth harmonic number [36]. This probability rises
sharply as the hash table becomes full, since compressed states being inserted are
compared against many compressed values before an empty slot is found. Stern
and Dill derive a more straightforward formula for the approximate maximum
omission probability for a full table (i.e. with m = n):

q ≈ 1
2b

m(ln m − 1)

which shows the omission probability is approximately proportional to m ln m.
Increasing b, the number of bits per state, by one roughly halves the maximum
omission probability.
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Fig. 2. Layout of the explored state table under the dynamic probabilistic hash com-
paction scheme

Dynamic Probabilistic State Space Generation. We now discuss a proba-
bilistic technique which uses dynamic storage allocation and which yields a very
low collision probability [37]. The system is illustrated in Fig. 2. Here, the ex-
plored state table takes the form of a hash table with several rows. Attached
to each row is a linked list which stores compressed state descriptors and state
sequence numbers.

Two independent hash functions are used. Given a state descriptor s, the
primary hash function h1(s) is used to determine which hash table row should
be used to store a compressed state, while the secondary hash function h2(s) is
used to compute a compressed state descriptor value (also known as a secondary
key). If a state’s secondary key h2(s) is present in the hash table row given by
its primary key h1(s), then the state is deemed to be the already-explored state
identified by the sequence number id(s). Otherwise, the secondary key and a
new sequence number are added to the hash table row and the state’s successors
are added onto the FIFO queue.

Fig. 3 shows the complete sequential dynamic probabilistic state space gener-
ation algorithm based on our hash compaction technique. Here H represents the
state hash table in which each state s ∈ E has an entry of form [h1(s), h2(s)].
Since it is now not necessary to store the full state space E in memory, the
insertion of states into E can be handled by writing the states to a disk file as
they are encountered.
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begin
H = {[h1(s0), h2(s0)]}
F .add(s0)
E = { s0 }
A = ∅
while (F not empty) do begin

F .remove(s)
for each s′ ∈ succ(s) do begin

if [h1(s′), h2(s′)] /∈ H do begin
F .add(s′)
E = E ∪ {s′}
H = H ∪ {[h1(s′), h2(s′)]}

end
A = A ∪ {id(s) → id(s′)}

end
end

end

Fig. 3. Sequential dynamic probabilistic state space generation algorithm

Note that two states s1 and s2 are classified as being equal if and only if
h1(s1) = h1(s2) and h2(s1) = h2(s2). This may happen even when the two
states are different, so collisions may occur (as in all other probabilistic methods).
However, as we will see below, the probability of such a collision can be kept
very small – certainly much smaller than the chance of a serious man-made error
in the specification of the model. In addition, by regenerating the state space
with different sets of independent hash functions and comparing the resulting
number of states and transitions, it is possible to further arbitrarily decrease the
risk of an undetected collision.

We now calculate the probability of complete state coverage p. We consider a
hash table with r rows and t = 2b possible secondary key values, where b is the
number of bits used to store the secondary key. In such a hash table, there are rt
possible ways of representing a state. Assuming that h1(s) and h2(s) distribute
states randomly and independently, each of these representations are equally
likely. Thus, if there are n distinct states to be inserted into the hash table, the
probability p that all states are uniquely represented is given by:

p =
(rt)!

(rt − n)!(rt)n
(24)

An equivalent formulation of Eq. (24) is:

p =
n−1∏

i=0

rt − i

rt
=

n−1∏

i=0

(

1 − i

rt

)

(25)
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Fig. 4. Contemporary static probabilistic methods compared with the dynamic hash
compaction method in terms of omission probability

Assuming n � rt and using the fact that ex ≈ (1 + x) for |x| � 1, we obtain:

p ≈
n−1∏

i=0

e−i/rt = e
�n−1

i=0 −i/rt = e−
n(n−1)

2rt = e
n−n2
2rt

Since n2 � n for large n, a simple approximation for p is given by:

p ≈ e−
n2
2rt (26)

It can be shown that if n2 � rt then this approximation is also a lower bound
for p (and thus provides a conservative estimate for the probability of complete
state coverage) [10].

The corresponding upper bound for the probability q that all states are not
uniquely represented, resulting in the omission of one or more states from the
state space, is of course simply:

q = 1 − p ≤ n2

2rt
=

n2

r2b+1 . (27)

Thus the probability of state omission q is proportional to n2 and is inversely
proportional to the hash table size r. Increasing the size of the compressed state
descriptors b by one bit halves the omission probability.

Comparison of State Omission Probabilities. Fig. 4 compares the omis-
sion probability of contemporary static probabilistic methods with that of the
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Table 1. Parameters used in the comparison of omission probabilities

Method Parameters Method Parameters

Holzmann l = 7.488 × 109 bits Wolper b = 42 bits
M = 91.4 MB and s = 32 bits

Leroy m = 108 slots
M = 91.6 MB

Method Parameters Method Parameters

Stern b = 40 bits b = 40 bits
and s = 32 bits Dynamic s = 32 bits
Dill m = 10.26 × 108 slots hash r = 6000 000 rows

M = 91.4 MB h = 6 bytes
M = 91.4 MB
(for n = 108)

dynamic hash compaction method for state space sizes of various magnitudes
up to 108. The parameters used for each method are presented in Tab. 1, and
are selected such that the memory use of all four algorithms is the same. The
graph shows that the dynamic method yields a far lower omission probability
than both Holzmann’s method and Wolper and Leroy’s method. In addition,
the dynamic method is competitive with Stern and Dill’s algorithm and yields
a better omission probability when the hash table becomes full or nearly full.

Parallel Dynamic Probabilistic State Space Generation. We now inves-
tigate how our technique can be enhanced to take advantage of the memory
and processing power provided by a network of workstations or a distributed-
memory parallel computer. We assume there are N nodes available and that
each processor has its own local memory and can communicate with other nodes
via a network.

In the parallel algorithm, the state space is partitioned between the nodes
so that each node is responsible for exploring a portion of the state space and
for constructing part of the state graph. A partitioning hash function h0(s) →
(0, . . . , N − 1) is used to assign states to nodes, such that node i is responsible
for exploring the set of states Ei and for constructing the portion of the state
graph Ai where:

Ei = {s : h0(s) = i}
Ai = {(s1 → s2) : h0(s1) = i}

It is important that h0(s) achieves a good spread of states across nodes in
order to achieve good load balance. Naturally, the values produced by h0(s)
should also be independent of those produced by h1(s) and h2(s) to enhance the
reliability of the algorithm. Guidelines for choosing hash functions which meet
these goals are discussed in [10].

The operation of node i in the parallel algorithm is shown in Fig. 5. Each
node i has a local FIFO queue Fi used to hold unexplored local states and a
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begin
if h0(s0) = i do begin

Hi = {[h1(s0), h2(s0)]}
Fi.add(s0)
Ei = {s0}

end else
Hi = Ei = ∅

Ai = ∅
while (shutdown signal not received) do begin

if (Fi not empty) do begin
s = Fi.remove()
for each s′ ∈ succ(s) do begin

if h0(s′) = i do begin
if [h1(s′), h2(s′)] /∈ Hi do begin

Hi = Hi ∪ {[h1(s′), h2(s′)]}
Fi.add(s′)
Ei = Ei ∪ {s′}

end
Ai = Ai ∪ {id(s) → id(s′)}

end else
send-state(h0(s′), id(s), s′)

end
end
while (receive-id(g, h)) do

Ai = Ai ∪ {g → h}
while (receive-state(k, g, s′)) do begin

if [h1(s′), h2(s′)] /∈ Hi do begin
Hi = Hi ∪ {h1(s′), h2(s′)}
Fi.add(s′)
Ei = Ei ∪ {s′}

end
send-id(k, g, id(s′))

end
end

end

Fig. 5. Parallel state space generation algorithm for node i

hash table Hi representing a compressed version of the set Ei, i.e. those states
which have been explored locally. State s is assigned to processor h0(s), which
stores the state’s compressed state descriptor h2(s) in the local hash table row
given by h1(s). As before, it is not necessary to store the complete state space Ei

in memory, since states can be written out to a disk file as they are encountered.
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Fig. 6. Steps required to identify child state s′ of parent s

Node i proceeds by removing a state from the local FIFO queue and determin-
ing the set of successor states. Successor states for which h0(s) = i are dealt with
locally, while other successor states are sent to the relevant remote processors
via calls to send-state(k, g, s). Here k is the remote node, g is the identity of the
parent state and s is the state descriptor of the child state. The remote processors
must receive incoming states via matching calls to receive-state(k, g, s) where
k is the sender node. If they are not already present, the remote processor adds
the incoming states to both the remote state hash table and FIFO queue.

For the purpose of constructing the state graph, states are identified by a pair
of integers (i, j) where i = h0(s) is the node number of the host processor and
j is the local state sequence number. As in the sequential case, the index j can
be stored in the state hash table of node i. However, a node will not be aware of
the state identity numbers of non-local successor states. Therefore, when a node
receives a state it returns its identity to the sender by calling send-id(k, g, h)
where k is the sender, g is the identity of the parent state and h is the identity
of the received state. The identity is received by the original sender via a call
to receive-id(g, h). Fig. 6 summarises the main steps that take place to identify
and process each child s′ of state s in the case that h0(s) �= h0(s′).

In practice, it is inefficient to implement the communication as detailed in
Fig. 5 and Fig. 6, since the network rapidly becomes overloaded with too many
short messages. Consequently state and identity messages are buffered and sent
in large blocks. In order to avoid starvation and deadlock, nodes that have very
few states left in their FIFO queue or are idle broadcast a message to other
nodes requesting them to flush their outgoing message buffers.
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The algorithm terminates when all the Fi are empty and there are no out-
standing state or identity messages. The problem of determining when these
conditions are satisfied across a distributed set of processes is a non-trivial prob-
lem. From the several distributed termination algorithms surveyed in [38], we
have chosen to use Dijkstra’s circulating probe algorithm [39].

Reliability. Using the parallel algorithm, two distinct states s1 and s2 will
be mistakenly classified as identical states if and only if h0(s1) = h0(s2) and
h1(s1) = h1(s2) and h2(s1) = h2(s2). Since h0, h1 and h2 are independent func-
tions, the reliability of the parallel algorithm is essentially the same as that of the
sequential algorithm with a large hash table of Nr rows, giving a state omission
probability of

q =
n2

Nr2b+1 . (28)

Space Complexity In the parallel algorithm, each node supports a hash table
with r rows. This requires a total of Nhr bytes of storage. The total amount
of space required for the dynamic storage of n states remains the same as for
the sequential version, i.e. (b+ s)n/8 bytes. Thus the total memory requirement
across all nodes is given by:

M = Nhr + n(b + s)/8.

4.2 Parallel Disk-Based Steady State Solution

Having generated the state space and state graph, the next challenge in per-
formance analysis is usually to find the long run proportion of time the system
spends in each of its states. The state graph maps directly onto a continuous
time Markov chain which can then be solved for its steady-state distribution,
according to Eq. (2).

Since the resources of a single workstation are usually inadequate to tackle the
solution of large models (e.g. simply storing the solution vector of a system with
100 million states requires 800MB memory), we explore distributed out-of-core
techniques which leverage the compute power, memory and disk space of several
processors.

Scalable Numerical Methods. A broad spectrum of sequential solution tech-
niques are available for solving steady-state equations [40]. These include clas-
sical iterative methods, Krylov subspace techniques and decomposition-based
techniques. Many of these algorithms are unsuited to distributed or parallel im-
plementation, however, since they rely on the so-called “Gauss-Seidel effect”
to accelerate convergence. This effect occurs when newly updated steady-state
vector elements are used in the calculation of other vector elements within the
same iteration. In the case of sparse matrices, this sequential dependency can be
alleviated by using multi-coloured ordering schemes which allow parallel com-
putation of unrelated vector elements in phases; however, finding such orderings
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is a combinatorial problem of exponential complexity. Consequently obtaining
suitable orderings for very large matrices is infeasible.

Most classical iterative methods, such as Gauss-Seidel and Successive Overre-
laxation (SOR), suffer from this problem. An important exception is the Jacobi
method which uses independent updates of vector elements. The Jacobi method
is characterised by slow, smooth convergence.

Krylov subspace methods [41] are a powerful class of iterative methods which
includes many conjugate gradient-type algorithms. They derive their name from
the fact that they generate their iterates using a shifted Krylov subspace asso-
ciated with the coefficient matrix. They are widely used in scientific comput-
ing since they are parameter free (unlike SOR) and exhibit rapid, if somewhat
erratic, convergence. In addition, these methods are well suited to parallel im-
plementation because they are based on matrix–vector products, independent
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vector updates and inner products. Fig. 7 presents a conceptual overview of
the most important techniques. The arrows show the relationships between the
methods, i.e. how the methods have been generalised from their underlying basis-
generating algorithms and also how key concepts have been inherited from one
algorithm to the next.

The most recently developed Krylov subspace algorithms (such as CGS [42],
BiCGSTAB [43] and TFQMR [44]) are also particularly suited to a disk-based
implementation since they access A in a predictable fashion and do not re-
quire multiplication with AT . Compared to classical iterative methods, however,
Krylov subspace techniques have high memory requirements. CGS is often used
because it requires the least memory of these methods.

Disk-based Solution Techniques. The concept of using magnetic disk as a
buffer to store data that is too large to fit into main memory is an idea which
originated three decades ago with the development of overlays and virtual mem-
ory systems. However, only recently, with the widespread availability of large,
cheap, high-bandwidth hard disks has attention been focused on the potential
of disks as high-throughput data sources appropriate for use in data-intensive
computations.

In [45] and [46], Deavours and Sanders make a compelling case for the potential
of disk-based steady-state solution methods for large Markov models. They note
that our ability to solve large matrices is limited by the memory required to
store a representation of the transition matrix and by the effective rate at which
matrix elements can be produced from the encoding. As a general rule, the more
compact the representation, the more CPU overhead is involved in retrieving
matrix elements. Two common encodings are Kronecker representations and “on-
the-fly” methods. Deavours and Sanders estimate the effective data production
rate of Kronecker and “on-the-fly” methods as being 2 MB/s and 440 KB/s
respectively on their 120 MHz HP C110 workstation. Other published results
show that an implementation of a state-of-the-art Kronecker technique running
on a 450 MHz Pentium-II workstation yields an effective data production rate
of around 2.5 MB/s [27].

At the same time, modern workstation disks are capable of sustaining data
transfer rates in excess of 20 MB/s. This suggests that it would be worthwhile to
store the transition matrix on disk, given that enough disk space is available and
given that we can apply an iterative solution method that accesses the transition
matrix in a predictable way. Such an approach has the potential to produce data
faster than both Kronecker and on-the-fly methods, without any of the structural
restrictions inherent in Kronecker methods.

Deavours and Sanders demonstrate the effectiveness of this approach by de-
vising a sequential disk-based solution tool which makes use of two cooperating
processes. One of the processes is dedicated to reading disk data while the other
performs computation using a Block Gauss-Seidel algorithm, thus allowing for
the overlap of disk I/O and computation. The processes communicate using
semaphores and shared memory. The advantage of using Block Gauss-Seidel is
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that diagonal matrix blocks can be read from disk once, be cached in memory
and then reused several times.

The memory required by the disk-based approach is small – besides the shared
memory buffers, space is only required for the solution vector itself. This enables
the solution of extremely large models with over 10 million states and 100 million
non-zero entries on a HP C110 workstation with 128MB RAM and 4GB of disk
space in just over 5 hours.

Kwiatkowska and Mehmood reduce the memory requirements of disk-based
methods even further by proposing a block-based Gauss-Seidel method which
uses disk to store blocks of the steady-state vector as well as matrix blocks [47,48].
In this way, a model of a manufacturing system with 133 million states is solved
on a single PC in 13 days and 9 hours.

Parallel disk-based solver architectures have also been implemented with some
success. Fig. 8 shows the architecture proposed in [49]. Each node has two
processes: a Disk I/O process dedicated to reading matrix elements from a
local disk, and a Compute process which performs the iterations using a Ja-
cobi or CGS-based matrix–vector multiply kernel. The processes share two data
buffers located in shared memory and synchronise via semaphores. Together the
processes operate as a classical producer-consumer system, with the disk I/O
process filling one shared memory buffer while the compute process consumes
data from the other.

Bell and Haverkort apply a similar architecture in solving a 724 million state
Markov chain model on a 26 node PC cluster in 16 days [50].

Hypergraph Partitioning. Any distributed solution scheme involves par-
titioning the sparse matrix and vector elements across the processors. Such
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schemes necessitate the exchange of data (vector elements and possibly partial
sums) after every iteration in the solution process. The objective in partitioning
the matrix is to minimise the amount of data which needs to be exchanged while
balancing the computational load (as given by the number of non-zero elements
assigned to each processor).

Hypergraph partitioning is an extension of graph partitioning. Its primary
application to date has been in VLSI circuit design, where the objective is to
cluster pins of devices such that interconnect is minimised. It can also be applied
to the problem of allocating the non-zero elements of sparse matrices across
processors in parallel computation [51].

Formally, a hypergraph H = (V , N ) is defined by a set of vertices V and a set
of nets (or hyperedges) N , where each net is a subset of the vertex set V [51].
In the context of a row-wise decomposition of a sparse matrix A, matrix row i
(1 ≤ i ≤ n) is represented by a vertex vi ∈ V while column j (1 ≤ j ≤ n) is
represented by net Nj ∈ N . The vertices contained within net Nj correspond
to the row numbers of the non-zero elements within column j, i.e. vi ∈ Nj if
and only if aij �= 0. The weight of vertex i is given by the number of non-zero
elements in row i, while the weight of a net is its contribution to the edge cut,
which is defined as one less than the number of different partitions spanned by
that net. The overall objective of a hypergraph sparse matrix partitioning is to
minimise the sum of the weights of the cut nets while maintaining a balance
criterion. A column-wise decomposition is achieved in an analogous fashion.

The matrix on the right of Fig. 9 shows the result of applying hypergraph-
partitioning to the matrix on the left in a four-way row-wise decomposition.
Although the number of off-diagonal non-zeros is 18 the number of vector ele-
ments which must be transmitted between processors during each matrix–vector
multiplication (the communication cost) is 6. This is because the hypergraph par-
titioning algorithms not only aim to concentrate the non-zeros on the diagonals



348 W.J. Knottenbelt and J.T. Bradley

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

P1

P2

P3

P4

x

Fig. 10. Transposed transition matrix (left) and corresponding hypergraph-partitioned
matrix (right)

but also strive to line up the off-diagonal non-zeros in columns. The edge cut of
the decomposition is also 6, and so the hypergraph partitioning edge cut metric
exactly quantifies the communication cost. This is a general property and one
of the key advantages of using hypergraphs – in contrast to graph partitioning,
where the edge cut metric merely approximates communication cost. Optimal
hypergraph partitioning is NP-complete but there are a small number of hyper-
graph partitioning tools which implement fast heuristic algorithms, for example
PaToH [51], hMeTiS [52] and Parkway [53].

Table 2. Communication overhead (left) and interprocessor communication matrix
(right)

proc- non- local remote reused
essor zeros % % % 1 2 3 4

1 7 022 99.96 0.04 0 1 - 407 - 4
2 7 304 91.41 8.59 34.93 2 3 - 16 181
3 6 802 88.44 11.56 42.11 3 - - - 12
4 6 967 89.01 10.99 74.28 4 - 1 439 -

Fig. 10 shows the application of hypergraph partitioning to a (transposed)
generator matrix. Statistics about the communication associated with this de-
composition for a single matrix–vector multiplication are presented in Tab. 2.
We see that around 90% of the non-zero elements allocated to each processor
are local, i.e. they are multiplied with vector elements that are stored locally.
The remote non-zero elements are multiplied with vector elements that are sent
from other processors. However, because the hypergraph decomposition tends
to align remote non-zero elements in columns (well illustrated in the 2nd block
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belonging to processor 4), reuse of received vector elements is good (up to 74%)
with correspondingly lower communication overhead. The communication ma-
trix on the right in Tab. 2 shows the number of vector elements sent between
each pair of processors during each iteration (e.g. 181 vector elements are sent
from processor 2 to processor 4).

4.3 Parallel Computation of Densities and Quantiles of First
Passage Time

A rapid response time is an important performance criterion for almost all
computer-communication and transaction processing systems. Response time
quantiles are frequently specified as key quality of service metrics in Service
Level Agreements and industry standard benchmarks such as TPC. Examples
of systems with stringent response time requirements include mobile commu-
nication systems, stock market trading systems, web servers, database servers,
flexible manufacturing systems, communication protocols and communication
networks. Typically, response time targets are specified in terms of quantiles –
for example “95% of all text messages must be delivered within 3 seconds”.

In the past, numerical computation of analytical response time densities has
proved prohibitively expensive except in some Markovian systems with restricted
structure such as overtake-free queueing networks [54]. However, with the advent
of high-performance parallel computing and the widespread availability of PC
clusters, direct numerical analysis on Markov and semi-Markov chains has now
become a practical proposition.

There are two main methods for computing first passage time (and hence re-
sponse time) densities in Markov chains: those based on Laplace transforms and
their inversion [55,56] and those based on uniformisation [8,6]. The former has
wider application to semi-Markov processes but is less efficient than uniformisa-
tion when restricted to Markov chains.

Numerical Laplace Transform Inversion. The key to practical analysis of
semi-Markov processes lies in the efficient representation of their general distri-
butions. Without care the structural complexity of the SMP can be recreated
within the representation of the distribution functions.

Many techniques have been used for representing arbitrary distributions –
two of the most popular being phase-type distributions and vector-of-moments
methods. These methods suffer from, respectively, exploding representation size
under composition, and containing insufficient information to produce accurate
answers after large amounts of composition.

As all our distribution manipulations take place in Laplace-space, we link our
distribution representation to the Laplace inversion technique that we ultimately
use. Our tool supports two Laplace transform inversion algorithms, which are
briefly outlined below: the Euler technique [57] and the Laguerre method [58]
with modifications summarised in [59].

Both algorithms work on the same general principle of sampling the trans-
form function L(s) at n points, s1, s2, . . . , sn and generating values of f(t) at m
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user-specified t-points t1, t2, . . . , tm. In the Euler inversion case n = km, where
k can vary between 15 and 50, depending on the accuracy of the inversion re-
quired. In the modified Laguerre case, n = 400 and, crucially, is independent of
m.

The process of selecting a Laplace transform inversion algorithm is discussed
later; however, whichever is chosen, it is important to note that calculating
si, 1 ≤ i ≤ n and storing all our distribution transform functions, sampled at
these points, will be sufficient to provide a complete inversion. Key to this is
that fact that matrix element operations, of the type performed in Eq. (39), (i.e.
convolution and weighted sum) do not require any adjustment to the array of
domain s-points required. In the case of a convolution, for instance, if L1(s) and
L2(s) are stored in the form {(si, Lj(si)) : 1 ≤ i ≤ n}, for j = 1, 2, then the
convolution, L1(s)L2(s), can be stored using the same size array and using the
same list of domain s-values, {(si, L1(si)L2(si)) : 1 ≤ i ≤ n}.

Storing our distribution functions in this way has three main advantages.
Firstly, the function has constant storage space, independent of the distribution-
type. Secondly, each distribution has, therefore, the same constant storage re-
quirement even after composition with other distributions. Finally, the function
has sufficient information about a distribution to determine the required passage
time (and no more).

Summary of Euler Inversion. The Euler method is based on the Bromwich
contour inversion integral, expressing the function f(t) in terms of its Laplace
transform L(s). Making the contour a vertical line s = a such that L(s) has no
singularities on or to the right of it gives:

f(t) =
2eat

π

∫ ∞

0
Re(L(a + iu)) cos(ut) du (29)

This integral can be numerically evaluated using the trapezoidal rule with
step-size h = π/2t and a = A/2t (where A is a constant that controls the
discretisation error), which results in the nearly alternating series:

f(t) ≈ fh(t) =
eA/2

2t
Re(L(A/2t)) +

eA/2

2t

∞∑

k=1

(−1)kRe
(

L

(
A + 2kπi

2t

))

(30)

Euler summation is employed to accelerate the convergence of the alternating
series infinite sum, so we calculate the sum of the first n terms explicitly and
use Euler summation to calculate the next m. To give an accuracy of 10−8 we
set A = 19.1, n = 20 and m = 12 (compared with A = 19.1, n = 15 and m = 11
in [57]).

Summary of Laguerre Inversion. The Laguerre method [58] makes use of the
Laguerre series representation:

f(t) =
∞∑

n=0

qnln(t) : t ≥ 0 (31)
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where the Laguerre polynomials ln are given by:

ln(t) =
(

2n − 1 − t

n

)

ln−1(t) −
(

n − 1
n

)

ln−2(t) (32)

starting with l0 = et/2 and l1 = (1 − t)et/2, and:

qn =
1

2πrn

∫ π

0
Q(reiu)e−iru du (33)

where r = (0.1)4/n and Q(z) = (1 − z)−1L((1 + z)/2(1 − z)).
The integral in the calculation of qn can be approximated numerically by the

trapezoidal rule, giving:

qn ≈ q̄n =
1

2nrn

⎛

⎝Q(r) + (−1)nQ(−r) + 2
n−1∑

j=1

(−1)jRe
(
Q(reπji/n)

)
⎞

⎠ (34)

As described in [59], the Laguerre method can be modified by noting that the
Laguerre coefficients qn are independent of t. This means that if the number of
trapezoids used in the evaluation of qn is fixed to be the same for every qn (rather
than depending on the value of n), values of Q(z) (and hence L(s)) can be reused
after they have been computed. Typically, we set n = 200. In order to achieve
this, however, the scaling method described in [58] must be used to ensure that
the Laguerre coefficients have decayed to (near) 0 by n = 200. If this can be
accomplished, the inversion of a passage time density for any number of t-values
can be achieved at the fixed cost of calculating 400 truncated summations of
the type shown in Eq. (39). This is in contrast to the Euler method, where the
number of truncated summations required is a function of the number of points
at which the value of f(t) is required.

Iterative Passage-Time Analysis for SMPs. Passage-time analysis in semi-
Markov processes involves the solution of a set of linear equations in complex
variables. In [60], we set out an efficient iterative approach to passage time
calculation and proved its convergence to the analytic passage time distribution.
The algorithm has since been implemented and is used to calculate semi-Markov
passage times in the SMARTA tool (described below).

Recall the semi-Markov process, Z(t), of Sect. 2.2, where N(t) is the number
of state transitions that have taken place by time t. We formally define the rth
transition first passage time to be:

P
(r)
ij = inf{u > 0 : Z(u) ∈ j, N(u) > 0 | N(u) ≤ r, Z(0) = i} (35)

which is the time taken to enter a state in j for the first time having started
in state i at time 0 and having undergone up to r state transitions1. P

(r)
ij is a

1 If there are immediate transitions in the semi-Markov process then we have to use a
modified formulation of the passage time and iterative passage time definitions [60].
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random variable with associated Laplace transform, L
(r)
ij (s). L

(r)
ij (s) is, in turn,

the ith component of the vector:

L(r)
j (s) = (L(r)

1j (s), L(r)
2j (s), . . . , L(r)

Nj(s)) (36)

representing the passage time for terminating in j for each possible start state.
This vector may be computed as:

L(r)
j (s) = U(I + U′ + U′2 + · · · + U′(r−1)) ej (37)

where U is a matrix with elements upq = r∗pq(s) and U′ is a modified version of
U with elements u′

pq = δp�∈j upq, where states in j have been made absorbing.
We include the initial U-transition in Eq. (37), so as to generate cycle times for
cases such as L

(r)
ii (s) which would otherwise register as 0 if U′ were used instead.

The column vector ej has entries ekj = δk∈j .
From Eq. (15) and Eq. (35):

Pij = P
(∞)
ij and thus Lij(s) = L

(∞)
ij (s) (38)

We can generalise to multiple source states i using the normalised steady-state
vector α of Eq. (21):

L
(r)
ij (s) = αL(r)

j (s)
=

∑r−1
k=0 αUU′k ej

(39)

The sum of Eq. (39) can be computed efficiently using sparse matrix–vector
multiplications with a vector accumulator, μr =

∑r
k=0 αUU′k. At each step,

the accumulator (initialised as μ0 = αU) is updated with μr+1 = αU + μrU
′.

The worst-case time complexity for this sum is O(N2r) versus the O(N3) of
typical matrix inversion techniques. In practice, for a sparse matrix with constant
bandwidth (number of non-zeros per row), this can be as low as O(Nr).

The SMARTA Tool. Our iterative passage-time analysis algorithm has been
implemented in the SMARTA tool [61], the architecture of which is shown in
Fig. 11. The process of calculating a passage time density begins with a high-level
model specified in an enhanced form of the DNAmaca interface language [62,10].
This language supports the specification of stochastic Petri nets, queueing net-
works and stochastic process algebras. Next, a probabilistic, hash-based state
generator [37] uses the high-level model description to produce the transition
probability matrix P of the model’s embedded Markov chain, the matrices U
and U′, and a list of the initial and target states. Normalised weights for the
initial states are determined by the solution of π = πP, which is readily done
using any of a variety of steady-state solution techniques (e.g. [45,49]). U′ is
then partitioned using a hypergraph partitioning tool (a single partitioning is
sufficient since all linear systems to be solved have the same non-zero structure).

Control is then passed to the distributed passage time density calculator,
which is implemented in C++ using the Message Passing Interface (MPI) [63]
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standard. This employs a master-slave architecture with groups of slave proces-
sors. The master processor computes in advance the values of s at which it will
need to know the value of Lij(s) in order to perform the inversion. This can
be done irrespective of the inversion algorithm employed. The s-values are then
placed in a global work-queue to which the groups of slave processors make
requests.

The highest ranking processor in a group of slaves makes a request to the mas-
ter for an s-value and is assigned the next one available. This is then broadcast
to the other members of the slave group to allow them to construct their columns
of the matrix U′ for that specific s. Each processor reads in the columns of the
matrix U′ that correspond to its allocated partition into two types of sparse
matrix data structure and also reads in the initial source-state weighting vector
α. Local non-zero elements (i.e. those elements in diagonal matrix blocks that
will be multiplied with vector elements stored locally) are stored in a conven-
tional compressed sparse column format. Remote non-zero elements (i.e. those
elements in off-diagonal matrix blocks that must be multiplied with vector ele-
ments received from other processors) are stored in an ultrasparse matrix data
structure – one for each remote processor – using a coordinate format. Each



354 W.J. Knottenbelt and J.T. Bradley

processor then determines which vector elements need to be received from and
sent to every other processor in the group on each iteration, adjusting the row
indices in the ultrasparse matrices so that they index into a vector of received
elements. This ensures that a minimum amount of communication takes place
and makes multiplication of off-diagonal blocks with received vector elements
efficient.

For each step in our iterative algorithm, each processor begins by using non-
blocking communication primitives to send and receive remote vector elements,
while calculating the product of local matrix elements with locally stored vector
elements. The use of non-blocking operations allows computation and commu-
nication to proceed concurrently on parallel machines where dedicated network
hardware supports this effectively. The processor then waits for the completion
of non-blocking operations (if they have not already completed) before multiply-
ing received remote vector elements with the relevant ultrasparse matrices and
adding their contributions to the local vector-matrix product cumulatively.

Once the calculations of a slave group are deemed to have converged, the
result is returned to the master by the highest-ranking processor in the group
and cached. When all results have been computed and returned for all required
values of s, the final Laplace inversion calculations are made by the master,
resulting in the required t-points.

5 Application Examples

We demonstrate our analysis techniques on three application examples: a GSPN
model of a communications protocol, a SM-SPN model of a voting system and
a PEPA model of an active badge system.

5.1 Courier Protocol Model

Description. The GSPN shown in Fig. 12 (originally presented in [64]) models
the ISO Application, Session and Transport layers of the Courier sliding-window
communication protocol. Data flows from a sender (p1 to p26) to a receiver
(p27 to p46) via a network. The sender’s transport layer fragments outgoing
data packets; this is modelled as two paths between p13 and p35. The path
via t8 carries all fragments before the last one through the network to p33.
Acknowledgements for these fragments are sent back to the sender (as signalled
by the arrival of a token on p20), but no data is delivered to the higher layers
on the receiver side. The path via t9 carries the last fragment of each message
block. Acknowledgements for these fragments are generated and a data token is
delivered to higher receiver layers via t27.

The average number of data packets sent is determined by the ratio of the
weights on the immediate transitions t8 and t9. This ratio, known as the frag-
mentation ratio, is given by q1 : q2 (where q1 and q2 are the weights associated
with transitions t8 and t9 respectively). Thus, this number of data packets is geo-
metrically distributed, with parameter q1/(q1+q2). Here we use a fragmentation
ratio of one.
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Fig. 12. The Courier Protocol Software Generalised Stochastic Petri net [64]

The transport layer is further characterised by two important parameters: the
sliding window size n (p14) and the transport space m (p17). Different values of
m and n yield state spaces of various sizes. The transition rates r1, r2, . . . , r10
have the same relative magnitudes as those obtained by benchmarking a working
implementation of the protocol (see [64]).
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k n a

1 11 700 48 330
2 84 600 410 160
3 419 400 2 281 620
4 1 632 600 9 732 330
5 5 358 600 34 424 280
6 15 410 250 105 345 900
7 39 836 700 286 938 630
8 94 322 250 710 223 930

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1 2 3 4 5 6 7 8
k

tangible states (n)
arcs in state graph (a)

Fig. 13. The number of tangible states (n) and the number of arcs (a) in the state
graph of the Courier model for various values of k

State Space Generation. We have implemented the state generation algo-
rithm of Fig. 5 on a Fujitsu AP3000 distributed memory parallel computer.
Our implementation is written in C++ with support for two popular parallel
programming interfaces, viz. the Message Passing Interface (MPI) [65] and the
Parallel Virtual Machine (PVM) interface [66]. The generator uses hash tables
with r = 750 019 rows per processor and b = 40 bit secondary keys. The results
were collected using up to 16 processors on the AP3000. Each processor has a
300MHz UltraSPARC processor, 256MB RAM and a 4GB local disk. The nodes
run the Solaris operating system and support MPI. They are connected by a
high-speed wormhole-routed network with a peak throughput of 65MB/s.

The Courier model features a scaling parameter k (corresponding to the sliding
window size) which we will vary to produce state graphs of different sizes (see
Fig. 13).

The graph on the left of Fig. 14 shows the distributed run-time taken to
explore Courier state spaces of various sizes (up to k = 6) using 1, 2, 4, 8, 12
and 16 processors on the AP3000. Each observed value is calculated as the mean
of four runs. The k = 5 state space (5 358 600 states) can be generated on a
single processor in 16 minutes 20 seconds; 16 processors require only 89 seconds.
The k = 6 state space (15 410 250 states) can be generated on a single processor
in 51 minutes 45 seconds; 16 processors require just 267 seconds.

The corresponding speedups for the cases k = 1, 2, 3, 4, 5, 6 are shown in the
graph on the right of Fig. 14. For k = 6 using 16 processors, we observe a speedup
of 11.65, giving an efficiency of 73%.

Memory utilisation is low – a single processor generating the k = 5 state space
uses a total of 91MB (17.4 bytes per state), while the k = 6 state space requires
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Table 3. Real time in seconds required for the distributed solution of the Courier
model

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

Jacobi time (s) 33.647 278.18 1506.4 5550.3
Jacobi iterations 4925 4380 4060 3655

p = 1 CGS time (s) 2.1994 21.622 163.87 934.27 29134
CGS iterations 60 81 106 129 157
Memory/node (MB) 20.3 22.1 30.5 60.8 154.0

Jacobi time (s) 29.655 176.62 1105.7 4313.6
Jacobi iterations 4925 4380 4060 3655

p = 2 CGS time (s) 1.6816 13.119 93.28 509.90 7936.9
CGS iterations 57 84 107 131 148
Memory/node (MB) 20.2 21.1 25.45 41.2 89.7

Jacobi time (s) 25.294 148.45 627.96 3328.3
Jacobi iterations 4925 4380 4060 3655

p = 4 CGS time (s) 1.2647 8.4109 58.302 322.50 1480.5
CGS iterations 60 80 108 133 159
Memory/node (MB) 20.1 20.6 22.9 31.4 57.5

Jacobi time (s) 38.958 140.06 477.02 1780.9 6585.4
Jacobi iterations 4925 4380 4060 3655 3235

p = 8 CGS time (s) 1.4074 6.0976 39.999 204.46 934.76 4258.7
CGS iterations 61 82 109 132 155 171
Memory/node (MB) 20.0 20.3 21.7 26.5 41.4 81.6

Jacobi time (s) 32.152 133.58 457.23 1559.0 6329.2 11578 72202
Jacobi iterations 4925 4380 4060 3655 3235 2325 2190

p = 12 CGS time (s) 1.4973 5.9345 34.001 157.73 852.53 2579.6 21220
CGS iterations 58 83 104 129 156 189 180
Memory/node (MB) 20.0 20.3 21.3 24.9 36.1 66.2 99.7

Jacobi time (s) 41.831 125.68 506.31 1547.9 5703.4 11683 32329
Jacobi iterations 4925 4380 4060 3650 3235 2325 2190

p = 16 CGS time (s) 3.3505 7.1101 31.322 134.48 577.68 2032.5 13786 141383
CGS iterations 60 91 104 132 146 173 179 213
Memory/node (MB) 20.0 20.2 21.0 24.1 33.4 58.5 79.8 161

175MB (11.6 bytes per state). This is far less than the 94 bytes per state (45
16-bit integers plus a 32-bit unique state indentifier) that would be required by
a straightforward exhaustive implementation.

Moving beyond the maximum state space size that can be generated on a
single processor, on 16 processors we find that the k = 7 state space can be
generated in around 10 minutes while just under 26 minutes are required to
generate the k = 8 state space (with 94 322 250 states and 710 223 930 arcs).

Steady-state Analysis. Tab. 3 presents the execution time (defined as max-
imum processor run-time) in seconds required for the distributed disk-based
solution of models using the CGS and Jacobi methods. The models range in size
from k = 1 (11 700 states) to k = 7 (39.8 million states) and runs are conducted
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Table 4. Courier Protocol performance measures in terms of the transport window
size k

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

λ 74.3467 120.372 150.794 172.011 187.413 198.919 207.690 214.477
Psend 0.01011 0.01637 0.02051 0.02334 0.02549 0.02705 0.02825 0.02917
Precv 0.98141 0.96991 0.96230 0.95700 0.95315 0.95027 0.94808 0.94638
Psess1 0.00848 0.01372 0.01719 0.01961 0.02137 0.02268 0.02368 0.02445
Psess2 0.92610 0.88029 0.84998 0.82883 0.81345 0.80196 0.79320 0.78642
Ptransp1 0.78558 0.65285 0.56511 0.50392 0.45950 0.42632 0.40102 0.38145
Ptransp2 0.78871 0.65790 0.57138 0.51084 0.46673 0.43365 0.40835 0.38871

on 1, 2, 4, 8, 12 and 16 processors. The number of iterations for convergence and
memory use per processor are also shown.

Fig. 15 compares the convergence of the Jacobi method with that of the CGS
algorithm for the k = 4 case in terms of the number of matrix multiplications
performed. As is typical for many models, the Jacobi method begins by converg-
ing quickly, but then plateaus, converging very slowly but smoothly. The CGS
algorithm, on the other hand, exhibits erratic rapid convergence that improves
in a concave fashion.

The largest state space solved is the k = 8 case (94 million states) which takes
1 day 15 hours of processing time on 16 processors. The total amount of I/O
across all nodes is 3.4TB, with the nodes jointly processing an average of 24MB
disk data every second.

Using the steady state vector, it is straightforward to derive some simple
resource-based performance measures, as shown in Tab. 4. The most impor-
tant is λ, the data throughput rate, which is given by the throughput of tran-
sition t21. Other measures yield task utilizations. In particular, Ptransp1 =
Pr{p12 is marked} = Pr{transport task 1 is idle}. Similarly we define Ptransp2
for p32, Psess1 and Psess2 using p6 and p41, and Psend and Precv using p1 and
p46.

First Passage Time Analysis. We now apply our iterative passage-time
analysis technique to determine the end-to-end response time from the initiation
of a transport layer transmission to the arrival of the corresponding acknowl-
edgement packet. Consequently we choose as source markings those markings
for which M(p11) > 0, and as destination markings those markings for which
M(p20) > 0. This approach works easily for a sliding window size of n = 1
since there can be only one outstanding unacknowledged packet. Naturally, if we
wished to calculate the response time for sliding window sizes greater than one,
we would need to augment the state vector used to describe markings to track
the progress of a particular token through the Petri net.

The underlying reachability graph contains 29 010 markings, 11 700 of which
are tangible and 17 310 of which are vanishing. There are 7 320 source markings
and 1 680 destination markings. Fig. 16 shows the resulting numerical response
time density. The median (50% quantile) and 95% quantile transmission times
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Fig. 16. Numerical and simulated response time densities for time taken from the
initiation of a transport layer transmission (i.e. those markings for which M(p11) > 0)
to the arrival of an acknowledgement packet (i.e. those markings for which M(p20) > 0).
The median response time (50% quantile) is 0.0048 seconds, and the 95% quantile is
0.0114 seconds.

are also given. Once again the numerical results are compared against a simula-
tion, and agreement is excellent.

For this example, our Laguerre scaling algorithm selected a damping parame-
ter of σ = 0.008. A single slave (a 1.4GHz Athlon processor with 256MB RAM)
required 24 minutes 15 seconds to calculate the 200 points plotted on the numer-
ical passage time density graph. Using 8 slave PCs with the same configuration
decreased the required time to just 3 minutes 23 seconds (corresponding to an
efficiency of 96%). 16 slave PCs required 2 minutes 17 seconds (72% efficiency).
These results reflect the excellent scalability of our approach.

5.2 Voting Model

Description. Fig. 17 represents a voting system with CC voters, MM polling
units and NN central voting servers. In this system, voters cast votes through
polling units which in turn register votes with all available central voting units.
Both polling units and central voting units can suffer breakdowns, from which
there is a soft recovery mechanism. If, however, all the polling or voting units
fail, then, with high priority, a failure recovery mode is instituted to restore the
system to an operational state.

We demonstrate the SMP passage-time analysis techniques of the previous
sections with a large semi-Markov model of a distributed voting system (Fig. 17).
The model is specified in a semi-Markov stochastic Petri net (SM-SPN)
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Fig. 17. A semi-Markov stochastic Petri net of a voting system with breakdowns and
repairs

formalism [67] using an extension of the DNAmaca Markov chain modelling
language [62].

The distributions are specified directly as Laplace transforms with certain
macros provided for popular distributions (e.g. uniform, gamma, deterministic)
and can be made marking dependent by use of the m(pi) function (which returns
the current number of tokens at place, pi). Support for inhibiting transitions is
also provided.

For the voting system, Tab. 5 shows how the size of the underlying SMP varies
according to the configuration of the variables CC, MM , and NN .

First Passage Time Analysis. The results presented in this section were
produced on a Beowulf Linux cluster with 64 dual processor nodes, a maximum
of 34 of which can be used by a single job. Each node has two Intel Xeon 2.0GHz
processors and 2GB of RAM. The nodes are connected by a Myrinet network
with a peak throughput of 250 Mb/s.

We display passage time densities produced by the iterative passage time
algorithm and also by simulation to validate those results.

Fig. 18 shows the density of the time taken to process 300 voters (as given
by the passage of 300 tokens from place p1 to p2) in system 6 of the voting
model. Calculation of the analytical density required 15 hours and 7 minutes
using 64 slave processors (in 8 groups of 8) for the 31 t-points plotted. Our
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Table 5. Different configurations of the voting system and state space generated

System CC MM NN States

1 60 25 4 106 540
2 100 30 4 249 760
3 125 40 4 541 280
4 150 40 5 778 850
5 175 45 5 1 140 050
6 300 80 10 10 999 140
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Fig. 18. Analytic and simulated (with 95% confidence intervals) density for the time
taken to process 300 voters in the voting model system 6 (10.9 million states)

algorithm evaluated Lij(s) at 1 023 s-points, each of which involved manipulat-
ing sparse matrices of rank 10 999 140. The analytical curve is validated against
the combined results from 10 simulations, each of which consisted of 1 billion
transition firings. Despite this large simulation effort, we still observe wide con-
fidence intervals (probably because of the rarity of source states).

Fig. 19 is a cumulative distribution for the same passage as Fig. 18 (easily
obtained by inverting Lij(s)/s from cached values of Lij(s)). It allows us to
extract response time quantiles, for instance:

IP(system 6 can process 300 voters in less than 730 seconds) = 0.9876

5.3 PEPA Active Badge Model

Description. In the original active badge model, described in [68], there are 4
rooms on a corridor, all installed with active badge sensors, and a single person
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who can move from one room to an adjacent room. The sensors are linked to
a database which records which sensor has been activated last. In the model of
Fig. 20, we have M people in N rooms with sensors and a database that can
be in one of N states. To maintain a reasonable state space, this is a simple
database which does not attempt to keep track of every individual’s location;
rather it remembers the last movement that was made by any person in the
system.

In the model below, Person i represents a person in room i, Sensor i is the
sensor in room i and Dbasei is the state of the database. A person in room i can
either move to room i − 1 or i + 1 or, if they remain there long enough, set off
the sensor in room i, which registers its activation with the database.

The first thing to note about such a model is how fast the state space can grow.
With M people in N rooms, we already have NM states just from the different
configurations of people in rooms. Then there are 2N sensor configurations and
finally N states that the database can be in, giving us a total of 2NNM+1 states.
For as few as 3 people and 6 rooms, the example we use, we have a global state
space of 82, 944 states.

First Passage Time Analysis. We include two passages from the active badge
system with 3 people and 6 possible rooms. As the model of Fig. 20 tells us, all
6 people start in room 1 and move out from there.

Fig. 21 shows the density function for the passage representing how long it
takes for all 3 people to be together in room 6 for the first time.

It is interesting to observe that it is virtually impossible for all 3 people to end
up in room 6, which requires 6 successive move transitions from all 3 people for
it to happen at the earliest opportunity, until at least 10 time units have elapsed.
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Person1 = (reg1, r).Person1 + (move2, m).Person2

Personi = (movei−1, m).Personi−1 + (reg i, r).Personi

+ (movei+1, m).Personi+1

: 1 < i < N
PersonN = (moveN−1, m).PersonN−1 + (regN , r).PersonN

Sensor i = (reg i, �).(repi, s).Sensor i : 1 ≤ i ≤ N

Dbasei =
PN

j=1(repj , �).Dbasej : 1 ≤ i ≤ N

Sys =
QM

j=1 Person1 ��
Reg

QN
j=1 Sensor j ��

Rep
Dbase1

where Reg = {reg i | 1 ≤ i ≤ N} and Rep = {repi | 1 ≤ i ≤ N}

Fig. 20. The PEPA description for the generalised active badge model with N rooms
and M people
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Fig. 21. The passage time density for 3 people starting in room 1 ending up all in
room 6

After that time, very low probabilities are registered and the distribution clearly
has a very heavy tail.

The second passage of Fig. 22 shows an equivalent passage time density from
the same start point to a terminating condition of at least one person of the
three entering room 6. The resulting passage is much less heavy tailed, as this
time only a single person has to make it to room 6 before the passage ends.



Tackling Large State Spaces in Performance Modelling 365

0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100 120 140

P
ro

ba
bi

lit
y 

de
ns

ity
, p

Time, t

Passage: 3 people in R1 any 1 person in R6

Fig. 22. The passage time density for 3 people starting in room 1 ending up with any
one or more of them in room 6

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

P
ro

ba
bi

lit
y,

 p

Time, t

Passage: 3 people in R1 any 1 person in R6

Fig. 23. The cumulative passage time distribution function for 3 people starting in
room 1 ending up with any one or more of them in room 6

From these densities, it is a simple matter to construct cumulative distribution
functions (the integral of the density function) and obtain quantiles, e.g. the
probability that 3 people all reach room 6 by time t = 150. Fig. 23 shows the
cumulative distribution function (cdf) corresponding to the passage time density
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of Fig. 22. From this cdf, we can ascertain, for example, that there is a 90%
probability that at least one person will have reached room 6 by time t = 62.

6 Conclusion and Future Perspectives

Performance analysis of complex systems is a computationally expensive activ-
ity. If a model does not have exploitable symmetries or other structure that
allows for analytical or numerical shortcuts to be used, then an explicit repre-
sentation of the state space has to be constructed. This chapter has discussed
some state space generation methods and numerical algorithms for steady-state
and passage-time analysis of (semi-)Markov models which are scalable across
large computing clusters. We have shown that by making use of probabilistic
algorithms and efficient distribution strategies (e.g. using hypergraph partition-
ing), we can subdivide large performance analysis problems in such a way that
makes them tractable on individual computer nodes.

An important emerging development with the potential to tackle exceptionally
large state spaces is the use of continuous approximations to represent large
discrete state spaces. Preliminary efforts to relate this to modelling formalisms
have led to continuous state-space translations from SPNs [69] and PEPA [70].
In both cases, repeated structures in the top-level formalism are represented by
systems of ordinary differential equations (ODEs) which describe a deterministic
trace of behaviour. In certain structural situations [71] the steady-state solution
of the ODEs corresponds to the steady-state solution of the underlying Markov
chain.
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Abstract. Decision diagrams are a family of data structures that can
compactly encode many functions on discrete structured domains, that
is, domains that are the cross-product of finite sets. We present some
important classes of decision diagrams and show how they can be effec-
tively employed to derive “symbolic” algorithms for the analysis of large
discrete-state models. In particular, we discuss both explicit and sym-
bolic algorithms for state-space generation, CTL model-checking, and
continuous-time Markov chain solution. We conclude with some sugges-
tions for future research directions.
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1 Introduction

Discrete-state models are useful to describe and analyze computer-based and
communication systems, or distributed software, and many other man-made ar-
tifacts. Due to the inherent combinatorial nature of their interleaving behav-
ior, such models can easily have enormous state spaces, which can make their
computer-supported analysis very difficult. Of course, high-level formalisms such
as Petri nets, queueing networks, communicating sequential processes, and spe-
cialized languages can be effectively used to describe these enormous underlying
state space. However, when a model described in one of these formalisms needs
to be analyzed, the size of the state space remains a major obstacle.

In this contribution, we present decision diagrams, a class of data structures
that can compactly encode functions (or set and relations, or vectors and ma-
trices) on very large but structured domains. Then, we briefly summarize some
of the main computational tasks involved in the traditional “explicit” analysis
of systems, both in a strictly logical setting and in a Markovian setting. Putting
the two together, we then show how these tasks can be effectively performed
“symbolically” using decision diagrams. We conclude by listing some research
challenges lying ahead.
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Fig. 1. Fully-reduced vs. quasi-reduced BDDs

In the following, calligraphic letters (e.g., A, X ) denote sets or relations,
lowercase bold letters (e.g., i, j) indicate global state of the system, and lowercase
italic letters (e.g., i, xk) indicate local components of the state. Also, B, N, Z,
and R indicate the set {0, 1} of boolean values, the natural numbers, the integers,
and the real numbers, respectively.

2 Decision Diagrams: A Data Structure for Structured
Data

Many classes of decision diagrams have been defined in the literature. This sec-
tion presents some of the most common ones, which will be used in Section 4 to
improve the efficiency of discrete-state system analysis.

2.1 Binary Decision Diagrams

The most widely known and used class of decision diagrams is by far the binary
decision diagrams (BDDs) [3], which provide a compact representation for
functions of the form f : B

L → B, for some finite L ∈ N. In particular, if the
BDDs are reduced and ordered [3,4], properties we assume from now on for all
classes of decision diagrams we discuss, they enjoy several important advantages.
Such BDDs are canonical, thus testing for satisfiability, i.e.,

“is there an i ∈ B
L such that f(i) = 1?”

or equivalence, i.e.,

“given functions f and g, is f(i) = g(i) for all i ∈ B
L?”

can be done in constant time, while important binary operations such as con-
junction, disjunction, and relational product (described in detail later) require
time and memory proportional to the product of the size (number of nodes) of
the argument BDDs, in the worst case.
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Formally, an L-variable BDD is an acyclic directed edge-labeled graph where
each of its nodes encodes a function of the form f : B

L → B. The nodes of
the graph are assigned to a level, we let p.lvl denote the level of node p. A
non-terminal node at level k, with L ≥ k ≥ 1, corresponds to a choice for the
value of the boolean variable xk, the kth argument to the function, while the two
terminal nodes 0 and 1 correspond to the two possible values of the function. A
node p at level k has two edges, labeled with the possible values of xk, 0 and
1. The edge labeled 0, or 0-edge, points to node p[0] while the 1-edge point to
node p[1], where both nodes are at levels below k (this is the “ordered” property:
nodes are found along any path in an order consistent with the order xL, ..., x1
of the argument variables). Also, nodes must be unique (thus, no node can be a
duplicate of another node at the same level, i.e., have have the same 0-child and
the same 1-child) and non-redundant, i.e., p[0] and p[1] must differ (this is the
“fully reduced” property). A node p at level k encodes the function vp : B

L → B

defined recursively by

vp(xL, ..., x1) =

{
p if k = 0

xk ∧ vp[0](xL, ..., x1) ∨ xk ∧ vp[1](xL, ..., x1) if k > 0.

Thus, given a constant vector i = (iL, ..., i1) ∈ B
L, we can evaluate vp(i) in O(L)

time. Fig. 1 on the left shows an example of BDD and the boolean functions
encoded by its nodes. On the right, the same set of functions are encoded using
a “quasi-reduced” version of BDDs , where duplicate nodes are not allowed, but
redundant nodes (shown in gray in the figure) may have to be present, since
edges can only span one level. Such BDDs are still canonical, and, while they
may use more nodes, all their edges connect nodes at adjacent levels, resulting
in simpler manipulation algorithms.

Strictly speaking, a BDD encoding a given function f has a specific root p such
that f = vp. In practice, BDD algorithms need to manage multiple functions on
the same domain B

L, and this is done by storing (without duplicates) all the
roots of these functions, as well as the nodes reached by them, in a single BDD,
often referred to as a BDD forest.

2.2 Multi-valued, Multi-terminal, and Multi-dimensional
Extensions

Many variants of BDDs have been defined to extend their applicability or to tar-
get specific applications. This section discusses several “terminal-valued” vari-
ants, that is, decision diagrams where the value of function f evaluated on ar-
gument i is given by the the terminal node reached when following the path
corresponding to i, just as is the case for BDDs.

Multi-valued decision diagrams (MDDs) [24] encode functions of the form
X̂ → B, where the domain X̂ is the cross-product X̂ = XL × · · · × X1 of L
finite sets and each Xk, for L ≥ k ≥ 1, is of the form Xk = {0, 1, ..., nk − 1}, for
some nk ∈ N. Thus, a non-terminal node at level k corresponds to a multi-way
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Fig. 2. Fully-reduced vs. quasi-reduced, full vs. sparse representation of MDDs

choice for the argument variable xk. The top of Fig. 2 shows, on the left, a quasi-
reduced MDD where redundant nodes p with p[0] = · · · = p[nk −1] are kept and,
on the right, the same MDD in a fully-reduced version, where its “long edges”
(spanning multiple levels) are shown with thicker lines. The bottom of the same
figure shows, on the left a default-reduced version of the same MDD where only
edges to the default terminal node 0 can span multiple levels (a still canonical
compromise between the fully-reduced and quasi-reduced versions) and, on the
right, its sparse representation where paths leading to node 0 are not shown.
Graphically, this last representation is quite compact, and it also reflects quite
closely how MDDs are implemented in the tool SmArT [9].

Multi-terminal BDDs (MTBDDs) [21] can encode functions of the form
B

L → R, by attaching arbitrary values from R to the terminal nodes of a bi-
nary decision diagram. The algebraic decision diagrams (ADDs) [1] are ex-
actly analogous, except were defined to encode function on arbitrary ranges, not
just the reals. The multi-terminal multi-valued decision diagrams (MT-
MDDs), an example of which is shown in Fig. 3 on the left in fully-reduced
version and on the right in quasi-reduced version, naturally extend MTBDDs by
additionally allowing multi-way choices at each node.

A function f : X̂ → S can of course also be thought of as an S-valued one-
dimensional vector of size |X̂ |. Many applications also need to encode func-
tions of the form X̂ × X̂ → S, or two-dimensional matrices. An obvious way to
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accomplish this is to use a BDD, MDD, MTBDD, or MTMDD with twice as
many levels. The traditional notation uses an “unprimed” xk for the rows, or
“from”, variables, and a “primed” x′

k for columns, or “to” variables. Further-
more, the manipulation algorithms are more easily written, and usually much
more efficient, if the levels are interleaved, that is, the order of the function pa-
rameters is (xL, x′

L, ..., x1, x
′
1). A similar, but more direct, way to encode such

matrices is to use a (boolean-valued) matrix diagrams (MxDs) [13,27],
where a non-terminal node P at level k, for L ≥ k ≥ 1, has nk × nk edges, so
that P [ik, i′k] points to the node to be reached when xk = ik and x′

k = i′k. The
top left of Fig. 4 shows a 2L-level MDD, where L = 2, in sparse format. The
encoded (3 ·2)×(3 ·2) matrix has zero entries in all but seven positions (the rows
and columns of the resulting matrix are indexed by x2 · 2 + x1 and x′

2 · 2 + x′
1,

respectively):

0 1 2 3 4 5
0 0 0 0 0 0 0 0 ≡ (x2 = 0, x1 = 0)
1 0 0 0 0 1 0 1 ≡ (x2 = 0, x1 = 1)
2 0 0 0 0 0 0 where 2 ≡ (x2 = 1, x1 = 0)
3 1 1 1 1 0 0 3 ≡ (x2 = 1, x1 = 1)
4 0 0 1 0 0 0 4 ≡ (x2 = 2, x1 = 0)
5 0 0 0 1 0 0 5 ≡ (x2 = 2, x1 = 1)

MxDs, however, where not introduced just to stress the natural interleaving of
unprimed and primed variables, but to exploit a much more fundamental prop-
erty often present in large asynchronous systems: the large number of identity
patterns. The top right of Fig. 4 show the MxD encoding the same matrix, and
the gray node in it is an example of an identity: its diagonal edges points to the
same node, the terminal node 1 in this case, while its off-diagonal entries point
to node 0. The bottom left of Fig. 4 shows the identity-reduced version of MxDs
which is commonly employed, where long edges signify skipped identity nodes;
on the right is the sparse format representation, which just lists explicitly the
row-column pairs of indices corresponding to non-zero node entries.
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2.3 Edge-Valued Extensions

Further “edge-valued” variants of decision diagrams have been defined to rep-
resent functions with a non-boolean range, as MTMDDs and ADDs can, but
in such a way that the value of the function is not found in a terminal node,
but is distributed over the edges found along a path. The manipulation algo-
rithms are generally more complex, but these classes of decision diagrams can
be exponentially more compact than their respective terminal-valued versions.

Edge-valued BDDs (EVBDDs) [26] encode functions of the form B
L → Z,

by having a single terminal node “Ω”, which carries no value, and associating
integer values to the edges of the diagram. The value of the function is obtained
by adding the values encountered along the path to Ω corresponding the the
function’s argument; the result is a possibly exponentially smaller diagram than
with an MTBDD. Nodes are normalized by scaling their edge values so that the
0-edge has an associated value of 0 (this fact can be used to save storage in a
practical implementation, but is also one way to enforce canonicity), and the root
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node has a “dangling arc” whose associated value is summed to the path value
when evaluating the function, thus it is the value of the function being encoded
when the argument is (0, ..., 0). The EVMDD shown in Fig. 5 on the left is
the corresponding version with multi-way choices, it encodes f(x4, x3, x2, x1) =
∑

L≥k≥1 xk ·
∏

k>h≥1 nh, i.e., the value of (x4, x3, x2, x1) interpreted as a mixed-
base integer; the same function would require a full tree, thus exponential space,
if encoded with an MTMDD. Formally, the function v(σ,p) : X̂ → Z encoded by
edge (σ, p), where σ ∈ Z and p is a node at level k, is defined recursively as

v(σ,p)(xL, ..., x1) =

{
σ if k = 0

σ + vp[xk](xL, ..., x1) if k > 0.

The positive edge-valued MDDs (EV+MDDs) [14] use a different normal-
ization rule where all edge values leaving a node are non-negative or (positive)
∞, but at least one of them is zero, so that the value associated with the dan-
gling edge is the minimum of the function. To ensure canonicity, an edge with
an associated value of ∞ can only point to Ω. EV+MDDs can encode arbitrary
partial functions of the form X̂ → N ∪ {∞}. For example, the function encoded
by the EV+MDD in the middle of Fig. 5 cannot be encoded by an EVMDD
because f(0, ..., 0) = ∞, but f is not identically ∞. Furthermore, if the dangling
arc of the EV+MDD is allowed to be an arbitrary integer, then , arbitrary partial
functions of the form X̂ → Z ∪ {∞} can be encoded. The EV+MDD shown on
the right of Fig. 5 shows the equivalent quasi-reduced version: the condition for a
node to be redundant (as the additional gray nodes in the figure are) is now that
all of its edges point to the same node and have the same associated value, which
must then be 0, given the normalization requirement. In the figure, long edges
with an associated value of ∞ can still exist; alternatively, even those could be
required to span only one level through the introduction of further redundant
node, but this would not further simplify the manipulation algorithms.

We already saw boolean MxDs, but, originally, (real-valued) matrix dia-
grams (MxDs) [13,27] were introduced to overcome some of the applicability
and efficiency limitations encountered when using Kronecker algebra [18] to en-
code the transition rate matrix of large structured Markov chains [5,7,20]. These
MxDs can encode functions of the form X̂ 2 → R

≥0, that is, non-negative matri-
ces, by having a row and column choice at each node and multiplying (instead
of summing, as for EVMDDs) the values encountered along a path to the single
terminal node Ω. Canonicity is enforced by requiring that the minimum non-zero
edge value in each node be 1, so that the value associated to the dangling arc
is, again, the minimum of the function (alternatively, one can require that the
maximum edge value be 1, so that the value associated to the dangling is the
maximum of the function). Fig. 6 on the left shows a two-level MxD; when an
edge value is zero, the edge goes to Ω and is not shown for clarity, while the
semantic of an edge skipping a level is that a redundant node with an iden-
tity pattern is assumed. Thus, in the figure, f(x2, x

′
2, x1, x

′
1) is 7 when x2 = 2,

x′
2 = 1, x1 = x′

1, and it is 0 when x2 = 2, x′
2 = 1, x1 �= x′

1. The center of the
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Fig. 6. Fully-reduced vs. quasi-reduced real-valued MxDs, and sparse representation

same figure shows the quasi-reduced version of this MxD, where the only long
edges are those with an associated value of 0, thus are not shown, while the right
shows its sparse representation.

2.4 Decision Diagram Manipulation Algorithms

So far we have discussed static aspects of various classes of decision diagrams,
i.e., we have seen how decision diagrams can compactly encode functions over
large structured domains. However, their time efficiency is just as important as
their ability to save memory. Thus, we now turn to dynamic aspects of their
manipulation. Decision diagram algorithms can usually be elegantly expressed
in a recursive style. Two data structures are essential to achieve the desired
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efficiency. First, a unique table is required to enforce canonicity. This is a hash
table that can be searched based on the level and the pattern of edges (and
values, in the edge-valued case) of a node, to avoid creating duplicate nodes.
Second, an operation cache is used to look up whether a needed result of some
operation on some nodes has been previously computed. Also this is a hash table,
this time searched on the argument nodes’ unique identifier (e.g., their memory
address) and the operation code.

For example, Fig. 7 shows two BDD algorithms. The first one, Or , computes
the disjunction of its arguments, i.e., given two functions va, vb : B

L → B,
encoded by the two nodes a and b, it computes the node r encoding function vr

satisfying vr(i) = va(i) ∨ vb(i), for all i ∈ B
L. This algorithm assumes that these

function are encoded in a fully-reduced BDD forest, thus, after testing for trivial
cases that can be directly answered without recursion, it must test the level of
a and b and proceed accordingly. Note that checking whether Cache contains
already a result r for the Or of a and b is essential to efficiency; without it, the
complexity would be proportional to the number of paths in the BDDs, not to
the number of nodes in them.

The second algorithm in Fig. 7 computes the so-called relational product r of
an L-level BDD x with a 2L-level BDD t, i.e., vr(j)=1 ⇔ ∃i, vx(i)=1∧vt(i, j)=1.
Note that, as the BDDs are assumed to be quasi-reduced, the recursion on x and
t proceeds in lockstep, i.e., level k of x is processed with levels k and k′ of t to
compute level k (conceptually k′) of the result, thus there is no need to check
for the levels of the nodes, as in the fully-reduced case.

Edge-valued decision diagram algorithms also operate recursively, but the
arguments passed and returned in the recursions are edges, i.e., (value,node)
pairs, rather than just nodes. For example, Fig. 8 shows an algorithm to compute
the EV+MDD (μ, r) encoding the minimum of the function encoded by the two
EV+MDDs (α, a) and (β, b), i.e., v(μ,r)(i) = min{v(α,a)(i), v(β,b)(i)}, or, in other
words, μ + v(0,r)(i) = min{α + v(0,a)(i), β + v(0,b)(i)}, for all i ∈ X̂ . The notation
p[i].child and p[i].val is used to denote the node pointed by the ith edge, and
the associate value, respectively.

Finally, it should be stressed that the efficiency of computing f ⊗ g for some
arbitrary operator ⊗ when the functions f and g are encoded by edge-valued
decision diagrams depends on the relative properties of both the operator ⊗
and the operator � used to combine the values along the paths of the deci-
sion diagram. For example, computing the elementwise minimum or sum of two
functions encoded using EV+MDDs is quite efficient, but computing their ele-
mentwise product is obviously more difficult.

3 Discrete State Models

We now describe the setting for the classes of system analysis we intend to
perform symbolically, using decision diagrams. First we discuss logical analysis,
then Markov analysis.
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bdd Or(bdd a, bdd b) is • fully-reduced version
local bdd r, r0, r1;
local level k;
1 if a = 0 or b = 1 then return b;
2 if b = 0 or a = 1 then return a;
3 if a = b then return a;
4 if Cache contains entry 〈ORcode, {a, b} : r〉 then return r;
5 if a.lvl < b.lvl then • compare the levels of nodes a and b
6 k ← b.lvl ;
7 r0 ← Or(a, b[0]);
8 r1 ← Or(a, b[1]);
9 else if a.lvl > b.lvl then

10 k ← a.lvl ;
11 r0 ← Or(a[0], b);
12 r1 ← Or(a[1], b);
13 else • a.lvl = b.lvl
14 k ← a.lvl ;
15 r0 ← Or(a[0], b[0]);
16 r1 ← Or(a[1], b[1]);
17 r ← UniqueTableInsert(k, r0, r1);
18 enter 〈ORcode , {a, b} : r〉 in Cache ;
19 return r;

bdd RelProd(bdd x, bdd2 t) is • quasi-reduced version
local bdd r, r0, r1;
1 if x = 0 or t = 0 then return 0;
2 if x = 1 and t = 1 then return 1;
3 if Cache contains entry 〈RELPRODcode, x, t : r〉 then return r;
4 r0 ← Or(RelProd(x[0], t[0][0]), RelProd(x[1], t[1][0]));
5 r1 ← Or(RelProd(x[0], t[0][1]), RelProd(x[1], t[1][1]));
6 r ← UniqueTableInsert(x.lvl, r0, r1);
7 enter 〈RELPRODcode , x, t : r〉 in Cache ;

Fig. 7. Examples of recursive algorithms on fully-reduced and quasi-reduced BDDs

3.1 Logic System Description and Analysis

We consider a discrete-state model (X̂ , Xinit, T ), where X̂ is a finite set of states,
Xinit ⊆ X̂ is the set of initial states, and T ⊆ X̂ × X̂ is a transition relation. We
assume the global model state to be of the form (xL, ..., x1), where, for L ≥ k ≥ 1,
each local state variable xk takes value from a set Xk = {0, 1, ..., nk−1}, with
nk > 0. Thus, X̂ = XL × · · · × X1 and we write T (iL, ..., i1, i

′
K , ..., i′1), or T (i, i′),

if the model can move from the current state i to a next state i′ in one step.
The first step in system analysis is often the computation of the reachable

state space. The goal is to find the set Xreach of states reachable from the initial
set of states Xinit according to the transition relation T . Let i⇁i′ mean that
state i can reach state i′ in one step, i.e., (i, i′) ∈ T , which we also write as
i′ ∈ T (i) with a slight abuse of notation. Then, the reachable state space is
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evmdd Min(level k, evmdd (α, a), evmdd (β, b)) is • quasi-reduced version
local evmdd (μ, r), r0, ..., rnk−1, (α

′, a′), (β′, b′);
1 if α = ∞ then return (β, b);
2 if β = ∞ then return (α, a);
3 μ ← min(α, β);
4 if k = 0 then return (μ, Ω); • the only node at level 0 is Ω
5 if Cache contains entry 〈MINcode, a, b, α − β : (γ, r)〉 then return (γ + μ, r);
6 for i = 0 to nk − 1 do
7 a′ ← a[i].child ;
8 α′ ← α − μ + a[i].val ;
9 b′ ← b[i].child ;

10 β′ ← β − μ + b[i].val ;
11 ri ← Min(k−1, (α′, a′), (β′, b′)); • continue downstream
12 r ← UniqueTableInsert(k, r0, ..., rnk−1);
13 enter 〈MINcode, a, b, α − β : (μ, r)〉 in Cache ;
14 return (μ, r);

Fig. 8. A recursive algorithms for EV+MDDs

Xreach = {j : ∃d > 0, ∃i(1)⇁i(2)⇁ · · · ⇁i(d) ∧ i(1) ∈ Xinit ∧ j = i(d)}.

Further logic analysis might involve searching for deadlocks or proving certain
liveness properties. In general, such questions can be expressed in some temporal
logic. Here, we assume the use of computation tree logic (CTL) [17,23]. This
requires a Kripke structure, i.e., augmenting our discrete state model with a set
of atomic propositions A and a labeling function L : X̂ → 2A giving, for each
state i ∈ X̂ , the set of atomic propositions L(i) ⊆ A that hold in i. Then, the
syntax of CTL is as follows:

– if a ∈ A, a is a state formula;
– if p and p′ are state formulas, ¬p, p ∨ p′, and p ∧ p′ are state formulas;
– if p and p′ are state formulas, Xp, Fp, Gp, pUp′, pRp′ are path formulas ;
– if q is a path formula, Eq and Aq are state formulas.

The semantic of CTL assigns a set of model states to each state formula p,
thus, CTL operators must occur in pairs: a path quantifier, E or A, must always
immediately precede a temporal operator, X, F, G, U, R. For brevity, we discuss
only the semantics of the operator pairs EX, EU, and EG, since these are complete,
meaning that they can be used to express any of the other seven CTL operators
through complementation, conjunction, and disjunction:

– AXp = ¬EX¬p,
– EFp = E[true U p],
– E[pRq] = ¬A[¬pU¬q],
– AFp = ¬EG¬p,
– A[p U q] = ¬E[¬q U ¬p ∧ ¬q] ∧ ¬EG¬q,
– A[pRq] = ¬E[¬pU¬q], and
– AGp = ¬EF¬p,

where true is a predicate that holds in any state.
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ExplicitBuildEX (p) is
1 X ← {i ∈ Xreach : p ∈ labels(i)}; • initialize X with the states satisfying p
2 while X �= ∅ do
3 pick and remove a state i′ from X ;
4 for each i ∈ T −1(i′) do • state i can transition to state i′

5 labels(i) ← labels(i) ∪ {EXp};

ExplicitBuildEU (p, q) is
1 X ← {i ∈ Xreach : q ∈ labels(i)}; • initialize X with the states satisfying q
2 for each i ∈ X do
3 labels(i) ← labels(i) ∪ {E[pUq]};
4 while X �= ∅ do
5 pick and remove a state i′ from X ;
6 for each i ∈ T −1(i′) do • state i can transition to state i′

7 if E[pUq] �∈ labels(i) and p ∈ labels(i) then
8 labels(i) ← labels(i) ∪ {E[pUq]};
9 X ← X ∪ {i};

ExplicitBuildEG(p) is
1 X ← {i ∈ Xreach : p ∈ labels(i)}; • initialize X with the states satisfying p
2 build the strongly connected components in the subgraph of T induced by X ;
3 Y ← {i : i is in one of these strongly connected component};
4 for each i ∈ Y do
5 labels(i) ← labels(i) ∪ {EGp};
6 while Y �= ∅ do
7 pick and remove a state i′ from Y;
8 for each i ∈ T −1(i′) do • state i can transition to state i′

9 if EGp �∈ labels(i) and p ∈ labels(i) then
10 labels(i) ← labels(i) ∪ {EGp};
11 Y ← Y ∪ {i};

Fig. 9. Explicit CTL model checking algorithms

Let P and Q be the sets of states satisfying two CTL formulas p and q, re-
spectively. Then, the sets of states satisfying EXp, EpUq, and EGp are:

XEXp = {i : ∃i′, i⇁i′ ∧ i′ ∈ P},

XEpUq = {i : ∃d>0, ∃i(1)⇁ · · · ⇁i(d) ∧ i= i(1) ∧ i(d)∈Q ∧ ∀c, 1≤c<d, i(c)∈P},

XEGp = {i : ∀d>0, ∃i(1)⇁ · · · ⇁i(d) ∧ i= i(1) ∧ ∀c, 1≤c≤d, i(c) ∈ P}.

Fig. 9 shows the pseudocode to compute the set of states satisfying EXp, EpUq,
and EGp, or, more precisely, to “label” these states, assuming that the states sat-
isfying the CTL formulas p and q have already been labeled. In other words, the
labels corresponding to the subformulas of a CTL formulas are assigned first; of
course, at the innermost level, the labeling corresponding to atomic propositions
is just given by the labeling function L of the Kripke structure. Unlike state-
space generation, these algorithms “walk backwards” in the transition relation,
thus use the inverse transition relation T −1 instead of T .
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3.2 Markov System Description and Analysis

A discrete-state model or a Kripke structure can be extended by associating
timing information to each state-to-state transition. If the time required for
each transition is an exponentially distributed random variable independently
sampled every time the state is entered and if all the transitions out of each state
are “racing” concurrently, this defines an underlying continuous-time Markov
chain (CTMC). Formally, a CTMC is a stochastic process {Xt : t ∈ R} with a
discrete state space Xreach satisfying the memoryless property, that is:

∀r ≥ 1, ∀t>t(r) > · · ·>t(1), ∀i, i(1), ..., i(r) ∈ Xreach,

Pr{Xt = i | Xt(r) = i(r), ..., Xt(1) = i(1)} = Pr{Xt = i | Xt(r) = i(r)}.

We limit our discussion to homogeneous CTMCs, where the above probability
depends on t and t(r) only through the difference t − t(r), i.e.,

Pr{Xt = i | Xt(r) = i(r)} = Pr{Xt−t(r) = i | X0 = i(r)}.

Let πt be the probability vector denoting the probability πt[i] = Pr{Xt = i}
of each state i ∈ Xreach at time t ≥ 0. A homogeneous CTMC is then described
by its initial probability vector π0, satisfying

π0[i] > 0 ⇔ i ∈ Xinit

and by its transition rate matrix R, defined by

∀i, j ∈ Xreach, R[i, j] =

{
0 if i = j

limh→0 Pr{Xh = j|X0 = i}/h if i �= j

or its infinitesimal generator matrix Q, defined by,

∀i, j ∈ Xreach, Q[i, j] =

{
−

∑
l�=i R[i, l] if i = j

R[i, j] if i �= j.

The short-term, or transient, behavior of the CTMC is found by computing
the transient probability vector πt, which is the solution of the ordinary differ-
ential equation dπt/dt = πtQ with initial condition π0, thus it is given by the
matrix exponential expression πt = π0e

Qt. The long-term, or steady-state, be-
havior is found by computing the steady-state probability vector π = limt→∞πt;
if the CTMC is irreducible (since we assume that Xreach is finite, this implies
that Xreach is a single strongly-connected component), π is independent of π0
and is the unique solution of the homogeneous linear system πQ = 0 subject to∑

i∈Xreach
π[i] = 1. The probability vectors π and πt are typically used to eval-

uate expected instantaneous reward measures. For example, a reward function
r : Xreach → R specifies the rate at which a “reward” is generated in each state,
and its expected value in steady state is computed as

∑
i∈Xreach

π[i]r(i).
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real[n] Jacobi(real[n] π(old),h, real[n, n] R) is
local real[n] π(new);
1 repeat
2 for j = 1 to |Xreach|
3 π(new)[j] ← h[j] ·

�
i:R[i,j]>0 π(old)[i] · R[i, j];

4 π(new) ← π(new)/(π(new) · 1);
5 π(old) ← π(new);
6 until “converged”;
7 return π(new);

real[n] GaussSeidel (real[n] π,h, real[n, n] R) is
1 repeat
2 for j = 1 to |Xreach|
3 π[j] ← h[j] ·

�
i:R[i,j]>0 π[i] · R[i, j];

4 π ← π/(π · 1);
5 until “converged”;
6 return π;

real[n] Uniformization(real[n] π0, real[n, n] P, real q, t, natural M) is
local real[n] πt;
1 πt ← 0;
2 γ ← π0;
3 Poisson ← e−qt;
4 for k = 1 to M do
5 πt ← πt + γ · Poisson;
6 γ ← γ · P;
7 Poisson ← Poisson · q · t/k;
8 return πt;

Fig. 10. Numerical solution algorithms for CTMCs (n = |Xreach|)

It is also possible to evaluate accumulated reward measures over a time interval
[t1, t2], in either the transient (t1 < t2 < ∞) or the long term (t1 < t2 =
∞). The numerical algorithms and the issues they raise are similar to those for
instantaneous rewards discussed above, thus we omit them for brevity.

In practice, for exact steady-state analysis, the linear system πQ = 0 is solved
using iterative methods such as Jacobi or Gauss-Seidel, since the matrix Q is
typically extremely large and quite sparse. If Q is stored by storing matrix R, in
sparse row-wise or column-wise format, and the diagonal of Q, as a full vector,
the operations required for these iterative solution methods are vector-matrix
multiplications, i.e., vector-column (of a matrix) dot products. In addition to Q,
the solution vector π must be stored, and most iterative methods (such as Jacobi)
require one or more auxiliary vectors of the same dimension as π, |Xreach|. For
extremely large CTMCs, these auxiliary vectors may impose excessive memory
requirements.

If matrix R is stored in sparse column-wise format, and vector h contains the
expected “holding time” for each state, where h[i] = −1/Q[i, i], then the Jacobi
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method can be written as in Fig. 10, where π(new) is an auxiliary vector and
the matrix R is accessed by columns, although the algorithm can be rewritten
to access matrix R by rows instead. The method of Gauss-Seidel, also shown in
Fig. 10, is similar to Jacobi, except the newly computed vector entries are used
immediately; thus only the solution vector π is stored, with newly computed
entries overwriting the old ones. The Gauss-Seidel method can also be rewritten
to access R by rows, but this is not straightforward, requires an auxiliary vector,
and adds more computational overhead [19].

For transient analysis, the uniformization method is most often used, as it
is numerically stable and uses straightforward vector-matrix multiplications as
its primary operations (Fig. 10). The idea is to uniformize the CTMC with a
rate q ≥ maxi∈Xreach

{|Q[i, i]|} and obtain a discrete-time Markov chain with
transition probability matrix P = Q/q + I. The number of iterations M must
be large enough to ensure that

∑M
k=0 e−qt(qt)k/k! is very close to 1.

4 Putting It All Together: Structured System Analysis

We are now ready to show how the logical and numerical analysis algorithms of
the previous section can be implemented symbolically using appropriate classes
of decision diagrams. Most of these algorithms compute the fixpoint of some
functional, i.e., a function transformer, where the fixpoint is a function encoded
as a decision diagram.

4.1 Symbolic State Space Generation

State space generation is one of the simplest examples of symbolic fixpoint com-
putation, and arguably the most important one. The reachable state space Xreach

can be characterized as the smallest solution of the fixpoint equation

X ⊆ Xinit ∪ T (X ).

Algorithm Bfs in Fig. 11 implements exactly this fixpoint computation, where
sets and relations are stored using L-level and 2L-level MDDs, respectively, i.e.,
node p encodes the set Xp having characteristic function vp satisfying

vp(iL, ..., i1) = 1 ⇔ (iL, ..., i1) ∈ Xp.

The union of sets is simply implemented by applying the Or operator of Fig. 7
to their characteristic functions, and the computation of the states reachable in
one step is implemented by using function RelProd , also from Fig. 7 (of course,
the MDD version of these functions must be employed if MDDs are used instead
of BDDs). Since it performs a breadth-first symbolic search, algorithm Bfs halts
in exactly as many iterations as the maximum distance of any reachable state
from the initial states.

Many high-level formalisms can be used to implicitly describe the state space
by specifying the initial state or states, thus Xinit, and a rule to generate the
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mdd Bfs(mdd Xinit) is
local mdd p;
1 p ← Xinit;
2 repeat
3 p ← Or(p,RelProd(p,T ));
4 until p does not change;
5 return p;

mdd BfsChaining(mdd Xinit) is
local mdd p;
1 p ← Xinit;
2 repeat
3 for each e ∈ E do
4 p ← Or(p,RelProd(p, Te));
5 until p does not change;
6 return p;

mdd Saturation(mdd Xinit) is • assumes quasi-reduced MDDs
1 return Saturate(L, Xinit);

mdd Saturate(level k, mdd p) is
local mdd r, r0, ..., rnk−1;
1 if p = 0 then return 0;
2 if p = 1 then return 1;
3 if Cache contains entry 〈SATcode , p : r〉 then return r;
4 for i = to nk − 1 do
5 ri ← Saturate(k − 1, p[i]); • first, be sure that the children are saturated
6 repeat
7 choose e ∈ Ek, i, j ∈ Xk, such that ri �= 0 and Te[i][j] �= 0;
8 rj ← Or(rj ,RelProdSat(k − 1, ri, Te[i][j]));
9 until r0, ..., rnk−1 do not change;

10 r ← UniqueTableInsert(k, r0, ..., rnk−1);
11 enter 〈SATcode , p : r〉 in Cache;
12 return r;

mdd RelProdSat(level k, mdd q, mdd2 f) is
local mdd r, r0, ..., rnk−1;
1 if q = 0 or f = 0 then return 0;
2 if Cache contains entry 〈RELPRODSATcode, q, f : r〉 then return r;
3 for each i, j ∈ Xk such that q[i] �= 0 and f [i][j] �= 0 do
4 rj ← Or(rj ,RelProdSat(k − 1, q[i], f [i][j]));
5 r ← Saturate(k,UniqueTableInsert(k, r0, ..., rnk−1));
6 enter 〈RELPRODSATcode , q, f : r〉 in Cache ;
7 return r.

Fig. 11. Symbolic breadth-first, chaining, and Saturation state-space generation

states reachable in one step form each state, thus T . Most formalisms are not
only “structured” in the sense that they define the model state through L vari-
ables (xL, . . . , x1), which is of course required for any symbolic approach, but also
“asynchronous”, in the sense that they disjunctively partition [8] the transition
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relation T according to a set E of events. When T is expressed as T =
⋃

e∈E Te,
it is usually more efficient to deviate from a strict breadth-first approach. Al-
gorithm BfsChaining in Fig. 11 implements a chaining approach [31] where the
effect of applying each event is immediately accumulated as soon as it is com-
puted. Chaining is based on the observation that the number of symbolic itera-
tions might be reduced if the application of asynchronous events is compounded
sequentially. While the search order is not strictly breadth-first anymore when
chaining is used, the number of iterations of the repeat loop is at most as large
as for breadth-first search, and usually much smaller. However, the efficiency of
symbolic state-space generation is determined not just by the number of itera-
tions but also by their cost, i.e., by the size of the MDDs involved. In practice,
chaining has been shown to be quite effective in many models, but its effective-
ness can be greatly affected by the order in which events are applied.

Much larger efficiency improvements, however, can be usually achieved with
the Saturation algorithm [12,16]. Saturation is motivated by the observation
that, in many distributed systems, interleaving semantic implies that multiple
events may occur, each exhibiting a strong locality, i.e., affecting only a few state
variables. We associate two sets of state variables with each event e:

VM (e)={xk : ∃i=(iL, ..., i1), ∃i′=(i′L, ..., i′1), i
′ ∈ Te(i) ∧ ik �= i′k} and

VD(e)={xk : ∃i=(iL, ..., i1), ∃j=(jL, ..., j1), ∀h �=k, ih =jh ∧ Te(i) �=∅ ∧ Te(j)=∅},

the state variables that can be modified by e or that can disable e, respectively.
Then, we let

Top(e) = max{k : xk ∈ VM (e) ∪ VD(e)}

be the highest state variable, thus MDD level, affected by event e, and we par-
tition the event set E into Ek = {e : Top(e) = k}, for L ≥ k ≥ 1.

Saturation computes multiple “lightweight” nested fixpoints Starting from
the quasi-reduced MDD encoding Xinit, Saturation begins by exhaustively ap-
plying events e ∈ E1 to each node p at level 1, until it is saturated, i.e., until⋃

e∈E1
Te(Xp) ⊆ Xp. Then, it saturates nodes at level 2 by exhaustively apply-

ing to them all the events e ∈ E2, with the proviso that, if any new node at
level 1 is created in the process, it is immediately saturated (by firing the events
in E1 on it). The approach proceeds in bottom-up order, until the events in
EL have been applied exhaustively to the topmost node r. At this point, the
MDD is saturated,

⋃
e∈E Te(Xr) ⊆ Xr, and r encodes the reachable state space

Xreach.
Experimentally, Saturation has been shown to be often several orders of mag-

nitude more efficient than symbolic breadth-first iterations in both memory and
time, when employed on asynchronous systems. Extensions of the Saturation
algorithm have also been presented, where the size and composition of the local
state spaces Xk is not known prior to generating the state space; rather, the local
state spaces are built “on-the-fly” alongside the (global) reachable state space
during the symbolic iterations [11,16].
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4.2 Symbolic CTL Model Checking

Moving now to symbolic CTL model checking, we need MDD-based algorithms
for the EX, EU, and EG operators. The first requires no fixpoint computation,
as it can be computed in one step:

XEXp = T −1(P)

The set of states satisfying EpUq can instead be characterized as the smallest
solution of the fixpoint equation

X ⊆ Q ∪ (P ∩ T −1(X )),

while the set of states satisfying EGp can be characterized as the largest solution
of the fixpoint equation

X ⊇ P ∩ T −1(X ).

Fig. 12 shows the pseudocode for a breadth-first-style symbolic implemen-
tation of these three operators. Again, all sets and relations are encoded using
L-level and 2L-level MDDs, respectively. Chaining and Saturation versions of the
symbolic EU algorithm are possible when T is disjunctively partitioned. These
are usually much more efficient in terms of both memory and time [15].

4.3 Symbolic Markov Analysis

Approaches that exploit the structured representation of the transition rate ma-
trix R of a CTMC have been in use for over two decades, based on Kronecker
algebra [18]. Formally, such approaches require R to be the submatrix corre-
sponding to the reachable states of a matrix R̂ ∈ R

| �X× �X| expressed as a sum of
Kronecker products :

R = R̂[Xreach, Xreach] where R̂ =
∑

e∈E
R̂e and R̂e =

⊗

L≥k≥1

Re,k.

R̂e is the transition rate matrix due to event e and can be decomposed as
the Kronecker product of L matrices Re,k ∈ R

| �X× �X|, each expressing the con-
tribution of the local state xk to the rate of event e [20,30]. Recall that the
Kronecker product of two matrices A ∈ R

nr×nc and B ∈ R
mr×mc is a matrix

A ⊗ B ∈ R
nr·mr×nc·mc satisfying

∀ia ∈{0, ..., nr−1}, ∀ja ∈{0, ..., nc−1}, ∀ib ∈{0, ..., mr−1}, ∀jb ∈{0, ..., mc−1},

(A ⊗ B)[ia · mr + ib, ja · mc + jb] = A[ia, ja] · B[ib, jb].

The algorithms for the numerical solution of CTMCs shown in Fig. 10 essen-
tially perform a sequence of vector-matrix multiplications at their core. Thus,
the efficient computation of y ← x ·A or y ← y+x ·A, when A, or, rather, Â, is
encoded as a Kronecker product

⊗
L≥k≥1 Ak, has been studied at length [6]. The
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mdd SymbolicBuildEX (mdd P , mdd2 T −1) is
local mdd X ;
1 X ← RelProd(P , T −1); • perform one backward step in the transition relation
2 return X ;

mdd SymbolicBuildEU (mdd P , mdd Q, mdd2 T −1) is
local mdd O, X , Y, Z;
1 X ← Q; • initialize the currently known result with the states satisfying q
2 repeat
3 O ← X ; • save the old set of states
4 Y ← RelProd(X ,T −1); • perform one backward step in the transition relation
5 Z ← And(Y, P); • perform set intersection to discard states not satisfying p
6 X ← Or(Z, X ); • add to the currently known result
7 until O = X ;
8 return X ;

mdd SymbolicBuildEG(mdd P , mdd2 T −1) is
local mdd O, X , Y;
1 X ← P ; • initialize X with the states satisfying p
2 repeat
3 O ← X ; • save the old set of states
4 Y ← RelProd(X ,T −1); • perform one backward step in the transition relation
5 X ← And(X ,Y);
6 until O = X ;
7 return X ;

Fig. 12. Symbolic CTL model checking algorithms for the EX, EU, and EG operators

well-known shuffle algorithm [18,20] or other algorithms presented in [6] can be
employed to compute this product, but their efficiency stems from two properties
common to all algorithms for decision diagram manipulation. First, the object
being encoded (A, in this case) can be structured into L levels (the matrices
Ak, in this case). Second, some kind of caching is used to avoid recomputing the
result of operations already performed.

One disadvantage of earlier Kronecker-based approaches for the steady-state
or transient solution of a CTMC was that the probability vector π ∈ R

|Xreach|

was actually stored using a possibly much larger probability vector π̂ ∈ R
| �X|,

to simplify state indexing. Correctness was achieved by ensuring that π̂[i] = 0
for all i ∈ X̂ \ Xreach, but the additional computational and, especially, memory
overhead was substantial. Decision diagrams helped first by providing an effi-
cient encoding for state indices. Given the MDD for Xreach ⊆ X̂ , an EV+MDD
encoding the lexicographic state indexing function ψ : X̂ → N ∪ {∞} can be
easily built. Its definition is such that ψ(i) is the number of reachable states pre-
ceding i in lexicographic order, if i ∈ Xreach, and is ∞ otherwise. This EV+MDD
has exactly the same number of nodes and edges as the MDD encoding Xreach.
For example, Fig. 13 shows a reachable state space Xreach, the MDD encoding
it, and the EV+MDD encoding ψ. To compute the index of a state, sum the
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Xreach =

��
�
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 1 2

��
�
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Fig. 13. Encoding the lexicographic state indexing function ψ using EV+MDDs

values found on the corresponding path: ψ(2, 1, 1, 0) = 6 + 2 + 1 + 0 = 9; if a
state is unreachable, the path is not complete: ψ(0, 2, 0, 0) = 0 + 0 + ∞ = ∞.
With this encoding of ψ, the probability vector π can be stored in a full array of
size |Xreach|, instead of |X̂ |, with little indexing overhead, making the Kronecker
approach much more memory efficient.

However, at their best, the Kronecker algorithms that have been presented
in the literature can barely match the efficiency of good decision diagram algo-
rithms. Thus, we limit our discussion to the latter, and, in particular, to MxDs,
which were indeed defined as a more general and efficient alternative to a Kro-
necker encoding. In this context, an MxD can be seen as a generalization of a
Kronecker encoding, as both multiply L elements, corresponding to the L local
states, to obtain an entry of the encoded matrix, and both exploit the likely
occurrence of an identity matrix at any level to avoid useless “multiplications
by 1”. In addition, MxD can encode arbitrary matrices R̂e, even those that
are cannot be expressed as a Kronecker product of L local matrices, and can
reflect the actual reachability of states. This means that, given the MDD encod-
ing Xreach and an MxD encoding a matrix R̂ such that R̂[Xreach, Xreach] = R,
we can enforce the fact that the entries of R̂ should be 0 for any unreachable
row i ∈ X̂ \ Xreach. Alternatively, these spurious nonzero entries can be dealt
with explicitly, by testing for reachability, when using Gauss-Seidel iterations,
which are best implemented with access-by-column to R (with the Kronecker
approach, only this second explicit filtering of the spurious entries is possible).

We now discuss algorithm VectorMatrixMult of Fig. 14, which multiplies a
full real vector x of size |Xreach| by the submatrix Â[Xreach, Xreach], where Â is
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real[n] VectorMatrixMult(real[n] x, mxd node A, evmdd node ψ) is
local natural s; • state index in x
local real[n] y;
local sparse real c;
1 s ← 0;
2 for each j = (jL, ..., j1) ∈ Xreach in lexicographic order do • s = ψ(j)
3 c ← GetCol (L, A, ψ, jL, ..., j1); • build column j of A using sparse storage
4 y[s] ← ElementWiseMult(x,c); •x uses full storage, c uses sparse storage
5 s ← s + 1;
6 return y;

sparse real GetCol (level k, mxd node M , evmdd node φ, natural jk, ..., j1) is
local sparse real c, d;
1 if k = 0 then return [1]; • a vector of size one, with its entry set to 1
2 if Cache contains entry 〈COLcode, M, φ, jk, ..., j1 : c〉 then return c;
3 c ← 0; • initialize the results to all zero entries
4 for each ik ∈ Xk such that M [ik, jk].val �= 0 and φ[ik].val �= ∞ do
5 d ← GetCol(k − 1, M [ik, jk].child, φ[ik].child, jk−1, ..., j1);
6 for each i such that d[i] �= 0 do
7 c[i + φ[ik].val] ← c[i + φ[ik].val] + M [ik, jk].val · d[i];
8 enter 〈COLcode , M, φ, jk, ..., j1 : c〉 in Cache;
9 return c;

Fig. 14. MxD-based vector-matrix multiplication algorithm (n = |Xreach|)

encoded by an MxD rooted at node A. For simplicity, we ignore the value ρ of the
incoming dangling edge, i.e., we assume that ρ = 1. In practice, we could enforce
this assumption by allowing the root node A, and only it, to be unnormalized,
so that its entries are multiplied by ρ. Also for simplicity, we assume that the
MxD is quasi-reduced, thus A.lvl = L. The correctness of this algorithm does
not depend on the absence of spurious entries in Â, since the lexicographic state
indexing function, encoded by an EV+MDD with root edge (0, ψ), is used to
select only the rows corresponding to reachable states.

Algorithm VectorMatrixMult operates by building the column of Â corre-
sponding to each reachable state j. As such column is usually very sparse, it is
stored in a sparse data structure, not as a full array. The key procedure is GetCol
[29], which recursively builds the required column, filtering out entries corre-
sponding to unreachable rows. Once the column c is returned, VectorMatrixMult
can perform an efficient multiplication of xT ·c, by simply examining the nonzero
entries of c and using direct access to the corresponding entries of x. Note that,
since the columns j are built in lexicographic order, the state index s can be
simply incremented for each new column.

The algorithm just presented is considered the current state-of-the-art, but it
nevertheless shares an important limitation with all hybrid approaches (includ-
ing Kronecker-based ones): the vector x, thus the probability vector π, uses full
storage, thus requires O(|Xreach|) memory. Sparse storage does not help (since
none of its entries is zero if the CTMC is ergodic) and symbolic storage usu-
ally requires even more memory, since the MTMDD or the EV+MDD (or its
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multiplicative analogue where edge values are multiplied along the path) end up
being close to a tree with as many leaves as reachable states. Strictly symbolic
approaches where not only R but also π is stored using decision diagrams have
been successful so far only when many states share the same probability, usu-
ally a clear indication that the CTMC exhibits strong symmetries, and is thus
lumpable [25].

5 Conclusion and Future Areas of Research

Major advances in our capability of analyzing large and complex systems have
been already achieved through the use of decision diagram techniques. Never-
theless, several research challenges still lie ahead.

Variable ordering heuristics. It is well known that the ordering of the L
state variables can exponentially affect the size of the decision diagrams, thus the
efficiency of their manipulation. Unfortunately, finding an optimal variable order
is known to be a hard problem [2], thus, heuristics for either the static ordering
(at the beginning of the analysis, prior to building any decision diagram) or
the dynamic ordering (during the analysis, if the decision diagrams become too
large) of state variables have been proposed with varying degree of success [22].

Most approaches have been targeted at BDDs and breadth-first iterations.
We have begun considering the special requirements of Saturation and MDDs
in [32,10], but much more work is required to explore heuristics for arbitrary
classes of decision diagrams and their manipulations.

Strictly symbolic numerical CTMC solution. As mentioned, hybrid solu-
tion approaches for CTMCs are probably as efficient as they can be, at least in a
general setting, i.e., unless the model belongs to a special class whose properties
can be exploited to gain some efficiency on a case-by-case basis. A strictly sym-
bolic approach, possibly allowing for a controlled level of approximation, might
then be a very valuable contribution. Along these lines, an approach that uses ex-
act symbolic representations of Xreach and R but an approximate representation
for π has been proposed [28], but much more work is required.

References

1. R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic decision diagrams and their applications. Formal Methods
in System Design, 10(2/3):171–206, Apr. 1997.

2. B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is NP-
complete. IEEE Trans. Comp., 45(9):993–1002, Sept. 1996.

3. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comp., 35(8):677–691, Aug. 1986.

4. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comp. Surv., 24(3):293–318, 1992.



Data Representation and Efficient Solution: A Decision Diagram Approach 393

5. P. Buchholz. Structured analysis approaches for large Markov chains. Applied
Numerical Mathematics, 31(4):375–404, 1999.

6. P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of memory-
efficient Kronecker operations with applications to the solution of Markov models.
INFORMS J. Comp., 12(3):203–222, 2000.

7. P. Buchholz, J. P. Katoen, P. Kemper, and C. Tepper. Model-checking large struc-
tured Markov chains. J. Logic & Algebraic Progr., 56(1/2):69–97, 2003.

8. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with parti-
tioned transition relations. In A. Halaas and P.B. Denyer, editors, Int. Conference
on Very Large Scale Integration, pages 49–58, Edinburgh, Scotland, Aug. 1991.
IFIP Transactions, North-Holland.

9. G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu. Logical and stochastic
modeling with SMART. Perf. Eval., 63:578–608, 2006.
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Abstract. This chapter first reviews the origins of Software Performance 
Engineering (SPE). It provides an overview and an extensive bibliography of 
the early research. It then covers the fundamental elements of SPE: the data 
required, the software performance models and the SPE process. It illustrates 
how to apply the modeling and analysis techniques with a case study. It 
concludes with a review of the current status and outstanding problems. 
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1   Introduction 

Software performance engineering (SPE) is a systematic, quantitative approach to 
constructing software systems that meet performance requirements. In this chapter, 
performance refers to the response time or throughput as seen by the users. For real-
time, or reactive systems, it is the time required to respond to events or the number of 
events processed in a time interval. Reactive systems must meet performance 
requirements to be correct. Other software has less stringent requirements, but 
responsiveness limits the amount of work processed, so it determines a system's 
effectiveness and the productivity of its users. 

SPE provides an engineering approach to performance, avoiding the extremes of 
performance-driven development and “fix-it-later.” SPE uses model predictions to 
evaluate trade-offs in software functions, hardware size, quality of results, and 
resource requirements.  

SPE is a software-oriented approach: it focuses on architecture, design, and 
implementation choices. The models assist developers in controlling resource 
requirements by selecting architecture and design alternatives with acceptable 
performance characteristics. They aid in tracking performance throughout the 
development process and prevent problems from surfacing late in the life cycle.  

SPE also provides principles, patterns, and antipatterns for creating responsive 
software, specifications for the data required for evaluation, procedures for obtaining 
performance specifications, and guidelines for the types of evaluation to be conducted 
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at each development stage. It incorporates models for representing and predicting 
performance as well as a set of analysis techniques [105, 122]. 

SPE techniques provide the following information about the new system: 

• Refinement and clarification of the performance requirements 
• Predictions of performance with precision matching the software knowledge 

available in the early development stage and the quality of resource usage 
estimates available at that time 

• Estimates of the sensitivity of the predictions to the accuracy of the resource usage 
estimates and workload intensity 

• Understanding of the quantitative impact of design alternatives, that is the effect of 
system changes on performance 

• Scalability of the architecture and design: the effect of future growth on 
performance 

• Identification of critical parts of the design 
• Identification of assumptions that, if violated, could change the assessment 
• Assistance for budgeting resource demands for parts of the design 
• Assistance in designing performance tests 

This chapter first covers the evolution of SPE then it gives an overview of the SPE 
process and techniques. It describes the general principles for performance-oriented 
design, the performance patterns and antipatterns, and the quantitative techniques for 
predicting and analyzing performance. A case study illustrates the modeling and 
analysis techniques. Finally, the conclusion reviews the status and future of SPE. 

2   The Evolution of SPE 

Performance was typically considered in the early years of computing.  Knuth’s early 
work focused on efficient data structures, algorithms, sorting and searching [60, 61].  
The space and time required by programs had to be carefully managed to fit them on 
small machines. The hardware grew but, rather than eliminating performance 
problems, it made larger, more complex software feasible and programs grew into 
systems of programs. Software systems with strict performance requirements, such as 
flight control systems and other embedded systems used detailed simulation models to 
assess performance. Consequently creating and solving them was time-consuming, 
and updating the models to reflect the current state of evolving software systems was 
problematic.  Thus, the labor-intensive modeling and assessment were cost-effective 
only for systems with strict performance requirements. 

Authors proposed performance-oriented development approaches [13, 41, 85, 97] 
but most developers of non-reactive systems adopted the “fix-it-later” methodology.  
It advocated concentrating on software correctness, deferring performance 
considerations to the integration testing phase and (if performance problems were 
detected then) procuring additional hardware or “tuning” the software to correct them.  
Fix-it-later was acceptable in the 1970s, but in the 1980s the demand for computer 
resources increased dramatically. System complexity increased while the proportional 
number of developers with performance expertise decreased.  This, combined with a 
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directive to ignore performance, made the resulting performance disasters a self-
fulfilling prophecy.  Many of the disasters could not be corrected with hardware – 
platforms with the required power did not exist.  Neither could they be corrected with 
tuning – corrections required major design changes, and thus reimplementation.  
Meanwhile, technical advances led to the SPE alternative. 

2.1   Modeling Foundations 

In 1971, Buzen proposed modeling systems with queueing network models and published 
efficient algorithms for solving some important models [26].  In 1975, Baskett, et. al., 
defined a class of models that satisfy separability constraints and thus have efficient 
analytic solutions [7].  The models are an abstraction of the computer systems they  
model, so they are easier to create than general-purpose simulation models.  Because they 
are solved analytically, they can be used interactively.  Since then, many advances have  
been made in modeling computer systems with queuing networks, faster solution 
techniques, and accurate approximation techniques [44, 55, 72]. 

Queueing network models are commonly used in capacity planning to model 
computer systems.  A capacity planning model is constructed from specifications for 
the computer system configuration and measurements of resource requirements for 
each of the workloads modeled.  The model is solved and the resulting performance 
metrics (response time, throughput, resource utilization, etc.) are compared to 
measured performance.  The model is calibrated to the computer system.  Then, it is 
used to study the effect of increases in workload and resource demands, and of 
configuration changes. 

Initially, queueing network models were used primarily for capacity planning.  For 
SPE they were sometimes used for feasibility analysis:  request arrivals and resource 
requirements were estimated and the results assessed.  More precise models were 
infeasible because the software could not be measured until it was implemented. 

The second SPE modeling breakthrough was the introduction of analytical models 
for software [10, 19, 20, 22, 91, 106, 129].  With them, software execution is 
modeled, estimates of resource requirements are made, and performance metrics are 
calculated.  Software execution models yield an approximate value for best, worst, or 
average resource requirements.  They provide an estimate for response time; they can 
detect response time problems, but because they do not model resource contention 
they do not yield precise values for predicted response time. 

The third SPE modeling breakthrough was combining the analytic software models 
with the queueing-network system models to more precisely model execution 
characteristics [18]; [98, 107].  Combined models more precisely model the 
execution.  They also show the effect of new software on existing work and on 
resource utilization.  They identify computer device bottlenecks and the parts of the 
new software with high use of bottleneck devices. 

By 1980, the modeling power was established and modeling tools were available 
[18]; [54]; [84]. Many new tools are now available.  Thus, it became cost-effective to 
model large software systems early in their development. 
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2.2   SPE Methods 

Early experience with a large system confirmed that sufficient data could be collected 
early in development to predict performance bottlenecks [108].  Unfortunately, 
despite the predictions, the system design was not modified to remove them and upon 
implementation (approximately one year later) performance in those areas was a 
serious problem, as predicted.  The modeling problems were resolved, but that was 
not enough to prevent problems.  

SPE methods were proposed [99] and later updated [105, 122]. Key parts of the 
SPE process are methods for collecting data early in software development, and 
critical success factors to ensure SPE success.  The methods also address 
compatibility with software engineering methods, what is done, when, by whom, and 
other organizational issues. 

2.3   SPE Development 

The 1980s and 90s brought advances in all facets of SPE.  Software model advances 
were proposed by several authors [11, 21, 33, 83, 90, 100, 105, 111].  Martin [70] 
proposed data-action graphs as a representation that facilitates transformation between 
performance models and various software design notations.  Opdahl and Sølvberg 
[78] integrated information system models and performance models with extended 
specifications.  Brataas applied SPE modeling techniques to organizational workflow 
analysis in [23]. 

Rolia [86] extended the SPE models and methods to address systems of 
cooperating processes in a distributed and multicomputer environment.  Woodside 
[135, 136] proposed stochastic rendezvous networks to evaluate performance of Ada 
systems and Woodside and coworkers incorporated the analysis techniques into a 
software engineering tool [24, 137].  Opdahl [77] described SPE tools interfaced with 
the PPP CASE tool and the IMSE environment for performance modeling – both were 
part of the Esprit research initiative.  Lor and Berry [69] automatically generated 
SARA models from an arbitrary requirements specification language using a 
knowledge-based Design Assistant. 

SPE models were extended and applied to Client/Server systems [72, 125], to 
distributed systems [48, 95, 117], and web applications [29, 46, 71, 94, 120] 

Newer tools that incorporate features to support SPE modeling are reported by 
numerous authors [5, 9, 63, 74, 75, 81, 114, 116]. 

Extensive advances have been made in computer system performance modeling 
techniques.  A complete list of references is beyond the scope of this chapter (for 
more information see other chapters in this book). 

Bentley [15] proposed a set of rules for writing efficient programs.  A set of 
formal, general principles for performance-oriented design is reported by Smith [102, 
103, 105].  These principles were extended to software performance patterns and 
antipatterns [119, 122]. Software architects who are experts in formulating 
requirements and designs, and developers who are experts in data structure and 
algorithm selection, use intuition to develop their systems.  The rules, principles, and 
patterns formalize that expert knowledge.  Thus, the expert knowledge developed 
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through years of experience, can be easily transferred to software developers with less 
experience via the performance patterns and antipatterns. 

Numerous authors relay experience with SPE [1, 2, 4, 12, 14, 37, 38, 79, 101, 104]  
The Proceedings of the Computer Measurement Group Conferences contain SPE 
experience papers each year (see [28]). 

SPE has also been adapted to embedded real-time systems.  When these systems 
must respond to events within a specified time interval, they are called reactive 
systems.  Much of the real-time systems work examines resource allocation or 
schedulability.  Other work expresses timing requirements with assertions and proves 
that requirements are met. Both of those approaches are outside the scope of the 
software-oriented SPE approach.  Many other authors propose methods for 
performance-oriented design but do not use SPEs quantitative approach.  Levi and 
Agrawala [68] proposed a comprehensive system for creating real-time systems – it 
encompasses object-oriented descriptions, implementations, techniques, and an 
operating system for scheduling and execution of the resulting software. Howes [50] 
prescribed principles for developing efficient reactive systems. Williams and Smith 
[112] formalized the SPE process for real-time systems. Sholl and Kim [96] adapted 
the computation-structure approach to real-time systems, and LeMer [67] described a 
methodology and tool. Chang and coworkers [27] used Petri net model extensions to 
evaluate real-time systems. 

The SPE process, models, and tools have also been extended to object-oriented 
systems [58, 114, 115, 122]. Performance measurements have been used to generate 
performance models [51, 52, 88]. A workshop has been created to specifically address 
software and performance issues [140]. 

Models for new types of systems are created as soon as new technology emerges, 
such as Web Services and Service Oriented Architecture. They can be found in many 
publications including [28, 82, 140].  

After highlighting the key elements of SPE in the next three sections, the final 
section mentions additional related work and discusses outstanding problems. 

2.4   The SPE Process 

The SPE process prescribes what SPE activities should be conducted during software 
development, and when and how to conduct them. Figure 1 depicts the SPE process; 
the following paragraphs explain the figure. 

First, performance engineers define the specific SPE assessments for the current 
life cycle phase. Assessments determine whether planned software meets its 
performance requirements, such as acceptable response times, throughput thresholds, 
or constraints on resource requirements.  A specific, quantitative requirement is vital 
if analysts are to determine concretely whether that requirement can be met.  A crisp 
definition of the performance requirements lets developers determine the most 
appropriate means of achieving requirements, and avoid spending time overachieving 
them.  

Business systems specify performance requirements in terms of responsiveness as 
seen by the system users. Reactive systems specify timing requirements for event 
responses or system throughput requirements. Batch systems specify the batch 
 



400 C.U. Smith 

  

Create concept for  
life cycle product  

Revise performance    
goal Infeasible  

Modify life cycle    
concept   

Feasible  

FORK   

Verification &    
Validation   

JOIN   

Until predicted perf ormance  
is acceptable  

Acceptable  
performance  

Alternatives  
preferable?  

Define SPE assessments  
for life cycle phase   

Gather data  

Construct & evaluate  
appropriate model  

Report results  

Complete life cycle  
product  

Enter next   
phase    

Fig. 1. Software Performance Engineering Process 

window and the processing steps that must complete within it. Both the response time 
for a task and the number of work units processed in a time interval (throughput) are 
measures of responsiveness. Responsiveness does not necessarily imply efficient 
computer resource usage. Efficiency is addressed only if critical computer resource 
constraints must be satisfied.  

After defining the requirements, designers create the concept for the life cycle 
product. For early phases the concept is the architecture – the software requirements 
and the high-level plans for satisfying requirements.  In subsequent phases the 
concept is the design, the algorithms, the code, etc.  Developers apply SPEs general 
principles, patterns and antipatterns (described later) for creating responsive 
architectures and designs.  
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Once the life cycle concept is formulated, analysts gather data sufficient for 
estimating the performance of the proposed concept. First, analysts need the projected 
performance scenarios: how the system will typically be used and the software 
components that will execute for those scenarios. In addition to the typical-usage 
analysis, reactive systems also examine worst-case and failure scenarios. Each 
performance scenario specifies the processing steps that execute when the scenario 
executes. The level of detail depends on the life cycle stage of the evaluation. 
Estimates of the resource usage of the processing steps complete the specifications. 
Section 3.1 provides more details on data requirements and techniques for gathering 
specifications. 

Because the precision of the model results depends on the precision of the resource 
estimates, and because these are difficult to estimate very early in software 
development SPE calls for a best and worst-case analysis strategy.  When there is 
high uncertainty about resource requirements, analysts use estimates of the lower and 
upper bound.  Using them, the analysis produces an estimate of both the best and 
worst-case performance.  If the best-case performance is unsatisfactory, they seek 
feasible alternatives.  If the worst-case performance is satisfactory, they proceed with 
development. If the results are between the two extremes, models identify critical 
components whose resource estimates have the greatest effect, and focus turns to 
obtaining more precise data for them. A variety of techniques provide more precision, 
such as further refining the design concept and constructing more detailed models, or 
constructing performance benchmarks and measuring resource requirements for key 
elements.   

An overview of the construction and evaluation of the performance models follows 
in Section 3.2. If the model results indicate that the performance is likely to be 
satisfactory, developers proceed.  If not, analysts report quantitative results on the 
predicted performance of the original concept.  If alternative strategies would improve 
performance, reports show the alternatives and their expected (quantitative) 
improvements.  Developers review the findings to determine the cost-effectiveness of 
the alternatives.  If a feasible and cost-effective alternative exists, developers modify 
the concept before the life cycle product is complete.  If none is feasible as, for 
example, when the modifications would cause an unacceptable delivery delay, 
developers explicitly revise the performance requirement to reflect the expected 
degraded performance.  

Vital and on-going activities of the SPE process are to verify that the models 
represent the software execution behavior, and validate model predictions against 
performance measurements. Reports compare the model specifications for the 
workload, the software components that execute, and resource requirements to actual 
usage and software characteristics. If necessary, analysts calibrate the model to 
represent the system behavior. They also examine discrepancies to update the 
performance predictions, and to identify the reasons for differences – to prevent 
similar problems occurring in the future. They produce reports comparing system 
execution model results (response times, throughput, device utilization, etc.) to 
measurements.  Analysts study discrepancies, identify error sources, and calibrate the 
model as necessary.  Model verification and validation should begin early and 
continue throughout the life cycle.  In early stages, focus is on key performance 
factors; prototypes or benchmarks provide more precise specifications and 
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measurements as needed.  As the software evolves, measurements serve to verify and 
validate the models.  

This discussion outlined the steps for one design-evaluation “pass.”  The steps 
repeat throughout the life cycle.  For each pass the evaluations change somewhat.   

2.5   Guidelines for Creating Responsive Systems 

Program efficiency techniques evolved first. Authors addressed program efficiency 
from three perspectives: efficient algorithms and data structures [60, 61]; efficient 
coding techniques [25, 56, 65]; and techniques for tuning existing programs to 
improve efficiency [15, 35, 36, 59].  

Later, the techniques evolved to address large-scale systems of programs in early 
life-cycle stages when developers seek an architecture that will lead to a system with 
acceptable responsiveness [102, 103, 105].  During early stages, it is seldom the 
efficiency of machine resource usage that matters; it is the system responsiveness.  
Another distinction between system design and program tuning approaches is that 
program tuning transforms an inefficient program into a new “equivalent” program 
that performs the same function more efficiently.  In system design, developers can 
transform what the software is to do as well as how it is to be done. 

Smith [105, 122] defines nine principles: Performance Objective Principle, 
Instrumenting Principle, Centering Principle, Fixing Point Principle, Locality 
Principle, Processing Versus Frequency Principle, Shared Resources  Principle, 
Parallel Processing Principle, and Spread-the-Load Principle.  A quantitative analysis 
of the performance results of three of them is in Smith [102].   

Both performance patterns and performance antipatterns have been proposed [119, 
122]. The performance patterns present best practices for producing responsive 
software. They are: First Things First, Coupling, Batching, Alternate Routes, Flex-
Time, and Slender Cyclic Functions. The performance antipatterns document 
common performance mistakes and provide solutions for them. They are: “god” 
Class, Excessive Dynamic Allocation, Circuitous Treasure Hunt, One-Lane Bridge, 
Traffic Jam, Unbalanced Processing, Unnecessary Processing, The Ramp, More is 
Less, Tower of Babel, Empty Semi’s, and Domino Effect. The performance patterns 
and antipatterns complement and extend the performance principles. Each 
performance pattern is a realization of one or more of the performance principles 
while an antipattern violates one or more of them.  

Lampson [64] also presented an excellent collection of hints for computer system 
design that addresses effectiveness, efficiency, and correctness.  His efficiency hints 
are the type of folklore that has until recently been informally shared. Kopetz [62] 
presented principles for constructing real-time process control systems; some address 
responsiveness – all address performance in the more general sense. 

Alter [3] and Kant [57] took a different approach; they used program optimization 
techniques to generate efficient programs from logical specifications. Search 
techniques identified the best strategy from various alternatives for choices such as 
data set organizations, access methods, and computation aggregations. 

The principles, patterns, and antipatterns supplement performance assessment 
rather than replace it.  Performance improvement has many tradeoffs – a local 
performance improvement may adversely affect overall performance. The quantitative 
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methods covered in section 3 provide the data required to evaluate the net 
performance effect to be weighed against other aspects of correctness, feasibility, and 
preferability. 

3   Quantitative Methods for SPE 

The quantitative methods prescribe the data required to conduct the performance 
assessment; techniques for gathering the data; the performance models; techniques for 
adapting models to the system evolution; and techniques for verification and 
validation of the models. 

3.1   Data Requirements 

To create a software execution model analysts need:  performance requirements, 
workload definitions, software execution characteristics, execution environment 
descriptions, and resource usage estimates.  An overview of each follows. 

Precise, quantitative metrics, are vital to determine concretely whether or not 
performance requirements can be met.  For business applications, both interactive 
performance requirements and batch window requirements must be met.  For 
interactive transactions, the requirements specify the response time or throughput 
required.  Specifications define the external factors that impact attainment, such as the 
time of day, the number of concurrent users, whether the requirement is an absolute 

maximum, a 90th  percentile, and so on.  For reactive systems, timing constraints 
specify the maximum time between an event and the response.  Some reactive 
systems have throughput requirements for the number of events processed in a time 
interval. Some have bounds on the utilization of computer resources used, such as a 
maximum of 50% CPU utilization. 

Workload definitions specify the performance scenarios of the new software. For 
user interactions, scenarios (initially) specify the interactions expected to be the most 
frequently used.  Later in the life cycle, scenarios also cover resource intensive 
transactions. Interactive workload definitions identify the performance scenarios and 
specify their workload intensity:  the request arrival rates, or the number of concurrent 
users and the time between their requests (think time).  Batch workload definitions 
identify the programs on the critical path, their dependencies, and the data volume to 
be processed.  In addition to performance scenarios of typical uses, reactive systems 
represent scenarios of time-critical functions, and worst-case operating conditions. 

Performance scenarios are usually easy to derive because many new systems 
replace either a manual process or a previous implementation of an automated system. 
It may be difficult to identify performance scenarios for revolutionary new functions 
or for Internet applications where the number of potential requests is unlimited and 
highly variable. Recent work by Gunther uses statistical techniques for forecasting 
demand for Internet applications [45]. 

Software processing steps identify components of the software system to be 
executed for each performance scenario.  The software processing steps identify: 
software components most likely to be invoked when users request the corresponding 
performance scenario; the number of times they are executed or their probability of 
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execution; and their execution characteristics, such as the database tables used, and 
screens read or written.  Reactive systems initially specify the likely execution paths, 
as well as less likely execution paths such as the worst-case path. 

Software processing steps are relatively easy to identify when developed as the 
software evolves. It is more difficult when models are initially constructed after the 
software has been built, particularly for object-oriented systems. Hrishuk and Rolia 
developed techniques for constructing performance models from measurements of 
existing object-oriented systems [51, 52]. 

The execution environment defines the computer system configuration, such as the 
CPU, the I/O subsystem, the network elements, the operating system, the database 
management system, and middleware components.  It provides key computer system 
and network devices for the underlying queueing network model and defines resource 
requirements for frequently used service routines.   

The execution environment is usually the easiest information to obtain. 
Performance modeling tools automatically provide much of it, and most capacity and 
performance analysts are familiar with the requirements.   

Resource usage estimates determine the amount of service required of key devices 
in the computer system configuration.  For each software-processing step in the 
performance scenario, analysts need: the approximate number of instructions 
executed (or CPU time required); the number of physical I/Os; and use of other key 
devices such as the network (number of messages and the amount of data), etc.  For 
database applications, the database management system (DBMS) accounts for most of 
the resource usage, so the number of database calls and their characteristics are 
necessary. Early life cycle requirements are tentative, difficult to specify, and likely to 
change, so SPE uses upper and lower bound estimates to identify problem areas or 
software components that warrant further study to obtain more precise specifications. 
Later, the models study the performance sensitivity to various parameter values. 

There are four sources of values for resource usage data: 

• measurements of parts of the software that are already implemented, such as basic 
services, existing  

components, a design prototype or an earlier version [130],  
• compiler output from existing code,  
• demand estimates (CPU, I/O, etc.) based on designer and analyst judgment and 

reviews, 
• “budget” figures, estimated from experience and the performance requirements, 

may be used as demand objectives for designers to meet (rather than as estimates 
for the code they will produce). 

The sources at the top of the list are only useful for parts of the system that are 
actually running, so early analysis implies at least some of the numbers will be 
estimated. 

It is seldom possible to get precise information for all these specifications early in 
the software’s life cycle.  Rather than waiting to model the system until it is available 
(i.e., in implementation or testing), SPE advocates gathering guesses, approximations, 
and bounded estimates to begin, then augmenting the models as information becomes 
available.  
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Because one person seldom knows all the information required for the software 
performance models, performance walkthroughs provide most of the life cycle data 
[105] [122].  Performance walkthroughs are closely modeled after design and  code 
walkthroughs.  In addition to software specialists who contribute software plans they 
bring together users who contribute workload, use case, and scenario information, and 
technical specialists who contribute computer configuration and resource 
requirements of key subsystems such as DBMS and communication paths.  The 
primary purpose of a performance walkthrough is data gathering rather than a critical 
review of design and implementation strategy. 

3.2   Performance Models 

Two SPE models provide the quantitative data for SPE: the software execution model 
and the system execution model. The software execution model represents key facets 
of software execution behavior. The model solution quantifies the computer resource 
requirements for each performance scenario. The system execution model represents 
computer system resources with a network of queues and servers. The model 
combines the performance scenarios and quantifies overall resource utilization and 
consequent response times of each scenario. 

There are several forms of software models for SPE. The following are the most 
common: 

• The execution graphs of [105, 122] represent the sequence of operations, including 
precedence, looping, choices, synchronization, and parallel execution of flows. 
This is representative of a large family of models such as SP [131], task graphs 
(used in embedded and hard-real-time systems), activity diagrams, etc. Automated 
tools such as SPE•ED [63] and HIT [9] capture the data and reduce it to formal 
workload parameters. 

• Communicating state machines are captured in software design languages such as 
UML, SDL and ROOM, and in many CASE tools, to capture sequence. Some 
efforts have been made to capture performance data in this way [32, 138] by 
capturing scenarios out of the operation of the state machines, or [128] by 
annotating the state machine and simulating the behavior directly. 

• Petri nets and stochastic process algebras are closely related to state machines and 
also represent behavior through global states and transitions. Solutions are by 
Markov chain analysis in the state space, or by simulation. 

• Annotated code represents the behavior by a code skeleton, with abstract elements 
to represent decisions and operations, and performance annotations to convey 
parameters. The code may be executed on a real environment, in which case we 
may call it a performance prototype, or by a simulator (a performance simulation) 
[5], or it may be reduced to formal workload parameters [73]. 

Component-based system assembly models, with components whose internal 
behavior is well understood, has been used to create simulation models automatically 
in Hyperformix models [54], and to create analytic layered queueing models [87, 
139]. 

Execution graph models are one type of software execution model. A graph 
represents each performance scenario.  Nodes represent processing steps of the 
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software; arcs represent control flow. The graphs are hierarchical with the lowest 
level containing complete information on estimated resource requirements. 

A static analysis of the graphs yields mean, best- and worst-case response times of 
the scenarios.  The static analysis makes the optimistic assumption that there are no 
other jobs on the host configuration competing for resources.  Simple, graph-analysis 
algorithms provide the static analysis results [10, 19, 20, 105]. The static analysis is 
compared to the performance requirement and any problems are resolved before 
proceeding to the system execution model. 

An example of a SPE•ED software execution model is in Figure 2 [63]. It shows a 
simple automated teller machine interaction. The software execution model is 
hierarchical, the lower levels in the model are shown in the small navigation boxes at 
the right of the screen. Colors on the screen show the connection between a node in a 
software model and its details in the navigation box. The figure also shows the end-to-
end response time for one ATM user, and colors show the relative time spent in each 
step. Analysts use results such as these to identify problem areas, then explore 
alternatives to correct problems by modifying the model and comparing solutions. 

Next, the system execution model solution yields the following additional 
information: 

• the effect of resource contention on response times, throughput, device utilizations 
and device queue lengths. 

• sensitivity of performance metrics to variations in workload composition 
• effect of new software on service level objectives of other existing systems 
• identification of bottleneck resources 
• comparative data on performance improvements to the workload demands, 

software changes, hardware upgrades, and various combinations of each. 

To construct and evaluate the system execution model, analysts use performance-
modeling tools that represent the key computer resources with a network of queues. 
Environment specifications provide device parameters (such as CPU size and 
processing speed).  Workload parameters and service requests come from the resource 
requirements computed from the software execution models.  Analysts solve the 
model, check for reasonable results, and then examine the model results.  If the results 
show that the system fails to meet performance requirements, analysts identify 
bottleneck devices and identify software components that have high usage of those 
devices. After identifying alternatives to the software plans or the computer 
configuration, analysts evaluate the alternatives by making appropriate changes to the 
software or system model and repeating the analysis steps. 

Queueing network models are relatively lightweight and give basic analytic 
models, which solve quickly. They have been widely used [73, 115]. However the 
basic forms of queueing network model are limited to systems that use one resource at 
a time. Extended queueing models, that describe multiple resource use, are more 
complex to build and take longer to solve. Layered queueing is a framework for 
extended queueing models that can be built relatively easily, and which incorporates 
many forms of extended queueing systems [87, 139]. 

Bottleneck or bounds analysis of queueing networks is even faster than a full 
solution and has been widely used. However, when there are many classes of users or 
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Fig. 2. Software Performance Model 

of workloads (which is the case in most complex systems) the bounds are difficult to 
calculate and interpret. The difficulty with queueing models is expressiveness; they 
limit the behavior of the system to tasks providing service to requests in a queue. 
They cannot express the logic of intertask protocols, for instance. 

Petri nets and other state-based models can capture logically convoluted protocol 
interactions that cannot be expressed at all in queueing models. They can in principle 
express any behavior whatever. Further, some of them, such as stochastic process 
algebra, include mechanisms for combining subsystems together to build systems. 
Their defect is that they require the storage of probabilities over a state space that may 
easily have millions of states, growing combinatorially with system size. They do not, 
and cannot scale up. However the size of system that can be solved has grown from 
thousands of states to millions, and interesting small designs can be analyzed this 
way. 

Embedded and hard-real-time systems often use a completely different kind of 
model, a schedulability model, to verify if a schedule can be found that meets the 
deadlines. These are considered briefly below. 

Simulation is the always-available fallback from any formulation. Some kinds of 
models are designed specifically for simulation, such as the performance prototype 
from code. Simulation models are heavyweight in the execution time needed to 
produce accurate results, and can give meaningless results in the hands of non-experts 
who do not know how to assess their precision or their accuracy. When models can be 
solved by both analytic queueing techniques and by simulation, the simulation time 
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may easily be three orders of magnitude greater. However simulation can always 
express anything that can be coded, so it never limits the modeler in that way. 

System execution models based on the network of queues and servers can be 
solved with analytic techniques in a few seconds. Thus analysts can conduct many 
tradeoff studies in a short time. Analytic solution techniques generally yield 
utilizations within 10 percent, and response times within 30 percent of actual. Thus, 
they are well suited to early life cycle studies when the primary objective is to identify 
feasible alternatives and rule out alternatives that are unlikely to meet performance 
requirements. The resource usage estimates that lead to the model parameters are 
seldom sufficiently precise to warrant the additional time and effort required to 
produce more realistic models. Even reactive systems benefit from this intermediate 
step – it rules out serious problems before proceeding to more realistic models. 

Early studies use simple SPE models. The SPE goal is to find problems with the 
simplest possible model.  Experience shows that simple models can detect serious 
performance problems very early in the development process.  The simple models 
isolate the problems and focus attention on their resolution.  They are useful to 
evaluate many early architecture and design alternatives because they are easily 
formulated and quickly solved. After they serve this primary purpose, analysts 
augment them as the software evolves to make more realistic performance 
predictions.  Advanced system execution models are usually appropriate when the 
software reaches the detail-design life cycle stage.  Even when it is easy to 
incorporate the additional execution characteristics earlier, it is better to defer them to 
the advanced system execution model.  It is seldom easy, however, and the time to 
construct, solve, and evaluate the advanced models usually does not match the input 
data precision early in the life cycle. 

Facets of execution behavior such as usage of passive resources, complex 
execution environments, or tightly coupled models of software and system execution 
are represented in the advanced system execution model.  It augments the elementary 
system execution model with additional types of constructs.  Then procedures specify 
how to calculate corresponding model parameters from software models, and how to 
solve the advanced models.  SPE methods specify “checkpoint evaluations” to 
identify those aspects of the execution behavior that require closer examination [105]. 
Simulation methods usually provide solutions for the advanced system models. 

Details of these models are beyond the scope of this chapter. Introduction to 
system and advanced system execution models are available in books [44, 55, 66, 72] 
as well as other publications. The Proceedings of the ACM SIGMETRICS 
Conferences and the Performance Evaluation Journal report recent research results in 
advanced systems execution models. The Proceedings of the Performance Petri Net 
Conferences also report relevant results. 

3.3   Verification and Validation 

Another vital part of SPE is continual verification of the model specifications and 
validation of model predictions (V&V). Model verification and validation are ongoing 
activities that proceed in parallel with the construction and evaluation of the models. 
Model verification is aimed at determining whether the model predictions are an 
accurate reflection of the software’s performance. It answers the question, “Are we 
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building the model right?” For example, are the estimates of resource requirements 
reasonable? Model validation is concerned with determining whether the model accu-
rately reflects the execution characteristics of the software. It answers the question, 
“Are we building the right model?” The model should faithfully represent the 
evolving system. For SPE, it is particularly important to detect any model omissions 
as soon as possible. 

Early V&V is needed when model results suggest that major changes are needed.  
The V&V effort matches the impact of the results and the importance of performance 
to the project.  When performance is critical, or major software changes are indicated, 
analysts identify the critical components, implement or prototype them, and measure.  
Measurements verify resource usage and path execution specifications and validate 
model results. Early V&V is important even when predicted performance is good.  
Performance analysts drive the resource usage specifications, and analysts tend to be 
optimistic about how functions will be implemented, and about their resource 
requirements.  Resource usage of the actual system often differs significantly from the 
optimistic specifications. 

Performance engineers interview users, designers, and programmers to confirm 
that usage will be as expected, and that designed and coded algorithms agree with 
model assumptions.  They adjust models when appropriate, revise predictions, and 
give regular status reports.  They also perform sensitivity analyses of model 
parameters and determine thresholds that yield acceptable performance.  Then, as the 
software evolves and code is produced, they measure the resource usage and path 
executions and compare them with these thresholds to get early warning of potential 
problems. As software increments are deployed, measurements of the workload 
characteristics yield comparisons of specified scenario usage to actual and show 
inaccuracies or omissions.  Analysts calibrate models and evaluate the effect of model 
changes on earlier results.  As the software evolves, measurements replace resource 
estimates in the SPE models. 

V&V is crucial to SPE. It requires the comparison of multiple sets of parameters 
for heavy and light loads to corresponding measurements.  The model precision 
depends on how closely the model represents the key performance drivers.  It takes 
vigilance to make sure they match. 

4   Example 

To illustrate the process of modeling and evaluating the performance of a software 
design, we will use an example based on an automated teller machine (ATM). This 
example is based on a real-world development project; it has been simplified for this 
presentation, and some details have been changed to preserve anonymity. 

The ATM accepts a bank card and requests a personal identification number (PIN) 
for user authentication. Customers can perform any of three transactions at the 
ATM: deposit cash to an account, withdraw cash from an account, or request the 
available balance in an account. A customer may perform several transactions 
during a single ATM session. The ATM communicates with a computer at the host 
bank, which verifies the customer-account combination and processes the 
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transaction. When the customer is finished using the ATM, a receipt is printed for 
all transactions, and the customer’s card is returned. 

The following sections illustrate the application of the SPE process to the ATM. 

4.1   Assess Performance Risk 

The performance risk in constructing the ATM itself is small. Only one customer uses 
the machine at a time, and the available hardware is more than adequate for the task. 
Consequently, the amount of SPE effort on this project will be small. However, the 
host software (considered later) must deal with a number of concurrent ATM users, 
and response time there is important, so a more substantial SPE effort is justified. 

4.2   Identify Critical Use Cases 

We begin with the use case diagram for the ATM shown in Figure 3. As the diagram 
indicates, several use cases have been identified: Operator-Transaction (e.g., reloading 
a currency cassette), CustomerTransaction (e.g., a withdrawal), and 
CommandFunctions (e.g., to go off-line). Clearly, CustomerTransaction is the critical 
use case, the one that will most affect the customer’s perception of the ATM’s 
performance.  

4.3   Select Key Performance Scenarios 

We therefore select the CustomerTransaction as the first performance scenario to 
consider. This scenario represents typical, error-free customer transactions from the 
CustomerTransaction use case. Later, after we confirm that the architecture and 
design are appropriate for this scenario, we will consider additional scenarios. To 
evaluate the scenario, we need a 
specification for the workload intensity—
that is, the number of Custom-
erTransactions or their arrival rate during 
the peak period.  

Figure 4 shows a scenario for customer 
transactions on the ATM. The notation 
used is a UML 2 sequence diagram. This 
scenario indicates that, after inserting a 
card and entering a PIN, a customer may 
repeatedly select transactions which may 
be deposits, withdrawals, or balance 
inquiries. The rounded rectangles indicate 
that the details of these transactions are 
elaborated in additional sequence 
diagrams. 

The scenario in Figure 4 combines the customer transactions of deposit, 
withdrawal, and balance inquiry. We combine them because we want to model what a 
customer does during an ATM session, and a customer may request more than one 
transaction during a single session. While we don’t know exactly which transaction(s) 
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a user will request, we can assign probabilities to each type of transaction based on 
reasonable guesses or actual measurements of customer activities.  

We could also represent the information in Figure 4 using a UML activity diagram. 
However, we have found that the sequence diagram notation is more familiar to 
software developers, and is easier to translate to a software execution model. 

4.4   Establish Performance Requirements 

As a bank customer, what response time do you expect from an ATM? Historically, 
performance requirements have been based on “time in the (black) box,” that is, the 
time from the arrival of the (complete) request to the time the response leaves the 
host computer. That approach was used to separate things outside the control of the 
software (e.g., the time for the user to enter information, network congestion, and 
so on) from those that are more directly influenced by the software itself. If we take 
this approach for the ATM, a reasonable performance requirement would be one 
second for the portion of the time on the host bank for each of the steps 
processDeposit, processWithdrawal, and processBalanceInquiry. 

However, for SPE we prefer to 

expand the scope to cover the end-

to-end time for a customer to 

complete a business task (e.g., an 

ATM session). Then, the results of 

the analysis will show opportunities 

to accomplish business tasks more 

quickly by reducing the number 

and type of interactions with the 

system, in addition to reducing the 

processing “in the box.” A 

reasonable performance require- 

ment for this scenario might be 30 

seconds or less to complete the 

(end-to-end) ATM session. 

4.5   Construct Performance 
Models 

The models for evaluating the performance of the ATM are based on the key 
scenarios identified earlier in the process. These performance scenarios represent 
the same processing as the sequence diagrams using execution graphs. 

Figure 5 shows the execution graph that corresponds to the ATM scenario in 
Figure 4. The rectangles indicate processing steps; those with bars indicate that the 
processing step is expanded in a subgraph. Figure 6 shows the expansion of the 
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Fig. 4. Customer Transaction Scenario 
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Fig. 5. ATM Execution Graph Fig. 6. Expansion of processTransaction 

processTransaction step; expansion of the other steps is not shown here. The circular 
node indicates repetition, while the jagged node indicates choice. 

The execution graph in Figure 5  expresses the same scenario as the sequence 
diagram in Figure 4 . After inserting a card (to provide customer information) and 
entering a PIN, a customer may repeatedly select transactions, which may be 
deposits, withdrawals, or balance inquiries. Here, the number of transactions that a 
customer may perform is indicated by the parameter n. 

4.6   Determine Software Resource Requirements 

The types of software resources will differ depending on the type of application and 
the operating environment. The types of software resources that are important for 
the ATM are:  

• Screens—the number of screens displayed to the ATM customer 
• Host—the number of interactions with the host bank 
• Log—the number of log entries on the ATM machine 

• Delay—the relative delay in time for other ATM device processing, such as the 
cash dispenser or receipt printer 

Software resource requirements are application-technology specific. Different 
applications specify requirements for different types of resources. For example, a 
system with a significant database component might specify a software resource 
called “DBAccesses” and specify the requirements in terms of the number of 
accesses.  

We specify requirements for each of these resources for each processing step in 
the execution graph, as well as the probability of each case alternative and the 
number of loop repetitions. Figure 7 shows the software resource requirements for 
processWithdrawal. 
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4.7   Add Computer Resource Requirements 

We must also specify the computer 
resource requirements for each software 
resource request. The values specified 
for computer resource requirements 
connect the values for software resource 
requirements to device usage in the 
target environment. The computer 
resource requirements also specify 
characteristics of the operating 
environment, such as the types of 
processors/devices, how many of each, 
their speed, and so on. 

Table 1 contains the computer 
resource requirements for the ATM 
example. The names of the devices in the 
ATM unit are in the first row, while the 
second row specifies how many devices 
of each type are in the facility. The third 
row is a comment that describes the unit 
of measure for the values specified for 
the software processing steps. The next 
four rows are the names of the software 
resources specified for each processing 
step, and the last row specifies the 
service time for the devices in the 
computer facility. 

The values in the center section of the 
table define the connection between 
software resource requests and computer device usage. The Display “device” 
represents the time to display a screen and for the customer to respond to the prompt.  
 

Table 1. Overhead Matrix 

Devices CPU Disk Display Delay  Net 

Quantity 1 1 1 1  1 

Service Units Sec. Phys.I/O Screens Units  Msgs. 

       

Screen 0.001  1    

Host 0.005   3  2 

Log 0.001 1     

Delay    1   

       

Service Time 1 0.02 1 1  0.05 

getAccount

getAmount

request
Authorization

dispenseCash

waitFor
Customer

confirm
Transaction

Screen 1
Host 0
Log 1
Delay 5

Screen 0
Host 0
Log 0
Delay 10

Screen 0
Host 1
Log 1
Delay 0

Screen 0
Host 1
Log 1
Delay 0

Screen 1
Host 0
Log 0
Delay 0

Screen 1
Host 0
Log 0
Delay 0

Fig. 7. Software Resource Requirements for 
processWithdrawal 
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The 1 in the Display column for the Screen row means that each screen specified in 
the software model causes one visit to the Display delay server. We arbitrarily assume 
this delay to be one second (in the service time row). Similarly, each Host and Delay 
specification in the software model results in a delay before processing the next step. 
We assume the Host delay is 3 seconds; other delays are specified in 1-second 
increments. Each Host request also sends 1 message via the Net and receives 1 reply 
message. Each message takes an average of 0.05 second. These values may be 
measured, or estimates could be obtained by constructing and evaluating more 
detailed models of the host processing required.  

Thus, each value specified for a processing step in the software model generates a 
demand for service from one or more devices in a facility. The computer resource 
requirements define the devices used and the amount of service needed from each 
device. The demand is the product of the software model value times the value in the 
overhead matrix cell times the service time for the column. 

4.8   Evaluate the Models 

We begin by solving the software model. This solution provides a “no contention” 
result. Here, we find that the total end-to-end time for the scenario is approximately 
28 seconds, and most of that is due to the delays at the ATM unit for customer 
interactions and processing (in Fig. 2). This is a best-case result and, in this case, 
confirms that a single ATM will complete in the desired time. Because it is close to 
exceeding the requirement, however, we may want to examine alternatives to reduce 
the end-to-end time. We should also examine the sensitivity of the results to our esti-
mates. In addition, further studies will examine the host bank performance when there 
are multiple ATMs whose transactions could produce contention for computer 
resources. This will affect the time to handle Host requests.  

4.9   Verify and Validate the Models  

We need to confirm that the performance scenarios that we selected to model are 
critical to performance, and confirm the correctness of the workload intensity 
specifications, the software resource specifications, the computer resource 
specifications, and all other values that are input into the model. We also need to 
make sure that there are no large processing requirements that are omitted from the 
model. To do this, we conduct measurement experiments on the operating 
environment, prototypes, and analogous or legacy systems early in the modeling pro-
cess. We measure evolving code as soon as viable. SPE suggests using early models 
to identify components critical to performance, and implementing them first. 
Measuring them and updating the model estimates with measured values increases 
precision in key areas early. 

5   Status and Future of SPE 

Since computers were invented, the attitude persists that the next hardware generation 
will offer significant cost-performance enhancements, so it will no longer be 
necessary to worry about performance.  There was a time, in the early 1970s, when 
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computing power exceeded demand in most environments.  The cost of achieving 
performance requirements, with the tools and methods of that era, made SPE 
uneconomical for many batch systems – its cost exceeded its savings.  Today’s 
methods and tools make SPE the appropriate choice for new systems, especially those 
with high visibility such as Web applications. 

Will tomorrow's hardware solve all performance problems and make SPE 
obsolete?  It has not happened yet.  Hardware advances merely make new software 
solutions feasible, so software size and sophistication offset hardware improvements.  
There is nothing wrong with using more powerful hardware to meet performance 
requirements, but SPE suggests evaluating all options early, and selecting the most 
effective one.  Thus hardware may be the solution, but it should be explicitly chosen – 
early enough to enable orderly procurement.  SPE still plays a role. 

The following sections examine research progress on SPE tasks and on tools that 
facilitate them. 

5.1   Performance Risk Assessment 

There has been a significant amount of research in software risk assessment, but little 
of it specifically addresses performance risks. Performance risk assessment 
determines both the probability that a performance failure will occur and projects its 
severity, that is, the cost of that failure. This information can be used to make a 
business case for SPE. Initial work in this area is reported in [134]. It is difficult to 
collect this data because companies are reluctant to publish information about 
failures. More work is needed to establish a data bank of information about the cost of 
failures and their frequency.  

5.2   Workload Selection 

There was a significant amount of work in workload characterization for system 
execution models. Early work measured computer resource usage of existing software 
and applied a clustering technique to formulate homogeneous workloads [34, 47]. The 
challenge was to forecast future workloads for software in development. Today the 
UML has facilitated the identification of use cases and their scenarios. Interaction 
with users helps to identify the performance scenarios to be represented in the SPE 
models. There is little additional research needed in this area. Perhaps an expert 
system could assist developers and users in identifying the performance scenarios 
automatically. Perhaps analysis of measurements of the deployed system could help 
performance analysts determine if the original models need to be updated to reflect 
newer usage patterns.  

5.3   Performance Requirements 

Sometimes the performance requirements are clear, as in reactive systems where 
factors in the outer system determine deadlines for certain types of responses. In 
systems with human users they are rarely clear, because satisfaction is a moving 
target. As systems get better, users demand more of them, and hope for faster 
responses.  
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In most systems there are several types of response, with different requirements. 
Users can be asked to describe performance requirements, to identify the types and 
the acceptable delays and capacity limitations. An experienced analyst must review 
their responses with the users, because they may be unnecessarily ambitious (and thus 
potentially costly), or else not testable. This review may have to be repeated as the 
evaluation proceeds and the potential costs of achieving the goals becomes clearer. 

Experience in defining performance requirements is not well documented, however 
it seems clear that they are often not obtained in any depth, or checked for realism, 
consistency and completeness, and that this is the source of many performance 
troubles with products. One problem is that users expect the system to modify how 
they work, so they do not really know precisely how they will use it. Another is that 
while developers have a good notion of what constitutes well-defined functional 
requirements many are naive about performance requirements. 

Research is needed on questions such as tests for realism, testability, completeness 
and consistency of performance requirements; on methodology for capturing them, 
preferably in the context of a standard software notation such as UML, and on the 
construction of performance tests from the requirements. 

5.4   Performance Models 

There has been much research on various facets of SPE models [126]. Recently 
researchers have concentrated on automatic translation of UML models into a 
performance model. The establishment of a standard for annotating UML diagrams 
with performance specifications has facilitated this approach [76]. This work is 
described later. 

Performance modeling is a fairly mature area. Recent advances in automatic 
translation make it easier for developers to construct and evaluate their own models. 
Research is needed that will help them identify critical parts of the software and focus 
on simple models of those parts, particularly for complex distributed systems. 

5.5   Resource Requirements 

The software execution structure is relatively easy to translate into a model. Obtaining 
specifications for resource requirements such as for CPU time, disk operations, 
network services and so forth, is still a stumbling block. The UML standard is a start 
[76], but it gives no guidance to developers on how to obtain the values to specify.  

There has been considerable experience with estimation using expert designer 
judgment [105, 122], and it works well provided it has the participation (and 
encouragement) of a performance expert on the team. Few designers are comfortable 
in setting down inexact estimates, and on their own they have a tendency to chase 
precision, for example by creating prototypes and measuring them. Nonetheless the 
estimates are useful even if they turn out later to have large errors, since the 
performance prediction is usually sensitive to only a few of the values. 

Parameter estimation is an important area, yet it is difficult to plan research that 
will overcome the difficulties. Systems based on re-using existing components offer 
an opportunity to use demand values found in advance from performance tests of their 
major functions, and stored in a demand database. 
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5.6   Model Solution Technology 

In the early days of SPE evolution, a key issue was the need for fast model solutions. 
Much of the early model research was on approximate analytic solutions for complex 
systems. The speed of today’s processors makes simulation solutions viable for a 
large class of models. Today, analytic solutions still play an important role in the 
analysis of software systems. There is no need to run a detailed simulation to get 99% 
confidence in the results when early design data estimates are imprecise. Serious 
flaws in architectures and designs can be detected and corrected with relatively simple 
models [133]. 

The advent of distributed systems, Web-based systems with heavy tailed 
distributions, and systems with QoS concerns such as loss and jitter challenge the 
modeling power of QNMs and their analytic solutions. While it is possible to solve 
these models with simulation methods, it is desirable to also use some quicker, 
simpler techniques for identifying and resolving problems. 

There is a great deal of research in this area. Much of it is presented at the meetings 
of the Workshop on Software and Performance (WOSP). The challenge is to cast the 
results into a framework that is amenable to technology transfer to users who do not 
have extensive formal performance modeling skills. For example, less skilled users 
cannot effectively select from among “one of a kind” models customized to a narrow 
problem. They need a general approach that applies to a wide variety of problems. 

5.7   Evaluate Results 

If the model shows that the performance is unsatisfactory, analysts interpret the 
results to identify the source of the problems, then identify and evaluate alternatives. 
If the requirements are not met, the analysis will often point to changes that make it 
satisfactory. These may be changes to the execution platform, to the software design, 
or to the requirements.  

Performance antipatterns characterize common software architecture and design 
problems and their solutions [121, 122, 124]. Changes to the software implementation 
may either reduce the cost of individual operations, or reduce the number of 
repetitions of an operation, as described in [122] 

To diagnose system-level changes one must trace the causes of unsatisfactory 
delays and throughputs, back to delays and bottlenecks inside the system. Sometimes 
the causes are obvious system-related problems, for example a single bottleneck that 
delays all responses and throttles the throughput. Sometimes they are subtler, such as 
a network latency that blocks a process, making it busy for long unproductive periods 
and creating a bottleneck there. Examples are given in  [31, 105, 122]. 

If the bottleneck is a processing device (CPU, network card, I/O channel, disk, or 
attached device of some kind) then the analysis can be modified to consider more 
powerful devices. If the cost of adapting the software or the environment is too high, 
one should finally consider the possibility that the requirements are unrealistic and 
should be relaxed. 
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5.8   Model Verification and Validation 

Both verification and validation require measurement. In cases where performance is 
critical, it may be necessary to identify critical components, implement or prototype 
them early in the development process, and measure their performance characteristics. 
The model solutions help identify which components are critical. 

There are some technical issues with validating the solutions to simulation models, 
such as confirming that the simulation run length is adequate. The primary concern 
for SPE models is model verification: whether the model parameters for non-existent 
software are sufficiently precise. This is not currently an active research area. If the 
modeling and analysis is to be conducted by developers rather than modeling gurus, 
however, we need to automate more of these tasks. Some of the associated 
measurement issues are discussed in the next section. 

5.9   Facilitating SPE tasks 

This category of research is aimed at making the task of conducting SPE easier. 
Several problems are described, and some preliminary work in these areas is 
reviewed. 

5.9.1   Model Interchange Formats 
A performance model interchange format (PMIF) is a common representation for 
system performance model data that can be used to move models among modeling 
tools [113, 118].  A user of several tools that support the format can create a model in 
one tool, and later move the model to other tools for further work without the need to 
laboriously translate from one tool’s model representation to the other.  

PMIF provides a common ground that all tools may use as an interface. Without it 
two tools would need to develop a custom import and export mechanism. A third tool 
would require a custom interface between each of those tools resulting in a 4· ( N! / 
(2!(N-2)!))  requirement for customized interfaces. With PMIF, tools export and 
import with the same format so only two customized interfaces (per tool) are required. 

Work in this area began with the introduction of PMIF [113, 118] and a meta-
model defining information requirements for SPE [132]. XML implementations were 
created for them in [109, 110]. A considerable amount of other work has addressed 
interchanges from UML to various types of performance models, such as [6, 30, 42, 
43, 141]. Supporting tools were also developed, such as a PMIF semantic validator 
and Web Services to make the tools easier to use [39, 89].  

This is an active and exciting area of research.  One notable challenge in going 
from UML to S-PMIF is that the translated model is far more detailed than desirable. 
Performance models should abstract the essence of the processing details so that it is 
easier to analyze and evaluate the results. In general, many of the processing steps in 
an automatically generated model are not interesting from a performance standpoint, 
and the extra steps tend to “clutter” the model. This is a departure from the simple 
model strategy described earlier. In cases where the model is relatively small, as in 
early design stages, it may be easier to just create a new model and omit those details 
initially. Some techniques for “pruning” an automatically generated model would 
make it better suited for SPE.  
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5.9.2   Measurements for SPE 
While there are numerous tools for measuring performance characteristics of 
computer systems, there are still some limitations in conducting measurement studies 
for SPE: 

• Software is often developed on a different platform that it is deployed on, so 
measurements on the development platform are not indicative of the final 
performance, so problems may go undetected until late in development.  

• It is sometimes difficult to measure the target platform. For example, high traffic 
systems may not tolerate the perturbation of measurement tools, and some reactive 
process control systems do not have measurement tools available. 

• Functional test data is seldom representative of performance workloads. Either the 
volume of work is not representative, or the content used to test functionality does 
not reflect the key performance scenarios. 

• Most tools are intended for system performance management, and it is difficult to 
get fine-grained data on software performance. 

• It is seldom possible to get the SPE data from one tool, so the experiments to 
collect data require a great deal of work to coordinate the tests and the tools, then 
to interpret the data. 

 

Since all modeling tools need similar data, it would be nice to agree on some 
standard specifications, e.g., data requirements and XML tags, and have measurement 
tools export the desired data in this format for automated use in various modeling 
tools. Model interchange formats are a good starting point because they specify the 
data needed for SPE. The specifications should address not only model creation, but 
also model validation. 

5.9.3   System Specific Guidance 
There has been work that provides guidance for developers of specific types of 
systems. It describes the particular problems in developing those systems, how to do 
the modeling and analysis, and advice for avoiding typical problems in those systems. 
Representative examples are in [31, 71, 93]. More work of this type would help new 
SPE practitioners. 

5.9.4   Architecture Assessment 
Many performance problems are introduced at the time the software architecture is 
selected. This problem has been addressed by defining a “packaged solution,” known 
as Performance Assessment of Software Architectures (PASASM) [133]. It specifies 
the steps to be conducted for an architecture performance assessment so that it is more 
likely to be conducted and thus prevent serious problems from occurring. 

5.9.5   Software Process Integration 
The best SPE successes are achieved when the analysis steps are part of the software 
development process [53, 92, 123]. An informal description of how to integrate these 
steps with the Rational Unified Process (RUP) is in [122]. It still requires that the 
steps be customized to each development organization. There is usually a separation 
between the technical experts in performance engineering and the process specialists 
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in the software development organization. This hinders the close integration of SPE 
with development, and thus makes it less likely that the steps will be conducted. 

5.9.6   Tools 
Both research and development will produce the tools of the future.  We seek better 
integration of the models and their analysis with software development and 
measurement tools. Ideally, developers should create and evaluate their own models 
(rather than interfacing with performance specialists to have them built). Then 
software changes would automatically update prediction models. Simple models can 
be transparent to designers – designers could click a button while formulating designs 
and view automatically generated predictions. Expert systems could automatically 
suggest alternatives. Visual user interfaces could make analysis and reporting more 
effective. Software measurement tools could automatically capture, reduce, interpret, 
and report data at a level of detail appropriate for designers. They could automatically 
generate performance tests then automate the verification and validation process by 
comparing specifications to measurements, and predictions to actual performance, and 
reporting discrepancies. Each of these tools could interface with an SPE database to 
store evolutionary design and model data and support queries against it. 

While simple versions of each of these tools are feasible with today’s technology, 
research must establish the framework for fully functional versions. Scenarios in 
object-oriented development tools are close to software execution models, and 
automatic translation for them is viable. A key problem with the translation approach 
is that development tools currently do not collect data, such as resource requirement 
specifications, that is essential for performance model solutions. Further research is 
needed to identify viable ways of providing this information, such as with expert 
systems, using analogous systems, etc. Other research questions are: How should 
performance models integrate with program generators – should one begin with 
models and generate code from them, or should one create the program and let 
underlying models select efficient implementations, or some other combination?  
How can expert systems detect problems?  Can software automatically determine 
from software execution models where instrumentation probes should be inserted?  
Can software automatically reduce data to appropriate levels of detail?  Can software 
automatically generate performance tests?  Each of these topics represents extensive 
research projects. 

5.10   SPE Methods  

SPE methods should undergo significant change as its usage increases.  The methods 
should be better integrated into the software development process, rather than an add-
on activity.  SPE should become better integrated into capacity planning as well.  As 
they become integrated, many of the pragmatic techniques should be unnecessary 
(how to convince designers there is a serious problem, how to get data, etc.).  The 
nature of SPE should then change.  Performance walkthroughs will not be necessary 
for data gathering; they may only review performance during the course of regular 
design walkthroughs. The emphasis will change from finding and correcting design 
flaws to verification and validation that the system performs as expected. The process 
in Figure 1 currently specifies steps to be conducted by performance specialists. The 
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methods should evolve to empower developers to conduct their own SPE studies. 
Additional research into automatic techniques for measuring software designs is 
needed, for calibrating models, and for reporting discrepancies. 

6   Summary and Conclusions 

There has been a tremendous amount of research in the SPE field since it was first 
proposed as a discipline in 1981 [99]. This paper reviews the origins of SPE. It then 
summarizes the steps in the SPE process and the guidelines for creating responsive 
systems. It illustrates the SPE process with a case study. It then reviews recent 
research in the context of the steps in the SPE process, and other research that 
facilitates the SPE tasks. 

This brief overview shows that there has been a great deal of progress, particularly 
in the modeling and analysis areas. There is still much more work to be done to make 
the tasks quicker and easier, to make SPE more accessible to software developers 
rather than requiring modeling gurus, and to make SPE more likely to be adopted and 
used in development organizations. Some of the problems could be resolved by 
making some changes in the way software performance is taught in universities. 

Research challenges for the future are to extend the quantitative methods to model 
emerging hardware-software developments, to extend hardware-software 
measurement technology to support SPE, and to develop interdisciplinary techniques 
to address the more general definition of performance.  The challenges for future 
technology transfer are to integrate SPE with software engineering process and tools, 
to shorten the time for SPE studies, to automate the sometimes-cumbersome SPE 
activities, and to evolve SPE to make it easy and economical for future environments. 
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Abstract. The extraction of a performance model from an annotated software 
design is largely a matter of taking maximum advantage of the annotations. A 
serious issue is the fact that a design document directed to producing a product 
may not be the most convenient for annotation for any given evaluation; there 
may be a problem to capture the necessary information within the context of the 
document, without modifying it to clarify the performance concern. Sometimes 
such a clarification can be of value, but in general we do not wish to disturb the 
design, just to add the evaluation information. Approaches to using the 
SPT/MARTE annotations to capture important performance features are 
described in this paper. Features include completions of the design such as 
platform operations, composition of component submodels, four uses of state 
machine definitions, and four ways to describe communications costs and 
delays. The relationship of the annotated design model to the different kinds of 
performance model is also addressed. 

1   Introduction 

The evaluation of engineering designs for different kinds of properties is a natural 
step, but it is only now beginning to be practical for software designs. With the 
emergence of a widely accepted design notation, in the UML (Unified Modeling 
language), performance evaluation can be based on annotated UML designs. This has 
been supported by a standard profile SPT (Schedulability, Performance and Time) 
[35]. SPT is currently being updated for UML2, and expanded in scope. The planned 
profile MARTE (Modeling and Analysis of Real-Time and Embedded Systems [36]) 
will also describe real-time platforms.  

In these profiles performance is just one evaluation concern. A second is 
schedulability, and in future a broad range of evaluations (space, power, reliability, ...) 
is envisioned. The present discussion is confined to performance concerns. 

The general approach to evaluation is to convert the annotated design to a 
performance model, and to feed the performance results back to the designer, using a 
tool chain like that shown in Figure 1. 

This tutorial is directed towards both performance engineers and software 
engineers who wish to assist in the evaluation of software designs. It shows how the 
design annotations can be applied to capture performance concerns, and their 
relationship to the resulting performance model. It assumes basic background in 
performance modeling. 
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Fig. 1. Tool chain for performance evaluation  

We consider evaluation based on a real design model which will quite possibly be 
used to generate code. There are various ways a design model can be constructed to 
make performance evaluation easy, particularly by representing the system at the level 
of abstraction appropriate for the evaluation. However design models are typically at 
a lower (finer) level of abstraction, and some selection and aggregation is necessary to 
obtain a performance model that will scale, and that does no need a huge number of 
parameters. Thus, the software model is not constructed to make evaluation easy. In 
fact evaluation may be impossible, without adding descriptions of the workload and 
the execution platform and environment. One of our concerns is to identify what must 
be added: in general we will call this the performance completions.  

To be usable, the evaluation method must include: 

• performance completions which are easy to add, and do not interfere with the 
design process 

• a performance model used for the evaluation which is produced quickly, without 
a need for performance expertise in the designer, 

• performance results which can be traced back to the design. 

This points to automated production of the performance model, as indicated in the 
architecture of Figure 1. 

1.2   Annotations 

Annotations are applied as stereotypes to elements of the software specification, that 
is to diagram elements. The stereotype indicates that the element, which has a role in 
the functional specification, also has a role in the performance specification. 
Performance properties are indicated by properties of the stereotype (tagged values in 
UML1.x), which are written as a property (tag) set equal to a value. Figure 2 shows a 
stereotype (Pstep) which defines the CPU execution demand (hostDemand) of a 
function executed by Server. 

The annotation is attached to the message, or method call, from Caller to Server; it 
could equally be applied to the vertical rectangle on the Server lifeline, which is 
called an ExecutionOccurrenceSpecification (ExecOccSpec) in UML2. 
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Caller Server

<<Pstep>>{hostdemand=2 ms}
()1: 

2: 

 

Fig. 2. A performance annotation on a UML sequence diagram 

1.3   Purpose of This Article 

Our purpose here is to describe how to use the SPT and MARTE profiles for 
performance evaluation, and to discuss issues: 

• the relationship of the design model to the performance model 
• annotation for different styles of specification, and different patterns of behaviour 
• how to represent important features like communications 
• the essential completions needed for evaluation 
• alternative cases of the analysis. 

For brevity the source design model will often be written DM, and the target 
performance model, PM. 

1.4   A Caveat on the Profile Definitions 

The examples in this paper show a lack of consistency in the profile notations used. 
Examples have been taken from work done over time, during which the standards, 
and the proposed notations for MARTE, have gradually changed. Thus the 
performance annotations for SPT were originally prefixed PA when it was first 
accepted, but they were changed during final revisions to P only, while a new policy 
at OMG means that in MARTE the prefix will be pa. The MARTE annotations are 
presently in flux, and examples show considerable differences. It is hoped that the 
intent will be clear in each case. 

This paper concentrates on the principal concepts, and does not provide a complete 
guide to either profile. 

1.5   Literature on Non-UML DMs and Performance 

The previous work can be characterized along two axes: the form of the design model 
(DM), the form of the performance model (PM). We will mention six forms of 
performance model: 

• QN: queueing network 
• EQN: extended queueing network 
• LQN, layered queueing network, a structured form of EQN 
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• PN, petri net or similar token-based state model 
• SPA, stochastic process algebra 
• simulation. 

 

UML is relatively recent as a specification language, and annotated specifications for 
performance began earlier with the Execution Graph model described in Smith and 
Williams [45], and its translation into a queueing or extended queueing network 
model (QN/EQN). Use Case Maps are a general scenario specification technique, to 
which performance annotations were added by Petriu, Amyot and Woodside [18] with 
automated creation of performance models described in [17] and a case study of 
requirements engineering in [39]. A considerable body of work has been done on 
performance modeling from specifications in SDL, of which representative examples 
are by Bozga et. al. [6], and Mitschele-Theil and Muller-Clostermann [16]. 

1.6   Literature for UML and Performance 

For UML models, Pooley [21] gave an overview of performance and software in 
which he described the general concept of annotated UML, with a Petri net PM as an 
example. Schmietendorf and Dimitrov gave another overview of the issues in [23]. 

Queueing models (QNs) have been produced mostly from UML Sequence 
Diagrams. Cortellessa and Mirandola adapted Smith’s execution graphs to UML in 
[8] to generate QNs, and Alsaadi described an application in [1]. An early example of 
annotations with SPT, with manually derived layered queueing networks (LQNs), is 
in [20] (Petriu and Woodside). This work showed how to interpret the SPT 
annotations, and was extended by Xu et. al. to exploit the model for performance 
improvement in [25]. Sequence Diagram translation was addressed by Kahkipuro, 
into a layered queueing model [12]. Cortellessa et. al. extended [8] to a complete 
methodology leading to LQNs in [9]. Automated translation to QNs was described for 
modeling mobile devices by Pustina et. al. in [22]. Balsamo and Marzolla described 
the use of translated UML specifications, for architecture evaluation [3]. 

Automated production of a PN was described Petriu and Shen in [19], using graph 
grammar tools to produce a layered queueing model from activity diagrams. 
Conversion of Sequence Diagrams and State Machines to PNs was done by Lo'pez-
Grao, Merseguer, and Campos [13] using the compositionality capabilities of labeled 
Stochastic Petri Nets and by Cavenet et al [7] (to the SPA PEPA-nets) using the 
compositionality of those nets. Hillston and Wang solved these models by simulation 
in [10]. 

Woodside et. al. addressed the problem of translation to multiple types of 
performance model (QN, LQN, and PN) in [24]. Simulation models which follow the 
software structure rather than any particular modeling formalism were generated by 
Bennet et. al. in [4]. 

1.7   Abbreviations and Acronyms 

To make the text less cluttered by long names, a number of acronyms and 
abbreviations have been used besides DM and PM: 
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AD Activity diagram in UML 
CSM Core Scenario Model (sec 2) 
DD Deployment diagram in UML 
DM Design model (e.g. in UML) 
ExecOccSpec ExecutionOccurrenceSpecification ( in a SD) 
LQ, LQM Layered queueing, Layered queueing model for performance 
MARTE Modeling and Analysis of Real time and Embedded Systems, 

project for an extension and update of SPT [36]. 
NFP Non-Functional Property (performance properties in MARTE) 
PM Performance Model (a QM, LQM, or PNM) 
PN, PNM Petri net, PN model for performance (stochastic or timed PN), 

including similar token-based state models 
QM Queueing model for performance 
QVT Queries, Values and Transformations standard [37]. 
SD Sequence Diagram in UML, Interaction diagram. 
SM State machine in UML 
SPA Stochastic process algebra PM. 
SPT Schedulability, Performance and Time standard profile [35] 
UML The Unified Modeling Language [41] 

2   Relationship of Design Models and Performance Models 

2.1   Working from Designer Specifications 

A DM is more or less suitable for performance analysis depending on the designer’s 
style and preferences. The coverage of the model that is possible in the PM will 
depend to some extent on the richness of the DM. Adaptation to a less-than-ideal DM 
is part of the use of the annotations. 

2.1.1   First: Components and Code 
A bare-bones software design must at least define the components and their interfaces 
in a Class diagram (Figure 3a). Then code fills in the functional details to create the 
product. Behaviour, including the relationships between components, is expressed 
only in the code. A performance model cannot be created from such a design 
definition; it must first be enriched in various ways. (This is in fact a significant 
barrier to evaluation.) A performance evaluation requires further enrichments, as well 
as quantitative annotations as illustrated in Figure 2.  

The main annotations are  

• resource demands (execution resources, called hostDemands, and demands for 
operations by non-CPU resources), and  

• behaviour prameters (loop counts and probabilities of sub-paths) 

A bare-bones Class design can be annotated on the operations of the classes, so show 
how one operation calls another. By itself this does not show how different instances 
of the class behave, so it is only adequate if all instances require the same annotations.  
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Fig. 3. Design models of varying richness 

2.1.2   Enrichment (1): Add Architecture (Figure 3b) 
An architecture model adds relationships between components (e.g. box-connector 
diagrams). The connectors may identify multiple kinds of interactions between the 
same pair of components. This can be described in UML by a CompositeStructure 
diagram with the component notation of required and provided interfaces. 

The different kinds of invocation of a component (say, component B) may trigger 
quite different behaviour. We will call these services. An example is the invocation of 
a read on a database, versus an update. Each kind of invocation of component B will 
be said to trigger a corresponding service (say, service B1) by the component. An 
additional enrichment of the architecture definition is to identify the further 
interactions that are part of service A1, with other components and services. Such a 
definition gives a call hierarchy of services in the system. 

Again, annotations applied to a CompositeStructure diagram apply to classes, with 
the restriction that they imply that they have the same values for all instances. To deal 
directly with instances we must consider UML Collaborations, in which instances 
take roles and execute behaviour. Collaboration diagrams do not show operations, so 
annotations must be applied to behaviour. 

2.1.3   Enrichment (2): Add Behavior (Figure 3c) 
Designers often specify the significant behaviour of the system by three kinds of 
UML diagrams. Interactions (as in Figure 2c) show the sequence of interactions and 
operations in a set of collaborating roles. Activities show sequences in a different 
way, and are meant to be more abstract. State Machines show the behaviour of a 
single class and define the part taken by one participant. All three of these behaviour 
styles may be interpreted as Scenarios in SPT and MARTE, so we will consider 
Scenarios.  

In a Scenario, a Step is an action by the system, possibly just an execution on a 
host. A Scenario is a sequence of steps with a single starting point, generalized to 
include branching and forking of the sequence. A Step can be refined as a Scenario. A 
primitive Step (called in MARTE an ExecStep) executes on a host processor called an 
ExecHost, which must be identified by deployment of the process which executes the 
Step. The annotations will be treated next. 
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2.1.4   Enrichment (3): Add Execution Resources and Workload 
The execution resources are processors which run the software processes, which 
execute the Steps. Processors are identified by deployment. 

Deployment is a major source of variation in software designs, and evaluation must 
often cover multiple deployments. In that case the binding of software components to 
processors must be parameterized, and is better done outside the DM.  

The execution of code on a host processors is given by its hostDemand, usually 
stated in terms of processing time. If we know the host demands of the Steps, we can 
derive the host demands of a single execution of a Scenario by addition. 

The Workload is a completion that is not part of the design, but is a part of the 
evaluation. The commonest forms are an arrival process (open arrivals) at a given 
rate, or a closed workload with a given population of users. 

2.1.5   Enrichment (4): Add Logical Resources 
“Logical resources” in this tutorial will stand for a wide range of software 
mechanisms that are used to protect execution paths and storage operations. These 
resources will be thought of as logical tokens that must be obtained by the program in 
order to proceed with an operation. Examples of logical resources include: 

• a process thread pool is a resource with multiplicity equal to the pool size. 
• buffer pool 
• semaphore or mutex, usually a resource of multiplicity 1. 
• admission control token pool. 
• lock. An exclusive lock is a resource of multiplicity 1. 

From our point of view a logical resource is any mechanism which can delay the 
program in order to allocate a token to it, based on the availability of tokens which are 
neither created nor destroyed. The delay may involve queueing, or retrying by the 
program. A process resource is a particularly common form of resource, and all 
execution is done in the context of a process. 

A scenario with logical resources can be represented by a scenario metamodel for 
performance, called the Core Scenario Model (CSM) [40]. Steps are represented in 
sequence, with connectors for branch (or-fork), merge (or-join), fork and join. Figure 
4 shows a CSM model for a specification that will be described later. The Steps are 
rectangles, linked by sequential connectors which are fat arrows, and there is one fork 
connector. Resource acquisition and release steps are explicitly placed in the scenario, 
and associated with their resources. Four kinds of resources are shown in Figure 4: 
Processes, (shown as squares labeled “Component”), a passive resource “Buffer” (a 
rounded square), an external operation resource (to be discussed), and host processors 
(circles). Host processors are not acquired and released explicitly because that is too 
fine-grained a behaviour to model, but each Step is associated to a host through its 
Component.  

The acquisition and release of resources must satisfy certain constraints when paths 
branch or fork. When they branch, only one path is taken so each path begins with the 
same resource context, however the different branches may change the context in 
different ways by acquiring and releasing resources. The resources held on all 
subpaths should be the same at the following merge, however. 
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Fig. 4.  The Core Scenario Model for the Video Capture Scenario discussed below [40] 

At a fork, all the successor paths are taken concurrently, and to retain exclusive 
access a resource must be explicitly passed to one of the paths. At a fork, the current 
process resource is forked also, and each branch obtains a copy without (by 
assumption) having to acquire it by a request. 

At an end-point of a system scenario, all resources are released. However at an 
end-point of a nested behaviour, nested for instance within a Step, they are retained 
and kept for the outer scenario.  

2.1.5.1   Nested pattern of resource usage. Resources can be acquired and released in 
any order. Nonetheless, it is well known that acquiring multiple resources in an order 
prescribed by a global ordering of resources, and releasing them in the reverse order 
to their acquisition, avoids resource deadlock (for locks, this is called a “global 
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locking order”). The result is what we will call nested resource usage, since for any 
pair of resources held simultaneously one is acquired earlier and released later, than 
the other. This is illustrated in Figure 5.  

In the nested case the resource context (the set of resources held by the program at 
any point in time) grows and shrinks in a particular way. If the resources in the 
context are ordered in the order they were acquired, it is always the last one that is 
released first.  
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CompB context
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CompB
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doA
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Fig. 5. Illustration of resource context: sequence diagram on left, CSM on right [40] 

The global ordering referred to above ensures that all of a concurrent program’s 
ordering of acquisition are compatible. This order also establishes an order of layers 
of resources that can be used to construct a Layered Queueing Model (LQM). This is 
a special simple canonical form of Extended Queueing Network, which can be solved 
by analytic approximations that take advantage of the layered structure (or 
equivalently, of the nested resource behaviour). 

2.1.5.2   Logical Resources and Extended Queueing (EQNs). Extended QNs (see, e.g. 
[27][33]) are approximations for systems without exact solutions. Logical resources 
map directly to servers in EQN which provide simultaneous Resource Possession.  

When resources are acquired and released in an arbitrary order, resource deadlock 
can occur. Extended queueing approximations can be constructed as described in [45], 
or a network model can be applied. Petri Net models, for instance, represent the states 
of execution and resources directly by tokens for each, and can represent any resource 
behaviour whatsoever. They can also be checked for deadlock. The choice of PM is 
discussed further below. 

2.1.5.3   Nested Resource Usage and Layered Queueing. Layered queueing [30] [31] 
[32][42] is a form of EQN in which the acquiring and release of resources is partially 
nested [51]. It compactly describes the interaction of many resources held in many 
different combinations, and has been applied to enterprise systems [40] and embedded 
systems [33]. 
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LQN model concepts are illustrated in Figure 6. Bold rectangles for WebServer, 
Database, Disk, and Net represent logical resources called “tasks” (labeled by a 
multiplicity), with attached rectangles for classes of service called “entries” (labeled 
with their CPU demand and an optional pure delay). Workload is initiated by the task  
User which cycles forever (implicit in that it receives no requests). Entries make 
requests to other entries, indicated by arrows labeled by mean numbers of requests. A 
blocking request (in which the requesting task or thread waits for the reply) is 
indicated by a solid arrowhead, and all requests in Figure 6 are blocking. 
Asynchronous requests are also possible. Tasks are hosted by devices indicated by an 
ellipse. Each task and processor has a queue. As with other extended queueing 
models, an LQN is solved by decomposing it into a number of queueing networks and 
iterating between them, or by simulation. 
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Fig. 6. A Layered Queuing Model of a Web application ***track06j 

In Figure 6 the User task represents N separate users and their browsers, each of 
which alternately sends a requests to the Web Server every Z s and waits for a 
response. The WebServer represents the server software, including the application, 
with M threads and processor WSProc. The entry RetrievePage serves the users, with 
CPU demand Sw ms, one network latency of 50 ms, and on average 0.4 database 
operations and 0.2 disk operations. The disk and the database are here defined as 
single servers with a queue, running on their own devices DBProc and DiskDev, with 
CPU demands of Sd and 15 ms, respectively. 

2.1.6   Enrichment (5): Add Completions 
Completions is a term used in [53] to describe elements that must be added to a 
software design to make it possible to evaluate it for performance. It includes the 
resource and workload related annotations described above, but also: 

• components or subsystems that provide system services that are invoked 
explicitly, such as database services, file services, directory services, and web 
services.  

• services that are executed by the software platform and not invoked explicitly. 
The software platform may include the operating system and network protocols, 
middleware, and network services,  

• indications which imply elements of either of the first two categories. 
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In a model-driven development approach, policies govern transformations to include 
platform elements in a design, and these policies could (in principle at least) be used 
to generate the corresponding completions. 

Completions can be incorporated into the analysis in two ways, essentially either 
by adding them to the UML model, or by adding a performance submodel that 
represents the effect of the completion. Both are useful. It is a question of composing 
a platform submodel which may be available at one level, or the other. Creating 
performance submodels for platform components relieves the effort and complexity at 
the UML level but reduces the flexibility to adjust the submodel to the system. 

A performance submodel is identified in the annotations by indicating requests 
made to an external operation, and these are described in section 3.7 below. 

2.2   Measures for Performance Quantities 

It is unusual for any kind of quantitative evaluation of a system to be done for single 
set of parameter values. Sensitivity to its parameters is one of the properties that is 
studied in an evaluation, and a great number of parameters may be varied. Thus it is 
essential to think of the performance analysis as being parameterized with variables 
for the parameters, rather than with point values. 

Performance measures for a system take a number of forms which are sometimes 
not clearly separated. Consider a response time for a certain operation: 

• the abstract definition of the response time measure identifies it with a 
certain start event and a certain end event, which begin and end the 
response. It has a name, say HomePageResponseTime. 

• there is a manifestation of the response time during the running of the 
system, which might be captured by instrumentation and recorded in a 
trace. this might be the value for the 31st response in a certain trace (say, 
trace T71). 

• there is a realized statistical property of the measure, over manifestations, 
such as the average value for trace T71, of the maximum value in the 
trace. 

• there is an expected value for HomePageResponseTime over 
manifestations, treating it as a random variable which occurs in the 
system. We will call this a theoretical statistical property. for the system. 
The variance is another such measure, the 95th percentile is another.  

o Note that the theoretical maximum value (if it exists) is the 
largest value that can ever occur. 

• there is another expected value for it as a random variable in a model of 
the system, which we will call a model statistical property. 

In performance analysis we are interested in various statistical properties rather than 
in manifestations.  

We may need to consider both model values and measured values; we will describe 
these by the source of the measure. Other sources for values may be assumptions, and 
requirements. To summarize, a performance measure has two modifiers, its source 
and its statistical property, with typical values: 
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source = { req (requirements) | est (estimation-by-model) | asmd (assumed) |    
meas (measurement) } 

statistical property = {mean | variance | stdDeviation | percentile(level:[0..100]) | 
max | median.....} 

 
To confuse things a little more, the same measure may also be described by a 

probability distribution (in theory, assumption or requirements) or by a histogram 
(found by measurement). One way to express this is to extend the list of statistical 
properties to include: 

 
               ... | distribution(shape, parameters) } 
shape = {histogram | exp | erlang | gamma | uniform | normal |....} 

 
The expression in SPT and MARTE follows these principles, but differ in the details. 

2.3   Design Abstractions and Performance Abstractions 

A performance model (PM) essentially describes how the execution of the design uses 
the system resources, at some level of abstraction. Based on the behaviour and 
execution resource demands a PM can be created, representing the state of execution 
of a single instance (which operation is being performed) and its transitions, and the 
time the operations take. With a workload definition, concurrent execution introduces 
contention at the hosts, and a queueing model follows, which represent the state  not 
only of the execution, but of its resource requests (waiting, using). With additional 
resources, an extended or layered queueing model is necessary. In the most general 
case it may be preferred to use a Petri Net model which can represent arbitrary 
combinations of execution state and resource state, and arbitrary resource operations. 
The PM abstractions thus are effectively aligned with the DM level of detail. 

From the above we see that the process of extracting a performance model can be 
reduced to two problems: 

• identify the operations with their host demands and sequence constraints, 
• identify their use of other resources, if appropriate. 

We will sketch in the relationship between the Scenario in the DM, and the constructs 
of the different PMs. 

2.3.1   QN from Annotations 
An ordinary QN represents requests for service by servers which correspond to 
processors or other hardware devices. The model is determined by the set of servers 
and the total demand for each server, plus the workload description for the arrivals. 

The processor demand parameters are calculated from the hostDemands of Steps. 
Some Steps are refined into sub-scenarios; only primitive Steps with no refinement 
(ExecSteps in MARTE) have processor demands. Suppose the ith ExecStep has host 
j=h

i
 and hostDemand d

i
. Then the set of total hostDemands D

k,j
 for host j in any 

segment k of the scenario is found by: 
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• from the behaviour, find y
i
 = mean number of times ExecSTep i is 

traversed in the segment, for all i 
• D

k,j
 = Σ{i | step i in segment k,  j = hi} di                                         (Equation 1) 

For a QN model, the Scenario segment k is the entire scenario, D
Scenario,j

 is the 

demand for the jth server, and the above calculation has a similar effect to the one 
used by Smith and Williams for reducing execution graphs in [45]. Further, if there 
are multiple scenarios to be combined in the operation of the system, two QN cases 
may occur: 

• each scenario that has a separate Workload becomes a distinct Chain in the 
model, with its own user population (class of users). 

• where scenarios form alternative behaviours initiated by a single Workload, they 
are combined as alternative paths within a single overall system-level Scenario. 
They can be modeled as separate classes of behaviour within a single chain. 

Multiple Scenarios which are initiated by a single class of users but are triggered in 
some particular sequence governed by a State Machine can be combined using the 
concept of a WorkloadGenerator, described below. The probabilistic path of the SM is 
first reduced to a mean number of invocations of each component Scenario, per client 
cycle, and they are then combined using the second option above to give a single 
composite response. 

2.3.2   LQN from Annotations and Structure 
For a LQN model, the structure is more complex. Each software process becomes a 
task, with entries for the operations carried out the process. The calls between entries 
are identified from the transitions between processes in the Scenario.  

HostDemands are totaled by process. For each process a Scenario segment in the 
sense of Equation 1 is determined by examining the resource context of the Steps. It 
includes those Steps with a resource context corresponding to execution of the 
process, which becomes a task in the LQM.  

Multiple top-level scenarios are treated similarly to the QN construction above. 
Scenarios with separate workloads each become a separate driver “task”, those which 
are alternatives for the same workload are combined as alternative requests from a 
single driver task.  

2.3.3   PN from Annotations and Structure 
A PN model constructs places with token pools to represent sources of requests such 
as users, and logical and physical resources. Each Scenario is represented as a 
sequence of PN places and transitions for the Steps, with transitions enabled by the 
user and by resource tokens where resources are acquired and released.  

3   Basic Annotated UML Interactions (Sequence Diagrams)  

We will now tour the performance annotations of SPT and MARTE in more detail. As 
in Figure 2, annotations take the form of stereotypes applied to software design 
elements. The version of MARTE annotations shown here is preliminary and by the  
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<<Presource>>

imageserver : Imageserver
{multiplicity = 1}

<<Presource>>
webserver : Webserver

{multiplicity = $M} 

<<Presource>> 
database : Database 

eb : EB

7: 

getListofSubjects4: 
<<Pstep>>{hostDemand = (1, ms) }

getCustomerName2: 
<<Pstep>>{hostDemand = (1, ms) }

getHomeImgs6: 
<<Pstep>> {hostDemand = (0.5, ms) }

8: 

3: 

5: 

<<Pstep>> 
<<PclosedLoad>> 

getHomePage 1: 

{hostDemand = 1.55, ms,source = asmd,statQual=mean ,
serviceDemand = network, $C,
externalDelay = (7, s), source=asmd, statQual=mean,
population = $N}

 

Fig. 7. A simple interaction diagram with annotations from SPT 

time you read this it is probably incorrect in details, but the concepts behind the 
annotations are mostly stable. Thus, this is not a guide to the precise use of MARTE, 
but to its concepts. 

3.1   SD with Workload (SPT) 

Figure 7 shows a sequence diagram for a user (represented by the emulated browser 
eb) interacting with a web server, which executes an application requiring database 
access. This is a simplified version of one of the interactions in the TPC-W 
benchmark specification, representing an on-line bookstore. It is annotated with 
stereotypes from SPT. 

In a SD, the interacting elements are shown by lifelines (the vertical dashed lines, 
labelled by the system element). Here they represent interacting processes which are 
stereotyped as resources (Presource). The execution of operations is indicated by the 
vertical rectangles over the lifelines, called in UML2 an ExecutionOccurrence-
Specification (which we will abbreviate to ExOccSpec). 

3.2   Combined Fragments 

UML2 provides “CombinedFragments” for combining subscenarios in many ways, 
e.g. as alternatives, in parallel, for a loop, and for a reference to an imported 
subscenario. Figure 8 shows the same scenario as Figure 7 with optional execution of 
the first part, and inclusion of a subscenario for a special promotion which is part of 
the benchmark. SPT annotations are still used although they do not strictly speaking 
apply to UML2. 
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[ ]
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Fig. 8. The GetHomePage scenario for the TPC-W specification (electronic bookstore) (as 
Figure 7, adding UML2 CombinedFragments for opt and ref) 

The argument of CombinedFragment is the portion of the behaviour which appears 
within it, and this can be stereotyped as a Step. Important types of fragment for 
performance annotation include: 

 

• opt, with a probability as shown 
• alt, with Step with its own probability for each alternative part 
• par, for Steps in parallel 
• loop, with a repetition count for the Step 
• ref, for a sub-scenario defined by another behavior (it may also have a 

repetition count if repeated) 

A step in parallel may or may not participate in the joining of the parallel paths, at the 
end of the par block. UML lacks a notation for this, so a special boolean attribute 
“noSync” is applied to arguments of par, which do not join. 
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webservereb This Step inserts the 
PromotionalProcess 
subscenario, just as a ref box
 would do.

This Step executes its 
operation on average 12.5 
times

<<Pstep>>
{behavDemand=(PromotionalProcess,1)}

<<Pstep>>
{repetitions=12.5,
hostDemand=(10)}

doPromo2: 

executeALoop3: 

4: 

1: 

 

Fig. 9. An explicit demand for an inserted subscenario, and illustration of repetition by 
annotation 

3.2.1   Explicit Demand for a Subscenario 
Sometimes a sub-scenario is needed when a ref block is not appropriate. An 
example which will be discussed further below is, to provide a sub-scenario for 
communicating messages between two processes on different nodes. Behaviour which 
is included in many places is efficiently captured this way. 

Figure 9 shows a reference to a sub-scenario within a Step, as a demand for 
inclusion of a behaviour. The demand can have a count parameter to describe repeated 
behaviour. It is intended to have the same semantics as a ref block, as far as 
inclusion within the scenario is concerned.  

3.3   Explicit Logical Resource Operations 

Logical resources representing software processes are implicit in the DM, but some 
logical resources must be represented explicitly, with their points of acquisition and 
release. An example is a buffer from a pool shared by concurrent threads or processes, 
managed by a concurrent buffer manager, and illustrated in Figure 10. The buffer 
manager is a logical process resource which must not be confused with the buffer 
pool. When the request returns from the manager it releases the manager resource but 
retains the buffer resource, as illustrated in Figure 11. 

To represent explicit acquisition and release, the operation is stereotyped to 
identify the resource and the number of units of the resource (such as the number of 
buffers requested). SPT provided annotations GRMacquire and GRMrelease, shown 
in the Figures, and MARTE has subtypes of Step paAcqStep and paRelStep to do the 
same. If they are applied to a behaviour entity which is also an ExecStep, an 
acquisition occurs before the ExecStep, and an release occurs after. 
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{resource=Buffer, resUnits=1}
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Fig. 10. A SD showing explicit acquisition, passing and release of a resource in a buffer 
retrieval/storage system 

An additional operation that affects resource contexts is passing a resource from 
one process to another. In order to capture this in all behaviour diagrams a stereotype 
<<paResPassStep>> is included in MARTE, also identifying the resource and the 
units. It is illustrated in Figure 10. 

The logical resource itself needs to be an object identified as a Resource with its 
units as a multiplicity attribute. 

3.4   Demand for “Services” Offered by a Separate Submodel  

To support component-based design, we wish to assemble a system scenario from 
already-developed subscenarios for a set of components. The components may either 
be product elements used by a “glue” program, or platform components incorporated 
in a transformation to a platform-dependent model (PIM to PDM) in model-driven 
development. In either case we assume the components already have annotated 
scenarios, connected to interface operations of the component. We will refer to the 
operations as its services. 
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Fig. 11.  Acquisition and release of resources, and resource contexts in CSM [40] 

In MARTE, to connect the interface operation to a defining scenario, it is 
stereotyped <<RequestedService>> with a property behaviorDefinition set to the 
defining scenario. The invocation of the interface operation by a Step is represented 
by a Step annotation servDemand:RequestedService, and servCount:Real for the 
mean number of operations. Figure 12 illustrates the use of a service of a component 
by a Step. 

<<paStep>>
{hostDemand=2.7 ms,
servDemand=readFile,
servCount=3.9}

1: 

 

Fig. 12. Step that uses a service readFile of a component FileSystem 

3.5   Service Hierarchy Annotation 

A subsystem that does not have any behavior specifications can still be annotated 
(proposed for MARTE) at the interfaces of components, effectively creating a graph 
of calls, with a workload for each operation. The Layered Queueing Network model 
illustrated in Figure 6 is a kind of representation for this graph. Each operation 
executes some host computation and makes some calls to other operations, and 
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quantities for these are annotated on the operation. Each operation can have the 
properties of a Step, including 

• a host demand 
• a set of demands for other operations 
• a set of demands for external operations 
• a set of demands for included sub-scenarios. 

Figure 13 shows an example for a FileSystem which invokes operations from two 
sub-processes Cache managing a cache, and FileServer managing the storage 
subsystem. The servDemand and servCount attributes are ordered to correspond, so 
the attributes mean that each readFile operation invokes one read from the cache, and 
in the case of a cache miss (specified as 3.5% probability) it also reads from the 
storage system. 

Cache

<<RequestedService>>+readFromCache()

FileServer

<<RequestedService>>+readFromDisk()

FileSystem

+readFile()

<<RequestedService>>
{servDemand=Cache,FileServer
servCount=1.0, 0.035

 

Fig. 13. Representing a call hierarchy within a component subsystem (in MARTE) 

With these annotations, any pattern of behaviours invoking services, services 
invoking services and services invoking behaviours can be captured.  

3.6   Entirely Structural Model 

Annotated operations can be applied to an entire system design which does not have 
behavior specifications. The workload can be attached to the top-level operation, and 
annotations can describe the call hierarchy between objects annotated on class and 
composite structure diagrams, with call behavior and execution demands for operations. 

There are limitations in annotating the classes, in that by default the annotations 
apply to all instantiations of the class. These may be different depending on the 
configuration of the instances, which UML accounts for by describing behaviour in 
different collaborations. Instances may also have different deployments. An approach 
to support annotation of class descriptions, by adding configuration and deployment 
information to the translation, is described below in Section 4.3. Here we shall assume 
that values can be resolved for instances as described there, and describe the 
conceptual basis of the annotations, and the production of performance models, on the 
assumption that. 
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It may be more difficult to estimate numbers within this approach because the 
number of demands for lower level services must be aggregated into one demand 
figure. This is exactly the role of the scenario analysis, to assist in the analysis of 
these demand counts. Nonetheless, if one can come up with the demands from one 
operation to another, the description can be constructed and the performance model 
can be extracted. And the demands correspond to behaviour of units of code which 
can be measured by profiling, which may assist capturing numbers for library 
subsystems. 

3.6.1   Queueing Model from Structural Parameters 
A queueing model is created by aggregating all the demands for each host. Consider 
RequestedService (operation) RSk, which has host demand dk and makes service 
demands. For the demand to RSk’, we denote the servCount parameter (the mean 
number of requests) as yk k’ . 

Denote by Dkj the total demand for host j created by one request to RSk. It is 
therefore the QN server demand, per invocation of RSk. If a class of users invokes 
RSk, these are the demand figures for that class in the QN model. 

Provided there are no loops in the recursion, Dkj can be found by summing over the 
requests made by RSk, and computing the sum recursively over all RSk in the 
specification: 

 

Dkj = [if(hk = j)] dk  +  S k’ yk k’ Dk’j  (Equation 2) 

3.6.2   Layered Queueing Model 
A LQN has a more direct relationship to the parameters of the RequestedServices. 
Each active object becomes a task, and each of its operations becomes an entry in the 
model. If all the annotations are operations of active objects, then the entry parameters  
for RSk are: 

entry host demand = hk 
entry call demands to the entry for RSk’ = yk k’ 
 

If part of the hierarchy belongs to a single process and RSk is one of the interface 
operations of that process, then for RSk  the entry host demand is found by applying 
Equation 2 above to the operations by objects within the same process only, and the 
entry call demands are found as follows.  

Let RSi be an interface operation of some other process, and let Yki denote the 
mean total calls to RSi for each invocation of RSk. Again assuming there are no loops 
in the recursion, Yki is found by summing the calls over the operations invoked by 
RSk, and computing the recursive values, as follows: 

Yki = yki + Σk’ in the same process ykk’ yk’i  (Equation 3) 

3.7   External Operations 

The need for external operations to represent platform components was introduced in 
Sec 2.1.6 above. They are operations which are not described in detail in the UML 
DM, but whose details have performance impact. 
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Table 1. Preliminary summary of annotations for this section 

Annotation Meaning Performance Model 
Significance 

«PClosedLoad» population, 
paRequestEventStream 
population 

concurrency of the 
workload 

population of a class of 
customers (QM, LQM); 
size of a customer token 
pool (PN) 

PClosedLoad externalDelay, 
paRequestEventStream 
externalDelay 

delay at the user think time 

OpenLoad arrivalRate, 
paRequestEventStream 
arrivalRate 

rate arrival rate 

Pscenario, 
gaBehaviorScenario  

top level: a system 
response 
nested: a structured 
unit of behaviour 

top level: behaviour of a 
class of customers 
nested: to be flattened 
into the total behaviour. 

Pstep, paStep   a part of a response defines part of the 
behaviour 

hostDemand of a Step execution requirement an increment to a device 
service time (for the host 
device for that Step) 
(QM, LQM 

Phost,  
paExecHost 

the Node which 
executes some Steps 

a server (QM); a 
processor resource 
(LQM); a resource token 
(PNM). 

Presource, grResource a logical resource of 
any kind 

a simultaneously-held 
resource (EQM); a task 
or software resource 
(LQM); a resource token 
(PNM) 

paProcess  a logical resource for a 
process thread pool 

as for Presource etc. 

paLogicalResource  a logical resource other 
than a process thread 
pool 

as for Presource etc. 

paRequestedService  a hierarchical unit of 
behavior associated 
with a subsystem and a 
separate specification 

part of the workload to 
be executed. 

This is a practical issue, which is manifested in well-developed modeling 
frameworks in libraries of submodels for well-known and often-reused components. 
In an environment for modeling enterprise systems, there could be submodels for 
database systems and commercial storage products, with parameters for their 
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configuration and for the way the subsystem is to be used (the database size, for 
instance). Having the submodel takes some of the effort out of modeling, and reuses 
important knowledge. 

A very relevant example is a model which captures the arcane details of the TCP 
protocol, which no one would wish to model in UML. An example of a LQM 
performance model coupled to a network simulation model is given in [50] (although 
it is not coupled using the profile annotation, but in the modeling environment). 

The external operations annotations in SPT and MARTE provide hooks directly to 
submodels such as these, by name. The annotations take the form of two attributes, as 
for a service demand: extOperation:String and opCount:Real). The annotation does 
not fully define the submodel, so the semantics of the included operation are left to 
the performance environment. 

3.8   Summary of Annotations and Their Significance 

To clarify the use of different annotations from SPT and MARTE in this section, they 
are summarized to in the following table. The prefix P is from SPT, and is sometimes 
seen as PA; the prefix pa, ga or gr is from MARTE. 

4   Parameterization  

4.1   Input and Output Properties and Parameters 

There are two kinds of quantities in any evaluation, inputs and outputs to the 
evaluation. A quantity identified as a performance measure in the annotations may be 
of either type. In general the input measures are: 

• behaviour parameters such as probabilities, and repetitions of Steps. 
• demand parameters both for host demands and demands for services and 

operations. 
• required values of performance measures such as delay and throughput. 

The outputs are performance measures estimated by the PM. The same quantity may 
appear with a required value as an input and an estimated value as an output, along 
with a judgment as to meeting the requirement. 

Parameters of an evaluation are not the same thing as input measures to the 
evaluation. Parameters are variables which govern the measures through expressions. 
When values are given for the input parameters, the input measures are determined, 
the evaluation can be carried out, and output measures are returned. 

4.2   Variables and Relationships 

It is not enough that an annotated value can take a symbolic value as a variable, it 
must also be possible to establish functional relationships. For example, several 
demand parameters may depend on a single parameter of an operation, such as the 
size of a data structure to be processed. We wish to specify one value for the size and 
have all the demand parameters adjust according to the relationship.  
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For an example we shall use the buffer capture/storage system sketched earlier in 
Figure 10, and repeated in Figure 14 with more extensive annotations [25]. There are 
five processes. VideoController cycles through the list of cameras, and in turn sends a 
procOneImage request to AcquireProc, a process which acquires one frame from the 
next camera in the cycle. AcquireProc gets a buffer from the BufferManager, fills it, 
and passes it to another process StoreProc which stores it in the database. Using a 
concurrent storage process is a performance optimization allowing overlap of the 
acquire and store operations; once AcquireProc has passed the buffer it goes to the 
next camera in the cycle. The system is thus self-timed, and the requirement is that it 
complete the cycle in one second, for 95% of cycles. There will be variations in 
operation times because the size of a frame (compressed) varies. The explicit passing 
of the buffer resource, which is shown in figure 10, is not shown here because it was 
not part of SPT. 

<<PAresource>>

Video
Controller

<<PAresource>>

AcquireProc
<<PAresource>>

BufferManager
<<PAresource>>

StoreProc

*[$N] procOneImage(i)

<<GRMacquire>>
allocBuf (b)

getImage (i, b)

passImage (i, b)

storeImage (i, b)

<<GRMrelease>>
releaseBuf (b)

freeBuf (b)

<<PAresource>>

Database
{PAcapacity=10}

writeImg (i, b)

getBuffer()

store (i, b)

<<PAstep>>
{PAdemand =(‘asmd’,
‘mean’, (1.5, ‘ms’)}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms))}

<<PAcontext>>

o

<<PAstep>>
{PAdemand=(‘asmd’,

‘mean’, ($P * 1.5, ‘ms’)),
PAextOp = (network, $P)}

<<PAstep>>
{PAdemand=(‘asmd’,

‘mean’, ($B * 0.9, ‘ms’)),,
PAextOp=(writeBlock, $B)}

<<PAclosedLoad>>
{PApopulation = 1,
 PAinterval =((‘req’,’percentile’,95,
                      (1, ‘s’)),
 (‘pred’,’percentile’, 95, $Cycle)) }

<<PAstep>>
{PArep = $N}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.5, ‘ms’))}o

o

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.5, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.9, ‘ms’))} <<PAstep>>

{PAdemand=(‘asmd’,
‘mean’, (1.1, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (2, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.2,’ms’))}

o

This object manages the
resource Buffer

o

 

Fig. 14.  The video buffer capture/store scenario from [25], Figure 4 
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In Figure 14 there are four parameters, shown with the prefix $ for parameters: 

• $N is the number of cameras 
• $Cycle is the time to poll all the cameras in a cycle, 
• $P is the number of network packets required to transmit one frame (one 

video image), 
• $B is the number of blocks on disk to store one frame. 

There is also a parameter in the deployment diagram Figure 16 below, 
• $Nbuf, the number of buffers in the buffer pool. 

The network operation for the frame is annotated as an external operation, carried out 
$P times, once per packet. The execution demand for the capture operation depends 
on $P (hostDemand, called here PAdemand, is 1.5* $P) and the execution demand for 
the storage operation depends on $B.  

The performance evaluation of this system reported in [25]examined the role of 
$Nbuf, and some features of the software design, in meeting the specification on 
$Cycle with the largest number $N of cameras possible. The specification is shown as: 

{PAinterval = (‘req’,’percentile’,95, (1,’s’)) 
which means the interval between successive initiations of the whole scenario 
(meaning, a cycle of all cameras) is required to be less than 1 second, in 95% of 
instances. Thus every camera is polled once every second, with 95% confidence. 

The performance evaluation found that with the design shown, asynchronous 
handoff of the buffer, and multi-threaded processes, 40 cameras could be supported 
and the limiting issue was the response time of the AccessControl rather than the 
VideoAcquisition. 

4.3   Parameters for Instances 

Certain UML types can only be annotated for classes and not for instances. In general 
UML assumes that it is classes that are being designed, and instances are only studied 
in typical behaviour and in collaborations. 

• Annotations on classes apply by default to all instances. 
• Annotations on behaviour apply to all instances that implement that 

behaviour (they apply to roles, not instances). 

Thus, if there may be multiple instances of a subsystem that implement the same 
classes (in the first case) or behaviours (in the second case), the UML annotation 
cannot differentiate them. Here we consider the case where they need to be 
differentiated, and suggest a workaround based on using variables for all the affected 
parameters, and instance values defined separately. 

The idea is quite simple: use variables or parameters that define the hostDemand, 
repetitions, probabilities, message sizes and other attributes that vary among 
instances, and tabulate the instances and their deployments outside the UML model, 
with concrete values for the variables. We can distinguish two cases. 

If the only difference is in the deployment and the speed factors (relRate) of the 
hosts, then the same behaviour diagram can be used for all, and only the deployment 
and rate information differs. Suppose that, in the video buffer capture system of 
Figure 14 we wish to have 
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• three separate video systems are to share the same database system, and  
• the process instances for VideoController, AcquireProc and StoreProc are 

subscripted 1,2,3,  
• they are all deployed on the same processor, for each subsystem. 

The nominal deployment of a single system is shown in Figure 16 below. Then for the 
three subsystems, the processor demands will be divided by the relRate values for the 
deployed processor. A table like the following could define the parameter values. 

 
Process Host, relRate 
 Video1 Video2 Video3 
VideoController PC1, 1.0 PC1, 1.0 PC3, 1.26 
AcquireProc PC1, 1.0 PC2, 1.74 PC3, 1.26 
StoreProc PC1, 1.0 PC2, 1.74 PC3, 1.26 

 
 

 

<<PAresource>> 
Video 

Controller 

<<PAresource>> 
AcquireProc 

 

<<PAresource>>

BufferManager 
<<PAresource>>

StoreProc 

*[$N] procOneImage(i) 

<<GRMacquire>> 
allocBuf (b) 

getImage (i, b) 

passImage (i, b)

storeImage (i, b) 

<<GRMrelease>> 
releaseBuf (b) 

freeBuf (b) 

<<PAresource>> 
Database 

{PAcapacity=10} 

writeImg (i, b) 

getBuffer() 

store (i, b) 

<<PAstep>> 
{PAdemand =(‘asmd’, 
‘mean’, ($Acq1, ‘ms’)}  

<<PAstep>> 
{PAdemand=(‘asmd’,  
‘mean’, ($Vid1, ‘ms))} 

<<PAcontext>> 

o 

<<PAstep>> 
{PAdemand=(‘asmd’, 

‘mean’, ($P * $Acq2, ‘ms’)),  
PAextOp = (network, $P)} 

<<PAstep>> 
{PAdemand=(‘asmd’, 

‘mean’, ($B * 0.9, ‘ms’)),,  
PAextOp=(writeBlock, $B)} 

<<PAclosedLoad>> 
{PApopulation = 1, 
 PAinterval =((‘req’,’percentile’,95,  
                      (1, ‘s’)), 
 (‘pred’,’percentile’, 95, $Cycle)) } 

<<PAstep>> 
{PArep = $N} 

<<PAstep>> 
{PAdemand=(‘asmd’, 
‘mean’, ($BM1, ‘ms’))}o 

o 

<<PAstep>> 
{PAdemand=(‘asmd’, 
‘mean’, ($BM2, ‘ms’))} 

<<PAstep>> 
{PAdemand=(‘asmd’, ‘mean’, 

($Acq3, ‘ms’))} <<PAstep>> 
{PAdemand=(‘asmd’, 
‘mean’, ($Acq4, ‘ms’))}  

<<PAstep>> 
{PAdemand=(‘asmd’, 
‘mean’, ($Stor1, ‘ms’))}  

<<PAstep>> 
{PAdemand=(‘asmd’, 
‘mean’, ($Stor2,’ms’))} 

o 

This object manages the 
resource Buffer 
 

o 

 

Fig. 15. Parameterized version of the video capture behaviour of Figure 14 
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If the differences among the instances are more severe, parameters can also be 
tabulated. If it is just the frame size that is different, or the number of cameras, the 
original Behaviour definition can be used, with parameter values for $P and $N 
included in the table. If every demand value is affected, every one can be replaced by 
a variable as illustrated in Figure 15, and they can all be tabulated. 

This approach can be extended to apply to SM behaviour, and to architecture-based 
annotations which are applied to classes. 

4.4   Parameter and Expression Syntax 

The expression of performance parameters is a challenge, since all values must 
include the source and statistical qualifiers described in section 2.2 and it is desirable 
to express quantities as variables, and as expressions in other variables. In SPT this is 
achieved by adding qualifiers to values, and by the use of a reserved for $name for 
variables (as in PERL), and a simple language called TVL (tagged value language) for 
expressions with the basic operators +-*/. 

In MARTE the qualifiers are retained and a more elaborate expression language 
called VSL, Value Specification Language, has been created, which allows functions, 
tuples, and interval values to be specified. These languages are too complex to define 
here. 

5   Annotation of AD/SM/DD 

The discussion in Section 4 has introduced the annotations for interaction diagrams 
(SDs), and how they relate to PM concepts. A complete description must include 
deployment information, which is applied to a deployment diagram (DD). Also, 
designers may choose to express behaviour in other ways, through activity diagrams 
(ADs) and state machines (SMs). To be sure of capturing the PM we must be able to 
annotate these also. 

The reason for the different behaviour definitions comes from slightly different 
purposes.  

• the SD expresses system traces at a certain level of abstraction. This captures the 
sequence of interactions, the messages between system elements. The lifelines of 
an SD represent system elements that interact. Using a recursive message (that 
activates a nested ExecutionOccurrenceSpecification, sequence internal to the 
element can also be expressed. 

• the AD expresses causality. From [38] p 307, “Activity modeling emphasizes the 
sequence and conditions for coordinating lower-level behaviors, rather than 
which classifiers [i.e., components or subsystems] own those behaviors. These 
are commonly called control flow and object flow models. The actions 
coordinated by activity models can be initiated because other actions finish 
executing, because objects and data become available, or because events occur 
external to the flow.” The partitions of an AD may be used to designate system 
elements, like a lifeline of a SD, and this is assumed in SPT/MARTE. However 
they can also designate abstract roles: “An activity partition is a kind of activity 
group for identifying actions that have some characteristic in common.” [38]  
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p 353. Therefore attention must be paid to the significance of an activity partition, 
in building PM from DM. 

• the SM expresses the logic of some pattern of behaviour. In SPT it was not 
mentioned, although SPT was applied to SMs in [5] and [7]; in MARTE SMs are 
included explicitly. The SM may represent the behaviour of a system element, or 
it may be more abstract, representing the collective state of some process. 

5.1   Deployment Diagrams (DD) 

The deployment diagram is required to establish the host processor for software 
elements, and to identify communications paths between them. In UML1 and SPT the 
DD shows objects allocated to nodes, as in this Figure for the buffer retrieve/store 
system of Figure 14: 

<<PAhost>>
ApplicCPU

<<PAresource>> LAN

VideoAcquisition <<PAhost>>
DB_CPU

Database

<<PAresource>>

SecurityCard
Reader

<<PAresource>>

DoorLock
Actuator

<<PAresource>>

Video
Camera

<<PAresource>>

Disk
{PAcapacity=2}

Video
Controller

AcquireProc

StoreProc

Buffer
Manager

AccessControl

Acces
Controller

<<PAresource>>
Buffer

{PAcapacity=$Nbuf}

 

Fig. 16.  Deployment for the buffer retrieve/store system of Figure 14 [25] 

In this diagram the  hosts are stereotyped PAhost, with a processing rate (relative to 
a standard host), and the deployment is indicated by components AccessControl and 
VideoAcquisition, with the processes inside. Only the buffer pool itself is stereotyped 
as a resource, since the four processes in VideoAcquisition are stereotyped in the SD 
of Figure 14. Note that the buffer pool resource Buffer is a separate resource from the 
BufferManager process... the process operates on the pool but is held only during its 
acquire and release operations, and not between. The pool has multiple units, defined 
as the variable $Nbuf, while the BufferManager is single-threaded to act as a critical 
section for the pool state. 

The AccessControl subsystem with its peripherals SecurityCardReader and 
DoorLockActuator will not be discussed here. 

In UML2, the semantics of the DD have changed to introduce the notion of 
artifacts, representing deployable files containing load modules and configuration 
data. They may be represented as above, or as in the following figure: 
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The connection between the artifact and the design objects must be established, and 
to simplify this MARTE provides a property of the paProcess annotation to identify 
the deployed artifact and thus (via the deployment association) the host.  

5.2   Activity Diagrams (ADs) 

The buffer system of Figure 14 is represented again in an AD as follows. Here the 
annotations use the MARTE NFP notation for quantities. 

 
<<structured>>
getOneImage

getImage

freeBuf

storeImage

cleanUp

passImage

getBuf

<<paCommStep>>
{commService='LAN', 
msgSize=(@frameSize, MB)}

<<paExecstep>>
{hostDemand=(@blocks*0.9, ms, 
statQual='mean'),
hostDemand=(@blocks*.2, ms, 
statQual=var)),serviceDemand=('writeBlock',(e
xpr=$blocks),(1)}

(Both mean and variance of the hostDemand 
are specified, using two NFP specifications.
WriteBlock is a service by a file server defined 
in the modeling environment)

<<paExecStep>>
{hostDemand= (0.5, ms)}
<<paRelStep>>
{resource=BufferPool, units=(1)}

<<paExecStep>>
<<paAcqStep>>

allocBuffer
{hostDemand = (0.5, ms),
resUnits = 1,
resource = BufferPool}

deallocBuffer

storeDB

<<paProcess>>
DB

<<paProcess>>
bufMgr

{multiplicity = 4} 

<<paProcess>>
Store

{multiplicity = 3}

<<paProcess>>
Acquire

{multiplicity = 2}

cycleInit

StartCycle 

<<paExecStep>>
{noSync=TRUE,
hostDemand=(2.5, ms)}

<<paStep>>
{rep=(@Ncameras)}

<<paAnalysisContext>>
{contextParams=(@Ncameras=100), comment = "number of cameras to poll),

 (@frameSize=0.1), MB, comment = "size of data from camera"),
 (@blocks=15), comment = "number of storage blocks per camera frame")}

<<paRequestEventStream>>
{population = (1),
extDelay = (0, s),
interval= 
((1,s, statQual=(percent, 95), 
source='req'), 
 (@cycletime95, s, est,
statQual=(percent,95)))}

<<paResPass>>
{resource = BufferPool,
resUnits = 1}

 

Fig. 17. AD for the buffer retrieve/store sytem 

Global parameters of the analysis have been defined, using a different prefix @ 
suggested for MARTE (since UML now uses $ for something else). The loop over the 
cameras is expressed here as an explicit StructuredActivity, the large rounded 
rectangle with a full activity definition inside it. The swimlanes are stereotyped 
paProcess to identify them with deployed processes. 
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Notice that in AD there is also an explicit fork connector, and the same is true for 
join, branch and merge. 

5.3   State Machine Diagrams (SMs) 

State Machine diagrams define a behavior for some entity or subsystem (not 
necessarily for a single component or object). We need to think of three cases 
somewhat differently: 

• a SM that responds to an input event by a self-contained behavior which 
terminates. This provides a subscenario triggered by the input event. 

• a SM that responds to an input event by a self-contained behavior which runs 
until it waits for the next input event (the next instance of the same event). This 
describes a scenario that responds to a workload (to a stream of input events). 

• a SM that runs forever once started. This spontaneously generates a workload of 
its own, and we call it a WorkloadGenerator (in MARTE). 

A RequestEventStream designates requests to the system as a whole, and we 
assume that each system behavior is driven by one such stream only. There may be 
several streams and behaviours, and each one describes a user class in the 
performance model. 

Any of these kinds of SMs may be replaced by a compound of several SMs 
collaborating to produce one of these three overall behaviour patterns, and 
communicating by signals. There are additional cases of SMs that do not respond to 
multiple input event streams, but they are not considered here or in the profiles. 

5.3.1   Terminating SM (Sub-scenario) 
The simplest SM is associated with a single component and executes a sequence of 
steps, then terminates. Fig 19 shows a simple web server scenario. The hostDemand 
requires that the allocation of the webserver component be known, to resolve the host. 

PageRetrievedRequestRecvd

{hostDemand=(1.2,ms),
demandedService=(getFileFromCache,
getFileFromDisk),
servcount=(1.0,0.2)}

{hostDemand=(0.2,ms)} {hostDemand={0.1, ms)}

<<paExecStep>>

getStaticPage

<<paExecStep>> <<paExecStep>>

 

Fig. 18. A terminating SM defining a sub-scenario triggered by a request getStaticPage 

The steps annotated on the transitions, as here, describe actions defined for the 
transitions (which can include a scenario for each one). Steps annotated on a state 
describe the sum of actions to be executed on arriving and leaving the state. 
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5.3.2   Driven SM (Scenario) 
The driven SM is driven by a workload event stream (RequestEventStream), which 
triggers a transition from a home state such as ThreadReady to start the scenario. It is 
equivalent to a scenario, but all executed within the context of the SM. If the SM does 
not correspond to a component, then an AD may be preferable. 

PageRetrievedThreadReady Parsed

{demandedService=sendPage}

{hostDemand=(3, ms)
demandedService=getStaticPage
servCount=1}

<<paRequestEventStream>>
{workloadKind=closedWorkload,
externalDelay=(4,s),
population=@N}

{hostDemand=(1.1, ms)}

<<paCommStep>>

<<paExecStep>>

htmlRequest

<<paExecStep>>

 

Fig. 19. A Cycling SM, defining a Scenario driven by htmlRequest 

5.3.3   Perpetual SM (WorkloadGenerator) 
A perpetual SM cycles forever without waiting for a trigger event; in effect it creates 
the trigger events in demanding subscenarios or other actions in each Step. thus it acts 
to generate workload for the system. The SM in Figure 21 roughly represents an 
abbreviated version of the sequential behaviour defined for the TPC-W benchmark, in 
transitioning among the pages. Each state (ExecStep) invokes a sub-scenario through  
a “demandedBehavior” attribute. The sub-scenario defines the nested behaviour in 
responding to the page, as shown for the case of GetHomePage in Figure 8.  The 
blockingDelay for each ExecStep represents the user thinking time, which is greater 
for pages which require more thought. The paExecStep stereotypes applied to states 
define work done on entering the state; on (a few) transitions they define transition 
probabilities where a choice is required. 

A paWorkloadGenerator stereotype applied to this diagram has an attribute 
“population” to define the number of concurrent users with this behavior. The 
population is assumed to be constant, a kind of closed workload with this defined 
behaviour. When one customer terminates, another is assumed to immediately begin 
interacting. 

A corresponding open system would be modeled with this SM slightly changed, to 
be a sub-scenario (by having the behavior eventually terminate). The sub-scenario 
would be invoked by a Step in a separate behaviour triggered by an open workload. 

Given the transition probabilities, a WorkloadGenerator SM becomes a Markov 
Chain element in the PM. Markov Chain analysis can reduce it to a probabilistic 
mixture of demands and delays made on the system, and thus to a set of classes of 
behaviour for a single customer chain in a QM or LQM analysis. 
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<<paExecStep>>
GetProductDetails

<<paExecStep>>
GetHomePage

<<paExecStep>>
NewProducts

<<paExecStep>>
Checkout

<<paExecStep>>
ShoppingCart<<paExecStep>>{demandedBehavior=Sh

oppingCart,
demandCount = 1,
blockingDelay=(12,s)}

<<paExecStep>>{demandedBehavior=Ch
eckout,
demandCount = 1,
blockingDelay=(45,s),}

<<paExecStep>>{demandedBehavior=get
ProductDetails,
demandCount = 1
blockingDelay=(10,s)}

<<paExecStep>>{demandedBehavior=n
ewProducts,
demandCount = 1,
blockingDelay=(4,s)}

<<paExecStep>>{demandedBehavior=
getHomePage,
demandCount = 1,
blockingDelay=(4,s),}

<<paContext>>{contextParams=(@Nusers)}
<<paWorkloadGenerator>>{population=@Nusers}

{prob=0.9}

{prob=0.3}

{prob=0.7}

{prob=0.1}

<<paExecStep>>

<<paExecStep>>

<<paExecStep>>

<<paExecStep>>

 

Fig. 20. A WorkloadGenerator type SM 

A set of SMs may participate in terminating, cycling or perpetual behaviour by 
exchanging signals or messages. To interpret the behaviour as a scenario, a tool must 
traverse the interactions and construct the combined SM, which could be a significant 
tool problem. 

6   Communications Modeling 

It is useful and even essential to be able to define the handling of a message with 
more or less detail, depending on the state of the design. 

• in an early stage it may be desired to ignore communications costs and delays. 
This is a default if no other option is defined. 

• a simple way to deal with it is to attach cost parameters to the nodes, and a 
latency (blockingTime in MARTE) to the network. These should be sensitive to 
the message size. This is the default if no behaviour or service is defined. 

• some protocols impose complex handshakes, authentication using servers and so 
on, which require a scenario to define them. If the protocol behavior is described 
as a scenario in the design, or in a design library that can be used, then it can be 
referenced directly. The scenario will have roles which need to be bound to the 
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sender and receiver processes, if it is to be used for many different messages. 
This is defined by an attribute commBehavior:paBehaviorScenario. 

• the protocol may be described within a middleware layer acting as a subsystem, 
and its scenario can be referenced as an operation (service) of the layer. This is 
similar to the previous case but attaches the reference to the interface rather than 
to the scenario, which may exist within the middleware description. This is 
defined by an attribute commService: paRequestedService. 

• the protocol behavior, and communications handling generally, may not be 
available in the UML model, but may be modeled within the PM. In this case an 
external operation can be used, defined by an attribute extOperation:String. 

These options, apart from the first, are illustrated in Figure 22. 

webserver database

{msgSize=(4.5,KB)
commService=Middleware}

{msgSize=(4.5,KB)
commBehavoir=CommScenario}

{msgSize=(4.5,KB)
commExtOp="network"}

(d) pointing to a 
scenario defining the 
communcations 
protocl and operations
 separately

(c) pointing to an
 operation offered by
 a middleware layer

(a) By default, using
 the hardware
 parameters

(b)  using
 an external model
of the network 
performance

{msgSize=(4.5,KB)}
<<paCommStep>>

1: 

<<paCommStep>>

()3: 

<<paCommStep>>

5: 

<<paCommStep>>

7: 

2: 

4: 

6: 

8: 

 

Fig. 21. Four different ways to specify the communications costs 
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The hook for representing communications is the CommStep, which is an 
annotation on a message which represents a step in the scenario, just to handle the 
message. The annotation may be applied to a message that is also annotated with the 
Step for the next operation, in which case the CommStep comes first in the scenario. 
Attributes of the CommStep identify which of the above options is to be applied, and 
identify behaviour or service operations to be included, if that is appropriate to the 
option. There is a constraint that only one of commService, commBehavior or 
extOperation may be non-null. 

For the first option, the hardware communications cost parameters may be 
specified in the deployment diagram as in Fig 23.  For the fourth option, any scenario 
could be used, for example the parallel read operation shown in Figure 24. This would 
require additional annotations to bind the database role to both of the timelines, each 
with separate deployed components. 

<<paExecHost>>
DBhost

{commTxOverhead=0.07 ms/KB,
commRcvOverhead=0.14 ms/KB}

AppHost
<<paExecHost>>

{commTxOverhead=0.1 ms/KB,
commRcvOverhead=0.15 ms/KB}

<<paCommHost>>
LAN

{blockingTime = 10, us,
capactiy = 100, Mb/s}

 

Fig. 22. Deployment with communications parameters (MARTE) 

[ ]

par

SendMW RcvMW1 RcvMW2Sender R2R1

2: 

6: 

10: 

3: 

5: 

7: 

9: 

1: 

8: 

4: [ ]

par

 

Fig. 23. A scenario showing a complex read operation involving two databases 

7   Transformation Techniques 

Several approaches have been taken successfully to create a performance model (PM) 
from a UML design model (DM). Manual creation is a solid option if automated tools 



462 M. Woodside 

do not exist, however the DM may be constantly evolving, and a manual method can 
be burdensome as well as error-prone in the details (such as the copying of parameter 
values into the PM). 

An aspect of the transformation is that the level of abstraction of the PM may be 
higher than that of the DM, as discussed in [44] Thus the transformation may need to 
aggregate concepts and quantities expressed in the DM. 

7.1   Model Traversal (Ad Hoc Construction) 

To construct the performance model, the commonest technique  has been to traverse  
in some ad-hoc fashion the UML model represented in the form of a DOM-tree 
(domain object model tree) which is derived from the XML format output by most 
tools (called XMI). During the traversal, objects in the PM domain are constructed 
with hints to their relationships to other objects. Finally the PM objects are assembled. 
 If the PM is a Petri net or stochastic process algebra model the PM structure is close 
enough to the UML to allow direct construction of the PM by this approach.  

7.2   Use of an Intermediate Model 

Some approaches have proceeded by way of an intermediate model between the DM 
and the PM. Examples are  

• the CSM (Core Scenario Model) described earlier [40]. This intermediate model 
was partly to assist the transformation and partly to generalize it. 

• KLAPER [9], which supports a broad range of modeling domains.  
• the Execution Graph used by Cortellessa and Mirandola in [8]. 

 For example in PUMA [24] the Core Scenario Model (CSM) has three roles, to 
filter the relevant information from the DM, to support a PM structure which is quite 
different from the DM structure, and to unify information from different styles of 
behavior definition. Then the PM is constructed by traversal of the DOMtree of the 
CSM.  

7.3   XSLT 

A general tool for transforming XML languages is XSLT [48]. This is intended to 
transform model elements in one language into corresponding elements in another, for 
example for alternative rendering of graphical images, or for translating design 
behavior into code. If the PM is sufficiently close to the UML in structure (essentially, 
for network-type models) this is practical, in other cases it is less so. Smith and Llado 
have used it to translate Execution Graphs to a QN description in XML  called PMIF 
[46]. To generate LQN models however it was necessary to construct entities that do 
not exist in the DM, and an ad hoc transformation was used instead.  

7.4   Graph Grammar 

The problem of inferring structures in the DM behavior can be attacked by pattern 
matching, and the class of graph grammars provide a more general approach than say 
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XSLT. They were used in [19] to create LQMs. The DM is first interpreted as a graph 
abstraction, which is a kind of intermediate model, then the grammar is used to define 
transformations to an output graph representing the model. 

7.5   QVT 

The QVT (Query/View/Transform) standard [37] was initiated to support 
transforming UML models to achieve model-driven development, but it is more 
general. It transforms from a source model based on one MOF metamodel, to a target 
model based on the same or another MOF metamodel. A running example in [37] is to 
create a database schema from a UML data model.  

The approach of QVT is express conditions which express patterns in the source 
model, and when the conditions are satisfied, to take actions on the elements of the 
matched pattern to create the target model. Grassi et al used QVT for successive 
transformations to create models for component-based systems in [10]. 

8   Conclusion 

This conceptual overview addresses the semantic relationships between design model 
annotations, and performance models. The concept of “completions” which are 
needed to make the evaluation feasible, is central. Completions include the 
annotations themselves, and platform and environment representation either in the 
DM, the annotations, or in performance model elements outside the DM. This 
adaptability is necessary, to adapt to different levels of completion of the DM.  

The reader is  reminded again that the annotations presented in the examples come 
from multiple versions of the performance profile, and they should ignore the 
inconsistencies in syntax and look at the underlying information. For precise syntax 
they should consult the SPT standard, or the MARTE proposal expected shortly. 
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Appendix: Compare SPT and MARTE 

This comparison may help to keep straight some of the examples which use one 
notation or the other. It is very brief and only hits the high spots of the corresponding 
features of both the existing profile and the one which is being formulated. There is 
unfortunately no published version of MARTE at the time of writing. 
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SPT [35] MARTE 
PanalysisContext paAnalsyisContext [adds parameters] 
Pscenario paBehaviorScenario 
Pstep, attribute 
hostDemand 

paStep           [for pure behavior and sub-scenarios] 

      attribute noSync 
 paExecStep   [primitive step] 
      attributes requestedService, servCount 
      attributes demandedBehavior, behavCount 
      attributes extOperation, extOpCount 
 paCommStep 
      attributes commService, commBehavior, 

extOperation 
 gaAcqStep, attributes Resource, resUnits 
 gaRelStep, attributes Resource, resUnits 
 paResPassStep, attributes Resource, resUnits 
PclosedLoad paRequestEventStream {workloadKind = closed} 
   attributes population, 

externalDelay 
    similar 

PopenLoad paRequestEventStream {workloadKind = open} 
    attribute rate     similar 
 paRequestedService, applied to Operation, inherits 

ExecStep attributes 
Presource gaResource   [abstract resource concept] 
 paProcess      [process thread pool] 
 gaCommChannel      [layer subsystem] 
 paLogicalResource   [other logical resources] 
Phost paExecHost       [processor] 
 paCommHost    [network, bus, link hardware] 
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