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Abstract. The constrained minimum vertex cover problem on bipartite
graphs (the Min-CVCB problem) is an NP-complete problem. This paper
presents a polynomial time approximation algorithm for the problem
based on the technique of chain implication. For any given constant ε > 0,
if an instance of the Min-CVCB problem has a minimum vertex cover
of size (ku, kl), our algorithm constructs a vertex cover of size (k∗

u, k∗
l ),

satisfying max{k∗
u/ku, k∗

l /kl} ≤ 1 + ε.

1 Introduction

With the development of VLSI technology, the scale of electric circuit chip be-
comes larger and larger, and the possibility of introducing defects also increases
along with the manufacture craft. With the increasing in the chip integration,
it is not allowed that the wrong memory element appears in the manufacture
process. A better solution is to use reconfigurable arrays. A typical reconfig-
urable memory array consists of a rectangular array plus a set of spare rows and
spare columns. A defective element is repaired by replacing the row or the col-
umn containing the element with a spare row or a spare column. Since the cost
of reconfiguration is proportional to the number of replaced rows and columns,
people often replace as few as possible rows and columns to repair the array. This
problem can be formulated as a constrained minimum vertex cover problem on
bipartite graphs [3,7], which is formulated as follows.

Definition 1. [Constrained minimum vertex cover in bipartite graphs (Min-
CVCB)] Given a bipartite graph G = (V, E) with the vertex bipartition V =
U ∪L and two integers ku and kl, determine whether there is a minimum vertex
cover of G with at most ku vertices in U and at most kl vertices in L.
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For simplify our description, we will say that a bipartite graph G = (U ∪L, E)
has a minimum vertex cover of size (ku, kl) if G has a minimum vertex cover
with at most ku vertices in U and at most kl vertices in L.

The Min-CVCB problem is NP-complete [3]. The problem was proposed by
Hasan and Liu [7] in 1988, who introduced the concept of the critical set to de-
velop a branch-and-bound algorithm for solving the Min-CVCB problem, based
on the A∗ algorithm [12]. No explicit analysis was giving in [7] for the running
time of their algorithm, but it is not hard to see that in the worst-case the
running time of the algorithm is at least O(2ku+kl + mn1/2). The Min-CVCB
problem has been extensively studied in last two decades, mainly on heuristic
algorithms. Interested readers are referred to [1,2,8,9,11,13] for the progress.

Recently, people used the parameterized computation theory to study exact
algorithms for the Min-CVCB problem [3,6]. After analyzing the structures of bi-
partite graphs, Fernau and Niedermeier [6] used the branching search technology
to develop an algorithm of time complexity O((ku + kl)n + 1.4ku+kl). Chen and
Kanj [3] proved that the Min-CVCB problem is NP-complete. By using classical
results in matching theory and recently developed techniques in parameterized
computation theory, they proposed an exact algorithm with time complexity
O((ku + kl)|G| + 1.26ku+kl), which is currently the best exact algorithm for the
Min-CVCB problem.

Both heuristic algorithms and exact algorithms for the Min-CVCB problem
have drawbacks. Heuristic algorithms are unable to provide solutions in a guar-
anteed time; while exact algorithms could get optimal solutions but run in expo-
nential time. In this paper, we are interested in polynomial time approximation
algorithms for the Min-CVCB problem. While a polynomial time approximation
algorithm may not be able to find an optimal solution, it finds a near-optimal
solution with a guaranteed error bound. In practice, near-optimality is often
good enough, and acceptable in many application fields.

Our algorithm proceeds as follows. We firstly reduce the input size of a given
instance of the Min-CVCB problem by applying the technique of kernelization
proposed in parameterized computation theory [5]. Then we make full use of
the classic matching theory on bipartite graphs to give a deep analysis of the
structures of bipartite graphs. Based on the analysis, we get a 1 + ε approxima-
tion algorithm based on the technique of chain implication for the Min-CVCB
problem, in the following sense: for a given constant ε > 0, if the instance
of the Min-CVCB problem has a constrained minimum vertex cover of size
(ku, kl), then our algorithm produces a vertex cover of size (k∗

u, k∗
l ) satisfying

max{k∗
u/ku, k∗

l /kl} ≤ 1 + ε.
The paper is organized as follows. In section 2, we formally define what is

an approximation algorithm for the Min-CVCB problem. Section 3 describes
some related definitions and lemmas. The heart of this paper is section 4, which
proposes a 1 + ε approximation algorithm for the Min-CVCB problem based
on the formulation of a directed acyclic graph. Section 5 gives the description
of our algorithm and an explicit analysis of its approximation ratio and time
complexity. Conclusions and future research are given in section 6.



762 J. Wang, X. Xu, and J. Chen

2 Approximation Algorithms for the Min-CVCB Problem

First, we give some basic concepts in approximation algorithm theory. More
details could be found in [4].

Definition 2. Given an NP optimization problem Q, we say that an algorithm
A for Q has an approximation ratio f(n) if, for any given instance I of Q, the
value A(I) of the solution produced by the algorithm A is within a factor of
f(|I|) of the value Opt(I) of an optimal solution:

max{A(I)/Opt(I), Opt(I)/A(I)} ≤ f(|I|)

Note that f(n) can be a constant.

Definition 3. Let Q be an NP optimization problem. If there exists an approx-
imation algorithm A for Q that takes (x, ε) as its input, where x is an instance
of Q and ε > 0 is a constant, and outputs a solution y to x such that the ap-
proximation ratio of y over the optimal solution to x is bounded by 1 + ε, and
for any fixed constant ε > 0, the algorithm A runs in time polynomial in the
size of its input instance, then we say that the approximation algorithm A is a
polynomial-time approximation scheme (shortly a PTAS) for the problem Q.

Therefore, approximation algorithms and PTAS are for computational optimiza-
tion problems, in which a solution of optimal value is searched. On the other
hand, the Min-CVCB problem is a decision problem, in which we only need to
answer “yes” or “no” by determining if a given bipartite graph G = (U ∪ L, E)
has a minimum vertex cover of size (ku, kl). To study approximability of the
Min-CVCB problem, we formally define, as follows, what is a PTAS for the
Min-CVCB problem.

Definition 4. An algorithm A is a polynomial time approximation scheme (i.e.,
PTAS) for the Min-CVCB problem if for any instance (G = (U ∪ L); ku, kl) of
the Min-CVCB problem, and for any given constant ε > 0, the algorithm A
either claims that the bipartite graph G has no minimum vertex cover of size
(ku, kl), or, in case G has a minimum vertex cover of size (ku, kl), constructs a
vertex cover of size (k∗

u, k∗
l ) for G, satisfying max{k∗

u/ku, k∗
l /kl} ≤ 1 + ε, and

the algorithm A runs in polynomial time for any fixed ε > 0.

3 Related Definitions and Lemmas

Our algorithm that searches for a near-optimal solution for the Min-CVCB prob-
lem contains the following two steps:

(1) Reducing to the kernel. The main idea of reducing to the kernel is to
reduce the algorithm’s search space size. To reduce to the Min-CVCB problem’s
kernel is to reduce the size of the input bipartite graph. In Lemma 1, by using
a polynomial time preprocessing algorithm, we reduce a given instance of the
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Min-CVCB problem to an equivalent instance (G′; k′
u, k′

l) in which the bipartite
graph G′ has a perfect matching and has at most 2(k′

u + k′
l) vertices. Based on

this, Lemma 2 applies the classical matching theory to convert it into a directed
acyclic graph consisting of elementary bipartite graphs.

(2) Making full use of the technique of chain implication to enumerate the
minimum vertex covers of the elementary bipartite graphs whose size is larger
than a constant to search for a vertex cover for the given graph. It makes sure
that, if the input bipartite graph G′ has a minimum vertex cover of size (k′

u, k′
l),

then the algorithm will find a close enough vertex cover for G′.
We start with some related definitions and related known results.

Definition 5. A graph G is bipartite if its vertex set can be partitioned into two
sets U (the ”upper part”) and L (the ”lower part”) such that every edge in G
has one endpoint in U and the other endpoint in L. A bipartite graph is written
as G=(U ∪L, E) to indicate the vertex bipartition. The vertex sets U and L are
called the U -part and the L-part of the graph, and a vertex is a U -vertex (resp.
an L-vertex) if it is in the U -part (resp. in the L-part) of the graph.

Let G = (U ∪ L, E) be a bipartite graph with a perfect matching. The graph
G is elementary [10] if every edge in G is contained in a perfect matching in G.
It is known that an elementary bipartite graph has only two minimum vertex
covers, namely U and L [10].

Lemma 1. ([3]) The time complexity for solving an instance (G; ku, kl) of the
Min-CVCB problem, where G is a bipartite graph of n vertices and m edges, is
bounded by O(mn1/2 + t(ku + kl)), where t(ku + kl) is the time complexity for
solving an instance (G′, k′

u, k′
l) of the problem, with k′

u ≤ ku, k′
l ≤ kl, and G′ has

a perfect matching and contains at most 2(k′
u + k′

l) vertices.

Lemma 2. (The Dulmage-Mendelsohn Decomposition theorem [10]) A bipartite
graph G = (U ∪L, E) with perfect matching can be decomposed and indexed into
elementary subgraphs Bi = (Ui ∪ Li, Ei), i = 1, 2, . . . , r, such that every edge in
G from a subgraph Bi to a subgraph Bj with i < j must have one endpoint in the
U -part of Bi and the other endpoint in the L-part of Bj. Such a decomposition
can be constructed in time O(|E|2).
An elementary subgraph Bi will be called an (elementary) block. The weight of
a block Bi = (Ui ∪ Li, Ei) is defined to be |Ui| = |Li|. Edges connecting vertices
in two different blocks will be called inter-block edges.

Lemma 3. ([3]) Let G be a bipartite graph with perfect matching, and let B1,
B2, . . ., Br be the blocks of G given by the Dulmage-Mendelsohn Decomposition.
Then every minimum vertex cover for G is a union of minimum vertex covers
of the blocks B1, B2, . . ., Br.

We say that an instance (G; ku, kl) of the Min-CVCB problem is normalized if
G = (U ∪ L, E) has a perfect matching, |L| = |U | ≤ (ku + kl), and a Dulmage-
Mendelsohn Decomposition of G is given. By Lemmas 1 and 2, we only need to
concentrate on normalized instances of the Min-CVCB problem. Formally, this
approach is validated by the following results
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Lemma 4. ([3]) There is an algorithm that, on a given instance (G; ku, kl) of
the Min-CVCB problem, constructs a subset Z0 of vertices in G and a normalized
instance (G′; k′

u, k′
l) of the problem, where G′ is a subgraph of G, such that

(1) Every vertex cover of G′ plus Z0 is a vertex cover of G; and
(2) A vertex set Y in G′ is a constrained minimum vertex cover of size (k′

u, k′
l)

for G′ if and only if the set Y ∪ Z0 is a constrained minimum vertex cover of
size (ku, kl) for G.

The running time of the algorithm is O(|G|2).

By Lemma 4, if we want to develop a polynomial time approximation scheme
for the Min-CVCB problem, we can simply concentrate on normalized instances
of the problem, as shown by the following corollary.

Corollary 1. Let (G; ku, kl) be an instance of the Min-CVCB problem. Then
a normalized instance (G′; k′

u, k′
l) of the problem can be constructed in time

O(|G|2), such that from a vertex cover of size (k′′
u, k′′

l ) for G′ satisfying the
condition max{k′′

u/k′
u, k′′

l /k′
l} ≤ 1 + ε, we can construct in time O(|G|) a vertex

cover of size (k∗
u, k∗

l ) for G satisfying max{k∗
u/ku, k∗

l /kl} ≤ 1 + ε.

Proof. For the given instance (G; ku, kl) of the Min-CVCB problem, where G =
(U ∪L, E) is a bipartite graph, we apply the algorithm in Lemma 4 to construct,
in time O(|G|)2), the set Z0 and the normalized instance (G′; k′

u, k′
l) satisfying

the conditions in the lemma. Suppose that the set Z0 contains u U -vertices and
l L-vertices in the bipartite graph G. By condition (2) in Lemma 4, we must
have k′

u + u = ku and k′
l + l = kl.

Suppose that Y is a vertex cover of size (k′′
u, k′′

l ) for the graph G′ satisfying
max{k′′

u/k′
u, k′′

l /k′
l} ≤ 1 + ε. By condition (1) in Lemma 4, the set Y ∪ Z0 is a

vertex cover of size (k∗
u, k∗

l ) for the graph G, where k∗
u = k′′

u +u and k∗
l = k′′

l + l.
Moreover, we have

k∗
u/ku = (k′′

u + u)/(k′
u + u) ≤ max{1, k′′

u/k′
u} ≤ 1 + ε, and

k∗
l /kl = (k′′

l + l)/(k′
l + l) ≤ max{1, k′′

l /k′
l} ≤ 1 + ε.

That is, Y ∪ Z0 is a vertex cover of size (k∗
u, k∗

l ) for the graph G that can be
constructed from the vertex cover Y of the graph G′ in time O(|G|) and satisfies
the condition max{k∗

u/ku, k∗
l /kl} ≤ 1 + ε. ��

4 The AACI-D Algorithm

We concentrate on normalized instances (G; ku, kl) of the Min-CVCB problem,
by which we assume that the bipartite graph G = (U ∪ L, E) has a perfect
matching, |L| = |U | ≤ (ku + kl), and a Dulmage-Mendelsohn Decomposition
{B1, . . . , Br} of G is given, where each Bi is a block in G, and every edge
between two blocks Bi and Bj with i < j has one end in the U -part of Bi and
the other end in the L-part of Bj .



An Approximation Algorithm Based on Chain Implication 765

We construct a directed acyclic graph (a DAG) D from the decomposition
{B1, . . . , Br} of G, as follows. Each block Bi in G corresponds to a vertex wi in
D, and there is a directed arc from wi to wj in the DAG D if and only if there
is an edge from the U -part of the block Bi to the L-part of the block Bj in the
graph G.

Let ε > 0 be a fixed constant. The PTAS for the Min-CVCB problem on
normalized instances is given in Figure 1. Without loss of generality, we assume
that ku ≥ kl (otherwise, we simply exchange U and L).

Algorithm AACI-D(G, ku, kl, ε)
input: a normalized instance (G, ku, kl) of Min-CVCB, and a constant ε > 0
output: a vertex cover for G, or report no vertex cover of size (ku, kl) for G

1. construct the DAG D based on the decomposition {B1, . . . , Br} of G;
2. let B be the collection of the blocks Bi whose weight is at least εku;
3. for each union Y of minimum vertex covers of the blocks in B do
3.1 Y = Y ∪ Y ′, where Y ′ is the set of vertices that are forced by Y ;
3.2 if Y is consistent, with u U -vertices and l L-vertices then

let B′
1, . . ., B′

t be the rest of the blocks, sorted as in the DAG D;
let h be the first index such that u + |B′

1| + · · · |B′
h| > ku;

add the U -parts of B′
1, . . ., B′

h and the L-parts of B′
h+1, . . ., B′

t to Y ;
return Y ;

4. return (“no vertex cover of size (ku, kl) for G”).

Fig. 1. The AACI-D Algorithm for normalized instances of Min-CVCB

We first give some explanations to the algorithm. Let Bi = (Ui ∪ Li, Ei) be
a block in the graph G. By Lemma 3, every minimum vertex cover of G either
includes Ui but excludes Li, or includes Li but excludes Ui. Thus, for two blocks
Bi = (Ui ∪ Li, Ei) and Bj = (Uj ∪ Lj , Ej) in the graph G with an edge from
Ui to Lj (thus i < j), if a minimum vertex cover of G includes Li then it must
also include Lj (since it excludes Ui and there is an edge from Ui to Lj). In this
case, we say that the set Lj is forced (to be in the minimum vertex cover) by
the set Li. Similar derivation shows that the set Ui is forced by the set Uj. More
generally, let Bi = (Ui ∪ Li, Ei) be a block in the graph G, and let Bi be the
collection of blocks Bj such that there is a directed path from Bi to Bj in the
DAG D. Then all L-parts of the blocks in Bi are forced by the set Li. Similarly,
let B′

i be the collection of blocks Bj such that there is a directed path from Bj

to Bi in the DAG D, then all U -parts of the blocks in B′
i are forced by the set

Ui. Even more generally, let Y be a set that is a union of U -parts and L-parts
of some blocks in G that does not contain both U -part and L-part of any block,
then we say that a set Y ′ is forced by Y if the set Y ′ consists of those vertices
that are either L-vertices forced by L-vertices in Y or U -vertices that is forced by
U -vertices in Y . This technique of forcing more vertices into a minimum vertex
cover using the existing vertices in the minimum vertex cover is called the chain
implication technique [3].
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For the given instance (G; ku, kl) of the Min-CVCB problem, we say that a
set Y of vertices in the graph G is consistent if each block of the graph G either
has no intersection with Y , or has exactly one of its U -part or L-part entirely
contained in the set Y , and if the number of U -vertices in Y is bounded by ku

and the number of L-vertices in Y is bounded by kl.
Now we are ready to discuss the algorithm. Let {B1, . . . , Br} be the Dulmage-

Mendelsohn Decomposition of the graph G, sorted in the order that every edge
between two blocks Bi and Bj with i < j has one end in the U -part of Bi and
the other end in the L-part of Bj . As described in the algorithm, let B be the
collection of the blocks Bi whose weight is at least εku.

By Lemma 3, every minimum vertex cover of the graph G is a union of mini-
mum vertex covers of its blocks. Therefore, if the graph G has a minimum vertex
cover Y0 of size (ku, kl), then in the enumeration of step 3, we will eventually
get a set Y in which the minimum vertex cover for each block Bi in B is the
same as that in the set Y0. For such a set Y , after forcing further vertices in Y ′

to the set Y , we still get a set Y that is a subset of the set Y0. In particular,
this set Y should be consistent. We show that on this set Y , the algorithm will
return a vertex cover of the graph G with the desired properties. Suppose that
Y contains u U -vertices and l L-vertices, u ≤ ku and l ≤ kl.

Let B′
1, . . ., B′

t be the blocks in which no vertices are in the set Y . Note
that none of these blocks B′

i is in the collection B since every block in B has
either its U -part or its L-part included in the set Y by step 3. In particular,
the weight of each B′

i is smaller than εku. Since h is the first index such that
u + |B′

1| + · · · + |B′
h| > ku, we must have

u + |B′
1| + · · · + |B′

h−1| ≤ ku

Combining this with |B′
h| ≤ εku, we get

u + |B′
1| + · · · + |B′

h−1| + |B′
h| ≤ ku + εku < (1 + ε)ku

Therefore, in the final returned set Y , the number k∗
u of U -vertices in Y is

bounded by (1 + ε)ku. Moreover, since every block has exactly one of its U -part
and L-part in Y , the number k∗

l of L-vertices in the final returned set Y is
actually smaller than kl since ku + kl ≥ k∗

u + k∗
l . In consequence, the numbers

k∗
u and k∗

l satisfy the condition max{k∗
u/ku, k∗

l /kl} ≤ 1 + ε.
We still need to prove that in this case the returned set Y is a vertex cover

of the graph G. Let e = [vi, vj ] be any edge in the graph G. If e is an edge in a
block Bi, then since every block in G has either its U -part or its L-part in the
set Y , one of the vertices vi and vj must be contained in the set Y . If e is an
inter-block edge, let vi be a U -vertex in a block Bi and vj be an L-vertex in a
block Bj , i < j. If Bi is a block of weight at least εku, and if the U -part of Bi

is not in Y , then the L-part of Bi must be in Y by our construction, and the
L-part of Bi also forces the L-part of Uj into Y . So the vertex vj is in the set
Y . Similarly, if Bj has weight at least εku, then one of the vertices vi and vj

must be in the set Y . The only remaining case is that both blocks Bi and Bj

have weight smaller than εku. In this case, if Bi is one of the blocks B′
1, . . ., B′

h,
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then the U -part of Bi, thus the vertex vi, is in the set Y . On the other hand, if
Bj is one of the blocks B′

h+1, . . ., B′
t, then the L-part of Bj , thus the vertex vj ,

is in the set Y . Note that because the sets B′
1, . . ., B′

t are topologically sorted
as in the DAG D, these are the only two possible cases: if the block Bj is in
the collection {B′

1, . . . , B
′
h} then so is the block Bi, and if the block Bi is in the

collection {B′
h+1, . . . , B

′
t} then so is the block Bj . In summary, it is always the

case that one of the ends of the edge e is in the set Y . Since e is an arbitrary
edge in G, we conclude that the set Y is a vertex cover of the graph.

This proves the correctness of the algorithm. We have the following theorem.

Theorem 1. The algorithm AACI-D runs in time O(m2 + 22/εm), where m
is the number of edges in the graph G. If the input instance (G; ku, kl) has a
minimum vertex cover of size (ku, kl), then the algorithm produces a vertex cover
for the graph G of size (k∗

u, k∗
l ) satisfying max{k∗

u/ku, k∗
l /kl} ≤ 1 + ε.

Proof. The second part of the theorem has been proved by the previous discus-
sion. What remains is to prove the time complexity of the algorithm.

By Lemma 2, step 1 of the algorithm takes time O(m2). It is also easy to
verify that step 2 of the algorithm takes no more than time O(m2).

The key observation is that the number of blocks in the collection B is bounded
by 2/ε. In fact, by our assumption, ku ≥ kl. Therefore, the total number of U -
vertices in the graph G is bounded by ku + kl ≤ 2ku (note that the size of a
minimum vertex cover of the graph G is equal to the number of U -vertices, which
is equal to the number of L-vertices in G). Since all blocks in G are disjoint, and
each block in B has weight (i.e., the number of U -vertices) at least εk, the total
number of blocks in B is not larger than

(ku + kl)/(εku) ≤ 2ku/(εku) = 2/ε

Since each enumeration in step 3 takes either the U -part or the L-part of each
block in B, the total number of possible sets Y enumerated in step 3 is bounded
by 22/ε. Each execution of the body of step 3 obviously takes time no more than
O(m). In conclusion, the total running time of step 3 of the algorithm is bounded
by O(22/εm). This concludes the theorem. ��

5 Putting All Together

We summarize all the discussions given in the previous sections and present the
AACI algorithm in Figure 2.

Some explanation is needed.
Let u be a U -vertex of degree larger than kl. If u is not included in the vertex

cover, then all neighbors of u must be in the vertex cover. Since u has more than
kl neighbors, which are all L-vertices, this implies that the number of L-vertices
in the vertex cover would exceed the given bound kl, which is not allowed in the
minimum vertex cover of size (ku, kl). This justifies step 2: a U -vertex of degree
larger than kl should be directly included in the vertex cover. Similarly, in step 3,
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Algorithm AACI(G,ku, kl, ε)
input: an instance (G, ku, kl) of Min-CVCB, and a constant ε > 0
output: a vertex cover for G, or report no vertex cover of size (ku, kl) for G

1. Y0 = ∅;
2. for each U -vertex u of degree larger than kl do

Y0 = Y0 ∪ {u}; ku = ku − 1;
3. for each L-vertex l of degree larger than ku do

Y0 = Y0 ∪ {l}; kl = kl − 1;
4. construct an equivalent normalized instance (G′; k′

u, k′
l) by Corollary 1;

5. call algorithm AACI-D on instance (G′; k′
u, k′

l, ε);
6. if step 5 returns a vertex cover Y ′ for the graph G′

then construct a desired vertex cover Y for G from Y ′ and Y0

else return (“no vertex cover of size (ku, kl) for G”).

Fig. 2. The AACI-D Algorithm for normalized instances of Min-CVCB

all L-vertices of degree larger than ku are directly included in the vertex cover.
The running time of steps 1-3 is obviously bounded by O((n + m)2), where n
and m are the number of vertices and number of edges in the graph G.

By Corollary 1, an equivalent normalized instance (G′; k′
u, k′

l) can be con-
structed in time O((n + m)2) in step 4.

By Theorem 1, step 5 takes time O(m2 +22/εm), which either claims that the
graph G′ has no constrained minimum vertex cover of size (k′

u, k′
l), or returns

a vertex cover Y ′ of size (k′′
u, k′′

l ) satisfying max{k′′
u/k′

u, k′′
l /k′

l) ≤ 1 + ε. By
Lemma 4, if the graph G′ has no constrained minimum vertex cover of size
(k′

u, k′
l), then the graph G has no constrained minimum vertex cover of size

(ku, kl). On the other hand, if G′ has a minimum vertex cover of size (k′
u, k′

l),
then by Theorem 1, step 5 of the algorithm returns a vertex cover of size (k′′

u, k′′
l )

satisfying max{k′′
u/k′

u, k′′
l /k′

l) ≤ 1 + ε. Now from Corollary 1, step 6 of the
algorithm AACI will return a vertex cover of size (k∗

u, k∗
l ) for the input graph G

satisfying the condition max{k∗
u/ku, k∗

l /kl) ≤ 1 + ε.
This proves the correctness of the algorithm AACI.
The time complexity of the algorithm also follows from the previous discus-

sion. In particular, step 4 of the algorithm takes time O((n+m)2) by Corollary 1,
and step 5 takes time O((n + m)2 + 22/ε(n + m)) by Theorem 1.

We summarize these discussions in the following theorem.

Theorem 2. The algorithm AACI is a polynomial time approximation scheme
for the Min-CVCB problem, and its running time is bounded by O((n+m)(22/ε+
n + m)).

6 Conclusions

In this paper, we have studied the Min-CVCB problem that has direct applica-
tions in the area of VLSI manufacturing. Since heuristic algorithms and exact
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algorithms may not meet the requirement of industry applications, we studied
approximation algorithms for the problem. We developed a polynomial time al-
gorithm with a 1 + ε approximate ratio for the problem in the following sense:
given an instance (G; , ku, kl) for the Min-CVCB, where G is a bipartite graph
and looking for a minimum vertex cover of at most ku U -vertices and at most
kl L-vertices, our algorithm either reports that no such a minimum vertex cover
exists, or constructs a vertex cover of k∗

u U -vertices and k∗
l L-vertices in G satisfy-

ing the condition max{k∗
u/ku, k∗

l /kl} ≤ 1+ε. The running time of our algorithm
is bounded by O((n + m)(22/ε + n + m)).
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