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Abstract. Kernelizations are an important tool in designing fixed para-
meter algorithms for parameterized decision problems. We introduce an
analogous notion for counting problems, to wit, counting kernelizations
which turn out to be equivalent to the fixed parameter tractability of
counting problems. Furthermore, we study the application of well-known
kernelization techniques to counting problems. Among these are the Buss
Kernelization and the Crown Rule Reduction for the vertex cover prob-
lem. Furthermore, we show how to adapt kernelizations for the hitting
set problem on hypergraphs with hyperedges of bounded cardinality and
the unique hitting set problem to their counting analogs.

1 Introduction

In the last decade, parameterized complexity matured as a field of refined com-
plexity analyses of algorithms and decision problems. It replaces the classical
notion of tractability with fixed parameter tractability [12], requiring tractable
problems to be solvable by a deterministic algorithm in time f(k) · nO(1) for
some (small) parameter k, a computable function f : N → N and n the input
size. This notion is tightly connected to the concept of kernelization. Intuitively,
a kernelization is a polynomial time computable function mapping problem in-
stances to instances whose size is bounded effectively in terms of the parameter.
Ever since its introduction in [11] this concept has found may applications with
the result that today most fixed parameter algorithms use techniques that are
inspired by this notion [15,8,19,20].

Notably, all of the work mentioned is devoted to decision problems. In con-
trast, the study of parameterized counting problems has not yet matured as far.
Some work has been done on carrying over fixed parameter algorithm design to
counting problems. For example, the best known algorithms following this ap-
proach solve the counting analog of the vertex cover problem in time O(1.62kn)
(due to Fernau [16] - another, yet unpublished, result by Rossmanith [24] es-
tablishes an even lower bound of O(1.47kn)). For some other counting problems
fixed parameter algorithms were developed [10,17,22] as well. A variety of more
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general results states the fixed parameter tractability of large classes of counting
problems [2,7,18].

However, a notion of kernelization that is applicable to counting problems has
not yet been developed, although there has been some recent interest in forming
a notion of this kind. Nishimura et al. [22] suggested compactor enumeration,
which performs a reduction to an enumeration problem on an instance with
size depending only on the parameter. However, this notion has not yet been
thoroughly formalized. In particular, the informal definition of a compactor from
[22] is not applicable to counting problems in general.

We will remedy this deficiency by formally describing kernelizations of count-
ing problems. Moreover, we will show that this notion is equivalent to the notion
of fixed parameter tractability for counting problems and we give some exam-
ples, how this notion can be applied in practice. These examples will include
vertex cover and hitting set problems.

There are at least three important kernelizations of the vertex cover decision
problem: the Buss kernelization [11], the Crown Rule Reduction [15] and the
kernel based on the Nemhauser-Trotter theorem [5]. We will apply the former
two to the counting problem (the Nemhauser-Trotter kernel can be applied to
counting in a way analogous to that of the Crown Rule [26]). Furthermore, we will
adapt the Sunflower kernel [17] for the hitting set problem on hypergraphs with
edges of bounded cardinality. Additionally, for the unique hitting set problem
[13] we will develop an adaptation of a well-known kernelization of the decision
problem to counting.

This paper is organized as follows. Section 1 gives the basic definitions and the
concept of counting kernelization. In Section 2 we give kernelizations of vertex
cover and hitting set counting problems. Section 3 is devoted to the Crown Rule
Reduction. Then, in section 4, we will kernelize the counting unique hitting set
problem and the last section will reveal the equivalence of counting kernelizations
and fixed parameter tractable counting problems.

2 Definitions and the Concept of Counting Kernelizations

We will briefly sketch the basic notions of fixed parameter tractability. For a
more thorough introduction to the field the reader is refered to one of [13,21,17].

Parameterized problems are formed from classical problems by adding a pa-
rameterization of the input alphabet Σ, that is, a polynomial time computable
function κ : Σ∗ → N. Thus for classical decision problems Q ⊆ Σ∗ and counting
problems F : Σ∗ → N we obtain parameterized analogs (Q, κ) and (F, κ). We
denote the class of all fixed parameter tractable decision problems by FPT and
that of fixed parameter tractable counting problems by FFPT .

For parameterized decision problems, a kernelization is a mapping K :Σ∗→Σ∗

satisfying the following conditions.

(K1) K is polynomial time computable and there is a computable function
g : N → N such that for all x ∈ Σ∗ we have

|K(x)| ≤ g(κ(x))
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(K2) x ∈ Q ⇔ K(x) ∈ Q, for all x ∈ Σ∗

Hence, if a problem (Q, κ) has a kernelization it is fixed parameter tractable.
This concept has indeed led to the creation of some of the most efficient

fpt-algorithms and it is one of the most frequently applied approaches in para-
meterized algorithm design. Considering this popularity of kernelization in the
field of decision problems one would naturally ask, if this notion can be applied
to counting problems as well. We will discuss this question now.

2.1 Counting Kernelization

Note that in this purely theoretical context we regard computations always as
computations of Turing machines. We begin with some preliminary definitions.

Definition 1. Let κ : Σ∗ → N be a parameterization of Σ∗.

(I) A mapping K : Σ∗ → Σ∗ is κ-bounded if there is a computable function
g : N → N such that for all x ∈ Σ∗:

|K(x)| ≤ g(κ(x)).

(II) A relation Y ⊆ Σ∗×{0, 1}∗ is K-aware for a κ-bounded mapping K if there
are computable functions h, f : N → N such that for every x ∈ Σ∗ and every
y ∈ {0, 1}∗:
(1) Given K(x), it can be decided in time f(κ(x)) whether (K(x), y) ∈ Y

holds.
(2) if (K(x), y) ∈ Y then |y| ≤ h(κ(x)).

Note that the notion of κ-boundedness is simply derived from the notion of
kernelization by omitting (K2), i.e. the part that deals explicitly with decision
problems. Furthermore K-aware relations Y will be used to characterize the
”solutions” of the reduced instance K(x) that have to be found by search al-
gorithms. Unfortunately, the formal definition of a counting problem does not
mention what a solution might be. Therefore we will formalize this by the well-
known notion of witnesses :

Let Y ⊆ Σ∗×{0, 1}∗ be a relation. For x ∈ Σ∗ we define wY (x) := {y |(x, y) ∈
Y } as the set of witnesses of x in Y . Note that K-aware relations are compatible
with the notions of P-relations from classical complexity (see e.g. [23]) in such
a way that every P -relation is a K-aware relation.

A notion of counting kernelization needs an additional ingredient. This will
become clear by an example. Consider the following problem:

p-#VertexCover

Instance: A graph G = (V,E) and k ∈ N

Parameter: k
Problem: Compute the number of vertex covers of size k in G
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Let #vc(G, k) denote the number of size k vertex covers in G. Let K : Σ∗ → Σ∗

be κ-bounded, mapping instances of p-#VertexCover to instances of the same
problem s.t. for all graphs H we have |K(H, k)| ≤ g(k), for some computable
function g : N → N.

Example 1. Let G = (V, E) be a graph and k ∈ N. Suppose that #vc(K(G, k)) =
#vc(G, k). Let K(G, k) =: (G′, k′) for a graph G′ = (V ′, E′) and k′ ∈ N. As
‖G′‖ ≤ g(k), we know that there can be no more than

(
g(k)
k′

)
vertex covers of

cardinality k′ in G′.
Let H = (W, ∅) be a graph with |W | = g(k) + k. It is easy to see that

#vc(H, k) =
(

g(k) + k

k

)
>

(
g(k)
k

)
≥ #vc(K(H, k)).

This example illustrates, that the reduced instance K(x) may have less solutions
than x itself. Hence we need a function, say μ, that for each solution y of the
reduced instance K(x) computes the number of solutions of an instance x that
are ”represented” by y. Moreover, the function μ has to depend on the original
instance x to be able to create the link between K(x) and x.

Definition 2 (Counting Kernelization). Let (F, κ) be a parameterized
counting problem over Σ. A counting kernelization of (F, κ) is a pair (μ, K) of
polynomial time computable functions K : Σ∗ → Σ∗ and μ : Σ∗×Σ∗×{0, 1}∗ →
N such that for all x ∈ Σ∗ the following is satisfied:

(1) K is κ-bounded
(2) There is a K-aware relation Y ⊆ Σ∗ × {0, 1}∗ such that

F (x) =
∑

y ∈wY (K(x))

μ(x, K(x), y) (1)

We call |K(x)| the size of the kernel.

Note that, on an informal basis, this notion follows the intuition given in [22],
to wit, a counting kernelization reduces a counting problem to an enumeration
problem on an instance that is bounded in terms of the parameter. This is done
in such a way that we can associate solutions of the kernel to (sets of) solutions
of the original instance by an efficiently computable function μ.

Nevertheless, this definition still seems somewhat arbitrary. Its motivation
will become clear if we know how to apply it to some counting problems. We
have to note that in the course of this, we will sloppily define K-aware relations
Y that do not directly satisfy Y ⊆ Σ∗ × {0, 1}∗, however, it will always be clear
that they can be represented straightforwardly in such a way.

3 p-#VertexCover and p-Card-#Hittingset

We start with two tightly connected problems. Recall that a hitting set in a
hypergraph H = (V, E) is a set S ⊆ V such that S ∩ e �= ∅ for all e ∈ E.
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Furthermore, if we regard graphs as hypergraphs, vertex covers are simply a
special case of hitting sets.

In the analysis of all algorithms considered here we will use the uniform cost
measure. This implies that all basic arithmetic computations can be carried out
in constant time.

p-card-#HittingSet

Instance: A hypergraph H = (V,E) and k ∈ N

Parameter: k + d with d := maxe∈E |e|
Problem: Compute the number of hitting sets of cardinality k in H

We define #hs(H, k) to denote the number of hitting sets of size k in the
hypergraph H.

The kernelization of the decision problem p-card-HittingSet given in [17]
utilizes the well known Sunflower Lemma. Given a hypergraph H = (V, F ), a
sunflower in H is a family S = {S1, . . . , Sk} ⊆ F of hyperedges such that there
is a set C ⊆ V satisfying

Si ∩ Sj = C for all 1 ≤ i < j ≤ k (2)

C is the core of the sunflower S and for all i ∈ [k] the set Si \ C is called a petal
if it is nonempty.

Lemma 3 (Sunflower Lemma). Let k, d ∈ N and be H = (V, F ) a d-uniform
hypergraph with more than (k − 1)d · d! hyperedges. Then there is a sunflower S
of cardinality k in H.

The Sunflower Lemma can be applied to counting in a straightforward manner:

Lemma 4. 1. There is an algorithm FindSunflower that computes a sun-
flower S according to the Sunflower Lemma in time O(d‖H‖).

2. Let S with |S| = k + 1 be a sunflower in H with core C. Define H′ = (V, E′)
with

E′ := E \ S ∪ {C}
then #hs(H, k) = #hs(H′, k).

The kernelization mapping KSunflower is given in algorithm 1. Observe that the
algorithm deletes vertices that are isolated after the graph has been reduced
(line 1). The following Lemma shows how to compute the correct hitting set
count from the output of KSunflower.

Lemma 5. Let (H, k) be an instance of p-card-#HittingSet with H = (V, E)
and let H′ ← KSunflower(H, k) with H′ = (V ′, E′). Define I := V \ V ′, then

#hs(H, k) =
∑k

i=0 #hs(H′, i) ·
( |I|
k−i

)

The proof of this Lemma follows from the easily observable fact that any size
k hitting set C satisfies |C ∩ V ′| = i and |C ∩ I| = k − i for some suitable
0 ≤ i ≤ k. Conversely, for any size i hitting set C′ of H′ and for every set I ′ ⊆ I
of cardinality |I ′| = k − i the union C′ ∪ I ′ is a size k hitting set of H.
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KSunflower(H, k) // H = (V, E) a hypergraph, k ∈ N

d ← maxe∈E|e|;1

// Begin kernelization
for i ← 1 to d do2

Ei ← {e ∈ E : |e| = i };3

Vi ←
�

e∈Ei
e;4

while FindSunflower((Vi, Ei), k + 1) �= (∅, ∅) do5

Let (S, C) be the sunflower returned by FindSunflower ;6

Ei ← (Ei \ S) ∪ {C};7

Vi ← (Vi \
�

X∈S X) ∪ C;8

end9

end10

// End kernelization
V ′ ← V1 ∪ V2 ∪ . . . ∪ Vd;11

E′ ← E1 ∪ E2 ∪ . . . ∪ Ed;12

return (V ′, E′);13

Algorithm1.The Kernelization algorithm based on the Sunflower Lemma

Note that a run of KSunflower(H, k) takes time at most O(d2 · |E| · ‖H‖) and
for the hypergraph H′ = (V ′, E′) the Sunflower Lemma implies |E′| ≤ kd · d! · d
and |V ′| ≤ kd · d! · d2. Thus we have a kernelization of size ‖H′‖ ≤ 2 · kd · d! · d2.

To complete the definition of the counting kernelization, we define a relation
Y such that for all instances (H, k) of p-card-#HittingSet and C ⊆ V we have
((H, k), C) ∈ Y if and only if C is a hitting set of size k in H. Hence, wY ((H′, k))
can be enumerated in time h(k) for some computable function h and we are done
by defining

μ((H, k), (H′, k), C) :=
(

|I|
k − |C|

)
.

For Vertex Cover we can easily form a slightly better kernel. Observe that,
for graphs, the sunflower kernel implies |E′| ≤ 2k2 and |V ′| ≤ 4k2. A simple but
powerful kernelization of p-VertexCover is known as Buss’ Kernelization. Its
idea is very similar to that of of the sunflower kernel:

Lemma 6. Let G = (V, E) be a graph and k ∈ N then:

1. Any v ∈ V with d(v) > k is contained in every k-element vertex cover of G.
2. If Δ(G) ≤ k and G has a k-element vertex cover, then |E| ≤ k2.

From this we derive a kernel of half the size of the sunflower kernel, as for
the kernel G′ = (V ′, E′) the Lemma implies |E′| ≤ k2 and hence |V ′| ≤ 2k2.
Note that the counting kernelization according to Buss’ Lemma can be build
completely analogously to that of the sunflower kernel.

Observe furthermore that we can always combine these kernelizations with
fixed parameter algorithms, based on the method of bounded search trees. In this
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way, for example, for the p-#VertexCover problem, using the algorithm by
Fernau [16], we obtain an algorithm which runs in time O(1.62kk2+poly(n)) [26].

4 Crown Rule Reduction for p-#VertexCover

One of the most efficient kernelization techniques known in parameterized algo-
rithm design is the application of the so-called Crown Rule Reduction [15]. We
will see now, how to apply this kernelization to counting vertex covers. This will,
somewhat surprisingly, result in a counting kernelization with size exponential in
k. Nevertheless it still may guide the way to counting kernelizations of problems
for which no kernel is known at all.

Definition 7. Let G = (V, E) be a graph. A crown in G is a bipartite subgraph
C = (I, N(I), F ) of G satisfying three conditions:

(1) I is an independent set in G and N(I) is the set of all neighbors of vertices
from I in G.

(2) F contains all edges from E that connect vertices in N(I) to vertices in I.
(3) C has a matching of cardinality |N(I)|.

Let vc(G) denote the minimum size of a vertex cover in G.
Let G = (V, E) be a graph and k ∈ N. For the time being, let us assume, that

G contains no isolated vertices. The case of isolated vertices will be considered
later. We follow the construction of a crown as given in [17], this construction
algorithm produces three different results:

(A) it determines vc(G) > k
(B) |V | ≤ 3k holds
(C) a crown C = (I, N(I), F ) on at least |V | − 3k vertices is constructed

In the case of p-VertexCover the crown can simply be deleted. In counting
we have to do some additional work to obtain an appropriate kernel.

Applying a crown in a counting algorithm. Let G \C be the graph obtained from
G by deleting all vertices in C and all edges incident to vertices in C.

Let SC be a vertex cover of C and let G′ = (V ′, E′) be the graph obtained
from G\C by deleting all edges covered by vertices in SC . One can easily see that
#vc(G′, k − |SC |) equals the number of size k vertex covers S in G with S ⊇ SC .
As |V ′| ≤ 3k, #vc(G′, k − |SC |) can be computed in time depending only on k.
Therefore, to show how to compute the number of size k vertex covers in G it
remains to show, how to enumerate the vertex covers of C.

Recall that |N(I)| < k and note that, with respect to the edges in G (and
hence in C as well), all vertices in I have neighbors only in N(I). Therefore,
we can define an equivalency relation with at most 2k equivalency classes by
defining for all v, w ∈ I:

v ∼ w :⇔ N(v) = N(w) (3)

For every v ∈ I define [v] := {w ∈ I | v ∼ w}, i.e. the equivalence class of v.
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Claim 1. Given a vertex cover C of C such that there is a vertex y ∈ N(I) \ C.
Let v ∈ I be a vertex with y ∈ N(v), then [v] ⊆ C.

Proof. Assume that there is a w ∈ [v] with w /∈ C. Then, by the definition of [v]
there is an uncovered edge {y, w} in C. Contradiction.

Consider a vertex cover C of C and let S = N(I) ∩ C and X = I ∩ C. Note that
S and X form a partition of C. Let

A(S) := {[v] | v ∈ I, ∃ y ∈ N(I) \ S such that y ∈ N(v)}.

and define
L(S) :=

⋃

[v]∈A(S)

[v] (4)

Now, claim 1 implies that L(S) ⊆ X , that is A(S) is the (unique) minimal
family of equivalency classes that is necessary such that S ∪ L(S) is a vertex
cover in C. Hence, we finally have to move from minimal (w.r.t. inclusion) vertex
covers to arbitrary vertex covers of C. In fact this means to consider the sets
R := X \L(S). As R ⊆ I \L(S), for each l ∈ {0, . . . , k − |S ∪L(S)|} the number
of such sets with |R| = l is exactly

(
|I \ L(S)|

l

)

Hence, we are able to define our counting kernelization. The relation Y con-
tains a pair ((G, C, k), C) iff C = (W, F ) is a subgraph of G and C is a vertex
cover of G with |C| ≤ k such that C ∩ W is minimal (w.r.t. inclusion) in C.

For the Kernelization mapping K reconsider the exit conditions (A),(B) and
(C) of the crown construction. If (A) vc(G) > k, then K(G, k) := (G0, C0, 0)
with G0 = ({a, b}, {a, b}) and C0 the empty crown, i.e. trivial negative instance.
In case (B) K(G, k) := (G, C0, k) as G is small. If (C) holds, the construction
algorithm returns a crown C = (I, N(I), F ). Then K(G, k) := (G′, C′, k) where
C′ = (I ′, N(I ′), F ′) is obtained from C by keeping one vertex from I per equiva-
lence class and deleting the rest of the vertices in I. G′ = (V ′, E′) is obtained from
G in the same manner. Thus, |I ′| ≤ 2k, |N(I)| ≤ k which implies |V ′| ≤ 2k +4k,
that is, K is a κ-bounded mapping.

Finally, the mapping μ is defined as follows. Let (G, k) be the input instance
and C = (I, N(I), F ) the crown in G. Let the kernel be K(G, k) := (G′, C′, k)
with C′ = (I ′, N(I ′), F ′) and G′ defined as in the previous paragraph.

Consider a vertex cover C of G′ with |C| ≤ k such that C ∩ (I ′ ∪ N(I ′)) is
minimal with respect to the vertices in C′. Define S′ := N(I ′) ∩ C. We know
that C ∩ I ′ is one-to-one with A(S′) as I ′ contains one representative of each
equivalency class, hence |L(S′)| =

∑
v∈C∩I′ |[v]|. Thus defining

μ((G, k), K(G, k), C) :=
(

|I \ L(S′)|
l

)
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with l := k − |C ∩N(I ′)| − |L(S′)| satisfies our needs, as the binomial coefficient
is zero if l < 0 or l > |I \ L(S′)|. Obviously, μ is polynomial time computable
and the correctness of our kernelization follows from the above considerations.

For the case that the input graph G contains m isolated vertices, it is easy to
see that it suffices to delete them from G and accommodate m in the computation
of the binomial coefficient for the μ function.

5 A Kernelization for p-#UniqueHittingSet

The problem p-#UniqueHittingSet provides us with another nice example of
applying well known kernelization techniques to counting problems. The corre-
sponding decision problem is described in [13] (see exercise 3.2.5).

p-#UniqueHittingSet

Instance: A hypergraph H = (V,E)
Parameter: |E|
Problem: Compute the number of unique hitting sets sets in H that is

all sets X ⊆ V satisfying ∀ e ∈ E : |e ∩ X| = 1

As with the previous problems we will outline the well known solution of the
decision problem and show how it can be used to design an efficient algorithm
for the counting problem.

Let H = (V, E) be a p-#UniqueHittingSet instance. Let k := |E|. For all
x, y ∈ V we define an equivalency relation by

x ∼ y =def ∀e ∈ E : x ∈ e ⇔ y ∈ e.

Clearly, this relation defines l nonempty equivalency classes for an l ≤ 2k. Let A0
be the equivalency class of all isolated vertices and define Ã := {A1, . . . , Al−1}
as the family of all nonempty equivalency classes, except for A0.

Furthermore, we define H̃ := (Ã, Ẽ). This hypergraph will play the part of
the kernel in our algorithm. Its set of hyperedges Ẽ represents the hyperedges in
E with respect to the equivalency classes in Ã. To make this precise, we define
two functions. Let h : V → Ã be defined by h(v) := A ∈ Ã s.t. v ∈ A, i.e.
we map vertices to their corresponding equivalency classes. A second function
f : 2V → 2Ã defined by f({v1, . . . , vb}) := {h(v1), . . . , h(vb)} does so analogously
for sets of vertices. Note that h (and f) are undefined for isolated vertices (and
sets containing them, respectively). The definition of Ẽ is easy now:

Ẽ := {f(e) | e ∈ E}.

The following Lemma displays the correctness of our approach.
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Lemma 8. Let H, H̃ and Ã be defined as above.
Let Ũ be the set of all unique hitting sets in H̃, then the number #uhs(H) of
unique hitting sets in H satisfies:

#uhs(H) =
∑

S̃∈Ũ

2|A0|
∏

A∈S̃

|A| (5)

By this Lemma, we can develop a counting kernelization (μ, K). We simply
define a relation Y s.t. for every hypergraph H = (V, E) and S ⊆ V , we have
(H, S) ∈ Y iff S is a unique hitting set in H.

We define K(H) := H̃ and for any hitting set S̃ of H̃:

μ(H, H̃, S̃) := 2|A0|
∏

A∈S̃

|A|.

Obviously, by the construction of H̃ we have |Ẽ| = |E| = k and |Ã| ≤ 2k

and H̃ can be constructed from H in polynomial time. Furthermore, μ can be
computed in polynomial time, as well. Lemma 8 now implies that (μ, K) is a
valid counting kernelization.

6 Characterizing FFPT by Counting Kernelizations

Up to now, we have seen that counting kernelizations can be used to describe
certain fpt algorithms for counting problems. Theorem 9 diplays that the notion
of counting kernelization is even more general in the sense that it provides a
complete characterization of fixed parameter tractable counting problems.

Theorem 9. Let (F, κ) be a parameterized counting problem. The following are
equivalent:

(1) (F, κ) ∈ FFPT
(2) (F, κ) has a counting kernelization.

Note that the direction (2) ⇒ (1) is straightforward. The other direction of the
proof uses as a main tool the following Lemma, which itself shows the relation
between fixed parameter tractable counting problems and K-aware relations.

Lemma 10. Let (F, κ) ∈ FFPT be a parameterized counting problem over Σ.
Let K : Σ∗ → Σ∗ be a κ-bounded polynomial time computable mapping.

There is a K-aware relation Y ⊆ Σ∗ × {0, 1}∗ such that for all x ∈ Σ∗:

F (K(x)) = |wY (K(x))|.

7 Concluding Remarks

We have introduced kernelizations of fixed parameter tractable counting prob-
lems which provide a characterization of fixed parameter tractability. As a line
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of future research we would suggest scrutinizing kernelization techniques to-
wards their applicability to counting problems. Although we demonstrated that,
in principle the Crown Rule Reduction is applicable to counting problems, for
other problems, which were originally kernelized by the Crown Rule, the ker-
nelizations omit some cases that are trivial in decision problems but highly
non-trivial for counting. These include, among others, p-SetSplitting [19],
p-DisjointTriangles [20] and p-(n-k)-Coloring [6]. In fact it would not be
very surprising if their counting analogs turn out to be #W [1]-hard.
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