
Revisiting the Impossibility for Boosting Service
Resilience

Xingwu Liu1, Zhiwei Xu1, and Juhua Pu2

1 Research Center for Grid and Service Computing, Institute of Computing
Technology, Chinese Academy of Sciences

2 School of Computer Science, BeiHang University
xlw@software.ict.ac.cn, zxu@ict.ac.cn, pujh@buaa.edu.cn

Abstract. An asynchronous distributed system consisting of a collec-
tion of processes interacting via accessing shared services or variables.
Failure-tolerant computability for such systems is an important issue,
but too little attention has been paid to the case where the services
themselves can fail. Recently, it’s proved that consensus problem can’t
be (f +1)-resiliently solved using a finite number of reliable registers and
f -resilient services (failure-aware services must be fully connected). We
generalize the result in two dimensions. Firstly, it’s shown that the im-
possibility holds even if infinitely many registers and services are al-
lowed. Secondly, we prove that replacing the reliable registers with reli-
able shared variables still leave the impossibility to hold, if only failure-
oblivious services are allowed.

1 Introduction

1.1 Background

Asynchronous distributed systems consist of a finite collection of processes inter-
acting via some shared mechanisms. The examples of such mechanisms include
shared variables, communication channels, atomic objects, and services [1, 2]. A
service is itself an arbitrary distributed system with more complicated interface
than atomic objects. The major difference between atomic objects and services
lies in that a response of an atomic object at a port must exclusively correspond
to a previous invocation at the same port, while an invocation to a service at
a port may lead to an finite number of responses at any ports, and the service
itself may generate responses even without invocations.

Fault-tolerant computability problem is fundamental for asynchronous dis-
tributed systems, which explores whether a task can be solved by asynchronous
distributed systems, when the components may be subject to failures?

In the related massive literature, consensus tasks [3] are most frequently stud-
ied, because they are fundamental in the sense that every atomic object can
be implemented from consensus objects and shared read/write variables [4]. [2]
also deals with the computability of consensus tasks, proving that there is no
(f +1)-resilient implementation of consensus objects from canonical f -resilient

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 715–727, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

716 X. Liu, Z. Xu, and J. Pu

failure-aware services, canonical f -resilient failure-oblivious services, and canon-
ical reliable registers, if each failure-aware service is required to be connected
with each process (the requirement is called full connection). [2] is noticeable
because it’s the first paper and presently the only one studying the computabil-
ity using fault-prone services, while most of the related work only considers
reliable atomic objects.

Note that the results in [2] are based on two assumptions. Finiteness as-
sumption: only a finite number of services and registers are included in a sys-
tem. Distribution assumption: canonical registers, which are atomic objects
of read/write type, are used instead of shared variables. However, systems not
satisfying these assumptions are also of significance in the theory of distributed
computing. For example, in the well-known Herlihy’s hierarchy [4], the universal
implementation of an n-process atomic object needs infinitely many n-consensus
objects if the n-consensus objects are not augmented with a reset operation, and
more seriously, the hierarchy can’t be maintained if read/write shared memory
is not available [5].

1.2 Problem Addressed

The following question naturally arises: can we implement a (f +1)-resilient con-
sensus object from infinitely many reliable read/write variables and f -resilient
services?

This question can’t be answered as a trivial corollary of the results in [2], since
no one has proven that a system with shared variables and fault-prone services
can be simulated by one with reliable atomic objects and fault-prone services.
[6] shows that any shared variable system can be simulated by a shared atomic
object system, but it relies on (1) that a process and its user are exclusively
enabled, which fails to hold for our case, and (2) all processes in the simulated
system interact only via shared variables, while services are also allowed in our
systems.

Furthermore, two obstacles exist if we straightforwardly borrow the proof in
[2]. Firstly, the proof of [Lemma 5, 2] doesn’t carry over, as shown in Subsection
3.2. Secondly, Claim 3 in [Lemma 8, 2] fails if shared reliable read/write variables
are used instead of canonical registers, due to the reason in Subsection 4.1.

1.3 Related Work

There is a long line of research on the computability of distributed decision
problems in shared object systems. However, much of it focuses on fault-prone
processes and assumes that the shared variables and objects are reliable. Well-
known examples include the impossibility of set-consensus/renaming using
shared read/write variables [7,8], the solvability of set consensus using arbitrary
objects under certain conditions [9], and the Herlihy’s hierarchy.

Afek et al. [10] first studied the solvability of consensus with faulty shared
memory. It’s shown that faults do not qualitatively decrease the power of such

Revisiting the Impossibility for Boosting Service Resilience 717

primitives as test-and-set and read-modify-write, in that they retain their po-
sitions in Herlihy’s hierarchy. The failures of a variable are spontaneous modi-
fications of its value, modeled by arbitrary writes from the environment of the
whole system.

Though Afek et al. have focused on a few types of shared memory,
Jayanti et al. [11] studied implementing arbitrary objects with fault-prone base
objects. They classify object failures into responsive and non-responsive, and
shows that any type of object can be implemented so as to keep reliable when
some base objects are responsively faulty, and that any non-responsive fault
can’t be tolerated in this sense. The faults considerd by Afek et al belong to the
responsive class.

Attie et al [2] go a step further by considering implementing objects using
general services rather than only shared variables and atomic objects. Another
critical difference of [2] from [10, 11] lies in the failure model. In [10,11], a base
object fails spontaneously, i.e. independently of the processes; however, [2] mod-
els a failure of a service with an input action fail from the system environment.
Because any client process of the service shares the fail action with the service,
the failures of a service and its processes are not independent. The main result
of Attie et al is that it’s impossible to implement a (f +1)-resilient consensus
object from canonical reliable registers, f -resilient canonical atomic objects, and
f -resilient services. When failure-aware services are allowed, full connectivity
should be satisfied in order to maintain the impossibility. The result is also the
starting point of the present paper.

1.4 Our Contribution

We generalize [2] in two dimensions. We first discard the finiteness assumption,
proving that all the results in [2] hold even if an infinite number of services and
canonical registers can be in one system. This is achieved by a novel scheduling
approach such that each of an infinite collection of tasks has infinitely many
opportunities to be scheduled. Then we discard the distribution assumption,
showing that using the seemingly more synchronized shared read/write variables
instead of canonical registers still maintains the impossibility results if failure-
aware services are not allowed. For this end, a generalized version of [Theorem
13.7, 6] is proposed, indicating that any distributed system where processes com-
municate via reliable shared variables and services can be simulated by another
one with the shared variables replaced by reliable atomic objects of the corre-
sponding types. This step is itself very interesting, since it frees us from many
constraints in constructing or optimizing an asynchronous distributed system.

1.5 Organization

The rest of this paper is organized as follows. Section 2 presents some pre-
liminaries. Section 3 and Section 4 are devoted to the two dimensions of our
generalization, respectively. And Section 5 concludes this paper.

718 X. Liu, Z. Xu, and J. Pu

2 Preliminaries

We assume the terminology of [2] and [6]. Some concepts are mentioned below.
For more detail, please refer to the references.

2.1 Sequential Types, Atomic Objects, and Services

We remind the notion of a ”sequential type”, in order to describe allowable
sequential behavior of atomic objects. It’s borrowed from [2]. A sequential type
Γ= 〈 V, V 0, invs, resps, δ 〉 consists of:

– V, a nonempty set of values,
– V 0 ⊆V , a nonempty set of initial values,
– invs, a set of invocations,
– resps, a set of responses, and
– δ, a relation from invs ×V to resps ×V that is total, in the sense that, for

every (a,v)∈invs×V, there is at least one (b, v ′)∈resps×V such that ((a,v),
(b, v ′))∈δ.

We sometimes use dot notation, writing Γ .V, Γ .V 0, Γ .invs, . . . for the
components of Γ .

Example. Read/write sequential type: Here, V is a set of ”values”, Γ .V 0=Γ .v0,
where v0 is a distinguished element of V , invs = {read}∪{write(v) : v V },
resps=V∪{ack}, and δ= {((read, v), (v, v)) : v∈V }∪{((write(v), v ′), (ack, v)):
v, v ′ ∈V }.

Example. Binary consensus sequential type: Here, V = {{0}, {1}, ∅}, V 0={∅},
invs = {init(v)) : v∈{0, 1}}, resps={decide(v): v∈{0, 1}}, and δ={((init(v),∅),
(decide(v), {v})): v∈V }∪{((init(v), {v ′}), (decide(v ′), v ′)): v, v ′∈V }.

An atomic object of sequential type Γ is an automaton whose behavior, if
serialized in some way, satisfies Γ . An atomic object of read/write type is called
a register, and that of binary consensus type is called a consensus object. An
atomic object is f -resilient if when no more than f ports fail, all non-failed ports
can provide correct behavior. A canonical f -resilient atomic object of type Γ is
a special atomic object which describes the allowable concurrent behavior of all
f -resilient atomic objects of type Γ . For more about atomic objects, see [2, 6].

A service is a generalized notion of atomic object. Services can be classified
into failure-oblivious and failure-aware ones, depending on whether they provide
a port with the failure information of other ports. The behavior of a service is
also specified by a service type. For more about services, see [2].

In the present paper and [2], both atomic objects and services permit con-
current operations at the same or different endpoints, in the sense that multiple
invocations can be issued, without waiting for responses to the previous ones.

2.2 Shared Variable Systems with Services

In [2], all the systems considered consist of processes, reliable registers, and
failure-prone services, and have only a finite number of components. In Section 4

Revisiting the Impossibility for Boosting Service Resilience 719

of the present paper, we will consider a similar system model which is different
in two aspects. Firstly, we use shared reliable variables instead of reliable regis-
ter. Secondly, an infinite number of services and variables may be included in a
system. The system in fact is composed of a shared variable subsystem and a col-
lection of services, with the actions used to communicate among the components
hidden.

The shared variable subsystem is modeled as a single I/O automaton. The
interface of a process Pi includes invocation and response actions to interact
with the external world, input and output actions to invoke and receive response
from the services, and an input fail i to model an unexpected failure. We assume
that the fail i input action affects Pi in such a way that, from that point onward,
no output actions or shared variable actions are enabled. It’s supposed that in
any state, a process Pi always has an action enabled.

A process can access the shared variables only by internal actions, and each
action can access at most one shared variable. So, we further distinguish between
two different kinds of internal actions: those that involve the shared variables
(called shared variable actions) and those don’t. If a variable x is of sequential
type Γ x= 〈 V, V 0, invs, resps, δ 〉, each shared variable action accessing it by
Pi must be of the form:

Precondition: p(statei) //p is a predicate of Pi’s current state
Effect: (b, x)←δ(a, x) // a∈Γ x.invs

statei) ← any s such that (statei), b, s) belongs to g //g
is a certain relation

In the complete system, processes interact only via services and variables, ser-
vices don’t communicate directly with one another, and can’t access the shared
variables. The interface of the complete system consists of all the invocation and
response actions of the processes, plus fail i for every process Pi.

An issue has to be clarified. Composing I/O automata is usually under the
following condition: each action is shared by only a finite number of compo-
nent automata. Otherwise some properties may fail to hold, for example, [Theo-
rems 8.3 and 8.5, 6]. However, in our specification, two services S 1 and S 2 share
the input action fail i if i is an endpoint for both S 1 and S 2, so it’s possible
that infinitely many services share an input action. Fortunately, whether this
phenomenon occurs is irrelevant to the proof of our first main result, and our
second main result only uses services such that necessary properties still hold
even if infinitely many services share some fail i.

2.3 The Implementation of Consensus Objects

We also consider boosting resilience in implementing f -resilient consensus ob-
jects. By the definition of binary consensus type, an n-process f -resilient con-
sensus objects satisfies:

– Agreement. No two processes decide on different values,
– Validity. Any value decided on is the initial value of some process,

720 X. Liu, Z. Xu, and J. Pu

– Termination. In every fair execution in which at most f processes fail, any
non-faulty process receives an input eventually decides.

3 Impossibility for Infinite Systems

To begin our argument, the idea of [2] has to be briefly reviewed. In this sec-
tion, a finite (respectively, infinite) system will stand for a system with a finite
(respectively, infinite) collection of reliable registers and fault-prone services.

3.1 A Brief Review

All the impossibility results of Theorem 1, 10, and 11 in [2] can be restated
collectively as the following proposition.

Proposition 1. (f +1)-resilient consensus objects can’t be implemented from fi-
nitely many canonical reliable registers and canonical f -resilient services if each
failure-aware service must be connected to all the processes.

The proof is by contradiction and includes seven lemmas. Assume that there is
a finite system C to solve such a problem. In [Lemma 2, 2], it’s shown that once
a task of C is enabled in the final state of a finite execution, it’s enabled from
then on until it’s applied. This commutability is used in proving [Lemma 5, 2].
[Lemma 3, 2] is trivial, claiming that every finite failure-free input-first execution
of C is either bivalent or univalent, based on which [Lemma 4, 2] guarantees the
existence of a finite bivalent execution. Then [Lemma 5, 2] shows that from the
finite bivalent execution one can construct a hook-like subgraph of the graph
G(C) of C. [Lemmas 6 and 7, 2] prove that two univalent finite executions, if
similar in some sense, must have the same valence, which leads to a contradiction
that G(C) contains no hooks, as stated in [Lemma 8, 2]. So, such a finite system
C doesn’t exist.

For convenience and without loss of generality, [2] assumes that the processes
Pi, i∈I, are deterministic automata in the sense that in each state s, there is at
most one transition (s, a, s ′) such that a is non-input action. The services are
also assumed to be deterministic in the sense that its type has a single initial
value and the transition relations are mappings. It’s also assumed that each
process has a single task, and always has an action enabled. In this section, we
adopt these assumptions, so any failure-free execution of C can be defined by
applying a sequence of tasks, one after the other, to the initial state of C.

The above mentioned G(C) is defined as follows.

(1) The vertices of G(C) are the finite failure-free input-first extensions of the
finite bivalent execution αb).

(2) G(C) contains an edge labeled with task e from α to α′ provided that
α′ = e(α), the extension of α with the task e.

By the determinism assumption, for any vertex α of G(C) and any task e,
there is at most one edge labeled with e outgoing from α.

The above mentioned hook is a subgraph of G(C) of the form in Fig. 1, where
s1 and s2 are univalent but have different valence.

Revisiting the Impossibility for Boosting Service Resilience 721

Fig. 1. A hook. (from [2]).

3.2 A Generalization to the Case of Infinite Systems

We prove that the above Proposition 1 also holds even if infinite systems are
allowed. Our main result in this section is Theorem 2.

Theorem 2. (f +1)-resilient consensus objects can’t be implemented from infi-
nitely many canonical reliable registers and canonical f -resilient services if each
failure-aware service must be connected to all the processes.

As in [2], we also proceed by contradiction and perform an analysis on the
hook structure. So, assume there is an infinite system C to implement (f +1)-
resilient consensus objects. [Lemmas 2-8, 2], except [Lemma 5, 2], all carry over
since they don’t care whether the number of canonical reliable registers and
canonical f -resilient services is finite or infinite. Thus, if only [Lemma 5, 2] keeps
correct, our Theorem 2 holds. However, the proof of [Lemma 5, 2] doesn’t carry
over, because it extend an execution with an infinite number of tasks in a round-
robin fashion. When infinitely many services are used, there are infinitely many
tasks, so the round-robin extension must be modified in order to guarantee that
the resulting execution, if infinite, is fair. This new version of [Lemma 5, 2] is
presented as the following Lemma 3.

In an infinite system, there are infinitely many tasks, so the idea of our modi-
fication is to extend the execution in infinite rounds, and to consider only a finite
collection of tasks (called candidate task set for this round) for each round. If
the candidate task sets are chosen properly, every task eventually has infinite
opportunities to be considered.

Before the formal proof, some definitions from [2,6] have to be reminded.
A finite failure-free input-first execution α is defined to be 0-valent if (1) some

failure-free extension of α contains a decide(0)i action, for some process Pi, and
(2) no failure-free extension of α contains a decide(1)i action. The definition of
a 1-valent execution is symmetric. A finite failure-free input-first execution α is
univalent if it is either 0-valent or 1-valent, and is bivalent if it’s not univalent.

Lemma 3. G(C) contains a hook.

Proof. Arbitrarily arrange all the tasks of C into an infinite sequence σ =
σ1σ2...σn... such that the process tasks all appear in prefix σ1σ2...σn. Let
Σi=σ1σ2...σn+i, i≥1.

Now starting with a bivalent failure-free αb), we construct a path π in G(C)
round after round.

722 X. Liu, Z. Xu, and J. Pu

In round i, for each i≥1, we consider the tasks in the segment Σi from left
to right. Suppose that we have reached a bivalent execution α so far, and that
task e is the next one in Σi that is applicable to α.

[Lemma 2, 2] implies that, for any finite failure-free extension α′=α·γ where
e is not executed along the suffix γ, e is applicable to α′, and hence e(α′) is de-
fined. We look for a vertex α′ of G(C), reachable from α without following any
edge labeled with e, such that e(α′) is bivalent. If no such vertex α′ exists, the
path construction terminates. Otherwise, we proceed to e(α′) and then there are
two possibilities. (1) If there a task e ′ after e in Σi which is applicable to e(α′),
consider e ′ in the next step. (2) If either e is the end of Σi or no task after e in Σi
is applicable to e(α′), then go to round i+1 and consider the left-most task e ′ in
Σi+1 that is applicable to e(α′). In the second case, such e ′ in Σi+1 always exists
since Σi+1 contains all process tasks which are always enabled by assumption.

For the detail of this construction, please refer to [Appendix I, 12].
We claim that π must be finite. Suppose for contradiction that it’s infinite.

Then infinitely many rounds occur in the construction. Given a task σi, it gets a
turn to be executed in every round j such that j≥ max{1,i-n}, so it gets infinitely
many turns to be executed in π. As a result, π is a failure-free input-first fair
execution of C. By the termination condition of consensus object, every process
decides in π, which contradicts the facts that every finite prefix of π is bivalent.

The rest of the proof tries to find a hook structure following the finite execu-
tion . Since the counterpart of the proof of [Lemma 5, 2] doesn’t care whether
the collection of tasks is finite or infinite, it carries over. �

4 Impossibility for Systems with Shared Variables

In this section we further generalize Theorem 2 by replacing the canonical reli-
able registers with shared reliable variables. We show that Theorem 2 still holds
if failure-aware services are not allowed. Based on the system model in Subsec-
tion 2.2, the following Theorem 3 is obtained.

4.1 Impossibility and the Idea for Its Proof

Theorem 4. (f +1)-resilient consensus objects can’t be implemented from infi-
nitely many shared reliable variables and canonical failure-oblivious f -resilient
services.

Suppose for contradiction that there exists such an implementation. Lem-
mas 2-7, plus Claims 1-5 in the proof of [Lemma 8, 2], except Claim 3, all carry
over. However, the proof of Claim 3 relies on the key fact that an invocation to a
canonical register from a process Pi only affects the local state of the process and
the ith invocation buffer of the register, leaving the register’s value unchanged.
On the contrary, an access to a shared variable instantaneously modifies its value.
As a result, the proof of that Claim 3 can’t carry over.

To circumvent proving that claim, we simulate systems with shared variables
and canonical services by those with reliable registers and canonical services.
Then apply Theorem 2, rather than follow its proof.

Revisiting the Impossibility for Boosting Service Resilience 723

4.2 The Construction of a Simulating System

In fact, the simulation presented here is quite generic, because of the follow-
ing characteristics. Firstly, the services are not necessarily canonical ones. Sec-
ondly, there is no constraint on the resilience of the services. Thirdly, the reliable
atomic objects are required to be canonical. Fourthly and lastly, unlike [Theo-
rem 13.7, 6], the existence of turn functions are not required.

However, some constraints on services are still needed. Arbitrarily chose a
segment γ = α · β from a (fair) trace of a service S. (1) If α is a response and
β is an invocation, then replacing γ with β · α still results in a (fair) trace of S.
(2) If α and β are responses at different endpoints, then replacing γ with β · α
still results in a (fair) trace of S. (3) If α=fail i for some endpoint i of S, and β
is an arbitrary external action of S (not an invocation from endpoint i), then
replacing γ with β · α still results in a (fair) trace of S. (4) If α=fail i, there is
an (fair) execution e of S such that τ=trace(e) and either α is the first action
or immediately follows an external action in e.

These constraints aren’t so restrictive, for example, any canonical failure-
oblivious service satisfies all of them.

Now consider a shared variable system C with services, as specified in Sub-
section 2.2. The services are supposed to satisfy the above constraints. There
are two technical assumptions on the processes. (1) In every state, each process
has an action enabled. (2) There is a single task for each process, containing all
non-input actions of the process. The two assumptions don’t reduce the gener-
ality of our simulation (as in the sense of Theorem 5), since there must be such
a system that simulates C.

Let V be the set of shared variables of C, and associate each v in V with a
compatible reliable atomic object ov. Atomic object o and variable v are said
to be compatible if both of the following conditions hold. (1) o and v are of the
same sequential type Γv. (2) A process P of C can directly access v if and only
if P is in the endpoint set of o.

Let O={ov|v∈V }. We construct a system T (C) which intuitively, is derived
from C by replacing each v ∈ V with ov. The aim of T (C) is to simulate C in
some sense. The construction of T (C) is specified as follows.

A shared variable system with services can be described as 〈P, I,V〉, where
P, I, andV are its set of processes, services, and shared variables, respectively. If
C= 〈{P1,P2, ...Pn}, I,V〉, then T (C) =〈{Q1,Q2, ...Qn}, I ∪ O〉. The processes
Qi is almost the same as Pi, but has the following difference in states, signature,
and transition relation.

Qi includes all the state components of Pi, plus seven more. (1) A binary
semaphore, whether it’s 1 indicates whether process Qi is waiting for the re-
sponse from an atomic object in O. (2) An 1-length queue pending-invo, storing
a pending invocation to an object in O. (3) An 1-length queue vari-resp, stor-
ing the response just received from an object in O. (4) A variable local-tran,
recording how to transit the local state of Qi once the response from an object
in O is received. (5) An infinite first-in-first-out queue resp-buffer, holding the
responses sent by services in I but not yet processed by Qi. (6) A binary flag,

724 X. Liu, Z. Xu, and J. Pu

whether it’s 1 implies whether it’s Qi’s turn to process a response in the buffer.
(7) A Boolean failed, whether it’s True implies whether fail i has occurred. Ini-
tially, semaphore=0, pending-invo is empty, local-tran is arbitrary, vari-resp is
empty, resp-buffer is empty, and flag=1. The introduction of the flag is a lit-
tle technical, in order to preclude that Qi keeps busy with only receiving and
processing service responses in a fair execution.

Let Φi denote the set of internal actions of Pi that access a shared variables.
Given an arbitrary c∈ Φi, introduce an action, denoted by l(c), which is to start
up c. Introduce another action stubi to perform the local part of all c. For each
input action b of Pi, introduce an action l(b), which is intended to process b, i.e.
to change the local state of Qi as b does that of Pi; the original b is preserved,
while it means that Pi only receives the input. Introduce an internal action livei,
to keep Qi live even it fails just after some l(c). Let the input signature, output
signature, and internal signature of Pi be In, Out, and Int respectively, and
those of Qi be In ′, Out ′, and Int ′ respectively. Then In ′=In∪{b| b is an output
action at endpoint i of an atomic object in O}, Out ′=Out∪a|a
= fail i ∧ a is an
input action at endpoint i of an atomic object in O}, and Int ′=(Int-Φi)∪{l(c)|
c∈ Φi}∪{l(b)|b∈In∧ b
=fail i}∪{stubi}.

To give an intuition on the transition relation of Qi, we sketch here the idea
of using T (C) to simulate C.

Firstly, all the output actions and internal actions except those in Φi are
simulated directly, with only their preconditions changed to involve the new
state components.

Secondly, an action c∈ Φi that accesses a shared variable is simulated by
four steps of Q i. The first step l(c) starts up the simulation of c, enqueuing
pending-invo with the invocation to v involved in c, and storing into local-tran
the relation about how to change local state as in c. The second step invokes
ov as is hinted by pending-invo, and then dequeues pending-invo. The third
step enqueues vari-resp with the response from ov. The forth step stubi changes
the local state according to vari-resp and local-tran, and dequeues vari-resp.
The four steps are collectively called a complete simulation of c, l(c) is celled
the initialization, and stubi the finalization.

The four steps must be executed one after another without interruption, so
other actions, even the inputs from services and external world, must be tem-
porarily disabled. As a result, on the one hand, l(c) sets semaphore to 1, stubi

resets it to 0, the other actions keep it unchanged and most of them are enabled
only if it’s 0. On the other hand, each input action b
=fail i of Pi is simulated in
two steps, one (also named b in Q i) to buffer the response, and the other (i.e.
l(b)) to update the local state using the response. b and l(b) don’t have to be
executed consecutively, and in fact, l(b) is always done between some stubi and
the next l(c).

There are two technical maneuvers. On the one hand, in order for the sim-
ulation to preserve fairness of traces, it must be precluded that Q i indefinitely
performs only b and l(b) for inputs b and ignores real workload. So, each l(b)
sets flag to 0 and is enabled only if flag=1, and flag can be reset to 1 only by

Revisiting the Impossibility for Boosting Service Resilience 725

other input actions. On the other hand, to keep Q i live, when it fails during the
simulation of a shared variable action, semaphore must be reset to 0.

Please refer to [Appendix II, 12] for the formal definition of T (C).

4.3 A Property of T(C)

If a system S is obtained by composing a collection of component automata and
then hiding a set of actions, denote by R(S) the system where the set of actions
are not hidden.

Lemma 5. For R(T (C)) and R(C), Theorems 8.2, 8.3, 8.5, and 8.6 in [6] hold,
though each fail i action may be shared by infinitely many components. �
This guarantees that under some conditions, the (fair) traces/executions of the
component automata can be pasted into (fair) traces/executions of the complete
system.

Lemma 6. T (C) simulates C in the following sense.

(1) They have the same interface,
(2) Any (fair) trace of T (C) is a also a (fair) trace of C, up to a permutation

which preserves both the order of invocations and that of responses at each port,
and preserves the input-covering property. A trace is input-covering if at each
port, an invocation precedes all responses.

Remark of the proof: The basic idea is similar to the proof of [Theorem 13.7, 6],
but there are two key differences. Firstly, the existence of services, plus the non-
existence of turn functions, makes it possible that a process Q i) receives inputs
(including responses) during its simulation of a variable access of Pi. Secondly,
inputs sent to Q i) are buffered and not necessarily processed immediately, so it’s
possible that Q i) receives inputs or performs locally controlled actions during
its simulation of an input to Pi. As a result, that proof can’t carry over. Our
proof of Lemma 6 is elaborated in [Appendix III, 12]. �
Suppose the above C is an implementation of n-process consensus object from
shared variables and canonical f -resilient failure-oblivious services. A trace of C
is said to be input-first if each Pi begins with an init() action, and has no other
init() actions.

Corollary 7. There is a fair input-first trace of C where no more than f +1
processes fail, and which doesn’t satisfy the three conditions of consensus.

Proof: Assume for contradiction that this is not the case. In the construction
of T (C), if each ov is a canonical reliable register, then T (C) is a system with
canonical reliable registers and f -resilient failure-oblivious services. [2] in fact
proves that there is a fair input-first trace α of C where no more than f +1
processes fail, and which doesn’t satisfy the three conditions of consensus. By
Theorem 5, there is a fair trace β of C which is the same as α up to a certain
permutation. The property of the permutation guarantees that is also input-
first, and that the projection of β to each port of C is the same as that of α

726 X. Liu, Z. Xu, and J. Pu

to each port of T (C). As a result, no more than f +1 processes fail in β but β
doesn’t satisfy the three conditions of consensus. A contradiction. �
Corollary 6 immediately leads to Theorem 4.

5 Conclusion

We have generalized the results of [2] in two dimensions. First, we show that
all the impossibility results still hold even if infinitely many reliable registers
and fault-prone services are allowed. Second, we show that even if the system is
strengthened by replacing canonical reliable registers with shared variables, the
impossibility still holds in the case where canonical failure-oblivious services are
used. To prove the second result, we in some degree generalize [Theorem 13.7, 6]
by discarding the requirement of turn functions, and by extending shared variable
systems to systems having both shared variables and failure-oblivious services.
Our work under way is to extend our second result to the case of failure-aware
services.

Acknowledgment

The work is supported by China’s Natural Science Foundation (60603004,
60403023).

References

1. S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. ACM SIGACT News, 33(2):51-59, June
2002.

2. P. Attie, et al. The Impossibility of Boosting Distributed Service Resilience (Ex-
tended abstract). In Proceedings of the 25th IEEE International Conference on
Distributed Computing Systems (ICDCS2005), 39-48. The full version is available
at http://theory.lcs.mit.edu/tds/papers/Attie/boosting-tr.ps

3. M. Fischer, et al. Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(3):374-382, April 1985.

4. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124-149, January 1991.

5. P. Jayanti. On the robustness of Herlihy’s hierarchy. In Proceedings of the 12th
Annual ACM Symposium on Principles of Distributed Computing (PODC1993),
145-157.

6. N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
7. M. Herlihy and N. Shavit. The topological structure of asynchronous computability.

Journal of the ACM, 46(6):858-923, November 1999.
8. M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology

of public knowledge. SIAM Journal on Computing, 29:1449-1483, March 2000.
9. M. Herlihy and S. Rajsbaum. Set Consensus Using Arbitrary Objects. In Proceed-

ings of 13th Annual ACM Symposium on Principles of Distributed Computing
(PODC 1994), pp. 324-333.

Revisiting the Impossibility for Boosting Service Resilience 727

10. Y. Afek, et al. Computing with Faulty Shared Memory. In Proceedings of 13th
Annual ACM Symposium on Principles of Distributed Computing (PODC 1992),
pp. 47-58.

11. P. Jayanti, et al. Fault-Tolerant Wait-Free Shared Objects. Journal of the ACM,
45(3): 451-500, May 1998.

12. X. Liu, et al. Revisiting the Impossibility for Boosting Service Resilience. Tech-
nical report, January 1998. Available at http://blog.software.ict.ac.cn/xliu/files/
2007/03/RevisitingtheImpossibilityfor BoostingServiceResilience-full.pdf

	Introduction
	Background
	Problem Addressed
	Related Work
	Our Contribution
	Organization

	Preliminaries
	Sequential Types, Atomic Objects, and Services
	Shared Variable Systems with Services
	The Implementation of Consensus Objects

	Impossibility for Infinite Systems
	A Brief Review
	A Generalization to the Case of Infinite Systems

	Impossibility for Systems with Shared Variables
	Impossibility and the Idea for Its Proof
	The Construction of a Simulating System
	A Property of $T(C)$

	Conclusion

