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Abstract. This paper proposes a new public key encryption scheme. It
is based on the difficulty of deducing x and y from A and B = x · A · y
in a specific monoid (m, ·) which is noncommutative. So we select and
do research work on the certain monoid which is formed by all the n ×n
matrices over finite field F2 under multiplication. By the cryptographic
properties of an “ergodic matrix”, we propose a hard problem based on
the ergodic matrices over F2, and use it construct a public key encryption
scheme.

1 Introduction

Public key cryptography is used in e-commerce systems for authentication (elec-
tronic signatures) and secure communication (encryption). The security of using
current public key cryptography centres on the difficulty of solving certain classes
of problems [1]. The RSA scheme relies on the difficulty of factoring large in-
tegers, while the difficulty of solving discrete logarithms provide the basis for
ElGamal and Elliptic Curves [2]. Given that the security of these public key
schemes relies on such a small number of problems that are currently considered
hard, research on new schemes that are based on other classes of problems is
worthwhile.

This paper provides a scheme of constructing a one-way(trapdoor)function,
its basic thoughts are as follows:

Let MF2
n×n be the set of all n × n matrices over F2, then (MF2

n×n, +, ×) is a
1-ring, here + and × are addition and multiplication of the matrices over F2,
respectively. We arbitrarily select two nonsingular matrices Q1, Q2 ∈ MF2

n×n,
then:

1. (MF2
n×n, ×) is a monoid, its identity is In×n.

2. (〈Q1〉, ×) and (〈Q2〉, ×) are abelian groups, their identities are In×n, too.
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3. for m1,m2 ∈ MF2
n×n, generally we have: m1×m2 �= m2×m1, i.e. the operation

× is noncommutative in MF2
n×n.

Let K = 〈Q1〉 × 〈Q2〉, then we can construct a function f : MF2
n×n × K −→

MF2
n×n, f(m, (k1, k2)) = k1 × m × k2; then f satisfies:

1. knowing x ∈ MF2
n×n and k ∈ K, it’s easy to compute y = f(x, k).

2. when |〈Q1〉| and |〈Q2〉| are big enough, knowing x, y ∈ MF2
n×n, it’s may be

hard to deduce k ∈ K such that y = f(x, k).
3. form k = (k1, k2) ∈ K, it’s easy to compute k−1 = (k−1

1 , k−1
2 ) ∈ K, and for

any x ∈ MF2
n×n, we always have: f(f(x, k), k−1) = x.

If 2 is true then by 1 and 2 we know that f has one-way property; by 3, we
can take k as the “trapdoor” of the one-way function f , hence we get a one-way
trapdoor function.

For ∀m ∈ MF2
n×n, we know that Q1 × m does corresponding linear transfor-

mation to every column of m, while m × Q2 does corresponding linear transfor-
mation to every row of m; So, Q1 × m × Q2 may “disarrange” every element of
m. This process can be repeated many times, i.e. Qx

1mQy
2(1 ≤ x ≤ |〈Q1〉|, 1 ≤

y ≤ |〈Q2〉|), to get a complex transformation of m. To increase the quality of
encryption(transformation), the selection of Q1,Q2 should make the generating
set 〈Q1〉 and 〈Q2〉 as big as possible. And the result, of which Q1 multiplying a
column vector on the left and Q2 multiplying a row vector on the right, should
not be convergent. For this purpose, we put forward the concept of ergodic
matrix.

2 Ergodic Matrices over Finite Field F2

Let Fn
2 be the set of all n-dimensional column vectors over finite field F2.

Definition 1. Let Q ∈ MF2
n×n, if for any nonzero n-dimensional column vec-

tor v ∈ Fn
2 \{0}, Qv, Q2v, . . . , Q2n−1v just exhaust Fn

2 \{0}, then Q is called an
“ergodic matrix” over F2. (0 = [0 0 · · · 0]T )

For example, select the following matrix Q ∈ MF2
2×2:

Q =
[

1 1
1 0

]

then Q2 =
[
0 1
1 0

]
Q3 =

[
1 0
0 1

]

We verify weather Q is an ergodic matrix.
Let v1 = [0, 1]T , v2 = [1, 0]T , v3 = [1, 1]T , then F 2

2 \{0} = {v1, v2, v3}.
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To multiply v1 by Q1, Q2, Q3 respectively, we have:

Q1v1 =
[

1 1
1 0

] [
0
1

]
=

[
1
0

]
= v2

Q2v1 =
[

0 1
1 1

] [
0
1

]
=

[
1
1

]
= v3

Q3v1 =
[

1 0
0 1

] [
0
1

]
=

[
0
1

]
= v1

Their result just exhaust F 2
2 \{0}. For v2 and v3 the conclusion is the same.

By Definition 1 Q is an ergodic matrix.

Theorem 1. Q ∈ MF2
n×n is an ergodic matrix iff Q’s period, under the multipli-

cation, is (2n − 1).

Proof. If Q ∈ MF2
n×n is an ergodic matrix, then for ∀v ∈ Fn

2 \{0}, it must be
Q2n−1v = v. Let v respectively be [1 0 · · · 0]T , [0 1 0 · · · 0]T , . . . , [0 · · · 0 1]T , then
Q2n−1 = In×n, i.e. Q is nonsingular and Q’s period divides (2n − 1) exactly; by
Definition 1, Q’s period must be (2n − 1).

If the period of Q ∈ MF2
n×n under multiplication is (2n − 1), then 〈Q〉 =

{Q, Q2, . . . , Q2n−1 = In×n}. By Cayley-Hamilton’s theorem [3], we have:

F2[Q] = {p(Q)|p(t) ∈ F2[t]} = {p(Q)|p(t) ∈ F2[t] ∧ deg p ≤ n − 1}

i.e. |F2[Q]| ≤ 2n; Obviously 〈Q〉 ⊆ F2[Q]\{0n×n}, so that:

F2[Q] = {0n×n, Q, Q2, . . . , Q2n−1 = In×n}

Arbitrarily selecting v ∈ Fn
2 \{0} and Qs, Qt ∈ 〈Q〉, if Qsv = Qtv, then(Qs −

Qt)v = 0. Because (Qs − Qt) ∈ F2[Q] and v �= 0, we have (Qs − Qt) = 0n×n,
i.e. Qs = Qt. So, Qv, Q2v, . . . , Q2n−1v just exhaust Fn

2 \{0}, Q is an ergodic
matrix. ��

By Cayley-Hamilton’s theorem, and finite field theory [4], it’s easy to get the
following lemmas:

Lemma 1. If m ∈ MF2
n×n is nonsingular, then m’s period is equal to or less than

(2n − 1).

Lemma 2. If Q ∈ MF2
n×n is an ergodic matrix, then (F2[Q], +, ×) is a finite

field with 2n elements.

Lemma 3. If Q ∈ MF2
n×n is an ergodic matrix, then QT must also be an ergodic

matrix.

Lemma 4. If Q ∈ MF2
n×n is an ergodic matrix, then for ∀v ∈ Fn

2 \{0}, vT Q, . . . ,

vT Q2n−1 just exhaust {vT |v ∈ Fn
2 }\{0T }.
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Lemma 5. If Q ∈ MF2
n×n is an ergodic matrix, then for ∀a ∈ F2, aQ ∈ F2[Q].

Lemma 6. If Q ∈ MF2
n×n is an ergodic matrix, then there are just ϕ(2n − 1)

ergodic matrices in 〈Q〉 and we call them being “equivalent” each other. here
ϕ(x) is Euler’s totient function.

From above, we know that the ergodic matrices over MF2
n×n has a maximal gen-

erating set, and the result of multiplying a nonzero column vector on the left or
multiplying a nonzero row vector on the right by the ergodic matrix is thoroughly
divergent; thus it can be used to construct one-way(trapdoor) function.

3 New Public Key Encryption System

3.1 Hard Problem

Problem 1. Let Q1, Q2 ∈ MF2
n×n be ergodic matrices, knowing that A, B ∈

MF2
n×n, find Qx

1 ∈ 〈Q1〉, Qy
2 ∈ 〈Q2〉 such that B = Qx

1AQy
2 .

Suppose Eve knows A, B and their relation B = Qx
1AQy

2, for deducing Qx
1

and Qy
2 , he may take attacks mainly by [5,6,7]:

1. Brute force attack
For every Qs

1 ∈ 〈Q1〉, and Qt
2 ∈ 〈Q2〉, Eve computes B′ = Qs

1AQt
2 until

B′ = B, hence he gets Qx
1 = Qs

1, Qy
2 = Qt

2.
2. Simultaneous equations attack

Eve elaborately selects a1, a2, . . . , am ∈ 〈Q1〉 and b1, b2, . . . , bm ∈ 〈Q2〉, con-
structing the simultaneous equations as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B1 = Qx
1A1Q

y
2

B2 = Qx
1A2Q

y
2 (Here Ak = akAbk Bk = akBbk are know)

...
...

Bm = Qx
1AmQy

2

Thus Eve may possibly deduce Qx
1 and Qy

2.
But all of these attacks are not polynomial time algorithm. We assume through

this paper the Problem 1 are intractable, which means there is no polynomial
time algorithm to solve it with non-negligible probability.

3.2 Public Key Encryption Scheme

Inspired by [8,9,10], We propose a new public key encryption scheme as follow:

- Key Generation.
The key generation algorithm select two ergodc matrices Q1, Q2 ∈ MF2

n×n

and a matrix m ∈ MF2
n×n. It then chooses s, t ∈ [0, 2n−1], and sets sk = (s, t),

pk = (Q1, Q2, m, Qs
1mQt

2).
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- Encryption.
On input message matrix X , public key pk = (Q1, Q2, m, Qs

1mQt
2), choose

k, l ∈ [0, 2n−1] , computer Z = X +Qk
1Q

s
1mQt

2Q
l
2, and output the ciphertext

Y = (Z, Qk
1mQl

2).
- Decryption.

On input sk = (s, t), ciphertext Y = (Z, C), output the plaintext X =
Z − Qs

1CQt
2 = Z − Qs

1Q
k
1mQl

2Q
t
2 = Z − Qk

1Q
s
1mQt

2Q
l
2.

The security for the public key encryption scheme based on ergodic matrices
is defined through the following attack game:

1. The adversary queries a key generation oracle, the key generation oracle
computes a key pair (pk, sk) and responds with pk.

2. The challenger gives the adversary a challenge matrix c ∈ MF2
n×n.

3. The adversary makes a sequence of queries to a decryption oracle. Each
query is an arbitrary ciphertext matrix (not include c); the oracle responds
with corresponding plaintext.

4. At the end of the game, the adversary output a matrix a.

The advantage of an adversary is: Adv = Pr[a = Decryption(c, sk)].

Definition 2. A public key encryption scheme is said to be secure if no probabilis-
tic polynomial time adversary has a non-negligible advantage in the above game.

Theorem 2. The security of the public key encryption scheme based on ergodic
matrices is equivalent to the Problem 1.

3.3 Example

(1) Key generation: Select two ergodic matrices Q1, Q2 ∈ MF2
23×23:

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1
1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0
1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 1
0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1
1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1
1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0
1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1
1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 0 0 0
1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0
1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1
1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1
1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1
1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 1 1 1 1 1
1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1
1 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 0
0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0
1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0
1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 0 1
1 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1
1 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0
1 1 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0
1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 0 0
1 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1
1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0
0 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0
1 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0
1 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0
1 1 0 1 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0
1 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1
1 0 1 1 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0
0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1
1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1
1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 0
1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1
1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0
0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1 1 0
0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0
0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1
1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 1
1 0 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0
0 0 1 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

the ergodic matrices Q1 and Q2 can be generated using following algorithm:

1. select a random matrix m ∈ MF2
n×n;

2. if Rank(m) < n, goto 1;
3. if m2n−1 �= In×n, goto 1;
4. m is a ergodic matrix.

Moveover, we need select a matrices m ∈ MF2
23×23 randomly:

m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0
1 0 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1
1 1 1 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 0 0 1 1
0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1
1 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1
0 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1
0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0
0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1
0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0
1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1
0 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0
0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1
0 1 0 1 0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 1 1
1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1
1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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then select private key: s = 1367235 t = 2480563, and compute:

Q1367235
1 mQ2480563

2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1
0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 0
1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 0
1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1
1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 0 1
1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1
1 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1
0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1 1 0
1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1
0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0
1 1 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1
1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1
0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1
0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0 1 1 1 0
1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1
0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1
1 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 1 1
1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

so the public key is pk = (Q1, Q2, m, Qs
1mQt

2).
(2)In the process of Encryption, select two random integers: k = 4321506,

l = 3493641.

because Qk
1Q

s
1mQt

2Q
l
2 = Qs

1Q
k
1mQl

2Q
t
2, i.e.

Q4321506
1 Q1367235

1 mQ2480563
2 Q3483641

2 = Q1367235
1 Q4321506

1 mQ3483641
2 Q2480563

2 ,
the result is:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 1 0 1 0 0 1 1
0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0
1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0
0 1 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0
0 1 0 0 1 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0
0 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1
1 0 0 1 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0
0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 0
1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0
1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 0
1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0
1 1 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 1
1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 1 0
1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1 1
0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 1
1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 1 1
1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0
1 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is easy to verify the process of encryption and decryption.
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4 Conclusions

The ergodic matrices over MF2
n×n has a maximal generating set, and the result

of multiplying a nonzero column vector on the left or multiplying a nonzero row
vector on the right by the ergodic matrix is thoroughly divergent; thus it can be
used to construct one-way(trapdoor) function. In this paper, we propose a new
hard problem based on the ergodic matrices over F2, by which, we implement a
public key encryption scheme. Different from the previous approaches, we adopt
matrix to represent plaintext, which can encrypt more information once a time.

We plan to give the theoretical proof on the hard problem based on the ergodic
matrices over F2. Additional research is also required to compare the security
and performance with other public key encryption schemes such as RSA and
Elliptic Curves.
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