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Abstract. We study non-overlapping axis-parallel packings of 3D boxes
with profits into a dedicated bigger box where rotation is forbidden; we
wish to maximize the total profit. Since this optimization problem is
NP-hard, we focus on approximation algorithms. We obtain fast and
simple algorithms with approximation ratios 9+ ε and 8+ ε as well as an
algorithm with approximation ratio 7 + ε that uses more sophisticated
techniques; these are the smallest approximation ratios known for this
problem. Topics: Algorithms, computational and structural complexity.

1 Introduction

Given a list L = {R1, . . . , Rn} of boxes with sizes Ri = (xi, yi, zi) and posi-
tive profits pi for each i ∈ {1, . . . , n} and a dedicated box Q = (a, b, c), we
study non-overlapping axis-parallel packings of sublists of L into Q which we
call feasible. For simplicity call Q a bin. We wish to select a sublist that permits
a packing and maximizes the profit. This problem will be called the orthogo-
nal three-dimensional knapsack problem or OKP-3 for short and we denote the
optimal profit by OPT. It is a natural generalization of the knapsack problem
(KP) which is known to be NP-hard. This makes an exact algorithm with a
polynomial worst-case runtime bound impossible unless P = NP holds. W.l.o.g.
we assume a = b = c = 1 and that each Ri ∈ L can be packed by otherwise
removing infeasible boxes and scaling in O(n) time.

Related problems. Different geometrically constrained two- and three-dimen-
sional packing problems were studied, resulting in three main directions. In strip
packing the target area is a strip of infinite height; the objective is to minimize
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the height of the packing. For the 2D case, [22] yields an approximation ratio
of 5/2; in [1], an asymptotic approximation ratio of 5/4 was obtained. The best
known absolute approximation ratio of 2 was obtained with different techniques
in [21,23]. In [13], an asymptotic fully polynomial time approximation scheme
(AFPTAS – see [24] for a definition) was presented. For the 3D case, research
has focused mainly on the asymptotic approximation ratio [20]. An asymptotic
ratio of 2+ε was obtained in [10]; this was improved to 1.691 by Bansal et al. [3].
In [17] the on-line version was studied, resulting in a competitive ratio of 29/10.
In bin packing the objective is to minimize the number of identical bins. For
the 1D case, an asymptotic polynomial time approximation scheme (APTAS –
see [24]) was presented in [7], while in [18] the currently best known asymptotic
approximation ratio of 11/9 for the popular FFD algorithm is proved. For the
2D case, an asymptotic approximation ratio of 1.691 was obtained in [4]. In [2] it
was proved that d-dimensional bin packing does not admit an APTAS for d ≥ 2
and therefore no FPTAS, but an APTAS for packing d-dimensional cubes into
the minimum number of unit cubes was presented. In the knapsack scenario the
number of bins is a fixed constant [5], usually 1. For the 2D case, [11] yields an
approximation ratio of 2 + ε. Classical 1D knapsack problems are relatively well
understood, see [12,19] for surveys. Although the problems are closely related,
results cannot be transferred directly. One main difference between bin/strip
packing and knapsack packing is that in the first setting all boxes of the instance
must be packed but in the latter a selection of items is needed.

Previous results and applications. Harren [8] obtained a ratio of 9/8+ ε for
the special case of packing cubes into a cube and proved the APX-completeness
of the general case [9]. A cutting stock application is cutting blocks with given
profits from larger pieces of material to maximize the profit; another application
is the problem of selecting boxes to be transported in a container. Besides these,
the problem is motivated from multiprocessor scheduling on grid topology. In
this perspective, for a time slice of fixed duration, a set of jobs to be executed
must be chosen and each job requires a subgrid of prespecified rectangular shape.
For a special case of this application, in [25] an on-line algorithm is presented;
See [6] for a study of similar problems.

New results. Our contribution is a fast and simple (9 + ε)-approximation
algorithm based on strip packing (Section 2) which is refined to an (8 + ε)-
approximation algorithm in Section 3. Both of these have practical running
times. In Section 4 we obtain a (7 + ε)-approximation algorithm using more
costly techniques before concluding with open problems in Section 5.

2 An Algorithm Based on Strip Packing

We approximately solve a relaxation by selecting L′ ⊆ L that is at least near-
optimal and has a total volume of at most 1 which is partitioned into 9 sublists.
For each of these a packing into the bin will be generated. Out of these one
with maximum profit is chosen, resulting in a (9 + ε)-approximation algorithm.
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More precisely L′ will be packed into a strip [0, 1] × [0, 1] × [0, ∞) by a level-
oriented algorithm, improving a result from [16]. We partition the strip into
packings of sublists of L′ and among these return one with maximum profit. For
each box Ri the rectangle (xi, yi) is called the base rectangle of Ri, denoted as
br(Ri). Such a rectangle (xi, yi) is called big :⇔ xi ∈ (1/2, 1] ∧ yi ∈ (1/2, 1],
long :⇔ xi ∈ (1/2, 1] ∧ yi ∈ (0, 1/2], wide :⇔ xi ∈ (0, 1/2] ∧ yi ∈ (1/2, 1], and
small :⇔ xi ∈ (0, 1/2] ∧ yi ∈ (0, 1/2]. For each list L of boxes use V (L) :=∑

Ri∈L xiyizi to denote the total volume of L and for each list L of rectangles
ri = (xi, yi) use A(L) :=

∑
ri∈L xiyi to denote the total area of L. Furthermore,

P (L) :=
∑

Ri∈L pi denotes the total profit of L. Finally, for each list L of boxes
use H(L) to denote the height of a packing of L where the packing itself will
be clear from the context. We use the following theorem from [11] which is a
refinement of the main result from [23].

Theorem 1. Let L be a list of n rectangles such that A(L) ≤ 1/2 holds and
no long rectangles or no wide rectangles occur in L. Then L permits a feasible
packing into the unit square which can be generated in time O(n log2 n/ log log n).

First we apply the modified strip packing algorithm, then we construct the par-
tition of the strip. The strip packing algorithm uses Theorem 1 to obtain an area
guarantee for each but the last level, improving a result from [16].

Algorithm A

1. Partition L into two sublists L1 := {Ri|br(Ri) is long} and L2 := L \ L1.
W.l.o.g. let L1 = {R1, . . . , Rm} and L2 = {Rm+1, . . . , Rn}.

2. Generate the packing for L1 as follows.
2.1. Find the boxes Ri in L1 for which the area of br(Ri) is greater than

1/4 which are Rp+1, . . . , Rm w.l.o.g. Stack these on top of one another
in direction z, each on its own level.

2.2. Sort the remaining boxes R1, . . . , Rp in non-increasing order of zi, re-
sulting in a list L′

1.
2.3. Partition L′

1 into consecutive sublists L′′
1 , . . . , L′′

v where the total base
area of each sublist is as close to 1/2 as possible but not greater. Pack
each of these sublists on a level by itself using Theorem 1. Stack all of
these levels on top of one another in direction z.

3. Generate the packing for L2 in a similar way as for L1 by Theorem 1. The
resulting steps are called Steps 3.1 – 3.3.

4. Concatenate the packings of L1 and L2 to obtain a packing of L.

Theorem 2. For each list L of n boxes Algorithm A generates a packing of
height at most 4V (L) + Z1 + Z2 where Z1 and Z2 are the heights of the first
levels generated in Steps 2.3 and 3.3. The construction can be carried out in
time O(n log2 n/ log log n).

The proof is omitted due to page limitations; the result can be obtained by
replacing the area bound 7/32 by 1/4 in the proof of Theorem 4 from [16]. The
second part is a partition applied to the output of Algorithm A; see Figure 1.
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Algorithm B

1. Set δ := ε/(9 + ε). Use an FPTAS for KP from [12,14] to select L′ ⊆ L such
that V (L′) ≤ 1 and P (L′) ≥ (1 − δ)OPT holds, where OPT denotes the
optimum of the generated KP instance.

2. Use Algorithm A to generate a packing of L′ into the strip but separate the
first levels generated in Steps 2.3 and 3.3. Pack these into a bin each.

3. By Theorem 2 the remaining strip has a height of at most 4V (L′) ≤ 4.
Consider the three cutting unit squares [0, 1] × [0, 1] × {i} for i ∈ {1, 2, 3}.
Generate a partition of the region [0, 1]× [0, 1]× [0, 4] into 7 subsets, namely
4 subsets which are each positioned in the regions [0, 1] × [0, 1]× [i − 1, i] for
i ∈ {1, . . . , 4} but not intersecting any of the unit squares and 3 subsets of
boxes which each intersect with one of the three cutting unit squares.

4. Out of the sets generated in Steps 2 and 3 return one with maximum profit.

Each set generated in Steps 2 and 3 permits a feasible packing into the unit cube
which is available as a byproduct of Algorithm A. L′ is partitioned into at most
9 subsets by Algorithm B, as illustrated in Figure 1.

Theorem 3. Algorithm B is a (9+ ε)-approximation algorithm for OKP-3 with
running time O(TKP(n, ε) + n log2 n/ log log n), where TKP(n, ε) is the running
time of the FPTAS used for KP from [12,14]. Furthermore this bound is tight.

Proof. Clearly 9+ε is an upper bound for the ratio and the running time is dom-
inated by solving the knapsack instance and by Algorithm A. For the following
instance this bound can be attained. We have 10 boxes R1 := (1/2, 1/2, 2/15),
R2 := (3/4, 1/3, 2/15), R3 := (1, 2/7, 3/4), R4 := . . . := R7 := (1, 2/7, 1/2),
R8 := (1, 2/7, 1/4+2/15), R9 := (1, 2/7, 2/15) and R10 := (1, 1, 1). Furthermore
p1 := . . . := p9 := 1/9 − ε/[9(9 + ε)] and p10 := 1. Let S1 := {R1, . . . , R9} and
S2 := {R10}. It is clear that S2 is an optimal solution; elementary calculation
shows V (S1) = 1 and P (S1) = 1 − δ, hence S1 may be selected in Step 1 of
Algorithm B. Applying Algorithm B and assuming that the boxes are stacked
in increasing order of index in Step 2.1 of Algorithm A, we obtain 9 bins each
containing an item with profit 1/(9 + ε). 	


Note that only the subset that is returned needs to be packed level-wise using the
algorithm from Theorem 1 while the discarded subsets need not to be arranged.
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Fig. 1. At most 9 bins are generated by Algorithm B
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Algorithm B can be used to solve the special cases where we wish to maximize
the number of selected boxes or the volume by setting pi := 1 or pi := xiyizi

for each i ∈ {1, . . . , n}. This also holds for the other two algorithms that we
present. In [14] approximation algorithms for various knapsack problems are
found. Using these, Algorithm B can be generalized by replacing the KP solver
in Step 1, yielding algorithms for unbounded OKP-3 and multiple-choice OKP-3;
see [14] for notions and details. Algorithm B can be modified to yield a ratio of
18 with a much better running time by using a 2-approximation algorithm for
classical KP. Call Ri small :⇔ xi ∈ (0, 1/2] ∧ yi ∈ (0, 1/2] ∧ zi ∈ (0, 1/2]. We
obtain a criterion for packability of a list of boxes; the proof is omitted due to
space restrictions.

Lemma 1. Each list L of small boxes for which V (L) ≤ 1/8 holds can be packed
into the unit cube in time O(n log2 n/ log log n).

3 A Refined Construction

In Algorithm A and the proof of Theorem 2, the area bound 1/2 from Theorem 1
was used. We separate boxes with base area greater than 1/4, resulting in the
area guarantee 1/2 − 1/4 = 1/4 for each level generated in Steps 2.2 and 2.3
except the last ones. The height bound can be improved if this area guarantee is
improved. We have arbitrarily chosen direction z to be the axis for level genera-
tion, but any direction d ∈ {x, y, z} will do. The two levels of height Z1 and Z2
are the result of partitioning the instance. We study the packing of small boxes
more closely; Algorithm C is applied only to lists of small boxes.

Algorithm C

1. Find the boxes Ri in L for which the area of br(Ri) is greater than 1/10 which
are R1, . . . , Rm w.l.o.g. Sort these in non-increasing order of zi, resulting in
a list L1. Arrange these in groups of 4 boxes each, except for the last group.
Each group can be put on a seperate level by placing the boxes into the
corners of the level. Stack these levels on top of one another in direction z.

2. Sort the remaining boxes Rm+1, . . . , Rn in non-increasing order of zi, result-
ing in a list L2.

3. Partition L2 into consecutive sublists L′′
1 , . . . , L′′

v where the total base area
of each sublist is as close to 1/2 as possible but not greater. Pack each of
these sublists on a level by itself using Theorem 1. Stack all of these levels
on top of one another in direction z.

4. Concatenate the packings of L1 and L2 to obtain a packing of L.

Note that we formed two groups and obtain an area guarantee of 2/5 for each
layer except the last ones generated in Steps 1 and 3. To avoid confusion we
point out that the area guarantee does not hold for the last generated layers,
while the summands Z1 and Z2 in Theorem 2 are the heights of the respective
first layers. Similar to the proof of Theorem 2, we obtain the following results.
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Theorem 4. For each list L of n small boxes Algorithm C generates a feasible
packing of height at most 5/2V (L) + Z1 + Z2 where Z1 ≤ 1/2 and Z2 ≤ 1/2 are
the heights of the first levels generated in Steps 1 and 3. The construction can
be carried out in time O(n log2 n/ log log n).

Lemma 2. Each list L of n small boxes with V (L) ≤ 1 permits a feasible packing
into at most 5 bins. The construction can be carried out algorithmically in time
O(n log2 n/ log log n); the bound of 5 is tight for the used construction.

Proof. Use Algorithm C to arrange L in a strip, but separate the first levels
generated in Steps 1 and 3. Since L contains only small boxes, these two levels can
be packed together into a bin. By Theorem 4, the remaining strip has a height of
at most 5/2. Consider the two cutting unit squares [0, 1]×[0, 1]×{i} for i ∈ {1, 2}.
Generate a partition of the region [0, 1] × [0, 1] × [0, 5/2] into 5 subsets, namely
first 3 subsets which are each positioned in the regions [0, 1]× [0, 1]× [i−1, i] for
i ∈ {1, 2} as well as the region [0, 1]×[0, 1]×[2, 5/2] but not intersecting any of the
unit squares, and furthermore 2 subsets of boxes which each intersect with one of
the two cutting unit squares. The first three sets can be packed into one bin each.
Since L contains only small boxes, the last two sets can be arranged together
into one additional bin. We have at most 5 bins; see Figure 2. The running
time is dominated by Algorithm C and thus bounded by O(n log2 n/ log log n).
To show the tightness of the bound let γ := 1/500 and consider the instance
L consisting of R1 := . . . := R29 := (1/2, 1/5 + γ, 1/3 + γ), R30 := (γ, γ, 1/2),
R31 := . . . := R33 := (1/2, 1/5, γ) and R34 := (1/2, 1/5 − 2γ2, γ). Note that
V (L) = 29/30+122/15γ+15γ2−γ3 < 29/30+1/60. Application of Algorithm C
results in 9 layers with height greater than 1/3, which means that the layers
cannot be arranged in less than 5 bins. 	

Now we refine Algorithm B to yield a better approximation ratio, but we need
to solve a stronger relaxation. For any direction d ∈ {x, y, z} a box Ri is called
d-big :⇔ di ∈ (1/2, 1] and we use X, Y and Z to denote the set of boxes that are
d-big for the corresponding direction. Any box that is d-big for every direction
d ∈ {x, y, z} will be called a big box.

Lemma 3. Let L be a list of n boxes in which no small boxes and at most 3 big
boxes occur. Then L can be partitioned into sets X ′, Y ′ and Z ′ in time O(n),
such that each of these contains at most one big box and the x-projections of
boxes in X ′, the y-projections of boxes in Y ′ and the z-projections of boxes in
Z ′ contain no long or no wide rectangles.

Proof. Remove the at most 3 big boxes from L and distribute them in X ′, Y ′

and Z ′ such that in each of these sets at most one big rectangle occurs. Set

1

Z1

Z2

2

3

4

5

Fig. 2. The small boxes can be packed into at most 5 bins
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X ′ := X ′ ∪ {Ri ∈ L|xi > 1/2, zi ≤ 1/2}, Y ′ := Y ′ ∪ {Ri ∈ L|yi > 1/2, xi ≤ 1/2}
and finally Z ′ := Z ′ ∪ {Ri ∈ L|zi > 1/2, yi ≤ 1/2} to obtain the claim. 	


To avoid repetition, we enumerate the cases in the analysis only.

Algorithm D

1. Set δ := ε/(8+ε). Use a PTAS for non-geometric 4D KP from [12,14] to select
L′ ⊆ L such that P (L′) ≥ (1 − δ)OPT where OPT denotes the optimum of
the integral linear program

maximize
n∑

i=1

piRi subject to R ∈ P

where Ri is an indicator variable for the box of the same name and the
polytope P of nonnegative integers is defined by the constraints

n∑

i=1

xiyiziRi ≤ 1,
∑

Ri∈X

yiziRi ≤ 1,
∑

Ri∈Y

xiziRi ≤ 1,
∑

Ri∈Z

xiyiRi ≤ 1.

2. Partition L′ into at most 8 subsets which permit a feasible packing as de-
scribed below. Out of these, return one with maximum profit.

Theorem 5. Algorithm D is an (8 + ε)-approximation algorithm for OKP-3
with running time O(T4DKP(n, ε) +n log2 n/ log log n), where T4DKP(n, ε) is the
running time of the PTAS used for 4D KP from [12,14]. Furthermore this bound
is tight.

Proof. We have not imposed a bound on the number of big boxes in the relax-
ation; due to the area conditions there are at most 3 big boxes in the selected
set. Case 1: There is a direction d ∈ {x, y, z} such that the d-projection area of
all d-big boxes in L′ is larger than or equal to 1/2. In this case all d-big boxes
can be packed into at most 3 bins with a construction from [11], which can be
carried out in time O(n log2 n/ log log n), resulting in a volume of at least 1/4
being packed. The total volume of the remaining boxes is bounded by 3/4 and
each remaining box has a d-height of at most 1/2. We apply Algorithm A in
direction d which results in a strip of d-height at most 3 and two additional
levels of d-height at most 1/2 each. All of these sets can be packed into at most
5 bins, generating at most 8 bins in total. Case 2: For all d ∈ {x, y, z} the
total projection area of all d-big boxes is smaller than 1/2. By Lemma 3 we
partition the set {Ri ∈ L′|Ri is not small} into sets X ′, Y ′ and Z ′ such that
the total projection area of X ′, Y ′ and Z ′ for the corresponding direction is
not greater than 1/2 and the x-projections of boxes in X ′, the y-projections
of boxes in Y ′ and the z-projection of boxes in Z ′ contain no long or no wide
rectangles, respectively, and each of these sets contains at most one big box.
By Theorem 1 the sets X ′, Y ′ and Z ′ can be packed into at most one bin
each, resulting in at most 3 bins in total. Let S denote the set of small boxes;
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these are not yet packed. Clearly V (S) ≤ 1 holds, so by Lemma 2 the set S
can be packed into at most 5 bins, which results in at most 8 bins in total.
The runtime bound follows from the fact that we can distinguish between the
two cases in time O(n). For the tightness of the bound, consider the instance
L in which R1, . . . , R34 are as in the proof of Lemma 2, R35 := (1, 1, 1/180),
R36 := (1, 1/180, 1), R37 := (1/180, 1, 1), and R38 := (1, 1, 1). The profits are
defined by pi := 1/[9(8 + ε)] for i ∈ {1, . . . , 4, 30, . . . , 34}, pi := 1/[8(8 + ε)]
for i ∈ {5, . . . , 28}, pi := 1/(8 + ε) for i ∈ {29, 35, 36, 37} and p38 := 1. Let
S1 := L\{R38} and S2 := {R38}. Since P (S1) = 8/(8+ε) = (1−δ) < 1 = P (S2),
S2 is an optimal solution. Elementary calculation verifies that S1 may be chosen
in Step 1 of Algorithm D. Application of Algorithm D leads to Case 2 in the
analysis above, where X ′ = {R35}, Y ′ = {R37} and Z ′ = {R36}. Each of these
sets is packed into a separate bin. The remaining items are small and are packed
into 5 bins by the proof of Lemma 2. In total, 8 bins are generated; the profits
are chosen such that each bin yields a profit of exactly 1/(8 + ε). 	


4 Enumerations and a Shifting Technique

The algorithms above generate cutting areas in the strip, resulting in subsets
that have to be re-packed. We permit further loss of profit by discarding more
boxes to remove inconvenient layers; the loss will be suitably bounded. The
improvement will be at the cost of a considerably larger running time due to a
large enumeration. Since the running time is not practicable anyway we omit the
run time analysis of this approach. First we remove sets intersecting the cutting
areas and the additional layers with a shifting technique.

Lemma 4. Let L = {R1, . . . , Rn} be a list of boxes with zi ≤ ε for each Ri ∈ L.
Suppose L admits a packing into a strip of height at most h and let m be a
positive integer. Then we can create m gaps of shape [0, 1] × [0, 1] × [0, ε] in the
packing by deleting boxes such that for the remaining list L′ ⊆ L the inequality
P (L′) ≥ (1 − 2(m + 1)ε/h)P (L) holds. The construction can be done in time
polynomial in n.

Proof. We partition the strip into regions of height ε and eventually one region
of smaller height. More precisely we define p := �h/ε and partition the strip
of height h into p regions S1, . . . , Sp of shape [0, 1] × [0, 1] × [0, ε] where the
uppermost region is of possibly smaller height. Then for each i ∈ {1, . . . , p}
let Ti = {Rj ∈ L|Rj ∩ Si �= ∅} and let U1, . . . , Um+1 be the m + 1 sets out
of T1, . . . , Tp which have the smallest profit. Removing these from the packing
causes a loss of profit which is 2(m + 1)/pP (L) at most; we remove m + 1 sets
since we might select the uppermost region; in this way we assert that we have
at least m regions of height ε. Let L′ be the set of remaining boxes; finally
2(m + 1)/pP (L) ≤ 2(m + 1)(h/ε)−1P (L) = 2(m + 1)ε/hP (L) holds. 	


Note that the construction above can be carried out in any direction.
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Theorem 6. Let L = {R1, . . . , Rn} be a list of boxes with zi ≤ ε for each Ri ∈ L
and V (L) ≤ α with α ∈ [1/4, 1] holds. Then it is possible to select L′′ ⊆ L such
that P (L′′) ≥ (1− 12ε)P (L) holds and L′′ admits a feasible packing into at most
�4α bins. The construction can be carried out in time polynomial in n.

Proof. Use Algorithm A to pack L into a strip of height at most h := 4α and
two additional layers L1 and L2 by Theorem 2. Let L′ be the set of boxes in L
arranged in the strip; the following construction is illustrated in Figure 3. Use
Lemma 4 to generate at most 5 suitable gaps in the strip, resulting in a loss of
profit of at most 12ε/hP (L′) ≤ 12ε/hP (L); since α ∈ [1/4, 1], this loss is bounded
by 12εP (L). The remaining set of boxes in the strip and L1 and L2 is denoted as
L′′. Consider the 3 cutting unit squares [0, 1]× [0, 1]×{i} for i ∈ {1, 2, 3} and L3,
L4 and L5 be the sets of boxes in the strip that intersect with these unit squares,
respectively. W.l.o.g. none of the sets L1, . . . , L5 is empty; otherwise it is removed
from consideration. Note that each of the sets L1, . . . , L5 can be arranged on a
layer of height at most ε, so we generate a feasible packing by arranging them into
the 5 gaps. In the resulting packing, the 3 cutting unit squares [0, 1]× [0, 1]×{i}
for i ∈ {1, 2, 3} do not intersect with any box. Furthermore, all layers L1, . . . , L5
are merged in the strip; the packing can be rearranged into �4α bins. 	


Z1

Z2

Fig. 3. The shifting technique described in Theorem 6

Similar as before for any d ∈ {x, y, z} a box Ri is called d-ε-big :⇔ di ∈ (ε, 1],
and d-ε-small :⇔ di ∈ (0, ε]. We explain the details in the proof only.

Algorithm E

1. Set δ := ε/[35(7 + ε)], let L1 := {Ri|Ri is d-δ-big for each d ∈ {x, y, z}} and
L2 := L \ L1.

2. For each L3 ⊆ L1 such that |L3| ≤ �1/δ3� use an exact algorithm to verify
whether L3 is feasible. Store feasible L3 of maximum total profit.

3. Use an FPTAS for classical KP from [12,14] to select L4 ⊆ L2 such that
V (L4) ≤ 1 and P (L4) ≥ (1 − δ)OPT holds.

4. Use the construction described below to select L5 ⊆ L4 which can be packed
into at most 6 bins under a small loss of profit.

5. Out of the at most 7 sets generated in Step 2 and Step 4 return one with
maximum profit.

Theorem 7. Algorithm E is a (7+ε)-approximation algorithm for OKP-3. Fur-
thermore, this bound is asymptotically tight in the sense that it cannot be im-
proved for ε arbitrary small.
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Proof. Note that �1/δ3� is an upper bound for the number of boxes from L1 in
a feasible solution since δ3 is a lower bound for the volume of each Ri ∈ L1.
Step 2 can be carried out in time polynomial in δ and thus polynomial in 1/ε
using an exact optimization algorithm as in [2]. We show that in Step 4 at
most 6 sets are generated, resulting in at most 7 bins in total. Partition L2
into 3 subsets X ′, Y ′ and Z ′ such that in each of these all boxes Ri are d-
ε-small for the correspondig direction; note that V (X ′) + V (Y ′) + V (Z ′) ≤ 1
holds. We apply the construction from Theorem 6 in each of the three directions.
Study the following cases, where V (X ′) ≥ V (Y ′) ≥ V (Z ′) holds w.l.o.g. Case 1:
V (X ′) ∈ (3/4, 1]. The boxes in X ′ can be packed into at most 4 bins. We
have V (Y ′) + V (Z ′) ≤ 1/4. This means V (Y ′) ≤ 1/4 and V (Z ′) ≤ 1/4 holds.
Consequently Y ′ and Z ′ can be packed into one bin each, resulting in at most
7 bins in total. Case 2: V (X ′) ∈ (1/2, 3/4]. The boxes in X ′ can be packed
into at most three bins. Furthermore V (Y ′) + V (Z ′) < 1/2, which means that
V (Y ′) < 1/2 holds. Consequently the boxes in Y ′ can be packed into at most
2 bins. Furthermore V (Z ′) < 1/4 holds and finally the boxes in Z ′ can be
packed into 1 bin; this generates at most 7 bins in total. Case 3: We have
V (X ′) ∈ [0, 1/2]. The boxes in X ′ can be packed into at most two additional
bins. Furthermore V (Y ′) ≤ 1/2 and V (Z ′) ≤ 1/2 holds. This means that the
boxes in Y ′ and Z ′ can be packed into at most two bins each. In total at most 7
bins are generated. In each of these cases at most 7 bins are generated; now we
prove the ratio. Fix an optimal solution S and let P ∗

1 be the profit of boxes in
S ∩L1 and let P ∗

2 be the profit of boxes in S ∩L2. Consequently P ∗
1 +P ∗

2 ≥ OPT
holds. Let P1 be the profit of the set that is stored in Step 2 and let P2 be the
profit of the set that is selected in Step 3. By construction we have P1 ≥ P ∗

1 and
P2 ≥ (1 − δ)P ∗

2 . Furthermore, by threefold application of the construction from
Theorem 6 the loss of profit in P2 is bounded by 36δP2. The profit of the set
returned in Step 5 is at least

(P1 + P2)/7 ≥ (P ∗
1 + (1 − δ)(1 − 36δ)P ∗

2 )/7
≥ (P ∗

1 + P ∗
2 )(1 − δ)(1 − 36δ)/7
= OPT(1 − δ)(1 − 36δ)/7 ≥ OPT/(7 + ε)

which proves the claimed approximation ratio. The instance for the tightness of
the bound is omitted for space reasons. 	


5 Conclusion

We contributed approximation algorithms for an NP-hard combinatorial opti-
mization problem, where the runtimes of the simpler algorithms are practical. It
is an open problem whether here an algorithm with a ratio less than 7+ ε exists.
We are interested in a reduction of the running time, especially for Algorithm E.
In [15] it was proved that it is NP-complete to decide whether a set of squares
can be packed into the unit square. However, it is an open problem whether
checking the feasibility of cubes into the unit cube is NP-complete. Lemma 4
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reminds of the main result from [23], but is less flexible and structural. Further
research is necessary to generalize the main result from [23] to the 3D case.
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