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Abstract. In this paper, we introduce and study two new search mod-
els on digraphs: the directed searching and mixed directed searching. In
these two search models, both searchers and intruders must follow the
edge directions when they move along edges. We prove the monotonic-
ity of both search models, and we show that both directed and mixed
directed search problems are NP-complete.

1 Introduction

Many real-world problems can be naturally modeled by graph search problems.
Examples include: capturing intruders in a building, clearing a complex system
of interconnected pipes which is contaminated by some noxious gas, and killing
a computer virus in a network system. The meaning of a cleared or contami-
nated edge varies with the problems. For example, in the problem of capturing
intruders, a cleared edge means that there is no intruder hiding along this edge,
while a contaminated edge means that there may be some intruders hiding along
this edge.

In general, a graph or digraph search problem is to find the minimum number
of searchers required to capture all the intruders hiding in a graph or digraph.
In the edge search problem introduced in [9], there are three types of actions
for searchers, i.e., placing, removing and sliding, and an edge is cleared only by
a sliding action in a proper way. In the node search problem introduced in [7],
there are only two types of actions for searchers, i.e., placing and removing, and
an edge is cleared if both end vertices are occupied by searchers. Kirousis and
Papadimitriou [7] showed that the node search number is equal to the pathwidth
plus one. Bienstock and Seymour [4] introduced the mixed search problem that
combines the edge search and node search problems. Thus, in the mixed search
problem, an edge is cleared if both end vertices are occupied by searchers or
cleared by a sliding action in a proper way. In these three graph search problems,
intruders are invisible and they can move along a path that contains no searchers
at a great speed at any time. Seymour and Thomas [13] introduced another
variant of the graph search problem in which an intruder hiding in the graph is
visible to searchers. They showed that the search number of this variant is equal
to the treewidth plus one.
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When studying search problems from a computational complexity viewpoint,
we are interested in deciding the search number of a graph. Megiddo et al. [9]
showed that the edge search problem is NP-hard. This problem belongs to the
NP class follows from the monotonicity result of [8] in which LaPaugh showed
that recontamination of edges cannot reduce the number of searchers needed to
clear a graph. Monotonicity is a very important issue in graph search problems.
Bienstock and Seymour [4] proposed a method that gives a succinct proof for
the monotonicity of the mixed search problem, which implies the monotonicity
of the edge search problem and the node search problem. Fomin and Thilikos [5]
provided a general framework that can unify monotonicity results in a unique
minmax theorem.

An undirected graph is not always sufficient in representing all the information
of a real-world problem. For example, directed edges are required if the graph
models one-way streets in a road system. Johnson et al. [6] generalized the con-
cepts of tree-decomposition and treewidth to digraphs and introduced a digraph
search problem accordingly. Reed [11] defined another treewidth on digraphs.
Safari [12] introduced a new parameter of digraphs, d-width, which is related to
the directed treewidth of a digraph. Barat [2] generalized the cops-and-robber
game to digraphs. He proved that an optimal monotonic search strategy for a
digraph needs at most one more searcher than the search number of the di-
graph and he conjectured that the monotonicity is held for the cops-and-robber
game on digraphs. Yang and Cao [14] introduced the strong searching model in
which the intruder must follow the edge directions but searchers need not when
they move along edges. Yang and Cao [15] also introduced the weak search-
ing model in which searchers must follow the edge directions but the intruder
need not when they move along edges. In [16] Yang and Cao introduced the di-
rected vertex separation and investigated the relations between different digraph
searching models, directed vertex separation, and directed pathwidth. In the di-
graph searching models in [14,15], there are three types of actions for searchers:
placing, removing and sliding. Alspach et al. [1] proposed four digraph search
models in which searchers cannot be removed from digraphs.

Throughout this paper, we use D to denote a digraph, (u, v) to denote a
directed edge with tail u and head v, and u � v to denote a directed path from
u to v. All graphs and digraphs in this paper contain at least one edge.

A natural generalization of the edge search model is the directed search model.
In the directed search model, both searchers and intruders must move in the edge
directions. Initially, all edges of D are contaminated. Each intruder can move
from vertex u to vertex v along a directed path u � v that contains no searchers
at a great speed at any time. There are three types of actions for searchers:
(1) placing a searcher on a vertex, (2) removing a searcher from a vertex, and
(3) sliding a searcher along an edge from its tail to its head. A directed search
strategy is a sequence of actions such that the final action leaves all edges of D
uncontaminated (or cleared). A contaminated edge (u, v) can be cleared in one of
two ways by a sliding action: (1) sliding a searcher from u to v along (u, v) while
at least one searcher is located on u and (2) sliding a searcher from u to v along
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(u, v) while all edges with head u are already cleared. The digraph D is cleared
if all of the edges are cleared. The minimum number of searchers needed to clear
D in the directed search model is the directed search number of D, denoted by
ds(D).

A generalization of the mixed search model is the mixed directed search model,
which can be considered as a kind of combination of the directed search model
and node search model. We will give a precise definition of this search model in
the next section.

In the directed or mixed directed search model, a cleared edge will be reconta-
minated if there is a directed path from the head of a contaminated edge to the
tail of this cleared edge such that there is no searcher stationing on any vertex
of this path.

We say that a vertex in D is occupied at some moment if at least one searcher
is located on this vertex at this moment. Any searcher that is not on D at some
moment is said free at this moment.

In the directed or mixed directed search model, let S be a search strategy
and let Ai be the set of cleared edges immediately after the ith action. S is
monotonic if Ai ⊆ Ai+1 for each i. We say that this search model has the
property of monotonicity (or is monotonic) if for any digraph D, there exists a
monotonic search strategy that can clear D using k searchers, where k is the
search number of D in this search model.

This paper is organized as follows. In Section 2, we prove the monotonicity
of the mixed directed search model. In Section 3, we prove the monotonicity of
the directed search model. In Section 4, we show the NP-completeness results
for both directed and mixed directed search problems. Finally, we conclude this
paper in Section 5.

2 Monotonicity of the Mixed Directed Search Model

We will show the monotonicity of the mixed directed search model in this section,
which means that recontamination does not help to reduce the mixed directed
search number of a digraph. We will extend the method proposed by Bienstock
and Seymour [4]. We first give the definition of a critical vertex.

Definition 1. Let D be a digraph. For an edge set X ⊆ E(D), a vertex in V (D)
is critical if it is the tail of an edge in X and the head of an edge in E(D) − X .
The set of all critical vertices in V (D) is denoted by δ(X).

We then define the campaign and the progressive campaign.

Definition 2. Let D be a digraph. A campaign in D is a sequence (X0, X1,
. . . , Xn) of subsets of E(D) such that X0 = ∅, Xn = E(D) and |Xi −Xi−1| ≤ 1,
for 1 ≤ i ≤ n. The width of the campaign is defined as max0≤i≤n |δ(Xi)|. A
campaign is progressive if X0 ⊆ X1 ⊆ · · · ⊆ Xn and |Xi − Xi−1| = 1, for
1 ≤ i ≤ n.

Similar to [2] and [4], we have the following lemma for the progressive campaign.
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Lemma 1. If there is a campaign in D of width at most k, then there is a
progressive campaign in D of width at most k.

In the remainder of this section, we will prove that the mixed directed search
problem is monotonic. The mixed directed search model can be obtained by mod-
ifying the directed search model as follows. Recall that there are two ways to
clear an edge by a sliding action in the directed search model. In the mixed
directed search model, we replace the first way by the node-search-clearing rule:
an edge can be cleared if both of its end vertices are occupied. Another mod-
ification is to disallow the recontamination caused by a sliding action, that is,
the action of sliding a searcher from u to v along edge (u, v) changes the state
of edge (u, v) from contaminated to clear, but it does not change the state of
any other edge. Thus, in a mixed directed search strategy, each sliding along an
edge must clear this edge if it is contaminated. More precisely, we define the four
types of actions in the mixed directed search model as follows.

Definition 3. Let S = (s1, s2, . . . , sn) be a mixed directed search strategy for
a digraph D. For 1 ≤ i ≤ n, let Ai be the set of cleared edges and Zi be the
set of occupied vertices immediately after action si such that δ(Ai) ⊆ Zi. Let
A0 = Z0 = ∅. Each action si, 1 ≤ i ≤ n, is one of the following four types:

(a) (placing a searcher on v) Zi = Zi−1 ∪ {v} for some vertex v ∈ V (D) − Zi−1
and Ai = Ai−1 (note that each vertex in Zi has exactly one searcher);

(b) (removing the searcher from v) Zi = Zi−1 − {v} for some vertex v ∈ Zi−1
and Ai = {e ∈ Ai−1: if there is a directed path u � w containing e and an
edge e′ ∈ E(D) − Ai−1 such that w is the head of e and u is the tail of e′,
then u � w has an internal vertex in Zi};

(c) (node-search-clearing e) Zi = Zi−1 and Ai = Ai−1 ∪ {e} for some edge
e = (u, v) ∈ E(D) with both ends u and v in Zi−1;

(d) (edge-search-clearing e) Zi = (Zi−1 − {u}) ∪ {v} and Ai = Ai−1 ∪ {e} for
some edge e = (u, v) ∈ E(D) with u ∈ Zi−1 and v ∈ V (D) − Zi−1 and every
(possibly 0) edge with head u belongs to Ai−1.

From Definition 3, we know that at most one edge can be cleared in one
action and each vertex is occupied by at most one searcher at any time. Note that
recontamination in the mixed directed search problem is caused only by removing
actions. In (c) and (d), if e ∈ Ai−1, then we say this action is superfluous. Adding
or deleting superfluous actions will not affect the number of searchers used in
a search strategy, however, sometimes allowing superfluous actions may make
arguments simple.

The mixed directed search number of a digraph D, denoted by mds(D), is the
minimum number of searchers needed to clear D in the mixed directed search
model. The following lemma reveals the relationship between the mixed directed
searching of D and a campaign in D.

Lemma 2. Let D be a digraph without any multiple edges. If mds(D) ≤ k, then
there is a campaign in D of width at most k − 1.
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Proof. Let S = (s1, s2, . . . , sm) be a mixed directed search strategy of D using
at most k searchers. For 1 ≤ i ≤ m, let Ai be the set of cleared edges and Zi be
the set of occupied vertices immediately after si, and let A0 = Z0 = ∅. We first
normalize S such that the normalized search strategy can also clear D using at
most k searchers. The normalized search strategy may contain some superfluous
actions, but this will not increase the number of searchers required to clear D.

The normalization is conducted by inserting some node-search-clearing actions
after each placing action and edge-search-clearing action. Specifically, for each
1 ≤ i ≤ m, if Zi − Zi−1 is empty, i.e., si is a removing or node-search-clearing
action, then we leave si unchanged; otherwise, Zi−Zi−1 contains a vertex v, i.e.,
si is a placing or edge-search-clearing action such that v is occupied, then let
E1

v = {(u, v) ∈ E(D): u ∈ Zi−1}, E2
v = {(v, u) ∈ E(D): u ∈ Zi−1 and all edges

with head u except (v, u) are in Ai−1}, and E3
v = {(v, u) ∈ E(D): u ∈ Zi−1 and

(v, u) /∈ E2
v}, and we then insert a subsequence of node-search-clearing actions

between si and si+1, such that each edge in E1
v is cleared first, then each edge

in E2
v , and finally each edge in E3

v (edges in the same set are cleared in an
arbitrary order). After the normalization, we obtain a new sequence of actions
that contains each old action and some new node-search-clearing actions. It is
easy to see that this new sequence of actions, denoted by (s′1, s′2, . . . , s′n), is still
a mixed directed search strategy of D using at most k searchers.

For 1 ≤ i ≤ n, let A′
i be the set of cleared edges and Z ′

i be the set of occupied
vertices immediately after s′i, and let A′

0 = Z ′
0 = ∅. Since δ(A′

i) ⊆ Z ′
i, |Z ′

i| ≤ k,
and |A′

i − A′
i−1| ≤ 1, 1 ≤ i ≤ n, we know that (A′

0, A
′
1, . . . , A

′
n) is a campaign in

D of width at most k.
We now show that the campaign (A′

0, A
′
1, . . . , A

′
n) can be converted into a

campaign (X0, X1, . . . , Xn) of width at most k − 1. For each i from 0 to n, if
|δ(A′

i)| ≤ k − 1, then let Xi = A′
i. If |δ(A′

i)| = k, then δ(A′
i) = Z ′

i. Let v be
the last vertex occupied by a searcher in Z ′

i. Recall that just after v receives a
searcher in a placing or edge-search-clearing action, the following actions clear
all edges in E1

v , E2
v and E3

v by node-search-clearing. Note that at the step when
an edge (u, v) ∈ E1

v is cleared, v is not a critical vertex at this step. When an
edge (v, u) ∈ E2

v is cleared, since D has no multiple edges, all edges with head
u are cleared and thus u is not a critical vertex. Hence, when |δ(A′

i)| = k, s′i
must be a node-search-clearing action that clears an edge in E3

v . Therefore, each
vertex in Z ′

i has at least one contaminated edge with tail not in Z ′
i. Let s′j be

the first removing action after s′i. Such an action must exist; otherwise, D will
not be cleared because each vertex in Z ′

i has at least one contaminated edge
with tail not in Z ′

i. Let R = A′
j−1 − A′

j and Xp = A′
p − R for i ≤ p ≤ j. Since

|A′
p − A′

p−1| ≤ 1, i ≤ p ≤ j, we know that |Xp − Xp−1| ≤ 1 for 1 ≤ p ≤ j.
Suppose that s′j removes the searcher on w. Then all edges with tail w must be
contaminated immediately after s′j , which means that A′

j contains no edges with
tail w. Hence, Xp contains no edges with tail w for i ≤ p ≤ j. Thus w /∈ δ(Xp)
and |δ(Xp)| ≤ k − 1 for i ≤ p ≤ j. We then consider A′

j+1 and construct Xj+1.
We can continue this process and finally we obtain a campaign (X0, X1, . . . , Xn)
in D of width at most k − 1.
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Lemma 3. For a digraph D, if (X0, X1, . . . , Xn) is a progressive campaign in D
of width at most k − 1, then there is a monotonic mixed directed search strategy
that clears D using at most k searchers such that the edges of D are cleared in
the order e1, e2, . . . , en, where ei = Xi − Xi−1, 1 ≤ i ≤ n.

Proof. We construct the monotonic mixed directed search strategy inductively.
Suppose that we have cleared the edges e1, . . . , ej−1, 2 ≤ j ≤ n, in order, and that
no other edges have been cleared yet. Let ej = (u, v) and Cj−1 = {p ∈ V (D):
p has no in-edge or all in-edges of p belong to Xj−1}. Before we clear (u, v),
we may remove searchers such that each vertex in δ(Xj−1) is occupied by a
searcher and all other searchers are free. If |{u, v} ∪ δ(Xj−1)| ≤ k, we may place
free searchers on both ends of ej and execute node-search-clearing. Assume that
|{u, v}∪ δ(Xj−1)| > k. Since |δ(Xj−1)| ≤ k − 1, it follows that |δ(Xj−1)| = k − 1
and {u, v} ∩ δ(Xj−1) = ∅. Thus, we have one free searcher. We now prove that
u ∈ Cj−1. If u /∈ Cj−1, then u ∈ δ(Xj) and |δ(Xj)| = k, which contradicts
the condition that (X0, X1, . . . , Xn) has width at most k − 1. Thus, u has no
contaminated in-edges and we can place the free searcher on u and then slide
the searcher from u to v along (u, v) to clear ej by edge-search-clearing.

From Lemmas 1, 2 and 3, we have the following result.

Lemma 4. Given a digraph D that has no multiple edges, the following are
equivalent:

(i) mds(D) ≤ k;
(ii) there is a campaign in D of width at most k − 1;
(iii) there is a progressive campaign in D of width at most k − 1; and
(iv) there is a monotonic mixed directed search strategy that clears D using at

most k searchers.

From Lemma 4, we can prove the monotonicity of the mixed directed search
model.

Theorem 1. Given a digraph D, if mds(D) = k, then there is a monotonic
mixed directed search strategy that clears D using k searchers.

3 Monotonicity of the Directed Search Model

In Section 2, we have proved that the mixed directed search problem is monotonic.
In this section we will prove that the monotonicity of the mixed directed search
problem implies the monotonicity of the directed search problem. The following
lemma describes a relationship between the directed searching and the mixed
directed searching.

Lemma 5. If D is a digraph, then ds(D) − 1 ≤ mds(D) ≤ ds(D).
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The two equalities in Lemma 5 can be achieved. From Lemma 5, we know that
the difference between ds(D) and mds(D) is not a fixed constant. It is not easy to
use this lemma to prove the monotonicity of the directed search model. However,
we can transform D into another digraph D∗ such that ds(D) = mds(D∗). Then
we can use this relation to prove the monotonicity of the directed search model.

Theorem 2. For a digraph D, let D∗ be a digraph obtained from D by replacing
each edge (u, v) ∈ E(D) by two directed paths (u, v′, v) and (u, v′′, v). For (u, v) ∈
E(D), let f1

(u,v) = (u, v′), f2
(u,v) = (v′, v), f3

(u,v) = (u, v′′) and f4
(u,v) = (v′′, v).

The following are equivalent:

(i) ds(D) ≤ k;
(ii) mds(D∗) ≤ k;
(iii) there is a progressive campaign (X0, X1, . . . , Xn) in D∗ of width at most

k − 1 such that for each (u, v) ∈ E(D), m1 < m2 and m3 < m4, where mi,
1 ≤ i ≤ 4, is the subscript of Xmi that is the first set containing f i

(u,v);
(iv) there is a monotonic mixed directed search strategy that clears D∗ using at

most k searchers such that for each (u, v) ∈ E(D), f1
(u,v) is cleared before

f2
(u,v) and f3

(u,v) is cleared before f4
(u,v); and

(v) there is a monotonic directed search strategy that clears D using at most k
searchers.

Proof. (i)⇒(ii). Let (s1, s2, . . . , sn) be a directed search strategy of D using at
most k searchers. We will inductively construct a mixed directed search strategy
(S′

1, S
′
2, . . . , S

′
n) of D∗ using at most k searchers, where S′

i is a subsequence of
actions corresponding to si. Since s1 is a placing action, let S′

1 be the same
placing action. Suppose that we have constructed S′

1, S
′
2, . . . , S

′
j−1 such that the

following two conditions are satisfied: (1) the set of occupied vertices immediately
after sj−1 is the same as the set of occupied vertices immediately after the
last action in S′

j−1, and (2) if (u, v) ∈ E(D) is cleared immediately after sj−1,
then the corresponding four edges f i

(u,v) ∈ E(D∗), 1 ≤ i ≤ 4, are also cleared
immediately after the last action in S′

j−1.
We now construct S′

j . If sj is a placing action that places a searcher on an
unoccupied vertex, S′

j will take the same action. If sj is a placing action that
places a searcher on an occupied vertex, S′

j will be empty. If sj is a removing
action that removes the only searcher from a vertex, S′

j will take the same action.
If sj is a removing action that removes a searcher from a vertex occupied by at
least two searchers, S′

j will be empty. If sj is a sliding action that slides a searcher
from vertex u to vertex v along edge (u, v) to clear the contaminated edge (u, v),
we have two cases.

Case 1. All edges with head u are cleared in D immediately before sj. By
the hypothesis, the vertex u ∈ V (D∗) is also occupied and all edges with head
u in D∗ are also cleared immediately after the last action in S′

j−1. If v is not
occupied, then we can construct S′

j as follows: edge-search-clearing (u, v′), edge-
search-clearing (v′, v), removing the searcher from v, placing the searcher on
u, edge-search-clearing (u, v′′) and edge-search-clearing (v′′, v). If v is occupied,



Directed Searching Digraphs: Monotonicity and Complexity 143

then we can construct S′
j as follows: edge-search-clearing (u, v′), node-search-

clearing (v′, v), removing the searcher from v′, placing the searcher on u, edge-
search-clearing (u, v′′), node-search-clearing (v′′, v), and removing the searcher
from v′′.

Case 2. At least one edge with head u is contaminated in D immediately before
sj . We know that there is at least one searcher on u while performing sj , which
implies that u is occupied by at least two searchers immediately before sj . By
the hypothesis, the vertex u ∈ V (D∗) is also occupied and we have at least one
free searcher immediately after the last action in S′

j−1. If v is not occupied, then
we can construct S′

j as follows: placing a searcher on v′, node-search-clearing
(u, v′), edge-search-clearing (v′, v), removing the searcher from v, placing the
searcher on v′′, node-search-clearing (u, v′′) and edge-search-clearing (v′′, v). If v
is occupied, then we can construct S′

j as follows: placing a searcher on v′, node-
search-clearing (u, v′), node-search-clearing (v′, v), removing the searcher from
v′, placing the searcher on v′′, node-search-clearing (u, v′′), node-search-clearing
(v′′, v), and removing the searcher from v′′.

If sj is a sliding action that slides a searcher from vertex u to vertex v along
edge (u, v) but does not clear the contaminated edge (u, v), we know that im-
mediately before sj, u is occupied by only one searcher and at least one edge
with head u is contaminated. By the hypothesis, the vertex u ∈ V (D∗) is also
occupied immediately after the last action in S′

j−1. If v is occupied, then S′
j

consists of only one action: removing the searcher from u. If v is not occupied,
then S′

j consists of two actions: removing the searcher from u and placing it
on v.

It is easy to see that (S′
1, S

′
2, . . . , S

′
n) can clear D∗ using at most k searchers.

(ii)⇒(iii). Since D∗ has no multiple edges, by Lemma 4, there is a progressive
campaign (X0, X1, . . . , Xn) in D∗ of width at most k − 1. We can modify this
campaign to satisfy the requirement of (iii). By Definition 2, we know that m1,
m2, m3 and m4 have different values. We have four cases regarding the smallest
value.

Case 1. m1 = min{m1, m2, m3, m4}. We already have m1 < m2. If m3 > m4,
then, for each m1+1 ≤ i ≤ m3, replace Xi by X ′

i = Xi−1∪{f3
(u,v)}. Since

X ′
m3

= Xm3−1 ∪ {f3
(u,v)} = Xm3 and v′′ /∈ δ(X ′

i), m1 + 1 ≤ i ≤ m3, it is
easy to see that the updated campaign is still a progressive campaign in
D∗ of width at most k − 1. Let the updated campaign still be denoted
by (X0, X1, . . . , Xn) and mi (1 ≤ i ≤ 4) is the subscript of Xmi that is
the first set containing f i

(u,v) in the updated campaign. Thus, we have
m1 < m2 and m3 = m1 + 1 < m4 in the updated campaign.

Case 2. m2 = min{m1, m2, m3, m4}. For each m2 ≤ j ≤ m1, replace Xj by
X ′

j = Xj−1 ∪ {f1
(u,v)}. After this modification, the first set containing

f1
(u,v) is X ′

m2
and the first set containing f2

(u,v) is X ′
m2+1. Since f2

(u,v) ∈
Xi and f1

(u,v) /∈ Xi for m2 ≤ i ≤ m1 − 1, we know that v′ ∈ δ(Xi),
m2 ≤ i ≤ m1 − 1. Thus, for m2 ≤ i ≤ m1 − 1, we have δ(X ′

i) ⊆
(δ(Xi) − {v′}) ∪ {u} and |δ(X ′

i)| ≤ |δ(Xi)|. We also know that X ′
m1

=
Xm1−1 ∪ {f1

(u,v)} = Xm1 . It follows that the updated campaign is still



144 B. Yang and Y. Cao

a progressive campaign in D∗ of width at most k − 1. Let the updated
campaign still be denoted by (X0, X1, . . . , Xn) and mi (1 ≤ i ≤ 4)
is the subscript of Xmi that is the first set containing f i

(u,v) in the
updated campaign. Thus, we have m1 < m2. Then we can use the
method described in Case 1 to achieve m3 < m4 by modifying the
campaign if necessary.

Case 3. m3 = min{m1, m2, m3, m4}. We already have m3 < m4 and we can
use the method described in Case 1 to modify the campaign such that
m1 < m2 in the updated campaign.

Case 4. m4 = min{m1, m2, m3, m4}. We can use the method described in Case
2 to modify the campaign such that m3 < m4 and m1 < m2 in the
updated campaign.

For each (u, v) ∈ E(D), we can repeat the above procedure for the correspond-
ing four edges f i

(u,v) ∈ E(D∗), 1 ≤ i ≤ 4. Finally, we can obtain a campaign as
required.

(iii)⇒(iv). Let (X0, X1, . . . , Xn) be the progressive campaign described in (iii).
The monotonic mixed directed search strategy constructed in Lemma 3 can use
at most k searchers to clear f1

(u,v) before f2
(u,v) and to clear f3

(u,v) before f4
(u,v)

for each (u, v) ∈ E(D).
(iv)⇒(v). Let S = (s1, s2, . . . , sn) be a monotonic mixed directed search strat-

egy of D∗ satisfying the condition of (iv). We will construct a monotonic directed
search strategy S′ of D using at most k searchers. For each edge (u, v) ∈ E(D),
without loss of generality, suppose that S clears f1

(u,v) before f3
(u,v). For each i

from 1 to n, consider si. If si is a placing or removing action on a vertex that is
also in V (D), S′ will take the same action. If si is a placing or removing action
on a vertex in V (D∗)−V (D), S′ will do nothing. If si is an edge-search-clearing
action that clears edge f1

(u,v), then in S′, we can clear (u, v) ∈ E(D) in the same
way as si does. If si is a node-search-clearing action that clears edge f1

(u,v) by
the searcher α on u and the searcher β on v′, then in S′, we know that α is also
on u and β is free. Thus, we can place β on u and then clear (u, v) ∈ E(D) by
sliding β from u to v along (u, v). If si clears edge f2

(u,v), f3
(u,v) or f4

(u,v), we do
nothing in S′. It is easy to see that S′ can clear D using at most k searchers.

(v)⇒(i). It is trivial.

4 NP-Completeness Results

Kirousis and Papadimitriou [7] proved that the node search problem is NP-
complete. In this section, we will establish a relationship between the mixed
directed searching and node searching. Using this relation, we can prove the
mixed directed search problem is NP-complete. We can then prove the directed
search problem is NP-complete from Theorem 2.

For an undirected graph G, the minimum number of searchers needed to clear
G in the node search model is the node search number of G, denoted by ns(G).
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Theorem 3. Let G be an undirected graph. If Ḡ is a digraph obtained from G
by replacing each edge uv ∈ E(G) with two directed edges (u, v) and (v, u), then
mds(Ḡ) = ns(G).

Proof. In the mixed directed search model, there are four types of actions, plac-
ing, removing, node-search-clearing, and edge-search-clearing, and in the node
search model, there are only two types of actions, placing and removing. Note
that there is no “clearing” action in the node search model corresponding to the
node-search-clearing or edge-search-clearing. A contaminated edge is cleared in
the node search model if both end vertices are occupied, while a contaminated
edge is cleared in the mixed directed search model only by a node-search-clearing
or edge-search-clearing action.

We first show that mds(Ḡ) ≤ ns(G). Let Sn be a monotonic node search
strategy that clears G using k searchers. Notice that Sn is a sequence of placing
and removing actions. We will construct a mixed directed search strategy Sm

by inserting some node-search-clearing actions into Sn as follows. Initially, we
set Sm = Sn. For each placing action s in Sn, let As be the set of cleared edges
just after s and Bs be the set of cleared edges just before s. If As − Bs 	= ∅,
then for each edge uv ∈ As −Bs, we insert two node-search-clearing actions into
the current Sm such that they clear both (u, v) and (v, u). The order of these
clearing actions is arbitrary. Finally, we have a mixed directed search strategy
Sm for Ḡ. It is easy to see that Sm can clear Ḡ using k searchers. Therefore,
mds(Ḡ) ≤ ns(G).

We now show that ns(G) ≤ mds(Ḡ). Let Sm be a monotonic mixed directed
search strategy that clears Ḡ using k searchers. We first prove that there is no
edge-search-clearing action in Sm. Suppose that s′ is an edge-search-clearing ac-
tion in Sm, which clears edge (u, v) by sliding from u to v. From Definition 3,
all in-edges of u are cleared. Since (v, u) is cleared but (u, v) is contaminated
just before s′, the vertex v must contain a searcher to protect (v, u) from recon-
tamination. From Definition 3, (u, v) must be cleared by a node-search-clearing
action because both u and v are occupied just before s′. This is a contradiction.
Thus, Sm consists of only three types of actions: placing, removing, and node-
search-clearing. Let Sn be a sequence of actions obtained from Sm by replacing
each node-search-clearing action with an empty action. We next prove that Sn

is a node search strategy that clears G using k searchers.
When an edge (u, v) is cleared by a node-search-clearing action in Sm, the

corresponding edge uv in G is also cleared just before the corresponding empty
action in Sn because both u and v are occupied. Note that Sn may not be
monotonic. For any edge uv ∈ E(G), when both (u, v) and (v, u) are cleared
just after a node-search-clearing action in Sm, uv is also cleared just before the
corresponding empty action in Sn because both u and v are occupied. We now
show that this uv will keep cleared to the end of the search process. Notice
that only a removing action may cause recontamination in Sn. For the sake
of contradiction, suppose that there is a removing action in Sn such that just
after this action an edge, which is incident on the vertex from which a search
is just removed, becomes recontaminated, but the corresponding two edges in
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Ḡ are still cleared just after the corresponding removing action in Sm. Let r be
the first such a removing action which removes a search from vertex u, and let
edge uv ∈ E(G) becomes recontaminated just after r and both (u, v) and (v, u)
in Ḡ are cleared just after the corresponding removing action r′ in Sm. Since
uv becomes recontaminated just after r, there must exist a contaminated edge
incident on u just before r. Let wu be such a contaminated edge just before r.
If (w, u) is also contaminated just before r′, then (u, v) becomes recontaminated
just after r′. This contradicts the monotonicity of the strategy Sm. If both (w, u)
and (u, w) are cleared just before r′, then wu is also cleared because uv is the
first edge which is recontaminated but (u, v) and (v, u) are cleared. This is a
contradiction. Thus, just before r′, (w, u) is cleared and (u, w) is contaminated,
and w must contain a searcher to protect (w, u) from recontamination. Hence,
both w and u are occupied just before r′. It follows that wu is cleared just before
r. This is a contradiction. Therefore, for each edge uv ∈ E(G), if both (u, v) and
(v, u) in Ḡ are cleared, then uv is also cleared. It is easy to see that Sn can clear
G using k searchers. Thus, ns(G) ≤ mds(Ḡ).

Given a digraph D, the problem of determining ds(D) or mds(D) is the opti-
mization problem of finding the smallest k such that D can be cleared using
k searchers. The corresponding decision problem for the mixed directed search
problem is as follows.
Problem: Mixed Directed Searching
Instance: Digraph D, positive integer k.
Question: Can we use k searchers to clear D under the mixed directed search
model?

The decision problem for the directed search problem is to determine whether
we can clear D using k searchers.
Problem: Directed Searching
Instance: Digraph D, positive integer k.
Question: Can we use k searchers to clear D under the directed search model?

From Theorem 3, we have the following result.

Theorem 4. The Mixed Directed Searching problem is NP-complete.

Proof. We first show that the Mixed Directed Searching problem belongs to NP.
Suppose we are given a digraph D and a positive integer k. From Theorem 1, a
nondeterministic algorithm needs only to guess a monotonic mixed directed search
strategy such that the number of actions in this strategy is O(V (D) + E(D)). It
is easy to see that checking whether this strategy can clear D using k searchers
can be accomplished in deterministic polynomial time. Thus, the Mixed Directed
Searching problem is in NP. By Theorem 3, we know that the Mixed Directed
Searching problem is NP-hard because the node search problem is NP-complete
[7]. Therefore, the Mixed Directed Searching problem is NP-complete.

From Theorems 2 and 4, we can prove that the directed search problem is NP-
hard. From Theorem 2, we can prove that the directed search problem belongs
to NP. Therefore, we have the major result of this section.
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Theorem 5. The Directed Searching problem is NP-complete.

5 Conclusion

In this paper, we investigated two new digraph searching models, directed search-
ing and mixed directed searching, in which both searchers and intruders must
move in the edge directions. Using the method proposed by Bienstock and Sey-
mour [4], we first proved the monotonicity of the mixed directed search model.
We then proved the monotonicity of the directed searching. We also give a re-
lationship between the mixed directed searching and the node searching. From
this relation and the monotonicity results, we showed that the mixed directed
and directed search problems are NP-complete.
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