
A Time Hierarchy Theorem for
Nondeterministic Cellular Automata

Chuzo Iwamoto�, Harumasa Yoneda, Kenichi Morita, and Katsunobu Imai

Hiroshima University, Graduate School of Engineering
Higashi-Hiroshima, 739-8527 Japan

chuzo@hiroshima-u.ac.jp

Abstract. We present a tight time-hierarchy theorem for nondetermin-
istic cellular automata by using a recursive padding argument. It is shown
that, if t2(n) is a time-constructible function and t2(n) grows faster than
t1(n+1), then there exists a language which can be accepted by a t2(n)-
time nondeterministic cellular automaton but not by any t1(n)-time non-
deterministic cellular automaton.

1 Introduction

One of the basic problems in complexity theory is to find the slightest enlarging
of the complexity bound which allows new languages to be accepted. There
is a huge amount of literature on time hierarchy theorems for various models
of computation, such as Turing machines (TMs) [3,4,6,8,14,16], random access
machines (RAMs) [2], parallel RAMs [7,13], and uniform circuit families [10].

In this paper, we investigate time-hierarchies of cellular automata (CA). The
first result on CA-based hierarchies was given in [11]; it was shown that there
is a language which can be accepted by a one-dimensional deterministic CA (1-
DCA) in t2(n) time but not by any 1-DCA in t1(n) time. Here, t1(n) and t2(n)
are arbitrary time-constructible functions such that t2(n) is not bounded by
O(t1(n)). (Time constructible functions on 1-DCA were also discussed in [11].)

Another result on CA-hierarchies is in the hyperbolic space [9]; it was shown
that there is a language which can be accepted by two-dimensional hyperbolic CA
(2-HCA) in (t2(n))3 time but not by any 2-HCA in t1(n) time. When t1(n) = nr,
this hierarchy result can be improved as follows: For any rational constants r ≥ 1
and ε > 0, there is a language which can be accepted by an nr+ε-time 2-HCA
but not by any nr-time 2-HCA [12]. Interestingly, these time-hierarchy results
in the hyperbolic space hold for both deterministic and nondeterministic cases.

On the other hand, no attempt has been made to present time-hierarchy
results on one-dimensional nondeterministic CA (1-NCA). In this paper, it is
shown that, if t2(n) is a time-constructible function and t2(n) grows faster than
t1(n + 1), then there exists a language which can be accepted by a t2(n)-time
1-NCA but not by any t1(n)-time 1-NCA.
� Corresponding author. This research was supported in part by Scientific Research

Grant, Ministry of Japan.

J.-Y. Cai, S.B. Cooper, and H. Zhu (Eds.): TAMC 2007, LNCS 4484, pp. 511–520, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

512 C. Iwamoto et al.

A lot of techniques have been known for separating complexity classes. For
example, (i) the crossing-sequence argument for one-tape TMs [5], (ii) diagonal
arguments for deterministic TMs [3,4,8], 1-DCA [11], PRAMs and DLOGTIME-
uniform circuits [7], and (non)deterministic HCA [9], and (iii) padding argu-
ments for nondeterministic TMs [6], alternating TMs and PRAMs [13], and
(non)deterministic HCA [12]. In this paper, we will show a hierarchy theorem
for one-dimensional NCA by using a recursive padding argument, which was
firstly used in [1,19,20] for multi-tape nondeterministic TMs.

In Section 2, we give the definition of 1-NCA. The main result is also given
in that section. The proof is given in Section 3.

2 Nondeterministic Cellular Automata

A cellular automaton (CA) is a synchronous parallel string acceptor, consisting
of a semi-infinite one-dimensional array of identical finite-state automata, called
cells, which are uniformly interconnected (see Fig. 1). Every cell operates syn-
chronously at discrete time steps and changes its state depending on the previous
states of itself and its neighbours.

a2 ana1 q q
c2 cnc1c0 cn+1 cn+2

Fig. 1. Cellular automaton

A nondeterministic CA is a 7-tuple M = (Q, Σ, #, δ, q, QA, QR), where

1. Q is the finite nonempty set of states,
2. Σ ⊆ Q is the finite input alphabet,
3. # is the special boundary symbol not in Q,
4. δ : (Q ∪ {#}) × Q × Q → 2Q is the local transition function,
5. q ∈ Q is the quiescent state such that δ(q, q, q) = {q}, and if δ(p1, p2, p3) � q

then (p1, p2, p3) ∈ Q×{q}×{q} (i.e., any non-quiescent state does not become
the quiescent state),

6. QA ⊆ Q is the set of accepting states such that if (p1, p2, p3) ∈ {#}×QA ×Q
then δ(p1, p2, p3) ⊆ QA,

7. QR ⊆ Q is the set of rejecting states such that if (p1, p2, p3) ∈ {#}×QR ×Q
then δ(p1, p2, p3) ⊆ QR.

The cell assigned to the integer i ≥ 1 is denoted by ci. The input string
a1a2 · · · an is applied to the array in parallel at step 0 by setting the states of cells
c1, c2, . . . , cn to a1, a2, . . . , an, respectively. The remaining cells cn+1, cn+2, . . . are
in the quiescent state. (Our CA is the so-called parallel-input model; however,
the same hierarchy result holds for the sequential-input model, in which the
input is fed serially to the leftmost cell.)

A Time Hierarchy Theorem for Nondeterministic Cellular Automata 513

A configuration of a CA is represented by a string in {#}(Q − {q})∗. A par-
ticular configuration is said to be accepting (resp. rejecting) if the first cell c1
is in an accepting (resp. rejecting) state. The definition of a computation tree
is mostly from [17]. For an input, computations of a nondeterministic CA are
described as a tree T : All nodes are configurations, the root is the initial con-
figuration of the CA for the given input, and the children of a configuration C
are exactly those configurations reachable from C in one step allowed by the
transition function. Leaves of T are final configurations, which may be accepting
or rejecting. Certain paths in T may be infinite.

An interior node is defined to be accepting if at least one of its children is
accepting. The CA accepts the input iff the root is accepting. A nondeterministic
CA M is defined to be t(n)-time bounded if, for every accepted input w of
length n, the computation tree T of M started with w stays accepting if it is
pruned at depth t(n). A CA is said to be deterministic if its transition function
satisfies |δ(p1, p2, p3)| = 1 for every (p1, p2, p3) ∈ (Q ∪ {#}) × Q × Q.

Let M1, M2, . . . , Mr be CA with state sets Q1, Q2, . . . , Qr, respectively. Con-
sider a CA M such that the state set Q is a Cartesian product Q = Q1 × Q2 ×
· · ·×Qr and each cell is partitioned into r sub-cells. The array of specific sub-cells
in all cells is called a track. Then M can simulate M1, M2, . . . , Mr in r tracks
simultaneously.

The language accepted by a CA M is denoted by L(M). A function t(n) is said
to be time-constructible if, for each n, there is a deterministic CA such that the
first cell c1 enters an accepting state at step t(n) for the first time on all inputs
of length n. It is known that if a function t(n) is computable by an O(t(n) − n)-
time TM (to which value n is given as a binary string of length �log2 n	 + 1),
then t(n) is also time-constructible by a CA [11]. If two functions are time-
constructible by CA, then the sum, product, and exponential functions of them
are also time-constructible by CA. If t(n) is time-constructible, then t(n) is
also space-constructible, i.e., there is a one-dimensional deterministic CA which
places a “marker” at the t(n)th cell in O(t(n)) time (by emitting 1/2-speed and
unit-speed pulses at steps 0 and t(n), respectively).

Now we are ready to present our main theorem.

Theorem 1. Suppose that t2(n) is an arbitrary time-constructible function and
limn→∞

t1(n+1)
t2(n) = 0. There exists a language which can be accepted by a t2(n)-

time nondeterministic CA but not by any t1(n)-time nondeterministic CA.

Since t1(n+1) = O(t1(n)) when t1(n) is a polynomial in n, we can say, for exam-
ple, nr-time nondeterministic CA are stronger than (nr/ log log n)-time nonde-
terministic CA, where r ≥ 1 is an arbitrary rational constant. However, it is not
known whether (t(n))2-time nondeterministic CA are stronger than t(n)-time
nondeterministic CA when t(n) = 22n

.

3 Time Hierarchy for Nondeterministic CA

In this section, we will prove Theorem 1. In the rest of this paper, all CA
are nondeterministic CA unless stated otherwise. We use the recursive padding

514 C. Iwamoto et al.

method [20]. The outline of the proof is as follows: We first define a universal
CA in Section 3.1. In Section 3.2, we construct a recursively padding CA which
lengthens the input string as many times as we want. In Section 3.3, we observe
the relationship between our recursively padding CA and its language. In Sec-
tion 3.4, we assume for contradiction that any t2(n)-time computation is sped-up
to t1(n) time. Under this assumption, we will show that any recursive language
can be accepted by t1(n)-time CA (i.e., any computation for recursive languages
(with no time restriction) can be sped-up to t1(n) time), a contradiction.

3.1 Universal CA

All languages in this section are over {0, 1}. We first define the encoding rule of
CA, which is essentially from [11]. We denote the states of CA by q1, q2, . . . , qm,
where q1 is the special boundary state #, and q2 is the quiescent state q. For
simplicity, we assume that q3 (resp. q4) is the unique accepting (resp. rejecting)
state. State qi is encoded into string 10i of length i+1. We encode each transition
rule δ(qi, qj , qk) = {ql1 , ql2 , . . . , qlr} into string 1110i10j10k110l110l2 · · · 10lr for
every (qi, qj , qk) ∈ (Q ∪ {#}) × Q × Q. The encoding sequence e of a CA is
the concatenation of all transition rules in the lexicographical order, called the
encoding part, followed by 1111 · · ·10 of length 2l − l, called the padding part,
where l is the length of the encoding part. Let Me denote the CA whose encoding
sequence is e.

Let LU = {ex ∈ {0, 1}∗| e is the encoding sequence of some CA Me, and Me

accepts x }. We construct a universal CA U accepting LU such that U accepts ex
in cet(|x|) time if Me accepts x in t(|x|) time, where ce is a constant depending
only on e.

It is not difficult to verify whether the syntax of the encoding sequence e
is proper in time proportional to |e|. Note that any polynomial in l is much
smaller than |e| because |e| = 2l. In order to verify whether Me accepts x, U
simulates Me on input x as follows. We denote the ith cell of Me by si. Each
cell si of Me is simulated by |e| cells of U . Namely, the cellular space of U
is divided into blocks, B1, B2, . . ., of the same length |e|, and the ith block Bi

corresponds to Me’s cell si. Each block is divided into two tracks in order to
store e and the state of si. Therefore, every block has all transition rules of Me.

We can generate blocks of the same length as follows (see Fig. 2). The first
and |e|th cells emit unit-speed and 1/2-speed pulses p0, p1 at step 0 to the right,
respectively. Then the |e|th cell emits a 1/2-speed pulse p2 at step |e|. Sim-
ilarly, at steps 3|e|, 5|e|, 7|e|, · · ·, cells at positions 2|e|, 3|e|, 4|e|, · · · emit unit-
speed pulses p0. Markers are placed at positions where a pulse p0 catches up
with p1. The encoding sequence e in a block can be copied into the next block
in time proportional to |e| (by using the firing squad synchronization (FSS) al-
gorithm [15]). The ith symbol xi of Me’s input x is moved to the ith block in
2|e| · |x| time (the detail of this procedure is left to the reader).

After the above procedures, U starts to simulate Me on input x. In order that
every cell starts the simulation simultaneously, we use the FSS algorithm. Since
each block has length |e|, a single step of Me’s cell si can be simulated by U ’s

A Time Hierarchy Theorem for Nondeterministic Cellular Automata 515

e

p
1

p
0

p
2

p
0

p
0

cellular space

tim
e

Fig. 2. Time-space diagram of CA. Markers are placed at regular intervals of length |e|.

block Bi in c′e steps, where c′e is a constant depending only on e. Therefore, there
is a constant ce such that U accepts ex in cet(|x|) time if Me accepts x in t(|x|)
time.

3.2 Recursive Padding

For a fixed encoding e, let f(e) be the encoding of a CA Mf(e) such that (i) Mf(e)
with the input string x changes x into ex and then (ii) Mf(e) makes the com-
putation of Me on the input ex. (This definition is based on recursive function
theory [18,21].)

For a fixed function h and a fixed CA M1, let g(h, M1) be the encoding of
a CA Mg(h,M1) which changes its input wx into h(w)x and then makes the
computation of M1 on input h(w)x, where w is a valid encoding of some CA.

Now, consider CA Mf(g(f,M1)) on input x. According to the definitions of f
and g, (i) Mf(g(f,M1)) on input x changes x into g(f, M1)x, then (ii) Mf(g(f,M1))
makes the computation of Mg(f,M1) on the input g(f, M1)x (i.e., Mg(f,M1)
changes g(f, M1)x into f(g(f, M1))x, and makes the computation of M1 on input
f(g(f, M1))x). Therefore, Mf(g(f,M1)) accepts x iff M1 accepts f(g(f, M1))x.

We analyse the relationship between the time complexities of Mf(g(f,M1))
and M1 as follows: We can convert the input x into g(f, M1)x and then
into f(g(f, M1))x in time proportional to |f(g(f, M1))x|. In order to start the
computation of M1 in every cell simultaneously, Mf(g(f,M1)) performs the FSS al-
gorithm, which can also be done in linear time. Hence, if M1 accepts f(g(f, M1))x
in t(|f(g(f, M1))x|) time, then Mf(g(f,M1)) accepts x in ct(|f(g(f, M1))x|) time
for some constant c.

516 C. Iwamoto et al.

Let L ⊆ {1}∗ be any recursive language, and let M be the deterministic CA
which accepts L in t(n) time. Now, we define (nondeterministic) CA M ′ which
recursively pads the input string until the length becomes larger than t(|x|).

The CA M ′ first verifies whether the input string is of the form ex0k, where
x ∈ {1}∗ and e is the encoding sequence of some CA Me. So, M ′ verifies whether
the input is an encoding sequence of a CA followed by an arbitrary number
of 1’s, which are further followed by an arbitrary number of 0’s. Then, CA M ′

compares the values of t(|x|) and |x0k| by (i) emitting a unit-speed pulse to the
left from the rightmost 0 in ex0k and (ii) making the deterministic t(|x|)-step
computation of M on x (see Fig. 3). If the computation of M halts before the
pulse reaches the position of the first symbol of x0k (i.e., t(|x|) < |x0k|), then
M ′ halts with an accepting state iff M accepts x. If t(|x|) ≥ |x0k|, then M ′

pads ex0k to ex0k′
, where k′ > k is a nondeterministically chosen integer; M ′

performs the FSS algorithm in order to start the computation of the universal
CA U on input ex0k′

.

e x 0k

M

tim
e t(|x|)

Fig. 3. M ′ makes the computation of M on x, and emits a unit-speed pulse

In the following, we analyse the properties of the above padding procedure.
Consider the computation of M ′ on input f(g(f, M ′))x. According to the de-
finition, M ′ pads f(g(f, M ′))x to f(g(f, M ′))x0k for nondeterministically cho-
sen k > 0, and starts the computation of U on f(g(f, M ′))x0k. Since U is a
universal CA, the computation of U on f(g(f, M ′))x0k implies the computation
of Mf(g(f,M ′)) on input x0k. According to the definition, Mf(g(f,M ′)) first changes
the input x0k to g(f, M ′)x0k. The next task is to change g(f, M ′)x0k into
f(g(f, M ′))x0k and then to make the computation of M ′ on input f(g(f, M ′))x0k.
According to the definition, M ′ compares the values of t(|x|) and |x0k|. If
t(|x|) < |x0k|, then M ′ halts with an accepting state iff M accepts x. If |x0k|
has not yet been larger than t(|x|), M ′ pads x0k to x0k′

for nondeterministi-
cally chosen k′ > k, and restarts the computation of U on f(g(f, M ′))x0k′

. The
CA M ′ recursively performs this procedure until the padding sequence becomes
so long that t(|x|) < |x0k′ |.

A Time Hierarchy Theorem for Nondeterministic Cellular Automata 517

3.3 Recursively Padding CA and Their Languages

Recall that L ⊆ {1}∗ is any recursive language, and M is the deterministic CA
recognizing L in t(n) time. We will prove

L(Mf(g(f,M ′))) = {x0k | x ∈ L(M), k ≥ 0} (1)

by induction on k running down from a sufficiently large k′ to 0.
Let k′ be a sufficiently large integer such that t(|x|) < |x0k′ |. As we mentioned

in the last paragraph of Section 3.2, a computation of Mf(g(f,M ′)) on x0k′
implies

a computation of M ′ on f(g(f, M ′))x0k′
, and M ′ accepts it iff M accepts x.

Therefore,

L(Mf(g(f,M ′))) = {x0k′ | f(g(f, M ′))x0k′ ∈ L(M ′)}
= {x0k′ | x ∈ L(M)}. (2)

From equation (2), one can see that Mf(g(f,M ′)) accepts x0k′
iff M accepts x,

for any such large k′.
Consider an integer k such that t(|x|) ≥ |x0k|. Assume for induction that, for

every k′ > k, equation (2) holds. We observe the computation of Mf(g(f,M ′))

on x0k (which implies the computation of M ′ on f(g(f, M ′))x0k.) Recall that
the first task for M ′ was to pad f(g(f, M ′))x0k to f(g(f, M ′))x0k′

for nonde-
terministically chosen k′ > k, and the second task was to make the computation
of U on f(g(f, M ′))x0k′

. Thus,

L(Mf(g(f,M ′))) = {x0k | f(g(f, M ′))x0k′
∈ L(U) for some k′ > k}. (3)

Since U is a universal CA, the computation of U on input f(g(f, M ′))x0k′
implies

the computation of Mf(g(f,M ′)) on input x0k′
. Therefore, the right-hand side

of (3) can be rewritten as

L(Mf(g(f,M ′))) = {x0k | x0k′ ∈ L(Mf(g(f,M ′))) for some k′ > k}. (4)

From the induction hypothesis (see equation (2)), Mf(g(f,M ′)) accepts x0k′
iff M

accepts x. Hence, the right-hand side of (4) is further rewritten as

L(Mf(g(f,M ′))) = {x0k | x ∈ L(M)}.

Thus, if equation (2) holds for every k′ > k, then the same equation holds also
for k. Hence, equation (1) holds for every k ≥ 0.

3.4 Proof of Theorem 1

Let t2(n) be an arbitrary time-constructible function which is not bounded by
O(t1(n + 1)). Assume for contradiction that there does not exist any language
which can be accepted by t2(n)-time CA but not by any t1(n)-time CA. This

518 C. Iwamoto et al.

assumption implies that any t2(n)-time computation in CA can be sped-up to
t1(n) time.

Recall that L ⊆ {1}∗ is any recursive language, and M is the deterministic
CA recognizing L in t(n) time. Note that t(n) can be taken as rapidly as we
want by choice of L. In the following paragraphs, we will prove by induction on
n that, for each sufficiently long x accepted by M , U accepts f(g(f, M ′))x0k of
length n in t1(n) time for every n ≥ |f(g(f, M ′))x|. Here, the computation of U
on f(g(f, M ′))x0k in t1(n) time implies the computation of Mf(g(f,M ′)) on x0k

in O(t1(n)) time, since U is a universal CA. It is not difficult to show that there
is an O(t1(n))-time CA, say, M ′

f(g(f,M ′)), such that

L(M ′
f(g(f,M ′))) = {x | x0k ∈ L(Mf(g(f,M ′)))}

= {x | x ∈ L(M)} = L(M) = L. (5)

The second equation holds because of equation (1). Equation (5) implies that
any language L (recognized by the deterministic CA M with no time restriction)
can be accepted by an O(t1(n))-time CA M ′

f(g(f,M ′)), a contradiction.
It remains to show that U accepts f(g(f, M ′))x0k of length n in t1(n) time.

Consider a sufficiently large n such that n > |f(g(f, M ′))x|+ t(|x|). In this case,
since the padding sequence is sufficiently long, the computation of Mf(g(f,M ′))

on x0k can be done in linear time (which is less than t2(n)). From the assumption,
any t2(n)-time computation (of Mf(g(f,M ′)) on x0k) can be sped-up to t1(n) time.
Therefore, U can accept f(g(f, M ′))x0k in t1(n) time.

Consider an integer n such that |f(g(f, M ′))x| ≤ n ≤ |f(g(f, M ′))x| + t(|x|).
Assume for induction that, for each sufficiently long x accepted by M , U accepts
f(g(f, M ′))x0k+1 of length n′ = n+1 in t1(n′) time. Under this assumption, we
will show that U accepts f(g(f, M ′))x0k of length n in t1(n) time as follows.

Consider the nondeterministic computation tree of U on input f(g(f, M ′))x0k.
The computation of U on f(g(f, M ′))x0k implies the computation of Mf(g(f,M ′))

on x0k, which further implies the computation of M ′ on f(g(f, M ′))x0k

(see the last paragraph of Section 3.2). According to the definition, M ′ pads
f(g(f, M ′))x0k to f(g(f, M ′))x0k′

for nondeterministically chosen k′ > k.
Consider the nondeterministic choice which pads f(g(f, M ′))x0k to

f(g(f, M ′))x0k+1. (We will analyse the height of the subtree rooted at
f(g(f, M ′))x0k+1.) The time complexity for lengthening the padding sequence
is O(n). After lengthening the padding sequence, M ′ makes the computation
of U on the padded input f(g(f, M ′))x0k+1. The computation of U on
f(g(f, M ′))x0k+1 of length n + 1 can be done in t1(n + 1) time (because of
the induction hypothesis). The total complexity is t1(n + 1) + O(n). From the
assumption of the theorem, t2(n) is not bounded by O(t1(n + 1)). Thus, U can
accepts f(g(f, M ′))x0k of length n in t2(n) time. From the assumption (of this
section), any t2(n)-time computation can be sped-up to t1(n) time. Therefore,
U accepts f(g(f, M ′))x0k of length n in t1(n) time. This completes the proof of
Theorem 1.

A Time Hierarchy Theorem for Nondeterministic Cellular Automata 519

4 Conclusion and Final Observations

In this paper, we presented a tight time-hierarchy theorem for nondetermin-
istic cellular automata (NCA). It was shown that, for any time-constructible
function t2(n) not bounded by O(t1(n + 1)), t2(n)-time NCA are stronger than
t1(n)-time NCA.

Finally, we intuitively observe a recursive padding for the separation be-
tween nondeterministic classes of t1(N) = N2/ log log N and t2(N) = N2. Let
L be any recursive language recognized by a deterministic CA (DCA) M in
time t(n) = 22n

. Assume for contradiction that any t2(N)-time (nondeterminis-
tic) computation is sped-up to t1(N) time.

We recursively pad the input x of length n until the length of x00 · · · 0 be-
comes N = 22n

. Let LN = {x0N−n | x ∈ L}. Then, there is a CA accepting LN

in t2(N) time, since t2(N) = 22n+1
is larger than t(n) = 22n

. From the as-
sumption, the t2(N)-time computation for LN is sped-up to t1(N) time. If such
a t1(N)-time computation exists, then there is a t2(N − 1)-time computation
for LN−1 (see Section 3.4). Again, the t2(N −1)-time computation is sped-up to
t1(N − 1) time, and thus there is a t2(N − 2)-time computation for LN−2. By
continuing this observation, one can see that there is a t2(n)-time computation
for Ln = L. Therefore, any recursive language L, which can be accepted by a
22n

-time DCA, can also be accepted by an n2-time NCA. This contradicts the
following simulation and separation results: (i) every n2-time NCA can be sim-
ulated by a 22n−1

-time DCA, and (ii) there is a language which can be accepted
by a 22n

-time DCA but not by any 22n−1
-time DCA [11].

References

1. S.A. Cook, A hierarchy for nondeterministic time complexity, J. Comput. System
Sci. 7 (1973) 343–353.

2. S.A. Cook and R.A. Reckhow, Time bounded random access machines, J. Comput.
System Sci. 7 (1973) 354–375.

3. M. Fürer, The tight deterministic time hierarchy, Proc. ACM Symp. on Theory of
Computing, 8–16, 1982.

4. J. Hartmanis and R.E. Stearns, On the computational complexity of algorithms,
Trans. Amer. Math. Soc. 117 (1965) 285–306.

5. F.C. Hennie, One-tape off-line Turing machine computations, Inform. Contr. 8
(1965) 553–578.

6. O.H. Ibarra, A note concerning nondeterministic tape complexity, J. Assoc. Com-
put. Mach., 19 (1972) 608–612.

7. K. Iwama and C. Iwamoto, Parallel complexity hierarchies based on PRAMs and
DLOGTIME-uniform circuits, Proc. 11th IEEE Conf. on Computational Complex-
ity, 1996, 24–32.

8. K. Iwama and C. Iwamoto, Improved time and space hierarchies of one-tape off-line
TMs, Proc. 23rd Int’l Symp. on Mathematical Foundations of Computer Science,
LNCS 1450, Springer, 1998, 580–588.

9. C. Iwamoto, T. Andou, K. Morita, and K. Imai, Computational complexity in the
hyperbolic plane, Proc. 27th Int’l Symp. on Mathematical Foundations of Com-
puter Science, LNCS 2420, Springer, 2002, 365–374.

520 C. Iwamoto et al.

10. C. Iwamoto, N. Hatayama, K. Morita, K. Imai, and D. Wakamatsu, Hierarchies
of DLOGTIME-uniform circuits, in M. Margenstern (ed.): Machines, Computa-
tions and Universality (Proc. MCU 2004, Saint-Petersburg, Sep. 21–26, 2004),
LNCS 3354, Springer, 2005, 211–222.

11. C. Iwamoto, T. Hatsuyama, K. Morita, and K. Imai, Constructible functions in
cellular automata and their applications to hierarchy results, Theoret. Comput.
Sci. 270 (2002) 797–809.

12. C. Iwamoto and M. Margenstern, Time and space complexity classes of hyperbolic
cellular automata, IEICE Trans. on Information and Systems, E87-D 3 (2004)
700–707.

13. C. Iwamoto, Y. Nakashiba, K. Morita, and K. Imai, Translational lemmas for alter-
nating TMs and PRAMs, Proc. 15th Int’l Symp. on Fundamentals of Computation
Theory, LNCS 3623, Springer, 2005, 126–137.

14. K. Loryś, New time hierarchy results for deterministic TMs, Proc. 9th Symp. on
Theoretical Aspects of Computer Science, LNCS 577, Springer, 1992, 329–336.

15. J. Mazoyer, A 6-state minimal time solution to the firing squad synchronization
problem, Theoret. Comput. Sci., 50 (1987) 183–238.

16. W.J. Paul, On time hierarchies, J. Comput. System Sci. 19 (1979) 197–202.
17. W.J. Paul, E.J. Prauß, and R. Reischuk, On alternation, Acta Inform. 14 (1980)

243–255.
18. H. Rogers Jr., Theory of recursive functions and effective computability, McGraw-

Hill, New York, 1967.
19. J.I. Seiferas, Nondeterministic time and space complexity classes, MIT-LCS-TR-

137, Proj. MAC, MIT, Cambridge, Mass., Sept. 1974.
20. J.I. Seiferas, M.J. Fischer, and A.R. Meyer, Separating nondeterministic time com-

plexity classes, J. Assoc. Comput. Mach., 25 1 (1978) 146–167.
21. M. Sipser, Introduction to the theory of computation, PWS Publishing, Boston,

Mass., 1997.

	Introduction
	Nondeterministic Cellular Automata
	Time Hierarchy for Nondeterministic CA
	Universal CA
	Recursive Padding
	Recursively Padding CA and Their Languages
	Proof of Theorem 1

	Conclusion and Final Observations

