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Preface

The 19th Workshop on Languages and Compilers for Parallel Computing was
held in November 2006 in New Orleans, Louisiana USA. More than 40 researchers
from around the world gathered together to present their latest results and
to exchange ideas on topics ranging from parallel programming models, code
generation, compilation techniques, parallel data structure and parallel execution
models, to register allocation and memory management in parallel environments.

Out of the 49 paper submissions, the Program Committee, with the help of
external reviewers, selected 24 papers for presentation at the workshop. Each
paper had at least three reviews and was extensively discussed in the commit-
tee meeting. The papers were presented in 30-minute sessions at the workshop.
One of the selected papers, while still included in the proceedings, was not pre-
sented because of an unfortunate visa problem that prevented the authors from
attending the workshop.

We were fortunate to have two outstanding keynote addresses at LCPC 2006,
both from UC Berkeley. Kathy Yelick presented “Compilation Techniques for
Partitioned Global Address Space Languages.” In this keynote she discussed
the issues in developing programming models for large-scale parallel machines
and clusters, and how PGAS languages compare to languages emerging from
the DARPA HPCS program. She also presented compiler analysis and optimiza-
tion techniques developed in the context of UPC and Titanium source-to-source
compilers for parallel program and communication optimizations.

David Patterson’s keynote focused on the “Berkeley View: A New Frame-
work and a New Platform for Parallel Research.” He summarized trends in ar-
chitecture design and application development and he discussed how these will
affect the process of developing system software for parallel machines, including
compilers and libraries. He also presented the Research Accelerator for Multi-
ple Processors (RAMP), an effort to develop a flexible, scalable and economical
FPGA-based platform for parallel architecture and programming systems re-
search. Summaries and slides of the keynotes and the program are available
from the workshop Web site http://www.lcpcworkshop.org.

The success of the LCPC 2006 workshop would not have been possible with-
out help from many people. We would like to thank the Program Committee
members for their time and effort in reviewing papers. We wish to thank Gerald
Baumgartner, J. Ramanujam, and P. Sadayappan for being wonderful hosts.
The LCPC Steering Committee, especially David Padua, provided continuous
support and encouragement. And finally, we would like to thank all the authors
who submitted papers to LCPC 2006.

March 2007 Gheorghe Almási
Călin Caşcaval

Peng Wu
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Compilation Techniques for Partitioned Global

Address Space Languages

Kathy Yelick

EECS Department, UC Berkeley
Computational Research Division, Lawrence Berkeley National Lab

Abstract. Partitioned global address space (PGAS) languages have
emerged as a viable alternative to message passing programming mod-
els for large-scale parallel machines and clusters. They also offer an al-
ternative to shared memory programming models (such as threads and
OpenMP) and the possibility of a single programming model that will
work well across a wide range of shared and distributed memory plat-
forms. Although the major source of parallelism in these languages is
managed by the application programmer, rather than being automati-
cally discovered by a compiler, there are many opportunities for program
analysis to detect programming errors and for performance optimizations
from the compiler and runtime system. The three most mature PGAS
languages (UPC, CAF and Titanium) offer a statically partitioned global
address space with a static SPMD control model, while languages emerg-
ing from the DARPA HPCS program are more dynamic.

In this talk I will describe some of the analysis and optimizations
techniques used in the Berkeley UPC and Titanium compilers, both of
which source-to-source translators based on a common runtime system.
Both compilers are publicly released and run on most serial, parallel, and
cluster platforms. Building on the strong typing of the underlying Java
language, the Titanium compiler includes several forms of type-based
analyses for both error detection and to enable code transformations.
The Berkeley UPC compiler extends the Open64 analysis framework on
which it is built to handle the language features of UPC. Both compilers
perform communication optimizations to overlap, aggregate, and sched-
ule communication, as well as pointer localization, and other optimiza-
tions on parallelism constructs in the language. The HPCS languages
can use some of the implementation techniques of the older PGAS lan-
guages, but offer new opportunities for expressiveness and suggest new
open questions related to compiler and runtime support, especially as
machines scale towards a petaflop.

G. Almási, C. Caşcaval, and P. Wu (Eds.): LCPC 2006, LNCS 4382, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Can Transactions Enhance Parallel Programs?�

Troy A. Johnson, Sang-Ik Lee, Seung-Jai Min, and Rudolf Eigenmann

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907

{troyj, sangik, smin, eigenman}@purdue.edu

Abstract. Transactional programming constructs have been proposed
as key elements of advanced parallel programming models. Currently,
it is not well understood to what extent such constructs enable efficient
parallel program implementations and ease parallel programming beyond
what is possible with existing techniques. To help answer these questions,
we investigate the technology underlying transactions and compare it to
existing parallelization techniques. We also consider the most important
parallelizing transformation techniques and look for opportunities to fur-
ther improve them through transactional constructs or – vice versa – to
improve transactions with these transformations. Finally, we evaluate
the use of transactions in the SPEC OMP benchmarks.

1 Transaction-Supported Parallel Programming Models

Although a large number of parallel programming models have been proposed
over the last three decades, there are reasons to continue the search for better
models. Evidently, the ideal model has not yet been discovered; creating pro-
grams for parallel machines is still difficult, error-prone, and costly. Today, the
importance of this issue is increasing because all computer chips likely will in-
clude parallel processors within a short period of time. In fact, some consider
finding better parallel programming models one of today’s most important re-
search topics. Models are especially needed for non-numerical applications, which
typically are more difficult to parallelize.

1.1 Can Transactions Provide New Solutions?

Recently, programming models that include transactional constructs have re-
ceived significant attention [1,4,12,15]. At a high level, transactions are optimisti-
cally executed atomic blocks. The effect of an atomic block on the program state
happens at once; optimistic execution means that multiple threads can execute
the block in parallel, as long as some mechanism ensures atomicity. To this end,
both hardware and software solutions have been proposed. An interesting obser-
vation is that these contributions make few references to technology in languages
and compilers for parallel computing. These omissions are puzzling because the
� This work is supported in part by the National Science Foundation under Grants

No. 0103582-EIA, and 0429535-CCF.

G. Almási, C. Caşcaval, and P. Wu (Eds.): LCPC 2006, LNCS 4382, pp. 2–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Can Transactions Enhance Parallel Programs? 3

two topics pursue the same ultimate goal: making parallel programming easier
and more efficient. While the programming models are arguably different, both
areas need advanced compiler, run-time, and hardware optimization techniques.
Hence, one expects that the underlying techniques supporting these models are
closely related. In this paper, we investigate these relationships. We examine
how much the concept of transactions can improve parallel program design and
implementation beyond existing technology and to what extent transactions are
just an interesting new way of looking at the same problem. We also review the
ability of existing technology to optimize the implementation of transactions.

1.2 The Promise of Programming with Transactions

How can transactional constructs improve parallel programs? A transaction, in
its basic meaning, is simply a set of instructions and memory operations. In
many situations (e.g., in databases and parallel programming) it is important
that the transactions are performed in such a way that their effects become visi-
ble simultaneously, or atomically. For example, in a bank, it is important that an
amount of money gets deducted from one account and put into the other atom-
ically, so that the total balance remains invariant at all times. Similarly, when
incrementing a counter by two parallel threads, it is important that reading,
modifying, and writing the counter be done atomically.

The concept of atomicity is not new per se. Constructs such as semaphores [5],
locks [22], and critical sections [11] have been known for a long time. Neverthe-
less, language constructs that express atomicity typically allow only single mem-
ory updates (e.g., the OpenMP [21] atomic directive). Blocks of atomic memory
operations are expressed through critical sections, which prevent concurrent ex-
ecution of the block. This implementation is conservative or “pessimistic.” The
new promise of transactions is to eliminate some of the disadvantages that come
with state-of-the-art constructs, namely reducing overhead through “optimistic
execution” (if threads end up not accessing the same data inside a critical sec-
tion, they should execute concurrently) and managing locks (avoiding deadlock
and bookkeeping of multiple locks). These overheads naturally occur, as pro-
grams are written conservatively. For example, a banking software engineer may
protect all account operations with one critical section, even though it could be
known, in some cases, that the operations happen to different classes of accounts.
The engineer may optimize the accounting software by creating separate locks
for the two account classes; however, this increases the amount of bookkeeping
information and requires more effort to avoid deadlocks.

The new idea behind transactions is that the programmer can rely on an ef-
ficient execution mechanism that executes in parallel whenever possible. Thus,
the programmer uses the same “critical section” everywhere by simply writing
atomic. At run time, two account operations or loop-counter updates can oc-
cur simultaneously. If different accounts are accessed or different counters are
updated, then the program continues normally; if the same account or same
counter is updated, then the transaction’s implementation properly orders the
operations. It is the transaction implementation’s responsibility to provide
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efficient mechanisms for detecting when concurrency is possible and for serializ-
ing the operations when necessary.

Two questions arise: (i) Are transactions an adequate user model, and (ii)
can transactions be implemented efficiently? Although the idea of an atomic lan-
guage construct is not new [20], only time and experience can answer whether
programmers find transactions useful. Today, only few real programs have been
written with transactional constructs. An important challenge is that much par-
allel programming experience exists in the area of numerical programs; however,
transactions aim at all classes of programs. The second question is the focus of
this paper. Our thesis is that the technology underlying efficient transactions is
very similar to the one that exists today for program parallelization – paralleliz-
ing compiler techniques [3,9], implementation techniques of parallel language
constructs [18], and hardware techniques for speculative parallelization [8,10].
The ultimate question for the language and compiler community is whether or
not we have missed something that we can now learn from the ideas behind trans-
actional constructs. If so, we may be able to incorporate that new knowledge
into our compilers, run-time systems, and supporting hardware.

2 Comparing the Technology Underlying Transactions
and Program Parallelization

2.1 Technology Underlying Transactions

Within transactions, threads that do not conflict should execute in parallel unhin-
dered. Conflict detection is therefore at the heart of implementation technology
for transactions. Conflict detection can be performed statically or dynamically.

Static conflict detection relies on the compiler’s ability to tell that threads ac-
cess disjoint data. Provably non-conflicting threads can execute safely in parallel
without the guard of a transaction; the compiler can remove the transaction al-
together. The compiler also may remove conflict-free code out of the transaction,
hence narrowing the guarded section. This optimization capability is important
because it allows the programmer to insert transactions at a relatively coarse
level and rely on the compiler’s ability to narrow them to the smallest possible
width. Furthermore, if a compiler can identify instructions that always conflict,
it may guard these sections directly with a classical critical section. Applying
common data dependence tests for conflict resolution is not straightforward, as
conflicts among all transactions must be considered. For strong atomicity [4] this
analysis is even necessary between transactions and all other program sections.
Note that common data-dependence tests attempt to prove independence, not
dependence; i.e., failure to prove independence does not imply dependence.

Compile-time solutions are highly efficient because they avoid run-time over-
head. Nevertheless, their applicability is confined to the range of compile-time
analyzable programs. Often, these are programs that manipulate large, regular
data sets – typically found in numerical applications. Compile-time conflict res-
olution is difficult in programs that use pointers to manipulate dynamic data
structures, which is the case for a large number of non-numerical programs.
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For threads that are not provably conflict-free, the compiler still can assist by
narrowing the set of addresses that may conflict. At run time, this conflict set
must be monitored. The monitoring can happen either through compiler-inserted
code (e.g., code that logs every reference) or through interpreters (e.g., virtual
machines). At the end of the transaction, the logs are inspected for possible con-
flicts; in the event of a conflict, the transaction is rolled back and re-executed.
Rollback must undo all modifications and can be accomplished by redirecting
all write references to a temporary buffer during the transaction. The buffer is
discarded upon a rollback; a successful transaction commits the buffer to the
real address space. Again, interpreters may perform this redirection of addresses
and the final commit operation on-the-fly. Evidently, there is significant over-
head associated with software implementations of transactions, giving rise to
optimization techniques [1,12].

Fully dynamic implementations of transactions perform conflict detection,
rollback and commit in hardware. During the execution of a transaction, data
references are redirected to a temporary buffer and monitored for conflicts with
other threads’ buffers. Detected conflicts cause a rollback, whereby the buffer
is emptied and threads are restarted. At the end of a successful, conflict-free
transaction, the thread’s buffer is committed. Conflict detection in hardware is
substantially faster than software solutions, but still adds extra cycles to every
data reference. The cost of a rollback is primarily in the wasted work attempting
the transaction. Commit operations may be expensive, if they immediately copy
the buffered data (for speculative parallelization, hardware schemes have been
proposed to commit in a non-blocking style, without immediate copy [24]). An
important source of overhead stems from the size of the buffer. While small
hardware buffers enable fast conflict detection, they may severely limit the size
of a transaction that can be executed. If the buffer fills up during a transaction,
parallel execution stalls.

2.2 Technology Underlying Program Parallelization

A serial program region can be executed in parallel if it can be divided into
multiple threads that access disjoint data elements. Implementing this concept
requires techniques analogous to the ones in Section 2.1. There are compile-time,
compiler-assisted run-time, and hardware solutions.

Compile-time parallelization. Data-dependence analysis is at the heart of compile-
time, automatic parallelization. Provably independent program sections can be
executed as fully parallel threads. The analysis is the same as what is needed for
conflict detection of transactions. Data-dependence tests have proven most suc-
cessful in regular, numerical applications; data dependence analysis in the presence
of pointers [13] is still a largely unsolved problem. Where successful, automatic par-
allelization is highly efficient, as it produces fully-parallel sections, avoiding run-
time overheads.

Run-time data-dependence tests. These tests [23] have been introduced to defer
the detection of parallelism from compile time to run time, where the actual data
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values and memory locations are known. Run-time data-dependence tests select
the arrays to be monitored and insert monitoring code at compile time. At run
time, memory references are recorded; if a conflict is detected, the parallel section
is rolled back, usually followed by a serial execution. Run-time data dependence
tests are efficient when the address space to be monitored is small. As this is not
often the case, these methods are difficult to apply in general.

Hardware parallelization mechanisms are also known as speculative archi-
tectures [7,16]. They execute potentially independent threads in parallel, while
tracking conflicts. Upon a conflict the thread is rolled back. During the spec-
ulative execution, memory references are redirected to a speculation buffer [8],
which is committed to the actual memory upon successful speculation (no con-
flicts detected) or cleared (upon rollback). Hardware speculation mechanisms
have essentially the same overheads as mentioned above for hardware trans-
actions: data dependence tracking adds a cost to each memory reference, roll-
backs represent significant overheads, and speculation buffer overflow is a known
problem.

2.3 Comparison

Compile-time solutions. Transactions and automatic program parallelization
models need implementation technologies that are very similar. Compile-time
solutions hinge on the compiler’s ability to detect memory conflicts – or data
dependences. It can be expected that, for both models, this solution succeeds
in regular, numerical programs, whereas pointer-based, non-numerical code pat-
terns pose significant challenges. In terms of efficiency, neither transactions nor
automatic parallelization seem to offer advantages over the other model. For both
models, static, compile-time solutions – where applicable – are most efficient, as
they are void of run-time overheads. They also exhibit the same weaknesses in
irregular and pointer-based programs.

Run-time solutions. Compiler-assisted run-time solutions underlie both software-
based transaction schemes and run-time parallelization techniques. Both schemes
rely on the compiler’s ability to narrow the range of data that needs to be inspected
at run time. Many techniques have been proposed to perform the inspection; the
big challenge is to reduce run-time overhead. Sophisticated bit-manipulating in-
spection code has been used in run-time data-dependence tests [23]. Other tech-
niques detect if re-invocations of the same code regions happen under the same
data context, in which case the serial or parallel outcome is already known and
reinspection becomes unnecessary [17]. These techniques are compiler-based. In-
terpreters and virtual machines are most flexible in performing inspection and
conflict analysis; however, their performance has yet to be proven.

Hardware-assisted schemes must provide the same basic mechanisms for trans-
actions and speculative parallelization: data-dependence tracking, temporary
buffering, rollback, and commit. The associated overheads are essentially the
same. Adaptive synchronization techniques have been proposed for speculative
synchronization [19], as effective means to eliminate repeated rollback. The same
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mechanisms would be effective for transactions. A subtle difference stems from
the order of thread execution. The effect of a speculatively parallelized program
must be the same as in its serial execution. This requirement is most easily im-
plemented by committing the threads in the order that they would execute in
the serial program version. By contrast, as transactions are entered from within
a parallel program, correctness demands no such order. This might allow for a
more efficient implementation, as we will discuss further in Section 3.

Differences stemming from the user models. While the underlying technology
is very similar, interesting differences lie in the user models. Transactions are
embedded inside a program that is already parallel.By contrast, automatic par-
allelization and speculative parallelization start from a sequential program; the
compiler has the additional task of partitioning the program into potentially
parallel threads. Parallelizing compilers commonly perform this task at the level
of loops, considering each loop iteration as a potential parallel thread. Parti-
tioning techniques for speculative parallelization have been developed that split
programs so as to maximize parallelism and minimize overheads [14,26]. An-
other difference resulting from the user model is that, by explicitly parallelizing
a program and inserting transactional regions, the programmer focuses the com-
piler and run-time system’s attention on specific code sections, whereas auto-
matic or implicit parallelization must analyze the entire program. The tradeoffs
between automatic and manual parallelization are well-known. Automatic par-
allelization has been most successful in regular, numerical programs, and sim-
ilarly for speculative parallelization. As transactional models aim at a broad
class of programs, explicit parallelization may be a necessity. Evidently, there
is an important tradeoff: large transactions are user-friendly, but lose the im-
portant advantage of focusing the compiler’s attention on small regions. The
extreme case of a whole-program transaction likely requires compiler optimiza-
tions similar to those for automatically parallelizing whole programs. It is also
worth noting that the most advanced optimization techniques require whole-
program analysis, even if their goal is to improve a small code section. For ex-
ample, interprocedural pointer analysis [27] may gather information from other
subroutines that helps improve a small transaction. Hence, once we develop
highly-optimized techniques, implementing the different user models becomes
increasingly similar.

3 Improving Parallelization Techniques Through
Transactions and Vice Versa

Three parallelization techniques have proven most important [6]: data priva-
tization, parallelization of reduction operations, and substitution of induction
variables. This section discusses opportunities for improving these techniques
through the use of transactions and vice versa.
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3.1 Data Privatization

Privatization [25] is the most widely applicable parallelization technique. It rec-
ognizes data values that are only used temporarily within a parallel thread and
thus are guaranteed not to be involved in true data dependences across threads. In
data dependence terms, the technique removes anti-dependences, which occur be-
cause two or more threads use the same storage cell to hold different values. The
privatization technique creates a separate storage cell for each thread (through
renaming or private language constructs), thus eliminating the storage-related
dependence. Figure 1 shows a program pattern that is amenable to privatization.
Such patterns do not exhibit read, modify, and write sequences typical of trans-
actions. Transaction concepts cannot be used to improve or replace privatization.

#pragma OMP parallel private(t)
for (i=1;i<n;i++){ for (i=1;i<n;i++){
t = <...>; t = <...>;
. . . ==> . . .
<...> = t; <...> = t;

} }

Fig. 1. Simple form of a program pattern that is amenable to privatization and its
parallel form, expressed in the OpenMP directive language: To perform this transfor-
mation, the compiler or programmer must recognize that t is defined before it is used in
every loop iteration. No true dependence exists across loop iterations. A more complex
form of privatizable data would have t as an array; the compiler would have to analyze
the subscripts of the references defining and using t.

By contrast, privatization is important for optimizing transaction implemen-
tations. Variables that can be recognized as private can be removed from the
conflict set. They do not need to be monitored for conflicts and their accesses
never necessitate a rollback; however, private data still needs to be redirected to
the temporary storage during the execution of the transaction. If the data is not
used after the transaction (i.e, not live-out of the transactional region), it also
does not need to be committed. Notice that live-out private data leads to a race
condition (by program semantics), as the value of the transaction that happens
to complete last will prevail.

The lack of a program order again differentiates the implementation of a trans-
action from parallelizing a sequential region in subtle ways. (i) In a parallelized
program, the compiler and run-time system must ensure that the value of the
youngest thread prevails. (ii) In speculative parallelization, private data – even if
it is not recognized as such – never necessitates a rollback. Only a write reference
following a premature read reference is a conflict (thus, anti-dependence viola-
tions are not a problem). The presence of a (sequential) program order clearly
defines what is premature. Anti-dependences are implicitly enforced through the
speculative buffering mechanism and the commit actions, which happen in pro-
gram order. For transaction implementations, the absence of a program order
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dictates that all read and write references to the same address cause rollbacks.
Privatization is essential to eliminate such overheads.

3.2 Reduction Parallelization

Figure 2 shows a reduction program pattern and two forms of parallel trans-
formations. While Transformation 1 looks more elegant, the absence of efficient
implementations of the atomic construct (often a software implementation of a
critical section) make Transformation 2 the preferred option. In the latter form,
the atomic section is entered once per processor versus n times in Transforma-
tion 1. The size of the reduction, n, generally must be large for the transformation
to be beneficial.

21 #pragma OMP parallel private(lsum)
22 { lsum=0;

11 #pragma OMP parallel for 23 #pragma OMP for
01 for (i=1,i<n,i++){ 12 for (i=1,i<n,i++){ 24 for (i=1,i<n,i++){
02 sum += <...> 13 #pragma OMP atomic 25 lsum += <...>;
03 14 sum += <...> 26 }
04 } 15 } 27 #pragma OMP atomic

28 sum += lsum;
29 }

Original Transformation 1 Transformation 2

Fig. 2. Reduction pattern and parallel form expressed in OpenMP: notice that ac-
cording to OpenMP semantics, statements 22 and 28 are executed once per processor,
whereas the processors share the iterations of loops 12 and 24

Consider a transactional implementation of the atomic construct: in Transfor-
mation 1, the transaction will never proceed in parallel, as there is always a conflict
on sum. There will be only some parallelism, if the processors happen to enter the
transaction at different times, due to load imbalance. The same holds when using a
critical section. Furthermore, the overheads of transactions (conflict tracking and
rollbacks) make a plain critical section the much preferred choice.

If the expression <...> involves a substantial computation (e.g., a function
call), its concurrent execution may be beneficial. To exploit this parallelism,
the programmer or compiler moves the expression out of the transaction into
the fully-parallel part of the code. Transformation 2 achieves exactly this ef-
fect. Hence, this transformation also yields an optimized form of a reduction
implemented by a transaction.

For array (or irregular) reductions, the situation is different. The variable sum
in Figure 2 would have a subscript, such as sum[expr], where expr is a loop-
variant expression. In this case, different loop iterations modify different elements
of sum, hence a transactional implementation of the atomic construct in Trans-
formation 1 can exploit some parallelism. The sparser the reduction (i.e., expr is
different in more iterations), the more parallelism is exploited. Transformation 2
(not shown for array reductions, but similar to Figure 2) will incur substantial
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overhead, as the variable lsum, which is now also an array, may be large, making
the additional statements 22 and 28 expensive. Hence, Transformation 1 with
transactions would be preferred for sparse array reductions, whereas the classical
transformation with a plain critical section is preferred for dense array reduc-
tions. Deciding this tradeoff is difficult, as the degree of sparsity is not likely to
be known at compile time.

3.3 Induction Variable Substitution

Induction variable substitution removes data dependences at the cost of increas-
ing the strength of the computation. In Figure 3, the original loop has cross-
iteration data dependences. These dependences are removed in the transformed
version, but the expression 5 + i ∗ 2 now involves a multiplication instead of
just an addition. To obtain parallelism without increasing strength, one might
consider guarding the original induction statement with a transaction, captur-
ing the resulting value in a private variable, as in Transformation 2. This code
version exploits parallelism among the statements <... ind ...>, which may
be beneficial if this computation is large compared to the induction statement.
Nevertheless, the same parallelism also would be exploited with an implemen-
tation of atomic through a plain critical section. In fact, this version would be
more efficient; whenever two threads enter the transaction, there is a conflict,
making a critical section the best implementation.

ind0 = 5;
ind = 5; #pragma OMP parallel #pragma OMP parallel private (ind)
for (i=1,i<n,i++) { for (i=1,i<n,i++) { for (i=1,i<n,i++) {

ind += 2; ind = 5+i*2; #pragma OMP atomic
<... ind ...> <... ind ...> {ind0 += 2; ind=ind0;}

} } <... ind ...>
}

Original Transformation 1 Transformation 2

Fig. 3. Induction Variable Substitution: Transformation 1 is the common parallelizing
transformation. Transformation 2 is possible, if the loop variable i is not used in the
loop body. Notice that the atomic block requires two memory cells to be updated,
which is not currently supported by OpenMP.

4 Evaluating Transactions for the SPEC OMP
Benchmarks

SPEC OMP2001 [2] is a benchmark suite used for the performance evaluation
and comparison of Shared-Memory Multiprocessor(SMP) systems and consists
of three C applications and nine FORTRAN applications, including gafort, a
non-numerical application. Each of the applications in SPEC OMP2001 is ei-
ther automatically or manually parallelized using OpenMP directives. There are
three types of critical sections in SPEC OMP2001, which have been implemented
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!$OMP PARALLEL PRIVATE(rand, i, tmp1, tmp2) !$OMP CRITICAL
!$OMP DO IF (SCALE .LT. LSCALE) THEN

DO j=1,npopsiz-1 SSQ = ((SCALE/LSCALE)**2)*SSQ+LSSQ
CALL ran3(rand) SCALE = LSCALE
iother=j+1+DINT(DBLE(npopsiz-j)*rand) ELSE
IF (j < iother) THEN SSQ = SSQ+((LSCALE/SCALE)**2)*LSSQ

CALL omp_set_lock(lck(j)) END IF
CALL omp_set_lock(lck(iother)) !$OMP END CRITICAL

ELSE
CALL omp_set_lock(lck(iother)) (b) TYPE II - "dznrm2.f" from wupwise
CALL omp_set_lock(lck(j))

END IF
tmp1 = iparent(iother) EXNER = 0.0
iparent(iother) = iparent(j) !$OMP PARALLEL PRIVATE(J,K,T_EXNER)
iparent(j) = tmp1 T_EXNER = 0.0
tmp2=fitness(iother) !$OMP DO
fitness(iother)=fitness(j) DO J=1, NY
fitness(j)=tmp2 DO K=2, NZ
IF (j < iother) THEN ..

CALL omp_unset_lock(lck(iother)) T_EXNER = T_EXNER + P(I,J,...)
CALL omp_unset_lock(lck(j)) ..

ELSE ENDDO
CALL omp_unset_lock(lck(j)) ENDDO
CALL omp_unset_lock(lck(iother)) !$OMP END DO

END IF !$OMP ATOMIC
END DO EXNER = EXNER + T_EXNER

!$OMP END PARALLEL DO !$OMP END PARALLEL

(a) TYPE I - "gafort.f90" from gafort (c) TYPE III - "apsi.f" from apsi

Fig. 4. Critical section types

using lock-based synchronization. Figure 4 illustrates examples for each type of
critical section. Type I is the critical section guarded by the omp set lock()
and omp unset lock() OpenMP API runtime library routines and type II is the
critical section specified by the OMP CRITICAL and OMP END CRITICAL
directives. Both type I and type II exist in source form in SPEC OMP2001,
whereas type III is the critical section generated by the underlying OpenMP im-
plementation when converting OMP reduction into an efficient form as depicted
in Figure 2. While these critical sections can be converted into transactions with
little effort, the runtime overheads may offset the benefit of the transaction. In
order to estimate these overheads, we measured the probability p that a trans-
action would conflict and thus roll back. To this end, we count the number of
runtime conflicts that happened in the current critical section implementation.
We performed our experiments on a four-processor 480MHz SPARC machine
using the ref dataset of the benchmarks.

Type I critical sections are found six times in ammp and once in gafort.
In ammp, Type I critical sections access the same shared data structure type
through pointers, which are dynamically changing at runtime. From the pro-
gram code, one cannot determine whether or not conflicts will arise. In gafort,
as shown in Figure 4 (a), a critical section guards the swap of an array element
with a randomly chosen element; due to the random choice, conflicts cannot
be determined statically. To determine the conflict probability, we created a
wrapper function of the omp set lock() and omp unset lock() library routines,
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Table 1. Conflict analysis of critical sections in SPEC OMP2001. “Conflict prob.”
expresses the likelihood that a transactional execution will not commit successfully
and, instead, roll back and re-execute. “Compile-time dep.” indicates whether or not
the conflict is certain at compile time.

Id Benchmark Source file TYPE Conflict prob. Compile-time dep.

1 ammp rectmm.c I 0% N
2 I 0% N
3 I 0% N
4 nonbon.c I 0% N
5 I 0% N
6 I 0% N

7 gafort gafort.f90 I 0.02% N
8 III 23.4% Y

9 apsi apsi.f III 33.0% Y

10 fma3d platq.f90 II 8.1% N

11 wupwise dznrm2.f II 33.7% Y
12 zdotc.f III 22.9% Y
13 III 21.8% Y

14 swim swim.f III 25.0% Y

15 mgrid mgrid.f III 27.7% Y

16 applu l2norm.f III 31.2% Y

respectively. When there is a thread T trying to enter a critical section, the
wrapper function of omp set lock() function is called and it checks if there are
other threads executing within a critical section, accessing the same shared mem-
ory location as the thread T is going to access. From our experiment, we found
that there are no conflicts in all six critical sections in ammp. The critical section
in gafort has a very small number of conflicts, less than 1% of the total number
of invocations of the critical section. Nevertheless, the critical section requires a
very large array of locks, the lck array in Figure 4 (a), for correct execution.

Type II critical sections are found in wupwise and fma3d. The conflict proba-
bility of the critical section from wupwise, shown in Figure 4 (b), is only 33.7%,
even though the critical section contains a statically known dependence on the
shared variable SSQ. Due to load imbalance, the parallel threads enter the crit-
ical section at different times. The fma3d code has a large critical section that
contains a small loop. Although it cannot be proven at compile-time, there is a
dependency to the shared array, MATERIAL(*), in the critical section. Despite
this dependency, the critical section in fma3d exhibits a low conflict probability
of 8.1% that we also attribute to load imbalance.

We transformed all OMP reduction clauses found in SPEC OMP2001 into the
Transformation 2 form of Figure 2 so that the transformed code consists of a
parallel loop and a critical section pair. These Type III critical sections contain
reduction statements, where a reduction variable is a source of conflicts from a
transaction point of view. The conflict probability of Type III critical sections
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Table 2. When to use Transactions versus Critical Sections: Case 1 is fully parallel.
In Case 4, a compiler can detect a dependence. Cases 2 and 3 are the grey area where
the compiler can prove neither. The numbers in the Code Examples column refer to
Table 1.

Cases Provably Provably Predicted Actual Use Use Code
Independent Dependent Conflict Conflict Trans.? C.S.? Examples

1 T F 0% 0% No No *
2 F F 0-1% Yes No 1-7
3 F F 8.1% No Yes 10
4 F T 100% 21.8-33.7% No Yes 8-9, 11-16

varies between 21.8% and 33% depending on the applications. Again, load imbal-
ance frequently prevents the threads from entering the section simultaneously.

One of the key assumptions of transactional memory is that most transactions
commit successfully. Table 1 shows that, for Type I critical sections, the proba-
bility of successful commit is almost 100%, which coincides with the cases where
compile-time analysis cannot prove the absence of conflicts. Hence, these critical
sections are good candidates for transactions. In most Type II and Type III
cases, the existence of dependences is provable at compile time, except in fma3d.
When there is a dependency in the critical section, the probability of conflict
ranges from 8.1% to 33.7%.

Table 2 summarizes our findings. The four cases differ by the available compile-
time knowledge. Case 1 is statically known to be non-conflicting. The compiler
can remove all synchronization. Case 4 has a compile-time provable dependence.
Critical sections are always the preferred choice. Recall that, due to load imbal-
ance, runtime conflicts happen only 21.8-33.7% of the time. Case 2 has statically
unknown dependences. Transactions are beneficial and conflict with a small like-
lihood of 0-1%. Case 3 has a dependence, but it is not detectable with state-
of-the-art compiler technology. A transactional implementation would conflict
8.1% of the time; again, load imbalance prevents many conflicts. In actuality,
given the dependence, a critical section implementation would be better.

The above guidelines for when to use a transaction versus a critical section
are very loose; the actual tradeoff depends on the efficiency of the transaction
and critical section implementations. The tradeoff that must be made is:

time[CriticalSection] > time[Transaction]

When the inequality is true, a transaction should be used. At a greater level
of detail, the inequality becomes:

N ∗ time[work] > time[TSetup] + time[work] +MeanReexec ∗ time[work]

+time[TCommit]

On the left side of the inequality above, N is the number of threads and work
represents the code within the critical section. The critical section serializes the
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work, so the total execution time is N ∗ time[work]. On the right side of the
inequality above, TSetup is any setup work that needs to be done to initiate the
transaction, work represents the code within the transaction, MeanReexec is
the average number of times the transaction will be re-executed, and TCommit
is any work that needs to be done to complete the successful transaction. Ideally,
there are no conflicts during the transaction and, assuming perfect overlap, the
execution time for the work is time[work]. For each re-execution, there is an
additional time[work].

Because the time function yields values that are either implementation or
application-specific, the inequality cannot be made much more detailed, but we
can estimate the MeanReexec given the conflict probability p. Due to fewer
threads re-executing as some manage to successfully commit, p in fact may not
be constant, but we approximate it as the probability of a conflict during the
transaction’s first attempt. Thus, the chance of no conflict is 1 − p, the chance
of one conflict followed by no conflict is p(1 − p), and so forth such that the
chance of k conflicts is approximated as pk(1 − p). MeanReexec is found using
the weighted infinite sum

∑∞
k=0 kpk(1 − p) = p

1−p . Therefore, the inequality
becomes:

N ∗ time[work]>time[TSetup] + time[work] +
p

1 − p
∗ time[work]

+time[TCommit]

Observe that for p = 0, the inequality compares an ideal execution of a
transaction (i.e., no re-executions) to a critical section. For that case, unless
time[work] is very brief or the transaction’s implementation is inefficient, it is
best to use a transaction. For some greater value of p, it becomes better to use
a critical section. Solving for p and then simplifying, we obtain the break-even
point:

p <
(N − 1) ∗ time[work] − time[TSetup] − time[TCommit]

N ∗ time[work] − time[TSetup] − time[TCommit]

When this inequality is true, it is more efficient to use a transaction. The
inequality has several interesting properties. The limit of the fraction is 1 as N →
∞, so for a very large number of processors, it nearly always will be better to use
a transaction. As transactional overhead becomes very small (time[TSetup] →
0 and time[TCommit] → 0), or as the amount of work becomes very large
(time[work] → ∞), the fraction becomes N−1

N . For example, for N = 4, p < 0.75
implies that a transaction should be used. Programs can be optimized using this
inequality by obtaining time[work] and p from a profile run of the application.
The time[TSetup] and time[TCommit] values can be obtained a single time
(i.e., they are application-independent) by profiling an empty transaction.

5 Conclusions

We have compared the technology underlying transactions and program
parallelization. We find that, while the two user models differ, the underlying



Can Transactions Enhance Parallel Programs? 15

implementation technology is essentially the same. Advanced optimizations are
necessary for both models. We reviewed the most important optimization tech-
niques for parallel programs and found that these techniques are essential for
optimizing transaction implementations as well.

We have analyzed the SPEC OMP benchmarks for the applicability of trans-
actions. While many locks and critical sections could be replaced by transactions,
this replacement is beneficial in only a few cases – where data dependences are
statically unknown. In provably-independent code sections, synchronization can
be eliminated; in provably-dependent code, critical sections are preferred over
transactions. We have also found many cases with a definite conflict, but a low
runtime conflict probability, suggesting that transactions may be beneficial. In
actuality, it is load imbalance that prevents the section from simultaneous access;
critical sections are the preferred choice.

Our evaluation has focused on the SPEC OMP benchmarks, which contain
numerical applications, in all but one code. Compiler optimizations for parallel
programs are most mature in this application area. Non-numerical programs are
known to pose substantial challenges for compiler optimizations. As implemen-
tation technology for transactions is very similar, we expect this challenge to
hold. Studies similar to the one presented in this paper are needed for this large
and growing area of parallel programs.
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Abstract. Hierarchically Tiled Arrays (HTAs) are data structures that
facilitate locality and parallelism of array intensive computations with
block-recursive nature. The model underlying HTAs provides program-
mers with a global view of distributed data as well as a single-threaded
view of the execution. In this paper we present htalib, a C++ imple-
mentation of HTAs. This library provides several novel constructs: (i)
A map-reduce operator framework that facilitates the implementation of
distributed operations with HTAs. (ii) Overlapped tiling in support of
tiling in stencil codes. (iii) Data layering, facilitating the use of HTAs
in adaptive mesh refinement applications. We describe the interface and
design of htalib and our experience with the new programming constructs.

1 Introduction

1.1 Hierarchically Tiled Arrays

A Hierarchically Tiled Array (HTA) [7,4] is a recursive array data type where
elements are either HTAs or scalars (at the bottom of the recursion). HTAs
adopt tiling as a first class construct for array-based computations and empower
programmers to control data distribution and the granularity of computation
explicitly through the specification of tiling [2,8,9,16,18]. An HTA has the con-
ventional array functionality: scalar access, pointwise operators, and assignment.
The functionality of HTAs goes a significant step beyond mere arrays: HTAs
provide a rich set of generic, block-recursive operations that execute with high
efficiency in sequential or parallel manner. When programming with HTAs, a
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programmer seeks to harness the built-in operators or develop new operators by
extending the generic framework and HTA-specific functionality.

HTAs are not only a library construct but also a programming model: HTAs
provide a global shared memory abstraction, and support (encourage) the pro-
grammer to structure algorithms in a block-recursive manner, yet following se-
quential program logic. This programming style can be efficiently mapped onto
todays parallel and distributed computer architectures and memory hierarchies
using standard compiler and communication systems. Unlike approaches that are
entirely controlled by the compiler [2] or integrated into a specific programming
language [9], HTAs offer an attractive programming model and performance
while preserving the convenience of standard tools, and libraries (library-based
approach).

In earlier work, we introduced the concepts of programming with HTAs [4]
and an early prototype based on MATLAB [7]. This paper describes htalib, a
portable C++ library and framework for HTAs, and three application-driven
extensions to the original HTA proposal [4] that facilitate the use of HTAs in
certain application domains and broaden the potential application scope. We
report on our experience with HTAs on an IBM BlueGene/L system.

1.2 Contributions

We present the design and implementation of an operator framework for HTAs
following the principles of map-reduce [12] that we illustrate with examples from
the NAS kernel programs.

Overlapped tiling, a mechanism for implicit allocation and consistency of
shadow regions and ghost cells. It provides flexible indexing scheme for HTA
tiles and facilitates access to neighbor elements of adjacent tiles, a common ac-
cess pattern in stencil computations. Overlapped tiling also provides a clean
syntax.

Data layering, an extension of htalib where a hierarchy of scalar arrays (not
just a single array) can be controlled and accessed through one HTA. Data lay-
ering makes HTAs a highly expressive and compact data structure for multigrid
and AMR (Adaptive Mesh Refinement) [6,17] applications.

2 Design and Use of htalib

2.1 Overview

The core data structures of the htalib API fall into four categories:

Logical index space. Classes used to define index space and tiling of an HTA
are Tuple<N>, an N-dimensional index value; Triplet, a 1-dimensional range
with optional stride ((low:high:step)); and Region<N>, an N-dimensional
rectangular index space spanned by N triplets. Arithmetic, shift, and iterator
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Tuple<2>::Seq tiling = (Tuple<2>(2,2),

(a) Allocation

Triplet::Seq ts = (Triplet(0,1,1),Triplet(2,5,1))

h[ts]

h(Tuple<2>(1,0))

(b) Access

h(Tuple<2>(1,0))[Tuple<2>(0,3)] or

h[Tuple<2>(4,3)]

h(Tuple<2>(1,0))(Tuple<2>(0,1))[Tuple<2>(0,1)] or

CyclicDistribution dist(Tuple<2>(1,2));

Tuple<2>(2,2),Tuple<2>(2,2));

HTA<double,2> h = HTA<double,2>::alloc(tiling, dist, ROW);

...

...

...

...
31

0
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(d) Memory Mapping

P1

P1 P2

P2

(c) Distribution

Fig. 1. HTA allocation, access, distribution and memory mapping

functionality are implemented and compatible with the STL library. Instances of
Tuple<N> and Triplet are values, i.e., once defined, their value cannot change.

HTA. Class HTA<T,N> defines an HTA with scalar elements of type T and
N dimensions. The data type implements scalar access (operator[]), tile ac-
cess (operator()) and built-in array operations, e.g., transpose, permute,
dpermute, reduce that are described in earlier publications [7]. An HTA is part
of a hierarchical structure of recursively composed HTAs. The root of the hier-
archy is designated as level 0, with its tiles at level 1, etc..

Machine mapping. The machine mapping of an HTA specifies (i) where the
HTA is allocated in a distributed system and (ii) the memory layout of the scalar
data array underlying the HTA. The former aspect is captured by instances of
class Distribution that specifies the home location of the scalar data for each
of the tiles of an HTA. The latter aspect is represented by instances of class
MemoryMapping that specify the layout (row-major across tiles, row-major per
tile etc.), size and stride of the flat array data underlying the HTA.

The machine mapping is accessed internally by the htalib, for example, to orches-
trate implicit communication. The machine mapping is also available through the
API of the library to facilitate direct access and communication of array data in
case the programmer intends to bypass the access mechanisms provided by HTAs.

Operator framework. htalib provides a powerful operator framework following
the design of the STL operator classes. This framework consists of routines that
evaluate specific operators on HTAs and base classes that serve as a foundation
for user-defined operators. A detailed discussion of the operator framework is
given in Section 3.
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HTA<double,1> A, B;
double S = 0.125;
while (!converged) {

// boundary exchange
B(1:n)[0] = B(0:n-1)[d];
B(0:n-1)[d+1] = B(1:n)[1];
// stencil computation
A()[1:d] = S * (B()[2:d+1] + B()[0:d-1]);
...

}

(a)

htalib::async();
B(1:n)[0] = B(0:n-1)[d];
B(0:n-1)[d+1] = B(1:n)[1];
htalib::sync();

(b)

Fig. 2. HTA examples (a) HTA code for 1D Jacobi with one level of tiling. (b) Relaxing
sequential evaluation order to facilitate overlap of communication and computation.

2.2 Example

In Figure 1, the distribution of the HTA occurs at the root of the tiling hierarchy
in a cyclic manner over 2 processors along the second dimension (columns). At
each processor, the scalar array corresponding to the tiles is allocated in row-
major layout (spawning sub-tiles). The memory mapping in Figure 1 illustrates
the logical index of the scalar variables in each processor.

To simplify the presentation in subsequent examples, the C++ code
is slightly modified: Instead of the instances Tuple<DIM>(x,y,...) and
Triplet(low,high,step), we use a comma separated list of integers of the form
(x,y,...) to represent coordinate points, and the low:high:step triplet nota-
tion. Regions are constructed from sequences of triplets as in Figure 1. Template
arguments are elided when their value is apparent from the context.

Figure 2(a) illustrates a Jacobi computation with HTAs. A and B are HTAs with
one level of tiling; there are n tiles at the root of the tiling hierarchy (level 0), each
tile holding d+2 variables (level 1). Variables at index 0 and d+1 in each tile are
ghost cells. The boundary exchange first updates the ghost cells at index 0, then
at index d+1. The iteration across tiles is implicit in all assignments. In the stencil
computation, the region is not specified at tile access and thus all tiles at level 0
are considered in the operation. The example illustrates that scalars and arrays
can be combined as operator arguments; htalib follows Fortran90 [3] conventions
for conformability and automatically promotes scalars to arrays in expressions.

2.3 Programming Model

The programming model supported by htalib has the following key properties:

Global view. Remote and local data are accessed though the same syntax and
address space. In the Jacobi computation in Figure 2(a), the tiles of the HTA
could be distributed, yet scalars and tiles are seamlessly accessed within one
global logical index space.

Implicit communication. Data is communicated when necessary as part of
the evaluation of one of the following constructs: array assignment, certain array
transformations, and when materializing temporary arrays during the evaluation
of complex array expressions (spilling).
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Serial program logic. Statements and expressions that involve arrays are
evaluated according to serial semantics, in particular array assignment follows
Fortran90 conventions [3]. Parallelism is achieved when data-parallel array op-
erators are evaluated in a block-recursive manner following the tile distribution.

Automated memory management. The implementation maintains reference
counts for HTAs and associated structures, facilitating automatic de-allocation.
Tuples, triplets and sequences thereof have a very light-weight implementations
and are, by convention, allocated on the stack or inlined in objects.

2.4 Implementation

This section briefly describes four key implementation aspects of htalib:

Owner computes. At allocation time, the top-level tiling of an HTA deter-
mines the data distribution, i.e., each tile is assigned a home location where
the master copy of the scalar data is allocated. The computation of an array
expression is distributed among the owners of tiles that receive the result of the
expression. Arguments data is communicated when necessary.

SPMD computation and communication. The execution and communica-
tion mechanisms inside htalib follows the SPMD principle. The communication
of tiles or part of tiles is based on two-sided message passing (MPI).

Dynamic optimizations. htalib implements lazy evaluation to reduce or avoid
the overhead due to temporary arrays. At an array assignment, the evaluation
of the rhs is delayed until the target of the assignment is determined. If lhs
and rhs have no data dependence, the assignment is directly evaluated into the
lhs.

Relaxation of serial evaluation semantics. htalib provides a mechanism to
temporarily relax the serial evaluation ordering and overlap of communication
with computation. The example in Figure 2(b) shows the boundary exchange in
the Jacobi example in Figure 2(a). As there is no data dependence among the
assignments, both statements can proceed concurrently. This is achieved through
the runtime calls to asyc and sync. Similarly, the runtime system permits to
selectively disable strict evaluation order for array assignment and resort to
split-phase semantics [11].

3 Operator Framework

3.1 Primitive Operators

htalib defines several primitive operators over the scalar and array domain. To pro-
vide an uniform interface, all these operators are wrapped in STL like functor
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struct plus {
double operator() (const double a,

const double b) {
return a+b;

} }

struct ft {
void operator() (Array* x) {

//...
mkl.dftForward(x);
//...

} }

Fig. 3. Primitive Operators
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map (op, mlevel)
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h.map(sin()) h.map(ft(),0)
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Fig. 4. HTA map operator
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Fig. 5. HTA reduce operator

objects that define method operator() with appropriate arguments. Primi-
tive operators are applied to HTAs directly or through high-order operators
(Section 3.2).

htalib includes primitive operators for standard arithmetic, logical, relational,
vector and matrix operations. For example, in the Figure 3, plus is the addition
operation defined on scalars, while ft is Fourier Transform defined on an array.

3.2 Higher-Order Operators

htalib provides the following higher-order operators: map, reduce, scan. Higher-
order operators are parametrized with primitive operators and define the strat-
egy and result format resulting form the application of primitive operators to
the tiles or scalar values in an HTA.

Map. map applies a function f to each one of the elements of the input HTA
at a given level. The syntax of map is shown in Figure 4, along with examples.
In the figure, h = (n × m ,..., x × y) indicates the region of each level of
the HTA h from leaf to root. map takes as input a primitive operator op, and
a level mlevel. The mlevel specifies the level of the HTA at which op will be
invoked. The default value of mlevel is LEAF LEV EL. Invocation of map on
HTA h, results in the mapping function being applied to the top level of h. If its
elements are tiles themselves, then the function is invoked recursively on each
of their elements until level = LEAF LEV EL or level = mlevel. The op is
invoked over the elements at that level.

The method op is required to be a PURE function. The result of map is an HTA
with identical index space and tiling. Though not shown in the figure, map can
also take one or more HTAs as its argument, along with op. The argument HTAs
should be conformable with the receiver of the method. map forms the basis for
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several point-wise HTA operations. For example, scalar addition of two HTAs, h1
and h2, is implemented using map as follows: r = h1.map(plus(), h2);

The order of iteration in the map does not affect the result of the computation.
During its application, there is no communication between the sibling elements
(i.e. elements at the same level) of an HTA. Thus, map is a useful abstraction for
do-all parallelism. A map invocation on a distributed HTA is an equivalent of a
do-all parallel loop.

Reduce. An operation which is applied to all components of a vector to produce
a scalar is called a reduction. For example, reduce(+, x) is sum and reduce(×, x)
is product of a vector x. The reduction operation can be generalized for n-
dimensions, resulting in an (n-1)-dimensional space.

The reduction operation is extended to HTAs in the form of the reduce
operator. Like map, reduce is also a recursive operation. The dimension of the
elements at each level will be reduced by one. However, it is possible to control
the starting and ending level of the reduction operation. The HTA reductions
are parameterized by the following arguments:

– op: This is any associative operation from the primitive operator set.
– dim: This is the dimension of reduction.
– rflag: This is a bit vector, whose ith bit, if set to true, will imply replication

of the result along dim, for level i. The resulting HTA will have the same
number of dimensions as the input HTA, at the level i. This is the equivalent
of an all-to-all reduction. Default value is set to 0 for all dimensions.

– slevel: This is the starting level of the reduction. Default value is
LEAF LEVEL.

– elevel: This is the ending level of the reduction. Default value is
ROOT LEVEL. For example, if elevel = LEAF LEVEL and the HTA has
one-level of tiling, then the reduction is applied over each leaf tiles of the
HTA. Also, elevel ≤ slevel.

For example, if the HTA has a single level of tiling and slevel = elevel = 1,
then the scalar elements of the leaf tiles are reduced along dim. If slevel = elevel
= 0, the tiles of the top level HTA are reduced along dim. These two cases occur
in the IS program of NAS benchmark suite, and an example is shown in the
third and fourth row in Figure 5.

Scan. scan computes the reductions of all prefixes of a vector. For example, if
the vector v = (1, 2, 3, 4, 5), then scan(+, v) = (1, 3, 6, 10, 14). htalib provides a
similar scan operation for HTAs. The syntax is very similar to that of reduce.
However, unlike map and reduce, scan is an ordered computation; the result is
dependent on the order of iteration over the elements. scan represents do-across
parallelism. Owing to space restrictions, scan is not explained in detail.

MapReduce. Certain computations require composition of map and reduce.
mapReduce is a higher-order operator that combines the two steps in an effi-
cient manner. mapReduce takes as input instances of a map-reduce operator.
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MROperator
-accumulator

-mrReduce(buffer)

-mrMap(idx,val)

Top2

-mrReduce(bufffer)

-mrMap(idx,val)

mrMap(buffer[0].idx, buffer[0].val)

mrMap(buffer[1].idx, buffer[1].val)

if (val > accumulator[0].val) 

    accumulator[0] = (val, idx)

 else if (val > accumulator[1].val)

    accumulator[1] = (val, idx)

Fig. 6. MROperator and Top2

Reduce

(5)(4)(3)(1) (2)

h.mapReduce (Top2())

Map

Fig. 7. mapReduce operation

The implementation of this map-reduce operator is based on class MROperator
with two key abstract methods, mrMap and mrReduce, and a generic variable
accumulator that holds at first intermediate data and finally the results of the
operator evaluation.

To implement an application specific map-reduce operator, programmers must
extend MROperator and provide implementations for mrMap and mrReduce.
Figure 6 shows the MRoperator and a subclass, Top2, which finds the top 2 values
and their indices from a numerical matrix. A programmer only implements the
core sequential logic: the code for accumulating the results in the accumulator
in mrMap, and the code for combining two accumulators in mrReduce. The in-
vocation of mrMap with arguments, and the parallel reduction strategy and data
exchange are the responsibility of htalib.

Figure 7 illustrates the semantics of mapReduce invoked with an instance of
Top2. In the figure, the mapReduce is applied to an HTA with two levels of
tiling. A solid rectangle is used to show the scope of mapReduce at each stage.
mapReduce is evaluated recursively across the tile hierarchy down to a specified
level, i.e. method mapReduce is recursively invoked on each tile (step 1-2). When
the bottom or the recursion is reached, the method mrMap is applied to each
scalar of the tiles at this level (step 3). This is followed by calls to mrReduce as
the operator evaluation ascends in the tile hierarchy (steps 3-5). In the figure,
the top 2 elements chosen at each level are shown with white dots.

mapReduce offers better abstraction and performance benefits over applying
map and reduce separately. Since the reductions involve an associative oper-
ation, potentially large intermediate buffers can be replaced by much smaller
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accumulators. This saves both memory usage and network bandwidth. Further-
more, several maps or reduces can be combined in to a single operation, elimi-
nating several unwanted buffers.

4 Overlapped Tiling

Many scientific codes contain operations on several neighboring points within
an array. A typical example is iterative PDE solvers based on finite difference
techniques, also known as stencil codes. Jacobi is a simple example of an iterative
PDE solver, which is similar to the stencil computation in NAS MG benchmark.
These codes benefit from tiling, and thus from HTAs, both because it improves
their locality [15] and because it can be used to distribute their data in order to
parallelize them. However, the processing of the data located in the borders of
the tiles requires accesses to neighboring data located in other tiles. The usual
approach to deal with this problem in parallel codes is to resort to shadow regions
or ghost cells that the programmer is responsible for keeping updated. Such
situation is shown in Figure 2(a) for a 1D Jacobi code. There are two statements
to update shadow regions of HTA B before the stencil computation. In htalib,
we have opted for a cleaner approach: overlapped tiling. It consists in specifying
at construction time that the contents of each tile of the HTA overlap with a
given number of elements of each neighbor tile. The HTA becomes responsible
for creating shadow regions of storage if they are needed, and updating them as
necessary.

4.1 Syntax

Creation. When a tile T is defined, we say that the region it comprises is owned
by T. The size of this owned region for each tile is given by the tiling parameter,
the first parameter in HTA constructor in Figure 8(a). The regions that can
be accessed across tile boundaries are defined as shadow regions. In particular,
outside the region owned by T, are the extended regions that T can access. We
call them shadow-out regions. Inside T, there are regions that other tiles are
allowed to access. We call those shadow-in regions. For example, in Figure 8(b),
we show the shadow-in and shadow-out regions for the first tile of A defined in
Figure 8(a). The sizes of the shadow-in and shadow-out regions are given by a
parameter of type Overlap. First, we show how to construct an object of type
Overlap. The general form is,

Overlap<DIM> ol = Overlap<DIM>( T<DIM> negativeDir, T<DIM> positiveDir, boundaryMode mode);

The negativeDir specifies the amount of the overlap for each tile in the neg-
ative direction (decreasing index value) in each dimension. The positiveDir
specifies the amount of the overlap for each tile in the positive direction (in-
creasing index values). The mode parameter specifies the nature of the boundary
regions in the original array with three options: zero, preset, periodic. The
zero mode means shadow regions filled with all zeros will be allocated to the
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HTA<double, 1> A, B;

    A()[All] = S* ( B()[All−1]+ B()[All+1]);

while (!converged){

 ... ...
}

Overlap<1> ol(Tuple<1>(1), Tuple<1>(1), zero);

Tuple<1>::seq tiling=(Tuple<1>(4), Tuple<1>(3));

A=HTA<double,1>::alloc(tiling, array, ROW, ol);

(c)

(a)                                                                                        (b)0 0

Shadow−out Owned Shadow−out

Shadow−in

Fig. 8. Example of overlapped tiling. (a) The constructor for an HTA with tiles overlap
to both directions and shadow regions in the boundary are inserted.(b) The pictorial
view. (c) HTA code for 1D Jacobi with overlapped tiling.

(b)(a)

HTA
level 0

HTA
level 1

meta-
data

data

scalar

Fig. 9. (a) HTA with no data layering. (b) Multi layered HTA stores data at different
levels of the hierarchy.

boundary of the array by htalib. The preset mode means the shadow regions for
the array elements in the boundary have been allocated and preset by the pro-
grammer. The periodic mode means the shadow regions for the array elements
satisfy the periodic boundary conditions. In the 1D array case, for instance, the
last element of the array treats the first element as its neighbor. The Overlap
object is used as the last parameter in the HTA constructor to create the HTA
with overlapped tiling.

Figure 8(a) shows an example code that creates an 1 × 3 HTA A with 4 el-
ements per tile. Each tile in the HTA overlaps one element in both directions.
Around the boundaries of the array, the shadow regions are allocated by htalib
with zeros. The pictorial view is shown in Figure 8(b). As a result of the zero
mode overlap, the two shadow-out regions for the third tile are the last ele-
ment of the second tile and the last zero element added to A’s boundary by
htalib.

Indexing. The overlapped tiling provides flexible indexing to HTAs so that
each tile can index the neighboring elements in adjacent tiles.

The indexing for the owned region of each tile remains the same as if no
overlapped tiling had been applied. The index range for the owned data starts
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from 0 to the maximum size of the tile in each dimension. The indexing for
the shadow regions extends the owner’s range in both positive and negative
directions in each dimension. For example, let us consider a one dimensional tile
T of size 4, with overlapped tiling in both direction with the length 2. Then,
the region owned by T can be indexed as T[0:3]. The left shadow region can
be indexed as T[-2:-1] and the right shadow region can be indexed as T[4:5].
We define the symbolic shape All to index all elements in the region owned by
T. The expression T[All+1] indexes a region which shifts T to the right by 1. It
can also be thought as adding value 1 to each index in T[All].

Figure 8(c) shows the same code as Figure 2(a), but uses overlapped tiling.
Compared with the original code, it helps simplify the program with only one
statement in computation. Furthermore, the simpler indexing scheme makes the
code more readable.

4.2 Shadow Region Consistency

When there is a write to the shadow region, every tile that has access to this
region should be consistent with this change. The shadow region consistency
problem is handled by htalib. Consistency is trivial for some data layouts such as
row or column major. However, for some special data layouts such as distributed
HTAs, proper updates should be performed by htalib in order to keep all copies
of the overlapped region consistent.

We use the update-on-write policy to keep the shadow region consistent. Since
every element only belongs to one owned region, we only allow that owner tile to
perform the write to its data. Once the owner tile modifies the data, it updates
the set of tiles whose shadow-out regions contain the data.

5 Data Layering

So far the hierarchical nature of HTAs serves to achieve data distribution and
access locality. We now investigate HTAs for applications where the hierarchy
reflects a property of the application domain. The key extension we propose
for HTAs is to associate scalar data with different layers of an HTA (not just
with the lowest layer in the hierarchy) to facilitate applications requiring mesh
refinement.

When HTAs are used for locality or to control data distribution, data is stored
only in the leaf tiles, while tiles above the leaves store only meta data about their
children in the tiling hierarchy (see Figure 9(a)). We extend HTAs to provide
support for refinement, by allowing any level in the hierarchy to store both data
and tiling information about refined levels (see Figure 9(b)). For example, the
NAS benchmark MG [1] defines a set of grids that are successive refinements of
an original grid, as it can be seen in Figure 10(a), where levels 0, 1 and 2 are
shown. Every cell in a grid is expanded by a factor of two along all dimensions,
at the next level. The set of grids defined by MG can be naturally represented
as a hierarchy of tiled arrays.
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A,B+1 A,B+2

level 1level 0 level 2
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Fig. 10. Mesh Refinement (a) MG (b) Adaptive Mesh Refinement

5.1 HTA Support for Mesh Refinement in MG

Figure 11(a) shows code for a subset of functions in the NAS MG benchmark,
based on HTAs without layering support. In this code, the user has to explicitly
allocate space for the HTAs corresponding to different levels of refinement. Func-
tion setup(), in Figure 11(a), allocates the HTAs and stores them in an array. The
position in the array corresponds to different refinement levels. The users will also
have to explicitly store information on how data at a certain level relates to data
in the refined and coarse grids. This information is used to communicate data be-
tween different levels. In Figure 11(a), function interp(), data from the coarse
grid z is used to initialize data in the refined one u. The (A,B) and (X,Y) tuples
specify how data elements between two levels correspond and this information has
to be provided by the user. The explicit specification of the coordinate mapping
is error prone and a tedious task for a programmer. We extend the HTA library
to handle the refinement, and to automatically provide these mappings.

For the NAS MG benchmark, allocating the grids for the refined levels is
relatively simple. Every cell is refined uniformly, in all directions by a constant
factor. In a general adaptive mesh refinement problem there are extra complica-
tions that have to be addressed: When the refinement is not uniform, as shown in
Figure 10(b), the user will have to allocate explicit space for all refined sections
and to store, separated from the grid data structure, more complex information
on how grids at different levels are correlated. Both aspects can be naturally
expressed with our extensions to HTA, such that to simplify the programmer’s
effort in maintaining refinement information.

5.2 The Extensions for Multiple Levels of Data

Layered HTAs extend the interface of HTA with a set of primitives that facilitate
computation requiring refinement as follows:

void refine(level lev, region, refinement factor): at level lev, refine the
specified region (see Section 2.1), using the specified refinement factor. The
refinement factor is a tuple specifying the refinement in each dimension. In Figure
10(a), e.g., level 1 is a refinement of the original grid, created through refine(0,
All, Tuple(2,2)).

<region coarse, region fine> = project (level): computes how ele-
ments from two adjacent levels correspond to each other. region coarse and
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#define Grid HTA
void setup(...) {
for i = 0..num_levels {
compute tiling level i
array[i] = allocate HTA level i

}
}

void interp (Grid z, Grid u ) {
//get info about tiles
Weight w;
int iSize = ..
int jSize = ..
int kSize = ..
Triplet X(0, iSize-2);
Triplet Y(0, jSize-2);
Triplet A(0, 2 * (iSize-2), 2);
Triplet B(0, 2 * (jSize-2), 2);

u()((A,B)) += w * z()((X,Y));
u()((A+1,B)) += w * z()((X,Y));
...

}

(a)

#define Grid HTA
void setup(...) {
allocate H, HTA level 0;
for i = 1..num_levels {
H.refine(level_i, refinement_factor)
}

}

void interp(Grid u, level lev) {
Weight w;
Region r_coarse(X,Y), r_fine(A,B);
<r_coarse, r_fine> = u.project(lev);
//project level lev of u down; return mapping
u.get_level(lev+1)(r_fine) += w *

u.level(lev)(r_coarse);
r_fine.X += 1;
u.get_level(lev+1)(r_fine) += w *

u.level(lev)(r_coarse);
...

}

(b)

Fig. 11. MG setup() and interp() functions adapted for 2D Grids: (a) without
refinement support and (b) with refinement support

region fine are initialized by this method. Both regions will have the same
size (iteration space) and they encapsulate the mapping information that is used
to perform operations between elements on two adjacent levels. Figure 10(a),
illustrates an HTA with two levels of refinement; the call <region coarse,
region fine> = HTA.project (0), initializes the two regions such that ele-
ment (X,Y) from region coarse will be associated with element (A,B) from
region fine, (X,Y+1) with (A,B+2), and similarly for all elements at the coarse
level. The corresponding regions initialized with project() are used to perform
assignments and different operations between elements of HTAs at adjacent levels.
To exemplify the use of the project()method, we show in Figure 11(b), function
interp() from the NAS MG kernel. The function has the same functionality as
the interp() method in Figure 11(a), the mapping corresponding to the refine-
ment are however not computed explicitly, but provided by the layered HTA.

HTA get level(level lev): To simplify the design, layered HTAs can’t be used
in expressions with regular HTAs. Layered HTAs provide get level(), a cast
type of method that returns an HTA representing the tiling and data at a specific
level. This mechanism allows to apply regular HTA operations to a specific layer
of a multi layered HTA.

The extensions described in this section, provide an interface that facilitates
the development of applications requiring mesh refinement. The hierarchy of
refinement levels existent in the application is naturally mapped onto the hi-
erarchy of an HTA. We are currently exploring an adaptive mesh refinement
application[17] to analyze the impact of the proposed HTA extensions on pro-
ductivity and performance.
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Fig. 12. Linecount of key sections of
HTA and MPI programs

Number of Benchmark
Processors CG A CG B MG A MG B

1 68.63 2631.39 - -
2 35.27 1335.76 - -
4 17.94 671.96 - -
8 12.49 451.84 9.57 38.03

16 6.47 227.78 5.06 20.37
32 6.94 186.08 2.84 11.7
64 4.19 93.02 1.91 8.27

Fig. 13. Execution times of the NAS
HTA codes on BlueGene/L

6 Experimental Results

HTA programs benefit from a high level notation, much more expressive than
that of other approaches to implement parallel programs. Thus it is expected
that they will boost programmer’s productivity. Figure 12 measures this property
by comparing the number of lines of code used by the htalib implementation
of the CG and MG NAS benchmarks with that of their corresponding MPI
counterparts. As we can see, the HTA codes have substantially fewer lines of
code in each one the three categories in which we have classified them.

Figure 13 shows the execution times for CG and MG for classes A and B
for different numbers of processors on the BlueGene/L. Some experiments could
not be run due to the limited amount of main memory available in a single
compute node. We observe good scalability and our current efforts are focused on
identifying and optimizing the primitives that will further improve this to match
the speedup numbers achieved by the FORTRAN + MPI versions. In terms
of absolute performance, the FORTRAN + MPI versions of the benchmarks
included in Figure 13 run on average 2.2 times faster than the htalib version.

7 Related Work

The programming for distributed memory systems has traditionally followed a
SPMD, message-passing model. Programmers specify the path of execution for
each processor, and messages are exchanged either using standard libraries like
MPI [14] or higher level constructs provided by languages like Co-Array Fortran
(CAF) [16] and UPC [8]. This paradigm produces very efficient programs at
the cost of high development and maintenance costs, as the programmer has to
distribute and communicate data, synchronize processes and choose execution
paths for each processor manually.

There are three principal approaches to implement global view programming
models for distributed memory systems: (i) extensions of existing languages with
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directives such as HPF [2], (ii) novel languages like ZPL [9], and (iii) libraries
like htalib or STAPL [5]. We find the latter strategy most attractive as it facili-
tates the reuse of existing codes. Moreover, the library-based approach allows the
gradual migration of sequential codes to a parallel form without relying on com-
plex compiler technology that is not always effective in optimizing the overheads
associated with the global view model.

What differentiates the HTA from other approaches is (a) its unique treatment
of the tile as a first-class object that is explicitly addressed and manipulated and
(b) its emphasis in the recursive subdivision of the tiles in order to adapt the data
storage and computation structure of the codes to the underlying machine. This
latter characteristic is shared with Sequoia [13], although its principal construct is
procedural (the task), while our approach is data centric. Also, Sequoia tasks are
not associated to particular processors; instead they can run in any node in which
their working set fits. HTAs provide on the contrary a clear model of data and
task placement and communications. Finally, Matrix++ [10] also allows the con-
struction of hierarchical matrices and implements recursive operations on them,
but it lacks the flexible notation of the HTAs to access and manipulate the tiles.
Rather, it is focused on computations involving the whole resulting matrices.

8 Concluding Remarks

In this paper we describe three extensions to HTAs that facilitate their use in
a wide variety of application contexts. Our extensions factor out functionality
that is commonly encountered in array-based codes. Using the operator frame-
work, programmers can specify powerful, block-recursive array operations in a
sequential logic, while the skeleton of reduction and iteration is provided by
htalib. Overlapped tiling relieves the programmer from explicitly allocating and
maintaining ghost cells in stencil computations. Support for multi-layering helps
users express refinement and computations that involve arrays at adjacent layers
of the hierarchy. Our experience with a portable C++ library shows that the
new HTA features permit to implement the NAS kernels in a structured and con-
cise manner without compromising scalability or performance on a BlueGene/L
system.

Acknowledgment. We thank George Almási, Nancy Amato, and Calin Cas-
caval for their advice and comments on our work.
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Abstract. Efficient programming of multimedia streaming applications
for Consumer Electronics (CE) devices is not trivial. As a solution for
this problem, we present SP@CE, a novel programming model designed
to balance the specific requirements of CE streaming applications with
the simplicity and efficiency of the Series-Parallel Contention (SPC) pro-
gramming model. To enable the use of SP@CE, we have designed a
framework that guides the programmer to design, evaluate, optimize
and execute the application on the target CE platform. To evaluate
the entire system, we have used SP@CE to implement a set of real-life
streaming applications and we present the results obtained by running
them on the Wasabi/SpaceCAKE architecture from Philips, a multi-
processor system-on-chip (MPSoC) CE platform. The experiments show
that SP@CE enables rapid application development, induces low over-
head, offers high code reuse potential, and takes advantage of the inherent
application parallelism.

Keywords: streaming applications, consumer electronics, programming
models, SP@CE, component-based framework, MPSoC.

1 Introduction

Only a few years ago, the field of consumer electronics (CE) was limited to televi-
sion, home hi-fi, and home appliances. Nowadays, it has expanded to include many
other modern electronics fields, ranging from mobile phones to car navigation sys-
tems, from house security devices to interactive information displays. These sys-
tems spend most of their resources on processing complex multimedia, including
video and sound playing, real-time animations, real-time information retrieval and
presentation. The applications have to process data streams (i.e., continuous and
virtually infinite flows of data), and they have to be able to run concurrently, to
react to user-generated events and to reconfigure themselves on-demand.

To meet the programming challenges of these applications, we present SP@CE,
a novel SPC-based programming model for streaming applications for multipro-
cessor CE devices. Besides the features inherited from SPC, like ease of pro-
gramming, explicit parallelism, and predictability, SP@CE offers solutions for
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dealing with streaming and user-interaction, both essential to CE applications.
The SP@CE framework is a natural extension of the programming model, pro-
viding the user a productive tool for application design, performance evaluation,
optimization and execution.

The paper is structured as follows: Section 2 presents the specifics of stream-
ing applications and Section 3 discusses requirements identified as essential for
consumer electronics applications. Section 4 details the SP@CE programming
model, while Section 5 presents our experiments and their results. Section 6
discusses some related work, while Section 7 presents our conclusions and the
future work directions.

2 Streaming Applications

A streaming application is a data-intensive application that has to read, process,
and output streams of data [1,2]. Data streams, are continuous, virtually infi-
nite flows of data, with a given data rate. The elements of a data-stream are of
the same type, and they exhibit low reusability: an element is useful/used for
a limited (usually short) period of time and then discarded. The active window
of a data stream contains the elements required for the current processing. The
application processes data via its components (filters), which are, ideally, inde-
pendent entities, implemented such that they allow concurrent execution, which
facilitates the use of task-parallelism.

With respect to its data flow, the application is executed as an implicit infinite
loop, and we assume it to be synchronous. Each application iteration takes the
time needed for the active window of the application input stream to be pro-
cessed and written to the output stream. Depending on the filters organization
and/or parallelization, the application may process data at higher or lower rates.
The control flow of the application allows (1) taking different execution paths
based on conditionals, and (2) reshaping the component graph. The interaction
between the data flow and the control flow of the application must be specified
and formalized.

While an up-to-date “Streaming Programming” paradigm is not yet entirely
agreed upon - see the various definitions in [3,4,1], the consumer electronics
industry demands dedicated, more productive and more efficient tools for such
applications. The SP@CE framework is a possible answer to these demands.

3 Consumer Electronics Platforms

An essential requirement for consumer electronics software is to be reactive, i.e.,
to be able to respond and manage user interaction. Thus, besides streaming, CE
applications must feature event awareness and handling, dynamic reconfigurabil-
ity and performance predictability. This section provides insights on these three
specific aspects. To exemplify the concepts, we use a TV-like picture-in-picture
(PiP) environment, where the user can dynamically control the number of pic-
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tures on display (show/remove a picture), as well as their positioning (move the
picture on the screen).

Dynamic application reconfigurability is the ability of the system to modify
the graph of a running application without completely stopping and restarting
it. For example, if the user decides to add a new picture in the PiP environment,
the new image should not affect the displaying of the previously visible pictures.
At the implementation level, dynamic reconfigurability translates into the ability
of the application to reconfigure itself transparently to the user. Typically, such
a reconfiguration implies application graph restructuring by nodes and/or edges
addition or removal. Furthermore, reconfigurability requires a dynamic resource
scheduler, able to map the new application graph on the existing resources on-
the-fly.

Event awareness and handling refer to the ability of an application to de-
tect user requests and respond accordingly. In the PiP environment, if the user
pushes a button to add an extra picture, an external event for the application is
generated. This event can interrupt the current processing at a suitable moment
(event awareness) and the application reconfigures according to the generated
event (event handling). At the implementation level, event awareness requires
the application control flow to be able to receive and adapt to external com-
mands, while event handling imposes the application to determine and execute
the appropriate action in a timely manner (i.e., not necessarily instantly, but
within the limits of user non-observability).

Performance predictability is a characteristic of the application that allows
for performance evaluation without complete simulation or execution. In the
case of CE applications, performance prediction is used to evaluate if the soft
real-time deadlines, typically imposed by user satisfaction, are met. Guided by
the performance predictions, the user may take the appropriate decisions for
optimizing the parallelization or resource allocation strategies. In other words,
performance prediction enables a broad design space exploration for application
parallelization and mapping. In the PiP example, assume 3 active pictures and
4 processors available. There are two possible solutions for resource mapping:
(1) decode each frame on one processor, and let the fourth processor make the
assembly and display, or (2) make each processor compute one quarter of each
active picture and display its part. The performance prediction mechanism has
to decide, for each of these implementations, if they meet the deadline imposed
by the required frame rate.

4 SP@CE

This section describes the design of the novel programming model SP@CE, and it
briefly presents the early prototype implementation of its subsequent framework.

4.1 The SPC Programming Model

SPC is a programming model that imposes specific restrictions on the depen-
dency graph of an application in order to achieve analyzable performance. SPC
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Fig. 1. An SP code snippet and its corresponding graph

expresses parallel computations in terms of processes and resources. The “SP”
prefix stands for series-parallel and it suggests that the application must be
expressed in terms of an SP structured computation, which constraints the
condition synchronization patterns to only SP graphs1 [5].The suffix “C” in SPC
stands for contention and it refers to the use of resource contention to express
mutual exclusion and, as a consequence, to describe scheduling constraints [6].

Despite these apparent expressivity limitations, it has been proved that SPC
can capture the essential parallelism of an application. The loss in performance
when remodeling a non-SP application to its best SP equivalent is typically
bounded to few percents [7].

From the user point of view, SPC can be seen as a coordination paradigm
that specifies the synchronization model of the application. Programming in
SPC loosely refers to (1) expressing data computation as processes, (2) applying
compositions between these processes, and (3) expressing mutual exclusion be-
tween processes in terms of resource contention (when required). Processes are
usually expressed in a familiar sequential language, like C. Composition operators
between processes allow sequential composition and loops, parallel composition
and loops, with fork/join semantics, and conditionals. Figure 1 presents an
example that illustrates the usage of these operators.

While the processes are implemented to exploit the unbounded parallelism
of the problem, resources are introduced as limitations of the actual parallelism
of the system. The mutual exclusion provided by SPC is based on resource
contention: two processes are in contention if they require the same resource to
execute. For example: process(i) -> channelA specifies that all process(i)’s
must use the resource channelA mutually exclusive. To solve the contention,
processes are dynamically scheduled with a user-specified scheduling policy (like
FCFS, for example). Please note that resources are universal in SPC: they can be
either logical (critical sections in the program) or physical (processing units), to
allow for a generic approach. And although resources in SPC are only meant as
synchronization providers, they can be further used to facilitate the application
mapping on real hardware resources.

We have chosen SPC as the basis of our SP@CE model because of three main
characteristics: ease of programming, unbounded parallelism, and analyzability.

1 Another common name for SP programming is nested-parallel programming.
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We argue that SP is a natural way of reasoning about parallel applications [8],
while resource contention for synchronization avoids the typical hard-to-detect
synchronization errors. Furthermore, it allows for data and task parallelism com-
binations. In its SP form, an application exploits the unbounded parallelism of
the problem, without being constrained by any resource mappings transition
from its abstract resources to the real hardware resources. Finally, performance
prediction is based on estimating the application critical path augmented with
the contention serialization penalties.

4.2 The Novel SP@CE Programming Model

The SP@CE model coherently extends the SPC model with the addition of data
streams, event awareness and reconfigurability capabilities. The main features
that make SP@CE suitable and efficient for programming streaming multimedia
applications for CE platforms are:

• Construct the application graph in an SP form, which provides (among oth-
ers) performance predictability

• Model data streaming by providing data streams as a predefined data type
• Facilitate component-based design to simplify code reuse and to rise the level

of abstraction
• Combine data and control flow in a coherent model
• Use a synchronous execution model, which allows synchronization points to

be used for reconfiguration
• Allow dynamic reconfigurability of the application graph, by designing stan-

dard component interfaces that allow runtime plug-and-play capabilities
• Provide event awareness and handling

Building the data flow. To define the data flow of an application, the user has
to specify the components of the application (i.e., the nodes of the graph) and
their interconnections (i.e., the streams that make the graph edges). To completely
specify a component, one has to define (1) its data ports (type and direction), (2)
its event ports, and (3) its functionality (typically using a “classical” program-
ming language, like C). Data dependencies between the components are specified
by connecting compatible data ports, while even awareness is specified by connect-
ing the components even ports (input only) with the centralized event manager.

Building the control flow. We divide the application control flow into three sub-
categories: (1) internal control flow, i.e., inside the components, (2) border con-
trol flow, i.e., conditionals inside a process that affect its streaming behavior, and
(3) external control flow, i.e., application events, either self- or user-generated.

Internal control flow is naturally managed by the components implementation
language (in our case, C), as it is part of the processing. Because border control
flow may influence the streaming behavior of the application, an additional con-
straint has to be imposed here: to preserve the fixed data rate for the streams
(i.e., the number of consumed items should be the same in every iteration), the
programmer should define a “null-action” for each stream whose data rate may
be affected by a border conditional. Finally, because external control has to be
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Fig. 2. The SP@CE framework components and their interaction

processed at the level of the entire application, SP@CE uses a global event man-
ager to gather events and propagate them to the application components. The
event manager is implemented as a finite state machine (FSM) which has the
possible events as inputs, and the generated events as outputs. The user’s task
is to decide the logic of the FSM, and to correctly connect its outputs (i.e., the
generated commands) to the event ports of the components. The FSM is evalu-
ated at the end of each application iteration, allowing event handling in a timely
manner, and with very little interruptions in the data flow.

Reconfiguration. Reconfiguration in SP@CE is supported by declaring reconfig-
urable subgraphs. These subgraphs contain optional parts that can be enabled
or disabled as needed. Reconfiguration can only occur at special synchronization
points, when the whole subgraph is idle, e.g., at the start or at the end of the
subgraph iteration. By restricting reconfiguration to subgraphs, other parts of
the application can continue execution without being interrupted.

Reconfiguration typically implies addition and/or removal or components and
streams. As an application is initialized with all the classes of required com-
ponents (although only some of these are actually instantiated for the initial
structure of the application), adding a component requires a simple instantia-
tion of the required component class and the stream interconnections. Similarly,
removing a component means removing its instance from the enabled graph.

4.3 The SP@CE Framework

To provide the user with all the means for implementing applications in SP@CE,
we have designed the SP@CE framework, presented in Figure 2. Top-down, the
layers are: the front-end layer, i.e., the user interface, the intermediate represen-
tation layer, and the dual-path execution layer, instrumented by PAM-SoC [9]
for performance prediction and Hinch[10] for application execution on the target
platform.

Front end. The front end is the main user interface with SP@CE, allowing users
to draw the application graph, interconnecting functional components with the
corresponding data streams. To simplify the task of constructing the application
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(a) (b) (c) (d)

Fig. 3. Predefined compositions in SP@CE (similarly shaded bubbles execute the same
code): (a) sequential, (b) parallel, (c) pipeline, (d) branch
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Fig. 4. Supported non-SP compositions in SP@CE: (a)neighbor synchronization,
(b)macropipeline, (c)fork-join/broadcast-reduction and (d)paired synchronization

graph, the graphical user interface provides a few predefined SP-compliant con-
structs (see Figure 3): sequential and sequential loop, parallel and parallel loop,
(with barrier semantics), pipeline and branch.

To further extend he capabilities of the framework, we plan to support
several well-known non-SP data-parallel computation structures, like neighbor
synchronization, macropipeline, fork-join/broadcast-reduction and paired syn-
chronization, presented in Figure 4. These structures can be automatically trans-
formed into their SP equivalents with little overhead [6]. The transformation can
be performed during the conversion from the graphical interface to the intermedi-
ate representation, but the effort of supporting these complex structures requires
further analysis into their real usage (if any) in streaming applications.

SPC-XML. A first precompilation step converts this graphical representation
into an SPC representation, for which we have chosen an existing language,
namely SPC-XML [11]. The generated SPC-XML specification represents the
high level structure of the application, i.e., an XML form of the drawn applica-
tion graph, fully SPC compliant. The components code and interface details are
simply propagated in SPC-XML. Thus, the final SPC-XML representation of
an application specifies both functionality and coordination. It contains enough
information to generate, by direct transformations, both the application code
and the application model needed for the performance prediction module.

Hinch. The application execution is supported by Hinch [10], a runtime system
that takes care of load balancing the application over the available computation
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nodes, provides streaming communication primitives to the components, and
supports dynamic reconfiguration.

Hinch components have to be a one-to-one representation of the SP@CE com-
ponents. To preserve this identity, several implementation decisions have been
made:

• All components adhere to a single interface, which provides an abstraction of
the component to Hinch. In this way, connecting and executing are addressed
similarly for all component instances.

• Components can be recursively grouped, allowing hierarchical compositions
• Component reuse is enabled by allowing multiple instances of a component

to be active
• Components can be parametrized to accommodate different stream sizes, or,

if given functions as parameters, to act as skeletons for sets of functions.

In Hinch, the application is built by grouping components recursively. The ap-
plication model is a dataflow process network [12], in which the components
are the actors. The application is run by executing iterations of the dataflow
graph. In each iteration, each actor is fired one or several times, depending on
the application data rates. One firing corresponds to running one iteration of
the component. For example, in a video processing application, one iteration of
a component may consist of processing one image frame from the video stream.

A graph iteration begins by scheduling the initial component(s). The other
components are scheduled as soon as their predecessors in the dataflow graph
have finished. Given that SP@CE supports iteration pipelining, multiple iter-
ations can be active concurrently, which requires components to be aware of
this and provide the necessary locking of their internal data structures to avoid
race conditions. Although Hinch has no restriction on the shape of the dataflow
graph, the graph will generally be SP-compliant, as it is generated from the
high-level SP representation of the application.

PAM-SoC. PAM-SoC is based on the Pamela methodology[13], a static perfor-
mance prediction methodology for general purpose parallel platforms (GPPPs).
The Pamela toolchain facilitates symbolic cost modeling. It features a modeling
language, a compiler, and a performance analysis technique that enables Pamela

models to be compiled into symbolic performance models. The prediction trades
accuracy for the lowest possible solution complexity. In this symbolic cost mod-
eling, SP-compliant parallel programs are mapped into explicit, algebraic per-
formance expressions in terms of program parameters (e.g., problem size), and
machine parameters (e.g., number of processors). Instead of being simulated, the
model is automatically compiled into a symbolic cost model, that can be further
compiled into a time-domain cost model and, finally, evaluated into a time
estimate.

In order to address the specifics of embedded multi-core hardware platforms,
we have developed PAM-SoC, a toolchain that includes, beside Pamela, new
techniques for machine modeling and dedicated tools for gathering memory be-
havior statistics [9]. To predict the performance of an application, PAM-SoC
couples the application model with the target machine model, computing an
average execution time of the application on the target architecture. Both mod-
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els are written in the Pamela modeling language, a process-oriented language
designed to capture concurrency and timing behavior of parallel systems [14].

The role of PAM-SoC in the SP@CE framework is to predict the performance
of the application in a form that can be used as feedback for the application
design. PAM-SoC is able to (1) estimate the average execution time of a given
application and (2) identify the potential resources that generate bottlenecks.
Given these information, the user should be able to tune the application design
and/or implementation to alleviate the bottlenecks and bring the execution time
within the required limits.

5 Experiments

In this section, we present our initial results with the SP@CE prototype. We fo-
cus mainly on the expressiveness issues, discussing the way streaming consumer
electronics applications can be programmed. We first describe the experimental
setup, followed by the applications used in the experiments and the results. In
this paper, we focus on evaluating (1) the overhead of the SP@CE framework
by comparing functionally equivalent applications, developed with and without
the SP@CE framework, and (2) the performance of the SP@CE applications
when running in parallel. More specific details about the runtime system imple-
mentation and behaviour in terms of performance, reconfigurability lantecy and
reconfiguration overhead are presented in [10].

5.1 Experimental Setup

All experiments are performed using the SpaceCake architecture[15], provided
by Philips. This architecture has multiple identical processing tiles that commu-
nicate using distributed memory. Each tile is a shared memory multiprocessor on
chip, called Wasabi. Wasabi contains a general purpose processor core, multiple
TriMedia DSP cores, and specialized hardware to speedup specific operations.
Per tile, each core has its own L1 cache, while the L2 cache is shared between
all cores.

Since SpaceCake hardware is not available, all experiments are run using
Wasabi’s cycle accurate simulator, provided by Philips, which simulates a single
tile with multiple TriMedia cores.

In all the experiments, we measure and compare the relative performance
of the main computational part of the applications. To avoid distorting the re-
sults with the overhead introduced by the simulation I/O mechanisms, the input
file(s) are fully read at initialization, and the final output results are discarded.
The SP@CE component architecture simplifies the transition from these testing
prototypes to real applications, as these “dummy” input and output components
may be easily replaced with functional ones.

5.2 Applications

Motion JPEG. The first application we evaluated is a Motion-JPEG decoder
(MJPEG). It takes a file with 50 concatenated 1280x720 jpeg coded images as
input and decodes these into planar Y, U and V buffers. As shown in Figure 6,
this application consists of three main components:



42 A.L. Varbanescu et al.

1. MJPEG input. This is a simple component that splits the mjpeg file into
separate jpeg files. It supplies the next component with a jpeg file in each
application iteration.

2. JPEG bit stream decoder. This component decodes the jpeg file into Discrete
Cosine Transformed (DCT) blocks for each color component in the image.
This includes: jpeg header decoding, Huffman decompression, and inverse-
zigzag coding.

The component can either run in a pipeline fashion, decoding multiple
jpeg images concurrently, or it can run in a sliced mode, decoding one jpeg
image split up into slices (i.e., adjacent sets of lines). In the sliced mode,
the data processing in the bit stream decoder is fully sequential (slice after
slice), but the model allows the next component to start running as soon as
the first image slice is available. In the non-sliced mode, the next component
can be run when all DCT blocks are decoded, but the following image is
already in the pipeline. The estimates given by PAM-SoC, confirmed by
real measurements, have indicated that the non-sliced mode performs better.
Thus, guided by the SP@CE integrated tools, we have taken the appropriate
design decisions and used the non-sliced version.

3. JPEG DCT decoder. This component generates pixel data from the input
DCT blocks by performing an inverse discrete cosine transform (IDCT) fol-
lowed by shift and bound operations. There is one DCT decoder for each
color component in the image. Since there is no data dependency between the
DCT blocks, data parallelism can be exploited by decoding multiple image
slices simultaneously.

Picture-in-Picture. The second application we have evaluated is Picture-in-
Picture (PiP). The application combines 96 images from multiple uncompressed
720x576 image streams into a single image stream by scaling down image streams
and blending these into the main (background) image stream. We have four
versions of the PiP application (PiP-0 to PiP-3), with 0, 1, 2, and 3 pictures-in-
picture, respectively.

The components and data streams in the PiP application are shown in
Figure 5(a). The downscale and blend components are run using data-parallelism.
The full arrows in the figure correspond to luminance (Y) and packed chromi-
nance (UV) streams. As the original graph is non-SP, we have converted it to
its SP form by introducing a new synchronization point before the blender com-
ponents. The resulting application graph is shown in Figure 5(b)2.

This procedure shows how a non-SP graph is redesigned as SP. Although the
SP version presents more dependences and the two blend components may have
to wait for both luminance and chrominance streams downscaling, the inherent
load-balance of the downscaling process alleviates performance penalties. Other
forms of SP-graphs could be selected for applications with similar structure but
different load-balance conditions. The SP@CE prediction tool shows which gives
the best performance.

2 For clarity, the graphs only show the dependencies between the components, and
not all individual streams. Each dependency corresponds to a luminance stream
(Y), chrominance stream (UV), or both (YUV).
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Motion JPEG + Picture-in-Picture. We have also created an application
(JPiP) by adjusting PiP to use components from MJPEG as input components,
instead of the standard input components. The application combines 16 images
from multiple jpeg-compressed 1280x720 image streams into a single 1280x720
image stream. Similarly to PiP, we have four versions JPiP (JPiP-0 to JPiP-3),
with 0, 1, 2, and 3 pictures-in-picture, respectively.

The structure of JPiP, with one picture-in-picture, is shown in Figure 7. Be-
ing a combination of PiP and MJPEG, JPiP has three downscaling components
for each picture-in-picture and three blenders, instead of two. To reduce syn-
chronization overhead, the data-parallel components from both applications are
grouped together.

The JPiP application is also a good example of the usability of SP@CE. With-
out SP@CE, it would have taken quite some effort to build a JPiP equivalent,
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as all communication and scheduling have to be programmed manually. Further
more, code re-use would have been hindered: even though equivalents of MJPEG
and PiP are available, various parts of these applications have to be adjusted
to fit the new communication and scheduling patterns. With SP@CE, the only
thing that had to be done was initializing and connecting existing components.
Code reuse is practically optimal, as the components themselves needed no mod-
ifications at all.

5.3 Sequential Overhead

To estimate the SP@CE model overhead, we have compared the execution time
of the SP@CE versions of PiP and MJPEG against their reference implementa-
tions. These reference implementations are sequential. Figure 8 shows the exe-
cution times of the non-SP@CE implementations, compared to a sequential and
a parallel SP@CE version. SP@CE adds a small overhead (within 10%), due
to its component-based structure. However, exactly due to its parameterized
component-based structure, it allows for the same application to be executed
in parallel. Given the much better execution time of the parallel version, we
consider the sequential overhead not significant.

The overhead in the (sequential) SP@CE PiP applications is due to the fact
that the blender is a separate component, while it is integrated in the downscaler
in the non-SP@CE version. Profiling information shows that down scaling the im-
age takes an almost equal amount of cycles for both versions. The difference lies
in the amount of data copies, which is larger with a separate blender. However,
we expect redundant buffering introduced by the SP structured form of compo-
nent composition to be easily detected and eliminated by an optimization stage.

The non-SP@CE version of MJPEG decodes the DCT blocks as soon as they
are decoded from the bit stream. It is 14% faster than the sequential SP@CE
version. Profiling information shows that half the difference is due to commu-
nication overhead of the DCT buffers. Buffering DCT data causes data cache
misses, both at the writing side (bit stream decoder) and the reading side (DCT
decoder). The other half of the difference is added by the SP@CE model, due
to some inefficiencies in data management and some code redundancies, mostly
derived from generalization and support for parallelism. Better optimization in
the SP@CE-generated code may alleviate them. The runtime system (Hinch)
does not add significant overhead.

5.4 Parallel Performance

Figure 9 shows the speedup of the SP@CE applications when run on multiple
TriMedia nodes. Because reference parallel implementations of the used bench-
marks are not (publicly) available, we compare the parallel performance against
the sequential SP@CE versions. PiP-0 does not exhibit much speedup because it
is a trivial application that merely copies its input to its output. It is limited by
memory bandwidth, not by processing power. The efficiency of PiP-1 decreases
beyond seven nodes because there is no more parallelism to exploit. PiP-2 and
PiP-3 do not suffer from this problem and show efficiencies of above 98% at nine
nodes. The speedup for MJPEG does not increase much when it is run at more



SP@CE - An SP-Based Programming Model 45

MJPEGPiP-0 PiP-1 PiP-2 PiP-3
Application 

500

1000

1500

2000

2500

3000

cy
cl

es
 x

 1
.0

00
.0

00

Non-SP@CE
SP@CE - sequential
SP@CE - 2 nodes

Fig. 8. SP@CE overhead

0 1 2 3 4 5 6 7 8 9
nodes

0

2

4

6

8

sp
ee

du
p

ideal speedup
PiP-0
PiP-1
PiP-2
PiP-3
MJPEG
JPiP-0
JPiP-1
JPiP-2
JPiP-3

Fig. 9. SP@CE speedup

than four nodes. Beyond this point, the added compute power is hardly used
because there is only little additional parallelism to exploit.

The performance of JPiP-0 resembles that of MJPEG since these applications
are highly identical: the main differences are the blender components, which
are only present in JPiP. Like in PiP-0, the blend components in JPiP-0 do
nothing but copying their single input to their output. Profiling information
shows that less than two percent of all computation in JPiP-0 is spent in the
blend components. In JPiP-1, JPiP-2, and JPiP-3 there is an abundance of
parallelism to exploit. These applications therefore achieve good speedup figures,
e.g., JPiP-3 has an efficiency of 96 % at 9 nodes.

To summarize, the results of the experiments presented in this section pro-
vide evidence that the SP@CE model is a suitable option for implementing
predictable parallel streaming applications. Furthermore, while the model and
its framework do not induce high overheads, they provide good performance in
terms of applications speed-ups.

6 Related Work

We relate our work with different types of solutions - languages, design frame-
works, and models - for programming streaming applications. For a reference
survey on the origins and developments of streaming programming languages,
we relate the reader to [1]. The survey presents reference languages like Lucid,
LUSTRE, ESTEREL, and many others, until the mid-90’s. Our data-flow ap-
proach on streaming, together with the representation of streams by their tempo-
ral instances largely follows the Lucid approach [16]. The model of synchronizing
the application by iteration is similar to the approach of synchronous languages
presented by [17] for LUSTRE and [18] for ESTEREL. However, none of these
languages take into consideration issues like parallelization or reconfiguration,
while events are only marginally discussed.

The most influential “modern” streaming language is StreamIt [19], which
also expresses an application as a hierarchical graph of filters connected by
streams. To insure correct composition of the filters, only a small number of
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composition operators are permitted. Components functionality is developed in
C and/or Java, allowing code reusability and making the language reasonably
user-friendly. However, StreamIt solutions for dealing with reconfiguration and
events are cumbersome and limited compared to our approach. Finally, while
StreamIt is elegantly exploiting task parallelism, data parallelism is only par-
tially supported. Compared to the lower-level model of languages like Brook
[3] or Stream-C/Kernel-C [20], our component-based model raises the level of
abstraction, being easier to use for both design and implementation.

Nizza is a framework proposed in [21] as a methodology for developing multi-
media streaming applications. Similar to our framework, Nizza uses a data-flow
model, and it proposes a complete design-to-implementation flow, but it lacks
a generic concept of events and reconfiguration is not entirely dynamic (it re-
quires a restart of the framework). Also, as Nizza targets desktop applications,
no performance feedback loop is included.

TStreams [4] is an abstract, dedicated model for parallel streaming applica-
tions, based on the same explicit parallelism approach as SP@CE. It remains
to be seen if the model implementation is able to preserve these features. The
Space-Time Memory abstraction (STM) [22] is a model with a different look
on streams: an application is a collection of streams that need processing, so
threads can attach them, process, and detach from them as required. The system
is dynamic, natively reconfigurable and time-synchronous, being able to exploit
both task and data parallelism. Again, the major drawback is in the model im-
plementation that preserves these properties and remains programmer-friendly.
Although SP@CE’s model is simpler, it allows for a user-friendly implementation
that offers a good compromise between the abstraction level and usability.

Kahn Process Networks (KPN) [23] are a popular streaming model for the
embedded systems industry, because they are determinate and compositional.
However, KPNs have no global state, and they are not reactive to external
events. Models like Context Aware Process Networks model (CAPN) [24] and
Reactive Process Networks (RPN) [25] alleviate this problems by extending KPN
with global state and event awareness, but they sacrifice its determinate prop-
erty. As a result, they are not predictable. These models do not tackle dynamic
reconfiguration and do not include data parallelism facilities, which are both
strong points of SP@CE.

Data-flow models are extensively used for expressing streaming applications
[12,26]. SP@CE follows a similar graph-of-tasks approach as these models, and it
is similar, in its synchronous approach, with the Synchronous Data-Flow [27,28]
model. Still, most data-flow models implementations do not tackle dynamic re-
configuration (with an exception in the Parameterized Data Flow model [29])
and do not include data parallelism features. Furthermore, note that an impor-
tant advantage of SP@CE over generic data-flow models is predictability and
analyzability.

7 Conclusions and Future Work

We have presented SP@CE, a new programming model for streaming applica-
tions for MPSoC Consumer Electronics platforms. One of the main contributions



SP@CE - An SP-Based Programming Model 47

of this work is the analysis of the specific requirements for streaming applications
running on consumer electronics platforms. We believe that we have identified
and listed all the properties that must be provided by a dedicated programming
model aiming to increase programming correctness, efficiency and productivity.
A further step was the SP@CE programming model itself, as an extension of the
SPC model that embeds all the aforementioned properties

To prove the usability of SP@CE, we have designed a three-layer framework
that assists the programmer in the design-to-execution flow of a streaming ap-
plication. The SP@CE framework includes an user-friendly front-end, an XML-
based intermediate representation, a runtime system and a performance feedback
loop. A prototype of this framework has been used to experiment with several
real streaming applications on a given multiprocessor CE platform. We have pre-
sented the results of these experiments, which prove that SP@CE’s component-
based approach provides good performance numbers, low overhead and nearly
optimal code reuse.

For future work, on short term, our main target is to further validate the
results by implementing more applications and more CE platforms. Further, we
aim to make several enhancements of the framework prototype, including a com-
plete graphical implementation of the front-end, more aggressive optimization
engines for both SPC-XML and Hinch, and fully static performance prediction
with PAM-SoC.
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Abstract. The rapid growth of multimedia applications has been
putting high pressure on the processing capability of modern proces-
sors, which leads to more and more modern multimedia processors em-
ploying parallel single instruction multiple data (SIMD) units to achieve
high performance. In embedded system on chips (SOCs), shared memory
multiple-SIMD architecture becomes popular because of its less power
consumption and smaller chip size. In order to match the properties of
some multimedia applications, there are interconnections among multiple
SIMD units. In this paper, we present a novel program transformation
technique to exploit parallel and pipelined computing power of modern
shared-memory multiple-SIMD architecture. This optimizing technique
can greatly reduce the conflict of shared data bus and improve the perfor-
mance of applications with inherent data pipeline characteristics. Exper-
imental results show that our method provides impressive speedup. For
a shared memory multiple-SIMD architecture with 8 SIMD units, this
method obtains more than 3.6X speedup for the multimedia programs.

1 Introduction

In recent years, multimedia and game applications have experienced rapid growth
at an explosive rate both in quantity and complexity. Currently, since these ap-
plications typically demand 1010 to 1011 operations to be executed per second
[1], higher processing capability is expected. Generally speaking, there are two
kinds of solutions to the issue - hardware solutions and software solutions. Hard-
ware solutions such as application specific integrated circuits (ASICs) have the
advantages of higher performance with lower power consumption; However, their
flexibility and adaptability to new applications are very limited. As a result, it
is much popular to handle the problem with software solutions which enhance
the processing capability of general-purpose processor with multimedia exten-
sions. In the past several years, the key idea in those extensions was to exploit
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subword parallelism in a SIMD (Single Instruction Multiple Data) fashion, such
as Intel’s SSE, MIPS’s MDMX, TI (Texas Instruments)’s TMS320C64xx series
etc.

However, with various multimedia applications becoming more complicated,
using only single SIMD unit as a multimedia accelerator can not satisfy the
performance requirements of these applications. Although it can improve com-
puting capability by increasing processing elements (PEs) in one SIMD unit,
this approach is unacceptable from both hardware and software perspective.
Therefore, multiple-SIMD architecture instead of single SIMD unit is becom-
ing a dominant multimedia accelerator in modern multimedia processors. At
present, there are two types of multiple-SIMD architectures: one is shared mem-
ory multiple-SIMD architecture (SM-SIMD)[3,4,5,6,7,8,9] , where multiple SIMD
units share a common memory (cache) on chip. The other is distributed memory
multiple-SIMD architecture (DM-SIMD)[10], on which each SIMD unit has its
local memory.

Since SM-SIMD architecture can get smaller die size and less power consump-
tion, SM-SIMD architecture is widely used in embedded SOCs [3,4,5,6,7,8,9].
Although the details of these SOCs are not completely the same, there are
some common characteristics among them in order to fit mobile computing
circumstance.

1. There is a shared memory (cache) on chip for better locality, and multiple
SIMD units access shared memory through a shared data bus. Shared data
bus can replicate one vector to all SIMD units at the same time.

2. There are limited registers in each SIMD unit.
3. Multiple SIMD units are controlled by a general purpose processor core.

Most of SM-SIMD architectures use very long instruction word (VLIW) to
exploit the parallelism among multiple SIMD units since such an approach
offers the potential advantage of simpler hardware design compared with
the superscalar approach while still exhibiting good performance through
extensive compiler optimization.

4. There are interconnections among SIMD units to make one SIMD unit get
data from the registers of its connected SIMD units. We call two SIMD units
as neighboring SIMD units if there is an interconnection between them.

Table 1 lists the major products of SM-SIMD architecture with these
characteristics.

Table 1. Products of SM-SIMD architecture

Product Institute Year
MorphoSys [3] University of California, Irvine 2000
HERA [4] New Jersey Institute of Technology 2005
Imagine [5] Stanford 2004
Motorola 6011 [6] Motorola Inc. 2003
MGAP-2 [7] Folsom Inc. 2000
Vision Chips [8] University of Tokyo 2004
VIRAM [9] UC Berkeley 2004
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Scheduling for these shared bus and interconnected architectures is difficult
because the compiler must simultaneously allocate many interdependent re-
sources: the SIMD units on which the operations take place, the register files
to hold intermediate values, and the shared bus to transfer data between func-
tional units and shared memory. These conditions put very high pressure on the
optimizing algorithms of SM-SIMD architecture. Most prior VLIW scheduling
algorithms, such as [17] and [18] can not deal with resource allocation. Although
scheduling algorithm in [12] enables scheduling for architectures in which func-
tional units are connected to multiple register files by shared buses and register
file ports, the utilization of these resources is not considered. Optimizing algo-
rithm in [11] solves the utilization issue of shared data bus to some extent through
common sub-expressions elimination, but the locality of read-only operands is
not exploited by the authors although this type of operands is very common in
real multimedia applications. Scheduling algorithm in [13] is an efficiently algo-
rithm that exploits how to improve the utilization of the resources based on the
characteristics of multimedia application, but it is not presented in their works
that how to exploit pipeline parallelism.

The major challenge to optimizing techniques for SM-SIMD architecture is
to reduce the conflict of shared data bus and to improve the parallelism among
multiple SIMD units. When there are interconnections among multiple SIMD
units, some optimizations can be performed to reduce the conflict of shared
data bus. If one operation executed on one SIMD unit can get its operand from
the register of the neighboring SIMD unit through interconnection, it is better
to get the data through interconnection rather than via shared data bus. The
reason is that getting operands from neighborhood would bring no data bus
conflict, which is the major motivation for the optimizing technique proposed
in this paper. Data pipeline parallelism is that multiple SIMD units get data
from their neighboring SIMD units and data flows among these SIMD units as
in pipeline. In this paper, we present a novel algorithm, which transforms se-
quential multimedia programs into data pipeline forms to exploit data pipeline
parallelism. While reducing the shared data bus conflict of multiple SIMD units,
the algorithm also greatly improve the performance of the application pro-
grams with inherent data pipeline characteristics. This paper makes the following
contributions:

– This paper presents a novel data pipeline optimization through exploiting
the characteristics of read-read reuse in the multimedia applications and the
interconnection characteristics in SM-SIMD.

– Based on the experimental results, this paper also gives out some advice on
programming for SM-SIMD architecture.

The remaining of this paper is organized as follows. Section 2 gives out
the problem overview for the pipeline scheduling. In section 3, we describe
pipeline scheduling in detail. Section 4 introduces the experimental method and
presents the analysis of the experimental results. And in section 5 we come to the
conclusion.



52 W. Zhang et al.

2 Problems Overview

2.1 Constraint of Shared Data Bus on Parallelism

Because there are multiple SIMD units in SM-SIMD architecture, it is necessary
to exploit the parallelism among SIMD instructions and map them to different
SIMD units. However, many parallel SIMD instructions can not be executed in
parallel because of the constraints of shared data bus. Below is an example of
such condition.

for (i=0; i<100; i++) // Loop1
A[i,0:7] = B[i,0:7] + C[i,0:7];

Example code 1: A parallel code fragment.

The code in Example code 1 is a program after SIMD optimization. Loop1 is
a parallel loop, whose different iterations can be dispatched to different SIMD
units. When mapping these iterations to different SIMD units, all of them need
to load their operands from the shared memory respectively. As a result, these
instructions can only be executed in sequence since shared data bus can only
satisfy one of their operand requirements in each cycle. Thus, it is useless to only
identify the parallelism in the program to exploit the parallelism for SM-SIMD
architecture. Multiple SIMD instructions can be executed in parallel only when
there is no shared data bus conflict among them. Therefore it is important for
SM-SIMD architecture to reduce the competition of shared data bus in order to
fully utilize the computation resources.

2.2 Problem Overview

As analyzed in section 2.1, shared data bus would impede the parallelism among
multiple SIMD units in SM-SIMD architecture. Therefore, how to reduce the
conflict of shared data bus would greatly impact the parallelism among multiple
SIMD units. The scheduling algorithm in [13] can reduce the conflict of shared
data bus through replicating read-only data and increasing the register locality.
Furthermore, the interconnections1 among SIMD units could provide better so-
lutions for some applications. One SIMD unit can get the data from the register
of its neighboring SIMD unit. Such data-getting manner performs better than
loading data from the shared memory because accessing the register of its neigh-
borhood would provide no bus conflict. The goal of data pipeline optimization
is to exploit pipeline parallelism, which can greatly reduce the conflict of shared
data bus and improve the parallelism of SM-SIMD architecture.

1 Transfers of values between SIMD units are accomplished through operations of ex-
plicit movements along the interconnections among SIMD units. The interconnection
is assumed to have a bi-directional ring topology among SIMD units. In other words,
one SIMD unit has connections with its two neighboring SIMD units. Though this
assumption is not necessary, it simplifies the compiler algorithms and such topology
is very popular in SM-SIMD architecture.



Data Pipeline Optimization for Shared Memory Multiple-SIMD Architecture 53

SIMD 0

Iteration 0 of a 

parallel loop

Iteration 1 of a 

parallel loop

Iteration 2 of a 

parallel loop

Iteration 3 of a 

parallel loop

SIMD 1 SIMD 2 SIMD 3

...Ins i

...

...

Ins i

...

...

Ins i

...

...

Ins i

...

...

Get data Get data Get data Get data

Fig. 1. Data pipeline

In order to exploit the parallelism among multiple SIMD units, different iter-
ations of a parallel loop are distributed to different SIMD units. Figure 1 shows
different iterations of the parallel loop which are mapped to different SIMD
units. If ins i executed on SIMD unit 0 can get its operand from the register of
SIMD unit 1, ins i executed on SIMD unit k can get its corresponding operand
from the register of SIMD unit k+1 as well. If these iterations can be scheduled
consistently, data can be transferred among different SIMD units and thus be
reused. Data flows through SIMD units as in a pipeline.

The program in Example code 2 is an example of such condition.

for (j=0; j<4; j++) { // Loop2
A[j,0,0:7] = m1[0,0:7] - m2[j,0:7];
A[j,1,0:7] = m1[1,0:7] - m2[j+1,0:7];
A[j,2,0:7] = m1[2,0:7] - m2[j+2,0:7];
A[j,3,0:7] = m1[3,0:7] - m2[j+3,0:7];

}

Example code 2: An example for data pipeline.

In order to conveniently illustrate the problem in the following parts, we as-
sume that there are 4 SIMD units in SM-SIMD architecture and it costs one cycle
to finish the computation and getting data from the shared bus. If we schedule the
code with the algorithm in [13] and distribute 4 iterations of Loop2 to 4 different
SIMD units, 24 cycles are needed to finish 4 iterations of Loop2 (not including the
cycles for writing back the results). However, 15 cycles are enough for the same
work once data pipeline characteristics are exploited. The reason is that schedul-
ing algorithm in [13] only exploits the parallelism based on replication, therefore
only array m1 is reused. As a contrast, pipeline scheduling can not only exploit the
reuse of array m1, but also reuse the elements of array m2 through data pipeline.
Figure 2 illustrates the part of the execution process for the program.

3 Optimizing Algorithm

When there is a data pipeline between neighboring SIMD units, one SIMD unit
should be the owner of an operand and the other is the consumer. In other words,
after the data is used by the operation in one SIMD unit, the other SIMD unit can
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Fig. 2. Data pipeline scheduling

get it through the interconnection and reuse it. Such relationship among multiple
operations executed in multiple SIMD units leads to a data pipeline and multiple
SIMD units become the stages of data pipeline. In order to optimize the programs
with such method, compilers need to identify data pipeline characteristics in the
programs and schedule them based on the data pipeline flow relation. We call
the data that can be transferred through interconnections as pipe-data and
the two instructions, which use the pipe-data one after the other, as pipeline
instruction pair in data pipeline optimization.

In order to implement this optimization, data pipeline optimizing performs
the following steps, which is described in detail in the remainder of this section.

1. Determine candidate loop nests that will be executed on multiple SIMD
units.

2. Analyze the live data to compute pipeline instruction pairs.
3. Determine the data flow directions of pipeline instruction pairs.
4. Eliminate redundant pairs which would cause unnecessary data transfers.
5. Transform some operations to communication operations.
6. Select the parallel loop, whose different iterations will be distributed to dif-

ferent SIMD units.
7. Allocate the resources for the iteration of the parallel loop.
8. Schedule the codes for multiple SIMD units.

3.1 Preliminary Optimizations

Code Partition. Before our optimization, the programs have been already
performed SIMD optimizations [14]. After SIMD optimizations, we use code
partitioning to determine which segments of the program should be executed on



Data Pipeline Optimization for Shared Memory Multiple-SIMD Architecture 55

SM-SIMD architecture and which should be executed on the general purpose
processor core. All sequential code, code for synchronization and controlling are
mapped for execution on the general purpose processor core. The loops with
SIMD operations are mapped for execution on SM-SIMD architecture.

Computation of Data Vector Reuse. A data vector can be represented by
four parameters: the data layout direction, the vector length, the address of its
first element and the coefficient. Two data vectors are equal if and only if all
these four parameters are equal. For two vectors of same array, when they have
the same data layout direction and belong to the same uniformly generated set
[19], when there is traditional temporal reuse between their first elements, their
other corresponding elements also have traditional temporal reuse opportunity.
Therefore, the first elements can be used as the representative elements of the
data vectors to compute the data vector reuse under the constraints that these
data vectors have the same data layout direction, the same vector length and
the same uniformly generated set which their references are belonging to.

3.2 Live Data Analysis

In order to represent the instructions in pipeline instruction pairs, each instruc-
tion should have an exclusive symbol. Therefore, we construct the dependence
directed acyclic graph (dependence-DAG) for the body of each candidate loop
nest mapped to SM-SIMD architecture. Each SIMD instruction is assigned a
sequential number based on its topological order in its individual dependence
DAG.

If two instructions from a pipeline instruction pair are mapped to two neigh-
boring SIMD units, they can communicate through the interconnection. To cal-
culate the parallelism and perform the scheduling conveniently, a pipeline in-
struction pair should associated with several properties. We use the relation 〈first
ins num, second ins num, dist, loop, array, subscript〉 to represent a pipeline in-
struction pair.

– first ins num is the smaller instruction number of the instructions in a
pipeline instruction pair.

– second ins num is the larger instruction number of the instructions in a
pipeline instruction pair.

– loop is the loop whose different iterations the pipeline instructions belong
to.

– dist is the distance of loop iterations that carry this pipeline instruction pair.
– array is the array which the pipe-data belongs to.
– subscript is the subscript of pipe-data.

In a pair of two instructions, there are possibly more than one pipe-data among
multiply operands. We mark each pipe-data in separate pipeline instruction pair.

3.3 Instruction Pair Direction

After pipeline instruction pairs are recognized, the data transfer direction that
the pipe-data flows in a pipeline instruction pair should be determined. In other
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words, we need to decide which is the source of the instruction pair and which is
the destination. In our algorithm, the data from a pipeline instruction pair flows
from the instruction with smaller instruction number (first ins num) to the one
with larger number (second ins num). The reasons are shown as follows. If data
flows from an instruction with larger number to the one with smaller number, it
is possible to have a cycle in the dependence DAG when a communication edge
is added into the dependence DAG. Even a cycle is not involved, it is possible
to lead to a deadlock when scheduling. Figure 3 is such a deadlock example
(We assume the pipe-data flows along the direction of arrows. i, j, k and m are
the instruction numbers of their corresponding instructions. Such representation
will also be used in the following figures.). If instruction i needs the data of
instruction m while instruction j is waiting for the data of instruction k, all of
them would keep circular waiting and a deadlock would be formed. However, if
the directions of data flow are reversed, the deadlock could be avoided. Moreover,
if a data flows from an instruction with larger number to the one with smaller
number, the scheduling of a lower level node in one dependence DAG depends
on that of a deeper level node in the other dependence DAG. As a result, it is
difficult to keep the load balance among the different DAGs when scheduling
them to different SIMD units.

As a result, the direction of pipeline instruction pair flows from a smaller
instruction to a larger one. It is possible to have two instructions trying to share
data with each other holding the same instruction number, which means they are
two instances from the same instruction. However, we do not construct pipeline
instruction pair for such instructions, because the data could be reused with the
replication method in [13], as the case array m1 at cycle 11 shown in Figure 2.
In other words, the first ins number will be always smaller than the second one
in a pipeline instruction pair.

In the following parts of this paper, we also refer to the instruction with first
ins num as the start instruction and the instruction with second ins num as
the end instruction.

3.4 Redundant Communication Elimination

While pipeline instruction pairs are used, it is possible to have some redundant
pipeline instruction pairs, which would cause unnecessary data communications
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thus should be eliminated. Figure 4 is such an example. In this example multiple
instruction pairs share the same pipe-data. Assume instruction i and instruction
j are the first pipe-data requiring instructions in those two iterations. After
data communication is finished between them, all other instruction pairs are
redundant because the pipe-data can be saved in the local register.

Indeed, for the same reuse data, it only needs to be transferred once between
the neighboring dependence DAGs. Therefore, it is enough that only the pipeline
instruction pair with the smallest instruction number in the different dependence
DAGs is maintained. As the redundant pairs, other data pipeline pairs using this
pipe-data can be eliminated. After the elimination, we add the communication
edge into the dependence DAG for each pipeline instruction pair. The weight of
each edge is the distance between them.

3.5 Computation-Communication Transformation

Sometimes, some computing instructions can be transformed into communica-
tion operations. When two instructions satisfy the following conditions, one of
the two instructions can be replicated by a communication operation. First, all
operands of the two instructions are pipe-data. Second, their operations are the
same. In such condition, we call the end instruction of the two instructions in the
data pipeline pair as comp-commu instruction. A comp-commu instruction
can be replicated by the operation that gets the result from the start instruction,
if the cycle of executing the comp-commu instruction is less than the cycle of
getting the result directly. We use the following steps to process such condition.
For a comp-commu instruction P :

1. Get the pipe-data that would be used by other pairs that P is the start
instruction.

2. Compute the cycles (cyccomp) that get all other operands (possibly no other
operands need to be gotten) of P and finish the operation of P.

3. Compute the cycles (cyccomm) that directly get the result of P.
4. Compare cyccomp with cyccomm. If cyccomp < cyccomm, we compute the result

of P through step 2. Otherwise, we transform the operation of P into the
operations in step 3.
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3.6 Parallel Loop Selection

In this part, we select the loop whose different iterations would be distributed
to multiple SIMD units. Before we select the loop, we compute the amounts of
different distance replication data for each loop based on the algorithm in [13].
And then, a replication weight is assigned to each loop. The replication weight
is the maximal amount value among different distance replication data. It can be
represented as <amount, rep-dist>. rep-dist is the distance of replication data
with the maximal amount. Then we select the loop, which is permutable with
the innermost loop and with the maximal replication weight value, as parallel
loop in order to utilize the parallelism based on replication as much as possible.
If multiple loops have the same replication weights, we compute the amount of
pipeline instruction pairs of these loops, whose distances are all equal to the
value of rep-dist. We select the one with the maximal pipeline amount from
the loops with the maximal replication weight as the parallel distributed
loop.

Once the parallel distributed loop is selected, it is changed as the innermost
parallel loop and performed loop mining optimization. The mining distance is
equal to rep-dist. And only the pipeline instruction pair, which carried by parallel
distributed loop and having the same distance with rep-dist, would be exploited
in the scheduling algorithm.

3.7 Register Allocation

Once selecting the parallel distributed loop, we deal with the problem of limited
register number in this section, we can allocate resource based on the requirement
of the reuse data vector and average instruction parallelism in one iteration of
the parallel distributed loop. We also use the interconnection characteristics in
register allocation algorithm.

Register Requirement. Before resource allocation, we first need to compute
the register requirement of one iteration, which is the number of maximally
simultaneously live variables. In order to compute this value, we construct the
interference graph based on the algorithm in [16]. The degree of a node in the
interference graph represents the number of simultaneously live variables with
this nod. Assume the degree of the interference graph is N, then the register
requirement equals to N+1. Assume the total register number in Nr SIMD units
can finish the allocation with no live data spilled out in one iteration of the
distributed loop.

Resource Allocation. If there does not exist instruction level parallelism in
an iteration of the distributed loop, only regarding the SIMD units as register
resources would waste the computation resources. Therefore we compute the
average instruction parallelism of the iteration of the distributed loop for later
resource allocation. Assume the value of the average SIMD instruction level
parallelism is equal to Ni.
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After computing average instruction parallelism, we allocate resources by con-
sidering both the instruction parallelism and the register requirement at the same
time. We select the minimal value of Ni and Nr as the number for resource allo-
cation. The main goal of our scheduling algorithm is to find as much parallelism
as necessary to saturate the available hardware. Therefore, if there is instruction
parallelism in an iteration with register pressure, exploiting some of them can
also lower the pressure on the requirement of the registers and reduce the number
of operations for spilled out. In other words, when guaranteeing the utilization of
the computation resources, we also try to satisfy the register requirement of the
reused data vectors because it can lower the competition for the shared data bus.
Suppose Ns is allocated for each iteration. After the resource allocation for the
single iteration of the distributed loop, we can get the value that how many iter-
ations (Np) of the distributed loop can be executed on SM-SIMD architecture.
Namely, Np = �NUMSIMD/Ns�.

Once Np is gotten, we do strip mining to adjust the innermost loop with only
Np iterations. After the strip mining, the innermost loop would be transformed
into two parts. The one with Np iterations would be the distributed loop in the
innermost level, and the other part would be interchanged outside the localized
vector space in order to maintain the locality in the localized vector space.

3.8 Scheduling Algorithm

Once the previous steps are finished, we schedule the code for SM-SIMD
architecture. We use a scheduling algorithm to generate codes for SM-SIMD
architecture. The scheduling algorithm itself is known to be an NP-complete
problem. We propose a heuristic algorithm. According to the scheduling algo-
rithm, the parallel distributed loop is unrolled by a factor of Np and distributed
to the corresponding allocated resources. The scheduling algorithm is shown as
follows.

– Construct the dependence DAG of an iteration of the parallel distributed
loop and make Np −1 additional copies to form a parallel dependence DAG,
whose Np sub-DAGs correspond to the DAGs of Np iterations of the parallel
distributed loop.

– Mark the replication parallel point and the locality parallel point in those
sub-DAGs based on the algorithm in [13].

– Add communication node between the instructions in the same pipeline
instruction pair and connect communication nodes with the start instruction
node and the end instruction node. The directions of the connecting edges are
the same as the ones of the corresponding pipeline instruction pairs. When
scheduling codes, we also use the communication node as the synchronization
node.

– The DAG is traversed to generate code for SM-SIMD architecture. When
traversing the DAG, the multiple sub-DAGs have the arbitrary scheduling
sequence before reaching a synchronization point instruction. If an instruc-
tion is not marked as a synchronization point, all its instances mapped to
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different SIMD units would be executed in sequence. If one of sub-DAGs
reaches a synchronization point, we stop the scheduling and move to the
next one until all the scheduling of the sub-DAGs reach there or no other
synchronization point can be reached. Then we generate a parallel control
instruction for all different instances of this synchronization instruction and
execute them in parallel on different SIMD units, if the type of the syn-
chronization point is not communication node. Otherwise, a communication
VLIW instruction is generated to make the multiple SIMD units get data
from their neighboring SIMD units.

– Repeat this process until the scheduling is finished.

4 Experimental Results

We implement a detailed performance simulator based on Morphosys[3]2 by ex-
tending Simplescalar-3.0d. Morphosys is chosen as a basic underlying hardware
because of the following reasons. First, it is a typical SM-SIMD architecture and
some industry SOCs are implemented using the similar techniques as in Mor-
phosys. Second, many detailed resources about its design are available. There-
fore, it can make the simulation more faithful.

Before evaluating the experiments, we first analyze the benchmarks used in
[20] and [21]. Only the benchmarks with inherent data pipeline characteristics
are selected because it is unnecessary to optimize the programs without such
characteristics. We select impeg2 from BMW (Berkeley Multimedia Workload)
[20], me, cfa and dct programs in [21] as test benchmarks. However, there are
some sequential optimizations in impeg2, which impede the exploitation for the
parallelism. The program is originally programmed for general purpose processor
(GPP) platforms. Due to the limited computational resource in GPP, program-
mers try to improve performance by reducing the proportion of computation,
for example by adding extra if statement for some specific inputs and return
their results in order to skip the complex computation parts. Such techniques
indeed speed up those programs on GPP platforms. However, they are impeding
compilers to exploit the parallelism in the programs. We rewrite a new impeg2
version - impeg2pa, which remains the original application algorithm but with
no extra sequential optimizations.

In the experiments, we optimize these five programs in two methods and
compare the performance of the optimized programs. In order to have a uniform
criteria, all speedups are computed through the results of extension architecture
divided by sequential results. In order to compare the results of impeg2 and
impeg2pa, we compute their speedups against the same sequential program. The
optimizing methods are:

2 There are 8 SIMD units in Morphosys. Each SIMD unit consists of eight 32-bit
processing element and the register file of each SIMD units includes 4 registers. Eight
SIMD units shared one 256-bit data bus and the communication channel between
two neighboring SIMD units is 128-bit.
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– Automatically scheduling with Agassiz 3: Agassiz converts the original pro-
grams into the optimized ones with embedded assembly codes through the
algorithm in [13]. The GCC compiling tool chains of SimpleScalar can thus
generate the machine codes to run on the simulator.

– Manually scheduling with data pipeline: We optimize the programs with
data pipeline optimization for SM-SIMD architecture by embedding assem-
bly instructions manually, then compile the optimized programs with GCC
compiling tool chains of SimpleScalar.

Fig. 5. Speedup comparison

The experimental results are shown in figure 5.There are eight SIMD units
in Morphosys that we use as underlying architecture. Average utilization of the
SIMD units in SM-SIMD architecture is used to illuminate the average busy
ratio of eight SIMD units after scheduling. Avg P-SIMD shows how many in-
structions that SM-SIMD architecture can averagely finish in one cycle. First,
Avg P-SIMD is computed. We gather the total cycles (C) consumed by SM-
SIMD architecture not including the idle cycles and also the total number
of the SIMD instructions (I) in each program. The average amount of SIMD
instructions that SM-SIMD architecture can execute per cycle can be
computed through the equation Avg P-SIMD = I / C. Thus the average uti-
lization equals to (Avg P-SIMD/8)*100%. The detailed results are shown in
Table 2.

From the results of speedup and average utilization, one of the observations
is that data pipeline scheduling can get higher speedup and better average uti-
lization for the applications with inherent data pipeline characteristics. The core
parts of me and cfa are similar and are particularly suitable for data pipeline
optimization, therefore their speedups are perfect. For the application of dct,
its speedup is lower because the optimized proportion in its code is smaller. me
is the core of impeg2 algorithm. But in impeg2 there exists many sequential
optimizations which cause large obstacles to parallel optimizing. Moreover, the
sequential part for controlling in impeg2 is much more than that in me, thus the
speedup of impeg2 is lower than me.

3 Agassiz is a source to source compiler tool for C programs developed by Department
of Computer Science and Engineering, University of Minnesota at Twin-Cities and
Parallel Processing Institute, Fudan University.
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Table 2. The average utilization of SM-SIMD architecture

cfa me dct impeg2 impeg2pa
Avg P-SIMD data pipe 6.173 5.924 4.274 2.2085 5.130
Avg P-SIMD locality sche 2.381 2.267 3.200 1.580 1.580
Avg Util data pipe 77.2% 74.1% 53.4% 27.6% 64.1%
Avg Util locality sche 29.8% 28.3% 40% 19.7% 19.7%

Another interesting observation is that the speedup of impeg2pa is 14% higher
than that of impeg2. The reason is that there are no sequential optimizations in
impeg2pa which impede the exploitation for the parallelism in the program. The
inherent data pipeline characteristics in impeg2pa can be fully exploited by the
data pipeline optimization, therefore the speedup of impeg2pa is higher than that
of impeg2. Based on this observation, we think sometimes it is better to write the
application programs according to their original algorithms, which is easier for
compilers to perform scheduling and generate better optimized codes. Otherwise,
the codes of some applications should be re-written for higher performance.

5 Conclusions

The experimental results demonstrate that data pipeline optimization techniques
are very effective to optimize real-life applications. Furthermore, when writing
programs for SM-SIMD architecture, it is better to remain the original structure
according to the application algorithms, which is much easier for compilers to
exploit the parallelism in the programs and thus generate better codes.
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Abstract. Obtaining high performance on the STI CELL processor re-
quires substantial programming effort because its architectural features
must be explicitly managed, with separate codes required for two dif-
ferent types of cores (PPE and SPE). Research at IBM has developed
a single source-image compiler for CELL that performs vectorization
but uses OpenMP to specify cross-core parallelism. In this paper, we
present and evaluate an alternative dependence-based compiler approach
that automatically generates parallel and vector code for CELL from
a single source program with no parallelism directives. In contrast to
OpenMP, our approach can also handle loop nests that carry depen-
dences. To preserve correct program semantics, we employ on-chip com-
munication mechanisms to implement barrier and unidirectional synchro-
nization primitives. We also implement strategies to boost performance
by managing DMA data movement, improving data alignment, and ex-
ploiting memory reuse in the innermost loop.

1 Introduction

Computing platforms with multiple processing elements—so-called “multi-core”
chips—have been embraced by many chip makers. As a strategy for increasing
per-chip performance, adding more cores is an alternative to scaling up operating
frequency, which has become difficult because of issues such as heat dissipation.
Both Intel and AMD have released dual-core (homogeneous) microprocessors
with either shared or separate secondary cache.

A second emerging trend in system design is the use of heterogeneous com-
puting components, either on or off chip. For example, The CELL processor
developed by SONY, Toshiba and IBM has 8 + 1 (heterogeneous) processing el-
ements. Alternatively, attached processing elements such as GPUs and FPGAs
have been utilized within a single computing system to accelerate specialized
applications.

One disadvantage of these multi-core approaches is that they transfer the
burden of achieving high performance from the hardware to the software system
or application developer. Thus, an immediate question for these platforms is:
How can developers exploit the power of the parallelism? For instance, these
elements can be organized by software into many different parallel computing
schemes such as task parallelism and pipelined workflow. This question applies

G. Almási, C. Caşcaval, and P. Wu (Eds.): LCPC 2006, LNCS 4382, pp. 64–79, 2007.
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to both developing new applications and porting existing applications. Explor-
ing trade-offs like these makes it very difficult to develop applications for these
chips, particularly if a degree of portability is desired. While advanced parallel
programmers can, with great effort, use expert knowledge to exploit the ad-
vanced hardware features, ordinary users may be left out in the cold. For such
users, the new generation of chips desperately need automated tools and com-
pilers that produce code with acceptable efficiency while hiding the details of
the underlying hardware.

In this paper, we focus on the CELL processor, one of the most promising het-
erogeneous designs. We present an automatic, dependence-based code generation
scheme for this chip. Figure 1, shows the architecture of a CELL processor. A sin-
gle chip contains one PowerPC Processing Element (PPE) and eight Synergistic
Processing Elements (SPE) on the same chip. Each SPE supports AltiVec-like
vector instructions and has a 256K-byte local store memory (LS), while the PPE
is a normal PowerPC core with a two-level cache. The PPE is responsible for
scheduling computation tasks onto SPEs. Computation on a SPE can only ac-
cess data in its own LS; data movement in between LS and main memory is
explicitly controlled by DMA requests via the Element Interconnect Bus (EIB)
and Memory Interface Controller (MIC).

Fig. 1. Architecture of a CELL processor

With architecture features such as heterogeneous multi-core, parallelism at
both coarse (across PEs) and fine (vector, within each PE) granularities, high
data transfer bandwidth (200GB/s on chip and 25.6 GB/s off chip), and explicit
local memory control through DMA, a 3.2 GHz CELL processor can, in the-
ory, achieve a peak performance of more than 200 GFlops per second for single
precision floating point computations. However, actually obtaining high perfor-
mance levels requires significant programming effort because, in the distributed
programming tool system, these architectural features must be explicitly man-
aged by the programmer. This adds a significant degree of complexity to pro-
gramming to conventional uniprocessors or even simple shared-memory parallel
systems.
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Over the years, there have been many parallel programming models devel-
oped to reduce the burden on ordinary users. They include directive-guided task
parallel models such as OpenMP, data parallel models such as HPF, and pro-
gramming models with language extensions such as UPC and CoArray Fortran.
Recently, the DARPA HPCS program has sponsored the development of a new
generation of “high-productivity” parallel programming languages such as IBM-
X10, Sun-Fortress and Cray-Chapel. However, among these models, OpenMP
is to date the only one supported on CELL, and that is by an IBM research
compiler [9] rather than the standard distributed tool set.

In this paper, we present a dependence-based approach to automatically gen-
erating code for CELL from a high-level language. Our system performs par-
allelization, vectorization and data movement optimization automatically. The
input program is a single source sequential program without any parallelism
directives. The output is a PPE program with many SPE programs, where par-
allelism is realized by the PPE thread fork-and-joining the SPE threads, as
shown in Figure 2. This parallelism scheme is similar to the OpenMP approach

Fig. 2. Fork-and-join execution model and compilation model on CELL

used by the IBM research compiler, except that it uses fully automatic detec-
tion of parallelism in place of user-entered directives. Using information from
dependence analysis, the compiler determines whether a loop nest can be par-
allelized across PEs and vectorized on each PE. Each such loop nest will be
partitioned, using a technique called procedure outlining (the opposite of inlin-
ing), into a PPE call stub function and a SPE program, as shown in Figure 2.
In contrast to the OpenMP approach, our strategy can also handle loops carry-
ing dependences, preserving the correct semantics of the program using barrier
and a uni-directional synchronization primitives we developed using the on-chip
communication mechanisms.

Our dependence-based approach automatically orchestrates and optimizes
data movement between the SPE local stores and main memory. For memory
references in the original program, multiple data buffers are created on the SPE
side and DMA transfer commands are placed accordingly in the SPE program.
This strategy also handles the complications of data movement due to the data
alignment constraints. In particular, loop peeling on the PPE side can help im-
prove both data movement performance and vector data alignment.

We present the main parallelization and vectorization algorithm in Section 2,
while the data movement analysis and placement algorithm is the subject of
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Section 3. We discuss our preliminary performance evaluation in Section 4, re-
view related work in Section 5, and conclude in Section 6.

2 Parallelization and Vectorization

In this section, we present an algorithm for determining whether a loop nest can
be parallelized across PEs and vectorized on each of them. Such a loop nest will
be procedure outlined into a program for the SPEs, and replaced by a call to
a call stub function in the PPE program that manages fork-and-join operations
for SPE threads. The SPE program will contain the vectorized loop nest with
automatically generated data movement. Synchronization will be generated and
placed in both the SPE and PPE programs if necessary. We refer to this loop
nest as cellized and this process as cellization.

To analyze if a loop nest can be cellized, we need to determine if there exists
a loop in the loop nest that can be parallelized, and a loop (the innermost loop)
that can be vectorized on SPE and PPE. These two candidates can be the same,
i.e. the innermost loop can be both parallelized and vectorized, assuming that the
loop is longer that the four iterations that would fit in a single vector operation.

Data Dependences. The cellization analysis relies on the data dependence in-
formation. We assume that readers are familiar with the concept of true, anti-,
output and input dependences, and with loop-carried and loop-independent de-
pendences. Allen and Kennedy [4] have defined the dependence matrix for a loop
nest to be a matrix in which each row is a dependence vector for some depen-
dence in the nest and every such direction vector is included as a row. The
columns from left to right correspond to the loops from the outermost to the in-
nermost. A dependence is said to be carried by a loop if the corresponding entry
is the first non-“=” entry in the dependence vector. Figure 3 gives an example
of a loop nest and its dependence matrix. In the matrix, the anti-dependences
in rows 1 to 3 corresponds to dependences from the first, second and third array
references on the right hand side to the array reference on the left hand side.
The dependence in the first row is carried by the K loop, the dependence in the
second row is carried by the I loop, and the one in the third row is carried by the
J loop. Rows 4 to 6 correspond to the input dependences among the right hand

DO K = 1, W
DO J = 1, M

DO I = 1, N
A(I,J,K) = A(I,J,K+1)

+ A(I+1,J,K)
+ A(I+1,J+1,K)

ENDDO
ENDDO

ENDDO

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K J I
<1 =0 =0 anti
=0 =0 <1 anti
=0 <1 <1 anti

<1 =0 >−1 input
<1 >−1 >−1 input
=0 <1 =0 input

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 3. Example of a loop nest and its dependences
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side array references themselves. Note that for the purpose of parallelization and
vectorization analysis, input dependences are omitted from consideration.

Cellization Analysis. Our cellization analysis algorithm is modified from the
Allen-Kennedy loop nest vectorization algorithm [4]. As shown in Figure 4, our
algorithm searches from the outermost loop towards the innermost loop for a loop
that can be parallelized in the remaining dependence matrix. At each step, if no
loop is found, the current outermost loop is made sequential and all dependences
carried by it are removed from the dependence matrix and the search process
is repeated. After a parallel loop is identified, the loop nest is cellizable if the
innermost loop is vectorizable on PPE and SPE. Obviously, the algorithm can be
relaxed to accommodate loop nests that can be parallelized but not vectorized.

We allow the innermost loop carrying anti-dependences to be parallelized
and vectorized so long as it doesn’t have a dependence cycle among different
statements. As an exception, an anti-dependence cycle on a statement itself is

procedure IsCellizable(LN)
// LN: loop nest {L1, L2, ..., Ln} from outermost to innermost
obtain dependence matrix DM for LN
initialize ParallelFlags[1:n] to UNMARKED
while there are loops left in LN

Search for Li in DM such that all entries in the Li column are “=”
if Li does not exist

if there are no loops left in LN
ParallelFlags[n] := PARAVEC
return IsShortVectorizable(Ln, DM)

else
ParallelFlags[current outermost] := SEQUENTIAL
remove dependences carried by the current outermost loop from DM
remove the current outermost loop from LN

else
ParallelFlags[i] := PARALLEL
return IsShortVectorizable(Ln, DM)

procedure IsShortVectorizable(L, DM)
// L: the innermost loop
// DM: the dependence matrix after a parallel loop is selected
// or all outer loops are made sequential
for all dependences carried by an outer loop Lk in L1 .. Ln-1 in DM

remove such dependences from DM
if L carries a dependence cycle among statements

except an anti-dependence on a statement itself
return false

for all array references A in L
if A is not loop invariant to L and not contiguous in memory

return false
return true

Fig. 4. Cellization analysis algorithm
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allowed. To preserve the semantics of a loop that has anti-dependences, we use
use a post-store strategy using a uni-directional synchronization. As illustrated
in Figure 5, P1 needs to temporarily hold the computation results in the buffer
only for those writes whose main memory locations are also read by P0. The
buffer for temporarily storing those results on P1 can completely remain local
in LS and not appear in main memory.

Fig. 5. Parallelizing a loop with anti-dependence

For the example loop nest shown in Figure 3, following the algorithm, after the
first iteration of the search process, the K loop will be marked SEQUENTIAL
and the dependence in row 1 will be eliminated from the dependence matrix;
after the second iteration in the search process, the J loop will be marked SE-
QUENTIAL and the dependence in row 3 will be eliminated; after the third
iteration in the search process, the I loop will be marked PARAVEC and sent to
check for vectorization. Since the I loop carries an anti-dependence on the same
statement and all array references are memory contiguous to the loop, the I loop
is vectorizable. Hence the loop nest is cellizable.

Parallel Code Generation. After a loop nest is identified as cellizable, it will
be procedure outlined into a SPE program and replaced with a call to a PPE
call stub function which manages SPE task allocation and fork-and-joining of
SPE threads. To partition n iterations of the chosen parallel loop among p PEs,
each PE can get (n/p + (n%p >= id?1 : 0)) iterations, where id is the rank of
the current PE. Other than partitioning, parallel code generation also needs to
place synchronization accordingly, as shown in Figure 6.

The vector instruction sets on PPE and SPE are of short vector length (16
bytes) and support only contiguous memory accesses. Though certain patterns
of strided accesses can be realized by data permutation afterward, we only con-
sider contiguous memory accesses in this paper. Since there are many papers
(see related work in Section 5) addressing loop based vectorization for SSE and
AltiVec instruction sets, we will not discuss them in details.

For our example loop nest in Figure 3, the generated PPE code, PPE stub
function code and the SPE code are shown in Figure 7. Note that the first element
of the computed buffer is stored back after unidirectional synchronization in
order to preserve the correct semantics of anti-dependences. The number of
elements that need to be post-stored should be no less than the maximal distance
of the anti-dependences.
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procedure Cellize(LN)
// LN: loop nest {L1, L2, ..., Ln} from outermost to innermost
for loop Li in LN from outermost to innermost

if ParallelFlags[i] is SEQUENTIAL
output Li in the new loop nest
if ParallelFlags[i+1] is not SEQUENTIAL

output barrier synchronization
else if ParallelFlags[i] is UNMARKED

output Li in the new loop nest
else if ParallelFlags[i] is PARALLEL or PARAVEC

output Li with partitioned iterations
vectorize Ln
if ParallelFlags[n] is PARAVEC and Ln carries anti-dependence

apply post-store to the vectorized Ln
insert uni-directional synchronization

Fig. 6. Cellization code generation algorithm

call PPEStub1(...)

PPEStub1(...) {

put loop invariants
into data block;

for(id=1; id<PEs; id++)
spe_thread_fork(&block);

for k = 1, w {
for j = 1, m {

barrier_synch;
compute my_lb, my_ub;
for i = my_lb, my_ub

a(...)=a(...)+...;
uni-directional_synch;

} }
}

SPEmain(...) {

dma_get(data block)
for k = 1, w {
for j = 1, m {

barrier_synch;
compute my_lb, my_ub
dma_get(b2, b3, b4);
for i = my_lb, my_ub

b1(i)=b2(i)+b3(i)+b4(i);
bt(1:1) = b1(my_lb:my_lb)
dma_put(b1(my_lb+1:my_ub));
uni-directional_synch;
dma_put(bt(1:1));

} }
}

(a) PPE program (b) PPE stub (c) SPE program

Fig. 7. Example of code generation

Load Balancing. Since PPE forks and joins SPE threads sequentially, a load
balancing strategy should consider the cost of thread forking. Assume the cost
is equal to that of executing c iterations of the chosen parallel loop, to partition
n iterations across p SPEs, the k th PE will get wk = n/p + c(p − 2k + 1)/2
iterations. This is derived from wk+1 = wk − c and Σp

k=1wk = n. While c could
be determined by estimating the cost of each iteration with program analysis, it
could also be decided with profiling information. If the measured thread forking
time and total running time on one SPE are tf and t, respectively, assuming the
parallel loop is the outermost loop, then c = ntf/(t − tf ).
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Synchronization Implementation. The only communication mechanism on
CELL other than DMA transfers that does not need special privilege is mailbox.
Other mechanisms such as SPE-to-SPE signals require the executable be granted
a certain capability (CAP SYS RAWIO). According to the linux man pages, the
capability granting feature is still being developed in the Linux Kernel as of now.
Therefore, we implemented the barrier and the uni-directional synchronization
using mailbox as shown in Figure 8. The number associated with each arrow
(mailbox send) indicates the mail sending order.

Fig. 8. Barrier and uni-directional synchronization using mailboxes

3 Data Movement and Alignment

In this section we discuss how to achieve an efficient data movement in between
the SPEs’ local memory and the main memory. To do this we must:

1. hide the latency of data movement by multi-buffering so that the DMA data
transfer and computation are partially overlapped, if not fully, and

2. use the available bandwidth effectively, i.e. all data brought in should be
used and repeated use of the same data should require the data be transfer
as fewer times as possible.

The second issue is only briefly addressed in this paper. We will focus on multiple
buffer allocation, DMA data transfer generation and placement.

Figure 9 gives an algorithm for analyzing and allocating multiple data buffers.
The reference group partitioning in the algorithm is exactly the one used for
scalar replacement [7]. We do not yet have a good buffer size estimation algo-
rithm. The data buffer size depends on a set of predefined blocking sizes for the
loop nest. Since the maximum size of a single DMA transfer is 16K bytes, it is
desirable to allocate a size close to that limit, assuming that the combined code
and data buffer fit into the SPE’s 256K-byte local memory. For the generated
code in Figure 7, following the algorithm, the I loop would be strip-mined and
multi-buffering data buffers would be allocated.

Another factor affecting data movement performance on CELL is data align-
ment. It constraints data movement in three ways: vector offset, naturally aligned
boundaries, and cacheline alignment.

Vector Offset. DMA transfer requires that the last 4 bits of the source and
sink addresses be the same. Therefore, when converting an array reference in
the main memory space into a local buffer reference, we need to make sure that
they have same vector offsets.
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procedure BufferAllocation(LN)
// LN: loop nest {L1, L2, ..., Ln} from outermost to innermost
perform reference group partitioning for all array references
for the group generator of each reference group

determine the innermost loop that the generator is loop variant
determine if the generator is memory contiguous to that loop

for each array reference in the loop nest
if it is a group generator

strip-mine the innermost variant loop if memory contiguous within it
allocate multi-buffering buffers
place DMA prefetch current buffer before the loop
place DMA prefetch next buffer inside the loop
place DMA check data ready inside the loop
place buffer index rotation computation at the end of the loop
replace array reference with allocated buffer

else
replace array reference with buffer allocated by the group generator
adjust subscript by the dependence distance to the generator

Fig. 9. Multi-buffering analysis and allocation algorithm

Naturally Aligned Boundaries. DMA transfer can transfer 1, 2, 4, 8, 16,
16∗k bytes (max 16K Bytes) on naturally aligned boundaries. When the starting
and ending addresses are not properly aligned, one has to issue multiple DMA
instructions, as shown in Figure 10.

DMA(&A, 4 bytes)
DMA(&B, 8 bytes)
DMA(&D, 16 bytes)
DMA(&H, 8 bytes)
DMA(&J, 4 bytes)

Fig. 10. DMA transferring unaligned data

For DMA transfers that get data from the main memory to the SPE’s local
memory, we can always over-fetch, i.e. extend the memory transfer region to
naturally aligned boundaries on both ends. This is always safe as long as we are
careful when allocating buffers. However, we cannot easily use this strategy for
the DMA puts from SPEs to the main memory. In short, we have a false sharing
problem. Over-storing would require an atomic operation to get the boundary
data from main memory, merge with the local data, and put data back into
the main memory on the extended boundaries. Implementing such an atomic
operation would incur a significant performance penalty.

Loop Peeling. To reduce the performance penalty related to the unaligned
DMA puts, we apply loop peeling to the innermost loop on the PPE side and
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only compute partitioned loop iterations as multiples of the SPE vector size.
The peeled iterations are computed on PPE, while the starting address for a
DMA put from an SPE is always at a vector boundary. Loop peeling on the
PPE is always safe if the innermost loop is parallelized, or if a loop is chosen to
parallelized only when there are no dependences left in the dependence matrix
following the algorithm in Figure 4. There is a slight issue due to the different
rounding modes for floating point on PPE and SPE. We leave it up to the
application developers to decide if this discrepancy actually matters.

Cache Line Alignment. When a CELL processor performs DMA transfers,
the unit data transfer is actually a cache line, i.e. when transferring data smaller
than a cache line size, the bandwidth of an entire cache line will be consumed
and the result is masked. On the other hand, when transferring a large data
block that is not aligned on cache line boundaries, two whole cache lines will
be transferred on the boundaries even though only a part of each cache line
is requested. Loop peeling can also be used to ensure data alignment on the
cache line boundaries. The wasted cache line bandwidth is relatively small when
actually transferring a large data block. This is another reason why a large tile
size should be used whenever possible.

4 Performance Evaluation

Experimental Setup. A dependence-based code generator for CELL (CEL-
Lizer) that includes the parallelization, vectorization, multi-buffering DMA
transfer and synchronization algorithms described in Section 2 and Section 3
is implemented as an extension of our earlier tool for vectorization and code
generation for short vector machines with SSE and AltiVec, which in turn was
based on the D System compilation infrastructure at Rice.

CELLizer accepts a FORTRAN 90 program as source input, performs celliza-
tion, outputs a FORTRAN 90 program which will remain on PPE, a collection
of PPE stub functions written in C, and a collection of corresponding SPE pro-
grams written in C, as we described in Section 1. Each SPE program corresponds
to a cellized loop nest that is procedure outlined and rewritten in C.

We use the cross-platform compilers (ppuxlc and spuxlc) in the CELL software
development kit version 1.1 to compile the PPE call stub functions and the SPE
programs. The remaining PPE program in Fortran is translated to C using the
f2c converter [11], and compiled with ppuxlc respectively.

The compiled executable is transferred to a 3.2 GHz Cell Blade running Linux
OS for correctness verification and performance measurement. The Cell Blade
has 1G bytes memory installed, while the swap disk is turned off. We use the
Linux library call gettimeofday() to measure the time spent in either the orig-
inal loop nest, or the PPE stub functions and the SPE threads combined. Each
code is run 6 times and the minimum running time is kept as record. The speedup
of running the generated code on various number of SPEs over running the origi-
nal loop nest on PPE alone is reported. Our CELLizer has the following compiler
options that can be changed.
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Table 1. CELLizer options

Option Meaning

-cell <arg> generate code for cell processor with <arg> SPEs
-plp loop peeling on PPE to improve data alignment
-pwk <arg> work on PPE (<arg> as a percentage to the work of a single SPE)
-vsr do vectorized scalar replacement
-spls do software pipelined aligned load/store
-novec no vectorization, generate sequential C code

Test Cases. We tested three small loop nests LN1, LN2, ANTI, shown in Fig-
ure 11. Each loop nest has an initialization before it and a checksum computation
after it. Note that ANTI carries an anti-dependence which usually requires allo-
cating a temporary array and splitting the original loop into two so that each loop
can be parallelized, as shown in ANTITMP . Our CELLizer, on the other hand,
avoids this temporary array allocation by using post-store and uni-directional
synchronization. We also tested two programs from SPEC benchmark, swim
and mgrid. In all test cases, data types were converted to be single precision
floating point.

The performance results are shown in Figure 12, Figure 13 and Figure 14,
respectively. For LN1, both a small problem size N = 7555333 and a big problem

LN1:
DO I = 1, N-2
B(I+1) = (A(I) + A(I+2) + C(I+1)) * 0.34

ENDDO

LN2:
DO J = 2, M-1
DO I = 2, N-1

A(I,J) = A(I,J) + (B(I-1,J)+B(I+1,J)+B(I,J-1)+B(I,J+1))*0.25
ENDDO

ENDDO

ANTI:
DO I = 1, N-2
A(I+1) = (A(I+2) + B(I+1) + C(I+1)) * 0.34

ENDDO

ANTITMP:
DO I = 1, N-2
D(I) = (A(I+2) + B(I+1) + C(I+1)) * 0.34

ENDDO
DO I = 1, N-2
A(I+1) = D(I)

ENDDO

Fig. 11. Testing codes
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Fig. 12. Performance for 1D (LN1) and 2D (LN2) stencils
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Fig. 13. Performance for loop (ANTI) with anti-dependence
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Fig. 14. Performance for swim and mgrid

size N = 44222111 are tested. Similarly, M = N = 2955 and M = N = 7255
are tested for LN2, N = 7555333 and N = 33222111 are tested for ANTI and
ANTITMP . For SPEC benchmark programs, the reference problem sizes are
tested, i.e. 1335 × 1335 for swim and 128 × 128 × 128 for mgrid.

The default set of optimizations includes parallelization across multiple PEs
(-cell <arg>), multi-buffering data movement, vectorization, vectorized scalar
replacement (-vsr), software pipelined load/store (-spls), and loop peeling on
PPE for data alignment (-plp). In Figure 12, “pwk10” (“pwk20”) assigns 10
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percent (20 percent, respectively) of a single SPE’s work/iterations to PPE, in
an attempt to balance the load across all PEs; while “noplp” turns off the loop
peeling on the PPE side.

Performance Results. Based on the performance data, we have the following
observations:

– Programs run as much as 3 times faster on SPE than on PPE. There might
be two reasons for this phenomenon. First, the latency of floating point
instructions on SPE (6 cycles) is shorter than that on PPE (10-12 cycles).
Second, PPE is also responsible for running the operating system.

– We do not get a linear speedup to the number of SPEs used. In fact, what
we observe is a curve, i.e. the best speedup occurs when less than 8 SPEs
are used for small problem sizes. The reason is that thread fork-and-join op-
erations become higher in cost when more SPEs are used, compared to the
computation cost on each SPE. We are still investigating the effectiveness
of the load balancing strategy described in Section 2. Nevertheless, increas-
ing the problem size can mitigate this problem by offering each SPE more
work so that thread fork-and-join costs become less obvious, as illustrated
in Figure 12 and Figure 13.

– Our strategy of loop peeling on the PPE side to help improve DMA data
alignment works well. Compared to not performing loop peeling, our strategy
achieved an average of 9 percent speed improvement for the 1D stencil and
7 percent for the 2D stencil, as shown in Figure 12. Note that for the two
dimensional array in 2D stencil, the loop peeling strategy will dynamically
calculate the number of “I” iterations it needs to peel within each outer “J”
iteration, so that on SPEs the array reference on the left hand side is always
properly aligned when entering the “J” loop.

– Comparing the performance between ANTI and ANTITMP in Figure 13,
we can clearly see the benefits of our parallelization strategy using post-store
and uni-directional synchronization to handle the anti-dependences. The ex-
tra memory traffic in ANTITMP and extra thread fork-and-joining costs
have caused heavy performance penalty. This result also suggests that loop
fusion combined with array contraction work well for the CELL processor
if the resulting loop with dependences can be parallelized with post-store
strategy and proper synchronization.

– When running whole applications on CELL, we can tune each loop nest
independently to determine the number of SPEs for the best speedup, instead
of using the same number of SPEs for all of them. Figure 14 shows that the
tuning result for three most time-consuming loop nests, L3, L5, and L8 in
the swim benchmark. Unfortunately, they all achieve the best speedup with
two SPEs, while the whole application achieve the best speedup with three
SPEs. The discrepancy is caused by collecting timing information of L3, L5
and L8 for only 20 iterations, while they are iterated for 1200 iterations in
swim, as specified by the SPEC benchmark.
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– Finally, contrary to what people may think, having PPE work on partitioned
workload doesn’t seem to help much due to the relative slowness of the
PPE, as shown in Figure 12. However, loop peeling on the PPE can help
improve DMA data alignment. Load balancing across all PEs needs further
investigation.

5 Related Work

Increased processor parallelism on chip has become a trend adopted by almost
all major chip makers. The parallelism can be found at both coarse and fine level
granularity. On coarse level, more and more cores (PEs) are built onto a single
chip; on the fine level, vector instruction sets are included and regularly amended
(e.g. SSE4). Research in compiling for parallelism at both levels have had a long
history with many languages, tools and programming models. However, up till
now, the OpenMP approach, used in an IBM research compiler [9], is only one
implemented to support CELL.

The dependence-based approach presented in this paper is related to nearly
two decades of work on loop nest parallelization and vectorization work done for
various parallel architectures [1,3,4,2,5,8,13,10,9,21,15,16]. The data alignment
problem on the CELL is very similar to that on SSE and AltiVec [10,21], except
on CELL data alignment also affects data movement. Scalar replacement has
been developed to improve data reuse at register level [7] and later extended to
vector level [17,21]. In this paper, we use reference group partitioning to identify
the array references that should share a data buffer.

Multi-buffering analysis and placement is very similar to that of software
prefetching [6,14], which was designed to hide the memory latency. On the other
hand, optimizing DMA transfers using multi-buffering is similar to array copy-
ing [12,18,19,20], which was proposed to eliminate conflict misses in the cache.

Effectiveness of traditional memory hierarchy optimizations for SPE’s local
store, e.g. loop tiling, is demonstrated in the IBM work [9]. Since we have not
implemented these optimizations in our compiler, we have not yet achieved same
amount of speedup as the IBM work for the same benchmark programs. We are
currently investigating the optimizations to improve data reuse in SPE’s local
store.

6 Conclusion

In this paper, we presented a dependence-based automatic code generation strat-
egy for the CELL processor. In contrast to approaches that use explicit paral-
lelism directives, such as OpenMP, it doesn’t require that the user perform de-
pendence analysis manually and determine the legality of the hand-specified par-
allelization. Besides automatic parallelization, vectorization, and multi-buffering
DMA data transfer generation, our CELLizer can also insert two kinds of syn-
chronization automatically to preserve the correctness of a program.

Our performance study verified the correctness of our code generation strategy
and the usefulness of performing loop peeling on the PPE side to help improve
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data alignment. However, we did not observe linear speedup in terms of the
number of SPEs. In fact, the performance decreases after the number of SPEs
exceeds some number. To address this issue, we must improve the amount of
computation per transferred data element. One way to do this is through a more
thorough use of loop fusion and tiling transformations. This is a goal of our
ongoing research.
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Abstract. To simultaneously provide rapid application development
and high performance, developers of scientific and multimedia applica-
tions often mix languages, using scripting languages to glue together
high-performance components written in compiled languages. While this
can be a useful development strategy, it distances application developers
from the optimization process while adding complexity to the develop-
ment tool chain. Recently, we introduced the Synthetic Programming
Environment (SPE) for Python, a library for generating and executing
machine instructions at run-time. The SPE is an effective platform for
optimizing serial and parallel applications without relying on interme-
diate languages. In this paper, we use the SPE to develop two code
generation libraries, one for scalar and vector (SIMD) expression eval-
uation and another for parallel and high-performance loop generation.
Using these libraries, we implement two high performance kernels and
demonstrate how to achieve high levels of performance by providing the
appropriate abstractions to users. Our results show that scripting lan-
guages can be used to generate high-performance code and suggest that
providing optimizations as user-level libraries is an effective strategy for
managing the complexity of high-performance applications.

1 Introduction

Scripting languages have become common tools for developing many types of
applications, including high-performance scientific and multimedia applications.
To achieve high performance, developers often use a lower-level language such as
C, C++, or FORTRAN for the performance-critical sections. While effective, this
approach complicates the development process by adding new dependencies into
the tool chain and requiring additional developer skills. Recently, we introduced
the Synthetic Programming Environment (SPE) for Python [9]. The SPE enables
the run-time synthesis of machine instructions directly from Python, without
requiring an intermediate language. It exposes the full processor instruction set
as a library of Python functions that can be used to construct new instruction
sequences at run time and provides a library for synchronous and asynchronous
execution of the generated sequences.
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The SPE provides the infrastructure for generating high-performance code at
run time. In this paper, we introduce two meta-programming libraries for man-
aging the complexity of generating instruction sequences for serial and parallel
applications. The first library provides abstractions for generating instruction
streams for arithmetic and logical expressions on scalar and vector (SIMD) data
types. The second library abstracts loop generation and provides a flexible set of
tools for generating sequential and parallel loops. With these libraries, it is possi-
ble to generate high-performance computational kernels using a natural syntax,
while maintaining user-level control over the final optimizations.

In the next section we introduce synthetic programming and provide the con-
text for our contributions. Following that, we describe the new libraries, starting
with the scalar and vector Expression library and proceeding through the Iter-
ator library. We detail code generation techniques used by each component and
illustrate their use with two examples. We conclude with a review of related
techniques. A basic knowledge of Python syntax is assumed for the discussion,
but more complex techniques will be described as they are introduced.

2 Synthetic Programming

Synthetic programming is the process of developing programs composed of
computational kernels synthesized at run time using the SPE. The computa-
tional kernels, or synthetic programs, are generated with meta-programming
routines called synthetic components. By using synthetic components to gen-
erate synthetic programs from a high-level language, developers can create high-
performance applications without sacrificing the productivity gained from using
a high-level language.

Synthetic programs are developed using three components supplied
by the Synthetic Programming Environment: ISA, Processor, and
InstructionStream. ISA components are collections of functions that
generate binary coded machine instructions for a particular instruction set
architecture. For instance, in the PowerPC ISA, the function addi(D, A,
SIMM) generates the addi, or add immediate, machine instruction for adding
a constant SIMM to the value in register A, storing the result in register D. A
synthetic program is built by adding a sequence of instructions to an instance
of InstructionStream. For example, the following code generates the synthetic
program for the computation rreturn = (0 + 31) + 11:

c = InstructionStream()
c.add(ppc.addi(gp_return, 0, 31))
c.add(ppc.addi(gp_return, gp_return, 11))

gp return is a constant that specifies the register for integer return values. In
addition to managing the user-generated instructions, InstructionStream also
provides a basic register allocator that warns developers of register pressure.

Prior to execution, InstructionStream generates an ABI (application binary
interface)-compliant prologue and epilogue for the synthetic program, making it
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a valid “function” for the current execution environment. When the sequence is
ready, it is executed by a Processor instance:

proc = Processor()
result = proc.execute(c)
print result
--> 42

Processor can execute synthetic programs synchronously, blocking until com-
pletion, or asynchronously in their own threads, returning immediately.

The current implementation supports the PowerPC (scalar) and AltiVec (vec-
tor) ISAs and runs on Apple’s OS X. Data is passed between the host program
and the synthetic program using pointers to memory, such as native Python or
Numeric Python arrays, and values can be passed to synthetic functions using
registers following the ABI conventions. Load and store instructions move data
between memory and registers, and loops and conditional code are synthesized
using the branch and compare instructions.

3 The Expression Library

At the lowest level, all machine instructions operate on values stored in reg-
isters or on constant values encoded directly into the instruction. In a basic
synthetic program, the developer refers to registers directly and explicitly man-
ages movement of data between the processor and memory system. Arithmetic is
performed by generating a sequence of instructions that operate on two or three
values at a time, and it is up to the developer to ensure complex expressions
are evaluated properly. Using the PowerPC ISA, the expression a = a ∗ b + a ∗ c
could be written as:

ppc.mullwx(t1, a, c) # a, b, c are registers
ppc.mullwx(t2, a, b) # t1, t2 are temp registers
ppc.addx(a, t1, t2)

While this expression was simple to convert to an instruction sequence, in a more
complex expression, simple operator precedence rules and register reuse policies
are difficult to enforce, leading to code that is difficult to debug and maintain.

Because expression evaluation is at the heart of most performance-critical
code sections, the Expression library introduces a set of objects for managing
expression evaluation for scalar and vector data types.

The main objects are illustrated in Figure 1. The base classes, variable,
literal, and expression implement the Interpreter design pattern and manage
register allocation, initialization, and expression evaluation. Python’s underlying
expression evaluation engine handles operator precedence. The base classes are
typeless and type-specific subclasses generate instructions as the expressions are
evaluated. In the diagram, the floating point class hierarchy shows how the sub-
classes share operator implementations, ensuring that floating point expressions
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Fig. 1. Expression Class Hierarchy and Floating Point Implementation. The expression
classes implement the Interpreter pattern for run-time code synthesis. The base classes
manage evaluation and type-specific subclasses provide methods to generate code for
specific operations.

are evaluated consistently. Free functions that return expression instances al-
low developers to expose operations that do not map directly to operators. These
functions can be used directly in larger expression statements and may abstract
sequences of instructions. This is useful for binary operators such as fmin, which
is actually a three instruction sequence, and various ternary vector instructions.

To illustrate how the Interpreter classes work, consider the example in Figure 2
for evaluating the expression a = a ∗ b + a ∗ c. a, b, and c are instances of
variable with the ∗ and + operators overloaded. When an operator is evaluated
by Python, the overloaded implementation delays evaluation and returns an
instance of expression that contains references to the operator and operands.
In this example, the operands for + are expressions and the operands for ∗ are
variables. The root of the parse tree is the + expression.

Up to this point, no code has been generated and registers have not been
allocated. All Interpreter classes have an eval method. Subclasses override eval
to generate the appropriate instructions for their data type and registers. When
the expression tree is assigned to a variable, the variable triggers the ex-
pression evaluation, which in turn generates the instruction sequence to evaluate
the expression using a depth-first traversal of the tree. Each expression has a
register associated with its results that lives for the lifetime of the expression
evaluation. After the assignment, the tree is traversed again to free up temporary
resources. Note that the final expression uses the register from the assigned
variable. The variable passes this to the expression’s eval method.

Expression evaluation is the same for scalar and vector variables of all types,
but expressions cannot contain mixed type variables. As the expression tree is
created, the variables are checked against each other and other expressions in
the tree. An exception is thrown if there is a type error. Literals that appear in
the expression are transformed into the appropriate subclass of literal.
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Fig. 2. Expression Evaluation. As Python evaluates the expression, variables return
instances of expression objects that correspond to the operator. When the final tree is
assigned to a variable, it is recursively evaluated, generating the instruction sequence
for the expression.

variable instances can be used in expressions or directly with ISA functions.
The attribute variable.reg contains the register assigned to the variable and is
a valid argument anywhere a register is accepted. When the variable is no longer
needed, registers are freed with a call to variable.release registers().

3.1 Scalar Types

Two scalar variable types are supplied in the Expression library. int var and
float var implement signed integer and double-precision floating point opera-
tions, respectively. int var supports (+,-,*,/,<<, >>, &, |, ˆ ) and float var
supports the standard arithmetic operations (+,-,*,/).

Scalar variables are initialized using different instruction sequences, depending
on the initial value. Integers use an add immediate instruction if the value fits
into sixteen bits, otherwise they use an add immediate followed by a shift/add
to load the full 32-bit value. Double-precision floating point values are loaded
from an array backing store that contains the value as its only element. The
floating point load instruction loads the value from the backing store into the
register. Because the load instruction is expensive, floating point literals should
be initialized outside of loops.

3.2 Vector Types

Vector data types support single-instruction, multiple data (SIMD) parallelism
using the AltiVec instruction set. AltiVec vectors can be partitioned into a num-
ber of types, including signed and unsigned bytes, shorts, and integers and single-
precision floating point numbers. The integer types support (+,-,<<, >>, &, |, ˆ)
and the floating point types support (+,-,/). In addition, most of the AltiVec
instruction set is exposed as expression functions that are type-aware. For ex-
ample, the integer vector min operation has six forms, one for each integer type,
vmin[s][b,h,w]. The type-aware expression function vmin abstracts the typed
versions and allows the developer to use it as part of an expression. For instance,
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Fig. 3. The Iterator Hierarchy. The synthetic iterator protocol extends Python’s it-
erator protocol to provide additional hooks into loop evaluation. syn iter generates
code to manage loops using the counter register or general purpose registers, as se-
lected by the user. The subclasses override methods to implement iterator specific
functionality. unroll and parallel are Proxies that restructure synthetic iterators for
high-performance code generation.

z.v = vmin(x, y) + 4

adds 4 to the minimum value from the element pairs in x and y.
Vectors are initialized from a backing store in the same way as floating point

scalars. Users can also pass in an array containing the initial values. This array
will continue to be used as the backing store when the store() method is called
to save a vector back to memory.

4 The Iterator Library

Variables and expressions provide the foundation for developing syntactically
clear high-performance synthetic programs. Synthetic iterators supply the ab-
stractions for processing collections of variables and vectors in single or multi-
threaded environments. In the same way expressions use features of Python as
meta-programming constructs, the synthetic iterators are based on Python’s
underlying iterator protocol.

Python iterators are objects that manage element-wise iteration over se-
quences. The iterator protocol requires two methods, iter () and next().
iter () returns an iterator for the object, and next() is called to retrieve

each element, raising StopIteration when the sequence is exhausted. All se-
quence iteration in Python is handled by iterators, and Python for loops expect
iterators as their sequence parameter.

Synthetic iterators use the Python iterator protocol to provide a concise repre-
sentation for the generation of instruction sequences for implementing machine-
level loops. The synthetic iterator hierarchy is shown in Figure 3. The synthetic
iterator protocol extends the Python iterator protocol with hooks for managing
different aspects of code generation.

All synthetic iterators work in same basic way. To demonstrate, consider the
syn range iterator:
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Loop code: Call sequence:

sum = var(c, 0) __iter__(): start()
rng = syn_range(c, 20) 1st next(): setup()

... body ...
for i in rng: 2nd next(): cleanup()
sum.v = sum + i end()

raise StopIteration

In this example, syn range generates integers from 0 to 19 and makes them
available in the variable i. The pseudo-code on the above shows the Python and
synthetic iterator protocols and their order of evaluation.

When the iterator is created by the for loop, start() acquires the regis-
ters, generates initialization code and returns a reference to the iterator. On
the first iteration of the for loop, i.e. when next() is called the first time, the
setup() generates the loop prologue, initializing the loop counter and branch
label, and returns a variable for the current value. Then the loop body is ex-
ecuted, and the expression code is added to the instruction stream. Note that
any instructions from the ISA can be used here, not just expressions. On the
second iteration of the for loop, cleanup() generates the loop epilogue with the
branch instruction and any loop cleanup code. It also resets the counters, in case
the loop is nested. Finally, end() frees loop registers and other resources. While
still at the beginning of the second iteration, the iterator raises StopIteration,
ending the Python loop.

In the next few sections, we detail the design and implementation of the
iterator hierarchy.

4.1 syn iter

syn iter handles the mechanics of sequential loop generation and is the base
class for most other iterators. It supports three different modes of iteration:
counter based (CTR), register decrement (DEC), and register increment (INC).
syn iter’s constructor takes the iteration count, step size, and mode. The gen-
erated loop performs (count ÷ step) iterations of the loop body.

CTR iterators generate the most efficient loops. CTR loops use the PowerPC
ctr register to hold the loop count and the bdnz (decrement counter, branch
if non-zero) instruction to branch. CTR iterators do not require any general
purpose registers, but only one CTR loop can be active at any time. The iterator
variable (e.g., i in the above example), is set to None for CTR loops.

DEC iterators work in a similar manner as CTR iterators, decrementing a
value and terminating the loop when the value reaches zero. However, DEC
iterators keep their counter in a general purpose register, making it available as
the iterator variable for the current loop.

INC iterators are the opposite of DEC iterators, starting the counter at zero
and looping until the counter reaches the stop value. This requires two registers,
one for the counter and one for the stop value. The current loop count is available
as the loop variable.
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In all modes, syn iter can be directed to excluded the branch instruction,
allowing more complicated iterators to have fine-grained control over loop gen-
eration.

4.2 syn range

syn range is the simplest subclass of syn iter. Its arguments follow the seman-
tics of Python’s range and support start, stop, and step keyword parameters.
syn range uses the INC mode and overloads the constructor to pass the correct
count value to syn iter. The iterator variable contains the current value from
the generated sequence.

4.3 Scalar and Vector Iterators

var iter and vector iter iterate over arrays of integers or floating point values,
supplying the current value as a scalar or vector variable of the appropriate type.
The arrays can be native Python or Numeric Python arrays. For example, the
following code implements an add/reduce operation:

data = array.array(‘I’, range(100))
sum = var(c, 0)
for value in var_iter(c, data):
sum.v = sum + value

When the iterator is initialized, var iter modifies the count and step values
to conform to the length of the array and size of the data type. The first time
through the Python loop, the iterator generates the code to load the next value in
the array for the iterator variable. vector iter subclasses var iter, overloading
the memory access methods to use vector instructions that handle unaligned
vectors. It also adjusts the step size to account for multi-element vectors.

4.4 zip iter

The previous iterators all support iteration over one sequence. Often, values
for a computation are pulled from multiple sequences. Python’s zip iterator
pulls together multiple iterators and returns loop variables for one element from
each iterator. zip iter performs the same function on synthetic iterators. The
following code uses a zip iter to perform the element-wise operation R =
X ∗ Y + Z on the floating point iterators X , Y , Z, and R:

for x, y, z, r in zip_iter(c, X, Y, Z, R):
r = vmadd(x,y,z)

zip iter works by disabling the branch operations for its wrapped iterators
and generating its own loop using the smallest count value from the iterators. For
each step of code generation, it calls the appropriate methods on each iterator
in the order they are supplied.
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4.5 The unroll Proxy

Loop unrolling is a common optimization for loop generation. An unrolled loop
contains multiple copies of the loop body between the start of the loop and the
branch instruction. Executing the body in rapid succession reduces the overhead
from branching and gives the processor more opportunities for instruction-level
parallelism. While modern branch prediction hardware has lessened the impact
of loop unrolling, it is still a valuable technique for high-performance computing.

unroll is a Proxy object that unrolls synthetic loops by allowing the Python
iterator to iterate over the body multiple times, generating a new set of body
instructions each time. Between iterations, the the loop maintenance methods
are called with the flag to exclude branches instructions. On the final iteration, a
single branch instruction is generated along with the loop epilogue. The following
is a simple loop and pseudo-code for the generated code:

Loop code: Generated code:

rng = syn_range(c, N) start()
for i in unroll(rng, 3): setup(); body; cleanup();
sum.v = sum + 2 setup(); body; cleanup();

setup(); body; cleanup();
end()

unroll has two options that allow it to generate truly high-performance code.
If the cleanup once flag is set, the cleanup code is only generated once per
unroll iteration, rather than once for each body iteration. The counter is updated
appropriately by unroll. The second option allows the user to supply a list of
variables that are replicated at each unrolled iteration and reduced once each
actual iteration. In the above example, sum depends on itself and creates a stall
in the processor pipeline. However, if the sum register is replicated for each
unrolled iteration and the running sum computed at the end of an iteration,
the processor can issue more instructions simultaneously to the available integer
units, maximizing resource usage. The complete high-performance sum:

for i in unroll(rng, 16, cleanup_once=True, vars = [sum]):
sum.v = sum + 2

achieves near peak integer performance on a PowerPC 970.

4.6 The Parallel Proxy

Most scripting languages, Python included, are single-threaded and only ever
use a single processor on multi-processor systems. However, many scientific and
multimedia applications have natural parallel decompositions. To support natu-
ral parallelism, the parallel Proxy class provides an abstraction for generating
instruction sequences that divide the processing task among available processors.
parallel is designed for problems that divide the data among resources with
little or no communication between executing threads. While communication
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is possible, it is better to decompose the problem into a sequence of synthetic
programs, with communication handled at the Python level.

parallel works in conjunction with the ParallelInstructionStream class.
ParallelInstructionStream extends InstructionStream and reserves two
registers to hold the thread rank and group size parameters for the current
execution group. parallel modifies the count, stop, and address values for the
loops it contains to iterate through the block assigned to the current thread.
The complete code sequence for a simple parallel loop is:

c = ParallelInstructionStream()
proc = synppc.Processor()

data = array.array(‘I’, range(100))
rank = int_var(c, reg=code.r_rank)

for i in parallel(var_iter(c, data)):
i.v = i + rank

if MPI:
t1 = proc.execute(c, mode=‘async’, params=(mpi.rank,mpi.size,0))

else:
t1 = proc.execute(c, mode=‘async’, params=(0,2,0))
t2 = proc.execute(c, mode=‘async’, params=(1,2,0))

proc.join(t1); proc.join(t2)

In this example, each thread adds its rank to the value in the array. Two threads
are created with rank 0 and 1, respectively. The first 50 elements in data remain
the same, while the second 50 elements are increased by 1. The join method
blocks until the thread is complete.

5 Experiments

Synthetic programs are intended for small computational kernels that are exe-
cuted in the context of a larger application. For compute-intensive tasks, they
should provide a noticeable performance increase over a pure Python implemen-
tation and similar execution times as kernels implemented in low-level languages.
Suprisingly, we have found that in most cases, because additional semantic in-
formation is available for specific optimizations, synthetic programs often out-
perform equivalent low-level versions.

In this section, we present two examples of synthetic programs along with per-
formance results. The first example walks through different implementations of
an array min function and compares scalar, vector, and parallel implementations
against native C and Python versions. The next example implements the update
function for a interactive particle system application and shows how expressions
and iterators significantly simplify synthetic programs.
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The timing results were obtained on a Dual 2.5 GHz PowerPC G5 with 3.5
GB RAM running Mac OS X 10.4.6. The Python version was 2.3.5 (build 1809)
with Numeric Python 23.8 and PyOpenGL 2. The native extensions were built
using gcc 4.0.1 (build 5250) with -03 and SWIG 1.3.25. Native versions were
also tested with IBM’s XLC 6.0 compiler. The results did not differ significantly
between the compilers and the results for gcc are reported. Times were acquired
using the Python time module’s time() function.

5.1 Min

The min function iterates over an array and returns the smallest value in the
array. We implemented four synthetic versions, a sequential and a parallel version
for both scalar and vector arrays, and two native versions, one in Python and the
other in C++. For the each example, the kernel was executed 10 times and the
average time was recorded. All kernels operated on the same 10 million element
array from the same Python instance.

The first two synthetic programs implement the min function using scalar and
vector iterators and the fmin and vmin expression functions. vmin maps directly
to a single AltiVec operation and fmin is implemented using one floating point
compare, one branch, and two register move operations. The synthetic code for
each is:

def var_min(c, data): def vec_min(c, data):
m = var(c, _max_float) m = vector(c, _max_float)
for x in var_iter(c, data): for x in vector_iter(c, data):
m.v = fmin(m, x) m.v = vmin(m, x)

m.store()
syn_return(c, m) return m

The scalar implementation uses the floating point return register to return the
value. The vector version accumulates results in a vector and returns a four
element array containing the minimum value from the four element-wise streams.
The final min is computed in Python1 and is an example of mixing Python
operations with synthetic kernels to compute a result.

The parallel versions of the vector and scalar examples extend the sequential
implementations by including code to store results based on the thread’s rank.
The code for the parallel scalar version is:

def par_min(c, data, result):
min = var(c, _max_float)
rank = int_var(c, reg=c.r_rank)
offset = var(c, 0)

for x in parallel(var_iter(c, data)):
min.v = fmin(min, x)

1 In all cases, any extra computation in Python was included in the execution time.
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Table 1. Performance results for different array min implementations on a 10 million
element array. The parallel speedup for vec min is relative to var min.

Time (sec) Speedup Parallel Speedup M Compares/sec
Python 1.801 1.0 – 5.6

var min 0.033 55.2 – 306.6

par min 0.017 106.4 1.93 590.9

vec min 0.014 125.0 2.26 694.2

par vec 0.010 177.5 1.42 986.0

C++ 0.068 26.4 – 147.8

offset.v = rank * synppc.WORD_SIZE
min.store(address(result), r_offset=offset.reg)
return

mn = min(result) # final reduction

The vector version is implemented similarly, with additional space in the result
array and a multiplier of 4 included in the offset. In the parallel examples, the
synthetic kernels execute in two threads simultaneously and communicate results
using the result backing store. To avoid overwriting the other thread’s result,
each thread calculates its index into the result array using its rank. As with
vec min, the final reduction takes place in Python.

The C++ implementation is a simple loop that uses the C++ Standard Li-
brary min function. It is directly comprable to var min. The address and size
of the data array are passed from Python, and the result is returned as a float
using a SWIG-generated wrapper. We experimented with different approaches
to dereferencing the array and computing min. In our environment, directly
indexing the array and using std::min was the fastest technique.

The results of our timing experiments are listed in Table 1. In every case,
the synthetic versions outperformed the native versions. The parallel imple-
mentations achieved good speedups over their sequential counterparts. The
parallel speedup listed for vec min is the speedup compared to the scalar
implementation.

The understand the C++ results, we examined the assembly code generated
for different optimization levels across both gcc and XLC for the different looping
and min strategies. The fastest C++ version differed from var min by three
instructions. Instead of storing the minimum value in registers, min was updated
from cache during each loop iteration, using a pointer to track the value rather
than a register. Attempts to use the register keyword in C++ did not affect
the compiled code. In-lined comparisons (i.e., using an if test instead of min) led
to the worst performing C++ versions. The generated assembly used registers
for results, but used an inefficient sequence of instructions of the comparison,
leading to unncessary dependency stalls.



92 C. Mueller and A. Lumsdaine

5.2 Particle System

In our original paper on synthetic programming, we demonstrated the technique
by implementing the update function of an interactive particle system using a
synthetic program. The original version was implemented using Numeric Python,
and the update function limited the number of particles to approximately 20,000.
The synthetic kernel improved the performance of the application to handle over
200,000 particles, at which point the graphics pipeline became the bottleneck.
We reimplemented the update function using synthetic expressions and iterators
to evaluate the different approaches to synthetic programming. The code for the
new update loop is:

for vel, point in parallel(zip_iter(c, vels, points)):
# Forces - Gravity and Air resistance
vel.v = vel + gravity
vel.v = vel + vmadd(vsel(one, negone, (zero > vel)), air, zero)
point.v = point + vel

# Bounce off the zero extents (floor and left wall)
# and positve extents (ceiling and right wall)
vel.v = vmadd(vel, vsel(one, floor, (zero > point)), zero)
vel.v = vmadd(vel, vsel(one, negone, (point > extents)), zero)

# Add a ‘floor’ at y = 1.0 so the points don’t disappear
point.v = vsel(point, one, (one > point))

To compare the synthetic and Numeric versions, we stripped out the com-
ments and white-space and assigned each line of code to be either parameter
allocation, loop and iterator management, or algorithm implementation. The
results are listed in Table 2. All three versions use the same Numeric arrays
to store parameters and iterators, and the Numeric version did not require any
additional parameter, loop, or iterator code.

The line counts demonstrate the utility of synthetic expressions and iterators.
The original synthetic kernel contained 77 lines of code, 63 of which were used
for register management and manual loop maintenance. In contrast, the new
synthetic kernel uses only 11 lines to manage the same operations, all of which
use a clear syntax. Both the Numeric and original synthetic implementations
used similar amounts of code to implement the update algorithm. The AltiVec
ISA contains many instructions that have direct Numeric counterparts, and the
code for both versions is similar. The synthetic expression version, on the other
hand, uses only six lines of code to implement the update. While the Numeric
version could have been implemented using similar syntax, Numeric’s aliasing
rules lead to multiple, unnecessary temporary arrays. Because the expression
implementation works on registers, the cost of temporary values is kept to a
minimum, allowing a more concise syntax.
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Table 2. Lines of code allocated to parameter allocation, loop and iterator manage-
ment, and the update algorithm for the three different implementations of the particle
system update function

Parameters Loop/Iters Algorithm
Numeric – – 13

Syn. AltiVec 43 20 14

Syn. Expr/Iter 8 3 6

6 Related Work

The Expression and Template libraries are related to similar technologies for
run-time code generation and user-level optimizations. Both libraries rely on
object-oriented and generative programing techniques for their implementation.

The scalar and vector expressions use the Interpreter design pattern [5] to
implement a domain-specific language for transforming expressions into equiva-
lent sequences of instructions for the target architecture. This approach closely
related C++ expression templates [14], and in particular Blitz++ [14]. Blitz++
uses compile-time operator overloading for transforming array expressions into
more efficient source code sequences. ROSE [12], a C++ tool for generating
pre-processors for domain-specific optimizations, is generalized source-to-source
transformation engine that allows domain experts to design optimizations for
object-oriented frameworks.

High-level systems for dynamic compilation include DyC [6], ’C (pronounced
tick-C) [11], and the TaskGraph Library C++ [1]. DyC is an annotation-based
system that allows users to specify sections of code that should be specialized
at run time. ’C and the TaskGraph library use mini-languages that allow users
to write code that is partially specialized at compile time and fully specialized
at run-time. All three of these systems have compile- and run-time components
and extend C or C++. The synthetic programming environment is a run-time
system that uses Python directly for run-time code generation.

With the increasing in processing power on graphics cards, new domain-
specific languages have emerged for generating GPU instructions from host lan-
guages. BrookGPU [2] implements a streaming language as an extension of ANSI
C, and Sh [8] uses a combination of compile-time meta-programming and run-
time compilation to generate GPU code. Both systems support multiple proces-
sor architectures and abstract the lowest level code from developers.

The synthetic iterators are built on Python Iterators [15] and the parallel
and unroll iterators use the Proxy design pattern [5] to intercept requests. The
iterators are all designed to allow the user to annotate the current operation
with guidelines for generating optimal code sequences. High-performance Fortran
(HPF) [4] and OpenMP [3] both use similar annotation techniques for specifying
parallel sections of applications.

Finally, other systems exist for implementing high-performance code from
Python. Weave [7] and PyASM [10] are code in-lining systems for C++ and x86
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assembly, respectively. Psyco [13] is a run-time compiler for Python that gener-
ates efficient machine code for common Python patterns, but due to Python’s
high level of semantic abstraction, has difficulty finding optimal code sequences.
Synthetic programming complements these systems by supplying a pure Python
approach to generating high-performance code. The specialized nature of the
expression library allows it to overcome the semantic challenges faced by Psyco.

7 Conclusion

The Expression and Iterator libraries provide an important addition to the Syn-
thetic Programming Environment. By providing natural abstractions for com-
mon numeric and iterative operations, they allow developers to create high-
performance instruction sequences using Python syntax, while at the same time
removing the dependency on external tools for code synthesis.

The libraries also demonstrate how the SPE can be used to quickly develop
and test optimizations for a target architecture. Whereas traditional compiler
development requires extensive knowledge of the compiler framework and long
build times, the SPE uses Python as the code generation infrastructure and re-
moves the build step entirely. By exposing the code generation and optimization
processes as user-level libraries, developers have more control over the generation
of high-performance code.

The libraries will be made available as part of the Synthetic Programming
Environment.
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Applying Code Specialization to FFT Libraries

for Integral Parameters
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Abstract. Code specialization is an approach that can be used to im-
prove the sequence of optimizations to be performed by the compiler. The
performance of code after specialization may vary, depending upon the
structure of the application. For FFT libraries, the specialization of code
with different parameters may cause an increase in code size, thereby im-
pacting overall behavior of applications executing in environment with
small instruction caches.

In this article, we propose a new approach for specializing FFT code
that can be effectively used to improve performance while limiting the
code increase by incorporating dynamic specialization. Our approach
makes use of a static compile time analysis and adapts a single version
of code to multiple values through runtime specialization. This technique
has been applied to different FFT libraries over Itanium IA-64 platform
using icc compiler v 9.0. For highly efficient libraries, we are able to
achieve speedup of more than 80% with small increase in code size.

1 Introduction

Modern optimizing compilers are able to trigger various optimizations if they
are provided with the necessary information concerning variables used in the
code. Most of the time, this information is not available until execution of the
program. In this regard, code specialization can be used to expose a set of values
to the program. But the impact of code specialization is diminished by the fact
that specialization for a large number of values of a single variable can result in
enormous code size increase.

For scientific and mathematical applications, different algorithms have been
implemented in libraries that are able to calculate Discrete Fourier Transforms
in O(nlogn). These libraries provide support for DFT of different sizes with real
and complex input data. Moreover, these code libraries are heavily dependent on
integer parameters which can be fully exploited by the compiler if their values
become known. However, it is difficult to specialize code with each possible value
of the important parameter.

In this article, we propose an optimization technique that targets FFT li-
braries and makes use of code specialization in an efficient manner so that the
problem related to code explosion is decreased. This technique makes an assump-
tion that the optimizing compilers generate object code with minor differences
for a large range of values of an integer variable. The basis of this assumption

G. Almási, C. Caşcaval, and P. Wu (Eds.): LCPC 2006, LNCS 4382, pp. 96–110, 2007.
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is the fact that a compiler invokes a set of optimizations that is normally re-
lated to a range of values of a parameter. At static compile time, we perform
a static compile time analysis to find out the instructions which are depen-
dent on the specializing value in the object code. If these instructions fulfill the
conditions required for our runtime specialization approach, a specializer is gen-
erated that modifies binary instructions for a new specializing value at runtime.
This approach can therefore be acquired to limit number of versions required
for specialization of code. The runtime specialization is performed with a small
overhead (12 to 20 cycles per instruction) since we require specialization of only
a limited set of binary instructions instead of generating complete code during
execution.

The remaining part of the paper is organized as follows. Section 2 gives an
example describing the behavior of specialization. The new approach of code
specialization has been proposed in section 3, whereas section 4 elaborates it
through description of an implementation framework. Section 5 presents the
results obtained after specialization. The related work has been discussed in
section 6 before concluding in section 7.

2 Motivating Example

The code specialization is used to reduce the number of operations to be per-
formed by the program during its execution, however, it can also be used to
facilitate compiler with necessary information required to optimize the code in
an efficient manner. Different optimizations can be performed by the compiler
such as loop unrolling, software pipelining, constant folding, dead-code elimina-
tion and better instruction scheduling.

For example, consider the following code:

void Function(int size, double * a, double * b, int dist, int stride){
int i;
for (i=0; i< size; i++, a+=dist, b+=dist){

a[stride*2] = a[stride] + b[stride];
}

}

Different value of specializing parameter may cause the compiler to generate
different code. For a small value of loop size, loop can be fully unrolled and
the loop overhead can be reduced. Similarly, if we specialize the loop size for
larger value (e.g. 123), loop can be pipelined with partial unrolling depending
upon the architecture for which the code is being compiled. The optimization
sequence for all the specialized versions would therefore be different in all the
cases depending upon the specializing value and this is the reason which impacts
execution performance of an application.

Furthermore, if we specialize above given code with value of stride, then
the compiler is able to determine the offset at static compile time and a better
dependence analysis can now be performed to invoke more optimizations. For
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the above given example, when compiled with icc v 9.0, the loop is partially
unrolled and software pipelining is performed with a pipeline depth of 2. For
original unspecialized version, no software pipelining is performed. This makes
the code execution faster for specialized version. However, keeping different ver-
sions specialized with all possible stride values would degrade performance of
application. Therefore an attempt is made to keep single version and perform
dynamic specialization to adapt this version to a large range of values. When we
specialize the code with stride value being 5 and stride value 7, the object
code produced after compilation would be similar in terms of optimizations and
would differ in immediate constants that would be based on affine formula of
the form :

Immediate value = stride ∗ A + B. (1)

This formula can then be used during execution to adapt single version to a
large number of values, thereby taking full advantage of optimizations at static
compile time instead of performing heavyweight optimizations at runtime. The
task of specialization of binary instructions can be accomplished through efficient
dynamic specializer as proposed in next section.

3 Approach for Limited Code Specialization

Existing compilers and partial evaluators [1,2] are able to perform partial evalu-
ation if different values in the program become known. A small set of values and
parameters therefore needs to be selected which should be important enough to
have some impact on execution speed. Our current approach of code specializa-
tion targets only integer parameters and it fully conforms with FFT libraries
where the code optimizations depend largely on integer parameters. So far our
approach is restricted to positive integral values to keep the semantics of the
code after specialization.

A profiling analysis can be performed to collect information regarding most
frequently used functions and their parameter values. The hot parameters can
then be specialized statically through insertion of wrapper (for redirection) de-
scribing the version with the parameter replaced by its value in the function
body. However, for an integer parameter with n-bit size, we will require 2n ver-
sions resulting in huge increase of code size. Therefore, we find a generic template
specialized at static compile time and adapt it to different versions during ex-
ecution through invocation of a runtime specializer. The generic template is
highly optimized at static compile time since the unknown value has been made
available to the compiler by providing a dummy value for the specializing param-
eter. This approach is different from those proposed in [2,3,4,5] which perform
partial evaluation for code that has either already been specialized or suspend
specialization until execution.

The main steps for our code specialization are described as follows:

1. Insert a wrapper at the start of function body containing a call to specializer
and to maintain software cache. This would be used to reduce the number
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of versions to be generated during execution. To define range R, initialize
MINVAL to be 1 and MAXVAL with the maximum value for the type of
specializing parameter.

2. Specialize the code with different positive values of the integer parameter and
after compilation obtain versions (at least two) of assembly code (or dumped
object code) generated with full optimizations. These versions contain the
templates for which the runtime specialization will be implemented.

3. Analyze the assembly code to find the differences b/w two versions generated
in previous step. The instructions will differ in immediate values which are
based on the affine formula of the form a ∗ param + b. Annotate all such
instructions which differ in two versions. If instructions differ in any literal
other than the immediate operand or they do not conform to the above given
formula, go to last step.

4. Against each annotated instruction in the generated versions, solve the sys-
tem of linear equations to calculate the values of a and b with constraints
param, a > 0 .

5. The analysis of formulae would reveal information regarding the range of
values for which the template would be valid and modify the source code
(MINVAL and MAXVAL) to contain this range. The range (R) can be cal-
culated as follows:
Let ai ∗ param + bi be the formula generated for i-th instruction, then we
have,

Si = MAX

(

1,

⌈
1 − bi

ai

⌉)

, and Ei =
⌊

ARCHMAXi − bi

ai

⌋

,

where ARCHMAXi represents maximum value that can be used as imme-
diate operand for i-th annotated instruction. The new range R for param
with S = {Si, for i=1 to n} and E={Ei, for i=1 to n}, can be represented
as:

param ∈ [MINV AL, MAXV AL] , where,

MINV AL = MAX(S) , and MAXV AL = MIN(E).

6. Find out the exact locations where the immediate values differ in two ver-
sions, and as a consequence, the runtime specializer can be generated that
will modify the binary instructions in the template. The runtime specializer
requires information regarding starting location, offsets of the locations to
be modified and the formulae to calculate new values. The assembly code
version and the specializer generated need to be linked to make invocation
of specializer possible during execution of program.

7. For the values for which the assembly code versions do not fulfill the condi-
tions, or it is required to keep static version (through programmer directives),
define a static value in the source code for the specializing parameter by gen-
erating another version of the original function code. Modify the wrapper
and the range in the function code to contain the branch to redirect to static
specialized code.
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Let T be set of values for which the static specialization needs to be per-
formed, then, we need to modify the range R as:

R = R − T.

During execution, the wrapper inserted inside the code would cause the run-
time specializer to be invoked prior to the execution of the specialized code for
a particular value. When the same function code is called next time with the
same value of specializing parameter, the wrapper would redirect the call to
specialized code thereby avoiding the call to specializer and minimizing runtime
overhead.

4 Implementation of Code Specialization

The low-level runtime specialization is a complex task and it would be cumber-
some for programmers to manually perform specialization at binary code level.
In addition, they might need to perform comparison of instructions, generation
of formulae for all instructions which differ and find the valid range by taking
into consideration the formats of binary instructions for that architecture. To au-
tomate this specialization technique, a small software prototype has been devel-
oped that incorporates source code modification, specializing invariants analysis
and runtime specializer generation as depicted in Figure 1.

Source Code Modification

Specialized C Code with Wrapper

Static Compilation

Specialized Templates

Specializing Invariants Analysis

Runtime Specializer Generation

Runtime Specializer with 
Binary Template Specializer

Function Code

Native (Executable) Code

Fig. 1. Automation of Runtime Specialization
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4.1 Insertion of Wrapper and Specialization

The source modification involves searching for the integer parameters in the
function and replacing them with a constant value. Different functions can be
specialized with different parameters. For our experiment, it is necessary to ob-
tain the assembly code versions after specialization which resemble in terms
of optimizations and differ only in a fixed set (add/mov/cmp) of instructions.
Therefore, the prime numbers are preferred to be used as specializing value to
obtain such versions of assembly code which avoid any value specific optimiza-
tions. The source code is modified to contain other versions of the candidate
function specialized with an integer value. Moreover, in the function code, a
wrapper is inserted containing the branch to specializer invocation only in the
case when the function receives a new value. If the function receives the same
value of the specializing parameter, the redirection code would cause the special-
ized function to be directly invoked avoiding call to specializer. The pseudo-code
for the wrapper is shown in Figure 2.

Function (... int P2, int P3, int P4, ...)

if P3 value in [MINVAL, MAXVAL]

if the code was specialized with a different P3 value

Specialize function with P3

end if

call Specialized function (..., P2, P4, ...)

else

call Standard code (... P2, P3, P4, ...)

end if

Fig. 2. Source code after modification

The temporary values used for specialization need to be selected carefully.
Usually smaller values are more suitable for specialization, and with icc com-
piler, the impact of specialization in terms of optimizations decreases with an
increase in these values. The specialized assembly code is also the one to be
linked to the client application in the final phase of static compilation. This
specialized code contains templates with dummy values which would be re-
placed by new values and this is the task performed by automated runtime
specializer.

4.2 Runtime Specializer Generation

The automation prototype includes a Specializing Invariants Analyzer (SIA)
which performs analysis at static compile time and is used to prepare information
required by runtime specializer. The analyzer finds the differences and then
passes these differences to code specializer generator. Moreover, the locations of
differences found will act as template holes to be filled, whereas, formulae on
which these values are based, will be used to generate new values to adapt to.
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The Specializer Generator takes this information and generates a specializer that
will be linked to the specialized code to make modification during execution of
the application.

After modification of source code, the code is compiled to either assembly
code or dumped object code1 At least two versions are generated with different
values of the specializing parameter. If we compare these versions, they would
differ in some instructions containing constant values as operands. For example,
for the above given example, the code generated by icc v 9.0 compiler for code
when specialized with the value stride = 5 and the one generated for stride = 7
would differ as shown in Figure 3.

//With Stride = 5
{ .mii

sub r24=r30,r19
add r11=40,r28
nop.i 0 ;;

}
{ .mib

add r14=20,r24
nop.i 0
(p9) br.cond.dptk .b1 3;;

}
....

//With Stride = 7
{ .mii

sub r24=r30,r19
add r11=56,r28
nop.i 0 ;;

}
{ .mib

add r14=28,r24
nop.i 0
(p9) br.cond.dptk .b1 3;;

}
....

Fig. 3. Assembly Code generated by icc v 9.0

The comparison of the assembly code is performed by the SIA, and formulae
are generated on the assumption that in both versions, these formulae are of the
form:

V al1 = Param1 ∗ a + b, and V al2 = Param2 ∗ a + b.

where V al1 and V al2 are immediate operands of binary instructions, and,
Param1 and Param2 are the values of the parameter with which the versions
are specialized. Solving these two equations provides us the values of a and b.
The formulae with known a and b are generated at static compile time and dur-
ing execution only new value of actual specializing parameter (Param) is passed
as shown in Figure 4. After solving equations, it is possible to find the range for
which the code will be valid. For example, an adds instruction over Itanium
allows a 14-bit signed immediate value to be used as operand, thereby making
the above given code valid for range (i.e. MAXV AL) up to 1023.

For specialized code with stride = 8, runtime specialization will modify the
immediate constants in Figure 3 with new values 64 and 32. This approach of
runtime specialization is highly efficient and can be used to adapt a single version
to a large range of stride values.

1 Using objdump utility makes the code offset locations easy to calculate and it also
facilitates to resolve different pseudo-code to actual binary instructions.
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void Specializer Function(long base address, register long param)
BinaryTemplateSpecializer( base address, 6, 1, param * 8 + 0)
BinaryTemplateSpecializer( base address, 7, 0, param * 4 + 0)

..........

Fig. 4. Invocation of Binary Template Specializer

Binary Template Specializer. With the information of formulae and loca-
tions for each instruction after analysis at static compile time, a specializer is
generated to invoke Binary Template Specializer as given in Figure 4. For Ita-
nium where a single bundle contains 3 instructions, we also require the location
of instruction within the bundle since 128-bit binary bundle contains constants
at different locations of the instruction word depending upon its location in the
bundle. Therefore, a different specializing strategy is adopted for each instruction
location in the bundle.

Runtime Activities. The runtime specializer may include some initialization
steps (e.g. on Itanium to make the segment of code modifiable). After the ini-
tialization, the specializer is invoked which in turn makes multiple calls to the
Binary Template Specializer passing it the information regarding the location of
instruction and new immediate value. This information causes the Binary Tem-
plate Specializer to fill the binary templates with new values. The specializer may
be invoked multiple times depending upon the number of instructions, however,
it incurs a small overhead due to specialization of a limited set of instructions
instead of complete function code. Finally, we also need to perform activities for
cache coherence such as flushing and synchronization.

4.3 Static Versioning

In cases where the object code does not conform to conditions specified for
dynamic specialization, we can statically specialize the code. We require the use
of following directive to proceed for static specialization.

#defspec param val

This directive would cause the code modifier to generate a version together
with the insertion of wrapper to redirect execution to this version when the
param receives the specializing value val. The runtime overhead in this case
would be reduced to single branch, but at a cost of increase in code size.

5 Implementation Setup and Results

Different FFT libraries including FFTW, GSL FFT, Scimark, FFT2 have been
optimized through our algorithm on Itanium IA-64 processor making use of Intel
compiler icc v 9.0. These libraries have been compiled with -O3 parameter for
optimization. The performance measurements are made using pfmon library for
computation of 1-dim DFT for complex input data.
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It is to be noted that the runtime specialization is very efficient and requires
12 to 20 cycles for each binary instruction to be specialized. Most of the times,
we do not require multiple invocations to amortize overhead and this makes
our runtime specialization algorithm more efficient than those implemented in
[2,6,7,4] where break-even point is very high (up to 100). In case where the
code is already specialized for hot parameter, the runtime specialization for less
effective parameter can deteriorate performance of the application.

The average specialization overhead with respect to execution time of the
application and code size increase together with average speedup obtained of all
executions, have been shown in table 1.

Table 1. Performance Summary

FFTW GSL-FFT Scimark FFT2 Numutils Kiss-FFT

Avg. Specialization Over-
head (w.r.t exec.time)

1.00% 1.00% 2.00% 2.00% 1.00% 2.00%

Code Increase (w.r.t total li-
brary size)

10.00% 2.00% 19.00% 10.00% 12.00% 11.00%

Avg. Speedup 23.26% 11.85% 17.53% 7.74% 3.38% 6.29%

5.1 FFTW

FFTW [8,9] is one of the fastest libraries able to compute DFTs of real and com-
plex data in O(n log n) with any size of n. The library contains large number
of codelets which were specialized both statically and dynamically. The codelets
required 4 to 20 binary instructions to be modified during execution. The FFTW
wisdom was generated in exhaustive mode for calculating out-of-place 1-dim
complex DFTs having size of powers of 2. The graph in Figure 5 shows that
the large speedup occurs for small values of N (input array size) for which the
codelets are invoked with small loop counter and stride values. With the known
strides in smaller codelets e.g. n1 2, the Initiation Interval (the number of cycles
required for an iteration in stable mode of pipeline) for the specialized version
was reduced. Similarly, with the small loop trip count, the compiler fully un-
rolled the loop to produce large speedup for 8. For large values, the codelets are

Fig. 5. FFTW Library Specialization Results
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invoked multiple times resulting in an accumulated speedup through invocation
of dynamically specialized code.

5.2 GSL FFT Library

The GNU Scientific Library (GSL)[10] is a numerical library containing pro-
grams able to solve different mathematical problems including FFT, BLAS,
Interpolation and Numerical Differentiations etc. The figures 6 and 7 show
speedup obtained with calculation of complex (forward) DFT of size of different
prime numbers and those of powers of 2. The functions fft complex pass n
and fft complex radix2 transform were specialized with stride value to be
one. For the function fft complex pass n, the compiler had generated more
data cache prefetch instructions and pipelined loops than those in the stan-
dard version. For the function fft complex radix2 transform, the object code
generated by icc was almost similar for both the specialized and unspecialized
versions. This shows that our specialization technique is heavily dependent on
the optimizations done by the compiler at static compile time.

Fig. 6. GSL-FFT Specialization Results(Prime Numbers)

Fig. 7. GSL-FFT Specialization Results (Powers of 2)
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5.3 Scimark2 Library

SciMark 2.0 [11] has been developed at the National Institute of Standards
and Technology (NIST). Its C source function fft transform internal was
specialized to generate a binary template that required 7 binary instructions to
be specialized during execution. The small value of specializing parameter let
the compiler remove the overhead of filling and draining the pipelines, however
the code was restricted to a limited set of values (up to 128). In contrast to small
values, the code produced by compiler after specializing with large static values
did not impact performance to a large factor and resembled with the original
object code.

Fig. 8. Scimark Library Specialization Results

5.4 FFT2 Library

The FFT2 library[12] contains routines to perform Cooley-Tukey Fast Fourier
Transform on complex and real samples. The dynamic specialization for the join
function was performed for parameter m. The binary template was generated
which contained 5 binary instructions to be modified. The static specialization
was limited to 2 versions with m=1 and m=2 which are frequently called with
other different values for which dynamic specializer was invoked. The Figure 9
shows speedup only for large values where the function is repeatedly called with
the same value as in case of large sizes of input array. The code for static ver-
sions contained pipeline with large depth making it suitable for large executions.

Fig. 9. FFT2 Library Specialization Results
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Moreover, for small function calls, the performance degrades due to overhead of
dynamic specialization caused by recursive calls of the same function with dif-
ferent input values.

5.5 NumUtils Library

The NumUtils library[13] contains functions to solve different mathematical
problems. The results in Figure 10 show the speedup obtained through different
versions of routine fft since a generic template could not be obtained after in-
variants analysis. The static specialized code however contained less number of
loads and stores sufficient enough to produce speedup.

Fig. 10. NumUtils Library Specialization Results

5.6 Kiss-FFT Library

For the library Kiss-FFT[14], the functions kf bfly2 and kf bfly4 were spe-
cialized with versions for m=1 and m=1,2,4 respectively. Moreover, the function
kf bfly4 was dynamically specialized as well generating a template having 7 lo-
cations to be modified during execution. The binary template to be specialized
and statically specialized versions contained very less number of memory oper-
ations as compared to unspecialized code. Moreover, the repeated invocation of
these functions resulted in speedup as shown in Figure 11.

Fig. 11. Kiss-FFT Library Specialization Results
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6 Related Work

The code specialization and dynamic compilation have been applied to a di-
verse domain of applications including the image filtering, geometrical transfor-
mations, JPEG compression, operating systems, pattern matching and DBMS
Pattern Recognition [15,16,2,4,17,1,5,18,6]. Some systems (e.g. C-Mix [1]) per-
form source to source transformation to generate code after partial evaluation at
static compile time, while others are able to perform specialization during execu-
tion of the program through runtime code generation. Most of these approaches
perform specialization and optimizations in two stages. In first stage, a high level
static compile time analysis is performed and optimizations are performed only
for known values, thereby leaving other optimizations to be performed during
execution of the code. On the contrary, our approach relies on low-level analysis
of code to fulfill the required criteria. Also, these code generators perform large
number of optimizations during execution at the cost of overhead, whereas our
technique is able to obtain highly optimized code at static compile time.

The DCG [19] is a retargetable dynamic code generator and makes use of
intermediate representation of lcc compiler to translate into machine instruc-
tions through BURS (Bottom-Up Rewrite System). For different mathematical
functions, it is able to achieve large speedup (3 to 10) but at a cost of 350
instructions per generated instruction, making it suitable only for applications
requiring minimum dynamic code to be generated during execution. Similarly,
Tick C [7] compiler can generate code during execution and perform optimiza-
tions including loop unrolling, constant folding and dead-code elimination. With
Tick C, a speedup up to 10 has been achieved for different benchmarks, but it
requires multiple calls to amortize overhead. With VCODE [20] interface, opti-
mized code is generated during execution of the program at the cost of 300 to
800 cycles per generated instruction. The optimized code is generated for single
value, thereby requiring the code generation activity to be invoked again for
other specializing value. In contrast, since we are constrained to apply single
transformation during execution, we are able to reuse the same binary code for
multiple specializations.

Fabius [21,4,22] is the system that is able to generate specialized native code at
runtime for programs written in Standard ML. Although the average overhead
( 6 cycles per generated instruction) is less than that incurred through our
approach, they require complete function code to be generated during execution.
This is different from our specialization approach where we require only a limited
number of instructions to be specialized.

Tempo [3,2] is a specializer that is able to perform offline and online partial
evaluation of code. It performs a large static compile-time analysis to specialize
the code during execution by keeping different versions of the same code spe-
cialized with different values. For runtime generation of code and optimizations
it invokes Tick C compiler. With dynamic specialization of FFT, they are able
to achieve average speedup2 of 3.3 , with break-even point up to 8 and requiring

2 Results show only 3 invocations with input size 32, 64 and 128
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separate version for each size of DFT. The approach adopted by Tempo differs
from ours in that if the code is not already specialized, all the optimizations
will be performed during execution, whereas, our approach benefits from op-
timizations at static compile time by exposing constant values of specializing
parameter.

7 Conclusion and Future Work

The exposure of values of different parameters enables the compiler to generate
more efficient code. It is possible to limit the size of specialized versions through
implementation of an efficient dynamic specializer which is able to specialize a
fixed set of binary instructions during execution. In this way, the overhead of
code generation and memory allocation is minimized, and a good speedup can
therefore be obtained. For dynamic specialization, we first generate templates
after a low-level analysis of code. The templates should contain instructions
with immediate operands which must be dependent on the value of specializing
parameter. Once a version is specialized with dynamic value, we do not require
to invoke specializer for the same input value. However, if the specializer is called
multiple times with different values, or the code generated at static compile time
is not highly optimized, then the specialization may deteriorate the performance.

A cost analysis is being incorporated in conjunction with dependence test
to automate the decision of when to apply dynamic specialization. Currently
this approach makes use of specializers which are specific to Itanium architec-
ture. So, we intend to generalize the specializer generation and template code
specialization for multiple platforms.
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Abstract. The main attraction of Partitioned Global Address Space (PGAS) lan-
guages to programmers is the ability to distribute the data to exploit the affinity of
threads within shared-memory domains. Thus, PGAS languages, such as Unified
Parallel C (UPC), are a promising programming paradigm for emerging parallel
machines that employ hierarchical data- and task-parallelism. For example, large
systems are built as distributed-shared memory architectures, where multi-core
nodes access a local, coherent address space and many such nodes are intercon-
nected in a non-coherent address space to form a high-performance system.

This paper studies the access patterns of shared data in UPC programs. By
analyzing the access patterns of shared data in UPC we are able to make three
major observations about the characteristics of programs written in a PGAS pro-
gramming model: (i) there is strong evidence to support the development of auto-
matic identification and automatic privatization of local shared data accesses; (ii)
the ability for the programmer to specify how shared data is distributed among
the executing threads can result in significant performance improvements; (iii)
running UPC programs on a hybrid architecture will significantly increase the
opportunities for automatic privatization of local shared data accesses.

1 Introduction

Partitioned Global Address Space (PGAS) programming languages offer an attractive,
high-productivity programming model for programming large-scale parallel machines.
PGAS languages, such as Unified Parallel C (UPC) [13], combine the simplicity of
shared-memory programming with the efficiency of the message-passing paradigm.
PGAS languages partition the application’s address space into private, shared-local, and
shared-remote memory. The latency of shared-remote accesses is typically much larger
than that of local, private accesses, especially when the underlying hardware is a distribu-
ted-memory machine and remote accesses imply communication over a network.

In PGAS languages, such as UPC, the programmer specifies which data is shared and
how it is distributed among all processors. When the data distribution is known at compile
time, the compiler can distinguish between local shared data and remote shared data. This
information can be used by the compiler to reduce the time to access shared data [5,12].
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In this paper we report on our experience with a set of existing UPC benchmarks.
We start from the premise that understanding data sharing access patterns is crucial to
develop high performance parallel programs, especially in a PGAS language. We de-
velop a set of tools to analyze memory behavior, taking advantage of our UPC compiler
and runtime system. We characterize the benchmarks with respect to local and remote
shared memory accesses, and based on these characteristics we make the following
observations:

– Programmers are typically aware of data ownership and make an effort to compute
on local data. However, since the data is declared as shared, it will incur the shared
memory translation cost, unless it is copied to private memory or dereferenced
through private pointers. Requiring programmers to perform both of these actions
would increase the complexity of the source code and reduce the programmer’s
productivity. A more elegant approach is for the compiler to automatically discover
which shared accesses are local and to analyze privatize them.

– PGAS languages offer data distribution directives, such as the blocking factor in
UPC. Most of the time, programmers think in terms of virtual threads and pro-
cessors. To develop portable code, programmers do not necessarily select the best
distribution for a given platform. Again, there is an opportunity for the compiler to
optimize the blocking factor to match the characteristics of the machine. In Sec-
tion 3 we show several examples in which selecting the blocking factor appropri-
ately, the number of remote accesses is reduced significantly.

– A different way to improve the latency of remote accesses, is to exploit emerging
architectures that consist of multi-core chips or clusters of SMP machines – we
call these machines hybrid architectures since they are a combination of shared and
distributed memory. In this case, a combination of compiler and runtime support
can provide an optimal grouping of threads, such that the number of local accesses
is increased. In our experiments we estimate the percentage of remote accesses that
can be localized.

Several programming models have been proposed for hybrid architecture. Tradition-
ally a combination of OpenMP and MPI has been used to provide efficient communica-
tion between nodes while allowing simple distribution of work within each node [9,21].
However, presenting two very different programming models, shared memory and mes-
sage passing, to the programmer makes coding of large applications very complex. Be-
side different data distribution requirements, there are issues of synchronization and
load balancing that need to be managed across programming models.

A popular alternative have been Software Distributed Memory Systems (DSMs),
such as TreadMarks [2], Nanos DSM [15], ClusterOMP [18], etc. In these systems, the
user is presented with a unique programming model – shared memory, and the sys-
tem takes care of maintaining the coherence between images running on distributed
nodes. The coherence is typically maintained at OS page level granularity and differ-
ent techniques have been developed to reduce the overhead [19]. These characteristics
make workloads that have fine-grain sharing accesses and synchronization unsuitable
for DSMs [18].

We believe that PGAS languages are inherently more suitable for hybrid architec-
tures, since they are designed to make the user aware of shared data having different
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latencies. We have previously shown that UPC programs can scale to hundreds of thou-
sands of nodes in a distributed machine [5]. In this work we present evidence that UPC
is a suitable language for hybrid architectures, exposing a unique programming model
to the user. We argue that a combination of aggressive compiler optimizations and run-
time system support can efficiently map a wide range of applications to these emerging
platforms.

The remainder of this paper is organized as follows: Section 2 presents an overview
of the compiler and runtime system used to collect the results, as well as a description of
the benchmarks studied. Section 3 presents the experimental results and discusses what
are the issues and opportunities observed. In Section 4 we present the related work and
we conclude in Section 5.

2 Environment

In this section we present the environment used for our experiments, and introduce the
terminology that we are using throughout the paper. The experiments were conducted
on a 32-way eServer pSeries 690 machine with 257280 MB of memory running AIX
version 5.2.

2.1 Overview of IBM’s Compiler and Runtime System

For this study, we use a development version of the IBM XL UPC compiler and UPC
Runtime System (RTS). The compiler consists of a UPC front-end that transforms the
UPC-specific constructs into C constructs and calls to the UPC RTS. While the compiler
is capable of extensive optimizations, for the purpose of this study we did not enable
them. The goal is to observe the sharing patterns in the applications and to gage the
possible opportunities for optimizing shared memory accesses.

The RTS contains data structures and functions that are used during the runtime exe-
cution of a UPC program, similar to GASNet [7]. In the RTS we use the Shared Variable
Directory (SVD) to manage allocation, de-allocation, and access to shared objects. The
SVD provides the shared memory translation support and is designed for scalability.
Every shared variable in a UPC program has a corresponding entry in the SVD. The
compiler translates all accesses to shared variables into the appropriate calls in the RTS
to access the values of shared variables using the Shared Variable Directory (SVD).
Given that accessing a shared variable through the SVD may incur in several levels of
indirection — even when the shared access is local — automatic privatization of local
shared accesses by the compiler yields significant performance improvements [5].

2.2 Performance and Environment Monitoring (PEM)

We used the PEM infrastructure [10,22] to collect information about the shared memory
behavior in UPC benchmarks.

The PEM framework consists of four components: (i) an XML specification for
events, (ii) a tool-set to generate stubs for both event generation and event consump-
tion, (iii) an API that allows event selection and collection, and (iv) a runtime that
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implements the API. For this study we created a new XML specification for events
related to allocating and accessing UPC shared variables.

We manually instrumented the UPC RTS using the event generation stubs created by
the PEM tools. These stubs track allocation of shared objects and shared memory ac-
cesses. In each run we logged the following information for each shared-array-element
access: the SVD entry of the shared array being accessed, the thread that owns the array
element, the thread that is accessing the array element and the type of access (load or
store). By recording the thread that owns the element, rather than the shared-memory
domain of the element, we are able to determine how many of the shared accesses
will be local in different machine configurations. The SVD entry for each shared array
provides a unique key that is used to identify each shared array. Each shared-object al-
location was also monitored to record the SVD entry for every shared variable when it
is allocated. This monitoring allows us to manually associate shared accesses in a trace
file (each trace contains the SVD entry of the shared array being accessed) with shared
variables in the source code. This monitoring step could be automated if we modified
the compiler to generate calls to the PEM tools to associate shared variables with SVD
entries. This compiler modification has been left for future work.

Benchmarks were compiled with the UPC compiler and linked with the instrumented
RTS library. Once the benchmarks were run, the PEM runtime was able to collect a trace
of the events described above. We then implemented a PEM consumer to process and
analyze these traces. This tool collected statistics about the shared array accesses for
each shared array and each UPC thread in a given trace.

2.3 Terminology

In order to facilitate understanding the discussion in the following sections of the paper,
we define the terms below.

– A thread T refers to a UPC-declared thread of execution.
– A processor P is a hardware context for executing threads. Multiple threads can be

executed on one processor1.
– A node is a collection of processors that access a shared and coherent section of the

address space.
– A thread group is a collection of threads that execute in the same node (the software

equivalent of a node).
– A shared-memory domain is the shared memory in a node that is common to a

thread group.
– Each element of a shared array is a shared array element.
– A shared array access is a dynamic memory access to a shared array element.
– A thread T owns an element of a shared array if the location of the element is in

the shared memory pertaining to T (i.e., the element has affinity to T ).
– The local shared array elements for a thread T are the array elements that are

located in the shared-memory domain of T . These elements may be owned by T or
may be owned by other threads that are in the thread group of T .

1 Thus a processor may be a context in a hyper-threading processor, or it may be a core in a
chip-multiprocessor architecture, or it may be a stand-alone processor.
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– The remote shared array elements for a thread T are the array elements that are
outside the shared-memory domain of T . These are elements that are owned by
threads outside of the thread group of T .

The shared keyword is used in UPC to identify data that is to be shared among
all threads. Every shared object has affinity with one, and only one, thread. The pro-
grammer can specify the affinity between shared objects and threads using the blocking
factor. If a shared object Os has affinity with a thread T then T owns Os. In an ideal
UPC program, the majority of shared data accesses are to shared data owned by the ac-
cessing thread. Such a data distribution reduces the amount of data movement between
threads, thereby improving the performance of the program.

2.4 Overview of Current UPC Benchmarks

From the NAS suite [3,4], we selected the CG, MG and IS kernels. These benchmarks
were developed by the UPC group at George Washington University based on the orig-
inal MPI+FORTRAN/C implementation [17]. Each kernel comes with three versions
containing different levels of user-optimized code. We used the O0 versions of the ker-
nels because they contain the least amount of hand optimizations. Each kernel also
comes with several class sizes that dictate the input size used by the benchmark. When
possible, each benchmark was run with input classes S, A and B. The memory require-
ments for class S are the smallest and for class B are the largest that we could run. Not
all the benchmarks could be run with class B.

CG is a kernel typical of unstructured grid computations. CG uses a conjugate-
gradient method to approximate the smallest eigenvalue in a large, sparse matrix. The
matrix is evenly divided between the processors.

MG uses a multigrid method to compute the solution of the 3D scalar Poisson equa-
tion. The partitioning is done by recursively halving the grid until all the processors are
assigned. This benchmark must be run in K processors where K must be a power of 2.
Communication occurs between iterations by exchanging the borders.

Integer Sort (IS) performs a parallel sort over small integers. Initially the integers are
uniformly distributed.

A Sobel Edge Detection benchmark, written for this study, was also used. The Sobel
operator is a discrete differentiation operator used in image processing. It computes
an approximation of the gradient of the image intensity function. At each point in an
image, the result of the Sobel operator is either the corresponding gradient vector or the
norm of the vector [1].

The remaining UPC NAS Benchmarks have been optimized for access locality
through the use of UPC block memory transfer methods (e.g., upc memget, upc
memput,upc memcpy). These benchmark versions contain a relatively small number

of accesses to shared variables and may not be representative for this study.We expect
to use them as a target that our compiler should strive to achieve by analyzing naively
written UPC programs. 2

2 The LU benchmark does not currently verify when compiled with our compiler and thus was
not included in the study.
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3 Results and Discussion

There are four questions that we are interested in answering in this study: (i) What is
the ratio of local to remote shared array accesses? (ii) Of the remote accesses, what is
the subset of threads that own them? (iii) Are there regular patterns in accessing remote
data? (iv) How does the blocking factor used to distribute the shared arrays impact the
ratio of local to remote accesses?

For each of these questions, we will take one of the benchmarks described above and
discuss what are the characteristics that make it display a particular behavior. Given that
the set of benchmarks available in UPC is quite restricted, we hope that our discussion
tying program features to performance characteristics will also serve as a best-practice
foundation for UPC programmers.

3.1 Local vs Remote Access Ratio

For the CG benchmark, more than 99.5% of the shared array accesses
are to six shared arrays (independent of the number of threads used to
run the benchmark): send start g, exchange len g, reduce threads g,
reduce send start g, reduce send len g, and reduce recv start g.
The send start g and exchange len g are shared arrays with THREADS ele-
ments that are used in calls to upc memget to move shared data between proces-
sors. They are created with the default (cyclic) blocking factor, where each proces-
sor is assigned one array element in a cyclic fashion. The reduce threads g,
reduce send start g, reduce send len g, and reduce recv start g
are two-dimensional shared arrays of size THREADS*NUM PROC COLS, where
NUM PROC COLS is based on the class size; the arrays use a blocking factor of
NUM PROC COLS. These arrays are used in the conjugate-gradient computation.

Threads access only the elements they own in the reduce recv start g
and reduce threads g shared arrays. For the reduce send len g and
exchange len g shared arrays almost all accesses are to remote array elements. The
local access ratios for send start g and exchange len g vary between threads.
For example, for Class B run with 16 threads, threads 0, 5, 10 and 15 only access local
array elements and the remaining threads access almost exclusively remote elements.

Figure 1(a) shows the distribution of array element accesses vs. ownership for ac-
cesses performed by the CG Benchmark running with Class B input. For thread i, we
record all the threads that own elements accessed by i. We sort the threads in descend-
ing order of the frequency of accesses. The bars in the graph show, for each run, how
many elements were accessed in one of the other threads, averaged over all threads.
For example, when run with 32 threads, about 41% of accesses are local, 19% are to
a remote thread (first owner), 19% to a second owner, 12% to a third owner and about
9% to a fourth. This ownership distribution indicates that most of the remote accesses
are confined to a small number of remote threads: even when run with 32 threads the
majority of remote accesses are to at most 4 unique threads. Almost all benchmarks
that we studied exhibit this type of pattern for up to 128 threads. Of the benchmarks we
analyzed, IS is the only one that does not exhibit similar behavior. In IS, approximately
40% of remote accesses are to a large number of threads.
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Fig. 1. Threads involved in Remote Accesses for blocking factor of NUM PROC COLS and for
a blocking factor of 1 in the CG Class B benchmark

Table 1. Local accesses as a percentage of total shared accesses as a function of the number of
UPC threads and the number of threads per group (TpG)

Benchmark UPC Threads
Percentage of Local Shared Accesses
1 TpG 2 TpG 4 TpG 8 TpG 16 TpG

CG Class B

4 50.2 83.4 - - -
8 45.6 72.8 90.9 - -
16 41.1 68.3 86.4 90.9 -
32 40.8 59.5 78.2 90.6 93.8

IS Class S

2 50.0 - - - -
4 25.1 50.0 - - -
8 13.2 25.2 50.1 - -
16 7.6 13.7 25.7 50.5 -
32 6.2 9.3 15.2 27.1 51.4

MG Class S

2 74.8 - - - -
4 62.2 74.8 - - -
8 55.4 62.3 74.9 - -
16 52.3 56.0 62.3 74.9 -
32 50.6 52.9 56.1 62.5 75.0

Sobel Easter (BF 1)

2 26.68 - - - -
4 23.3 60.0 - - -
8 21.7 56.7 76.7 - -
16 20.8 55.0 73.3 85.0 -
32 20.4 54.1 71.7 81.7 89.2

Sobel Easter (Max BF)

2 93.2 - - - -
4 89.7 93.2 - - -
8 87.7 89.7 93.2 - -
16 86.2 87.7 89.7 93.2 -
32 84.3 86.2 87.7 89.7 93.2
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Table 1 shows the number of local accesses as a percentage of the total number of
shared accesses for each benchmark run with the number of threads and the number
of threads per group (TpG) specified. In most of these benchmarks, a large number of
accesses are local (more than 40%) even when there is a single thread in each thread
group. From these accesses, the ones in CG, MG and Sobel are mostly easily detected
by the compiler. Therefore, they can be privatized to avoid the overhead of translation
through the SVD.

The results in Table 1 indicate that as the benchmarks are run with more threads
per group, the percentage of local shared accesses increases. These results highlight the
benefit of running UPC programs on architectures that have multiple processors in each
share-memory domain. For the CG and Sobel benchmarks, an overwhelming majority
(more than 90%) of the accesses become local when run with a thread group consisting
of 50% of the running threads. Even the IS benchmark, which exhibits irregular shared-
access patterns improves significantly as the size of the thread groups is increased. In
the case the compiler fails to identify and privatize these additional local accesses, the
performance will still improve because it is not necessary to send messages between the
accessing thread and the owning thread in order to exchange shared data.

3.2 Remote Data Access Patterns

An important factor in deciding the mapping of threads to processors in a hybrid archi-
tecture is the access patterns to remote data. This pattern depends on the algorithm used
for solving the problem. Here we present evidence that, for a number of algorithms used
in scientific computations, regular access patterns indeed appear and these patterns are
amenable to optimization.

In Figure 2 we capture the actual pattern of data exchange between threads for the
CG Benchmark running the class B input. We assume the threads are cyclically dis-
tributed and we compute the distance between two threads as the number of threads
separating them in a ring distribution (thread 0 comes after thread N-1). A distance of
zero represents accesses to local data. In these error-bar plots the circles are the average
number of accesses to a remote thread. The error bars are the standard deviations. For
the 32-way CG, we know, from Figure 1(a), that most remote accesses occur to four
other threads. In this figure, we observe that those threads are actually the immediate
neighbors, that is, the threads at distances -2, -1, 1, and 2. Most of the other bench-
marks show a similar behavior, except for IS, where the remote accesses are relatively
uniformly spread throughout all threads. This pattern of communicating with a small
number of threads increases the opportunities to, with a good thread/processor mapping,
privatize local shared data accesses in hybrid architectures.

The different access distribution in IS (integer sorting) occurs because each thread
owns a set of buckets and a random set of keys that need to be sorted. The behavior of
the IS benchmark class S with 2 to 128 threads is shown in Figure 3.

The scatter plot in Figure 4(a) displays the distribution of local and remote accesses
performed by each thread in the CG benchmark running with 16 threads and with class
B input. The size of each point is proportional to the number of accesses performed by
the accessing thread to shared array elements that are mapped to the owner thread. The
colors highlight the local accesses.
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Fig. 2. Distance to remote accesses for CG Class B
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Fig. 3. Distance to remote accesses for IS Class S

Figure 4(a) shows that when a blocking factor of NUM PROC COLS is used the
majority of shared memory accesses are clustered along the diagonal. Every access on
the diagonal is a local access (accessing thread equals the owning thread) while accesses
near the diagonal indicate the accessing and owning threads are in close proximity to
each other (in terms of thread distance). This observation provides strong support for
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Fig. 4. Distribution of shared accesses for blocking factor of NUM PROC COLS and for a
blocking factor of 1 in the CG Class B benchmark running with 16 threads. The darker markers
on the diagonal are local accesses, while the lighter colored markers are remote accesses. The
size of the marker denotes the number of accesses, the larger, the more accesses.

running the benchmark on a hybrid machine where threads are mapped to thread groups
based on their distance from each other. For example, on a hybrid machine with thread
groups of size four, threads 0 through 3 are mapped to one node, threads 4 through 7
are mapped to a second node, etc.,.

3.3 Effects of Blocking Factor

To illustrate the effect the blocking factor, the CG benchmark was modified to create
the reduce threads g, reduce send start g, reduce send len g, and
reduce recv start g arrays with a blocking factor of 1. Figure 1(b) shows the
number of unique threads involved in remote accesses while the scatter plot in Fig-
ure 4(b) shows the distribution of local and remote accesses. These figures emphasize
the importance of using an adequate blocking factor to increase the number of shared
accesses that are local and thus candidates for privatization. When compared with the
plot in Figure 4(a), we see the selection of blocking factor is even more important for
hybrid architectures.

In the NAS MG Benchmark, we observed a high percentage of remote accesses for
the two shared arrays sh u and sh r. These two shared arrays contain the original and
residual matrices used in the multigrid computation. They are relatively small arrays
(for class S their size is 6*THREADS) and they are distributed using a blocking factor
of 6. Figure 5(a) shows the index frequency histogram for the sh u array when run
with input class S on 4 threads. The height of the bars indicate the number of accesses
to a specific index. The colors denote the ownership of the shared data being accessed.
From this histogram we see that the majority of accesses are to indices 20, 21, 22 and
23. However, because a blocking factor of 6 was used to distribute the array, all of
these indices map to thread 3. When run with the original blocking factor there were
approximately 12.5% local accesses to sh u. By manually modifying the source code
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Fig. 5. MG class S array access index frequency using original blocking factor. Color denotes
ownership.
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Fig. 6. Distribution of shared accesses for blocking factor of 1 and blocking factor of
MAX BLOCK = (ROWS*COLUMNS)/THREADS for the Sobel benchmark running with 32
threads

to use the default blocking factor of 1, the number of local accesses increased to 99.4%.
The index frequency histogram using a blocking factor of 1 is shown in Figure 5(b).

Figure 6 illustrates the effect of different blocking factors on the Sobel benchmark.
The Sobel benchmark performs a stencil computation where the eight neighbors of an
array element are used to compute a new value. Thus choosing the largest possible
blocking factor, such that the eight neighbours of a give array element are local (for
most array elements) proves to be the best strategy.

4 Related Work

This is the first performance study to provide an empirical measurement of the distribu-
tion of thread ownership of the accesses performed by each thread in UPC benchmarks.
This data allows the community to both identify the opportunities for optimization of
data accesses in UPC and to estimate the potential gains that such optimizations may
yield.
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Several research groups have investigated the performance of UPC and compared
with other languages. El-Ghazawi and Cantonnet found that both the Compaq UPC
1.7 Compiler on the Compaq AlphaServer SC produced code that was slower than,
but competitive with, the code produced for MPI versions of the NAS parallel bench-
marks [17]. In their study the UPC codes were modified by hand to convert all local
shared accesses into private accesses.

The performance study by Cantonnet et al. provides strong support to improving the
code generation for local shared accesses in UPC[8]. Not only did they measure the high
overhead of such accesses in current compilers, they also demonstrated, through hand-
optimization, that significant performance gains can be obtained by privatizing such
accesses. By manually privatizing local shared accesses and prefetching remote data in
the Sobel Edge Detection benchmark they were able to obtain nine times speedup for
a 2048×2048 image and results showing very-high parallel efficiency with speedup al-
most linear on the number of processors. In cluster architectures formed by many multi-
processor nodes the potential for improvement in performance may be even higher than
these experiments indicate. Similarly Chen et al. found that if local shared accesses
were privatized in the Berkeley UPC compiler, a simple vector addition application
would see an order of magnitude speedup [11].

Berlin et al. compared the time required for a private local access and for a shared
local access [6]. The smallest difference between these two accesses was in the SGI
Origin 2000 (the private access was 7.4 times faster). In a 64-node Compaq AlphaServer
cluster with four ES-40 processors per node with an earlier version of the Compaq UPC
compiler, they found that a private access was 580 times faster than a local shared access
in the same processor, and was 7200 times faster than a shared access to an address
mapped to another processor in the same node. Later versions of that compiler have
reduced this overhead, but these staggering numbers speak to the need to improve the
identification and privatization of local-shared accesses.

In a comparative study between UPC and Co-array Fortran, Coarfa et al. found that
in both languages, bulk communication is essential to deliver significant speedup for the
NAS benchmarks [12]. They also point out that references to the local part of shared array
through shared pointers is a source of inefficiency in UPC. They suggest that the way to
work around this inefficiency is for UPC programmers to use private C pointers to access
the local part of shared objects. We propose a more elegant two-pronged solution: (1) an
optimizing UPC compiler may modify the blocking factor to improve the number of local
accesses for a given machine configuration; and (2) the compiler should automatically
convert shared accesses to the local part of a shared array into private local accesses.

The analysis required for the privatization of local shared accesses finds parallel
in the analysis of array accesses in loop nests in the modified version of Parascope by
Dwarkadas et al. [16]. Their goal is to inform the runtime system that it does not need to
detect accesses to shared data. Their compiler-time analysis allows the runtime system
to prepare for the shared accesses ahead of time. In UPC the analysis will be able to
simply replace the shared access with a simple pointer-based access.

Zhang and Seidel developed the UPC STREAM benchmark [23]. Their experimen-
tal study also found the overhead of accessing local sections of a shared array through
shared accesses to be significant. They also report on an empirical comparison between
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an implementation of UPC over MPI and Pthreads from Michigan Technological Uni-
versity, the first commercial UPC compiler from Hewlett-Packard, and the Berkeley
UPC compiler.

Zhang and Seidel propose a model to predict the runtime performance of UPC pro-
grams [24]. Their technique uses dependence analysis to identify four types of shared
memory access patterns and predict the frequency of each pattern. Microbenchmarks
are used to determine the cost of each pattern on various architectures. Their results
demonstrate their model is able to predict execution times within 15% of actual run-
ning times for three application benchmarks.

The issue of identifying shared accesses that are local arises in UPC because of a
language design decision that makes the physical location of the memory referenced
transparent to the programmer. Other languages, such as Co-Array Fortran [20] expose
the distinction between local and remote accesses at the language level and thus they
compilers do not have to deal with the privatization of local shared accesses.

Barton et al. describe a highly scalable runtime system based on the design of a
shared variable directory [5]. They also describe the optimization of the upc forall
loop, local memory accesses, and remote update operations implemented in the IBM
XL UPC Compiler [14].

Intel has recently announced Cluster OpenMP that support OpenMP programs run-
ning on a cluster of workstations [18]. A licensed version of TreadMarks [2] is used
for the runtime system to manage the movement of shared data between nodes. The
OpenMP specification has been extended to include the sharable directive, used to
identify variables shared among threads. A sharable equivalent to malloc has also been
added to support dynamic shared data.

A mixed-mode programming model for hybrid architectures has been explored by
several groups. In this mixed-mode model, MPI is used to communicate between nodes
while OpenMP is used to parallelize work within a node. Smith and Bull conclude that
this mixed-mode programming model is well suited for some applications but warn
it is not the best solution for all parallel programming problems [21]. A programmer
should understand the nature of the application (load balancing characteristics, parallel
granularity, memory limitations from data replication and general MPI performance)
before attempting to use the mixed-mode model.

5 Conclusions

We started this detailed study of data access patterns in UPC from the premise that
understanding these patterns will allow us to estimate the potential of several compiler
optimizations. Indeed, we find that the number of local accesses that are identifiable by
the compiler is quite high in the set of benchmarks that we studied. Privatizing these
accesses automatically will remove a significant source of overhead while keeping the
code portable and simple to understand.

In addition, we observed that, contrary to the intuition that the largest blocking factor
is always better for improving locality, there are cases in which a blocking factor se-
lected based on the access pattern provides more benefit. We are working on a solution
to the problem of finding the best blocking factor for an application.
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And finally, we have shown that even considering a naive mapping of threads to
processors in a hybrid architecture, there is tremendous potential to increase the perfor-
mance of applications because of better data locality. We are confident that through a
combination of compiler and runtime optimization the performance of PGAS languages
such as UPC can be on-par with traditional high performance MPI+OpenMP codes. At
the same time, PGAS programming models are a more elegant solution to the problem
of programming hybrid architectures when compared with mixed programming models,
such as combinations of MPI with OpenMP.
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Abstract. Although hardware support for Thread-Level Speculation (TLS) can
ease the compiler’s tasks in creating parallel programs by allowing the compiler
to create potentially dependent parallel threads, advanced compiler optimization
techniques must be developed and judiciously applied to achieve the desired per-
formance. In this paper, we take a close examination on two data compression
benchmarks, GZIP and BZIP2, propose, implement and evaluate new compiler
optimization techniques to eliminate performance bottlenecks in their parallel ex-
ecution and improve their performance. The proposed techniques (i) remove the
critical forwarding path created by synchronizing memory-resident values; (ii)
identify and categorize reduction-like variables whose intermediate results are
used within loops, and propose code transformation to remove the inter-thread
data dependences caused by these variables; and (iii) transform the program to
eliminate stalls caused by variations in thread size. While no previous work has
reported significant performance improvement on parallelizing these two bench-
marks, we are able to achieve up to 36% performance improvement for GZIP and
37% for BZIP2.

1 Introduction

Chip Multiprocessors (CMP) have become nearly commonplace [17, 14, 2, 32]. It is
relatively straightforward for explicitly multithreaded workloads to benefit from the in-
creasing computing resources, but how would sequential programs take advantage of
such resources? One natural way to speedup a sequential program is to exploit paral-
lelism to utilize multiple processing units. Traditionally, compilers create parallel pro-
grams by identifying independent threads [4, 13, 33]—but this is extremely difficult, if
not impossible, for many general purpose programs due to their complex data structures
and control flow, as well as their use of ambiguous pointers. One promising alternative
to overcome this problem is Thread-Level Speculation (TLS), which allows the com-
piler to create parallel threads without insisting on their independence. The underlying
hardware ensures that inter-thread dependences through memory are satisfied, and re-
executes any thread for which they are not. Unfortunately, despite numerous proposals
on efficient hardware support [19, 1, 10, 7, 9, 29, 11, 12, 20, 24, 25, 31, 34] and compiler
optimizations [39, 40, 38, 22], only moderate performance improvements have been re-
ported from parallelizing general purpose programs. This calls for the development of
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more aggressive compiler optimizations that take full advantage of profiling informa-
tion to perform novel program transformations.

In this paper, we focus on one important class of general purpose applications, data
compression, for which most of the previously proposed techniques are unable to claim
significant performance improvement. Starting with a parallelized and optimized ver-
sion of BZIP2 and GZIP—the parallel loop selection and value communication optimiza-
tion algorithms are described in our previous work [39,40,38], we carefully studied the
program behaviors. Three performance bottlenecks are identified and the corresponding
optimization techniques are proposed.

1. The first performance bottleneck that we observed is the critical forwarding path
introduced by forwarding memory-resident values between threads. In our previ-
ous work [40], we have demonstrated the importance of forwarding values between
speculative threads to statisfy inter-thread data dependence of memory-resident val-
ues and to avoid speculation failure. However, the critical forwarding path intro-
duced by such synchronization can serialize paralle threads. In our previous work,
we have proposed a compiler optimization technique to address a similar issue—
reducing the critical forwarding path introduced by communicating register-
resident values. In this paper, we apply the same instruction scheduling technique to
reduce the critical forwarding path introduced by communicating memory-resident
values. We observe that, to reduce the critical forwarding path of a memory-resident
value, instructions must be scheduled aggressively—across both control and data
dependences to achieve performance improvement. On the contrary, in the case
of register-resident value, conservative instruction scheduling provides most of the
performance benefit. Details are described in Section 3.1.

2. The second performance bottleneck is also due to inter-thread value communica-
tion. This bottleneck is caused by a class of reduction-like variables: where the vari-
able is defined in the loop body through reduction operations, but there also exist
uses of the intermediate result of this variable, thus it is impossible to apply tradi-
tional reduction optimizations [18] to eliminate the inter-thread data dependence.
We propose an aggressive speculative reduction transformation to reduce the criti-
cal forwarding path caused by reduction-like variables. Details of this technique is
described in Section 3.2.

3. The third performance bottleneck is caused to complex control flow—threads can
take any execution path through an iteration, and thus vary in execution time. In
the example shown in Figure 1(a), there are 8 parallel threads with the follow-
ing execution order T 1, T 2, T 3, T 4, T5, T6, T7, and T 8. The size of long threads
T 1, T 4, T 7, and T 8 contains thousands of dynamic instructions and short threads
T 2, T 3, T 5, and T 6 contain only a few instructions. Assuming 4 threads are exe-
cuted in parallel, little parallel overlap is possible. One way to get parallel overlap
is to merge short threads with long threads and execute consecutive long threads
in parallel, as shown in Figure 1(b). Unfortunately, it is impossible to statically
determine the number of iterations to merge since thread sizes are not known un-
til runtime. We propose a program transformation to dynamically merge multiple
short threads with a long thread. The details are described in Section 3.3.
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(a) Before merging. (b) After merging.

Fig. 1. Iteration merging

1.1 The TLS Execution Model

In TLS, the compiler partitions a program into parallel speculative threads without
having to prove that they are independent, while at runtime the underlying hardware
checks whether inter-thread data dependences are preserved and re-executes any thread
for which they are not. This TLS execution model allows the parallelization of pro-
grams that were previously non-parallelizable as demonstrated by the following
example.

In this paper, we will only experiment with parallel threads that are created by ex-
ecuting multiple iterations of the same loop simultaneously . However, we expect the
techniques developed for improving value communication applicable to other parallel
threads. The most straightforward way to parallelize a loop is to execute multiple it-
erations of the same loop in parallel. With TLS, loops with potential loop-carried data
dependences are speculatively parallelized. A thread is allowed to commit if no inter-
thread data dependence is violated. In case of a data dependence violation, the thread
that contains the consumer instruction is re-executed.

Inter-Thread Value Communication in TLS. From the compiler’s perspective, TLS
supports two forms of communication and the compiler can decide which mechanism
is appropriate for a particular data dependence to obtain maximum parallel
overlap:

Synchronization. explicitly forwards a value between the source and the destination
of a data dependence. It allows for partial parallel overlap and is thus suitable for
frequently occurring data dependences that can be clearly identified. However, if
the instructions that compute the communicating value are sparsely located in a
thread, explicit synchronization could also limit performance by stalling the con-
sumer threads more than necessary.

Speculation. relies on the underlying hardware to detect data dependence violations at
runtime and trigger re-execution when necessary. It allows for maximum parallel
overlap when speculation always succeeds, however, if speculation always fails,
this mechanism would introduce a significant performance penalty. Thus, this form
of value communication is suitable for data dependences that are difficult to analyze
and occur rarely.
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1.2 Related Work

Researchers have developed various compiler [39,40,6,16,8,22] and manual [26,27] op-
timization techniques to fully utilize the hardware support for TLS to parallelize general
purpose applications. This paper extends our previous work on improving inter-thread
value communication [39,40] and integrates the recover code generation mechanism to
enable both inter-thread and intra-thread speculation to avoid processor stalls caused by
data dependences from memory-resident values.

Existing research in parallel compilers has mainly focused on two critical perfor-
mance problems: how to divide a sequential program into parallel threads [3, 8, 16, 37,
38, 22] and how to improve inter-thread value communication [21, 28, 35, 36, 39, 40,
12, 41, 22]. These compiler optimization techniques typically start by building a proba-
bilistic model of speculative execution first, and then estimating the amount of parallel
overlap that can be achieved. However, few recognized that in real applications de-
pendences are often inter-related and intelligent code transformations could be used to
speculate on predictable dependence patterns for performance gain.

Prabhu et al. [26,27] have developed several advanced manual code transformations
to improve the performance of TLS, and they expect the programmers to apply these
techniques. Although some of the techniques described by Prabhu et al. resemble the
techniques in this paper at a first glance; detailed examinations reveal significant dif-
ferences: (i) both papers have observed that reduction variables can serialize program
execution, but Prabhu et al. only applied traditional reduction variable elimination tech-
nique to remove them, while we studied the existence of a large class of reduction-like
variables with complex usage patterns and develop new code transformations to pre-
vent them from serializing execution; (ii) although both paper has proposed techniques
to balance the workload that are assigned to each thread, our iteration merging tech-
nique is proposed in the context of automatic compilation and thus can be integrated in
an optimizing compiler.

2 Compression Algorithms

The compression applications are commonly used general-purpose applications. TLS
typically achieves modest speedup for those applications. In order to gain insight on
the performance bottleneck and exploit more potential speculative TLP, we select two
compression benchmarks BZIP2 and GZIP from SPEC2000 benchmark suite for an ex-
tensive study.

BZIP2. BZIP2 [5] represents one class of compression applications that uses a block-
based algorithm. It divides the input data into blocks of the size N ranging from 100k
to 900k bytes, and processes the blocks sequentially. While it is possible to process
different blocks in parallel, the huge size of the speculative data modified by each thread
often exceeds the capacity of speculative buffer provided by TLS, which is typically
from 16k to 32k bytes. The frequent stalls due to the buffer overflow inhibit most of the
performance gains from TLS.

During the compression of each block S of size N , the most time consuming part is
Burrows-Wheeler Transform (BWT). It forms N rotations of a block by cyclically shift



130 S. Wang, A. Zhai, and P.-C. Yew

S, and sorts these rotations lexicographically. Bucket sort is used in the main sorting
phase. The buckets are organized as a two-level hierarchical structure. The big bucket
in the outer level contains all rotations starting with the same character, while the small
bucket in the inner level contains all rotations starting with the same two characters.

Consequently, a two-level nested loop is used to traverse each bucket to sort all ro-
tations inside. The outer loop seems an ideal target for parallel execution since sorting
of big buckets can be done independently. However, in order to speedup the sequential
algorithm, the information about the sorting of the current bucket is kept in the global
data structures such as quadrant and used in the sorting of following buckets to avoid
redundant computations. Also, the results of sorting the current big bucket are used to
update other unsorted buckets. As a result, those optimizations for sequential algorithm
introduces inter-thread dependences that are undesirable for parallel execution. On the
other hand, the performance of the inner loop is mainly limited by the reduction-like
variable workDone. Reduction elimination cannot be applied here since workDone is
also used somewhere in the loop besides the reduction operations. The sorting of each
small bucket is done by calling qSort. Since qSort is not always called in every inner
loop iteration, it introduces unbalanced load among threads.

The compression algorithm also include other phases such as run-length encoding,
move-to-front encoding, and Huffman encoding. The performance of the main loops
in those phases are typically limited by long critical forwarding paths that are hard to
optimize.

The decompression phase in BZIP2 has much lower coverage than in the compression
phase. Similar to compression, decompression is performed for one block at a time.
Decompression of multiple blocks cannot run in parallel due to the size limitation of
the speculative buffer. Most loops in the decompression phase is sequential due to the
fact that the decoding of a character is completely dependent on the previous characters.

GZIP. GZIP [42] represents another class of compression applications that uses a
dictionary-based algorithm. The input data is scanned sequentially, once a repeated
string is detected, it is replaced by a pointer to the previous string. A hash table is
used for detecting a repeated string. All input strings of length three are inserted in the
hash table.

Two versions of the algorithm are implemented. Deflate fast is a simplified version,
which is fast but with low compression ratio. The main loop iterates through all input
characters. Each time a match is found, it is selected immediately. The main perfor-
mance limitation is caused by the use of global variables such as lookahead and strstart.
Deflate, a more complex and time consuming version, uses a technique called lazy eval-
uation in order to find a longer match. With lazy evaluation, the match is not selected
immediately. Instead, it is kept and compared with the matches for the next input string
for a better choice. However, the use of current match in the next matching step causes
additional data dependences. Both deflate and deflate fast call longest match to find the
longest match among all string with the same hash index. The average iteration size of
the main loop is typically small due to the facts that most of strings do not match with
the current string and a fast check is used to avoid unnecessary comparison.

Similar to BZIP2, the decompression phase in GZIP has a much lower coverage
than in the compression phase. The decompression is performed sequentially since the
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decoding of the current character depends on the characters decoded previously. As a
result, it is hard to extract TLP in the decompression phase.

3 TLS Optimizations

For both BZIP2 and GZIP, the main hurdle to create efficient parallel programs under
TLS is data and control dependences. In this session, we propose several compiler op-
timization techniques to overcome these limitations.

3.1 Speculative Scheduling for Memory-Resident Value Communication

In order to avoid excessive failures under TLS, synchronizations are required for fre-
quently occurring memory dependences. While scheduling for register-resident value
communication has been shown effective for many benchmarks [39], the benefit of
scheduling for memory-resident value communication is still unknown. Due to the facts
that memory dependences are prevalent in both BZIP2 and GZIP, it is important to in-
vestigate the performance impact of scheduling techniques for memory-resident value.
Unlike the scheduling for register-resident value, the scheduling of memory-resident
value may interact with the underlying TLS support. The details of how scheduling and
TLS work together need a closer examination.

(a) Speculation. (b) Synchronization. (c) Spec. scheduling.

Fig. 2. Scheduling for memory-resident value communication

Figure 2(a) shows two threads T1 and T2 with a frequently occurring dependence
between store and load. To avoid mis-speculation, synchronization is used to delay the
execution of load until store finishes its execution, as shown in Figure 2(b). A signal
instruction is inserted after store to explicitly forward both the address (stored in register
r1) and the value (stored in register r2) to T2.

In order to reduce the waiting time of load, speculative scheduling is applied so that
both the address (stored in register r1) and the value (stored in register r2) of store are
computed earlier. Control and data speculation are used to overcome the dependence
limitation during aggressive scheduling, and recovery code needs to be generated for
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possible mis-speculation as well. In our study, we support both control and data spec-
ulation similar to those on IA-64 architecture [15]. As shown in Figure 2(c), in order
to compute the value of r2 earlier, the instructions it depends on have to be scheduled.
If load r6, [r5] in the dependence chain is scheduled across an aliasing store, it will be
changed into a data speculative load (ld.a). If it crosses a branch, it will be changed into
a control speculative load (ld.s). In this example, ld.sa is used for both data and control
speculation. A check instruction chk.a is inserted to the home location of the specula-
tively scheduled load to detect possible mis-speculations. In case of a mis-speculation,
the corresponding recovery code is invoked to re-compute and re-forward the value, as
shown in Figure 2(c). When instructions are speculatively scheduled across a branch, a
signal with NULL address is inserted to the alternative path. Execution of such signal
indicates that a wrong signal from the other path has already been forwarded.

The consumer thread keeps both addresses and values in a special forwarding buffer.
It is accessed by each exposed load that is not proceeded by a store to the same location
in the same thread. If the address matches, the value will be used. When the consumer
thread receives the same signal twice, it indicates a mis-speculation is detected by the
producer thread, and either the address or value has been wrongly forwarded. The old
address and value are replaced by the new ones. The consumer thread has to be squashed
if the old value has already been consumed.

The data stored in the forwarding buffer will not be checked for inter-thread depen-
dence violation. In Figure 2(c), if there is another store instruction store 1 between sig-
nal and store, and it accesses the same address as store, it will not cause an inter-thread
dependence violation since the forwarded data is invisible to store 1. However, if an-
other store instruction store 2 after store accesses the same address, an inter-thread de-
pendence violation should be detected since store 2 produces a newer value that should
be used by load. For this purpose, we insert a new instruction expose immediately af-
ter store to inform the consumer thread to make the forwarded data exposed for the
dependence checking.

3.2 Aggressive Reduction Transformation

A reduction operation iteratively summarizes information into a single variable called
the reduction variable. The presence of reduction variables causes inter-thread depen-
dences, and serializes parallel execution. Such serialization can become performance
bottlenecks when nested loops are involved. The example in Figure 3(a)-i shows a re-
duction variable sum defined in a nested loop. During the parallel execution of the outer
loop, in thread i, the definition in the last iteration of the inner loop is used by thread
i+1 in the first iteration of the inner loop. This creates an inter-thread data dependence
that must be synchronized as shown in Figure 3(a)-ii. However, such synchronization
can potentially serialize parallel execution.

In traditional parallelizing compilers [18], reduction variables are eliminated through
a process in which multiple independent variables are created and store in an array as
shown in Figure 3(a)-iii. Because each thread stores reduction variable in a different
location, inter-thread data dependences are eliminated, thus the threads can be paral-
lelized. The final result of the reduction operation is computed after parallel execution
ends.
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Although reduction elimination is effective in removing inter-thread dependences,
the application of this technique is limited due to one important constraint—inter-
mediate results of the reduction operation cannot be used anywhere in the parallelized
loop. In the example shown in Figure 3(b)-i, the intermediate result of the reduction
variable sum is used in the outer loop. In order to retrieve the intermediate result, the
reduction valuable must be communicated between the parallel threads. Fortunately, we
can perform partial reduction elimination and update the value of sum only once in the
outer loop, as shown in Figure 3(b)-ii, where all uses of the reduction variable sum in
the outer loop is replaced with sum + sum[i]. Although the reduction variable is not
eliminated, its impact on the parallel performance is greatly reduced, as we can see that
the distance between the update of sum in a thread and use of it in the successor thread
becomes relatively small. Another benefit of this transformation is that the summation
step can be eliminated. Under TLS, because all local scalars are thread-private, we can
avoid the creation of the array sum[] and use a scalar to hold the partial results of the
reduction operation, as shown in Figure 3(b)-iii. Just like any other values that are com-
municated through synchronization, the critical forwarding path of this communication
can be reduced with instruction scheduling.

Unfortunately, not all usage patterns of reduction variables can be optimized as de-
scribed above. In the example shown in Figure 3(c)-i, the signal instruction cannot be
scheduled before the inner loop because it depends on the value of sum0 which is
computed by the inner loop; and wait instruction cannot be scheduled after the inner
loop, because it is used to guard a branch instruction. As a result, the critical forward-
ing path introduced by the reduction variable is very long. Fortunately, the outcome of
the branch instruction guarded by the reduction variable is often predictable; and we
can exploit this predictability to postpone the use of the reduction variable till after
the completion of the inner loop. In the example shown in Figure 3(b)-ii, the branch
is predicted as not-taken; moved across the inner loop and executed as a verification.
In the original location of this branch, both sum0 and x are saved, so that they can be
used later in the verification. The use of sum is delayed so that the critical forwarding
path is reduced. When the value of sum becomes available, and the branch is proved
to be mis-predicted, the thread must be squashed and an un-optimized version of code
must be executed [30]. The squash/recovery mechanism that enables this aggressive
optimization is already available in TLS, thus no extra hardware support is needed.

However, this aggressive transformation does not handle all usage patterns of sum
within the loop: the reduction variable can be used in the inner loop, as shown in Fig-
ure 3(c)-iii. In order to reduce the critical forwarding path introduced by such usage,
the branch in the inner loop has to be moved to the outer loop. Is it possible to make
such a code transformation and to guarantee that all mis-predictions are detected? The
answer is yes, and the key to this transformation is that most reduction operations are
monotonic. If the reduction variable is monotonically increasing or decreasing and the
branch is to test whether it is greater or less than a certain loop invariant, the verifica-
tion can be delayed till after the inner loop is complete. In our example, if the condition
sum+sum0 > 100 is true in the inner loop, it must also be true for the test in the outer
loop. Mis-predictions can always be detected by the delayed verification in the outer
loop.
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while(cond1) {
while(cond2) {

sum++;
}

}
(i)A reduction variable

while(cond1) {
wait(sum);
while(cond2) {

sum++;
}
signal(sum);

}
(ii)Synchronizing the
reduction variable

while(cond1) {
while(cond2) {

sum[i]++;
}

}
while(cond1) {

sum+=sum[i];
}
(iii)Traditional
reduction elimination

(a) Reduction elimination.

while(cond1) {
while(cond2) {

sum++;
}
. . .
=sum;
. . .

} (i)Using intermediate
result of reduction
variable

while(cond1) {
while(cond2) {

sum[i]++;
}
. . .
wait(sum);
=sum+sum[i];
. . .
sum+=sum[i];
signal(sum);

}
(ii)Reduction transformation
with explicit forwarding

while(cond1) {
while(cond2) {

sum0++;
}
. . .
wait(sum);
=sum+sum0;
. . .
sum+=sum0;
signal(sum);

}
(iii)Replace sum[]
with sum0

(b) Reduction-like variable with a single use and short critical forwarding path.

while(cond1) {
wait(sum);
if(sum+sum0>x)

work1;
else

work2;
. . .
while(cond2) {

sum0++;
}
. . .
sum+=sum0;
signal(sum);

}
(i)Used to determine
a branch outcome

while(cond1) {
sum0’=sum0;
x’=x;
work2;
. . .
while(cond2) {

sum0++;
}
. . .
wait(sum);
if(sum+sum0’>x’)

recovery;
sum+=sum0;
signal(sum);

}
(ii) Predicting
branch outcome
then verifying

while(cond1) {
wait(sum);
while(cond2) {

sum0++;
if(sum+sum0>100)

return;
work1;

}
. . .
sum+=sum0;
signal(sum);

}
(iii) Used in the
inner loop

while(cond1) {
while(cond2) {

sum0++;
work1;

}
. . .
wait(sum);
if(sum+sum0>100)

recovery;
sum+=sum0;
signal(sum);

}
(iv) Predicting
branch outcome
then verifying
in the outer loop

(c) Using the intermediate result of a reduction variable to determine a branch outcome.

Fig. 3. Transformation for reduction-like variable

3.3 Iteration Merging for Load Balancing

In TLS, to preserve the sequential semantics, speculative threads must be committed in
order. Thus, if a short thread that follows a long thread completes before the long thread,
it must stall till the long thread completes. When workload is not balanced between
parallel threads, the waiting time can be significant. One way to achieve more balanced
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workloads is to merge multiple short iterations with a long iteration, so that multiple
iterations of a loop are aggregated into a single thread.

Figure 1(a) shows the Control Flow Graph (CFG) of a nested loop. Each node in
the graph represents a basic block. The outer loop is selected for parallelization. The
path A->B->D on the left is more likely to be taken than the path A->C->...->C->D
on the right. However, the right path is much longer than the left path since an inner
loop is involved. This causes the load imbalance problem. A shorter thread finishes its
execution much earlier than a longer thread, but it has to wait until the previous longer
thread commits its results.

The idea of using iteration merging to solve this problem is to combine multiple
consecutive loop iterations to make the workload more balanced. When a short but
frequent path is identified, a new inner loop is formed which only contains the part
from this short path. As shown in Figure 1(b), the newly formed inner loop, which
contains A, B and D from the short path, is marked by the shadowed blocks. For all
basic blocks that are reached from the outside of this inner loop, tail duplications are
needed in order to eliminate side entries. In this example, block D′ is tail duplicated
and inserted in the outer loop. A new block E is also inserted to the beginning of the
outer loop, and only contains a trivial unconditional branch that transfers the control
flow to A. Later a fork instruction will be inserted to E in order to spawn a new thread
at runtime. After this transformation, multiple short iterations are combined together
with a long iteration, resulting in more balanced workloads among threads.

4 Evaluation

We have developed our TLS compiler based on the ORC compiler, which is an indus-
trial-strength open-source compiler targeting Intel’s Itanium Processor Family (IPF).
Three phases are added to support TLS compilation. The first phase performs data de-
pendence and edge profiling, and feeds profile information back to the compiler. The
second phase selects loops that are suitable for TLS [38]. Optimizations for TLS are ap-
plied in the third phase. Both the loop selection and the optimization phases extensively
use profiles obtained by using train input set.

For the optimization techniques proposed in this paper, we have implemented
scheduling for memory-resident value communication. Both aggressive reduction trans-
formation and iteration merging are still under development and performed manually
for this study.

4.1 Simulation Methodology

The compiled multithreaded binary is running on a simulator that is built upon Pin [23]
and models a CMP with four single-issue in-order processors. The configuration of our
simulated machine model is listed in Table 1. Each of processor has a private L1 data
cache, a write buffer, an address buffer, and a communication buffer. The write buffer
holds the speculatively modified data within a thread [34]. The address buffer keeps
all exposed memory addresses accessed by a speculative thread. The communication
buffer stores data forwarded by the previous thread. All four processors share a L2 data
cache.
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Table 1. Simulation parameters

Issue Width 1
L1-Data Cache 32KB, 2-way, 1 cycle Commu. Buffer 128 entries, 1 cycle
L2-Data Cache 2MB, 4-way, 10 cycle Commu. Delay 10 cycles
Cache Line Size 32B Thread Spawning 10 cycles
Write Buffer 32KB, 2-way, 1 cycle Thread Squashing 10 cycles
Addr. Buffer 32KB, 2-way, 1 cycle Main Memory Latency 50 cycles

Table 2. Benchmark statistics

Application Input Number of Average Average Num of Coverage
Name Set Parallelized Loop Thread Size Threads/Invocation

BZIP2 program 11 147 3692 61%
graphic 11 153 3929 58%
source 11 137 4451 65%

GZIP program 5 865 1519 89%
graphic 5 231 2532 80%
source 5 923 2549 84%
random 5 180 61921 81%

log 5 1378 1303 79%
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Fig. 4. Program speedup compared to sequential execution. This figure shows the performance
impact of the proposed optimizations on all ref input sets.

All simulations are performed using the ref input set. To save the simulation time,
each parallelized loop is simulated up to 1 thousand invocations, and each invocation is
simulated up to 0.1 million iterations. Overall, it allows us to simulate up to 4 billion
instructions while covering all parallel loops.

4.2 Performance Impact

We have evaluated the proposed compiler optimizations using the simulation infrastruc-
ture described in the last section. The performance of the parallelized code is measured
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against a fully optimized sequential version running on a single processor. Since both
GZIP and BZIP2 have multiple ref input sets, we evaluate both two benchmarks on all
input sets. Benchmark statistics are listed in the Table 2 and the program speedup is
shown in Figure 4.

Each bar in Figure 4 is broken down into five segments explaining what happens
during all cycles. The sync segment represents time spent waiting for forwarded val-
ues; the fail segment represents time wasted executing failed threads; the wait segment
correspond to amount of time the processor has completed execution and is waiting
for previous thread to commit; the busy segment corresponds to time spent performing
useful work; and the other segment corresponds to stalls due to other constraints.

The baseline performance is obtained when all existing TLS optimization techniques
are applied as described in [38]. It is shown in the first bar. Three optimization tech-
niques proposed in this paper are added on top of the baseline in the following or-
der: scheduling for memory-resident value communication, aggressive reduction trans-
formation, and iteration merging. Each time a new technique is applied, the cumu-
lative performance is reported. They are shown in the second, third, and fourth bar
respectively.

1. Scheduling for memory-resident values has a significant performance impact on
GZIP. For graphic and random input sets, the program performance is improved
by 24% and 36% respectively.

2. Reduction transformation that removes the critical forwarding path introduced by
reduction variables benefits BZIP2 significantly. For graphic input, we saw a 7%
performance improvement. This performance improvement mainly comes from the
inner loop of bucket sort, as described in Section 2, whose performance is limited
by a reduction-like variable workDone.

3. Iteration merging can further improve the performance for loops that have unbal-
anced workloads. The performance of BZIP2 on source input is greatly improved
by 9% after this technique is applied.

4.3 A Sensitivity Study

The statistics for different inputs can be found in the Table 2. In the table, coverage is
defined as the fraction of execution parallelized in the original sequential program. The
coverage for both benchmarks is high: around 60% for BZIP2 and 80% for GZIP. Thread
size is defined as the number of dynamic instructions. In BZIP2, the average thread size
and the average number of threads per invocation are consistent across different input
sets. However, in GZIP, graphic and random input sets have much shorter threads
than others. The difference in the thread size indicates that different execution paths
may be taken under different input sets.

Instruction scheduling is effective for GZIP on both graphic and random input
sets. However, it is ineffective on source input set. In order to better understand this
phenomenon, we examine the most time-consuming loop in deflate for an examination
(see Section 2). There are three major paths in that loop: Path 1 is taken if no matched
string is found. Path 2 is taken if a matched string is found, and it is better than the
previous match. Path 3 is taken if a matched string is found, and it is not better than
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the previous match. The generated parallel threads are aggressively optimized along
path 2, since path 2 is identified as the most frequent path based on the train
input set. For the ref input set, path 2 is the frequent path for both graphic and
random input sets, but it is taken less frequently for source input set. As a result,
performance improvement on source input set is less significant than other two.

Reduction transformation achieves significant performance improvement for BZIP2
on the graphic input set, however, only moderate performance improvement for
source and program input sets. After a close look at the loops, we find that they
have more balanced workloads on graphic input set than on other two after reduction
transformation. For other two input sets, load imbalance becomes the new bottleneck
after reduction transformation, and their performance is greatly improved after iteration
merging is applied.

5 Conclusions and Future Work

Researchers have found it difficult to exploit parallelism in data compression applica-
tions, even with the help of TLS. In this paper, we report the results of an extensive study
on parallelizing these benchmarks, under the context of TLS. We have identified sev-
eral performance bottlenecks caused by data and control dependences. To address these
problems, we propose several effective compiler optimization techniques that take ad-
vantage of profiling information to remove stalls caused by such dependences. Careful
evaluation of these technique reveals that, we can achieve up to 37% program speedup
for BZIP2, and 36% for GZIP.

Although our techniques have only been applied to BZIP2 and GZIP, in our experi-
ence, the data and control access patterns we studied in this paper have been observed
in many other integer benchmarks. We are currently integrate these applications in our
compiler infrastructure so that we can evaluate the impact of the proposed techniques
on a wide-range of applications. We believe, although no single optimization will en-
able the creation of efficient parallel programs for TLS, a compiler infrastructure that
supports a general set of compiler optimization techniques, each designed to optimally
manage a specific situation, can be built to create efficient parallel programs.
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Abstract. Affine control loops (acls) comprise an important class of
compute- and data-intensive computations. The theoretical framework
for the automatic parallelization of acls is well established. However,
the hardware compilation of arbitrary acls is still in its infancy. An im-
portant component for an efficient hardware implementation is a control
mechanism that informs each processing element (pe) which computa-
tion needs to be performed and when.

We formulate this control signal problem in the context of compiling
arbitrary acls parallelized with a multi-dimensional schedule into hard-
ware. We characterize the logical time instants when pes need a control
signal indicating which particular computations need to be performed.
Finally, we present an algorithm to compute the minimal set of logical
time instants for these control signals.

1 Introduction

It is well known that loops comprise the compute-intensive kernels of many
applications. An important class of statically-analyzable loops is affine control
loops (acls). Bastoul et. al. [1] report that over 99% in 7 out of 12 programs of
the widely studied benchmark suites SpecFP and PerfectClub are affine control
loops. Due to their high computational complexity, considerable research has
aimed at deriving application specific circuits directly and automatically from
acls and incorporated in both academic and commercial tools [2,3]. However,
these tools have been restricted to a proper subset of acls, specifically, those
that can be systematically transformed to loops that possess a 1-dimensional
affine schedule and with uniform dependences1 (or slight generalizations). One-
dimensional affine schedules imply that only one loop carries dependences.

This paper deals with the full generality of arbitrary acls. The acl may be
arbitrarily nested, have arbitrary affine dependences and may have been paral-
lelized with a multidimensional schedule [4]. Multidimensional schedules assign a
time vector to computations which is interpreted as the logical instant at which
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1 These conditions were motivated by the need to derive systolic architectures.
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they are executed. These time vectors are the iteration vectors corresponding
to outer sequential (time) loops in a loop nest. The total order between logical
time instants is lexicographic. Multidimensional schedules present the following
advantages over linear schedules (i) Some applications do not admit a linear
schedule [5], and (ii) The architecture resulting from the parallelism exposed
by linear schedules might not fit into the available hardware resources. With
multidimensional schedules, we may limit the degree of parallelism.

The chosen parallelization is fine-grained such that the inner loops are par-
allel. The resulting loop nest is called an fgp-acl. Parallel computations are
mapped to distinct simple processing elements (pes). Each pe may either be ac-
tive or inactive for a certain logical time-vector. When it is active, it executes the
assigned computation. The set of all valid time-vectors is called the global time
domain of the specification and the set of all active time-vectors of a processor
is called its local time domain.

The context of this work is the generation of custom hardware that realizes
pes, registers and memory banks local to each pe and an interconnection for
data transfer across pes. The target implementation for this custom hardware
may either be an asic or an fpga. Previous work [6] in this direction presents
a methodology in which each pe implements a multi-dimensional counter to
scan the global time domain, i.e., an automaton enumerating valid time-vectors
together with a test for the membership of time-vectors in the local time domain.
The resource overhead for this scheme is significant.

Avoiding such an automaton involves (i) providing the control to every pe
instructing it to resume or suspend its activity (start and stop are treated as
special cases) and information about the statements it needs to compute at
any particular time instant, and (ii) the computation of the array addresses for
statements in the body of the loop nest. The related problem of developing an
interconnection so that each pe can access the memory where data is stored has
been addressed elsewhere [7].

This paper deals with the problem of providing the suspend and resume signals
to each pe and the statements that need to be executed. In the presentation of
this paper, we will specialize suspend and resume with respect to particular
statements such that both these problems are solved together. We will refer to
this as the control signal problem. The key contributions of this paper are (i) a
precise formulation of control signal problem, (ii) characterization of time when
control signals are necessary, and (iii) an algorithm computing an exact solution
for the control signal problem.

The rest of this paper is organized as follows. The following section illustrates
the control signal problem with an example. We introduce some concepts and
notations for fine-grained parallel acls in Section 3. Section 4 precisely formu-
lates the control signal problem, characterizes the time when pes need to receive
a control signal, and presents an algorithm to compute an exact solution for
the control signal problem. Section 5 is a discussion on the propagation of the
signals. Section 6 discusses related work, and finally we present our conclusions
and future work in Section 7.
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2 Illustrating Example

Example 1. Consider the following program.

for t1 = 0 to n
for t2 = 0 to t1
forall p1 = 0 to t2

forall p2 = 0 to t1
...

The first two loops are executed sequentially, and the remaining loops are par-
allel loops. We will interpret this program as follows: the two sequential loops
represent time, and the parallel loops denote processors. For example, the pro-
cessor (0, 0) and (0, 1) are active, i.e. execute statement, at time (1, 0). Given
an iteration of the sequential loops, all the iterations of the parallel loops are
executed at the same time. For instance, when t1 = n and t2 = n, all the n × n
processors are active.

Now, we would like to address the question of which processors become active
and idle at a given time. For example, the processor (0, 0) resumes at time (0, 0),
and both the processor (1, 0) and (1, 1) resume at time (1, 1).

In this program, the set of valid time coordinates for the entire program is
called the global time domain. It is the iteration space of the time loops. Similarly,
the set of all processor coordinates is called the global processor domain. It is the
set of all the possible iterations over the global time domain. Figure 1 shows the
global time and processor domain of this example for n = 5. Every processor is,
however, not active all the time, i.e. for all the points in the global time domain.
Each processor p has its own active time. Similarly, the set of active processors
varies over the time. Figure 1 also illustrates the time when the processor (1, 2)
is active and the active processors at time (2, 1).

It is easy to see when the processor (1, 2) should receive a resume (or suspend)
signal from Figure 1(a). For each i such that 2 ≤ i ≤ 5, it will become active at
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Fig. 1. Time and processor domain
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time (i, 1) and idle after (i, i). However, it is not obvious which processors should
receive resume (or suspend) signals at time (2, 1) from Figure 1(b). For instance,
the processor (0, 0) need not receive a resume signal, because it was already
active at the previous time step (2, 0). Among the six processors in Figure 1(b),
only three processors (1, 0), (1, 1) and (1, 2) have to receive a resume signal. As
shown in Figure 2, the set of time coordinates when processor (p1, p2) is active
is the intersection of the global time domain and {t1, t2 | p1 ≤ t2; p2 ≤ t1}. For
instance, the earliest active time of processor (1, 2) is (2, 1). For each processor
whose first coordinate is 0, it is always active at (t1, 0) if the processor is active
at (t1, 1). So, the other three processors in Figure 1 does not need to receive a
resume signal at (2, 1) because these processors was active at the previous time
step (2, 0).

t1
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1 2 3 4 5
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2

3

4

5

active time
of processor (1,2)

active time
of processor 
(1,0) and (1,1)

Fig. 2. Active time of processors (1, 0), (1, 1) and (1, 2) in the global time domain

3 Problem Formulation

The following transformations are involved in the hardware compilation of acls.
Value based dependence analysis (or exact dataflow analysis) [8,9] on ACLs
transforms it to a system of recurrence equations defined over polyhedral do-
mains. On these equations, scheduling analysis [10,11,5,12,13,14,15,16] is per-
formed which assigns an (multidimensional) execution time to each computation
so that dependences are satisfied. The schedule may be such that multiple com-
putations are executed at the same time step. Thus, there is inherent parallelism.
An intermediate code generation step generates fine-grained parallel (fgp) acls.
In fgp-acls, the outer loops are sequential (representing multidimensional time)
and the inner loops are parallel. The array access functions in the statements
within the body of the loop nest are in terms of the time and processor loop
indices and size parameters. Hardware compilation is the mapping of parallel
computations to distinct processing elements.

We will first present acls and the required mathematical background of inte-
ger polyhedra. Then we will discuss fgp-acls and define the terminology needed
for our analysis.
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3.1 acls (Affine Control Loops)

acls are loop nests of the form defined in Figure 3. Note that Lower (respec-
tively, Upper) is the maximum (respectively, minimum) of a finite number of
affine functions, respectively. Kuck [17] showed that the set of iterations with
such bounds can be described as (a union of) integer polyhedra. Precisely, an
iteration space of acls is a union of integral polyhedra parameterized by the
size parameters s.

            ACL Grammar
ACL        : Stmt *
Stmt       : Loop | Assignment
Loop       : for Index=Lower ... Upper
                 ACL
Assignment : ArrayRef = Expression;
 

Fig. 3. acl grammar. Index is an identifier; Lower (respectively, Upper) is the maxi-
mum (respectively, minimum) of affine functions of outer indices and size parameters;
ArrayRef is a reference to a multidimensional array whose access expression is an affine
function of an iteration vector and the size parameters; and Expression is an arbitrary
expression comprising finitely many ArrayRefs with a strict, side-effect free function.

Definition 1. An integer polyhedron P is a set of integer solutions of finitely
many affine inequalities with integer coefficients. These inequalities are called
constraints of P. A parameterized integer polyhedron is an integer polyhe-
dron some of whose indices are interpreted as symbolic constants.

The iteration space of acls can be written in the following form:
{(
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where nz is the depth of the loop nest and ns is the number of size parameters.

3.2 Fine Grained Parallel acls

In the fine grained parallel acls each statement S is surrounded by kS sequential
loops and dS parallel loops. Our analysis is per each statement and we will drop
the subscript S. An iteration vector of sequential loops represents time, and the
order of these k-vectors is defined by the lexicographic order.

Definition 2. Let u = (u1, . . . , un)T and v = (v1, . . . , vn)T be n-dimensional
vectors. The lexicographic order ≺ is defined by the following rule:

u ≺ v if there exists i such that uj = vj for all 1 ≤ j < i, ui < vi , and
1 ≤ i ≤ n.

The remaining d innermost loops represents processing elements. We distinguish
time and processor indices, and throughout the paper, time and processor indices
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are denoted by t and p, respectively. So, the iteration space of parallel acls can
be written as follows:
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3.3 Time and Processor Domain

Here, we introduce some concepts related to fine grained parallel acls.

Definition 3. The global time domain GT is the set of all the sequential
loop iterations. The local time domain LT (p) is the set of the sequential loop
iterations at which a given processor p is active.

Definition 4. A local processor domain LP(t) at a given t ∈ GT is the set
of active processors at time instant t. The global processor domain GP is the
set of

⋃

t

LP(t) for all t ∈ GT .

In fact, these concepts have already been introduced in section 2 with our
example. The global time and processor domain of Example 1 is {(t1, t2) |
0 ≤ t2 ≤ t1 ≤ n} and {(p1, p2) | 0 ≤ p1 ≤ n; 0 ≤ p2 ≤ n}, respectively.
GT can be computed directly from the sequential loops, and GP can be de-
rived by projecting the acl iteration space onto processor space, i.e. elimi-
nation of time indices. The local processor domain at time instant (t1, t2) is
{(p1, p2) | 0 ≤ p1 ≤ t2; 0 ≤ p2 ≤ t1}. This can be regarded as a polyhedron
parameterized by the time t and size parameters s. In fact, LP(2, 1) in Figure
1 is computed by replacing t1 with 2 and t2 with 1. Similarly, the local time
domain can be seen as a polyhedron parameterized by the processor p and s. So,
LT (p) of Example 1 is {(t1, t2) | 0 ≤ p1 ≤ t2 ≤ n; 0 ≤ p2 ≤ t1 ≤ n}.

Property 1. LT (p) and LP (t) are polyhedra parameterized by p and t, respec-
tively. More precisely, LT (p) is a polyhedron in k-dimensional space parameter-
ized by p and s, and LP (t) is a polyhedron in d-dimensional space parameterized
by t and s.

4 Analysis

Now, we want to characterize the set of processors that receive a resume and
suspend signal, as well as the time instants expressed as a function of their
coordinates, at which this happens.

Definition 5. The immediate precedent, denoted by pre(t), of t ∈ GT is an
element t′ of GT satisfying that (i) t′ ≺ t, and (ii) there is no element t′′ ∈ GT
such that t′ ≺ t′′ ≺ t. The immediate successor of t ∈ GT , denoted by next(t),
is t′ such that t = pre(t′).

Note that pre(t) and next(t) are defined only in the context of GT , not LT .
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Property 2. A processor p must receive a resume signal at time instant t ∈ GT if
either (i) t ∈ LT (p) and t is the lexicographic minimum of GT , or (ii) t ∈ LT (p)
and pre(t) /∈ LT (p). Similarly, processor p must receive a suspend signal at time
t ∈ GT if either (i) t ∈ LT (p) and t is the lexicographic maximum of GT , or (ii)
t ∈ LT (p) and next(t) /∈ LT (p).

The above property conceptually gives a precise time when a signal arrives at a
certain processor. We now characterize this set of time instants.

Definition 6. A face of a polyhedron P is an intersection of P with a subset
of inverses of its constraints. A face F is called a facet if there is no face F ′

such that F ⊂ F ′ ⊂ P.

Note that a facet of an integral polyhedron may be “thick” in the sense that a
single hyperplane cannot contain it. Here, we distinguish two kinds of facets.

Definition 7. Let P be a polyhedron in n-dimensional space. Let en be the n-th
unit vector, i.e., an n-vector whose last element is 1 and the other elements are
0. A facet F is a lower facet if p − en /∈ P for all p ∈ F . Similarly, a facet F
is an upper facet if p + en /∈ P for all p ∈ F . Let LF(P ) and UF(P ) denote
the set of all the lower and upper facets of P , respectively.

We illustrate these concepts with the following example.

Example 2. Consider the following parallel acl.

for t1 = 0 to n
for t2 = 0 to n
forall p1 = 0 to t1+n-t2

...

The GT and LT (3) of this example are given in Figure 4 for n = 5. This
figure also illustrates facets of the local time domain with one lower facet and
two upper facets. For each point t /∈ LF(GT ), its immediate precedent is simply
t−(0, 1). Similarly, for t /∈ UF(GT ), its immediate successor is t+(0, 1). However,
pre(t) of t ∈ LF(GT ) is found in some element of UF(GT ). Similarly, next(t) of
t ∈ UF(GT ) is found in some element of LF(GT ).

Note that a processor receives a signal at a time instant which belongs to its
local time domain. The following lemma gives the first characterization for the
time when a signal arrives at a processor.

Lemma 1. If a processor p receives a resume (resp. suspend) signal at time t,
t is in a lower (resp. upper) facet of LT (p).

Proof. Let ek ∈ Z
k be (0, . . . , 0, 1)T . Note that t ∈ LT (p) and pre(t) /∈ LT (p).

So, t − ek /∈ LT (p). Therefore, t belongs to a lower facet of LT (p).
The proof for a suspend signal is similar.
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Fig. 4. Global and local time domain of Example 2 for n = 5; one lower facet and two
upper facet of the local time domain

This lemma says that a processor p receives a signal only if time t belongs to
a lower and upper facet of LT (p). In other words, if t ∈ GT is not in lower
and upper facets of LT (p), the processor p does not need to receive any signals.
Hence, a safe solution is to generate a signal for each point in the lower and
upper facets of LT (p).

Solution 1. A naive way to control a processor p is to generate resume signals
at all points in LF(LT (p)) and suspend signals over UF(LT (p)).

Sometimes, this naive solution might be an exact solution. For instance, proces-
sor (1, 2) in Figure 1 must receive signals for all the points in the lower and upper
facets of its local time domain. Furthermore, in Example 1, this naive solution
becomes an exact solution for all the processors except the five processors, (0, 0),
(0, 1), (0, 2), (0, 3) and (0, 4). While processor (1, 2) receives the resume and sus-
pend signals over the lower and upper facet of LT (1, 2) respectively, processor
(0, 0) needs to receive only two signals, a resume signal at (0, 0) and a suspend
signal at (5, 5), because LT (0, 0) is equal to GT . With the fact that the number
of suspend signals have to be the number of resume signals, the following the-
orem explains why the naive solution becomes an exact solution for almost all
processors in Example 1.

Theorem 1. Let p ∈ GP.
(a) If t ∈ GT is in a lower facet of LT (p) and not in a lower facet of GT , the

processor p must receive a resume signal at time t.
(b) If t ∈ GT is in an upper facet of LT (p) and not in an upper facet of GT ,

the processor p must receive a suspend signal at time t.

Proof. (a) Suppose t is in a lower facet of LT (p) and not in a lower facet of GT .
Let ek ∈ Z

k be (0, . . . , 0, 1)T . Note that GT is a polyhedron in k-dimensional
space. Since t is not in a lower facet of GT , t − ek ∈ GT . On the other hand,
t − ek /∈ LT (p), because t is in a lower facet of LT (p). Since t − ek is pre(t),
processor p must receive a resume signal at time t.

The proof for (b) is symmetric.



On Control Signals for Multi-Dimensional Time 149

Let us apply this theorem to Example 1. For a processor whose first coordinate
is greater than 0, the lower facet of its local time domain shares no point with
the lower facet of GT . So, for each point in the lower facet, the processor must
receive a resume signal. Also, there is a corresponding suspend signal for each
resume signals. Also, note that the number of points in the lower facets is equal
to that of points in the upper facets. By Lemma 1, each point in the upper facet
must also receive a resume signal.

Theorem 1 proves that every point in LF(LT )\LF(GT ) and UF(LT )\UF(GT )
needs a signal. Now, we focus on the remaining part, LF(LT ) ∩ LF(GT ) and
UF(LT )∩UF(GT ). A processor need not receive a resume signal at time t when
pre(t) ∈ LT (p). For instance, the processor (0, j) for 0 ≤ j ≤ 5 in Example 1
needs only one resume signal because, for each point t ∈ LF(LT ) but one, pre(t)
belongs to its local time domain. When a time instant t is in a lower facet of
GT , pre(t) is in a upper facet of GT . So, the precise answer for the question of
what point need a resume signal can be obtained from (i) LF(LT (p)) ∩ LF(GT )
and (ii) UF(LT (p)) ∩ UF(GT ). Algorithm 1 illustrates how the precise solution
can be obtained by comparing these two sets for the 2-dimensional control signal
problem. The operations in the algorithm are well supported [18,19].

Now, consider example 2 with Figure 4. Its GT and LT are {t1, t2 | 0 ≤ t1 ≤
n; 0 ≤ t2 ≤ n} and {t1, t2 | 0 ≤ t1 ≤ n; 0 ≤ t2 ≤ n; t2 ≤ t1+n−p1}, respectively.
Here, we compute only the set of points that require a suspend signal, and that
of a resume signal will be left as an exercise. First, there are two upper facets of
LT , {t1, t2 | 0 ≤ t1 ≤ p1−1; t2 = t1+n−p1} and {t1, t2 | p1 ≤ t1 ≤ n; t2 = n}.
Note that either of them can be empty set and the point (p1, n) is removed
from the first set. In fact, the first set is UF(LT ) \ UF(GT ), and the second
is UF(LT ) ∩ UF(GT ). Hence, a suspend signal is needed at every point in the
first set. To compute the exact points in the second set, LF(LT ) ∩ LF(GT ) is
required, and it is {t1, t2 | 0 ≤ t1 ≤ n; n − p1 ≤ t1; t2 = 0}. Adding a ray
(1, 0) yields {t1, t2 | 0 ≤ t1 ≤ n; n − p1 ≤ t1; t2 > 0}, and shifting it by (−1, 0)
yields {t1, t2 | −1 ≤ t1 ≤ n − 1; n − p1 − 1 ≤ t1; t2 > 0}. From subtracting
this from UF(LT ) \ UF(GT ), we get {t1, t2 | 0 ≤ t1 ≤ p1 − 1; t2 = t1 + n − p1}
and {t1, t2 | t1 = n; t2 = n} if this point (n, n) belongs to LT . The main
intuition is that pre(t) of t ∈ UF(GT ) lies in LF(GT ), and consequently, next(t)
of t ∈ LF(GT ) lies in UF(GT ).

We now introduce another example that has non-trivial behavior, and will
help understand the algorithm for the general case.

Example 3. Consider the following simple extension of Example 2 with a third
time loop.

for t1 = 0 to n
for t2 = 0 to n
for t3 = 0 to n
forall p1 = 0 to t1+t2+n-t3

...
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Algorithm 1. Algorithm for 2-dimensional time
INPUT : LT - local time domain, GT - global time domain
OUTPUT : R - the set of points requiring resume signals, S - the set of points requiring
suspend signals
1: compute LF(LT ), UF(LT ), LF(GT ) and UF(GT )
2: R ← LF(LT ) \ LF(GT ); S ← UF(LT ) \ UF(GT )
3: compute LF(LT ) ∩ LF(GT ) and UF(LT ) ∩ UF(GT )
4: add a ray (0, −1) to UF(LT ) ∩ UF(GT ), shift it by (1, 0), and subtract it from
LF(LT ) ∩ LF(GT )
5: add a ray (0, 1) to LF(LT ) ∩ LF(GT ), shift it by (−1, 0), and subtract it from
UF(LT ) ∩ UF(GT )
6: add the result of step 4 to R; add the result of step 5 to S
7: return R and S

Figure 5(a) shows the GT of this example for n = 10, as well as LT (3) and
LT (12). First, consider the times when processor 3 needs a resume signal. As
shown in Figure 5(a), LF(LT (3))∩LF(GT ) is the entire bottom square {t1, t2, t3 |
t3 = 0; 0 ≤ t1, t2 ≤ 10}. Figure 5(b) visualizes the 3D generalization of step 5
in the algorithm 1. For every point t in LF(LT (3)) ∩ LF(GT ) except its lower
facet, pre(t) is “directly above” t after shifting. However, pre(t) of the point t on
the line segment between (0, 0, 0) and (10, 0, 0) is on the line segment between
(0, 0, 0) and (10, 0, 0). The first line segment can be seen as a lower facet of a
lower facet of GT (we call this the second lower facet of GT ). Similarly, the line
segment between (0, 0, 0) and (10, 0, 0) is the second upper facet of GT . This
explains why the algorithm for general case recurses on the dimensions of the
polyhedra it manipulates. So, processor 3 needs a resume signal at the following
set {t1, t2, t3 | t3 = 0; 0 ≤ t1; 1 ≤ t2; t1 + t2 ≤ 4} ∪ {(0, 0, 0)}.

Now, consider the processor 12. The intersection of LF(LT (12)) and LF(GT )
is LF(LT (12)) itself, {t1, t2, t3 | 0 ≤ t1, t2 ≤ 10; t1+t2 ≥ 2; t3 = 0}. The intersec-
tion of UF(LT (12)) and UF(GT ) is {t1, t2, t3 |t1≤10; t2≤10; t1+t2≥12; t3=10}.

(10,10,10)

(0,0,0)

(0,0,10)

(10,0,0)

UF(LT (12)) \ UF(GT )

UF(LT (3)) \ UF(GT )

LT (12)

LT (3)

UF(LT (3)) ∩ UF(GT ) + e2

LF(LT (3)) ∩ LF(GT )

(a) (b)

Fig. 5. (a) Global time domain of Example 3; LT (3) contains LT (11) (b)and
LF(LT (3)) ∩ LF(GT ) and shifted UF(LT (3)) ∩ UF(GT ) by (0, 1, 0)
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Algorithm 2. Algorithm for k-dimensional time domain (general case)
INPUT : LT - local time domain, GT - global time domain
OUTPUT : R - the set requiring resume signals, S - the set requiring suspend signals
1: compute LF(LT ), UF(LT ), LF(GT ) and UF(GT )
2: R ← LF(LT ) \ LF(GT ); S ← UF(LT ) \ UF(GT )
3: compute LF(LT ) ∩ LF(GT ) and UF(LT ) ∩ UF(GT )
4: R′ and S′ ← Boundary(LF(LT ) ∩ LF(GT ),UF(LT ) ∩ UF(GT ),LF(GT ),UF(GT ),k,k)
5: R ← R ∪ R′; S ← S ∪ S′

6: return R and S
Procedure: Boundary
INPUT : L,U ,GL and GU - unions of polyhedra, d - an integer, k - total dimensions
OUTPUT : R and S - unions of polyhedra
1: if d = 1
2: return L and U
3: else – d > 1
4: L′ ← LF(L) ∩ LF(GL); U ′ ← UF(U) ∩ UF(GU)
5: R ←{L \ shift(addray(U,−ei, ∀d ≤ i ≤ k), ed−1)} \ L′

6: S ←{U \ shift(addray(L, ei, ∀d ≤ i ≤ k), −ed−1)} \ U ′

7: R′ and S′ ← Boundary(L′ , U ′,LF(GL), UF(GU), d − 1, k)
8: R ← R ∪ R′; S ← S ∪ S′

9: return R and S

Step 5 in algorithm 1 tells us that a resume signal is needed in {t1, t2, t3 |
0 ≤ t1 ≤ 10; 1 ≤ t2 ≤ 10; t1 + t2 ≥ 2; t1 + t2 ≤ 12; t3 = 0}. We em-
phasize that only the intersection of the second lower facets of LT and GT
is compared with only the intersection of the second upper facets of LT and
GT although there are the two second lower facets of LT . The final result is
{t1, t2, t3 | 0 ≤ t1 ≤ 10; 1 ≤ t2 ≤ 10; t1+t2 ≥ 2; t1+t2 ≤ 12; t3 = 0}∪{(2, 0, 0)}.

The general case is addressed in algorithm 2. The difference from algorithm 1
is a recursive function for computing the exact points in LF(LT ) ∩ LF(GT ) and
UF(LT ) ∩ UF(GT ). However, depending on which face of GT that t belongs to,
pre(t) or next(t) is in a different face of GT .

Theorem 2. Algorithm 2 is (i) correct and (ii) exact:
(i) Correctness: If a processor p needs a resume (resp. suspend) signal at

t ∈ GT , then t belongs to the set R (resp. S).
(ii) Exactness: If t ∈ GT belongs to the set R (resp. S), then a processor p

needs a resume (resp. suspend) signal at time t.

Proof. (i) Correctness: Suppose that a processor p needs a resume signal at
time t ∈ GT . Then, t ∈ LT (p) and pre(t) /∈ LT (p). By lemma 1, t ∈ LF(LT ).
If t /∈ LF(GT ), then t ∈ LF(LT ) \ LF(GT ). In this case, t is taken into R
by step 3. Otherwise, t ∈ LF(GT ). First, consider the case that t is not the
lexicographic minimum of GT . Then, pre(t) exists, and let t = (t1, . . . , tk) and
pre(t) = (t′1, . . . , t′k). By the definition of pre(t), there exists an integer f ≥ 1
such that (i) ti = t′i for all 1 ≤ i ≤ f − 1, (ii) tf − 1 = t′f , and (iii) t′ + ei /∈ GT
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for all f < i ≤ k. Now, consider when t is determined to be taken or not,
i.e. the face that t belongs to. By the condition (iii), it belongs to (k − f)-
th upper facet of GT . That is, the f -th recursive call determines whether t
is taken or not. By pre(t) /∈ LT and the fact that pre(t) + ef and t have the
common elements up to f -th element, t is taken into R. This is the only operation
that affects the determination of t. Finally, consider the case when t is the
lexicographic minimum of GT . In this case, t belongs to the last lower facet
of GT . This is the base case. So t is taken into R. Therefore, Algorithm 2 is
correct.

(ii) Exactness: Suppose that Algorithm 2 picks time t ∈ GT into R. By the
construction of R, it is easy to see that every element of R belongs to LF(LT ).
Now, let t ∈ R be (t1, t2, . . . , tk).

Case 1: t is picked at step 2. Then, t /∈ LF(GT ). So, t − ek ∈ GT , i.e.,
pre(t) = t − ek. Since t ∈ LF(LT ), t − ek /∈ LT . Hence, pre(t) /∈ LT .

Case 2: t is picked at step 2 of Boundary. Then, t is the lexicographic minimum
of GT . Therefore, a processor p needs a resume signal.

Case 3: t is picked at step 5 of Boundary. Suppose that t is picked at the f -th
recursive call. Then, t is in the f -th lower facet of both LT and GT . Since t is
in the f -th lower facet of GT , i.e., t belongs to the i-th lower facet of GT for all
1 ≤ i ≤ f , t − ei /∈ GT for all k − f + 1 ≤ i ≤ k. Also, t is not in (f + 1)-th
lower facet of GT . So, there exists a point (t1, . . . tk−f+1 − 1, t′k−f , . . . t′k) in GT .
Hence, pre(t) is the form of (t1, . . . tk−f+1 − 1, t′′k−f , . . . t′′k). By the definition
of pre(t), pre(t) + ei /∈ GT for all k − f + 1 ≤ i ≤ k. So, pre(t) is in the
f -th upper facet of GT . Since t is picked, pre(t) is not in the f -th facet of
LT . Since pre(t) is in the f -th upper facet of GT , the only possibility is that
pre(t) /∈ LT .

A proof for the suspend signal is symmetric.

4.1 Extension

For the sake of explanation, we had presented our analysis with the view that LT
is a single polyhedron. However, our analysis and algorithm are more general and
are valid for the case when LT is a union of polyhedra. When GT is a union of
polyhedra, the algorithm can be applied to the convex hull C(GT ) of GT . In this
case, the algorithm may not be exact and return a superset of required signals.
Precisely, it will always return the points that belong to LF(GT ) \ LF(C(GT ))
and UF(GT ) \ UF(C(GT )).

5 Discussion on Propagation of Control

In our analysis, we have characterized the precise set of time vectors at which
the resume (or suspend) signal is needed. Here, we will discuss, with the help of
an example a possible mechanism to propagate these signals to the desired pe.

Example 4. Consider the following acl and its corresponding fgp-acl for ma-
trix multiplication obtained by the parallelization presented in [6].
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t1

t2

M+P2

1

N

LT (p)

p+M

GT

p+1

Fig. 6. Global and Local time domains for matrix multiplication

for i = 1 to M for t1 = 2 to M+P
for j = 1 to P forall p = max(1,t1-M)
C[i,j] = 0; to min(P,t1-1)
for k = 1 to N C[t1-p,p]=0;
C[i,j] += A[i,k]*B[k,j]; for t2 = 1 to N

forall p = max(1,t1-M)
to min(P,t1-1)

C[t1-p,p]+=A[t1-p,t2]*B[t2,p];

The global time domain is enumerated by the loop nest in the fgp-acl given
above. It is shown in figure 6 along with the local time domain for the pe, p.

This is a simple design, and by our analysis, there is only one resume and one
suspend signal for every pe. These are precisely for starting and stopping the
processing element and are needed at the time instants (p+1, 1) and (p+M, N)
respectively. From the figure, one may verify that the mapping, ω, of logical
times to concrete time, denoted by tc say, is ω(t1, t2)T = N(t1 − 2) + t2 such
that the processing commences at the concrete time instant tc = 1.

A possible mechanism to create and convey signals to the relevant pes would
be with the help of a controller connected to the first pe (p = 1) and propagation
through intermediate pes. For the first pe, the resume (start) signal is needed
at tc = 1 which is received directly from the controller. The next pe needs
this signal at tc = N + 1. This too is created by the controller, however, it is
propagated through the first pe. If the latency involved with this propagation
is a single time instant, the signal is created by the controller at the concrete
time instant tc = N . Below, we have given the concrete time instants when the
controller creates resume and suspend signals for the pe p.

Resume(p) = 1 + (N − 1)(p − 1)
Suspend(p) = MN + (N − 1)(p − 1)

The validity requirement for such a scheme is that an unbounded number of
signals are not created at the same concrete time. Any further discussion on the
validity is beyond the scope of this paper.
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6 Related Work

In the context of hardware synthesis, the control signal issue in multidimensional
time was recently addressed by Guillou et. al. [6]. They proposed an solution
where each pe has a clock enumerating all the points in the global time domain.
The clock is an automaton [20] scanning the global time domain. Although it
provides a complete solution for control signals and memory addresses, it also
introduces a significant overhead to each pe. Although matrix multiplication
requires each pe only one adder and multiplier, each pe intrinsically has a loop
scanning the global time domain (and possibly some guards).

Bowden et. al. [21] proposed a control signal distribution scheme in linear
systolic array. They assumed that a solution for the control signal problem is
given as a quadratic function of the processor coordinate. The basic idea is that
architecture itself, not each pe, enumerates the global time domain as a whole.
They did not address the question of how to derive the quadratic function.

7 Conclusions

The theory and techniques for automatic derivation of systolic architectures has
a long and rich history. Although systolic arrays are impractical, much of this
theory had an impact in the context of automatic parallelization. Several exten-
sions were proposed, notably those that manipulated more general specifications
(acls), and towards multidimensional schedules. Yet, the hardware compilation
of these general specifications has remained an open problem. The contribution
of this paper is aimed at the completion of this circle and provides required
results for compiling arbitrary acls directly to silicon.

In this paper, we formulated the control signal problem; characterized the
time instants when a control signal is necessary; and proposed an algorithm
to compute exact solution of the control signal problem. Finally, we discussed
possible ways to incorporate a solution into hardware so that each pe receives a
correct signal at the correct time.

Future work involves devising efficient distribution schemes for control, lead-
ing to the automatic generation of the “optimal” control mechanism for multi-
dimensional schedules. The generation of array access functions is also an open
problem.
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The Berkeley View: A New Framework and a

New Platform for Parallel Research

David Patterson

UC Berkeley

Abstract. The recent switch to parallel microprocessors is a milestone
in history of computing. Industry has laid out a roadmap for multi-
core designs that preserve the programming paradigm of the past via
binary-compatibility and cache-coherence. Conventional wisdom is now
to double the number of cores on a chip with each silicon generation.
A multidisciplinary group of Berkeley researchers met for 18 months to
discuss this change. Our investigations into the future opportunities in
led to the follow recommendations which are more revolutionary what
industry plans to do:

– The target should be 1000s of cores per chip, as this hardware is the
most efficient in MIPS per watt, MIPS per area of silicon, and MIPS
per development dollar.

– To maximize application efficiency, programming models should sup-
port a wide range of data types and successful models of parallelism:
data-level parallelism, independent task parallelism, and instruction-
level parallelism.

– Should play a larger role than conventional compilers in translating
parallel programs.

The conventional path to architecture innovation is to study a bench-
mark suite like SPEC or Splash to guide and evaluate innovation. A
problem for innovation in parallelism iit best. Hence, it seems unwise to
let a set of old programs from the past drive an investigation into parallel
computing of the future.

Phil Colella identified 7 numerical methods that he believed will be
important for science and engineering for at least next decade. The idea
is that programs that implement these numerical methods may change,
but the methods themselves will remain important. After examining how
well these “7 dwarfs” of high performance computing capture the com-
putation and communication of a much broader range of computing in-
cluding embedded computing, computer graphics and games, data bases,
and machine learningwe doubled them yielding “14 dwarfs.” Those in-
terested in our perspective on parallelism should take a look at the wiki:
http://view.eecs.berkeley.edu .

To rapidly evaluate all the possible alternatives in parallel architec-
tures and programming systems, we need a flexible, scalable, and eco-
nomical platform that is fast enough to run extensive applications and
operating systems.

Today, one to two dozen processor cores can be programmed into a
single FPGA. With multiple FPGAs on a board and multiple boards in
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a system, 1000 processor architectures can be explored. Such a system
will not just invigorate multiprocessors research in the architecture com-
munity, but since processors cores can run at 100 to 200 MHz, a large
scale multiprocessor would be fast enough to run operating systems and
large programs at speeds sufficient to support software research. Hence,
we believe such a system will accelerate research across all the fields that
touch multiple processors: operating systems, compilers, debuggers, pro-
gramming languages, scientific libraries, and so on. Thus the acronym
RAMP, for Research Accelerator for Multiple Processors.

A group of 10 investigators from 6 universities (Berkeley, CMU, MIT,
Stanford Texas Washington) have volunteered to create th RAMP “gate-
ware” (logic to go into the FPGAs) and have the boards fabricated and
available at cost . It will run industrial standard instruction sets (Power,
SPARC, ...) and operating systems (Linux, Solaris, ...) We hope to have
a system that can scale to 1000 processors in late 2007 that costs univer-
sities about $100 per processor. I’ll report on our results for the initial
RAMP implementations at the meeting. Those interested learning more
should take a look at: http://view.eecs.berkeley.edu.

http://view.eecs.berkeley.edu
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Abstract. In many Digital Signal Processors (DSPs) with limited mem-
ory, programs are loaded in the ROM and thus it is very important to
optimize the size of the code to reduce the memory requirement. Many
DSP processors include address generation units (AGUs) that can per-
form address arithmetic (auto-increment and auto-decrement) in paral-
lel to instruction execution, and without the need for extra instructions.
Much research has been conducted to optimize the layout of the vari-
ables in memory to get the most benefit from auto-increment and auto-
decrement. The simple offset assignment (SOA) problem concerns the
layout of variables for machines with one address register and the gen-
eral offset assignment (GOA) deals with multiple address registers. Both
these problems assume that each variable needs to be allocated for the
entire duration of a program. Both SOA and GOA are NP-complete. In
this paper, we present a heuristic for SOA that considers coalescing two
or more non-interfering variables into the same memory location. SOA
with variable coalescing is intended to decrease the cost of address arith-
metic instructions as well as to decrease the memory requirement for
variables by maximizing the number of variables mapped to the same
memory slot. Results on several benchmarks show the significant im-
provement of our solution compared to other heuristics. In addition, we
have adapted simulated annealing to further improve the solution from
our heuristic.

1 Introduction

Embedded processors are found in many electronic devices such as telephones,
cameras, and calculators. Due to the tight constraints on the design of embed-
ded systems, memory is usually limited. In contrast, the memory requirement
for the execution of digital signal processing and video processing codes on an
embedded system is significant. Moreover, since the program code resides in the
on-chip ROM, the size of the code directly translates into silicon. So code mini-
mization becomes a substantial goal in order to optimize the amount of memory
needed.

Many Digital Signal Processors (DSPs) such as the TI C2x/C5x, Motorola
56xxx, Analog Devices 210x and ST D950 have address generation units (AGUs)
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Fig. 1. A typical Address Generation Unit (AGU) contains a modify register file, ad-
dress register file and ALU

[5]. The AGU is responsible for calculating the effective address. A typical AGU
consists of an address register file and a modify register file as shown in Figure 1.
The architectures of such DSPs support only indirect memory addressing. Since
the base-plus-offset addressing mode is not supported, an extra instruction is
needed, in general, to add (subtract) an offset to (from) the current address in
the address register to compute the new address. However, such architectures
support auto-increment and auto-decrement of the address register. When there
is a need to add an offset of 1 or subtract an offset of 1 from the current address,
this can be done in parallel with the same LOAD/STORE instruction using auto-
increment or auto-decrement; and this does not require an extra address arith-
metic instruction in the code. Exploiting this characteristic will lead to code com-
paction and thus less memory used since the length of the code in DSP directly
translates into required silicon area. One method for minimizing the instructions
needed for address computation is to perform offset assignment of the variables.
Offset assignment refers to the problem of placing the variables in the memory
to maximally utilize auto-increment/decrement and thus reduce code size.

Simple offset assignment (SOA) refers to the case where there is only one
address register (AR), whereas general offset assignment (GOA) refers to the case
where there are multiple address registers [12]. In both SOA and GOA considered
in this paper, the value of auto-increment/decrement is 1; SOA and GOA are
NP-complete [12]. Several researchers have studied the offset assignment problem
and have proposed different heuristics.

In this paper, we present an effective heuristic for the simple offset assign-
ment problem with variable coalescing. Coalescing allows two or more variables
to share the same memory location provided that their live ranges do not over-
lap. Based on the live ranges of all the variables, an interference graph (IG) is
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constructed in which an edge (a, b) indicates that variables a and b interfere and
thus they can not be mapped into the same memory location. Variable coalescing
improves the results by decreasing the number of address arithmetic instructions
needed as well as the memory requirement for storing the variables.

The remainder of the paper is organized as follows. Section 2 presents related
work in this area. Section 3 presents our algorithm for simple offset assignment
with variable coalescing. Section 4 gives an example that shows how our algo-
rithm works. Section 5 presents the simulated annealing algorithm to further
improve the results. Section 6 summarizes the results. Finally Section 7 presents
our conclusions.

2 Related Work

The problem of simple offset assignment was first discussed by Bartley [2]. Then
Liao et al. [12] showed that the SOA problem is NP-complete and that it is equiv-
alent to the Maximum Weight Path Cover (MWPC) problem. They proposed
heuristics for both SOA and GOA. Given an access sequence of the variables,
the access graph has a node for each variable with an edge of weight w between
nodes a and b meaning that variables a and b appear consecutively w times in
the access sequence. In this greedy heuristic, edges are selected in decreasing
order of their weights provided that choosing an edge does not introduce a cycle
and it does not result in a node of degree more than two. Finally, the access
graph considering only the selected edges will determine the placement of the
variables in the memory. One possible result of applying Liao’s heuristic to the
access sequence in Figure 2(a) is shown in Figure 2(c), where the bold edges are
the selected edges and the final offset assignment is [e b a c d]. The cost of a
solution is the sum of the weights of all unselected edges (i.e., non-bold edges).
For the example in Figure 2(a), the cost is 1 which represents the non-bold edge
that refers to the one address arithmetic operation needed to go from a to e
in the access sequence since variables a and e are mapped to non-consecutive
memory locations.

Leupers and Marwedel [9] extended Liao’s work by proposing a tie-break
heuristic for the SOA problem. Liao et al. [12] did not state what happens if
two edges have equal weight. Leupers and Marwedel used the following tie-break
function: if two edges have the same weight, they pick the edge with the smaller
value of the tie-break function T2(a, b) defined for an edge (a, b) as in equation 5.

Atri et al. [1] solved the SOA problem using an incremental approach. They
tried to overcome some of the problems with Liao’s algorithm, mainly in the
case of equal weight edges as well as the greedy approach of always selecting
the maximum weight edges. Starting with an initial offset assignment (which
could be the result of any SOA heuristic), their incremental-SOA tries to explore
more points in the solution space by considering the effect of selecting currently
unselected edges.

Leupers [7] compared several algorithms for simple offset assignment. Ottoni
et al. [13] studied the simple offset assignment problem with variable coalescing
(CSOA). Their algorithm uses liveness information to construct the interference
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graph. In the interference graph, the nodes represent variables and an edge be-
tween two variables means that they interfere and thus they can not be coalesced.
The authors used the SOA heuristic proposed by Liao et al. [12] enhanced with
the tie-break in [9], with the difference that at each step the algorithm chooses
between (i) coalescing two variables; and (ii) selecting the edge with the maxi-
mum weight as in Liao’s algorithm. Their algorithm finds the pair of nodes that
can be coalesced with maximum csave where csave represents the actual saving
from coalescing this pair of nodes. At the same time, it finds the edge with the
maximum weight w that can be selected using Liao’s algorithm. If there are
candidates for both coalescing and selection, then it will use coalescing if csave
is larger than w, otherwise use selection.

a b 

c d 

e 

a b 

c d 
e 

2 

1 

1 
1

1

2

1

1

1   1

 (a)The access sequence:   d c a e b a b                       
                                    

         
(c)              

(b) dc abe

Fig. 2. (a) Access sequence. (b) Access graph corresponding to the access sequence.
(c) Offset assignment where bold edges represent the selected edges and the cost of
such assignment is 1.

In [21], the authors studied the cases of SOA with variable coalescing at the
same time as [13]. Their coalescing algorithm first separates values into atomic
units called webs by applying variable renaming. Their proposed heuristic starts
by applying pre-iteration coalescing rules. Then the algorithm picks the two
variables (i.e., nodes) with maximum saving for coalescing provided that they
respect the validity conditions. If the saving is positive, then the two nodes are
coalesced. Liao’s SOA will then be applied to the new access graph. This process
will continue as long as there are two variables that can be coalesced. Several
others [10], [15], [16], [17], [19], [20] have addressed problems related to offset
assignment.
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3 CSOA: Offset Assignment with Variable Coalescing

In simple offset assignment (SOA), each memory location or slot is assigned only
one variable. Simple offset assignment with variable coalescing (CSOA) refers to
the case where more than one variable can be mapped into the same memory
location. Variable coalescing is intended to decrease the memory requirement by
further decreasing the number of address arithmetic instructions as well as by
decreasing the memory requirements for storing the variables. Two variables can
be coalesced if their live ranges do not overlap at any time which means that at
any time, those two variables are not needed to be simultaneously live.

In CSOA, an interference graph (IG) is constructed by examining the live
ranges of all the variables. Each node in the graph represents a variable, and an
edge between two nodes means they interfere and thus they cannot be coalesced.
Two variables can be coalesced if they meet all the following conditions:

– the two variables do not interfere;
– after coalescing, no node in the access graph has more than two selected

edges incident at it; (and)
– the resulting access graph is still acyclic considering only the selected edges.

So instead of always selecting an edge as in SOA, CSOA can either select an
edge or coalesce two variables that meet the three conditions listed above.

Our algorithm presented in Figure 3 integrates both selection and coalescing
options in a way to minimize the total cost, which is represented by the number
of address arithmetic instructions, as well as to decrease the memory require-
ment for storing the variables in memory. The algorithm takes as an input, the
interference graph (IG) and the access sequence, and outputs the mapping of
the variables to memory locations possibly with coalescing. From the access se-
quence, it constructs the access graph (AG) which captures the frequency of
consecutive occurrence of any two variables in the access sequence. Then it sorts
the edges whose end-point vertices interfere in decreasing order of their weights
as a guide for selection. Since one of the purposes of the heuristic is to decrease
the memory requirement for storing the variables, an edge (a, b) such that (a, b) /∈
IG will not be considered for selection. Such an edge will be a candidate for co-
alescing which means that fewer edges will be considered for selection and thus
more variables will probably be coalesced. Note that the selection of an edge
may prevent variable coalescing opportunities in the future. So only those edges
whose endpoints interfere will be considered as candidates for selection in each
iteration of the algorithm.

Any two variables that do not interfere are considered as candidates for coa-
lescing. In each iteration, all pairs of variables that meet the three conditions for
variable coalescing (mentioned earlier) are candidates for coalescing. We define
the following values:

Gain(a, b) =
Actual Gain(a, b)
Possible Loss(a, b)

(1)
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Actual Gain(a, b) = W (a, b)

+
∑

x∈Adj(a)∩Adj(b)
(b,x)∈Selected Edges
(a,x)/∈Selected Edges

W (a, x)

+
∑

y∈Adj(a)∩Adj(b)
(b,y)/∈Selected Edges
(a,y)∈Selected Edges

W (b, y) (2)

Possible Loss(a, b) = 1 +
∑

(a,x)/∈IG,(b,x)∈IG

(b,x)/∈Selected Edges

(a, x)

+
∑

(b,y)/∈IG,(a,y)∈IG

(a,y)/∈Selected Edges

(b, y) (3)

A Gain value for each of these candidate pairs is calculated that captures the
benefit of coalescing as well as the possible loss of future opportunities for co-
alescing. The value Gain(a, b) is defined as the actual saving that results from
coalescing variables a and b divided by the possible loss of future coalescing
opportunities due to coalescing a and b. When variables a and b are coalesced,
all edges incident at a and b of the form (a, x) and (b, x) will be merged, and
if edge (a, b) exists, it will be deleted. When edges (a, x) and (b, x) are merged
into edge (ab, x), if at least one of the edges was already selected, then (ab, x)
is also considered to be selected. The value Gain(a, b) is defined as shown in
Equation 1 and the value Actual Gain(a, b) is defined in Equation 2. The value
Actual Gain(a, b) is basically the sum of the weights of the edges incident at a
or b that were not selected before and became selected after being merged with
a selected edge plus the weight of the edge (a, b).

The value Possible Loss(a, b) is defined in Equation 3 as the sum of the edges
(a, x) such that (a, x) /∈ IG, (b, x) is not selected, and (b, x) ∈ IG plus the sum
of the edges (b, y) such that (b, y)/∈ IG, (a, y) is not selected, and (a, y) ∈ IG.
As depicted in equation 3, Possible Loss(a, b) considers only vertices that are
neighbors to a or b. Although other definitions of the loss can be used, we found
that our definition captures the possible effect of coalescing on solutions that can
be constructed. Even though coalescing involves vertices and not edges, using
the number of edges as the essence for the loss in Equation 3 leads to better
results. The rationale behind this is that an edge whose corresponding vertices
interfere will probably end up as a selected edge and thus it may prevent some
coalescing opportunities and as a result it may degrade the quality of the final
solution.

It is worth noting that although our heuristic integrates both selection and
coalescing, it gives priority to coalescing, which can be clearly deduced from the
definition of loss. We believe this is one of the main reasons for our improvements
in terms of the cost as well as the memory requirement for storing the variables.
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We divide the value Actual Gain(a, b) with the value Possible Loss(a, b) to ac-
count for the number of edges whose corresponding variables were interference-
free and now interfere as a result from coalescing a and b. The reason behind
this is that coalescing two variables with a larger Possible Loss value may
prevent more future coalescing opportunities and thus may prevent achieving
smaller cost compared to coalescing two variables with a smaller Possible Loss
value.

Among all the pairs that are candidates for coalescing, our algorithm picks
the pair with the maximum Gain. If the algorithm is able to find a pair for
coalescing as well as an edge for selection, then it will coalesce if the Actual Gain
from coalescing is greater than or equal to the weight of the edge considered for
selection; otherwise, it will select the edge. One way our heuristic attempts to
maximize the number of variables mapped to each memory location is to allow
the coalescing of pairs of variables with zero Gain value (if possible) after no
more variables with positive Gain can be coalesced.

Coalescing variables without a good guide may prevent possible improvements
over the standard SOA solution. Consider the example in Figure 4. Figure 4(b)
shows Liao’s greedy solution. The cost of this offset assignment is 4. Figure
4(c) shows the solution using the algorithm in [13] whose cost is also 4. Al-
though there is potential for improvement through variable coalescing, the al-
gorithm in [13] fails to capture the improvement over Liao’s solution. This is
because the algorithm in [13] first chooses to coalesce vertices b and e since they
have the maximum csave. However, this choice will prevent any future coalesc-
ing opportunities. Our algorithm alleviates this shortcoming by calculating the
Possible Loss(b, e) = 5 and thus Gain(b, e) = 3/5. So our algorithm first picks
a and b for coalescing since Gain(a, b) = 1; edge (b, e) will not be considered
for selection since b and e do not interfere. The cost of the final solution of our
algorithm is zero, as shown in Figure 4(d). For selection, we used two tie-break
functions T1 and T2 defined below,

T1(a, b) = degree(a) + degree(b) (4)

T2(a, b) =
∑

x∈Adj(a)

W (a, x) +
∑

y∈Adj(b)

W (b, y), (5)

where T1(a, b) is the sum of the degree of a and degree of b in the access graph.
T2(a, b) is the Leupers tie-break function defined as the sum of the weights of
the edges that are incident at a plus the sum of the weights of the edges that are
incident at b. If two edges that are candidates for selection have the same weight
then we try to tie break using the function T1; if T1 cannot break the tie, we
use T2. An edge with smaller T1 or T2 will win the tie. If two pairs of variables
(a, b) and (c, d) that are candidates for coalescing are such that Gain(a, b)=
Gain(c, d), then we first try to break the tie using T0 which is the Actual Gain
such that we choose the pair with the bigger Actual Gain. If both candidate
pairs have the same actual gain, then we tie break using T1 followed by T2, if
needed.
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Coalescence SOA Algorithm
Input: the Access sequence.

the Interference graph IG.
Output: Offset assignment.

Build the access graph (AG) from the access sequence.
L = list of edges (x,y) such that (x,y) ∈ IG in decreasing order of their weights using
T1 then T2 for tie break.
Coalesce = false.
Select = false.
Do

Find a pair of nodes (a,b) for coalescing that satisfy:
1. (a, b) /∈ IG.
2. AG will still be acyclic after a and b are coalesced considering

selected edges.
3. No node will end up with degree > 2 considering selected edges.
4. (a,b) has max Gain where Gain is calculated as in equation (1).
where T0, T1, and T2 are the three tie break functions used in that order.

If such a pair of nodes is found, then Coalesce = true.

Among the edges that belong to L pick the first edge (c,d) such that:
1. Selecting (c,d) will not result in a cyclic AG considering selected edges.
2. Selecting (c,d) will not result in a node with degree > 2 considering

selected edges.
If such an edge is found, then Select = true; remove (c,d) from L.

If (Coalesce && Select)
If (Actual Gain(a, b) = Weight(c, d))

Update access graph AG with (a, b) coalesced.
Update interference graph IG with (a, b) coalesced.
Update list L

Else
Select edge (c,d)

Else
if (Coalesce)

Update access graph AG with (a,b) coalesced
Update interference graph IG with (a,b) coalesced
Update list L

Else if (Select)
Select edge (c,d)

While (Coalesce || Select)
Return offset assignment

Fig. 3. Our algorithm for Simple Offset Assignment with variable coalescing
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Fig. 4. (a) Interference Graph. (b) Liao’s SOA greedy solution where the cost = 4.
(c) The solution from the algorithm in [13] of cost 4 where it fails to capture the
potential improvements from coalescing. (d) The optimal solution from our algorithm
with cost = 0.

4 An Example

For the sake of clarity, consider the example in Figure 5 where Figure 5(a)
shows the interference graph (IG) and Figure 5(b) shows the original access
graph (AG). Figures 5(c)–(h) show how the access graph is updated when our
heuristic is applied to this example. Although not shown, whenever two nodes are
coalesced, the interference graph (IG) will be updated to reflect the coalescing of
the nodes as well as to update the interference edges accordingly. Table 1 shows
the step-by-step execution of our algorithm and the criteria used for choosing
the candidates for selection and for coalescing. Note that in Table 1 we do not
show coalescing candidates with zero Gain. Figure 5(i) shows the final solution
with zero cost. If we run the algorithm in [13] on the same example presented
in Figure 5, the cost of a possible final solution, shown in Figure 6, is 4.

5 Simulated Annealing

Since the offset assignment problem is NP complete, the heuristic presented in
Section 3 will very likely produce a suboptimal solution. So in order to further
improve the results, we used a simulated annealing approach. Simulated Anneal-
ing (SA) [3] is a global stochastic method that is used to generate approximate
solutions to very large combinatorial problems. The technique originates from
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Fig. 5. (a) The Interference Graph. (b) Original Access Graph. (c)-(h) The access
graphs after each iteration of our algorithm. (i) The final offset assignment, which
incurs zero cost.

the theory of statistical mechanics, and is based on the analogy between the
annealing process of solids and the solution procedure for large combinatorial
optimization problems. The annealing algorithm begins with an initial feasible
configuration, and then a neighbor configuration is created by perturbing the
current solution. If the cost of the neighboring solution is less than that of the
current solution, the neighboring solution is accepted; otherwise, it is accepted
or rejected with some probability. The probability of accepting inferior solutions
is a function of a parameter, called the temperature T, and the change in cost
between the neighboring solution and the current solution. The temperature is
decreased during the optimization process, and the probability of accepting an
inferior solution decreases with the reduction of the temperature value. The set
of parameters controlling the initial temperature, stopping criterion, temper-
ature decrement between successive stages, and number of iterations for each
temperature is called the cooling schedule [3]. Typically, at the beginning of the
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Fig. 6. One possible final solution for the example shown in Figure 5 using the algo-
rithm in [13]

Table 1. A step by step run of our algorithm on the example in Figure 5

Iteration Coalesce Candidate Selection Decision

Vertices ActualGain PossibleLoss Gain edge Weight

a,b 2 2 1 Coalesce(a,b)
b,e 3 4 3/4 (b,c) 2 Tie-break T0

1 d,e 2 3 2/3 (g,f) 1
g,d 1 1 1
f,e 2 3 2/3

d,e 2 2 1 (ab,e) 3
2 g,d 1 1 1 (ab,c) 2 Select (ab,e)

f,e 2 2 1 (g,f) 1

d,e 2 2 1
3 g,d 1 1 1 (ab,c) 2 Coalesce (d,e)

f,e 2 2 1 (g,f) 1 Tie-break T0

c,e 2 3 2/3

(ab,c) 2 Select (ab,c)
4 ed,g 1 1 1 (ed,f) 2 Tie-break T1

(g,f) 1

5 ed,g 1 1 1 (ed,f) 2 Select (ed,f)
(g,f) 1

6 ed,g 2 1 2 (g,f) 1 Coalesce (ed,g)

algorithm, the temperature T is large and an inferior solution has a high prob-
ability of being accepted. During this period, the algorithm. acts as a random
search to find a promising region in the solution space. As the optimization pro-
gresses, the temperature decreases and there is a lower probability of accepting
an inferior solution. The algorithm then behaves like a down hill algorithm for
finding the local optimum of the current region.

Since simulated annealing requires a significant amount of time in order to con-
verge to a good solution, we decided to use the final solution from our heuristic
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as the initial solution for SA and then ran SA for a short period of time with a
low probability of accepting a bad solution. The neighbor function can perform
one of the following operations: (i) exchange the content of two memory loca-
tions; (ii) move the content of one memory location; (iii) uncoalesce a coalesced
node into two or more nodes; or (iv) coalesce two memory locations.

6 Results

We implemented our techniques in the OffsetStone toolset [14] and we tested
our algorithms on the MediaBench benchmarks [4]. In Table 2, we compare our
results with four different techniques used to solve the SOA problem, mainly Le-
upers’ tie-break [9], incremental with Leupers’ tie-break INC-TB[9][7], Genetic
algorithm GA[8], and Ottoni’s CSOA [13]. We measure the percentage of the
number of address arithmetic instructions compared to Liao’s algorithm [12].
Our heuristic drastically reduces the cost of simple offset assignment when com-
pared to heuristics that do not allow variable coalescing since variable coalescing
increases the proximity between variables in memory, thus it reduces the number
of update instructions. Column 6 shows that our heuristic was able to outper-
form the CSOA heuristic [13] (results of which are shown in Column 5) in all
the cases except for one benchmark. This improvement is due to the guide used
in our choice between candidates for coalescing where we not only consider the
actual saving but also an estimate of the possible loss in future coalescing op-
portunities. Also the idea of just considering edges whose endpoints interfere for
selection increases the opportunity for coalescing nodes with maximum Gain as
defined in Equation 1. The ability to coalesce depends on the selected edges and
vice-versa. So an algorithm that can choose the right candidates for selection
and coalescing, at the right iteration and decide between them, should consider
the influence of such a decision on future solutions. This is accounted for in our
algorithm by defining the possible loss as a guide for the possible effect of coa-
lescing on future solutions. The three tie-break functions T0, T1, and T2 play a
role in achieving the clear improvements to the final solution. We do not show
the comparison to the technique in [21] since the authors reported an average
cost reduction of 33.3% when compared to [9] which is worse than the results
achieved in [13].

Our simulated annealing (SA) algorithm further improved the results by
searching the feasible region for better solutions starting from the final solu-
tion of our heuristic. Results in Table 2 column 6 shows that the SA further
improved the results in all the cases in a short CPU time.

In Table 3, we show the reduction in memory slots needed to store the variables
using our algorithm compared to that of using the algorithm presented in [13].
Results show that our algorithm drastically reduces the memory requirement
by maximizing the number of variables that are assigned to the same memory
location and it outperforms the CSOA algorithm [13] in all the cases. The reason
behind this reduction is that we defined the Gain from coalescing in terms of
possible loss in coalescing opportunities as well as due to the fact that we did
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Table 2. Comparison between different techniques for solving the SOA problem where
column 1 shows different benchmarks, column 2 shows the results by applying Liao’s +
Tie-break [9], column 3 shows the results of the GA in [8], column 4 shows the results
if the Tie-break [9] is combined with the incremental SOA in [1], and column 5 show
the results in the case of SOA with variable coalescing [13], column 6 shows our results
when applying our algorithm, column 7 shows the results using simulated annealing

Benchmarks TB (%) GA(%) INC-TB(%) CSOA(%) Our algorithm SA
[9] [8] [9][7] [13] (%) (%)

adpcm 89.1 89.1 89.1 45.6 42.1 39.1

epic 96.8 96.6 96.6 50.2 47 44.9

g721 96.2 96.2 96.2 27.9 26.2 23.2

gsm 96.3 96.3 96.3 19.4 14.8 13.5

jpeg 96.9 96.7 96.7 32.2 31 29.1

mpeg2 97.3 97.1 97.2 34.3 31.2 29.9

pegwit 91.1 90.7 90.7 38.8 39.5 36.1

pgp 94.9 94.8 94.8 32.2 29.8 27.4

rasta 98.6 98.5 98.5 21.1 19.9 19.5

Table 3. The number of memory slots needed using our algorithm to the algorithm
presented in [13]

Benchmarks #Variables #Memory slots #Memory slots
[13] our algorithm

adpcm 198 55 43

epic 4163 1125 767

g721 1152 289 199

gsm 4817 1048 433

jpeg 13690 4778 2555

mpeg2 8828 2815 1503

pegwit 4122 1454 910

pgp 9451 2989 1730

rasta 4040 1056 557

not consider the edges (a, b) such that (a, b) /∈ IG as candidates for selection and
this will result in more opportunities for coalescing. However, the main reason
for this improvement is that our heuristic allows zero Gain coalescing between
nodes in the final AG. That is, we coalesce pairs of vertices (a, b) (if possible)
such that Gain(a, b) = 0. This zero Gain coalescing will not reduce the cost in
terms of the number of address arithmetic instructions but it will contribute to
maximizing the number of variables mapped to a memory location. This explains
the huge difference between the improvements in Table 2 and Table 3. Although
a heuristic designed just to decrease the memory requirement for storing the
variables can get better results than those in Table 3, it will be detrimental to
the quality of the final solution in terms of the number of address arithmetic
instructions. So our heuristic not only decreases the cost (which is defined as the
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reduction in the number of address arithmetic instructions), but also decreases
the number of memory locations needed to store the variables.

7 Conclusions

The problem of offset assignment has received a lot of attention from researchers
due to its great impact on code size reduction for DSPs. Reducing the code size
is beneficial in the case of DSPs since the code is directly transformed into
silicon area. Statistics show that codes for DSPs can have up to 50% address
arithmetic instructions [18]. So the main idea of the ongoing research in this field
is to decrease the number of address arithmetic instructions and thus the code
size. The problem is studied as simple offset assignment (SOA) and as general
offset assignment (GOA), where different techniques and algorithms are used to
tackle these problems with different modifications such as the inclusion of the
modify-registers [9] as well as the case where the offset range is greater than
1. In this paper we presented a heuristic to solve the simple offset assignment
with variable coalescing that chooses between selection and coalescing in each
iteration by calculating the Actual Gain and Possible Loss for each pair of
coalescing candidates. Results show that our algorithm not only decreases the
number of address arithmetic instructions, but also drastically decreases the
memory requirement for storing the variables by maximizing the number of
variables that are mapped to the same memory slot. Simulated annealing further
improved the final solution from our heuristic.
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Abstract. The increasing complexity of hardware mechanisms for re-
cent processors makes high performance code generation very challeng-
ing. One of the main issue for high performance is the optimization of
memory accesses. General purpose compilers, with no knowledge of the
application context and approximate memory model, seem inappropri-
ate for this task. Combining application-dependent optimizations on the
source code and exploration of optimization parameters as it is achieved
with ATLAS, has been shown as one way to improve performance. Yet,
hand-tuned codes such as in the MKL library still outperform ATLAS
with an important speed-up and some effort has to be done in order to
bridge the gap between performance obtained by automatic and manual
optimizations.

In this paper, a new iterative compilation approach for the generation
of high performance codes is proposed. This approach is not application-
dependent, compared to ATLAS. The idea is to separate the memory
optimization phase from the computation optimization phase. The first
step automatically finds all possible decompositions of the code into ker-
nels. With datasets that fit into the cache and simplified memory ac-
cesses, these kernels are simpler to optimize, either with the compiler,
at source level, or with a dedicated code generator. The best decomposi-
tion is then found by a model-guided approach, performing on the source
code the required memory optimizations.

Exploration of optimization sequences and their parameters is achi-
eved with a meta-compilation language, X language. The first results
on linear algebra codes for Itanium show that the performance obtained
reduce the gap with those of highly optimized hand-tuned codes.

1 Introduction

The increasing complexity of hardware mechanisms incorporated in modern pro-
cessors makes high performance code generation very challenging. One of the key
difficulty in the code optimization process is that several issues have to be simul-
taneously addressed/optimized: for example maximizing instruction level paral-
lelism (ILP) and optimizing data reuse across multilevel memory hierarchies.
Moreover, very often, a code transformation will be beneficial to one aspect
while it will be detrimental for the other one. The whole problem worsens be-
cause the issues are tackled by different levels of the compiler chain: most of the
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ILP is optimized by the backend while data locality optimization is performed
at a higher level.

A good example for highlighting all of these problems is the simple matrix
multiply operation. Although the code is fairly simple, none of the recent com-
pilers is really able to generate performance close to hand coded routines. For
dealing with this problem, Dongarra et. al.[18] have developed a specialized
code generator (ATLAS) combining iterative techniques and experimentation.
ATLAS is a very good progress in the right direction (it outperforms most of
the compilers) but very often it still lags behind hand coded routines. Recently,
ATLAS has been improved by replacing the iterative search by an adapted cost
model enable to generate code with nearly the same performance [21]. But even
with these recent improvements, vendor [8,16] or hand-tuned BLAS3 [11] still
outperforms ATLAS compiled codes and, up to now, such libraries are the only
ones capable of reaching near-peak performance on linear algebra kernels. So
what is ATLAS and more generally compilers still missing in order to reach this
level of performance ?

In this paper we propose an automated process (i.e. no hand coding) which
allows to close this gap. The starting point is to decouple the two issues (ILP
and data locality optimizations) and then to solve them separately. For the
matrix multiply operation, blocking is performed to produce a primitive which
will operate on subarrays fitting in cache. This blocking does not provide us with
a single solution but rather with constraints on block sizes. Then for optimizing
the primitive which is still a matrix multiply, we use a bottom up approach
combined with systematic exploration. In general, the triply nested loop will
be too complex to be correctly optimized by a compiler even if the operands
are in cache (i.e. no blocking for cache has to be performed). Therefore, from
the triply nested loop, several kernels (using interchange, strip mine, partial
unroll) are generated. These kernels are one up to three dimensional loops, loop
bodies containing several statements resulting from the unrolling. Additionally,
to simplify compiler’s task, loop trip count is set to a constant. The rationale
for such kernels is to be simple enough so that a decent compiler can generate
optimal code. Then all of these kernels are systematically tested to determine
their performance. As a result of this process, a set of kernels reaching close to
peak performance is produced. From these kernels, the primitives can be easily
rebuilt. And finally, taking into account block size constraints, a primitive is
selected and the whole code is produced.

As we will demonstrate in this paper, such an approach offers several key
advantages: first it generates very high performance codes competitive with ex-
isting libraries and hand tuned codes, second it relies on existing compilers, and
third it is extremely flexible i.e. capable of accommodating arbitrary rectangular
matrices (not only the classical square matrix operation).

The approach proposed is demonstrated on BLAS kernels but it does not
depend upon any specifics of the matrix multiply and it can be applied to
other codes. In contrast to ATLAS, we did not a priori select a given primitive
which is further tuned. On the contrary, a large number of primitives which are
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automatically produced, is considered and analyzed. Each of these primitives
correspond to the application of a given set of transformations/optimization.
Generation and exploration of these optimization sequences and their parame-
ters is achieved with a meta-compilation language, X language.

The approach described in this paper applies to regular linear algebra codes.
More specifically, the codes considered are static control programs[9]: loop
bounds can only depend linearly on other loop iteration counters or on variables
that are readonly in the code. Array indices depend linearly on loop indices.

The paper is organized as follows: Section 2 describes the iterative kernel de-
composition and their optimization, Section 3 briefly gives the main features of
the X Language, Section 4 gives experimental results performed on various ma-
trix shapes comparing our approach with ATLAS and MKL, Section 5 describes
related work and Section 5 gives some future directions.

Motivating Example

Consider the standard code for matrix vector product given in Figure 1. We will
assume that the matrix sizes M, N are such that both matrix and vector fit in
cache.

for (i = 0; i < M; i++)
ML = &M[i][0]; b = B[i];
// DAXPY code
for( j = 0 ; j < N ; j++)
A[j] += b * ML[j];

Fig. 1. Dgemv with daxpy

for (i = 0; i < M; i+=2)
ML1 = &M[i][0] ; b1 = B[i];
ML2 = &M[i+1][0]; b2 = B[i+1];
// DAXPY2 code
for( j = 0 ; j < N ; j++)
A[j] += b1 * ML1[j];
A[j] += b2 * ML2[j];

Fig. 2. Dgemv with daxpy2

The same code is transformed into the code of Figure 2 by unrolling two
times the outer loop (tail code is not presented). The inner loop is no longer a
simple daxpy but a variant called daxpy2. The transformation process can be
applied with different unrolling degree values 3, 4,. . . resulting in similar inner
loops called daxpy3, daxpy4,. . . Therefore, for the same original matrix vector
routine, different decompositions can be obtained using different kernels daxpy2,
daxpy3,. . .

For this experiment, as for all others presented in this paper, the platform
used is a Novascale Bull server featuring two 1.6Ghz Itanium 2 processors, with
a 256KB level 2 cache and a 9MB level 3 cache. All codes are compiled us-
ing the Intel C compiler (icc) version 9.0 with -03 -fno-aliases flags. For
each of the unrolling factor of the outer loop resulting in the different kernels
daxpy2, daxpy3, . . . , the j loop was also unrolled 1, 2, 3 and 4 times (resp. U1,
U2, U3 and U4). Performance of the resulting kernels (i.e. the j loop only) for
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Fig. 3. Performance of daxpy with different sizes and unrolling degrees

N=100, 200, 400, 800 is displayed in Figure 3. Results below 2000MFlops do not
appear in the figures. Due to lack of space, performance numbers of the whole
matrix vector primitive are not shown but they have been generated and they are
strictly equivalent to the performance number of the primitive they are using.

This shows several points:

– The compiler is able to generate near peak performance with a daxpy12 un-
rolled 2 times, of size 400 (peak performance for this machine is 6300MFlops).
Even if this is obtained through a vendor compiler, this shows that compiler
technology is able to produce high performance codes, without the help of
hand-tuned assembly code;

– There is a speed-up of 3.13 between the slowest version (daxpy 1, unroll
factor of 3) and the fastest one, among the versions that are displayed. This
speedup is worth the effort but the optimization parameters to use in order
to obtain the fastest version are far from obvious. This advocates for an
iterative method relying on search;

– Selecting the right vector length is essential to reach peak performance. Vec-
tor length 100 is too short, while vector length 400 is optimal. Vector length
800 examplifies a typical performance problem of Itanium L2 cache banking
system: since 800 = 25x32 all of the vectors ML1, ML2, etc ... start in the
same L2 bank.

This illustrates the fact that micro-optimization of loop can bring substantial
performance improvement, even when resorting only to compilers. The rest of
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the paper shows how to use this idea in order to generate automatically high-
performance linear algebra codes.

2 Iterative Kernel Decomposition

The principle of the approach described in this paper is the following: the code
is first tiled for memory reuse. Then each tile is tiled again to create computa-
tional kernels. The performance of these kernels is evaluated, for different tile
sizes and for different memory alignments, independently of the application con-
text. The most efficient kernels are then put back into the memory reuse tile,
according to the different possible sizes of the tile and the performance of the tile
is evaluated. The data layout transformations (copies, transpositions) required
by the computational kernels are also evaluated by microbenchmarking. From
there, a decision tree builds up, for all loop sizes, the best decomposition into
memory reuse tiles and computational tiles, according to the cost previously
evaluated. All the steps concerning kernel optimization are new contributions
for high performance compilation approach and are illustrated in Figure 4.
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TileGenerator
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Fig. 4. Steps of iterative kernel decomposition

Each step is presented in details in the following sections. Figure 5 represents
a matrix multiplication that will illustrate each step of the approach.

for (i = 0; i < N ; i++)

for (j = 0; j < N ; j++)

for (k = 0; k < N ; k++)

c[i][j] += a[i][k] * b[k][j];

Fig. 5. Naive DGEMM

// copy B into b by blocks of width NJ

for (i = 0; i < N ; i += NI)

// copy A into a by block of width NK

for (j = 0; j < N ; j += NJ)

// copy C into c

for (k = 0; k < N ; k += NK)

// Tile for memory reuse

for (ii = 0; ii < NI; ii++)

for (jj = 0; jj < NJ; jj++)

for (kk = 0; kk < NK; kk++ )

c[ii][jj] += a[ii][kk] * b[kk][jj];

Fig. 6. Tiled DGEMM
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2.1 Loop Tiling

The goal of loop tiling[19,4,14,13] is to reduce memory traffic by enhancing data
reuse. Tiling also enables memory layout optimizations, such as copies or scalar
promotions to exhibit locality for instance. Given the cache size, the tile sizes
must be such that the working set used in the tile fits into the cache. Moreover,
we impose that tiles are rectangular. Indeed, even for a non rectangular initial
iteration domain, it is always possible to tile most of the computation with
rectangular bounds. The remaining iterations represent then a negligible amount
of computation. Then, rectangular tiles are easier to optimize (possible to unroll
with no remainder loop, more regular address streams for prefetching,. . . ). Due
to the fact that the global iteration space may not permit all tile sizes, a set of
tile sizes that enable the partition of any outer iteration domain is considered.

The tiling is obtained through strip mine of all loops, followed by a search
using loop permutation, skewing, reversal and loop distribution. Tile sizes are
parametric and will be determined later in the method. The exact evaluation of
the working set may lead in general to complex results, difficult to handle[3]. We
choose to use for each array the min, max interval index value used in the tile
as an over-approximation of the array elements accessed. Other methods, more
sophisticated, can later be used.

The tiling applyied on DGEMM is presented Figure 6. The tiled code corre-
sponds to a mini-MMM according to ATLAS terminology. The copy-out of c is
not included.

2.2 Tiling for Computation Kernels

The code of the previously obtained tiles is then micro-optimized. It is important
to stress the fact that a part of the overall code performance can only be obtained
at this level. Further optimizations with scheduling among tiles or with higher
level in memory hierarchy optimization may only degrade performance obtained
in this level. The optimization of the tile code is in two steps: (i) we create
inside the tile a simpler computation tile. Note that usually, this level of tiling
corresponds to a level of blocking for register file. Here we create instead a new
tile containing one loop (1D tile) up to the dimension of the surrounding tile
loops. (ii) the computation tile is optimized and evaluated in an iterative process.

The goal is to partition data reuse tiles into tiles that are simpler for a code
generator (basically the compiler) to optimize. Compiler technology has a long
history on low-level, low-complexity optimizations. Even if affine schedules and
complex array data dependence analysis have existed since a long time, few are
really implemented in vendor compilers and a large part of performance, when
all the dataset is in cache, comes from the backend optimizations anyway. Sim-
plifying source code by giving simple kernels once at a time is a method to take
advantage of a code generator high quality backend (constant loop bounds en-
able accurate prefetching distances, opportunities for better unrolling or software
pipelining).

The search for computation kernels relies on application of stripmine and
loop permutations. The resulting kernels come from a selection of this inner tile.
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After these simple transformations, partial unroll is applied to the loops not in
the kernel, generating many variations of the same family of kernel. In order to
bound the search, range of unrolling factor is defined by the user with a pragma
annotation in the source code. The data structures are then simplified, such that
all iteration counters not in the kernel are considered as constants and projected
out. A memory copy, transposition or another data layout transformation may
be necessary to simplify the data layout.

The search is exhaustive, therefore a bound of the search space has to be

given: for perfect loop nests, of depth n, there are
(

p
n

)

possible kernels with p

loops (considering any loop order, less if some dependences prevent some per-
mutations). For each kernel with p loops, there are at most n−p loops to unroll,
therefore an upper bound of the number of kernels, including all versions ob-
tained by unrolling, is O(n.2n) where n is the depth of the initial loop nest. This
not an issue since the maximum loop depth is usually lower than 4.

Concerning the mini-MMM code for DGEMM, searching for kernels leads to
5 different kernels, 4 of them are presented in Figures 7, 8, 9, 10. The remaining
3D kernel is the DGEMM itself. The values n, m correspond to the unrolling
factor of the surrounding loops.

for( i = 0 ; i < ni ; i++)
c11 += V1[i] * W1[i];
...
c1n += V1[i] * Wn[i];
c21 += V2[i] * W1[i];
...
cmn += Vm[i] * Wn[i];

Fig. 7. 1D Kernel: dot product nm

for( i = 0 ; i < ni ; i++){
V1[i] += a11 * W1[i];
...
V1[i] += a1n * Wn[i];
V2[i] += a2n * W1[i];
...
Vm[i] += amn * Wn[i];

Fig. 8. 1D Kernel: daxpy mn

for (i = 0; i < ni ; i++)
for (j = 0; j < nj ; j++)
c1[j] += a1[j] * b[i][j];
...
cn[j] += an[j] * b[i][j];

Fig. 9. 2D Kernel: dgemv

for (i = 0; i < ni ; i++)
for (j = 0; j < nj ; j++)
c[i][j] += a1[i] * b1[j];
...
c[i][j] += an[i] * bn[j];

Fig. 10. 2D Kernel: outer product n

2.3 Kernel Micro-optimization

Once kernels have been selected, their optimization is achieved. As stated before,
this step mainly relies on the optimization capacity of some code generator.
However, some optimizations and optimization parameters are still searched for:

– Loop bound sampling: different values of loop bounds are tested. The reason
is that the loop bound impact directly the working set, using other levels of
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cache that the outer data-reuse tile. Moreover, mechanisms such as prefetch-
ing may be influenced by the actual value of the bound and loop overheads,
pipelines with large MAKESPAN or large unrolling factors can take advan-
tage of larger iteration counts. The span of the sampling can be user-defined
through X language pragmas.

– Array alignments: the code generated may be unstable w.r.t. the alignment of
the arrays starting addresses. Important performance gains can be obtained
by finding the best alignment[12]. Testing the different possible alignments
reveals performance stability. If stability is an issue, it is then possible to
copy part of the arrays necessary for the tile with the specific alignments
that enable the best performance.

– Loop transformations: interchange for kernels that have more than one loop,
and unrolling (sometimes taken care of by the compiler) generate new ver-
sions of the kernel and increase parallelism. Optimizations such as software
pipeline are performed by some compilers.

All experimental results are presented in Section 4. Note that as the data struc-
tures have been simplified and do no longer depend on the surrounding loops,
it is quite possible to optimize the kernels in-vitro: out of the application con-
text. The advantage of such approach is that kernel optimizations and micro-
benchmarkings can be easily reused from one code to the other. The idea of
using a database of highly optimized kernels is already used by CAPS with
codes generated by XLG [20].

This suggests another method for kernel micro-optimization: with high per-
formance libraries or kernels, matching the source kernel with an existing li-
brary function (source interface) would avoid completely the iterative optimiza-
tion step. The kernel can then be replaced by the assembly version of the li-
brary function. Pattern-matching based techniques have been applied for in-
stance by Bodin[2] for vectorized kernels. In general, recognizing codes even af-
ter data structure and loop transformations boils down to algorithm recognition
techniques[1,15].

Finally, exploration space can be limited by static evaluation and comparison
of the assembly codes. Tools such as MAQAO[6] potentially detects inefficient
codes from the assembly and compare different versions. Indeed, the compiler
sometimes generates the same assembly code from two different source codes.

2.4 Putting Kernels to Work

The final step consists of reassembling the code from the available kernels. This
bottom-up phase first builds the data reuse tiles with kernels, according to the
tile size. For a sampling of tile sizes, each decomposition in kernels is evaluated.
In particular very thin tiles are studied because they necessitate special compu-
tation kernels to tile them. Then copies and other data layout transformations
necessary for the kernels to work are added.

For the matrix multiplication, tiles considered are denoted by formula such
as (k × N)X(N × k): this denotes the multiplication of a matrix of size k × N
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where k << N , by a matrix N × k. In these formula, k denotes an integer much
smaller than N . The tile size studied are: (k × N)X(N × N),(N × k)X(k × N),
(k × N)X(N × k) and (N × N)X(N × N).

Figures 11 and 12 present two mini-MMM tiled with a kernel of daxpy 10,1
unrolled 2 times (this unrolling factor concerns the loop inside the daxpy) and
a kernel of dot product 1,1 unrolled 10 times. The later requires that the block
b is transposed. The code of Figure 11 would be a good kernel for a matrix
product of the form (k ×N)X(N ×N) but is not adequate for a matrix product
(N × k)X(k × N) with k < 10 for instance. Another kernel decomposition is
then needed.

for (ii = 0; ii < NI; ii++)

for (jj = 0; jj < NJ; jj+=nj)

for (kk = 0; kk < NK; kk+=10 )

daxpy_10_u2(nj,c[ii],

a[ii][kk],..,a[ii][kk+9],

b[kk],..,b[kk+9]);

Fig. 11. Tile using daxpy 10,1 unrolled
2 times

// transpose b into bt

for( ii = 0 ; ii < NI; ii++)

for( jj = 0 ; jj < NJ; jj++)

for (kk = 0; kk < NK; kk+=nk)

dotproduct_u10(nk,c[ii][jj],a[ii],bt[jj]);

Fig. 12. Tile using dotproduct 1,1 unrolled 10
times

Finally, according to the external loop sizes, the best performing combination
of tile and memory copies is selected. Evaluation of the fastest combination
requires that the memory operations are also evaluated. As a matter of fact,
they are considered as kernels and are micro-optimized as well. A decision tree
selects the right version.

3 X Language

X Language[7] is a language of pragmas used for meta-compilation: with the
help of pragmas, a user can:

– Specify fragments of codes for which X Language transformations apply,
using #pragma xlang begin and #pragma xlang end directives around se-
lected code;

– Trigger some source to source transformations on the specified code using
specific pragma directives, such as

#pragma xlang transform tile(i,II,STRIDE)
#pragma xlang transform unroll(i,UNROLL)

to first tile the loop i with a stride STRIDE into a new loop II and then un-
roll this new loop by a factor of UNROLL. Available transformations include
unrolling, tiling, fission, fusion, interchange, scalar promote,. . . The transfor-
mation engine is in Prolog and transformations can easily be added to the
language.
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– Generate multiple versions by defining search intervals, such as

#pragma xlang parameter STRIDE [16:128:32]
#pragma xlang parameter UNROLL [1:8:1]

These directives define that STRIDE can take any value multiple of 32 between
16 and 128. X Language then generates automatically all versions of the code
fragment with these optimization parameters.

– Trigger a search for the decomposition of a code fragment into kernels:

#pragma xlang decompose i

This directive decomposes loop i into kernels. This step corresponds to the
tiling into computation kernels. X Language generates as many files as dif-
ferent kernels found.

Compared to the version presented in [7], this version of X Language is based on
a C99 front-end parser (tiny C compiler), relies on a Prolog engine for the source
to source transformations and finds kernels that compose a code fragment. Micro
optimization of these kernels still requires now another compilation step using X
Language. Testing stability w.r.t. array alignment is achieved by another tool,
Kerbe, which is not yet linked to X language. Further automation of the method
presented in this paper is planned for future work.

4 Experimental Results

We study in this section different kernels to do a matrix-matrix multiplication
(DGEMM) and a convolution function. We compare these results with those of
the functions of library like Atlas and the Intel library MKL. As for all exper-
iments, after the kernel decomposition, each kernel is evaluated separately and
then inside the data reuse tile.

4.1 Micro-optimization of DGEMM Kernels

All kernels are presented in previous sections.
For 1D kernels, daxpy n, 1 kernels (m = 1) have been evaluated and the results

of the experiments are presented in Figure 3. All experiments have measured the
impact of array alignment. Only the best results are presented. For 2D kernels,

Table 1. Matrix-Vector multiply

N cycles cycles/fma MFlops
96 50166,7 0,544 5863,970
128 88332,9 0,539 5918,367
160 137900,5 0,538 5929,368
192 226383,5 0,614 5195,439
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performance of matrix-vector product are presented in the following table: The
Figure 13 sums up performances of the outer product kernel. The 3D kernel
represents a complete matrix matrix multiplication. Its performance are shown
in Figure 18 and prove that this is not an adequate kernel.

Fig. 13. Outer product performance for different versions and sizes

4.2 Results on DGEMM Operation

We present the best results of dgemm according to the size of the tile or of the
matrices. The decomposition is automatically performed by our tool, given the
detected kernels. The limit sizes (values of k << N) are determined by the user
in X language. Here, we choose k = 1, 2, 4, 8 and N ranges from 100 to 1500.
Results for Atlas, MKL and our method are presented for the same tile sizes.

Type (k × N)X(N × N): This type of tile corresponds to a 2D kernel,
performing k vector-matrix products (named Dgemv). For this type of tile, the
fastest dgemm uses a kernel of dotproduct 1,1 unrolled 10 times, requiring a
matrix transposition of b. Performance results are displayed in Figure 14 and
following. A 50% speedup is obtained w.r.t. ATLAS and performance follows
those of the MKL library. Performance drops around N = 800 because the tile
size exceeds the cache size. At this point the outer tiling or the use of another
kernel of our library can correct this degradation.

Type (N × k)X(k × N): This type of tile corresponds to a 1D kernel, per-
forming k outer products. For this type of tile where the common dimension if
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Fig. 14. DGEMM (kxN) X (NxN) with k=1,2,4,8

much lower than the others, the fastest dgemm uses the kernels of daxpy k, 1.
Therefore each value of k requires a different kernel. Performance results are dis-
played in Figure 15 and following. The results outperform those of ATLAS by
more than a factor of 2 and MKL is better by 50%. For N > 900, performance
drops since the tile size exceeds the cache size, which is out of bounds for the
kernel execution.

Type (k×N)X(N ×k): This type of tile corresponds to a 1D kernel, perform-
ing k independent dot products. For this type of tile, the fastest dgemm uses the
kernel of dot product 6, 6. Performance results are displayed in Figure 16 and
following. The results outperforms those of ATLAS by a factor of at least 3 and
of MKL by a factor of at least 2. The dataset still fits into the cache for large
values of N , since the resulting matrix is very small. Note that the performance
of our product is very unstable w.r.t. the array alignment. Array copies when
entering inside the tile prevents such unpredictability.

Type (N × N)X(N × N): Finally, we build the code of a complete matrix
product. As this step is not yet automated (construction of the decision tree),
we consider only square matrices. Taking only into consideration the previous
experimental results for various tile sizes, we choose to tile the matrices with
rectangular matrices of the type (k×N)X(N ×k) with k = 6 (best performance)
resorting to a kernel of daxpy 10, 1 unrolled twice. Performance surprisingly
enough matches those of the MKL, using only the compiler and source to source
transformations. The performance of the naive code are shown in Figure 18 for
comparison.
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Fig. 15. DGEMM (Nxk) X (kxN) with k=1,2,4,8

Fig. 16. DGEMM (kxN) X (Nxk) with k=1,2,4,8

4.3 1D Convolution

This code presented in Figure 19 is an example of how to reuse kernel micro-
optimization for other codes. Indeed, this code can be decomposed, after tiling,
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Fig. 17. Optimized DGEMM Fig. 18. Naive DGEMM

for(i=0;i<N-n;i++)
for(j=0;j<2*n;j++)
a[i] += b[j] * c[i-j+n];

Fig. 19. Code of 1D convolution Fig. 20. Results of 1D convolution with daxpy 5,1
unrolled twice

into daxpy and dot product kernels again. Using one of the previously optimized
kernels leads to a 66% performance improvement.

5 Related Works

Among related works, many works have been dedicated to iteration exploration
of optimization search:

Atlas[18] explores tile sizes and performs some simple micro-optimization
(software pipeline, scalar promotion,. . . ), but it relies mainly on only one kernel.
This kernel was chosen according to its good ratio memory accesses/computa-
tions, not according to its performance on the target architecture. It is however
possible to introduce new high performance kernels into Atlas, since there is
an add-on mechanism that enable Atlas to use external, possibly hand-tuned
assembly, codes. Compared with Atlas, the approach described in the paper is
not limited to specific application and performs quite extensive search for the
micro-optimizations, having the opportunity to find better kernels. This shows
up on the performance results of previous section, where our approach compares
to vendor library performance and outperforms Atlas. On the other hand, our
method does not resort to exhaustive search and poor performance may result
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from the selected parameters. For example the exploration of tile sizes might
generate unexpected results such as the poor performance numbers reported for
vector length 800 in the motivating example.

For model-based Atlas[21], the model targets essentially cache behavior. Our
approach focuses more on micro-mmm optimization, and resorts to simple model
based tiling and then iterative search for finding tile sizes, guided by the user.
The use of more complex models ([10] for instance) is still possible.

Extensive search among optimizations[5] shows that it is difficult to under-
stand the links between optimization parameters, optimization sequence and
performance. The exploration proposed by the authors is very time consuming
and yet does not include many optimizations. In comparison, our method re-
sorts to a very small number of transformations and relies on existing compiler
to perform adapted optimizations.

The compiler optimization space exploration proposed by [17] changes the
heuristic guiding optimizations by a search. This search is not exhaustive and is
guided by some cost function. The goal is mostly to improve the optimization
step of the compiler but does not seem to be aggressive enough to apply to
library optimization.

Finally, [11] describes a methodology for hand-tuned optimization, applied
to BLAS optimization. The authors propose a decomposition of micro kernel
similar to ours, according to different tile sizes. The main focus of this work is to
compact the data layout (making copies or transpositions of arrays) in order to
improve TLB hit ratio. All the fine-tuning of micro kernels is however performed
by hand. In comparison, our approach is automatic, at the expense of a small
performance degradation, and is not specific to matrix matrix multiplication.

6 Conclusions/Future Directions

In this paper, we introduced a new automated approach for generating highly
optimized code addressing simultaneously ILP issues as well as data locality
issues. This approach relies on state of the art compiler and does not require
any hand coding. This approach has been successfully validated on Itanium
and BLAS3/BLAS2 routines, outperforming ATLAS and being very competitive
with MKL highly tuned routines.

To be successful, this approach requires a state of the art compiler capable of
generating kernels with performance close to peak. We performed experiments
replacing icc with gcc; unfortunately gcc is far from being able to generate good
code even on simple DAXPY like kernels and the overall performance results
were pretty low. Now, when looking further at the exact requirements of our
approach, what is essential is the ability to compile simple code structure, i.e.
one dimensionnal loops with a loop body containing regular array access. Such
capabilities are provided for example by XLG[20] code Tuner developped at
CAPS Entreprise which is using specific code optimization techniques for well
structured vector loops. Experiments were also performed replacing icc by XLG
code Tuner: the results in terms of overall performance were similar at least for
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medium and large matrix sizes. However, XLG Caps Tuner was much easier to
drive than icc (requiring less tuning parameters) and for small matrix sizes, XLG
Caps Tuner also is capable of generating better code.

Finally, two directions are the main focus for future works: (i) More codes
and libraries need to be tested with this approach, (ii) More architectures need
to be tested besides Itanium. It includes not only testing other uniprocessor but
also tackling the multicore/multithread case.
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Abstract. For programs that make extensive use of pointers, pointer
analysis is often critical for the effectiveness of optimizing compilers
and tools for reasoning about program behavior and correctness. Static
pointer analysis has been extensively studied and several algorithms have
been proposed, but these only provide approximate solutions. As such
inaccuracy may hinder further optimizations, it is important to under-
stand how short these algorithms come of providing accurate information
about the points-to relations.

This paper attempts to quantify the amount of uncertainty of the
points-to relations that remains after a state-of-the-art context- and flow-
sensitive pointer analysis algorithm is applied to a collection of programs
from two well-known benchmark suites: SPEC integer and MediaBench.
This remaining static uncertainty is then compared to the run-time be-
havior. Unlike previous work that compared run-time behavior against
less accurate context- and flow-insensitive algorithms, the goal of this
work is to quantify the amount of uncertainty that is intrinsic to the
applications and that defeat even the most accurate static analyses.

Experimental results show that often the static pointer analysis is
very accurate, but for some benchmarks a significant fraction, up to
25%, of their accesses via pointer de-references cannot be statically fully
disambiguated. We find that some 27% of these de-references turn out to
access a single memory location at run time, but many do access several
different memory locations. We find that the main reasons for this are
the use of pointer arithmetic and the fact that some control paths are
not taken. The latter is an example of a source of uncertainty that is
intrinsic to the application.

1 Introduction

For programs that make extensive use of pointers, pointer analysis is often crit-
ical for the effectiveness of optimizing compilers and tools for reasoning about
program behavior and correctness. Without accurate pointer analysis, data ac-
cesses through pointer de-references must be assumed to be directed to almost
any program data, thus, making it impossible to accurately establish the flow of
data. Pointer analysis has been extensively studied and several algorithms have
been proposed (e.g., [5,18,21,24,25], see [9] for a comprehensive list). Completely
accurate pointer analysis (i.e., uniquely identifying the target of every pointer
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at every program point) is, in general, undecidable [11]. Thus, such algorithms
are only approximate, and usually trade-off efficiency and accuracy. There is no
consensus on what the best class of algorithm is and, in fact, many algorithms
that theoretically vary significantly in accuracy actually perform very similarly
in practice. Nevertheless, it is commonly accepted that context-sensitive and
flow-sensitive algorithms are the most accurate ones.

Considering that context- and flow-sensitive pointer analysis represents the
best that can be achieved with “general purpose” pointer analysis 1, it is im-
portant to understand how short these algorithms come of providing accurate
information about the points-to relations. An understanding of the sources of
such uncertainty is critical for devising new heuristics that lead to unsafe but
often accurate pointer analyses, such as probabilistic static pointer analyses [10].
Also, an understanding of the inaccuracy of pointer analysis is necessary in or-
der to assess the performance impact that such inaccuracy may have on program
optimization (e.g., [3,4,7]).

The main contribution of this paper is to systematically quantify the amount
of uncertainty in the static may-alias points-to relations for two well-known
classes of benchmarks and to compare this to the run-time behavior to quantify
what fraction of this uncertainty is actually observed at run time. This paper
also attempts to characterize the reasons for the differences between the static
and the run-time results. Note that, unlike previous works [13,15], the goal of
this paper is not to quantify the amount of uncertainty arising from analyses that
trade-off reduced precision for increased scalability. Instead, the goal of this paper
is to quantify the amount of uncertainty that is intrinsic to the applications. By
intrinsic we mean uncertainty that comes from the program structure and that
would defeat any static analysis technique. For such an study we use, unlike
previous work, a flow- and control-sensitive pointer analysis, which is the closest
to the limit of what is possible with static analyses only.

More specifically, in this paper we quantitatively evaluate the uncertainty of
the points-to relations that remains after a state-of-the-art context- and flow-
sensitive pointer analysis algorithm [21] is applied to a collection of benchmarks
from the well-known SPEC integer [23] and the MediaBench [12] suites. The
static pointer de-references that exhibit uncertain points-to behavior are then
instrumented and the actual run-time behavior is quantified. Experimental re-
sults show that for most of the benchmarks this static pointer analysis is very
accurate, but for some benchmarks a significant fraction, up to 25%, of their
accesses via pointer de-references cannot be statically fully disambiguated. We
find that some 27% of these de-references turn out to access a single memory
location at run time, but many do access several different memory locations.
Further analysis shows that the main reasons for this are the use of pointer
arithmetic and the fact that some control paths are not taken. The latter is an
example of a source of uncertainty that is intrinsic to the application.

1 Other types of analyses, such as shape analysis (e.g., [6,22]) may give further in-
formation about the behavior of pointers, but they only work for certain classes of
applications.
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The rest of the paper is organized as follows: Section 2 briefly overviews pointer
analysis and the sources of uncertainty; Section 3 describes our methodology
for quantifying uncertainty at compile and run time; Section 4 describes our
empirical evaluation methodology; Section 5 presents the experimental results;
Section 6 discusses related work; and Section 7 concludes the paper.

2 Pointer Analysis

In this section we present a very brief and informal overview of pointer analysis.
The sole goal is to provide a minimal understanding of the problems and, more
importantly, the sources of uncertainty.

2.1 Basics

The goal of pointer analysis is to compute for every program point the set of
memory objects that each pointer may be pointing to. For some simple algo-
rithms there is a one-to-one correspondence between a program point and a
source code line, while for context- and flow-sensitive analyses a program point
is a source code line augmented with the context and flow information, so that,
for instance, the same source code line if reached by two different paths can be
treated as two different program points.

The granularity of individual memory objects may vary depending on the
capability of the particular algorithm. Powerful algorithms can handle individual
scalar variables and individual fields of complex data structures, and can also
handle dynamically created memory objects. However, most algorithms treat
whole arrays as a single memory object. Following the notation in [21], memory
objects that can be individually named are associated with location sets, or
locsets for short.

A common representation for pointers and their target memory locations is
based on the notion of points-to relations, which are formed by tuples of the form
(p, v), where p is a pointer and v is some location set. These tuples are sometimes
referred to as a points-to relationship between p and v. More formally, if P and
V are the set of pointers and location sets, respectively, then R ⊂ P × V is a
points-to relation and every tuple (p, v) ∈ R implies that pointer p may point to
location set v, which is represented by p → v. Note that in languages that allow
multiple levels of pointers (i.e., a pointer to a pointer, such as int **p in C)
pointers can be themselves location sets and P ⊂ V . A common representation
for a points-to relation is a points-to graph, which is a tuple G = (N, E) of
N = P ∪ V nodes and E = R edges.

With this representation, the pointer analysis problem then results in com-
puting the points-to graph for every program point. This is done by solving
a set of dataflow equations using a fixed point algorithm. The dataflow equa-
tions are derived from the pointer manipulation operations allowed in the lan-
guage. For instance, the algorithm in [21] assumes the following four basic pointer
assignment operations:
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p1 = &p2; // Address-of assignment
p1 = p2; // Copy assignment
p1 = *p2; // Load assignment
*p1 = p2; // Store assignment

where p1 and p2 are pointer variables. Note that these do not include pointer
arithmetic, which is allowed in some languages such as C, but is not usually
supported in existing pointer analysis frameworks.

After the dataflow equations have been solved, the resulting points-to graphs
at all program points contain points-to relationships of two types: definitely
points-to relationships (also known as must alias) and possibly points-to rela-
tionships (also known as may alias). A definitely points-to relationship (p, v) at
some program point means that at this point p is for certain pointing to location
set v. This implies that there is no edge leaving node p in the points-to graph
other than the edge (p, v), or, equivalently, that there is no tuple (p, u) in the
points-to relation where u �= v. A possibly points-to relationship (p, v) at some
program point means that at this point p may point to location set v, but may
also point to at least another different location set u. In this case we say that
there is some uncertainty or ambiguity in the points-to relation.

Finally, changes in the points-to graph after processing some program point
can be of two types: strong updates and weak updates. Strong updates are those
that delete all the existing outgoing edges from a pointer p, while weak up-
dates are those that simply add new edges without deleting any of the existing
edges. For instance, the update at a program point that contains the assignment
p = &v is strong as it deletes all edges (p, u) that may have existed before this
program point. Note that the assignment p1 = p2, where both p1 and p2 are
pointers, is by this definition a strong update (all previous edges from p1 are
deleted) even if p1 is left with several possibly points-to relationships because of
the possibly points-to relationships of p2. As explained in the next section, weak
updates are the source of possibly points-to relationships and they appear due
to a few different reasons.

2.2 Uncertainty in Pointer Analysis

Context- and flow-sensitive pointer analysis provides the most accurate static
results, but it still cannot fully disambiguate all pointer de-references in many
practical situations. Some of the most common reasons for this uncertainty are:

Control Flow: A problem occurs when different control paths perform different
updates to pointer variables. In this case, without dynamic knowledge of the
actual program behavior, the static analysis can only assume that both updates
are possible and at the merge point both targets are possible.

Pointer Arithmetic: A problem occurs when the value of a pointer is updated
through some arithmetic operation. In this case, even if the original target of the
pointer is well-known, the final target can only be known if the pointer analysis
algorithm has an accurate knowledge of the layout of objects in virtual memory.
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Unavailable Procedure Code: A problem occurs when the original source code of
a procedure is not available to the pointer analysis algorithm and the procedure
takes a pointer as a parameter. In this case, unless the pointer analysis algorithm
has some prior knowledge about the side-effects (or lack thereof) of the called
procedure, the static analysis can only assume that after returning from the
procedure the pointer may be pointing to any memory object.

Recursive Data Structures: A problem occurs when pointers are used to link
objects from recursive data structures. Usually these form well structured forms
such as lists, trees, circular queues, etc. However, traditional pointer analysis is
not designed to recognize such structures and end up collapsing several objects
into a single memory target. Shape analysis (e.g., [6,22]) has been specially
designed to handle such cases. This paper’s goal is to investigate the accuracy of
“general-purpose” pointer analyses and a study of the effects of shape analysis
is beyond its scope.

Aggregates: A problem occurs when pointers are used to access internal parts
of an aggregate (e.g., an array or a structure) but the pointer analysis assigns
a single name for the whole aggregate. In this case, the pointer analysis cannot
disambiguate accesses to different parts of the aggregate.

Dynamically Allocated Objects: A problem occurs when pointers are assigned to
dynamically allocated objects that are allocated at the same static code site. In
this case most pointer analyses will simply assign a single name to the static
memory allocation site and will not be able to disambiguate accesses to the
(possibly) multiple objects that are allocated at the site. In fact, many pointer
analyses tools are even less accurate and simply assign a single name to the
whole heap area, so that even memory objects that are allocated at different
static code sites end up being aliased.

3 Quantification Methodology

3.1 Source Code Analysis

To collect the static points-to statistics we modify a context- and flow-sensitive
pointer analysis algorithm [21] to count the number of accesses through a pointer
de-reference, and for each access to count the number of possible target locsets as
identified by the points-to graph immediately before the access. When analyzing
the source code we count the number of locsets accessed (used or modified)
through a pointer de-reference as follows. In these examples assume that p is
a pointer variable and that *

n

represents n levels of indirection (e.g., *
2
p is

equivalent to **p).

Indirect use of a variable through a pointer de-reference (e.g., ...=*p;):
This is counted as one use via pointer.
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Indirect modification of a variable through a pointer de-reference
(e.g., *p=...;):
This is counted as one modification via pointer.

Multi-level indirect use of variable through a pointer de-reference
(e.g., ...=*

n

p;):
This is counted as n uses via pointers. The number of possible target locsets is
counted for each de-reference. For instance, in ...=**p; if p may only point to
a single target locset, but *p may point to two target locsets, then we count one
use with a single target and one use with two targets.

Multi-level indirect modification of variable through a pointer de-reference
(e.g., *

n

p=...;):
This is counted as n − 1 uses via pointers plus one modification via pointer. The
number of possible target locsets is counted for each de-reference, as described
above.

Procedure call (e.g., foo(..., *p, ...);):
This is counted as one use via pointer. Multi-level indirect uses are counted as
described above.

Loops:
Accesses within loops are treated as one instance of one of the cases above.

Procedures:
Accesses within procedures are treated as one instance per calling context.

Also, languages like C allow right-hand-side expressions and boolean expres-
sions to contain assignments, such as while(*p=a) or if(a==(*p=b)). Obvi-
ously, in this case we must appropriately account for the embedded modification.

3.2 Run-Time Statistics Collection

To collect the dynamic points-to statistics we further modify the context- and
flow-sensitive pointer analysis of [21] to insert additional profiling code just be-
fore accesses through a pointer de-reference that are identified as having multiple
target locsets. When compiled, this profiling code will record all different run-
time memory addresses touched via these pointer de-references and count the
number of accesses to each different address.

Each run-time access profiled is given a unique identifier that contains the
source code number, so that we can match the run-time accesses with their
static access. Note, however, that two mismatches between static and dynamic
statistics can happen. First, multiple static accesses identified by the pointer
analysis algorithm may map to the same source code line and, thus, to the same
run-time counter. This happens because the pointer analysis algorithm separates
static accesses according to their context. Second, not all static accesses may
appear at run time if that portion of the code is not executed with the given
input data.
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4 Evaluation Setup

4.1 Applications

To quantify the uncertainty that is intrinsic to static context- and flow-sensitive
pointer analysis, we use a subset of the SPEC2000 integer benchmarks [23] and of
the MediaBench benchmarks [12] that are written in C 2 These applications are
representative of the workloads typical of workstations and desktop computing
and are well-known for their intense use of pointers in many cases. For the run-
time experiments the input sets used are the standard ones provided with each
suite (ref for SPEC2000). Table 1 shows, for each application, the total number
of lines of C code, the total number of location sets and of pointer location
sets, the number of source code expressions that are uses through pointer de-
references, and the number of source code expressions that are modifications
through pointer de-references.

Table 1. Application characteristics

Lines of Total (Pointer) Pointer Pointer
Application Suite Code (KLOC) Location Sets Uses Modifications

164.gzip 9.1 1,750 (246) 113 43
175.vpr 17 3,959 (649) 960 428
181.mcf 1.9 506 (194) 16 13

186.crafty SPEC 12 4,920 (469) 4,716 672
197.parser int 12 3,631 (917) 10,587 83
256.bzip2 2.9 887 (85) 4 0
300.twolf 17.5 5,262 (950) 751 79

epic 7.6 397 (105) 37 13
unepic 7.6 531(242) 18 6

mpeg2enc 8.5 2,179 (455) 116 276
mpeg2dec MediaBench 4.9 1,605 (295) 140 85
g721-enc 1 393 (68) 2 0
g721-dec 1 122 (36) 4 2

gsmencode 5.8 448 (133) 22 0
gsmdecode 5.8 1566 (599) 168 31

4.2 Static Analysis

The statistics collection methodology described in Section 3 was implemented on
the SPAN tool [20], which is an add-on to the SUIF compiler [8] that implements
the pointer analysis algorithm of [21]. We modified SPAN to record all instances
of pointer de-references along with the number of possible targets as identified
2 The benchmarks not included from the suites are those either written in Fortran

or C++, which are incompatible with SUIF, or those written in C that did not
work with the original SPAN package (see Section 4.2 for details on the compilation
infrastructure).
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by SPAN and with the source code line number. The source code line number is
useful for identifying instances where SPAN is able to distinguish the different
calling contexts of the same source line. Uses and modifications via pointer de-
references were counted separately.

Uses and modifications through pointer de-references that may find the poin-
ter uninitialized (according to the SPAN analysis) result in SPAN adding a
special location set, called unk, to the target set. We decided to count these
cases separately. For instance, a pointer de-reference with two possible targets
where one of them is unk is counted separately from other pointer de-references
with two possible targets where both targets are well-defined user objects. The
reason for highlighting the ambiguous points-to sets that include unk is because
this is an important special case that may be treated differently by optimizing
compilers and program understanding tools. For instance, an optimizing compiler
may choose to ignore the unk target when performing an aggressive (possibly
unsafe) optimization under the assumption that an actual occurrence of the unk
target is highly unlikely. On the other hand, a program understanding tool would
likely especially flag de-references with possible unk targets as they may suggest
a bug in the code.

Finally, SPAN creates a single locset per context for each dynamic memory
allocation call site, and calls these locsets heap.X, where X is a number that
identifies the context. However, it cannot disambiguate further the accesses to
different parts of the memory object. Again, we decided to count these cases
separately because this is also an important special case. In fact, dynamically
allocated memory objects seem to often require specialized analyses [1,17].

4.3 Profiling Environment

To monitor the actual run-time behavior of static pointer de-references with mul-
tiple possible targets we further modified the SPAN tool to add the necessary
profiling code. More specifically, at each static de-reference where the pointer
may have multiple targets the tool inserts code to record the actual address
accessed and to increment a counter per address seen so far. The resulting in-
strumented code is converted from the SUIF file format (.spd) to C code and
this code is then compiled for the Intel x86 platform using gcc 3.4.4 and using
the -O2 optimization level.

5 Experimental Results

5.1 Static Pointer Analysis Statistics

We start our study by measuring the amount of uncertainty resulting from
the static pointer analysis. Table 2 shows the breakdown of the static accesses
through pointer de-references according to the number of possible target mem-
ory locations, as given by SPAN. The table presents separate results for uses
and modifications. The number of uses and modifications through pointer de-
references in this table are often larger than those in Table 1 because of the
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context-sensitivity of the analysis. This can also be seen from the often great
disparity between the number of accesses and the number of source code lines
in Table 2. Note that in most cases the number of accesses through pointer
de-references is only a small fraction of all static program references.

From this table we can see that the result of the context- and flow-sensitive
static analysis of SPAN is fairly accurate and can unambiguously identify the
target of the pointer de-references in all accesses for most applications and in
more than 90% of the accesses for all but 3 applications. Across the whole suite
81% of all the accesses have a single unambiguously identified target. Neverthe-
less, for some benchmarks the amount of uncertainty is non-negligible, reaching
up to 25% of the accesses for 197.parser.

Another observation from these results is that often a large fraction of the
accesses with multiple possible targets have unk as one of the targets (meaning
that the pointer may be uninitialized at this point). The exception is 197.parser.
As previously explained, these represent a special case of uncertainty that may
be treated differently by an optimizing compiler or a program understanding
tool. We do not expect any of these unk targets to actually occur at run-time
(Section 5.2).

Finally, we also note from these results that there are often many fewer mod-
ifications through pointer de-references than there are uses (1731 modifications
versus 47230 uses). However, per application these modifications have a relatively
larger amount of uncertainty than uses: e.g., 76% of modifications in 197.parser
have multiple possible targets versus 24% of uses.

5.2 Profiling Results

Run-Time Uncertainty. The first step in quantifying the run-time behavior
of the ambiguous pointer de-references is to measure the number of different lo-
cation sets actually touched by each static reference. Such results can be directly
compared to those of Table 2 as these references correspond to those in white
text with grey background in that table. Note that since the profiling framework
annotates source code lines the run-time accesses reported here correspond to
those reported per source code line in Table 2. Table 3 shows the breakdown
of only those static accesses through pointer de-references that have 2 or more
possible target memory locations according to the number of actual target mem-
ory locations touched. Again, the two sections of the table correspond to uses
and modifications, respectively. Note that some of the static references are not
actually executed with the input sets used. Finally, note that in this experiment
a static reference is said to touch two or more target memory locations as long as
at least two of more of its dynamic instances touch different memory locations.

From this table we can see that some (27% of the executed accesses) of the
uncertainty of the static analysis disappears at run time and actually a single
memory location is accessed. Nevertheless, a significant fraction of the accesses
indeed turn out to point to more than one different memory location at run time.
The next section discusses is more detail the reasons for the differences between
static and dynamic results.
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Table 2. Breakdown of static accesses according to the number of possible target
memory locations. Results for the source code analysis. The first number (top-left) in
each entry is the total number of accesses in that category. The numbers in parenthesis
are: the number of accesses that have unk as one of the targets, the number of accesses
that have heap as one of the targets, and the number of static source code accesses
(as opposed to per-context). For instance, 186.crafty has 542 uses through pointer de-
references with two possible targets; of these, 534 have unk as one of the targets, 67
have heap as one of the targets; and these 542 uses appear in only 59 source code lines.
The entries in white text with grey background are those that reflect ambiguity in the
static analysis and are instrumented for the run-time statistics collection.

Uses (u) and Modifications (m) with N possible targets
(including unk target, including heap target,

Application number of source code lines)
N = 1 N = 2 N = 3 N > 3

gzip u: 277 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)
m: 43 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

vpr u: 2488 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)
m: 428 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

mcf u: 67 0 (0,0,0) 0 (0,0,0) 6 (0,0,3)
m: 13 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

crafty u: 4970 542 (534,67,59) 2 (2,2,1) 119 (0,26,24)
m: 479 47 (45,11,9) 146 (146,66,13) 0 (0, 0, 0)

parser u: 25178 241 (241,241,35) 36 (0,0,11) 7841 (181,230,259)
m: 20 32 (32,32,6) 0 (0,0,0) 31 (9,4,9)

bzip2 u: 119 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)
m: 0 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

twolf u: 3687 6 (6,0,6) 0 (0,0,0) 0 (0,0,0)
m: 77 2 (2,0,2) 0 (0,0,0) 0 (0,0,0)

epic u: 156 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)
m: 13 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

unepic u: 59 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)
m: 6 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

mpeg2enc u: 395 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)
m: 276 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

mpeg2dec u: 499 8 (8,8,2) 0 (0,0,0) 6 (6,6,1)
m: 75 0 (0,0,0) 0 (0,0,0) 10 (10,10,2)

g721-enc u: 22 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)
m: 0 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

g721-dec u: 6 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)
m: 2 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

gsmencode u: 154 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)
m: 0 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)

gsmdecode u: 346 0 (0,0,0) 0 (0,0,0) 9 (0,0,9)
m: 31 0 (0,0,0) 0 (0,0,0) 0 (0,0,0)
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Table 3. Breakdown of static accesses with 2 or more possible target memory locations
(Table 2) according to the number of actual target memory locations. Results for the
profile analysis. NE stands for static accesses that are not executed. For instance, of the
59+1+24=84 source code lines with pointer de-references with two or more possible
targets in 186.crafty (Table 2), 59 are not executed, 1 has only a single target at run
time, 1 has two targets at run time, and 23 have three or more targets at run time. The
entries in white text with grey background are those that reflect actual ambiguity at
run time. The entries with light grey background are those were the static ambiguity
disappears at run time.

Uses with N actual targets Modifications with N actual targets
Application NE N = 1 N = 2 N > 2 NE N = 1 N = 2 N > 2

mcf 1 2 0 0 - - - -

crafty 59 1 1 23 17 0 0 5

parser 193 27 0 85 6 1 0 8

twolf 1 5 0 0 2 0 0 0

mpeg2dec 2 0 0 1 1 0 0 1

gsmdecode 0 9 0 0 - - - -

Table 4. Classification of dynamic accesses according to the difference with respect to
the static behavior and according to the cause for the difference

Behavior difference Number
Static Actual Cause of cases

2 or more targets Not executed - 282

2 targets Single target Pointer turns out to be always 6
(inclusive unk) initialized

Pointer arithmetic to index into 22
2 targets 3 or more targets array-like object

Use of arrays 2
Use of recursive data structures 5

Use of structure fields 2
3 or more targets Single target Pointer arithmetic to index into 9

array-like object
Control path alternative never taken 28

No change - - 95

Causes of Uncertainty. A closer inspection at the actual outcomes of the
ambiguous static references reveals that several factors contribute to the differ-
ence between the static and dynamic behaviors. Table 4 shows the causes for
this difference and the number of instances of each cause. The references here
correspond to all of those in Table 3.

From this table we can see two directions of variation: from fewer possible
targets of the static analysis to more actual targets at run time, and from more
possible targets of the static analysis to fewer actual targets at run time. There
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are two major factors affecting those variations. One is the use of pointer arith-
metic, which, interestingly, turns out to produce variations in both directions.
Another is the fact that some control paths are simply not taken at run time.
We also note that many variations come from the use of structures and arrays,
which may trow off the static analysis.

Variations with Input Sets. Finally, to assess the sensitivity of the run-
time results with respect to input data we repeated some of the experiments
with the SPEC benchmarks with the train input sets. Significant variability in
the run-time points-to behavior with different input data would indicate that
techniques that rely on profiling to refine the results of the static analysis are
likely to fail. Naturally, the converse is not necessarily true: little variability in
the run-time points-to behavior does not guarantee that profiling will work well
for all types of feedback-directed analysis. This occurs when the profile-directed
analysis is not directly driven by the points-to behavior, but by some other run-
time behavior. For instance, probabilistic pointer analysis [10] uses the frequency
of path execution to estimate the probability of points-to relations. Nevertheless,
little variability in the run-time points-to behavior is a good indication that
profile-directed analyses are likely to often work well.

Our experiments show very little to no variability in the run-time behavior of
the points-to relations between executions with the ref and train input sets. A
similar result was obtained in [15].

6 Related Work

Pointer analysis has been extensively studied and several algorithms have been
proposed. A comprehensive list of pointer analysis research and some discussion
on open problems can be found in [9]. The work in [21] introduced the flow-
and context-sensitive pointer analysis algorithm that is implemented in the tool
we used to gather the static points-to information. Despite not being as fast
and efficient as more recent summary-based pointer analysis algorithms (e.g.,
[18]), it is still reasonably fast and can handle non-trivial programs in practice.
Works that propose and evaluate new pointer analysis algorithms usually present
a quantitative breakdown of the number of possible target memory locations.
However, this often consists of only the static statistics (quite often just average
points-to set sizes) and does not include a quantification of the actual run-time
behavior.

Recently, a few works have attempted to investigate the impact of pointer
analysis on overall compiler optimization [3,4,7]. These works show that pointer
analysis is often critical to enable a large number of optimizations. They also in-
directly quantify the amount of run-time uncertainty and its impact on optimiza-
tions, but they do not provide a full quantification of such run-time uncertainty.

Researchers have since long attempted to extend static analysis with infor-
mation that better reflects the actual run-time behavior. One such approach is
probabilistic static analyses. The work in [19] developed a framework to integrate
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frequency, or probability, into a class of static dataflow analyses. The framework
uses control flow frequencies to compute the probabilities of execution of all
possible control flow paths and then uses this information to assign frequencies
of occurrence to dataflow facts. This framework has been extended and applied
to the problem of pointer analysis in [10], in which case the dataflow facts of
interest, for which a frequency of occurrence is sought, are the points-to rela-
tionships. That work also quantitatively compared the static points-to results
against run-time behavior, but this evaluation was limited to only portions of a
few simple benchmarks.

The closest work to ours is [15], which also systematically attempted to quan-
tify the run-time behavior of points-to sets. Our work differs from that work in
that we are interested in measuring the gap between the run-time behavior and
the best static analysis in order to assess the limitations of purely static analysis
and the potential benefits of different extended approaches (e.g., probabilistic
points-to heuristics). For this reason we use a context- and flow-sensitive algo-
rithm as the baseline for comparisons, instead of the scalable algorithms used in
that work, and we concentrate our evaluation on those references where the static
analysis computes points-to sets with more than one element. The work in [13]
is similar to [15], but in the context of reference analysis for Java programs, and
also used a variation for Java of a context- and flow-insensitive pointer analysis
algorithm.

Finally, there has been recently a significant interest in speculative compiler
optimizations based on imprecise dataflow and pointer analyses. The cost anal-
yses of such optimizations require a good knowledge of the expected run-time
behavior of dataflow and points-to relationships. Our work attempts to sys-
tematically evaluate the run-time behavior of points-to relationships and is an
important step in the way of developing effective cost analyses for speculative
compiler optimizations. Examples of speculative compiler optimizations requir-
ing knowledge of run-time behavior of points-to relationships include: [14], which
performs speculative partial redundancy elimination in EPIC architectures with
speculative loads; [2], which performs speculative parallelization; and [16], which
performs program slicing for a program understanding tool.

7 Conclusions

In this paper we attempted to systematically quantify the amount of uncer-
tainty due to may-alias points-to relations for two well-known classes of bench-
marks. Unlike previous works [13,15] that consider pointer analysis algorithms
that trade-off reduced precision for increased scalability, in this paper we are
interested in the amount of uncertainty that is intrinsic to the applications and
that defeat even flow- and control-sensitive pointer analysis.

We performed our evaluation applying a state-of-the-art context- and flow-
sensitive pointer analysis algorithm [21] to a collection of benchmarks from the
well-known SPEC integer [23] and the MediaBench [12] suites. Experimental
results show that for most of the benchmarks this static pointer analysis is very
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accurate, but for some benchmarks a significant fraction, up to 25%, of their
accesses via pointer de-references cannot be statically fully disambiguated. We
find that some 27% of these de-references turn out to access a single memory
location at run time, but many do access several different memory locations.
Further analysis shows that the main reasons for this are the use of pointer
arithmetic and the fact that some control paths are not taken. These results
suggest that some further compiler optimizations may be possible by exploiting
the cases where the uncertainty does not appear at run time, but for this to
happen it is necessary to improve the handling of pointer arithmetic and to
develop probabilistic approaches that capture the actual control flow behavior.
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Abstract. Understanding and improving the memory hierarchy behav-
ior is one of the most important challenges in current architectures. Ana-
lytical models are a good approach for this, but they have been tradition-
ally limited by either their restricted scope of application or their lack of
accuracy. Most models can only predict the cache behavior of codes that
generate regular access patterns. The Probabilistic Miss Equation(PME)
model is able nevertheless to model accurately the cache behavior for
codes with irregular access patterns due to data-dependent conditionals
or indirections. Its main limitation is that it only considers irregular ac-
cess patterns that exhibit an uniform distribution of the accesses. In this
work, we extend the PME model to enable to analyze more realistic and
complex irregular accesses. Namely, we consider indirections due to the
compressed storage of most real banded matrices.

1 Introduction

Memory hierarchies are essential in current architectures, since they cushion the
gap between memory and processor speed. Understanding and improving the
usage of caches is therefore absolutely necessary for obtaining good performance
both in sequential and parallel computers. There are several methods to study
the cache behavior. For example, trace-driven simulations [1] provide accurate
estimations of the cache behavior but the required simulations have a high com-
putational cost. Hardware counters [2] yield also accurate estimations but the
execution of the real code is needed and their use is limited to the architectures
where such registers exist. Both techniques provide a summarized characteri-
zation of the cache behavior and little insight about the observed behavior is
obtained. As a result, it is difficult to benefit from the information generated in
order to improve the cache performance.
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Analytical models of the source code [3,4] are the best suited approach to en-
able compilers to extract the behavior of the memory hierarchy and guide opti-
mizations based in this understanding. Models can obtain an accurate prediction
of the cache behavior based in the analysis of the source code to execute. Their
main drawback is their limited scope of application. Most of them are restricted
to codes with regular access patterns. There have been few attempts to model
irregular codes but they are either non-automatable [5] or quite imprecise [6].
The Probabilistic Miss Equation (PME) model is nevertheless able to analyze
automatically codes with irregular access patterns originated by data-dependent
conditionals [7] or indirections [8] with a reasonable accuracy. In the case of ir-
regular codes due to indirections, some knowledge about the distribution of the
values contained in the structure that produces the indirection is required in
order to achieve certain precision in the predictions. Until now the PME model
could only model with a reasonable accuracy indirect accesses that follow an
uniform distribution, that is, access patterns in which every position of the di-
mension affected by the indirection has the same probability of being accessed.
This model extension was fully automated and integrated in a compiler in [9].
In the present work the PME model is extended to be able to model automati-
cally and precisely an important class of non-uniform irregular access patterns.
Namely, we consider the indirections generated by the compressed storage of re-
alistic banded matrices, a very common distribution in sparse matrices [10]. Most
banded matrices are composed of a series of diagonals with different densities of
nonzeros. This way, we have developed a more general model that considers this
kind of distribution. The accuracy of this new extension will be evaluated using
well-known matrix collections.

The rest of the paper is organized as follows. Section 2 introduces the basics
of the PME model. Then, Section 3 discusses the extended scope of the model
and the problems that the modeling of non-uniformly distributed irregular ac-
cesses implies. The extension of the model to cover indirections using realistic
banded matrices is described in Section 4. Section 5 is devoted to the experi-
mental results. Section 6 briefly reviews the related work. Finally, in Section 7
the conclusions of our work are established.

2 Introduction to the Probabilistic Miss Equations
(PME) Model

Our model estimates the number of misses generated by a code studying the
behavior of each static reference R separately. Its strategy lies in detecting the
accesses of R that cannot exploit reuse in the cache, and the potential reuse
distances for those that can. The reuse distance is the interval in the execution
between two consecutive accesses to a same line. During the reuse distance other
data structures of the program can be accessed that can interfere in the cache
with the studied data structure. These reuse distances are measured in terms of
iterations of the loops that enclose the reference, and they generate interference
miss probabilities that depend on the cache footprint of the regions accessed
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during their execution. The estimation of the number of misses generated by the
reference is thus a summatory of its first-time accesses to lines (cold misses) and
the number of potential reuses it gives place to, multiplied by the interference
miss probability associated to their reuse distance (capacity and conflict misses).
This summatory is what we call a Probabilistic Miss Equation (PME), and it is
built analyzing the behavior of the reference in each nesting level i that encloses
it, beginning in the innermost one and proceeding outwards. In each level the
model builds a partial PME FRi that captures the information on the reuses
with reuse distances associated to this loop. Namely, the model calculates the
number of different sets of lines (SOLs) that the reference may access during the
execution of the loop, the potential reuses for those SOLs, with their correspond-
ing reuse distance, and also the probability those reuses actually take place. A
SOL is the set of lines that R can access during one iteration of the loop. In the
innermost loop that contains R, each SOL consists of one line. In outer loops,
it consists of the set of lines that R can access during a whole execution of the
immediately inner loop. Obviously, the first-time accesses to each SOL during
the execution of the loop i cannot exploit the reuse within the loop that FRi

captures, but this does not necessarily turn them into misses. These accesses
could enjoy reuses with reuse distances associated to outer loops, or to previous
loops, when non-perfectly nested loops are considered. As a result, every PME
FRi needs as input for its evaluation a representation Reg of the memory region
accessed since the immediately previous access to any of the SOLs that R refer-
ences in loop i. Notice that given this reasoning, the number of misses generated
by each first access to a SOL found in nesting level i is given by the evalua-
tion of FR(i+1), the PME for the immediately inner level, providing as input the
memory region Reg. Similarly, the number of misses generated by the attempts
to reuse SOLs in level i will be given by the evaluation of FR(i+1) providing as
input the memory region for the reuse distance that FRi estimates. This way,
FRi is built recursively in terms of FR(i+1).

The calculation of the memory regions accessed during a reuse distance is not
covered in this paper due to space limitations (see [8] for more information).
Still, it is worth to comment that the PME model maps the regions into a
mathematical representation consisting of a vector V of k+1 probabilities, where
k is the associativity of the cache, called area vector. The first element of this
vector, V0 is the probability a cache set has received k or more lines from the
region. Each element Vs of the remaining k − 1 elements of the area vector
contains the probability a given cache set has received exactly k − s lines. In the
calculation of this area vector the total cache size Cs, line size Ls and degree of
associativity K of the cache are taken into account.

In the innermost loop that contains a reference, the recurrence of PMEs fin-
ishes defining FR(i+1)(Reg) as the first component of the area vector associated
to Reg. The reason is that in the innermost loop containing R, Reg is the set of
regions accessed since the latest access to the line, and if the cache has a LRU
replacement policy, the condition for the attempt of reuse to fail is that k or
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DO I0 =1, N0
DO I1 =1, N1
...
DO IZ =1, NZ
...
A(fA1(IA1), ..., fAj(B(fB1(IB1))), ...)
...

END DO
...
END DO

END DO

Fig. 1. Nested loops with structures accessed using indirections

more different lines have been mapped to the set during the reuse distance. This
is exactly the probability represented by the first element of the area vector.

On the other hand, the PME for the outermost loop is evaluated using an
area vector such that its component 0 is one. The reason is that this vector will
only affect those accesses that cannot exploit any reuse within the code, which
means that they are the cold misses. Using an area vector V with V0 = 1 for
them ensures that the model will predict these accesses result in misses.

3 Scope of Application of the PME Model

Figure 1 shows the kind of codes covered by the PME model extended to cope
with irregular access patterns due to indirections [8]. It is a set of perfectly or
non-perfectly nested loops in which the number of iterations of the loops must
be known at compile-time and the indexing of the data structures must be done
using either affine functions of the loop indexes or across indirections. In [8] the
values generated by the indirection had to follow an uniform distribution, that is,
every position along the indexed dimension had to have the same probability of
being accessed. Unfortunately this situation is not very common. In this work we
relax this restriction for an important class of codes, namely those that operate
with sparse banded matrices, by means of new PMEs.

As for the hardware, the PME model is oriented to caches with LRU replace-
ment policy, allowing arbitrary sizes, block sizes and associativities.

3.1 Complexity of PMEs for Irregular Access Patterns

The equations for references with regular access patterns are relatively simple
because all the accesses that can result in a cold miss have an unique interference
probability, and a different unique interference probability is applied for the
accesses that can result in an interference miss, as all the reuses have the same
constant reuse distance.
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DO I=1,M
REG=0
DO J=R(I), R(I+1) - 1
REG = REG + A(J) * X(C(J))

ENDDO
D(I)=REG

ENDDO

Fig. 2. Sparse matrix-vector product Fig. 3. Banded sparse matrix

In an irregular pattern, every access has a set of different possible reuse dis-
tances, each with an associated interference probability. PMEs weight the pre-
diction of misses for each potential reuse distance with the probability that the
considered reuse attempt happens. If the distribution of the accesses is uniform,
the same set of interference regions can be used for all the accessed lines and they
all have the same probability of reuse associated to each reuse distance. When
this is not the case, that is, when different lines have different probabilities of
being accessed, a different set of interference regions must be calculated for each
accessed line, and different lines will have different probabilities of reuse for the
same reuse distance.

We will illustrate these ideas with the code in Figure 2, which performs the
product between a sparse matrix stored in CRS format [11] and a vector, and
which is part of SPARSKIT [12]. The CRS (compressed row storage) format
stores sparse matrices by rows in a compressed way using three vectors. One
vector stores the nonzeros of the sparse matrix ordered by rows, another vector
stores the column indexes of the corresponding nonzeros, and finally another
vector stores the position in the other two vectors in which the data of the
nonzeros of each row begins. In our codes we always call these vector A, C and R
respectively. The innermost loop of the code in Figure 2 performs the product
between vector X and row I of the sparse matrix. In this code reference X(C(J))
performs an irregular access on vector X only in the positions in which the matrix
row contains nonzeros. Let us suppose that the sparse matrix that is being
multiplied is a banded matrix like the one shown in Figure 3, in which the W = 5
diagonals that constitute its band have been labeled. During the processing of
each row of the sparse matrix, a maximum of W different elements of X will
be accessed. Each one of these W elements has a different probability of being
accessed that depends on the density of the corresponding diagonal in the banded
matrix. The set of elements eligible for access is displaced one position in the
processing of each new row. Also, each element of X will be accessed a maximum
of W times during the execution of the code, as a maximum of W rows may have
nonzeros in the corresponding column. Interestingly, the probability of access is
not uniform along those W rows. For example, every first potential access during
the processing of this matrix in this code will take place for sure, while every
second potential access to an element of X will happen with a probability of 30%.
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This is because all the positions in the fifth diagonal (d5) keep nonzeros, while
in the fourth diagonal (d4) of the band 3 out of its 9 positions keep nonzeros,
which is a density of nonzeros of 30%

The situation depicted in our example is clearly more common than the one
modeled in our previous work [8], in which we only considered irregular ac-
cess patterns which had an uniform probability of access for each element of
the dereferenced data structure, and in which such probability did not change
during the execution of the code. It is very usual that the diagonals of banded
matrices have different densities, with the distribution of the nonzeros within
each diagonal being relatively uniform. As a result, we have extended our model
to cope with this important class of matrices, which enables to model automati-
cally and accurately the cache behavior of codes with irregular access patterns in
the presence of a large number of real sparse matrices, as the evaluation proves.
We will characterize the distribution of nonzeros in these matrices by a vector �d
of W probabilities where di contains the density of the i − th diagonal, that is,
the probability a position belonging to the i − th diagonal of the band contains
a nonzero. This extension can be automated using a compiler framework that
satisfies its information requirements, such as the one used in [9]. The vector
�d of diagonal densities is the only additional information we need in this work
with respect to [9]. These values are obtained from an analysis of the input data
that can be provided by the user, or obtained by means of runtime profiling.

4 PME Model Extension for Non-uniform Banded
Matrices

As explained in Section 2, the PME model derives an equation FRi that calcu-
lates the number of misses for each reference R and nesting level i. This PME
is a function of input memory regions calculated in outer or preceding loops
that are associated to the reuses of the sets of lines (SOLs) accessed by R in
loop i whose immediately preceding access took place before the loop began its
execution. The uniformity of the accesses in all our previous works allowed to
use a single region Reg for this purpose, that is, all the SOLs had the same reuse
distance whenever a loop began. This happened because all the considered lines
had uniform probabilities of access, and thus they also enjoyed equal average
reuse distances and miss probabilities. The lack of uniformity of the accesses
makes it necessary to consider a separate region of interference for each SOL.
Thus we extend the PMEs to receive as input a vector �Reg of memory regions.
The element Regl of this vector is the memory region accessed during the reuse
distance for what in this level of the nest happen to be first access to the l-th
SOL that R can access. Another way to express it is that Regl is the set of
memory regions that could generate interferences with an attempt to reuse the
l-th SOL right when the loop begins its execution. This way, �Reg has as many
elements as SOLs defines R during the execution of the considered loop.

The shape of PME FRi depends on the access pattern followed by R in
loop i. The PME formulas for references following a regular access pattern and
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references following irregular access patterns due to indirections with a uniform
distribution have been presented in [8]. A simple extension was also proposed
in [8] to support accesses generated by the processing of banded matrices with
an uniform distribution of the entries inside the band by applying small modifi-
cations to the formulas of indirections with uniform distributions. This section
contains a description of the formulas we have developed for references with ir-
regular access patterns generated by indirections due to the compressed storage
of banded matrices in which the distribution of non-zeros within the band is
not uniform. In the remaining, the array accessed using an indirection will be
known as the base array while the array that is used to generate the values of
the index of the indirection will be known as the index array. A different formula
will be applied depending on whether the values read from the index array are
known to be monotonic or not. They are monotonic when, given two iterations
of the current loop i and j and being f(i) and f(j) the values generated by the
index array in these iterations, for all i ≤ j then f(i) ≤ f(j) or for all i ≤ j
then f(i) ≥ f(j). When the index values are known to be monotonic a more
accurate estimation can be obtained because we known that if our reference R
reuses a SOL of the base array in a given iteration, this SOL is necessarily the
one accessed in the previous iteration of the loop.

4.1 PME for Irregular Monotonic Access with Non-uniform Band
Distribution

If we assume that the nonzeros within each row have been stored ordered by their
column index in our sparse matrix in CRS format, reference X(C(J)) generates
a monotonic irregular access on the base array X during the execution of the
innermost loop in Figure 2. Let us remember that the index array C stores the
column indexes of the nonzeros of the row of the sparse matrix that is being
multiplied by X in this loop.

The general formula that estimates the number of misses generated by a
reference R in nesting level i that exhibits an irregular monotonic access with a
non-uniform band distribution is

FRi( �Reg) =

(
LRi−1∑

l=0

pi(lGRi)FR(i+1)(Regl)

)

+

(
W∑

l=1

dl −
LRi−1∑

l=0

pi(lGRi)

)

FR(i+1)(IntRegRi(1))

(1)

The interference region from the outer level is different for each set of lines (SOL)
accessed and it is represented as a vector �Reg of LRi different components, where
LRi is the total number of different SOLs of the base array A that R can access
in this nesting level. LRi is calculated as �W/GRi� being W the band size and
GRi is the average number of positions in the band that give place to accesses
of R to a same SOL of the base array A. This value is calculated as �Ls/SRi�,
being SRi = αRj ·dAj where j is the dimension whose index depends on the loop
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variable Ii through the indirection; Ls is the cache line size; αRj is the scalar
that multiplies the index array in the indexing of A, and dAj is the cumulative
size1 of the j-th dimension of the array A referenced by R.

If we consider reference X(C(J)) in Figure 2, while processing the matrix in
Figure 3, with a cache line size Ls = 2, in the innermost level dA1 = 1 and
αR1 = 1. Each GRi = 2 consecutive positions in the band give place to accesses
to the same SOL of X. Consequently, since W = 5, the number of different SOLs
of X accessed would be LRi = �5/2� = 3.

The vector of probabilities �pi has W positions. Position s of this vector keeps
the probability that at least one of the diagonals s to s+GRi − 1 has a nonzero,
that is, it is the probability they generate at least one access to the SOL of the
base array that would be accessed if there were nonzeros in any of these GRi

diagonals. Each component of this vector is computed as :

pis = 1 −
min(W,s+GRi−1)∏

l=s

(1 − dl) (2)

Let us remember that �d is a vector of W probabilities, ds being the density of
the s − th diagonal in the band as it is reflected in Figure 3.

In Formula 1 each SOL l of the base array that R can access in nesting level i
has a probability pi(lGRi) of being accessed, where lGRi is the first band that can
generate accesses to the l−th SOL. The miss probability in the first access to each
SOL l depends on the interference region from the outer level associated to that
SOL Regl. The remaining accesses are non-first accesses during the execution of
the loop, and because the access is monotonic, their reuse distance is necessarily
on iteration of the loop. As a result, the interference region will be IntRegRi(1),
the memory region accessed during one iteration of loop i that can interfere
with the reuses of R. The number of potential reuses of SOLs by R in the loop
is calculated as

∑W
l=1 dl −

∑LRi−1
l=0 pi(lGRi), where the first term estimates the

number of different accesses generated by R during the processing of a row or a
column of a band while the second term is the average number of different SOLs
that R accesses during this processing.

4.2 PME for Irregular Non-monotonic Access with Non-uniform
Band Distribution

A data structure stored in a compressed format, such as CRS [11], is typically
accessed using an offset and length construction [13]. In this situation, very
common in sparse matrix computations, the knowledge that the values accessed
across the indirection follow a banded distribution can be used to increase the
accuracy of the prediction using a specific formula. For example, in the code of
Figure 2 the reference X(C(J)) accesses the structure X using an offset and length
construction. The values generated by the index array C in the innermost loop
1 Let A be an N-dimensional array of size DA1 × DA2 × . . . DAN , we define the cumu-

lative size for its j-th dimension as dAj =
∏j−1

i=1 DAi
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are monotonic but the values read across different iterations of the outermost
loop are non-monotonic because a different row is processed in each iteration of
this loop. When this situation is detected and we are in the presence of a banded
matrix, the behavior of the reference in the outer loop can be estimated as

FRi(RegIn) = NiFR(i+1)( �Reg(RegIn)) (3)

In this formula the Ni iterations in the current nesting level are considered to re-
peat the same behavior. Although the W −1 first and last iterations have a differ-
ent behavior than the others as for example their band is not W positions wide, we
have checked experimentally that the lost of accuracy incurred when not consid-
ering this is not significant. This is expected, as usually the band size W is much
smaller than Ni, which is the number of rows or columns of the sparse matrix.

An average interference region for each one of the LRi SOLs accessed in the
inner level must be calculated. This average interference region takes account of
all the possible reuses that can take place with respect to a previous iteration
of the current loop depending on the different possible combinations of accesses
to the studied base array. The interference region associated with each possible
reuse distance must be weighted with the probability an attempt of reuse with
this reuse distance happens before being added in the computation of the average
interference region. The expression that estimates the average interference region
associated to the l − th SOL that R can access in this loop is,

Regl(RegIn) =
W∏

z=lGRi+1

(1 − piz)(RegIn ∪ IntRegRi(W − lGRi − 1)+

W∑

s=lGRi+1

pis

(
s−1∏

z=lGRi+1

(1 − piz)

)

IntRegRi(s − lGRi)

(4)

In the previous section we saw that lGRi is the first diagonal that could generate
an access to the l-th SOL in a given iteration and pi(lGRi) the probability of
accessing that SOL during the processing of a row or column of the matrix. As
the band is shifted one position to the right every row, in general, the probability
that the same SOL of the base array is accessed by R m iterations before the
current iteration is pi(lGRi+m). As a result,

∏W
z=lGRi+1(1 − piz) calculates the

probability that the l − th SOL has not been accessed in any previous iteration
of this loop. In this case the interference region is equal to the union of the
input region from the outer level and the region associated to the accesses that
take place in the W − lGRi − 1 previous iterations. The union of two regions is
performed as the union of their associated area vectors. The addition of a region
to the average region weighted by its corresponding probability is performed
adding the area vector of the region weighted by the corresponding probability
to the vector that represents the average region. Regarding the reuses within loop
i, the probability that the last access to a SOL took place exactly m iterations
ago is calculated multiplying the probability of being accessed in that iteration
pi(lGRi+m) by the product of the probabilities of not being accessed in any of the
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DO I= 1,M
DO K= R(I), R(I+1) - 1
REG0=A(K)
REG1=C(K)
DO J= 1,H

D(I,J)=D(I,J)+REG0*B(REG1,J)
ENDDO

ENDDO
ENDDO

Fig. 4. Sparse Matrix - Dense Matrix (IKJ)

iterations between that iteration and the current iteration
∏lGRi+m−1

z=lGRi+1 (1 − piz).
The interference region associated to this attempt of reuse will be the region
covered by the accesses that take place in those m iterations of the current loop.
In this equation LRi = LRj , GRi = GRj and the vector �pi = �pj , being j the
innermost nesting level of the offset and length construction.

5 Experimental Results

The validation was done applying by hand the PME model to 5 kernels of increas-
ing complexity : an sparse-matrix vector product, see Figure 2, an sparse-matrix
dense-matrix product with IKJ (see Figure 4), IJK and JIK order, and a sparse-
matrix transposition (omitted due to space limitations). The three sparse-matrix
dense-matrix products contain an access to a bidimensional array that contains
an indirection in the first dimension, thus they illustrate the correctness of our
model when conflicts between columns appear. The sparse-matrix transposition
code exhibits particularly complex access patterns, as it has several loop nests with
several nesting levels, and it involves references with up to 4 levels of indirection.

The model was validated comparing its predictions with the results of trace-
driven simulations. The input data set were the 177 matrices from the Harwell-
Boeing [14] and the NEP [15] sets that we found to be banded or mostly banded
(a few nonzeros could be outside the band). These matrices represent 52% of the
total number of matrices contained in these collections.

The matrices tested are a heterogeneous test set of input data. Some matrices
have all their entries uniformly spread along a band, like the AF23560 matrix in
Figure 5(a). The LNSP3937 matrix shown in Figure 5(b), has all its values spread
along a band of the matrix but not uniformly. Finally, there are some matrices
like CURTIS54, shown in Figure 5(c), where not all the values are spread along
a band but a significant percentage of them are limited to this area.

Table 1 summarizes data giving an idea of the accuracy of the model. The
results were obtained for the benchmarks performing 1770 tests considering 10
different cache configurations of each one of the 177 matrices of the Harwell-
Boeing and the NEP sets. For each matrix and cache configuration 10 different
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(a) AF23560 M=N=23560
nnz=484256 W=609
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(b) lnsp3937 M=N=3937
nnz=25407 W=168
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(c) CURTIS54 M=N=54
nnz=291 W=43

Fig. 5. Examples of matrices in the Harwell-Boeing set, M and N stands for the matrix
dimension, nnz is the number of nonzeros and W is the band size

Table 1. Average measured (MRSim) miss rate, average typical deviation (σSim) of
the measured miss rate, average predicted (MRMod) miss rate and the average value
ΔMR of the absolute difference between the predicted and the measured miss rate in
each experiment

Code MRSim σSim
Uniform Bands Model Non-Uniform Bands Model

MRMod ΔMR MRMod ΔMR

SPMXV 14.00% 0.08% 15.57% 1.80% 14.45% 0.70%

SPMXDMIKJ 27.66% 2.02% 45.62% 26.81% 28.85% 4.19%

SPMXDMIJK 8.62% 0.29% 27.48% 17.23% 10.91% 3.10%

SPMXDMJIK 7.87% 0.43% 10.63% 3.23% 8.36% 0.78%

TRANSPOSE 10.31% 0.33% 11.38% 3.55% 9.52% 3.23%

simulations were performed changing the base address of the data structures
involved in each code. In the case of the three orderings of the sparse-matrix
dense-matrix product the number of columns of the dense matrix is always a
half of its number of rows. The cache configurations have cache sizes (Cs) from
16 KBytes to 2 MBytes, line sizes (Ls) from 16 to 64 bytes and associativity
degrees (K) 1, 2, 4 and 8. Column MRSim contains the average value of the
miss rate simulated in the set of experiments. Column σSim is the average typi-
cal deviation of the miss rate obtained in the 10 simulations performed changing
the base address of the data structures. The table compares the precision of
the predictions achieved using the simple model for banded matrices assuming
an uniform distribution of nonzeros introduced in [8] and the improved model
presented in this paper. The table shows for each model, MRMod the average
value of the miss rated predicted, and ΔMR the average value of the absolute
value ΔMR of the difference between the predicted and the measured miss rates
for each experiment. We use absolute values, so that negative errors are not
compensated with positive errors. These results show that the improved model
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(a) Simulation and modeling for a typical level 1 cache configuration

(b) Simulation and modeling for a typical level 2 cache configuration

Fig. 6. Comparison of the miss rates obtained by the simulation, the uniform bands
model and the non-uniform bands model during the execution of the sparse matrix-
dense matrix product with IJK ordering for several real matrices

is much mode accurate in the presence of real heterogeneous input banded ma-
trices than the original model. The small values of σSim point out that the base
addresses of the data structures play a minor role in the cache behavior.

Figure 6 contains a comparison of the miss rate obtained in the simulation,
the miss rate obtained by the uniform bands model and the miss rate obtained
by the non-uniform bands model during the execution of the sparse matrix-dense
matrix product with IJK ordering using some matrices from the Harwell-Boeing
and the NEP collections. The number of columns of the dense matrix used
in the multiplication was always one half of the number of rows of the sparse
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Table 2. Memory hierarchy parameters in the architectures used (sizes in Bytes)

Architecture
L1 Parameters L2 Parameters L3 Parameters

(Cs1 , Ls1 , K1, Cost1) (Cs2 , Ls2 , K2, Cost2) (Cs3 , Ls3 , K3, Cost3)

Itanium 2 (16K,64,4,8) (256K,128,8,24) (6MB,128,24,120)

PowerPC 7447A (32K,32,8,9) (512K,64,8,150) -

matrix. Figure 6(a) shows the results obtained using a typical level 1 cache
configuration, while a typical level 2 cache configuration is used in Figure 6(b).
The cache configuration parameters are: Cs the total cache size, Ls the line size
and K the associativity degree. The non-uniform bands model almost always
estimates more accurately the miss rate. The difference is bigger in the level
2 cache configuration. The reason for the poor estimations obtained using the
uniform bands model is that in matrices with wide bands but in which most
of the values are concentrated in a few diagonals, there is a lot of reuse that
is not captured by the uniform bands model, as it assumes that the entries are
uniformly spread along all the diagonals in the band.

The accuracy of the model and its low computational cost, always less than
1 second in a 2GHz Athlon, makes it very suitable for driving compiler opti-
mizations. As a simple experiment aimed to prove its ability to help optimize
codes with irregular access patterns due to indirections, we used its predictions
to choose the best loop ordering for the sparse matrix-dense matrix product in
terms of the lowest number of CPU detention cycles caused by misses in the
memory hierarchy. The prediction is based on a cost function consisting of the
addition of the number of misses predicted in each cache level of a real system,
weighted by the miss latency for that level. Two very different systems were used
for this experiment: an Itanium 2 at 1.5GHz and a PowerPC 7447A at 1.5GHz.
Table 2 contains the configurations of the different cache levels in the considered
architectures, using the notation (Cs, Ls, K) presented in Figure 6. A new pa-
rameter, Costi the cost in CPU cycles of a miss in the level i, is also taken into
account. Notice that the first level cache of the Itanium 2 does not store floating
point data; so it is only used for the study of the behavior of the references to
arrays of integers. Also, the PowerPC does not have a third level cache.

Our model always chose the JIK order (see Table 1) in both architectures. The
tests were performed using all the banded matrices from the Harwell-Boeing and
the NEP collections, in multiplications with dense matrices with 1500 columns.
These tests agreed with the predictions of the model: the JIK version was the
fastest one in 95.9% and 99.7% of the experiments in both architectures. The
codes were compiled using g77 3.4.3 with -O3 optimization level.

6 Related Work

Most of the analytical models found in the bibliography are limited to codes
with regular access patterns [4,3,16].



218 D. Andrade, B.B. Fraguela, and R. Doallo

The modeling of codes with irregular access patterns has been developed ad-
hoc for specific pieces of code. For example, Fraguela et al. [5] proposed a model
that obtained a very accurate estimation with a low computation cost but the
proposed model was not automatable. In [17], an ad-hoc approach was proposed
but it was limited to direct mapped caches and it did not consider the interaction
between different interleaved access patterns.

Some approaches tried to model this kind of codes automatically. Cascaval’s
indirect accesses model [6] is integrated in a compiler framework, but it is a
simple heuristic that estimates the number of cache lines accessed rather than
the real number of misses. For example, it does not take into account the dis-
tribution of the irregular accesses and it does not account for conflict misses,
since it assumes a fully-associative cache. As a result it suffers from limited ac-
curacy in many situations. The modal model of memory [18] requires not only
static analysis but also runtime experimentation (potentially thousands of ex-
periments) in order to generate performance formulas. Such formulas can guide
code transformation decisions by means of relative performance predictions, but
they cannot predict code performance in terms of miss rates or execution time.
The validation uses two very simple codes and no information is given on how
long it takes to generate the corresponding predictions.

7 Conclusions

We have proposed an automatable extension for the modeling of indirect accesses
due to the compressed storage of banded matrices. The model has been validated
using codes of increasing complexity and real matrices from the NEP [15] and the
Harwell-Boeing [14] collections. Our experiments show that the model reflects
correctly the cache behavior of the codes with irregular access patterns due
to the operation on banded matrices found in these collections. Such matrices
account for 52% of the matrices that these collections contain. This extension
achieves higher degrees of accuracy than a previous model of the authors which
considered only banded matrices with an uniform distribution of nonzero entries.
Besides, the time required to apply the model was less than 1 second in all the
performed experiments.

It has been shown that our model can be used as a powerful tool for guiding
optimization processes, performing successful experiments in two very different
architectures, an EPIC processor Itanium 2 and a superscalar PowerPC 7447A.
As future work, we plan to apply the model automatically over a wider range of
different codes and to use the model as a guide in more optimization processes.
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Abstract. This paper presents a profiling-based analysis to determine
the traversal orientation of link-based tree data structures. Given the
very-high memory-hierarchy latencies in modern computers, once the
compiler has identified that a pointer-based data structure represents
a tree, it would be useful to determine the predominant orientation of
traversal for the tree. Optimizing compilers can implement the static
shape analysis proposed by Ghiya and Hendren to determine if a linked
data structure is a tree [10]. However no techniques have been reported
to enable an optimizing compiler to determine the predominant traversal
orientation of a tree. This paper describes an analysis that collects data
during an instrumented run to determine if the traversal is predominantly
breadth-first or depth-first. The analysis determined, with high accuracy,
the predominant orientation of traversal of trees in programs written by
us as well as in the Olden benchmark suite. This profile-based analysis is
storage efficient — it uses only 7% additional memory in comparison with
the non-instrumented version of the code. Determining the predominant
orientation of traversal of a tree data structure will enable several client
optimizations such as improved software-based prefetching, data-storage
remapping and better memory allocators.

1 Introduction

Data locality is critical for performance in modern computers. A fast proces-
sor’s time is wasted when programs with poor data locality spend a significant
amount of time waiting for data to be fetched from memory [1,12]. Although
optimal cache-conscious data placement is NP-hard and difficult to approximate
well [17], researchers have developed many techniques that reduce memory stalls
in pointer-chasing programs [2,6,7,8,9,14]. Some improvements to data locality
require changes to the source code [7,11,18,16]. An alternative is for an opti-
mizing compiler to automatically perform data transformations that improve
locality [2,9,14,20].

Most published pointer-chasing optimizations do not specifically address the
problem of improving data locality when the pointer-based data structure repre-
sents a tree. This paper presents a profile-based tree-traversal orientation anal-
ysis that determines the primary orientation of traversal for each pointer-based
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tree in a program. The results of this analysis can be used by several client op-
timizations to improve locality beyond what is possible with current techniques.
This analysis neither requires changes to the source code nor requires significant
alterations to existing compilers.

Often, dynamically allocated structures are not allocated in the same order in
which they are referenced. For instance the allocation order may be determined
by the organization of a data file while the traversal order is determined by
the algorithm that uses the data. Data structures may exhibit poor locality
due to the structure’s design or due to an initial implementation that does not
consider locality [11,16]. As a result, the nodes of a linked data structure may be
scattered throughout the heap. For example, assume an application containing
a binary tree with 15 nodes, allocated into consecutive memory locations with a
breadth-first orientation as shown in Figure 1.

Fig. 1. A binary tree with 15 nodes. The node number indicates the order in which
the node was allocated.

If the application accesses these nodes in a depth-first orientation1 it will ex-
hibit relatively poor spatial locality and likely result in degraded performance.
On the other hand, if the data had been allocated in a depth-first fashion, then
the traversal would have been a series of accesses to adjacent locations in mem-
ory. A regular access pattern would enable latency-hiding techniques, such as
prefetching, to greatly reduce the number of memory stalls.

Optimizing compilers are better able to transform programs to improve data
locality when enough information about the data access pattern is available.
For instance, if a compiler could determine the traversal order of the tree in the
example above, it could automatically replace a standard memory allocator with
a custom memory allocator that would place tree nodes with strong reference
affinity close to each other in memory.

There are many ways of traversing and accessing data stored in trees. Most
of these fall into two general categories: breadth-first and depth-first traversals.

1 Two possible depth-first access sequences are 〈1, 2, 4, 8, 9, 5, 10, 11, 3, 6 ,12, 13, 7,
14, 15〉 and 〈1, 3, 7, 15, 14, 6, 13, 12, 2, 5, 11, 10, 4, 9, 8〉.
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If the predominant traversal orientation of a tree-based data structure is known,
the compiler can reduce memory stalls caused by poor data locality. Sections 2
and 3 of this paper present a method to determine the types of traversals taking
place in a program, while minimizing the amount of memory used to make this
determination. This profile-based analysis compiles an instrumented version of
an application, and executes the profiled code. After the program execution is
finished, a value in the range [−1, 1] is returned for each tree-based structure,
which indicates the primary orientation of the tree traversal in the profiled code.

In order to determine the effectiveness of this analysis, we wrote several pro-
grams containing tree-based data structures with known traversal orientations.
We also ran the analysis for several of the programs that comprise the Olden
benchmark suite. The results of these tests are presented in Section 4. For all
the tests performed, the analysis successfully identified the predominant orien-
tation of traversal of the tree-based data structured. In addition, the amount of
memory used by the profiled code, and the runtime of the code, were evaluated.
In general, the instrumentation required only 7% more memory on top of the
program’s normal memory requirements. The instrumented application require
approximately six times longer to execute than the non-instrumented version of
the program. Given that training runs are typically executed once and offline,
the longer execution time is acceptable in most domains.

A large number of client optimizations, in existing compilers or proposed in
recent literature, could make use of the information provided by our analysis. In
addition to the custom-memory allocator mentioned above, this analysis would be
useful with many prefetching and structure-field reordering techniques. Section 5
surveys techniques that are possible clients to our analysis.

2 Overview of the Tree-Traversal Orientation Analysis

The tree-traversal orientation analysis uses an optimizing compiler to automat-
ically instrument a program at each dereference of a tree node. For modularity,
this instrumentation is a single function call to a library, linked with the com-
piled code. Each memory access is classified and used to create a orientation
score for the tree.

In the context of this work, a tree is any linked data structure where there is
at most one path between any two nodes. A traversal is any method for visiting
all the nodes of a tree.

In a breadth-first traversal, all of the nodes on one level of a tree are visited
before the traversal moves to the next level. Any memory access deemed to be
part of a breadth-first traversal is referred to as a breadth-first access. Breadth-
first traversals are often implemented using queues that contain the nodes that
still need to be visited. As a node is processed, its children are added to the
queue of nodes to be processed, ensuring that one level of the tree is traversed
in its entirety before any nodes on the next level are visited. Conversely, in a
depth-first traversal once a node is visited, one of its children is selected and the
traversal continues from that child. Only when the subtree rooted by that child
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is fully processed is another child of the original node processed. Any memory
access deemed to be part of a depth-first traversal is referred to as a depth-first
access.

The instrumentation function updates an orientation score of the correspond-
ing tree at each access. If the access is characterized as a breadth-first access, −1
is added to the orientation score. When a depth-first access occurs, +1 is added to
the orientation score. Linked list traversals can be considered both depth- and
breadth-first. To ensure that list traversals are identified, we classify accesses
from a 1-ary node to its only child as depth-first 2. A breadth-first traversal
over a tree containing nodes with only one child will still appear breadth-first,
as the traversal will still move among the nodes on every level of the tree, and
not directly to the child of a 1-ary node. Finally, an access which cannot be clas-
sified as either breadth- or depth-first will force the score closer to 0 by either
adding or subtracting 1 from the score. After all accesses have been analyzed,
the orientation score is divided by the number of accesses, and returns a traver-
sal orientation score in the range [−1, 1] for each tree. A tree with orientation
score of −1 is always traversed in breadth-first order. A score of +1 indicates
pure depth-first traversal, and a score of 0 indicates that there is no predominant
order of traversal.

3 Implementation of the Tree-Traversal Orientation
Analysis

The implementation of this analysis has two primary objectives: (1) require no
additional effort on the part of the programmer; (2) require minimal alterations
to the compiler using the analysis. We modified the Open Research Compiler
(ORC) [5] to instrument programs with calls to our Tree Analysis Library (TAL).
The TAL performs all of the analysis, using the memory access information
passed to it by the instrumented program. All of the computation required for
the analysis is done within the instrumented code.

The TAL only analyzes trees that are represented by recursive data structures
which are referenced by pointers and where pointers to children are in separate
fields. For instance, TAL does not handle (1) trees where the children of a node
are stored in a dynamically allocated array of pointers; and (2) trees in which
the pointers to children are in fields that are unions or of type void.

In order to analyze the traversal orientation of trees, the compiler has to be
able to identify the structures that represent trees in the first place. Fortunately,
Ghiya and Hendren [10] have devised a static shape analysis that can determine
if a pointer points to a tree data structure. Ghiya and Hendren’s analysis would
also allow the compiler to identify disjoint data structures using the interfer-
ence matrix created by their algorithm.Ghiya and Hendren’s analysis may prove
conservative and not identify all possible tree-like data structures. Thus, the pro-
grammer can supplement Ghiya and Hendren’s analysis with annotations. Either
2 Double-linked lists are considered 1-ary nodes because one of the pointers will be

identified as a parent pointer.
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the interference matrix in Ghiya and Hendren’s analysis or Lattner and Adve’s
Data Structure Analysis can be used to identify disjoint data structures [13].
Once Ghiya and Hendren’s algorithm has been run, the symbol table can be
annotated with the correct information as to whether or not a pointer points to
a tree-like data structure. In the interest of time, for the experimental evaluation
presented in this paper instead of implementing Ghiya and Hendren’s analysis,
we annotated the source code of the benchmarks with a special label to identify
the data structures that represent trees.

Our modified version of the ORC adds instrumentation for each dereference
to a tree structure, t, that calls the analysis function in the TAL with (1) the
address of t, (2) all of the recursive fields of t linking node t to nodes c1 . . . cn

and (3) a unique number to identify disjoint data structures. The TAL keeps a
stack of choice-points for each tree. These choice-points are used to determine if
a memory access can be considered part of a depth-first traversal. A choice-point
structure contains the memory address of a node in the tree, t, and the memory
addresses of all n children, c1 . . . cn.

Let cptop be the address of the choice-point on top of the choice-point stack;
cplow be the address of a choice point below cptop in the choice-point stack; and
t be athe current memory access to a tree node. t is considered depth-first if and
only if:

1. cptop is equal to t; OR
2. a child ci of cptop is equal to t; OR
3. there exists a lower choice point in the stack, cplow, such that cplow or a child

of cplow is equal t AND all of the choice-points on the stack above cplow have
been visited.

If case (2) identifies a depth-first access then a new choice-point, representing
node t having all of the children c1 . . . cn of t, is pushed onto the stack. If a new
choice-point is to be added to the stack, special care must be taken when copying
the addresses of child pointers into the new choice-point. Tree structures often
contain pointers to parent nodes. The addresses in these pointers must not be
added to the new choice-point as children of the tree node t. To identify parent
pointers the TAL compares the addresses of each possible child ci in t, with the
addresses stored in the choice points on the stack. If case (3) identifies a depth
first access then all of the choice-points up to cplow are popped off the stack and
we leave the number of accesses and score unchanged.

To identify breadth-first searches the TAL maintains an open list and a next
list. Both lists are implemented as double-ended bit vectors. When a memory
access m occurs, if m is in the open list, then m is a breadth-first access. The
children of m are added to the next list, and m is removed from the open list.
When the open list is exhausted, the next list becomes the open list and the
next list is emptied. The initial entry in the list is set at bit 0. Each bit in the
bit vector represents a byte in the address space. Each new entry is added to the
vector based upon its distance from the initial entry. If the points-to analysis
can identify that all of the objects pointed to by the pointer are of the same
type, Lattner and Adve refer to this as being type-homogeneous, then size of
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the bit representation of the open list may be further reduced by using a bit to
represent each structure instead of each byte.

A program may have more than one traversal of the same tree occurring simul-
taneously, or the orientation of traversal of a tree may change during execution.
To deal with this situation, the TAL maintains a list of active data structures.
This list contains multiple choice-point stacks and pairs of open and next lists.
For instance, if a memory access m is not considered depth-first for any active
choice-point stack, a new choice-point stack is created representing a depth-first
traversal rooted at m. New choice-point stacks are created even if the access was
classified as being breadth-first.

The data structures in the active list are either choice-point stacks or pairs
of open/next lists. An access matches a choice-point stack if it is deemed to be
a depth-first access by that choice-point stack. Conversely, the access matches a
pair of open/next lists if it is deemed to be breadth first by those lists.

Whenever a memory access to a tree node occurs, this access is checked against
all the data structures in the active list. A reference counter is associated with
each data structure. If the access does not match a data structure, the reference
counter of that structure is incremented. When the access matches a data struc-
ture, the data structure reference counter is reset to zero. If the reference counter
of an structure reaches a threshold (16 in our implementation) the structure is
removed from the active list and its space is reclaimed.

3.1 Time and Space Complexity

In the interest of readability, the analysis for the identification of depth-first and
breadth-first accesses will be considered separately. In this analysis, we consider
a tree containing V nodes.

First we consider the space and time complexity of identifying a depth-first
memory access, assuming tree nodes have a minimum degree of b. The num-
ber of entries in a choice-point stack is bounded by O(logb V ). The bound on
the number of nodes in the choice-point stack stems from the fact that before a
choice-point representing node t is pushed onto the stack, the choice-point repre-
senting the parent of t is on the top of the stack. To consider the time complexity
of determining if a memory access is a depth-first access we let cptop be the node
on the top of the choice-point stack. In the worst case, a memory access is not
to cptop, not to any children of cptop, nor is it to an ancestor of cptop and thus
all entries in the stack have to be checked. It takes O(b) operations to check the
children of cptop, and O(logb V ) operations to check all ancestors of cptop on the
stack. In addition, for an access, a new choice-point may be added, or several
may be removed from the stack, which also is O(b) or O(logb V ) depending on
which of those values is larger. Thus, the worst case total time complexity is
O(b + logb V ) per memory access.

In the breadth-first analysis, the size of a double-ended vector used is largely
determined by the arrangement of the nodes in memory. We assume that nodes
are located relatively close together in memory, and thus the size of the vector
is not significant. This assumption was confirmed in the experimental results
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performed on the system. If the memory allocator packs the structures contigu-
ously then the breadth-first traversal uses O(V ) memory because both the open
list and the next list may grow proportionally to the number of nodes in the
largest level of the tree data structure being profiled. A lookup in the double-
ended vector takes O(1) time. Insertions into the vector may require growing the
vector, which will take time proportional to the new size of the vector.

Several active lists and stacks may be maintained during the analysis. The
maximum value that the reference counters for the choice point stacks and open
and next lists are allowed to grow to will limit the number of active structures in
the system at any point in time. Thus, the maximum number of active structures
can be considered constant, and is independent of the size of the tree. As a result,
the fact that multiple lists and stacks are maintained does not affect the order
complexity of the analysis.

4 Experimentation

To evaluate the accuracy of the analysis we ran a series of experiments on pro-
grams we designed to test the tree-orientation analysis as well as on the Olden
benchmark suite. Our analysis was able to correctly identify the expected traver-
sal orientation in all the benchmarks and required only 7% additional memory
on average.

4.1 Experimental Setup

In order to determine both the accuracy of the tree-orientation analysis, and its
use of both memory and time, tests were run on fifteen tree-based programs. We
created a collection of programs to determine if the analysis correctly identifies
standard tree traversals. In addition, we applied the tree-traversal orientation
analysis to several of the Olden benchmarks.

For each program tested, the code was compiled both with and without the
profiling code inserted. The maximum amount of memory used, and the ex-
ecution times of both the instrumented and non-instrumented programs were
calculated. The value(s) returned by the analysis inside the profiled code were
also recorded. Using these values, it is possible to demonstrate the effectiveness
of the analysis in properly determining tree traversals while demonstrating that
the profiled code does not use significantly more memory than the original code.

All of the experiments were performed using the Open Research Compiler
version 2.1. Instrumentation was added to the code by making minor modifica-
tions to the ORC to add function calls to the program wherever a tree pointer
was dereferenced. The analysis library described in Section 3 was then linked
with the instrumented code. The machine used for the experiments had a 1.3
GHz Itanium2 processor with 1 GB of RAM.

4.2 Programs with Known Traversal Orientation

Seven programs were written to test the effectiveness of the analysis. Each of these
programs has specific properties that allowed the accuracy of the orientation
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analysis to be evaluated. In the context of this work, a search in a tree is a traversal
that ends before exhausting all the nodes in the tree.

– RandomDepth: A binary tree is traversed using a depth-first oriented traver-
sal. At each node, the order in which the children are visited is chosen at
random.

– BreadthFirst: A breadth-first traversal is made over a binary tree.
– DepthBreadth: A depth-first traversal is performed over a binary tree, fol-

lowed by a breadth-first traversal over the same tree.
– NonStandard: A non-standard traversal of a binary tree is performed. This

traversal progresses in the following order: (1) data in the current node n and
the right child of n are processed (2) the traversal is recursively performed
on the left child of n; (3) the traversal is recursively performed on the right
child of the right child of n; and (4) the traversal is recursively performed
on the left child of the right child of n. This traversal would produce the
following node access sequence for the tree of Figure 1: 〈1, 3, 2, 5, 4, 9, 8,
11, 10, 7, 15, 14, 6, 13, 12〉. This traversal is neither depth- nor breadth-first,
and should be recognized as such.

– MultiDepth: Several depth-first traversals of a binary tree are performed by
this program, varying the point at which the data in each node is accessed.
i.e. The data field(s) in the tree node are accessed either before the recursive
calls to the traversal function, in between the recursive calls (if the structure
has more then 1 child), or after the recursive calls to the children have been
completed.

– BreadthSearch: A tree with a random branching factor for each node (with
2 to 6 children per node) is searched, breadth-first, several times.

– BinarySearch: Several tree searches are performed on a binary search tree.

4.3 Results of the Tree-Traversal Orientation Analysis

The tree-traversal orientation analysis was able to correctly identify the expected
traversal orientation for all of the programs that we created as well as for all of
the Olden benchmarks.

Table 1 gives the value computed by the tree-traversal orientation analysis for
each of the programs created to test the analysis, along with the expected value.
Each program has a single tree, thus Table 1 reports the score for the program.

The original Olden benchmarks were designed for multi-processor machines [4].
We used a version of the Olden benchmarks specifically converted for use with
uniprocessor machines [15]. We used the following Olden benchmarks in our eval-
uation: BH, Bisort, Health, MST, Perimeter, Power, Treeadd and TSP 3. Four of
the Olden benchmark programs, Bisort, Perimeter, Power, and Treeadd, use
a single binary tree. MST does not use a proper tree; rather it uses linked lists
to deal with collisions inside a hash table. BH, Health, and TSP use a mixture of
trees and linked lists connected as a single structure. In these benchmarks, linked
3 Benchmarks em3d and Voronoi are omitted from this study because they could not

be correctly converted to use 64 bit pointers.
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Table 1. Analysis results on the synthetic and Olden benchmarks

Synthetic Analysis Result Olden Analysis Result
Benchmark Expected Experimental Benchmark Expected Experimental

RandomDepth 1.0 1.000000 BH 0.0 0.010266
BreadthFirst -1.0 -0.999992 Bisort 0.0 -0.001014
DepthBreadth 0.0 0.000000 Health 1.0 0.807330
NonStandard Close to 0.0 0.136381 MST low positive 0.335852
MultiDepth 1.0 0.999974 Perimeter low positive 0.195177
BreadthSearch -1.0 -0.995669 Power 1.0 0.991617
BinarySearch 1.0 0.941225 Treeadd 1.0 1.000000

TSP low positive 0.173267

lists hang off the nodes of trees, and traversals frequently start with depth-first
access to the tree nodes and continue with accesses to the linked lists.

We will examine each of the Olden benchmark programs in turn:

– BH contains tree nodes which contain both pointers to the children of a node,
as well as pointers to nodes which are not considered children. As a result,
even though the program performs several depth-first traversals of the tree,
it cannot be classified as depth-first because many of the children of nodes
are not traversed. A score of 0 is expected, as the traversal is not truly
depth-first, and is definitely not breadth-first.

– Bisort performs two operations. A depth-first traversal of the tree is per-
formed to manipulate the values stored in the tree. A merge operation rou-
tinely manipulates both children of a single node at once, which is a breadth-
first way of accessing nodes. Other merge operations are neither breadth- nor
depth-first. As we have competing breadth- and depth-first accesses, as well
as many non-standard accesses, a score close to 0 is expected.

– Health consists of a relatively small 4-ary tree, where each node in that tree
contains several linked lists. During simulations, a depth-first traversal of the
tree is performed, however, at each node, the linked lists are traversed. As
both linked-list and depth-first traversals are scored the same, a score close
to one is expected.

– MST is based around hash tables. The tree data structure used is a linked
list for chaining collisions in the hash table. Since MST performs many short
linked-list traversals, a small positive value is expected.

– Perimeter uses a quad tree with a parent pointer to compute the perimeter
of a region in an image. The program recursively traverses the tree, but,
during the depth-first traversal, uses parent pointers to find adjacent nodes in
the tree. This access pattern exhibits a mostly depth-first traversal strategy
but the deviations from this pattern lead us to expect a score close to 0.

– Power repeatedly traverses a binary tree that consists of a two different types
of structures. The tree traversal is depth-first and implemented via recursion.
We therefore expect the TAL to calculate a score close to 1 for this program.
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Table 2. The maximum amount of memory used in kilobytes

Synthetic Memory Usage (kbytes) Olden Memory Usage (kbytes)
Benchmark Original Instrumented Benchmark Original Instrumented

RandomDepth 854 976 855 040 BH 3 520 3 520
BreadthFirst 424 928 441 328 Bisort 3 008 3 040
DepthBreadth 220 112 252 896 Health 8 448 8 624
NonStandard 420 800 420 912 MST 4 752 6 272
MultiDepth 529 344 652 288 Perimeter 6 064 6 528
BreadthSearch 30 192 47 408 Power 3 648 3 712
BinarySearch 224 192 224 320 Treeadd 3 008 3 008

TSP 3 024 3 040

– Treeadd performs a single depth-first traversal of a tree, while the program
recursively computes the sum of the nodes. As this traversal is purely depth-
first we expect a score close to 1.

– TSP combines a linked list and a tree into a single data structure. Each
node has two pointers that indicate its position in a double-linked list, and
two pointers pointing to children in a binary tree. Both list traversals and
depth-first tree traversals are performed on this structure, however neither
traversal visits all the children of a node (as all the children would comprise
the two real children of the node, and the next and previous nodes in the
list). The expected result is a very low positive score for the traversal.

4.4 Memory Usage

Despite the fact that the TAL creates and manipulates many data structures,
it only increase memory usage by a modest amount. Code profiled with TAL
requires, on average, 7% more memory than the original version of the program.

Table 2 compares the amount of memory used by the profiled and non-profiled
versions of the code. In every case, the maximum amount of memory used by
the program during its execution is given. The worst memory performance of
the Olden benchmark comes from MST, where memory use increased by 32%
during profiling. In contrast, several of the programs - BH, Power, Treeadd
and TSP - only required about 1% more memory than the non-instrumented
code.

4.5 Timing Results

Our instrumentation increases the runtime of the profiled code by an average
of 5.9 times over the non-profiled code. Given that the instrumented version is
typically executed once and offline, the additional runtime is acceptable.

Table 3 shows the runtime overhead introduced by the offline tree-orientation
analysis. For the test programs, the profiled code runs 6.7 times slower than the
non-profiled code on average. Execution time of the Olden benchmarks increased
by an average of 5.5 times during profiled runs.
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Table 3. Execution time in seconds

Synthetic Execution Time (seconds) Olden Execution Time (seconds)
Benchmark Original Instrumented Benchmark Original Instrumented

RandomDepth 0.90 10.72 BH 0.45 6.88
BreadthFirst 1.09 1.81 Bisort 0.03 1.01
DepthBreadth 1.33 7.84 Health 0.05 12.06
NonStandard 0.36 2.68 MST 5.71 11.42
MultiDepth 0.47 3.94 Perimeter 0.02 1.55
BreadthSearch 0.36 1.83 Power 1.35 1.60
BinarySearch 0.20 2.75 Treeadd 0.13 6.35

TSP 0.01 1.40

Although the instrumented code takes longer to run, the performance degra-
dation caused by profiling is acceptable for three reasons. First, this analysis
can be run infrequently, for final compilations of code, or when major changes
have been made to the data structures or the associated traversals. Second, the
analysis can correctly determine traversal order in a relatively short period of
program execution. The size of the tree considered is unimportant, as long as a
representative traversal is performed on it. A proper selection of a representa-
tive input to profiling could help ensure that the analysis does not take too long.
Finally, the analysis performs all the necessary calculations during the profiled
run of the code. Additional work need not be performed by the compiler in order
to determine the orientation of the tree traversal.

5 Related Work

5.1 Analysis of Pointer-Based Structures

Ghiya and Hendren provide a context-sensitive inter-procedural shape analysis
for C that identifies the shape of data structures [10]. Their analysis differentiates
structures where the shape is a cyclic graph, a directed acyclic graph, or a tree.
This work allows a compiler to automatically identify tree-like data structures
and the pointers to those data structures, both of which are necessary for our
profiling framework.

Lattner and Adve develop a framework that partitions distinct instances of
heap-based data structures [13]. The partitioning is performed by allocating
the disjoint structures into independent allocation pools. Their algorithm uses
a context-sensitive unification-based pointer analysis to identify disjoint data
structures for their memory allocator. Compile time incurred at most 3% ad-
ditional overhead. Lattner and Adve’s analysis can be used to identify disjoint
instances of trees but does not provide a shape analysis.

5.2 Potential Clients of the Tree-Orientation Analysis

Prefetching. Luk and Mowry propose three software prefetching schemes for
recursive data structures [14]. The first prefetching scheme, known as greedy
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prefetching, prefetches all of the children of a structure when that structure is
accessed. Greedy prefetching was implemented in the SUIF research compiler and
obtained up to a 45% improvement in runtime on the Olden benchmarks. The
prefetch distance is not adjustable with this technique and thus it is not able to
hide the considerable memory access latency experienced in modern processors.
To allow the compiler to control the prefetch distance, Luk and Mowry propose
two other prefetching schemes, history-pointer prefetching and data-linearization
prefetching. When the application is running, history-pointer prefetching records
the access pattern via a history-pointer in each structure during the first tree
traversal. Once all of the history pointers have been initialized, the system can
use them to prefetch data. History-pointer prefetching was implemented by hand,
and in spite of the runtime and space overhead, this technique can obtain up to
a 40% speedup compared with greedy prefetching. Data-linearization prefetch-
ing allocates nodes with high access affinity near each other to increase spatial
locality. Data-linearization prefetching is both implicit, through the use of spa-
tial locality, and explicit, through the use of prefetches to incremental memory
locations. Data-linearization prefetching was implemented by hand and resulted
in up to a 18% speedup over greedy prefetching.

Cahoon and McKinley use compile-time data flow analysis to develop a soft-
ware prefetching scheme for linked data structures in Java [2]. Traversals of
linked data structures are identified through the use of a recurrent update to a
pointer that is placed within a loop or recursive call related to the traversal of
the linked data structure. A jump pointer, similar to Luk and Mowry’s history
pointer, is added to each structure that is updated recurrently and jump pointers
are used for prefetching when the application is traversing the data structure.
The prefetching scheme results in performance improvements as large as 48%
but Cahoon and McKinley note that “... consistent improvements are difficult
to obtain.”

Our analysis could be used with Luk and Mowry’s history-pointer prefetching
or Cahoon and McKinley’s jump-pointer prefetching to reduce the overhead of
computing the history pointers and increase the benefit from prefetching. In both
schemes, the first traversal of the tree is used to calculate the history pointer.
Unless the structure is traversed many times this initial overhead may not be
amortized out, and performance degradation could result. If the traversal pattern
of the tree is known, a custom allocator could be used to linearize the subtrees
that are allocated and prefetching could be performed in the same fashion as
Luk and Mowry’s data-linearization prefetching during the first tree traversal
or used to set the jump pointers before they can be initialized by the first tree
traversal. This would also allow hardware prefetchers, which are commonly found
on modern processors, to retrieve the data and eliminate much of the latency
caused by compulsory misses.

Modifying Data Layout. Calder et al. present a framework that uses profil-
ing to find the temporal relationship between objects and to modify the data
placement of the objects to reduce the number of cache misses [3]. A profiling
phase creates a temporal relationship graph between objects where edges connect
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those objects likely to be in the cache together. To reduce the number of conflict
misses, objects with high temporal locality are placed in memory locations that
will not be mapped to the same cache blocks. Field reordering is used to place
objects in memory to maximize locality and reduce capacity misses by reducing
the size of the working set. Finally, Calder et al. reduce compulsory misses by
allowing blocks of data to be efficiently prefetched. These techniques are applied
to both statically- and dynamically-allocated data. For dynamically-allocated
data, the data placement is accomplished using a custom memory allocator that
places allocated objects into a specific allocation bin based on information about
the object traversal pattern. Experimentation showed that the data cache miss
rate could be reduced by 24% on average, with some reductions as high as 74%.

Chilimbi, Hill and Larus describe techniques to improve the locality of linked
data structures while reducing conflict misses, namely cache-conscious allocation
and cache-conscious reorganization [7]. Two semi-automatic tools are created to
allow the programmer to use cache-conscious allocation, ccmalloc, and cache-
conscious reorganization, ccmorph, for their data structures. The main idea be-
hind the tools are clustering, packing data with high affinity into a cache block,
and coloring, using k-coloring to represent a k-way set-associative cache to reduce
cache-conflicts. Their memory allocator, ccmalloc, takes a memory address of
an element that is likely to be accessed at the same time as the newly allocated
object and allocates them near one another in memory. The tree reorganizer,
ccmorph, copies subtrees and lays them out linearly. After tree reorganization,
any references to nodes in the tree must be updated. Chilimbi, Hill and Larus
obtained speedups of 28-138% using their cache-conscious allocation techniques.

The work by Calder et al. and Chilimbi, Hill and Larus both aim to im-
prove cache-hit rates by modifying where data is allocated. The profiling used
by Calder et al. could be combined with our tree-traversal analysis to allow more
information to be given to the compiler. A custom allocator could be created
that can be given hints by the compiler based on information in the profile that
was collected. The allocator could use Calder et al.’s or Chilimbi, Hill and Larus’
techniques to arrange data to avoid cache conflicts while increasing the locality
of tree nodes by allocating the nodes based on the profile information.

Structure Reorganization. Truong, Bodin and Seznec use semi-automatic
techniques to improve the locality of dynamically allocated data structures based
on field reorganization and instance interleaving [19]. Field reorganization groups
fields of a data structure that are referenced together into the same cache line,
while instance interleaving groups identical fields of different instances of a struc-
ture into a common area in memory. They present a memory allocator, ialloc,
that allocates structures, or chunks of structures, into arenas to increase locality.

Chilimbi, Davidson and Larus used field reordering and structure splitting to
improve the behavior of structures that are larger then a cache line [6]. Field
reordering groups the fields of a structure that are accessed together into sets
which will fit into a cache line. Chilimbi, Davidson and Larus also group the
fields of structures into hot (frequently accessed) and cold (infrequently accessed)
fields. These techniques can increase the number of hot fields that can fit in the
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cache and they improved execution time by 6 - 18% over other co-allocation
schemes by reducing cache miss rates by 10 - 27%.

It would be possible to combine Truong, Bodin and Seznec’s ialloc memory
allocator and the idea of allocation arenas with compiler technology to perform
structure splitting similar to that performed by Zhao et al. [20], to apply this
technique to recursive data-structures instead of arrays.

6 Conclusions

This work presents an analysis that accurately identifies the predominant traver-
sal orientation of trees in a program. The analysis gives a floating point value for
each tree, representing how close to a pure breadth- or depth-first orientation
the traversal of that tree is. This value can be used by many client optimizations
inside a compiler or may be used by programmers to improve the data struc-
ture layout. Most of the work is performed by a static library used to profile
instrumented code which only slightly increases memory use. The tree-traversal
orientation analysis requires no work on the part of the programmer, and requires
only minor modifications to a compiler.
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Abstract. This paper presents an unbalanced tree search (UTS) bench-
mark designed to evaluate the performance and ease of programming for
parallel applications requiring dynamic load balancing. We describe algo-
rithms for building a variety of unbalanced search trees to simulate differ-
ent forms of load imbalance. We created versions of UTS in two parallel
languages, OpenMP and Unified Parallel C (UPC), using work steal-
ing as the mechanism for reducing load imbalance. We benchmarked the
performance of UTS on various parallel architectures, including shared-
memory systems and PC clusters. We found it simple to implement UTS
in both UPC and OpenMP, due to UPC’s shared-memory abstractions.
Results show that both UPC and OpenMP can support efficient dynamic
load balancing on shared-memory architectures. However, UPC cannot
alleviate the underlying communication costs of distributed-memory sys-
tems. Since dynamic load balancing requires intensive communication,
performance portability remains difficult for applications such as UTS
and performance degrades on PC clusters. By varying key work stealing
parameters, we expose important tradeoffs between the granularity of
load balance, the degree of parallelism, and communication costs.

1 Introduction

From multicore microprocessors to large clusters of powerful yet inexpensive PCs,
parallelism is becoming increasingly available. In turn, exploiting the power of
parallel processing is becoming essential to solving many computationally chal-
lenging problems. However, the wide variety of parallel programming paradigms
(e.g., OpenMP, MPI, UPC) and parallel architectures (e.g., SMPs, PC clusters,
IBM BlueGene) make choosing an appropriate parallelization approach difficult.
Benchmark suites for high-performance computing (e.g., SPECfp, NAS,
SPLASH, SPEComp) are thus important in providing users a way to evaluate how
various computations perform using a particular combination of programming
paradigm, system software, and hardware architecture.
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Fig. 1. Tree T1 has about 4.1 million nodes, and a depth of 10. The degree of each node
varies according to a geometric distribution with mean 4. The parallel efficiency of the
UPC implementation using 2 to 24 processors of an SGI Origin 2000 is shown relative
to the sequential traversal of the tree. Work is stolen in chunks of k nodes at a time
from the depth-first stack of processors actively exploring a portion of the tree. When
k is small, the communication and synchronization overheads in work stealing start to
dominate performance and lower the efficiency. As k increases, it becomes increasingly
difficult to find processors with k nodes on their stack (the expected maximum number
of nodes on the stack is 40), hence efficiency suffers from lack of load balance.

One class of applications not well represented in existing high-performance
benchmarking suites are ones that require substantial dynamic load balance.
Most benchmarking suites either exhibit balanced parallel computations with
regular data access (e.g. solvers communicating boundary data such as SWM,
TOMCATV, APPSP), or balanced computations with irregular data access and
communication patterns (e.g. sparse solvers, FFT, Integer Sort, APPLU). Ex-
isting benchmarks that do utilize dynamic load balancing do so only at specific
points in the application (e.g. Barnes-Hut n-body simulation, or solvers using
adaptive mesh refinement).

We introduce a simple problem – parallel exploration of an unbalanced tree
– as a means to study the expression and performance of applications requiring
continuous dynamic load balance. Applications that fit in this category include
many search and optimization problems that must enumerate a large state space
of unknown or unpredictable structure.

The unbalanced tree search (UTS) problem is to count the number of nodes
in an implicitly constructed tree that is parameterized in shape, depth, size, and
imbalance. Implicit construction means that each node contains all information
necessary to construct its children. Thus, starting from the root, the tree can
be traversed in parallel in any order as long as each parent is visited before its
children. The imbalance of a tree is a measure of the variation in the size of its
subtrees. Highly unbalanced trees pose significant challenges for parallel traversal
because the work required for different subtrees may vary greatly. Consequently,
an effective and efficient dynamic load balancing strategy is required to achieve
good performance.
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In this paper we describe OpenMP and UPC implementations of the UTS
problem and evaluate their performance on a number of parallel architectures
and for a number of different tree shapes and sizes. The implementations use
a work-stealing strategy for dynamic load balancing. Threads traverse the por-
tion of the tree residing on their local stack depth first, while stealing between
threads adds a breadth first dimension to the search. Figure 1 illustrates the
performance of the UPC implementation on a shared memory machine as a
function of number of processors and the granularity of load balancing. We
are particularly interested in how well a single UPC implementation performs
across shared and distributed memory architectures, since UPC is a locality-
aware parallel programming paradigm that is intended to extend to both memory
models.

The remainder of the paper is organized as follows. Section 2 describes the
class of unbalanced trees, and some of their properties. Section 3 describes the
benchmark programs that were developed to implement parallel unbalanced
tree search. Section 4 provides a detailed performance analysis of the imple-
mentations on a variety of shared and distributed memory architectures, com-
paring absolute performance, processor and work scaling. Section 5 has the
conclusions.

2 Generating Unbalanced Trees

We describe a class of synthetic search trees whose shape, size, and imbalance
are controlled through a small number of parameters. The class includes trees
representing characteristics of various parallel unbalanced search applications.

The trees are generated using a Galton-Watson process [1], in which the num-
ber of children of a node is a random variable with a given distribution. To
create deterministic results, each node is described by a 20-byte descriptor. The
child node descriptor is obtained by application of the SHA-1 cryptographic
hash [2] on the pair (parent descriptor, child index). The node descriptor also
is the random variable used to determine the number of children of the node.
Consequently the work in generating a tree with n nodes is n SHA-1 evaluations.

To count the total number of nodes in a tree requires all nodes to be generated;
a shortcut is unlikely as it requires the ability to predict a digest’s value from an
input without executing the SHA-1 algorithm. Success on this task would call
into question the cryptographic utility of SHA-1. Carefully validated implemen-
tations of SHA-1 exist which ensure that identical trees are generated from the
same parameters on different architectures.

The overall shape of the tree is determined by the tree type. Each of these
generates the children of its nodes based on a different probability distribution:
binomial or geometric. One of the parameters of a tree is the value r of the
root node. Multiple instances of a tree type can be generated by varying this
parameter, hence providing a check on the validity of an implementation.

We examined a variety of tree shapes and choose to report on two representative
shapes due to space limits.
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2.1 Binomial Trees

A node in a binomial tree has m children with probability q and has no children
with probability 1 − q, where m and q are parameters of the class of binomial
trees. When qm < 1, this process generates a finite tree with expected size 1

1−qm .
Since all nodes follow the same distribution, the trees generated are self-similar
and the distribution of tree sizes and depths follow a power law [3]. The variation
of subtree sizes increases dramatically as qm approaches 1. This is the source of
the tree’s imbalance. A binomial tree is an optimal adversary for load balancing
strategies, since there is no advantage to be gained by choosing to move one
node over another for load balance: the expected work at all nodes is identical.

The root-specific branching factor b0 can be set sufficiently high to generate
an interesting variety of subtree sizes below the root according to the power law.
Alternatively, b0 can be set to 1, and a specific value of r chosen to generate a
tree of a desired size and imbalance.

2.2 Geometric Trees

The nodes in a geometric tree have a branching factor that follows a geometric dis-
tribution with an expected value that is specified by the parameter b0 > 1. Since
the geometric distribution has a long tail, some nodes will have significantly more
than b0 children, yielding unbalanced trees. The parameter d specifies the max-
imum, beyond which the tree is not allowed to grow. Unlike binomial trees, the
expected size of the subtree rooted at a node increases with proximity to the root.

Geometric trees have a depth of at most d, and have an O((b0)d) expected
size. The depth-first traversal of a geometric tree resembles a stage of an iter-
ative deepening depth-first search, a common search technique for potentially
intractable search spaces.

3 Implementation

Our implementations perform a depth-first traversal of an implicit tree as de-
scribed in the previous section. Since there is no need to retain a description of
a node once its children have been generated, a depth-first stack can be used.
A node is explored by popping it off the stack and pushing its children onto
the stack. Parallel traversals can proceed by moving one or more node(s) from
a non-empty stack of one processor to the empty stack of an idle processor.

Several strategies have been proposed to dynamically balance load in such a
parallel traversal. Of these, work-stealing strategies place the burden of finding
and moving tasks to idle processors on the idle processors themselves, minimizing
the overhead to processors that are making progress. Work-stealing strategies
have been investigated theoretically and in a number of experimental settings,
and have been shown to be optimal for a broad class of problems requiring
dynamic load balance [4]. Work-sharing strategies place the burden of moving
work to idle processors on the busy processors. A thorough analysis of load
balancing strategies for parallel depth-first search can be found in [5] and [6].
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One key question concerns the number of nodes that are moved between
processors at a time. The larger this chunk size k, the lower the overhead to both
work stealing and work sharing strategies when amortized over the expected work
in the exploration of the k nodes. This argues for a larger value of k. However,
the likelihood that a depth first search of one of our trees has k nodes on the
stack at a given time is proportional to 1

k , hence it may be difficult to find
large amounts of work to move. Indeed it was our goal to construct a problem
that challenges all load balancing strategies, since such a benchmark can be
used to assess some key characteristics of the implementation language, runtime
environment, and computing system. For example, distributed-memory systems
that require coarse-grain communication to achieve high performance may be
fundamentally disadvantaged on this problem.

3.1 Work Stealing in UPC and OpenMP

UPC (Unified Parallel C) is a shared-memory programming model based on a
version of C extended with global pointers and data distribution declarations for
shared data [7]. The model can be compiled for shared memory or distributed
memory execution. For execution on distributed memory, it is the compilers
responsibility to translate memory addresses and insert inter-processor commu-
nication. A distinguishing feature of UPC is that global pointers with affinity
to one particular thread may be cast into local pointers for efficient local access
by that thread. Explicit one-sided communication is also supported in the UPC
run-time library via routines such as upc memput() and upc memget().

We implemented work stealing in OpenMP for shared memory machines and
UPC for shared and distributed memory machines. Instead of trying to steal
procedure continuations as would be done in Cilk [8], which requires cooper-
ation from the compiler, in our implementation idle threads steal nodes from
another thread’s depth-first stack. Initially, the first thread holds the root node.
As enough nodes are generated from the root and its descendants, other threads
steal chunks of nodes to add to their stacks. Each thread performs a depth-
first traversal of some part of the tree using its own stack of nodes. A thread
that empties its stack tries to steal one or more nodes from some other thread’s
nonempty stack. On completion, the total number of nodes traversed in each
thread can be combined to yield the size of the complete tree.

3.2 Manipulating the Steal Stack

We now consider the design of the stack. In addition to the usual push and
pop operations, the stack must also support concurrent stealing operations per-
formed by other threads, which requires the stacks to be allocated in the shared
address space and that locks be used to synchronize accesses. We must eliminate
overheads to the depth-first traversal performed by a working thread as much as
possible. Thus each thread must be able to perform push and pop operations at
stack top without incurring shared address translation overheads in UPC or re-
quiring locking operations. Figure 2 shows the stack partitioned into two regions.
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Table 1. Sample trees, with parameters and their result-
ing depths and sizes in millions of nodes

Tree Type b0 d q m r Depth MNodes

T1 Geometric 4 10 – – 19 10 4.130

T2 Geometric 1.014 508 – – 0 508 4.120

T3 Binomial 2000 – 0.124875 8 42 1572 4.113

The region that includes the stack top can be accessed directly by the thread
with affinity to the stack using a local pointer. The remaining area is subject to
concurrent access and operations must be serialized through a lock. To amortize
the manipulation overheads, nodes can only move in chunks of size k between
the local and shared regions or between shared areas in different stacks.

Using this data structure, the local push operation, for example, does not
involve any shared address references in UPC or any lock operations. The release
operation can be used to move a chunk of k nodes from the local to the shared
region, when the local region has built up a comfortable stack depth (at least
2k in our implementation). The chunk then becomes eligible to be stolen. A
matching acquire operation is used to move nodes from the shared region back
onto the local stack when the local stack becomes empty.

When there are no more chunks to reacquire locally, the thread must find and
steal work from another thread. A pseudo-random probe order is used to examine
other stacks for available work. Since these probes may introduce significant
contention when many threads are looking for work, the count of available work
on a stack is examined without locking. Hence a subsequent steal operation
performed under lock may not succeed if in the interim the state has changed.
In this case the probe proceeds to the next victim. If the chunk is available to
be stolen, it is reserved under lock and then transferred outside of the critical
region. This is to minimize the time the stack is locked.

When a thread out of work is unable to find any available work in any other
stack, it enters a barrier. When all threads have reached the barrier, the traversal
is complete. A thread releasing work sets a global variable which in turn releases
an idle thread waiting at the barrier.

3.3 Data Distribution in OpenMP

Unlike UPC, the OpenMP standard does not provide a way to specify the dis-
tribution of an array across the memories of processors [9]. Generally this dis-
tribution is accomplished by allocating page frames to memories local to the
processor which generated the page fault [10]. However this strategy is prone to
false sharing when a large number of processors share a relatively small array
of per-processor data structures that are being updated. The symptom of such
false sharing is poor scaling to large processor counts.
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Table 2. Sequential performance for all trees (Thousands of nodes per second)

System Processor Compiler T1 T2 T3

Cray X1 Vector (800 MHz) Cray 5.5.0.4 29 29 31

SGI Origin 2000 MIPS (300 MHz) GCC 3.2.2 158 156 170

SGI Origin 2000 MIPS (300 MHz) Mipspro 7.3 169 166 183

Sun SunFire 6800 Sparc9 (750 MHz) Sun C 5.5 260 165 384

P4 Xeon Cluster (OSC) P4 Xeon (2.4GHz) Intel 8.0 717 940 1354

Mac Powerbook PPC G4 (1.33GHz) GCC 4.0 774 672 1117

SGI Altix 3800 Itanium2 (1.6GHz) GCC 3.4.4 951 902 1171

SGI Altix 3800 Itanium2 (1.6GHz) Intel 8.1 1160 1106 1477

Dell Blade Cluster (UNC) P4 Xeon (3.6GHz) Intel 8.0 1273 1165 1866

The Irix-specific distribute reshape directive provided compiler-mediated dis-
tribution of the array across processor memories, improving performance on the
SGI Origin. However we found that on the Intel compiler on the SGI Altix, this
directive was not operative.

As a result, we replaced the array of per-thread data with an array of point-
ers to dynamically allocated structures. During parallel execution, each thread
dynamically allocates memory for its own structure with affinity to the thread
performing the allocation. This adjustment eliminated false sharing, but was
unnecessary for UPC. The facilities for explicit distribution of data in OpenMP
are weaker than those of UPC.

4 Performance Evaluation

The UTS program reports detailed statistics about load balance, performance,
and the tree that is generated. We have examined data on several different
parallel machines and discovered some meaningful trends, which are presented
in this section.

Three sample trees were used for most of the experiments. Two of these are
geometric trees and one is a binomial tree. All trees are approximately the same
size (4.1 million nodes, ±1%). However, they vary greatly in depth. The param-
eters, depth, and size of each tree are given in Table 1.

4.1 Sequential Performance

Before examining parallel execution, we ran the benchmark sequentially on a
variety of systems. The performance results are given in Fig. 2. Unless otherwise
noted, all performance measures are the average of the best eight out of ten
executions. Note that some systems were tested with both their native compilers
and GCC. This establishes a helpful baseline for the parallel performance results
presented later. When compiling UTS with OpenMP, the native compilers were
used. The Intrepid UPC compiler, based on GCC, was used to compile UTS with
UPC on the shared memory systems. The -O3 optimization flag was used when
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Fig. 3. Parallel performance on the Origin 2000 using OpenMP and UPC. On the left,
results for geometric trees T1 and T2. On the right, results for T3 with static versus
dynamic data allocation for the steals stacks. The chunk size used in each run is chosen
to optimize performance for the tree type.

compiling on the shared memory machines. On the Pentium 4 and Dell blade
clusters, the Berkeley UPC compiler was used. The Berkeley compiler translates
UPC to C for final compilation on the native compiler. An experimental set of
optimizations offered by Berkeley UPC was not used in the results reported here,
but will be used shortly.

Despite the similar sizes of the trees, most systems showed significant and
systematic differences in performance due to differences in cache locality. Ideally,
a node will remain in cache between the time it is generated and the time
it is visited. The long tail of the geometric distribution results in some nodes
generating a large number of children, flushing the L1 cache. In the binomial
tree T3, nodes generate only 8 children, if any, keeping L1 cache locality intact
for faster execution. The impact of this difference in sequential exploration rate
will be seen in the parallel results given in the next section, where we will show
that the parallel performance also varies by tree type.

4.2 Parallel Performance on Shared Memory Machines

Performance using UPC and OpenMP on the SGI Origin 2000 is given in the
left graph of Fig. 3. The OpenMP results for T1 and T2 are from the modi-
fied version of the benchmark discussed in Section 3.3. The results for T3 in
the right graph of Fig. 3 quantify the performance change between OpenMP
implementations using static and dynamic allocation of per-thread data struc-
tures. OpenMP performance is dramatically improved using dynamic allocation.
UPC performance is slightly decreased using dynamic allocation version, as the
extra shared pointer dereference adds to overhead costs. (The two are nearly
indistinguishable in the graph.)

The UPC version runs more slowly than the OpenMP version due to the
increased overheads of UPC. The variations in runtimes by tree type seen in
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Section 4.1 are also present in the parallel runs. Absolute performance on T3 is
higher, though all scale well.

4.3 Parallel Performance on Distributed Memory

Using the same UPC code, we compiled and ran UTS on a Dell blade cluster at
UNC. The cluster’s interconnect is Infiniband, and we configured the Berkeley
UPC runtime system to run over VAPI drivers, as opposed to UDP or MPI. Still,
performance was markedly poor. Figure 4 shows the overall performance of the
sample trees and a comparison of parallel efficiency between the SGI Origin and
the Dell blade cluster for trees T1 and T3. Note each plotted value represents
the best of 100 runs per chunk size on the cluster at that processor count. We
have found that the performance varies as much as one order of magnitude
even between runs using identical settings. While the efficiency on the Origin is
consistently above 0.9, the program’s efficiency on the cluster falls off sharply as
more processors are used. Poor scaling was also seen on the P4 Xeon Cluster at
Ohio Supercomputer Center (OSC).

Poor performance on distributed memory is consistent with previous UPC
evaluation [11]. Program designs that assume efficient access of shared variables
do not scale well in systems with higher latency.

Key factors contributing to the poor peak performance and high variability
are the work-stealing mechanism and termination detection, neither of which
create performance bottlenecks on shared memory machines. Each attempted
steal involves several communication steps: check whether work is available at
the victim, reserve the nodes, and then actually transfer them. Failed steal at-
tempts add additional communication. The termination detection uses a simple
cancelable barrier consisting of three shared variables: a cancellation flag, a count
of nodes at the barrier, and a completion flag. It is a classic shared variable solu-
tion that uses local spinning when implemented in a shared memory machines.
We speculate that the distributed memory runtime has a different coherence
protocol that is a poor match to algorithms that rely on local spinning.

4.4 Visualization for Detailed Analysis

When tracing is enabled, each thread keeps records of when it is working, search-
ing for work, or idle. It also records the victim, the thief, and the time of each
steal. Since some systems, in particular distributed memory machines, do not
have synchronized clocks, the records kept by the threads are adjusted by an
offset. This offset is found by recording the time following the completion of a
OpenMP or UPC barrier. This gives millisecond precision on the clusters we
tested, but more sophisticated methods could likely do better.

The PARAVER (PARallel Visualization and Events Representation) tool[12]
is used to visualize the data. PARAVER displays a series of horizontal bars, one
for each thread. There is a time axis below, and the color of each bar at each time
value corresponds to that thread’s state. Yellow vertical lines drawn between the
bars represent the thief and victim threads at the time of each steal.
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Fig. 4. Performance on the Dell blade cluster (left); Parallel efficiency on the Dell
cluster versus the Origin 2000 (right)

Fig. 5. PARAVER time charts for T3 on 4 vs. 16 processors of OSC’s P4 cluster

Figure 5 shows PARAVER time charts for two runs on OSC’s P4 Xeon cluster
at chunk size 64. The bars on the top trace (4 threads) are mostly dark blue,
indicating that the threads are at work. The second trace (16 threads) shows
a considerable amount of white, showing that much of the time threads are
searching for work. There is also noticeable idle time (shown in light blue) in the
termination phase. The behavior of the Origin with 16 threads, shown in Fig. 6,
is much better, with all threads working almost all of the time.

4.5 Work Stealing Granularity

The most important parameter in performance is chunk size, which sets the
granularity of work stealing. A thread initiates a steal from another thread only
when at least two chunks have accumulated in that thread’s steal stack. If the
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Fig. 6. PARAVER time chart for T3 exploration on 16 processors of the Origin 2000

Fig. 7. Performance of UTS at various chunk sizes on the SGI Origin 2000 (top) and
Dell blade cluster (bottom). For the cluster, the best performance out of 100 executions
at each setting is shown.

chunk size is set too small, the threads will be too busy stealing (or trying to
steal) to get any work done. If the chunk size is too large, nodes will remain on
the stacks where they were generated and too few steals will occur.

Optimal Ranges for Chunk Size. Figure 7 shows the performance of UTS at
various chunk sizes for trees T1 and T3 on the Origin 2000 using OpenMP and
on the Dell blade cluster using UPC. Results for UPC on the Origin were nearly
identical to those for OpenMP, and results on the Altix were similar. Note the
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Fig. 8. Percent of work done exploring T1 (left) and T3 (right) by each thread in an
8-thread run, plotted for 10 runs per chunk size on the SGI Origin 2000

vast difference in the sizes of the optimal chunk size ranges for the two trees
on the Origin. For example, T1 performs reasonably well on 24 processors at a
chunk size of 5 to 15 nodes, while T3 performs well a chunk size of 8 to 80. T1
achieves no speedup at a chunk size of 50, but T3 achieves linear speedup at
chunk size 250 on four processors and even at chunk size 1000 on two processors.

On the cluster, the performance falls off much more rapidly on either side of
the peak values. As with the Origin, the acceptable chunk size range is much
larger for T3 than for T1. The peak performance for T1 is achieved with a chunk
size of 10 nodes, while chunk sizes of 50 to 150 work well for T3.

Corresponding results for T2 are omitted for lack of space. They resemble
those for T3, since the great depth of both trees allows large chunks to accumu-
late on the stacks, a rare occurrence in the exploration of shallow T1.

Stealing the Root. One might suppose that no stealing occurs when chunk
size is at or above 50 for T1. However, this is not the case. The poor performance
can be attributed to T1’s lack of depth, which is limited by the parameter d to
give an expected stack size of b0d. When the chunk size is at or above b0d

2 nodes,
we expect that a chunk will only be released on the infrequent occasion that
a node generates more than b0 children, due to the long tail of the geometric
distribution. The chunk that is released, and possibly stolen, in such a case will
contain the older nodes from the bottom of the stack, i.e. the higher nodes in
the tree. The nodes which were generated most recently and are deeper in the
tree will be at the top of the stack for the local thread to continue working on.

Now suppose the chunk in the shared stack is stolen. The thief will then hold
nodes which are high in the tree and be able to generate some amount of work
before reaching the depth limitation. Meanwhile, the victim will quickly, if not
immediately, run out of work, because it holds nodes which are already at or
near the cutoff depth for the tree. Once the thief generates another chunk of
work in the lower portion of the tree, it in turn becomes the victim, giving up
the higher nodes. In this way, execution is effectively serialized. The number of
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Fig. 9. PARAVER time charts for T1 exploration at chunk sizes of 10 nodes (top) and
60 nodes (bottom) on the Origin 2000. Note that when the higher chunk size is used,
the work becomes serialized.

steals that occur over the course of the run is in fact a good indication of how
many times a value much higher than the expected branching factor was drawn
from the binomial distribution.

On the Origin, the root is most often passed back and forth between just two
threads. This is a consequence of the non-uniform memory access architecture, in
which some threads see shared variable modifications earlier than other threads.

Figure 8 shows ten runs at different chunk sizes for T1 and T3 on the Origin
2000. Note that for chunk sizes of 15 to 55 nodes, the work for T3 is spread
evenly among the eight threads, about 12.5% each. The work for T1 is also evenly
distributed when the chunk size is 15. With a chunk size of 35, a disproportionate
amount of work is done by just a few threads. When chunk size is increased to
55 nodes, work distribution is even more biased. Figure 9 shows PARAVER time
charts for runs for T1 with chunk sizes 10 (ideal) and 60 (pathological).

Recall from Table 1 that T1 has a depth limitation d = 10 and a constant
expected branching factor b = 4, yielding an expected stack size of 40 nodes.
For any chunk size greater than 20 nodes, the stack rarely accumulates the two-
chunks worth of work needed to enable a release. In contrast, binomial trees
like T3 have no depth limitation, allowing the stack to grow very deep and
facilitating many chunk releases and subsequent steals, even at a large chunk
size. This is also the case for deep geometric trees such as T2, which has a
much lower branching factor than T1 and a less restrictive depth limitation.
The example illustrates well the subtle interactions between the tree shape and
the load balance strategy.

4.6 Comparing Absolute Performance of Various Machines

UPC is supported by a great variety of shared memory and distributed memory
machines. In Fig. 10, a performance comparison for T3 on a variety of shared
memory and distributed memory machines running the UPC version of UTS
on 16 processors is shown. The OpenMP version is used for the SunFire 6800.
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Fig. 10. Performance for T3 on 16 pro-
cessors on various machines. Except on
the SunFire, the UPC version was used.

Fig. 11. Speedup on the SGI Altix 3800
using 64 processors for T3 and another,
much larger, binomial tree

In terms of absolute performance, the Altix is the fastest and the Dell cluster is
the second-fastest. If scaling on the cluster were 65% or better, it would overtake
the Altix in this UPC comparison.

4.7 Larger Trees for More Processors

When running UTS on a large number of processors, the tree must be large
enough to produce work for all the threads. Figure 11 shows the speedup of the
UPC version of UTS on the Altix 3800 for binomial trees of different sizes using
64 processors. The smallest, T3, is 4.1 million nodes. The other is 85 million nodes
in size. The speedup of T3 never approaches that of the larger tree. However, the
Altix achieves a near-linear parallel speedup of nearly 60 on the 85M node tree,
searching over 67M nodes/sec. Larger trees are able to generate large chunks of
work more often. Running at a higher chunk size further amortizes the cost of
stealing, as more work is procured per steal than at lower chunk sizes. Thus, a
greater number of processors can be effectively utilized.

5 Conclusions and Future Work

The primary contributions of our work are twofold: First, we have introduced
a novel and challenging benchmark to measure a parallel system’s ability to
perform substantial dynamic load balancing. Second, we have used the bench-
mark to investigate the performance portability of shared memory programming
models to distributed memory systems. Comparison of the OpenMP and UPC
versions showed that both of these easily-programmed implementations exhibit
near-ideal scaling and comparable absolute performance on shared memory sys-
tems, but the UPC implementation scaled poorly on distributed memory sys-
tems. While UPC, with its shared memory abstractions, can simplify program-
ming for clusters, severe performance penalties can be incurred by the implicit
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communication costs of a dynamic load-balancing implementation based upon
liberal shared variable accesses. We have also presented analysis of situations
in which data locality, horizon effects, granularity of load balance, and problem
size can dramatically impact the effectiveness of distributed load balancing.

One of our early versions of UTS, psearch, was one of several benchmarks
used to test recent communications optimizations for UPC [13]. We encourage
testing of our implementations with different optimization schemes and on a
variety of systems, as well as the development of new implementations. In some
future implementations, we will seek to improve performance on distributed
memory machines without degrading the performance on shared memory. We
will be turning the tables to ask whether a program designed for efficiency on
distributed memory can compete with our shared memory implementation on
shared memory machines in terms of scaling and absolute performance. In that
scenario, just as in those presented in this paper, the UTS benchmark’s dynamic
load balancing makes it a daunting task for performance portability.
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Abstract. High-performance and low-power VLIW DSP processors are
increasingly deployed on embedded devices to process video and mul-
timedia applications. For reducing power and cost in designs of VLIW
DSP processors, distributed register files and multi-bank register archi-
tectures are being adopted to eliminate the amount of read/write ports
in register files. This presents new challenges for devising compiler op-
timization schemes for such architectures. In our research work, we ad-
dress the compiler optimization issues for PAC architecture, which is a
5-way issue DSP processor with distributed register files. We show how
to support an important class of compiler optimization problems, known
as copy propagations, for such architecture. We illustrate that a naive
deployment of copy propagations in embedded VLIW DSP processors
with distributed register files might result in performance anomaly. In
our proposed scheme, we derive a communication cost model by clus-
ter distance, register port pressures, and the movement type of register
sets. This cost model is used to guide the data flow analysis for sup-
porting copy propagations over PAC architecture. Experimental results
show that our schemes are effective to prevent performance anomaly
with copy propagations over embedded VLIW DSP processors with dis-
tributed files.

1 Introduction

Digital signal processors (DSPs) have been found widely used in an increasing
number of computationally intensive applications in the fields such as mobile
systems. As the communication applications are moving towards the conflict-
ing requirements of high-performance and low-power consumption, DSPs have
evolved into a style of large computation resources combined with restricted
and/or specialized data paths and register storages. In modern VLIW DSPs,
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computation resources are divided into clusters with its own local register files
to reduce the hardware complexity.

In cluster-based architectures, the compiler plays an important role to gen-
erate proper codes over multiple clusters to work around the restrictions of the
hardware. Data flow analysis is an important compiler optimization technique.
Available expressions, live variables, copy propagations, reaching definitions, or
other useful sets of properties can be computed for all points in a program using
a generic algorithmic framework. Current research results in compiler optimiza-
tions for cluster-based architectures have focused on partitioning register files to
work with instruction scheduling [13] [16]. However, it remains open how the
conventional data flow analysis scheme can be incorporated into optimizations
over embedded VLIW DSP processors with distributed files by taking commu-
nication costs into account.

In this paper, we present a case study to illustrate how to address this register
communication issue for an important class of compiler optimization problems,
known as copy propagations, for PAC architectures. Parallel Architecture Core
(PAC) is a 5-way VLIW DSP processors with distributed register cluster files and
multi-bank register architectures (known as ping-pong architectures) [1] [8] [9].
Copy propagation is in the family of data flow equations and traditionally known
as an effective method used as a compiler phase to combine with common avail-
able expression elimination and dead code elimination schemes. We illustrate
that a naive deployment of copy propagations in embedded VLIW DSP pro-
cessors with distributed files might result in performance anomaly, a reversal
effect of performance optimizations. In our proposed scheme, we derive a com-
munication cost model by the cluster distance, register port pressures, and the
distance among different type of register banks. The profits of copy propaga-
tions are also modeled among program graphs. We then use this cost model to
guide the data flow analysis for supporting copy propagations for PAC archi-
tectures. The algorithm is modeled with a flavor of shortest path problem with
the considerations of shared edges in program graphs. Our model will avoid per-
formance anomaly produced by conventional copy propagations over distributed
register file architectures. Our compiler infrastructure is based on ORC/Open-64
compiler infrastructure and with our efforts to retarget them in a VLIW DSP
environments with multi-cluster and distributed register architectures. We also
present experimental results with DSPstone benchmark to show our schemes
are effective to support copy propagations over embedded VLIW DSP proces-
sors with distributed register files.

The remainders of this paper are organized as follows. In Section 2, we will in-
troduce the processor architecture and register file organizations of PAC VLIW
DSP processors. Section 3 presents motivating examples to point out perfor-
mance anomaly phenomenon with copy propagations over embedded VLIW DSP
processors with irregular register files. Section 4 then presents our algorithm and
solution to this problem. Next, Section 5 gives experimental results. Finally, Sec-
tion 6 presents the related work and discussions, and Section 7 concludes this
paper.



Copy Propagation Optimizations for VLIW DSP Processors 253

2 PAC DSP Architecture

The Parallel Architecture Core (PAC) is a 32bit, fixed-point, clustered digital
signal processor with five way VLIW pipeline. PAC DSP has two Arithmetic
Logic Units (ALU), two Load/Store Units (LSU), and one single Scalar unit.
The ALU and LSU are organized into two clusters, each containing a pair of
both functional unit (FU) types and one distinct partitioned register file set. The
Scalar unit can deal with branch operations, and is also capable of load/store
and address arithmetic operations. The architecture is illustrated in Figure 1.

Memory Interface

AC0-AC7

A0-A7

C1 Cluster

Load/Store Unit

Arithmetic Unit

ping-pong

AC0-AC7

A0-A7

C2 Cluster

Load/Store Unit

Arithmetic Unit

ping-pongScalar Unit

R0-R7

D0-D7

D8-D15

D0-D7

D8-D15

Fig. 1. The PAC DSP architecture illustration

As in Figure 1, the register file structure in each cluster is highly partitioned
and distributed. PAC DSP contains four distinct register files. The A, AC, and
R register files are private registers, directly attached to and only accessible by
each LSU, ALU, and Scalar unit, respectively. The D register files are shared
within one cluster and can be used to communicate across clusters. Each of the
D-register files have only 3 read ports and 2 write ports (3R/2W). Among them,
1R/1W are dedicated to the Scalar Unit, leaving only 2R/1W for the cluster FUs
to use. The remaining set of 2R/1W ports are not enough to connect to both
cluster FUs simultaneously. Instead, they are switched between the LSU/ALU:
during each cycle, the access ports of each of the two D-register files (in a sin-
gle cluster) may be connected to the LSU or ALU, but not both. This means
that access of the two D-register files are mutually-exclusive for each FU, and
each LSU/ALU can access only one of them during each cycle. For one indi-
vidual public register sub-block, we can’t perform reading and writing on it in
two different FUs at the same time. Due to this back-and-forth style of regis-
ter file access, we call this a ‘ping-pong’ register file structure. We believe this
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special register file design can help us achieve low-power consumption because
it retains an effective way of data communication with less wire connections be-
tween FUs and registers. Note that the public register files are shared register
but can only be accessible by either LSU or ALU at one time. PAC DSP pro-
cessor [1] is currently developed at ITRI STC, and our laboratory is currently
collaborating with ITRI STC under MOEA projects for the challenging work to
develop high-performance and low-power toolkits for embedded systems under
PAC platforms [12], [16], [18], [19], and [20].

3 Motivating Examples

This section gives examples to motivate the needs of our optimization schemes.
Consider the code fragment below:

Code Fragment 1
(1) x := t3;
(2) a[t2] := t5;
(3) a[t4] := x + t6;
(4) a[t7] := x + t8;

The traditional technique for compilers to optimize the above code is to use t3
for x, wherever possible after the copy statement x := t3. The related work in
optimizing this code sequence by the copy propagation technique can be found in
Aho’s book [4]. Following the common data flow analysis and copy propagation
applied to Code Fragment 1, we have the optimized code below:

Code Fragment 2
(1) x := t3;
(2) a[t2] := t5;
(3) a[t4] := t3 + t6;
(4) a[t7] := t3 + t8;

This propagation can remove all data dependency produced by x := t3,
providing the compiler with possibility to eliminate the assignment x := t3.
However, the scheme above is not appropriate for the design of PAC DSP archi-
tecture. Due to this specific-architecture design with clustering and distributed
register files , extra intercluster-communication code needs to be inserted if there
occurs the data flow across clusters. Suppose t3 is allocated to a different cluster
from t6,t8, and x, the insertion of intercluster-communication code will then
need to be done if applying conventional copy propagation. Such overhead of
communication code increases the total cycles of the optimized code compared
with non-optimized one. Figure 2 is an example of VLIW code fragment. Code
bundle at the left-hand side represents one propagation path exists from Cluster
2 to Cluster 1, i.e. TN2 (Temporary Name, which is referred as a virtual regis-
ter representation) can be propagated from Cluster 2 to Cluster 1. Code bun-
dle at the right-hand side shows extra inter-communication costs needed after
propagation.
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{
Scalar    :      nop 
Cluster 1:      nop                
Cluster 1:      nop     
Cluster 2:      lw TN2,mem
Cluster 2:      nop 

}

{
Scalar    :      nop 
Cluster 1:      nop
Cluster 1:      TN3 = TN2 
Cluster 2:      nop   
Cluster 2:      nop       

}

{
Scalar    :      nop 
Cluster 1:      nop
Cluster 1:      TN4 = TN3 
Cluster 2:      nop   
Cluster 2:      nop       

}

Inter cluster 
communication

{
Scalar    :      nop 
Cluster 1:      nop                
Cluster 1:      nop     
Cluster 2:      lw TN2,mem
Cluster 2:      nop 

}

{
Scalar    :      nop 
Cluster 1:      nop
Cluster 1:      TN3 = TN2 
Cluster 2:      nop   
Cluster 2:      nop       

}

{
Scalar    :      nop 
Cluster 1:      nop
Cluster 1:      TN4 = TN2 
Cluster 2:      nop   
Cluster 2:      nop       

}

Inter cluster 
communication

Fig. 2. A VLIW Code Example for Inter Cluster Communication

Not only does the clustered design make data flow across clusters an additional
issue, but also compiler needs to take the distributed register file structure into
consideration. The private access nature of A and AC registers makes data flows
more difficult. For the convenience to trace the properties of private register
access, Code Fragment 3 lists assembly code generated from Code Fragment 1.
Assume that D register d2, and private registers a1, ac1, ac2 are allocated to
the variables x, t3, t6 and t8, respectively.

Code Fragment 3
(1) MOV d2, a1
(2) MOV d3, a3
(3) ADD d4, d2, ac1
(4) SW d4, d0, 24
(5) ADD d6, d2, ac2
(6) SW d6, d0, 28

Note that the operation MOV d2, a1 reaches the use of d2 in line 3 and line
5. However it is impossible to replace all the uses of d2 with a1 directly, for the
reason that A register files are only attached to LSU and AC register files are also
only attached to ALU. If d2 is replaced with a1, compiler must insert extra copy
instructions for private register access properties. This insertion of extra copy
instructions also brings the penalty and occupies additional computing resources,
and therefore needs to be considered for performing copy propagations.

In addition, the reduced wire connection is another important issue. Referring
to the short Code Fragment 4 and Code Fragment 5, the left part of Figure 3
illustrates how Code Fragment 4 being scheduled into bundles and also shows
read/write ports attached to D register files, and the right part of Figure 3 shows
Code Fragment 5. Note that we arrange all the instructions into cluster 1 to
avoid the cross-interference between port pressure and clustered design because
we want to focus on the port pressure issue.
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Code Fragment 4
(1) LW d2, a0, 16
(2) COPY ac2, d3
(3) SW d4, a0, 40
(4) ADD d5, ac2, d2

After propagating d3 to ac2, the resulted code is as follows:

Code Fragment 5
(1) LW d2, a0, 16
(2) COPY ac2, d3
(3) SW d4, a0, 40
(4) ADD d5, d3, d2

We observe that there are 3 read ports needed in the second bundle, but our
architecture only has 2 available read ports and 1 available write port. Due to
the port constraint, the bundle must be separated. Figure 4 illustrates the final
bundles of Code Fragment 5.

--

--

COPY ac2, d3

LW  d2, a0, 16

nop

--

--

COPY ac2, d3

LW  d2, a0, 16

nop

C2.LSU

C1.ALU

C2.ALU

C1.LSU

Scalar

--

--

ADD d5, ac2, d2

SW  d4, a0, 40

nop

--

--

ADD d5, ac2, d2

SW  d4, a0, 40

nop

C2.LSU

C1.ALU

C2.ALU

C1.LSU

Scalar

11

WriteRead

11

WriteRead

12

WriteRead

12

WriteRead

--

--

COPY ac2, d3

LW  d2, a0, 16

nop

--

--

COPY ac2, d3

LW  d2, a0, 16

nop

C2.LSU

C1.ALU

C2.ALU

C1.LSU

Scalar

--

--

ADD d5, d3, d2

SW  d4, a0, 40

nop

--

--

ADD d5, d3, d2

SW  d4, a0, 40

nop

C2.LSU

C1.ALU

C2.ALU

C1.LSU

Scalar

11

WriteRead

11

WriteRead

13

WriteRead

13

WriteRead

Fig. 3. The bundles of Code Fragment 4

In summary, Figure 2 illustrates a scenario that there might be data flows from
one cluster to another cluster. In Code Fragment 3, due to private registers can
only be accessible by the corresponding function units, compiler has to allocate
a new temporary register first and then move data from one register to the tem-
porary register. Propagation makes access between two different private register
file types increases register pressure. In Code Fragment 4 and 5, compiler does
not need to spend extra registers or communications through memory. However,
due to the reduced wire connections with global register files, the instruction
scheduler can only schedule them into two different bundles and fill the empty
slots with nops. We name the above three behaviors as ‘performance anomaly’.
In the following section, this problem is solved by deriving cost models and using
the cost models to guide the copy propagation process for performance benefits.
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--

--

COPY ac2, d3

LW  d2, a0, 16

nop

--

--

COPY ac2, d3

LW  d2, a0, 16

nop

C2.LSU

C1.ALU

C2.ALU

C1.LSU

Scalar

--

--

nop

SW  d4, a0, 40

nop

--

--

nop

SW  d4, a0, 40

nop

C2.LSU

C1.ALU

C2.ALU

C1.LSU

Scalar

--

--

ADD d5, d3, d2

nop

nop

--

--

ADD d5, d3, d2

nop

nop

C2.LSU

C1.ALU

C2.ALU

C1.LSU

Scalar

01

WriteRead

01

WriteRead

12

WriteRead

12

WriteRead

Fig. 4. Schedule of Code Fragment 5 according to the register ports constraint

4 Enhanced Data Flow Analysis on PAC Architecture

4.1 Cost Model and Algorithm

As mentioned in section 3, a naive application of data flow analysis scheme
to programs on PAC DSP actually increases execution cycles because of mem-
ory interface access, register pressure, and separated bundles. In the following
discussions, we will first introduce our cost models, and we will then develop
an algorithm based on our cost models to guide the analysis process to avoid
performance anomaly.

Our cost models for data flow analysis are to model the total weights we spend
and the total gains we get. We have defined several attributes for evaluating the
costs and gains of data propagation. The total weights of data flow path are the
costs of propagation from the TN n of instruction p to the TN m of instruction
q. Note that one TN (Temporary Name) of register type is referred as a virtual
register required to be allocated to a physical register in the machine level IR
used in compilers.

We also build equations to evaluate the extra communication costs of data
propagations from variable n to variable m, i.e. the three performance anomaly
effects mentioned in section 3. We define our cost equation as follows:

Cost(n, m) = PP (n, m) + RP (n, m) + CBC(n, m), (1)
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where PP (n, m) shows the port pressure caused by data flows from variable n
to variable m. And PP (n, m) is the extra cycles caused by the separation of
bundles. We rewrite PP (n, m) as

PP (n, m) = �kr − pr

pr
� + �kw − pw

pw
�, (2)

where kr/kw is the number of read/write ports needed after data flows from vari-
able n to variable m, and pr/pw is the number of read/write port constraint we
have mentioned in section 2. kr, kw, pr, and pw need to be calculated according
to the instructions in n and m, respectively.

RP (n, m) represents the register pressure caused by data access between two
different private register file types. Due to the distributed register file constraint,
one extra copy instruction must be inserted to move data from one private regis-
ter to a temporary register. RP (n, m) returns the number of extra copy instruc-
tions. CBC(n, m) returns the cost of memory access cycles when propagating
across clusters. PAC DSP provides a special instruction pair (BDT and BDR)
to broadcast data from one cluster to another.

Table 1 shows the corresponding cost functions used in each kind of data flow
path. Note that we have local register A for data movement units, local register
AC for ALU unit, register D as a ping-pong register to be interleaved between
ALU and load/store units.

Table 1. Costs in each data flow path

Data Flow Cluster1.D Cluster1.A Cluster1.AC Cluster2.D Cluster2.A Cluster2.AC

Cluster1.D – PP PP CBC CBC CBC
Cluster1.A – – RP CBC CBC CBC
Cluster1.AC – RP – CBC CBC CBC
Cluster2.D CBC CBC CBC – PP PP
Cluster2.A CBC CBC CBC – – RP
Cluster2.AC CBC CBC CBC – RP –

The total gains are the reduced communication codes and the reduced copy
assignments from propagations between TN n of instruction p to TN m of in-
struction q. We define the total gains as

Gain(n, m) = RCC(n, m) +
∑

j∈path(n,m)

ACA(c[j]), (3)

where RCC(n, m) represents the original communication cost on this n-m path,
and the communication cost can possibly be reduced if the assignment is done
directly instead of going through a sequence of copy propagations. ACA(c[j]) is
to calculate the number of all available copy assignments which can be reduced
along this n − m data flow path. c[j] is the intermediate copy assignment on
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n − m path, and path(n, m) represents the set of intermediate nodes in the flow
path from n to m.

We view each variable as a node, and the data flows between those nodes form
an acyclic DFG. Our analysis algorithm mainly comprise 2 procedures. In the
first procedure, we perform the ordinary copy propagation algorithm illustrated
in Figure 5. Let U be the ‘universal’ set of all copy statements in the program.
Define c gen[B] to be the set of all copies generated in block B and c kill[b] to be
the set of copies in U that are killed in B [4]. The conventional copy propagation
algorithm can be stated with the following equation.

out[B] = c gen[B] ∪ (in[B] − c kill[B]) (4)

in[B] =
⋂

P is a predecessor of B
out[P ] for B not initial (5)

in[B1] = ∅ where B1 is the initial block (6)

Note that we don’t perform the step 3 in Figure 5 at this time. After per-
forming the first two steps of the copy propagation algorithm in Figure 5, we
keep every traversed nodes in the same data flow path into a list L. While find-
ing out all possible nodes, we import these nodes in L into the other equations
(equation (1), and equation (3)) to find a data propagation path with the best
profits. Finally, we propagate data according to the best data flow path. Note
that we can choose not to take the data flow path if no path makes a profit. The
algorithm in Figure 6 shows the whole processes of both the weight evaluation
and the data flow selection.

The first step of enhanced data flow algorithm does the initial work to find
out the concerned nodes of a propagation path from noden to nodem. The nodes
form an acyclic data flow tree. Step 2 evaluates the initial weight of each edge
(i, j). By step 2, we can calculate the initial weight of this n−m path. The initial
weight can be estimated by Gain(n, m) since they tell the same cost but from
different views. In step 3, we perform both the equation (1) and the equation (3)
to check if there are some short cuts to go. Note that the gains represent both
the communication cost and the available copy assignments we can save by going
through the short cut, and the costs show the extra inter/intra cluster costs on
the short cut. We iterate several times over this tree graph, using k as an index.
On the kth iteration, we get the best profit solution to the propagation path
finding problem, where the paths only use vertices numbered n to k. Note that
if this results in a better profit path, we remember it. Due to the comparison
with initial weight, the outcome path must be no more than the weight of no-
propagation method and naive propagation method. After iterations, all possible
short cuts have been examined, and we output the proper propagation path by
step 4. The algorithm produces a matrix p, which, for each pair of nodes u and
v, contains an intermediate node on the least cost path from u to v. So the best
profit path from u to v is the best profit path from u to p[u,v], followed by the
best profit path from p[u,v] to v. Step 3 of the algorithm is done with a flavor
of the shortest path problem, but only now that we model the problem for copy
propagation and register communications.
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Algorithm 1: Copy Propagation Algorithm

Input: A flow graph G, with ud-chains.
c in[B] represents the solution to Equation
(4), (5), (6). And du-chains.

Output: A revised flow graph.
Method: For each copy s: x:=y do the following.

1. Determine those uses of x that are reached by this
definition of x, namely, s: x:=y.

2. Determine whether for every use of x found in (1),
s is in c in[B], where B is the block of this par-
ticular use, and moreover, no definitions of x or y
occur prior to this use of x within B.

3. If s meets the conditions of (2), then remove s and
replace all uses of x found in (1) by y.

Fig. 5. Copy Propagation Algorithm

4.2 Advanced Estimation Algorithm

The goal of the Enhanced Data-Flow Analysis Algorithm is to collect the infor-
mation of the weights and gains of propagation at each point in a program. If
multiple nodes have the same ancestors, they should share the weights and gains
from their ancestors. The Figure 7 shows a new evaluating method to solve this
sharing problem on a propagation tree.

In the first step, we deal with the issue for shared edges for determining which
path is doing copy propagation and which path does not. In that case, the inter-
mediate assignment will not be eliminated by dead code eliminations. This can
still be done, but we need to reflect this in our cost model for GAINS calculated
in equation (3). Three small steps are performed. In step 1.a, we first find the set
of all propagation paths. Note that we only need to find out those paths are not
sub-path of other paths, as dealing with the long path (non-proper sub-path) in
copy propagation will cover all cases. Next in Step 1.b, we try to mark the in-
termediate stops in all propagation paths according to output of Path routine in
Figure 6 for each path. Next in Step 1.c, we re-adjust the cost model for GAINS if
there are intermediate nodes which will not be eliminated eventually in dead code
elimination phase due to the share edge decides to keep the intermediate stops.

In step 2, we also deal with shared edges, but for fine-tuning the cost model. As
if there are shared edges, the gains of copy propagations should be counted only
once (or the benefit needs to be distributed among shared paths). A reference
counting scheme can be used to see the amount of sharing. This is done in Step
2.a. This information can then be used to re-adjust the cost model for GAINS
in equation (3).
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Algorithm 2: Enhanced Data Flow Analysis

Input: Inputs in Copy Propagation Algorithm.
(Figure 5).

Output: A proper propagation path.

1. Perform the first and the second steps in Copy
Propagation Algorithm in Figure 5 to traverse all
possible propagation nodes on n − m path .

2. for i = n to m do
for j = n to m do

/* Evaluate the initial weight, w[i, j]. */
/* This weight includes the communication*/
/* costs and all the copy assignments */
/* along path before propagation. */
Estimate the initial weight w[i, j];

end
end

3. for k = n to m do
for i = n to m do

Compute Gain(i, k) and Cost(i, k).
for j = n to m do
Compute Gain(k, j) and Cost(k, j).
profit = Gain(i, k) − Cost(i, k) +

Gain(k, j) − Cost(k, j);
if (w[i, j] − profit) < w[i, j] do

w[i, j] = w[i, j] − profit;
p[i, j] = k;

end
end

end
end

4. /* Output a proper propagation path from */
/* u to v */
Path (u, v, p) {

k = p[u, v];
if (k == Null) return;
Path(u, k);
output the node k;
Path(k, v);

}

Fig. 6. The Enhanced Data Flow Analysis Algorithm
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Algorithm 3: Available Copy Assignment Estimation Algorithm

Input: A propagation tree
Output: Proper weights of all propagation paths

Step 1.a:
Find the set of all the propagation paths (all the
non-proper propagation paths), PP .

Step 1.b:
For each path p ∈ PP do {

Mark each element in the output of Path routine in Figure 6
for p as intermediate stop.

}
Step 1.c:

For each path p ∈ PP do {
Compare the elements of intermediate stops in p with the
elements from the output of Path routine in Figure 6 for p.
If there are additional elements in the path of p marked
as intermediate stops, revise cost for the GAINS of p.

}
Step 2.a:

For each path p ∈ PP do {
Use reference counting to count the reference count
for each node in p.

}
Step 2.b:

For each path p ∈ PP do {
Revise GAINS for p by using the reference counting
information acquired in the previous step.

}

Fig. 7. Available Copy Assignment Estimation Algorithm

5 Infrastructure Designs and Experiments

We now first describe our compiler testbed for our proposed copy propagations
over cluster-based architecture and distributed register files. Our compiler plat-
form is based on ORC and we retarget the compiler infrastructure for PAC
architecture. ORC is an open-source compiler infrastructure released by Intel. It
is originally designed for IA-64. ORC is made up of different phases. The ORC
compilation starts with processing by the front-ends, generating an intermediate
representation (IR) of the source program, and feeding it in the back-end. The
IR , called WHIRL, is a part of the Pro64 compiler released by SGI [11]. PAC ar-
chitecture introduces additional issues with register allocation under comparison
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between different platforms. In our compiler infrastructure, we first implemented
a partitioning scheme to partition the register file among clusters. This is known
Ping-pong Aware Local Favorable (PALF) register allocation [12] [16] to obtain
a preferable register allocation scheme that well partitions register usage into
the irregular register file architectures in PAC DSP processor. The algorithm
involves the proper consideration of various characteristics in accessing different
register files, and attempts to minimize the penalty caused by the interference
of register allocation and instruction scheduling, with retaining desirable par-
allelism over ping-pong register constraints and inter-cluster overheads. After
the phase of register allocation and instruction selections, we then move into
the phase of EBO (basic block optimizations). EBO was a phase originally in
ORC for the basic block optimizations and carrying out optimization such as
copy propagations, constant folding, dead code eleminations. Our enhanced copy
propgation algorithm is implemented in this phase.

We use the PAC DSP architecture described in section 2 as the target architec-
ture for our experiments. The proposed enhanced data flow analysis framework
is incorporated into the compiler tool with PAC ORC [5], and evaluated by the
ISS simulator designed by ITRI DSP team. We also implement the METIS graph
partitioning library [6] for the register allocation scheme. The benchmarks used
in our experiment are from the floating-point version of DSP-stone benchmark
suite [7]. Notice that benchmarks are indexed with numbers to identify the spec-
ified basic block we used in this experiment. We focused on the major basic
blocks as copy propagation was implemented in peephole optimizations for basic
block optimizations.

Three versions are compared in our research work. The base version is one
without copy propagation mechanism. The original version is one from a work
that only performs the naive copy propagation algorithm in Figure 5. The En-
hanced Data-Flow Analysis scheme proposed in our work is to perform all phases
in Figure 6. Both the original version and the Enhanced Data-Flow Analysis
scheme are incorporated with dead code elimination.

Figure 8 shows that our scheme can achieve an average of 15.0% reduction
comparing to the base method. Note that from our experiment, the original
copy propagation version (Figure 5) suffers a performance loss in benchmarks
real update BB 2, n real update BB 3, and convolution BB 2. That’s because the
naive copy propagation produces lots of inter communication codes and reg-
ister pressure in real update BB 2 and n real update BB 3. The test program
convolution BB 2 suffers redundant inter communication codes. Although the
naive propagation version can reduce some of the unnecessary copy assign-
ments, it is still out-performed by our proposed scheme. The test programs
mat1x3 BB 3, dot prod-uct BB 3, fir2dim BB 5, and matrix1 BB 5 show that
our methods can keep the good nature of the naive propagation version. And
the other benchmarks prove that our proposed methods can also reduce the
performance anomaly over by distributed register files.
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Fig. 8. Ratio of execution cycles in basic block codes

6 Related Work

High-performance and low-power VLIW DSP processors are of interests lately
for embedded systems to handle multimedia applications. To achieve this goal,
clustered architecture is one well-known strategy. Examples are given in this
work [8] [9] [10]. The presence of distributed register file architecture presents a
challenge for compiler code generations. Earlier work focused on the partitioning
of register file to combine with instruction scheduler [12] [13] [16]. While the
partitioning scheme for distributed register file is important, there are more
challenging problems ahead as evidenced in this work that we need to handle
copy propagations over such architectures. [17] provides techniques to support
copy propagation during register allocation which is known as node coalescing in
the interference graph. Our work presents an approximation to deal with these
issues in post register phase that we give cost models to guide the process for
copy propagations on embedded VLIW DSP processors with distributed register
files and multi-bank register structures.

Performance anomaly was earlier also found in the problem of array operation
synthesis. The work for Fortran 90 and HPF programs [14] [15] was done in the
context of array operations and source languages for distributed memory parallel
machines. With the distributed memory hierarchies moving from memory layers
into register levels, the performance anomaly was also observed in the register
layers. Previous work was done in loop levels and source levels, while this work
needs to carefully model register communication and architecture constraints in
the instruction levels.

7 Conclusion

In this paper, we presented an enhanced framework for copy propagations over
VLIW architectures with distributed register files. This presented a case study
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to address the issues for how to address compiler optimizations for conventional
optimizations schemes over distributed register file architectures. Experimental
results show that our scheme can maintain the benefits of copy propagation
optimizations while prevent performance anomaly. Future work will include the
integration of cost models to cover more cases of compiler optimization schemes
such as common available expression eliminations.
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Abstract. This paper addresses the problem of optimal global register allocation.
The register allocation problem is expressed as an integer linear programming
problem and solved optimally. The model is more flexible than previous graph-
coloring based methods and thus allows for register allocations with significantly
fewer moves and spills. The formulation can also model complex architectural
features, such as bit-wise access to registers. With bit-wise access to registers,
multiple subword temporaries can be stored in a single register and accessed effi-
ciently, resulting in a register allocation problem that cannot be addressed effec-
tively with simple graph coloring. The paper describes techniques that can help
reduce the problem size of the ILP formulation, making the algorithm feasible
in practice. Preliminary empirical results from an implementation prototype are
reported.

1 Introduction

This paper presents a family of new register allocation algorithms that are suitable
for off-line computation of high-quality register allocations. The algorithm is targeted
for embedded systems which need to run medium-sized applications with limited re-
sources. In particular, we assume that the number of registers available is relatively
small and that hardware optimizations such as out-of-order execution, caching and
prefetching are not available to an extent that would nullify the cost of spilling. In
this context, the compile-time cost for a critical method is almost irrelevant – even if
the compilation takes extremely long, the resulting gain in either reduced hardware cost
or possibly more important reduced energy consumption due to improved code perfor-
mance is all that matters.

The traditional approach towards decent-quality register allocation is to color the
interference graph [6]. If the number of colors exceeds the number of registers, tem-
poraries are selected for spilling until the graph becomes colorable. The approach pre-
sented in this paper makes a radical departure from the graph coloring model, com-
pletely eliminating the boolean decision of spilling or not spilling a temporary. The
basic idea is to allow temporaries to switch registers at any time and to use constraints
to force temporaries that are used at a given instruction into appropriate registers only at
the time of use. Moving a variable between registers or between registers and the stack
is associated with a cost in the goal function of the integer linear program (ILP). The
search space for the ILP solver is reduced using observations about the points in time
at which it may make sense for a temporary to be spilled in an optimal allocation.
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In order to show the expressive power of the approach, this work describes a way
to perform optimal register allocation for architectures that allow bit-wise access to
registers as proposed in [11]. Various applications, in particular from the embedded
domain, make extensive use of sub-word sized values. Examples include network stack
implementations and signal- and image-processing as well as hardware drivers. For
these applications, bit-wise register allocation can reduce register pressure. Under the
assumption that the cost of adding instructions that support sub-word access is smaller
than the cost of adding additional registers (or increasing the processor speed to offset
the spill-cost), bit-wise register allocation can help reduce total system cost.

The proposed approach uses Integer Linear Programming (ILP) [13]. Using minor
variations to the integer linear program the model is able to encompass features from
a large body of previous work on register allocation, including bit-wise allocation, co-
alescing, spilling, use of registers for both spilling and ordinary temporaries, and a
limited form of rematerialization [3].

The remainder of the paper is organized as follows. After an overview of related work
in Section 2 the ILP formulation for the bit-wise register allocation is introduced in
Section 3. Section 4 presents the implementation, performance data for various bench-
marks and concludes the paper with a discussion of the benefits and limitations of this
approach.

2 Related Work

Previous work has focused on register allocation at local, global, intraprocedural, and
interprocedural levels. Intraprocedural register allocation is known to be a NP-hard
problem and several heuristics have been proposed to solve the problem [4,5,6].

ILP has been used previously for register allocation and instruction scheduling. The
optimal register allocator presented in [9] uses 0-1 linear programming to compute an
optimal register allocation. Like this work, the ILP formulation there allows for a vari-
able to moved between registers and memory. The primary difference is that in [9]
models the register allocation problem as a sequence of binary decision problems: to
allocate or not to allocate a register for a given variable at a given time. The objective
function then accumulates the associated costs for each of the possible decisions. The
decision model cannot cope with bitwise allocations, mostly because for a bitwise allo-
cator the decision which temporaries should share a register is no longer binary. In [7]
the ILP from [9] is transformed in order to improve the solution time while retaining
optimality. This is achieved by reduction techniques that exploit the control-flow graph
structure and live-ranges of the variables. The presented techniques implicitly assume
that every register can only hold one variable and are thus not directly applicable to the
model presented in this paper. The transformations resulted in a speed-up of a factor of
150 for solving the resulting ILP over the naı̈ve model.

In [2], the authors solve the register allocation problem for CISC machines by di-
viding it into two subproblems - optimal spilling and register coalescing. The optimal
spilling problem is solved optimally using ILP, while a variant of Park and Moon’s
heuristic [14] is used for solving the register coalescing problem (sub-optimally). The
authors exploit the CISC instruction set to optimize the cost of loads and stores. They
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take into account that number of available registers may vary from program point to pro-
gram point, but do not consider variable bit-width requirements of temporaries. In [12]
an approach to speculative subword register allocation based on optimistic register al-
location is proposed. The idea behind this paper is that there are more opportunities for
subword allocation at runtime than what can be statically determined to be safe. The
authors propose to use profiling data to speculatively pack variables that are most of
the time sufficiently small into a register and to have the processor dynamically detect
and flag the case where the size constraints are not met. This requires support by the
processor which needs to keep an additional bit per register. If the flag is raised for a
given register, the processor executes the appropriate stack accesses instead.

3 ILP Formulations

The key idea for the algorithm is to avoid assigning a temporary (both program defined
variables and compiler generated temporaries) a fixed location and instead to formulate
certain constraints on the location in the form of an integer linear problem (ILP) [13].
The goal function of the ILP captures the cost of the resulting register allocation. The
ILP is then solved using off-the-shelf ILP solver technology.

The input to the ILP-solver is a set of constraints that describe the register allocation
problem. The basic constraints are that each temporary must be assigned to exactly one
register, and that each register must have enough space to hold all temporaries assigned
to it. Dead temporaries do not use any space. Throughout the paper, the stack is modeled
as a special register σ that has no space constraints. All other registers can only store b
bits of information.

3.1 Basic Formulation

The basic formulation only considers allocating one register per temporary for the life-
time of that temporary. Moving a temporary between registers or between registers and
the stack is not allowed in this model. The reader can choose to ignore the bit-wise
nature of the register allocation and view the problem in a simplified manner where
dead temporaries have a bit-width of zero and all live temporaries are word-sized. This
would also be the natural simplification to the algorithm for architectures without bit-
wise access to registers.

The input to the problem is sets of temporaries i ∈V and registers r ∈ R, spill costs Si

for each temporary i ∈ V and the size wi,n for temporary i ∈ V at all nodes n ∈ N in the
control flow graph. The special register σ ∈ R is used to represent the stack, which is not
constrained in size and is used for spilling. All other registers r ∈ R −{σ} are limited
to b bits (b is typically 32). The result of the computation is an allocation xi,r ∈ {0,1},
with i ∈ V and r ∈ R, that assigns every temporary a unique register (or the stack σ ).
The problem can then be stated in a way suitable for integer-linear programming (ILP):

min ∑
i∈V

Si · xi,σ (1)

such that
∧

r∈R−{σ}
n∈N

∑
i∈V

xi,r ·wi,n ≤ b (2)

∧

i∈V
∑
r∈R

xi,r = 1 (3)

∧

i∈V
r∈R

xi,r ∈ {0,1} (4)
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Equation (1) models the cost of the solution by summing up the cost of loading
temporaries i ∈ V that have been spilled (xi,σ = 1) from the stack. Equation (2) states
that at all times and for all registers except the stack, the total size of all temporaries
stored in any register must not exceed the register size b. Equations (3) and (4) state that
every temporary must be assigned exactly one location.

3.2 Control-Flow Graph Formulation

Let (N,E) be the control-flow graph with nodes n ∈ N and directed edges (a,b) ∈ E ⊆
N × N. Note that the control-flow graph does not use basic blocks; instead, each indi-
vidual statement corresponds to two nodes in the graph, one for the register allocation
before the instruction and another one for the register allocation after the instruction.

The goal is to be more flexible in terms of when temporaries are spilled. The goal is
to allow allocations where a temporary is spilled part of the time or where it is moved
from one register to another (for example, in order to reclaim fragmented space in the
registers in bitwise allocation). This problem can be formulated using linear constraints
by introducing additional temporaries ci,r,n ∈ {0,1} that capture at which nodes n ∈ N
register r ∈ R has been allocated to a new temporary i ∈ V . Let xi,r,n ∈ {0,1} be the
decision function that places temporary i ∈ V into register r ∈ R at node n ∈ N.

Let Si,n be the spill cost of temporary i ∈ V at node n ∈ N. The value of Si,n is
zero if i is neither defined in the instruction before n nor used in the instruction after n
(whichever case applies). Si,n gives the cost of loading i from the stack if i is used at
the instruction after node n. If i is defined at the instruction before t, then Si,n is the cost
of spilling i to the stack. The cost estimate S also includes a factor that estimates the
execution count for spill operations at node n.

Let μr,n ∈ R be the cost of moving a value to or from register r ∈ R at node n ∈ N.
Using μr,n, the cost of a move at node n between register a and b is assumed to be given
by μa,n + μb,n. For example, given only one family of registers, the value for μr,n for
r ∈ R −{σ} is half the cost of a register-to-register move. In this case, if ζn is the cost
of moving a value between the stack and a register at node n, then μσ ,n = ζn − μr,n.
Unlike S, the value of μ is independent of the access pattern of the program. For μr,n

the node n ∈ N only plays a role in that it can again be used to factor in the fact that a
move within a loop is more expensive than a move outside of loops.

Let wi,n be the number of bits that temporary i ∈ V requires at node n ∈ N. The
resulting integer linear program is shown in Figure 1.

The new goal function (5) adds the cost for moving a temporary i from or to register
r at node n in (indicated by ci,r,n = 1) at cost μr,n. The new formulation allows each
variable to be spilled part-time while residing in registers at other times. Thus the spill
cost is now differenciated into a per-node, per-variable access cost Si,n which is incurred
if xi,σ ,n = 1, that is i is spilled onto the stack σ at node n.

Equation (6) directly corresponds to equation (2); the only change is that now also x
depends on n ∈ N. The new constraints (8) and (9) ensure that ci,r,n must be 1 each time
that xi,r,n �= xi,r,p for some predecessor p of n ∈ N. Equation (10) states that for any node
n a variable i must either be assigned to register r or not; a partial assignment is not
allowed. While implied, equation (11) makes it obvious that ci,r,n is a boolean variable
and that in particular values greater than 1 are not possible.
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min ∑
i∈V
n∈N

Si,n · xi,σ ,n + ∑
i∈V

r∈R,n∈N

μr,n · ci,r,n (5)

such that
∧

r∈R−{σ}
n∈N

∑
i∈V

xi,r,n ·wi,n ≤ b (6)

∧

i∈V
n∈N

∑
r∈R

xi,r,n ≥ 1 (7)

∧

i∈V,r∈R
(p,n)∈E

(xi,r,n −xi,r,p)+ci,r,n ≥ 0 (8)

∧

i∈V,r∈R
(p,n)∈E

(xi,r,p −xi,r,n)+ci,r,n ≥ 0 (9)

∧

i∈V,r∈R
n∈N

xi,r,n ∈ {0,1} (10)

∧

i∈V,r∈R
n∈N

ci,r,n ∈ {0,1} (11)

Fig. 1. ILP formulation for bitwise register allocation with a graph-based control flow model

3.3 Zero-Cost Moves

Dead temporaries can be moved between registers at no cost. The model so far considers
all moves to be of equal cost, regardless of the liveness of the temporary. A good way
to allow for zero-cost moves is to split all temporaries with multiple disjoint live-times
into multiple temporaries, one for each live-time. While this increases the size of the
set V , the simplification presented in the next section avoids significant growth of the
problem due to this extension.

3.4 Optimizations to the ILP

The ILP stated so far can be optimized in order to achieve faster solution times. The
basic idea is to reduce the search space for the ILP solver by adding constraints that fix
the value of problem variables without changing the value of the goal function for the
optimal solution.

Let pred(n) := {p|(p,n) ∈ E} be the set of immediate predecessors of node n ∈ N.
Let Ln ⊆ V be the set of temporaries that are not accessed at nodes n and pred(n) and
that are either dead or have maximum size at node n ∈ N. Considering that Si,n specifies
the spill-cost for temporary i at node n ∈ N, the exact definition of Ln is

Ln :=

⎧
⎨

⎩
i ∈ V

∣
∣
∣
∣
∣
∣
wi,n ∈ {0,b}∧

∧

d∈pred(n)∪{n}
Si,d = 0

⎫
⎬

⎭
.

Let M ⊆ N be the set of nodes where the move cost is equivalent compared to all
previous and next nodes (and thus performing the move earlier or later does not change
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the cost of the move). The intuitive meaning of M is the set of nodes where the control-
flow is linear. Formally

M :=

⎧
⎪⎨

⎪⎩
n ∈ N

∣
∣
∣
∣
∣
∣
∣

∧

p∈pred(n)

∧

s∈succ(n)
r∈R

μr,p = μr,n = μr,s

⎫
⎪⎬

⎪⎭
. (12)

Lemma 1. The optimality of the solution computed by the ILP solver is preserved if the
constraint ∧

r∈R
n∈M

∧

i∈Ln
p∈pred(n)

xi,r,n = xi,r,p (13)

is added. The constraint further implies that
∧

r∈R
t∈M

∧

i∈Ln

ci,r,n = 0. (14)

Proof: Suppose for some r ∈ R, n ∈ M, i ∈ Lt an optimal solution to the ILP exists
with xi,r,n �= xi,r,pred(p). If xi,r,n = 1, then i was moved at node n out of register r ∈ R.
If wi,n = 0, performing the move earlier at time p makes no difference at all (since the
temporary is dead and only assigned a register pro-forma). Suppose wi,n = b. In that
case, i must be moving from the stack into a register or vice versa, since moving i from
one register r ∈ R −{σ} to another register r′ ∈ R −{r,σ} must be a useless move in
an architecture with orthogonal registers and can thus not occur in an optimal solution.1

Assume that i is moved from σ to register r ∈ R−{σ}. Then this move can be deferred
until time succ(n) (change to the previous optimal solution requires setting xi,r,n = 0 and
xi,σ ,pred(n) = 1). This is always possible, since deferring the move only reduces register
pressure (σ has no space constraint). Similarly, if the move is from register r ∈ R−{σ}
to σ , the move can be performed earlier at pred(n) without changing the cost and again
strictly reducing register pressure. The situation for xi,r,n = 0 is analogous. �

Symmetry. Another improvement in performance can sometimes be achieved by elim-
inating symmetry from the ILP formulation. Symmetry occurs in the ILP since all reg-
isters (in the same register family) are equal. Thus for n registers, there exist n! com-
pletely equivalent solutions. If symmetry is not addressed, the ILP solver may end up
enumerating all of these. Symmetry can be reduced by adding constraints that eliminate
redundant solutions.

Note that the register order can only be chosen arbitrarily for one specific node since
in an optimal solution the selected permutation may limit the register order at other
places. Since only live variables will impose constraints on neighboring nodes, the im-
pact of selecting a register order can be increased by adding a constraint at a node where
the number of variables in registers is high.

Lemma 2. Let nS ∈ N be a node where the number of live variables is maximized. Let
W ⊆ V be the set of variables at node nS for which wi,nS = b.2 Let Q ⊆ R be a subset of

1 Note that this would not be true for wi,n ∈ (0,b), since such a move might defragment the
available space in the registers in that case.

2 W could be defined to include all variables that at node nS cannot be co-located with others in
the same register. However, this definition makes the proof simpler and more to the point.
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equivalent registers (that is, Si,n = S j,n and μi,n = μr,n for all i, j ∈ Q and n ∈ N). For
example, given a suitable architecture Q := R −{σ}. Let <Q be a total ordering of the
registers and <W be a total ordering of the variables in W.

Then, adding the constraint
∧

r1,r2∈Q,i1,i2∈W
r1<Qr2 ,i1<W i2

xi1,r1,nS + xi2,r2,nS < 2 (15)

does not change the value of the optimal solution for the ILP.

Proof: Let x ∈ {0,1}V,R,N be an optimal solution for the ILP without constraint (15). It
needs to be shown that there exists a solution x′ ∈ {0,1}V,R,N that satisfies (15) with the
same cost. Equation (15) can be reformulated into a logical expression:

∧

r1 ,r2∈Q,i1,i2∈W
r1<Qr2,i1<W i2

xi1,r1,nS + xi2,r2,nS < 2

⇔
∧

r1 ,r2∈Q,i1,i2∈W
r1<Qr2,i1<W i2

(xi1,r1,nS = 1) ⇒ (xi2,r2,nS = 0)

⇔
∧

r1∈Q
i1∈W

⎛

⎜
⎜
⎝(xi1,r1,nS = 1) ⇒

∧

r2∈Q,i2∈W
r1<Qr2 ,i1<W i2

xi2,r2,nS = 0

⎞

⎟
⎟
⎠

For variable i ∈ W let ri ∈ R be this register (xi,ri,nS = 1) for the optimal solution x. Let
τ0 : R → R be the identity permutation. For any permutation τk define xk

v,r,n := xv,τk(r),n.

While xk violates (15) define xk+1 iteratively as follows:
Let rk ∈ Q be the smallest (with respect to <Q) register for r1 such that the above

equation is not satisfied for r1 := −rk and suitable choices for the other terms. Let
ik ∈ W be the unique variable for which xik,rk ,nS

= 1. Let r2 ∈ Q be the largest register

rk <Q r2 for which there exists an j ∈ W with xk
j,r2,nS

= 1 and ik <W j. Define τk+1 :=
τk ◦ τrk,r2

.
Note that the permutation will eliminate the violation of the constraint since r2 >Q r

among all registers r ∈ Q for which there exists an i ∈ W with xk
i,r,nS

= 1 and ik <W i.
Note that precondition wi,nS = b is important here since it implies that at most one
variable from the set W can be assigned to any given register (∑i∈W xi,r,nS ≤ 1 for all
r ∈ R). This ensures that there does not exist a j �= i for which xk

j,ri2 ,nS
= 1 also holds

(which would result in (15) making the problem infeasible).
The inductive definition of xk terminates with a solution x′ = xkmax (with kmax < |W |)

since in step k+1 the equation jk+1 > W jk holds and thus enforces progress. The result
x′ is a feasible solution (using c′

v,r,n = cv,τ(r),n gives the values for c) of equivalent cost
(since τ(r) = r for r ∈ R−Q implies that cost equivalence follows trivially from register
equivalence for r ∈ Q) that satisfies (15). �
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3.5 Avoiding to Block Registers for Spilling

Whenever a spilled temporary is used by an instruction, some architectures require
that it must be loaded into a register before execution of that instruction. Similarly, if
an instruction produces a temporary that is not allocated a register at that point, the
result may need to be temporarily stored in a register before it can be spilled onto the
stack. A common technique addressing such requirements is to reserve a few registers
for accessing spilled temporaries. These registers are then excluded from the ordinary
register allocation process. The formulation presented so far assumes that a sufficient
number of such registers exist outside of the set of available registers R that is made
available to the ILP solver.

Let ai,n ∈ {0,1} be a condition temporary that indicates that at node n temporary i
is accessed (used or defined). Since Si,n gives the cost for accessing a spilled variable,
this means ai,n := sgn(Si,n). Let br,n ∈ {0,1} indicate that register r is used for at least
one assigned temporary at node n. The term “assigned temporary” is used to differen-
tiate these temporaries from “spilled temporaries” in the classical sense. The following
constraints are then sufficient to reserve registers for spilling (extending the ILP model
from Section 3.2):

∧

n∈N
∑
i∈V

ai,n · xi,σ ,n + ∑
r∈R−{σ}

br,n ≤ |R −{σ}| (16)

∧

i∈V,r∈R
n∈N

br,n ·wi,n ≥ xi,r,n ·wi,n (17)

∧

r∈R
n∈N

br,n ∈ {0,1} (18)

In (17) the value of br,n is forced to be one if a live temporary i exists (wi,n �= 0) that is
assigned to register r at node n (xi,r,n = 1). As a result, ∑i∈V ai,n · xi,σ ,n is the number of
registers that must be reserved for spilled temporaries at node n and ∑r∈R−{σ} br,n is the
number of registers assigned to registers at that instruction. Equation (16) describes that
the number of allocated registers for both the spilled and register-allocated temporaries
must not exceed the total number of registers.

Note that this formulation does not take bit-wise access to registers into account.
While the ILP solution does allow assignment of temporaries to all registers at times,
the formulation does not allow for the possibility of allocating just some bits of registers
for the spilled temporaries. The problem with a formulation supporting this kind of
allocation is that one would still have to ensure that the spilled temporaries are not
scattered over multiple registers. This precludes a simple formulation over the sum of
all bits assigned to temporaries.

3.6 Coalescing

Coalescing is an important step in register allocation that assigns the same register to
temporaries that are connected by a move in order to reduce the number of move in-
structions. The problem with coalescing for previous register allocators is that forcing
two temporaries to be in the same register can result in additional spilling. In [8] an
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algorithm is presented that attempts to minimize the number of moves without intro-
ducing any additional spills.

Since the ILP formulations presented in this paper (with the exception of the basic
formulation in section 3.1) allow spilling temporaries on a per-instruction basis, they
do not have the problem of additional spills due to too aggressive coalescing. Where
in [5] the merging of move-connected temporaries would force these temporaries to be
either spilled or kept in a register throughout their lifetime, the ILP formulation allows
for partial spilling. Hence it is possible to merge all temporaries that are connected by
moves upfront. The ILP solver will insert the necessary minimal number of moves and
spills as required.

Also note that coalescing reduces the total number of variables and thus reduces the
problem size of the ILP. From that perspective, coalescing should also be considered an
optimization that improves the run-time of the register allocation algorithm.

3.7 Rematerialization

Rematerialization [3] is an important technique based on the realization that is some-
times cheaper to recompute a temporary than to load it from memory or to hold it in a
register (and possibly spilling other temporaries). The simplest case for this is where the
temporary is a constant value. Extending the presented formulation to the case where
values need to be recomputed is not easily possible since this may change the lifetimes
of the other temporaries that are used in the expression. On the other hand, rematerial-
ization of constants can be handled easily by the ILP formulation.

Note that it would not be optimal to just replace all uses of a constant with a fresh
temporary. Inserting an instruction to load a constant value can be more expensive than
keeping the constant in a register if a register is available for free. The cost of loading
an immediate value can be modeled precisely in the goal function. This can be achieved
by modifying the goal function to allow for temporary-specific spill costs. Let μi,r,n

be the cost of spilling temporary i ∈ V at node n ∈ N to or from register r ∈ R. For
temporaries of constant value, the spill-cost to the stack would be zero. The spill-cost
for loading a constant-value temporary from the stack would be the cost of a load-
immediate instruction. The resulting goal function that incorporates the differentiated
spill-cost due to constant rematerialization is then:

min ∑
i∈V
n∈N

Si,n · xi,σ ,n + ∑
i∈V

r∈R,n∈N

μi,r,n · ci,r,n (19)

4 Results

The current implementation uses gcc [1] to generate the ILP problems. gcc was modi-
fied to support register allocation for hypothetical architectures with 4 to 8 orthogonal
registers. The integer linear problems generated by gcc are then solved using ILOG’s
AMPL/CPLEX linear optimizer. Code generation based on the ILP results has not yet
been implemented. Note that a target platform with bit-wise access does not yet exist
to the best of our knowledge. However, platforms allowing subword-register allocation
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exist and while it is trivial to adjust the ILP model for these architectures the neces-
sary modifications to gcc would be extensive. The various cost-parameters in the ILP
formulation were set using gcc’s built-in cost estimation functions.

The resulting performance metric is the cost estimate given by the goal function in
the ILP formulation (5). While this does not allow us to deduce the overall speed-up
that could be obtained from the proposed algorithm, this cost estimate should be a good
general metric for comparing register allocators. In order to compare the new register
allocation algorithm, the output of various other register allocation algorithms available
for gcc was judged using the same metric.

For the evaluation, three previously published register allocators were compared with
the various ILP-based allocators presented in this paper. The previously published reg-
ister allocators are traditional graph coloring [5], linear-scan register allocation [15] and
Tallam and Gupta’s bitwidth aware global register allocation [17]. In order to allow a
fair comparison with the graph coloring and linear scan allocators we give numbers
for the ILP models for both bitwise and ordinary (wordwise) register allocation. Also,
the bitwidth estimation algorithm used is the same for all allocators supporting bitwise
allocation.

4.1 Bitwidth-Estimation

The bitwidth information for various temporaries at different program points are deter-
mined using the approach suggested by [17]. The bitwidth of a temporary i at program
point n is represented in a pair (ld, tr), where ld represents the leading zero bits of i at n
(leading dead bits) and tr represents the trailing zero bits of i at n (trailing dead bits). In
order to determine (ld,tr) pairs for all temporaries at all program points, first a forward
data flow analysis is performed to chain the definition of temporaries to their uses. Then
a backward data flow analysis is performed to refine the (ld, tr) pairs by chaining the
use of temporaries to their respective definitions. The (ld, tr) pair for all temporaries
are computed simultaneously as they are interdependent on each other.

4.2 Benchmarks

The performance of the approach is evaluated using benchmarks from the Bitwise [16]
and Mediabench [10] suites. These benchmarks are appropriate since they correspond to
real-world applications where sub-word access to temporaries is common. Furthermore,
using some of the same benchmarks as [17] enables comparison with prior work on
bitwise register allocation.

4.3 Impact of the Optimizations

Applying Lemma 1 to the ILP formulation reduces the searchspace for the ILP solver.
Depending on the benchmark the resulting constraints can eliminate up to 90% of the
free variables. Note that the reduction of problem variables does not only reduce the
space requirements but also significantly reduces the search space for the ILP solver.
For example, mpegcorr with 8 registers takes 422s without the constraints allowed
by Lemma 1, but only 46s with those constraints.
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Surprisingly, using the constraints from Lemma 2 increases the cost for this bench-
mark, if applied together with Lemma 2 the solution time is between roughly 50 and
300s depending on the choice of nS. While the additional constraints from Lemma 2
also reduce the search space, this reduction can somehow not offset the cost of evaluat-
ing the additional constraint for the specific ILP solver and any of the benchmarks that
have been tested for this during our study.

Another possible optimization is to use any of the other register allocation algo-
rithms to compute a feasible register allocation and to feed this as an input into the
ILP solver. Such a feasible starting solution can help the solver in its branch and bound
search to prune the search space. In our benchmarks, we use the best solution com-
puted by either graph coloring, linear scan or Tallam’s bitwise allocator as the starting
solution. The resulting performance improvements vary depending on the benchmark.
Typically smaller benchmarks see no improvement or even performance degradation,
whereas larger benchmarks see (often minor) performance improvements. For example,
the mpegcorr benchmark runs in 46s with a starting solution, but takes 418s without
it. We speculate that the smaller search space for small benchmarks gives fewer oppor-
tunities for pruning and the given initial solution is further away in the search space
from the optimal solution than the default infeasible starting point that would be used
without a starting solution. Future work may result in some deeper understanding of the
circumstances under which the various combinations of these optimizations (namely
Lemma 1, Lemma 2 and giving a starting solution) are most effective.

The performance results reported for the benchmarks henceforth use a feasible start-
ing solution in combination with the constraints from Lemma 1.

4.4 Performance

Figure 2 and Figure 5 shows the cost as estimated by the goal function (5) for the various
register allocation algorithms for all benchmarks.

The time it took to solve the different ILP problems were obtained by running
ILOG’s cplex v9.1 on an Intel Xeon 3 Ghz with 4 GB memory running Linux 2.6.10.
While the time may seem excessively long for some benchmarks, note that this is using
a stock ILP solver that has not been specialized to the problem at hand. Furthermore,
the run-times should still be feasible when compiling small programs or performance
critical functions for embedded systems where high performance and low per-unit cost
are paramount.

Note that various benchmarks show that adding more registers does not always have
to increase the cost of the ILP – typically at some point computing an optimal solu-
tion becomes much easier because there are few or no points of register pressure left.
In general, the runtime of the solver is rather unpredictable. For example, the adpcm
benchmark with word-wise register allocation runs takes more than 105s for 4 registers,
runs rather quickly in 331s for 6 registers. Astonishingly, if the number of registers is
increased to 8 the solver takes again significantly longer with 4162s.

Figure 8 gives some data comparing the size of the benchmarks and the respective
runtime of the ILP. The size of the benchmark is determined by the number of local
variables (|V |), the number of nodes (|N|) and edges (|E|) in the control flow graph.
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Benchmark Reg. adpcm convolve median mpegcorr NewLife MotionTest Histogram

Graph Coloring [5] 4 1225415 0 91280 92400 2236190 4690 7515
Linear [15] 4 1450425 0 131217 127913 1752698 7060 106605
Tallam [17] 4 800330 0 91280 92400 2136180 4690 5160
ILP GCF 4 490124 0 44710 73850 599642 1919 3773
ILP GCFB 4 330071 0 44710 73850 599642 1916 2837
Graph Coloring [5] 6 750315 0 34575 34835 531305 260 1990
Linear [15] 6 1025311 0 82283 67444 743840 4560 4310
Tallam [17] 6 325230 0 34575 34835 531305 260 1195
ILP GCF 6 270084 0 17795 28550 251428 105 794
ILP GCFB 6 120045 0 17795 28550 251428 105 6
Graph Coloring [5] 8 275215 0 17870 8055 27915 0 0
Linear [15] 8 575214 0 72248 38415 218790 0 0
Tallam [17] 8 130 0 17870 8055 27915 0 0
ILP GCF 8 120054 0 6452 1062 11404 0 0
ILP GCFB 8 42 0 6452 1062 11404 0 0

Fig. 2. ILP GCF is the ILP model with the graph-based control flow model and without bitwise
allocation. ILP GCFB is the graph-based control flow model with bitwise allocation. Memory
load/store cost metric is 5.

Benchmark adpcm convolve median mpegcorr NewLife MotionTest Histogram

4 registers 53257s 0s 73s 10s 57s 2s 6s
6 registers ≥ 105s 0s 44s 35s 163s 3s 11s
8 registers 454s 0s 80s 46s 312s 1s 6s

Fig. 3. Solver time for the bitwise graph-based ILP formulation, ILP GCFB. Entries prefixed with
> indicate that the ILP was timed out before completing.

Benchmark adpcm convolve median mpegcorr NewLife MotionTest Histogram

4 registers ≥ 105s 0s 23s 10s 42s 2s 5s
6 registers 331s 0s 39s 27s 168s 3s 11s
8 registers 4162s 0s 80s 43s 286s 1s 6s

Fig. 4. Solver time for the graph-based ILP formulation, ILP GCF

4.5 Discussion

At the surface the large and unpredictable ILP solution times seem to be the big prob-
lem with the presented approach. However, in practice, the optimal solution is com-
puted rather quickly, especially given a good initial feasible starting solution. The solver
spends most of its time proving that this solution is optimal. Naturally such a proof does
not yield any speedups later, so it is perfectly reasonable to turn the presented algorithm
into a heuristic by simply aborting the ILP solver if the computation takes too long with-
out improving the solution. This will allow the user to select an appropriate trade-off
between register allocation quality and compile-time.
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Benchmark Reg. bilint edge-detect levdurb g721 adpcm-coder

Graph Coloring [5] 4 1225490 3331565 912080 90565 1419575
Linear [15] 4 687730 2134138 1424956 148124 1736976
Tallam [17] 4 975390 3331565 912080 87705 1028675
ILP GCF 4 260104 1333229 582787 29943 581829
ILP GCFB 4 ≤80072 ≤1333181 582787 29943 412035
Graph Coloring [5] 6 325130 2604260 427840 32040 955580
Linear [15] 6 487665 1535156 851177 98388 1409078
Tallam [17] 6 287615 2604260 427840 32040 539670
ILP GCF 6 142557 ≤962851 260489 13608 401715
ILP GCFB 6 ≤92537 ≤952981 260489 13608 222531
Graph Coloring [5] 8 150060 2076610 193580 0 639035
Linear [15] 8 350125 1129861 489472 11945 1032645
Tallam [17] 8 150060 2076610 193580 0 234130
ILP GCF 8 72529 ≤1346346 41844 0 278352
ILP GCFB 8 ≤35014 ≤1346346 41844 0 100776

Fig. 5. Solution cost for various larger benchmarks using the graph-based control flow model.
Entries prefixed with ≤ indicate that the ILP solver was aborted prior to proving optimality.
Memory load/store cost metric is fixed to 5.

Benchmark bilint edge-detct levdurb g721 adpcm-coder

4 registers > 106s > 105s 24s 57s 5545s
6 registers > 105s > 105s 102s 321s 845s
8 registers > 105s > 105s 138s 41s 648s

Fig. 6. Solver time for the graph-based bitwise ILP formulation, ILP GCFB. Entries prefixed with
> indicate that the ILP was timed out before completing.

Benchmark bilint edge-detct levdurb g721 adpcm-coder

4 registers 5s 1342s 26s 443s 3855s
6 registers 16s > 105s 60s 311s 935s
8 registers 18s > 105s 77s 15s 1588s

Fig. 7. Solver time for the graph-based ILP formulation, ILP GCF

In addition to heuristics that abort the ILP solver earlier, solution times can be im-
proved dramatically using straight-forward reductions of the ILP problem size. One
possibility is to map multiple nodes from the original control-flow graph to one node
in the ILP formulation. Also, on many processors bit-wise register allocation may not
be useful or effective anyway. As the 32-bit timings have shown, using a more coarse
allocation granularity can dramatically improve solution times. Changing the ILP for-
mulation to other granularities such as nibbles or bytes is trivial. All of these changes
can improve ILP solution times at the expense of reduced quality of the produced solu-
tions. Future work will have to evaluate which graph reduction strategies will give the
most effective trade-offs.
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Benchmark |V | |E| |N| time (GCFB)

adpcm 29 228 218 53257s
median 34 190 184 73s
NewLife 61 312 302 57s
levdurb 37 206 199 24s
mpegcorr 31 185 178 10s

Fig. 8. This Table shows the relationship between benchmark size and the time it takes to solve
the ILP for some selected benchmarks. The number of registers is fixed to 4.

5 Conclusion

This paper introduced a new ILP-based algorithm for bit-wise register allocation. The
presented formulation expands the expressiveness of the model of existing ILP-based
register allocation algorithms and hence allows for better solutions. The algorithm inte-
grates previous techniques including coalescing, spilling, constant rematerialization and
register families and allows for temporaries to be temporarily spilled. The formulation
supports using the same register for access to spilled temporaries or direct temporary as-
signment at different times. Experimental results show that the resulting ILP problems
can be solved by modern of-the-shelf ILP software, resulting in register allocations that
substantially improve on allocations computed by state-of-the-art techniques.
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A ILP Progress over Time

The presented algorithm can easily be converted into a heuristic by aborting the ILP
solver before optimality is established. In this context, it is interesting to know how fast
the ILP solver finds good solutions. The following graphs show the improvement of
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Fig. 9. For many benchmarks, near-optimal solutions are found quickly. Graphs for bitwise solu-
tions for adpcm-coder (4 reg.), adpcm (4 reg.) and edge-detect (4 and 6 reg.).
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Fig. 10. For some benchmarks, it takes a while for better solutions to be found. Graphs for word-
wise solutions for edge-detect q(4 and 6 registers).

the best known integer solution over time for some representative benchmarks (starting
with the starting solution and ending with the optimal solution).
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Abstract. Register allocation is one of the most studied problems in compilation.
It is considered NP-complete since Chaitin et al., in 1981, modeled the problem
of assigning temporary variables to k machine registers as the problem of col-
oring, with k colors, the interference graph associated to the variables. The fact
that this graph can be arbitrary proves the NP-completeness of this formulation.
However, this original proof does not really show where the complexity of regis-
ter allocation comes from. Recently, the re-discovery that interference graphs of
SSA programs can be colored in polynomial time raised the question: Can we use
SSA to do register allocation in polynomial time, without contradicting Chaitin
et al’s NP-completeness result? To address this question and, more generally,
the complexity of register allocation, we revisit Chaitin et al’s proof to identify
the interactions between spilling (load/store insertion), coalescing/splitting (re-
moval/insertion of register moves), critical edges (property of the control flow),
and coloring (assignment to registers). In particular, we show that, in general, it
is easy to decide if temporary variables can be assigned to k registers or if some
spilling is necessary. In other words, the real complexity does not come from
the coloring itself (as a misinterpretation Chaitin et al’s proof may suggest) but
comes from critical edges and from the optimizations of spilling and coalescing.

1 Introduction

The goal of register allocation is to map the variables of a program into physical mem-
ory locations (main memory or machine registers). Accessing a register is usually faster
than accessing memory, thus one tries to use registers as much as possible. When this is
not possible, some variables must be transferred (“spilled”) to and from memory. This
has a cost, the cost of load/store operations that should be avoided as much as possible.

Classical approaches are based on fast graph coloring algorithms (sometimes com-
bined with techniques dedicated to basic blocks). A widely-used algorithm is iterated
register coalescing proposed by Appel and George [17], a modified version of pre-
vious developments by Chaitin et al. [9,8], and Briggs et al. [4]. In these heuristics,
spilling, coalescing (removing register-to-register moves), and coloring (assigning vari-
ables to registers) are done in the same framework. Priorities among these transfor-
mations are done implicitly with cost functions. Splitting (adding register-to-register
moves) can also be integrated in this framework. Such techniques are well-established
and used in optimizing compilers. However, there are several reasons to revisit these

G. Almási, C. Caşcaval, and P. Wu (Eds.): LCPC 2006, LNCS 4382, pp. 283–298, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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approaches. First, some algorithms not considered in the past, because they were too
time-consuming, can be good candidates today: processors used for compilation are
now much faster and, for critical applications, industrial compilers are also ready to
accept longer compilation times. Second, the increasing cost on most architectures of
a memory access compared to a register access suggests to focus on heuristics that
give more importance to spilling cost minimization, possibly at the price of additional
register-to-register moves. Finally, there are many pitfalls and folk theorems concerning
the complexity of the register allocation problem that are worth clarifying.

This last point is particularly interesting to note. In 1981, Chaitin et al. [9] modeled
the problem of allocating variables of a program to k registers as the problem of color-
ing, with k colors, the corresponding interference graph in which two vertices/variables
interfere if they are simultaneously live. As any graph is the interference graph of some
program and because graph k-colorability is NP-complete [15, Problem GT4], heuris-
tics have been used for spilling, coalescing, splitting, coloring, etc. The argument “reg-
ister allocation is graph coloring, therefore it is NP-complete” is one of the first state-
ments of many papers on register allocation. It is true that most problems related to
register allocation are NP-complete but this simplifying statement can make us forget
what Chaitin et al’s proof actually shows. In particular, it is commonly believed that,
in the absence of instruction rescheduling, it is NP-complete to decide if the program
variables can be allocated to k registers with no spilling, even if live-range splitting
is allowed. This is not what Chaitin et al. proved. We show that this problem is not
NP-complete, except for a few particular cases that depend on the target architecture.
This may be a folk theorem too but, to our knowledge, it has never been clearly stated.
Actually, going from register allocation to graph coloring is just a way of modeling the
problem, not an equivalence. In particular, this model does not take into account the fact
that a variable can be moved from a register to another (live-range splitting), of course
at some cost, but only the cost of a move instruction, which is often better than a spill.

Until very recently, only a few authors addressed the complexity of register allocation
in more details. Maybe the most interesting complexity results are those of Liberatore
et al. [22,14], who analyze the reasons why optimal spilling is hard for basic blocks. In
this case, the coloring phase is of course easy because, after some variable renaming,
the interference graph is an interval graph, but deciding which variables to spill and
where is in general difficult. We completed this study for various spill cost models, and
not just for basic blocks [2], and for several variants of register coalescing [3].

Today, most compilers go through an intermediate code representation, the (strict)
SSA form (static single assignment) [12], which makes many code optimizations sim-
pler. In such a code, each variable is defined textually only once and is alive only along
the dominance tree associated to the control-flow graph. Some so-called � functions are
used to transfer values along the control flow not covered by the dominance tree. The
consequence is that, with an adequate interpretation of � functions, the interference
graph of an SSA code is not arbitrary: it is chordal [18], thus easy to color. Further-
more, it can be colored with k colors iff (if and only if) Maxlive � k where Maxlive is
the maximal number of variables simultaneously live. What does this property imply?
One can try to decompose register allocation into two phases. The first phase decides
which values are spilled and where, to get a code with Maxlive � k. This phase is called
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allocation in [22] as it decides the variables allocated in memory and the variables allo-
cated in registers. The second phase, called register assignment in [22], maps variables
to registers, possibly removing move instructions by coalescing, or introducing move
instructions by splitting. These moves are also called shuffle code in [23]. When loads
and stores are more expensive than moves, such an approach is worth exploring. It was
experimented by Appel and George [1] and also advocated in [20,2,19].

The fact that interference graphs of strict SSA programs are chordal is not a new
result if one makes the connection between graph theory and SSA form. Indeed, an in-
terference graph is chordal iff it is the interference graph of a family of subtrees (here
the live-ranges of variables) of a tree (here the dominance tree), see [18, Theorem 4.8].
Furthermore, maximal cliques correspond to program points. We re-discovered this
property when trying to better understand the interplay of register allocation and co-
alescing for out-of-SSA conversion [13]. Independently, Brisk et al. [6], Pereira and
Palsberg [25], and Hack et al. [19] made the same observation. A direct proof of the
chordality property for strict SSA programs can be given, see for example [2,19].

Many papers [12,5,21,28,7,27] address the problem of how to go out of SSA, in par-
ticular how to replace efficiently � functions by move instructions. The issues addressed
in these papers are how to handle renaming constraints, due to specific requirements of
the architecture, how to deal with the so-called critical edges of the control-flow graph,
and how to reduce the number of moves. However, in these papers, register allocation
is performed after out-of-SSA conversion: in other words, the number of registers is
not a constraint when going out of SSA and, conversely, the SSA form is not exploited
to perform register allocation. In [19] on the other hand, the SSA form is used to do
register allocation. Spilling and coloring (i.e., register assignment) are done in SSA and
some permutations of colors are placed on new blocks, predecessors of the � points,
to emulate the semantics of � functions. Such permutations can always be performed
with register-to-register moves and possibly register swaps or XOR functions. However,
minimizing the number of such permutations is NP-complete [19].

All these new results related to SSA form, combined with the idea of spilling be-
fore coloring so that Maxlive � k, has led Pereira and Palsberg [26] to wonder where
the NP-completeness of Chaitin et al’s proof (apparently) disappeared: “Can we do
polynomial-time register allocation by first transforming the program to SSA form,
then doing linear-time register allocation for the SSA form, and finally doing SSA elim-
ination while maintaining the mapping from temporaries to registers?” (all this when
Maxlive � k of course, otherwise some spilling needs to be done). They show that, if
register swaps are not available, the answer is no unless P=NP. The NP-completeness
proof of Pereira and Palsberg is interesting, but we feel it does not completely explain
why register allocation is difficult. Basically, it shows that if we decide a priori what the
splitting points are, i.e., where register-to-register moves can be placed (in their case,
the splitting points are the � points), then it is NP-complete to choose the right colors
(they do not allow register swaps as in [19]). However, there is no reason to restrict to
splitting points given by SSA. Actually, we show that, when we can choose the splitting
points, when we are free to add program blocks to remove critical edges (the standard
edge splitting technique), then it is easy, except for a few particular cases, to decide if
and how we can assign variables to registers without spilling.
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More generally, the goal of this paper is to revisit Chaitin et al’s proof to clarify
the interactions between spilling, splitting, coalescing, critical edges, and coloring. Our
study analyzes the complexity of the problem “are k registers enough to allocate vari-
ables without spill?” but, unlike Chaitin et al., we take into account live-range split-
ting. In Section 2, we analyze more carefully Chaitin et al’s proof to show that the
NP-completeness of the problem comes from critical edges. We then address the cases
where critical edges can be split. In Section 3, we show how to extend Chaitin et al’s
proof to address the same problem as Pereira and Palsberg in [26]: if live-range splitting
points are fixed at entry/exit of basic blocks and if register swaps are not available, the
problem is NP-complete. In Section 4, we discuss the register swap constraint and show
that, for most architecture configurations, if we can split variables wherever we want,
the problem is polynomial. Section 5 summarizes our results and discusses how they
can be used to improve previous approaches and to develop new allocation schemes.

2 Direct Consequences of Chaitin et al’s NP-Completeness Proof

Let us examine Chaitin et al’s NP-completeness proof. The proof is by reduction from
graph k-coloring [15, Problem GT4]: Given an undirected graph G � (V� E) and an
integer k, can we color the graph with k colors, i.e., can we define, for each vertex
v � V , a color c(v) in �1� � � � � k� such that c(v) � c(u) for each edge (u� v) � E? The
problem is well-known to be NP-complete if G is arbitrary, even for a fixed k � 3.

For the reduction, Chaitin et al. build a program with �V � � 1 variables, one for each
vertex u � V and an additional variable x, as follows. For each (u� v) in E, a block Bu�v

defines u, v, and x. For each u � V , a block Bu reads u and x, and returns a new
value. Each block Bu�v is a direct predecessor in the control-flow graph of Bu and Bv.
An entry block switches to all blocks Bu�v. Fig. 1 illustrates this construction when G
is a cycle of length 4, the example used in [26]. The program is given on the right; its
interference graph (upper-left corner) is the graph G (lower-left corner) plus a vertex for
the variable x, connected to any other vertex. Thus x must use an extra color. Therefore
G is k-colorable iff each variable can be assigned to a unique register for a total of at
most k � 1 registers. This is what Chaitin et al. proved: for such programs, deciding if
one can assign the variables, this way, to k � 4 registers is thus NP-complete.

Chaitin et al’s proof, at least in its original interpretation, does not address the pos-
sibility of splitting [10] the live-range of a variable (set of program points where the
variable is live 1). In other words, each vertex of the interference graph represents the
complete live-range as an atomic object and it is assumed that this live-range must al-
ways reside in the same register. Furthermore, the fact that the register allocation prob-
lem is modeled through the interference graph loses information on the program itself
and the exact location of interferences. This is a well-known fact, which has led to many
different register allocation heuristics but with no corresponding complexity study even
though their situations are not covered by the previous NP-completeness proof.

1 Actually, for Chaitin et al., two variables interfere only if one is live at the definition of the
other. The two definitions coincide for strict programs, i.e., programs where any static control-
flow path from the program start to a given use of a variable goes through a definition of this
variable. This is the case for all the programs we manipulate in our NP-completeness proofs.
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Fig. 1. Program built from a cycle of length 4 (bottom left) and its interference graph (top left)

This raises the question: What if we allow to split live-ranges? Consider Fig. 1 again
and one of the variables, for example a. In block Ba, variable a is needed for the instruc-
tion “return a � x”, and this value can come from blocks Ba�b and Ba�c. If we split the
live-range of a in block Ba before it is used, some register must still contain the value
of a both at the exit of blocks Ba�b and Ba�c. The same is true for all other variables. In
other words, if we consider the possible copies live at exit of blocks of type Bu�v and at
entry of blocks of type Bv, we get the same interference graph G for the copies and each
copy must remain in the same register. Therefore, the problem remains NP-complete
even if we allow live-range splitting. Splitting live-ranges does not help here because
the control-flow edges from Bu�v to Bu are critical edges, i.e., they go from a block
with more than one successor to a block with more than one predecessor. In Chaitin
et al’s model, each vertex is atomic and must be assigned a unique color. Live-range
splitting redefines these objects. In general, defining precisely what is colored is indeed
important as the subtle title of Cytron and Ferrante’s paper “What’s in a name?” pointed
out [11]. However, here, because of critical edges, whatever the splitting, there remains
atomic objects hard to color, defined by the copies live on the edges.

To conclude, we can interpret Chaitin et al’s original proof as follows. It is NP-
complete to decide if the program variables can be assigned to k registers, even if live-
range splitting is allowed, but only when the program has critical edges that cannot be
split, i.e., when we cannot change the control flow graph structure and add new blocks.

3 Split Points on Entry & Exit of Blocks and Tree-Like Programs

In [26], Pereira and Palsberg pointed out that the construction of Chaitin et al. (as done
in Fig. 1) is not enough to prove anything about register allocation through SSA. In-
deed, any program built this way can be allocated with only 3 registers by adding extra
blocks, where out-of-SSA code is traditionally inserted, and performing some register-
to-register moves in these blocks. We can place the variable definitions of each block
of type Bu�v in 3 registers (independently of other blocks), e.g., r1 for u, r2 for v, and r3

for x, and decide that variables u and x in each block of type Bu are always expected in
registers r1 and r3. Then, we can “repair” the coloring at each join point, when needed,
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thanks to an adequate re-mapping of registers (here a move from r2 to r1) in a new block
along the edge from Bu�v to Bu. We will use a similar block structure later, see Fig. 2.

More generally, when there are no critical edges, one can indeed go through SSA (or
any live-ranges representation as subtrees of a tree), i.e., consider that different variable
definitions belong to different live-ranges, and to color them with k colors, if possible.
This can be done in linear time, in a greedy fashion, because the corresponding inter-
ference graph is chordal. At this stage, it is easy to decide if k registers are enough. This
is possible iff Maxlive, the maximal number of values live at any program point, is less
than k. Indeed, Maxlive is obviously a lower bound for the minimal number of registers
needed, as all variables live at a given point interfere (at least for strict programs). Fur-
thermore, this lower bound can be achieved by coloring because of a double property of
such live-ranges: a) Maxlive is equal to the maximal size of a clique in the interference
graph (in general, it is only a lower bound); b) the maximal size of a clique and the
chromatic number of the graph are equal (the graph is chordal). Moreover, if k registers
are not enough, additional splitting will not help as this leaves Maxlive unchanged.

If k colors are enough, it is still possible that the colors selected under SSA do not
match at join points where live-ranges were split. Some “shuffle” [23], i.e., registers
permutation, is needed along the edge where colors do not match. Because the edge
is not critical, the shuffle will not propagate along other control flow paths. If some
register is available at this point, any remapping can be performed as a sequence of
register-to-register moves, possibly using the free register as temporary storage. Oth-
erwise, an additional register is needed unless one can perform register swaps, either
with a special instruction or with arithmetic operations such as XOR (but maybe only
for integer registers). This view of coloring through permutations insertion is the base
of any approach that optimizes spilling first [20,1,2,19]. Some spilling and splitting are
done, optimally or not, to reduce Maxlive to at most k. In [1], this approach is even
used in the most extreme form: live-ranges are split at each program point in order to
solve spilling optimally, and there is a potential permutation between any two program
points. Then, live-ranges are merged back, as much as possible, thanks to coalescing.

Thus, it seems that if we go through SSA (for example but not only), deciding if k
registers are enough becomes easy. The only possible remaining difficult case is if reg-
ister swaps are not available. Indeed, in this case, no permutation except the identity can
be performed at a point with k live variables. This is the question addressed by Pereira
and Palsberg in [26]: Can we easily choose an adequate coloring of the SSA represen-
tation so that no permutation is needed? The answer is no, the problem is NP-complete.
Pereira and Palsberg use a reduction from the k-colorability problem for circular-arc
graphs, which is NP-complete if k is a problem input [16]. Basically, the idea is to start
from a circular-arc graph, to cut all arcs at some point to get an interval graph, to view
this interval graph as the interference graph of a basic block, to add a back edge to form
a loop, and to make sure that k variables are live on the back edge. Then, coloring the
basic block so that no permutation is needed on the back edge is equivalent to color-
ing the original circular-arc graph. This is the same technique used in [16] to reduce the
coloring of circular-arc graphs from a permutation problem. This proof shows that if we
restrict to the split points defined by SSA, it is difficult to choose the right coloring of
the SSA representation and thus decide if k registers are enough. It is NP-complete even
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Fig. 2. Program built from a cycle of length 4 (bottom left) and its interference graph (top left)

for a simple loop and a single split point. However, if k is fixed, this specific problem is
polynomial as is the k-coloring problem of circular-arc graphs, by propagating possible
permutations. We now show that, with a simple variation of Chaitin et al’s proof, we can
get a similar NP-completeness result, even for a fixed k, but for an arbitrary program.

Given an arbitrary graph G � (V� E), we build a program with the same control-flow
structure as for Chaitin et al’s construction, but we split critical edges as shown in Fig. 2.
The program has three variables u, xu, yu for each vertex u � V and a variable xu�v for
each edge (u� v) � E. For each (u� v) � E, a block Bu�v defines u, v, and xu�v. For each
u � V , a block Bu reads u, yu, and xu, and returns a new value. For each block Bu�v,
there is a path to the blocks Bu and Bv. Along the path from Bu�v to Bu, a block reads v
and xu�v to define yu, and then defines xu. An entry block switches to all blocks Bu�v. The
interference graph is 3-colorable iff G itself is 3-colorable. Its restriction to variables u
(those that correspond to vertices of G) is exactly G. Fig. 2 illustrates this construction,
again when G is a cycle of length 4. The interference graph is in the upper-left corner.

Assume that permutations can be placed only along the edges, or equivalently on
entry or exit of the intermediate blocks, between blocks of type Bu�v and type Bu. We
claim that the program can be assigned to 3 registers iff G is 3-colorable. Indeed, for
each u and v, exactly 3 variables are live on exit of Bu�v and on entry of Bu and Bv. Thus,
if only 3 registers are used, no permutation, except the identity, can be done. Thus the
live-range of any variable u � V cannot be split, i.e., each variable must be assigned to a
unique color. Using the same color for the corresponding vertex in G gives a 3-coloring
of G. Conversely, if G is 3-colorable, assign to each variable u the same color as the
vertex u. It remains to color the variables xu�v, xu, and yu. This is easy: in block Bu�v,
only two colors are used so far, the colors for u and v, so xu�v can be assigned the
remaining color. Finally assign xu and yu to two colors different than the color of u (see
Fig. 2 again to visualize the cliques of size 3). This gives a valid register assignment.
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To conclude, this slight variation of Chaitin et al’s proof shows that if we cannot
split inside basic blocks but are allowed to split only on entries and exits of blocks
(as in traditional out-of-SSA translation), it is NP-complete to decide if k registers are
enough. This is true even for a fixed k � 3 and even for a program with no critical edge.

4 If Split Points Can Be Anywhere

Does the study of Section 3 completely answer the question? Not quite. Indeed, who
said that split points need to be on entry and exit of blocks? Why can’t we shuffle
registers at any program point, for example in the middle of a block if this allows us to
perform a permutation? Consider Fig. 2 again. The register pressure is 3 on any control-
flow edge, this was the key for the proof of Section 3. But it is not 3 everywhere; be-
tween the definitions of each yu and each xu, it drops to 2. Here, some register-to-register
moves can be inserted to permute 2 colors and, thanks to this, 3 registers are always
enough for such a program. One can color independently the top (including the vari-
ables yu) and the bottom (including the variables xv), then place permutations between
the definitions of yu and xu. More precisely, for each block Bu�v independently, color the
definitions of u, v, and xu�v with 3 different colors, arbitrarily. For each block Bu, do the
same for u, xu, and yu (i.e., define 3 registers where u, xu, and yu are supposed to be on
block entry). In the block between Bu�v and Bu, keep u in the same register as for Bu�v,
give to xu the same color it has in Bu and store yu in a register not used by u in Bu�v. So
far, all variables are correctly colored except that some moves may be needed for the
values u and yu, after the definition of yu, and before their uses in Bu, if colors do not
match. But, between the definitions of yu and xu, only 2 registers contain a live value:
one contains u defined in Bu�v and one contains yu. These 2 values can thus be moved
to the registers where they are supposed to be in Bu, with at most 3 moves in case of a
swap, using the available register in which xu is going to be placed just after this shuffle.

4.1 Simultaneous Definitions

So, is it really NP-complete to decide if k registers are enough when splitting can be
done anywhere and swaps are not available? The problem with the previous construc-
tion is that there is no way, with simple statements, to avoid a program point with a
low register pressure while keeping the reduction with graph 3-coloring. This is illus-
trated in Fig. 3: on the left, the previous situation with a register pressure drop to 2, in
the middle, a situation with a constant register pressure equal to 3, but that does not
keep the equivalence with graph 3-coloring. However, if instructions can define more
than one value, it is easy to modify the proof. To define xu and yu, use a statement
(xu� yu) � f (v� xu�v) that consumes v and xu�v and produces yu and xu simultaneously, as
depicted on the right of Fig. 3. Now, the register pressure is 3 everywhere in the program
and thus G is 3-colorable iff the program can be mapped to 3 registers (and, in this case,
with no live-range splitting). Thus, it is NP-complete to decide if k registers are enough
if two variables can be created simultaneously by a machine instruction but swaps are
not available, even if there is no critical edge and if we can split wherever we want.
Such an instruction should consume at least 2 values, otherwise, the register pressure is
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Fig. 3. Three cases: register pressure drops to 2 (on the left), is constant to 3 (middle and right)

lower just before and a permutation can be placed. Notice the similarity with circular-
arc graphs: as mentioned in [16], coloring circular-arc graphs remains NP-complete
even if at most 2 circular arcs start at any point (but not if only one can start).

Besides, if such machine instructions exist, it is likely that a register swap is also
provided in the architecture (we discuss such architectural subtleties at the end of this
section). In this case, we are back to the easy case where any permutation can be done
and k registers are enough iff Maxlive � k. Thus, it remains to consider only one case:
what if at most one variable can be created at a given time as it is in traditional sequential
assembly-level code representation and register swaps are not available?

4.2 At Most One Definition at a Time

If blocks can be introduced to split critical edges, if live-range splitting can be done
anywhere and if instructions can define at most one variable, we claim it is polynomial
to decide if k registers are enough, in the case of a strict program. We proceed as follows.

The register pressure at a point is the number of variables live at this point; Maxlive
is the maximal register pressure in the program. If Maxlive � k, it is not possible to
assign the variables of a strict program to k registers without spilling, as two simulta-
neously live variables interfere.2 If Maxlive � k, it is always possible to assign vari-
ables to k registers by splitting live-ranges and performing adequate permutations. The
same occurs for a point with register pressure � k, as explained in Section 3: a color
mismatch can always be repaired by an adequate permutation, thanks to an available
register. Thus, for a strict program, the only problem may come from the sequences of
program points where the register pressure remains equal to k. But, unlike Section 4.1
where the degree of freedom (at least 2) to choose colors leads to NP-completeness,
here, the fact that at most one variable can be defined at a time simplifies the problem.
It does not mean that k registers are always enough, but it is easy to decide if this is
the case. To explain this situation precisely, we need to define more formally what we
mean by color propagation.

Liveness analysis defines, for each instruction s, live in(s) and live out(s), the set of
variables live just before and just after s. We color these sets locally, propagating the col-
ors from instruction to instruction, i.e., coloring variables in neighbor sets with the same
color, following the control-flow, possibly backwards or forwards, i.e., considering the

2 Notice that it is not true for a non-strict program. We leave this case open.
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control-flow as undirected. More formally, coloring a statement s means defining two
injective maps col in(s) (resp. col out(s)) from live in(s) (resp. live out(s)) to [1��k].
When we propagate colors from a statement s1 to a statement s2, forwards, we define
col in(s2) so that col in(s2)(x) � col out(s1)(x) for all x � live in(s2) � live out(s1)
and we pick different colors for the other variables, arbitrarily. Then, we do the same
to define col out(s2) from col in(s2). When we propagate backwards, the situation is
symmetric; we define col out(s2) from col in(s1), then col in(s2) from col out(s2). Be-
low, when we explain the effect of propagation, we assume the propagation is forwards;
otherwise one just needs to exchange the suffixes “in” and “out”.

We first restrict to the subgraph of the control-flow graph defined by the program
points where the register pressure is equal to k, i.e., we only propagate between two
instructions s1 and s2 such that both live out(s1) and live in(s2) have k elements. We
claim that, in each connected component of this graph, if k registers are enough, there is
a unique solution, up to a permutation of colors, except possibly for the sets live out(s2)
where the propagation stops. Indeed, for each connected component, start from an ar-
bitrary program point and an arbitrary coloring of the k variables live at this point.
Propagate this coloring, as defined above, backwards and forwards along the control
flow until all points are reached. In this process, there is no ambiguity to choose a
color. First, there is no choice for defining col in(s2) from col out(s1) as live out(s1) �
live in(s2): indeed they both have k elements and, since there is no critical edge, either
live out(s1) � live in(s2) or the converse. Second, if live out(s2) has k elements, then
either live out(s2) � live in(s2) or, as s2 defines at most one variable, there is a unique
variable in live out(s2) 	 live in(s2) and a unique variable in live in(s2) 	 live out(s2):
they must have the same color. Thus, there is no choice for defining col out(s2) from
col in(s2) either. Therefore, for each connected component, going backwards and for-
wards defines, if it exists, a unique solution up to the initial permutation of colors. In
other words, if there is a solution, we can define it, for each connected component,
by propagation. Moreover, if, during this traversal, we reach a program point already
assigned and if the colors do not match, this proves that k registers are not enough.

Finally, if the color propagation on each connected component is possible, then k
registers are enough for the whole program. Indeed, we can color the rest (with register
pressure � k) in a greedy (but not unique) fashion. When we reach a point already
assigned, we can repair a possible color mismatch: we place an adequate permutation
of colors between s1 and s2, in the same basic block as s1 if s2 is the only successor
(resp. predecessor for backwards propagation) of s1 or in the same basic block as s2 if s1

is the only predecessor (resp. successor) of s2. This is always possible because there is
no critical edge and there are at most (k 
 1) live variables at this point. To summarize,
to decide if k registers suffice when Maxlive � k (and color when possible), we first
propagate colors, following the control flow, along program points where the register
pressure is exactly k. If we reach a program point already colored and the colors do not
match, more spilling needs to be done. Otherwise, we start a second propagation phase,
along all remaining program points. If we reach a program point already colored and the
colors do not match, we solve the problem with a permutation of at most (k
1) registers,
using an extra available register. We point out that we can also do the propagation in
a unique phase, as long as we propagate in priority along points where the register
pressure is exactly k. A work list can be used for this purpose.
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4.3 Subtleties of the Architectures

To conclude this section, let us illustrate the impact of architectural subtleties with re-
spect to the complexity cases just analyzed, when edge splitting is allowed. We consider
the ST200 core family from STMicroelectronics, which was the target of this study.

As for many processors, some variables need to be assigned to specific registers: they
are precolored. Such precoloring constraints do not change the complexity of deciding
if some spilling is necessary. Indeed, when swaps are available, Maxlive � k is still the
condition to be able to color with k registers as we can insert adequate permutations,
possibly using swaps, when colors do not match the precolored constraints. Reduc-
ing these mismatches is a coalescing problem, as in a regular Chaitin-like approach.
Now, consider the second polynomial case, i.e., when no register swap is available and
instructions define at most one variable. Even with precolored constraints, a similar
greedy approach can be used to decide, in polynomial time, if k registers are enough.
It just propagates colors from precolored variables, along program points with exactly
k live variables, i.e., with no freedom, so it is easy to check if colors match. A similar
situation occurs when trying to exploit auto-increments rx++, i.e., rx � rx � 1. An in-
struction x++ apparently prevents the coloring under SSA as x is redefined, unless first
rewritten as y � x � 1. A coalescer may then succeed in coloring y and x the same way.
To enforce this coloring, one can also simply ignore this redefinition of x and consider
that the live-range of x goes through the instruction, as a larger SSA-like live-range.

The possible NP-complete cases are due to the fact that register swaps are not avail-
able and that some machine instructions can define more than one variable. In the ST200
core family, two types of instruction can create more than one variable: the function
calls that can have up to 8 results and the 64 bits load operations that load a 64 bits
value into two 32 bits registers. For a function call, the constraint Maxlive � k needs
to be refined. Spilling must be done so that the number of live variables at the call,
excluding parameters and results, is less than the number of callee-save registers. In
the ST200, the set of registers used for the results is a strict subset of the set of caller-
save registers. Thus, just after the call and before the possible reloads of caller-saved
registers, at least one caller-save register is available to permute colors if needed. The
situation is similar before the call, reasoning with parameters. Therefore, function calls
do not make the problem NP-complete, even if they can have more than one result.
Also, if no caller-save register was available, as results of function calls are in general
precolored, this situation could also be solved as previously explained. What about 64
bits loads, such as rx� ry � load(rz)? Such a load instruction has only one argument on
the ST200. So, if the number of live variables is k after defining rx and ry, it is � k just
before, so a permutation can be done if needed. We can ensure that rx and ry are con-
secutive thanks to a permutation just before the load to make two successive registers
available. Thus, again, despite the fact that such an instruction has two results, it does
not make the problem NP-complete because it has only one variable argument.

Finally, even if no swap operation is available in the instruction set, a swap can be
simulated thanks to the parallelism available in the ST200 core family. In the compiler
infrastructure, one needs to work with a pseudo-operation swap Rx�Ry � swap(Ri�R j),
which will then be replaced by two parallel operations scheduled in the same cycle:
Rx � move(Ri) and Ry � move(R j). Also, for integer registers, another possibility to
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swap without an additional register is to use the instruction XOR. In conclusion, when
edge splitting is allowed, even if one needs to pay attention to architectural subtleties,
the NP-complete cases where deciding if some spilling is necessary seem to be quite
artificial. In practice, swaps can usually be done and one just has to check Maxlive � k.
If not, one can rely on a greedy coloring, propagating only along program points where
the register pressure is k. Instructions with more than one result could make this greedy
coloring non deterministic (and the problem NP-complete) but, fortunately, at least for
the ST200, these instructions have a neighbor point (just before or just after) with � k
live variables. Thus, it is in general easy to decide if some spilling is necessary or if, at
the price of additional register-to-register moves, the code can be assigned to k registers.

5 Conclusion

In this paper, we tried to clarify where the complexity of register allocation comes from.
Our goal was to recall what Chaitin et al’s original proof really proves and to extend
this result. The main question addressed by Chaitin et al. is of the following type: Can
we decide if k registers are enough for a given program or if some spilling is necessary?

5.1 Summary of Results

The original proof of Chaitin et al. [9] proves that this problem is NP-complete when
live-range splitting is not allowed, i.e., if each variable can be assigned to only one
register. We showed that the same construction proves more: the problem remains NP-
complete when live-range splitting is allowed but not (critical) edge splitting.

Recently, Pereira and Palsberg [26] proved that, if the program is a simple loop, the
problem is NP-complete if live-range splitting is allowed but only on a block on the back
edge and register swaps are not available. This is a particular form of register allocation
through SSA. The problem is NP-complete if k is a problem input. We showed that
Chaitin et al’s proof can be extended to show a bit more. When register swaps are not
available, the problem is NP-complete for a fixed k � 3 (but for a general control-flow
graph), even if the program has no critical edge and if live-range splitting can be done
on any control-flow edge, i.e., on entry and exit of blocks, but not inside basic blocks.

These results do not address the general case where live-range splitting can be done
anywhere, including inside basic blocks. We showed that the problem remains NP-
complete only if some instructions can define two variables at the same time but register
swaps are not available. Such a situation might not be so common in practice. For a strict
program, we can answer the remaining cases in polynomial time. If Maxlive � k and
register swaps are available, or if Maxlive � k, then k registers are enough. If register
swaps are not available and at most one variable can be defined at a given program
point, then a simple greedy approach can be used to decide if k registers are enough.

This study shows that the NP-completeness of register allocation is not due to the
coloring phase, as may suggest a misinterpretation of the reduction of Chaitin et al. from
graph k-coloring. If live-range splitting is taken into account, deciding if k registers are
enough or if some spilling is necessary is not as hard as one might think. The NP-
completeness of register allocation is due to three factors: the presence of critical edges
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or not, the optimization of spilling costs (if k registers are not enough) and of coalescing
costs, i.e., which live-ranges should be fused while keeping the graph k-colorable.

5.2 Research Directions

What does such a study imply for the developments of register allocation strategies?
Most approaches decide to spill because their coloring technique fails to color the live-
ranges of the program. But, for coloring, a heuristic is used and this may generate
some useless spills. Our study shows that, instead of using an approximation heuristic
to decide when to spill, we can use an exact algorithm to spill only when necessary.
Such a test is fundamental to develop register allocation schemes where the spilling
phase is decoupled from the coloring/coalescing phase, i.e., when one considers bet-
ter to avoid spilling at the price of register-to-register moves. However, we point out
that this “test”, which is, roughly speaking, to make sure that Maxlive � k, does not
indicate which variables should be spilled and where the store/load operations should
be placed to get an optimal code in terms of spill cost (if not execution time). Optimal
spilling is a much more complex problem, even for basic blocks [22,14], for which sev-
eral heuristics, as well as an exact integer linear programming approach [1], have been
proposed.

Existing register allocators give satisfying results, when measured on average for a
large set of benchmarks. However, for some applications, when the register pressure is
high, we noticed some possible improvements in terms of spill cost. In Chaitin’s first
approach, when all variables interfere with at least k other variables, one of them is se-
lected to be spilled and the process iterates. We measured, with a benchmark suite from
STMicroelectronics, that such a strategy produces many useless spills, i.e., a variable
such that, after spilling all chosen variables except this one, Maxlive is still less than k.
A similar fact was noticed by Briggs et al. [4] who decided to delay the spill decision
to the coloring phase. If a potential spill does not get a color during the coloring phase,
it is marked as an actual spill, else it is useless. This strategy significantly reduces
the number of useless spills compared to Chaitin’s initial approach. Other improve-
ments include biased coloring, which in general reduces the number of actual spills, or
conservative/iterated register coalescing [17], as coalescing can reduce the number of
neighbors of a vertex in the interference graph.

We applied a very simple strategy in our preliminary experiments: in the set of vari-
ables selected for spilling, we choose the most expensive useless spill and remove it
from the set. We repeat this process until no useless spill remains. This simple addi-
tional check is enough to reduce the spill cost of Chaitin’s initial approach to the same
order of magnitude as a biased iterated register coalescing. Also, even for a biased iter-
ated register coalescing, this strategy still detects some useless spills and can improve
the spill cost. With this more precise view of necessary spills, one can also avoid the
successive spilling phases needed for a RISC machine: for a RISC machine, a spilled
live-range leaves small live-ranges to perform the reloads, and a Chaitin-like approach
needs to iterate. With an exact criterion for spilling needs, we can take into account the
new live-ranges to measure Maxlive and decide if more spilling is necessary at once.

Once spilling is done, variables still have to be assigned to registers. The test “Is some
spilling necessary?” does not really give a coloring. For example, if swaps are available,
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the test is simply Maxlive � k. One still needs to ensure that coloring with Maxlive
registers is possible. A possibility is to split all critical edges and to color in polynomial
time with Maxlive colors, possibly inserting color permutations. The extreme way to
do so is to color independently each program point, whose corresponding interference
graph is a clique of at most Maxlive variables, and to insert a permutation between any
two points. This amounts to split live-ranges everywhere, as done in [1]. Such a strat-
egy leads to a valid k-coloring but of course with an unacceptable number of moves.
This can be improved thanks to coalescing, although it is in general NP-complete [3].
As there are many moves to remove, possibly with tricky structures, a conservative
approach does not work well, and an optimistic coalescing seems preferable [24,1].
Another way is to color independently each basic block, with Maxlive colors, after re-
naming each variable so that it is defined only once. This will save all moves inside the
blocks. Then permutations between blocks can be improved by coalescing. One can try
to extend the basic blocks to larger regions, while keeping them easy to color. This is
the approach of fusion-based register allocation [23], except that the spilling decision
test is Chaitin’s test, thus a heuristic that can generate useless spills. One can also go
through SSA, color in polynomial time, and place adequate permutations. This will save
all moves along the dominance tree, but this may not be the best way because this can
create split points with many moves. A better way seems a) to design a cost model for
permutation placement and edge splitting, b) to choose low-frequency potential split
points to place permutations, and c) to color the graph with a coalescing-coloring algo-
rithm, splitting points – and thus live-ranges – on the fly when necessary. In the worse
case, the splitting will lead to a tree (but not necessarily the dominance tree) for which
one can be sure that coloring with Maxlive registers is possible. The cost of moves can
be further reduced by coalescing and permutation motion.

Designing and implementing such a coloring mechanism has still to be done in de-
tails. How to spill remains also a fundamental issue. Finally, it is also possible that a
too tight spilling, with many points with k live variables, severely limits the coalescing
mechanism. In this case, it is maybe better to spill a bit more so as to balance the spill
cost and the move cost. Such tradeoffs need to be evaluated with experiments before
concluding. The same is true for edge splitting versus spilling, but possibly with less
importance, as splitting an edge does not always imply introducing a jump.
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Abstract. We present a novel and efficient container-centric memory allocator,
named Defero, which allows a container to guide the allocation of its elements.
The guidance is supported by the semantic-rich context of containers in which a
new element is inserted. Defero allocates based on two attributes: size and loca-
tion. Our policy of allocating a new object close to a related object often results
in significantly increased memory reference locality. Defero has been integrated
to work seamlessly with the C++ Standard Template Library (STL) containers.
The communication between containers and the memory allocator is very sim-
ple and insures portability. STL container modification is the only needed code
change to achieve custom memory allocation. We present experimental results
that show the performance improvements that can be obtained by using Defero
as a custom allocator for STL applications. We have applied our memory alloca-
tor to the molecular dynamics and compiler applications and obtained significant
performance improvements over using the standard GNU STL allocator. With our
approach custom memory allocation has been achieved without any modification
of the actual applications, i.e., without additional programming efforts.

1 Introduction

Memory allocation is performed from various information-rich contexts, such as con-
tainers, libraries, and domain specific applications. Yet, traditional allocation schemes
do not use the semantic information present in these rich contexts, but rather allocate
memory based only on the size of the request. For example, to solve the spatial data
locality for dynamically allocated memory, we need to analyze the memory based on
its location, not its size. Data locality cannot be solved based on size only. Thus, we
need better memory allocation to improve data locality.

This paper studies how memory allocation automatically benefits from the knowl-
edge present in the STL containers, and how this knowledge gets communicated from
the containers to the memory allocator, in order to increase containers’ data locality.

Data locality has been given a great deal of attention. Compiler techniques offer a
plethora of optimizations, such as tiling, register allocation, and field reorganization,
which increase data locality for regular data structures [27,7,6]. However, compiler
analysis is less effective for dynamic data structures. The intrinsic dynamic property
of these structures inhibits the analysis. This is because the information necessary to
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perform the optimization is not available at compile time, but it becomes available only
at run time as the program executes.

We present a novel and efficient container-centric memory allocator, named Defero1,
which allows a container to guide the allocation of its elements. The guidance is sup-
ported by the semantic-rich context in which a new element is inserted, by suggesting
where to allocate each element. The communication between containers and the mem-
ory allocator allows Defero to automatically increase data locality for containers.

We integrated Defero to work automatically with the C++ Standard Template Li-
brary (STL) containers [12]. The integration yielded improvements in data locality for
applications that use STL. Applications benefit from the performance improvement pro-
vided by Defero while maintaining their portability, without having to design a custom
memory allocator. Thus, applications can get the best of both worlds: the improved
performance of custom memory allocation and the hassle-free portability of general
memory allocation.

This paper makes the following contributions:

– A container-centric memory allocation with a simple interface which guides the
allocation process. It allows users or compilers to easily specify various memory
allocation policies at the container instantiation level.

– Allocation based on multiple attributes. Defero allocates based on ’size’ and ’lo-
cation’ . The policy of allocating a new object close(in memory space) to a related
object (hinted by the user or compiler) results in improved memory reference lo-
cality. This approach also minimizes the external fragmentation.

– An adjustable memory scheme, K-Bit, which allows data locality to be controlled
with a simple number. We also present a novel allocation predicate, named Path,
which increases data locality for balanced trees.

We present experimental results from various areas, such as molecular dynamics, net-
work simulation, and compilers, as well as micro-kernels.

The remainder of the paper is organized as follows. Defero’s design and implemen-
tation, along with examples are presented in Section 2. Several allocation policies are
discussed in Section 3, while Section 4 reasons upon the criteria used to select a cer-
tain allocation scheme. Defero’s automatic interaction with containers, as well as its
integration in libraries is described in Section 5. Experimental results are described in
Section 6, and Section 7 discusses related work. Conclusions are presented in Section 8.

2 Defero Memory Allocator

Memory allocation schemes fall into two main categories. On one end of the spectrum,
a large number of memory allocation schemes use a general memory allocation policy
for all applications. These policies are memory allocation centric, in which the focus is
on memory allocation alone. They are rigid and do not adapt to the application’s needs,
and therefore are not optimal. On the other end of the spectrum, custom allocation
schemes are tailored to specific applications. These schemes are application-centric, in

1 In Latin, defero means “to hand over, carry down, communicate, offer, refer”.
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which the focus is on that specific application’s memory allocation alone. They have a
tremendous impact on performance, but they are not portable.

Defero is different. It is container-centric, which means that containers guide the
memory allocation. Containers collect their specific semantic information and pass it
to Defero. Based on this information, Defero guides the allocation and deallocation
routines. Therefore, Defero communicates with applications through their containers.

The result of container-centric memory allocation is a custom memory allocation
policy nested into each container. It has the performance advantage of custom memory
allocation, without its portability disadvantage. Defero can be integrated in STL, and
thus the portability is shifted from the application, to STL. Applications need not change
a single line of code to take advantage of the customized allocation scheme provided
by STL containers. Defero, thus, provides custom memory allocation for free. Section
5 provides more details on Defero integration into applications.

2.1 Design

Memory Partition. We now present how Defero partitions the memory and how it
manages its free chunks. Defero regards all its free memory chunks as an algebraic
space of memory addresses. Defero properly partitions this address space into equiv-
alence classes, based on an equivalence relation. An example of such an equivalence
relation is ”congruent to modulo 5” between integers.

This generic space partitioning based on an equivalence relation provides flexibility
in the way Defero manages its free memory chunks. Because of its flexibility, previous
allocation policies can also be implemented with our design. Consider the segregated
lists approach, first described by Weinstock in [24]. It manages small object classes, for
example up to 128 byte-objects, rounded up to a multiple of 8. All objects of a certain
size are kept together in a linked list. The segregated lists partition can be expressed
as an equivalence relation in Defero: let x and y be memory addresses, then x ≡ y if
(size(x) ≥ 128 ∧ size(y) ≥ 128) or (� size(x)

8 � = � size(y)
8 �) otherwise.

New partitions can also be created using this generic space partition. In this paper
we analyze a new equivalence relation, named K-Bit, which improves data locality.
K-Bit is defined as: if x and y are memory addresses, they are equivalent iff the first K
higher-order bits are the same. K-Bit partition keeps the memory organized in groups of
addresses where the first K bits are identical. The K-Bit partition results in 2K groups,
each with a maximum size of 232−K . This is an invariant throughout the whole program
execution. At any point in the program execution, regardless of the deallocation pattern
or distribution, the memory is organized into classes of available contiguous chunks.
This property is not true for traditional allocators, since out-of-order deallocations vio-
late this invariant. K-Bit ensures that even the most complicated allocation patterns will
not affect Defero’s memory organization.

The K parameter is adjustable. Assuming a 32-bit system and a virtual page size of
2K bytes, the equivalence classes coincide with the system’s virtual pages. With the
appropriate K, memory can also be partitioned in cache lines.

Defero orders these equivalence classes based on an order predicate, which allows
equivalence classes to be compared against each other. An example is the trivial order
predicate ′less′ =′≤′, which orders the K-Bit equivalence classes based on the first K
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bits. Equivalence and order predicates are traits associated with memory management.
The user can select the equivalence and order predicates or use the defaults provided
by Defero. The equivalence classes are ordered, thus searchable, by virtue of having an
order predicate.

Allocation Predicate. We can now focus on searching the memory partition. The idea
behind flexible space partitioning is to facilitate the allocation/deallocation process. An
allocation predicate stores a target equivalence class, with the intention of allocating a
memory chunk from that specific equivalence class. The allocation predicate has two
critical pieces of information: (i) a target class, the equivalence class from which the
memory chunk is allocated, and (ii) a search algorithm, which describes how to find
that specific equivalence class. The allocation’s searching algorithm is implemented as
a ternary predicate:(i) 0 for found; ’I found it, stop searching’, (ii)-1 for moving left ;
’I need a smaller one’ and (iii) 1 for moving right ; ’I need a bigger one’. This binary
search guides the searching process among the ordered equivalence classes.

Defero’s generic interface allows users to select their own memory partition and allo-
cation predicate. This flexibility allows different containers to have different allocation
policies within the same application.

2.2 Implementation

While other equivalence relations can be easily integrated in Defero, the focus of this
article is on K-Bit equivalence relation. We analyze K-bit partitioning and K’s impact
on memory allocation. We define K-class as the equivalence class which contains all
the memory address that have the same K first bits. In the remainder of the paper we
will use the term K-class as an equivalence class instance, without loss of generality.

Now that we have the generic framework, we can proceed to concrete instantiations.
Defero organizes its memory in a 2-dimensional space. The first dimension is based on
’size’ and is partitioned using the segregated-lists approach. The second dimension is
the ’address’ , and is partitioned using K-Bit. Consequently Defero sees the memory as
a 2-dimensional space, with ’size’ and ’address’ as orthogonal dimensions.

The first dimension, ’size’, is organized in segregated classes. The benefit of segre-
gated size classes is that they generally work well on a large class of applications. We
followed the SGI STL allocator guidelines for the size dimension [17]. All free chunks
of a certain size are partitioned and ordered according to the K-Bit partition. This de-
sign benefits from the empirically proven segregated lists approach, while it also allows
for a custom partition of the memory space. Fig. 1(a) shows Defero’s implementation
where each size class has its own K-Bit partition.

The second dimension, ’address’, is organized by the K-Bit partition. Defero orga-
nizes the K-classes of K-Bit partition into an ordered red-black balanced tree, based on
the order predicate. A node in the tree represents a K-class, and all of the elements in
the same K-class are stored in a linked list. Fig. 1(b) depicts the K-Bit’s organization.

The allocation process selects a free chunk of memory from a 2-dimensional mem-
ory space. The allocation takes into consideration both dimensions. The first dimension
selects size, and the second dimension selects locality. Allocation based on ’size’ is per-
formed using the traditional segregated-lists allocation, where the size of the memory
request determines the appropriate entry into the hash table. It then selects a K-class
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Fig. 1. (a) K-Bit organization (b) Defero’s internal structure

within this tree, based on the allocation predicate. A memory chunk from the selected
K-class is returned as the allocated memory.

To improve locality, the allocation searches for the ’closest’ available address to
a hint address. This hint address is automatically provided by the container semantics.
For example, an element to be inserted at the back of a list, can be allocated near the tail,
which is the hint address. This information is not known at compile time, and only the
container has that information at run-time. If the K-class of the hint address is found,
then an equivalent address from that class is returned. There is no guarantee which
one, only that the returned address is equivalent with the hint address. Otherwise, the
’closest’ K-class is considered, according to the order predicate, and an element from
this class is returned.

Upon deallocation, the memory address is returned to its designated K-class. If its K-
class exists in the tree, then the address is inserted in the K-class linked list, otherwise,
a new tree node is inserted in the tree.

The allocation complexity depends on two variables: the allocation predicate and the
number of K-classes in the tree. The deallocation complexity depends only on the num-
ber of K-classes in the tree. Both allocation and deallocation complexities are O(K).

Examples. Defero’s interface is similar to the STL allocator interface. The STL allo-
cator accepts the size of the memory request as input parameter, along with an optional
hint address [12]. Defero generalizes the hint address to an allocation predicate. In
Section 3 we show how the allocation predicate can hold a hint address or address dis-
tribution information. The deallocation interface remains unchanged. Fig. 2 shows an
example of how Defero is used. Lines 1-2 show allocation with different predicates,
while lines 3-4 show different container instances using different allocation predicates.

It is worth noting that the selection and modification of an allocation policy, can be
done with only few lines of code. Users can easily experiment with different policies.
Different architectures and containers can benefit from specific memory partitions and
allocation predicates. Defero’s generic interface allows for an easy selection of these
salient attributes.



304 A. Jula and L. Rauchwerger

/ / A l l o c a t e 4 b y t e s w i t h F i r s t p r e d i c a t e
1 . i n t ∗ y = d e f e r o : : a l l o c a t e ( 4 , F i r s t ( 0 ) ) ;

/ / A l l o c a t e z near x , or t h e c l o s e s t
2 . i n t ∗ z = d e f e r o : : a l l o c a t e ( 4 , Best ( x ) ) ;

/ / L i s t w i t h Defero (K−B i t , F i r s t )
3 . l i s t <i n t , d e f e r o <i n t , Kbit <12>, l e s s <i n t > > , F i r s t > m y s m a r t l i s t 1 ;

/ / L i s t w i t h Defero (K−B i t , B e s t )
4 . l i s t <i n t , d e f e r o <i n t , Kbit <12>, l e s s <i n t > > , Best > m y s m a r t l i s t 2 ;

Fig. 2. Example of Defero using Equivalence, Order and Allocation Predicates

3 Allocation Predicates

In this section we describe two existing allocation predicates and introduce a novel
one, named Path. We describe each individual one and then discuss the advantages and
disadvantages when combining them with K-Bit partition.

First allocation predicate selects the K-class situated at the root of the tree. If the
root class has elements, it returns the first element in the list, otherwise, it returns the
root. First guarantees consecutive allocations from the same K-class, regardless of the
allocation pattern. Thus, First favors programs which exhibit temporal locality. The
allocation complexity is O(1) amortized, and deallocation complexity is O(K) .

Best allocation predicate takes a hint address and returns the closest available address
to this hint address. It is a binary search performed on a tree, with the key as hint address.
If the hint address’s K-class is found in the tree, an equivalent address is returned, else
an element from the closest K-class is returned. Best can be described as a best match
fit with regard to address location.

Best exploits spatial locality, by attempting to allocate objects close to each other.
Best favors irregular allocation patterns by explicitly ensuring spatial locality. The
closeness metric is dictated by K. The allocation/deallocation complexity is O(K).

Path is a novel allocation predicate designed to improve locality for sorted tree con-
tainers. Balanced trees perform rebalancing operations that modify the structure of the
tree and hurt the spatial locality. An example is the red-black trees with its rotate left
and rotate right rebalancing operations. The Path allocation predicate attempts to solve
the spatial locality problem introduced by the rebalancing operations. When an element
is inserted in a tree, a top-down search is performed. The search path is recorded as a
series of bits: 0 for visiting the left sub-tree and 1 for visiting the right sub-tree. Path
then allocates elements with similar paths together, since it is very likely they will end
up in the same part of the tree. The complexity of Path is O(K).

The idea behind Path is that low values should be allocated together and high values
should be allocated together, regardless of the order in which they were inserted in the
tree. Values that create similar paths are allocated together, since they are likely to be to
be close in the tree. The tree passes the path to the allocator, and the allocator follows
this path in its own top down tree search. Path maps values to addresses. Elements that
have approximately the same value are allocated together, thus likely to be accessed
together. Intuitively, it makes sense to allocate together the elements which are logically
grouped by the application. The allocation process follows a given path into the K-Bit
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Table 1. Strengths and weaknesses of allocation predicates with K-Bit

K-Bit with ⇒ First Best Path
Advantage + Temporal Locality + Spatial Locality + Logical Locality

+ Fast + Container aware + Container aware
+ Worst case allocation pattern

Disadvantage - Not container aware - Slower - Slower

searching tree. This allows for directing the allocation requests toward a certain part
of the tree. In Table 1 we summarize the strengths and weaknesses for each allocation
predicate when used with K-Bit.

4 Selecting K

In this section we characterize and discuss the dynamic property of containers and how
it helps in selecting an optimal K. We start by asking how dynamic is a container? The
answer depends on how the application operates the container. Assuming we know the
operations applied on the container by the application, we now quantify the dynamic
property of containers. First, we classify the types of operations on a container into
two categories: (i) modifying (M) operations, such as insertion or deletion and (ii) non-
modifying(NM) operations, such as traversals or element access2. M operations stress
the memory allocator, while NM operations stress the locality of the container.

Next, we define the dynamism of a container as a measurable metric which repre-
sents the percentage of modifying operations in the total operations:

D =
M

NM + M
∗ 100, withD ∈ (0, 100), M ≥ 1, NM ≥ 13 (1)

Intuitively, the dynamism describes the rate of change in a data structure. The more
often it changes, the higher the dynamism. The dynamism of the container is highly cor-
related with memory behavior. The higher the dynamism, the more important the speed
of the memory allocation becomes, while data locality diminishes in its importance.
The lower the dynamism, the more important locality is, while memory allocation’s
speed becomes less dominant.

K is an adjustable parameter. It varies between 0 and the size of the pointer, 32
or 64 depending of the system. On one end, when K is the size of the pointer, each
memory chunk is its own K-class. In this case the equivalence relation is the classic
equal predicate ’=’. On the other end, when K is 0, all memory chunks are equivalent,
and there is only one K-class in the tree, the whole memory. Therefore, K dictates the
ratio between trees’ and lists’ sizes and the number of K- classes it creates.

To reduce the allocation overhead, one might consider either reducing K to obtain
fewer K-classes, or choosing an allocation predicate that selects faster, like First. To

2 Modifying can be regarded as Write operations and Non-Modifying as Read operations.
3 Each container has at least 1 M operation, the creation of that container. Every container has

at least 1 NM operation. If it didn’t have one, it meant that that container was never accessed
by the program and thus would be dead code.
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increase data locality, one might consider either increasing K for a better refinement of
the space or choosing an allocation predicate that selects better, like Best.

Therefore, high values of K speed up NM operations, but slow down M operations.
Low values of K reverse the trend. Selecting K is dictated by the application needs. A
highly dynamic container requires a low K, and vice-versa. Low K though does not help
locality, and a high K does not allocate fast. For each application there is a “sweet spot”
for which these two antagonistic characteristics are balanced.

5 Integration of Defero with STL

The advantage of integrating Defero with STL is knowing the information rich context
from where memory is allocated. The container allocates its elements and is the perfect
candidate to provide allocation guidelines to its elements’ allocation. Defero allows the
communication of this semantic context to the allocation policy.

We integrated Defero into the C++ STL. The library provides various generic data
containers, such as lists, sets, and trees. STL container’s modular design made Defero’s
integration easy. For list-like containers, traversals imply a linear order of their ele-
ments. Elements in these containers find themselves in a partial order. Because of this
intrinsic invariant property, the best place to allocate a new element to improve locality,
is in the proximity of its neighbors. This neighbor(s) context is passed to the allocation
predicate, which is then passed to the allocation routine.

For tree-like containers, insertion is based on the new element’s value, a run-time
variable. This insertion context is more complex than the list’s. One can think of several
allocation predicates that increase locality: allocation close to the parent, allocation
close to the sibling, allocation based on the value distribution, etc.

Each container can benefit from selecting its own allocation predicate by providing
the best allocator for the application. Applications use theses STL containers, without
the knowledge of their allocators. Consequently, Defero keeps the application portable
and thus provides custom memory allocation for free.

6 Experimental Results

We tested Defero using several dynamic applications from various areas, such as com-
piler infrastructure, molecular dynamic, network simulation, as well as in-house micro-
kernels. These applications use STL containers. Defero integration effort was minimal.
The integration required the inclusion of the modified STL in the include path of the
compilation command. We did not modify the applications.

We conducted the experimental results on a Intel(R) Xeon(TM) 3.00 GHz, 1GB
memory, using GNU C++ compiler g++ version 3.3.6, with -O3 level of optimization.

We compared Defero against Doug Lea’s allocator (DL), the GNU STL allocator
[17]. The DL allocator uses a size-segregated approach, and boundary tags. This alloca-
tor is considered the best overall memory allocator [14,15]. Berger et al. [2] show that it
competes with custom memory allocators, and sometimes even outperforms them. The
GNU STL allocator is a segregated list allocator, with first fit policy and no coalesc-
ing. This allocator was based on a SGI implementation. We set the GNU STL allocator
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as our base allocator because of its portability and ubiquity. It is worth noting that the
difference between the GNU STL allocator and Defero is exactly the K-Bit partition.
Consequently, any improvement over the GNU STL allocator is solely attributed to
K-Bit partition with allocation predicates.

Defero, DL and GNU STL allocators used exactly the same amount of memory for all
applications analyzed in this paper. The minimum memory request was 12 bytes, which
was rounded up by the GNU STL allocator to 16 bytes, while Defero requires a memory
chunk threshold of at least 16 bytes, the same threshold as the one required by DL.

6.1 Micro-kernels

Lists. For this experiment we created a list of one million random integers. The memory
was warmed up by allocating two millions integers and then we randomly erased one
million, in order to simulate a real scenario where the application randomly allocates
and deallocates objects. We then created a list of elements alternating push back and
push front methods. We then invoked two STL algorithms: list’s own sort and for each
with incrementing the elements as the called function. All measurements are relative to
the native GNU STL allocator.

Fig. 3 (a) shows the list creation. Defero improves data locality which eventually
reduces the execution time. Fig. 3 (b) shows the list deletion. Best performs almost 2
times faster than First and 3.5 times faster that DL allocator. Fig. 3 (c) shows the STL
foreach algorithm. A higher precision of the partition implies an improved the locality.
Best reduces the execution time by almost 90% and it is 9 times faster than the DL
allocator. Fig. 3 (d) shows the execution time of the list’s sorting algorithm.

The experimental results corroborate our hypothesis: high locality precisions favor
traversal operations, such as for each, sort, at the expense of modifying operations, such
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Fig. 3. List operations with Defero and K-bit partition
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as insert and clear. The sweet spot is determined by the ratio of these two operations.
For traversals, the Best allocation predicate performs two times better than First, but
First is faster for modifying operations.

Trees. In this experiment the memory was warmed up in a similar fashion as in the list
experiment. An STL tree with nine million integers was allocated and then three million
elements were randomly erased. We then created an STL red-black tree of three million
random integers. Then each key was randomly selected and searched in the tree. We
then applied a for each algorithm, after which the tree was destroyed.
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Fig. 4. Tree operations with Defero and Kbit partition

Fig. 4 (a) and (b) show the tree creation operation. Defero with Path improves the
execution time by 30% over GNU STL allocator and 25% over the DL allocator. Fig. 4
(b) shows the tree deletion which observed a slow-down. The inorder traversal is not
substantially sped up to compensate for the extra memory management involved in
deallocation. Fig. 4 (c) shows three million top-down traversals performed by find op-
eration. Defero with Path improves the execution time by 28% over the GNU STL and
25% over the DL allocator. Fig. 4 (d) shows the for each algorithm. While Defero with
Best and First did almost the same as DL and the GNU STL allocators, Defero with
Path improved the execution time by 20% over all of them.

These experiments show that specialized allocation predicates benefit different con-
tainers. For example Path works best for trees, while First and Best work best for lists.

While we do not expect real applications to exhibit such improvements, these al-
gorithms and operations are the basic blocks of each application. Understanding the
impact of memory allocation on these basic yet fundamental, algorithms, is important
for a better understanding of real applications.
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6.2 Applications

In order to evaluate our technique in a realistic setting we have applied it to two real and
very dynamic programs, a molecular dynamics code and a compiler. In Table 2 we list
the benchmarks and their pertinent characteristics, such as inputs used, the size (number
of lines of code), their execution time, total memory allocated, maximum memory used,
number of allocation and deallocation performed, and the average size of the memory
allocation requests.

Table 2. Benchmarks General Characteristics

Application Input Code size Exec. Time Total Max Mem Alloc/Dealloc Avg. Size
(lines) (sec) (MB) (MB) (Mil) (bytes)

MD 7000 particles 1800 88.32 167.34 14.68 13.9 / 12.7 12
Polaris Spec89, Perfect 600,000 300 128.921 18.977 3.9 / 3.7 32.73

Table 3. Benchmarks Containers Characterization

Applications Containers #Containers Total Op. (Mil) # NM (Mil) # M (Mil) Dynamism
MD list,tree 6,912 551.46 524.75 13.93 / 12.78 2.58
Polaris list - 27.47 18.75 3.93 / 3.78 17.15

In Table 3 we show the characteristics of the data containers used by these bench-
marks, such as their numbers, type, total number of operations they perfrom. “Interest-
ing” properties such as the number of non-modifying operations and modifying opera-
tions, along with the average dynamism of the containers are also displayed here.

Molecular Dynamics. The code we have used for our experiment was written by Danny
Rintoul from Sandia National Laboratories. The application fully utilizes STL contain-
ers, such as lists and trees and STL algorithms such as for each, sort. It is a classical
molecular dynamics code that computes the molecule interactions at every time step.

Fig. 5(a) shows the normalized execution time of the whole application. While the
DL allocator reduces the execution time by 22%, Defero comes in very close. Defero
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(a) Defero vs. Original on Spec89 (b) Defero vs. Doug Lea’s on Spec89

(c) Defero vs. Doug Lea’s on Perfect (d) Defero vs. Original Lea’s on Perfect

Fig. 6. Execution time of Polaris with Defero vs. Original and DL allocator

with First improves by 20%, and Defero with Best by 18%. Fig. 5(b) shows a com-
parison of five hardware counters : L1, L2, TLB misses and Issued Instructions. These
hardware counters were collected for the following memory partitions and allocation
policies: 24-bit with First, 24-bit with Best, DL, native ’new’ and native ’malloc’. The
vertical line in figure 5(a) represents K=20, the system’s native virtual page partition.

Molecular dynamics is a discrete event simulation. In between time steps, the appli-
cation releases its memory to the system, only to allocate it again in the next step. This
behavior benefits the DL allocator, which reduces external fragmentation by coalescing.

Polaris is a Fortran restructuring compiler [22]. At its core, the most used container
is a list similar to an STL list which stores various semantic entities, such as statements,
expressions, constants, etc. We used Defero as the underlying memory allocator for
these lists. The algorithms that we used in Polaris are compiler passes that perform
program transformations, such as forward substitution, removing multiple subprogram
entries, fixing type mismatches, etc.

We ran Polaris with inputs from Perfect and Spec 89 benchmarks. For each input
we varied the K from 0 to 32. Fig. 6(a) and 6(b) show the performance of Polaris
using Defero with First relative to the original memory allocation. First outperformed
Best with Polaris. In the figures, anything below the plane is faster and anything above
is slower. There is up to 22% improvement relative to the original implementation.
Fig. 6(c) and 6(d) show a relative improvement of up to 12% over the DL allocator.

It is worth noting the consistency in improving execution time across all inputs of
the two benchmarks. Almost all inputs exhibit the same pattern with respect to K’s
variance. For the Spec 89 input, the average improvements are 15% over the original
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and 10% over the DL allocator. For the Perfect input the average improvements are 10%
over the original and 5% over the DL allocator.

In summary, Defero improves data locality, especially large applications with com-
plex allocation patterns. Defero increases data the temporal or spatial locality through
the use of the specified allocation predicates. The Best allocation predicate improves
spatial locality, while First improves the temporal one. Different containers can benefit
from different allocation predicates. For example, the Path allocation predicate encapsu-
lates the semantic structure of the tree and helps improving tree locality. Path is specific
to balanced trees while lists may benefit more from First or Best policies.

7 Related Work

There has been a significant amount of work related to memory allocation and its cus-
tomization. This section will present only the research that is strictly related to Defero.

Lattner and Adve [13] developed a compiler technique to identify logical data struc-
tures in the program. Once a data structure has been identified, its elements are allocated
in a designated memory pool. Defero works at the library level, thus it already has the
rich information environment, without compiler support. Chilimbi et al. in [5] investi-
gated the idea of cache-conscious data structures. They present two tools for improving
cache locality for dynamic data structures, namely ccmorph and ccmalloc. Chilimbi’s
tools are not available4, so we could not empirically compare them against Defero.
Nonetheless, Defero works automatically with containers, while Chilimbi’s tools are
semi-automated and require programmer intervention and hardware knowledge about
the system. Ccmorph works only with static trees that do not change once created, while
Defero does not impose this restriction. On the contrary, Defero offers several policies
that benefit different dynamic behaviors.

HeapLayers [3] is an infrastructure for building memory allocators. Unfortunately
we could not use HeapLayers since Defero’s design requires a generic template allo-
cation scheme, a generic template memory partition, and a new allocation interface.
Huang et al. [11] used the Jikes RVM adaptive compiler to sample the methods used
by the program at run-time, and when they become ”hot”, they get compiled. This
approach increases data locality by profiling at garbage time, while Defero improves
locality through semantics at allocation time.

Grunwald et al. [10] profile the performance of five memory allocation schemes
(first-fit, gnu g++, BSD, gnu local, quick-fit) and conclude that efforts to reduce memory
utilization, such as coalescing adjacent free blocks, will increase both the execution
time and reduce program reference locality. Barret and Zorn [1] show that 90% of all
bytes allocated are short-lived. Short-lived and long-lived objects are placed in separate
arenas, implicitly increasing locality. Shuf et al. [18] show that prolific type objects can
benefit from allocating them together, since they tend to be related and short-lived.

Seidl and Zorn [16] present an algorithm for predicting heap object reference and
lifetime behavior at the allocation time. Calder et al. [4] present a profile driven compiler
technique for data placement (stack, global, heap and constants) in order to reduce data
cache misses. Grunwald and Zorn [9] present a custom memory allocator based on

4 Personal communication with the author.
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profiling. Users profile an application, and based of the object sizes the application
uses, customalloc creates segregated lists with the frequently used class sizes.

Doug Lea’s allocator, DL, uses boundary tags in its implementation and a size-
segregation organization [14,15]. Boundary tags allow for quick coalescing, which im-
proves data locality. Defero does coalescing at allocation, explicitly through the alloca-
tion predicate, while DL does coalescing at deallocation using boundary tags.

Gay and Aiken [8] study region based memory management. A pseudo region-based
allocation is supported by Defero implicitly as a K-class region with the locality advan-
tage. There are other memory allocation schemes worth mentioning which attempt to
improve performance by speed [23] or by padding [21].

8 Conclusions

We presented Defero, a container-centric memory allocator, which allows high level se-
mantic information present in the allocation context to be communicated to the memory
allocator. Defero is automatically integrated in STL, thus applications need not change
a single line of code. The approach provides custom memory allocation for free, i.e.,
without programmer intervention.

Defero’s generic interface allows users to select their own partition and allocation
policy, thus making Defero highly tunable. We analyzed a novel and adjustable K-Bit
memory scheme. K-Bit performs best when it is virtual page aware and partitions its
space into pages. We explored several allocation policies on several applications. We
show that containers benefit from specialized allocation predicates. We propose a novel
allocation predicate named Path, which produces better locality for balanced trees. It
outperforms First and Best allocation predicates, and even Doug Lea’s allocator. For
list containers, First and Best produce the best locality improvement.
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Abstract. The CELL architecture has one Power Processor Element
(PPE) core, and eight Synergistic Processor Element (SPE) cores that
have a distinct instruction set architecture of their own. The PPE core
accesses memory via a traditional caching mechanism, but each SPE
core can only access memory via a small 256K software-controlled local
store. The PPE cache and SPE local stores are connected to each other
and main memory via a high bandwidth bus. Software is responsible for
all data transfers to and from the SPE local stores. To hide the high
latency of DMA transfers, data may be prefetched into SPE local stores
using loop blocking transformations and static buffers. We find that the
performance of an application can vary depending on the size of the
buffers used, and whether a single-, double-, or triple-buffer scheme is
used. Constrained by the limited space available for data buffers in the
SPE local store, we want to choose the optimal buffering scheme for a
given space budget. Also, we want to be able to determine the optimal
buffer size for a given scheme, such that using a larger buffer size results
in negligible performance improvement. We develop a model to automat-
ically infer these parameters for static buffering, taking into account the
DMA latency and transfer rates, and the amount of computation in the
application loop being targeted. We test the accuracy of our prediction
model using a research prototype compiler developed on top of the IBM
XL compiler infrastructure.

1 Introduction

The design of computing systems is trending towards the use of multiple pro-
cessing units working collaboratively to execute a given application, with com-
munication interfaces that enable high bandwidth data transfers between the
processor and memory elements of the system. The CELL architecture[4] is one
example of such a system, primarily designed to accelerate the execution of me-
dia and streaming applications. It includes two kinds of processing cores on the
same chip: a general-purpose Power Processor Element (PPE) core that supports
the Power instruction set architecture, and eight Synergistic Processor Element
(SPE) cores that are based on a new SIMD processor design[3].

G. Almási, C. Caşcaval, and P. Wu (Eds.): LCPC 2006, LNCS 4382, pp. 314–329, 2007.
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Fig. 1. The CELL Architecture

1.1 CELL Architecture

Figure 1 shows the elements of the CELL architecture and the on-chip data paths
that are relevant to the discussion in this paper. The PPE includes the Power
Execution Unit (PXU) that accesses main memory via its L1 and L2 caches.
Each SPE includes a Synergistic Processor Unit (SPU), a Local Store (LS), and
a Memory Flow Controller (MFC). Load/store instructions executed on an SPU
can only load from and store to locations in the LS of that SPE. If an SPU needs
to access main memory or the LS of another SPE, it must execute code that will
issue a DMA command to its MFC explicitly instructing the MFC to transfer
data to or from its LS. All the SPE local stores, the PPE’s L2 cache, and the
Memory Interface Controller (MIC) that provides access to the off-chip main
memory, are inter-connected via a high bandwidth (16 Bytes/cycle on each link)
Element Interconnect Bus (EIB). It is possible for a DMA transaction on the EIB
that involves the LS of one SPE to be initiated by another SPU or by the PXU.
However, the code transformations discussed in this paper only involve DMA
transactions between main memory and an SPE LS that have been initiated by
the corresponding SPU.

The hardware architecture maintains coherence between copies of data in the
main memory, data in the PPE caches, and data being transferred on the EIB.
However, the hardware does not keep track of copies of data residing in an LS,
and software is responsible for coherence of this data. Each LS is a small 256KB
memory that is completely managed in software. It contains both the code and
data used in SPU execution. The latency of DMA operations between an LS
and main memory is quite high, approximately in the order of 100-200 SPU
cycles[11]. However, for consecutive DMA operations, it is possible to overlap
the latency for the second operation with the DMA transfer of the first, as the
MFC can process and queue multiple DMA requests before they are issued to
the EIB.

1.2 DMA Buffering

The example code in Figure 2(a) shows a loop that iterates N times, and in each
iteration it loads the ith element of array A, multiplies this value by a scalar
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for (i=0; i<N; i++) {
    DMA get A[i] to tA;
    tB = tA * S;
    DMA put tB to B[i];
}

/* S, tA, and tB reside in LS */

(b) Naive Buffering

/* A and B are in main memory */
/* S is a scalar residing in LS */

for (i=0; i<N; i++) {
    B[i] = A[i] * S;
}

(a) Example Code

    n = min(ii+bf, N);
    DMA get A[ii:n] to tA;
    for (i=ii; i<n; i++) {
        tB[i] = tA[i] * S;
    }
    DMA put tB to B[ii:n];
}

for (ii=0; ii<N; ii+=bf) {

(c) Single Buffering

n = min(bf, N);

t = (t+1) % 2;

for (ii=0; ii<N; ii+=bf) {
    n = min(ii+bf, N);
    m = min(ii+2*bf, N);
    DMA get A[ii+bf:m] to tA[t], tag=t;
    t = (t+1) % 2;
    DMA wait, tag=t;

    for (i=ii; i<n; i++) {
        tB[t][i] = tA[t][i] * S;
    }

    DMA put tB[t] to B[ii:n], tag=t;
}
DMA wait, tag=t;

t=0;

DMA get A[0:n] to tA[t], tag=t;

/* Uses non−blocking DMA */

(d) Double Buffering

/* Decides buffer 1 or buffer 2 */

Fig. 2. Example to Illustrate DMA Buffering

S, and stores the result in the ith element of array B. If this code is targeted
to execute on an SPE, the elements of A and B must be located in the LS for
the SPU to be able to operate on them. However, A and B maybe allocated in
main memory, perhaps because they are also being accessed by other cores, or
because they are too large to fit in the limited LS space. In this case, the code is
modified to include DMA operations to get elements of A into a temporary buffer
tA in the LS, and put elements of B from a temporary buffer tB in the LS to
main memory, as illustrated in Figure 2(b). Since the latency of DMA transfers
is high, it is more efficient to transfer multiple array elements in a single DMA
operation, effectively pre-fetching data for computation. Figure 2(c) shows how
the example code is transformed to do this by blocking the loop using a blocking
factor of bf, buffers tA and tB of size equivalent to bf array elements instead
of a single array element, and one DMA get and one DMA put operation per
iteration of the outer blocked loop.

The problem with the code in Figure 2(c) is that it allows no overlap be-
tween DMA transfer time and SPU computation time. Each instance of the
inner blocked loop must wait for the preceding DMA get operation to com-
plete before the inner loop can execute. This restriction can be overcome using
a double-buffer scheme, as illustrated in Figure 2(d). Instead of using one bf-
element buffer for each array data stream, the code uses two such buffers for
each data stream. Before the SPU starts computing with the data fetched in one
buffer, it initiates a DMA transfer using the other buffer to get data that will be
used in the next iteration of the outer blocked loop. This transformation requires
that there be no loop-carried flow dependencies among the iterations within one
instance of the inner blocked loop. The DMA operations used are non-blocking
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versions, and they are tagged with an integer identifying the LS buffer being
used in the DMA transfer. The SPU can continue execution of the inner blocked
loop while a DMA transfer is in progress. To wait for specific DMA operation(s)
to complete, the code calls a DMA wait function with the tag corresponding to
a previously issued DMA operation passed as a parameter.

The double-buffer scheme can be extended to use k buffers for each data
stream to increase the amount of DMA that is overlapped with the computation
in one instance of the inner blocked loop.

1.3 Problem Description

Execution time of a loop blocked for DMA buffering varies with the amount
of DMA overlapped with computation. For a k-buffer scheme, the amount of
DMA overlap increases both with the value of k, and with the size of the buffers
used. In the SPE, all the buffers occupy space in the LS, which is only 256KB
in size. This limited LS space is a prime resource, since it is being used for both
code and data, and the available space limits the applicability of optimizations
that increase code size or require more space to buffer data. Due to the LS size
constraint, a restricted amount of space is available for DMA buffering.

The problem we address in this paper is that given a budget for the amount
of space to be used for DMA buffering, determine the buffering scheme that will
result in the best execution time performance. Since the total buffer size is fixed,
performance of a k-buffer scheme needs to be compared with the performance
of a (k + 1)-buffer scheme that uses individual buffers of a size smaller than the
buffers used in the k-buffer scheme. Once the optimal buffering scheme is known,
it may be the case that all possible DMA overlap is attained using a buffer size
smaller than the maximum buffer size allowed by the total buffer space budget.
Note that there is a limit to how much performance can be improved using DMA
overlap before the application becomes computation-bound. Thus, we want to
determine both the optimal buffering scheme and the smallest buffer size that
maximize performance, when constrained by the total buffer space available.

We find that the performance of DMA buffering depends on several factors,
including the set-up time for each DMA operation, the DMA transfer time,
the amount of computation in the loop, the number of buffers being used, and
the size of each individual buffer. We develop a model to relate each of these
factors to the execution time, and use this model to predict the relative merit
of using different buffering schemes and different buffer sizes. Also, we obtain
performance numbers for a small set of applications running on a CELL chip
using single-, double-, and triple-buffer, and various buffer sizes. We correlate the
experimental data with our model. Our experiments are restricted to consider
only the innermost loop in a loop nest, where this loop operates on a number of
array data streams, has a large iteration count, has no loop-carried dependences,
and has no conditional branches within the loop body.

In Section 2, we develop the model used to predict performance for a given
buffering scheme. In Section 3, we describe how the model can be used to deter-
mine the optimal buffering scheme and buffer size in a compiler transformation
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for static buffering. In Section 4, we describe the experiments we performed to
validate our model against actual performance data. We discuss related work in
Section 5, and conclude in Section 6.

2 Modeling Buffering Schemes

2.1 Assumptions

We assume that a loop is a candidate for DMA buffering optimization if it
satisfies the following conditions:

– The loop operates on array data streams. The buffering optimizations con-
sidered are not interesting for scalar data, or data accessed through unpre-
dictable indirect references.

– There are no loop-carried dependences between accesses to elements of the
array data streams. This enables the loop to be transformed for any k-buffer
scheme since the DMA get and put operations can be freely moved out of
the inner blocked loop.

– There is no conditional branch statement within the loop body. This is im-
portant to be able to accurately gauge the amount of computation in the
loop body, which is one of the factors that determines relative performance
of different buffering schemes.

– Elements in the array data streams that are accessed in consecutive loop
iterations are contiguous in memory, or not spaced too far apart. This is to
ensure that when buffers are used to DMA contiguous memory locations in a
single operation, the majority of the data being transferred is in fact useful.

– DMA buffers are assigned such that each buffer is only used for a single array
data stream, and no buffer is used in both DMA get and put operations. This
is a conservative assumption to ensure that a DMA operation on one buffer
does not have to wait for a DMA operation on another buffer to complete.

– The loop iteration count is large enough that any prologue or epilogue gen-
erated when the loop is blocked has a negligible impact on performance.

– The array data streams are aligned on 128-byte boundaries, and this align-
ment is known at compile-time. If this is not the case, then code has to
be generated to explicitly check alignment at runtime, and to issue DMA
operations such that misaligned data is correctly handled. This changes the
DMA set-up time, which is one of the factors used to determine the relative
performance of different buffering schemes.

2.2 Latency of DMA Operations

We approximate the latency of one DMA operation with the formula S + D ∗ b,
where S is the set-up time for one DMA operation, D is the transfer time for
one byte, and b is the number of bytes transferred by this DMA operation.

When two non-blocking DMA operations for b1 and b2 bytes are issued in
sequence, the set-up of the second DMA operation can be overlapped with the
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data transfer of the first, as illustrated in Figure 3. When the set-up of the second
DMA operation (S2) is less than or equal to the set-up of the first DMA operation
(S1), it can be completely overlapped. In this case, the combined latency of the
two DMA operations will be S1 + D ∗ (b1 + b2). For different values of S1 and
S2, the amount of overlap of set-up time with transfer time will be different.

In the CELL architecture, the value of S is different for DMA get and put
operations[11]. The DMA get operation has a higher value of S because it in-
cludes the main memory access time to retrieve data, whereas a DMA put can
complete before data is actually written to its main memory location.

In general, a sequence of n DMA transfers will have latency S+D∗(b1+...+bn),
where S is a function of S1, ..., Sn.

2.3 Latency for Single-Buffer

Figure 4 illustrates the execution sequence for the code in Figure 2(c). Ignoring
the prologue and epilogue, and clubbing together consecutive DMA operations,
each iteration of the outer blocked loop comprises of a DMA put corresponding
to the previous iteration, a DMA get to fetch data for the current iteration, and
the computation of one instance of the entire inner blocked loop. Note that non-
blocking DMA operations can be used, with a DMA wait inserted just before the
inner blocked loop. Thus, the latency of one iteration of the outer blocked loop
is the latency of both the DMA transfers plus the computation latency of the in-
ner blocked loop. Let N be the iteration count of the original loop, and assume
the loop has been blocked using a blocking factor of bf . Let D1 be the DMA
transfer time for one byte, b be the number of bytes transferred in all DMA op-
erations corresponding to one iteration of the outer blocked loop, and S be the
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Fig. 5. Execution Sequence for DMA-bound Double-Buffer

composite set-up time for the sequence of non-blocking DMA operations corre-
sponding to one iteration of the outer blocked loop. Also, let C be the compu-
tation time for one iteration of the inner blocked loop. The value for C is ex-
pressed as (Cinner + Couter/bf), where Cinner is the compute time for each it-
eration of the inner blocked loop, and Couter is the overhead for issuing DMA
requests in an iteration of the outer blocked loop. This overhead primarily in-
cludes the function call and runtime checking overhead in compiler-generated code
for DMA transfer requests, and it gets amortized over bf iterations of the inner
blocked loop. In practice, we expect Couter to be small, and bf to be large, so that
C can be approximated by Cinner . The total latency of the entire loop is given by:
((S + D1 ∗ b ∗ bf) + C ∗ bf) ∗ (N/bf) = (S/bf + D1 ∗ b + C) ∗ N For simplicity,
let D = D1 ∗ b be the DMA transfer time for all data accessed in one iteration of
the inner blocked loop. Thus, latency for single-buffer is (S/bf + D + C) ∗ N .

2.4 Latency for Double-Buffer

In the following discussion, the terms N , bf , C, S, and D have the same meaning
as in the single-buffer case discussed earlier. For clarity, the following examples
refer to DMA for one pair of buffers. However, the discussion also applies to
examples using a set of double buffers, with S corresponding to the set-up delay
for a composite sequence of non-blocking DMA operations issued for each set.

Case 1: DMA-Bound. Figure 5 illustrates the case when double-buffer is used
and the application is DMA-bound. In this case, there is no delay between any
two successive DMA operations. The sequence of DMA operations and compu-
tations alternate between using the first buffer and the second buffer. The first
and second DMA operations are issued successively before any computation be-
gins. The third DMA operation is issued only after the first computation of the
inner blocked loop finishes. If there is to be no delay between the second and
third DMA operations, then the time to complete the first computation (point
B in the figure) must be less than or equal to the time to complete the first two
DMA operations (point A in the figure). This translates to the condition:

(S + D ∗ bf + C ∗ bf) ≤ (2 ∗ D ∗ bf), or D ≥ (C + S/bf)

When this condition holds, the execution pattern repeats throughout the
loop and the application is DMA-bound. The latency for the entire loop is
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approximated by the time taken by all the consecutive DMA operations, i.e. S +
D ∗ N . When N is large, this can be simplified to D ∗ N .

Case 2: Computation-Bound. Figure 6 illustrates the case when double-
buffer is used and the application is computation-bound. In this case, there is no
delay waiting for DMA to complete between any two successive computations
of the inner blocked loop. The sequence of DMA operations and computations
alternate between using the first buffer and the second buffer. The first and
second DMA operations are issued successively before any computation begins.
The third DMA operation is issued only after the first computation of the inner
blocked loop finishes. If there is to be no delay between the second and third
computations, then the time to complete the third DMA operation (point B
in the figure) must be less than or equal to the time to complete the first two
computations (point A in the figure). This translates to the condition:

(S+D ∗ bf +C ∗ bf +S + D ∗ bf)≤(S+D ∗ bf +2 ∗ C ∗ bf), or D≤(C−S/bf)

When this condition holds, the execution pattern repeats throughout the loop,
and the application is computation-bound. The latency for the entire loop is
approximated by the time taken by all the consecutive computations, i.e. C ∗N ,
when N is large.

Case 3: Incomplete Overlap. A loop that is neither DMA-bound nor com-
putation-bound has incomplete overlap of DMA operations with computation.
We analyze this case by splitting it into two sub-cases: when C ≤D<(C+S/bf),
and when (C − S/bf) < D < C. The total latency of the loop in both cases is
the same: (S/bf + D + C) ∗ N/2.
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Case A: When C ≤ D < (C + S/bf): Figure 7 illustrates this case. Here,
the set-up of the third DMA operation is not fully overlapped with the second
DMA transfer. Also, there is a delay between the first and second computa-
tion, waiting for the second DMA transfer to complete. The second computation
finishes at point B in the figure, and it can only start after the second DMA
transfer has completed. From the beginning (point A in the figure), the latency
for the second computation to finish is S + 2 ∗ D ∗ bf + C ∗ bf . From a DMA
point of view, the earliest that the fourth DMA operation can start is after the
third DMA transfer reaches point C. The third DMA transfer can start only
after the first computation finishes. The latency from point A in this case is
S + D ∗ bf + C ∗ bf + D ∗ bf . The two latencies from A to B and A to C
are the same, which means that the fourth DMA starts at the same point that
the second computation finishes, and the execution repeats the pattern illus-
trated in the figure. The delay between the second and third DMA operations
is S + D ∗ bf + C ∗ bf − 2 ∗ D ∗ bf = S + (C − D) ∗ bf . The total latency of the
loop is the latency of all DMA transfers plus the extra delays due to incomplete
overlap that occur after every two DMA operations. This latency is given by:

N ∗ D + (S + (C − D) ∗ bf) ∗ N/bf/2 = (S/bf + D + C) ∗ N/2.

Case B: When (C − S/bf) < D < C: Figure 8 illustrates this case. Here,
the set-up of the third DMA operation is not overlapped with the second DMA
transfer. Also, there is no delay between the first and second computation, but
there is a delay between the second and third computation, waiting for the third
DMA transfer to complete. The data for the fourth computation will be ready
at point B in the figure, made available only after the first DMA transfer, the
first two computations, and the fourth DMA transfer have completed. From the
beginning (point A in the figure), the latency for the fourth DMA transfer to
complete is S + D ∗ bf + 2 ∗ C ∗ bf + S + D ∗ bf . From a computation point
of view, the third computation will finish at point C in the figure, and it can
start only after the third DMA transfer completes. The third DMA can start
only after the first computation finishes. The latency from point A in this case
is S + D ∗ bf + C ∗ bf + S + D ∗ bf + C ∗ bf . The two latencies from A to B and
A to C are the same, which means that the fourth DMA completes at the same
point that the third computation finishes, and the execution repeats the pattern
illustrated in the figure. The delay between the second and third computations
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is S + D ∗ bf − C ∗ bf = S + (D − C) ∗ bf . The total latency of the loop is the
latency of all computations plus the extra delays due to incomplete overlap that
occur after every two computations. This latency is given by:

N ∗ C + (S + (D − C) ∗ bf) ∗ N/bf/2 = (S/bf + D + C) ∗ N/2.

2.5 Latency for k-Buffer

Case 1: DMA-Bound. Analogous to the case of double-buffer, we can derive
the condition for a k-buffered loop to be DMA-bound, i.e. if the first computation
finishes and starts up the (k +1)th DMA operation in time less than or equal to
the time it takes to transfer data for k DMA operations. This condition evaluates
to D ≥ (C+S/bf)/(k−1). The initial pattern repeats throughout the loop when
D > C. Thus, the loop is DMA-bound when D ≥ max(C, (C + S/bf)/(k − 1)).
The latency of the entire loop is approximated by D ∗ N .

Case 2: Computation-Bound. Analogous to the case of double-buffer, we
can derive the condition for a k-buffered loop to be computation-bound, i.e. if
the DMA transfer corresponding to the (k + 1)th computation finishes in time
less than or equal to the time it takes to complete the first k computations
occuring consecutively one after another, without any intervening delays due to
DMA waits. This condition evaluates to D ≤ (k − 1) ∗ C − S/bf . The initial
pattern repeats throughout the loop execution when D < C. Thus, the loop is
computation-bound when D ≤ min(C, (k − 1) ∗ C − S/bf). The latency of the
entire loop is approximated by C ∗ N .

Case 3: Incomplete Overlap. Analogous to the case of double-buffer, the
latency of a k-buffered loop that is neither DMA-bound nor computation-bound
is (S/bf + C + D) ∗ N/k. We do not discuss details of this case here.

3 Compiler Analysis

In this section, we describe how the latency formulae derived in Section 2 can
be applied to determine the optimal buffering scheme and buffer size for a loop
with limited amount of memory available for buffer space. We expect that the
algorithm described here will be used in a compiler that automatically transforms
code for DMA buffering. In the following discussion, we restrict the choice of
buffering schemes to single-, double-, or triple-buffer.

Assume that the amount of memory available for buffering is specified in terms
of the largest block factor (say B) that can be used when transforming the loop
for a single-buffer scheme1. Then the maximum block factor for double-buffer is
B/2, and for triple-buffer is B/3.

The performance of a loop will be optimal if it is computation-bound or
DMA-bound. Therefore, a DMA-bound double-buffered loop (latency D ∗N) or
1 Therefore, in the case of single-buffer, the actual size of an individual buffer will be

B times the size of an array element.
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Algorithm: bool  Choose_Double_Buffer (C, D, S, B) {

    float C: the computation per iteration;
    float D: the DMA transfer time per iteration;

    int B: buffer space constraint in terms of the maximum 

    if (D > C) {

            return TRUE;
    } else if (D < C) {

            return TRUE;
    }

    return FALSE;
}

    float S: the set−up latency for DMA;

              block factor used in a single−buffering scheme;

        if (S/(D−C) <= B/2)

        if (S/(C−D) <= B/2)

Fig. 9. Algorithm to Choose Between Double- and Triple-Buffer Schemes

a computation-bound double-buffered loop (latency C∗N) should be better than
a single-buffered loop (latency (S/B + D + C) ∗ N . When the double-buffered
loop has incomplete overlap, its latency will be (S/B/2 + D + C) ∗ N/2. In this
case, the difference between the latencies of double-buffer and single-buffer is
(D + C) ∗ N/2 > 0. So double-buffer should always outperform single-buffer.

The algorithm in Figure 9 shows how to choose between double-buffer and
triple-buffer. When the same performance can be achieved by different buffering
schemes, the scheme with less number of buffers is preferred. When D > C, the
double-buffer scheme becomes DMA-bound when D ≥ C + S/B/2, which is the
same as S/(D − C) ≤ B/2. In this case, we choose the double-buffer scheme
since it is DMA-bound and optimal. Similarly, when D < C, the double-buffer
scheme becomes computation-bound for D ≤ C − S/B/2, which is the same as
S/(C−D) ≤ B/2, and we choose the double-buffer scheme. In all other cases, we
choose the triple-buffer scheme since it can provide a greater amount of overlap.

Once the loop becomes DMA-bound or computation-bound, performance will
not improve with increasing buffer sizes. In such cases, memory resources can
be saved by choosing the smallest buffer size that is optimal. The memory space
saved can then be used by other components contending for it, e.g. more local
memory can be assigned to the outer blocked loops to increase data re-use, or
the size of code buffers can be increased to reduce the frequency of swapping
code partitions to and from the SPE LS. Based on the conditions derived in
Section 2 for the execution to be DMA-bound or computation-bound, the block
factor for double-buffer need not be larger than S/abs(D − C). The block factor
for DMA-bound triple-buffer need not be larger than S/(2 ∗ D − C), and for
computation-bound triple-buffer need not be larger than S/(2 ∗ C − D).

4 Experiments

To verify how precise our analysis models are, we performed experiments on
a CELL blade. The clock rate for the PPU and SPU in the blade is 3.2GHz.
All our experiments were run using a single SPE. We use the IBM XL CELL
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Fig. 10. Performance of Applications with Varying Buffer Schemes and Buffer Sizes

single-source compiler [2] to automatically apply single-, double-, and triple-
buffer schemes to a set of test applications. This compiler uses OpenMP di-
rectives to decide what parts of the code will execute on the SPE(s), and it
automatically handles DMA transfers for all data in an SPE LS.

We adapted a simple streaming benchmark to obtain a set of test kernels
with varying amount of computation in the loop. Currently, we report results
for 4 test cases: t1, t2, t3, and t4. The amount of computation in the kernel
loop increases from t1 to t4. Each test case has only one OpenMP parallel
loop that has a very large iteration count (15 million), and is invoked multiple
times. The four test cases use the same data types, and have the same data
access pattern: two reads and one write. Performance is measured in terms of
throughput (MB/s).

To apply our formula, we have to determine the values of D, S, and C. For
D and S, we ran code that only performs a large number of DMA operations,
and inferred the values of D and S using linear regression analysis on the per-
formance results of this code. To determine C for each test case, we used a
profiling tool called Paraver [5] to instrument code and measure the amount
of computation time for each iteration of the outer blocked loop. This was
done for each test case using a single-buffer scheme and a large block factor to
amortize the overhead. The constant values that were determined are S=130ns,
D1=0.0877ns per byte, Couter=300ns (for all test cases), Cinner=0.51ns(t1),
1.73ns(t2), 2.83ns(t3), and 3.93ns(t4). All of these benchmarks need to transfer
24 bytes of data per iteration of the inner blocked loop, so the D per iteration
is 2.112ns.
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Fig. 11. Comparison of Buffering Schemes Using a Fixed Space Constraint

The performance of single-buffer (1b), double-buffer (2b), and triple-buffer
(3b) for the 4 test cases is shown in Figure 10. The x-axis is the block factor,
and the y-axis is the performance. Here, different buffer schemes are compared
when they use the same block factor. We notice that 2b and 3b have a similar
performance curve, while the performance of 1b is much lower. We also observe
that the performance of 2b and 3b becomes flat when the block factor becomes
large enough. t1 and t2 reach almost the same peak performance. Since their
values of Cinner are smaller than the value of D per iteration, they should become
DMA-bound. On other hand, the values of Cinner in t3 and t4 are larger than
the value of D, and they become computation-bound. Their peak performance
is determined by the amount of computation, Cinner . The overall performance
trend conforms to our model. In Figure 11, we compare the performance of
different buffering schemes with a fixed amount of space available for buffering.
The x-axis is the block factor of the 1b scheme. Within the same available
space, the corresponding block factor for 2b should be half, and one-third for
3b. For large block factors, the performance trend conforms to our analysis.
However, for small block factors, in all 4 test cases, 1b outperforms 2b and
3b. This is contradictory to the analysis presented earlier. In the analysis in
Section 2, we assumed C could be approximated by Cinner . However, when the
block factor is small and the overhead of issuing a DMA request is high, the
Couter/bf component of C dominates. In this case, the difference between the
latencies of the whole loop for 1b and 2b evaluates to (D + Cinner) ∗ N/2 −
Couter ∗N/B (as opposed to (D +C) ∗N/2, derived in Section 3), which may or
may not be positive. With fixed space, 1b can use a larger block factor than 2b
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Fig. 12. Actual and Predicted Performance for Double-Buffer

and 3b, thus issuing fewer DMA requests and paying the Couter overhead fewer
times. This results in higher performance for 1b, as observed. We performed
experiments to manually code the 1b, 2b, and 3b versions of our test cases, and
determined that the Couter overhead can be made small enough such that the
Couter/bf component of C is always negligible. It is possible to do this in the
compiler, but we do not have this implemented yet.

In Section 3, we discuss how to choose the block factor so as to avoid wasting
memory resources. Figure 12 shows the actual and the predicted performance
of double-buffer when using different block sizes. Overall, the prediction is quite
precise in terms of the shape of the performance curve. The relative performance
of each test case is correctly predicted. However, the absolute performance of all
test cases is over-estimated by about 15%. The values of S and D need to be
determined just once, and precise values for these constants can be obtained
empirically on a given machine. However, the value of C is application-specific,
and may need to be estimated by the compiler. The in-order, statically scheduled
SPU architecture enables a high degree of accuracy in compiler estimation. How-
ever, compiler optimizations that occur after the DMA buffering transformation
can significantly affect the code generated. Therefore, it may be necessary to
use an extra compiler pass to feedback the estimated value of C to the DMA
buffering optimization. To investigate the sensitivity of our prediction to the
value of C, we also plot in Figure 12 the performance predicted using a value
of C that is 10% less and 10% more than the value determined by profiling. We
observe that the variation in predicted performance is 6% on average, and 15%
maximum.
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5 Related Work

In [11], the performance of DMA on a CELL chip is studied, and the latencies of
DMA operations for different workload characteristics are determined. The use of
loop stripmining and unrolling to optimize network communications is studied in
[7]. This work focuses on determining the minimum size for stripmining to avoid
performance degradation. In [12], the dependencies and communication time
between tasks in a parallel execution are modeled with the aim of identifying
possible computation-communication overlap. In our work, we optimize both
performance and local memory usage.

In [1], remote accesses in UPC programs are optimized in the compiler by
coalescing small accesses into one large access, and by using one-way communi-
cation supported in the underlying network layer. The work in [8] also discusses
optimization of remote accesses in UPC programs, using runtime synchroniza-
tion and scheduling. In [10], a stream programming model is used to inform
the compiler of the high-level program structure. The compiler then uses this
information to optimize scheduling and buffering for execution on the Imagine
stream processor. A compiler-based loop optimization targeted to improve the
communication-computation overlap is described in [9]. The technique of com-
munication pipelining for distributed memory systems is discussed in [6][13].

6 Conclusion

We have developed a model to predict the performance of different buffering
schemes and the optimal buffer size for DMA buffering in the CELL SPE local
stores. We compare the predicted and actual performance for a set of kernels
with varying amounts of computation in the loop, and observe a high degree of
correlation between the two. In this work, we have considered the use of a single
SPE, but we plan to extend our model to multiple SPEs in future work.
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Abstract. This paper explores the benefits and limitations of using a 
inspector/executor approach for Software Distributed Shared Memory (SDSM) 
systems. The role of the inspector is to obtain a description of the address space 
accessed during the execution of parallel loops. The information collected by 
the inspector will enable the runtime to optimize the movement of shared data 
that will happen during the executor phase. This paper addresses the main 
issues that have been considered to embed an inspector/executor model in a 
SDSM system: amount of data collected by the inspector, the accurateness of 
this data when the loop has data and/or control dependences, and the 
computational overhead introduced. The paper also includes a description of the 
SDSM system where the inspector/executor model has been embedded. The 
proposal is evaluated with four applications from the NAS benchmark suite. 
The evaluation shows that the accuracy of the inspection and the small 
overheads introduced by the approach allow its use in a SDSM system. 

1   Introduction 

Software Distributed Shared Memory (SDSM) systems has been one of the 
approaches proposed to provide a shared address space and overcome the 
programming difficulties of programming models based on message passing. Co-
Array Fortran [19], Unified Parallel C (UPC) [3] or OpenMP [1] can simplify the 
programming of SDSM systems if the appropriate support is provided by the compiler 
and/or runtime system. In such systems both components are significantly stressed, 
and become responsible for the memory consistency and the data sharing, being these 
issues the most critical aspects in any SDSM system. 

The inherent data movement overheads added to the overheads of this 
compiler/runtime support need to be minimized in order to take benefit of the 
potential performance of the parallel execution. On one hand, each memory access 
has to be monitored in order to check if it corresponds to a shared data. This memory 
monitoring can be performed in different ways. For instance, UPC implementations 
are based on the injection of runtime calls to intercept any memory access to shared 
data. In most SDSM implementations of OpenMP [6][8][10], the memory monitoring 
is done through the handling of the page fault exceptions. On the other hand, data and 
control communication are considered important sources of overhead. The impact of 
data communication overheads can be reduced by overlapping communication and 
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computation. Control communication is associated to the memory consistency 
protocol, and no matter the basis of the SDSM system implementation, it is always 
one of the main concerns for developers, and therefore the target of several 
optimization techniques [4][5][6][10]. 

The usual approach in most SDSM implementations is to perform both data and 
control communication on-demand during the parallel execution of the computation. 
At each page fault or memory access interception, the runtime is invoked in order to 
serve memory access requests and interchange the necessary control messages. 
Computation and communication alternate according the application requirements. 
The chances of the runtime system to foresee near-future data and control 
communication requirements are clearly limited by the amount of information 
available. The inspector/executor approach might play an interesting role by 
inspecting the set of memory addresses generated before the execution takes place 
and building an accurate description of them. From this information, the runtime can 
derive the strictly necessary data and control communication requirements and reduce 
the overhead associated to the memory consistency implementation. This information 
can be reused as long as the data access pattern has no significant changes. 

This paper explores the possibility of using an inspector/executor approach in 
SDSM systems. The main objective is to show that applications can afford the 
overheads associated with building the data structures that record shared-memory 
memory access and computing the data distribution from the information collected in 
these data structures. The structure of this paper is as follows: section 2 outlines 
related work on the use of runtime approaches to optimize the performance of SDSM 
systems. Section 3 describes the main issues to consider while embedding the 
inspector/executor model within a SDSM system. Section 4 describes our prototype 
implementation that is evaluated in section 5. Finally, section 6 concludes the paper 
and outlines future work. 

2   Related Work 

This section comments some recent contributions related with data and control 
communication optimization in SDSM systems.  

UPC implementations [2][3] perform address space monitoring through a deep 
coordination of the compiler and the runtime system. The compiler is in charge of 
detecting any suspicious memory access that might refer to shared data. Runtime calls 
are injected to intercept those memory accesses, and invoke the appropriate 
communication actions. Coalescing communication is an important source of 
optimization. Parallel loops are the target of the compiler, looking for statements 
where the set of memory references can be grouped and then served with a single 
communication action [4]. Beside that, the runtime tries to schedule the iterations in 
order to overlap the computation and the communication. 

In SDSM-based OpenMP implementations [6][8][10], the address space 
monitoring is implemented through the pagination system. The page fault signal is 
intercepted to embed the communication protocol responsible for the memory 
consistency and data sharing. Each time a page fault takes place, the runtime system 
checks if the accessed page corresponds to shared data, and if necessary, takes the 
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appropriate actions to maintain the memory consistency. Avoiding false sharing is 
one of the main concerns. The compiler can force particular memory alignments by 
inserting memory padding, which has been shown to be a reliable solution [5]. Some 
runtime techniques have been also proposed to modify the default assignment of work 
to threads in parallel loops. The runtime needs to be provided with the necessary 
services and structures to relate page faults (data movement) to the iterations where 
they occur [6]. With this information the runtime can redistribute the set of iterations 
in order to avoid false sharing, to minimize as much as possible the number of page 
movements, and to pre-send data and control messages in order to overlap 
computation and communication. 

Regarding the data distribution, there have been some proposals that place the 
problem at the programming language level. For example, the ZPL [16] programming 
model includes several constructs and operators to specify data movements. Based on 
the gather/scatter operations, the language allows the programmer to control these 
operations through the content of variables, which are used as array indexes to specify 
the array elements to be selected within a gather/scatter operation. 

The Co-Array Fortran [19] proposal follows the main guidelines of the traditional 
message-passing paradigm, but introduces considerable improvements on the data 
communication. Communication actions are hidden by a special treatment of the 
array-reference operator. This operator is overloaded and allows the specification of 
data distribution and remote memory accesses. Data distribution is accomplished by 
declaring a distributed object with extra array dimensions. The programmer controls 
the distribution by the shape the extra dimensions provide the object with. All 
memory accesses to shared and distributed data need to be expanded with particular 
values in the extra dimensions. The runtime derives the data location according to the 
defined distribution. 

The introduction of the inspector/executor model for DSM environments was 
already proposed for HPF [18][19]. Our main contributions with respect those 
previous works are the parallel inspection process and the ability of recording the data 
produced by the inspector for reusing it along the different instances of the parallel 
code. 

3   The Inspector/Executor Model in SDSM Systems 

The aim of this section is to point out the main issues that have been considered to 
embed the inspector/executor model within a SDSM system. One of the main 
constraints of the inspector/executor model is its implicit computational overhead. 
Although the overhead of determining how shared data is accessed during the parallel 
execution may seem to be huge, we will show that for SDSM systems can be 
affordable. This is based on the following observations: 

• It is generally accepted that in SDSM systems, unnecessary communication 
has much more incidence in performance than the overheads related to the 
execution of the runtime code. This could be summarized with something like 
“better execute than communicate”. The inspector/executor model follows this 
line. 
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• Most of the accesses performed in parallel codes allow the injection of a 
highly optimized inspector. For instance, loops represent the most common 
source of parallelism, and their execution usually defines a data distribution 
that is maintained along the whole application execution. Usually, shared data 
is organized as vectors or matrices, and the access pattern to those structures 
can be accurately described at compile time [7]. With reasonable compiler 
technology, it is possible to avoid the inspection of all the memory accesses at 
runtime, and still get an exact description of what data is referenced. 

• Parallel loops are usually executed several times, giving the chance of reusing 
the information provided by the inspection mechanism. Therefore the 
execution of the inspector phase can be avoided if the data access patterns 
remain constant along the several instances of a parallelized loop. We are 
going to see that this is the most common case. 

• It is possible to perform the execution of the inspector code in parallel. This is 
giving the runtime much space to perform the inspection without interfering 
with unacceptable overheads. 

• One of the main limitations of the inspector/executor approach is the existence 
of control and data dependences that take part in the computation of memory 
addresses. This is the case when control flow statements and/or pointers 
appear within the body of a parallel loop. Typically, parallel loops affected 
with such dependences can not be treated with an optimized inspector. In the 
worst case, when dealing with parallel loops highly loaded with data and/or 
control dependences, the inspector will provide with an as much as possible 
accurate description of the address space used in each parallel flow. Beyond 
the inspector limits, the native SDSM mechanisms implementing the data 
sharing and memory consistency will apply. Depending on how accurate the 
description is, the more chances for optimizing the communications will 
appear, and hence, speeding up the parallel code execution. 

• Finally, another important issue that needs to be considered with more detail is 
the amount of data that the inspector can produce, which may cause 
unacceptable overheads within the data distribution. This relation exists since 
the algorithm responsible for the data distribution totally depends on the data 
produced by the inspector. 

All the issues comented before have conditioned the implementation of the 
inspector/executor approach that is going to be described in the next section. 

4   Implementation 

This section describes a specific SDSM system implementation where the 
inspector/executor model has been embedded. The implementation has been guided 
towards a main objective: evaluate the effectiveness of the inspector/executor model 
for SDSM systems as a source for optimization. Consequently, it has been reasonable 
to force the implementation to stress to the limit the inspector role, leading to a 
system that totally relies on the information provided by the inspection mechanisms. 
Therefore, the inspection process must provide the information from where to derive 
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all the communications. For the purposes of this paper, it must be noted that all the 
code transformations and the generation of the inspector code have been done by 
hand. However, the compilation technology required by them is reasonable and 
should be available in any compiler. 

In our implementation, computation and communication are decoupled. This forces 
the implementation to guarantee that shared data is available to the parallel flows 
prior to the execution of the parallel code. With that, we want to show that the 
inspector can provide with very accurate descriptions of the working sets used in each 
parallel flow. An immediate consequence of such approach is that three different 
phases can be differentiated along the parallel execution: inspection phase, 
communication phase and execution phase. No matter the phase, the current 
implementation works under a master/slave scheme, and the memory consistency 
protocol implements relaxed consistency. 

During the inspection phase, the loop parameters (iteration space and scheduling) 
are broadcasted to all the slaves. Each slave computes the chunk of iterations that 
have been assigned to it, and the code inspection is executed. The result of the 
inspection consists of a list of pages that are read and/or written by each execution 
flow, and each slave sends this information to the master process. At this point, the 
communication phase starts, and the master computes the necessary page movements 
and which pages are written by two or more processes (conflicting pages). This 
computation gets as input the data produced by the inspector, and according to that, 
page queries are sent. Page distribution takes place, and then all processes start the 
parallel loop execution (execution phase). After execution, conflicting pages are 
treated with diff operations. The resulting differences are sent to the master thread. 
Although computation and communication could be overlapped, our current prototype 
implementation does not include this feature. 

The current prototype is limited to loop-level parallelism. Parallel loops are 
specified using the OpenMP PARALLEL DO construct. Only STATIC schedules are 
supported with PRIVATE and SHARED data scoping clauses. REDUCTION 
operations have been implemented through variable expansion of the variable holding 
the reduction operation. 

The following points describe the main aspects of the prototype implementation, 
according to the main issues that have been enumerated in the previous section. The 
code inspection process is the most critical part in the implementation so that we will 
try to reduce the computational overhead of the inspection process and to face the 
amount of data the inspection process is going to produce. 

4.1   Basic Inspector Implementation 

A simple but costly implementation can be easily achieved by intercepting any 
memory access in the parallel loop. For each statement in the loop body, memory 
accesses can be replaced by a runtime call that will record the address in internal 
runtime structures. It is obvious that only shared data must be monitored, so it is 
needed that the compiler can identify which objects are private and which are shared. 
This classification can be easily done by the compiler through the data scoping 



 Runtime Address Space Computation for SDSM Systems 335 

clauses in OpenMP. This strategy represents the simplest inspector implementation 
and the worst case in terms of overhead. Taking this basic approach as a baseline, 
several optimizations can be applied. Consider the parallel code shown in Figure 1. 

 

Fig. 1. Simple parallel loop 

4.2   Amount of Data Produced by the Inspector 

A critical aspect to consider is the granularity level at which the inspector structures 
work. Trying to record each of the memory addresses can generate an amount of data 
impossible to deal with. So, it is better to work with a coarser memory unit. We 
propose to make the inspection at page level, being a page a continuous portion of the 
memory address space, similarly as in the pagination system. Even if the inspected 
code follows a fully predictable access pattern, the inspection mechanisms work at 
page level. Notice that nothing is forcing the implementation to define a uniform size 
for all the variables the application deals with. It might be interesting to work with 
smaller or bigger pages depending on the memory portion a page refers to. It is well 
known that particular data alignment can cause false sharing, stressing the SDSM 
implementation with a considerable source of control communication. Scalar 
variables involved in reduction operations or structured data structures (vectors, 
matrices) are well studied examples  [5]. 

4.3   Parallelizing the Inspector Code 

The inspector loop can be executed in parallel, scheduling the iterations with the same 
scheduled that wil be used for the loop execution. Computing the inspection of a 
chunk of iterations can be done applying the basic strategy described in section 4.1, 
but just over a subset of the whole iteration space. 

Figure 2 shows the code skeleton, responsible for the inspection process. This code 
is executed by each parallel flow. The runtime call to dsm_begin_for_sampling 
allocates a Loop Descriptor. This subroutine forces all the threads to wait for a control 
message containing the loop parameters coming from the master process. The last 
parameter of the runtime call informs the runtime about if the information produced by 
the inspection can be reused in case the loop is executed several times (see section 4.6). 
For this example, nothing forbids to do so. The while statement makes the executing 
thread to be continuously asking for iterations to the runtime system until all the loop 
iterations have been executed. In the current implementation, only STATIC scheduling 
is supported, thus the call to dsm_next_iters_sampling runtime service updates the 
variables start and end only once, defining the chunk of iterations to execute. 

#pragma omp parallel for
for (i=0; i<DIMX; i++) { 
  for (j=0;j<DIMY;j++) { 
    a[i][j] = a[i][j]*a[i][j]; 
    compute_row(a[i]); 
  } 
} 
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Fig. 2. Inspection code for parallelized loop 

4.4   Predictable Access Patterns 

Even if the code inspection is done in parallel, it is necessary to look for more chances 
for optimization. Statements with invariant memory addresses can be omitted in the 
inspection process for all iterations, and treated just once. Predictable memory 
addresses, such as linear accesses to vectors or multidimensional matrices, can be 
managed with a single runtime service, summarizing the memory portion accessed by 
each execution flow. Figure 3 shows an optimized version of the inspecting code. 
Notice that interprocedural analysis phase is required to detect that the call to 
compute_row subroutine is invariant across the j-loop iterations. For similar cases 
where the inspection process can be optimized, the data produced by the inspector is 
organized at page level, as it has previously mentioned in section 4.2. 

 

Fig. 3. Optimized inspecting loop code 

4.5   Pointers and Control Dependences 

Pointers and control dependences represent a considerable limitation to the 
inspector/executor model. Current implementation does not include any specific 
support for dealing with pointers. The case of index vectors is treated with the most 
conservative approach, which forces the inspector to assume that the variable accessed 
through an index vector will be totally referenced. In terms of communication, this is 

 int a[DIMX][DIMY]; 
 int low,upper,step; 
 int start,end; 
 int i,j; 
 dsm_begin_for_sampling(&low,&upper,&step,1); 
 while (dsm_next_iters_sampling (&start,&end)) 
 { 
   for (i=start;i<=end;i+=1) 
     for (j=;j<=DIMY;j+=1) 
     { 
       stmt_sample(&a[i][j],1,& a[i][j]); 
       insp_compute_row(a[i]); 
     } 
 } 
 dsm_end_for_sampling (); 

 int a[DIMX][DIMY]; 
 int low,upper,step; 
 int start,end; 
 int i,j; 
 dsm_begin_for_sampling(low,upper,step,1); 
 while (next_iters_sampling (&start,&end)) 
 { 
  for (i=start;i<=end;i+=1) 
  { 
   

sample_region(&a[i][0],DIMY,1,&a[i][0],DIMY); 
   insp_compute_row(a[i]); 
  } 
}
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going to be translated to a broadcast operation of the variable. In case pointers appear 
to be invariant along the parallel loop execution, the inspector still can be executed 
with no limitation. Under any other circumstance, the inspection is inhibited. 

Control dependences also limit the inspection process. When a control flow 
statement breaks the sequential execution, the inspector cannot always know which 
branch will be executed. If private data determines the branch, the inspector can 
include all the necessary operations to evaluate the control dependence. If not, a 
conservative approach is taken and the inspector inspects all the possible branches. 

Although the current support to overcome the limitations related with pointers and 
control dependences is very small, this is not going to have a significant impact on the 
inspector functionality. It is quite common that parallel loops show a particular ratio 
between the amount of data and operations related to memory addresses computation 
and the total loop computation. Usually, parallel loops present a small percentage of 
data and operations related to memory addresses computations. Under such situation, 
the inspector code can still be applied, and the most conservative solutions that have 
been described are not going to suppose a significant loose of accurateness or an 
unacceptable increment of overhead. 

4.6   Reuse of the Inspector Data 

It is clear that having the possibility of reusing the inspector data becomes an 
important source of optimization. Detecting if this data can be reused along the 
different instances of a parallelized loop is not a simple task and the necessary 
compiler and runtime support to automate such issue is not available in the prototype. 
So, the current implementation is based on information provided by the programmer 
to specify if the inspector data can be reused. We have analyzed each parallelized 
loop and determined for each one, if data reuse was possible to be applied. In the 
evaluation section, the number of loops with reused inspector is discussed, as well as 
the impact of the reuse in performance. 

5   Evaluation 

The aim of this section is to describe and measure the limits on the inspector/executor 
model in SDSM systems. Hence, not the whole SDSM implementation is evaluated, 
just the effects of the inspection and data distribution mechanisms. Speedup and 
execution time numbers are the initial metrics for the evaluation process, but then 
broken down in different parts: communication associated to application itself, 
communication required by the runtime, computation time of the application code and 
computation time inside the runtime. The effects of the inspection process are mostly 
noticeable within two implementation mechanisms: the inspection execution and the 
algorithm responsible for deriving the data communication. Therefore, these two 
aspects are specifically measured. No comparison of the current prototype with other 
systems has been included. The main reason for that, is that the evaluation is centered 
around the effects of the inspection process and the accurateness of the data produced. 
In that direction, for all the tested applications, two versions of the inspector code 
have been considered: a non optimized and an optimized version. For each case, the 
optimizations are described. 
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The evaluation has been done using four applications from the NAS parallel 
benchmark suite: EP, IS, FT and CG, all of them in their C version [9][10]. The 
experiments have been performed in the Marenostrum [15] platform available at the 
Barcelona Supercomputing Center (BSC). The machine is composed by 2406 dual 
nodes based on PowerPC970FX, 2.2 GHz and Myrinet with a total amount of 9.6 TB 
of memory. A subset of 8 nodes was used for the evaluation. 

5.1   EP 

The Embarrassingly Parallel benchmark computes pairs of Gaussian random 
deviates, according to a specific scheme. The benchmark works mainly with private 
data and performs a reduction operation over two global variables. The whole 
computation is organized as a single loop executed just once. This benchmark allows 
for measuring the impact of the inspection process, conditioned by three issues. First, 
no reuse can be applied, as the computation takes place only once. Second, the 
inspection process has to deal with a considerable amount of private computation, 
needed to point out what private data has to be accessed in the reduction operations. 
Two versions of the inspection process can be studied, one including the private 
computations, the other not. Finally, negligible data communication is about to 
happen, since shared data is only composed by two objects, the global variables where 
the output of the reduction operations are stored. 

 

Fig. 4. Non optimized EP CLASS A 

Figure 4 shows the performance obtained in the execution of the EP (class A) 
benchmark, with 2, 4 and 8 threads and non optimized inspection. The numbers on 
top of the columns correspond to the speedup obtained in each experiment. The Y axis 
shows the execution time, which is broken down (top to bottom) in Runtime and 
Application code execution, and Data and Control communication. The serial time is 
119,39 seconds and corresponds to the unmodified benchmark executed sequentially. 
The Runtime and Application code take near 93% of the execution time. The cost of 
the inspection process is included in the Runtime measurements and represents about 
51% of total execution time. This behavior is maintained with 2, 4 and 8 threads, and 
suggests there is much space for optimization. The inspection process is too heavy 
and represents about having to execute twice the benchmark computation. The reason 
of such overhead is that all computations related to private data are inspected. 
Notwithstanding, some speedup is observed (3.21 with 8 threads). 
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Fig. 5. Optimized EP CLASS A 

Figure 5 shows the performance for the optimized inspection process. In this case, 
private computations have been taken out from the inspection code. This process 
could be easily done by means of the PRIVATE clause in the parallelism 
specification. Clearly, the benchmark performance is now improved, obtaining 
speedups of 1.96, 3.91, and 7.73. The Runtime execution time ranges from 0.17% (2 
threads) to 1.16% (8 threads). The inspection process and the computation of the data 
distribution represent about 1.72% and 1.22% over the total execution time. 

These results show that with a simple compiler optimization (avoiding the 
inspection of private data), the process can be implemented without noticeable 
overhead. In addition, the accuracy of the data produced by the inspector is enough to 
totally determine the data distribution in this simple benchmark. 

5.2   IS 

The Integer Sort benchmark works with a shared vector, uniformly distributed among 
all parallel processes. The computation is organized in a single parallel loop, executed 
several times. After each loop instance, a reduction operation is performed. That 
forces the parallel flows to flush some data back to the master process. The output of 
the inspection process can be reused along the benchmark execution, so it is only 
computed once. Two versions of the inspection process can be implemented: a non 
optimized inspection, which goes along the iteration space and records all memory 
accesses; and, an optimized version, where the inspection is done through a single 
runtime call, summarizing the access pattern to the shared vector. 

Figure 6 shows the performance for the IS (class B) execution, with 2, 4 and 8 
threads, and non optimized inspection. The serial time is 46.0 seconds. For the non 
optimized version each memory reference to a shared variable is intercepted. The 
execution of the application code scales with the number of threads, but not the 
execution of the runtime system. Data communication also increases with the number 
of threads. This is caused by an all-to-one communication pattern related to the 
reduction operation, previously mentioned. Notice that Control communication 
represents a very small percentage (0.01%, 0.02% and 0.03 with 2, 4, and 8 threads) 
of all the communication. This is caused because the inspector provides the runtime 
system with all the necessary information regarding the memory consistency 
(conflicting pages, written by more than one thread). 
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Fig. 6. Non optimized IS CLASS B 

For the optimized version, predictable access patterns are assumed to be detected 
by the compiler. Linear memory accesses to shared vectors have been inspected 
through a single runtime call describing the access to the vector. The results in 
Figure 7 show the reduction of the execution time spent in the runtime system.  

 

Fig. 7. Optimized IS CLASS B 

5.3   FT 

The Fourier Transformation benchmark computes a Fourier transformation over a 
three dimensional matrix. The computation is organized in four subroutines: evolve, 
cffts1, cffts2 and cffts3. All execute one after the other and update the content of the 
main structure, the three dimensional matrix. This is repeated several times, 
depending on the input benchmark. Each subroutine implements the computation with 
three nested loops, one per dimension on the working set. While evolve, cffts1 and 
cffts2 distribute the data cross the same dimension, the computation in cffts3 
completely changes the data distribution. This causes this benchmark to be highly 
loaded with Data communication overhead. The output of the inspection process in 
each subroutine can be reused except for evolve, cffts1 and cffts3, so for these 
subroutines, the code inspection is performed each time they are executed. Again, two 
versions of the inspection process have been tested. 

 

Non optimized inspection IS CLASS B

0,00

5,00

10,00

15,00

20,00

25,00

30,00

2 4 8

Number of threads

E
xe

cu
ti

o
n

 T
im

e

Runtime

Application

Control Comm.

Data Comm.

3,17 
2,73 

1,63 

Optimized IS CLASS B

0,00

5,00

10,00

15,00

20,00

25,00

30,00

2 4 8

Number of threads

E
xe

cu
ti

o
n

 T
im

e(
se

c)

Runtime

Application

Control Comm.

Data Comm.

1,86 

3,27 
4,71 



 Runtime Address Space Computation for SDSM Systems 341 

 

Fig. 8. Non optimized FT CLASS B 

Figure 8 shows the performance of the non optimized version. The serial time is 
232.33 seconds. Clearly, the unacceptable overhead produced by the inspection is 
preventing any chance for speeding up the execution. Although Data communication 
represents 7.64%, 17.09% and 33.72% of overhead, the weight for the inspection 
process (76.32%, 63.79% and 45.41%) is the main factor that degrades the 
performance. The inspection overhead comes out because of the structure of the 
inspected code: the nest of three loops. Running over the whole iteration space sinks 
any possibility of taking profit of the information gathered during the inspection 
process. 

 

Fig. 9. Optimized FT CLASS B 

Figure 9 shows the results for the optimized case. Although this version obtains 
very poor speedup, just 1.17, 1.26 and 1.22 for 2, 4 and 8 threads, now the time spent 
under the runtime execution is about 11.79, 18.33 and 21.82. If those percentages are 
broken down, we see that the inspection process is about 1.08%, 0.6% and 0.3% of 
the overall execution time. Therefore, the influence of the inspection process is not 
the point. Those overheads are related to diff operations needed for the memory 
consistency protocol. Anyway, Data communication becomes critical as it represents 
32.26%, 49.22% and 63.20% of total execution time. 

Notice that the data movement is totally determined by the application. The 
overhead contributions coming from the inspection process and the data distribution 
algorithm are negligible in front of Data communication times. 
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5.4   CG 

The CG NAS parallel benchmark computes an approximation to the smallest 
eigenvalue of a large, sparse, symmetric, positive definite matrix using a conjugate 
gradient method. As in previous codes, two versions of the application have been 
evaluated. In the non-optimized version (in which each memory access to shared data 
is intercepted), the overheads related to the inspection process and the computation of 
the data distribution can be afforded by the application when running up to 4 threads 
(speedups of 1.87 and 2.89). With 8 threads the grain size assigned to each process 
becomes too small to be worth for parallel execution, compared to the amount of data 
that needs to be communicated. Figure 10 shows the results for this version. 

 

Fig. 10. Non optimized CG CLASS B 

For the optimized version, similar speedups are obtained. The overheads related to 
the inspection are reduced when running with 2 and 4 threads, but not with 8 threads. 
This is not translated to an increase of speedup because the accuracy in the data 
produced by the inspector is not very high. The performed optimizations are based on 
broadcast operations of shared data referenced through index vectors. The inspector 
assumes the whole data structure is used by all the threads. This causes an increment of 
the overhead related to the computation of the data distribution, as this mechanism 
depends on the output of the inspection process, in terms of the number of pages 
involved in the data distribution. Figure 11 shows the results for the optimized version. 

 

Fig. 11. Optimized CG CLASS B 
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6   Conclusions 

This paper shows benefits and limitations of the inspector/executor model within a 
SDSM system. The role of the inspector is to provide an accurate (as mush as 
possible) description of the references to shared data in each processor during the 
parallel execution. It has been proved that delivering this information to the runtime 
system creates many chances for optimizing the communication. The limits of the 
model are defined by the overheads, implicit to the basis model, but can be overcome 
by several optimization techniques, smoothing the impact of the inspection process on 
the overall execution time. 

Our experiments with four benchmarks of the NAS parallel benchmark suite have 
demonstrated that it is possible to generate very accurate inspectors. It is possible to 
build on top of the inspector/executor model a SDMS implementation, and execute 
the parallel code performing the strictly necessary communication.  
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Abstract. Modeling the evolution of the state of program memory during pro-
gram execution is critical to many parallelization techniques. Current memory
analysis techniques either provide very accurate information but run prohibitively
slowly or produce very conservative results. An approach based on abstract inter-
pretation is presented for analyzing programs at compile time, which can accu-
rately determine many important program properties such as aliasing, logical data
structures and shape. These properties are known to be critical for transforming
a single threaded program into a version that can be run on multiple execution
units in parallel. The analysis is shown to be of polynomial complexity in the size
of the memory heap. Experimental results for benchmarks in the Jolden suite are
given. These results show that in practice the analysis method is efficient and is
capable of accurately determining shape information in programs that create and
manipulate complex data structures.

1 Introduction

Research on automatic thread level parallelization techniques makes extensive use of
the shape [4,16] of data structures in memory. As an example, in [6] Ghiya used a
notion of shape to enable the extraction of foreach thread-level parallelism from com-
mon heap-based data structures. The notion of shape and sharing can also be used to
enable the parallelization of recursive algorithms [15,8]. In many programs the avail-
ability of accurate shape information and the application of these two transforms en-
ables the extraction of a substantial portion of the available parallelism. Unfortunately,
the applicability of these parallelization techniques has been limited by the difficulty of
performing shape analysis with the required level of accuracy. The advent of commonly
available multi-processor systems, the slowing of improvements in single threaded pro-
cessor performance and the increasing use of object oriented languages (which make
extensive use of heap allocated memory and rich pointer structures) have renewed in-
terest in shape driven parallelization techniques.

This paper uses an abstract interpretation framework for performing static analysis
of programs and introduces a graph based abstract heap model that can represent all the
information on aliasing, shape and logical data structures [10] that are required to per-
form thread level parallelization transformations. Along with accurately representing
the required information on shape, aliasing and logically related regions, the frame-
work enables accurate simulation of the evolution of these properties through many
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important program idioms, e.g. sorting, copying, destructive reversal, and element in-
sertion/deletion. A theoretical analysis of the runtime and our experience running the
method on the Jolden benchmarks indicates that the technique is accurate, efficient and
scalable.

A key factor in achieving these results is the use of a novel technique for undoing
the summarization of information (the analysis must use a bounded representation to
summarize unbounded recursive structures). For efficiency, it is important to make the
summary representations as compact as possible. However, this summarization may
lead to the loss information which is needed to accurately simulate the effect of program
statements on the heap model. Seminal work on heap analysis [16] introduced the notion
of refinement but the proposed technique results in an exponential runtime (due to the
desire to model the program with maximal precision). This paper presents a technique
for refinement that sacrifices some accuracy in less common cases to ensure that the
worst case exponential time is avoided and that the method is fast in practice.

1.1 Related Work

There are two research activities closely related to the work presented in this paper. One
is the research on shape analysis by Ghiya [4] and the second is the TVLA (3-valued
Logic Analysis) framework introduced by Reps, Sagiv and Wilhelm [16].

Ghiya’s method is efficient and is able to model simple structures in programs that
do not use destructive updates. In this work shapes are defined on the entire portion
of the heap that is reachable from a variable. This implies that any extraneous sharing
of the heap (due to the use of the singleton design pattern or sharing of data that is
unrelated to the computation that is being parallelized) will result in very conservative
results. Further, the analysis is unable to strongly update heap based storage. Thus, the
analysis is unable to accurately handle situations where a section of the heap, through
destructive updates, temporarily takes on a more general shape and then returns to the
original shape (e.g. Tree → DAG → Tree).

The TVLA framework is very powerful and highly expressive in the sense that it can
be used to represent the shape and aliasing properties needed for extracting thread-level
parallelism. In addition to being expressive enough to model the relevant program prop-
erties, the TVLA framework is able to model the evolution of these properties through
destructive updates [17,12] and is able to model shape on a more localized basis. In the
TVLA framework destructive updates are handled by allowing the summary represen-
tations of recursive data structures to be refined into a number of distinct objects which
can be strongly updated. Since there may be ambiguity about how to refine the summa-
rization TVLA enumerates all the possibilities. This results in a potentially exponential
runtime and in practice leads to large analysis times. There has been work on reducing
the cost of running TVLA or restricted variations of the method [20,7] but they do not
eliminate the exponential worst case time and have had mixed results in reducing the
execution time on various benchmarks.

To compare the proposed method with existing shape analysis techniques we look at
some simple examples with lists and with benchmarks from the Jolden suite. The list
benchmarks demonstrate that the proposed method handles simple heap based struc-
tures accurately and that in practice it is over an order of magnitude faster than existing
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analysis techniques of similar precision. The Jolden tests indicate that the proposed
analysis method can determine the correct shape for the majority of heap based data
structures even in programs that build and manipulate relatively complex data struc-
tures while maintaining an acceptable analysis time.

2 Concrete Domain

Our analysis works on the strongly-statically typed, single-inheritance, thread-free,
exception-free, object-oriented imperative core of languages like Java or C#. Using this
simplified language enables us to focus on the central issues of the analysis and allows
the analysis to be extended to a large class of source languages.

2.1 Concrete Language and Semantics

Our source language MIL (Mid-Level Intermediate Language) is a structured interme-
diate representation. The language has function and method invocations, a conditional
construct (if . . . else if . . . else) and a looping construct with break statements
(do . . . while and break). The state modification operations and expressions (load,
store and assign along with the standard collection of logical, arithmetic and compari-
son operators) are in a standard three-address form [11,18].

MIL supports objects and arrays. We use σ to denote the set of all user-defined object
types. Each object type, υ ∈ σ , has a set of fields Fυ associated with it. The set of all
field offsets that are defined in a program is F =

⋃{Fυ |υ ∈ σ}. MIL has the primitive
types ρ = {int,float,char,bool}. Arrays can contain either primitive types, ρ , or
objects, σ . The set of all legal array types for a program is σA = {υ[]|υ ∈ ρ ∨υ ∈ σ}.
The set of all types in the program is τ = ρ ∪ σ ∪ σA. We assume that the types of
all variables are explicitly declared. Since this paper is focused on the operation of the
abstract heap model and the local data flow analysis, we omit any description of how
function and method calls are handled.

2.2 Concrete Heap Definition

The concrete heap is modeled as a multi-graph with labeled edges where objects and
arrays are the vertices and the pointers are labeled directed edges in the graph. We use
the term cell to indicate either an object or an array on the heap and offset to indicate
the field or array index that a pointer is stored at in a cell. Thus, the set of edge labels
(offsets) is, L = F ∪N. Edges are modeled as a relation on the cells and the labels. Given
a set of cells C and the set of labels L the edge relation E ⊆ C × L ×C. Variables are
modeled as a partial map from variable names to cells. Given a set of variables, V, the
variable map is a function, Vm : V �→ C. The set of all concrete heaps (which we define
as being the heap graph plus the program variable map) is, Hs = P(C)×P(E)×{Vm}
and the concrete domain H = P(Hs).

2.3 Heap Properties of Interest

Points-to and Paths. Given cells a, b and offset o, (a,o) →p b denotes a pointer p that
has the label o (is stored at offset o) a and points to b. We use a →p b to indicate that ∃
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offset o s.t. (a,o) →p b. Two cells can be connected by a path ψ . We use (a,o) �ψ b
to indicate the sequence of pointers 〈p1 . . . pn〉 s.t. p1 has the label o, starts at cell a, pn

points to b and ∀pi, pi+1 in the path pi ends at the same cell, ci, that pi+1 begins at (∃o′

s.t. pi+1 is stored at o′ in ci). Define a �ψ b to denote that ∃o s.t. (a,o) �ψ b. We abuse
the notation φ ⊆ P to denote that all the pointers in the path φ are contained in the set
of pointers P.

Regions of the Heap. A region of memory ℜ is a subset of the cells in memory, all the
pointers that connect these cells and all the cross region pointers that start or end at a
cell in this region. Given C ⊆ {c | c is a cell in memory}, let P = {pointer p | ∃a,b ∈
C,a →p b}. Let Pc = {pointer p | ∃a ∈ C,x ∈ C,a →p x ⊕ x →p a} Then a region is the
tuple (C,P,Pc).

Connectivity. Connectivity within a region describes how cells in the region are con-
nected. For a region ℜ = (C,P,Pc) and cells a,b ∈ C, cells a and b are connected if
they are in the same weakly-connected component of the graph (C,P); cells a and b
are disjoint if they are in different weakly-connected components of the graph (C,P).
Figure 2 shows examples of connected and disjoint concrete heaps. In Figure 2(a) the
cells c,d are disjoint in the region Z, while in Figure 2(b) and Figure 2(c) the cells c,d
are connected in the region Z.

Structure Traversals. An important property for program transformations is the layout
of data structures in memory [4,5]. The idea is to track the layout of the heap as it
appears to a program traversing a data structure. Ghiya considered the shape of the
section of the heap that could be accessed starting from each variable.

Our heap analysis identifies logically related sections of the heap (regions). To im-
prove the accuracy of the shape information we define data structure layouts on these
logically related regions instead of the entire section of the heap reachable from a given
variable. Given a region ℜ = (C,P,Pc), we can define several layout predicates on the
graph (C,P) to indicate what kinds of traversal patterns a program can use to navigate
through the data structures in the region. A region admits a traversal type if there is a
subregion that satisfies the corresponding layout predicate. Note that these traversals are
not mutually exclusive and that Tree traversal ⇒ List traversal ⇒ Singleton traversal.
In the following definitions, let a,b be cells and φ ,ψ be paths.

– Cycle Traversal iff ∃ graph (C′,P′),C′ ⊆ C,P′ ⊆ P s.t. ∃a ∈ C′,φ ⊆ P′ s.t. a �φ a.
– MultiPath Traversal iff ∃ graph (C′,P′),C′ ⊆ C,P′ ⊆ P s.t. ∃a,b ∈ C′,φ ,ψ ⊆ P′ s.t.

(a = b)∧(φ = ψ)∧(a �φ b)∧(a �ψ b)∧(C′,P′) does not admit a Cycle Layout.
– Tree Traversal iff ∃ graph (C′,P′),C′ ⊆ C,P′ ⊆ P s.t. (∃a ∈ C′,a has 2 or more

successors in C′)∧ (C′,P′) does not admit a Cycle or Multipath Layout.
– List Traversal iff ∃ graph (C′,P′),C′ ⊆ C,P′ ⊆ P s.t. (∀a ∈ C′,a has one or zero

successors in C′) ∧(∃b ∈ C′,b has one successor in C′)∧ (C′,P′) does not admit a
Cycle or Multipath Layout.

– Singleton Traversal holds for all regions.

Figure 1 shows several concrete heaps; the cells are the circles labeled with letters
and the edges represent pointers. Since we are interested in the most general way a
program could traverse a region of the concrete heap we must assume that a program
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variable could begin its traversal of the region at any of the cells in the region. Thus, the
figures omit the program variables. Figure 1(a) shows a concrete heap with three cells
(a,b,c). Since there are no edges connecting these cells the only way a program can
traverse them is by individually referencing each cell. Figure 1(b) shows a concrete heap
that admits a List traversal (both b → a and c → a). It also admits a Singleton traversal
since a program can always treat the cells as if they were disconnected. Figure 1(c)
shows a concrete heap that admits a Tree traversal (b,a,d) as well as List and Singleton
traversals. Finally, Figure 1(d) adds an edge, c → b that changes the region to admit a
MultiPath traversal (c,b,a).

(a) Singleton (b) List (c) Tree (d) MultiPath

Fig. 1. Concrete Heaps, Admissible Traversals and Layout Types for the Regions

3 Abstract Domain

The abstract domain is based on an abstract heap graph model [2,19,9]. Each node rep-
resents a set of concrete cells and each edge represents a set of pointers. The model
provides a natural framework for representing connectivity, aliasing, and region iden-
tification information. This section introduces a number of instrumentation domains
that when added to the nodes and edges in the abstract heap graph allow aliasing and
connectivity to be tracked more accurately and enable the modeling of shape.

Numeric Quantities. The only requirement we place on the numeric abstraction is that
it differentiates the case where the value is exactly one and the case where the value is
in the range [0,∞]. This gives the binary domain 1 < # (unknown), where 1 represents
the interval [1, 1] and # represents the interval [0, ∞]. Given this domain, a �a′ = 1 if
a = a′ = 1 and # otherwise. In the later algorithms we also need an interpretation, +̃,
for +. This is given by, a+̃a′ = #.

Types. Each node represents a set of cells and each cell is either an object (has type
υ ∈ σ ) or an array (υ ∈ σA). Since MIL has dynamic method invocation as well as type
casting it is important to model the types of cells that a given node might represent.
The domain for representing the types of each node is P(σ ∪ σA). As usual the join
operation � is ∪ and the ≤ relation is ⊆.

Offsets. Each edge in the model represents a set of pointers and each pointer has an off-
set (label) associated with it. Since there are only a finite number of fields in a given pro-
gram the model can be completely sensitive with respect to field offsets (by construction
two pointers with different offsets are never represented by the same edge). However,
there may not be a bound on the size of arrays. So, we treat arrays as having a single
offset, ?, that contains a summary of all the elements that may be in the array. Thus, the
offsets that are used in the field sensitive parts of the analysis is the set F ∪{?}.
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Abstract Layout. Each node, n, in the graph represents a region, ℜ on the heap. To track
the traversals that may be admissible in the region ℜ that n represents we use a set of
layout types Layouts = {Singleton, List, Tree, MultiPath, Cycle}.

– if n has a Singleton Layout, then ℜ only admits Singleton traversals.
– if n has a List Layout, then ℜ only admits Singleton or List traversals.
– if n has a Tree Layout, then ℜ only admits Singleton, List or Tree traversals.
– if n has a MultiPath Layout, then ℜ only admits Singleton, List, Tree or MultiPath

traversals.
– if n has an Cycle Layout, then any traversal pattern may be admissible in ℜ.

This definition leads naturally to the order: Singleton < List < Tree < MultiPath <
Cycle. Then l � l′ is max(l, l′). Examples are shown in Figure 1.

Connectivity. Given the concretization operator γ and two edges e1,e2 that start or end
at the node n, the predicates that define connectivity in the abstract domain are:

– e1,e2 connected with respect to n if: ∃p1 ∈ γ(e1)∧∃p2 ∈ γ(e2)∧∃a,b ∈ γ(n) s.t.
(p1 starts or ends at a)∧ (p2 starts or ends at b)∧ (a, b connected).

– e1,e2 disjoint with respect to n if: ∀p1 ∈ γ(e1)∧∀p2 ∈ γ(e2)∧∀a,b ∈ γ(n)
(p1 starts or ends at a)∧ (p2 starts or ends at b) ⇒ a,b are disjoint.

Edges e1, e2 are outConnected if: ∃ n s.t. (e1,e2 are out edges from n) ∧ (e1, e2 are
connected in n).

Edges e1, e2 are inConnected if: ∃ n s.t. (e1,e2 are in edges to n) ∧ (e1, e2 are
connected in n).

Figure 2 shows overlays of the abstract and concrete heaps. The concrete cells and
pointers are shown as dotted circles and lines while the abstract nodes and edges are
represented with solid boxes and lines. Edge E is an abstraction of pointer p, edge F is
an abstraction of pointer q. Node Z abstracts cells c,d,e. Nodes X , Y abstract cells a, b
respectively. In Figure 2(a) we can see that the targets of p, q (cells c, d) are disjoint.
By the definition of the connectivity abstraction, edges E and F are also disjoint with
respect to Z. In Figure 2(b) there is an additional pointer which connects cells d, c. This
means that c, d are connected and in the abstraction, E , F are connected with respect to
Z and thus E , F are also inConnected. Finally, Figure 2(c) shows the case where cells
c,d are connected indirectly (but according to the definition they are still connected).
Thus E , F are also inConnected.

Interference. Each graph edge represents a set of inter-region pointers. When combin-
ing nodes, it is important to know if all the pointers that the edge represents point into
disjoint subregions or if there may exist a cell that two or more pointers may be able
to reach and thus they interfere. An edge e represents interfering pointers if there exist
pointers p,q ∈ γ(e) such that the cells that p,q point to are connected. We use a two-
element lattice, np < ip, np for edges with all non-interfering pointers and ip for edges
with potentially interfering pointers. This abstraction is a complement to the connectiv-
ity relation. The connectivity relation tracks reachability information between the start
or end cells of pointers represented by different edges while interference tracks reacha-
bility information between the end cells of pointers represented by the same edge.
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(a) Disjoint in Z (b) Connected in Z (c) Connected in Z

Fig. 2. Concrete and Abstract Connectivity

In Figure 3, Edge E is an abstraction of pointers p and q, node Z abstracts cells c,d,e,
and X abstracts cells a and b. In Figure 3(a) the targets of p, q (cells c, d) are disjoint.
Thus, the pointers do not interfere and the edge, E , that abstracts them should be np. In
Figure 3(b) there is an additional pointer which connects cells d, c. This means that c
and d are connected and edge E should be ip. In Figure 3(c) the cells c,d are connected
indirectly. Thus, the edge E is again ip.

(a) Non-interfering (b) Interfering (c) Interfering

Fig. 3. Concrete Connectivity and Abstract Interference

Nodes. The types of the concrete cells that a node represent are stored in a set called
types. To track the total number of cells that may be in the region represented by this
node we use the size property. The internal layout of a node is represented by the layout
component. Finally, we introduce a binary relation connR ⊆ E ×E to track the connec-
tivity of the edges that are incident to this node. If (e1,e2) ∈ connR then e1,e2 are con-
nected with respect to this node otherwise e1,e2 are disjoint with respect to this node.
The abstract domain for the nodes, N = P(σ ∪ σA)× Layouts × {1,#},×P(E × E)
and each node in the graph is represented as a record of the form [types layout
size]. For clarity we omit a representation of the connR relation, as the inclusion of
this information complicates the figures substantially. In the cases where the connectiv-
ity relation is of interest we will mention it in the description of the figure.

Edges. As in the case of the nodes, we combine several component abstractions to
create the edge abstraction. The offset component indicates the offsets (labels) of the
pointers that are abstracted by the edge. The number of pointers that this edge may
represent is tracked with the maxCut property. The interfere property tracks the pos-
sibility that the edge represents pointers that interfere. The domain of the edges is,
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E = (F ∪{?})×{1,#}×{np, ip}, and each edge is represented as a record {offset
maxCut interfere}.

Graph. The domain for the abstract heap graphs is the set G ⊆ P(N)×P(E)×{Vn}×
{Me}. The function Vn : V �→ N is a partial map from variable names to nodes in the
heap graph, which represents the targets of the variables. The function Me : E → N ×N
defines the structure of the graph by mapping edges e to the pair of nodes (ns,ne) such
that e begins at ns and ends at ne. We use the notation Me(e) = (∗,n) or Me(e) = (n,∗)
in the case were we do not care about the identity of the start/end node of the edge.

We restrict the abstract domain by defining a normal form for heap graphs. This
normal form simplifies the structure of the abstract domain and it has several properties
that improve the accuracy of the analysis.

First, we define what it means for two nodes to to be recursive (for this work we
assume single level recursion but the definitions can be generalized [3]). This definition
is used to make the abstract heap domain finite for a given program. If we limit the
maximum size of the graph structure then, since the domains for the nodes and the edges
are finite, the number of graphs is finite. This is done by forcing recursive structures to
have bounded representations. Define two nodes n,n′ ∈ N to be recursive if:

– ∃e ∈ E s.t. Me(e) = (n,n′).
– n.types∩n′.types = /0.
–  ∃ variable v s.t. Vn(v) = n ∨Vn(v) = n′.

Another useful concept is that of ambiguous edges. We would like to be able to
assume that given an offset and a node there is a unique outgoing edge that is incident
to this node with that offset. Define a node n as having an ambiguous offset if: ∃e,e′ ∈
E s.t. e = e′ ∧Me(e) = (n,∗)∧Me(e′) = (n,∗)∧ e.offset = e′.offset.

A graph g = (N,E,Vn,Me) is in normal form if:

– It has no unreachable nodes: ∀n ∈ N,∃ variable v s.t. Vn(v) = n ∨ (Vn(v) = n′ ∧ ∃
path φ s.t. n′ �φ n).

– It has no recursive nodes:  ∃n1,n2 ∈ N s.t. n1,n2 are recursive.
– It has no ambiguous edges:  ∃n ∈ N s.t. n has an ambiguous offset.
– No refinement rules can be applied, See Section 5.

4 Example: Building a List

We use two examples to demonstrate our analysis, Figure 4. The first is a loop that
constructs a linked list. The second example copies a linked list (and is the subject
of Section 7). We assume that the datatypes ListNode and DataNode have been
defined. In an actual program the data elements in the list might be other data structures
(lists, trees, arrays, etc) or composite user defined objects. However, the exact nature
of the data components of the list does not fundamentally alter the behavior of the
algorithm on our examples. Thus, for simplicity we use DataNode as a dummy type
to represent whatever data is of interest. ListNode has a next field which points to
the next node in the list and a data field which points to a DataNode.
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Build a List Copy a List (in reverse, for simplicity)

ListNode p, q
p = null
for(int i = 0; i < M; ++i)

q = new ListNode()
q.data = new DataNode
q.next = p
p = q

ListNode q, x, t
x = p
q = null
while(x != null)

t = q
q = new ListNode()
q.next = t
q.data = x.data
x = x.next

Fig. 4. List Example Code

Figure 5(a) shows the state of the abstract heap after allocating the ListNode (ab-
breviated LN). The variable q points to a node of type ListNode and since we just
allocated the object that this node represents we know that the node represents exactly
one cell and has a Singleton layout (abbreviated S). Figure 5(b) shows the state of the
heap after allocating and assigning the data object, a cell of type DataNode (DN). The
data node is also a node of size one with a Singleton layout. The connecting edge is
stored at the data offset and since it was just created it must represent a single pointer
and be np. Figure 5(c) shows the heap at the end of the first loop iteration: p points to
the newly created list entry and q is nullified since it is dead.

Figure 5(d) shows the abstract heap at the end of the second loop iteration. New
nodes represent the ListNode and DataNode cells allocated in this iteration. The
newly allocated list entry has been put at the head of the list and the old list (shown
dotted) is linked in with an edge stored at the next offset. If we were to continue, the
heap abstraction would grow in an unbounded manner. To prevent this, we normalize
the abstract heap. This is described in detail in Section 6 but for this example the im-
portant point is that we merge the two ListNode nodes into a single summary node
that represents the combined information from these two nodes and the edge between
them. By looking at the edge connecting the two nodes and the internal layouts we can
determine that the internal layout of the summary node is List (abbreviated L) since we
have two Singleton regions connected by an edge of size one. Since each region is of
size one the summary region must be of size larger than one, represented by # in our
abstract domain. Finally, we update the internal connectivity information for the sum-
mary node. In particular, the two edges are outConnected. The state of the heap after
this merge is shown in Figure 5(e).

After combining the list nodes we have ambiguous targets (two out edges from the
same node with the same label, data) This ambiguity is removed by merging the po-
tential targets into a single summary node and by combining the edges that refer to these
targets into a single summary edge. Merging these nodes is similar to the merge of the
list nodes except that the two incoming edges are disjoint. After merging the nodes we
merge the two edges. Since the summary edge represents two pointers its maxCut is #.
To determine the value of the interfere property we check if either edge is ip or if the
targets of the edges are inConnected. Because the edges pointed to disjoint nodes they
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are not inConnected and therefore cannot interfere. Thus, the interference property of
the summary edge is np. The result is shown in Figure 5(f), which is also the fixed point
for the analysis of the loop.

5 Refinement

During the data flow analysis portions of the abstract heap graph are summarized into
single nodes to improve efficiency and to eliminate unbounded recursive data structures.
This summarization can cause a substantial loss of accuracy if it is too aggressive. We
define a method that (for the most common cases encountered) allows us to undo the
summarization by transforming a summary node into a number of nodes (and edges)
so that relationships between variables and regions of the heap can be more accurately
modeled.

There are three layout types that we refine. The first is a node that represents several
disjoint regions of the concrete heap. In this case we expand each sub-region into a
separate node in the abstract graph. The second is a list node with a single incoming
edge. In this case we make explicit the unique memory location that the variable must
refer to in the list structure. The third is a tree with a single incoming edge. This case is
analogous to the list so we do not discuss it separately.

Disjoint Region Separation. It is possible for a single summary node to represent sev-
eral entirely disjoint regions. If this is the case then there is a partition of incoming edges
(from variables or pointers) based on the inConnected relationship. Using this partition
we transform the node into a number of new nodes, each new node representing a single
element from partition of edges in the original node. An important special case is when
a node has a Singleton layout and there is a single incoming edge of maxCut 1. If a node
has these properties we can safely assume that the node represents a single cell, which
enables strong updates in later analysis steps.

(a) Allocated list node (b) Allocated data object (c) End of first iteration

(d) End of second iteration (e) First normalization step (f) Finished

Fig. 5. Building a linked list
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(a) Summarized Singleton (b) Partition Pointers (c) Partition pointer edges

Fig. 6. Refinement of a region with disjoint sub-regions

(a) Summarized List (b) Refined List

Fig. 7. Refinement of a node with a list layout

Consider the case in Figure 6(a) where the variables p and q point to the same node,
and assume that the edges from p and q are not inConnected. Partitioning results in Fig-
ure 6(b) where the summary node has been partitioned based on the inConnected relation
from the variables. Since the edge that was split contained all non-interfering pointers the
two edges incident to the node representing the DataNode cells cannot be inConnected.
This now allows us to apply refinement again—the results are shown in Figure 6(c).

Refinement on Lists. Refinement on lists is more complex than refinement of disjoint
regions. Since disjoint region refinement is applied before list or tree refinement we
know that all the incoming edges to the given list node may be connected. Further, if
there are multiple incoming edges we cannot determine an ordering for them in the list,
so we only consider lists with a single incoming edge with a maxCut of 1.

Figure 7(a) shows a list with one incoming variable. Figure 7(b) shows the most
general way in which a list can be referred to by a single program variable; there is
a single cell that the variable points to and a section of the list after this cell. We can
safely ignore the section of the list before the cell that the variable refers to since it is
unreachable and therefore cannot affect the program in any way. Since the data edge
contains all non-interfering pointers we apply the disjoint region separation rule to the
data components of the list.

6 Dataflow Operators

This section describes the principal algorithms used in the analysis. We first address
merging nodes and edges. Then we define the normalization routines for nodes and
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graphs. Finally, we use these operations to build the heap graph upper bound and com-
parison operations. Detailed descriptions of some algorithms and proofs for the required
safety properties are omitted; see [13] for more details.

Edge Join (Algorithm 1). The edge join method is only well defined when two edges
start at the same offset in the same node and end at the same node. The method checks
the end connectivity information to determine how the component abstraction should
be combined. If the edges are inConnected then the pointers that these edges represent
may interfere and we set the summary edge as ip, otherwise we take the join of the
interfere types of the edges. For the rest of the components that are used to represent
an edge, we can simply combine them component-wise with respect to the possibility
that these edges originated in separate graphs. That is, when we join two heap graphs
that are from separate flow paths in the program we know that there can be no in-
teraction between edges from different control contexts. The edge join algorithm uses
the function updateInternalConnInfoEdgeJoin(ns,ne,ea,eb) to update the internal con-
nectivity info in ns and ne to represent the fact that ea now represents pointers from
ea and eb.

Algorithm 1. Join Edges (�e)
input : g the heap graph, ea, eb edges, ns,ne the nodes, ea,eb start and end at
if (ea, eb from the same context) then ea.maxCut ← ea.maxCut +̃ eb.maxCut;
else ea.maxCut ← ea.maxCut � eb.maxCut;
if ea,eb are inConnected then ea.interfere ← ip;
else ea.interfere ← ea.interfere �interfere eb.interfere;
updateInternalConnInfoEdgeJoin(ns , ne, ea, eb);
deleteEdge(g, eb);

Node Join and Combine. When summarizing two nodes, na and nb, there are three
possibilities. The first is neither node can reach the other. In this case we join them. If
there are only edges in one direction between nodes, from na to nb or nb to na, then we
combine them. If there are edges from na to nb and from nb to na, then we replace na,nb

with a single node nc that is a safe approximation of na,nb.
Figures 5(e) and 5(f) show that the node join is a purely component-wise opera-

tion. The combine operation on a pair of nodes that have a connecting edge is more
complicated, as it can be seen in Figures 5(d) and 5(e), where the two nodes with type
ListNode are combined into a single summary node. In particular we need to account
for the fact that the edge(s) connecting nodes na and nb will affect the layout and the
internal connectivity in the new summary node.

The algorithm combineLayout(la, lb,ebt), is based on a case analysis of the internal
layout that results from the possible combinations of layouts for na, nb along with the
total number of pointers represented by ebt and the potential that any pointers in the
edges represented by ebt interfere. We enumerate the possible combinations of the ebt
edges and the layout types. Then for each case we use the semantics of the edge and
layout properties to determine the most general layout type that may result from this
particular case.
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Algorithm 2. Combine Nodes (+̃node)
input : graph g, na,nb nodes, ebt set of edges from na to nb
na.type ← na.type ∪ nb.type;
na.size ← na.size +̃ nb.size;
na.layout ← combineLayout(na .layout, nb.layout, ebt);
na.connR ← combineConnR(na .connR, nb.connR, ebt);
remap all edges incident to nb to be incident to na;
deleteNode(g, nb);

Algorithm 3. combineLayout
input : la, lb layout types, ebt set of edges from na to nb
output: the layout of the combined node
mayInterfere ← ∨{e ∈ ebt|e.interfere = ip};
totalCut ← ∑{e ∈ ebt |e.maxCut };
notSingletons ← sa = Singleton ∧ sb = Singleton;
isDAGgraph ← totalCut > 1 ∧ notSingletons;
lr ← la �layout lb;
case (mayInterfere ∨ isDAGgraph) return lr�layout MultiPath;
case (la = List) return lr�layoutTree;
case (la = lb = Singleton) return lr�layoutList;
otherwise return lr;

The combineConnR function updates the internal connectivity information in na to
reflect that it now represents the combined regions for na and nb. This involves com-
puting the binary connectivity relation for all the edges that are incident to the new
summary node based on the connectivity information in the argument nodes na,nb, and
the edges that connect the argument nodes, ebt.

Normalization/Join Operators. To normalize a node we check if there are two edges
that start at this node and have the same offset. If they exist and they end at different
nodes, we merge the target nodes and then join the edges. If they already end at the
same node, we just join the edges.

To normalize a heap graph we normalize all the nodes, then apply the refinement
rules to all the nodes that they can be applied to and finally we compress all the recursive
nodes in the graph. This process is repeated until the heap graph is no longer changing.

To compute the upper approximation for two heaps, we first normalize both heaps
and mark which graph each edge and node belonged to originally. Then we take vari-
ables with the same name and union their targets. Once this is done the resulting graph
is normalized.

Heap Graph Equivalence. Defining equivalence on the heap graphs is simple if we
require that they are in normal form. This implies that each abstract storage location
has a unique edge and we can compare the graphs for structural equality and equality
of the data in the nodes and edges.
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Algorithm 4. Normalize Node
input : node n, graph g, n ∈ g
output: None
while ∃ offset o with more than 1 edge do

e1,e2 ← two edges with offset o;
n1 ← endpoint of e1;
n2 ← endpoint of e2;
if n1 = n2 then

if ∃ edges from n1 to n2 and n2 to n1 then
replace n1,n2 with the � from the lattice of nodes;

else if ∃ edges from n1 to n2 then
combine(g, n1, n2);

else if ∃ edges from n2 to n1 then
combine(g, n2, n1);

else
join(g, n1, n2);

�e(e1,e2,g);

Algorithm 5. Normalize Graph
input : graph g
output: None
Remove all unreachable nodes from g;
while g is changing do

while ∃ node n s.t. n can be normalized do
normalize(n, g);

while ∃ node n s.t. n can be refined do
apply the applicable refinement rule to n;

while ∃ nodes n,n′ that are recursive do
combineNodes(g, n, n′);

Algorithm 6. Heap Graph Upper Bound, �̃
input : graph ga,gb
output: None
gan ← normalize(ga);
set all nodes/edges in gan as context a;
gbn ← normalize(gb);
set all nodes/edges in gbn as context b;
gres ← gan ∪gbn;
normalizeGraph(gres);
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7 Example: Copying a List

During the copy operation (Figure 4) there are several attributes that we want to pre-
serve: the source list should be unaffected, the copy should be a list, and, if the source
list contained all independent data elements so should the copy. For simplicity assume
that we know that the source list is already pointed to by p. Figure 8(a) shows the list at
the start of the copy. Figure 8(b) shows the results at the end of the first loop iteration.
The head of the list has been copied; t is nullified and x has been indexed down the
list. Note that in indexing down the list we refined the list on the next edge so that the
node that x refers to is made explicit (the node is a singleton of size 1). We show the
newly materialized list and data node using dotted lines.

Figure 8(c) shows the heap during the second iteration of the loop after creating the
new list node and assigning it to point to the next data node in the source list. At the end
of the loop 8(d) we have again indexed the variable x. We now have recursive nodes
(for simplicity assume that we know that keeping p, q refined does not matter—if we
keep them refined the result is the same, it just takes an extra loop iteration and results
in a larger graph). Thus, we compress them during normalization. The resulting graph
shown in Figure 8(e). This is the fixed point of the loop and if we interpret the exit
condition we see that the result of the copy loop is the heap graph in Figure 8(f).

8 Performance

Theoretical Performance. In order to analyze a program, the model presented in this
paper can plugged into any dataflow analysis framework. The total cost of analyzing the
program is affected by the cost of the model operations and the runtime of the dataflow
framework that is chosen. In this paper we do not assume a specific framework so our
runtime analysis only looks at the cost of the model operations.

We assume that the number of nodes in the abstract heap graph is n, that each node
has at most k edges and there are t user defined types. The most expensive part of
running the heap model is the graph normalization step, so we only present the analysis
for this and the node combine operation, which is the dominant cost of the normalization
algorithm.

The execution of Combine Nodes (Algorithm 2), requires combining the type sets,
O(t), remapping the incident edges, O(k), calling combineLayout (which computes the
shape of the combined nodes), O(k) and calling the computeConnR method (which
computes the transitive closure of the two connectivity relations), O(k3). Thus, The
total time is O(t + k + k + k3). If we assume that t is a small constant, the time to
normalize a node is O(k3).

The graph normalization step requires:

– Removing all the unreachable sections of the heap graph, O(nk).
– Normalizing each node, visit each edge of each node and potentially combine

edges, O((nk)k3).
– Refining all possible nodes, visit each node and potentially refine it, O(nk).
– Removing all recursive nodes, visit each node and potentially combine two nodes,

O((nk)k3).
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(a) Start of the method (b) First loop iteration

(c) Create copy node in the second iteration (d) End of second loop iteration

(e) Normalization (f) Finished

Fig. 8. Copying a linked list (in reverse order)

These operations need to be done until none can be applied. Since the refine operation
can only be applied to a node twice and the combine operation replaces two nodes by
a single node (which cannot be refined), the algorithm cannot continue for more than
O(n) iterations. Thus the total time for the normalization routine is O(n)∗O((nk)k3) =
O(n2k4).

Benchmarks. In this section we compare the runtime cost of the UMA (Unified Memory
Analysis) method with TVLA (tvla-2-alpha) and a simple flow-sensitive equality-based
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points-to method (which is not capable of shape analysis but provides a performance
baseline). Then, we examine the accuracy and utility of the information that the UMA
analysis method provides. All measurements were made on a Pentium M 1.5 GHz lap-
top with 1 GB of RAM.

We use two sets of benchmarks. The first is a number of simple list manipulation
methods that are useful for validating that the information computed by this analysis is
accurate. These benchmarks include list insertion, deletion, find and copy operations.
The goal is to ensure that the listness and data independence properties are preserved
through all of these operations. The first entry in Figure 9 shows the runtime for TVLA,
the points-to and the UMA analysis. In all of the simple list tests, our analysis is able to
determine that the result of each list operation is a region with the List shape.

List Analysis Times Jolden Analysis Times and Shape Results
Benchmark Copy Find Insert Delete Reverse
TVLA NA 0.91s 1.52s 8.00s 3.01s
Points-to 0.05s 0.03s 0.04s 0.06s 0.03s
UMA 0.25s 0.10s 0.15s 0.19s 0.13s

Benchmark bisort em3d health mst power treeadd tsp
Points-to 2.10s 1.48s 12.20s 0.54s 0.42s 0.16s 0.70s
UMA 12.30s 6.90s 40.90s 5.70s 4.20s 1.80s 5.08s
Accurate Partial Yes Partial Yes Yes Yes Yes

Fig. 9. Benchmark Results

The second set of benchmarks is from the Jolden suite [1] (we have not finished
implementing the virtual method dispatch analysis, so bh, perimeter and voronoi are
omitted from the table). This set of benchmarks is designed to test how well the analy-
sis method scales to non-trivial code sizes and as a first test for the ability of the heap
analysis method to provide useful shape information for parallelization transforms. Cur-
rent work on interprocedural versions of TVLA indicate that even simple programs take
upwards of 30s to analyze [14] and no results for programs as complex as the Jolden
suite have been published so we omit the TVLA analysis from the table. The second
entry in Figure 9 shows the time to run the analysis on each of the benchmarks and
indicates if the analysis was able to correctly determine the shape information required
to perform basic thread level foreach and recursive tree parallelization. In the table we
have two categories for the accuracy of the shape analysis. Yes is used when the shape
analysis was able to provide the correct shape information for all of the relevant heap
structures in the program. Partial indicates that the analysis was able to determine the
correct shape for some of the heap data structures but that some important properties
were missed.

There were no cases where the analysis failed to produce a non-trivial amount of
useful information on data structure shapes. In the cases where the UMA algorithm is
unable to provide completely accurate information for parallelization the causes can be
traced back to the simple modeling of arrays (health) or the crude technique we are
currently using for interprocedural analysis in recursive functions (bisort and health).

9 Conclusion and Future Work

This paper presented a graph-based heap model that can be used with a standard data
flow framework to analyze the evolution of the heap during program execution. The
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model is shown to be capable of representing heap properties (aliasing, shape and logi-
cal data structure identification) that are needed to extract thread level parallelism from
single threaded programs. The paper then outlined the model operations required to
perform the program analysis. A key component of the operations was the use of a re-
finement operator that enables the accurate simulation of important program operations
(copying, reversing, destructive updates, etc.). Unlike Ghiya’s work where extremely
conservative approximations must be made in the presence of destructive updates, the
proposed model is able to retain enough information to provide meaningful shape infor-
mation even when destructive updates are being performed. Theoretical analysis shows
that all the program operations on the model are O(k4) and the upper bound/equality
operations are O(n2k4) where n is the number of nodes in the heap graph and k is the
number of edges incident to a node. This polynomial runtime is due to our conserva-
tive refinement operator (which only refines unambiguous cases) which is in contrast to
the TVLA refinement operator (which resolves ambiguity by enumerating all possible
cases).

The method has been implemented and run on several benchmarks. The first set
of benchmarks is designed to test the ability of the analysis method to model funda-
mental list operations. The method analyzed this set quickly while discovering all the
relevant list properties. Next, we analyzed several codes from the Jolden benchmark
suite. Analysis times on these benchmarks scaled acceptably given that a simplistic and
fully context-sensitive interprocedural analysis method was used. The method correctly
identified the shapes (Singleton, List, Tree, MultiPath, Cycle) for almost all of the data
structures in the programs.

These results are a critical step toward the goal of transforming modern single thre-
aded programs that make extensive use of pointer rich, heap based structures into multi-
threaded parallel programs. Our future work is focused on improving the accuracy, per-
formance and scope of this analysis technique. We identified recursive procedures that
rely on destructive updates as a major issue in accurately modeling shape and handling
these cases is the next step in our research. The method is local in the sense that all
abstract program operations only refer to and modify small portions of the heap, we
plan to utilize this to enable memoization and localization of procedure calls, both of
which are crucial to improving scalability. Since modern programming languages make
extensive use of built in collection libraries (hashtables, trees with parent pointers, iter-
ators, etc.) we are working on how to model these important data structures and generic
programming concepts.
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