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Abstract. Some blind signature schemes have been constructed from
some underlying signature schemes, which are efficient and provably se-
cure in the random oracle. To the best of authors’ knowledge, a problem
still remains: does the security of the original signature scheme, by itself,
imply the security of the blind version? In this paper, we answer the
question. We show if the blind factors in the blind version come from
hash functions, the design of blind signature scheme can be validated
in random oracle model if the original scheme is provably secure. We
propose a blind version of Schnorr signature scheme and reduce the se-
curity of the proposed scheme to the security of ECDLP. What’s more,
the complexity of this reduction is polynomial in all suitable parameters
in the random oracle.

Keywords: Blind signature, Provably secure, Polynomial reduction,
Security arguments.

1 Instruction

Blind signatures, introduced by [1], provide anonymity of users in application
such as electronic voting and electronic payment systems. A blind signature
scheme is an interactive two-party protocol between a user and a signer. It allows
the user to obtain a signature of any given message, but the signer learns neither
the message nor the resulting signature. Blind signature plays a central role in
building anonymous electronic cash. A lot of work has been done in field of blind
signature schemes since Chaum [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
20, 21, 22, 23]. Several blind signature schemes [1, 4, 6, 12] have been constructed
from some underlying signature schemes [24,25,26]. These underlying signature
schemes are efficient and have been validated in the so-called random oracle
model. However, a problem still remains: the security of the original signature
scheme does not, by itself, imply the security of the blind version.

The random oracle [27] model is a popular alternative of provable secu-
rity. Some blind signature schemes were proposed and proven secure in the
model [10, 11, 12, 13, 14, 28]. In [12, 28], Pointcheval and Stern prove the se-
curity of several blind digital signatures schemes, including blind variation of
the [8], [25], and [5] signature schemes. However, their security proofs, while
polynomial in the size of the keys, are poly-logarithmically bounded in the num-
ber of blind digital signatures. The authors leaves an open problem that whether
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one can achieve polynomial time both in the number of signatures obtained by
the adversary and the size of the keys. Juels, et al. [29] gave a positive answer
to show that security and blindness properties for blind signatures could be
simultaneously defined and satisfied, assuming an arbitrary one-way trapdoor
permutation family. However, their proof was based on complexity. As they had
discussed, their schemes should be viewed merely as a proof of existence which
pave the way for efficient future implementations. Pointcheval et al. [10] pro-
posed a blind signature scheme based on factorization, unluckily it also need a
user to make a poly-logarithmically bounded number of interactions with the
signer. The less practical schemes of [11] are provably secure for a polynomial
number of synchronized signer interactions, where the synchronization forces
the completion of each step for all the different protocol invocations before the
next step of any other invocation is started, so some restrictions apply. [13]
requires a non-standard strong assumption - namely the RSA chosen-target in-
version problem is hard. [14] proposed an efficient three-move blind signature
scheme, which provides one more unforgeability with polynomially many signa-
tures. However, the scheme is a specific blind signature scheme which prevents
one-more unforgeability after polynomially many interactions with the signer,
so it isn’t a generic approach. In this paper, by using hash functions to gen-
erate the blind factors, we show that the design of blind signature scheme can
be validated in random oracle model if the original scheme is provably secure
in random oracle model. We propose a blind version of Schnorr signature scheme.
Moreover, we show that the proposed blind signature is provably secure if
ECDLP is hard, and the complexity of this reduction is polynomial in all suitable
parameters.

The rest of the paper is organized as follows. In section 2 we recall some
definitions for blind signatures. Section 3 proposes our blind signature scheme.
Section 4 gives the proof of nonforgeablility of the proposed scheme. Section 5
concludes this paper.

2 Preliminaries

In this section we review the formal definition and the standard security notion
of blind signature schemes [29].

Definition 1. A blind digital signature scheme is a four-tuple (Signer, User,
Gen, V erify).
- Gen(1k) is a probabilistic polynomial-time key-generation algorithm that takes
security parameter k and outputs a public and secret key pair (pk, sk).
- Signer(pk, sk) and User(pk, m) are a pair of polynomially-bounded probabilis-
tic Interactive Turing machines, each of which has a public input tape, a private
random tape, a private work tape, a private output tape, a public output tape,
and input and output communication tapes. The random tape and the input
tapes are read-only, and the output tapes are write-only. The private work tape is
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read-write. They are both given pk generated by Gen(1k) on theirs public input
tapes. Additionally, the private input tape of Signer contains the private key sk,
and that for User contains message m. User and Signer engage in the signature
issuing protocol and stop in polynomial-time in k. At the end of this protocol,
Signer outputs either completed or not-completed on his public output tap, and
User outputs either ⊥ or σ(m) on his private output tap.
- Verify(pk, m, σ(m)) is a deterministic polynomial-time algorithm. On input
(pk, m, σ(m)) and outputs accept/reject. with the requirement that for any mes-
sage m, and for all random choices of key generation algorithm, if both Signer
and User follow the protocol then the Signer always outputs completed, and the
output of the user is always accepted by the verification algorithm.

Definition 2. If Signer and User follow the signature issuing protocol, then
with probability of at least 1 − 1/kc for every constant c and sufficiently large
k, Signer outputs completed and User outputs (m, σ(m)) that satisfies Verify
(pk, m, σ(m)) =accepted. The probability is taken over the coin flips of Gen,
Signer and User.
A blind digital signature scheme is secure if it holds the following two properties:

Definition 3. Let S∗ be adversarial signer, and u0 and u1 are two honest users.
- (pk, sk) ← Gen(1k).
- m0, m1 ← S∗(1k, pk, sk).
- Set the input tap of u0 and u1 as follows : Let b ∈R {0, 1}, put{mb, m1−b} on
the private input tap of u0 and u1, respectively;Put pk on the public input taps
of u0 and u1, respectively;Randomly select the contents of the private random
tapes.
- S∗ engages in the signature issuing protocol with u0 and u1.
- If u0 and u1 output valid signature (mb, σ(mb)) and (m1−b, σ(m1−b)), respec-
tively, then send (σ(mb), σ(m1−b)) to S∗. Give ⊥ to S∗ otherwise.
- S∗ outputs b′ ∈ {0, 1}. If b’= b, then S∗ wins.
A blind signature scheme is blind if all probabilistic polynomial-time algorithm
S∗, S∗ outputs b’= b with probability at most 1/2 + 1/kc for some constant c
and sufficiently large k. The probability is taken over the flips of Gen, S∗, u0
and u1.

Definition 4. Let U∗ be adversarial user and S be an honest signer.
- (Step1) : (pk, sk) ← Gen(1k).
- (Step2): U∗(pk) engages in the signature issuing protocol with S in adaptive,
parallel and arbitrarily interleaved way. Let L denote the number of executions,
where S outputted completed in the end of Step 2.
- (Step3): U∗ outputs a collection {(m1, σ(m1)), (mj , (mj))} subject to the con-
straint the all (mi, σ(mi)) for 1 ≤ i ≤ j are all accepted by verify (pk, mi, σ(mi)).
A blind signature scheme is nonforgeable if the probability, taken over the coin
flips of Gen, U∗ and S, that j > l is at most 1/kc for some constant c and
sufficiently large k.
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3 The Proposed Scheme

In this section, we propose s blind signature scheme. It can be seen as a slight
modification of Schnorr Blind Signature Scheme.

Setup of System Parameters. Before the whole scheme can be initialized,
the following parameters over the elliptic curve domain must be known.
- A field size p, which is a large odd prime.
- Two parameters a, b ∈ Fp to define the equation of the elliptic curve E over
Fp(y2 = x3 + ax + b(mod p) in the case p > 3), where 4a3 + 27b2 �= 0(mod p).
The cardinality of E must be divisible by a large prime because of the issue of
security raised by Pohlig and Hellman [30].
- A finite point P whose order is a large prime number in E(Fp), where P �= O,
and O denotes infinity.
- The order of P is prime q.
- Two public cryptographically strong hash functions H1 : {0, 1}∗×E(Fp) → Zq

and H2 : Zq × Zq → Zq. We remark that H1 and H2 will be viewed as random
oracles in our security proof.

Setup of a Principal’s public/private key. The signer picks a random num-
ber x ∈R Z∗

q and computer Q = xP . His public key is Q and private key is x.
The public keys Q must be certified by the CA.

Signature Generation
- The signer randomly chooses d, e, r ∈ Zq , computes U ′ = rP , and sends
(U ′, d, e) to the user.
- Blind. The user randomly chooses mi, α′

i and β′
i ∈ Zq, 1 ≤ i ≤ n. He computes

αi = H2(α′
i, d) and βi = H2(β′

i, e) as blinding factors, Ui = U ′ − αiP − βiQ,
hi = H1(mi, Ui) and h′

i = hi + βi, 1 ≤ i ≤ n, sends to the signer n blinded
candidates h′

i, 1 ≤ i ≤ n.
- The signer verifies if the user constructs h′

i with the blind factors α or β which
are the outputs of the random oracle H2.The signer randomly chooses a subset
of n-1 blinded candidates indices R = ij, 1≤ ij ≤ n for 1≤ j ≤ n-1 and sends R
to the user.
- The user reveals (mi, α′

i and β′
i) to the signer for all i in R.

- The signer verifies h′
i for all i in R. He computes ki = H2(α′

i, d), λi = H2(β′
i, e),

Ui = U ′−kiP −λiQ, hi = H1(mi, Ui) and H ′
i = hi +λi for all i in R. He accepts

h′
i to be a valid blind message if H ′

i = h′
i. If the signer accepts h′

i for all i in R,
then the signer performs the following operations for the rest h′

i, i not belong to
R, denote by h′, and the corresponding parameters are (m, α, β, U, h, hi). The
signer stops otherwise.
- Blind Sign. The signer sends back s′, where s′ = r − xh′.
- Unblind. He outputs a signature σ = (s, h) where s = s′ − α. Then σ is the
signature of the message m.

Note: The method which the user prepares n blinded candidates but only 1 out
of n is finally used, all other n-1 are opened, verified and thrown away, inevitably
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cause enormous computational and communication overhead. An alternative to
cut down computational and communication overhead is as follows.

The user prepares n blinded candidates and sends them to the signer. The
signer randomly chooses n/2 out of n to verify them. If all of them pass the
verification, then the signer randomly chooses 1 out of the rest n/2 blinded
candidates to perform blind signature. The signer stops otherwise. It is obvious
that the signer’s computational and communication overhead is almost half less
than the original’s, but we will show in Lemma3 that the probability of be caught
as the user doesn’t generate blind factors from the random oracle H2, is almost
the same with the original’s.

Signature Verification. The verifier or recipient of the blind signature accepts
the blind signature if and only if H1(m, sP + hQ) = h. Signature verification
works correctly because if (s, h) is a valid signature on the message m, then
sP +hQ = (s′ −α)P +hQ = (r−xh′ −α)P +hQ = rP − (h+β)Q−αP +hQ =
rP − αP − βQ = U ′ − αP − βQ = U.

It is straightforward to prove our scheme satisfies the blindness property [25].
So in this paper, we will only show that our scheme satisfies nonforgeability
property.

4 Security Proofs

In this section, we first show that the adversary should following the protocol.
Next, we prove that the security of our scheme can be reduced to security of
Schnorr signature scheme and further the security of ECDLP, and the complexity
of the reduction is fully polynomial in all suitable parameters.

Lemma 1. If an adversary constructs h′ with α or β which are not the outputs
of H2, the probability the signer accept h′ is negligible when the signer verify h′.

Proof. If signer verify h′, the adversary should find a pair(α′, β′) that satisfies:

α = H2(α′, d) . (1)

β = H2(β′, e) . (2)

U = U ′ − αP − βQ . (3)

h′ = H1(m, U) + β . (4)

Since H2 is a hash function, the probability he succeeds is negligible. �	

Lemma 2. Let A be the adversary who tries to destroy the requirement that
constructs blind candidates with blind factors α or β which are the outputs of the
random oracle H2. If there exists 1 out of n blinded candidates h′

i(1 ≤ i ≤ n),
which blind factors α or β are not the outputs of H2, then A is caught with
probability 1-1/n; If there exists ≥ 2 out of n blinded candidates h′

i(1 ≤ i ≤ n),
which blind factors α or β are not the outputs of H2, then A is caught with
probability 1.
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Proof. There are n-1 blind candidates to satisfy the requirement of generating
blind factors from H2, so A isn’t caught with probability Cn−1

n−1/Cn−1
n , namely

1/n. Thus, the probability A is caught is 1-1/n. Similarly, we can get if there
exists ≥ 2 out of n blinded candidates, which blind factors α or β are not the
outputs of H2, then A is caught with probability 1. �	

Lemma 3. Consider the above alternative, namely chooses n out of 2n to verify.
Let A be the adversary who tries to destroy the requirement that constructs blind
candidates with blind factors α or β which are the outputs of the random oracle
H2. Let ε be the probability of blinded candidates that blind factors α or β are
not the outputs of the random oracle H2, then the signer signs finally on a blind
candidate, which blind factors α or β are the outputs of the random oracle H2,
with probability at least 1- ε2−2εn.

Proof. The number of blinded candidates which satisfy the requirement of gener-
ating blind factors from H2 is 2(1−ε)n, so A pass the verification with probability
at most

Cn
2(1−ε)n/Cn

2n = ((2n − 2εn)!n!)/((n − 2εn)!(2n)!) . (5)

Cn
2(1−ε)n/Cn

2n = n(n − 1)(n − 2εn + 1))/((2n)(2n − 1)(2n − 2εn + 1)) . (6)

Cn
2(1−ε)n/Cn

2n = 1/((1 + n/n)(1 + n/(n − 1))(1 + n/(n − 2n + 1))) . (7)

Then, the signer randomly chooses a blind candidate from the rest n blind
candidates. The probability of getting a blind candidate which blind factors α
or β are not the outputs of the random oracle H2, is 2n/n=. Thus, the signer
signs finally on a blind candidates, which blind factors α or β are the outputs of
the random oracle H2, with probability at least 1 − εCn

2(1−ε)n/Cn
2n. It is obvious

that 2−2εn = 1/(1 + 1)2nε > Cn
2(1−ε)n/Cn

2n > 1/(1 + 1/(1 − 2ε − n−1)2nε) ⇒
Cn

2(1−ε)n/Cn
2n < 2−2εn ⇒ 1 − εCn

2(1−ε)n/Cn
2n > 1 − ε2−2εn.

So, the probability is at least 1−ε2−2εn. ε2−2εn is negligible when ε is sufficient
large. Thus, the signer is assured that he is signing on a blind candidate that
blind factors α or β are the outputs of the random oracle H2, except a negligible
probability. �	

Lemma 4. The proposed scheme is secure against one-more forgery assuming
Schnorr signature scheme is secure. Concretely, suppose there is a one-more
forgery adversary A that has advantage ε against our scheme within running
time t. Let H1, H2 be random oracles. Assume that A makes at most qH1 > 0
hash queries to H1, qH2 > 0 hash queries to H2, and qs > 0 signing queries to
the signer. Then there is an algorithm B that performs a valid forgery against
Schnorr signature scheme with probability ε in running time at most t+tH1qH1 +
tH2qH2 + (ts + τ)qs , where tH1 is time for answering an H1 query, tH2 is time
for answering an H2 query, ts is time for Schnorr signature scheme to generate
a signature, τ and is time for answering an signing query to our scheme.

Proof. Suppose C is the signer in Schnorr signature scheme. He keeps the secret
key sk and publishes the public key pk. We show how to construct a simulator
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B that uses A to forge a signature of Schnorr signature scheme for C with
advantage ε. B first sends pk to A and claims that pk is his public key. Next,
define the queries as follows:
- Sign query. From Lemma 1, Lemma 2 and Lemma 3, we know that A should
follow the protocol. When A makes a signing query, B engages in blind signature
protocol with A as follows:

B randomly chooses randomly message m’ and makes a sign query to C for
signature on message m′. C returns a signature (m′, U, s, h). B randomly chooses
α, β, d, e ∈ Zq and computes U = U ′+αP +βQ, s = s′+α, and sends (U ′, d, e) to
A; A chooses α′, β′ ∈ Zq, and queries to B for H2(α′, d) and H2(β′, e). B returns
(α, β) to the adversary A; A computes U = U ′ − αP − βQ and queries B for
H1(m, U). B returns h = H1(m, U) to the adversary A; A computes h′ = h + β
and sends it to B; B returns s′ = s + α; A outputs a signature σ = (m, U, h, s)
where s = s′ − α.
- Hash query. If A makes H1 query to B, B sends the query to random oracle
H1 and returns the result from H1 to A. If A makes H2 query, B returns μ
randomly chosen from Zq.

It is straightforward to verify that signing query produce ”valid” signatures.
There is a collisions problem of the query result of H1 query. In the sign query,
B asks C to sign on the message m′ which is randomly choose, C returns a valid
signature (m′, U, h, s). h is the random oracle H1’s answer to query H1(m′, U).
B simulates random oracle H1 and cheats A that h = H1(m, U). But if A
queries the same query H1(m′, U) to B where the query does not come from
the sign query, B returns the random oracle H1’s answer h. This may cause
some ”collision”: a query result of H1 query may produce a value of H1 that
is inconsistent with other query results of H1. In this case, B just outputs fail
and exits. However, since the message m′ is randomly choose, the possibility of
collisions is negligible. �	

Lemma 5. B simulates the signer C with an indistinguishable distribution.

Proof. In the signing query, B simulates the signer without the secret key in
the blind signature protocol. Furthermore, in the above queries, the answer to
H1 query comes from random oracle H1 and the answer to H2 query is ran-
domly choose from Zq, so they are uniformly random in their respective spaces.
Therefore B simulates the signer with an indistinguishable distribution.

Since A is a successful adversary against the proposed scheme and B simulates
the signer with an indistinguishable distribution, A will forge a valid signature
(m0, U0, h0, s0). Since (m0, U0, h0, s0) is not equal to the outputs of the signing
query, h0 must be the right answer to query H1(m0, U0). So (m0, U0, h0, s0) is
a valid signature for C. Thus using A, B forges a valid signature of Schnorr
signature scheme for C. Since A has advantage ε within running time t, B
succeeds a forgery with advantage ε in running time at most t+tH1qH1+tH2qH2+
(ts + τ)qs. �	

By the above proof, we know that B makes - query to H1 and signing queries to
Schnorr signature scheme. Again, B has probability ε against Schnorr signature
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scheme in running time at most t + tH1qH1 + tH2qH2 + (ts + τ)qs. According to
the Lemma 4 of [12], we obtain the following result:

Theorem 1. The proposed scheme is secure against one-more forgery assume
that ECDLP is hard in groups E(Fp). Concretely, assume that there is an one-
more forgery adversary A that has advantage ε against the proposed scheme
within running time t. Let H1, H2 are random oracles. Assume that A makes
at most qH1 ¿ 0 hash queries to H1, qH2 ¿ 0 hash queries to H2, and qs ¿ 0
sign queries to Signer. If ε ≥ 10(qs + 1)qH1/p, then there is an algorithm C that
solves the ECDLP problem in group E(Fp) with probability ε′ ≥ 1/9 and at most
time t′ ≤ 23(qH1 − qs)(t+ tH1qH1 + tH2qH2 +(ts + τ)qs)/ε, where tH1 is time for
answering an H1 query, tH2 is time for answering an H2 query, ts is time for
Schnorr signature scheme to generate a signature, and τ is time for answering
an signing query to the proposed scheme. �	
It is obvious that the complexity of this reduction is fully polynomial in all
suitable parameters.

5 Conclusions

In this paper, we present an efficient blind signature scheme which prevents one-
more forgery in the random oracle. The proof of security is fully polynomial in
all suitable parameters in random oracle model. We also show that using hash
functions to make the blind factors, the design of blind signature scheme can
be proved secure in random oracle model assume that the original scheme is
provably secure. The proposed security reduction can be an efficient technique
in the proof of security for blind signature schemes.

Acknowledgment. We thank the anonymous reviewers for comprehensive
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