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Siena

Abstract. We say that A ≤LR B if every B-random number is A-
random. Intuitively this means that if oracle A can identify some patterns
on some real γ, oracle B can also find patterns on γ. In other words, B
is at least as good as A for this purpose. We propose a methodology for
studying the LR degrees and present a number of recent results of ours,
including sketches of their proofs.

1 Introduction

The present paper is partly a short version of a longer draft [1] with the full
proofs of the results presented here, but it also contains additional very recent
material which does not appear in [1]. One of the goals of this work is to present
a uniform approach to studying the LR degrees, both globally and locally. So far
the known results about this degree structure have mostly been scattered and
in papers dealing with a wider range of themes in algorithmic randomness (see
for example [11]). An exception is Simpson’s recent paper [16] which deals with
themes like almost everywhere domination which are very closely related to the
LR degrees.

Also, a number of results in this area have been proved via a mix of frameworks
like martingales, prefix-free complexity and Martin-Löf tests, with more than one
framework sometimes appearing in the same proof (see [11,12]). In contrast, we
present proofs of new and old results using only the Martin-Löf approach, i.e.
Σ0

1 classes and (in the relativised case) c.e. operators. We work in the Cantor
space 2ω with the usual topology generated by the basic open intervals [σ] =
{β | β ∈ 2ω ∧ σ ⊆ β} (where σ is a finite binary string and σ ⊆ β denotes that
σ is a prefix of β) and the Lebesgue measure generated by μ([σ]) = 2−|σ|.

We systematically confuse sets of finite strings U with the class of reals which
extend some string in U . Thus
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– we write μ(U) for the measure of the corresponding class of reals
– all subset relations U ⊂ V where U, V are sets of strings actually refer to

the corresponding classes of reals
– Boolean operations on sets of strings actually refer to the same operations

on the corresponding classes of reals.

In section 2 we review the basic definition of an oracle Martin-Löf test and
make the simple observation that there exists a universal test with certain nice
properties that will later be useful. It is worth noting that not all universal (even
unrelativised) Martin-Löf tests have the same properties and for some arguments
it is convenient to assume that we hold a special test. This is not new—see for
example [9] where a property of the test derived by its construction (and not
the general definition) is used to show that random sets are effectively immune.
In section 3 we give the definition of ≤LR and the induced degree structure and
mention some known properties. In section 4 we show that there is a continuum
of reals which are LR-reducible to the halting problem and then extend this
argument to show that the same is true of any α which is not GL2. We also give
a method for diagonalization in the LR degrees.

In section 5 we study the structure of the computably enumerable LR de-
grees. The main goal here is to show how techniques from the theory of the
c.e. Turing degrees can be transferred to the c.e. LR degrees. We deal with two
fundamental techniques: Sacks coding and Sacks restraints. First we show that
if A has intermediate c.e. Turing degree then the lower cone of c.e. LR degrees
below it properly extends the corresponding cone of c.e. Turing degrees. The
second example demonstrates the use of Sacks restraints in the LR context and
is a splitting theorem for the LR degrees: every c.e. set can be split into two c.e.
sets of incomparable LR degree. Also some results are given concerning further
connections between the LR and the Turing degrees.

Most of the proofs are either omitted or given as sketches. The exceptions are
the proofs of theorems 7 and 9 which are given in full. For the full proofs we
refer the reader to the draft [1] which is available online. Theorems 9 and 14 do
not appear in [1].

2 Oracle Martin-Löf Tests

An oracle Martin-Löf test (Ue) is a uniform sequence of oracle machines which
output finite binary strings such that if Uβ

e denotes the range of the e-th machine
with oracle β ∈ 2ω then for all β ∈ 2ω and e ∈ N we have that μ(Uβ

e ) < 2−(e+1)

and Uβ
e ⊇ Uβ

e+1. A real α is called β-random if for every oracle Martin-Löf test
(Ue) we have α /∈ ∩eU

β
e . A universal oracle Martin-Löf test is an oracle Martin-

Löf test (Ue) such that for every α, β ∈ 2ω, α is β-random iff α 	∈ ∩eU
β
e . The

following theorem concerns oracle-enumerations of random sets.

Theorem 1. For every n ≥ 1 there exist sets which are n-random and which
are properly n-c.e. in ∅(n).
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Given any oracle Martin-Löf test (Ue), each Ue can be thought of as a c.e. set
of axioms 〈τ, σ〉. If β ∈ 2ω then Uβ

e = {σ | ∃τ(τ ⊂ β ∧ 〈τ, σ〉 ∈ Ue)} and for
ρ ∈ 2<ω we define Uρ

e = {σ | ∃τ(τ ⊆ ρ ∧ 〈τ, σ〉 ∈ Ue)}. There is an analogy
between oracle Martin-Löf tests as defined above and Lachlan functionals i.e.
Turing functionals viewed as c.e. sets of axioms. This analogy will be exploited
in a number of constructions below, especially in the constructions of c.e. LR
degrees. The following lemma is easily proved and provides a universal oracle
Martin-Löf test with properties which will later be useful.

Lemma 1. There is an oracle Martin-Löf test (Ue) such that

– For every oracle Martin-Löf test (Ve), uniformly on its c.e. index we can
compute k ∈ N such that for every real β and all e, V β

e+k ⊆ Uβ
e .

– If 〈τ1, σ1〉, 〈τ2, σ2〉 ∈ Ue and τ1 ⊆ τ2 then σ1|σ2.
– If 〈τ, σ〉 ∈ Ue then |τ | = |σ| and 〈τ, σ〉 ∈ Ue[|τ |] − Ue[|τ | − 1].

From the properties of (Ue) as described in lemma 1 we get the following.

Corollary 1. Let (Ue) be the universal oracle Martin-Löf test of lemma 1 and
let U be any member of it. There is a computable function which, given any input
〈τ, τ ′〉 such that τ ⊆ τ ′, outputs the finite (clopen) set U τ ′ − U τ .

Different Martin-Löf tests may have different properties and some are more useful
than others. If we only require the first clause of theorem 1 we can achieve the
stronger condition

For every oracle Martin-Löf test (Ve), uniformly on its c.e. index
we can compute k ∈ N such that Ve+k ⊆ Ue (as sets of axioms)
for all e.

(1)

The following result demonstrates an application of property (1) of a universal
Martin-Löf test (Ue).

Theorem 2. If U is a member of an oracle Martin-Löf test satisfying property
(1) and T ∈ Σ0

1 , μ(T ) < 1 then there are only finitely many β ∈ 2ω such
that Uβ ⊆ T . Also, there are universal Martin-Löf tests which do not have this
property.

It is worth mentioning that there are tests which satisfy both the conditions
of lemma 1 and the property of theorem 2. In fact, a standard construction
of the oracle Martin-Löf test of theorem 2 gives a test with these properties.
Note that if V is a member of an oracle Martin-Löf test and T ∈ Σ0

1 then the
class {β | V β ⊆ T } consists of the infinite paths through a 0′ computable tree.
Since the paths through a 0′ computable tree with only finitely many infinite
paths are Δ0

2, by theorem 3 we get Nies’ result [11] that all low for random sets
are Δ0

2.

3 LR Reducibility and Degrees

The LR reducibility was introduced in [13].
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Definition 1. [13] Let A ≤LR B if every B-random real is A-random. The
induced degree structure is called the LR degrees.

Intuitively this means that if oracle A can identify some patterns on some real
γ, oracle B can also find patterns on γ. In other words, B is at least as good as
A for this purpose. It is not hard to show (especially in view of theorem 3) that
≤LR is Σ0

3 definable and this has been noticed by a number of authors. Being
Σ0

3 means that it has some things in common with ≤T (which is also Σ0
3) and

this can be seen more clearly in section 5 where techniques from the theory of
c.e. Turing degrees are seen to be applicable in the c.e. LR degrees. For more
examples of similar Σ0

3 relations see [16]. We point out (after [13,16]) that a
strict relativization of the notion of low for random [8] gives that A is low for
random relative to B when A ⊕ B ≤LR B, which is different than A ≤LR B. In
particular, ⊕ does not define a least upper bound in the LR degrees and it is an
open question as to whether any two degrees always have a least upper bound
in this structure [13,16].

Theorem 3. [7] For all A, B ∈ 2ω the following are equivalent:

– A ≤LR B
– For every Σ0

1(A) class T A of measure < 1 there is a Σ0
1(B) class V B such

that μ(V B) < 1 and T A ⊆ V B.
– For some member UA of a universal Martin-Löf test relative to A there is

V B ∈ Σ0
1(B) such that μ(V B) < 1 and UA ⊆ V B .

The following result shows how two universal oracle Martin-Löf tests are related
(or how ‘similar’ they are).

Theorem 4. If (Ui) is an oracle Martin-Löf test, V is a member of a universal
oracle Martin-Löf test and τ0, σ0 ∈ 2<ω such that [σ0] 	⊆ ∩γ⊃τ0V

γ then there
exist τ, σ ∈ 2<ω and m ∈ N such that

– τ ⊃ τ0 and σ ⊃ σ0
– there is β ⊃ τ such that [σ] 	⊆ V β

– for all γ ⊃ τ , Uγ
m ∩ [σ] ⊆ V γ.

A natural question about reducibilities � on the reals is to determine the mea-
sure of upper and lower cones. For the Turing reducibility the lower cones are
countable (hence they are null) and the non-trivial upper cones have measure 0
[14]. For ≤LR although lower cones are not always countable (see section 4) it is
not difficult to show that they are null. Indeed, given A the A-random numbers
have measure 1 and so it is enough to show that if β is A-random then β 	≤LR A.
But this is obvious since β is not β-random.

Theorem 5. For every A the set {β | β ≤LR A} has measure 0.

For the upper cones it is tempting to think that a version of the majority vote
technique which settled the question for ≤T (see [4] for an updated presentation
of the argument) would work for ≤LR (especially if one thinks of randomness in
terms of betting strategies). However Frank Stephan pointed out (in discussions
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with the first author) that the answer is most easily given by an application
of van Lambalgen’s theorem (a simple theorem with many applications) which
asserts that A ⊕ B is random iff A is random and B is A-random.

Theorem 6 (Frank Stephan). If A is random then it is B-random for almost
all B ∈ 2ω. Also, any non-trivial upper cone in the LR degrees has measure 0.

4 Global Structure

In computability theory we are used to structures in which every degree has only
countably many predecessors. Below we show that the LR degrees do not have
this property1 and that, in fact, whenever α is not GL2 the degree of α has an
uncountable number of predecessors.

Lemma 2. Let U be a member of an oracle Martin-Löf test, n ∈ N and τ0 ∈
2<ω. Then there exists τ1 ⊃ τ0 such that for all τ2 ⊃ τ1, μ(U τ2 − U τ1) < 2−n.

In [13] (see [16] for a different proof and more detailed presentation) it was shown
that the LR degrees are countable equivalence classes.

Theorem 7. In the LR degrees the degree of ∅′ bounds 2ℵ0 degrees.

Proof. By cardinal arithmetic it is enough to show that the set B = {β | β ≤LR

∅′} has cardinality 2ℵ0 . Let U be the second member of the universal oracle
Martin-Löf test of lemma 1, so that by definition μ(Uβ) < 2−2 for all β ∈ 2ω.
It suffices to define a ∅′-computable perfect tree T (as a downward closed set
of strings) such that μ(A) < 1

2 where A = ∪τ∈T U τ . Then |[T ]| = 2ℵ0 (where
[T ] is the set of infinite paths through T ), and for all β ∈ [T ], Uβ ⊆ A. Since
A is ∅′-c.e., we have by theorem 3 that for all β ∈ [T ], β ≤LR ∅′. We ask that
μ(A) < 1

2 (rather than μ(A) < 1) simply in order that figures used should be
in line with what appears in the proof of theorem 8 in [1]. It remains to define
such a tree T and verify the construction.

First find a string τ such that for any extension τ ′ of τ , μ(U τ ′ − U τ ) <
2−4 and define T (∅) = τ . The existence of such a string is ensured by lemma
2. Note that μ(UT (∅)) < 2−2. Now for each of the one element extensions of
T (∅), say τi, i = 0, 1 find some extension τ ′

i ⊇ τi such that for any τ ′ ⊃ τ ′
i

we have μ(U τ ′ − U τ ′
i ) < 2−6. Define T (0) = τ ′

0, T (1) = τ ′
1 and note that

μ((UT (0) ∪UT (1))−UT (∅)) < 2 ·2−4 = 2−3 by the previous step. Continue in the
same way so that at the n-th stage, where we define T (σ) for all σ with |σ| = n, we
choose a value τ for T (σ) such that for all τ ′ ⊃ τ we have μ(U τ ′−U τ ) < 2−(2n+4).
Let

Cn = {T (σ) | σ ∈ 2<ω ∧ |σ| ≤ n}

and note that Cn ⊆ Cn+1. Also let An = ∪τ∈CnU τ and note that An ⊆ An+1
and A = ∪nAn. By induction, for all n, μ(An) <

∑n
i=0 2i · 2−(2i+2) = 1

2 . Note

1 Joe Miller and Yu Liang have independently announced the existence of an LR
degree with uncountably many predecessors.
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that the factor 2i in the above sum comes from the number of strings of level i
in T (and where we say that τ is of level i in T if τ = T (σ) for σ of length i).
It remains to show that we can run the construction of T computably in ∅′, but
this follows immediately from corollary 1.

After we proved theorem 7 and since high degrees often resemble 0′, we con-
sidered showing that every high LR degree has uncountably many predecessors.
Using a combination of highness techniques from [6,10,15] we succeeded in show-
ing that if A is generalized superhigh (i.e. A′ ≥tt (A⊕∅′)′) then A has uncountably
many ≤LR-predecessors. The following theorem is a stronger result showing that
if A is merely GL2 (i.e. generalized non-low2, A′′ >T (A ⊕ ∅′)′) then it has the
same property. For other GL2 constructions we refer the reader to [10].

Theorem 8. If α is GL2 then in the LR degrees the degree of α bounds 2ℵ0

degrees.

The basic idea behind the proof remains the same as in the proof of theorem 7 but
now we need to define T using only an oracle for α (rather than an oracle for ∅′)
and α-approximate a perfect tree T ∗ ⊆ T during the course of the construction.
By theorem 8 and a cardinality argument we obtain the following.

Corollary 2. There are A <LR B such that for every A0 ≡LR A, B0 ≡LR B
we have A0|T B0. In fact for every GL2 set B there is A with the above property.

Next, we provide a method for destroying LR reductions (a kind of diagonaliza-
tion). As an illustration of this method we construct an antichain of LR degrees
of cardinality 2ℵ0 .

Theorem 9. There exists an antichain of cardinality 2ℵ0 in the LR degrees.

Proof. We wish to define a perfect tree T such that, for all distinct A, B ∈ [T ],
A 	≤LR B. In order to do so, will make use of the following lemma which was
originally proved by Kučera and which is frequently very useful in dealing with
Π0

1 classes of positive measure. For a very simple proof we refer the reader to
[5].

Lemma 3. [9] Given any Π0
1 class P of positive measure there exists a Π0

1 class
of positive measure K(P) ⊆ P such that the intersection of K(P) with any Π0

1
class is either empty or of positive measure.

Fix a member U of a universal oracle Martin-Löf test. Assume we are given an
effective listing {Ve}e∈ω of all c.e. operators V for which there exists q ∈ Q such
that for all A, μ(V A) < 1−q. We say A is LR reducible to B via Ve if UA ⊆ V B

e .
Clearly A ≤LR B iff A ≤LR B via some Ve. For each e we must ensure that for
all distinct A, B ∈ [T ], A is not LR reducible to B via Ve. The following lemma
provides a basic diagonalization technique for the ≤LR reducibility.

Lemma 4. For any e and any τ0, τ1, P0, P1 such that τ0, τ1 ∈ 2<ω, P0 ⊆ [τ0],
P1 ⊆ [τ1] and P0, P1 are Π0

1 classes of positive measure there exist τ ′
0, τ

′
1, P ′

0, P ′
1

such that
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– τ ′
0 ⊇ τ0, τ

′
1 ⊇ τ1,

– P ′
0 ⊆ P0, P ′

1 ⊆ P1 and P ′
0, P ′

1 are Π0
1 classes of positive measure,

– P ′
0 ⊆ [τ ′

0], P ′
1 ⊆ [τ ′

1],
– If A ∈ P ′

0 and B ∈ P ′
1 then A is not LR reducible to B via Ve.

Proof. First we define Q0 = K(P0), where K is as defined in the statement of
lemma 3. Now let A be any member of Q0 such that A 	≤LR ∅ (hence {β | A ≤LR

β} is null). For any τ ⊂ A we have that Q0 ∩ [τ ] is of positive measure. We define
Q1 to be the set of all B ∈ P1 such that A is not LR reducible to B via Ve. Since
upper cones in the LR degrees are of measure 0, Q1 is of positive measure. We
define for each σ, Q1,σ = {B : B ∈ P1 and [σ] 	⊆ V B

e }. Since a countable union
of sets of measure 0 is of measure 0 and Q1 =

⋃
σ∈UA Q1,σ there exists σ ∈ UA

such that Q1,σ is of positive measure. Letting σ be such, we define τ ′
0 ⊃ τ0 to

be an initial segment of A such that σ ∈ U τ ′
0 . We define τ ′

1 = τ1, P ′
0 = P0 ∩ [τ ′

0]
and P ′

1 = Q1,σ.

It is now clear how to use lemma 4 in order to define T . Suppose that at stage
n we have already defined T (σ) for all σ of length ≤ n and that for each leaf τ
of T (as presently defined) we have specified some Π0

1 class of positive measure
Pτ such that all strings in T extending τ must lie in Pτ . For each leaf τ we first
choose two incompatible extensions τ0, τ1 such that for each i ≤ 1, Pτ ∩ [τi] is
of positive measure. These are potential leaves of T for the next stage. Through
successive applications of lemma 4 to all pairs of potential leaves we can then
define T (σ) and Pτ for all σ of length n + 1 and each τ = T (σ), in such a way
that if A and B extend τ0 = T (σ), τ1 = T (σ′) respectively for distinct strings σ
and σ′ of length n + 1 and A ∈ Pτ0, B ∈ Pτ1 , then A is not LR reducible to B
via Vn. Since for each n there exist an infinite number of n′ with Vn = Vn′ , this
completes the proof of the theorem.

5 Computably Enumerable LR Degrees

In this section we study the structure of the c.e. LR degrees and their relationship
with the Turing reducibility. The results have been chosen so that they demon-
strate how to transfer selected basic techniques from the c.e. Turing degrees (like
Sacks coding and restraints) to the c.e. LR degrees. We note that the relation-
ship between ≤LR and ≤T is nontrivial and goes beyond what we discuss here.
For example there is a half of a minimal pair in the c.e. Turing degrees which
is LR-complete [2,3]. The first author, using methods similar to those in [2],
has shown that there is a noncuppable c.e. Turing degree which is LR-complete.
This implies that every c.e. set which is computable by all LR-complete c.e.
sets must be noncuppable. It is unknown if there are such noncomputable sets.
For background in the theory of c.e. degrees we refer the reader to [17]. The
following theorem demonstrates how infinitary Sacks coding can be handled in
the LR degrees.

Theorem 10. If W is an incomplete c.e. set, i.e. ∅′ 	≤T W , then (uniformly in
W ) there is a c.e. set B such that B ≤LR W and B 	≤T W .
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We sketch the proof. A relativisation of the classic non-computable low for ran-
dom argument of [8] (also see [4]) merely gives that for all A there exists B
c.e. in A such that B 	≤T A and A ⊕ B ≤LR A. If we assumed that W is low
we could prove theorem 10 with a finitary argument similar to [8] by using a
lowness technique (namely Robinson’s trick). To prove the full result we need
infinitary coding combined with cost efficiency considerations (see [12] for ex-
amples of cost-function arguments). We need to construct a c.e. operator V and
a c.e. set B such that UB ⊆ V W where U is a member of the universal oracle
Martin-Löf test of lemma 1 (so that μ(U) < 2−1), μ(V W ) < 1, and the following
requirements are satisfied

Pe : ΦW
e = B ⇒ Γ W

e = ∅′

where (Φe) is an effective enumeration of all Turing functionals and Γe are Turing
functionals constructed by us. It is useful if we assume the hat trick for the
functionals as well as the c.e. operators U, V (see [17] for more on this). This
means, for example, that there will be infinitely many stages where (the current
approximation to) UB contains only permanent strings. The operator V can
be defined ahead of the construction and it essentially enumerates into V the
strings of UB with large use. We can also make sure that V is enumerated in a
prefix-free way. By such a definition of V we immediately get that UB ⊆ V W

is satisfied. So the main conflict we face is that on the one hand we want a
Sacks coding for each of the Pe requirements (enumerations into ∅′ may trigger
B-enumerations infinitely often) and on the other hand B-enumerations may
force μ(V W ) = 1 (via the the way that V is defined). The connection between
B-enumerations and superfluous measure in V W (in the sense that it does not
serve UB ⊆ V W , it corresponds to intervals which are not in UB) is roughly
as in the noncomputable low for random construction of [8]: some interval σ is
enumerated into UB with use u, it enters V W with use v and subsequently B � u
changes thus ejecting σ from UB. Then W � v could freeze, thus capturing a
useless interval in V W . We already have μ(V W ) ≥ μ(UB) so we want to make
sure that the measure corresponding to useless strings is bounded by 2−1.

Here, however, we have an advantage over the classic argument in [8] as W may
also change, thus extracting the useless string from V W . We use this fact in order
to make infinitary coding into B possible while satisfying μ(V W ) < 1. The full
proof can be found in [1]. This approach works even if we require UB⊕W ⊆ V W

instead of UB ⊆ V W . In that case we obtain B ⊕ W ≡LR W , W <T B ⊕ W
and hence the following theorem, given that there are T -incomplete sets in the
complete LR degree and the known embedding results for the c.e. Turing degrees
(an antichain is embeddable in every nontrivial interval).

Theorem 11. Every c.e. LR degree contains infinitely many c.e. Turing degrees
(in the form of chains and antichains) and every incomplete c.e. LR degree has
no maximal c.e. Turing degree.

As far as the global structure is concerned, we can get a similar result by relativis-
ing known constructions of low for random degrees. In particular, the relativised
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noncomputable low for random construction [8] gives that for every B there is
A which is B-c.e. and A ⊕ B ≡LR B, B <T A ⊕ B; and a slight extension of the
argument gives that every B is T -below an antichain of T degrees in the same
LR degree, hence the following theorem.

Theorem 12. Every LR degree contains infinitely many Turing degrees (in the
form of chains and antichains) and no maximal Turing degree.

Next we show a splitting theorem which also shows how Sacks restraints work
in the LR degrees.

Theorem 13. If A is c.e. and not low for random then there are c.e. B, C such
that B ∩ C = ∅, B ∪ C = A, B 	≤LR C and C 	≤LR B.

Proof. Here is a sketch of the proof. The main idea is as in the classic Sacks split-
ting theorem. We just have to translate the main tools like length of agreement
and Sacks restraints to the case of LR reductions. This will not be a problem
as ≤LR is Σ0

3 . Fix a member U of a universal oracle Martin-Löf test; an LR
reduction is defined via a c.e. operator V (as opposed to a Turing functional), a
q ∈ Q and A is LR reducible to B via V, q if

μ(V B) < 1 − q and UA ⊆ V B. (2)

To define the length of agreement (UA, V B) of this possible reduction consider
computable enumerations of U, V, A, B. Let Ms be the set of strings σ such that
σ ∈ UAt

s for some t ≤ s and let (σs) be a computable enumeration of M = ∪sMs.
Now for all s we define (UA, V B)[s] to be the maximum n such the following
hold:

– σn[s] ↓ (i.e. the nth member of M has been enumerated by stage s)
– ∀i ≤ m ([σi] ⊆ V Bs

s ∨ σi /∈ UAs
s )

– μ({σi | i < n ∧ [σi] ⊆ V Bs
s }) < 1 − q.

It is clear that reduction (2) is total iff lim infs (UA, V B)[s] = ∞. Now in general,
if we wish to destroy a given reduction like (2) where A is a given c.e. set of
nontrivial LR degree and B is enumerated by us, its enough if we respect the
following restraint at every stage s:

r(V, q, s) = μt [∀i ≤ (UA, V B)[s] ([σi] ⊆ V Bs
s with B-use < t ∨ σi /∈ UAs

s )].

Indeed, it can be shown that if r(V, q, s) is respected for a cofinite set of stages
then

lim
s

(UA, V B)[s] < ∞. (3)

So either there is a stage where the measure goes over the threshold 1 − q, or
there is some i such that σi is a permanent resident of UA and σi is never covered
by strings in V B. In any case (2) is destroyed and the restraint comes to a limit.
This is all we need in order to apply the classic Sacks splitting argument (see
[17] for a presentation). For more details we refer to [1].
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The Sacks restraints argument in theorem 13 works exactly as in the Turing
degrees, only that the restraints are defined in a different way. Hence it is natural
to ask whether given a noncomputable B we can run the restraints argument in
the Turing degrees, constructing some A such that B 	≤T A, while we code part
of B into A so that B ≤LR A. It turns out that this is possible and the reason is
that compared to the Turing restraints, the LR restraints are more demanding.
For example a single B-enumeration below the length of agreement of some
potential reduction ΦA = B (accompanied by the existing restraint) suffices in
order to destroy the reduction; but no single such enumeration suffices in order
to destroy a potential LR reduction UB ⊆ V .

Theorem 14. Given noncomputable c.e. B there is a c.e. A such that B 	≤T A
and B ≤LR A. Moreover A can be chosen such that A <T B.

References

1. Barmpalias, G., Lewis, A.E.M., Soskova, M.: Randomness, Lowness and De-
grees, Draft submitted for publication, 19 pages, current version available at
http://www.maths.leeds.ac.uk/~georgeb/.

2. Barmpalias G., Montalban, A.: A cappable almost everywhere dominating com-
putably enumerable degree, Electronic Notes in Theoretical Computer Science,
Volume 167 (2007).

3. Binns, S., Kjos-Hanssen, B., Miller, J.S., Solomon, R.: Lowness notions, measure
and domination, in preparation.

4. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity, in prepa-
ration. Current draft available at http://www.mcs.vuw.ac.nz/~downey/.

5. Downey, R., Miller, J.S.: A basis theorem for Π0
1 classes of positive measure and

jump inversion for random reals, Proceedings of the American Mathematical Soci-
ety 134 (1), pages 283-288 (2006).

6. Jockusch, C.G.: Simple proofs of some theorems on high degrees of unsolvability,
Canadian Journal of Mathematics 29 (1977)

7. Kjos-Hanssen, B.: Low for random reals and positive-measure domination, to ap-
pear in the Proceedings of the AMS.
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