
Encapsulated Scalar Multiplications and Line
Functions in the Computation of Tate Pairing�

Rongquan Feng�� and Hongfeng Wu

LMAM, School of Math. Sciences, Peking University, Beijing 100871, P.R. China
fengrq@math.pku.edu.cn, wuhf@math.pku.edu.cn

Abstract. The efficient computation of the Tate pairing is a crucial
factor to realize cryptographic applications practically. To compute the
Tate pairing, two kinds of costs on the scalar multiplications and Miller’s
line functions of elliptic curves should be considered. In the present pa-
per, encapsulated scalar multiplications and line functions are discussed.
Some simplified formulas and improved algorithms to compute f3T , f4T ,
f2T±P , f6T , f3T±P and f4T±P etc., are presented from given points T
and P on the elliptic curve.
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1 Introduction

With the discovery of the identity-based encryption scheme based on the Weil
pairing by Boneh and Franklin [4], cryptographic protocols based on the Weil
and Tate pairings on elliptic curves have attracted much attention in recent
years. Many cryptographic schemes based on the Weil or on the Tate pairing
have been introduced. The readers are referred to [11] for a survey. In most of
these pairing-based cryptographic schemes, the Tate pairing is the essential tool.
The pairing computations are often the bottleneck to realize the cryptographic
applications in practice. Therefore efficient computation of the Tate pairing is a
crucial factor to realize cryptographic applications practically.

Miller [20,21] provided an algorithm to compute the Weil/Tate pairing. The
Miller’s algorithm itself consists of two parts: the Miller’s function frP and a
final exponentiation. The main part of the computation for the Tate pairing
is calculating frP (Q). In the computation of the Miller’s function f(m+n)P (Q),
one needs to perform a conditional scalar multiplication and compute the line
functions lmP,nP (Q) and l(m+n)P (Q) from points mP and nP on the elliptic
curve. The total cost of the computation of the Tate pairing is the sum of the cost
of scalar multiplications and that of the computation of line functions lmP,nP (Q)
and l(m+n)P (Q). So a good algorithm must think over these two kinds of costs
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simultaneously. In the first, we need to find more efficient method to compute
the scalar multiplication, at the same time we need to modify the algorithm
so that it can be serviced to make the computation of line functions. Secondly,
we need other strategies to change and simplify the formula of f(m+n)P so that
the good algorithm of scalar multiplications can be used to the computation of
f(m+n)P . In the computation of the Tate pairing, we often need to compute the
following Miller’s functions f4T , f3T , fiT±P , f2kT , f3kT , f6T etc. In this paper,
efficient algorithms to compute some of these Miller’s functions are presented.
We propose a useful fact and use it to simplify fm+n. The simplified formula
of fm+n and new point multiplication algorithms make our algorithms more
efficient.

This paper is organized as follows. Some essential concepts to discuss pairings
are reviewed in Section 2. In Section 3, some efficient algorithms to compute
different Miller’s paths are described. An example using those results is given in
Section 4. And finally conclusions are proposed in Section 5.

2 Preliminaries

In this section, the basic arithmetic of elliptic curves, the Tate pairing and
Miller’s algorithm are described briefly. The readers are referred to [1] and [25]
for more details. Throughout this paper, the base field K is always assumed to
be the finite field Fq, where q = pm with p > 3, and K is the algebraic closure
of K.

An elliptic curve E over K is a curve that is given by an equation of the form

y2 = x3 + ax + b, (1)

where a, b ∈ K and 4a3 +27b �= 0. Let E(K) denote the set of points (x, y) ∈ K2

which satisfy the equation (1), along with a “point at infinity”, denoted by O.
For any positive integer k, F = Fqk is an extension field of K. Then E(F )
denotes the set of (x, y) ∈ F 2 that satisfy (1), along with O. There is an abelian
group structure in E(K). The addition formulas for affine coordinates are the
followings. Let P1 = (x1, y1) and P2 = (x2, y2) be two elements of E(K) that are
different from O. Then the addition P3 = P1 + P2 = (x3, y3) is defined by x3 =
λ2

P1,P2
−x1−x2 and y3 = λP1,P2(x1−x3)−y1, where λP1,P2 = (y2−y1)/(x2−x1) is

the slope of the line through P1 and P2 for P1 �= ±P2 and λP1,P2 = (3x2
1+a)/(2y1)

is the slope of the tangent line at P1 for P1 = P2.
Let � be a positive integer and let E[�] (resp. E(Fq)[�]) be the set of points

P ∈ E(Fq) (resp. P ∈ E(Fq)) satisfying �P = O. Let P be a point on E(Fq)
of order r, the point P , or the cyclic subgroup 〈P 〉, or the integer r is said to
have embedding degree k for some positive integer k if r | qk − 1 and r � qs − 1
for any 0 < s < k. The group E(Fq) is (isomorphic to) a subgroup of E(Fqk).
Let P ∈ E(Fq) be a point of order r such that P has embedding degree k. Then
E(Fqk) contains a point Q of the same order r but linearly independent with P
(see [1]).
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Definition 1. Let r be a positive integer coprime to q and let k be the embedding
degree to r. The Tate pairing τr〈·, ·〉 is a map τr〈·, ·〉 : E(Fq)[r]×E(Fqk)[r] → F

∗
qk

defined by τr(P, Q) = frP (DQ)(q
k−1)/r for any P ∈ E(Fq)[r] and Q ∈ E(Fqk)[r],

where frP is a rational function satisfying (frP ) = r(P ) − r(O), and DQ ∼
(Q) − (O) such that (fP ) and DQ have disjoint supports.

From [2], we know that τr(P, Q) can be reduced to τr(P, Q) = frP (Q)(q
k−1)/r

when r � (p−1), Q �= O, and k > 1. Noting that in most cryptographic primitives,
r is set to be a prime such that r | �E(Fq). Furthermore, in practice, r is at least
larger than 160 bits.

In order to compute the Tate pairing τr(P, Q), we need to find the function
fP and then evaluate its value at Q. The algorithm, proposed by Miller [20], and
then called Miller’s algorithm, can be used to compute the Tate paring. Denoted
by lU,V the equation of the line through points U, V ∈ E(Fq). Naturally, if
U = V , then lU,V is the equation of the tangent line at U , and if either U or V is
the point at infinity O, then lU,V represents the vertical line through the other
point. Furthermore, for simplicity, we write lU instead of lU,−U . For a point P on
elliptic curve E, define a Miller’s function with parameter n ∈ N to be a rational
function fnP (or simply fn) on E such that (fn) = n(P ) − (nP ) − (n − 1)(O).

Theorem 1 ([1] Miller’s formula). Let P ∈ E(Fq), n be an integer and let
fn be the function with divisor (fn) = n(P ) − (nP ) − (n − 1)(O). Then for any
m, n ∈ Z,

fm+n(Q) = fm(Q) · fn(Q) · lmP,nP (Q)
l(m+n)P (Q)

.

We can use the Miller’s algorithm to compute fn and then evaluate the Tate
pairing. The standard double-and-add method to compute the Tate pairing is
the following algorithm.

Algorithm 1. Miller’s algorithm:
—————————————————————————-
Input: t = log r, r = (rt = 1, rt−1, . . . , r0)2, P , Q.
Output: frP (Q)(q

k−1)/r.
—————————————————————————-
1: T = P , f = 1
2: For i = t − 1 downto 0 do
3: f ← f2 · lT,T (Q) /l2T (Q) and T ← 2T ;
4: if ri = 1, then f ← f · lT,P (Q)/lT+P (Q) and T ← T + P

5: Return f (qk−1)/r

—————————————————————————-

Definition 2. Let P ∈ E(Fq) and Q ∈ E(Fqk), a Miller’s path about Q from
(n1P, n2P, · · · , nsP ) to (n1+n2+ · · ·+ns)P is an algorithm A which can output
(n1 + n2 + · · · + ns)P and f(n1+n2+···+ns)(Q) when input (n1P, n2P, · · · , nsP )
and fn1 , fn2 , · · · , fns. When there is no confusion, this algorithm A is said to
be a Miller’s path to (n1P, n2P, · · · , nsP ).
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The computational cost (timing) of scalar multiplications and Tate pairings on
elliptic curve operations depend on the cost of the arithmetic operations that
have to be performed in the underlying field. In general, among these arithmetics,
a field squaring, a field multiplication and a field inversion are more expensive
than other field arithmetics, such as a field addition and a field subtraction. So
we only take into account the cost of inversion, multiplication, and squaring in
the field Fq, which we denote by I, M and S, respectively, while in the extension
field Fqk , those costs are denoted by Ik, Mk and Sk, respectively. Generally
it is assumed that 1S = 0.8M , 1Mk = k2M and 1Ik = k2M + I. Also the
multiplication between elements in F

∗
q and F

∗
qk costs kM .

3 Computation of Miller’s Paths

In the process of computing Tate pairings, we often need to compute (fmP+nT ,
mP +nT ) from (fP , P ) and (fT , T ). A Miller’s path is to compute mP +nT and
fmP+nT at the same time. Different Miller’s paths have different computation
costs. A main problem is to find an optimized Miller’s path so that we can
quicken the computation of Tate pairings.

Throughout this section, we assume that P ∈ E(Fq) and Q ∈ E(Fqk). More-
over, though we don’t use the denominators discarded method [1] in here, our
strategies can also be used in those algorithms there.

3.1 Miller’s Path to 4T

In this subsection, an improved method for obtaining (f4T , 4T ) from (fT , T ) is
given. Firstly, some facts about elliptic curves will be given from which one can
simplify the computation of f4T .

Let P1 = (x1, y1) and P2 = (x2, y2) be points on E, Set P1 + P2 = P3 =
(x3, y3). Let lP1,P2 : y − λP1,P2(x − x1) − y1 = 0 be the equation of the line
through P1 and P2 and lP1+P2 : x−x3 = 0 be the vertical line through the point
P1 + P2. If P1 = P2 then lP1 is the tangent line at P1, and if P1 + P2 = O then
we take lP1+P2 = 1.

Lemma 1. For P1, P2 ∈ E(Fq), let P1 + P2 = P3. Then we have lP1,P2 ·
l−P1,−P2 = lP1 · lP2 · lP3 , i.e.,

(y − λP1,P2(x − x1) − y1)(y + λP1,P2(x − x1) + y1) = (x − x1)(x − x2)(x − x3).

Proof. The divisor of the function lP1,P2 is (lP1,P2) = (P1)+(P2)+(−P3)−3(O).
Since −P1 = (x1, −y1), we have (y + λP1,P2(x − x1) + y1) = (−P1) + (−P2) +
(P3) − 3(O). Thus

div((y − λP1,P2(x − x1) − y1)(y + λP1,P2(x − x1) + y1))
= (P1) + (P2) + (−P3) − 3(O) + (−P1) + (−P2) + (P3) − 3(O)
= (P1) + (−P1) − 2(O) + (P2) + (−P2) − 2(O) + (P3) + (−P3) − 2(O)
= div(x − x1) + div(x − x2) + div(x − x3)
= div((x − x1)(x − x2)(x − x3)).
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From div(f) = 0 if and only if f is a constant function, we have that

(y − λP1,P2(x − x1) − y1)(y + λP1,P2(x − x1) + y1) = c · (x − x1)(x − x2)(x − x3)

for some constant c ∈ K. But since the coefficient of x3 is 1 in both sides we
have c = 1. �

Remark 1. From the lemma 1, we know fm−n(Q) =
fm

fn
(Q) · lmP

l−mP,nP
(Q), Thus

we have f2m−1(Q) = f2
m(Q) · lmP,mP

l−2mP,P
(Q).

We now describe an improved method for obtaining (f4T , 4T ) from (fT , T ). Note
that for any points T and S, we have l−T,−S(Q) = lT,S(−Q). By Lemma 1, we
have

f4T =
(

f2
T · lT,T

l2T

)2

· l2T,2T

l4T
= f4

T ·
l2T,T

l22T

· l2T,2T

l4T
= f4

T ·
l2T,T

l−2T,−2T
.

Let T = (x1, y1), 2T = (x2, y2) and 4T = (x4, y4). Then x2 = λ2
T,T − 2x1,

y2 = λT,T (x1 − x2) − y1; x4 = λ2
2T,2T − 2x2 and y4 = λ2T,2T (x2 − x4) − y2. Set

Q = (x, y). We have

f4T (Q) = f4
T ·

l2T,T

l−2T,−2T
(Q) =

f4
T · l2T,T (Q)

l2T,2T (−Q)
= f4

T · [y − y1 − λT,T (x − x1)]2

y + y2 + λ2T,2T (x + x2)
.

Furthermore, let λ be defined as λ = 3x2
1 + a. Then we have

1
2y2

=
(2y1)3

2λ(3x1 · (2y1)2 − λ2) − (2y1)4
.

Thus

λ2T,2T = (3x2
2 + a) · (2y1)4

2y1[2λ(3x1 · (2y1)2 − λ2) − (2y1)4]
;

λT,T = (3x2
1 + a) · 2λ(3x1 · (2y1)2 − λ2) − (2y1)4

2y1[2λ(3x1 · (2y1)2 − λ2) − (2y1)4]
.

So we have the following algorithm to compute 4T and f4T from T and fT .
In the above algorithm, we need I +7S +9M to compute λ1, λ2 and (x4, y4).

It is cheaper than two doubling method which cost 2I + 4S + 4M for in the
general finite field I/M ≥ 10. Also it is better than the algorithm in [6] where
the cost is I + 9S + 9M . Steps 7 and 8 cost Ik + 2Sk + 2Mk + 2kM when
Q = (x, y), x, y ∈ Fqk . For general algorithm, the cost is 2Ik + Sk + 2Mk + 2kM
(see [21]). So this algorithm is better than known algorithms not only for 4T , but
also for f4T .
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Algorithm 2. (Path to 4T algorithm):
—————————————————————————-
Input: T = (x1, y1), Q = (x, y), fT .
Output: f4T (Q), 2T , 4T = (x4, y4).
—————————————————————————-
1: t1 = 3x2

1 + a; t2 = 2y1; t3 = (t22)
2; t4 = x1 · t3;

2: t5 = 2t1 · (3t4 − t21) − t3;
3: t6 = (t2 · t5)−1;
4: λ1 = t1 · t5 · t6; x2 = λ2

1 − 2x1; y2 = λ1(x1 − x2) − y1;
5: λ2 = (3x2

2 + a) · t3 · t6; x4 = λ2
2 − 2x2; y4 = λ2(x2 − x4) − y2;

6: f1 = y − y1 − λ1(x − x1); f2 = y + y2 + λ2(x + x2);
7: f4T (Q) = (fT (Q)2 · f1(Q))2 · f2(Q)−1;
8: Return f4T (Q), 2T , 4T = (x4, y4).
—————————————————————————-

3.2 Miller’s Path to 2T ± P

In this subsection, we will describe the efficient Miller’s path to (f2T+P , 2T +P )
and (f2T−P , 2T − P ).

Miller’s Path to 2T + P . We first give an efficient Miller’s path to (f2T+P ,
2T + P ) from (fT , T ) and (fP , P ) when T �= P .

First noting that

f2T+P = fT+P ·fT · lT+P,T

l2T+P
=

fT · fP · lT,P

lT+P
·fT · lT+P,T

l2T+P
=

f2
T · fP

l2T+P
· lT,P · lT+P,T

lT+P
.

Set T = (x1, y1), P = (x2, y2), T + P = (x3, y3) and 2T + P = (x4, y4). From
[12] we can replace (lT,P · lT+P,T )/lT+P by the following parabolas formula:

lT,P · lT+P,T

lT+P
= (x − x1)(x + x1 + x3 + λT,P λT,T+P ) − (λT,P + λT,T+P )(y − y1).

Furthermore, λT,T+P can be expanded as follows:

λT,T+P =
y3 − y1

x3 − x1
=

(x1 − x3)λT,P − 2y1

λ2
T,P − 2x1 − x2

=
2y1(x2 − x1)3 − (y2 − y1)

[
(x2 − x1)2(2x1 + x2) − (y2 − y1)2

]
(x2 − x1) [(x2 − x1)2(2x1 + x2) − (y2 − y1)2]

.

Since

λT,P =
y2 − y1

x2 − x1
=

(y2 − y1)
[
(x2 − x1)2(2x1 + x2) − (y2 − y1)2

]
(x2 − x1) [(x2 − x1)2(2x1 + x2) − (y2 − y1)2]

.

So we need only to compute one inversion
{
(x2 − x1)

[
(x2 − x1)2(2x1 + x2)−

(y2 − y1)2
]}−1 in order to compute λT,P and λT,T+P simultaneously. Thus we

have the following formulas.
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λT,P =
{
(x2 − x1)

[
(x2 − x1)2(2x1 + x2) − (y2 − y1)2

]}−1

· (y2 − y1)
[
(x2 − x1)

2 (2x1 + x2) − (y2 − y1)
2
]
;

λT,T+P =
{
(x2−x1)

[
(x2−x1)2(2x1+x2)−(y2−y1)2

]}−1 · 2y1 (x2−x1)
3−λT,P ;

x4 = (λT,T+P − λT,P ) (λT,T+P + λT,P ) +x2;
y4 = (x1 − x4)λT,T+P − y1.

Since x3 = λ2
T,P − x1 − x2, the new parabolas formula is

lT,P · lT+P,P

lT+P
= (x−x1)(λT,P (λT,P +λT,T+P )−x2+x)−(λT,P +λT,T+P )(y−y1).

This procedure is described by the following algorithm.

Algorithm 3. (Path to 2T + P algorithm):
——————————————————————————-
Input: T = (x1, y1), P = (x2, y2), fT , fP and Q = (x, y)
Output: f2T+P (Q) and 2T + P = (x4, y4).
——————————————————————————-
1: t1 = (x2 − x1)2(2x1 + x2) − (y2 − y1)2,t2 = (x2 − x1)t1,t3 = t−1

2 ;
2: λ1 = (y2 − y1)t1t3, λ2 = t3 · 2y1(x2 − x1)2(x2 − x1) − λ1;
3: x4 = (λ2 − λ1)(λ2 + λ1) +x2;
4: y4 = (x1 − x4)λ2 − y1;

5: f2T+P (Q) =
f2

T · fP

l2T+P
· [(x−x1)(λ1(λ1 +λ2)−x2 +x)− (λ1 +λ2)(y−y1)](Q)

6: return f2T+P (Q), 2T + P .
——————————————————————————–

In Algorithm 2, we require 1I + 2S + 10M to compute 2T + P and x1 + x3 +
λT,P λT,T+P , while in [12], 2I + 2S + 4M times are required to compute them.
We save 1I − 6M field computations.

Miller’s Path to 2T − P . Now we describe an efficient Miller’s path to
(f2T−P , 2T − P ) from (fT , T ) and (fP , P ) when T �= P . We can use 2T + (−P )
to get f2T−P by Algorithm 3, but here we describe a direct path to f2T−P .

By Remark 1 in section 3.1 we know

f2T−P (Q) = f2
T (Q) · lT,T

l−2T,P
(Q).

Let P = (xP , yP ),T = (xT , yT ), 2T = (x2T , y2T ) and 2T − P = (x2T−P , y2T−P ).
Then x2T = λ2

T,T −2xT , y2T = λT,T (xT −x2T )−yT ; x2T−P = λ2
2T,−P −x2T −xP

and y2T−P = λ2T,−P (xP − x2T−P ) + yP . Set Q = (x, y). We have

f2T−P (Q) = f2
T · lT,T

l−2T,P
(Q) = f2

T (Q) · y − yT − λT,T (x − xT )
y − yP + λ2T,−P (x − xP )

.
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Furthermore, let λ be defined as λ = 3x2
T + a. Then we have

λT,T =
(3x2

T + a) · [λ2 − (2xT + xP )(2yT )2]
2yT [λ2 − (2xT + xP )(2yT )2]

;

λ2T,−P =
(2yT )3(y2T + yP )

2yT [λ2 − (2xT + xP )(2yT )2]
.

Therefore, when Q = (x, y) and x ∈ Fqk , y ∈ Fqk , to complete the Miller’s
path (f2T−P , 2T − P ) from (fT , T ) and (fP , P ) we need only 1I + 5S + (2k +
9)M + Ik + Sk + 2Mk. However, we need 1I + 2S + (k + 10)M + Ik + Sk + 4Mk

when use the Algorithm 3 to compute (f2T−P , 2T − P ).

3.3 Miller’s Path to 3T

In this subsection, a Miller’s path to (f3T , 3T ) from (fT , T ) is given. By the
Miller’s formula we have

f3T = f3
T · lT,T

l2T
· lT,2T

l3T
.

Let T = (x1, y1), 2T = (x2, y2), and 3T = (x3, y3). Then

lT,T · lT,2T

l2T
= (x − x1)(x + x1 + x2 + λT,T λT,2T ) − (λT,T + λT,2T )(y − y1).

By x2 = λ2
T,T − 2x1, we have the following parabolas formula

lT,T · lT,2T

l2T
= (x − x1)(x + λ2

T,T − x1 + λT,T λT,2T ) − (λT,T + λT,2T )(y − y1).

Noting that x3 = (λT,2T − λT,T )(λT,2T + λT,T ) + x1, we need only λT,T , λT,2T

and 3T to compute (f3T , 3T ). From

λT,2T =
y2 − y1

x2 − x1
=

λT,T (x1 − (λ2
T,T − 2x1)) − 2y1

(λ2
T,T − 2x1) − x1

=
2y1

3x1 − λ2
T,T

− λT,T

=
(2y1)3

(2y1)2(3x1) − (3x2
1 + a)2

− λT,T

and

λT,T =
3x2

1 + a2

2y1
=

3x2
1 + a2

2y1
· (2y1)2(3x1) − (3x2

1 + a)2

(2y1)2(3x1) − (3x2
1 + a)2

,

we have the follow algorithm:
In step 5 of Algorithm 4, Ik+Sk+4Mk+(k+1)M costs are needed to compute

f3T (Q). However the general double-add algorithm needs Ik +Sk +7Mk +2kM .
Our algorithm saves 3Mk + (k − 1)M field computations.
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Algorithm 4. (Path to 3T algorithm):
————————————————————————————————–
Input: T = (x1, y1), fT , Q = (x, y).
Output: f3T (Q) and 3T = (x3, y3).
1: t1 = (2y1)2, t2 = t21, t3 = 3x2

1 + a;
2: t4 = 3x1 · t1 − t3, t5 = (2y1 · t4)−1, λ1 = t3t4t5, λ2 = t2t5 − λ1;
3: x3 = (λ2 − λ1)(λ2 + λ1) + x1;
4: y3 = (x1 − x3)λ2 − y1;

5: f3T (Q) =
f3

T (Q)
x − x3

· [(x − x1)(λ1(λ1 + λ2) − x1 + x) − (λ1 + λ2)(y − y1)](Q);

6: Return f3T (Q), 3T .
————————————————————————————————–

3.4 Miller’s Path to 6T

In this subsection, the Miller’s path to (f6T , 6T ) from (fT , T ) is considered. In the
first we see the Miller’s path [(fT , T ) → (f2T , 2T ) and (fT , T ) → (f4T , 4T )] →
(f2T+4T , 2T + 4T ). By Miller’s formula and the results in Section 3.1, we have

f6T =f4T ·f2T · l2T,4T

l6T
=f6

T ·
l2T,T

l−2T,−2T
· lT,T

l2T
· l2T,4T

l6T
=f6

T ·
l2T,T

l−2T,−2T
· lT,T · l2T,4T · l4T

l2T · l6T · l4T
.

So by Lemma 1,

f6T = f6
T ·

l3T,T

l−2T,−2T
· l2T,4T · l4T

l2T,4T · l−2T,−4T
= f6

T ·
l3T,T

l−2T,−2T
· l4T

l−2T,−4T
.

Let T = (x1, y1), 2T = (x2, y2), 4T = (x4, y4) and Q = (x, y). Then

f6T (Q) = (f2
T lT,T )3 · l4T

l−2T,−2T · l−2T,−4T
(Q)

=
(f2

T lT,T )3 · (x − x4)
[y + y2 + λ2T,2T (x + x2)] · [y + y2 + λ2T,4T (x + x2)]

.

Secondly, there is another way to (f6T , 6T ) from (fT , T ) as (fT , T )
→ (f3T , 3T ) → (f3T+3T , 6T ). Similarly, we have

f6T (Q) = f2
3T · l3T,3T

l6T
(Q)

=f6
T · [(x − x1)(λT,T (λT,T + λT,2T ) − x1 + x) − (λT,T + λT,2T )(y − y1)]2

l23T

· l3T,3T

l6T
(Q)

= f6
T · [(x − x2)(λT,T (λT,T + λT,2T ) − x2 + x) − (λT,T + λT,2T )(y − y2)]2

l−3T,−3T (Q)
.

By comparing with their costs, the second way (fT , T ) → (f3T , 3T ) → (f3T+3T ,
6T ) is more efficient to compute (f6T , 6T ). From this way, an algorithm to com-
pute f6T and 6T can be gotten.
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3.5 Miller’s Path to iT ± P for i = 3, 4, 6.

In this subsection, we think about the Miller’s path to iT ± P from (fT , T ) and
(fP , P ), where i = 3, 4 and 6. Firstly, let us see an optimized one to (f3T+P ,
3T + P ).

There are following four ways to get the Miller’s path to 3T +P from (fT , T )
and (fP , P ). The first is as (fT , T ) → (f3T , 3T ) → (f3T+P , 3T + P ). The second
is as [(fT , T ) → (f2T , 2T ) and(fP , P ) → (fP+T , P +T )] → (f2T+(T+P ), 2T +(T +
P )). The third is as (fT , T ) → (f2T+P , 2T +P ) → (f(2T+P )+T , (2T +P )+T ), and
the fourth is as (fT , T ) → (fT+P , T +P ) → (f2T+(T+P ), 2T+(P +T ). Comparing
with the costs of these four ways we know that the second way is more efficient

than the others. Therefore, we have f3T+P (Q) = f3
T

lT,T · lT,P

l−2T,−T−P
(Q). The details

are omitted.
Similarly, for the Miller’s paths to 4T + P , We have the ways (fT , T ) →

(f4T , 4T ) → (f4T+P , 4T + P ) and (fT , T ) → (f2T , 2T ) → (f2(2T )+P , 2(2T )+ P ).
Comparing with the costs of these 2 ways we know that the first way is more
efficient than the second. Similarly, for the Miller’s paths to 6T + P , the way
(fT , T ) → (f3T , 3T ) → (f2(3T )+P ,2(3T )+P ) is more efficient. From these results,
algorithms to compute f3T+P , f4T+p and f6T+P can be obtained.

The Miller’s path to iT − P are used to the algorithms using addition-
subtraction chains. Under conditions, direct compute fiT−P is more efficient. For

example, for the path to 3T − P we have f3T−P (Q) = f3
T [

lT,T lT,2T

l2T
]

1
l−3T,P

(Q).

For the path to 4T − P we have f4T−P (Q) = f4T (Q) · l4T

l−4T,P
(Q).

4 Example

As an example we describe a new algorithm to compute the Tate pairing in this
section.

Algorithm 5. Signed-Radix-2 Miller’s Algorithm
————————————————————————————————–
Input: r = (rt = 1, 0ht−1 , rt−1, · · · , 0h0, r0)2, P = (xP , yP ), Q = (x, y)
Output: frP (Q)(q

k−1)/r ∈ F
∗
qk

————————————————————————————————–
1: T = P , f = 1;
2: For i = t − 1 downto 0 do
3: if hi is even, then use the Algorithm 2 to compute f4hi/2T and 4hi/2T ;

set T = 4hi/2T then to compute fT+P (Q) if ri+1 = 1 or

fT−P (Q) = fT
lT

l−T,P
(Q) if ri+1 = −1;

4: if hi is odd, then use the Algorithm 2 to compute f4(hi−1)/2T

and 4(hi−1)/2T ; set T = 4(hi−1)/2T then to compute f2T+P (Q)
if ri+1 = 1 or f2T−P (Q) if ri+1 = −1;
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5: EndFor
6: Return f (qk−1)/r.
————————————————————————————————–

For an integer r, consider the signed radix-2 representation of r. This repre-
sentation is advantaged for the non-zero digits is one-third of the length of the
representation on average. We write the radix-2 representation of r as r = (rt =
1, 0ht−1 , rt−1, · · · , 0h0, r0)2, where the ri is 1 or −1. The above algorithm is a
modified Miller’s algorithm with the signed radix-2 representation.

5 Conclusion

In this paper, several strategies to compute the Tate pairing efficiently are given.
The concept of Miller’s path which let us consider the scalar multiplications and
the computation of line functions in the same time is proposed. A useful fact
is stated in Lemma 1 and simple formulas to compute f4T , f2T−P and f6T etc.
are presented. Similar idea as in [12] is used to compute f3T to simplify the
computation. These algorithms are also used to compute f3T±P , f4T±P and
f6T+P . Furthermore, these methods can also be applied to other algorithms for
the computation of Tate pairings. In practical applications, the computation
of f2kT or f3kT are also needed. Certainly, iterative method can be used to
reduce some cost, but it only reduce the cost of scalar multiplications. So, how
to simplify the formula of Miller’s functions f2kT and f3kT are still crucial open
problems.
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