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Abstract. In this paper we investigate aspects of effectivity and com-
putability on closed and compact subsets of locally compact spaces. We
use the framework of the representation approach, TTE, where conti-
nuity and computability on finite and infinite sequences of symbols are
defined canonically and transferred to abstract sets by means of notations
and representations. This work is a generalization of the concepts intro-
duced in [4] and [22] for the Euclidean case and in [3] for metric spaces.
Whenever reasonable, we transfer a representation of the set of closed
or compact subsets to locally compact spaces and discuss its properties
and their relations to each other.

1 Introduction

Computable Analysis connects Computability /Computational Complexity with
Analysis/Numerical Computation by combining concepts of approximation and
of computation. During the last 70 years various mutually non-equivalent models
of real number computation have been proposed ([I9], Chap. 9 in [22]). Among
these models the representation approach (Type-2 Theory of Effectivity, TTE)
proposed by Grzegorczyk and Lacombe [7IT4] seems to be particularly realis-
tic, flexible and expressive. So far the study of computability on sets of points,
sets (open, closed, compact) and continuous functions has developed mainly
bottom-up, i.e., from the real numbers to Euclidean space and metric spaces
[26/412422127)3128]. But often generalizations to more general spaces are needed
(locally compact Hausdorff spaces [5], non-metrizable spaces [25], second count-
able Ty-spaces [I718]).

In this article we investigate computability on locally compact spaces with
the following motivation:

— Computability on metric spaces has been widely and deeply studied. How-
ever, the concept of a metric space is not powerful enough to capture all
the interesting phenomena in computable analysis. Many results in classi-
cal topology, that hold for more general spaces such as Hausdorff spaces or
locally compact spaces, can be tied with effectivity.
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— Locally compact spaces inherit some nice properties of metric spaces. Roug-
hly speaking, a locally compact space with a countable base is metrizable.
This demonstrates that locally compact spaces are “quite close” to metric
spaces.

— Furthermore general topological spaces, especially locally compact spaces,
have practical applications. For example in [5] Collins used locally compact
spaces to study computability of reachable sets for nonlinear dynamic and
control systems.

For these reasons it is necessary, reachable and meaningful to study computabil-
ity on locally compact spaces.

In [4] and [22] and in [3] several representations are introduced for subsets of
the Euclidean space and of a metric space respectively. We don’t consider those,
which are defined by means of the metric distance function. We prove that the
properties Sunion = O8icrpinski = Odom = 07 = 8fiver and 6= < Srange for closed
sets and Spin—cover < Ocover = Ox for compact sets, shown in [3] for metric
spaces, hold true for locally compact spaces as well. A crucial point for the fact,
that these results can be transfered to locally compact spaces, are two additional
axioms that are required in the metric case for some of these reductions,

1. the existence of nice closed balls,
2. the effective covering property.

Both properties hold true for computably locally compact spaces. The first fol-
lows directly from the definition of computably locally compact spaces, as the
closure of each base element is compact. The second property utilizes the com-
pleteness of the cover representation: a name lists all names of all finite basic
covers of a compact set (shown in Lemma [[]). Furthermore we introduce a new
representation £t where a compact set is denoted by a decreasing sequence of
finite basic covers whose intersection equals to the compact set. We show that
k™ is equivalent to the cover representation.

This article is organized as follows: In Section 2, we sketch some basic notions
on TTE and provide some fundamental definitions and properties of represen-
tations of points and sets in computable Ty-spaces. In Section 3, we introduce
and characterize computably locally compact spaces and computably Hausdorff
spaces. In Section 4 we define and compare various representations of closed sub-
sets and compact subsets of computably locally compact, computably Hausdorff
spaces. The conclusion is drawn in the last Section. Since this is an extended
abstract proofs of the main theorems are given in the Appendix.

2 Preliminaries

This Section consists of two parts. In Section 2.1l we sketch the concept of
TTE. In Section 22| we introduce computable Ty-spaces and the underlying
representations of points and sets.
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2.1 Type-2 Theory of Effectivity (TTE)

In this article we use the framework of TTE (Type-2 theory of effectivity) [22] to
explore several aspects of computability in locally compact spaces. The Type-2
theory of effectivity defines computability on X* and X via Type-2 machines
and transfers a computability concept to “abstract” sets by means of naming
systems.

We assume that Y is a fixed finite alphabet containing the symbols 0 and 1 and
consider computable functions on finite and infinite sequences of symbols X* and
2 respectively, which can be defined, for example, by Type-2 machines, i.e.,
Turing machines reading from and writing on finite or infinite tapes. A Type-2
machine may have several one-way read-only input tapes, several two-way work
tapes and a unique one-way write-only output tape. It permits infinite input
or output, and has a finiteness property, that is, each group of prefixes of the
inputs determines a unique prefix of the output. A partial function from X to Y is
denoted by f : CX — Y. For a; € {,w},afunction f : CX x...x X% — Y
is called computable if f = fj; for some Type-2 machine M.

The “wrapping function” ¢ : X* — X* (aqaz...ax) := 110a10a20...a;011
encodes words such that ¢(u) and ¢(v) cannot overlap properly. We consider
standard functions for finite or countable tupling on X* and X“ denoted by
(-) and projections of the inverse m; for i € N. By “<” we denote the subword
relation. A sequence p € X* U X% is called a list of M if M = {u | ¢(u) <p}.

We use the concept of multi-functions. A multi-valued partial function, or
multi-function for short, from A to B is a triple f = (A4, B,Ry) such that Ry CAx
B (the graph of f). Usually we will denote a multi-function f from A to B by
f:CA= B.For XCAlet f[X]:={be B|(3a€ X)(a,b) e Ry} and fora € A
define f(a) := f[{a}]. Notice that f is well-defined by the values f(a)CB for all
a € A. We define dom(f) :={a € A| f(a) # 0}. In the applications we have in
mind, for a multi-function f : CA = B, f(a) is interpreted as the set of all results
which are “acceptable” on input a € A. Any concrete computation will produce
on input a € dom(f) some element b € f(a), but usually there is no method
to select a specific one. In accordance with this interpretation the “functional”
composition go f :CA = Dof f:CA = Band g:CC = D is defined by
dom(go f) = {a € A | a € dom(f) and f(a)Cdom(g)} and g o f(a) = g[f(a)]
(in contrast to “non-deterministic” or “relational” composition gf defined by
g f(a) := g[f(a)] for all a € A).

Notations v : € Y* — M and representations ¢ : C X* — M are used for
introducing relative continuity and computability on “abstract” sets M. For
a representation 6 : C X% — M, if 6(p) = x then the point © € M can be
identified by the “name” p € X“. For representations 6 : C X* — M and
& C XY — M’ define [6,6'] : C XY — M x M’ by [6,6'](p,p) := 6(p) x 6(p')
and [6]“ : C X% — M* by [6]“(po, p1,p2,--.) := 6(po) x 6(p1) X 6(p2) X ... .

For a naming systems v : CY; — M;, Y; = X* or X the set X is called
y-open (y-clopen, v-r.e., v-decidable), iff y~'[X] is open (clopen, r.e. open,
decidable) in dom(7).
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For naming systems v; : CY; — M; (i = 0,...,k), a function h : CY; X

XYy = Yyisa (n,-..,7v, Y0)-realization of f : C My x ... X My = My,
if vo 0 h(py,...,pe) € f(71(p1),---,Vk(pk)) whenever f(y1(p1),...,Vk(pr)) ex-
ists. The function h is called a strong realization of f, if h(pi,...,px) =1 for
all (p1,...,px) € dom([y1,...,7&]) with [v1,...,v](p1,...,pr) & dom(f). The
multi-function f is (y1,. .., 7V, Y0)-continuous (-computable), if it has a contin-
uous (computable) (71, ..., vk, Y0)-realization.

For naming systems v : CY — M and ' : CY' — M’ (Y, Y' € {¥*, Xv}),
let v <; v (t-reducible) and v < 7/ (reducible), iff there is some continuous or
computable function f: CY — Y’ such that v(y) = +'f(y) for all y € dom(7y),
respectively. Define t-equivalence and equivalence as follows: vy =; v/ <= (v <,
v and 7' <;v) and y=v" < (v <9 and 4" <~7), respectively.

Two representations induce the same continuity or computability, iff they are
t-equivalent or equivalent, respectively. If multi-functions on represented sets
have realizations, then their composition is realized by the composition of the re-
alizations. In particular, the computable multi-functions on represented sets are
closed under composition. Much more generally, the computable multi-functions
on represented sets are closed under flowchart programming with indirect ad-
dressing [23]. This result allows convenient informal construction of new com-
putable multi-functions on multi-represented sets from given ones.

Let vy : € X* — N be some standard notation of the natural numbers, p
the standard representation of R. A p<-name represents a real number by lower
rational bounds. p<(p) = x, if p is a list of all rational numbers a < z and 7% a
standard representation of F'**, the partial continuous functions f : C 0% — o
with open or Gg domain, if b = % or b = w respectively, with properties utm(n?®)
and smn(n??).

2.2 Representations of Points and Sets in Computable Ty-Spaces

In this Section we introduce computable Ty-spaces together with some funda-
mental representations of points and sets.

A topological space X = (X, 7) is a Ty-space, if for all z,y € X such that
x # y, there is an open set O € 7 such that x € O iff y € O. In a Ty-space,
every point can be identified by the set of its neighborhoods O € 7. X is called
second-countable, if it has a countable base [6].

In the following we consider only second countable Ty-spaces. For introducing
concepts of effectivity we assume that some notation v of a base 3 with recursive
domain is given.

Definition 1 (computable Tj-space)

A computable Ty-space is a tuple X = (X, 7,3,v) such that (X,T) is a second
countable Ty-space and v : CX* — [ is a notation of a base B of T with recur-
siwe domain, U # O for U € 3 and X has computable intersection: there is a
computable function h : CX* x X* — X% such that for all u,v € dom(v),

v(u)Nv(v) = U{I/(w) | we dom(v) and t(w) < h(u,v)}. (1)
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Call two computable Ty-spaces X1 = (X, 7,01,v1) and Xo = (X, 7, B2, 10)
recursively related, if and only if there are computable functions g, g’ : € X* —
2} such that

nw = |J nw ad wnv)= [J wn@w). (2)

(w)<1g(w) t(w)<1g’(v)

We are interested in computability concepts which are “robust”, that is, which
do not change if a space is replaced by a recursively related one.

In the following let X = (X, 7, 3,v) be a computable Ty-space. Now we intro-
duce the standard representation of X.

Definition 2 (standard representation ¢ of X). Define the standard repre-
sentation 6 : C X% — X as follows: 6(p) = z iff

— u € dom(v) if v(u) < p
— {uedomv) |z ev(u)} = {u]|t(u) <p}.

A S-name p of an element x € X is a list of all words w such that = € v(u).
The definition of § corresponds to the definition of 6§ in Lemma 3.2.3 of [22], in
particular, § is admissible with final topology 7 (Sec. 3.2 in [22]).

Definition 3 (union representation of open and closed sets)

1. Define the union representation " : CX¥ — 1 by

dom(0“") := {q € Z¥|u € dom(v) if t(u) < q} and 0“"(p):= U viu).
v(u)<p

2. Define the union representation "™ : CX¥ — ¢ by "™ (p) := X \ 6“"(p).

Thus, 0""(p) is the union of all v(u) such that u is listed by p. The union
representation of the closed sets is defined by the union representation of their
complements.

For technical reasons we define a notation v* : CX* — {MCS | M is finite} of
all finite sets of base elements by dom(v*) := {w € X* | u € dom(v) if ¢(u) <w}
and

v (w) = {r(u) | v(u) <w}

and a notation 8* : CX* — 7/ of all open sets that can be written as the union
of finitely many base elements by

0" (w) = U v (w).

The representations 6 and 8" are not only very natural, but they can be
characterized up to equivalence as maximal elements among representations for
which the element relation is open or r.e., respectively. Furthermore the following
properties hold.

Lemma 1. For computable Ty-spaces,
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O A0 is 0" -r.e.,

countable union on T is ([0%"], 0%™)-computable,
intersection is (6™, 6“™ 6“™)-computable,

finite intersection is (v*,0%™)-computable.

T oo~

Proof. Omitted.

Equivalently to the computability of finite intersection on the base is the exis-
tence of an r.e. set ICYX* x dom(v), such that for all w € ¥* and u € dom(v)

ﬂ v(v) = U v(u). (3)

v(v)<dw (w,u)el

Furthermore the set P := {w € X* | (Ju € dom(v)) (w,u) € I} of all finite
prefixes of 6-names is r.e..

A topological space is a Ta-space (also called Hausdorff space), if for all ,y €
X such that x # y, there are disjoint open sets O, O’ € 7 such that z € O and
y € O'. A subset KCX of a Hausdorff space (X, 7) is compact, if every open
cover of K by elements of the base has a finite subcover. Let

K(X):={KCX | K compact}

denote the set of all compact subsets of a Hausdorff space (X, 7). We write K
instead of IC(X), if there is no need to specify the space or if it’s obvious which
space we refer to.

In the following we generalize the representation k. of the compact subsets
of the Euclidean space [22] and §coper Of the compact subsets of a computable
metric space [3] defined by listing all finite basic subcovers from a countable
base.

Definition 4 (cover representation k¢ of compact sets). Let X = (X, T,
B,v) be a computable To-space and let (X,7) be a Hausdorff space. Define a
representation k¢ : C X% — K as follows: K = k°(p) iff

— w € dom(#*) if 1(w) < p,
—{we X | (w)ap}t ={we X* | KCO*(w)}.

Roughly speaking, p is a name of K, if it is a list of all (!) names of all finite
basic subcovers of K with base elements.

For technical reasons we define a representation of all finite sets of compact
sets k* 1 CX¥ — {MCK | M is finite } by

"{*(p) = {Klu"'aKk} = p= 1k0<p17'~‘7pk:> and
ke(pi) = K; for all i € {1,...,k}.

Lemma 2. Let X = (X, 7,0,v) be a computable To-space and let (X, T) be a
Hausdorff space, then
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1. “KCO7 is (K, 6“™)-r.e.,
2. finite union on K is (k*, k°)-computable,
3. countable intersection on K is ([k]*, k°)-computable.

Proof. Omitted.

Every closed subset of a compact set is compact. The next Lemma gives an
effective version.

Lemma 3. Let X = (X, 7,0,v) be a computable To-space and let (X, 7) be a
Hausdorff space. The mapping F : 7¢ x I — K defined by

F(A,K):=ANK
is (¢un’ K‘Ca HC)-COMputable.

Proof. Omitted.

3 Effectivity in Locally Compact Hausdorff Spaces

In this Section we introduce an effective version of the Hausdorff property and
an effective version of locally compactness.

Definition 5 (computably Hausdorff). A computable Ty-space X = (X, T,
B,v) is called computably Hausdorff if there exists an r.e. set HCdom(v) x
dom(v) such that

(V(u,v) € H) v(u)nv(v) =0, (4)
(Ve,y € X with x # y) (3(u,v) € H) x € v(u) ANy € v(v). (5)

Lemma 4. For computable Ty-spaces,
X computably Hausdorff <= {(x,y) € X x X | x # y} is (6,6) — r.e..
Proof. Omitted.

Lemma [] implies the robustness of the computably Hausdorff property, as ¢ is
robust.

Lemma 5. Let X = (X, 7,0,v) be a computably Hausdorff space.

1. The mapping F1 : CX x X = 3 X 8 defined by dom(Fy) = {(z,y) | © # y}
and

(U,V)eFi(z,y):<= 2€U and yeV and UNV =0

is (6,6, v, v)-computable.
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2. The mapping Fo : CX x K = 8 x 7 defined by dom(Fs) = {(x,K) |z ¢ K}
and

(U,0) e Fo(x,K): <= 2 €U and KCO and UNO =10

is (6, kS, v, 6%)-computable.
3. The mapping Fs : CKxK = 7X71 defined by dom(F3) = {(K,K') | KNK' =
0} and

(0,0") €F3(K,K'): <= KCO and K'CO" and ONO' =0
is (k®, Kk, 0%, 0%)-computable.
Proof. Omitted.

Every compact subspace of a Hausdorff space is closed. The next theorem is an
effective version.

Theorem 1. For computably Hausdorff spaces, k¢ < ™.
Proof. See Appendix.

A topological space (X, 7) is called locally compact, if for every point z € X,
there exists a neighborhood O of = such that the closure O is compact. Next we
introduce an effective version of locally compactness by means of the represen-
tation k¢ of the compact subsets of a Hausdorff space.

Definition 6 (computably locally compact space). A computable Ty-space
X' = (X,r,,V) is called a computably locally compact space if (X,7) is a
Hausdorff space and there is some computable Ty-space X = (X, 1,8,v) such
that CLS : 8 — K(X) defined by CLS(U) := U is (v, °)-computable and X' and
X are recursively related.

The definition of computably locally compactness ensures its robustness. In the
following if X = (X, 7, 8,v) is a computably locally compact space, we suppose
CLS to be (v, k¢)-computable (without changing the base or its notation).

If X is a computably locally compact space, then it is locally compact since
the closure of each base element is compact. Therefore X is Tychonoff, thus
regular (and a Hausdorff space) and even metrizable since X is second countable

(I61)-

Lemma 6. For computably locally compact spaces,

1. “UCO” is (v,0"")-r.e.,
2. “OCO"7 is (6%,0"")-r.e..

Proof. Omitted.

In [B] and [5] property [ is defined as the “effective covering property” of a
computable metric space. As this property holds true for each computably locally
compact space, we do not need an additional axiom.

For every compact subspace K of a locally compact space X and every open
set VCX that contains K, there exists an open set UCX such that KCUC Ucv
and U is compact. The next Lemma gives an effective version.
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Lemma 7. Let X = (X,7,08,v) be a computably locally compact space. The
mapping F : CK x 7 = 7 defined by dom(F) = {(K,0) € K x 7| KCO} and

U€eF(K,0): < KCUCUCO
is (k®, 0%, 0*)-computable.
Proof. Omitted.

Computably regular spaces have been introduced in [I7] and [9]. The following
theorem gives an effective version of the classical hierarchy, every locally compact
space is regular and every regular space is a Hausdorff space.

Theorem 2. 1. A computable Ty-space is computably regular, if it is com-
putably locally compact and computably Hausdorff.
2. A computable Ty-space is computably Hausdorff, if it is computably regular.

Proof. Omitted.

4 Computability on Subsets of Computably Locally
Compact, Computably Hausdorff Spaces

4.1 Computability on Closed Subsets

In this Section we study several representations of the closed subsets of a com-
putably locally compact, computably Hausdorff space.

Definition 7 (representations of closed sets). Let X = (X, 7,8,v) be a

computably locally compact, computably Hausdorff space. Let n,*, n;* be stan-

dard representation of the set of continuous functions of F' : CX“ — X* and
F . CYY — X% respectively.

1. Define the domain representation 1™ : CX* — 1, by

Yplom(p) = A: — ny* is a strong (0, vn)-realization of f:C X — N

such that dom(f) = A°.
2. Define the Sierpinski representation 1% : CX% — 1. by
V¥e(p) = A: = ne“ is a (6, p=)-realization of cf4 : X — R.

Here cf4 : X — R means that

x»—>{0 ifreA

1 otherwise
3. Define the fiber representation 70T : CX% — 7. by

PIter(p) = A = ny is a (6, p)-realization of f: X — R
such that f~1{0} = A.
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4. Define the inner representation < : CX* — 7. as follows: ¥v<(p) = A iff
— u € dom(v) if t(u) < p,
—{w | (w)<p} ={w|vw)NA#£D}.

5. Define the enumeration representation "™9¢ : CX¥ — 1. by

wrange(ow) = @7
yranse (0F1p) := cls o range((vy — 8| (p)).

6. Define the outer representation 1~ : CX% — 7. as follows 1~ (p) = A iff
— u € dom(v) if t(u) < p,
—{w [ u(w) <ap} ={w| (v(w)) NA=0}.

All these representations of closed sets with the exception of 1~ are well-
defined and robust even for computable Ty-spaces.

The representation ¢~ is well-defined for computably locally compact spaces,
as they are regular. For closed sets A and B, if

{w € dom(v) | v(w)NA=0} ={w e dom(v) | v(w) N B =0}

then
{w € dom(v) | v(w)CA} = {w € dom(v) | v(w)CB}.

Let & € A° then there exists some V € 3 such that x € VCVCA® as X is
regular. It follows z € VCB€, then A°C B€. By symmetry we can conclude that
A€ = B¢, hence A = B.

However 1~ is not well-defined for Hausdorff spaces in general.

Ezample 1. Define a topological space (R,7) by 7 := {G \ E|G € m, E C Q},
where 7 is the set of all open subsets of R. The space (R, 7) is a Hausdorff space,
since for any two different 1, zo € R, by the density of real numbers, there exists
x between them, then we can find two open sets (—oo, z)\ E1, (z,00)\ E2, which
contains x1, o respectively, such that ((—oo,z) \ E1) N ((z,00) \ E2) = 0.

Next we show that for any G € 1z, G\ E; have the same closure as G, ¢ € N.
In fact, we just need to prove GCG \ E, for any ECQ. Suppose = € G by the
definition of closure, for any neighborhood G’ \ E’ of z, (G'\ E")NG # 0. Since G
and G’ are open sets of R with common topology, and by the density of irrational
numbers we conclude that there exists some irrational number y € (G'\ E')NG.
As ECQ, then y € (G'\ E') N (G \ E), that is, (G'\ E') N (G \ E) # 0. Hence,
x € G\ E, as required.

Given a closed subset Q € 7, there is no open set G\ F such that GNQ = 0,
where G is the closure of G\ E.

Theorem 3. For computably locally compact, computably Hausdor(f spaces,
,(/)fiber = wdom = wsie = ,(/)un = ,(/)>

Proof. See Appendix.
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Theorem 4. For computably locally compact, computably Hausdorff spaces,
wrange < ¢<.
Proof. See Appendix.

In general ¢< < "9 does not hold. See [3] for a counterexample for com-
putable metric spaces.

4.2 Computability on Compact Subsets

In this Section we study several representations of the set I of the compact
subsets of a computably locally compact, computably Hausdorff space.

Definition 8 (representations of compact sets). Let X = (X, 7,3,v) be a
computably locally compact, computably Hausdorff space.

1. Define the minimal cover representation k™€ : C X“ — K as follows: K =
K"(p) iff
— w € dom(#*) if t(w) < p,
—{we X* | w)<ap} ={w e X* | KCO*(w) and (Vi(u)<w)v(u)NK #
0

2. Define the union representation k"™ : CX% — K as follows: k"™ (p,w) = K
iff
— p edom(¢*™) and w € dom(v*),
- K =9""(p) and KCO*(w).
3. Define the net representation k™ : C X% — K as follows: K = k"' (p) iff
— p=(w,ws,...) and w; € dom(v*) for all i € N,
— 0% (wig1)CO* (w;) for all i € N,

- K= 491 9*(101)

A k™¢-name requires that each listed base element has nonempty intersection
with K.

For any compact subset of a second countable locally compact space, there
exists a “strictly” decreasing cover sequence converging to it. Since every locally
compact space is a Hausdorff space, then the limit of a cover sequence is unique.
Therefore, k™ is well-defined. Comparing with the cover representation, the
advantage of net representation is that it does not require all finite basic covers.

Theorem 5. For computably locally compact, computably Hausdor(f spaces,

Proof. See Appendix.

Note that k° < £™€ is not true in general [22].
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5 Conclusion and Future Work

In this article, we mainly generalize the representations of subsets of metric
spaces to locally compact spaces and analyze which relations among these rep-
resentations still hold. For this reason we define and characterize computably
locally compactness and computably Hausdorff spaces.

The next step is to include representations of sets of functions and generalize
this research to computable Ty-spaces. Moreover, we will apply these represen-
tations to examine the effectivity of certain theorems in general topology.
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6 Appendix: Proofs

Proof of Theorem [1}

Proof. Let k°(p) = K, I be the r.e. set for finite intersection defined in ([B]) and
H the r.e. Hausdorff set. From p a sequence r can be computed such that ¢(w)<ar
iff

(3e(u) < p listing ug - - - ug) (Jv € X* listing vo - - - vy)

((uo,v0), ..., (ug,vg) € H and (v,w) € I).
Then v(w)C K€ if «(w) < r. Next we show, that K°C |J v(w) holds. Let y €

v(w)<r
K¢. For all z € K there is some (u,v) € H such that z € v(u) and y € v(v).
The familiy of all these v(u) covers K. As K is compact it has a finite subcover
{v(ui) | j € J} covering K. Let v list {v; | j € J}. Asy € ) v(v;) = () v(vj)
jeJ v;<v

there is some w € X* such that

(v,w) € I and y € v(w)

Therefore r is a ¥""-name of K.
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Proof of Theorem [3}

Proof. fiber < 4pdom: (Asin [E]:) Let A be a closed subset of X and 17" (p) =
A, that is, 7% is a (6, p)-realization of a function f, : X — R such that f, {0} =
A. Define g, : CX — N as follows:

1 if fo(z) #0
gp(@) = {T othgiw)ise

for all z € X. Then dom(g,) = A°. As ;" is a realization of f,, we have that,
if pny“(q) # 0, gp6(q) = 1; otherwise, g,0(q) diverges. By utm-theorem, there is
a computable function G : CX¥ x ¥“ — X* such that g,6(q) = vnG(p, q). And
by smn-theorem for n“*, there is a computable function H : X — X“ such
that g,6(q) = VN () (q). Furthermore, for any = ¢ dom(g,), we have f,(z) =0,
then G(p,q) diverges. This shows that % 1S a strong realization. Therefore,
H(p) is a ¥9°™-name of A, as required.

Ppdom < qpsie: (As in [3]) Let 9™ (p) = A, that is, n** is a strong (8, vy)-
realization of function f, : CX — N such that dom(f,) = A°. Let M be a
Type-2 machine computing the universal function of n“*. Define

Hip,q) = o~ if M does not halt on input (p, q)
P29 =901« if M halts on input (p,q) after k steps

Then H is computable and by utm- and smn-theorem for n““ there exists a
computable function F such that nz¢ (¢) = H(p, q). Now we have p<n‘§‘z’p) (q9) =
p=H(p,q) = cf46(q), that is, n3{ ) is a (6, p=)-realization of cf 4. Therefore, F'(p)

is a ¥**-name of A, as required.

Pt < aput: Let ¢%(p) = A and M be a Type-2 machine computing the
universal function of n*“. There is a Type-2 machine that on input p computes
a sequence r such that ¢(u) < r iff
(Jw € dom(v*)) (M on input (p,q) writes some (a) such that vg(a) > 0 and
M has at most read the prefix w of ¢) and (w,u) € I, where I is the r.e. set for
finite intersection defined in (B]).

U™ < 1p>: Note that a 1p“"-name of A is just a *"-name of A°. Since U C A°
is (v, 0%")-r.e. by Lemmal[l we can now construct a Type-2 machine M, which on
input a #“"-name p outputs a list of u such that v(u)C A, that is, v(u) N A = 0.
Therefore, fys translates ¢“" to ¢~

> < apfber: By Theorem @ X is computably regular, if it is computably lo-
cally compact and a computably Hausdorff space. Then the multivalued Urysohn
operator UR mappping every pair (A, B) of disjoint closed sets to all continuous
functions f : X — [0;1] such that f[A] =0 and f[B] =1is (¢”,¢~,[6 — p|)-
computable ([9]).

Let ¢~ (p) = A and let p be a list of {u; € dom(v) | i € N}. There is a Type-2
machine M that on input p

— computes a 1~ -name p; of v(u;) for all i € N (U — U is (v, k)-computable
and k¢ < 7)),
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— computes a [0 — p]-name g; of some f; € UR(¢¥~ (p), 9~ (p;)) for all i € N,
— computes a [§ — p|-name ¢q of f: X — [0;1] defined by

fl@)=> 27" fi(x).
=0

Then A = /7 (q).

Proof of Theorem [
Proof. Let ¢"*9¢(p) = A. If A = ) then p = 0* and furthermore ¥<(0*) = 0.
If A# () then

v(w)NA#D <= there exists some = € range([vn — 6](p)) such that z € v(w)
<= there exists some u € dom(vy) such that w is listed by 7, (u).

The following Typ-2 machine M realizes the reduction: On input p the machine
M copies all zeros on the input tape to the output tape until it reads a symbol
a # 0. Then M writes ¢(w) iff

(FJu € dom(ww)) t(w) < uy(p, u).

Proof of Theorem &}

Proof. k™¢ < k¢ Let k™¢(p) = K. As dom(v*) is r.e., there is a Type-2 machine

that on input p computes a sequence r € X such that ¢(w) < r iff

(Fe(w") < p)(Fw” € dom(v*)) {u | t(u) <w} = {u]| t(u) <w'} U{u|(u) <w”}.
k¢ < k%": By theorem [l k¢ < ¢*" for computably Hausdorff spaces. Further-

more if p is a k®name of K then KCO*(w) for any «(w) < p.

K" < k¢ Let k"™ (p,w) = K where w lists {v1,...,vx}. Then K¢ = ¢""(p)
and KCB := J{v(v;) | i = 1,...k} As X is computably locally compact,
there is a Type-2 machine M that on input (v1,...,v;) computes a k*-name
(q1,-.-,qe) € X¥ such that x°(¢;) = v(v;) for all ¢ € {1,...,k}. By Lemma [
from (q1,...,qr) a sequence ¢ € X* can be computed with x°(q) = B. By
Lemma [B] the mapping (K, B) — K N B is (", k¢, k)-computable. As K =
K N B we have shown “" < k€.

k" < k¢ Let " (p) = K. There is a Type-2 machine that on input p
computes a sequence 1 such that «(w) < r iff

(Fe(w') < p) 0* (W) CO* (w).
k¢ < k"¢t Let k°(p) = K, where p is a list of {w; € dom(#*) | i € N} and F
the (k¢ 6", 6*)-computable mapping from Lemma [7] with
UcF(K,O0):+= KCUCUCO.
There is a Type-2 machine that on input p

— starts with output ¢(wy).
— if o(wf)e(wh) ... o(w)) has been written on the output tape, then M writes
some ¢(wj, ;) such that

0" (wiy1) € F(k°(p), 0" (wi) N O™ (wit1)).
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