
Elementary Differences Among Jump
Hierarchies

Angsheng Li�

State Key Laboratory of Computer Science, Institute of Software
Chinese Academy of Sciences, P.O. Box 8718, Beijing 100080, P.R. China

angsheng@ios.ac.cn

Abstract. It is shown that Th(H1) �= Th(Hn) holds for every n > 1,
where Hm is the upper semi-lattice of all highm computably enumerable
(c.e.) degrees for m > 0, giving a first elementary difference among the
highness hierarchies of the c.e. degrees.

1 Introduction

Let n ≥ 0. We say that a computably enumerable (c.e.) degree a is highn (or
lown), if a(n) = 0(n+1) (or a(n) = 0(n)), where x(n+1) = (x(n))′, x(0) = x, y′ is
the Turing jump of y. Let Hn (Ln) be the set of all highn (lown) c.e. degrees.
For n = 1, we also call an element of H1 (or L1) high (or low).

Sacks [1963] showed a (Sacks) Jump Theorem that for any degrees s and c,
if s is c.e.a in 0′ and 0 < c ≤ 0′, then there exists a c.e. degree a such that
a′ = s and c �≤ a, and that there exists a non-trivial high c.e. degree. Note that
an easy priority injury argument gives a nonzero low c.e. degree. By relativis-
ing the construction of high and low c.e. degrees to 0(n) and using the Sacks
Jump Theorem, it follows that for all n, Hn ⊂ Hn+1 and Ln ⊂ Ln+1. And Mar-
tin [1966a], Lachlan [1965] and Sacks [1967] each proved that the union of the
high/low hierarchies does not exhaust the set E of the c.e. degrees. And Sacks
[1964] proved the (Sacks) Density Theorem of the c.e. degrees. While early re-
searches were aiming at characterisations of the high/low hierarchy. The first
result on this aspect is the Martin [1966b] Characterisation of High Degrees: A
set A satisfies ∅′′ ≤T A

′
iff there is a function f ≤T A such that f dominates all

computable functions. And Robinson [1971a] proved a Low Splitting Theorem
that if c < b are c.e. degrees and c is low, then there are c.e. degrees x,y such
that c < x,y < b and x ∨ y = b. In the proof of this theorem, a characterisa-
tion of low c.e. degrees was given. The lowness is necessary, because Lachlan
[1975] proved a Nonsplitting Theorem that for some c.e. degrees c < b, b is

� The author was partially supported by an EPSRC Research Grant, “Turing Defin-
ability”, No. GR/M 91419 (UK) and by NSF Grant No. 69973048 and NSF Ma-
jor Grant No. 19931020 (P.R. CHINA), by NSFC grants No. 60310213, and No.
60325206.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 79–88, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

80 A. Li

not splittable over c. The strongest nonsplitting along this line has been given
by Cooper and Li [2002]: there exists a low2 c.e. degree above which 0′ is not
splittable.

Extending both the Sacks Jump Theorem and the Sacks Density Theorem,
Robinson [1971b] proved an Interpolation Theorem: given c.e. degrees d < c and
a degree s c.e. in c with d′ ≤ s, there is a c.e. degree a such that d < a < c
and a′ = s. Using this theorem, we can transfer some results from lower levels
to higher levels of the high/low hierarchy. For instance, every high c.e. degree
bounds a properly highn, and a properly lown c.e. degree for each n > 0, so
any ideal I of E contains an element of H1 will contain elements of Hn+1 − Hn,
Ln+1 − Ln for all n > 0. However the transfer procedure is constrained by the
non-uniformity of the Robinson Interpolation Theorem.

Based on Martin’s Characterisation of High Degrees, Cooper [1974a] proved
that every high1 c.e. degree bounds a minimal pair. And Lachlan [1979] showed
that there exists a nonzero c.e. degree which bounds no minimal pair. And
Cooper [1974b] and Yates proved a Noncupping Theorem: there exists nonzero
c.e. degree a such that for any c.e. degree x, a ∨ x = 0′ iff x = 0′. This result
was further extended by Harrington [1976] Noncupping Theorem: for any high1
c.e. degree h, there exists a high1 c.e. degree a ≤ h such that for any c.e. degree
x, if h ≤ a ∨ x, then h ≤ x. In contrast Harrington [1978] also proved a Plus
Cupping Theorem that there exists c.e. degree a �= 0 such that for any c.e. degrees
x,y, if 0 < x ≤ a ≤ y, then there is a c.e. degree z < y such that x ∨ z = y.
And remarkably, Nies, Shore and Slaman [1998] have shown that Hn, Ln+1 are
definable in E for each n > 0.

A basic question about the high/low hierarchies is the following:

Question 1.1. (i) Are there any m �= n such that Th(Lm) = Th(Ln)?
(ii) Are there any m �= n such that Th(Hm) = Th(Hn)?
Since this paper was written in 2001, part (i) has been answered negatively.

Jockusch, Li, and Yang [2004] proved a nice join theorem for the c.e. degrees:
For any c.e. degree x �= 0, there is a c.e. degree a such that (x ∨ a)

′
= 0

′′
= a

′′
.

Cholak, Groszek and Slaman [2001] showed that there is a nonzero c.e. de-
gree a which joins to a low degree with any low c.e. degree. By combining
the two theorems above, we have that for any n > 1, Th(L1) �= Th(Ln).
While the remaining case was resolved by Shore [2004] by using coding of
arithmetics.

For part (ii) of question 1.1, we know nothing, although Cooper proved that
every high c.e. degree bounds a minimal pair, and Downey, Lempp and Shore
[1993] (and independently both Lerman and Kučera) could construct a high2
c.e. degree which bounds no minimal pair.

In this paper, we show that

Theorem 1.2. There exists a high2 c.e. degree a such that for any c.e. degrees
x,y, if 0 < x ≤ a ≤ y, then there is a c.e. degree z such that z < y and x ∨ z = y.
Then we have:

Elementary Differences Among Jump Hierarchies 81

Theorem 1.3. For each n > 1, Th(H1) �= Th(Hn).

Proof. Let P be the following

∀x∃a ≤ x∀y(a ∨ y = 0′ ↔ y = 0′).

By Harrington’s Noncupping Theorem, P holds for H1. Note that for any
incomplete c.e. degree a, there is an incomplete high c.e. degree h ≥ a. So by
theorem 1.2, for each n > 1, P fails to hold for Hn.

Theorem 1.3 follows. ��

This gives a partial solution to question 1.1 (ii), while the remaining case of it
is still an intriguing open question.

We now outline the proof of theorem 1.2. In section 2, we formulate the
conditions of the theorem by requirements, and describe the strategies to satisfy
the requirements; in section 3, we arrange all strategies on nodes of a tree, the
priority tree T and analyse the consistency of the strategies.

Our notation and terminology are standard and generally follow Soare [1987].

2 Requirements and Strategies

In this section, we formulate the conditions of theorem 1.2 by requirements, and
describe the strategies to satisfy the requirements.

The Requirements. To prove theorem 1.2, we construct a c.e. set A, a Turing
functional Γ to satisfy the following properties and requirements,

(1) For any x, y, z, Γ (A; x, y, z) is defined.
(2) For any x, y, limz Γ (A; x, y, z) exists.
(3) For any x, limy limz Γ (A; x, y, z) exists.
Px: ∅′′′

(x) = limy limz Γ (A; x, y, z)
Re: We = Φe(A)→(∃Xe, Ωe)[Xe ≤T Ve⊕A&Ve⊕A=Ωe(We, Xe)&(a.e.i)Se,i]
Se,i : [We = Φe(A) & A = Ψi(Xe)] → We ≤T ∅

where x, y, z, e, i ∈ ω, {(We, Φe, Ve) | e ∈ ω} is an effective enumeration of all
triples (W, Φ, V) of c.e. sets W, V and of Turing functionals Φ, {Ψi | i ∈ ω} is an
effective enumeration of all Turing functionals Ψ , Xe is a c.e. set built by us, Ωe

is a Turing functional built by us for each e ∈ ω.
Clearly meeting the requirements is sufficient to prove the theorem. We as-

sume that the use function φ of a given Turing functional Φ is increasing in
arguments, nondecreasing in stages. We now look at the strategies to satisfy the
requirements.

A P-Strategy. Since ∅′′′ ∈ Σ3, we can choose a c.e. set J such that for all x,
both (i) and (ii) below hold,

(i) x ∈ ∅′′′
iff (a.e.y)[J [〈y,x〉] = ω[〈y,x〉]].

(ii) x �∈ ∅′′′
iff (∀y)[J [〈y,x〉] =∗ ∅].

82 A. Li

To satisfy Px, we introduce infinitely many subrequirements Qx,y for all y ∈ ω.
Q-strategies will define and rectify the Turing functional Γ . Before describing
the Q-strategies, we look at some properties of Γ .

Γ -Rules. We ensure that the Turing functional Γ will satisfy the following
properties, which are called Γ -rules.

(i) Whenever we define Γ (A; x, y, z), we locate it at a node ξ say.
Let Γ (A; x, y, z)[s] be located at ξ.
(ii) γ(x, y, z)[s] ↓�= γ(x, y, z)[s+1] iff γ(x, y, z)[s] is enumerated into As+1−As

iff there is a strategy ξ′ <L ξ which is visited at stage s + 1.

Therefore for all x, y, z, the permanent computation Γ (A; x, y, z) is the com-
putation which is located at a node, ξ say, at a stage, s say, such that there is
no α <L ξ which can be visited at any stage v > s.

A Q-Strategy. Given a Qx,y-strategy σ, we use Jσ to denote the set J [〈y,x〉]

which is measured by σ. We say that s is σ-expansionary, if Jσ[v] ⊂ Jσ[s] for all
v < s at which some α ⊇ σ is visited. Then σ will proceed as follows.

1. If s is σ-expansionary, then
– let 〈y′, z′〉 be the least pair 〈m, n〉 such that m ≥ y and Γ (A; x, m, n) is
not defined,
– define Γ (A; x, y′, z′) ↓= 1 with γ(x, y′, z′) fresh in the sense that it is the
least natural number greater than any number mentioned so far, and
– locate Γ (A; x, y′, z′) at σ 〈̂0〉.

2. Otherwise, then
– let z′ be the least n such that Γ (A; x, y, n) ↑,
– define Γ (A; x, y, z′) ↓= 0 with γ(x, y, z′) fresh, and locate it at σ 〈̂1〉.

So the possible outcomes of σ are 0 <L 1 to denote infinite and finite actions
respectively. By the strategy, if there are infinitely many σ-expansionary stages,
then for almost every pair 〈y′, z′〉 with y′ ≥ y, Γ (A; x, y′, z′) ↓= 1 is defined and
located at σ 〈̂0〉. In this case, limy limz Γ (A; x, y, z) ↓= 1, and by the choice of
J , x ∈ ∅′′′

. Px is satisfied. Otherwise, then by the Qx,y-strategy σ, we have that
for almost every z, Γ (A; x, y, z) ↓= 0 is defined and located at σ 〈̂1〉, so that
limz Γ (A; x, y, z) ↓= 0, giving limy limz Γ (A; x, y, z) ↓= 0. Therefore in any case,
Px is satisfied.

An R-Strategy. First we define the notion of α-believable computation. Given a
node α, we say that Φ(A; w) ↓= v is α-believable, if for any x, y, z, if Γ (A; x, y, z)
is defined and located at some node ξ with α <L ξ, then φ(w) < γ(x, y, z).

An R-strategy, α say, will satisfy an R-requirement, R say (we drop the
index), we define the length function of agreement l(α) = (W, Φ(A)) as usual, of
course α uses only α-believable computations. We say that s is α-expansionary,
if l(α)[s] > l(α)[v] for all v < s at which α is visited.

Elementary Differences Among Jump Hierarchies 83

If there are only finitely many α-expansionary stages, then either l(W, Φ(A))[s]
is bounded over the construction, or there is a fixed w say such that there are
infinitely many stages at which α is visited and at which Φ(A; w) ↓ is not α-
believable, and by the Γ -rules, at which some elements ≤ φ(w) are enumerated
into A. In this case, φ(w)[s] will be unbounded over the construction. Therefore
in either case, W �= Φ(A), R is satisfied.

Suppose that there are infinitely many α-expansionary stages. Then we will
build a c.e. set X , two Turing functionals Ξ and Ω such that both (a) and (b)
below hold.

(a) X = Ξ(V, A),
(b) V ⊕ A = Ω(W, X).

For Ξ, whenever we define Ξ(V, A; x), we define Ξ(V, A; x) ↓= X(x) with
ξ(x) = x. And once V � (x + 1) or A � (x + 1) changes, we set Ξ(V, A; x) to be
undefined. We ensure that an element x is enumerated into X , only if Ξ(V, A; x)
is currently undefined. So if Ξ(V, A) is total, then Ξ(V, A) = X .

For Ω, whenever we define Ω(W, X ; x), we define Ω(W, X ; x) ↓= (V ⊕ A)(x)
with ω(x) fresh. And if Ω(W, X ; x) ↓�= (V ⊕ A)(x), we enumerate ω(x) into X .
This ensures that if Ω(W, X) is total, then Ω(W, X) = V ⊕ A.

Of course we have to ensure that W -change will never make Ω(W, X) partial,
in fact, we ensure that Ω and Ξ will have the following properties,

(i) if Ω(W, X) is total, then Ξ(V, A) is total, and
(ii) if Ω(W, X) is partial, then either Φ(A) is partial or W ≤T ∅.

Finally we define the possible outcomes of an R-strategy to be 0 <L 1 to
denote infinite and finite actions respectively.

An S-Module. An Se,i-module assumes that an Re-strategy α, say, is building
a Turing functional Ω. It will try to satisfy its S-requirement, Se,i. For simplicity,
we drop the indices e, i in the following discussion.

Suppose that β is an S-module. Let α 〈̂0〉 ⊆ β. Then β will have to deal with
the injury from the building of Ω(W, X). It will work with a fixed threshold k say.
Whenever we define the threshold, we define it as fresh. If (V ⊕ A) � k changes,
then any previous action of β is cancelled but keep the threshold k unchanged,
in which case, we say that β is reset. Clearly β is reset only finitely many times.
Then the S-module β will build a Turing function f and will proceed as follows.

1. Define an agitator a to be fresh.
[Note that if both a and ω(k) are defined, then a < ω(k), where k is the
threshold of β.]

2. (Create a Link (α, β)) Wait for a stage, v say, at which
(2a) Ψ(X ; a) ↓= 0 = A(a),
(2b) W � (ω(k) + 1) = Φ(A) � (ω(k) + 1) via β-believable computations.
Then:
– define r = −1 to be the A-restraint of β,
– enumerate a into A, and
– create a link (α, β).

84 A. Li

3. (Travel the Link (α, β)) Wait for the next α-expansionary stage at which
W � (ω(k) + 1) = Φ(A) � (ω(k) + 1) via α-believable computations. Then
travel the link (α, β) through one of the following cases.
Case 3a. Wv � (ω(k) + 1) �= W � (ω(k) + 1). Then
– set ω(k) to be undefined,
– remove the link (α, β) and stop.
[Now we have created and preserved an inequality Ψ(X ; a) ↓= 0 �= 1 = A(a).
S is satisfied.]
Case 3b. Otherwise, and Φ(A) � (ω(k) + 1) are β-believable. Then:
– remove the link (α, β),
– for each x ≤ ω(k), if f(x) ↑, then define f(x) = W (x),
– enumerate ω(k) into X ,
– define an agitator a as fresh, and
– define r = φ(ω(k)) to be the A-restraint of β.
[The enumeration of a into A at stage v created a (V ⊕A) � ω(k)-permission
via Ω, which has been kept by the link (α, β). So we can enumerate ω(k)
into X at this stage.]
Case 3c. Otherwise, then do nothing.

The Possible Outcomes
The possible outcomes of the S-module are as follows.

g: Case 3b occurs infinitely many times.

In this case, ω(k)[s] will be unbounded, so that f is defined to be a computable
function. We prove that for every x, if f(x) ↓= y, then W (x) = y. Given x, let
s1 be the stage at which f(x) is defined for the first time, then f(x) = Ws1 (x).
Let v1 be minimal greater than s1 at which step 2 of the module occurs. By
the A-restraint r[s] = r[s1] for all s ∈ [s1, v1), f(x) = Wv1(x). Let s2 be the
least stage greater than v1 at which case 3b of β occurs. By the choice of s2,
Ws2(x) = f(x). Suppose by induction that sn ≥ s2, that case 3b of β occurs
at stage sn, and that Wsn(x) = f(x). Let vn be the least stage > sn at which
step 2 of β occurs. Then for each s ∈ [sn, vn), r[s] = r[sn], which ensures that
Wvn(x) = f(x). Let sn+1 be the least stage greater than vn at which case 3b of
β occurs. By the choice of sn+1, we have that Wsn+1(x) = f(x). It follows that
there are infinitely many stages at which W (x) = f(x), giving W (x) = f(x).
Since x is arbitarily given we have that f = W . R is satisfied.

u: Otherwise, and case 3c occurs infinitely many times.

In this case, there is a link (α, β) which was created and which will neither be
cancelled nor be removed, and which is called a permanent link. We note that
lims ω(k)[s] ↓= v < ω for some v, and that there are infinitely many stages at
which Φ(A; v) is not β-believable, and at which some elements γ(x, y, z) ≤ φ(v)
are enumerated into A, by the Γ -rules. Therefore Φ(A) is partial. Both R and
S are satisfied.

However every ξ strictly between α and β is covered by β in the sense that ξ
is visited only finitely many times. The solution is the following observation:

Elementary Differences Among Jump Hierarchies 85

(1) If ξ is either an R- or a P-strategy, then ξ’s requirement has lower pri-
ority than that of α, we can introduce a backup strategy below β 〈̂u〉 for the
requirement of ξ. Therefore the injury of ξ from β is harmless.

(2) If ξ is a Q- or an S-strategy which works on a subrequirement whose
global requirement has lower priority than that of α, then we can neglect this ξ,
because, for a P-, or an R-requirement, we are allowed to give up finitely many
subrequirements Q or S.

(3) Otherwise and ξ = σ is a Q-strategy. Then we have that σ 〈̂1〉 ⊆ β holds.
Now in case 3c of β, we may allow σ to act if the current stage is σ-expansionary.

(4) Otherwise and ξ = β′ is an S-strategy. Then β′ 〈̂w〉 ⊆ β holds. In this
case, whenever case 3c of β occurs, we may allow β′ to act, if β′ is ready to create
a link (or to open an A-gap), in the sense that step 2 of strategy β′ appears.

w: Otherwise. Now it is easy to see that one of the following cases occurs.

Case 1. Case 3a of β occurs. Then Ψ(X ; a) ↓= 0 �= 1 = A(a) is created and
preserved for some fixed a.

Case 2. Otherwise, and (2a) in step 2 fails to hold infinitely often. This means
that Ψ(X ; a) �= 0 = A(a).

Case 3. Otherwise, then there are infinitely many stages at which if W �
(ω(k) + 1) = Φ(A) � (ω(k) + 1), then Φ(A; ω(k)) is not β-believable, in which
case, by the Γ -rules, some elements γ(x, y, z) ≤ φ(ω(k)) are enumerated into A
infinitely many times. We have that W �= Φ(A).

So in any case, we have that either Ψ(X) �= A or W ��= Φ(A), S is satisfied.
We define the priority ordering of the possible outcomes of β by g <L u <L w.

And a general S-strategy is just an modification of the S-module according
to the observations in (1)–(4) above.

3 The Priority Tree T

In this section, we build the priority tree T and analyse some basic properties
about the priority tree. First we define the priority ranking of the requirements.

Definition 3.1. Given a sequence L = (X0, X1, · · · , Xn) of requirements, let m
be the greatest j ≤ n such that Xj is a P- or an R-requirement. Then:

(i) We say that Px is complete in L if there is a k such that m < k ≤ n and
Xk = Qx,y for some y ∈ ω.

(ii) We say that Re is complete in L, if there is a k such that m < k ≤ n and
Xk = Se,i for some i ∈ ω.

(iii) We say that L = (X0, X1, · · · , Xn) is complete, if for every j, if Xj is a
P- or an R-requirement, then Xj is complete in L.

We now define the priority ranking L of the requirements inductively.

Definition 3.2. (i) Define the priority ranking of the P- and R-requirements
such that Pe < Re < Pe+1 < Re+1 holds for each e ∈ ω.

86 A. Li

(ii) Define L = ∅.
Suppose by induction that L = (X0, X1, · · · , Xn) has been defined.
(iii) If L is not complete, then let j be the least k such that Xk is a P- or an

R-requirement which is not complete in L. If Xj = Px for some x, then let y be
minimal such that Qx,y is not in L, and set Xn+1 = Qx,y. If Xj = Re for some
e, then let i be the least i′ such that Se,i′ is not in L and set Xn+1 = Se,i.

Set L = (X0, X1, · · · , Xn, Xn+1) and go back to (iii).
(iv) Otherwise, then let Xn+1 be the least P- or R-requirement as defined in

(i) which is not in L, set L = (X0, X1, · · · , Xn, Xn+1) and go back to (iii).
(v) Suppose that L = (X0, X1, · · ·). Then we define Xi < Xj iff i < j, giving

the priority ranking of the requirements.

Proposition 3.3. Suppose that L is the priority ranking of the requirements
defined in definition 3.2. Then for all e ∈ ω, we have:

(i) Pe < Re < Pe+1 < Re+1,
(ii) Pe < Qe,i < Qe,i+1 for all i ∈ ω, and
(iii) Re < Se,i < Se,i+1 for all i ∈ ω.

Proof. This is immediate from definitions 3.1 and 3.2. ��

Definition 3.4. We define the possible outcomes of a strategy as the same as
that in section 2.

Definition 3.5. Given a node ξ:

(i) Px is satisfied at ξ, if there are Px-strategy τ and Qx,y-strategy σ for some
y such that
(a) τ ⊂ τ 〈̂0〉 ⊆ σ ⊂ σ 〈̂0〉 ⊆ ξ,
(b) there is no Se,i-strategy β such that σ 〈̂0〉 ⊆ β ⊂ β 〈̂u〉 ⊆ ξ for any e < x.

(ii) Px is active at ξ, if Px is not satisfied at ξ and there is a Px-strategy τ such
that τ ⊂ ξ and there is no Se,i-strategy β such that τ ⊂ τ 〈̂0〉 ⊆ β ⊂ β 〈̂u〉 ⊆ ξ
for any e < x.

(iii) Re is satisfied at ξ, if either (a) or (b) below holds,
(a) there is an Re-strategy α such that α 〈̂1〉 ⊆ ξ and there is no Se′,i′ -strategy
β such that α 〈̂1〉 ⊆ β ⊂ β 〈̂u〉 ⊆ ξ for any e′ < e.
(b) there is an Se,i-strategy β such that β 〈̂a〉 ⊆ ξ for some a ∈ {g, u} and such
that there is no Se′i′ -strategy β′ with β 〈̂a〉 ⊆ β′ ⊂ β′ 〈̂u〉 ⊆ ξ for any e′ < e.

(iv) We say that Re is active at ξ, if Re is not satisfied at ξ, and there is an
Re-strategy α such that
(a) α 〈̂0〉 ⊆ ξ,
(b) there is no Qx,y-strategy σ such that α 〈̂0〉 ⊆ σ ⊂ σ 〈̂0〉 ⊆ ξ for any x ≤ e,
and
(c) there is no Se′,i′ -strategy β such that α 〈̂0〉 ⊆ β ⊂ β 〈̂b〉 ⊆ ξ for any b ∈ {g, u}
and any e′ < e.

(v) We say that Qx,y is satisfied at ξ if there is a Qx,y-strategy σ ⊂ ξ.
(vi) We say that Se,i is satisfied at ξ if there is an Se,i-strategy β ⊂ ξ.

We now define the priority tree T .

Elementary Differences Among Jump Hierarchies 87

Definition 3.6. Let L be the priority ranking of the requirements defined in
definition 3.2. Then:

(i) Define the root node ∅ to be the strategy for the first requirement in L,
which is actually P0.

(ii) The immediate successors of a node are the possible outcomes of the
corresponding strategy.

(iii) A node ξ will work on the least element in L which is not satisfied, and
not active at ξ.

As usual, we have the following:

Proposition 3.7. (Finite Injury Along Any Path Proposition) Let f be an
infinite path through T . Then for every P- or R-requirement X , there is a fixed
n0 such that either X is satisfied at f � n for all n ≥ n0, or X is active at f � n
for all n ≥ n0.

Proof. By induction on the priority ranking of the requirements. ��
Given an Se,i-strategy, we define the top of β to be the longest Re-strategy α
such that α 〈̂0〉 ⊆ β, denoted by top(β).

We also need some more properties about the structure of the priority tree T .

Proposition 3.8. Let β ∈ T be an Se,i-strategy, and α = top(β). Then:

(i) If σ is a Qx,y-strategy and α ⊂ α 〈̂0〉 ⊆ σ ⊂ σ 〈̂0〉 ⊆ β, then x > e.
(ii) If β′ is an Se′,i′ -strategy such that α ⊂ α 〈̂0〉 ⊆ β′ ⊂ β′ 〈̂a〉 ⊆ β for some

a ∈ {g, u}, then for α′ = top(β′), α ⊂ α′ ⊂ β′ ⊂ β, and e′ > e.
(iii) If α′ is an Re′ -strategy such that α ⊂ α′ ⊂ β, then e′ > e.
(iv) If τ is a Px-strategy such that α ⊂ τ ⊂ β, then x > e.

Proof. It is straightforward from definitions 3.5 and 3.6. ��
The full construction and its verification is a 0

′′′
-priority tree argument which

will be given in the full version of the paper.

References

1. S. B. Cooper [1974a], On a theorem of C. E. M. Yates (handwritten notes).
2. S. B. Cooper [1974b], Minimal pairs and high recursively enumerable degrees, J.

Symbolic Logic 39 (1974), 655–660.
3. S. B. Cooper and Angsheng Li, Splitting and nonsplitting, II: A low2 c.e. degree

above which 0′ is not splittable, the Journal of Symbolic Logic, Vol. 67, No. 4,
Dec. 2002.

4. R. G. Downey, S. Lempp and R. A. Shore [1993], Highness and bounding minimal
pairs, Math. Logic Quarterly, Vol. 39, 475–491.

5. L. Harrington [1976], On Cooper’s proof of a theorem of Yates, Parts I and II
(handwritten notes).

6. Carl G. Jockusch, JR., Angsheng Li, and Yue Yang, A join theorem for the com-
putably enumerable degrees, Transactions of the American Mathematical Society,
Vol. 356, No. 7, pages 2557 –2568.

88 A. Li

7. L.Harrington [1978], Plus cupping in the recursively enumerable degrees, (hand-
written notes).

8. A. H. Lachlan [1965], On a problem of G. E. Sacks, Proc. Amer. Math. Soc. 16
(1965), 972–979.

9. A. H. Lachlan [1975], A recursively enumerable degree which will not split over all
lesser ones, Ann. Math. Logic 9 (1975), 307–365.

10. A. H. Lachlan [1979], Bounding minimal pairs, J. Symbolic Logic, 44 (1979),
626–642.

11. D. A. Martin [1966a], On a question of G. E. Sacks, J. Symbolic Logic 31 (1966),
66–69.

12. D. A. Martin [1966b], Classes of recursively enumerable sets and degrees of un-
solvability, 2, Math. Logik Grundlag Math. 12 (1966), 295–310.

13. D. Miller [1981], High recursively enumerable degrees and the anti-cupping prop-
erty, in M. Lerman, J. H. Schmerl and R. I. Soare (editors), Lecture Notes in
Mathematics No. 859, Springer-Verlag, Berlin, Heidelberg, Tokyo, New York, 1981.

14. A. Nies, R. A. Shore and T. A. Slaman [1998], Interpretability and definability in
the recursively enumerable degrees, Proc. London Math. Soc. (3), 77 (2): 241–291,
1998.

15. R. W. Robinson [1971a], Interpolation and embedding in the recursively enumer-
able degrees, Ann. of Math. (2) 93 (1971), 285–314.

16. R. W. Robinson [1971b], Jump restricted interpolation in the recursively enumer-
able degrees, Ann. of Math. (2) 93 (1971), 586–596.

17. G. E. Sacks [1963], Recursive enumerability and the jump operator, Tran. Amer.
Math. Soc. 108 (1963), 223–239.

18. G. E. Sacks [1964], The recursively enumerable degrees are dense, Ann. of Math.
(2) 80 (1964), 300–312.

19. G. E. Sacks [1967], On a theorem of Lachlan and Martin, Proc. Amer. Math. Soc.
18 (1967), 140–141.

20. R. A. Shore, The lowm and lown r.e. degrees are not elementarily equivalent,
Science in China, Series A, 2004.

21. R. A. Shore and T. A. Slaman [1990], Working below a low2 recursively enumerable
degree, Archive for Math. Logic, 29 201–211.

22. R. A. Shore and T. A. Slaman [1993], Working below a high recursively enumerable
degree, J. Symbolic Logic, Vol. 58 No. 3, Sept. 1993, 824–859.

23. R. I. Soare [1987], Recursively Enumerable Sets and Degrees, Springer-Verlag
Berlin, Heidelberg New York London Pairs Tokyo, 1987.

The proof of this paper was written in 2001, but has not appeared in the
literature. 1991 Mathematics Subject Classification. Primary 03D25, 03D30;
Secondary 03D35.

	Introduction
	Requirements and Strategies
	The Priority Tree T

