
Two Improved Range-Efficient Algorithms for F0

Estimation�

He Sun1,2 and Chung Keung Poon1

1 Department of Computer Science, City University of Hong Kong
Hong Kong, China

2 Department of Computer Science and Engineering, Fudan University
Shanghai, China

Abstract. We present two new algorithms for range-efficient F0 esti-
mating problem and improve the previously best known result, proposed
by Pavan and Tirthapura in [15]. Furthermore, these algorithms pre-
sented in our paper also improve the previously best known result for
Max-Dominance Norm Problem.

1 Introduction

Problem. Let S = r1, · · · , rn be a sequence of intervals where each interval
ri = [xi, yi] ⊆ [1, U] is an interval of integers between xi and yi. Let mj =
||{i|j ∈ ri}|| denote the number of intervals in the sequence S that contains j.
Then the kth-frequency moment of S is defined as Fk =

∑U
i=1 mk

i . In practice,
the zeroth-frequency moment of S is the number of distinct elements in ∪n

i=1ri.
In this paper, we consider the problem of estimating F0 in the above data

stream model. Let ε, δ > 0 be two constants. An algorithm A is said to (ε, δ)-
approximate F0 if the output Z of the algorithm A satisfies Pr[|F0 − Z| >
εF0] < δ. The time and space complexity of algorithm A are functions of the
domain size U , the approximation parameter ε and the confidence parameter δ.
In practice, the number of intervals n and the size of the universe U are very
large. So we seek for algorithms that run quickly using relatively small space.
In particular, the time for processing each interval should be sublinear with the
length of the interval. We call such algorithms range-efficient.

Motivation. The cardinality of a database or data stream is of great importance
in itself. In databases, some operations (such as query optimization) require
knowledge of the cardinality—the number of distinct items—of a specific col-
umn in a database. Since commercial databases are usually very large, we can
afford to scan each item only once and use limited space to give a desired ap-
proximation of F0. Another application arises from routing of Internet traffic. In
this scenario, the router usually has very limited memory and needs to gather

� The work described in this paper was fully supported by a grant from CityU (SRG
7001969).

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 659–669, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

660 H. Sun and C.K. Poon

various statistical properties of the traffic flow. For instance, the number of dis-
tinct destination IP addresses in a specific period is a critical property for the
router to analyze the behavior of the Internet users. This motivates the single
item case of the problem, i.e., the estimation of F0 in a data stream model where
each item of the input is a single integer (instead of intervals).

Bar-Yossef et al. [2] formalize the concept of reductions between algorithms
for data streams and motivate the concept of list-efficient streaming algorithms
which includes range-efficient F0 estimation as a special case. Through reduc-
tions, a range-efficient F0 algorithm can solve the problem of estimating the num-
ber of distinct triangles in graphs. Pavan and Tirthapura [15] also pointed out
the relationship between range-efficient Fk estimation algorithm and the Max-
Dominance Norm Problem. Though there are other algorithms for the problem
that rely on stable distributions and Nisan’s pseudorandom generators [6], the
solution based on the problem that we focus on is more elegant and has smaller
running time.

Related works. In the past twenty years, most research focuses on the single
item case. Flajolet and Martin [9] gave the first algorithm for estimating F0 for
this case. The drawback of their algorithm is that they require a perfect hash
function to make the input data uniform and independent. In 1999, Alon et al. [1]
gave several algorithms for estimating Fk, k ≥ 0, and used pairwise independent
hash functions to get a constant factor approximation F0 algorithm with space
complexity O(log U). In 2002, Bar-Yossef et al. [2] gave the first algorithm for
estimating the number of distinct elements in a data stream that approximates
with arbitrarily small relative error. Since then, several approximation schemes
have been proposed such as the Loglog Counting algorithm [8,11], algorithm
using stable distributions [5], and algorithms based on sampling technique [3].

Unfortunately, applying these algorithms on our problem results in an update
time proportional to the product between the length of the interval and the
running time for updating one item. To overcome this drawback, Bar-Yossef
et al. [2] designed two range-efficient approximation algorithms for F0 and F2
estimation, which are, to our best knowledge, the first efficient approximation
scheme for this kind of problems. In 2005, Pavan and Tirthapura [15] improved
the F0 estimation algorithm of Bar-Yossef et al. and reduced the processing
time per item from O(1

ε5 log5 U log 1
δ) to O(log U

ε log 1
δ). However the worst case

update time per element could be as much as O(log2 U
ε2 log 1

δ).

Results. (1). We give two algorithms with different amortized running time and
worst case running time updating each interval for approximating F0, whose
space complexity is the same as the algorithm in [15]. The following table sum-
marizes our results and gives the comparison between our results and the previ-
ously best known algorithm proposed in [15]. The Õ notation suppresses log log U
factors. (2). We improve the previously best known result for Max-Dominance
Norm Problem and reduce the worst case update time from Õ(1

ε2 log ai,j log 1
δ)

to Õ((1
ε2 + log ai,j) log 1

δ).

Two Improved Range-Efficient Algorithms for F0 Estimation 661

2 Preliminaries

Hash functions. A k-universal family of hash functions is a set H of functions
A �→ B such that for all distinct x1, · · · , xk ∈ A and all (not necessarily distinct)
b1, · · · , bk ∈ B

Pr
h∈H

[h(x1) = b1 ∧ · · · ∧ h(xk) = bk] = |B|−k

Carter and Wegman’s original definition [4] is different from the above, which is
what they call strongly k-universal hash functions [16].

Here we describe a hash function used in our improved algorithm. First choose
a prime number p between U2 and U3, and pick a from the set {1, · · · , p−1} and
b from {0, · · · , p − 1} randomly. Let h(x) = (a · x + b) mod p. It is well known
that h(x) is a pairwise independent hash function. Let ρ(x) be the number
of consecutive 0’s from the rightmost in x’s binary expression. For instance,
ρ(2) = 1 and ρ(7) = 0. In addition, define ρ(0) = 	log p
. The following lemma
gives the pairwise independence of the hash function ρ(h(x)).

Lemma 1. The random variables {ρ((ax + b) mod p)|a ∈ {1, · · · , p − 1}, b ∈
{0, · · · , p − 1}} are pairwise independent.

Proof. Since h(x) = (ax + b) mod p is a pairwise independent hash function, for
any x �= y and α, β ∈ {0, · · · , p − 1}, there holds

Pr
a,b

[h(x) = α ∧ h(y) = β] = Pr
a,b

[h(x) = α] · Pr
a,b

[h(y) = β] =
1
p2

For all x �= y ∈ {0, · · · , p − 1} and i, j ∈ {0, · · · , �log p�},

Pr
a,b

[ρ(h(x)) = i ∧ ρ(h(y)) = j]

=
p−1�

α=0

p−1�

β=0

Pr
a,b

�
h(x) = α ∧ h(y) = β

�
· Pr

�
ρ(h(x))= i ∧ ρ(h(y)) = j

��h(x) = α ∧ h(y)=β
�

=
p−1�

α=0

p−1�

β=0

Pr
a,b

�
h(x) = α ∧ h(y) = β

�
· Pr

�
ρ(α) = i ∧ ρ(β) = j

�

=
1
p2

p−1�

α=0

p−1�

β=0

Pr[ρ(α) = i] · Pr[ρ(β) = j]

=
1
p2

p

2i+1

p

2j+1

= Pr[ρ(h(x)) = i] · Pr[ρ(h(y)) = j]
(1)

In summary, the random variables {ρ((ax + b) mod p)|a ∈ {1, · · · , p − 1}, b ∈
{0, · · · , p − 1}} are pairwise independent. �

662 H. Sun and C.K. Poon

Table 1. Comparison of time complexity for range-efficient F0 estimating algorithm

Algorithm Worst case update time Amortized update time
Algorithm in [15] O(1

ε2 log2 U log 1
δ
) O(log U

ε
log 1

δ
)

Our algorithm Õ((1
ε2 + log U) log 1

δ
) Õ(log U

ε
log 1

δ
)

Our algorithm[revised] O(log 1
ε

log U log 1
δ
) O(log 1

ε
log U log 1

δ
)

3 Algorithm for Range-Efficient F0 Estimation

We first give the high level overview of our approach. Like [3,15], our algorithm
maintains a current sampling level �. Initially, � = 0. We use a set S, whose size
is α = Θ(1

ε2), to store the sampled intervals. When a new interval r comes, the
algorithm checks whether or not r intersects with any existing interval r′ in S.
If there exists such interval r′, let r ← r′ ∪ r. Then we calculate M(r) and G(r),
where M(r) := max

x∈r
ρ(h(x)) and G(r) := ||{x ∈ r|ρ(h(x)) = M(r)}||. In other

words, M(r) is the highest level achieved by the elements in the interval r and
G(r) is the number of elements attaining this level.

If M(r) ≥ �, then we put the interval r into S. When the number of intervals
in S exceeds α, the level � increases and the algorithm deletes the intervals whose
M(·)-value is less than �. Finally, the estimated value of F0 is

Z =
(�log p�∑

i=�

Xi · 2i+1
)

· 2� (2)

where
Xi =

∑

r∈S∧M(r)=i

G(r) (3)

Calculating M(r) and G(r). For the given interval r = [x, y] and hash function
h(x) = (a · x + b) mod p, where p is a prime number, we design an efficient
algorithm to calculate M(r) and G(r).

For this problem, a naive solution to get M(r) is to calculate ρ(h(z)) for
each z ∈ [x, y], and get the maximum value of them. The time complexity is
O(y − x + 1), which could be as much as Θ(U). In this paper, we reduce the
processing time per interval to O(log U log log U).

Consider the following problem: Given the sequence u, (u+d) mod p, · · · , (u+
t · d) mod p, we want to find the maximum integer i, i ∈ {0, · · · , 	log p
}, such
that there exists an integer x ∈ {0, · · · , t} satisfying the following equation

(u + x · d) mod p ≡ 0 (mod 2i) (4)

It is obvious to see the equivalence of calculating M(·) and the above problem
by putting u = h(x), d = a and t = y − x.

For any fixed i, Equation (4) is equivalent to u+x·d ≡ v ·2i (mod p), for some
v ∈ {0, · · · , p−1}. Therefore d·x ≡ v ·2i −u (mod p). Since p is a prime number,
(d, p) = 1 and the solution of the congruence equation d ·x ≡ v ·2i −u (mod p) is

Two Improved Range-Efficient Algorithms for F0 Estimation 663

x ≡ dφ(p)−1 · (v · 2i − u) mod p

= d−1 · (v · 2i − u) mod p
(5)

where φ(·) is the Euler function.
We can express x as

x ≡ (−u · d−1 + v · 2i · d−1) mod p (6)

Thus we can use the procedure Hits, described in [15], to determine the size of
the intersection of the set {0, · · · , t} and the sequence

u′ mod p, (u′ + d′) mod p, · · · , (u′ + (p − 1) · d′) mod p

where u′ = −u · d−1 and d′ = 2i · d−1.
We now describe our algorithm, MG, for computing M(·) and G(·). For the

given hash function h(·), integers d, p and interval r = [x, y], set u′ ← −h(x) ·
d−1(mod p) first. Then the algorithm uses the binary search to determine the
maximum i ∈ {0, · · · , 	log p
} such that v:=Hits(p, 2i·d−1, u′, p−1, [0, y−x])> 0.
Finally, the algorithm outputs i and v as the value of M(r) and G(r).

The formal description of the procedure Hits, which calculates the size of the
intersection between a given interval and an arithmetic progression over ZZp,
can be found in [15].

Theorem 1. The time complexity of algorithm MG is O(log U log log U) and the
space complexity is O(log U).

Proof. Since the maximum value of i is 	log p
 and we use binary search to
determine the required i, we call the procedure Hits at most O(log log U) times
to get the maximum i. By the analysis of [15], the time complexity of Hits is
O(log U), and the space complexity is O(log U). Therefore, the time complexity
of the algorithm MG is O(log U log log U), and the required space is O(log U). �

Algorithm and complexity analysis. In the initialization step, the algorithm
picks a prime number p between U2 and U3, and chooses two numbers a from
{1, · · · , p − 1} and b from {0, · · · , p − 1} at random. Let � be the current level
the algorithm stays in and � ← 0 initially. In addition, let the sample set S be
empty and α ← c

ε2 where c is a constant determined by the following analysis.
We store an interval r in S as a triple (r, d, w) where d = M(r) and w = G(r).

When a new interval ri = [xi, yi] arrives, the algorithm executes the following
operations:

1. If ∃(r, d, w) ∈ S such that ri ∩ r �= ∅:
(a) While ∃(r, d, w) ∈ S such that r ∩ ri �= ∅

S ← S − {(r, d, w)}, ri ← r ∪ ri, Xd ← Xd − w · 2d+1,
Z ← Z − w · 2d+1.

(b) di ← M(ri), wi ← G(ri).
(c) S ← S ∪ {(ri, di, wi)}, Xdi ← Xdi + wi · 2di+1, Z ← Z + wi · 2di+1.

664 H. Sun and C.K. Poon

2. Else If M(ri) ≥ � then
(a) di ← M(ri), wi ← G(ri).
(b) S ← S ∪ {(ri, di, wi)}, Xdi ← Xdi + wi · 2di+1, Z ← Z + wi · 2di+1.
(c) If ||S|| > α then

i. Z ← Z − X�; S ← {(r, d, w)|d > �}; � ← min(r,d,w)∈S d.
ii. If � > �log p� then return;

When an estimate for F0 is asked for, the algorithm returns Z · 2�.
To boost up the probability of achieving the desired approximation value, we

run in parallel O(log 1
δ) copies of the algorithm above and take the median of

the resulting approximations as the final estimated value.

Theorem 2. The space complexity of the algorithm above is O(1
ε2 log U log 1

δ).

Proof. The space required by calculating M(·) and G(·) is O(log U). For estima-
tion algorithm, the sample S consists of α = Θ(1

ε2) elements, each of whom needs
O(log U) space. In addition, the algorithm needs min{ c

ε2 , �log p�} · log U space
to store the value of X0, · · · , X�log p�. Therefore the total space is O(1

ε2 log U).
Since we execute the algorithm O(log 1

δ) times in parallel, the space complexity
of this algorithm is O(1

ε2 log U log 1
δ). �

Theorem 3. The amortized time to process an interval r = [x, y] for the algo-
rithm is Õ(log U

ε log 1
δ), and the worst case running time to process an interval

r = [x, y] is Õ((1
ε2 + log U) log 1

δ).

Proof. The running time to process an interval consists of three parts: 1. Check
whether or not there exists an interval r′ ∈ S, such that r ∩ r′ �= ∅; 2. Time for
calculating M(r) and G(r); 3. Time for handling an overflow in the sample.

We use a balanced binary search tree T to store the elements in S. So we can
use O(log 1

ε) time to check if r intersects with any interval in S in the first part.
As Theorem 1 mentioned, we need O(log U log log U) time to calculate M(r)
and G(r). Now we analyze the running time of the third part. When the size of
S exceeds α, the algorithm uses O(1

ε2) time to calculate the current level �′ ←
min(r,d,w)∈S∧d>� d and discards the intervals whose M(·)’s value is less than �′.
This step need scan each element (r, d, w) ∈ S once, which requires O(1

ε2) time.
Therefore the worst case time complexity of the algorithm is Õ((1

ε2 +log U) log 1
δ).

As for the amortized time, we follow the approach of Pavan and Tirthapura
and argue that the total time for handling overflow in the sample (i.e., part 3)
over the whole data stream is not more than Õ(1

ε2 log U log 1
δ) since the maximum

number of level changes is O(log U). Therefore, the amortized time for inserting
an interval for this part is O(1) if the number of input intervals in the data
stream is large. Consequently, the amortized time is dominated by the time for
part 1 and 2 which is Õ(log U

ε log 1
δ) in total. �

Revised algorithm implementation. The algorithm above uses a balanced
binary tree to store the intervals in S. In the streaming algorithms, some re-
searchers (such as [2]) use the maximum number of steps the algorithm spent

Two Improved Range-Efficient Algorithms for F0 Estimation 665

on a single item as the measure of time complexity. In order to improve the
worst case running time for updating per element, we revise our algorithm pro-
posed above. We use a list of balanced binary trees T0, T1, · · · , Tu, u = �log p�,
to store the intervals in the sample S. The number of trees is not more than
min{�log p�, c

ε2 }. When we need to store an interval r in S, the algorithm cal-
culates M(r) and G(r) first of all, and stores r in TM(r) if M(r) is not less than
the current level �. At the same time, the algorithm updates the estimator Z,
and XM(r), whose value is defined by Equation (2) and (3).

Theorem 4. The space complexity of the revised algorithm is O(1
ε2 log U log 1

δ).

Proof. The space used by the algorithm is the space required for the procedure
MG plus the space for storing the list of trees T0, . . . , Tu. By Theorem 1, the space
complexity for calculating M(r) and G(r) is O(log U). For the list of binary trees,
we store at most O(1

ε2) items, each of which consists of an interval ri = [xi, yi].
In addition, we need O(min{�log p�, c

ε2 } · log U) space to store Xi for each tree
Ti and O(log U) space to store Z. Therefore the total space is O(1

ε2 log U). Since
we run O(log 1

δ) copies of the algorithm in parallel, the total space required by
the algorithm is O(1

ε2 log U log 1
δ). �

Theorem 5. The amortized time to process an interval r = [x, y] for the revised
algorithm is O(log 1

ε log U log 1
δ), and the worst case running time to process an

interval r = [x, y] is O(log 1
ε log U log 1

δ).

Proof. The running time to process an interval r consists of three parts: 1.
Check whether or not there exists an interval r′ ∈ Tj , 0 ≤ j ≤ �log p�, such
that r ∩ r′ �= ∅; 2. Time for calculating M(r) and G(r); 3. Time for handling an
overflow in the sample.

For the first part, let ni denote the number of intervals in Ti. Since all the
intervals in each tree are disjoint, we can use a balanced binary search tree to
store the intervals. Therefore for each tree Ti, we can use O(log ni) time to check
if r intersects with any interval in Ti. The total time for this part is not more
than

�log p�∑

i=0

log ni = log
�log p�∏

i=0

ni

≤ log
(α

log p

)log p

= O
(
log p

(
log

1
ε

− log log p
))

= O
(
log U log

1
ε

− log U log log U
)

(7)

By Theorem 1, the required time for the second part is O(log U log log U).
For part 3, when the size of S exceeds α, the algorithm finds the minimum
�

′
, �

′
> �, such that T�′ is not an empty tree. The algorithm discards tree T�,

and lets � ← �
′
. We can use a linked list to store the root of each (non-empty)

666 H. Sun and C.K. Poon

tree and the running time for finding �
′
is O(1). Since the maximum number of

level changes is O(log U), the total time taken by level changes over the whole
data stream is not more than O(log U log 1

δ), and the amortized time updating
per element for this part is O(1) if the number of intervals in the data stream
is large.

Combined with the three parts, both the amortized and worst case update
time to process each interval are O(log 1

ε log U log 1
δ). �

Correctness proof. Let the sample S = ∪�log p�
i=0 Ti, where Ti = {r|M(r) = i}.

Let NTi be the number of distinct elements in set Ti. In addition, let W (x, i) be
the indicator random variable whose value is 1 if and only if ρ(h(x)) = i.

Define

Z� =
Z

2�
=

�log p�∑

i=�

Xi · 2i+1 (8)

Lemma 2. E[Z�] = F0 · 1
2� , Var[Z�] = F0

1
2� (1 − 1

2�).

Proof. Let D(I) denote the set of distinct elements in I = {r1, · · · , rn}. We want
to estimate F0 = ||D(I)||.

Since E[W (x, �)] = 1
2�+1 , we get

E[Xi] =
∑

r∈Ti

∑

x∈r

E[W (x, i)] = E[NTi] ·
1

2i+1

Assume that the current level is �, so we get

E[Z�] = E
[�log p�∑

i=�

Xi · 2i+1
]

=
�log p�∑

i=�

2i+1E[NTi] ·
1

2i+1 =
�log p�∑

i=�

E[NTi] = F0 · 1
2�

By Lemma 1, the random variables {W (x, i)|x ∈ D(I)} are all pairwise
independent, thus the variance of Z� is F0

1
2� (1 − 1

2�). �
Theorem 6. Pr

{
Z ∈ [(1 − ε)F0, (1 + ε)F0]

}
≥ 2

3 .

Proof. Let s be the level in which the algorithm stops, and t� is the lowest
level such that E[Zt�] < α

C , where C is the constant number determined by the
following analysis. Let the size of the sample S be α = c

ε2 . Then the probability
that the algorithm fails to give a desired estimation is

Pr
{
|Z − F0| > εF0

}
= Pr

{∣
∣
∣
Z

2s
− F0

2s

∣
∣
∣ > ε

F0

2s

}

=
�log p�∑

i=0

Pr
{∣

∣Zi − F0

2i

∣
∣ > ε

F0

2i

∣
∣
∣s = i

}
· Pr{s = i}

=
�log p�∑

i=0

Pr
{∣

∣Zi − E[Zi]
∣
∣ > εE[Zi]

∣
∣
∣s = i

}
· Pr{s = i}

≤
t�

∑

i=0

Pr
{∣
∣Zi − E[Zi]

∣
∣ > εE[Zi]

}
+

�log p�∑

i=t�+1

Pr{s = i}

(9)

Two Improved Range-Efficient Algorithms for F0 Estimation 667

By Chebyshev’s inequality, we know that for all i ∈ {0, · · · , t�}, there holds

Pr
{∣

∣Zi − E[Zi]
∣
∣ > εE[Zi]

}
≤ Var[Zi]

ε2E2[Zi]

On the other hand, if the algorithm stops in the level �′ > t�, it implies that
there are at least α disjoint intervals in S in level t�, each of whom contributes
at least one to the corresponding Xj , t

� ≤ j ≤ �log p�. So we get Zt� ≥ α, and

Pr
{
|Z − F0| > εF0

}
≤

t�
∑

i=0

Var[Zi]
ε2E2[Zi]

+ Pr{Zt� ≥ α}

<
t�

∑

i=0

2i

ε2F0
+ Pr

{
Zt� − E[Zt�] ≥ α − α

C

}

<
1

ε2F0
· 2t�+1 +

1
Cα(1 − 1/C)2

<
4

ε2E[Zt�−1]
+

1
Cα(1 − 1/C)2

≤ 4C

ε2α
+

1
Cα(1 − 1/C)2

=
4C

c
+

ε2

Cc(1 − 1/C)2

<
4C

c
+

1
Cc(1 − 1/C)2

<
1
3

(10)

by using C = 3 and c = 50. �
So the probability can be amplified to 1 − δ by running in parallel O(log 1

δ)
copies of the algorithm and outputting the median of the returning O(log 1

δ)
approximating values.

4 Extension: Max-Dominance Norm Problem

Let the input consist of k streams of m integers, where each integer 1 ≤ ai,j ≤ U ,
i = 1, · · · , k, j = 1, · · · , m, represents the jth element of the ith stream. The
max-dominance norm is defined as

∑m
j=1 max1≤i≤k ai,j .

Employing stable distributions, Cormode and Muthukrishnan [6] designed an
(ε, δ)-approximation algorithm of this problem. Pavan and Tirthapura showed
the relationship between this problem and range-efficient F0 estimation [15].
In the same paper, they gave an approximation algorithm for Max-Dominance
Norm Problem, whose space complexity is O(1

ε2 (log m+log U) log 1
δ), with amor-

tized update time O(log ai,j

ε log 1
δ) and worst case update time Õ(1

ε2 log ai,j log 1
δ).

Combining with Pavan and Tirthapura’s technique and our algorithm
presented in this paper, it is not hard to show the following theorem.

668 H. Sun and C.K. Poon

Theorem 7. There exists an (ε, δ)-approximation algorithm for Max-
Dominance Norm Problem, whose space complexity is O(1

ε2 (log m+logU) log 1
δ),

with amortized update time Õ(log ai,j

ε log 1
δ) and worst case update time Õ((1

ε2 +
log ai,j) log 1

δ).

5 Further Work

We consider a more general range-efficient F0 estimation problem — range-
efficient F0 estimation under the turnstile model [13] where there can be both
insertions and deletions of intervals. Let the multiset S be empty initially. When
the intervals arrive, we can not only insert some intervals into S but also delete
the intervals from S. When an estimate is requested, the algorithm need to give
a desired approximation value of ||S||.

Some algorithms, such as [5,10], focus on single item case and are suitable
for this turnstile model. However, all these known algorithms cannot be easily
generalized to the range-efficient case for the following reasons: (1) It is proven
in [5] that stable distributions with small stability parameter can be used to ap-
proximate F0 norm. The difficulty of generalizing this method to range-efficient
case is the lack of general range-summable p-stable random variables. Though
strong range-summability results are known for F1 and F2, for general 0 < p ≤ 2,
there is no any known p-stable range-summable random variable construction
algorithm, which was also listed in [7]. (2) Ganguly et al. gave another algorithm
to estimate the cardinality of the multiset S [10], but this algorithm required
the use of Θ(log 1

δ)-wise independent hash function. Let h be such kind of hash
functions. The algorithm presented in [10] need to calculate ρ(h(x)). Though
there exist some k-wise range-summable hash function construction algorithms
for general k, it is not clear how to calculate ||{x ∈ r|ρ(h(x)) = t}|| effectively, for
the given interval r and parameter t. We leave this more general range-efficient
F0 estimation problem for further work.

Acknowledgements. We thank Piotr Indyk, Graham Cormode and Omer
Reingold for some helpful discussions.

References

1. N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58:137-147, 1999.

2. Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algorithms,
with an application to counting triangles in graphs. In Proceedings of 13th ACM-
SIAM Symposium on Discrete Algorithms, pages 623-632, 2002.

3. Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting
distinct elements in a data stream. In Proceedings of 6th International Workshop on
Randomization and Approximation Techniques in Computer Science, pages 1-10,
2002.

4. J. L. Carter, M. N. Wegman. Universal classes of hash functions. Journal of Com-
puter and System Sciences, 18(2):143-154, 1979.

Two Improved Range-Efficient Algorithms for F0 Estimation 669

5. G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data streams
using hamming norms (How to zero in). In Proceedings of the 28th International
Conference on Very Large Data Bases, pages 335-345, 2002.

6. G. Cormode, S. Muthukrishnan. Estimating dominance norms of multiple data
streams. In Proceedings of the 11th European Symposium on Algorithms, pages
148-160, 2003.

7. G. Cormode. Stable distributions for stream computations: it’s as easy as 0,1,2.
In Workshop on Management and Processing of Massive Data Streams, at FCRC,
2003.

8. M. Durand and P. Flajolet. Loglog counting of large cardinalities. In Proceedings
of the European Symposium on Algorithms, pages 605-617, 2003.

9. P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base ap-
plications. Journal of Computer and System Sciences, 31:182-209, 1985.

10. S. Ganguly, M. Garofalakis, and R. Rastogi. Tracking set-expression cardinalities
over continuous update streams. The International Journal on Very Large Data
Bases, 13:354-369, 2004.

11. F. Giroire. Order statistics and estimating cardinalities of massive data sets. Dis-
crete Mathematics and Theoretical Computer Science, Vol. AD, pages 157-166,
2005.

12. P. Indyk. Stable distributions, pseudorandom generators, embeddings and data
stream computation. In Proceedings of the 40th Symposium on Foundations of
Computer Science, pages 189-197, 2000.

13. S. Muthukrishnan. Data streams: algorithms and applications. Invited talk
at 14th ACM-SIAM Symposium on Discrete Algorithms. Available from
http://athos.rutgers.edu/~muthu/stream-1-1.ps

14. N. Nisan. Pseudorandom generators for space-bounded computation, In Proceed-
ings of the 22nd Symposium on Theory of Computation, pages 204-212, 1990.

15. A. Pavan, S. Tirthapura. Range-efficient computation of F0 over massive data
stream. In Proceedings of the 21st International Conference on Data Engineering,
pages 32-43, 2005.

16. M. N. Wegman and J. L. Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Science, 22:265-279, 1981.

17. R. Weron. On the Chambers-Mallows-Stuck method for simulating skewed stable
random variables. Technical report, Hugo Steinhaus Center for Stochastic Methods,
Wroc�law, 1996.

	Introduction
	Preliminaries
	Algorithm for Range-Efficient F_0 Estimation
	Extension: Max-Dominance Norm Problem
	Further Work

