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Abstract. We analyze some edge-fault-tolerant properties of the folded
hypercube, which is a variant of the hypercube obtained by adding
an edge to every pair of nodes with complementary address. We show
that an n-dimensional folded hypercube is (n − 2)-edge-fault-tolerant
Hamiltonian-connected when n(≥ 2) is even, (n − 1)-edge-fault-tolerant
strongly Hamiltonian-laceable when n(≥ 1) is odd, and (n − 2)-edge-
fault-tolerant hyper Hamiltonian-laceable when n(≥ 3) is odd.

1 Introduction

Because of the hypercube’s importance, many variants of it have been proposed
(for example, see [3,6,7,16]). One variant that has been the focus of a great deal
of research is the folded hypercube, an extension of the hypercube constructed
by adding an edge to every pair of nodes that are the farthest apart, i.e., two
nodes with complementary addresses. It has been shown that, compared to a
regular hypercube, the folded hypercube can improve the system’s performance
in many measurements, such as diameter, mean inter-node distance, and traffic
density [3,20].

A graph G = (V, E) is a pair of two sets composed of a node set V and an
edge set E, where V is a finite set and E is a subset of {(u, v)| (u, v) is an
unordered pair of V }. We also use V (G) and E(G) to denote the node set and
edge set of G, respectively. A path, P [v0, vk] = 〈v0, v1, . . . , vk〉, is a sequence of
distinct nodes in which any two consecutive nodes are adjacent. We call v0 and
vk the end-nodes of the path. A path with end-nodes u and v is said to be a
u-v path. A path may contain a subpath, denoted as 〈v0, v1, . . . , vi, P [vi, vj ], vj ,
vj+1, . . . , vk〉, where P [vi, vj ] = 〈vi, vi+1, . . . , vj−1, vj〉. A cycle is a path with
v0 = vk and k ≥ 3. When the Hamiltonicity of a graph G is being investigated, it
is necessary to determine whether G is Hamiltonian or Hamiltonian-connected.
A cycle (respectively, path) in G is called a Hamiltonian cycle (respectively,
Hamiltonian path) if it contains every node of G exactly once. G is said to be
Hamiltonian if it contains a Hamiltonian cycle, and Hamiltonian-connected if
there exists a Hamiltonian path between every two nodes of G.

A graph G = (V0
⋃

V1, E) is bipartite if V0 ∩ V1 = ∅ and E ⊆ {(x, y)| x ∈
V0 and y ∈ V1}. We say V0 and V1 are partite sets of G, and V0

⋃
V1 a bipar-

tition. Two well-known interconnection networks, hypercubes [6,14] and star
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graphs [1,12], are both bipartite. However, because a bipartite graph is not
Hamiltonian-connected, except for K1 or K2, Simmons [17] introduced the con-
cept of Hamiltonian-laceability for such graphs. A Hamiltonian bipartite graph
G = (V0

⋃
V1, E) is Hamiltonian-laceable if there is a Hamiltonian path between

any two nodes x and y, where x ∈ V0 and y ∈ V1. Hsieh et al. [11] extended this
concept and proposed the concept of strong Hamiltonian-laceability. A graph
G = (V0

⋃
V1, E) is strongly Hamiltonian-laceable if there is a simple path of

length |V0| + |V1| − 2 between any two nodes of the same partite set. Lewinter
et al. [15] introduced another concept, called hyper Hamiltonian-laceability. A
bipartite graph G = (V0

⋃
V1, E) is hyper Hamiltonian-laceable if for any node

f ∈ Vi, i ∈ {0, 1}, there is a Hamiltonian path of G − f between any two nodes
of V1−i.1

The edge-fault-tolerant Hamiltonicity proposed by Hsieh et al. [10] measures
Hamiltonicity in interconnection networks with faulty edges. A Hamiltonian
graph G is k-edge-fault-tolerant Hamiltonian if G − F remains Hamiltonian for
every F ⊂ E(G) with |F | ≤ k. A Hamiltonian-laceable graph G is k-edge-
fault-tolerant Hamiltonian-laceable if G − F remains Hamiltonian-laceable for
every F ⊂ E(G) with |F | ≤ k. A strongly Hamiltonian-laceable graph G is
k-edge-fault-tolerant strongly Hamiltonian-laceable if G − F remains strongly
Hamiltonian-laceable for every F ⊂ E(G) with |F | ≤ k. A hyper Hamiltonian-
laceable graph G is k-edge-fault-tolerant hyper Hamiltonian-laceable if G − F
remains hyper Hamiltonian-laceable for every F ⊂ E(G) with |F | ≤ k.

Latifi et al. [13] showed that an n-dimensional hypercube is (n−2)-edge-fault-
tolerant Hamiltonian. Tsai et al. [18] further showed that an n-dimensional hy-
percube is (n − 2)-edge-fault-tolerant strongly Hamiltonian-laceable, and
(n − 3)-edge-fault-tolerant hyper Hamiltonian-laceable. Wang [20] showed that
the n-dimensional folded hypercube is (n − 1)-edge-fault-tolerant Hamiltonian.
It is known that the n-dimensional folded hypercube is bipartite (non-bipartite)
when n is odd (even) [23]. In this paper, we show that an n-dimensional folded
hypercube is (n − 2)-edge-fault-tolerant Hamiltonian-connected when n(≥ 2) is
even, (n − 1)-edge-fault-tolerant strongly Hamiltonian-laceable when n(≥ 1) is
odd, and (n − 2)-edge-fault-tolerant hyper Hamiltonian-laceable when n(≥ 3)
is odd.

2 Preliminaries

When using undirected graphs to model interconnection networks, our funda-
mental graph terminologies follow those in [21]. A subgraph of G = (V, E) is
a graph (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. Given a set V ′ ⊆ V , the
subgraph of G = (V, E) induced by V ′ is the graph G′ = (V ′, E′), where
E′ = {(u, v) ∈ E| u, v ∈ V ′}. In a graph G, the neighbors of a node v are
the nodes adjacent to it in G, and the degree of v is the number of edges incident
1 Let S be a set of edges and/or nodes of a graph G. Throughout this paper, the

notation G − S represents the resulting graph obtained by deleting those elements
in S from G.
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to it. A graph is said to be regular if all nodes have a common degree. Two
graphs G1 and G2 are isomorphic if there is a one-to-one function π from V (G1)
onto V (G2) such that (u, v) ∈ E(G1) iff (φ(u), φ(v)) ∈ E(G2).

An n-dimensional hypercube (n-cube for short) can be represented as an undi-
rected graph Qn = (V, E), where V consists of 2n nodes that are labelled as
binary numbers of length n from 00 . . . 0︸ ︷︷ ︸

n

to 11 . . .1︸ ︷︷ ︸
n

, and E is the set of edges

that connects two nodes iff their labels differ by exactly one bit. Note that Qn

is regular because the degree of each node is equal to n, and |E| = n2n−1.
An edge e = (u, v) ∈ E is said to be of dimension i if u = bnbn−1 . . . bi . . . b1
and v = bnbn−1 . . . bi . . . b1, where bj ∈ {0, 1} for j = 1, 2, . . . , n, and bi is the
one’s complement of bi, i.e., bi = 1 − bi. Note that there are 2n−1 edges in each
dimension.

Let x = xnxn−1 . . . x1 be an n-bit binary string. For 1 ≤ k ≤ n, we use
xk to denote the binary strings ynyn−1 . . . y1 such that yk = 1 − xk = xk and
xi = yi for all i �= k. The Hamming weight hw(x) of x is the number of i’s that
make xi = 1. Let x = xnxn−1 . . . x1 and y = ynyn−1 . . . y1 be two n-bit binary
strings. The Hamming distance h(x, y) between two nodes x and y is the number
of different bits in the corresponding strings of both nodes. Note that Qn is a
bipartite graph with a bipartition {x| hw(x) is odd} and {x| hw(x) is even}.
Let dG(x, y) be the distance of the shortest path between two nodes x and y in
graph G. It is known that dQn(x, y) = h(x, y).

An n-dimensional folded hypercube (folded n-cube for short) FQn is a regular
n-dimensional hypercube augmented by adding more edges between its nodes.
More specifically, a folded n-cube is obtained by adding an edge between two
nodes whose addresses are complementary, i.e., a node whose address is b =
bnbn−1 . . . b1 now has one more edge to node b = bnbn−1 . . . b1, in addition to
its original n edges. Hence, FQn has 2n−1 more edges than Qn. We call these
augmented edges skips, to distinguish them from regular edges.

For convenience, FQn can be represented by ∗ ∗ . . . ∗ ∗︸ ︷︷ ︸
n

= ∗n, where ∗ ∈

{0, 1} means “don’t care”. An i-partition on FQn = ∗n partitions FQn along
dimension i for some i ∈ {1, 2, . . . , n}, into two subcubes, Q0

n−1 = ∗n−i0∗i−1 and
Q1

n−1 = ∗n−i1∗i−1, where Q0
n−1 and Q1

n−1 are the subgraphs of FQn induced
by {xn . . . xi . . . x1 ∈ V (FQn)| xi = 0} and {xn . . . xi . . . x1 ∈ V (FQn)| xi = 1}),
respectively. Note that each Qj

n−1, where j ∈ {0, 1}, is isomorphic to an (n− 1)-
cube. An i-partition of an n-cube Qn can be defined similarly.

The following lemmas are useful in our method.

Lemma 1. [8] Let x and y be two distinct nodes in Qn; and let h(x, y) = d.
There are x-y paths in Qn whose lengths are d, d+2, d+4, ..., c, where c = 2n −1
if d is odd, and c = 2n − 2 if d is even.

Lemma 2. [18] The following two statements hold:

1. Qn is (n − 2)-edge-fault-tolerant strongly Hamiltonian-laceable.
2. Qn is (n − 3)-edge-fault-tolerant hyper Hamiltonian-laceable.
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It is well known that Qn (FQn for odd n) is bipartite. Thus, the following
proposition is used in each proof presented in this paper.

Proposition 1. For two distinct nodes x and y in Qn (or FQn for odd n),
h(x, y) is odd (even) iff x and y are in different partite sets (the same partite
set).2

Two paths are said to be node-disjoint if they have no common node.

Lemma 3. [19] Let V0 and V1 be partite sets of a fault-free Qn, where n ≥ 2.
Let a and b be two distinct nodes of V0, and a′ and b′ be two distinct nodes of V1.
Then, there exist two node-disjoint paths P [a, a′] and P [b, b′] spanning V (Qn),
i.e., V (P [a, a′]) ∪ V (P [b, b′]) = V (Qn).

3 Three Edge-Fault-Tolerant Properties

Let Q0
n−1(= ∗n−i0∗i−1) and Q1

n−1 = (∗n−i1∗i−1) be two subcubes after execut-
ing an i-partition on FQn. We define the set of crossing edges as EC = {(u, v) ∈
E(FQn)| u ∈ V (Q0

n−1), v ∈ V (Q1
n−1), and h(u, v) �= n}, and the set of skips

as ES = {(u, v) ∈ E(FQn)| u ∈ V (Q0
n−1), v ∈ V (Q1

n−1), and h(u, v) = n}.
Moreover, let F be the set of faulty edges of FQn; F0 = F ∩ E(Q0

n−1); F1 =
F ∩E(Q1

n−1); FC = F ∩EC ; and let FS = F ∩ES . For a node u = unun−1 . . . u1
in FQn, recall that u = un . . . u1.

3.1 Edge-Fault-Tolerant Hamiltonian-Connectivity

In this subsection, we demonstrate the edge-fault-tolerant Hamiltonian-
connectivity of the folded hypercube.

Lemma 4. FQn is (n − 2)-edge-fault-tolerant Hamiltonian-connected when
n(≥ 2) is an even integer.

Proof. Since FQ2 is a complete graph comprised of four nodes, it is clearly
Hamiltonian-connected. We now consider FQn, where n ≥ 4 is an even integer.
In the following, we attempt to construct a fault-free Hamiltonian path between
two arbitrary distinct nodes x and y when |F | = n−2. We consider the following
two cases.

Case 1. h(x, y) is odd. As FQn is constructed from Qn by adding skips, FQn−
F contains a subgraph G that is isomorphic to Qn with at most n− 2 faulty
edges. Since h(x, y) is odd, x and y are in different partite sets in H . By
Lemma 2(1), G contains a fault-free Hamiltonian path between x and y, and
so as FQn − F .

Case 2. h(x, y) is even. We have the following scenarios.

2 Hereafter, the terms “h(x, y) is odd” and “x and y are in different partite sets” are
used interchangeably; and “h(x, y) is even” and “x and y are in the same partite
set” are used similarly.
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Case 2.1. There is at least one faulty skip, i.e., FS �= ∅. We can execute
an i-partition on FQn for some i ∈ {1, 2, . . . , n} such that x and y
are in different subcubes. Without loss of generality, we assume that
x ∈ V (Q0

n−1) and y ∈ V (Q1
n−1). Since FS �= ∅, we have |FC ∪ FS | ≥ 1.

Recall that both FC and FS are two set of edges located between Q0
n−1

and Q1
n−1 after executing an i-partition. Therefore, the number of faulty

edges remaining in each of {Q0
n−1, Q1

n−1} is at most (n− 2)− 1 = n− 3,
i.e., |F0| ≤ n − 3, and |F1| ≤ n − 3. Let u(�= x) be a node in Q0

n−1
such that h(x, u) is odd, u �= y, and (u, u) is fault-free. (If such a node
u does not exist, then |FS | ≥ 2n−2 − 1 > n − 2 for n ≥ 4, which is a
contradiction.) Clearly, h(x, u) = n − h(x, u) is odd because n is even,
i.e., x and u are in different partite sets in the subgraph Qn according to
Proposition 1.3 Moreover, since x and y are in the same partite set in Qn

because of even h(x, y), y and u are in different partite sets in Qn. Since
|Fj | ≤ n−3 for j = 0, 1, by Lemma 2(1), Q0

n−1−F0 (Q1
n−1−F1) contains

a fault-free Hamiltonian path P0[x, u] (P1[u, y]). A desired Hamiltonian
x-y path can be constructed as P0[x, u]⊕(u, u)⊕P1[u, y], where ⊕ denotes
a path-concatenation operation.4

Case 2.2. There are no faulty skips, i.e., FS = ∅. In this case, no faulty
edges are skips. Let e be an arbitrary faulty edge whose dimension is i,
where i ∈ {1, 2, . . . , n}. We can execute an i-partition on FQn such that
|FC ∪FS | = |FC | ≥ 1. Using an argument similar to that in Case 2.1, we
have |F0| ≤ n − 3 and |F1| ≤ n − 3.
Case 2.2.1. x and y are in the same subcube. Without loss of gener-

ality, we assume that x, y ∈ V (Q0
n−1).

Case 2.2.1.1. |Fj | = n − 3 for some j ∈ {0, 1}. Without loss of
generality, we assume that |F0| = n − 3. Then, |FC | = 1 and
|F1| = 0. We first select an arbitrary node w in Q0

n−1 such that w
is in a different partite set to the partite set that {x, y} belongs
to. We then select one arbitrary faulty edge (u, v) ∈ F0. By
Lemma 2(2), Q0

n−1 − w − (F0 − (u, v)) contains a Hamiltonian
path P0[x, y]. We then have the following scenarios.
Case 2.2.1.1.1. P0[x, y] contains (u, v). Path P0[x, y] can be

represented by P0[x, u] ⊕ (u, v) ⊕ P0[v, y]. Consider four nodes
u, v, w, and wi. Since w �= u and w �= v, we have |{u, v} ∩
{w, wi}| ≤ 1.
Case 2.2.1.1.1.1. |{u, v} ∩ {w, wi}| = 0. Clearly, u and v

belong to different partite sets in Q1
n−1. Moreover, since

h(x, wi) is even and h(x, w) = n − h(x, w) is odd, wi and w
belong to different partite sets in Q1

n−1; Hence, there are two
nodes, one derived from {u, v} and the other from {wi, w},

3 For convenience, we adopt the notation Qn to represent a subgraph in FQn that is
isomorphic to an n-dimensional hypercube.

4 Throughout the paper, we use the notation “⊕” to represent a path-concatenation
operation in order to distinguish it from an ordinary addition “+” operation.
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which come from different partite sets. Without loss of gen-
erality, we assume that u and w are in different partite sets,
and v and wi are in different partite sets. By Lemma 3,
Q1

n−1 contains two node-disjoint paths P1[u, w] and P1[v, wi]
spanning V (Q1

n−1). A desired Hamiltonian x-y path can be
constructed as P0[x, u]⊕(u, u)⊕P1[u, w]⊕(w, w)⊕(w, wi)⊕
P1[wi, v] ⊕ (v, v) ⊕ P0[v, y].

Case 2.2.1.1.1.2. |{u, v} ∩ {w, wi}| = 1. Without loss of
generality, we assume that v = wi. Recall that u and v
are in different partite sets, and wi and w are in different
partite sets. Therefore, u and w are in the same partite set
in Q1

n−1. By Lemma 2(2), Q1
n−1 − w contains a fault-free

Hamiltonian path P1[u, w]. A desired Hamiltonian x-y path
can be constructed as P0[x, u] ⊕ (u, u) ⊕ P1[u, w] ⊕ (w, w) ⊕
(w, v) ⊕ (v, v) ⊕ P0[v, y].

Case 2.2.1.1.2. P0[x, w] does not contain (u, v). In this case,
we can select an arbitrary edge in place of (u, v). A desired
Hamiltonian x-y path can then be constructed using a method
similar to that in Case 2.2.1.1.1.

Case 2.2.1.2. |F0| ≤ n− 4 and |F1| ≤ n− 4. We first select a node
w ∈ V (Q0

n−1) such that (w, wi) is fault-free and w is in a different
partite set to the partite set that x and y belong to. (If such a
w does not exist, then |Fc| > 2n−2 > n − 2 for n ≥ 4, which
is a contradiction.) By Lemma 2(2), Q0

n−1 − w − F0 contains a
Hamiltonian path P0[x, y]. Let v be a unique node in P0[x, y]
such that v = wi, and let u ∈ P0[x, y] be a unique neighbor
of v such that P0[x, y] = P0[x, u] ⊕ (u, v) ⊕ P0[v, y]. Using an
argument similar to that applied in Case 2.2.1.1.1.1, we know
that u and w are in different partite sets. Again, by Lemma 2(2),
Q1

n−1 − w − F0 contains a fault-free Hamiltonian path P1[u, w].
Therefore, a desired Hamiltonian x-y path can be constructed as
P0[x, u] ⊕ (u, u) ⊕ P1[u, w] ⊕ (w, w) ⊕ (w, v) ⊕ (v, v) ⊕ P0[v, y].

Case 2.2.2. x and y are in different subcubes. Without loss of general-
ity, we assume that x ∈ Q0

n−1 and y ∈ Q1
n−1. Let w(�= x) be a node

in Q0
n−1 such that h(x, w) is odd. Note that h(x, w) = n − h(x, w)

is also odd. Moreover, since x and y are in the same partite set,
w and y are in different partite sets (restricted to Qn). Since both
|F0| and |F1| are at most n − 3, Q0

n−1 − F0 (Q1
n−1 − F1) contains

a fault-free Hamiltonian path P0[x, w] (P1[w, y]) by Lemma 2(1).
Therefore, a desired Hamiltonian x-y path can be constructed as
P0[x, w] ⊕ (w, w) ⊕ P1[w, y].

By combining the above cases, we complete the proof.

Due to the space limitation, we omit the proof for FQn being (n−1)-edge-fault-
tolerant strongly Hamiltonian-laceable when n(≥ 1) is odd.



756 S.-Y. Hsieh

3.2 Edge-Fault-Tolerant Hyper Hamiltonian-Laceability

In this subsection, we demonstrate the edge-fault-tolerant hyper Hamiltonian-
laceability of the folded hypercube.

Lemma 5. FQn is (n−2) edge-fault-tolerant hyper Hamiltonian-laceable, where
n(≥ 3) is an odd integer.

Proof. Suppose that FQn = (V0∪V1, E), where n(≥ 3) is odd. Let f be any node
in Vi, i ∈ {0, 1}. In the following, for two arbitrary distinct nodes x, y ∈ V1−i, we
attempt to construct a fault-free Hamiltonian x-y path in FQn − F − f , where
|F | = n − 2. We consider the following two cases.

Case 1. FS �= ∅. Since FQn − F contains a subgraph isomorphic to Qn with
at most n − 3 faulty edges, the result holds by Lemma 2(2).

Case 2. FS = ∅. In this case, all faulty edges are not skips. We can execute an i-
partition on FQn, for some i ∈ {1, 2, . . . , n}, such that |FC ∪FS | = |FC | ≥ 1,
|F0| ≤ n − 3, and |F1| ≤ n − 3. There are the following scenarios.
Case 2.1. |FC | = 1 and |Fj | = n − 3 for some j ∈ {0, 1}. Without loss of

generality, we assume that |F0| = n − 3. Then, |F1| = 0.
Case 2.1.1. x, y ∈ V (Q0

n−1) and f ∈ V (Q1
n−1).

By Lemma 2(1), Q0
n−1 − F0 contains a fault-free Hamiltonian cycle

C0 = 〈u0, u1, . . . u2n−1−1, u0〉 of length 2n−1, where x = u0 and y =
uk for some k ∈ {1, . . . , 2n−1 −1}. As h(x, y) is even, k ≥ 2. Let x′ =
uk+1 (mod 2n−1) and y′ = u1. Clearly, Q0

n−1 − F0 contains two fault-
free paths, P0[x, x′] = 〈u0, u2n−1−1, u2n−1−2, . . . , uk+1 (mod 2n−1)〉
and P0[y′, y] = 〈u1, u2, . . . , uk〉, which spans V (Q0

n−1). Since x and y
are in the same partite set and x′ and y are in different partite sets,
x and x′ are in different partite sets, i.e., h(x, x′) is odd. Similarly,
y and y′ are in different partite sets, i.e., h(y, y′) is odd. Moreover,
h(x, x′) = n − h(x, x′) and h(y, y′) = n − h(y, y′) are both even, i.e.,
x, y, x′, and y′ are in the same partite set and thus h(x′, y′) is even.
Note that f and {x′, y′} are in different partite sets. Since Q1

n−1 is
fault-free, by Lemma 2(2), Q1

n−1 − f contains a fault-free Hamil-
tonian path P1[x′, y′] of length 2n−1 − 2. A desired x-y path can be
constructed as P0[x, x′]⊕(x′, x′)⊕P1[x′, y′]⊕(y′, y′)⊕P0[y′, y], which
has length 2n−1 + 2n−1 − 2 = 2n − 2.

Case 2.1.2. f, x, y ∈ V (Q0
n−1). Let (u, v) be an arbitrary faulty edge

in F0. Note that (u, u) and (v, v) are both fault-free. By Lemma 2(2),
Q0

n−1 − f − (F0 − (u, v)) contains a path P0[x, y] of length 2n−1 − 2.
Case 2.1.2.1. P0[x, y] contains (u, v). Thus P0[x, y] = P0[x, u] ⊕

(u, v) ⊕P0[v, y]. By Lemma 1, Q1
n−1 contains a fault-free Hamil-

tonian path P1[u, v] of length 2n−1 − 1. A desired x-y path can
be constructed as P0[x, u] ⊕ (u, u) ⊕ P1[u, v] ⊕ (v, v) ⊕ P0[v, y],
which has length (2n−1 − 2) − 1 + 2 + (2n−1 − 1) = 2n − 2.

Case 2.1.2.2. P0[x, y] does not contain (u, v). In this case, we select
an arbitrary edge in P0[x, y] instead of (u, v) in Case 2.1.2.1. The
construction of a desired path is similar to that of Case 2.1.2.1.
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Case 2.1.3. f, x ∈ V (Q0
n−1) and y ∈ V (Q1

n−1). By Lemma 2(1),
Q0

n−1 − F0 contains a fault-free Hamiltonian path P0[x, f ]. Let u ∈
P0[x, f ] be the neighbor of f . Thus P0[x, f ] = P0[x, u] ⊕ (u, f).
Note that u and x are in the same partite set, and u and y are
in different partite sets. By Lemma 1, Q1

n−1 contains a fault-free
Hamiltonian path P1[u, y]. A desired x-y path can be constructed as
P0[x, u] ⊕ (u, u) ⊕ P1[u, y], which has length 2n − 2.

Case 2.1.4. x ∈ V (Q0
n−1) and f, y ∈ V (Q1

n−1). Let w(�= x) be the node
in Q0

n−1 such that h(x, w) is odd and w �∈ {f, y}. Since h(w, x) =
n − h(x, w) is even and h(x, y) is even, y and w are in the same
partite set. Since |F0| = n − 3, by Lemma 2(1), Q0

n−1 − F0 contains
a fault-free Hamiltonian path P0[x, w]. Moreover, by Lemma 2(2),
Q1

n−1 − f − F1 contains a fault-free Hamiltonian path P1[w, y]. A
desired x-y path can be constructed as P0[x, w] ⊕ (w, w) ⊕ P1[w, y],
which has length 2n − 2.

Case 2.1.5. f, x, y ∈ V (Q1
n−1). By Lemma 2(2), Q1

n−1 − f contains a
fault-free Hamiltonian path P1[x, y]. Let (u, v) be an edge in P1[x, y].
Thus P1[x, y] = P1[x, u]⊕(u, v)⊕P1[v, y]. By Lemma 2(1), Q0

n−1−F0
contains a fault-free Hamiltonian path P0[u, v]. A desired x-y path
can be constructed as P1[x, u] ⊕ (u, u) ⊕ P0[u, v] ⊕ (v, v) ⊕ P1[v, y],
which has length 2n − 2.

Case 2.1.6. f ∈ V (Q0
n−1) and x, y ∈ V (Q1

n−1). Let u �= f be a node in
Q0

n−1 whose partite set is the same with the partite set to which x
and y belong. Therefore, u and f are in different partite sets. Since
|F0| = n − 3, by Lemma 2(1), Q0

n−1 − F0 contains a Hamiltonian
path P0[u, f ]. Let v ∈ P0[u, f ] be the neighbor of f . Thus P0[u, f ] =
P0[u, v] ⊕ (v, f). Clearly, u and v are in the same partite set, and u
and v are in the same partite set. Further, the partite set of {u, v} is
different from the partite set to which {x, y} belongs. By Lemma 3,
Q1

n−1 contains two node-disjoint paths P1[x, u] and P1[v, y] spanning
V (Q1

n−1). A desired x-y path can be constructed as P1[x, u]⊕(u, u)⊕
P0[u, v] ⊕ (v, v) ⊕ P1[v, y], which has length 2n − 2.

Case 2.2. |FC | > 1, |F0| ≤ n − 4, and |F1| ≤ n − 4.
Case 2.2.1. f, x, y ∈ V (Qj

n−1) for some j ∈ {0, 1}. Without loss of gen-
erality, we assume that f, x, y ∈ V (Q0

n−1). By Lemma 2(2), Q0
n−1 −

f − F0 contains a fault-free Hamiltonian path P0[x, y]. Let (u, v) be
an arbitrary edge in P0[x, y] and thus P0[x, y] = P0[x, u] ⊕ (u, v) ⊕
P0[v, y]. By Lemma 2(1), Q1

n−1 contains a fault-free Hamiltonian
path P1[u, v]. A desired x-y path can be constructed as P0[x, u] ⊕
(u, u) ⊕ P1[u, v] ⊕ (v, v) ⊕ P0[v, y], which has length 2n − 2.

Case 2.2.2. x, y ∈ V (Qj
n−1) and f ∈ V (Q1−j

n−1) for some j ∈ {0, 1}.
The proof is similar to that of Case 2.1.1 and thus we omit here.

Case 2.2.3. x, f ∈ V (Qj
n−1) and y ∈ V (Q1−j

n−1) for some j ∈ {0, 1}.
Without loss of generality, we assume that x, f ∈ V (Q0

n−1) and y ∈
V (Q1

n−1). Let w(�∈ {f, x}) be the node in Q0
n−1 such that h(x, w)

is even. Since h(x, w) = n − h(x, w) is odd, w �= y because h(x, y)



758 S.-Y. Hsieh

is even. This implies that w and y are in different partite set. By
Lemma 2(2), Q0

n−1 − f − F0 contains a fault-free Hamiltonian path
P0[x, w]. Moreover, by Lemma 2(1), Q1

n−1 − F1 contains a fault-free
Hamiltonian path P1[w, y]. A desired x-y path can be constructed as
P0[x, w] ⊕ (w, w) ⊕ P1[w, y], which has length 2n − 2.

By combining the above cases, we complete the proof.

We now present our main result.

Theorem 1. There are three edge-fault-tolerant properties for FQn as follows:

P1. FQn is (n − 2)-edge-fault-tolerant Hamiltonian-connected, where n(≥ 2) is
an even integer.

P2. FQn is (n − 1)-edge-fault-tolerant strongly Hamiltonian-laceable, where
n(≥ 1) is an odd integer.

P3. FQn is (n − 2)-edge-fault-tolerant hyper Hamiltonian-laceable, when n(≥ 3)
is an odd integer.

4 Concluding Remarks

The path (linear array) is the most fundamental network for parallel and dis-
tributed computation, which is suitable for designing simple algorithms with
low communication costs. Numerous efficient algorithms designed on the path
for solving various algebraic problems and graph problems can be found in [2,14].
The path can also be used as control/data flow structure for distributed com-
putation in arbitrary networks. Another application for the longest path to a
practical problem was addressed in the on-line optimization of a complex flex-
ible manufacturing system [4]. These applications motivate the embedding of
paths in networks. Our result implies that those algorithms designed for paths
can also be executed well on the folded hypercube with faulty edges.
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